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“Everything should be made as simple as possible, 
but not simpler.” 

-Albert Einstein 
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Preface 

My involvemcnt with Pijush Kundu’s FluidMechunics first began in April 1991 with 
a letter from him asking mc to consider his book for adoption in the first year graduatc 
courSe 1 had been teaching for 25 ycars. That started a correspondence and, in fact, 
I did adopt the book lor the following acadcmic ycar. The correspondence related 
to improving the book by enhancing or clarifying various points. T would not have 
taken the time to do that iT I hadn’t thought this was thc best book at the first-year 
graduate level. .By the end of that ycar we werc alrcady discussing a swond edition 
and whether 1 would have a role in it. By early 1992, howcvcr, it was clcar that T 
had a crushing administrative burden at the University or Pennsylvania and could not 
undertake any time-consuming projects for the next several years. My wile and 1 met 
Pijush and Shikha for the first time in December 1992. They were a charming, erudite, 
sophisticated couple with two brilliant children. We immediately relt a bond orwarmth 
and €riendship with them. Shikha was a Leacher like my wife so the four of us had a 
great deal in common. A couple or years later we were shocked to hear that Pijush had 
died suddenly and unexpectedly. It saddened me gcatly bccause I M been looking 
forward to working with Yijush on the second edition after my term as department 
chainnan ended in mid-1997. For the next year and a half, howcvcr, scrious family 
health problems detoured any plans. Discussions on this cdition resumed in July ol 
1999 and wcrc concludcd in the Spring or 2000 when my work really started. This 
hook remains thc principal work product of Pijush K. Kundu, especially the lengthy 
chapters on Gravity Waves, Instability, and Geophysical Fluid Dynamics, his areas or 
expertise. I have addcd ncw material to all of the other chapters, often providing an 
alternative point of view. Specifically, vcctor field derivatives have been generalized, 
as have been streamfunctions. Additional material has been added to thc chaptcrs on 
laminar flows and boundary layers. The trcatmcnt of one-dimensional gasdynamics 
has been extended. Morc problems have been added to most chapters. ProIessor 
Howard H. Hu, a recognized expert in computational fluid dynamics, graciously 
provided an cntircly new chapter, Chapter 1 1, thcrchy providing the student with an 
entree into this cxploding new field. Both finite diffcrcncc and Gnite element methods 
arc introduced and a delailed worked-out cxamplc of each is provided. 

1 have becn a studcnt 01 fluid mechanics since 1954 when I entered college to 
study aeronautical engineering. I have been teaching fluid mechanics sincc 1963 when 
I joincd thc Brown University faculty, and I have been teaching a course corresponding 
to this book since moving to thc University orPennsylvania in 1966. I am most grdtCfUl 
10 two of my own tcahers, Prolessor Wallace D. Hayes (191 8-2001), who expressed 

xvii 



xviii PrcJacw 

fluid mechanics in the clearest way I have ever seen, and Professor Martin D. Kruskal, 
whose use of mathematics to solve difficult physical problcms was developed to a 
high art form and reminds me of a Vivaldi trumpet concerto. His codification of rules 
of applied limit processes into the principles of “Asymptotology” remajns with me 
today as a way to view problems. T am grateful also to countless students who asked 
questions, forcing me to rethink many points. 

The editors at Academic Press, Gregory Franklin and Marsha Filion (assistant) 
have been very supportive of my efforls and have tied to light a fire under me. Since 
this edition was completed, I found that thcrc is even more new and original material I 
would like to add. But, alas, that will have to wait for the next edition. The new figures 
and modifications of old figures were donc by Maryeileen Ranford with occasional 
assistance from the school’s software expert, Paul W. Shaffer. I greatly appreciate 
their job well done. 

Ira M. Cohen 



Preface to First Edition 

This book is a basic introduction to the subject of fluid mechanics and is intended [or 
undergraduate and beginning graduate students of science and engineering. There is 
enough material in the book for at leaqt two courses. No previous knowledge of thc 
subject is assumed, and much ofthe text is suitable in a first course on the subject. On 
the other hand, a sclcction of thc dvanccd topics could bc uscd in a sccond coursc. I 
have not hied lo indicate which sections should be considered advanced; the choice 
often depends on the teacher, the university, and the field of study. Particular effort 
has been made to make the presentation clcar and accurate and at thc samc timc cdsy 
enough for students. Mathematically rigorous slpprodchcs hslvc bccn avoided in favor 
of the physically revealing ones. 

A survey of the available texts revealed the need for a book with a balanccd 
view, dealing with currcndy rclevant topics, and at the same time easy enough for 
students. The available tcxts can pcrhaps be divided into three broad groups. One 
type, written primarily for applied mdthcmaticians, deals mostly with classical topics 
such as irrotational and laminar flows, in which analytical solutions are possible. 
A sccond group of books ernphqizes engineering applications, conccntrating on 
flows in such systems as ducts, open channels, and airfoils. A third type of text is 
narrowly focused loward applications to largc-scale gcmphysical systems, omitting 
small-scale processes which are equally applicablc to geophysical system as well as 
labordtary-scale phenomena. Several of thcsc geophysical fluid dynamics texts are 
also writlen primarily for researchers and arc therefore rather difficult for students. I 
have mcd to adopt a balanced view and to dcal in a simplc way with the basic ideas 
relevant to both cngineering and geophysical fluid dynamics. 

However, I have taken a rather cautious altitude toward mixing enginccring and 
geophysical fluid dynamics, gcnerdlly separating them in diffcrcnt chapters. Although 
the basic principles arc the same, the large-scalc gcophysical flows are so dorninatcd 
by thc cffccts of the Coriolis force that thcir characteristics can be quite different 
from those of laboratory-scalc flows. It is for this reason that most effects orplanetary 
rotation are discusscd in a separate chapter, although the concept of the Coriolis force 
is intrnduccd carlierin the book. The effects of density stratilication, on thc othcr hand, 
are discusscd in several chapters, sincc thcy can be important in both gcophysical and 
laboratory-scalc flows. 

Thc choice or malerial is always a pcrsonal one. In my c € L  lo select topics, 
howcver, I have been careful not to be guided strongly by my own research intcresls. 
Thc material selected is what I bclieve to be of the most interest in a book on general 
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fluid mechanics. It includes topics of special interat to geophysicists (for example, 
the chapters on Gruvity Waves and Geophysical Fluid Dynamics) and to engineers 
(for example, the chapters on Aerodynumics and Compressible Flow). There are also 
chapters of common interest, such as the first five chapters, and those on Boundary 
Layers, Instability, and Turhulence. Somc of the material is now available only in 
specialized monographs; such material is presented here in simple form, perhaps 
sacrificing some formal mathematical rigor. 

Throughout the book the conveniencc of tensor algebra has becn cxploited freely. 
My experience is that many students feel uncomfortable with tensor notation in the 
beginning, especially with the permutation symbol &ok. After a while, however, they 
like it. In any case, following an introductory chapter, the sccond chapter of the book 
explains the fundamentals of Cartesiun Tensors. The next three chapters deal with 
standard and introductory material on Kinematics, Conservution Laws, and Vorticity 
Dynamics. Most of the material here is suitable for presentation to geophysicists as 
well as engineers. 

In much of the rest of the book the teacher is expected to select topics that are 
suitable for his or hcr particular audience. Chaptcr 6 discusses Zrrotational Flow; this 
material is rather classical but is still useful for two reasons. First, some of the results 
are used in later chapters, especially the one on Aerodynamics. Second, most of the 
ideas are applicable in the study of other potential fields, such as heat conduction 
and electrostatics. Chapter 7 discusses Gravity Waves in homogeneous and stratified 
fluids; the emphasis is on linear analysis, although brief discussions of nonlinear 
effects such as hydraulic jump, Stokes’s drift, and soliton am given. 

After a discussion of Dynamic Similarity in Chapter 8, the study of viscous flow 
starts with Chapter 9, which discusses Lcsmiizur Flow. The material is standard, but 
thc concept and analysis of similarity solutions are explained in dctail. In Chapter 10 
on Boundary Luyers, the central idea has been introduced intuitively at first. Only 
after a thorough physical discussion has the boundary laycr been explained as a sin- 
gular perturbation problem. I ask the indulgence of my colleagues for including the 
peripheral section on the dynamics of sports balls but promise that most students 
will listen with intercst and ask a lot of questions. Instability of flows is discussed at 
some length in Chaptcr 12. The emphasis is on linear analysis, but some discussion 
of “chaos” is given in order to point out how detcrministic nonlinear systems can lead 
to irregular solutions. Fully developed three-dimensional Turbulence is discussed in 
Chapter 13. Tn addition to standard engincering topics such as wall-bounded shear 
flows, the theory a€ turbulcnt dispersion of particles is discussed because of its geo- 
physical importance. Some effects of stratification are also discussed here, but the 
short section discussing the elerncntary ideas of two-dimensional geostrophic tufbu- 
lencc is deferred to Chapter 14. I believc that much of the material in Chapters 8-1 3 
will be of general interest, but some selection of topics is necessary hme for teaching 
specialized groups of students. 

The remaining three chapters deal with more specialized applications in geo- 
physics and engincering. Chaptcr 14 on Geophysical Fluid Dynamics emphasizes 
the linear analysis of certain geophysically important wave systems. However, ele- 
ments of barotropic and baroclinic instabilities and geostrophic turbulcnce are also 
included. Chapter 15 on Aerodynamics emphasizes the application of potcntial the- 
ory to flow around lift-generating profiles; an elementary discussion of finite-wing 



theory is also given. The material is standard, and I do not claim much originality or 
innovation, although I think the reader may be especially interested in the discussions 
of propulsive mechanisms of fish, birds, and sailboats and the matcrial on the historic 
controversy bctwccn Randtl and Lanchester. Chapter 16 on Compressible F ~ J W  also 
conlains standard topics, available in most engineering texts. This chapter is included 
with the bclicf that all fluid dynamicists should have some familiarity with such topics 
as shock wavcs and expansion fans. Besides, very similar phenomena also occur in 
other nondispcrsivc systcms such as gravity waves in shallow water. 

The appcndixcs contain conversion factors, properties of water and air, equations 
in curvilinear coordinates, and short bibliographical sketches of Founders of Modem 
Fluid Dyruunic.7. In selecting the names in the list of foundcrs, my aim was to come 
up with a very short list of historic figurcs who madc truly fundamental contributions. 
It became clear that the choice oTPrandtl and G. I. Taylor was the only one that would 
avoid all controversy. 

Some problems in the basic chapters are worked out in the text, in order to 
illustrate the application of the basic principles. In a first course, undcrgraduatc cngi- 
necring studcnts may necd morc practice and hclp than offered in the book; in that 
case the teacher may have to select additional problems from other books. Difficult 
problems have been deliberately omitted from the end-of-chapter exercises. It is my 
experience that the more difficult exercises need a lot of clarification and hints (the 
degree of which depends on the students’ background), and Lhey are IhereTore beikr 
designed by the kacher. In many caSes answers or hints are provided Tor the exercises. 
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Author’s Notes 

Both indicial and boldface notations are used to indicate vectors and tensors. Thc 
comma notation to represent spatial derivatives (for example, A,i for aA/ax i )  is used 
in only two seclions or the book (Sections 5.6 and 13.7). when the algebra became 
cumbersome otherwise. Equal to by definition is denotcd by =; .for example, the 
ratio of specific heats is introduced as y Cp/Cv. Nearly equal io is written as ?‘, 
proportional IO is written as a, and ofthe order is written as -. 

Plane polar coordinates are denoted by (rl e), cylindrical polar coordinates are 
denoted by either (R, (p, x )  or (r, 8. x ) ,  and spherical polar coordinates are denoted by 
(r, 8, (p) (sce Figure 3.1). The velocity components in thc thrcc Cartesian directions 
( x ,  y ,  z) are indicatcd by (u,  v, w) .  In geophysical situations the r-axis points upward. 

Tn some cases equations are referred to by a descriptivc namc rather than a number 
(for example, ”thc x-momentum equation shows that. . . ”). Those equations and/or 
results deemed especially important have been indicated by a box. 

A list of literature cited and supplemental reading is provided at the end of most 
chapters. The list has been deliberately kept short and includes only those sources that 
serve one of the following three purposes: (1) It is a rcferencc the student is Likely to 
find useful, at a level not too different from that of this book; (2) it is a reference that 
has influenced the author’s writing or from which a figurc is reproduced; and (3) it 
is an imporkmt work done after 1950. In currently active fields, rcrerence has been 
made to more recent revicw papers where the student can find additional referenccs 
to the important work in thc field. 

Fluid mechanics forces us I-lly to understand thc underlying physics. This is 
because the results wc obtain often defy our intuition. The following cxamples support 
these contcntions: 

1 .  Tnfinitesmally small causes can have largc effects (d’Alembert’s paradox). 
2. Symmetric problcms may have nonsymmetric solutions (von Karman vortex 

street). 
3. Friction can make the flow go faster and cool the flow (subsonic adiabatic flow 

in a constant area duct). 
4. Roughening the surface of a body can dccrease its drag (transition rrom laminar 

to turbulent boundary layer separation). 
5. Adding heat to a flow may lower its temperature. Removing heat horn a flow 

may raise its temperature ( 1  -dimensional diabatic flow in a range of subsonic 
Mach number). 
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6. Friction can destabilize a previously stable flow (Orr-Sommerfcld stability 
analysis for a boundary layer profilc without inflection point). 

7. Without friction, birds could not fly and fish could not swim (Kutta condition 
requires viscosity). 

8. The best and most accurate visualization of streamlincs in an inviscid (inlinitc 
Reynolds number) flow is in a Hclc-Shaw apparatus for crccping highly viscous 
flow (ncar zcro Reynolds number). 

Every onc of thcse counterintuilive cfftxts will be trcatcd and discusscd in 
this kxt. 

This second cdition also contains additional material on slreamfunctions, bound- 
ary condilions, viscous flows, boundary layers, jets, and compressible flows. Most 
important, there is an entirely ncw chapter on computational fluid dynamics that intro- 
duces the student to the various tcchuiques for numerically integrating the cquations 
governing fluid motions. HopcFully the introduction is sufficient that thc reader can 
follow up with specialized texts for a more comprehcnsive understanding. 

An historical survey of fluid mcchanics from thc time of Archimedes (ca. 
250 B.C.E.) to approximately 1900 is provided in the Eleventh Edition of 
7;he Encyclopmliu Britunnicu (191 0) in Vol. XIV (under “Hydromechanics,” 
pp. 115-135). 1 am grateful to Professor Hcrrnan Gluck (Professor of Mathemat- 
ics at the University of Pennsylvania) for scnding me this article. Hydrostatics and 
classical (constant density) potential flows arc reviewed in considerable depth. Great 
detail is given in the solution of problems that are now considered obscurc and arcane 
with crcdit to authors long [orgotten. The theory of slow viscous motion dcveloped by 
Stokes and others is not mentioned. The conccpt of the boundary layer [or high-specd 
motion of a viscous fluid was apparently too mcent for its importance to have been 
realized. 
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I .  lluid .Mechanics 

Fluid mechanics deals with the flow of fluids. Its study is important to physicists, 
whosc main interest is in understanding phcnomena. They may, for example, be 
interested in learning what causcs the various typcs of wave phenomena in the atmo- 
sphere and in the ocean, why a layer of fluid hcated from below brcaks up into cellular 
patterns, why a tcnnis ball hit with “top spin” dips rather sharply, how fish swim, and 
bow birds fly. The study or fluid mechanics is just as important to engjneers, whose 
main interest is in the applications of fluid mechanics io solve industrial problems. 
Aerospace engineers may be intcrcsted in designing airplanes that have low resis- 
tance and, at thc same time, high “lift” force to support the weight of the plane. Civil 
engineers may be interested in designing irrigation canals, dams, and water supply 
systems. Pollution control enginccrs may be intercstcd in saving our planet from the 
constant dumping of industrial sewagc into the atmosphere and thc ocean. Mechan- 
ical engineers may be interested in designing turbines, heat cxchangers, and fluid 
cou2l ings. Chemical enginccrs may be intcrested in designing efficient devices to 
mix industrial chemicals. The objectivcs of physicists and enginccrs, howevcr, are 
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not quite separable because the engineers need to understand and thc physicists need 
to be rnotivatcd through applications. 

Fluid mechanics, like the study of any other branch of science, needs mathemat- 
ical analyses as well as experimentation. The analytical approaches help in finding the 
solutions to cerlain idcalized and simplificd problems, and in undcrstanding the unity 
behind apparently dissimilar phenomena. Needless to say, drastic simplifications are 
frequenlly neccssary because of the complexity of real phenomena. A good under- 
standing of mathematical techniques is defhitely helpful here, although it is probably 
fair to say that some of the grcatest theoretical contributions havc come from the 
people who depended rather strongly on their unusual physical intuition, some sort 
of a “vision” by which they werc able to distinguish between what is relevant and 
what is not. Chess player, Bobby Fischer (appearing on the television program “The 
J o h y  Carson Show,” about 1979), once compared a good chess player and a p a t  
one in the following manner: When a good chess player looks a1 a chess board, he 
thinks of 20 possible moves; he analyzes all of them and picks the one that he likes. 
A great chess player, on the othcr hand, analyzes only two or thrcc possible moves; 
his unusual intuition (part of which must have grown from expcrience) allows him 
immediately to rule out a large number of moves without going through an apparent 
logical analysis. Ludwig Prandtl, onc of the founders of modem fluid mechanics, 
first conceived the idea of a boundary layer based solely on physical intuition. His 
knowledge of mathematics was rather limited, as his famous student von Kannan 
(1 954, page 50) tcstifies. Interestingly, the boundary layer technique has now become 
one of the most powerful methods in applied mathematics! 

As in other ficlds, our malhcmatical ability is too limited to tackle the complex 
problems of real fluid flows. Whcther we are primarily interested either in under- 
standing the physics or in the applications, wc must depend heavily on cxperhental 
observations to test our analyses and develop insights into the nature of the phc- 
nomenon. Fluid dynamicists cannot afford to think like pure mathematicians. The 
well-known English pure mathematician G. H. Hardy once described applied math- 
ematics as a form of “glorified plumbing” (G. I. Taylor, 1974). It is frightening to 
imaginc what Hardy would have said of experimental sciences! 

This book is an introduchon to fluid mechanics, and is aimed at both physicists 
and engineers. While the cmphasis is on understanding the elementary concepts 
involved, applications to the various engineering fields havc been discussed so as 
to motivate the reader whose main interest is to solvc industrial problems. Needless 
to say, the reader Will not get complete satisfaction even after reading the entire book. 
It is more likely that he or she will have m m  questions about the nature of fluid flows 
than before studying this book. The purpose orthe book, howcvcr, will bc well servcd 
if the readcr is more curious and interested in fluid flows. 

2. lhik of:WcamremC?nl 
For mechanical systcms, the units of all physical variables can be expressed in terms 
of the units of four basic variables, namely, length, mass, time, and temperature. 
In this book the international system of units (Syskmc international d‘ uniteis) and 
commonly refcrred to as SI units, will be used most of the timc. The basic uniis 



TAl3LE 1 . 1  STUnits 
~~ 

Quantity Namc of unit Symbol Equivalent 

Lcnpth mew rn 

T i m  second Y 

... ._ . _ .  

Mass kilogram ks 

Tcmpcralure kelvin K 
Frcqucnq hertz HZ S-' 

Force ncwton N kgms 
Pressurc pascal Pa Nm -2 

b c w  joule J Nm 
Power wall W Js .' 

TABLE 1.2 Common Refixcs 

Prclix Symbol Multiplc 
. . _  . . 

Mcgii M 106 

Dcci d IO ' 
Ccnti c 10-2 
Milli rn 
Micro P 

k 1 0' Kilo 

1 0 - 6  

of t h i s  system are meter for length, kilogram for mass, second for time, and kelvin 
Ibr temperature. Thc units for other variables can be derived from these basic units. 
Somc o€ the common variables used in fluid mechanics, and their SI units, are listed 
in Table 1.1. Some uscful conversion factors between differcnt systems of units are 
listcd in Section AI in Appendix A. 

To avoid very lagc or very small numerical values, prcfixes are used to indicale 
multiples of the units given in Tablc 1.1. Some of thc common prefixes arc listed in 
Tablc 1.2. 

Strict adherence to thc S1 system is sometimes cumbcrsome and will be aban- 
doned in favor of common usage wherc it best serves thc purpose of simplirying 
things. For cxample, tempcratures will be hquently quoted in degrees Celsius ("C), 
which is related to kclvin (K) by thc relation "C = K - 273.15. However, the old 
English system of units (foot, pound, "F) will not be used, although engineers in the 
United States arc still using it. 

3. Soli&, liquids, and Cases 

Most substances can be dcscribed as existing in two states-olid and fluid. An 
elcment of solid has a preferred shape, to which it relaxes whcn the external forces 
on it are withdrawn. In contrast, a fluid does not havc any preferred shape. Considcr 
a rectangular clcment of solid ABCD (Figure 1. I a). Under the action of a shear force 
F the element assumes the shape ABC'D'. If the solid is perfectly elastic, it goes 
back to its prcferred shapc ABCD whcn F is withdrawn. In contrast, a fluid de€orms 



Figme 1.1 Dclormtrlion of solid and fluid clcmcnts: (a) solid; and (b) tluid. 

continuously under the action of a shear force, however small. Thus, the clement of 
the fluid ABCD confined between parallel plates (Figure l.lb) deforms to shapes 
such as ABC’D’ and Al3C”D” as long as h e  force F is maintained on the upper plate. 
Therefore, wc say that a fluid flows. 

The qualification “howevcr small” in thc forementioned description of a fluid is 
significant. This is because most solids also ddorm continuously if the shear stress 
exceeds a certain limiting value, corresponding to the “yield point” of the solid. A 
solid in such a state is known as “plaqtic.” In fact, thc distinction between solids and 
fluids can be hazy at times. Substances like paints, jelly, pitch, polymer solutions, and 
biological substances (for example, egg white) simultaneously display the character- 
istics of both solids and fluids. If we say that an elastic solid has “perfect memory” 
(because it always relaxes back to its preferred shape) and that an ordinary viscous 
fluid has zcro memory, then substanccs like egg white can be called viscoelastic 
because they have “partial mcmory.” 

Although solids and fluids behave vcry differently when subjected to shear 
stresses, they behave similarly under the action of compressive n o d  stresses. How- 
ever, whereas a solid can support both tensile and compressive normal stmsses, a fluid 
usually supports only compression (pressure) slrcsses. (Some liquids can support a 
small amount of tensile stnss, the amount depending on the degree of molecular 
cohesion.) 

Fluids again may be divided into two classes, liquids and gases. A gas always 
expands and occupies the entire volume of any container. In contrast, the volume of a 
liquid does not change very much, so that it cannot completely fill a largc container; 
in a gravitational field a free surface forms that separates the liquid from its vapor. 

4. Cmlinuum Ilypotheaik 
A fluid, or any other substance for that matter, is composed of a largc number of 
molccules in constant motion and undergoing collisions with cach other. Matter is 
thercfore discontinuous or discrete at microscopic scalcs. In principle, it is possible to 
sludy thc mechanics of a fluid by studying the motion ofthe molecules themselves, as 
is done in kinetic thcory or statistical mcchanics. Howevcr, we are generally interestcd 
in the gross behavior of the fluid, that is, in the averuge manijiestation of the molecular 
motion. For cxarnple, forces are exerted on the boundaries of a container due to the 



constant bombardment of the moleculcs; the statistical average of this force per unit 
area is called pressure, a macroscopic property. So long as we arc not interested in the 
mechanism of the origin of pressure, we can ignore the molecular motion and think 
of pressure as simply “force per unit area.” 

It is thus possible to ignore the discrctc molecular structure of matter and replace 
it by a continuous dislribution, called a continuum. For the continuum or macroscopic 
approach to be valid, the size of the flow system (characterized, for example, by the 
size of the body around which flow is taking place) must be much larger than the mean 
frec path or the molecules. For ordinary cases, however, this is not a great restriction, 
since the mean free path is usually very small. For examplc, the mean free path for 
standard atmospheric air is ~5 x m. In special situations, however, the mean 
free path of thc molecules can be quitc large and the continuum approach breaks 
down. In the upper altiludes of the atmosphcre, Cor example, the mcan free path of 
the molecules may be of the order of a mcter, a kinetic theory approach is necessary 
for studying the dynamics of thcse rardied gases. 

Considcr a surrace area AB within a mixture of two gaqes, say nitrogen and oxygen 
(Figure 1.2), and assume that thc concentration C of nitrogen (kilograms of nitrogcn 
per cubic metcr of mixture) varies amass AB. Random migration of molecules across 
AB in both directions will result in a ner flux or nitrogen across AB, from the region 

Pigurr! 1.2 Muss flux q,, due 10 concentration varialion C(p) across AB. 



of higher C toward the region of lowcr C. Experimcnts show that, to a good approx- 
imation, the flux of one constiluent in a mixture is proportional to its conccntration 
gradient and it is given by 

Here the vector ~m is the mass flux (kg m-2 s-' ) of the constituent, VC is the con- 
centration gradient of that constituent, and k,,, is a constant of proportionality that 
depends on the particular pair of constituents in the mixture and the thennodynamic 
state. For example, k, for diffusion of nitrogen in a mixture with oxygen is different 
than k, for diffusion af nitrogen in a mixture with carbon dioxide. The lincar rela- 
tion (1 . I )  for mass diffusion is generally known as Fick's law. Relations likc these 
are based on cmpirical evidcnce, and are called phenomrwlugical laws. Statistical 
mcchanics can sometimes be used to derive such laws, bur only for simple situations. 

The analogous relation for heat transport due to tempcrature gradient is Fourier's 
law and it is givcn by 

where q is the heat flux (J m-2 s-I), V T  is the temperature gradient, and k is the 
thermal conductivity of the material. 

Next, consider the effect of velocity gradient du/dy (Figure 1.3). It is clear that 
the macroscopic fluid velocity u will tend to become uniform due to the random 
motion of the molecules, because of intermolecular collisions and the consequent 
exchange of molecular momentum. Imagine two railroad trains traveling on parallcl 

~m = -k,VC. (1.1) 

q = -kVTI (1.2) 

I - 
X 

Figurc 1.3 Shcar stress r on s u k c  AB. Dimusion tends to decrcmc velocily gradients, SO that thc 
conlinuous linc ten& t o w d  the dashcd line. 
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tracks at different speeds, and workers shoveling coal from one train to the other. On 
the avcrage, the impact of particles of coal going horn the slower to the faster train will 
tend to slow down the faster trajn, and similarly the coal going from the faster to the 
slower train will Lend to speed up the latter. The net effect is a tendency to equalize the 
speeds of the two trains. An analogous process takes place in the fluid flow problem 
of Figurc 1.3. The velocity distl.ibution here tends toward the dashed linc, which can 
be dcscribed by saying that the x-momentum (determined by its “concentration” u )  
is being transferred downward. Such a momentum flux is equivalent to the existence 
of a shear stress in the fluid, just as the drag cxperienced by the two trains results 
from the momentum exchangc through the transfer or coal particles. Thc fluid above 
AB tends to push the fluid underneath forward, whereas the fluid below AB tends 
to drag tbe uppcr fluid backward. Experiments show that the magnitude of the shear 
stress 7 along a surface such as AB is, io a good approximation, related to thc velocity 
gradient by thc linear relation 

(1 -3) 
du 

t = p -  
dy 

which is calledhrewron’s law of friction. Hcrc the constant of proportionality p (whose 
unit is kg m-’ s-l) is known as the dynamic viscosiry, which is a strong function of 
tempcrature T. For idcal gases the random thermal speed is roughly proportional to 
fi, the momentum transport, and conscquently p, also vary approximately as a. 
For liquids, on the othcr hand, the shear stress is caused more by the intermolecular 
cohesive forces than by the thermal motion of the molecules. These cohesive forces, 
and consequently p .for a liquid, decrcase with tempcrature. 

Although the shear stress is proportional to p, we will see in Chapter 4 that the 
tendency of a fluid to difise velocity gradients is detennincd by the quantity 

P 
( 1 -4) 

where p is the density (kg/m3) of thc fluid. The unit of v is m2/s, which does not 
involve thc unit of mass. Consequently, u is frequently called the kinematic viscosify. 

Tbvo points should bc noticed in thc linear transport laws Eqs. (1.  l) ,  (1.2), and 
(1.3). First, only theJirsr dcrivative of somc generalized “concentration” C appears on 
the right-hand sidc. This is because the transport is carried out by molecular processes, 
in which the length scales (say, the mean free path) are too small to feel the curvaturc 
of the C-profilc. Second! the nonlinear tcrms involving higher powers of VC do not 
appear. Although this is only expected for small magnitudes of VC, experimcnts show 
that such linear rclalions are vcry accurate for most practical values of vc. 

I1 should bc noted here that we havc written thc transport law for momcntum 
far less preciscly than thc transport laws for mass and heat. This is because we 
have not dcveloped thc language to write this law with precision. The transported 
yuantitics in  (1.1) and (1.2) are scalars (namely, inass and hcat, respectivcly), and thc 
corresponding fluxes are vcctors. In conmst, the transported quantity in ( 1.3) is itsclr 
a veclor, and thc corresponding flux is a “tensor.” The p c i s c  form of (1.3) will be 
presented in Chapter 4, after the concept of tensors is explained in Chapter 2. For now, 
we haw avoided complications by writing thc transport law for only one component 
of momentum, using scalar notation. 

V G -  
P ’  



A densily discontinuity exists whenevcr two immiscible fluids are in contact, for 
example ai thc interface between water and air. The interfacc in this ca9e is found 
to behave aq if it were under tension. Such an intcrface behavcs like a stretched 
membrane, such as the surface of a balloon or of a soap bubble. This is why drops of 
liquid in air or gas bubbles in water tend to be spherical in shape. The origin of such 
tension in an interface is duc to the intermolecular attractive forces. Imagine a liquid 
drop surrounded by a gas. Near the interface, all the liquid molecules are trying to 
pull Lhc molecules on the interface inwurd. The net effect of these attractive forces is 
for the intcrface to contract. The magnitude a1 the tensile force per unit length of a 
line on the intcrface is callcd surjiuce tension 0,  which has thc unit N/m. The value 
of n depends on the pair of fluids in contact and the temperatux. 

An important consequence of surfacc tension is that it givcs rise to a pressure 
jump across the interface whenever it is curved. Consider a spherical interface having 
a radius of curvature R (Figure 1.4a). If pi and po are the pressures on the two sidcs 
a€ the interface, then a force balance gives 

fiom which the pressure jump is found to be 

showing that the pressun: on the concave side is higher. The pressure jump, however, 
is small unless R is quite small. 

Equation (1.5) holds only if the surface is spherical. The curvature of a general 
surface can be specified by the radii of curvature along two orthogonal directions, 
say, R1 and R2 (Figure 1.4b). A simdm analysis shows that the pressure jump across 

Po 

Figure 1.4 (a) Section of B sphcrical droplct, showing surface tcnsion forccs. (b) An interfacc wilhradii 
ol'curvnturcs K I  and R2 along two orthogonal directions. 
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the inledace is given by 

which agrees with Eq. (1.5) if R I  = Rz. 
It is well known that the rree surfdcc of a liquid in a narrow tube rises above 

the surrounding level due to the influence of surface tension. This is demonstrated in 
Example 1.1. N m w  tubes are called cwpilfary ruhes (from Latin ccipillus. meaning 
"hair"). Because of this phenomenon thc whole gnwp of phcnoinena that arise from 
surfacc tension effects is called ccipilkiriq. 

The magnitude of the force per unit m a  in a static fluid is called thcpiuwuir. (More 
care is needed LO define the pmssurc in a moving medium, and this will be done in 
Chapter 4.) Sometimes the ordinary pressurc is called thc absolureprc.ssuir~. in order 
to dislinguish it from the gnrrge presnrrr, which is dcfincd as thc absolute pressure 
minus the atmosphcric prcssurc: 

Pgaugc = P - Pam- 

The value or thc atmospheric prcssurc is 

palm = 101.3kPa= 1.013har. 

wherc I bar = 1 O5 Pa. Thc atmospheric prcssurc is thcrcforc approxiinatcly 1 bar. 
IIJ a fluid at rest. the tangential viscous slrcsscs arc absent and thc only forcc 

between adjacent surfaces is normal to the surface. We shall now demonstrate that 
in such a cwe the surface force per unit area ("pressure") is equal in all directions. 
Coiisidcr a small triangular volume of fluid (Figure 1.5) of unit thickness normal to 
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P + Q  

l p  
Figure 1.6 Fluid element at rest. 

the paper, and let p1, m, and p3 be the pressures on the three faces. The z-axis is 
taken vertically upward. The only forces acting on the element are the pressure forces 
normal to the faccs and the weight of the element. Because there is no acceleration 
of the element in the x dircction, a balance of forces in that direction gives 

(PI ds) sin8 - p3 dz = 0. 

Because dz = dssin8, the foregoing gives p1 = p3. A balance of forces in the 
vertical direction gives 

-(pi ds) cos0 + pzdx - i p g d x  dz = 0. 

As ds cos 8 = dx, this gives 

As the hiangular element is shrunk to a point, the gravity force term drops out, giving 
p1 = p2. Thus, at a point in a static fluid, we have 

PI = PZ = P3r 

so that the force per unit area is independent of the angular orientation of the surface. 
The pressure is therefore a scalar quantity. 

We now proceed to determine the spatiul distribution of pressure in a static fluid. 
Consider an infinitesimal cube of sides dx,  dy, and dz, with the z-axis vertically 
upward (Figure 1.6). A balance of forccs in the x direction shows that the pressures 
on the two sides perpendicular Lo the x-axis are equal. A similar result holds jn the 
y direction, so that 

( 1-61 

--- - 0. aP aP 
ax ay 
_ -  (1.7) 
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Pressure distribution Force balance 
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Figure 1.7 Rise of a liquid in a narrow tube (Example 1.1). 

This fact is expressed by Puscul’s law, which states that all points in a resting fluid 
mcdiim (and connected by the same fluid) are at the same prcssm if they arc at thc 
same depth. For example, the pressurc at points F and G in Figure 1.7 are the samc. 

A vcrtical cquilibrium of the clcmcnt in Figurc 1.6 requires that 

p d x d y -  ( p + d p ) d x d y - p g d x d y d z  =o: 
which simplifies to - 

I I 
This shows that the pressure in a static fluid decreases with height. For a fluid of 
uniform density, Eq. (1.8) can be integrated to give 

P = Po - Pgz, ( 1 -9) 

where po is the pressurc at z = 0. Equation (1.9) is the well-known result of hydmruf- 
ics, and shows that the prcssurc in a liquid decreaqes linearly with height. It implies 
that the pressure rise at a dcpth h bclow the free surface of a liquid is equal to pgh,  
which is the weight of a column of liquid of height h and unit cross section. 

Example 1.1. With reference to Figurc I .7, show that the rise or a liquid in a narrow 
tube of radius R is givcn by 

20 sin a 
PgR 

h = - ,  

when. CI is the surface tension and a is thc “contact” angle. 
Since the free surface is concavc upward and exposed to thc atmo- 

sphere, the pressure just below thc intcrface at point E is below atmospheric. The 
pressure then incrcascs linearly along EF. At F the prcssure again equals the atmo- 
spheric prcssure, since F is at the same level as G where the pressure is atmospheric. 
Thc pressure forces on faces AB and CD thcrcfore balance each othcr. Vertical equi- 
librium of the element ABCD then rcquircs that h e  weight of thc clement balances 

Solution. 



the vertical component of the surface tension force, so that 

a ( 2 n ~ )  sina = p g h ( ; r ~ ’ ) ,  

which gives the requid rcsult. 

8. Claaaical Thermodpamicx 

Classical thermodynamics is the study of equilibrium states of matter, in which the 
properties are assumed uniform in space and time. The reader is assumed to be familiar 
with the basic concepts of this subject. Here wc give a review of the main idea, and 
the most commonly used relations in this book. 

A thermodynamic system is a quantity of mattcr separated from the surroundings 
by a flexible boundary through which the system exchanges heat and work, but no 
mass. A system in the equilibrium state is free of currents, such as those generatcd 
by stirring a fluid or by sudden heating. After a change has taken place, the currents 
die out and the system returns to equilibrium conditions, when the properties of the 
system (such as pressure and temperature) can once again be defined. 

This definition, however, is not possible in fluid flows, and the question arises as 
to whether the relations derived in classical thermodynamics are applicable to fluids 
in constant motion. Experiments show that the results of classical thermodynamics 
do hold in most flujd flows if the changes along the motion are slow compared to a 
relaration time. The relaxation time is dehed as the lime taken by the material to 
adjust to a new state, and the material undergoes this adjustment through molecular 
collisions. The relaxation time is very small under ordinary conditions, since only 
a few molecular collisions are needed for the adjustment. The relations of classical 
thermodynamics are therefore applicable to mosl fluid flows. 

The basic laws of classical thermodynamics are empirical, and cannot be proved. 
Another way of viewing this is to say that these principles are so basic that they 
cannot be derived from anything more basic. They essentially establish certain basic 
definitions, upon which the subject is built. The first law of thermodynamics can be 
regarded as a principle that defines the internal energy of a system, and the second 
law can be regarded as the principle that defines the entropy of a system. 

0 

First Law of Thermodynamics 
The first law of thermodynamics states that the energy of a system is conservcd. It 
states that 

Q + W = A e ,  (1.10) 

where Q is the heat added to the system, W is the work done on the system, and Ae 
is the increase of internal energy of thc system. All quantities in Eq. (1. IO) may bc 
regarded as those referring to unit mass of the system. (In thermodynamics texts it is 
customary to denote quantities per unit mass by lowercasc letters, and those for h e  
entirc system by uppercase letters. This will not be done hem.) The internal energy 
(also called “thcrmal energy”) is a manifestation of the random molecular motion of 
the constituents. In fluid flows, the kinetic energy ofthe macroscopic motion has to be 
included in the term e in Eq. (1.10) in order that the principle of conservation of energy 



is sdtisficd. For dcvcloping thc rclations of classical thermodynamics, however, we 
shall only include the ‘;thermal energy” in the term e. 

Tt i s  important to realim: the difference between heat and internal energy. Heat and 
work are forms of energy in transidon, which appear at the boundmy of the systcm 
and are not contain.ed within the matter. In contrast, the internal energy residcs within 
the matter. If two equilibrium states 1 and 2 of a system are known, then Q and W 
depend on the ptrxms orparh followed by the system in going from state 1 to state 2. 
The change Ae = e? - el I in contrast, does not depend on the path. In short, e is a 
thermodynamic property and is a function of the thermodynamic state of the system. 
Thermodynamic properties are called sfutc functions, in contrast to heat and work, 
which are puthfiuictions. 

Friclionless quasi-static processes, carried out at an extremely slow rate so that 
thc system is at all times in equilibrium with the surroundings, are called reversible 
proce,sses. Thc most common type of reversible work in fluid flows is by the expansion 
or contraction of thc boundaiics of thc fluid element. Let u = I / p  be the speclfic 
vdume, hat  is, the volume per unit mass. Then thc work donc by thc body per unit 
mass in  an infinitesimal reversible process is -pdu, where du is thc incrcasc of u. 
The first law (Eq. (1.10)) for a reversible process then becomcs 

de = d Q - pdv ,  (1.1 1) 

providcd that Q is also rcvursible. 

arc cxc1l;ded from Eq. (1.1 1 ). Howevcr, scc thc discussion under Eq. ( I .  1 8). 
Note that irreversible forms of work, such as that done by turning apaddle whccl, 

Equations of’ State 
In simple systems composed or a singlc component only, the specification of two 
indcpcndcnt properties completely determincs the state or the system. Wc can wrilc 
relations such as 

p = p ( v ,  T )  (thcrmal equation of state), 

e = e ( p :  T) (caloric equation of stale). 
(1.12) 

Such relations are callcd cyirafions cgsrale. For morc coinplicaled syslems composcd 
ol‘ more than one componcnt, the specification of two properties is not cnough to 
complclcly determine the sldtc. For example, for sea watcr containing dissolvcd salt, 
the dcnsity is a function of thc three variables, salinity, lemperature, and prcssure. 

Specific Heats 
Bcforu we deliiie thc spccific heats ora substancc, we deIine a thcnnodynamic prop- 
erty called entholpy as 

h e + p i .  (1.13) 

This property will be quite useful in our study or comprcssible fluid flows. 



For single-component systems, the specific heats at constant pressure and con- 
stant volume are defined as 

(1.14) 

(1.15) 

Here, Eq. (1.14) means that we regard h as a €unction of p and T, and find the 
partial derivative of h with respect to T, keeping p constant. Equation (1.15) has an 
analogous interpretation. It is important to note that the specific heats as defined are 
thermodynamic properties, because they are defined in term.. of other properties of 
the system. That is, we can determine C, and Cv when two other propcrties of the 
system (say, p and T) are given. 

For certain processes common in fluid flows, thc heat exchange can be related LO 
the specific heats. Consider a reversible process in which the work done is given by 
p du, so that the first law of thermodynamics has the form of Eq. (1.11). Dividing by 
thc change of temperature, it follows that the heat transfemd per unit mass pcr unit 
temperature change in a constant volume process is 

This shows that CvdT represents the heat transfer per unit mass in a reversible 
constant volume process, in which the only type of work done is of the pdv type. 
It is misleading to define C, = (dQ/dT)" without any restrictions imposed, as thc 
temperature of a constant-volume system can increase without heat transfer, say, by 
turning a paddle wheel. 

In a similar manner, the heat transferred at constant prcssure during a reversible 
proccss is given by 

(g)p = (g) = c,. 
P 

Second Law of Thermodynamics 
The second law of thermodynamics imposcs restriction on the direction in which 
real processes can proceed. Its implications are discussed in Chapter 4. Some conse- 
quences of this law are the following: 

(i) Them must exist a thermodynamic property S, known as enmpy, whose 
changc between states 1 and 2 is given by 

(1.16) 

where the integral is taken along any reversible process between the two stales. 



(ii) For an urbirruv process betwecn 1 and 2, the entropy changc is 

S 2 - S & 1 2 $  (Clausi us-Du hem), 

which states that the entropy of an isolated system (d Q = 0)  can only increase. 
Such increases are causcd by frictional and mixing phcnornena. 

(iii) Molccular transport coefficicnts such as viscosity p and thermal conductivity 
k must be positive. Otbcrwisc, spontaneous “unmixing” would occur and lead 
to a decrease of entropy of an isolated system. 

TdS Relations 
Two common relations are useful in calculating the entropy changes during aprocess. 
For a rcvcrsiblc proccss, the entropy change is given by 

TdS = d e .  (1.17) 

On substituting into (1.1 l), we obtain 

(1.18) 

where the second form is obtained by using dh = d(e + pv) = de + p d v  + u dp.  
It is interesting that thc “T dS relations” in Eqs. (1.18) are also valid for irreversible 
(€rictional)processes, although therelations(l.ll)and(l.l7), fromwhich Eqs. (1.18) 
is dcrived, are true for reversible proccsses only. This is because Eqs. (1.18) are 
mlalions between thermodynamic srufejuncrions alone and are thcrcfore true for an): 
proccss. The association of T dS with hcat and -pdv with work does not hold for 
irreversible processes. Considcr paddle wheel work done at constant volume so that 
de  = T dS is the element of work done. 

Speed of Sound 
Tn a compressible medium, infinitesimal changes in dcnsity or pressure propagatc 
through the medium at a finitc speed. In Chapter 16, we shall prove that the squarc 
of this spced is given by 

c’-= ($) , (1.19) 
I 

where the subscript “s” signifies that the derivative is taken at constant cntropy. As 
sound is composed of small density perturbations, it also propagates at speed c. For 
incompressible fluids p is independent of p ,  and therefore c = 00. 

Thennal Expansion Coeffiucnt 
In a system whosc dcnsity is a function of tcmperature, wc dcfine the thermal cxpm- 
sion ioefficicnt 

[Y -- 1 (-) a p  
p i3T p ‘  

(1.20) 
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where the subscript "p" signifies that the partial derivative is taken at constant pressure. 
The expansion coefficient will appear frequently in our studies of nonisothermal 
systems. 

A relation defining one state function of a gas in terms of two others is called an 
equation of stute. A perfect gas is defined as one that obeys the thermal equation of 
state 

P = PRT, (1.21) I 
where p is thc pressure, p is the density, T is the absolute temperature, and R is the 
gas constun?. The value of the gas constant depends on the molecular mass m of the 
gas according to 

(1.22) R U  R = - ,  
m 

Ru = 8314.36 J kmol-' K-' 
where 

is the universal gas constant. For example, the molecular mass for dry air is 
m = 28.966kg/lanol, for which Eq. (1.22) gives 

R = 287 J kg-' K-' for dry air. 

Equation (1.21) can be derived from the kinetic theory of gases if the attractive forces 
between the molecules are negligible. At ordinary temperatures and pressures most 
gases can be taken as perfect. 

The gas constant is related to the specsc heats of the gas through the relation 

R = C, - C,, u (1.23) 

where C, is the specific heat at constant pressure and C,, is the specific heat at consmt 
volume. In general, C,, and C, of a gas, including those of a perfect gas, increase with 
temperature. The ratio of specific heats of a gas 

y ' P  C 
c,' 

is an important quantity. For air at ordinary temperatures, y = 1.4 and 
C ,  = 1005 J kg-' K-l. 

It can be shown that assertion (1.21) is equivalent to 

e = c(T)  
h = h ( T )  

and converscly, so that the internal energy and enthalpy of a perfect gas can only be 
functions of temperature alone. See Exercise 7. 



A process is called adiabatic if it takcs place without the addition of heat. A 
process is called isentropic if it is adiabatic and frictionless, for thcn thc entropy of 
the fluid does no1 change. From Eq. (1.18) it is casy to show ha t  the isentropic flow 
of a perfect gas with constant specific heats obeys the relation 

P I py = const. (isentropic) (1.25) 

Using thc cqualion of state p = p R T ,  it follows that the temperature and dcnsity 
change during an isentropic process from statc 1 to state 2 according to 

I lY 
(isentropic) (1.26) PI (Y .. I ) i Y  -=(a> Tl T2 and -=(;) p1 

See Exercise 8. For a pcrfccr ga%, simple expressions can be found for several 
useful thermodynamic propcrties such as the speed of sound and the thermal expansion 
coefficient. Using the cquation of state p = p RT, thc speed of sound (1.19) becomcs 

(1 -27) 

whcre Eq. (1.25) has been uscd. This shows that thc speed of sound increases as the 
square root of the temperature. Likewise, the usc of p = p R T  shows that thc thcrmal 
expansion coefficient (1.20) is 
I 

1 j I T ’ I  
(1.28) 

In an incomprcssible fluid in which the density is not a function of pressurc, there is 
a simple criterion for dctermining the slabilily of the mcdium in the static statc. The 
criterion is that the mcdium is stable if the dcnsity decredscs upward, for then aparlicle 
displaced upward would find itself at a level where thc density of the surrounding 
fluid is lowcr, and so the particlc would be forccd back toward its original level. In 
the opposile case in which the density incrcaqes upward, a displaced particle would 
continue to move farthcr away horn its original position, rcsulting in instability. The 
rncdium is in neutral equilibrium if thc density is uniform. 

For a compressihle medium the preceding criterion for determining the stability 
does not hold. We shall now show that in this casc it is not the density but the entropy 
that is constanl with height in thc neutral statc. For simplicity we shall consider lhe 
case of an atmosphere that obcys the equation of state for a perfect gas. The pressure 
decreases with height according lo 



A particle displaced upward would expand adiabatically because of the decrease of 
the pressure with height. Its original density po and original temperature TO would 
therefore decrease to p and T according to thc isentropic relations 

(1.29) 

where y = Cp/Cv, and the subscript 0 denotes the original state at some height ZO, 

where po > p (Figure 1.8). It is clear that the displaced particle would be forced back 
toward the original level if the new density is larger than that of the surrounding air 
at the new level. Now if the properties of the surrounding air also happen to vary 
with height in such a way that the entropy is uniform with height, then the displaced 
particle would constantly find itsel€ in a region whcre the density is the same as that 
of itself. Therefore, a neutral almosphere is one in which p, p, a d  T decrease in 
such a way t h t  the entmpy is constant with height. A neutrally stable atmosphere is 
therefore also called an isentropic or adiabatic atmosphere. It follows that a statically 
stable atmosphere is one in which the density decreases with heightfaster than in an 
adiabatic atmosphere. 

It is easy Lo determine the rate of decrease of tempcrature in an adiabatic atmo- 
sphere. Taking the logarithm of Fq. (1.29), we obtain 

where we are using the subscript “a” to denote an adiabatic atmosphere. A differen- 
tiation with respect to z gives 

1 dTa y - 1  1 dpa 
Ta dZ y Pa dz  ’ 
--=--- 

Using the perfect gas law 
dpldz  = -pg, we obtain 

p = p R T ,  Cp-Cv= R ,  and the hydrostatic rule 

(1.30) 

t 

Figur 1.8 Adiabatic expansion ora fluid paniclc displaced upward in a comprcrsible medium. 
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where r = d T / d z  is thc tcmperature gradient; ra = -g/C,, is called the udiuburic 
lernperu~r~rc gradient and is the largest ratc at which the temperature can decrease 
with height without causing instability. For air at normal temperatures and pressures, 
the temperaturc or a neutral atmospherc dccreases with height at thc rate of g/C, 21 

10 “C/km. Meteorologists call vertical temperature gradients the “lapse ratc,” so that 
in their terminology thc adiabatic lapse rate is IO“C/km. 

Figurc 1.9a shows a typical distribution of temperature in the atmosphere. Thc 
lower part has been drawn with a slope nearly equal to the adiabatic temperature Fa-  
dient becausc the mixing processes ncar thc ground tend to form a ncutral atmosphere, 
with its entropy “well mixed’ (that is, unirorm) with height. Observations show that 
the neutral atmosphere is “capped” by a layer in which the tempcraturc increases with 
height, signifying avery stablc situation. Meteorologists call this an inversion, because 
the ternpcrature gradient changcs sign here. Much of the atmospheric turbulence and 
mixing processes cannot pcnctralc this very stable laycr. Above this inversion layer thc 
temperature decreases again, but less rapidly than ncar the ground, which corrcsponds 
to stability. It is clcm that an isothermal atmosphere (a vertjcal linc in Figure 1.9a) is 
quitc stable. 

19 
-. 

Potential Temperature and Density 
The foregoing discussion of static stability of a comprcssible atmosphere can be 
expressed in terms d the concept ofpotential remperutum, which is generally denotcd 
by 19. Suppose the prcssure and temperaturc of a fluid particle at sl certain height arc 
p and T. Now if we takc the particle udiuhuticully to a standard pressure ps  (say, thc 
sea level pressurc, nearly equal to 100 kPa), then the ternpcrature 0 attained by the 
particle is callcd its pnfenriul temperature. Using Eq. (1.26), it follows that thc actual 
temperature T and the potential tcmperslture 0 arc rclalcd by 

z 
I 

z 
, slope = - lh/lO”C 

stable 
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neutral 
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(1.31) 
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Figure 1.9 Vcrlical variation ol‘ h e  (a) actual and (b) polcnlial lemperature in the a~mosphere. ’Thin 
straight lincs represent tcmpcratures for a nculral atmosphcrc. 



Taking the logarithm and differentiating, we obtain 

1 d T  1de  y - l l d p  -- - - --+--- 
T dz 0 d z  y p d z '  

Substituting dpldz = -pg and p = pRT, we obtain 

(1.32) 

Now if the temperature decreases at a rate r = ra, then the potential temperature e 
(and therefore the cntropy) is uniform with hcight. It follows that the stability of the 
atmosphere is determined according to 

de - > 0 (stable), 
dz 

(1.33) 
d6, - = O  (neutral), 
dz 
de - < 0 (unstable). 
dz 

This is shown in Figure 1.9b. It is the gradient ofpofentiul temperature that determines 
the stability of a column of gas, not the gradient of the actual temperature. However, 
the di€fe=nce between the two is negligible for laboratory-scale phenomena. For 
example, over a height of lOcm the compressibility effects result in a decrease of 
temperatureintheairby only lOcm x (lOcC/km) = 10-30C. 

lnstead of using the potential temperature, one can use the concept of potentid 
density p ~ ,  defined as the density attained by a fluid particle if taken isentropically 
to a standard pressure pa. Using Eq. (1.26), the actual and potential densities are 
related by 

(1.34) 

Multiplying Eqs. (1.31) and (1.34), and using p = p R T ,  wc obtain 
epo = p,/R = const. Taking the logarithm and differentiating, wc obtain 

(1.35) 

The mcdium is stable, neutral, orunstable depcnding upon whctherdp#/dz is ncgative, 
zero, or positive, rcspectively. 

Compressibility effects are also important in the deep ocean. In the ocean thc 
density depcnds not only on the temperature and prcssure, but also on the salinity, 
defined as kilograms of salt per kilogram of water. (The salinity of sea water is 
~ 3 % )  Here, one defines the potential density as the density attained if a particle 
is Laken to a reference pressure isentropically mid at constant salinity. The potential 
density thus defined must decrcase with height in stable conditions. Oceanographers 
automatically account for the compressibility of sea water by converting their density 



measurements at any depth to the sea lcvcl pressure, which serves as the reference 
pressure. 

From (1.32), the temperature al a dry neutrally stable atmosphere decreases 
upward at a ratc dT,/dz = -g/C,, due to the decrease of pressure with height and 
the comprcssibility ol the medium. Static stability of the atmosphcrc is dctcrmincd 
by whcther the actual temperature gradient d T / d z  is slowcr or faster than dTa/dz. 
To determine the static stability of the ocean, it is more convcnicnt to formulale the 
criterion in tcrms ol density. The plan is to compare the density gradient of the actual 
static state with that of a neutrally stable reference state (denoted here by the subscript 
“a”). The pxssure or the reference state decreases vertically as 

-- - -/Jag- 
dP, 
dz 

(1.36) 

Tn the occan h e  speed of sound cis &fined by c2 = ap /ap ,  where the partial derivative 
is  taken at consmt values of entropy and salinity. Tn the reference state these variables 
arc uniform, so that dpa = c2dpa. Therefon, the density in the neutrally stable state 
varies due to thc compressibility effect at a rate 

(1.37) 

where the subscript “a” on p has been dropped because pa is ncarly equal to the actual 
density p. 

The static stability of thc ocean is determined by the sign of the potenrial densirj 
gradient 

( 1  3 8 )  &pol d~ dpa d~ ~g - +-. 
dz dz  dz d z  c2 

The medium is statically stable if the potcntial density gradient is ncgative, and so 
on. For a perfect gas, it can be shown that Eqs. ( 1  30) and (1.38) are equivalent. 

-- - 

Scale Height of the Atmosphere 
Expressions for pressure distribution and “thickness” of the atmosphere can be 
obtained by assuming that they are isothermal. This is a good assumption in the 
lower 70 km of the atmospherc, where the absolutc tcrnperature remains within 15% 
of 250 K. The hydrostatic distribution is 

PR _ -  - -pg = --. 
dz RT 
dP 

Integration givcs 

where po is the pressurc at z = 0. The pressure therefore falls to e-‘ of its surface value 
in a height RT/g.  Thc quantity RTIg, called the scale height, is a good measure of the 
thickness of the atmosphere. For an average atmospheric tcmperature of T = 250 K, 
the scale height is RTIg = 7.3km. 

= e-RzlRT 
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1. Estimate the height to which water at 20°C will rise in a capillary glass tube 
3mm in diameter exposed to the atmosphcre. For water in contact with glass the 
wetting angle is nearly 90’. At 20 “C and water-air combination, d = 0.073 N/m. 
(Answer: h = 0.99cm.) 

2. Consider the viscous flow in a channel of width 2h. The channel is aligned 
in the n direction, and the velocity at a distance y from the centerline is given by the 
parabolic distribution 

u ( y )  = uo [ 1 - $1. 
In terms of the viscosity p, calculatc the shear stress at a distance of y = h/2 .  

3. Figure 1-10 shows ammameter, which is a U-shaped tube containing mercury 
of density p,,,. Manometers arc used as pressurc measuring dcvices. If the fluid in the 
tank A has a pressure p and density p, then show that the gauge pressure in the tank is 

Note that the last term on the right-hand side is negligible if p << pm.  (Hint: Equate 
thc pressures at X and Y .) 

4. A cylinder contains 2kg of air at 50°C and a pressure of 3 bars. The air is 
compressed until its pressure rises to 8 bars. m a t  is the initial volume? Find the final 
volume for both isothermal compression and isentropic compression. 

5. Assume that the temperature of the atmosphere varies with hcight z as 

Show that the prcssure varies with height as 

P = PO [ 
where g is gravity and R is the gas constant. 

Figure 1.10 A mercury msnomcbr. 



6. Suppose the atmospheric temperature varies according to 

T = 15 - 0.001~ 

where T is in degrees Cclsius and height z is in mcters. Is lhis atmosphere stable? 

7. Provc that if e(T,  u )  = e ( T )  only and if h(T ,  p) = h ( T )  only, then the 
(thermal) equation of state is Eq. (1.2 1 ) or pv = kT. 

8. For a reversible adiabatic process in a perfect gas with constant specific heats, 
dcrive Eqs. (1.25) and (1.26) startingfrom Eq. (1.18). 

9. Considcr a heat insulatcd enclosure kat is separated into two compartments 
of volumes VI and VZ. containing perfect gases with pressurcs and temperatures of 
p l ,  pz ,  and Ti, Tz, respectively. The compartments are separated by an imperme- 
able membrane that conducts heat (but not mass). Calculate the final steady-state 
tcmperature assuming each of the gases has constant specific heats. 

10. Consider the initial state of an enclosure with two compartments as dcscribed 
in Exercise 9. At t = 0, the membrane is broken and the gases are mixed. Calculate 
the final tcmperature. 

1 1. A heavy piston of weight W is dropped onto a thcrmally insulated cylinder 
of cross-sectional area A containing a perfect gas of constant specific heats, and 
initially having thc cxternal pressure p1, temperature q, and volume VI. After some 
oscillations, the piston reaches an equilibrium position L meters below the equilibrium 
position of a weighlless piston. Find L. Is thcre an entropy increase? 
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1. Scalam and Vichm 

In fluid mechanics we need to deal with quantities of various complexities. Some 
of these are defined by only one component and are called scalars, some others are 
defined by three components and are called vectors, and certain other variables called 
tensors need as many as nine components for a complete description. We shall assume 
that the reader is familiar with a certain amount of algebra and calculus of vectors. 
The concept and manipulation of tensors is the subject or this chapter. 

A scakur is any quantity that is completely specified by a magnitude only, along 
with its unit. It is independent of the coordinate system. Examples cd scalars are 
temperature and density of the fluid. A vector is any quantity that has a magnitude 
and a direction, and can be completely described by its components dong threc 
specified coordinate directions. A vector is usually denoted by a boldlace symbol, 
for example, x for position and u for velocity. We can take a Cartesian coordinatc 
systemxl , x2, ~ 3 ,  with unit vectors al, a2, and a3 in the three mutually perpendicular 
directions (Figurc 2.1). (In texts on vector analysis, the uni t vectors are usually denoted 

24 
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1 

Figure 2.1 
a’, a?, and a3. 

by i. j, and k. We cannot use this simple notation here because we shall use i j k  to 
denote coinponenls of a vector,) Then the position vector is writtcn as 

x = alx, + 8% + a3x3, 

where ( X I ,  x2, x3)  are the components of x along the coordinate directions. (The 
superscripts on the unit vectors a do not denote the components of a vector; the a’s 
are vectors themselves.) Instead of writing all three components explicitly, we can 
indicate the threc Cartesian components of a vector by an index ha1 lakes all possible 
values of 1, 2, and 3. For example, the components of the posilion vcctor can bc 
dcnoted by x i .  where i takes all of its possible values, namely, 1,2, and 3. To obcy the 
laws of algcbra that wc shall present. the components of a vector should be writlen 
as a column. For example, 

Position vcctor OP and its three Cartesian componcnts (XI. xz,  x:j). The three unit vectors arc 

X =  [::I. 
x3 

In matrix algebra, one defines the trculspose as the matrix obtained by interchanging 
rows and columns. For cxample, the transposc of a column matrix x is the row matrix 

xT = [XI ~2 x~J. 

2. .Itotution ofAmx fiwmul llcfiitiim (fa k t o r  
A vector can be formally defined as any quantity whose components change similarly 
to the components of a position vector under thc rotation of thc coordinate system. 
Let x1 x2 x3 be the original axes, and xi x i  xi be thc rotatcd system (Figure 2.2). The 
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Figure 2.2 Rotation of coordinate system 0 I 2 3 10 0 1‘ 2’ 3’. 

components of the position vector x in the original and rotated systems are denoted 
by xi and xf, respectively. The cosine of the angle between the old i and new j axes 
is represented by Cij. Here, theJirst indcx of the C matrix refers to thc old axes, 
and the second index of C refers to the new axes. It is apparent that Cij # Cji. A 
little geomelry shows that the components in the rotated system are related to the 
components in the original system by 

For simplicity, we shall verify the validity of Eq. (2.1) in two dimensions only. 
Referring to Figure 2.3, let aij be the angle between old i and new j axes, so that 
Cij = c o s q .  Then 

As a1 1 = 90” - ~ 2 1 ,  we havc sin a1 1 = cos a21 = CZI . Equation (2.2) then becomes 

2 

In a similar manner 
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Figurc 2.3 Roldlion ora coordinate system in two dimensions. 

As ull = a22 = - 9 0  (Figure 2.3), this becomes 

7- 

x; = x 2 c o s a ~ 2  + X I  cosa12 = C x ; C i , .  (2.4) 

In two dimensions, Eq. (2.1) reduces to Eq. (2.3) for j = 1, and to Eq. (2.4) for j = 2. 
This completes our verification d Eq. (2.1 ). 

Note that thc indcx i appcars twicc in the samc term on the right-hand side 
of Eq. (2.1), and a summation is carricd out over all valucs of this rcpcated index. 
This type of summation over repeated indiccs appcars frequently in tensor notation. 
A convention is thcrcforc doptcd that, whenever an index occurs twice in Q term, Q 

s m a t i o n  over the repeated index is implied, although no summation sign is explicitly 
writreen. This is frequently called the Einstein summation convention. Equation (2.1) 
is then simply written as 

x'. = x; c. IJ  ' (2.5 j 
where a summation over i is understood on the right-hand sidc. 

The free index on both sides of Eq. (2.5) is j ,  and i is the rcpeated or dummy 
index. Obviously any letter (other than j) can be used as the dummy index with- 
out changing thc mcsuzing of this equation. For example, Eq. (2.5) can be written 
equivalently as 

because they all mean x,; = C l j x l  + C2jx2 -F C3jx) .  Likewise, any letter can also 
be used for thc frcc index, as long as the same free index is used on both sides of 
thc cquation. For example, denoting the free indcx by i and the summed index by k ,  
Eq. (2.5) can be written as 

(2.6) 

This is bccausc: the set of three equations reprcsented by Eq. (2.5) corresponding to 
all values of j is the same set of equations represented by Eq. (2.6) for all valucs o€i.  

;=I 

J 

X i C i j  =xkck j  = x m c m j  

xi = xk ck; . 



It is ea3y to show that the components of x in thc old coordinate system are 
related to those in the rotated system by 

x j  = cjjx;. (2.7) 

Note that the indicia1 positions on the right-hand sidc of this relation are dilferent 
rrom those in Eq. (2.3, because the first index of C is summed in Eq. (2.5), whereas 
the second index of C is summed in Eq. (2.7). 

We can now formally define acartesian vector as any quantity that transforms like 
a position vector under the rotation of the coordinate system. Therefore, by analogy 
with Eq. (2.5), u is a vcctor if its components transform as 

I I 

3. Mu1lC;nliculion of:?Iu&ices 
In this chapter we shall gcnerally follow the convention that 3 x 3 matriccs are repre- 
sented by uppercase lettcrs, and column vectors arc represented by lowcxase letters. 
(An exception will be the usc of lowercase t far thc stress matrix.) Le1 A and R be 
two 3 x 3 matrices. The product of A and R is defined as the matrix P whosc clements 
are related to those of A and R by 

3 

k=l 

or, using the summation convention 

Symbolically, this is written as 
P = A - B .  (2. IO) 

A single dot between A and B is included in Eq. (2.10) to signify that a single index is 
summed on thc right-hand side of Eq. (2.9). The important thing to note in Eq. (2.9) 
is that the elements are summed over the inner or adjacent index k .  It is sometimcs 
useful to writc Eq. (2.9) as 

p.. - A .  B . - 
IJ - Ik kJ - (A R)ij, 

where thc last term is to be read as the "ij-clement of thc product of matrices A 
and B." 

In explicit form, Eq. (2.9) is written as 



Note that Fiq. (2.9) significs that the ij-element of P is determined by multiplying the 
elements in the i-row of A and the j-column of B, and summing. For example, 

This i s  indicatcd by thc dottcd lines in Eq. (2.1 1) .  Tt is clear that we can define the 
product A B only if the number of columns of A equals the number of rows of B. 

Equation (2.9) can be used to determine the product of a 3 x 3 matrix and a 
vector, if the vector is written as a column. For example, Eq. (2.6) can be written as 
xi = Czxk, which is now of the form of EQ. (2.9) because the summed index k is 
adjacent. Tn matrix form Q. (2.6) can therefore be written as 

Symbolically, the preceding is 

whereas Eq. (2.7) is 

x, = c'1' 

x = c x'. 

4. Second- Oder Yknxor 

We have seen that scalars can be represented by a single number, and a Cartesian 
vector can be represented by threc numbers. There are other quantities, however, that 
need more than three components for a complete description. For example, the stress 
(equal to force per unit area) at a point in a material needs nine components for a 
complete specification because two directions (and, therefore, two free indices) are 
involved in its description. One direction specifies the orientation of the suguce on 
which the stress is being sought, and the other specifies the direction of theforce on 
that surface. For example: the j-component of the force on a surfacc whose outward 
normal points in the i-direction is denoted by t i j .  (Here, we are departing from the 
convention followed in thc rest of the chapter, namely, that tensors arc represented by 
uppercase letters. Tt is customary to denote the stress tensor by the lowercase t.) The 
first index of tij denotes the direction of the normal, and the second index denotes 
the direction in which the force is being projected. 

This is  shown in Figure 2;4, which gives the normal and shear stresses on an 
infinitesimal cube whose surfaces are parallel to the coordinate planes. The stresses 
are positive if thcy are directed as in this figure. The sign convention is that, on a 
surface whose outward normal points in the positive direction of a coordinate axis, 
the normal and shear stresses are positivc if they point in  the positivc direction of 
thc axes. For example, on the surface ABCD, whose outward normal points in the 
positive x2 direction, thc positive stresses tzl, t22, and t23 point toward the XI, x 2  

and x 3  directions, respectively. (Clearly, the normal stresses are positive if they are 
tensilc and negative i f  they are compressive.) On the opposite face EFGH the stress 
components have the same valuc as on ABCD, but their dircctions are reversed. This 



Figurn 2A Strcss licld at a point. Positivc normal and shear s ~ s s c s  are shown. For clarity, the strcsscs 
on hces FBCG and CDHG arc not labeled. 

is because Figure 2.4 shows the stresses at apoint. The cubc shown is supposed to be 
of “zero” size, so that the raccs ABCD and EFGH are just opposite faces of a plane 
perpendicular to the x2-axis. That is why the stresses on the opposite faces are equal 
and opposite. 

Recall that a vector u can be completely specified by the three components ui 
(where i = 1,2,3). We say “completely specified” because the Components of u 
in any direction other than the original axes can be found from Eq. (2.8). Similarly, 
the state of stress at a point can be completely specified by the nine components rij 
(where i, j = 1,2: 3), which can be written as thc matrix 

The specification of the preceding nine components of thc stress on surfaces parallel 
to the coordinate axes completely determines the state of stress at a point, because 
the stresses on any arbitrary plane can thcn be determined. To find the stresses on any 
arbitrary surface, we shall consider a rotated coordinate system xi x; x i  one ol: whose 
axes is perpendicular to the given surface. It can be shown by a force balance on a 
tetrahedron element (see, e.g., Sommedeld (1 964), pagc 59) that the components of 
t in the rotated coordinate system are 

(2.12) 



Notc h c  similarity between the tramformation rulc Eq. (2.8) for a vector, and the rule 
Eq. (2.12). In Eq. (2.8) the first index of C is summed, while its second index is frce. 
The rule Eq. (2.12) is idcntical, except that this happens twice. A quantity that obeys 
the transformation rule Eq. (2.12) is called a second-order tensor. 

The transformation rule Eq. (2.12) can be cxprcsscd as a matrix product. Rewrite 
Eq. (2.12) as 

TAn = C ; f ; i T i j C j n ,  

which, with adjacent dummy indices, represents the matrix product 

This says that the tensor t in the rotated frame is found by multiplying C by t and 
then multiplying the product by CT. 

The concepts of tensor andmatrix are not quite the same. A matrix is any arrunge- 
menr of elements, written as an array. The elements of a matrix represent the compo- 
nents of a tensor only if they obey the transformation rule Eq. (2.12). 

Tensors can be of any order. Tn fact, a scalar can be considcred a tensor of zero 
order, and a vector can be regarded as a tensor of first order. Thc number of free 
indices correspond to the order of the tensor. For example, A is a fourth-order tensor 
if it has four free indices, and the associated 8 1 components change under the rotation 
of the coordinate system according to 

A;,,, = c i m c j n C k p C l q A i j k 1 -  (2.13) 

Tensors of various orders arise in fluid mechanics. Some of the most frequently 
used are the stress tensor t i j  and the velocity gradient tensor a u ; / a x j .  Tt can be shown 
that the nine products u; v j  formed From the components of the two vectors u and v 
also transform according to Eq. (2.12), and therefore form a second-order tensor. In 
addition, certain “isotropic” tensors are also frequently used; these will be discusscd 
in Section 7. 

when the two indices of a tensor are equated, and a summation is performed over 
this repeated index, the process is called conrracrion. An example is 

A j j  = A I I  + A 2 2  + A339  

which is the sum of the diagonal terms. Clearly, A j j  is a scalar and therefore inde- 
pendent of the coordinate system. In other words, A j j  is an invariant. (There are 
three indepcndcnt invariants of a second-order tensor, and A j j  is one of them; see 
Excrcise 5.) 

Higher-order tensors can be formed by multiplying lower tensors. Ifu and v are 
vectors, then the nine components u i v j  form a second-order tensor. Similarly, if A 
and B are two second-ordcr tensors, then the 81 numbers defined by P i j k l  A i j B k l  
translorn according to Eq. (2.1.3), and thcrefore form a fourth-order tensor. 



Lower-order tensors can be obtained by performing contraction on these multi- 
plied forms. The four Contractions Of Aij Bkl are 

(2.14) 

All four products in the preceding are second-order tensors. Note in Eq. (2.14) how 
the terms have been rearranged uniil the summed indcx is adjacent, at which point 
they can be written as a product of matrices. 

The contracted product of a second-order tensor A and a vector u is a vector. The 
two possibilities are 

A i j ~ j  = ( A  u)il 

A i j ~ j  = ATiui = (AT ~ ) j .  

Thc doubly contracted product of two second-order tensors A and B is a scalar. The 
two possibilities are AijBji (which can be written as A : B  in boldface notation) and 
AijBi,j (which can be wrilten A :BT).  

6. Pome on a Surjiacc 

A surface area has a magnitude and an orientation, and therefore should be treated as 
a vector. Thc orientation of the surface is conveniently specified by the direction of 
a unit vector normal to the surface. If d A  is the magnitude of an element of surface 
and n is the unit vector normal to the surface, then the surface area can be written as 
the vector 

d A  = ndA.  

Suppose the nine components of the stress tensor with respect to a given set of 
Cartesian coordinates arc given, and we want to find the force per unit area on a 
surface of given orientation n (Figure 2.5). One way of determining this is to take a 

Figurc 2 5  F m c  I pcr unit area on ii surface clcmcnt whosc outward normal is n. 
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Figure 2.6 (a) Stresses on surlkcs ora two-dimensional element; (h) bdlancc or kmcs on element AUC. 

rotatcd coordinate system, and use Eq. (2.12) to find the normal and shear stresses on 
the gi.ven surface. An alternative mcthod is described in what follows. 

For simplicity, consider a ~wo-dirncnsional case, for which the known stress 
components wilh respect to a coordinate system x1 x2 are shown in Figure 2.6a. We 
want to find the force on the face AC, whose outward normal n is known (Figure 2.6b). 
Considcr thc balance of forces on a triangular element ABC, with sides AB = dx2, 
BC = d.q , and AC = ds;  the thichess of the element in thc xg direction is unity. If 
F is the Ibrcc on thc facc AC, then a balance of forces in thc x1 direction gives the 
component of F in that direction as 

FI = tl1 dx2 + t 2 l  dxl. 

Dividing by ds, and denoting h e  force per unit m a  as f = F/ds,  we obtain 

= T I I  cos81 + t z l  cos82 = tllnl + t z l n 2 ,  

where n 1 = cos 81 and 112 = cos 02 because the magnitude ofn is unity (Figure 2.6b). 
Using the sumnation convention, the foregoing can be written as f i  = t j l n j ,  whcrc 
j is summed over 1 and 2. A similar balance of forces in the x2 direction gives 
fz = tj7n.i. Generalizing to three dimensions, it is clear that 

= t j i n j .  

Because the stress tensor is symmetric (which will be proved in the next chapter), 
that is, t;j = t j i ,  the foregoing relation can be written in boldface notation as 

(2.15) 



Therefore, the contracted or "inner" product of the stress tensor t and the unit outward 
vector n gives the force per unit area on a surface. Equation (2.15) is analogous to 
un = u n, where u, is the component of the vector u along unit normal n; however, 
whereas u,, is a scalar, f in Eq. (2.15) is a vector. 

Example 2.1. Consider a two-dimensional parallel flow through a channel. Take 
X I ,  x2 as the coordinate system, with X I  parallel to the flow. The viscous stress tcnsor 
at a point in the flow has the form 

where the constant a is positive in one half of the channel, and negative in the other 
half. Find the magnitude and direction of force per unit area on an element whose 
outward normal points at 30" to the direction of flow. 

Solufion by Using Eq. (2.15 ): Because the magnitude of n is 1 and it points at 
30' to the x1 axis (Figure 2.7), we have 

The force per unit area is therefore 

The magnitude off is 

If 8 is the angle off with the X I  axis, then 
f = (fi" + = lal. 

Figure 27 Determination of force on an a m i  clcmcot (Example 2.1). 



Thus 0 = 60" if a is positive (in which casc both sin 8 and cos 8 are positivc), and 
8 = 240" if a is negative (in which case both sin 6 and cos 8 are ncgative). 

Sohtion by Using Eq. (2.12 ) : Take a rotated coordinate system xi, x i ,  with 
x i  axis coinciding with n (Figure 2.7). Using Eq. (2.12), the components of h e  stress 
tensor in the rotated frame are 

4 3 1  I &  - 4 3  
.;I = C l l C 2 1 t 1 2  + C 2 I C l l t 2 1  = T Z U  + T l U  - T U ,  

ti2 = C l l C B t 1 2  + ~ 2 1 ~ 1 2 t 2 1  = $4. - I I a  = l a .  

Thc normal stress is thenfore &u/2, and h e  shear stress is a/2. This gives a 
magnitude u and a direction 6 0  or 240' depending on the sign of a. 0 

2 2  2 

7. Kn,nc?cker Della und Altkrnahg 7kmor 
Thc Kronecker delta is de6ncd as 

1 if i = j 6.. - (2.16) 

which is written in the matrix €om as 

8 =  0 1 0 .  [:: :] 
The most common use of the Kronecker delta is in thc following operation: If we 
have a term in which one of thc indices of S i j  is repeated, hen it simply replaces the 
dummy index by the other indcx of S i j .  Consider 

B i j U j  = s i l l 4 1  + & 2 u 2  + 8 ig .43 .  

Thc right-hand side is u 1 when i = 1, uz when i = 2, and ug when i = 3. Therefore 

s i j u j  = u i .  u (2.17) 

From its definition it is clear that S i j  is an isotmpic lensor in the scnse that its 
components are unchanged by a rotation of thc framc of reference, that is, = S i j .  
Isotropic tensors can be of various orders. The= is no isotropic tcnsor of first order, 
and S i j  is the only isotropic tensor of second order. There is also only one isotropic 
tcnsor of third order. Tt is called the alternating tensor or permurution symbol, and is 
dcfincd as 

1 if i j k  = 123,231, or 312 (cyclic order), 
0 if any two indices are equal, 

-1 if i jk  = 321,213, or 132 (anticyclic order). 
(2.18) 

From thc definition, it is clear that un index on &ijk cun be moved two plucev (either 
io rhe righl or lo the left) without changing ils value. For example, &i,ik = &jki where 
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i has been moved two places to the right, and &ijk = &kij where k has been moved 
two places to the left. For a movement of one place, however, the sign is reversed. 
For cxample, &ijk = -&ikj where j has been moved one place to the right. 

A very frequently used relation is the epsilon delta relutian 

U X V =  

The reader can verify the validity of this relationship by taking some values for i j lm .  
Equation (2.19) is easy to remember by noting the following two points: (1) Thc 
adjacent index k is summed; and (2) the first two indices on the right-hand side, 
namely, i and I ,  are the first index of &ijk and the h t f r e e  index of &klm. The remaining 
indiccs on the right-hand side then follow immediately. 

a' a2 a3 
K I  U 2  U3 . 
VI v2 u 3  

8. 1101 Pmducl 
The dot product of two vectors u and v is defined as the scalar 

(u x v ) k  = & i j k u i v , j  = & k i j u i v j .  

v = v * = I v ]  + u 2 U 2  + U3t"3 = u i  V i .  

It is easy to show that u v = K V  cos 8, where u and v are the magnitudes and 8 is the 
angle between the vectors. The dot product is therefore the magnitude of one vector 
times the component of the other in the dircction of the fist. Clearly, the dot product 
u v is equal to the sum of the diagonal terms of the tcnsor u i  v j .  

(2.21) 

As a check, for k = 1 the nonzero terms in the double sum in Fq. (2.21) result from 
i = 2, j = 3, and from i = 3, j = 2. This follows from the definition equation (2.18) 
that the permutation symbol is zero if any two indices are equal. Then JZq. (2.21) gives 

(u x v)] = &ij]uivj = &231U2t'3 + c 3 2 1 u 3 v 2  = u 2 v 3  - u3v2, 
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which agrees with @. (2.20). Note that h e  sccond form oTEq. (2.2 1 ) is obtaincd from 
the hxt  by moving the index k two places to the left; scc the remark bclow Eq. (2.18). 

IO. Oprukor. V: Cradienl, lliucrgenct?, and Cut*[ 
The vecLor operator "del"' is defincd symbolically by 

(2.22) 

When operating on a scalar function or position q j ,  it generates thc vector 

whos:: i-component is 
T -'-I 

(Vq5)j = -. I B X i  I 
L- .._- 

The vector Vqb is called the grudienr of 4. Tt is clear that Vqj is pcrpcndicular to the 
q j  = conslant lines and gives the magnitudc and direction of the niaximum spatial rate 
of change of q j  (Figure 2.8). The ratc or change in any other direction n is given by 

The divergence of a vcctor field u is defined as thc scalar 

(2.23) 

So Tar, wc have defined the operations or thc gradient ofa scalar and the divcrgcncc 
of a vcctor. Wc can, however, generalize Lhcsc opcrations. For example, we can define 
rhc divergence of a second-ordcr tcnsor T as the vector whose i-componenl is 

aui aul auz au3 
v . u =  - = - +-+-. 

ilxi ax, axl ax3 

i l t . .  
(V . T)j = j$. 

It is evidcnl that the divcrgcnce operation decreuscs the order of the tcnsor by onc. 
In contrast, thc grdicnt operation increases the order of a tensor by onc, changing 
a zero-order tensor to a first-order tensor, and a first-ordcr tcnsor to a second-order 
tensor. 

The cirrl of a vector field u is defined as the vector V x u. whosc i-component 
can be written as (,using Eqs. (2.21) and (2.22)) 

(V x U)i = Eijk.. 
tfXj auk I - 

"Ilc invcrlcd Gmck dclta is callcd u "nubla" (uc~fii.c~). Thc origin o1'thc word is l iom thc Hchrcw j?; y<i' "': (pronounced navel). which means l y ~ ,  an ancient hurp-like stringed instrument. It was on this 
instrunlcnt that the boy: David, entemined King Saul (Samuel 11) and it is mentionedrepeatedly 
in Pral ns as a musical inslrumcnl Lo usc in thc prdiw of(.hd. \ 



E’igure 2.8 Lines of constant 4 and the gradient vector Vg. 

The three components of the vector V x u can easily be found from the right-hand 
side of Eq. (2.24). For the i = 1. component, the nonzero terms in the double sum in 
Fiq. (2.24) result from j = 2, k = 3, and from j = 3, k = 2. The three components 
of V x u are finally found as 

(z-z), ($-2)$ and (2-2).  (2.25) 

A vector field u is called solenoidal if V u = 0, and irrotutiond if V x u = 0. The 
word “solenoidal” refers to the fact that the magnetic induction B always satisfies 
V B = 0. This is because of the absence of magnetic monopoles. The reason for the 
word “irrotational” will be clear in the next chapter. 

11. S’elric and Ardiiiymmctric 1kmor.n. 

A tensor B is called symmetric in the indices i and j if the components do not change 
when i and j are interchanged, that is, if Bij = B j i .  The matrix of a second-order 
tensor is therefore symmetric about the diagonal and made up of only six distinct 
components. On the other hand, a tensor is called unti.;mmetric if Bij = - Bji . An 
antisymmetric tensor must have zero diagonal terms, and the off-diagonal terms must 
be mirror images; it is therefore made up of only three distinct components. Any 
tensor can be represented as Lhe sum of a symmetric part and an antisymmetric part. 
For if we write 

Bij = $(Bij + Bji )  + b(Bij - Bji) 



hen the operation of interchanging i and j does not changc the first term, but changes 
the sign of thc second term. Thereforc, (Bij + Bj i ) /2  is callcd the symmetric part of 
Bij, and (Bij - B j ; ) / 2  is called h e  antisymmetric part of Bj j .  

Every vector can be associated with an antisymmetric tensor, and vice versa. For 
example, we can associate the vector 

with an antisymmctric tensor defined by 

whcrc the two are related as 

(2.26) 

(2.27) 

As a check, Eq. (2.27) givcs R11 = 0 and R12 = - ~ 1 2 3 ~ 3  = -w, which is in agree- 
ment with Eq. (2.26). (In Chapter 3 we shall call R the “r0tation”tcnsorcorresponding 
to the “vorticity” vector 0.) 

A very frequently occurring operation is the doubly contracted producl of a 
symmetric tensor t and any tensor B. The doubly contracted product is defined 

P G T . . B . .  = t..(s.. + A . . ) ,  
IJ IJ  IJ  V lJ 

where S and A are the symrnctric and antisymmetric parts of B, given by 

S. .  = ‘ ( B . .  + B . . )  and I J  - 2 IJ J l  V - 2 I J  J l  
A . .  = ‘ ( B . .  - E..). 

Then 

p = t..S.. I J  lJ  + t . . A . .  IJ IJ  (2.28) 
- - r j jS j i  - t i jA j i  because Sij = Si; and Ai,i = -Aj i ,  
- t . .S. .  - t . . A  .. bccausc T.. - -.. I1 J I  I1 J I  IJ  - c J I :  - 
- - t..S.. rJ  - t . . A . .  rJ  intcrchanging dummy indices. (2.29) 

Cornparing thc two ~QI-KIS of Eqs. (2.28) and (2.291, we see that tijAji = 0, so that 

The important rule we have proved is that thedoubly contructedpmductofu symmetric 
tensor t with m y  tensor B equals T times the symmetric purt of B. In thc process, 
wc have also shown that thc doubly contrdctcd product of a symmetric tensor and an 
antisymmctric tcnsor is zcm. This is analogous to thc rcsult that the definite integral 
over an evcn (symrnctric) intcrval ofthc product of a symrnctric and an antisymmetric 
function is z m .  



12. Elgenualuex and Eigenvcxtors of a S’elric nnsor 

The reader is assumed to be familiar with the concepts of eigenvalues and eigenvectors 
of a matrix, and only a brief review of the main results is given here. Suppose T is a 
symmetric tensor with real elements, for example, the stress tensor. Thcn the following 
facts can be proved 

There are three real eigenvalues Ak (k = 1,2,3), which may or may not be all 
distinct. (The superscripted Ak does not denote the &-component of a vector.) 
The eigenvalues satisfy the third-degree equation 

det l t i j  - A&jI = 0,  

which can be solved for A’, AZ, and A3. 
The three eigenvectors bk corresponding to distinct eigenvalues Ah are mutually 
orthogonal. These are fresuently calld theprincipd axes of ‘c. Each b is found 
by solving a set of three equations 

( t i j  - A S i j )  h j  = 0, 

where the superscript k on )I and b has been omitted. 
If the coordinate system is rotated so as to coincide with the eigenvectors, then 
T has a diagonal form with elements )Ik. That is, 

i =  [:’ 0 A2 1 0 13] 
in the coordinate system of the eigenvectors. 
The elements t j j  change as the coordinate system is rotated, but they cannot be 
larger than the largest A or smaller than the smallest A. That is, the eigenvalues 
are the extremum values of t i j  . 

Example 2.2. The strain rate tensor E is related to the velocity vector u by 

For a two-dimensional parallel flow 

show how E is diagonalized in the €ame of reference coinciding with the principal 
axes. 

Solution: For the given velocity profile u 1 (xz) ,  it is evident that El 1 = E22 = 0, 
and Elz = EZI = f ( d u ~ l d x z )  = r. The strain rate lensor in the unrotated coordinate 
system is therefore 



Thc eigenvalues are givcn by 

x; 

whose solutions are A' = r and h2 = -r. The first eigenvector b' is given by 

I 

r 

whose solution is hf = bi = I/,&, lhus normalizing the magnitude to unity. Thc 
first eigenvcctor is therefore b' = [ 1 /a, 1 /a], writing it in a row. The second 
eigenvector is similarly found a,. b2 = [- 1 /a, 1/&]. The eigcnvectors are shown 
in Figure 2.9. The direction cosine matrix of the original and the rotated coordinatc 
systcm is  therefore 

which represents rotation of thc coordinate system by 45". Using the transformation 
rule (2.12), the components of E in the rotakd systcm are found as follows: 



(Instead of using Eq. (2.12), all the components of E in the rotated system can be 
found by carrying out the matrix product CT E C.) The matrix of E in the rotated 
frame is therefore 

The foregoing matrix contains only diagonal terms. It will be shown in the next 
chapter that it represents a linear stretching at a rdte r along one principal axis, and a 
linear compression at a rate -I? along the other; there are no shear strains along the 
principal axes. 

13. Cuuss’ Theorem 

Tbis very useful theorem relates a volume integral to a surface integral. Let V be a 
volume bounded by a closed surface A .  Consider an infinitesimal surface element 
dA, whose outward unit normal is n (Figure 2. IO). The vector n d A  has a magnitude 
d A  and direction n, and we sball write d A  to mean the same thing. Let Q(x) be a 
scalar, vector, or tensor field of any order. Gauss’ theorem states that 

(2.30) 

ndA- dA 

Figum 2.10 Illustration of Gauss’ Ihcorcrn. 



The most common form of Gauss' theorem is when Q is a vector, in which case the 
theorem is 

which is called thc divergence theorem. In vector notation, the divergence theorem is 

JvV=QdV = dAmQ. d 
Physically, it states that the volumc integral of the divergencc of Q is equal to the 
surface integral of thc outflux of Q. Alternatively, Eq. (2.30), when considered in its 
limiting form for an infintesmal volume, can definc a generalized field derivativc of 
Q by the expression 

D Q  = ljm - d A i Q .  (2.31) 

This includes the gradient, divergence, and curl of any scalar, vector, or tensor Q .  
Moreover, by regarding Fq. (2.3 I ) as a dcfinition, the recipes for the computation of 
the vector field derivatives may be obtaincd in any coordinate system. For a tensor 
Q of any order, Eq. (2.31) as writtcn dcfincs the gradient. For a tensor or ordcr one 
(vcctor) or higher, the divergence is defined by using a dot (scalar) product under thc 
intcgral 

v + o v  ' S  A 

and the curl is dcfincd by using a cross (vector) product under the integral 

1 
curlQ = lim - dA x Q. 

v+o v s, 

(2.32) 

(2.33) 

In Eqs.  (2.31), (2.32), and (2.33). A is thc closcd surface bounding the volume V. 

Example 2.3. Obtain the recipe for the divcrgence of a vector Q(x) in cylindri- 
cal polar coordinates from the integral definition equation (2.32). Compare with 
Appendix B. 1. 

Suluriun: Considcr an elcmental volumc bounded by thc surfaces R - AR/2, 
R + AR/2,8 - A8/2,8 + 8812, x - Ax12 and x + Ax/2. Thc volume enclosed AV 
is RAHARAx. We wish to calculate div Q = l i m ~ v , ~  & lA dA Q at: the cenlral 
point R, 0, x by integrating the net outward flux through the bounding surface A 

Q = iR&(R: 8,  X) + bQe(R, 0:  X) + i,Q,(R, 6:  x). 

In evaluating the surface integrals, we can show that in thc limit takcn, cach of thc 
six surface integrals may be approximated by the product of the value at thc ccntcr 
of the surface and the surface area. This is shown by Taylor cxpanding cach of the 
scalar products in the two variables of each surrace, carrying out the integrations, and 

or AV: 



applying the limits. The result is 

- Q R  R - - , ~ , x  R - -  AOAX ( A: )( A:) 

+ Q(R. 8 + 2 ,  A8 x) (i. - iR$) ARAx 

- 4 - i ~ -  ARAx , 
2 I) 

where an additional complication arises because the normals to the two planes 8 f 
A8/2 are not antiparallel: 

Now we can show that 

Evaluating the last pair of surface integrals explicitly, 

1 
divQ = hml [ RA8ARAx [ QR (. + F98, x) (. + F) A ~ A X  

JIP-0 A&. 4 

- ( Q , ~ ( R , ~ - ~ , X ) ~ - Q ~ ( R . B - - , X  A0 A8 " 2 ) - y ) A R A x ] } ,  
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where terms of second order in the increments have been neglected as they will vanish 
in the limits. Carrying out the limits, we obtain 

Hem, the physical interpretation of the divergence as the net outward flux of a vector 
field pcr unit volume has been made apparent by its evaluation through the integral 
definition. 

This lcvel of detail is required to obtain the gradient correctly in these coordinates. 

14. Stokex ’ Theorem 

Stokcs’ theorem relates a surface integral ovcr an open surface to a line integral 
around thc boundary curve. Consider an open surface A whose bounding curve is C 
(Figure 2.1 1 ). Choose one side of the surface to be the outside. Let ds be an element of 
the bounding curve whose magnitude is the length of the element and whose direction 
is that of the tangent. The positive sense of the tangent is such that, when seen from 
the “outside” of the surfacc in the direction of the tangent, the interior is on the left. 
Thcn the theorem stales that 

(2.34) 

which signifies that thc surface integral of the curl of a vector field u is equal to the 
line integral of u along thc bounding curve. 

The line integral of a vector u around a closed curve C (as in Figure 2.1 1) is called 
the “circulation of u about C.” This can be used to define the curl o€ a vector through 

I$ 

Figurc 2.11 lllustrdlion of SLokCs’ thcorcm. 



thc limit of the circulation integral bounding an inhitesmal surface as follows: 

(2.35) 

where n is a unit vector normal to thc local tangent planc of A. The advantage or the 
integral definitions of the ficld dcrivatives is that they may be applied regardless of 
the coordinate system. 

Examplc 2.4. Obtain the recipe for the curl of a vector u(x) in Cartesian coordinates 
from the intcgral definition given by Eq. (2.35). 

Solution: This is obtained by considering rectangular contours in three perpen- 
dicular planes intersecting at the point (x, y, z). First, consider the elemental rectangle 
in the x = const. plane. The central point in this plane has coordinates (x, y, z) and 
the area is Ay Az. It may bc shown by careful intcgration of a Taylor expansion of 
thc intcgrdnd that the integral along each line segment may be represented by the 
product of the integrand at the center of the segment and the length of the segment 
with attention paid to the direction of integration ds. Thus we obtain 

(curlu) x - - ;\I lim ,,, { - A;*z [uz (x, Y + $* z) - uz (x, Y - $, z)]Az 
h d - 0  

.'[uY(x,y,z-~) AyAz -uy(x,y.z+$)]Ay). 

Taking the limits, 
au, i)uy 

(curlu), = - - -. 
ay az 

Similarly, integrating around the elemental rcctangles in the other two planes 

au, ifu, 
(curlu) - - - -, 

y -  az ax 
i)uy au, 

(curlu), = - - -. 
ax a 1 7  

Somctimes it is convenient to introduce thc notation 

(2.36) 

where A is a tensor or any wdcr. In this notation, therefore, the comma denotes a 
spatial derivative. For example, the divcrgence and curl or a vector u can bc written, 
respectively, as 



This notation has the advantages of economy and that all subscripb arc written on 
one line. Another advantage is that variables such as ui,j ‘look like” tensors, which 
they are, in fact. Its disadvantage is that it takes a while to get used to it, and that 
the comma has to be written clearly in order to avoid confusion with other indices 
in a term. The comma notation has been used in the book only in two sections, in 
instances where otherwise the algebra became cumbersome. 

1 ti. Boldface ux Indicia1 Ah!ution 

The reader will have noticed that we have becn using both boldface and indicial nota- 
tions. Sometimes the boldface notation is looscly called “vector” or dyudic notation, 
while thc indicial notation is called “tensor” notation. (Although there is no reason 
why vectors cannot be written in indicial notation!). The advantagc of the boldface 
form is that the physical meaning of the terms is generally clemr, and there are 
no cumbersome subscripts. Its disadvantages are that algebraic manipulations are 
diflicult, the ordering of tcrrns becomes important because A . B is not the same as 
B A, and one has to remember formulas for triplc products such as u x (v x w) and 
u (v x w). In addition, theE are other problems, for cxample, the order or rank of 
a tensor is not clear if one simply calls it A, and sometimes confusion may arise in 
products such as A B where it is not immediately clear which index is summed. To 
add to the confusion, the singly contracted product A B is kquently written as AB 
in books on matrix algebra, whereas in several other fields AB usually stands for the 
unconmcted fourth-order tensor with elements AijBkl. 

The indicial notalion avoids all the problems mentioned in the preceding. The 
algebraic manipulations arc especially simple. The ordering of terms is unncccssary 
becauseAijBkl means the samc thing as BkiAij. In this notation we deal with compo- 
nents only, which are scalars. Another major advantage is that one does not have to 
rcmcmber formulas except for thc product &ijk&kln,, which is givcn by Eq. (2.19). The 
disadvantage of the indicial notation is that the physical meaning of a term becomes 
clcar only after an examination of thc indices. A second disadvantage is that the 
cross product involves the introduction of the cumbersome Erik. This, however, can 
frcquently be avoided by writing the i-component of the vector product of u and v 
as (u x v ) ~  using a mixture of boldface and indicial notations. In this book wc shall 
use boldfacc, indicial and mixed notations in order to takc advantage of each. As the 
reader might have guessed, the algebraic manipulations will bc performed mostly in 
the hdicial notation, sometimes using thc comma notation. 

h r c k i ? x  

1. Using indicial notation, show that 

a x (b x c) = (a c)b - (a b)c. 

[Hint: Call d 
(2.19, show that (a x d), = (a C)h,n - (a b)c,-] 

b x c. Then (e x d), = ~ ~ ~ ~ ~ a ~ d ~  = ~ ~ ~ , a , ~ i j ~ h i c j .  Using Ey. 

2. Show that the condition for the vcctors a, b, and c to be coplanar is 

EijkaihjCk = 0. 



3. Prove the following relationships: 

s i j s i j  = 3 
EpqrEpqr = 6 
E p y i E p q j  = 2sij. 

4. Showthat 
c .  c T  = c'". c = 8, 

where C is the direction cosine matrix and 8 is thc matrix of the Kronecker delta. 
Any matrix obeying such a relationship is called an orthogonal matrix because it 
represents transfonnation of one set of orthogonal axes into another. 

5. Show that for a second-order tensor A, the following three quantities are 
invariant under the rotation of axes: 

Z1 = Aii 
All A12 A22 A23 All AI3 

= I A21 A22 1 + I A32 A33 I + I A31 A33 I 
1.3 = det(Aij). 

[Hint: Use the result of Exercise 4 and the transformation rule (2.12) to show that 

fact, ull contracted scalars of the form Aij Ajk - - - Ami are invariants. Finally, verify 
that 

1 ' -  1 - A' i i  - - Aii = f 1 .  Then show that AijAji and AijAjkAki are also in~ariant~. In 

f 2  = 1 [ 1 2  - A . . A  ..'I 
2 1 IJ J I .  

Z3 = AijA,jkAki - IiAijAji + ZzAii. 

Because the right-hand sides are invariant, so arc 12 and 13 .I 
6. If u and v are vectors, show that the products ui uj obey the transformation 

rule (2.12), and therefore represent a second-order tensor. 

7. Show that 6 i j  is an isotropic tcnsor. That is, show that aij = Si j  under rotation 
of the coordinate system. [Hinr: Use the transformation rule (2.12) and the results of 
Exercise 4.1 

8. Obtain the recipe Cor the gradicnt of a scalar function in cylindrical polar 
coordinatcs from the integral delihition. 

9. Oblain the recipe for thc divcrgcnce of a vector in spherical polar coordinates 
from the integral definition. 

10. hove that div(cur1u) = 0 for any vector u rcgardless of the coordinate 
system. [Hint: use the vcctor integral theorems.] 

1 1 .  hove that curl (grad 4) = 0 lor any single-valued scalar 4 regardlcss of the 
coordinate systcm. [Hint: use Stokes' heorem.] 
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IO. Kin.emalic Considemlions of l+vallel 

11. Kinmidc Cotwidemlions (ShrLez! 

1. lnhdmlion 

Kincmalics is thc branch of mcchanics that dcals with quantities involving space and 
time only. It treats variables such as displacement, velocity, acceleration, deformation, 
and rotation of fluid elements without referring to the forces responsiblc for such a 
motion. Kinematics therefore essentially describes the "appearancc" or a motion. 
Some importan1 kinematical concepts arc dcscribed in this chapter. The Iorces are 
considered when one deals with the dynamics of thc motion, which will be discusscd 
in later chapters. 

A few remarks should be made about the notalion used in this chapter and 
throughout the rest of the book. The convention followed in Chapter 2, namely, 
that vectors are denoted by lowercase letters and higher-order tensors are denoted 
by uppercase letters, is no longer followcd. Henceforth, the number of subscripts 
will spccify the order of a tensor. The Cartcsian coordinate directions are denotcd 
by ( x ,  y, z), and thc corresponding velocity cornponcnts arc denoted by (u,  v ,  w) .  
When using tensor expressions, the Cartesian directions are denotcd alkrnatively by 
(XI, x?, xd, with the corresponding vclocity components (u I ,  ~2,243). Plane polar 
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Figurc 3.1 Plane, cylindrical, and sphcrird polar coordinates: (a) plane pdaG (b) C Y l f f l d r i d  polar: 
(c) sphcrical polar coordinates. 

coordinates arc denoted by (r: e), with u, and ue the Corresponding velocity com- 
ponents (Figure 3.la). Cylindrical polar coordinates are &noted by (R, (p, x ) ,  with 
( u ~ ,  up, u,) the corresponding velocity cornponcnts (Figure 3.lb). Spherical polar 
coordinates are denoted by (r, 8,  (p), with (ur ,  ue, up) the corresponding velocity 
components (Figure 3.1~). The method of conversion from Cartesian to plane polar 
coordinates is illustrated in Scction 14 of this chapter. 

2. Lagrangian and khlerian SpeciJkalions 

There are LWO ways of &scribing a fluid motion. In the hgrangian description, onc 
essentially follows the history of individual fluid particles (Figure 3.2). Consequently, 
the two independent variablcs arc taken as time and a label for fluid particles. The label 
can be convcnicntly takcn a3 the position vcctor q of the particlc at some reference 
timc t = 0. In this dcscription, thcn, any flow variablc F is exprcsscd as F ( m ,  t). In 
particular, the particle position is written as x(q,  t), which represents the location at 
t of a particle whose position was ~0 at t = 0. 

In the Euleriun description, one concentrates on what happens at a spatial point 
x, so that the independent variables are taken as x and t .  That is, a flow variable is 
written as F(x ,  t ) .  



Figure 3.2 Lagrangian description of fluid motion. 

The velocity and acceleration of a fluid particle in the Lagrangian description are 
simply the partial time derivatives 

as thc particle identity is kept constant during thc differentiation. In the Eulcrian 
description, however, the partial dcrivative alar gives only thc Zoml rate of change 
at a point x, and is not the total rate or change seen by a fluid particle. Additional 
tcrms are needed to form derivatives following a particle in the Eulerian description, 
as explaincd in thc next section. 

The Eulerian spccification is used in most problems of fluid flows. The 
Lagrangian description is used occasionally whcn we are interested in finding particle 
paths of fixed identity; cxamples can be found in Chapters 7 and 13. 

3. Material Ikriualcue 

Let F be any field variable, such as temperature, vclocjty, or slress. Employing 
Eulerian coordinates (x, y ,  z,  t), wc scek to calculate the rate of change of F at 
each point following a particle of fixcd idcntity. The task is therefore to represent a 
concept essentially Lagrangian in nature in Eulcrian language. 

For arbitrary and indcpcndent increments dx and dr, the increment in F ( x ,  t) is 

where a summation ovcr the repeated index i is implied. Now assume that the incre- 
ments are not arbitrary, but those associated with following a particle of iixed identity. 
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The increments dx and dt arc then no longer independent, but are related to the velocity 
compuncnts by the thtre relations reprcsented by 

Substitution into Eq. (3.2) gives 

dF aF aF _ -  - - + M i - .  
dt at axi (3.3) 

The notalion dF/d t ,  however, is loo gencral. In order to emphasize the fact that 
the time derivative is canicd out as one follows a particlc, a special notation D / D t  
is frequently used in placc of d/d t  in fluid mechanics. Accordingly, Eq. (3.3) is 
written a5 

The told rate of change D / D t  is generally called the material derivative (also called 
the substuntial derivative, orpurticle derivutive) to emphasizc the fact that the deriva- 
tive is taken following a fluid element. It is made of two parls: aF/at  is the local 
rate of change of F at a given point, and is zero for steady flows. The second part 
ui i3Fjilxi is callcd the advective derivative, because it is the change in F as a result 
of advection of thc particle from one location to another where the value of F is dif- 
ferent. (In this book, thc movement of fluid from place to place is called “advection.” 
Enginccring texts generally call it “convection.” However, we shall reserve the term 
convection to describe heat transport by fluid movcments.) 

Tn vector notation, Eq. (3.4) is written as 

DF i3F 
Dt at 
-- - - + u VF.  (3.5) 

The scalar product u V F is the magnitude of u times h e  componcnt of V F in thc 
direction of u. It is customary to denote the magnitude of the velocity vector u by q .  
Equation (3.5) can then be written in scalar notation as 

DF i)F BF -- --+g-, 
~t at a s  

where the “streamline coordinate” s points along thc local dircction of u (Figure 3.3). 

4. Stmumkine, h l h  I,hcr, und S h u k  Line 

At an instant of time, there is at every point a velocity vcctor with a dchite direction. 
Thc instantancous curvcs that arc evcrywhere tangent to h e  direction field are called 
the streamlines of flow. For unsteady flows the streamline pattern changes with timc. 
Let ds = (dx, dy ,  dz) be an element of arc length along a streamline (Figurc 3.4), 
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Figure 3.3 Strctlmlinc coordinates (s, n) .  
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and Ict u = (u, v ,  w) be thc local velocity vcctor. Then by definition 

dx d y  dz 
u v U)’ 
_ - _ -  - -- (3.7) 

along a strcamline. Lf the velocity components are known as a function of time, thcn 
Eq. (3.7) can be integrated to find the equation of the streamlinc. It is easy to show 
that Eq. (3.7) corresponds to u x ds = 0. All streamlines passing through any closed 



curve C at some time form a tube, which is called a streamtube (Figure 3.5). No fluid 
can cross the streamtube because the velocity vector is tangent to this surface. 

In experimcntal fluid mechanics, the concept of path line is important. The path 
line is the trajectory of a fluid particle of fixed identity over a period of time. Path lines 
and stresunlines are identical in a steady flow, but not in an unsteady flow. Consider 
the flow around a body moving from right to left in a fluid that is stationary at an 
infinite distance from the body (Figure 3.6). The flow patlem observed by a stationary 
obscrver (that is, an observer stationary with respect to the undisturbed fluid) changes 
with time, so that to the observer this is an unsteady flow. The streamlines in front 
of and behind the body are essentially directed forward a,, the body pushes forward, 
and those on the two sides are directed laterally. The path line (shown dashed in 

Figure 3.6 Scvcral sircamlincs and a path line due to a moving body. 



Figurc 3.6) of thc particle that is now at poinl P therefore loops outward and forward 
again as the body passes by. 

The streamlines and path lincs of Figure 3.6 can be visualizcd in an cxperiment 
by suspending aluminum or otherreflecting materials on the fluid surfacc, illuminated 
by a source of light. Suppose that the cntirc fluid is covered wilh such particles, and a 
brieftime exposure is made. .The photograph then shows shorl dashes, which indicate 
the instantaneous directions of particle movement. Smooth curves drawn through 
these dashes constitute the instantaneous stredincs. Now suppose that only a few 
particles are introduced, and that they are photographcd with the shutter opcn for a 
Zang time. Then the photograph shows the paths of a €cw individual particles, that is, 
their path lines. 

A streak line is another concept in flow visualization experimcnts. It is defined 
as the current location of all fluid particlcs that have passed through a fixed spatial 
point at a succcssion of previous times. It is dctermined by injecting dye or smoke 
at a fixed point for an interval of time. In stcady flow the streamlincs, path lines: and 
smak lincs all coincide. 

,5. Refimnce Fiurrnc! and Slreamlinc lbllwri 
A flow that is steady in one reference h m c  is not necessarily so in another. Considcr 
the flow past a ship moving at a steady velocity U, with the framc of reference (that 
is, the observer) attached to the river bank (Figurc 3.7a). To this obscrver the local 
flow characteristics appear to change with time, and thus appear to be unsteady. If, 
on the other hand, the observer is standing on the ship, the flow pattern is steady 
(Figure 3.7b). The steady flow pattcm can be obtained from the unsteady pattern of 
Figure 3.7a by superposing on the latter a velocity U to the right. This causes the 
ship to come to a halt and thc river to move wilh velocity U at infinity. It follows that 
any velocity vector u in Figure 3.7b is obtaincd by adding thc corresponding velocity 
vector u’ of Figure 3.7a and the free stream vclocity vector U. 

6. Linear S h i n  Kutr! 
A study or thc dynamics of fluid flows involves dctermination of the forces on an 
elemcnt, which depend on thc amount and nature of ils deformation, or strain. The 
deformation of a fluid is similar to that of a solid, where one defines normal strain as 

U’ 

u -=- 

(a) 0) 
Fiyre3.7 Flow put a ship with mpea to two cihscrvcn: (a) ohscwcr on river hank; (ti) observer on ship. 
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A t  t At r+dt 

EXgure 3 8  I h c a  strain rate. Hcrc, A'B' = A5 4- 0 0' - AA'. 

thc change in length pcr unit length of a linear element, and shear strain as change 
of a 90' angle. Analogous quantities arc defined in a Ruid flow, the ba,,ic difference 
bcing that one defincs strain rutes in a h i d  because it continues to deform. 

Consider first the linear or normal srrain rate of a h i d  element in the X I  direction 
(Figure 3.8). The rate of change of length per unit lcngth is 

1 A'B'- AB 
(6x1) = - 

8x1 Dt dt AB 
1 D  -- 

The material derivative symbol D/Dt has been used bccause we have implicitly 
fallowed a fluid particle. In general, the Linear strain ratc in the (I! direction is 

(3.8) 

where no summation. over the repeated index (I! is implied. Greek symbols such as (I! 
and B are c o m o d y  used whcn the summation convention is violated. 

The sum of the lincar strain rates in the three mutually orthogonal directions 
gives the rate of change or volumc per unit volume, called thc volumetric strain mle 
(also called the bulk srrain rate). To see this, consider a fluid clcment of sides 6 x 1 ,  
6xz,  and bxg. Defining 6"lr 6x1 6x2 8x3, the volumetric strain ratc is 

that is, 
(3.9) 

The quantity aui /axi  is the sum of the diagonal krms of thc velocity gradient 
tensor Bui/Bxj. As a scalar, it is invariant with respect LO rotation of coordinatcs. 
Equation (3.9) will be uscd latcr in dcriving the law of conservation of mass. 
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Figure 3.9 Deformation of a fluid element. Ha, du = C A / C B ;  a similiu expression represents dp. 

7. Shear S h i n  Kutc? 
In addition to undergoing normal strain ratcs, a fluid element may also simply deform 
in shape. The shear strain rate of an element is defined as the rate of decrease of the 
angle formed by two mutually perpendicular lines on the element. The shear strain so 
calculated depends on the orientation of the line pair. Figure 3.9 shows the position 
of an element with sides parallel to the coordinate axes at time t ,  and its subsequent 
position at t + dt .  The rate of shear strain is 

(3.10) 

An examination of Eqs. (3.8) and (3.10) shows that we can describe the defor- 
mation of a fluid element in terms of the struin rate tensor 

(3.11) 

The diagonal terms of e are. the normal strain rates given in (3.8), and the off-diagonal 
terms are haZfthe shear strain rates given in (3.10). Obviously the strain rate tensor 
is symmelric as eij = eji. 

8. Kwticity and Cimulalion 
Fluid lines oriented along different directions rotate by different amounts. To define 
he rotation rate unambiguously, two mutually perpendicular lines arc taken, and the 



average rotation rate of thc two lines is calculated; it is easy to show that this average 
is independent of thc orientation of the line pair. To avoid the appearance of ccrtain 
factors of 2 in thc final expressions, it is generally customary to deal with twice the 
angular velocity, which is called thc vorricity of thc element. 

Consider thc two perpendicular line elements of Figure 3.9. Thc angular velocities 
of line elements about the XR axis are @/dr and -da/dt, so that the average is 

( -da/dt  + d#l/dt). The vorticity of the element about the x3 axis is therefore twice 
this average, as given by 

au2 aul 
axl axl'  

- 

From the definition or curl of a vector (SCC Eqs. 2.24 and 2.25), it follows that the 
vorticity vector of a Ruid element is rclated to the velocity vcctor by 

(3.12) 

whose cornponcnts are 

au, aul au l  au3 i3u2 au, 
ax3 axl axl ax2 

f&,=--- ax2 i )x31  w z = - - - ,  w 3 = - - -  . (3.13) 

A Ruid motion is called irmtarionul if o = 0, which would require 

(3.14) 

In irrotational flows, the velocity vcctor can be written as the gradicnt of a scalar 
function Q(x, I ) .  This is because the assumption 

(3.15) 

satisfies thc condition of irrotationality (3.14). 
Related to the conccpt of vorticity is the concept orcirculation. Thc circukition r 

around a closed contour C (Figurc 3.10) is defined as the line integral of the langcntial 
component of velocity and is given by 

(3.16) 

where ds is an clement of contour, and the loop lhrough the integral sign signifies that 
the contour is closcd. Thc loop will be omitted frequently because it is understood 



Fi- 3.10 Circulation around contour C. 

that such line integrals are taken along closed contours called circuits. Then Stokes’ 
theorem (Chapter 2, Section 14) states that 

(3.17) 

which says that the line integral of u around a closed curve C is equal to the ‘“flux” 
of curl u through an arbitrary surface A bounded by C. (The word “flux” is generally 
used to mean the integral of a vector field normal to a surface. [See Eq. (2.32), where 
the integral written is the net outward flux of the vector field Q.]) Using the definitions 
of vorticity and circulation, Stokes’ theorem, Eq. (3.17), can be written as 

(3.18) 

Thus, the circulation around a closed curve is equal to the surface integral of h e  
vorticity, which we can call theJruK ofvurticiry. Equivalently, the vorticity ut apoinl 
equals the circulation per unit area. That follows directly from the definition of curl 
as the limit of the circulation integral. (Sec Eq. (2.35) of Chapter 2.) 

9. Relaliue :Wo;lion near a IJoinl: Principal Axes 

The preceding two sections have shown that fluid particles deform and rotate. In this 
section we shall formally show that the relative motion betwecn two neighboring 
points can be written as the sum of the motion due to local rotation, plus the motion 
due to local dcformation. 

Let u(x, t )  bc the velocity at point 0 (position vector x), and let u + du bc 
the velocity at the same timc at a neighboring point P (position vcctor x + dx; see 
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Figurc 3.11 Vclocity vectors at two neighboring points 0 and I? 

Figure 3.11). The relative velocity at time 1 is given by 

(3.19) 

which stands for three relations such as 

The t am a u i / a x j  in Eq. (3.19) is the veZuci0 grudient tensor. It can be decomposed 
into symmetric and antisymmetrjc parts as follows: 

which can be written as 
all; 1 __ = e.. + - r . .  ax, IJ 2 ' J '  

where cjj is the strain rate tcnsor dcfincd in Eq. (3.1 l), and 

auj au j  
l J  - a x j  axj '  

r . .  = __ - - 

(3.20) 

(3.21) 

is callcd thc mution tensor. As r;j is antisymmetric, its diagonal terms arc zcro 
and the on-diagonal terms are equal and opposite. It thercforc has thrce independent 
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elements, namely, r13, r21, and ~ 3 2 .  Comparing Eqs. (3.13) and (3.21), we can see that 
r21 = -03, r32 = W I ,  and r13 = w;?. Thus the rotation tensor can be written in terms of 
the components of the vorticity vector as .=[: 0 --03 -;I]. w2 

(3.22) 

Each antisymmetric tensor in fact can be associated with a vector as discussed in 
Chapter 2, Section 11. In the present case, the rotation tensor can be written in terms 
of the vorticity vector as 

rij = -&fjkWk (3.23) 

This can be verified by raking various components of Eq. (3.23) and comparing them 
with Eq. (3.22). For example, Eq. (3.23) gives r12 = -&IZkWk = -&12303 = - ~ 3 ,  
which agrees with Eq. (3.22). Equation (3.23) also appeared as Eq. (2.27). 

Substitution of Eqs. (3.20) and (3.23) into Eq. (3.19) gives 

du. - e . .  d x .  - I,.. 0 
I - I J  J 2 Ilk kdxj? 

which can be written 51s 

dui = e;j dx j  + i(-o x dx)i .  (3.24) 

In the preceding, we have noted that &ijk@dxj is h e  i-component of the cross 
product --o x dx.  (See the dcfinition of cross product in Eq. (2.21).) The meaning 
of the second term in Eq. (3.24) is evident. We know that thc velocity at a distance 
x from the axis of rotation of a body rotating rigidly at angular velocity S2 is S2 x x. 
The second term in Eq. (3.24) therefore represents the relative velocity at point P due 
to rotation of the element at angular velocity 0/2. (Recall that the angular velocity is 
half the vorticity 0.) 

The h t  term in Eq. (3.24) is the relative velocity due only to dcformation of thc 
element. The deformation becomes particularly simple in a coordinate systcm coin- 
ciding with the principal axes of the strain rate tensor. The components of e change as 
the coordinate system is rotated. For a particular orientation of the coordinate system, 
a symmetric tensor has only diagonal components; hesc are called thcprincipul axes 
of the tensor (see Chapter 2, Section 12 and Example 2.2). Denoting the variables in 
the principal coordinate systcm by an overbar (Figure 3.12), thejrutpart oTEq. (3.24) 
can be written as the matrix product 

Here, 211, 222, and i& are the diagonal components of e in the principal coordinatc 
systcm and are callcd the eigenvalues of e. The three components of Eq. (3.25) are 



Figure 3.12 Deformation ofa  spherical fluid clcrnent into an cllipsoid. 

Consider the significance of the first of equations (3.26), namely, dil = 211 d i l  
(Figure 3.12). If& 1 is positive, then this equation shows that point Pis moving away 
from 0 in the XI direction at a rate proportional to the distance d i l  . Considering all 
points on the surface of a sphere, the movement of P in the XI direction is therefore the 
maximum when P coincides with M (where dXl is the maximum) and is zero when 
P coinuidcs with N. (In Figure 3.12 we have illustrated a case where 211 > 0 and 
222 < 0; the derormtion in the x3 direction cannot, of course, be shown in this figure.) 
In a small interval of time, a spherical.fluid clement around 0 therefore hecomes an 
ellipsoid whose axes are the principal axes afthe strain tensor e. 

Summary: The relative velocity in the neighborhood of a point can be divided 
into two parls. One part is due to the angular velocity of thc clcmcnt, and the othcr 
part is due to deformation. A spherical element deforms to an cllipsoid whose axes 
coincide with the principal axes of the local strain rate tensor. 

IO. Kinemalic (,'onsiderations o f ~ ~ ~ l l e l  Shew Flows 

In this section we s M l  consider the rotation and deformation of fluid clcments in 
the parallel shear flow u = ruI(x2). 0.01 shown in  Figure 3.13. Lct us denote the 
velocity gradient by y(x2) du I /dn2. FromEq. (3.1 3) ,  the only nonzero component 
of vorticity is ~3 = -y .  In Figure 3.13, the angular velocity of line element AB is 
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Ngurc3.13 DcformationoPclcmenllrina~lelshearflow. Theelement is strctchcdalongtheprincipal 
axis i 1  and compressed along the principal axis &. 

-y ,  and that of BC is zero, giving - y / 2  as the overall angular velocity (half the 
vorticity). The average value does not depend on which two mutually perpendicular 
elements in the x1 x2-plane are chosen to compute it. 

In contrast, the components of strain rate do depend on the orientation of the 
element. From Eq. (3.1 l), the strain rate tensor of an element such as ABCD, with 
the sides parallel to the XI XZ-axes, is 

0 i y o  
e = [  i y  0 0 1 ,  

0 0 0  

which shows that there are only off-diagonal elements of e. Therefore, the element 
ABCD undergoes shear, but no normal strain. As discussed in Chapter 2, Section 12 
and Example 2.2, a symmetric tensor with zero diagonal elements can be diagonalized 
by rotating the coordinate system through 45". It is shown there that, along these 
principal axes (denoted by an overbar in Figure 3.13), the strain rate tensor is 

0 0  

0 0  
e =  

so that there is a linear extension rate of Z1 1 = y / 2 ,  a linear compression rate of 
E= = - y/2 ,  and no shear. This can be understood physically by examining the 
deformation of an element PQRS oriented at 45", which deforms to P'Q'R'S'. It is 
clear that the side PS elongates and the side PQ contracts, but the angles between the 
sides of the clement remain 90'. In a small  time interval, a small spherical element in 
this flow would become an ellipsoid oriented at 45" to the XI x2-coordinate system. 

Smmurizing, the element ABCD in a parallel shear flow undergoes only shear 
but no normal strain, wherear the element PQRS undergoes only normal but no shear 
strain. Both of these elements rotate at the same angular velocity. 



1 I .  Kinetnacic: Conxideratiom OJ Vorlm Flows 

Flows in circular paths arc callcd vot-texflows, some ba,ic forms of which are described 
in what lollows. 

Solid-Body Rotation 
Consider first the case in which the velocity is proportional to thc radius of the stream- 
lines. Such a flow can be generated by steadily rotating a cylindrical tank containing 
a viscous fluid and waiting until the transients die out. Using polar coordinates (rr H),  
the velocity in such a flow is 

ug u, =o, (3.27) 

where 041 is a constant equal to thc angular vclocity of revolution of each particle 
about the origin (Figure 3.14). We shall scc shortly that fN is also equal to the angular 
specd of roturion of each particle about its own center. The vorticity cornponcnts of 
a fluid clcment in polar coordinates are given in Appendix B. The component about 
thc z-axis is 

(3.28) 
1. a 1 au, 
r ar r aH 

w: = --(rue) - -- = 2 ~ ,  

whcrc wc' havc used thc vclocity distribution cquation (3.27). This shows that the 
angular velocity or each fluid element about its own centcr is a constant and qual 
to wg. This is evident in Figure 3.14, which shows the location af element ABCD at 
two succcssivc timcs. It is sccn that thc two mutually perpcndicular Ruid lincs AD 
and AB both rotatc countcrclockwisc (about the center ofthe elcment) w i h  speed q-,. 

Figure 3.14 Solid-hody rotation. Muid clcmcnls arc spinning about thcir own ccnkrs while they revolvc 
around the origin. There is no dcli)rmalion or the elements. 
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The time period for one mtation of the particle about its own center equals the time 
period for one revolution around the origin. It is also clear that the deformation of the 
fluid elements in this flow is zero, as each fluid particle retains its location relative 
to other particles. A flow defined by ue = w r  is called a sok-body rotation as the 
fluid elements behave as in a rigid, rotating solid. 

The circulation around a circuit of radius r in this flow is 

2 I’ = u = d s  = uerde = 2arus = 2nr 00: s 1” (3.29) 

which shows that circulation equals vorticity 200 times area. It is easy to show 
(Exercise 12) that this is true of m y  contour in the fluid, regardless of whether or 
not it contains the center. 

Irrotational vortex 
Circular streamlines, however, do not imply that a flow should have vorticity every- 
where. Consider the flow around circular paths in which the velocity vector is tan- 
gential and is inversely proportional to the radius of the streamline. That is, 

C 
r ue = - u, =o. (3.30) 

Using Q. (3.28), the vorticity at any point in the flow is 

0 
r 

0- = -. 

This shows that the vorticity is zero everywhere except at the origin, where it canuot 
be determined from this expression. However, the vorticity at the origin can be deter- 
mined by considering the circulation around a circuit enclosing the origin. Around a 
contour of radius r ,  the circulation is 

I’ = 6” uer de  = 2aC. 

This shows that r is constant, independent of the radius. (Compare this with the case 
of solid-body rotation, for which Eq. (3.29) shows that I‘ is proportional to r2.) In 
fact, the circulation around a circuit of any shape that encloses the origin is ~ J c C .  
Now consider the implication of Stokes’ theorem 

(3.31) 

for a contour enclosing the origin. The left-hand side of Eq. (3.31) is nonzero, which 
implies that o must be nonzero somewhere within the area enclosed by the contour. 
Because r in this flow is independent of r ,  we can shrink the contour without altering 
the left-hand side of Eq. (3.31). In the limit the area approaches zero, so that the 
vorticity at the origin must be infinite in order that o SA may have a finite nonzero 
limit at the origin. We have therefore demonstrated that thcjhw represented by 
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Figure 3.15 
where e: se. 

Irrotational vortex. Vorticity of a Ruid element is iniinite at the origin and zero every- 

ue = C / r  is irrotutional everywhere except at th.e origin, where the vortici1.y is 
iqlinire. Such a flow is called an imtatianul or potentiul vortex. 

Although the circulation around a circuit containing the origin in an irrotational 
vortex is nonzero, that around a circuit not contaiajng the originis zero. The circulation 
around any such conlour ABCD (Figure 3.15) is 

Because thc linc intcgrals of u ds around BC and DA are 72~0, wc obtain 

FAUCI) = -uor A0 + (ug + Auo)(r + Ar) AQ = 0, 

where we have noted that thc line integral along AB is negative bccause u and ds 
arc oppositcly directed, and we have used ugr = const. A zero circulation around 
ABCD is expected becausc of Stokes' theorem, and the fact that vorticity vanishes 
everywhere within ABCD. 

Rankine Vortex 
Real vortices, such as a bathtub vortex or an atmospheric cyclone, havc a core 
thal rotates nearly likc a solid body and an approximately irrotational far field 
(Figure 3.16a). A rotational core must exist bccduse the tangential vclocity in an 
irrotational vortcx has an infinite velocity jump at the origin. An idcalizalion of such 
a behavior is called the Runkine vortex, in which the vorticity is assumed uniform 
within a corc ol'radius R and zero outside the core (Figurc 3.16b). 



Figure 3.16 Vclocity and vorticiy distributions in a rcal vortex and a Rankine v o r h :  (a) real vorm; 
(b) Rankine vortex. 

12. Om-, lluo-, and ~ ! e - l ) i m c ? n ~ i o n a l ~ ~ o w ~  
A truly one-dimensional Jlow is one in which all flow characteristics vary in one 
direction only. Few real flows are strictly one dimensional. Consider the flow in a 
conduit (Figure 3.17a). The flow characteristics here vary both along the direction 
of flow and over the cross section. However, for somc purposes, the analysis can 
be simpliiied by assuming that the flow variables are uniform over the cross section 
(Figure 3.1 7b). Such a simplification is called a one-dimensional approximation, and 
is satisfactory if one is interested in the overall effects at a cross section. 

A t wo-dimensional or plane flow is one in which the variation of flow charac- 
teristics occurs in two Cartesian directions only. The flow past a cylinder of arbikary 
cross section and infinite length is an example of plane flow, (Note that in this contcxt 
the word “cylinder” is used for describing any body whosc shape is invariant along the 
length of the body. It can have an arbitrary cross section. A cylinder with a circlslar 



(a) 0 
E’igure 3.17 Flow through a conduit and its onc-dimcnsional approximation: (a) real flow; (b) 
onedimensional approximation. 

cross section is a special case. Sometimes, however, the word “cylinder” is used to 
dcswibe circular cylinders only.) 

Around bodies of revolution, the flow variables are identical in planes containing 
the axis of the body. Using cylindrical polar coordinatcs (R,  q, x ) ,  with x along the 
axis of the body, only two coordinates (R and x )  are neccssary to describe motion 
(see Figure 6.27). The flow could therefore be called “two dimensional” (although not 
plane), but it is customary to describe such motions as three-dimensional uxispunerric 
JlOlVS. 

13. The Mmzmjmclion 

The description of incompressible two-dimensional flows can be considerably sim- 
plified by dcfining a function that satisfies the law of conscrvation of mass for such 
flows. Although the conservation laws are derived in the following chapter, a simple 
and allernalive derivation of the mass conservation equation is given here. We proceed 
from thc volumetric slrain rate given Eq. (3.9), namely, 

The D/.; signifies that a specific fluid particle is followed, so thal the volume of a 
particle is inversely proportional to its density. Subslituling 6 T  o( p-’ , we obtain 

(3.32) 

This is called the C C J ~ Z U ~ Q  equation because it assumes that the fluid flow has no 
voids in it; the name is somewhat mislcading because all laws of continuum mechanics 
makc this assumption. 

The density of Ruid particles docs not change appreciably along the fluid path 
under certain conditions, the most importanl of which is that the flow spccd should be 
small compared with the spccd of sound in the medium. This is callcd the Boussinesq 
approximation and is discussed in more detail in Chapter 4, Section 18. The condition 
holds in most flows of liquids, and in flows of gases in which the speeds are less than 
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about 100m/s. In these flows p-' Dp/Dt  is much less than any o€lhe derivatives in 
aui laxi, under which condition the conlinuity equation (steady or unsteady) becomes 

p q  - =o. 

In many cases the continuity equation consists of two terms only, say 

a u  a v  
ax ay 
-+ -=o .  (3.33) 

This happens if w is not a function of E. A planc flow with tu = 0 is the most 
common example of such two-dimensional flows. If a function + ( x ,  y ,  t) is now 
defined such that 

a@ 
aY 

u -, 
(3.34) 

a$ 
ax ' 

v E -- 

then Eq. (3.33) is automatically satisfied. Therefore, a streamfunction JI can be defined 
whenever Eq. (3.33) is valid. (A similar streamfunction can be defincd for incom- 
pressible misymmetric flows in which the continuity equation involvcs R and x coor- 
dinates only; for compressible flows a streamfunction can be defined if the motion is 
two dimensional und steady (Exercisc 2).) 

The streamlines of the flow are given by 

dx d y  = -. - 
u v  

Substitution of Eq. (3.34) into Eq. (3.35) shows 

(3.35) 

which says that d@ = 0 along a streamline. The instanlaneous streamlines in a flow 
are therefore givcn by the curves @ = const., a different value of the constant giving 
a different streamline (Figure 3.18). 

Consider an arbitrary line element dx = (dx,  d y )  in the flow of Figure 3.18. 
Here we have shown a case in which both dx and dy  are positive. The volume rate 
of flow across such a line element is 

showing that the volume flow rate between a pair of streamlines is numerically equal 
to the difference in their + values. Thc sign oF $ is such that, facing the direction 
of motion, II. increases to the left. This can also be seen h m  the defmition equation 
(3.34), according to which the dcrivative of @ in a certain direction gives the vclocity 



Figure 3.18 Flow thmugh a pair of streamlines. 

component in a direction 90" clockwise from the direction of differentiation. This 
requires that e in Figure 3.18 must increase downward if the flow is from right 
to left. 

One purpose of defining a streamfunction is to be able to plot streamlines. A more 
theoretical reason, however, is that it decreases thc number of simultaneous equations 
to be solved. For example, it will be shown in Chapter 10 that the momentum and 
mass conservation equations for viscous flows near a planar solid boundary are given, 
respectively, by 

au au a2u  
u- + u- = u-: ax ay ay2 

au a v  
ax ay 
-+-=o.  

(3.36) 

(3.37) 

The pair of simultaneous equations in u and u can be combined into a single equation 
by defining a streamfunction, when the momentum equation (3.36) becomes 

a+ a2$ a+a2$ a3$ 
ay axay ax ay2 ay3 

= v-. 

We now have a single unknown function and a single differential equation. The 
continuity equation (3.37) has been satisfied automatically. 

Sum.m.arizing, a streamfunction can be defined whenever the continuity equation 
consists of two m s .  The flow can otherwise be completely general, for example, 
it can be rotational, viscous, and so on. The lines $ = C are thc instantaneous 
streamlines, and the flow rate between two streamlines equals d @ .  This concept will 
be generalized following our derivation of mass conservation in Chapter 4, Section 3. 



14. I'olur Cmrdinatca 

It is sometimes easier to work with polar coordinates, especially in problems involv- 
ing circular boundaries. In fact, we often select a coordinate system to conform to 
the shape of the body (boundary). It is customary to consult a reference source for 
expressions of various quantities in non-Cartesian coordinates, and this practice is 
perfectly satisfactory. However, it is good to know how an equation can be trans- 
formed from Cartesian into other coordinates. Here, we shall illustrate the procedure 
by transforming the Laplace equation 

to plane polar coordinates. 
Cartesian and polar coordinatcs are related by 

x = r cose 
y = r sin e 

H = tan-'(.y/x), 

r = ,/=. (3.38) 

Let us fust determine the polar velocity components in terms a€ the streamfunction. 
Bccause rl. = f ( x ,  y), and x and y are themselves functions of r and 8, the chain 
rule of partial differentiation gives 

(Z)* = (:)y (E)() + ( $ ) x  ($)/ 
Omitting parentheses and subscripts, we obtain 

(3.39) 

Figure 3.19 shows that ug = vcose - u sine, so that Eq. (3.39) implies a$/&- 
= -u6. Similarly, we can show that a$/% = Tur. Themfore, the polar velocity 
components are related to the streamfunction by 

1 a$ 
r a e '  
w 
ar 

ur = -- 

ug = --. 

This is in agreement with our previous observation that the derivative of $ gives the 
velocity component in a direction 9 0  clockwise € o m  the direction of differentiation. 

Now let us write the Laplace equation in polar coordinatcs. The chain rule gives 
a* a + a r  a*ase a$ s h e a $  -=-- + -- =case- - -- 
ax ar ax ae ax ar r ae '  

Differentiating this with respect to x ,  and following a similar rule, we obtain 

[ a$ sinO;;]. case- - -- 
ar r 

(3.40) 
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Hpre 3.19 Relation d vclocily components in Cartesian and plane polar coordinates. 

Tn a similar manncr, 

(3.41) 

The addition of Eqs. (3.40) and (3.41) leads to 

which completes the transformation. 

lhmises 
1. A two-dimensional steady flow has velocity components 

u = y  v = x .  

Show that thc streamlines are rectangular hyperbolas 
2 x - y2 = const. 

Sketch the flow pattern, and convince yourself that it represents an irrotational flow 
in a 90" comer. 

2. Consider a steady axisymmetric flow of a compressible fluid. The equation 
of continuity in cylindrical coordinates (R, p: x) is 
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Show how we can define a skamfunction so that the equation of continuity is satisfied 
automatically. 

3. Tf a velocity field given by u = ay, compute h e  circulation around a circle of 
radius r = 1 about the origin. Check the result by using Stokes’ theorem. 

4. Consider a plane Couette flow of a viscous fluid confined between two flat 
plates at a distance b apart (see Figure 9.4~). At steady stale the velocity distribution is 

u = U y / b  li = w = 0, 

where the upper plate at y = b is moving parallel to itself at speed U, and the lower 
plate is held stationary. Find the rate of linear strain, the rate of shear strain, and 
vorticity. Show that the streamfunction is given by 

UY2 $ = + const. 

5. Show that thc vorticity for a plane flow on the xy-plane is given by 

Using this expression, find the vorticity for the flow in Exercise 4. 

6. The velocity components in an unsteady plane flow are given by 

Describe the path lines and the strcamlines. Note that path lines are found by following 
the motion of each particle, that is, by solving the merentia1 equations 

dxldt = u(x, t )  and dyldt = v ( x ,  t ) ,  

subject lo x = q at t = 0. 

t h a t u o = U a t r = R .  

right-hand si& of Stokes’ theorem 

7. Determine an expression for $ for a Rankine vortex (Figure 3. la), assuming 

8. Take a planc polar elemcnt of fluid of dimensions dr and r de. Evaluate the 

and thcreby show that the expression for vorticity in polar coordinates is 

Also, find the cxpressions for w, and we in polar coordinates in a similar manner. 



9. The velocity field of a certain flow is givcn by 
2 u = zr1.2 + 2xz2, 2: = x2y,  w = x  z. 

Consider the fluid region inside a spherical volume x 2  + y2 + z2 = u2. Verify the 
validity of Gauss’ theorem 

by inlegrating over the sphere. 

10. Show that the vorticity field for any flow satisfies 

v * w = o .  

1 1. A flow field on h e  xy-plane has the velocity components 

u = 3 x + y  u = 2 x - 3 y .  

Show that the circulation around the circle (x - 1)2 + (y - 6)2 = 4 is 417. 

12. Consider the solid-body rotation 

ue = q r  u, =o. 
Take a polar element of dimension r d 0  and dr, and verify that the circulation is 
vorticity times area. (Tn Section 11 we performed such a verification for a circular 
element surrounding the origin.) 

13. Using thc indicial notation (and without using any vector identity) show that 
the acceleration of a fluid particle is given by 

where q is the magnitude of velocity u and w is the vorticity. 

14. The definition of the streamfunction in vector notation is 

u = - k x V @ ,  

where k is a unit vector perpendicular to the plane of flow. Verify that the vector 
definition is equivalent to Eqs.  (3.34). 

Supplcmcmhl Reading 
Ark, R. (1962). Vecrmv, Tensors and ?he Eu.vic Equahns of Fluid ~Wechunics, Englcwood Clitti;, NJ: 

Prentice-Hall. (Thc distinctions among shamlines. path lines, and strcak lines in unsteady flows is 
explain&, with examples.) 

Wxndtl, L. and 0. C. rietjens (1934). Fundurnmruls aJ’Hydm- and Aeromechanics, Kew York: Dovcr 
Puhlications. (Chqlcr V contains a simplc but useful treatmcnl or kinematics.) 

Prandt.1, L. and 0. G. Ticljcns (1934). Applied Hydm- andAaromechanics, New York Dovcr Publications. 
(This volumc contains classic photographs from Prandrs laboratory.) 
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1 . Inlmduction 

All fluid rncchanics is based on the conservation laws for mass. momentum, and 
energy . These laws can be staled in the di#ere.nriul form. applicable at a point . They 
can also be stated in thc integral form. applicable to an cxtended rcgion . In thc integral 

76 



2. Tune l k r i c a ~ e #  ff Volume lnhbml# 

form, the expressions of thc laws depend on whether they relate to a volumefied in 
space, or to a material volume, which consists of the same fluid particles and whose 
bounding surface moves with the fluid. Both types of volumes will be considered 
in th is  chapter; c i  $xed region will be denoted by V and a material volume will he 
&rwted by ”Ir. In engineering literature a fixed region is called a control volume, 
whose surfaces are called control suTfaces. 

Thc integral and differential forms can be derived from each other. As we shall 
see, during the derivation surface integrals frequently need to be converted to volume 
integrals (or vice versa) by means of the divergence theorem of Gauss 

77 

(4.1) 

where F ( x ,  t )  is a tensor of m y  rank (including vectors and scalars), V is either a 
fixed volume or a material volume, and A is its boundary surface. Gauss’ theorem 
was presented in Section 2.13. 

2. Time Deriuatives of Volume Inlcgrab 
Tn deriving the conservation laws, one rrequently faces the problem of finding h e  
time derivative of integrals such as 

where F ( x ,  t )  is a tensor of any order, and V ( t )  is any region, which may be fixed or 
move with the fluid. The d /d t  sign (in contrast to alar)  has been written because only 
a function of time remains after performing the integration in space. The different 
possibilities are discussed in what follows. 

General Case 

Consider the general case in which V ( t )  is neither a fixed volume nor a material 
volume. The surfaces of the volume are moving, but not with the local fluid veloc- 
ity. The rule for diffcrentiating an integral becomes clear at once if we consider a 
one-dimensional ( 1 D) analogy. Tn books on calculus, 

db du 
dt s”‘” X = U ( t )  dt dt dx + -F(b, t )  - -F(u, t ) .  (4.2) 

This is called the kihniz theorem, and shows how to differentiate an integral whose 
integrand F as well as the limits of integration are functions of the variable with 
respect to which we are diffcrentiating. A graphical illustration of the three terms on 
the right-hand sidc of the Leibniz theorem is shown in Figure 4.1. The continuous 
line shows the integral S F  dx at time t ,  and the dashed line shows the integral at time 
t + dr. The first tcrm on the right-hand side in Eq. (4.2) is the integral of aF/at over 
the region, the second term is due to the gain of F at the outer boundary moving at a 
rate db/d t ,  and the third term is due to the loss of F at the inner boundary moving at 
du/dt .  
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Figure 4.1 Graphical illustrhon of Lcibnkr’s theorem. 

Generalizing the Leibniz theorem, we write 

where un is the velocity of the boundary and A(b) is Ihc surface of V ( t ) .  The surface 
integral in Eq. (4.3) accounts €or both “inlets” and “outlcts,” so that separale terms as 
in Eq. (4.2) are not necessary. 

Fixed Volume 
For a fixed volume we have UA = 0, for which Q. (4.3) becomes 

(4.4) 

which shows that thc time derivative can be simply taken inside the integral sign if 
the boundary is fixed. This merely reflects thc fact that the “limit of inlegration” V is 
not a function of time in this case. 

Material Volume 
For a material volume V(f) the surfaces move with the fluid, so that UA = u, where 
u is the fluid velocity. Then Eq. (4.3) becomes 



This is sometimes called the Reynolds transport theorem. Although no1 necessary, 
we have used the D/Db symbol here to emphasize that we are following a material 
volume. 

Another form of the transport theorem is derived by using the mass conservation 
relation Eq. (3.32) derived in the last chapter. Using Gauss' theorem, the transport 
theorem Eq. (4.5) becomes 

Now define a new function f such that F = p f ,  where p is the fluid density. Then 
the prcccding becomes 

Using thc continuity equation 

we finally obtain 

(4.6) 

I 

Notice that the D/Dt  operates only on f on the right-hand side, although p is variable. 
Applications of this rule can be found in Sections 7 and 14. 

3. Chmercalion of:llclss 
The differential form of the law of conservation of maqs was derived in Chapter 3, 
Section 13 from a consideration of the volumetric rate of strain of a particle. Tn this 
chaptcr we shall adopt an alternative approach. We shall first state the principle in 
an integral form for a fixed region and then deduce the differential form. Consider a 
volume fixed in space (Figure 4.2). The rate of increase of mass inside it is the volume 
integral 

The time derivative has been taken inside the integral on the right-hand side because 
the volume is fixed and Eq. (4.4) applies. Now the rate of mass flow out of the volume 
is the surface integral 

pu dAl 



Figorc 4.2 Mass conscrvatim of a volume fixed in space. 

because pu d A  is the outward flux through an area element d A .  (Throughout the 
book, we shall write dA for n d A ,  where n is the unit outward normal to the surlace. 
Vector dA therefore has a magnitude d A  and a direction along the outward normal.) 
The law of conservation of mass states that the rate of increase of mass within a fixed 
volume must equal the rate of i d o w  through the boundaries. Therefore, 

(4.7) 

which is the integral form of the law for a volume fixed in space. 
The differential fonn can be obtained by transforming the surface integral on the 

right-hand side of Eq. (4.7) to a volume integral by means of the divergence theorem, 
which gives 

pu - d A  = V (pu)dV.  

Equation (4.7) then becomes 

l [ z + V - ( p u )  d V = 0 .  1 
The forementioned relation holds far any volume, which can be possible only if the 
intcgrand vanishes at cvery point. (Tf the integrand did not vanish at every point, then 
we could choose a small volume around that point and obtain a nonzero integral.) 
This requires 

1 $ + v (pu) = 0, (4.8) 



which is called thc continmi0 eyuutiun and cxpresses the differential form of thc 
principlc of conscrvation of mass. 

The equation can bc written in scveral other forms. Rewriting the divergence 
term in Eq. (4.8) as 

the equation of continuity becomes 

The derivative Dp/Dt is the rate of change of density following a fluid particle; it 
can bc nonzero because of changes in pressure, temperature, or composition (such 
as salinity in  sca water). A fluid is usually called incompressible if its density does 
not change with pressure. Liquids are almost incompressible. Although gases are 
comprcssible, for speeds 5 100 m/s (that is, for Mach numbers 4 . 3 )  the fractional 
change of absolute prcssure in the flow is small. Tn this and scveral other cases 
the density changes in thc Flow are also small. The neglect of p-.' Dp/Dt  in the 
continuity equation is part of a scrics of simplifications grouped under thc Boussinesq 
approximation, discussed in Section 18. In such a case the continuity equation (4.9) 
rcduccs to the incompressible form 

(4.10) 

whether or not thc flow is steady. 

4. ,'j~mamfrui.dii~ttionu= Kecisikd and ~;C!ni!rwlixrcd 
Consider the steady-state form of mass conservation from Eq. (4.8), 

v - (pu) = 0. (4.1 1) 

In Exercisc 10 of Chapter 2 we showcd that the divergence of the curl of any vector 
field is identically zcro. Thus we can reprcscnt the mass flow vector as the curl of a 
vwtor potential 

pu = v x 8, (4.12) 

where wc can write P = xV+ + Vrj in terms of lhree scalar functions. We are 
concemcd with the mass flux Eeld pu = Vx x V+ because the curl of any gradient 
is idenlically zcro (Chapter 2, Excrcisc 1 I ) .  The gradients of the surfaces x = const. 
and + = const. are in the directions of the surfacc normals. Thus the cross product is 
perpendicular to both normals and must lie simultaneously in both surfaces x = const. 
and + = const. Thus streamlines are the intcrseclions of the two surfaces, called 
streamsurfaccs or streamfunctions in a three-dimensional (3D) flow. Consider an 
edge view of two members of each or the familics of the two streamfunctions x = a, 



Figure 4.3 Ed@ v i m  of two members of cach of two €milies of streadunctions. Contour C is the 
boundary of surracc arca A : C = a A. 

x = b, = cy $ = d. The intersections shown as darkened dots in Figure 4.3 are 
the streamlines coming out of the paper. We calculate the mass per time through a 
surface A bounded by the four streamfunctions with element dA having n out of the 
paper. By Stokes' theorem, 

= / ( x d I / '  + dq5) = / x d @  = b(d - c)  + U(C - d )  = (b  - a)(d - c). 
C C 

Here we have used the vector identity Vq5 ds = dq5 and recognized that integration 
around a closed path of a single-valued function results in zero. The mass per time 
through a surface bounded by adjacent members of the two families of streamfunc- 
tions is just the product of the differences of the numerical values of the respective 
streamfunctions. As a very simple special case, consider flow in a z = constant plane 
(described by x and y coordinates). Because all the streamlines lie in z = constant 
planes, z is a streamfunction. Define x = -z, where the sign is chosen to obey the 
usual convention. Then V x  = -k (unit vector in the z direction), and 

PU = -k x ve; PU = ae/ay, PV = --a*/a.T, 

in conformity with Chapter 3, Exercise 14. 
Similarly, in cyclindrical polar coordinates as shown in Figure 3.1 flows, sym- 

metric with respect to rotation about the x-axis, that is, those for which = 0, 
have streamlines in q5 = constant planes (through the x-axis). For those axisymmetric 
flows, x = -q5 is one streamfunction: 

1 
pu = -j$ x v*, 

then gives pRu, = &,+pit, ~ R U R  = -a@/ax. We note herc that if the density may 
be taken as a constant, mass conservation reduces to V u = 0 (steady or not) and 
the entire preceding discussion follows for u rather than pu with the interpretation of 
streamfunction in terms of volumetric rather than mass flux. 

Before we can proceed further with the conservation laws, it is necessary to classify 
the various types of forces on a fluid mass. The forces acting on a fluid element can 
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be divided conveniently into three classes, namely, body ~orces, surface forces, and 
linc forces. These arc: described as follows: 

Body juxes: Body forces are those that arise from “action at a distance,” with- 
out physical contact. They result from the medium being placed in a certain 
SorceJiefd, which can bc gravitational, magnetic, electrostatic, or electromag- 
netic in origin. They are distributed throughout the mass of the fluid and are 
proportional to the mass. Body forces are expressed either per unit mass or per 
unjt volume. In this book, the body force per unit mass will bc dcnoted by g. 

Body forces can be conservative or nonconservative. Conservative body 
fobrces arc those that can be expressed as the gradient of a potential function: 

g = -vn, (4.13) 

where n is called thefimepotentiul. All forces directed cenfrully from a sourcc 
are conservativc. Gravity, clcclrostatic and magnetic forces are conservative. 
For example, the gravity force can be written as the gradient of the potential 
function 

n = gz, 

where g is the acceleration due to gravity and z points vertically upward. To 
verify this, Eq. (4.13) gives 

ax ay az ” 1  . a  . a  g = -V(gz) = - I- + J- + k- (gz) = -kg, 

which is the gravity force per unit mass. The negative sign in font of kg 
cnsures that g is downward, along the negative z direction. The exprcssion 
ll = gz also shows that the jiirce potential equals the potential energy per 
unit muss. Forces satisfying Eq. (4.13) are called “conservative” becausc rhc 
resulting motion conserves the sum of kinetic and potential energies, if there 
are no dissipative processes. 
Surfacejorces: Surface forces are thosc that are exerted on an arca elcmcnt by 
the surroundings through direct contact. They arc proportional to the extent 
ofthe area and are convcniently expressed per unit of m a .  Surface forces can 
be ~solvcd into components normal and tangential to the arca. Consider an 
element of area d A  in a fluid (Figurc 4.4). The force dF on lhe element can 
be rcsolved into a component dF,, normal to the area and a component dF, 
tangcntial to the area. The normal and shear stress on the element are defincd, 
rcspectively as, 

dFn d Fq 
t = -  r = -  
n -  d A  5 -  d A ’  

Thcse are scalar definitions of stress components. Note that the component of 
forcc tangential to the surfacc is a two-dimensional (2D) vector in thc surrace. 
Thc state of stress at a point is, in fact, specified by a stress tensor, which has 
nine componcnk. This was explaincd in Section 2.4 and is again discussed in 
the following section. 



Figure 4.4 Normal and shear forces on an m clcrnent. 

(3 )  Lineforues: Surface tension forces are called h e f o x e s  because they act along 
a line (Figure 1.4) and have a magnitude proportional to the extent of the line. 
They appear at the interface between a liquid and a gas, or at the interface 
between two immiscible liquids. Surface tension forces do not appear directly 
in the equations of motion, but enter only in the boundary conditions. 

6. Shww at a &in1 
It waq explaincd in Chapter 2, Section 4 that the stress at a point can be completely 
specified by the nine components of the stress tensor 'c. Consider an infinitesimal rect- 
angular parallelepiped with faces perpendicular to the coordinate axes (Figure 4.5). 
On each face there is a normal stress and a shear stress, which can be further resolved 
into two components in the directions of the axes. The figure shows the directions of 
positive stresses on four of the six faces; those on the remaining two faces are omitted 
for clarity. The h t  index of t i j  indicates the direction of the normal to the surface on 
which the stress is considered, and the second index indicates the direction in which 
the stress acts. The diagonal elements til, t 2 2 ,  and t33 of the stress matrix are the 
normal stresses, and the off-diagonal elements are the tangential or shear stresses. 
Although a cube is shown, the figure really shows the stresses on four of the six 
orthogonal planes passing through a point; the cube may be imagined to shrink to 
a point. 

We shall now prove that the stress tensor is symmetric. Consider the toque on 
an element about a centroid axis parallel to xg (Figure 4.6). This torque is generated 
only by the shear stresses in the X I  xz-plane and is (assuming dx3 = 1) 

M e r  canceling terms, this gives 

T = ( t l ~  - tz1) dxl dx2. 

The rotational equilibrium of the element requires that T = Zh3, where h3 is the 
angular acceleration o€ the element and I is its moment of inertia. For the rectan- 
gular element considered, it is easy to show that I = dxl  dxz(dx: + dxz)p/12. The 
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Figure 4.5 Smss at a p i n t .  For clarity, components on only hur ol h c  six faces are shown. 
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rotational equilibrium then requires 

P 
12 

P 2  2 
12 

( t i 2  - t 2 1 )  dxl d ~ 2  = - dxl d ~ z ( d x ?  + dx;) h3, 

that is, 
t 12  - t21 = -(dxl + d ~ 2 )  &. 

As dxl and dx2 go to zero, the preceding condition can be satisfied only if t l 2  = t21. 
In general, 

t i j  = t j i .  (4.14) E l  
See Exercise 3 at the end of the chapter. 

The stress tensor is herefore symmetric and has only six independent compo- 
nents. The symmetry, however, is violated if there are “body couples” proportional to 
the mass of the fluid element, such as those c x d  by an electric field on polarized 
fluid molecules. Antisymmetric stresses must be included in such fluids. 

7. Comemalion af :Womenturn 

In this section the law of conservation of momentum will be expressed in the dif- 
ferential form dircctly by applying Newton’s law of motion to an infinitesimal fluid 
element. We shall then show how the differential form could be derived by starting 
from an integral form of Newton’s law. 

Consider the motion of the infinitesimal fluid element shown in Figure 4.7. 
Newton’s law requires that the net force on the element must equal mass times the 
acceleration of the element. The sum of the surface forces in the XI direction equals 

which simplifies to 

where dT is the volume of the element. Generalizing, the i-component of the sur$uce 
foxe per unit volume of the element is 



x, 

Figure 4.7 Surface stTesscs on an clcment moving with Lbc flow. Only stresses in thc XI dircction are 
liiklcd. 

where wc have used the symmctry property r i j  = t j i .  Let g be the body forcc per unit 
mass, so that pg is the body force per unit volume. Then Ncwton's law gives 

(4.15) 

This is thc cquation of motion relating acceleration to the nct force at a point and 
holds Tor any continuum, solid or fluid, no matter how the stress tensor t i j  is related 
to the deformation field. Equation (4.1.5) is sometimes callcd Cauchy'.~ eyuafion of 
motion. 

We shall now deduce Cauchy's equation starting from an integral statement of 
Ncwton's law for a material volume V. Tn this case we do no1 have to consider the 
internal strcsscs within the Ruid, but only the surface forces at the boundary of the 
volume (along with body forces). It was shown in Chapter 2, Section 6 that the surfacc 
force per unit area is n - t, where n is thc unit outward normal. The surface Force on an 
area clement dA is therefore dA - T. Newton's law For a makrial volume V rcquires 
that h e  rate of change of its momentum equals the sum of body forces throughout 
thc volume, plus the surrace forccs at the boundary. Therefore 



where Eqs. (4.6) and (4.14) have been used. Transforming the surface integral to a 
volume integral, Eq. (4.16) becomes 

As this holds for any volume, the integrand must vanish at every point and therefore 
Eq. (4.15) must hold. We have therefore derived the differential form of the equation 
of motion, starting from an integral form. 

8. :l!lomentum Ur;lc&leJ&r a Emed Volume 

In the preceding section the momentum principle was applied to a material volume 
of finite size and this led to Eq. (4.16). Tu this section the form of the law will be 
derived for a fixed region in space. It is easy to do this by starting from the differential 
form (4.15) and integrating over a fixed volume V .  Adding ui times the continuity 
equation 

to the left-hand side of Eq. (4.15), we obtain 

(4.17) 

Each term of Eq. (4.17) is now integrated over a h e d  region V .  The time deriva- 
tive term gives 

(4.18) 

where 
I- 

is the momentum of the fluid inside the volume. The volume integral of the second 
krm in Eq. (4.17) becomcs, after applying Gauss' theorcm, 

(4.19) 

where hrt is the net rate of outflux of i-momentum. (Here p u j  d A j  is the mass 
outflux through an area element d A  on the boundary. Outflux of momentum is defined 
as the outflux of mass times the velocity.) The volume integral of the third term in 
Eq. (4.17) is simply 

J Pgi d V  = Fbi, (4.20) 

where Fb is the net body force acting over the entire volume. The volume integral of 
the €ourth term in Eq. (4.17) gives, after applying Gauss' theorem, 

(4.21) 



wherc F, is the ne1 surface force at tbe boundary of V. Tf we define F = Fb + F, as 
thc sum or all forces, then the volume integral of Eq. (4.17) finally gives 

dM . I F = dr +Mo", (4.22) 

where Eqs.  (4.18X4.21) have been used. 
Equation (4.22) is the law of conservation of momentum for a fixed volume. It 

statcs that the net force on a fixed volume equals thc ratc of change of momentum 
within the volume, plus the net outl7ux of momentum through the surfaces. The 
cquation har three independent components, whcrc thc x-component is 

The momentum principle (frequcntly called the momentum theorem) has widc appli- 
cation, espccially in engineering. An examplc is given in what follows. More illus- 
trations can be found throughout the book, for example, in Chapter 9, Section 4, 
Chapter 10, Section 11, Chapter 13, Scction 10, and Chapter 16, Sections 2 and 3. 

Example 4.1. Consider an experimcnt in which the drag on a 2D body immersed 
in a steady incompressible flow can be detcrmined fmm measurement of thc vclocily 
distributions far upstream and downstream of the body (Figure 4.8). Velocity far 
upstream is the uniform Bow U,, and that in the wake of the body is measurcd to be 
u ( y ) ,  which is less than U, due to the drag of the body. Find the drag force D per 
unit lcngth or the body. 

Sdution: The wake velocity u(y)  is less than U, duc to the drag forces exertcd 
by the body on the fluid. To analyze the flow, take a fixed volume shown by the darhed 
lines in Figure 4.8. It consists of the rectangular rcgion PQRS and has a hole in the 
center coinciding with the surfacc of the body. The sides PQ and SR are choscn far 
enough from thc body so that the prcssure nearly equals thc undisturbed pressure P . ~ .  
The side QR at which the velocity profile is measured is also at a far enough distance 
for the streamlines to bc nearly parallcl; the pressure variation across the wake is 

D 

Figure 4.8 Momentum balancc ol' flow over a body (Example 4.1). 



therefore small, so that it is nearly equal to the undisturbed pressure p,. The surface 
forces on PQRS therefore cancel out, and the only force acting at the boundary of the 
chosen fixed volume is D, the force exerted by the body at the central hole. 

For steady flow, the x-component of the momentum principle (4.22) reduces to 

D = &Iou', (4.23) 

where f i j O u l  is the net outflow rate of x-momentum through the boundaries of the 
region. There is no flow of momentum through the central hole in Figure 4.8. Outflow 
rates of x-momentum through PS and QR are 

b 

ME = -1, U,(pU,dy) = -2bpU&, (4.24) 

b h 

hQR = Lb u(pu d y )  = p 1 u2 d y .  
-b 

(4.25) 

An important point is that there is an outflow of mass and x-momentum through PQ 
and SR. A mass flux through PQ and SR is required because the velocity across QR 
is less than that across PS. Conservation of mass requires that the inflow through PS, 
equal to 2bpU,, must balance the outflows through PQ, SR, and QR. This gives 

b 
2bpU, = mpQ +mSR + p l b u d y ,  

where rim and msR are the outflow rates of mass through the sides. The m a s  balance 
can be written as 

kPQ + h s R  = P L ( U w  - u )  dl'. 

Outflow rate of x-momentum through PQ and SR is therefore 

h 
kw + kSR = pU, L b ( U m  - u)  d y ,  (4.26) 

because the x-directional velocity at these surfaces is nearly U,. Combining 
Eqs. (4.22H4.26) gives a net outflow of x-momentum of: 

The momentum balance (4.23) now shows that the body exerts a force on the fluid in 
the negative x direction of magnitude 

which can be evaluated from the measured velocity profile. 



A more general way of obtaining the force on a body immersed in a flow is by using 
thc Eulcr momcntum integral, which we derivc in what follows. We must assume that 
thc flow is steady and body forccs are abscnt. Then intcgrating Eq. (4.19) over a fixed 
volume givcs 

(4.27) 

where A is the closed surface bounding V. This volume V contains only fluidparticles. 
Tmagine a body immersed in a flow and surround that body with a closed surface. We 
seek to calculate the force on the body by an integral over a possibly distant surface. 
In order to apply (4.27), A must bound a volume containing only fluid particles. This 
is accomplishcd by considcring A to bc composed d three parts (see Figure 4.9, 

V - (puu - t)dV = (puu - t) . dA, J, 

A = Ai + A2 + &. 

Here A 1 is the outer surface, A2 is wrappcd around the body like a tight-fitting rubber 
glove with dA2 pointing outwards from the fluid volume and, therefore, into the body, 
and Ag is the connection surface between the outcr A, and thc inner A2. Now 

(puu - t) dA3 + 0 as A3 + 0, L 
bccause il may be taken as the bounding surface of an cvancscent thread. On the 
surfacc or a solid body, u d A 2  = 0 because no mass cniers or leaves the surface. 
Here t . dA2 is the rorce the body exerts on the fluid from our definition of t. 
Then the force the fluid exerts on the body is 

Fe = - t - d A z  = - (puu - t) - dA,. (4.28) J, J,, 
Using similar arguments, mass conscrvation can be written in the form 

J,,pu.dA' =o. (4.29) 

Equations (4.28) and (4.29) can bc used to solve Example 4.1. Of course, the same 
final result is obtained when t 2 conslant pressure on all of AI, p = constant, and 
the x cornponcnt d u = U,i on segments FQ and SR of AI. 

Figure 4 9  Surhccs ol' integration for thc Eulcr momentum integral. 



In mechanics of solids it is shown that 

dH T=- 
dt  ' 

(4.30) 

where T is the torque of all external forces on the body about any chosen axis, and 
dH/dt  is the rate of change of angular momentum of the body about the same axis. 
The angular momentum is defined as the "moment of momentum," that is 

H E  r x u d r n ,  

where dm is an element of mass, and r is the position vector from the chosen axis 
(Figure 4.10). The angular momentum principle is not a separate law, but can be 
derived from Newton's law by performing a cross product with r.  It can be shown that 
Eq. (4.30) also holds for a material volume in a fluid. When Eq. (4.30) is transformed 
to apply to aJixed volume, the result is 

J 

dH 
dt 

T = - +&'"I, 

where 

H - r x [(pu.dA)u]. 
. Out - s, 

(4.31) 

Figure 410 Ddinition sketch for angular momentum theorem. 



Here T represents the sum of torques due to surface and body forces, T d A  is the 
surface force on a boundary element, and p g d V  is the body force acting on an interior 
element. Vector H represents the angular momentum of fluid inside the fixed volume 
because pudV is the momentum of a volume element. Finally, HouL is the rate of 
outflow of angular momentum through the boundary, pu d A  is the mass flow rate, 
and (pu dA)u is the momentum outflow rate through a boundary element dA. 

The angular momentum principle (4.31) is analogous to the linear momentum 
principle (4.22), and is very useful in investigating rotating fluid systems such as 
turbomachines, fluid couplings, and even lawn sprinklers. 

Example 4.2. Consider a lawn sprinkler as shown in Figure 4.11. The area of the 
nozzle exit is A, and the jet velocity is U. Find the torque required to hold the rotor 
stationary. 

Solution: Select a stationary volume V shown by the dashed lines. Pressure 
everywhere on the control surface is atmospheric, and there is no net moment due 
to the pressure forces. The control surface cuts through the vertical support and the 
torque T exerted by the support on the sprinkler arm is the only torque acting on V .  
Apply the angular momentum balance 

T = HYL. 

Let ri = pAU be the mass flux through each nozzle. As the angular momentum is 
the moment of momentum, wc obtain 

H-O''' = (mUcosa)a + (mu c o s a ) ~  = 2upAU2cosa. 

Therefore, the torque required to hold the rotor stationary is 

T = 2apAU2 cosa. 

When the sprinkler is rotating at a steady state, this torque is balanced by both air 
resistance and mechanical friction. 
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Side view 

Figure 4.11 Lawn sprinklcr (Example 4.2). 



10. Comliluliuc Equulion jhr iViwlonian Fluid 
The relation between the spress and deformation in a continuum is called a constitutive 
equation. An equation that linearly relates the stress to the rate of strain in a fluid 
medium is examincd in this section. 

In a fluid at rest there are only n o d  components of stress on a surface, and 
the s h s s  docs not depend on the orientation of the surface. In other words, thc stress 
tensor is isotropic or spherically symmetric. An isotropic tensor is defined as one 
whose componcnts do not change under a rotation of the coordinate system (see 
Chapter 2, Scction 7). The only second-order isotropic tensor is the Kronecker delta 

8 =  0 1 0 .  [:::I 
Any isotropic second-order tensor must be proportional to 8. Therefore, because the 
stress in a static fluid is isotropic, it must be of the form 

t i j  = -psij,  (4.32) 

where p is the ihermodynumic pressure related to p and T by an equation of state 
(e.g., the thermodynamic pressurc for a perfect gas is p = p R T ) .  A negative sign is 
introduced in Eq. (4.32) becausc the normal components of T are regarded as positive 
if they indicate tension rather than compression. 

A moving fluid develops additional components of strcss due to viscosity. The 
diagonal terms or T now become unequal, and shear stresses dcvclop. For a moving 
fluid we can split the stress into a part -p&j that would exist if it were at Est and a 
part qj due to the fluid motion alone: 

(4.33) 

We shall assume that p appcaring in EQ. (4.33) is still the thermodynamic prcssure. Thc 
assumpdon, however, is not on a very firm footing bccause thermodynamic quantities 
are defined for equilibrium states, whereas a moving fluid undergoing diffusive fluxes 
is generally not in cquilibrium. Such departures [om thermodynamic equilibrium 
are, howcver, expected to be unimportant if the relaxation (or adjustment) time of the 
molecules is small compared to the time scale of the flow, as discussed in Chaptcr 1, 
Section 8. 

The nonisotropic part u, called thc deviaroric stress lensor, is related to the 
velocity gradients i lu i /ax j .  The velocity gradient tensor can be decomposed into 
symmetric and anlisymmctric parts: 

p. - -pa . .  +a. 
i j  - 11 r j -  

aui 1 aui a u .  1 au.  a u .  
- ax, = - 2 (- ax, + G) + 5 ($ - j$ 

Thc antisymmctric part represents fluid rotation without dcformation, and cannot by 
itself generate strcss. The strcsses must be generated by the strain rate tcnsor 

I aui auj e . .  = - 
- 2 (G + a,) 



alone. We shall assume a lincar relation of the type 

a i j  = Kijrnnerntzr (4.34) 

where K i j m t i  is a €ourth-order tensor having 8 1 components that depend on the ther- 
modynamic state of the medium. Equation (4.34) simply means that each stress com- 
ponent is linearly related to all nine components o€ e i j ;  altogether 81 constants are 
therefore needed to completely describe the mlationship. 

It will now be shown that only two of the 81 elements of K ; j m t r  survive if it 
is assumed that the medium is isotropic and that the stress tensor is symmetric. An 
isotropic medium has no directional preference, which means that the stress-strain 
relationship is independent of rotation of the coordinate system. This is only possible 
if Kipwr:  is an isotropic tensor. It is shown in books on tensor analysis (e.g., see Aris 
(1962), page 30) that all isotropic tensors of even order are made up of products of 
S ; j ,  and that a fourth-order isotropic tensor must have the form 

(4.35) 

where A,  p, and y are scalars that depend on the local thermodynamic state. As oij is 
a symmetric tensor, Eq. (4.34) requires that K i j m t r  also must be symmetric in i and j. 
This is consistcnt with Eq. (4.35) only if 

Y = L L -  (4.36) 

Only two constants p and A,  of the original 8 1 ,  have therefore survived under the 
restrictions of material isotropy and stress symmety. Substitution of Eq. (4.35) into 
the constitutive equation (4.34) gives 

K i j n i n  = A J i j S m n  + ~ 8 i t n J j n  + Y S i n a j n r ,  

a i j  = 2 p e i j  + kern,,, S i j ,  

where emrn = V - u is the volumetric strain rate (explained in Chapter 3, Scction 6). 
The complete stress tensor (4.33) then becomes 

(4.37) 

The two scalar constants p and A can be further related as follows. Setting i = j ,  

r i j  = - p & j  + 2 p e i j  + ken,,,, 6 i j .  

summing over the repeated index, and nothg that Sii = 3, we obtain 

r i i  = -3p + ( 2 ~  + 31) etnrn: 

from which the pressure is found to be 

p = - ; q i  + ($A + A) v . u. (4.38) 

Now the diagonal terms of e;i in a flow may be unequal. In such a case the stress tensor 
r i j  can have unequal diagonal terms because of the presence of the term proportional 
to p in Eq. (4.37). We can therefore take the average of the diagonal terms of T and 
define a mean pressure (as opposed to thermodynamic pressure p )  as 

j j  - ’ t j i .  (4.39) 9 
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Substitution into Eq. (4.38) gives 

p - p = (;/A + A) v . u. (4.40) 

For a completely incompressible fluid we can only define a mechanical or mcan 
pressurc, because there is no equation of state to determine a thermodynamic pressure. 
(In fact, the absolute pressure in an incompressihle.fluid is indeterminate, and only 
its gradients can be deterrnincd from the equations of motion.) The A-term in the 
constitutive equalion (4.37) drops out becausc e,,,,,, = V .u = 0, and no consideration 
of Eq. (4.40) is necessary. For incompressihZeJluids, the constitutive equation (4.37) 
takes the simple form 

Tij = -PSij + 2 ~ i j  (incompressible), (4.41) 

where p can only be interpreted as the mean pressure. For a comprcssible fluid, on 
the other hand, a thermodynamic pressure can bc defined, and it scems that p and 
j j  can be diffcrent. In fact, Eq. (4.40) relates this difference to the rate ol: cxpansion 
through the proportionality constant K = A + 2p/3, which is called h e  cueflcienr 
of hulk viscosity. In principlc, K is a measurable quantity; however, extrcmely large 
values of D p / D t  are neccssary in order to make any mcasurement, such as within 
shock waves. Moreover, measurements are inconclusive about the nature of K .  For 
many applications the Stokes assumption 

A+$.&=O, (4.42) 

is found to bc sufficiently accurate, and can also be supported from the kinetic theory of 
monatomic gases. Tnteresting historical aspects of the Stokcs assumption 31+2p = 0 
can be found in Truesdell (1952). 

To gain additional insight into the distinction between thermodynamic pressurc 
and the mean of the normal stresses, consider a system inside a cylinder in which a 
piston may be movcd in or out to do work. The first law of thermodynamics may be 
written in general terms as de = d w  + d Q  = - i d u  + d Q  = -pdu + TdS,  where 
the laqt equality is written in terms of state functions. Thcn TdS - d Q  = ( p  - p)du. 
The Clausius-Duhem inequality (sce under Eq. 1.16) tells us TdS - d Q  2 0 for 
any process and, consequently, ( p  - p ) d v  1 0. Thus, for an expansion, d v  > 0, so 
p > jj, and conversely for a compression. Equation (4.40) is: 

1 Dv 1 
P 

Further, we require (2/3)p + A > 0 to satisfy thc Clausius-Duhem incquality state- 
mcnt of the second law. 

With the assumption K = 0, the constitutive equation (4.37) reduces to 

(4.43) 



This linear relation between T and e is consistent with Newton’s definition of viscosity 
coefficient in a simple parallel flow u(y ) ,  for which Eq. (4.43) gives a shear stress 
of t = p(du/dy).  Consequently, a fluid obeying Eq. (4.43) is called a Newtonian 
Jluid. The fluid property p in Eq. (4.43) can depend on the local thermodynamic state 
alone. 

Thc nondiagonal terms of Eq. (4.43) are easy to understand. They are of the type 

which relates the shear stress to the strain rate. The diagonal tcrms arc morc difficult 
to understand. For example, Eq. (4.43) gives 

which means that the normal viscous stress on a plane normal to the XI -axis is propor- 
tional to thc difierence between the extension rate in the XI direction and the average 
cxpansion ratc at the point. Therefore, only those extension rates different from the 
avcragc will gcncratc normal viscous stress. 

Non-Newtonian Fluids 
The linear Newtonian friction law is expectcd to hold for small rates of strain because 
higher powers of e are neglected. Howcvcr, for common fluids such as air and water 
the linear relationship is found to bc surprisingly accurate for most applications. Some 
liquids important in thc chemical industry, on the other hand, display non-Newtonian 
behavior at moderate rates of strain. These include: ( 1 )  solutions containing polymer 
molecules, which have very large molecular wcights and form long chains coiled 
together in spongy ball-like shapes that deform undcr shcar; and (2) emulsions and 
slurries containing suspended particles, two examples of which are blood and water 
containing clay. Thcsc liquids violate Newtonian behavior in sevcral ways-for exam- 
ple, shear stress is a nonlinear function of the local s t r a h  rate, it depends not only on 
thc local swain rate, but also on its hisrory. Such a “memoryy’ effect gives the fluid an 
clastic property, in addition to its viscous property. Most non-Newtonian fluids are 
thercfore wiscoelasric. Only Newtonian fluids will be considered in this book. 

I I. Xauii?r-StoIcm k,qualion 
The equation of motion €or a Newtonian fluid is obtained by substituting the consti- 
tutive equation (4.43) into Cauchy’s equation (4.15) to obtain 

wherc wc have noted that (ap/axj )&,  = ap/axi.  Equation (4.44) is a general form 
of the Navier4toke.v equation. Viscosity IL in this equation can be a function of the 
thermodynamic state, and indeed p for most fluids displays a rathcr strong depen- 
dence on tcmpcrature, decreasing with T for liquids and increasing with T for gases. 
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However, if the temperature differences arc small within the fluid, then p can be taken 
outside the dcrivative in Eq. (4.44), which then reduces to 

Du 
p- = - V p  + pg + i i  V2u. I Dt 

where 

(incornpressiblc) 

is the Laplacian of u; . For incompressiblc fluids V . u = 0: and using vector notation, 
the NavicrStokes equation rcduces to 

I I 

(4.45) 

If viscous effects are negligible, which is generally found to be truc far from bound- 
aries of the flow field, we obtain the Euler equnrion 

pg = -vp + Pf3 (4.46) 

Comments on the Viscous Term 
For an incompressible fluid, Eq. (4.41) shows that the viscous stress at a point is 

(4.47) 

which shows that u depends only on thc deformation rate of a fluid element at a point, 
and not on the rotation ratc (aui/axj - au j / a x i ) .  We have built this propcrty into thc 
Newtonian constitutive cquation, based on the fact that in a solid-body rotation (that 
is a flow in which the tangential velocity is proportional to the radius) the particles do 
not deform or “slide” past cach other, and thedore they do not cause viscous strcss. 

However, consider the nct viscous force per unit volume at a point, givcn by 

where we havc used the dation 
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In thc prcceding derivation the “epsilon delta relation,” given by Eq. (2.19), has 
been used. Relation (4.48) can cause some confusion because it seems to show that 
the net viscous force depends on vorticity, whereas Eq. (4.47) shows that viscous 
stress depends only on strain rate and is independent of local vorticity. The apparent 
paradox is explained by realizing that the net viscous force is given by either the 
spaiial derivative OF vorticity or the spatial derivative of deformation rate; both forms 
are shown in Eq. (4.48). The net viscous force vanishes when o is uniform everywhere 
(as in solid-body rotation), in which case the incompressibility condition requires that 
the deformation is zero everywhere as well. 

12. ltotating P m c ?  

The equations of motion given in Section 7 arc valid in an inertial or “fixed” frame of 
re€ercncc. Although such a frame of reference cannot be defined precisely, experience 
shows that thcse laws arc accurate enough in a frame of referencc stationary with 
respect to “distant stars.” In geophysical applications, however, we naturally measure 
positions and vclocities with respect to a frame of referencc fixed on the surface of the 
earth, which rotates with respect to an inertial frame. In this section we shall derive 
the equations of motion in a rotating frame of reference. Similar derivations are also 
given by Batchelor ( I  9671, Pedlosky (1 987), and Holton (1979). 

Consider (Figure 4.12) a frame of reference ( X I ,  x2, x3) rotating at a uniform 
angular velocity 51 with respect to a fixed frame (XI, Xzl X3). Any vector P is repre- 
sented in the rotating frame by 

n 

Figure 4.12 Coordinate liamc (XI.  x2. x3) rotating at angular velocity S2 with respect to a fixcd frame 
(XI 3 x2. X:d. 



To a fixed observer the dircctions of the rotating unit vectors il, i2, and i3 changc with 
time. To this observer the time derivative of P is 

d ( $)F = Z(plil+ P2i2  + 
- . dPi . dP2 . dP3 dir di2 di3 
- 11 - + 12- + 1.3 - + PI - + 4- + p3 -. dt dt dr dt dt dt 

To the rotating obscrver, the rate of change of P is the sum of the first three terms, 
so that 

(4.49) 

Now each unit vector i traces a cone with a radius of sina!: where IT is a constant 
angle ( F i w  4.13). The magnitude of the change of i in time dt is ldil = sin a! do, 
which is thc length traveled by the tip of i. The magnitude of the rate of changc is 
therefore (dildt) = sin IT (dO/dt) = !2 sin a!, and the direction of the rate of change 
is perpendicular to thc (8 ,  i)-plane. Thus di/dt = 8 x i for any rotating unit vector i. 
Thc sum of the last thrcc terms in Eq. (4.49) is then Pl8 x il + P2S2 x i2 + P38 x i3 = 
8 x P. Equation (4.49) then becomes 

(4.50) 

which relates the rates of changc of the vector P as swn by the two observers. 
Application of rule (4.50) to the posilion vector r relates the velocities as 

Figure 4.13 Rotalion of a unit vcctor. 



Applying rule (4.50) on up, we obtain 

(%),=($) + P x u , ,  
R 

which becomcs, upon using Eq. (4.51), 

This shows that the accelerations in the two frames are related as 

BF = a ~ + 2 P  x u K + P  x (P x r), P =O.  (4.52) 

The last tcrm in Eq. (4.52) can be writtcn in terms of the vector R drawn perpendicu- 
larly to the axis of rotation (Figure 4.14). Clearly, P x r = P x R. Using the vector 
identity A x (B x C) = (A C)B - (A - B)C, the last term of Eq. (4.52) becomes 

P x (a x R) = -(P P)R = -Q2R, 

where we have set P R = 0. Equation (4.52) hen becomes 

aF = a  + 2 8  x u - Q’R, (4.53) 

where the subscript “R” has been dropped with the understanding that velocity u and 
accelemtion a are measured in a rotating framc of reference. Equation (4.53) states 

n 

Figure 4.14 Centripclal acceleration. 



that the “true” or inertial acceleralion equals the acceleration meawred in a rotating 
system, plus the Coriolis acceleration 251 x u and the centripetal accelcration -Q2R. 

Therefore, Coriolis and centripetal accelerations have to be considered if we 
arc measuring quantities in a rotating rramc of referencc. Substituting Eq. (4.53) in 
Eq. (4.43, the equation of motion in a rotating framc of reference becomes 

Du 1 
- = --Vp + VV’U + (8, + Q’R) - 2P x U, 
Dt P 

(4.54) 

whcre we have taken the Coriolis and centripetal acceleration tcnns to thc right-hand 
side (now signifying Coriolis and centrifugal forces), and addcd a subscript on g to 
mean that iL is the body forcc per unit mass due to (Newtonian) gravitational attractive 
forces alone. 

Effect of Centrifugal Force 
The additional apparent force Q2R can be added LO the Newtonian gravity g, to 
define an efeclive grcrvityjorce g = g, + Q’R (Figure 4.15). The Ncwtonian gravity 
would be uniform over the earth’s surface, and be centrally directed, if the earlh were 
spherically symmetric and homogeneous. Howcver, the earth is really an ellipsoid 
with the equatorial diamcter 4 2 h  larger than thc polar diameter. In addition, the 
existence of thc centrifugal force makcs the effective gravity less at the equator than 
at the poles, where Q’R is zero. In terms of the effective gravity, Eq. (4.54) becomes 

Du 1 
Dt P 
- = --vp + VV’U + g - 2P x u. (4.55) 

The Newtonian gravity can be written as the gradient of a scalar potcntial function. 
It is easy to see that the centrifugal force can also be written in the same manner. 

I 
I 

Figurn 4.15 EfTcctive gravity g and cquipotentinl surface. 
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From Definition (2.22), it is clcar that the gradient of a spatial direction is the unit 
vector in that direction (e.g., Vx = i,), so that V(R2/2) = RiR = R. Therefore, 
Q2R = V(Q2R2/2), and the centrifugal potential is -Q2R2/2. The eflective gruvify 
can therefore be writtcn as g = -Vn,  where l7 is now the potential due to the 
Newtonian gravity, plus the centrifugal potential. The equipotential surfaces (shown 
by the dashed lines in Figure 4.15) are now perpendicular to the effective gravity. The 
avcrage sea level is one of these equipotential surfaces. We can then write n = gz, 
whcre z is measured perpendicular to an equipotential surface, and g is the emective 
accelcration due to gravity. 

Effect of Coriolis Fora 
The angular vclocity vector P points out of the ground in the northern hemisphere. 
The Coriolis force -2P x u thcreibre tends to deflcct a particle to the right of its 
direction of travel in  the northern hemisphere (Figure 4.16) and to the left in h e  
southern hemisphcrc. 

Imagine a projcctile shot horizontally €om the north pole with speed u.  Thc 
Coriolis furcc 2Qu constantly acts perpendicular to its path and therefore does not 
change the spccd u of the projectile. The forward distance traveled in timc t is ut,  and 
the deflection is nut2. The angular deflection is Qut2/ut = Qt: which is the earth's 
rotation in time t .  This demonstrates that the projectile in fact lravels in a straighl 
line if observcd from the inertial outer space; its apparent deflection is merely due to 
the rotation of thc carlh underneath it. Observers on earth need an imaginary force 
to account for thc apparent deflection. A clear physical explanation of the Coriolis 
force, with applications to mechanics, is given by Stommel and Moon (1989). 

-nx u 
Figurc 4.16 Deflccuon ora particlc duc to the Coriolis hrce. 



Although the effccts of a rotating frame will be commentcd on occasionally in 
this and subsequent chapters, most of the discussions involving Coriolis forces arc 
given in Chapter 14, which deals with geophysical fluid dynamics. 

13. iktcchanical Iinergy Iiqualion 
An equation for kinetic energy of the fluid can be obtained by finding the scalar prod- 
uct of h e  momentum equation and the velocity vector. The kinetic energy equation 
is therefore not a separate principlc, and is not the same as the first law of thermo- 
dynamics. We shall derive several forms of the equation in this scction. Thc Coriolis 
force, which is perpendicular to the velocity vcctor. docs not contribute to any of the 
energy equations. The equation of motion is 

D u ~  arij 
P-=Pgi++- Dt a x j  

Multiplying by ui (and, of course, summing over i), we obtain 

atij 
P; (+:) = pujgi + ui-. a x j  (4.56) 

where, for the sake of notational simplicity, we have written u; foruiui = u:+ui+u$ 
A summation over i is therefore implied in u:, although no repeated index is explicitly 
written. Equation (4.56) is thc simplest as well as most revealing mechanical energy 
equation. Recall from Section 7 that lhc resultant imbalance of the surface forces at a 
point is V - t, pcr unit volumc. Equation (4.56) therefore says hat the ratc of incrcase 
of kinctic energy at a point cquals the sum of the rate of work done by body [ m e  g 
and the rate of work done by the net surface force V . t per unit volumc. 

Ohcr forms of the mechanical energy quation are obtained by combining 
Eq. (4.56) with the continuity cquation in various ways. For example, pu?/2 timcs 
the continuity equation is 

which, when added to Eq. (4.56), gives 

Using vector notation, and defining E = pu?/2 as the kinetic energy per unit volume, 
this becomes 

(4.57) 

The second term is in the form of divergence of kinetic cnegy flux uE. SuchJlux 
divergence tcrms frequently arise in energy balanccs and can be interpretcd as Lhc 
net loss at a point due to divergence of a flux. For example, if the source terms on 
the right-hand side of Eq. (4.57) are zero, then the local E will increase with limc if 

3 E  - + v . (UE) = pu g + u (V t). 
at 
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V (u E) is ncgative. Flux divergence tcrms are also called transport terms because 
they transfer quantities from onc rcgion to another without making a net contribu- 
tion over the entire field. When integrdted over the entire volume, their contribution 
vanishes if there are no sourccs at thc boundaries. For example, Gauss' theorem 
transforms the volume integral of V (uE) as 

l V . ( u E ) d V = l E u . d A ,  

which vanishes if the flux u E is zero at the boundarics. 

Concept of Deformation Work and Viscous Dissipation 
Another useful form of the kinctic energy equation will now be derived by examining 
how kinetic cnergy can be lost to intcrnal energy by deformation ol fluid elements. In 
Eq. (4.56) thc term u i ( a t i j / a x j )  is vclocity limes the net forcc imbalance at a point 
due to differences of stress on opposite faces of an element; thc net force accelerates 
the local fluid and increases its kjnctic energy. However, this is no1 the total rate of 
work done by strcss on the element, and thc remaining part goes into deforming the 
element without accclcrating it. The total rate of work done by surface forces on a fluid 
clement must be a ( t i j u i ) / d x j ,  because this can hc transformed to a surface integral 
of q u i  over the element. (Here t i j  dAj is the force on an arca element, and t i jui  dAj  
is the scalar product of force and velocity. The total rate ol work done by surfacc 
forces is therefore the surfacc intcgral of t i jui . )  Thc total work rate per volume at a 
point can be split up into two components: 

lotul work ddinmation inncasc 
(ratc/volume) work oi KH 

(mte./volumc) (mte/volumr) 

Wc have seen from Eq. (4.56) that the last term in the prcceding equation results in 
an increase of kinetic energy of the element. Therefore, the rcst of the work rate per 
volume represented by s i j ( i f u i / a x j )  can only deform the elcment and increase its 
internal cnergy. 

The dejbmzarion work rate can be rewritten using the symmetry of the stress ten- 
sor. In Chapter 2, Section 1 1 it was shown that the contracted product of a symmetric 
tensor and an anlisymmctric tensor is zero. The product t i j ( i ) u i / a x j )  is thercforc 
equal to t i j  times the syrnrnefric part of a u i / a x j ,  namcly eij. Thus 

aui 
Deformation work rate per volume = t i j  - = t. .e . .  (4.58) axj  I ] '  

On substituting the Newtonian ccnstitulivc cyualion 

relation (4.58) becomcs 
2 Deformation work = -p(V u) + 2peijeij - +(V 9 u ) ~ ,  



where we have used eijsij = eii = V U. Denoting h e  viscous term by 4, we obtain 

(4.59) Deformation work (rate per volume) = - p ( V .  u) + 4 ,  

where 
(4.60) 

The validity of the last term in Eq. (4.60) can easily be verified by completing the 
square (Exercise 5). 

In order to write the energy equation in terms of 4, we first rewrite Eq. (4.56) in 

2 2 4 E 2,uueijeij - T ~ ( v  - u ) ~  = 2p [eij - !(v - ~ ) s i j ]  . 

h c  form 
D I 2  a 
Dt axj 

p- ( T U i )  = pgiui + -(Uitjj) - tijeij, (4.61) 

wherewe haveusedtij(aui/axj) = tijeij.UsingEq. (4.59) torewrite thedeformation 
work rate per volume, E!q. (4.61) becomes 

body force work by 'c by volume visLws 
cxpmsiun dissipation 

It will be shown in Section 14 that the last two tems in the preceding equation 
(representing pressure and viscous contributions to the rate of deformation work) 
also appear in the internal energy equation but with their signs changed. The term 
p(V u) can be of cither sign, and converts mechanical to internal energy, or vice 
versa, by volume changes. The viscous term 4 is always positive and represents a 
rate a€ loss of mechanical energy and a gain of internal energy due to deformation of 
the element. The term q e i j  = p(V u) - 4 represents the total deformation work 
rate per volume; the part p(V u) is the reversible conversion to internal energy by 
volume changes, and the part 4 is the irreversible conversion to internal energy due 
to viscous elrects. 

The quantity 4 defined in Eq. (4.60) is proportional to ,u and represents the rate 
of viscous dissipation af kinetic energy per unit volume. Equation (4.60) shows that it 
is proportional to the squaw of velocity gradients and is thercfore morc important in 
regions of high shear. The resulting heat could appear as a hot lubricant in a bearing, 
or as burning of the surface of a spacecraft on reenby into the atmosphere. 

Equation in Terms of Potential Energy 
So far we have considered kinetic energy as the only form of mechanical energy. In 
doing so we have found that the cffects of gravity appear as work done on a fluid 
particle, as Eq. (4.62) shows. However, the rdtc of work done by body €orces can be 
taken to the left-hand side of the mechanical energy equations and be interpreted as 
changes 'in the potcntial energy. Let h e  body €orce be represented as the gradient of 
a scalar potential ll = gz, so that 
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where we havc used a(gz ) /a t  = 0, because z and t are indcpcndent. Quation (4.62) 
then becomes 

in which the function I7 = gz clearly has thc significance of potential energy per unit 
mass. (This identification is possible only for conscrvalive body forces for which a 
potential may be written.) 

Equation for a Fixed Region 
An intcgral form of the mcchanical energy equation can be derived by integrating the 
differential form over either a fixcd volume or a makrial volume. The proccdure is 
illustrated hem for a fixed volume. Wc start with Eq. (4.62), but write the left-hand 
side as givzn in Eq. (4.57). This gives (in mixed notation) 

where E = pu;/2 is thc kinetic energy per unit volume. Integrate cach term of the 
foregoing equation over thc fixed volume V .  Thc second and fourth terms are in 
the flux divergence form, so that their volume intcgrals can be changed to surface 
integrals by Gauss’ theorem. This gives 

rate or cbanp raw of ouiflow 

boundarv 
of KE ILcmlS 

where cach term is a time rate of change. The description of each tcrm in Eq. (4.63) 
is obvious. Thc fourth term rcpresents ratc of work done by forces at the boundary, 
because ~ ; j  d A j  is the force in the i direction and u;t i j  dA j  is the scalar product of 
the forcc with the vclocity vector. 

Thc energy considerations discussed in this section may at first seem too 
“thcoretical.” However, they are very useful in understanding the physics Oi fluid 
flows. The concepts presented herc will be especially useful in our discussions of 
turbulent flows (Chapkr 13) and wave motions (Chapter 7). It is suggested that the 
reader work out Exercise 11 at this point in order to acquire a bctter understanding of 
the equations in this scclion. 



14. Nrxt Imw os Thermodynamics: Tlicrmal Energy Fqualion 
The mechanical energy equation presented in the preceding section is derived from 
the momentum equation and is not a separate principle. In flows with temperature 
variations we need an independent equation; this is provided by the first law of ther- 
modynamics. Let q be the heat flux vector per unit area, and e the internal energy 
per unit mass; for a perfect gas e = CVT,  where CV is the specific heat at constant 
volume (assumed constant). Thc sum (e + uP/2) can be called the “stored” energy 
per unit mass. The first law of thermodynamics is most easily statcd for a material 
volume. It says that the rate of change ofstored energy equals the sum of rate of work 
dune and rate of heat addition to a material volume. That is, 

Note that work donc by body forces has to be included on the right-hand side if 
potential energy is not included on the left-hand side, as in Eqs. (4.62)-(4.64). (This 
is clear from the discussion of the preceding section and can also be understood as 
follows. Imagine a situation where the surface integrals in Eiq. (4.64) are zero, and 
also that e is uniform everywhere. Then a rising fluid particle (u g 0), which is 
constantly pulled down by gravity, must undergo a dccrease of kinetic energy. This 
is consistent with Eq. (4.64).) The negative sign is nccded on the heat transfer term, 
because the direction of d A  is along the outward normal to the area, and therefore 
q d A  represents the rate of heat uutfIow. 

To derive a diffcrential form, al l  terms need to be expressed in the form of volume 
integrals. The left-hand side can be written as 

where Q. (4.6) has been used. Converting the two surface integral tcrms into volume 
integrals, Eq. (4.64) finally gives 

(4.65) 

This is h e  first law of thermodynamics in the differential form, which has both 
mechanical and thermal energy terms in it. A thermal encrgy equation is obtained if 
the mechanical energy equation (4.62) is subtracted from it. This gives the thermal 
eneqy equation (commonly called the heat equation) 

De 
Dt p- = -v-q - p(V mu) +& (4.66) 

which says that internal energy increases because of convergence of heat, volume 
compression, and heating due to viscous dissipation. Note that the last two m s  in 
Eq. (4.66) also appear in mechanical energy equation (4.62) with their signs revcrsed. 

The thermal energy equation can be simplified under h e  Boussinesq approxiina- 
tion, which applies under several restrictions including that in which thc flow speeds 



are small compared to the speed of sound and in which the tcrnperature differences in 
the flow are small. This is discussed in Section 18. It is shown there that, undcr these 
restrictions, heating due to the viscous dissipation term is negligible in Eq. (4.66), 
and that the term -p(V u) can be combined with the left-hand side of Eq. (4.66) to 
give ([or a perfect gas) 

DT pc*- = -v -q. 
Dt 

If the hcat flux obeys the Fourier law 

Q = -kVT, 

then, if k = const., Eq. (4.67) simplifies to: 

(4.67) 

- K V ~ T .  I %- (4.68) 

where K k/pC,  is thc thermul dissivity, stated in m2/s and which is the same as 
that of the momentum diffusivity u. 

The viscous heating term t$ may be negligible in the thcrmal energy equa- 
tion (4.G6), but not in the mechanical energy cquation (4.62). In fact, there must be a 
sink of mechanical energy so that a steady state can be maintained in the prescnce of 
the various types of forcing. 

15. Second IAW os Tlii?rmodynamic.s: Enhvpy Produclion 
The second law of thermodynamics esscntially says that real phenomena can only 
proceed in a direction in which the “disordcr” of an isolatcd system incrcases. Disor- 
der of a systcm is a measure of the degree of unifonnir?; of macroscopic properties in 
the system, which is the same as the d e p  of randomness in the molecular arrangc- 
nients that gcnerate thesc properties. In  this conncction, disordcr, uniformity, and 
randomness havc essentially the same rncaning. For analogy, a tray containing rcd 
balls on one side and white balls on the othcr has more order than in an arrangement 
in which the balls arc mixed togcthcr. A real phenomenon must thereforc proceed in a 
direction in which such orderly arrangements dccrease because of “mixing.” Consider 
two possiblc states of an isolated fluid system, onc in which there are nonuniformities 
of temperaturc and velocity and the other in which thcse propertics are uniform. Both 
or these statcs have the same internal cnergy. Can the system spontaneously go from 
the state in which its properties are uniform to one in which they are nonuniform? The 
second law asserts that it cannot, based on cxperience. Natural proccsses, therefore, 
tend to causc mixing duc to transport of heat, momentum, and mass. 

A consequcnce of the swond law is that therc must exist aproperty called enrmpy, 
which is related to other thcrmodynamic propertics of the mcdium. In addition, thc 
second law says that the entropy of an isolated systcm can only increase; entropy is 
thercfore a measure of disordcr or randomness of a system. Lct S be the cntropy pcr 
unit mass. It is shown in Chapter 1, Scction 8 that the changc or entropy is related to 
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the changes of internal energy e and specific volume u (= l / p )  by 

P T d S  = de + p d v  = d e  - - d p .  
P2 

Thc rate of change of cntropy following a fluid particle is therefore 

DS De p Dp 
Dt Dr p 2  D t '  

Tnserthg the internal energy equation (see Eq. (4.66)) 

T -  = - - _ _  (4.69) 

De 
Dt p -  = -v q - p(V u) + 4, 

and the continuity equation 
DP - = -p(V u), Dt 

the entropy production equation (4.69) becomes 

D S  I aqi 4 
P- = --- +-  Dt T &ti T 

Using Fourier's law of heat conduction, this becomes 

The first term on the right-hand side, which has the form (heat gain)/T, is the cntropy 
gain due to reversible heat transfer because this term does not involve heat conduc- 
tivity. The last two terms, which are proportional to the square of temperature and 
velocity gradicnts, represcnt the entmpy production due to hcat conduction and vis- 
cous generation of heat. The second law of thermodynamics requks that the entropy 
production due to irreversible phenomena should be positive, so that 

An explicit appeal to the second law of thermodynamics is therefore not required in 
most analyscs of fluid flows bccause it has already been satisfied by laking positivc 
values for the molecular coeflicicnts of viscosity and thermal conductivity. 

If the flow is inviscid and nonheat: conducting, entropy is preservcd along the 
particle palhs. 

16. BernouIIi hipalion 
Various conservation laws for mass, momentum, energy, and entropy wcre presented 
in the preceding sections. The well-known Bernoulli (4.46) equation is not a separate 



law, but is derived from the momentum equation for inviscid flows, namcly, the Euler 
equation (4.46): 

i)Ui aui il 1 aP - + u .- = --(gz) - --, 
at ’ a x j  axi p ilxi 

where we have assumed that gravity g = -V(gz) is the only body force. The advective 
acceleration can be expressed in t e r n  of vorticity as follows: 

w h m  we have used r;j = -&ijhOk (sce Eq. 3.23), and used the customary notation 

q2 = uz = twice kinetic encrgy. I 

Then the Euler equation becomes 

= (u x 0 ) i .  (4.71) 

Now assume that p is a function of p only. A flow in which p = p ( p )  is called 
a barotmpic.fk,w, of which isothetmal and isentropic ( p / p Y  = constant) flows arc 
special cascs. For such a flow we can writc 

(4.72) 

where d p / p  is a perfect differential, and tbercfore the intcgral does not depend on 
the path of integration. To show this, note that 

whcre x is thc ‘‘field point:’ q is any arbitrary rcference point in the flow, and we 
have defined the following function of p alone: 

(4.74) 

Thc gradient of&. (4.73) gives 

a p  d p a p  I ap 

where Eq. (4.74) has been used. The preceding equation is identical to Eq. (4.72). 
Using Q. (4.72), the Eulcr equation (4.71.) becomes 

Bui a [ I  2 ST ] -+- -q + -++z  =(uxo);.  
at axi 2 



Defining the Bernoulli function 

I i q 2  + 1 + gz = constant along streamlines and vortex lines 

1 1 
2 2 B = -42 + 1 + gz = -42 + P + gz, 

(4.78) 

thc Euler equation becomes (using vector notation) 

au 
at 
- + V B  = u x 0. 

(4.75) 

(4.76) 

Bernouli equations are integrals of the conservation laws and have wide applicability 
as shown by the examples that follow. Important deductions can be made from the 
preceding equation by considering two special cases, namely a steady flow (rotational 
or irrotational) and an unsteady irrotational flow. These are described in what follows. 

Steady Flow 
In this case Eq. (4.76) reduces to 

V B = u x o .  (4.77) 

The left-hand side is a vector normal to the surface B = constant, whereas the 
right-hand side is a vector perpendicular to both u and o (Figure 4.17). It follows 
that surfaces of constant B must contain the streamlines and vortex lines. Thus, an 
inviscid, steady, barotropic flow satisfies 

which is called Bemulli’s e4ualion. If, in addition, the flow is irrotational (o = 0), 
then Eq. (4.72) shows that 

;q2 + 1 + gz = constant everywhere. 

v m x  line 

(4.79) 

B = constant surface 

Figure 4.17 Bcrnoulli’z theorem. Note that the streamlines and vortex lincs can be at an arbitrary angle. 
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Fikwre 4.18 Flow over a solid objwl. Flow outside thc boundary layer is irrolalional. 

It may be shown that a sufficient condition for the existence of the surfaces con- 
taining streamlines and vortex lines is that the flow be barotropic. Tncidentally, thesc 
are called Lamb surfaces in honor of the distinguished English applied mathematician 
and hydrodynamicist, Horace Lamb. Tn a general, that is, nonbaroh-opjc Row, a path 
composed of streanilinc and vortex line segments can be drawn between any two 
points in a flow field. Thcn Eq. (4.78) is valid with the proviso that the integral be 
evaluated on the specific path chosen. As written, Eq. (4.78) requires the restTictions 
that the flow be stcady, inviscid, and have only gravity (or other conservative) body 
forces acting upon it. Tmtational flows are studied in Chapter 6. We shall note only the 
important.point here that, in a nonmtating frame of reference, bamtropic irrotational 
flows rcmain irrotational irviscous dTects are negligible. Considcr the flow around a 
solid object, say an airfoil (Figure 4.18). The flow is irrotational at all points outside 
the thin viscous layer closc to the surface of the body. This is bccause a particle P 
on a streamline outside the viscous layer started from some point S, where the flow 
is uniform and consequently irrotational. The Bernoulli equation (4.79) is therefore 
satisfied everywhere outsidc the viscous layer in this example. 

Unsteady Irrotational Flow 
An unsteady form oPBernoulli’s equation can be derived only if the flow is irrotational. 
For hotational flows thc velocity vector can be written as the gradient of a scalar 
potential Cp (called velocity potential): 

u = Vcp. (4.80) 

The validity of Eq. (4.80) can be checkcd by noting that it automatically satisfies the 
conditions of irrolationality 

aui auj 

axi axi 
- i#j. 

On inscrting Eq. (4.80) into Eq. (4.76), we obtain 

v [:: 7 + -42 ; + J $ + ,z] = 0, 

that is 

(4.81) 
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where the integrating function F(r)  is independent of location. This form of the 
Bernoulli equation will be used in studying irrotational wave motions in Chapter 7. 

Energy Bernoulli Equation 
Return to Eq. (4.65) in the steady state with neither heat conduction nor viscous 
stresses. Then t i j  = -psii and Eq. (4.65) becomes 

If the body force per unit mass gi is conservative, say gravity, then +i = -(a/axi)(gz), 
which is the gradient of a scalar potential. In addition, from mass conservation, 
a(pui) /axi  = 0 and thus 

(4.82) 

From Eq. (1.13). h = e + p / p .  Eq. (4.82) now states that gradients of B’ = h + 
q2/2+gz must be normal to the local streamline direction ui. Then B’ = h +q2/2+ 
gz is a constant on streamlines. We showed in the previous section that inviscid, 
non-heat conducting flows are isentropic (S is conserved along particle paths), and in 
Eq. (1.1 8) we had the relation d p / p  = dh when S = constant. Thus the path integral 

d p / p  becomes a function h of the endpoints only if, in the momentum Bernoulli 
equation, both hcat conduction and viscous stresses may be neglected. This latter 
form h m  the energy equation becomes very useful for high-speed gas flows to show 
the interplay between kinetic energy and internal energy or enthalpy or temperature 
along a streamline. 

17. Applications of Bernoulli’s k$ualion 
Application of Bernoulli’s equation will now be illustrated for some simple flows. 

Pitot %be 
Consider first a simple device to measure the local velocity in a fluid stream by 
inserting a narrow bent tube (Figure 4.19). This is called apiror rube, after the French 
mathematician Henry Pitot (1 695-177 1 ), who used a bent glass tube to measure the 
velocity of the river Seine. Consider two points 1 and 2 at the same level, point 1 being 
away from the tube and point 2 being immediately in front of the open end where the 
fluid velocity is m. Friction is negligible along a streamline through 1 and 2, so that 
Bernoulli’s equation (4.78) gives 

from which the velocity is found to be 



itot tube P 
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E’igure 4.19 Pilot tuhe for rncasuring vclocily in a duct. 

Prcssures at thc two points are found from thc hydrostatic balance 

PI = pghl and p2 = pgh2. 

so that [he velocity can bc found from 

Because it is assumcd that thc fluid density is very much greater than that of the 
atmosphcre to which the tubes are exposed, the pressures at the tops of the two fluid 
columns are assumed to be thc same. Thcy will actually differ by plumg(h2 - hl ) .  
Use of the hydrostatic approximation abovc station 1 is valid when the streamlines 
arc straight and parallel betwccn station 1 and thc upper wall. In working out this 
problem, the fluid dcnsity also has been laken to be a constant. 

Thc pressurc p2 measured by a pitot tubc is called “stagnation pressure:’ which 
is larger than the local static pressure. Evcn when there is no pitot tubc to meaqure 
thc stagnation pressure, it is customary to refcr LO the local valuc of thc quantity 
( p  + pu2/2)  as thc local stagnafiun pressure, defined as the pressure that would bc 
reached i l  h e  local flow is imgined to slow down to zcro velocity frictionlessly. The 
quanlity pu2/2 is somehcs  called thc dynumic pm.wure; stagnation pressure is tbc 
sum of static and dynamic pressures. 

Orifice in a lhnk 

As another application or Bernoulli’s equalion, consider the flow though an orifice 
or opcning in a lank (Figure 4.20). The flow is slightly unsteady due to lowering 01 
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Distribution of 
(p -p,,J at orifice 

Figure 4.20 Flow through a sharp-edgcd orificc. Pressure has thc almosphcric value cvcrynherc m s s  
seaion CC, its dishbution across orifice AA is indicated. 

the water level in the tank, but this effect is small if the tank area is large as compared 
to the orifice area. Viscous effects are negligible everywhere away from the walls of 
the tank. All streamlines can be traced back to the free surface in the tank, where they 
have the same value of thc Bernoulli constant B = y2/2 + p / p  + gz. I1 .follows that 
the flow is irrotational, and B is constant throughout the flow. 

We want to apply Bernoulli’s equation between a point at the free surface in 
the tank and a point in the jet. However, the conditions right at the opening (section 
A in Figure 4.20) are not simple because the pressure is not uniform across the jet. 
Although pressure has the atmospheric value everywhere on the free surface of the jet 
(neglecting small surface tension effects), it is not equal to the atmospheric pressure 
inside the jet at this section. The streamlines at the orifice are curved, which requires 
that pressure must vary across the width of the jet in order to balance the centrifugal 
forcc. The pressure distribution across the orifice (section A) is shown in Figure 4.20. 
However, the streamlines in the jet become parallel at a short distance away from the 
orifice (section C in Figure 4.20), whcre the jet area is smaller than the orifice area. 
The pressure across section C is u n i f m  and equal lo the atmospheric value because 
it has that value at the surface of the jet. 

Application of Bernoulli’s equation between a point on the free surface in the 
tank and a point at C gives 

from which the jet velocity is found as 

u = J2gh, 



Figure 4.21 Flow through a munded oriBcc. 

which simply states that the loss of potcnlial energy equals the gain of kinetic energy. 
The mass dow rate is 

rit = pA,u = PA&&, 

where A, is the area of the jet at C. For orifices having a sharp edge, A, has been 
round to bc %62% of thc orifice area. 

If the orifice happens to have a well-rounded opening (Figure 4.21), thcn h e  jet 
does not contract. The streamlines right at the exit are then parallel, and the pressure 
at the cxit is uniform and equal to the atmosphcric pressure. Consequently the mass 
flow rate is simply p A m ,  where A equals the orifice area. 

18. Houwinesq Approximation 

For flows satisfying certain conditions, Boussinesq in 1903 suggested that the density 
changes in thc fluid can be neglected except in the gravity term where p is multiplicd 
by g. This approximation also treats the othcrpperties of the fluid (such asp, k, C p )  
as constants. A formal jusNication, and the conditions under which the Boussinesq 
approximation holds, is givcn in Spiegel and Veronis (1960). Here we shall discuss the 
basis OF the approximation in a somewhat intuitive manner and examinc the resulting 
simplifications of the equations of motion. 



Continuity Equation 
The Boussinesq approximation replaces the continuity equation 

by the incompressible form 
v - u = o .  

(4.83) 

(4.84) 

However, this does not mcan that the density is regarded as constant along the direction 
of motion, but simply that the magnilude of p-’(Dp/Dt) is small in comparison to 
the magnitudes of the velocity gradients in V u. We can immediately think of several 
situations where the density variations cannot be neglected as such. The first situation 
is a steady flow with large Mach numbcrs (defined as U / c ,  where U is a typical 
measure of the flow speed and c is the speed of sound in the medium). At large Mach 
numbers the comprcssibility effects are large, because the large pressure changes 
cause large density changes. Jt is shown in Chapter 16 that compressibility effects 
are negligiblc in flows in which the Mach numbcr is <0.3. A typical value of c for 
air at ordinary temperatures is 350m/s, so that the assumption is good for speeds 
< 1.00 m/s. For water c = 1470 m/s, but the speeds normally achievable in liquids 
are much smaller than this value and therefore the incompressibility assumption is 
very good in liquids. 

A second situation in which the compressibility effects m impartant is unsteady 
flows. The wavcs would propagate at infinite speed if thc density variations are 
neglected. 

A third situation in which the compressibility effects are important occurs when 
the vertical scale of the flow is so large that the hydrostatic pressure variations cause 
large changes in density. In a hydrostatic field the vertical scale in which thc density 
changes become important is of order c2/g - 10 km for air. (This length agrees with 
the e-folding height R T / g  of an “isothermal atmospherc,” because c2 = y RT; see 
Chapter 1 ,  Section 10.) The Boussinesq approximation therefore requires that the 
vertical scale of the flow be L << c2/g. 

In the three situations mentioned the medium is regarded as “compressible,” in 
which the density depends strongly on pressure. Now suppose the compressibility 
effects are small, so that the density changes are caused by temperature changes 
alone, as in a thermal convection problem. .In this case the Boussinesq approximation 
applies whcn the temperature variations in the flow are small. Assume that p changes 
with T according to 

_ -  ” - -ar6T, 
P 

where a = -p-’(ap/aT), is the thermal expansion coefficient. Far a perfect gas 
a = 1 / T  - 3 x K-l and for typical liquids a - 5 x I O4 K-’. With a temper- 
ature difference in Lhc fluid of 10 “C, thc varialion of density can be only a few percent 
a1 most. 1.t turns out that p-’(Dp/Df) can also bc no larger than a few percent of the 
velocity gradients in V u. To see this, assume that the flow field is characterized by 
a len@h scale L, a velocity scale U, and a tempcrature scale 61. By this we mean 
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that the velocity varies by U and the temperature varies by ST, in a distance of order 
L. The ratio of the magnitudes of the two terms in the continuity equation is 

which allows us to replace continuity equation (4.83) by its incompressible 
form (4.84). 

Momentum Equation 
Because of the incompressible continuity equation V u = 0, the stress tensor is 
givcn by Eq. (4.41). From Eq. (4.43, the equation of motion is then 

Du 
Dt 

p- = - v p  + p g  + p v 2 u .  (4.85) 

Consider a hypothetical static reference state in which the density is po everywhere 
and the pressure is po(t) ,  so that Vpo = f ig .  Subtracting this state from Eq. (4.85) 
and writing p = po + p’ and p = po + pl, we obtain 

DU 
Dt 

p-  = -Vp’ + p’g + pvzu .  (4.86) 

Dividing by Po,  we obtain 

(1 + f) = ---/PI 1 + -g PI + UVZU, 
Po 

where 11 = p/po. The ratio p’/po appears in both the inertia and the buoyancy terms. 
For small values of p’/po, the density variations generate only a small correction to 
the inertia term and can be neglected. However, the buoyancy term p’glpo is very 
important and cannot be neglected. For example, it is these density variations that 
drive tbe convective motion when a layer of fluid is heated. The magnitude of p’g/po 
is therefore of the same order as the vertical acceleration awlat  or the viscous term 
uV2 w .  We conclude that the density variations are negligible the momentum equation, 
except when p is multiplied by g. 

Heat Equation 
From Q. (4.66), h e  thermal energy equation is 

+-v .q -  P(V u) + 4. (4.87) 

Although the continuity equation is approximately V u = 0, an important point is 
that the volume expansion term p(V u) is not negligible compared to other dom- 
inant terms of Eq. (4.87); only for incompressible liquids is p(V u) negligible in 
Eq. (4.87). We have 



Assuming a perfect gas, for which p = p R T ,  C, - C, = R and (Y = 1 /T ,  the 
foregoing estimate becomes 

DT DT 
-pv . u = - PRTa-  = -p(C, - c,,)-. Dt Dt 

Equation (4.87) then becomes 

DT 
Dt PCp- = - V . q + $ ,  (4.88) 

where we used e = C,T for a pedcct gas. Note that we would have gotten C, (instead 
of C,) on the left-hand side of Eq. (4.88) if we had dropped V u in Eq. (4.87). 

Now we show that the heating due to viscous dissipation of energy is negligi- 
ble under the restrictions underlying the Boussincsq approximation. Comparing the 
magnitudes of viscous heating with thc left-hand si& of Eq. (4.88), we obtain 

v u  - -- - 4 -  2peijeij - pU2/L2 
pC,(DT/Dt) pCpuj(aT/axj)  mC,UST/L C, STL‘ 

In typical situations this is extremely small (- 
Fourier’s law of heat conduction 

Neglecting 4, and assuming 

q = -kVT, 

the heat equation (4.88) finally reduces to (if k = const.) 

DT 
Dt 
- = KV’T, 

where K 

Summary: The Boussinesq approximation applies if th Mach number of th flow 
is small, propagation of sound or shock waves is not considered, the vertical scale of 
the flow is not too large, and the temperature differences in the fluid are small. Then 
the density can be treated as a constant in both the continuity and the momentum 
equations, except in the gravity term. Properties of the fluid such as p, it, and C, 
are also assumed constant in this appi-oximation. Omitting Coriolis forces, the set of 
equations corresponding LO the Boussinesq approximation is 

v . u = o  

k / p C ,  is the thermal di$usivily. 

(4.89) 

DT - = K V ~ T  
Di 



where the z-axis is taken upward. Thc constant pa is a reference density correspond- 
ing to 8 refercnce temperaturc TO, which can be taken to be the mean temperaturc 
in the flow or the temperature at a boundary. Applications of the Boussincsq set 
can be found in several places throughout the book, for example, in the problems of 
wave propagation in a density-stratificd medium, thermal instability, turbulence in a 
stratified medium, and gcophysical fluid dynamics. 

19. Boundary Condidions 

The differential equations wc have derived for the conservation laws are subject to 
boundary conditions in order to properly formulate any problem. Specifically, the 
Navier-Stokes equations me of a form that requires the vclocity vector to be given on 
all surfaccs bounding thc flow domain. 

If we arc solving for an external flow, that is, a flow ovcr some body, we must 
spccify the velocity vector and the thermodynamic state on il closed distant surface. 
On a solid boundary or at the interface betwccn two immiscible liquids, conditions 
may be derived from the thrcc basic conservation laws as follows. 

In Figure 4.22, a "pillbox" is drawn through the interrace surface separating 
medium 1 (fluid) From medium 2 (solid or liquid immiscible with fluid 1). Here dAl 
and dA1 are elements of the end face areas in medium 1 and medium 2: rcspectively, 
locally tangent to the interfacc, and separatcd from each other by a distance 1. Now 
apply the conservation laws to the volume &fined by the pillbox. Next, let 1 + 0: 
keeping AI and A2 in the different media. As 1 + 0, all volumc integrals + 0 and the 
integral over the side area, which is proportional to 1,  tends to zero as well. Define a 
unit vector n, normal to the interface at thc pillbox and pointed into medium 1 .  Mass 
conservation gives plul - n = p2u2 n at each point on thc interfacc as the end face 
area becomes small. 

If medium 2 is a solid, then u2 = 0 there. Tf medium 1 and medium 2 are 
immiscible liquids, no mass flows across thc boundary surrace. In cjther case, u1 -n = 
0 on the boundary. Thc same proccdure applied to the integral form of the momentum 
cquatim (4.16) gives the result that the forcdarea on the surface, ni ti,i is continuous 
across the interface if surface tension is neglected. If surface tension is includcd, a 
jump in pressure in the direction normal to the interfacc must be added; see Chapter 1, 
Section 6. 

Applying the integral form of energy conservation (4.64) to a pillbox of infinites- 
imal height 1 gives the rcsult niyi is continuous across thc interface, or explicity, 
kl (aTl/an) = k2(aT2/an) at the interrace surface. The hcat flux must be continuous 
at the interfacc; it cannot store heat. 

Figure 4.22 Interhccc bclwcen two mcdia; evaluation or boundary conditions. 
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Two more boundary conditions are required to cornplctely specify a problem 
and these arc not consequences of any conservation law, These boundary conditions 
are: no slip of a viscous fluid is permitted at a solid boundary VI t = 0; and no 
temperature jump is permittcd at the boundary 6 = T2. Here t is a unit vector 
tangcnt to the boundary. 

lhrcims 
1. Let a one-dimemional velocity field be u = u(x,  t ) ,  with u = 0 and UJ = 0. 

The dendy varies a$ p = po(2 - cos wt).  Find an expression for u(x, t) if 
u(0, t) = u. 

2. Tn Section 3 we derived the continuity equation (4.8) by starting from the 
integral form of the law of conservation of mass for ajxed region. Derive Eq. (4.8) 
by starting From an inkgal form for a material volume. [Hint: Formulate the principle 
for a material volume and then use Eq. (4.5).] 

3. Consider consemtion of angular momentum derived from the angular 
momentum principle by the word statement: Rate of increase of angular momen- 
tum in volume V = net influx of angular momentum across the bounding surface 
A of V + torqucs due to surface forces + Lorques due to body forces. Here, the only 
torques are due to the same forces that appear in (linear) momentum conservation. The 
possibilities for body torques and couple stresses havc been ncglected. The torques 
due to thc surface forces are manipulated as follows. The torquc about a point 0 due 
to the element of surface f m  tmkdA, is SEijkXjtmkdAmr where x is the position 
vector from 0 to thc element dA. Using Gauss’ theorem, we write this as a volume 
integral, 

where wc have used axj/axm = Sjm.  The second term is Sv x x V - t d V  and 
combines with the remaining terms in thc conservation of angular momentum to give sv x x (Lincar Momcntum: Eq. (4.17)) dV = 1, Eijkrjk d V .  Since the left-hand 
side = 0 for any VOlUmC v, WC conclude that & j j k t k j  = 0, which leads to t i j  = t j i .  

4. Near Ihe end of Scction 7 we derived the equation of motion (4.15) by starting 
from an intcgral €orm for a material volumc. Derive Eq. (4.15) by starting from the 
integral statemcnt for ajixed region, given by Eq. (4.22). 

5. Verify Lhc validity of lhc second form of thc viscous dissipation given in 
EQ. (4.60). [Hint: Complcte the square and use Si jd i j  = Sii = 3.1 

6. A rcctangular tank is placed on wheels and is given a constant horizontal 
acceleration a. Show that, at steady state, the anglc made by the free surface with the 
horizontal is givcn by lan 0 = a /g .  

7. A jet of water wilh adiameter of 8 cm and a speed of 25 m/s impinges normally 
on a large stationary flat plate. Find the €orce required to hold the platc stationary. 
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Compare the avcrage pressurc on the plate with h e  stagnation pressure if the plate is 
20 times the area of the jet. 

8. Show that the thrust dcveloped by a stationary rocket motor is F = p A U 2  + 
A ( p  - pah), where patm is the atmospheric pmsure, and p, p, A, and I/ are, respec- 
tively, the pressure, density, area, and velocity of the fluid at thc nozzle exit. 

9. Consider the prqcllcr of an airplane moving with a velocity U1. Takc a 
reference frame in which the air is moving and the propeller [disk] is stationary. Then 
the effect of the propeller is to accelerate the fluid from the upstream value UI to 
the downstream value UZ > Ut .  Assuming incompressibility. show that the thrust 
developed by the propeller is given by 

F = - ( U  22 -u2  1) -  

where A is thc projected arca of the propellcr and p is the density (assumed constant). 
Show &so that the velocity of the fluid at the plane of the propeller is the average value 
U = ( UI + U2)/2.  [Hint: The flow can be idcalized by a pressure jump, of magnitude 
Ap = F / A  right at the location of the propeller. Also apply Bernoulli’s equation 
between a section far upstream and a section immediately upstream of the propeller. 
Also apply the Bernoulli equation between a section immediately downstream of h e  
propeller and a section far downstream. This will show that Ap = p(U,’ - U;) /2 . ]  

10. A hemispherical vessel of radius R ha5 a small rounded orifice of area A at 
the bottom. Show that the time required to lower the level from hl to h2 is given by 

1 1 .  Consider an incompressible planar Couette flow, which is the flow between 
two parallel plates separated by a distance b. The upper plate is moving parallel to 
itself at speed U, and the lower plate is stationary. Let the x-axis lie on the lower plate. 
All flow fields are independent of x .  Show that the pressure distribution is hydrostatic 
and that the solution of the Navier-Stokes equation is 

UY u(y )  = -. 
b 

Writc the expressions for the stress and strain rate tensors, and show that the viscous 
dissiparion per unit volume is 

Take a rectangular control volume for which the two horizontal surfaces coincide 
with the walls and the two vertical surfaces are perpendicular to the flow. Evaluate 
every term of energy equation (4.63) forthis control volume, and show that tbe balance 
is between the viscous dissipation and the work done in moving the upper surface. 

12. The components of a mass flow vector p u  are p u  = 4x2y ,  p u  = xyz ,  
pw = yz2. Compute the net outflow through the closed surface formed by the planes 

= pU2/b2.  

x = 0, x = 1, 4’ = 0, y = 1, z = 0, z = 1. 



(a) Tntegrate ovcr the closed sudace. 
(b) Tntegrate over the volume bounded by that surface. 

13. Prove that the velocity field given by ur = 0, ug = k/ (2nr)  can have only 
two possible values of the circulation. They are (a) r = 0 for any path not enclosing 
the origin, and (b) r = k for any path enclosing the origin. 

14. Water flows through apipe in a gravitalional field as shown in the accompany- 
ing figure. Ncglect the effects of viscosity and surface tension. Solve the appropriate 
conservation equations for the variation of Lhc cross-sectional area of the fluid column 
A(z)  after the water has left the pipe at z = 0. The velocity of the fluid at z = 0 is 
uniform at uo and the cross-sectional area is Ao. 

15. Redo the solution for the ''orifice in a tank" problem allowing for the fact that 
in Fig. 4.20, h = h(t) .  How long does the tank take to empty? 
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1. Inhduciion 
Motion in circular streamlines is called vortex motion. The presence of closed stream- 
lines does not necessarily mean that the fluid particles are rotating about their own 
centers, and we may have rotational as well as irrotational vortices depending on 
whether the fluid parficles have vorticity or not. The two basic vortex flows are the 
solid-body rotation 

(5.1) ug = p r ,  I 

l l  
and the irrotational vortex 

I 
ug = -. 

2ar  
These are discussed in Chapter 3, Section 1 1, where also, the angular velocity in the 
solid-body rotation w a  denoted by 00 = w/2 .  Morcover, the vorticity of an element is 
everywhere equal to w for the solid-body rotation represented by Eq. (5.1), so that the 
circulation around any contour is w times the area enclosed by the contour. In contrast, 
the flow represented by Eq. (5.2) is irrotational everywhere except at the origin, where 
the vorticity is iniinite. All the vorticity of this flow is therefore concentrated on a 
line coinciding with the vortex axis. Circulation around any circuit not enclosing the 
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origin is therefore zero, and that enclosing the origin is r. An irrotational vortex is 
therefore called a line vortex. Some aspects a€ the dynamics of flows with vorticity 
are examined in this chapter. 

2. hrhx JJines and V o r h  71dbes 
A vortex line is a curve in the fluid such that its tangent at any point gives the direction 
of the local vorticity. A vortex line is therefon: related to the vorticity vector the same 
way a streamline is related to the velocity vector. If w,, wJ, and w, are the Cartesian 
components of the vorticity vector o, then the orientation of a vortex line satisfies the 
equations 

dx dy dz  
(5.3) 

o x  my "2 

which is analogous to Eq. (3.7) for a streamline. In an irrotational vortex, the only 
vortex line in theflowjeld is the axis of the vortex. In a solid-body rotation, all lines 
perpendicular to the plane ofJIow arc vortex lines. 

Vortex lines passing through any closcd curve form a tubular sudace, which 
is called a vortex tube. Just as streamlincs bound a streamtube, a group of vortcx 
lines bound a vortex tube (Figure 5.1). The circulation around a narrow vortex tube 
is dI' = o dA, which is similar to the expression for the rate of flow d Q  = u d A  
through a n m w  skamtube. The strength of a vortex nrhe is defined as thc circulation 
around a closed circuit taken on the surface of thc tube and embracing it just once. 
From Stokes' theorem it follows that the strength of a vortex tube is equal to the mcan 
vorticity times its cross-sectional area. 

_ - _ - _  - - 

3. Rule of f imody  in Rotational and Irmlutional Vortices 
The role of viscosity in the two basic types of vortex flows, namely thc solid-body rota- 
tion and the irrotational vortex, is examined in this section. Assuming incompressible 

Slreamiubc Vorlcx lube 

Agnre 5.1 Analogy bclween strcmtube and vortex lube. 
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flow, we shall see that in one of these flows the viscous k m  in the momentum equa- 
tion drop out, although the viscous stress and dissipation of energy are nonzero. The 
two flows are examined separately in what follows. 

Solid-Body Rotation 
As discussed in Chapter 3, fluid elements in a solid-body rotation do not deform. 
Because viscous stresses are proportional to deformation rate, they am zero in this 
flow. This can bc demonstratcd by using the expression for viscous stress in polar 
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coordinates: 

where we have substituted ue = o r / 2  and ur = 0. We can therefore apply the inviscid 
Eulcr equations, which in polar coordinates simplify to 

(5.4) 

The pressure difference between two neighboring points is therefore 

d p  = _dr aP + p d z  = &mo2dr - pgdz, 
dr az 

where /..io = wr/2  has been used. Integration between any two points 1 and 2 gives 

pz - P I  = $pwz(r,2 - r:> - pg(za - 21). 

~2 - ZI = i(wZ/g)(r2 - ri), 

(5.5) 

Surfaces of constant pressure are given by 

2 '  

which are paraboloids of revolution (Figure 5.2). 
The important point to note is that viscous stresses are absent in this flow. (The 

viscous stresses, howevcr, are important during the transient period of iniriuting the 
motion, say by steadily rotating a tank containing a viscous fluid at rest.) Tn terms of 
velocity, Eq. (5.5) can be written as 

1 2  PZ - 3 ~ ~ 0 2  + P ~ Z Z  = P I  - ~ P U ; ,  + pgel, 

which shows that the Bernoulli function B = u i / 2  + g r  + p / p  is not constant €or 
points on different streamlines. This is expected of inviscid rotational flows. 

Irrotational Vortex 
In an irrotational vortex represented by 

r 
Ue = -, 

2nr 



Figure 5 2  Constant pressurc surhces in a solid-body mtnlion gencmled in a rotating kink containing 
liquid. 

the viscous stress is 

I au, a u P r  
9 0  = P [ ;= + r c  ($)I = -2’ 

which is nonzero everywhere. This is because fluid elements do undergo deformation 
in such a Row, as discussed in Chapter 3. However, the interesting point is that the nef 
viscous.force on an element again vanishcs, just as in the case of solid body rotation. 
In an incompressible flow, the net viscous force per unit volume is related to vorticity 
by (see Eq. 4.48) 

(5.6) 
aaij 
axj 
-- - -P(V x O)i, 

which is zcro for irrotational flows. The viscous forces on the surfaces 01 an element 
cancel out, leaving a zero resultant. The equutions of motion therefore reduce to 
the inviscid Euler equation.s, although viscous stresses are izonzem everywhere. The 
pressure distribution can therefore be found from the inviscid sct (5.4), giving 

where we have used ug = r / (kr) .  Tnlegration between any two points gives 

which implies 
PI 4 1  h 4 2  - + - +gz1 = - + - +szz. 
P 2  P 2  
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which are hyperboloids of revolution of the second degree (Figure 5.3). Flow is 
singular at the origin, where there is an infinite velocity discontinuity. Consequently, 
a real vortex such as that found in the atmosphere or in a bathtub necessarily has a 
rotational core (of radius R, say) in the ccnter where the velocity distribution can bc 
idealked by ug = wr/2. Outside the core the flow is nearly irrotational and can be 
idealized by ug = wR2/2r;  hcre we have chosen the value of circulation such that UO 
is continuous at r = R (see Figure 3.16b). The strength of such a vortex is given by 
r = (vorticity)(core m a )  = nwR2. 

One way of gcnerating an irrotational vortex is by rotating a solid circular cylinder 
in an infinite viscous fluid (see Figure 9.7). It is shown in Chapter 9, Section 6 that 
the stcady solution of the NavicrStokes equations satisfying the no-slip boundary 
condilion (ue = w R / 2  at r = R) is 

where R is the radius of the cylindcr and w / 2  is its constant angular vclocity; sec Eq. 
(9.1 5). This flow does not havc any singularity in the cntire field and is irrotational 
everywhere. Viscous stresses are present, and the resulting viscous dissipadon of 
kinetic encrgy is exactly compensated by the work done at thc surface of the cylinder. 
However, there is no net viscous force at any point in the steady state. 



Discussion 
The examples given in this scction suggest that irrotationulity does not imply the 
ahsence ofviscous stresses. In fact, they must always be present in irrotational flows 
of real Ruids, simply because the fluid elements deform in such a flow. However the 
net viscous force vanishes if o = 0, as can be seen in Eq. (5.6). We have also givcn 
an example, namely that of solid-body rotation, in which there is uni$otm vorticity 
and no viscous stress at all. However, this is the only example in which rotation can 
take place without viscous effects, because Eq. (5.6) implies that the net force is zero 
in arotational flow if o is miform everywhere. Except for this example, fluid rotation 
is accomplished by viscous effects. Indeed, we shall see later in this chapter that 
viscosity is a primary agency for vorticity generation. 

4. Kklvin'x Circulation Ti?uwn?rn 
Several theorems of vortex motion in an inviscid fluid were published by Helmholtz 
in 1858. He discovered these by analogy with electrodynamics. Inspired by this work, 
Kelvin in 1868 introduced the idea of circulation and proved the following theorem: 
In an inviscid, bumtropicflow with conservative body forces, the Circulation around 
a closed curve moving with thefluid remuins comtant with time, if the motion is 
observed €om a nonrotating frame. The theorem can be restated in simple terms as 
follows: At an instant of time take any closed contour C and locate the new position 
of C by following the motion of all of its fluid elements. Kelvin's circulation theorem 
states that the circulations around the two locations of C are the same. In other words, 

D r  1 D t = O *  1 (5.7) 

where D/Dr has been used to emphasize that the circulation is calculated around a 
material contour moving with the fluid. 

To prove Kelvin's theorem, the rate of change of circulation is found as 

where dx is the separation between two points on C (Figure 5.4). Using the momentum 
equation 

D U ~  I ap 1 
Dt p axi P 

+ Ki + - c i j , j ,  - = 

where uij is the deviatoric stress tensor (Eq. (4.33)). The fmt integral in Eq. (5.8) 
becomes 



Figure 5.4 Proor or Kclvin’s circulation theorem. 

where wc have noted that dp = Vp d x  is he  difference in pressure between two 
neighboring points. Equalion (5.8) then becomes 

Each term of Eq. (5.9) will now be shown to be 7em. L.ct the body forcc be conser- 
vative, so that g = -WI, where Il is the force potential or potential energy per unit 
mass. Thcn the line integral of g along a fluid line AB is 

B 
l B g * d X = - l  m * d x = -  d n = n A - n B .  J,” 

When the inlegral is takcn around thc closed fluid line, points A and B coincidc, 
showing that the first integral on the right-hand si& of Eq. (5.9) is zero. 

Now assumc that the flow is barutmpic, which means that density is a function 
of pressure alone. Incompressible and isentropic (p /pY = constant for a perfect gas) 
flows are examples of barotropic flows. In such a case we can write p-’ as some 
function of p, and we choose to write this in thc form of the dciivative p-’ = df /dp. 
Then the integral of dp/p  between any two points A and B can be evaluatcd, giving 

The integral around a closed contour is therefore zero. 
If viscous stresscs can be neglected for those particles making up contour C, then 

the intcgal of the deviatoric stress tensor is zero. To show that the last integral in 
Eq. (5.9) vanishes, note that the velocity at point x + d x  on C is given by 

D Dx D 
Dt Dt Dt u + d u = - ( x + d x ) =  - + - ( d x ) ,  



so that D 
du = - ( d ~ ) ,  

Dt 
The last term in Eq. (5.9) then becomes 

This completes the proof of Kelvin’s theorem. 
We see that the three agents that can create or destroy vorticity in a flow are 

nonconservative body forces, nonbarotropic pressure-density relations, and viscous 
stresses. An example of each follows. A Coriolis force in a rotating coordinate system 
generates the “bathtub vortex” when a filled tank, hitially as rest on the earth’s 
surface, is drained. Heating from below in a gravitational field creates a buoyant force 
generating an upward plume. Cooling from above and maqs conservation require that 
the motion be in cyclic rolls so that vorticity is created. Viscous stresses create vorticity 
in the neighborhood of a boundary where the no-slip condition is maintained. A short 
distance away from the boundary, the tangential velocity may be large. Then, because 
there are large gradients transverse to the flow, vorticity is created. 

Discussion of Kelvin’s Theorem 
Because circulation is the surface integral of vorticity, Kelvin’s theorem essentially 
shows that irrotational flows remain irrotational if the four restrictions are satisfied 

(1) Znviscidfiw: In deriving the theorem, the inviscid Euler equation has been 
used, but only along the contour C itself. This means that Circulation is pre- 
served if there are no net viscous forces along the path followed by C. If C 
moves into viscous regions such as boundary layers along solid surfaces, then 
the circulation changes. The presence of viscous effects causes a di$ldsion of 
vorticity into or out of afluid circuit, and consequently changes the circulation. 

(2) Conservative bodyforces: Conservative body forces such as gravity act through 
the center of mass of a fluid particle and therefore do not tend to rotate it. 

(3) BumtmpicJIow: The third restriction on the validity of Kelvin’s theorem is that 
density must be a function of pressure only. A homogeneous incompressible 
liquid for which p is constant everywhere and an isentropic flow of a perfect 
gas for which p/pY is constant are examples of barotropic flows. Flows that are 
not barotropic are called bumclinic. Consider fluid element,, in barotropic and 
baroclinic flows (Figure 5.5). For the barompic element, lines of constant p are 
parallel to lines of constant p. which implies that the resultant pressure forces 
pass through the center of mass of the element. For the baroclinic elemcnt, the 
lines of constant p and p are not parallel. The net pressure force does not pass 
through the center of ma$s, and the resulting torque changes the vorticity and 
circulation. 

As an example of the generation of vorticity in a baroclinic flow, consider a 
gas at rest in a gravitational field. Let the gas be heated locally, say by chemical 
action (such as explosion of a bomb) or by a simple heater (Figure 5.6). The 
gas expands and rises upward. The flow is baroclinic because density here is 



net pressure force net pressure force 

Barompic Bamdinic 

- p =constant Iines 

- ---- p = constant lines 

G =center of mass 

Figure 5.5 Mcchanism of vorticity Lwneration in barnclinic flow. showing that the net pressun: 1oOn.c does 
not pass through the centcr or mass G. The d a l l y  inward arrows indicate pressure fmcr on an element. 
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Fiyrp 5.6 Tacal heating of a gar, illustrating vorticity gcncrotion on han)clinic flow. 
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also a function of temperature. A doughnut-shaped ring-vortex (similar to thc 
smoke ring from a cigarette) forms and rises upward. (In a bomb explosion, a 
mushroom-shaped cloud occupies the central hole of such a ring.) Consider a 
closed fluid circuit ABCD when the gas is at rest; the circulation around it is 
then zero. If the region near AB is heated, the circuit assumes the new location 
A'B'CD after an interval of h e ;  circulation around it is nonzero because 
u dx along A'B' is nonzero. The circulation around a material circuit has 
therefore changed, solely due to the baroclinicity of the flow. This is one of 
the reasons why geophysical flows, which are dominated by baroclinicity, 
are full of vorticity. It should be noted that no restriction is placed on the 
compressibility of the fluid, and Kelvin's theorem is valid for incompressible 
as well as compressible fluids. 
Nonmtatingframe: Motion observed with respect to a rotating frame of ref- 
erence can develop vorticity and circulation by mechanisms not considered in 
our demonstration of Kelvjn's theorem. Effects of a rotating frame of reference 
are considered in Section 6. 

Under the four restrictions mentioned in the foregoing, Kelvin's theorem essentially 
states that irratational$ows remain irrotational at all times. 

Helmholtz Vortex Theorems 
Under the same four restrictions, Helmholtz proved the following theorems on vortex 
motion: 

(1) Vortex lines move with the fluid. 
(2) Strength of a vortex tube, that is the circulation, is constant dong its length. 
(3) A vortex tube cannot end within the fluid. It must either end at a solid boundary 

or form a closed loop (a "vortex ring"). 
(4) Strength of a vortex tube reinains constant in time. 

Here, we shall prove only the first theorem, which essentially says that fluid 
particles that at any time are part of a vortex line always belong to the same vortex h e .  
To prove this result, consider an area S, bounded by a curve, lying on the surface of a 
vortex tube without embracing it (Figure 5.7). As the vorticity vectors are everywhere 
lying on the area element S, it follows that the circulation around the edge of S is 
zero. After an interval of time, the same fluid particles form a new surface, say S'. 
According to Kelvin's theorem, the circulation around S' must also be zero. As this is 
true for any S, the component of vorticity normal to every element of S' must vanish, 
demonstrating that S' must lie on the surface of the vortex tube. Thus, vortex tubes 
move with the fluid. Applying this result to an infinitesimally thin vortex tube, we get 
the Helmholtz vortex theorem that vortex lines move with the fluid. A different proof 
may be found in Sommerfeld (Mechanics of Defomble Bodies, pp. 130-132). 

An equation governing the vorticity in a fixed frame of reference is derived in this 
section. The fluid density is assumed to be constant, so that the flow is barotropic. 



Figure 5.7 Proof or Hclmholtz’s vorkx theorem. 

viscous effects an: retained. Effccts of nonbarotropic behavior and a rotaling frame 
of reference are considered in the following section. Tbe derivation given here uses 
vector notation, so that we have to use several vcclor identitics, including those for 
triple products ofvectors. Readers not willing to accept h e  use of such vector identities 
can omit this section and move on to the next one, whcre the algebra is worked out 
in tensor notation without using such identities. 

0 ~ V X U .  
Vorticity is defincd a,, 

Because the divcrgence of a curl vanishes, vorticity for any flow must satisfy 

v * 0 = 0 .  (5.10) 

An equation for ratc of change of vorticity is obtained by taking the curl of the equation 
of motion. We shall see that prcssure and gravity are eliminated during this operation. 
Tn symbolic form, we want to perform the opcration 

I 1 
v x  - + u * m l = - - v p + v n + u v ~ u  , {: P 

wherc n is the body forcc potential. Using thc vector identity 

u ml = (V x u) x u + f V(U u) = 0 x u + iVq2, 

and noting that the curl of a gradient vanishes, (5.1 I )  givcs 

am - + v  x (0 xu)  = YV20, 
at 

(5.11) 

(5.12) 

where we have also used the identity V x V2u = V2(V x u) in rewriting the viscous 
term. The second term in Eq. (5.12) can bc written as 

v x ( o x u ) = ( u . v ) 0 - ( 0 . v ) u ,  
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where we have used the vector identity 

V x (A x B) = AV O B  + (B V)A - BV * A  - (A V)B, 

and that V u = 0 and V w = 0. Equation (5.12) then becomes 

DO 
Dt 
- = (0 V)u + uv*o. (5.13) 

This is the equation governing rate of change of vorticity in a fluid with constant 
p and conservative body forces. The term uV20 represents the rate of change of o 
due to diffusion of vorticity in the same way that uV2u represents acceleration due 
to diffusion of momentum. The term (o V)u represents rate of change of vorticity 
due to stretching and tilting of vortex lines. This important mechanism of vorticity 
generation is discussed huther near the end of the next section, to which the reader 
can proceed if the rest of that section is not of interest. Note that pressure and gravity 
terms do not appear in the vorticity equation, as these forces act through the center 
of mass of an element and therefore generate no torque. 

6. hrticiy buation in a Rotuting I+amc 

A vorticity equation was derived in the preceding section for a fluid of uniform den- 
sity in a fixed frame of refercnce. We shall now generalize this derivation to include 
a rotating frame of reference and nonbarotqic fluids. The flow, however, will be 
assumed nearly incompressible in the Boussinesq sense, so that the continuity equa- 
tion is approximately V u = 0. We shall also use tensor notation and not asume 
any vector identity. Algebraic manipulations are cleaner if we adopt the comma nota- 
tion introduced in Chapter 2, Section 15, namely, that a comma stands for a spatial 
derivative: 

A little practice may be necessary to feel comfortable with this notation, but it is very 
convenient. 

We first show that the divergence of o is zero. From the definition o = V x u, 
we obtain 

0 i . i  = (EingUq.rt1.i = EinqUq,ni* 

In the last term, &inq is antisymmetric in i and n, whereas the derivative u ~ , ~ ~  is 
symmetric in i and n. As the contracted product of a symmetric and an antisymmetric 
tensor is zero, it follows that 

= 0 or F l  (5.14) 

which shows that the vorticity field is nondivergent, even for compressible and 
unsteady flows. 



Thc continuity and momentum equations for a ncarly incompressiblc flow in 

ui,; = 0, (5.15) 
rotating coordinatcs are 

(5.16) 

whcre S2 is the angular velocity d t h e  coordinate system and g; is h e  effective gravity 
(including centrifugal acceleration); see Eq. (4.55). The advcctive acceleration can 
be written as 

(5.17) 

where we have used the relation 

The viscous diffusion term can be written as 

where we have used Eq. (5.1 8) and the fact that uj,ij = 0 because of the continuity 
equation (5.15). Rclation (5.19) says that vVzu = -vV x o, which we have used 
several times before (c.g., see Eq. (4.48)). Because P x u = -u x P, the Coriolis 
tcrm in Eq. (5.16) can bc written as 

Substituting Eqs.  (5.17), (5.19), and (5.20) into Eq. (5.16), we obtain 

where wc have also assumed g = -Vn. 
Equation (5.21) is another form of the NavierSlokes equation, and the vorticity 

equation is obtained by taking its curl. Since on = ~ , ~ i u i . ~ ,  it is clear that we nccd to 
operate on (5.21) by &,**i( ):(,. This gives 

(5.22) 



The second krm on the left-hand side vanishes on noticing that enyi is antisymmetric 
in q and i, whereas the derivative (u:/2 + ll),iq is symmetric in q and i. The third 
km on the left-hand side of (5.22) can be written as 

1 

P 
= 0 + ~ [ V P  x Vpln,  (5.24) 

which involvcs the n-component of the vector V p  x V p .  The viscous term in Eq. (5.22) 
can be written as 

-V&nqi&ijkWk,jq = -V(&jSqk - &~haqj)wk.jq 

= -vWk,nk + vOn,jj = v%,jj. (5.25) 

If we use Eqs. (5.23H5.25), vorticity equation (5.22) becomes 

awn 1 
- = un,j(wj + 2Qj)  - ujwn,j + ~ [ V P  x V ~ l n  + vwn.jj- 
at P 

Changing the free index from n to i, this becomes 

In vector notation it is written as 

(5.26) 

This is the vorticity equation for a nearly incompressible (that is, Boussinesq) fluid 
in rotating coordinates. Here u and o are, respectively, the (relative) velocity and 
vortjcity observed in a frame of reference rotating at angular vclocity 8. As vorticity 
is defined as twice the angular velocity, 2P is the planetary vorticity and (o + 2P)  
is the absolute Vorticity of the fluid, measured in an jncrtial h e .  In a nonrotating 



frame, the vorticity equation is obtained from Eq. (5.26) by setting S2 to zero and 
interpreting u and o as the absolute velocity and vorticity, rcspectively. 

The left-hand si& of EQ. (5.26) represents the rate of change of dative vorticity 
.following a fluid particle. The last term vV20 represcnts the rate of change of o due 
to molecular diffusion of vorticity, in the same way that UV'U represents acceleration 
due to diffusion of velocity. The second term on the right-hand side is the rate of 
generation of vorticity due to baroclinicity of h e  flow, as discussed in Section 4. In 
a barotropic flow, density is a function of prcssure alone, so Vp and V p  are parallel 
vectors. The first term on the right-hand side of Eq. (5.26) plays a crucial role in the 
dynamics of vorticity; it is discussed in more detail in what follows. 

Meaning O f  (W V)U 
To examinc the significance of this tcrm, take a natural coordinate system with s 
along a vortex line, n away from the ccnler of curvature, and m along the third normal 
(Figure 5.8). Then 

where we have used o in = o i, = 0, and o i.v = w (the magnitudc of w). Equa- 
tion (5.27) shows that (o - V) u equals the magnitude of w times thc derivative of 
u in the direction of o. Thc quantity w(au/as) is a vector and has the compo- 
nents u(su,$/as), c.(au,/as), and w(au,/as). Among these, au,/i)s represents the 
increasc of u , ~  along the vortex line s, that is, the stretching of vortcx lines. On the 
other hand, au,/as and au,/as rcpresent thc change of thc normal vclocity compo- 
nents along s and, thcrefore, the rate of turning or tilting of vortex lines about the m 
and n axes, respectively. 

To sce the effect of these terms more clearly, let us write Eq. (5.26) and suppress 
all terms except (w V)u on the right-hand side, giving 

DW au 
Dt as 
- = (o V)u = w- (barotropic, inviscid, nonrotating) 

whose components are 

~ w ,  au, DW, au, D w ,  aun 
Dt as Dt a s  Dt as 

and - = w-. (5.28) - =w- - = 0- 

The first equation of (5.28) shows that thc vorticity along s changes due to stretching d 
vortex lines, reflecting the principle of conservation of angular momcnlum. Strctching 
decreases the momcnt of inertia of fluid elements that constitute avortex line, resulting 
in an increase of their angular speed. Vortex stretching plays an especially crucial rolc 
in the dynamics of turbulent and geophysical flows. The second and third equa~ons 
01 (5.28) show how vorticity along n and m change due to tilting of vortex lines. 
For example, in Figure 5.8, the turning of the vorticity vector w toward the n-axis 
will gcnerate a vorticity component along n. The vortex stretching and tilting term 
(o V) u is absent in two-dimensionulflows, in which w isperpendiculur to theplune 
ufflow. 



Figure 5.8 Coordinate system alignd with vorlicity vector. 

Meaning of 2(8 - V) u 
Orienting the z-axis along the direction of 8, this term becomes 2(8  V)u = 
2C2 (au/az). Suppressing all other terms in Eq. (5.26), we obtain 

DO au 
Dt as 
- = 2C2- (barompic, inviscid, two-dimensional) 

whose components are 

This shows that stretching of fluid lines in the z direction increases o,, whereas a 
tilting of vertical lines changes the relative vorticity along the x and y directions. 
Note that merely a stretching or turning of verticalfluid lines is required for this 
mechanism to operate, in contrast to (o V) u where a stretching or turning of vortex 
lines is needed. This is because vertical fluid lines contain “planetary vorticity” 28 .  
A vertically stretching fluid column tends to acquire positive w,, and a vertically 
shrinking fluid column tends to acquire negative w, (Figure 5.9). For this reason 
large-scale geophysical flows are almost always full of vorticity, and the change of 8 
due to the presence of planetary vorticity 2 8  is a central feature of geophysical fluid 
dynamics. 

We conclude this section by writing down Kelvin’s circulation theorem in a 
rotating frame of reference. It is c a y  to show that (Exercise 5) the circulation theorem 
is modificd to 

-- -0 Dra 
Dt 

(5.29) 

where 

F a =  ( 0 + 2 8 ) * d A = F + 2  Q-dA. 

Here, re is circulation due to the absolute vorticity (o + 2P) and differs from r by 
the “amount” of planetary vorticity intersected by A. 

s, J, 
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Figure5.Y Generation olrclalivevorticity due lo slrclching of Ruid columns parallel to planetary vorticity 
28.  A Ruid column acquircs o, (in the same sensc w S2) hy moving hum location A to location B. 

7. Inkraclion of Vorlkes 

Vortices placed close to onc another can mutually interact, and generate interesting 
motions. To examine such interactions, we shall idealize each vortex by a concentrated 
line. A real vortex, with a core within which vorticity is distributed, can be idealized 
by a concentrated vortex line with a strength equal to the average vorticity in the corc 
times the core area. Motion outside the corc is assumed irrotational, and therefon: 
inviscid. 11 will be shown in the next chapter that irrotational motion of a constant 
density fluid is governed by the linear Laplace equation. The principle of superposition 
therefore holds, and the flow at a point can be obtaincd by adding the contribution 
of all vortices in the field. To determine the mutual interaction of line vortices, the 
important principle to keep in mind is the Helmholtz vortcx theorem, which says that 
vortex 1 ines move with the flow. 

Consider the interaction of two vortices of strengths rl and r2, with both rl 
and z12 positive (that is, counterclockwise vorticity). Let h = h I + hz be the distance 
betwccn the vortices (Figure 5.10). Then the velocity at point 2 due to vortex rl is 
directed upward, and equals 

I 

1’1 v, = - 
27th’ 

Similarly, the velocity at point 1 due to vortcx r2 is downward, and equals 

r2 
27rh 

v 2  = -. 

The vortex pair therefore rotates counterclockwise around the “center of gravity” G, 
which i.s stationary. 

Now suppose that thc two vortices have the samc circulation of magnitude r, but 
an opposite sense of rotation (Figure 5.1 1). Then the velocity of each vorkx at the 
location of the other is rl(2nh) and is directed in the same sense. The entire system 
therefore translates at a speed rl(27rh) relative to the fluid. A pair of counter-rotating 
vortices can be sct up by stroking the paddle of a boat, or by briefly moving the blade 
of a knife in a bucket of watcr (Figure 5.1 2). Nter the paddle or knife is withdrawn, 



r I 

I - h, 4- ,--I’ 

Fwre 5.10 Intaxtion of linc vortices of the same sign. 

r - 
2%h 

-h- 

Figure 5.11 Interaction of line vorticcv of opposik spin, but of Lhc same magnitude. Here r refers to h c  
magnitude or circulation. 

&ure 5.12 Top vicw of a vorlcx pair gcncrated by moving Lhc blade or u knife in a bucket of wukr. 
Positions at threc instances OF time 1,2: and 3 arc shown. (Alter Lighlhill(1986).) 
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the vorticcs do not remain stationary but continue to move under the action of thc 
velocity induced by the other vortex. 

The behavior of a singlc vortex near a wall can be round by superposing two 
vortices of equal and opposite strength. The technique involved is called the method 
os images, which has wide applications in irrotational flow, heat conduction, and 
electromagnetism. It is clear that the inviscid flow pattern due to vortex A at distance 
h from a wall can be obtained by eliminating the wall and introducing instead a vortex 
of equal strength and opposite sense at “image point” B (Figure 5.13). Velocity at any 
point P on the wall, made up of VA due to the real vortex and VR due to the image 
vortcx, is then parallel to the wall. The wall is therefore a streamline, and the inviscid 
boundary condition of zero normal velocity across a solid wall is satisfied. Because 
of the flow induced by the image vortex, vortex A moves with spced I‘l(47rh) parallel 
to the wall. For this reason, vortices in the example of Figure 5.12 move apart along 
the boundary on rcaching the side of the vessel. 

Now consider the interaction of two doughnut-shaped vortex rings (such as smoke 
rings) of equal and opposite circulation (Figure 5.1451). According to the method of 
images, the flow field for a single ring near a wall is identical to the flow of two rings 
of opposite circulations. The translational motion of each element of the ring is caused 
by the induced velocity of each elemcnt of the same ring, plus the induced velocity 
of each element of the other vortex. In the figure, the motion at A is the resultant of 
VR, VC, and VU, and this resultant has components parallel to and toward the wall. 
Consequently, the vortex ring increases in diameter and moves toward the wall with 
a speed that decrcases monotonically (Figure 5.14b). 

Finally, consider the interaction of two vorkx rings of equal magnitude and 
similar sense of rotation. It is left to the reader (Exercise 6) to show that they should 
both translatc in the same dircction, but the one in front increases in radius and 

.>: -::. . -. .. :.:: 

Figun! 5.13 Line vortcx A near a wall and its ima&w B. 
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(a) (b) 

F i p  5.14 (a) Torus or doughnut-sha+ vortex ring ncar a wall wd its imagc. A section through thc 
middle of thc ring is shown. (b) Trajectory or vortex ring, showing that it widens wbilc its translational 
velocity toward the wall decreases. 

thereforc slows down in its translational speed, while the rear vortex contracts and 
translates €aster. This continues until the smaller ring passes through the larger one, 
at which point the roles of thc two vorticcs are reversed. The two vortices can pass 
through each other forever in an ideal fluid. Further discussion of this intriguing 
problem can be found in Sommcrfeld (1964, p. 161). 

Consider an infinite number of infinitely long vortex filaments, placed side by si& on a 
surface AB (Figure 5.15). Such a surface is called a vortex sheet. If the vortex filaments 
all rotate clockwise, then the tangential velocity immediately above AB is to the right, 
while that immediately below AB is to the left. Thus, a discontinuity of tangential 
velocity exists across a vortex sheet. If the vortex filaments arc not infinitesimally 
thin, then the vortex sheet has a finite thickness, and the velocity change is sprcad out. 

In Figure 5.15, consider thc circulation around a circuit of dimensions dn and 
ds. The normal velocity component u is continuous across the shcet (u  = 0 if the 
shect does not move normal to itsclf ), whilc the tangential component u expericnces 
a sudden jump. If u1 and u2 are the tangential velocities on the two sides, then 
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Figure 5.15 Vorlcx sheet. 

Therefore the circulation per unit length, called the strength ofa vortex sheet, 
equals the jump in tangcntial velocity: 

The conccpt of a vortex shect will be especially userid in discussing the flow over 
aircraft wings (Chapter 15). 

Ih!l7.!iSt?S 

1. A closed cylindrical tank 4 m high and 2 m in diameter contains watcr to a 
depth of 3 m. When the cylinder is rotated at a constant angular velocity of 40 rad/s, 
show rhat nearly 0.7 1 m2 of the bottom surface of thc tank is uncovered. [Hint  The free 
surface is in the form of a paraboloid. For a point on the free surface, let h be the 
height above the (imaginary) vertex of the paraboloid and r be the local radius of the 
paraboloid. From Section 3 we have h = w;r2/2g, when: 00 is the angular velocity 
of the tank. Apply this equation to the two points where the paraboloid cuts the top 
and bottom surfaces of the tank.] 

2. A tornado can be idealized as a Rankine vortex with a corc of diameter 30 m. 
The gaugc pressure at a radius of 15 m is -2000 N/m2 (that is, the absolute pressure 
is 2000N/m2 below atmospheric). (a) Show that the circulation around any circuit 
surrounding the core is 5485m2/s. [Hint: Apply the Bernoulli equation between 
infinity and the cdge of the core.] (b) Such a tornado is moving at a linear speed 
of 25 m/s relative to the p u n d .  Find tbc time required For the gauge pressure to 
drop from -500 to -2000N/mZ. Neglect compressibility effects and assume an air 
temperaturc of 25 T. (Note that the tornado causes a sudden decrease of the local 
atmospheric pressure. The damage to structures is oftcn caused by the resulting excess 
pressure on the inside of the walls, which can cause a house to explode.) 

3. The vclocily field of a flow in cylindrical coordinates (R,  (p. x )  is 

U R = O  U q = u R X  U x = o  

whcre a is a constant. (a) Show that the vorticity components are 

W R = - U R  W v = o  W , = h X  



(b) Verify that V o = 0. (c) Sketch the streamlines and vortex lines in an Rx-plane. 
Show that the vortex lines are given by x R 2  = constant. 

4. Consider the flow in a 9 0  angle, conlined by the walls 8 = 0 and 8 = 90". 
Consider a vortex line passing through ( x ,  y ) ,  and oriented parallel to the z-axis. 
Show that the vortex path is given by 

1 1  - + - = constant. 
x2 y2 

[Hint: Convince yourself that we need three image vortices at points (-x, -y ) ,  
( -x ,  y )  and ( x ,  -y). What are their senses of rotation? Thc path lines are given 
by dx/dt = u and dy/dt = v, where u and v are the velocity components at the 
location of the vortex. Show that dy/dx = v/u = - y 3 / x 3 ,  an integration of which 
gives the result.] 

5.  Start with the equations of motion in the rotating coordinates, and prove 
Kelvin's circulation theorem 

D +ra) = o 
Dt 

where 
ra= ( o + 2 8 ) * d A  

Assume that the flow is inviscid and barotropic and that the body forces are conser- 
vative. Explain the result physically. 

6. Consider the interaction of two vortex rings of equal strength and similar 
sense of rotation. Argue that they go through each other, as described near thc end of 
Scction 7. 

7. A constant density irrotational flow in a rectangular torus has a circulation 
r and volumetric flow rate Q. Thc inner radius is r l ,  the outer radius is 1-2, and the 
height is h. Compute the total kinetic energy of this flow in terms of only p ,  r, and Q. 

8. Consider a cylindrical tank of radius R filled with a viscous fluid spinning 
steadily about its axis with constant angular velocity Q. Assumc that the flow is in 
a steady state. (a) Find SA o . dA where A is a horizontal plane surface through the 
fluid normal to the axis of rotation and bounded by the wall of the tank. (b) Thc tank 
thcn stops spinning. Find again the value of SA o dA. 

J 

9. In Figure. 5.10, Iocatc point G. 
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Irrotational Flow 
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I .  Relevance of Irmtutionall?k?ow Theory 
The vorticity equation givcn in the preceding chapter implies that the irrotational flow 
(such as the one starting from rest) of a barotropic fluid observed in a nonrotating 
fame remains irrotational if the fluid viscosity is identically zero and any body forces 
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an: conservative. Such an ideal flow has a nonzero tangential velocity at a solid surface 
(Figure 6.1 a). In contrast, a real fluid with a nonzero u must salisfy a no-slip boundary 
condition. It can be expccted that viscous cffects in a real flow will be confined to 
thin layers close to solid surfaccs X the fluid viscosity is small. Wc shall see later 
that the viscous layers are thin not just when the viscosity is small, but when a 
non-dimensional quantity Re = U L / v ,  called thc Reynolds number, is much larger 
than 1. (Here, U is a scale of variation of velocity in a length scale L.) The thickness 
of such boundary layers, within which viscous diffusion of vorticity is important, 
approaches zero as Re + o (Figure 6.lb). Zn such a case, the vorticity equation 
implies that fluid clements starting from rest, or from any other irrotational region, 
remain irrotational unless they move into these boundary layers. The flow field can 
therefore be divided into an “outer region” where the flow is inviscid and irrotational 
and an “inner rcgion” where viscous diffusion of vorticity is important. The outer flow 
can be approximately predicted by ignoring the existence of the thin boundary layer 
and applying irrotational flow theory around the solid object. Once h e  outer problem 
is dcterrnined, viscous Row equations within the boundary layer can be solved and 
matched to the outer solution. 

An important exception in which this method would not work is where the solid 
object has such a shape that thc boundary layer separates from the surface, giving rise 
to eddies in the wake (Figure 6.2). In this case viscous effects are not confined to thin 
layers around solid surfaces, and the real flow in the limit Re + cc is quite diffcrent 

IRROTATIONAL 
OUTER REGION 

.... ............ 

(a) (b) 

Figure 6.1 
flow with v = 

Comparison of a complctcly irmtatiod flow and a high Reynolds number flow: (a) ideal 
(b) flow at high Re. 

, separation 

Figure 6.2 Examplcs of flow scpartttion. Upstrcam of thc point of separation, imtalional flow thcory is 
a gmd approximsllitm of thc mal flow. 
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from the ideal flow (u = 0). Ahead o€ the point of separation, however, irrotational 
flow thcory is still a good approximation of the real flow (Figure 6.2). 

Irrotational flow patterns mund bodics of various shapes is the subject of this 
chapter. Motion will be assumed inviscid and incompressible. Most of the examples 
givcn are from two-dimensional plane flows, although some examples of axisymmet- 
ric flows are also given later in the chapter. Both Cartesian (x .  y) and polar (r, 0) 
coordinates are uscd for plane flows. 

2. K?locily htc!ntial: Laplace liqualion 
The two-dimensional incompressible continuity equation 

au a v  
ax- ay 
- + - = o ,  

guarantees the existence of a stream function $, from which the vclocity components 
can be derived as 

a$ a$ 
a Y  a x .  

a v  au 
ax ay 

- U E -  "=-- 

Likewise, the condition of irrotationality 

_ _ _ -  - 0, 

guarantccs the existcnce of another scalar function 4, called the velocity potentid, 
which is related to the velocity components by 

(6.4) 

Becausc a velocity potential must exist in all irrotational flows, such flows arc fre- 
quently called porenriul Jows. Equations (6.2) and (6.4) imply that the derivativc 
of + gives the velocity component in a direction'90 clockwise h m  the direction 
of differentiation, whcrcas h e  derivative of 4 gives the velocity component in the 
direction of daerentiation. Comparing Eqs.  (6.2) and (6.4) we obtain 

a4 a$ 
ax ay 

84 a$ 
ay ax 

- =- 

Cauchy-Riemann conditions (6.5) 
- - -- - 

from which one of the functions can be determined if the other is known. Equipotential 
lines (on which 4 is constant) and streamlines are orthogonal, as Eq. (6.5) implies that 

This demonstration fails at srugnation points where thc velocity is zero. 
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The streamfunction and velocity potential satisfy the Laplace equations 

(6.7) 

as can bc seen by cross differentiating Eq. (6.5). Equation (6.7) holds for 
two-dimcnsional fows only, because a single streamfunction is insufficient for 
three-dimensional flows. As we showed in Chapter 4, Section 4, two streamfunc- 
tions arc required to describe thrce-dimensional steady flows (or, if density may be 
regardcd as constant, three-dimensional unsteady flows). However, a velocity poten- 
tial Cp cLi‘n be defined in ~hreedimensional irrotational flows, because u = V$J identi- 
cally satisfies the irrotationality condition V x u = 0. A three-dimensional potential 
Row satisfics the three-dimensional version of Vz4 = 0. 

A function satisfying the Laplace equation is somelimes called a harmonic func- 
rion. The Laplace equation is encountercd not only in potential flows, but also in heat 
conduction, elasticity, magnetism, and electricity. Therefore, solutions in one field of 
study can be found from a known antllogous solution in another field. In this manner, 
an cxtensive collection of solutions of the Laplace equation have become known. The 
Laplace equation is of a type that is called elliptic. It can be shown that solutions 
of clliptic equations are smooth and do not have discontinuities, except for certain 
singular points on the boundary of the rcgion. In contrast, hyperbolic equations such 
as thc wave equation can have discontinuous ”wavefronts” in the middle of a region. 

The boundary condilions normally encountered in irrotational flows are of the 
following types: 

(1) Condition on solid surjiace-Component of fluid velocity normal lo a solid 
surface must q u a l  the velocity of the boundary normal to itself, ensuring that 
fluid does not penetrate a solid boundary. For a stationary body, the condition is 

where s js direction along the surface, and n is normal to the surface. 
(2) Condition at injnib-For the typical case of a body immersed in a uniform 

stream flowing in the x direction with speed U, the condition is 

However, solving the Laplace equation subject to boundary conditions of thc type 
of Eqs. (6.8) and (6.9) is not easy. Historically, irrotational flow theory was devel- 
oped by finding a funclion that satisfics the Laplace equation and then dctermining 
what boundary conditions arc satisfied by that function. As thc Laplacc equation is 
linear. superposition of known harmonic functions gives another harmonic function 
satisfying a new sct of boundslry conditions. A rich collcction of solutions has thcreby 
cmerged. We shall adopt this “inverse” approach of studying irrotational flows in this 



chapter; numerical methods of finding a solution under given boundary conditions 
are illustrated in Sections 16 and 21. 

After a solution of the Laplace equation has been obtained, thc velocity com- 
ponents are then determined by taking derivativcs of 4 or $. Finally, the pressure 
distribution is determined by applying thc Bernoulli equation 

p + ipy2 = const., 

between any two points in the flow field; here q is the magnitude of velocity. Thus, 
a solution of the nonlinear cquation of motion (the Euler equation) is obtained in 
irrotational flows in a much simpler manner. 

For quick reference, the important equations in polar coordinates are listed in the 
following: 

1 il 1 aur 
r ar r ae --(me) - -- = 0 (irmtationality), 

(6.10) 

(6.11) 

(6.12) 

(6.13) 

(6.14) 

(6.15) 

3. Application tf Complex Variuhles 

In this chapter z will denote the complex variable 

(6.16) 

where i = a, ( x ,  y) are the Cartesian coordinates, and (r, e )  are the polar coordi- 
nates. In the Cartesian form the complcx number z rcpresents a point in the xj-plane 
whose real axis is x and imaginary axis is y (Figure 6.3). In thc polar form, z repre- 
sents the position vector Oz, whose magnitude is r = (x2 + y2)’I2 and whose angle 
with the x-axis is tan-l ( y / x ) .  The product of two complex numbers ZI and z2 is 

z = x + i y = r e ,  i0 

z I z2 = rl rz ei@l+‘h). 

Therefore, thc process of multiplying a complex number zl by another complex 
number 22 can be regarded as an operation that “stretches” the magnitude from 1-1 to 
r1r2 and increases the argument from 01 to 81 + 02. 



F'igure 6.3 Complcx e-plane. 

When x and y are regarded as variables, the complex quantity z = x + i p  is 
called a complex variable. Suppose we define another complex variable w whose real 
and imaginary parts are 4 and @: 

u: ..@+ill.. (6.17) 

If 4 and ll. are functions of x and y ,  then so is w. Tt is shown in the theory of complex 
variables that w is a function of the combination x + iy = z, and in particular has 
a finite and "unique derivative" dw/dz  when its real and imaginary parts satisfy the 
pair of relations, Eq. (6.5), which are called Cuuchy-Riemann conditions. Hcrc thc 
dcrivativc du:ldz is regarded as unique if the value of Su/Sz  does not depend on 
the on'enration of thc differential 6z as it approaches zero. A single-valued function 
w = f(z) is callcd an analyhJunchn of a complex variable z in a region if a finite 
dw/dz  cxisu everywhere within the region. Points where w or dw/dr  is zero or 
infinite arc callcd singulariries, at which constant 4 and constant @ lines are not 
orthogoiial. For examplc, 11) = l nz  and u: = l / z  are analytic everywhere except at 
the singular point z = 0, whcrc thc Cauchy-Riemann conditions are not satisfied. 

The combination IU = 4 + i@ is called complex potential for a flow. Bccausc the 
velocity potential and stream function satisry Eq. (6.5), and the real and imaginary 
parts of any function 01 a complex variable w(z)  = 4 + i @  also satisfy Eq. ( 6 3 ,  
it follows that any analpic function ($ z represents lhe complex potential of some 
two-dimensionalflow. The derivative dw/dz  is an important quantity in lhe descrip- 
tion of irrotational flows. By definition 

dw 6 W  - = lim -. 
dz az-0 Sz 

As the dcrivativc is independent of the oricntation or 6z in the xy-planc. wc may take 
6r para1 Icl to thc x-axis, leading to 

d w  . sw aw a _ -  - hm - = - = -($ + i @ ) ,  
d z  ~ ~ - 0  sx ax B X  
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which implies 

(6.18) 

It is easy to show that taking Sz parallel to the y-axis leads to an identical result. The 
dcrivativc dw ldz  is therefore a complex quantity whose real and imaginary parts give 
Cartcsian components of the local velocity; dw/dz  is therefore called the complex 
vebciry. Ifthc local velocity vector has a magnitude y and an angle a! with the x-axis, 
then 

(6.19) 

It may be considered rcmarkable that any twice differentiable function w(z) ,  z = 
x + iy is an identical solution to Laplace's equation in the plane ( x ,  y ) .  A general 
function of the two variables ( x ,  y) may be written as f ( z ,  z*) where z* = x - iy is 
the complex conjugate of z. It is the very special case when f ( z ,  z*) = w(z)  alone 
that we consider here. 

As Laplace's equation is linear, solutions may be superposed. That is, the sums 
of clemental solutions are also solutions. Thus, as we shall see, flows over specific 
shapes may be solved in this way. 

4. Flow a1 a Wall Angle 

Consider the complex potential 

w = Az" (n 2 i), (6.20) 

where A is a real constant. If r and 8 represent the polar coordinaks in the z-plane, 
then 

w = A(re'@)" = Ar"(cosn8 + i sinno), 

giving 
qi = Ar" cos n8 = Ar" sin ne. (6.21) 

For a given n, lines of constant II. can be plotted. Equalion (6.21) shows that II. = 0 for 
all values of r on lincs 8 = 0 and 8 = n / n .  As any streamline, including the $ = 0 
line, can be regarded as a rigid boundary in the z-plane, it is apparent that Eq. (6.20) 
is the complcx potential for flow between two plane boundaries of included angle 
a! = n / n .  Figure 6.4 shows the flow patterns for various values of n. Flow within 
a certain sector of the z-plane only is shown; that within other scctors can bc found 
by symmetry. It is clear hat thc walls form an angle larger than 180" for n e 1 and 
an angle smaller than 180" lor n > 1. The complex velocity in terms of a! = n / n  is 

which shows that at thc origin dwldz  = 0 for a! e K, and diiildz = eo for a! > n. 
Thus, h e  comer is a stagnation paint f o r f i w  in a wall angle smaller than 180"; 



w = A z ’ ~  w = A 9  w =AS 
\ 
1 

- 

w = A . P  w = Az’n 

Figure 6.4 Irrotational flow at a wall anglc. Equipotcntial lincr arc h h c d .  

Fm 6.5 Stagnation flow itpresented by UI = AzZ. 

in contrust, it is a point of inJinile velocily for wull angles larger than 180“. In both 
cases the origin is a singular point. 

Thc pattcm for n = 1/2 corresponds to flow around a semi-infinite platc. Whcn 
la = 2, Ihe pattern represcnts flow in a region bounded by perpcndicular walls. By 
including the field within the second quadrant of the z-planc, ir is clear that n = 2 
also represcnts thc flow impinging against a flat wall (Figure 6.5). Tbe streamlincs 
and equipotential lines are all rectangular hyperbolas. This is called a stagqnafionJluw 
bccause it represents llow in thc ncighborhood of the slagnation point of a blunt body. 

Real flows ncar a sharp change in wall slopc arc somewhat different than those 
shown in Figurc 6.4. For n 1 the irrotational flow velocity is infinitc at the origin, 
implying that thc boundary streamline (+ = 0) accelerates before rcaching this point 
and dccclcrslles alter it. Bernoulli’s cquation implies that thc pressure force down- 
stream of the corner is “adverse” or against the flow. It will be shown in Chapter 10 



that an adverse pressure gradient causes separation of flow and generation of station- 
ary eddies. A real flow in a corner with an included angle larger than 180” would 
therefore separate at the comer (see the right panel of Figure 6.2). 

5. Sources and Sinh  
Consider the complex potential 

i9 w = -hz= m -ln(re m ). 
21s 2a 

The real and imaginary parts are 

from which the velocity components arc found as 

m 
UT = - 2ar Ug = 0. 

(6.22) 

(6.23) 

This clearly represents a radial flow from a two-dimensional line source at the origin, 
with a volume flow rate per unit depth of m (Figure 6.6). The flow represents a line 
sink if m is negative. For a source situated at z = a, the complex potential is 

m 
2x w = -ln(z-a). (6.25) 

I ’\ 

Figure 6.6 Plane SOUKC. 
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Figure 6.7 Plane irrotational vortcx. 

6. lrmlalionnl Y o r i m  

The complcx potential 
iT 
2n In Z. 

= -- (6.26) 

represents a line vortex of counterclockwisc circulation r. Its mal and imaginary 
parts arc - - 

(6.27)' 
1 '  1 .  

# = - O  ~ = - - i n r ,  
2;r 2x 

from which the velocity components arc found to be 

I' 
u, = o  ug = -. 

2n r 

The flow pattern is shown in Figure 6.7. 

(6.28) 

7. lloubbl 

A doublet or dipole is obtained by allowing a sourcc and a sink of equal strcngth 
to approach each othcr in such a way hat  their slrengths incrcase as thc separation 
distance gocs to zero, and that h e  product lends to afinite limit. l h c  complex potential 

'Thc argument of transccndcntal functions such as thc logwithm must always he dimcnsionlcss. Thus 
a consttint must bc ddcd Lo @ in Fi. (6.27) to put Ihc logarithm in proper form. This is clonc cxplicitlp 
when we arc solving a problcm as in Section 10 in what follows. 



Figure 6.8 plwc doublet. 

for a source-sink pair on the x-axis, with the source at x = --E and the sink at x = E ,  is 
in rn 
2Yr 2K 

w = - h ( z  + E )  - -In (z - E )  = 

Defining the limit of mE/x as E + 0 to be p, the preceding equation becomes 

--e I (6.29) w = - = P  P -iB 

z r  
whose real and imaginary parts are 

The expression for @ in the prcceding can be rearranged in Ihc form 

(6.30) 

x 2 + ( Y + & ) ’ = ( $ )  2 - 



The streamlines, reprcscntcd by * = const., arc thcrcforc circlcs whose centers lie 
on thc y-axis and are tangent Lo the x-axis a1 the origin (Figure 6.8). Dircction of flow 
at the origin is along the negative x-axis (pointing outward from the source of the 
limiting source-sink pair), which is called the axis of the doublet. It is easy to show that 
(Excrcisc 1) thc doublct flow Eq. (6.29) can bc cquivalently defined by superposing 
a clockwise vortex of strength -r on thc y-axis at y = E ,  and a counterclockwisc 
vortex of strcngth r at y = --E. 

The complex potentials for concentrated source, vortex, and doublet are all sin- 
gular at the origin. It will be shown in the following sections that several interesting 
flow patterns can be obtained by superposing a uniform flow on thcsc conccntrated 
singularities. 

8. Fk,w past a HuJJ-Body 
An internsting flow rcsulls lorn superposition of a source and a uniform stream. The 
complex potcntial for a uniform flow of strength U is u; = Ue, which follows from 
integrating the relation d w / d z  = u - iv. The complex potential for a source at the 
origin of strcngth in, immersed in a uniform flow, is 

m. 
2n 

u ) = U Z + - h z ,  (6.3 1) 

whosc imaginary part is 
in 
27c 

= Ur sin8 + -0. (6.32) 

From Eqs. (6.12) and (6.13) it is clear that there must be a stagnation point lo the 
left ol the source (S in Figure 6.9), wherc thc uniform stream cancels the velocity of 
flow h m  the source. Tf thc polar coordinate or the stagnation point is (a, IC), then 
cancellation of velocity rcquircs 

m u--=o, 
2na 

giving 
m 

2XU' 
a=-  

(This result can also be found by finding dw/dz and setting it to zcro.) The value of 
the smamfunction at the stagnation point is therefore 

in 112 m 
21c 21C 2 

$s = U r  sin 8 + -8 = Ua sin ?r + -1c = - . 

The equation ol the streamlinc passing through the stagnation point is obtaincd by 
setting $ = $s = m / 2 ,  giving 

m m 
2n L 

IJr sin8 + -8 = T. (6.33) 

A plot of this smamline is shown in Figure 6.9. It is a semi-infinite body with a 
smooth nosc, generally callcd a hay-body. Thc stagnation s t r ed ine  divides thc field 
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Figure 6.9 Jrroiational tlow past a iwwdimensional halr-body. The boundary streamline is givcn by + = m/2. 

into a region cxternal to the body and a region internal to it. The internal flow consists 
entircly of fluid emanating from the source, and the external region contains the 
originally uniform flow. The half-body resembles several practical shapcs, such as 
the front part of a bridge pier or an airroil; the upper hall of the flow rcsembles thc 
Row over a cliff or a side contraction in a wide channcl. 

The half-width or the body is found to be 

m(x - 6 )  
h = r s i n Q  = 

2Ycu ’ 
where Eq. (6.33) has been used. The half-width tends to h,,, = m/2U as H + 0 
(Figure 6.9). (This result can also be obtained by noting that mass flux from the source 
is contained entirely within thc half-body, rcquiring the balance m = (2hmax)U at 
a large downstream distancc where K = U.) 

Thc pressure distribution can be found from Bernoulli’s equation 

p + 4pq2 = p x  + ipU2.  

A convenient way of represcnting pressure is through the nondimensional excess 
pressurc (called P~ESSKIZ coeflcient) 

A plot of C ,  on the surface of the half-body is given in Figure 6.10, which shows 
that there is pressure excess near the nose of the body and a pressure deficit beyond 
it. Tt is easy to show by integrating p over the surface that the net pressure force is 
zero (Exercise 2). 

9. Flow pas1 a Cimular Cflinder wil/zout Cimulation 
The combination of a uniform stream and a doublet with its axis directed against the 
stream gives the irrotational flow over a circular cylinder, for the doublet strength 
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Figure 6.10 
indicald by 

Prcssurc distribulion in irrotational flow ovcr a half-body. Prcssun: cxccss near Ihc nosc is 
and prcssun: dcficit elsewhcrc is indicated by 8. 

chosen below. Thc complex potcntial [or this combination is 

u:=uz+-=u e + -  1 

e ( 3 
where u = m. The real and imaginary parts or w give 

~lr = u (r - :)sinH. 

(6.34) 

(6.35) 

It is sccn ha t  $ = 0 at r = u for all values of H ,  showing that the streamlinc 
$ = 0 represents a circular cylindcr of radius N. The streamlinc pattern is shown in 
Figurc 6.1 1. Flow inside the cuclc has no influcnce on that outsidc the circle. Vclocity 
components are 

from which thc flow s p e d  on the surfacc of the cylinder is found as 

41,- = l ~ e l , - - ~  = 2U sink): (6.36) 

where what is meant is the positivc value of sin 0. This shows that thcre are stagnation 
points on the surfxc, whose polar coordinates are (a, 0 )  and (a, x ) .  The flow reaches 
a maximum vclocity of 2 U at h e  top and bottom or the cylindcr. 

Pressurc distribution on the surface of thc cylinder is given by 

Surface distribution of prcssure is shown by thc continuous line in Figure 6.12. Thc 
symmetry of the distribution shows that therc is no net pressure drag. In fact, a general 
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Figure 6.11 Irrotational flow past a circular cyhder without circulation. 

0 90” 180“ 

D e e  from forward stagnation pint 

Figure 6.12 Comparison of irrohtional and observed prcssure disuibutions ovcr a circular cylinder. The 
observcd disiribution changes with the Rcynolds numbcr Re; a lypical behavior at high Re is indicated hy 
thc dashed line. 

result of irrotational flow theory is that a steadily moving body experiences no drag. 
This result is at variancc with observations and is sometimes known as d’ Alembert’s 
pcrrdox. The existence of tangential stress, or “skin friction,” is not the only reason for 
the discrepancy. For blunt bodies, the major part of the drag comes from separation of 
the flow from sides and the resulting generation of eddies. The surface pressure in the 
wake is smaller than that predicted by irrotational flow theory (Figure 6.12), resulting 
in a pressure drag. These facts will be discussed in further detail in Chapter 10. 

The flow due to a cylinder moving steadily through a fluid appears unsteady to 
an observer at rest with respect to the fluid a1 infinity. This flow can be obtained by 
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Figure 6.13 Decomposition of irmtational flow pattcm duc to a moving cylindcr. 

supcrposing a uniform strcam along the negative x direction to the flow shown in 
Figurc 6.1 1. The resulting instantaneous flow pattcm is simply that of a doublet, as 
is clear from thc dccornposition shown in Figure 6.13. 

10. Flow pad n Cimiilar C3indcr wilh CXmulalion 

It was seen in thc last section that there is no net form on a circular cylindcr in steady 
irrotational flow without circulation. It will now bc shown that a lateral force, akin 
to a lift .force on an airfoil, rcsults when circulation is introduccd into the flow. Tf 
a clockwise line vortex of circulation -r is added to the irrotational flow around 
a circular cylinder, the complex potential becomes 

ui = U z +  - + -ln(z/u)! ( :) 1: 
whose imaginary part is 

(6.37) 

(6.38) 

where we have added to 111 the term - ( i r / 2 x )  lna  so that the argumcnl of the logd- 
rithm is dimcnsionless, as it must be always. 

Figurc 6.14 shows thc resulting streamline pattern for \w-ious valucs of r. The 
close sl.reamline spacing and higher velocity on top of thc cylinder is due to the 
addition of velocity fields of the clockwise vortcx and the uni€orm stream. In contrast, 
the smallcr velocities at the bottom of the cylinder are a result of the vortex field 
countcracling the uniform stream. Bernoulli’s cquation consequently implics a higher 
pressurc below thc cylinder and an upward ‘‘lift” lorce. 

Thc tangential vclocity component at any point in the flow is 

At the surface of the cylinder, velocity is entirely tangential and is givcn by 

(6.39) 
r 

ug I r a  = -2U sin8 - -, 
2rra 
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Figure6.14 Irrotational flow past a circular cylinder lor differcnl values of circulation. Point S reprcscnts 
the stagnation point. 

which vanishes if r sine = -- 
4nau' 

(6.40) 

For r < 47caU, two values of 0 satisfy Eq. (6.40), implying that there are two stag- 
nation points on the surface. The stagnation points progrcssively move down as 
r inmases (Figure 6.14) and coalesce at r = 47caU. For r > 4naU, thc stag- 
nation point moves out into the flow along the y-axis. The radial distance of the 
stagnation point in this case is found from 

r 
ueIs=-rjz = u 1 + - - - = 0. ( ::) 2nr 

This gives 

r = -  [r f Jr* - (415au)q 
47c u 

one root of which is r > a; the other root corresponds to a stagnation point inside the 
cylinder. 

Prcssure is found from the Bernoulli equation 

P + P92/2 = poc + pu2 /2 .  



Using Eq. (6.39), the surface pressure is found to be 

p , , = p o o + ~ p  - 2 ~ s i n e - -  2Yra )'I . (6.41) 

The symmetry of Row about the y-axis implies that the pressure force on the cylinder 
has no component along the x-axis. The pressure force along the y-axis, called the 
"lift" force in aerodynamics, is (Figure 6.15) 

L = - 12" pr=" sin e de. 

Substituting Eq. (6.41), and carrying out the integral, we finally obtain 

L = pur, (6.42) 

where we havc used 

sin e de = sin3 e de = 0. 6" 
It is shown in the following section that Eq. (6.42) holds for irrotational flows around 
m y  two-dimensional shape, not just circular cylinders. The rcsult that lift force is 
proportional to circulation is of fundamental importance in aerodynamics. Rela- 
tion Eq. (6.42) wa% proved independently by the German mathematician, Wilhelm 
Kuttsl(1902), and the Russian aerodynamist, Nikolai Zhukhovsky ( 1  906); it is called 
thc Kufiu-Zhukhovsky lift theorem. (Older western texts translitcrated Zhukhovsky's 
name as Joukowsky.) The intcmsting question of how certain two-dimcnsional shapes, 
such as an aidoil, develop circulation when placed in a stream is discussed in Chap- 
ter 15. It will be shown then: that fluid viscosity is responsible for the development of 
circulation. The magnitude of circulation, however, is independent of viscosity, and 
depends on flow speed U and the shape and "attitude" of the body. 

For a circular cylinder, however, the only way to develop circulation is by rotating 
it in a flow stream. Although viscous effects arc important in this case, the observed 
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Figure 6.15 Calculation ofprerrurc force on a circular cylindcr. 
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pattern for large values of cylinder rotation displays a striking similarity to the ideal 
flow pattern for r > 47ruU; see Figurc 3.25 in thc book by Prdndtl (1952). For 
lower rates of cylinder rotation, the retarded flow in the boundary layer is not able 
to ovcrcorne the adverse pressure gradicnt behind the cylinder, leading to scparation; 
the rcal flow is therefore rather unlike the irrotational pattern. However, even in the 
presence of separation, observed speeds are higher on the upper surface of thc cylinder, 
implying a lift force. 

A second reason for generating lift on a rotating cylinder is the asymmewy gen- 
erated due to delay of scparation on the upper surface of the cylinder. The resulting 
asymmetry generates a lift force. The contribution of this mechanism is small  for 
two-dimensional objects such as the circular cylinder, but it is the only mechanism 
for side forces experienced by spinning the-dimensional objects such as soccer, 
tcnnis and golf balls. The interesting question of why spinning balls follow curved 
paths is discussed in Chapter 10, Scction 9. Thc lateral lorcc experienced by rotating 
bodics is called the Mugnus efect. 

The nonuniqueness of solution for two-dimensional potential flows should be 
noted in the example we havc considered in this section. It is apparent that solutions 
for various values of r all satisfy the same boundary condition on the solid surfacc 
(namely, no normal flow) and at infinity (namely, u = U), and there is no way to 
detcrmine the solution simply from the boundary conditions. A general result is that 
solutions of the Laplace equation in a multiply connected wgion are nonunique. This 
is explaincd further in Swtion 15. 

3 1. Fotvxs on a ?bo-Dimerrxional Body 
In the precedmg section we demonstrated that the drdg on a circular cylinder is zero 
and the lift equals L = pur. We shall now demonstrate that these results are valid 
for cylindrical shapes of arhifrtrry cross section. (The word “cylidcr” refers to any 
planc two-dimensional body, not just to those with circular cross sections.) 

B l d u s  Theorem 
Considcr a general cylindrical body, and let D and L be thc x and y components of 
thc force excrted on it by the surrounding fluid; we rcfer to D as “drdg” and L as 
“lift.” Because only normal pressures are exerted in inviscid flows, the forces on a 
surfacc elemenl dz are (Figure 6.16) 

d D  = - p d y ,  
d L  = p d x .  

We form the complex quantity 

d D  - i d L  = - p d y  - i p d x  = -ipdz*, 

where an asterisk denotes the complex conjugalc. The total force on h e  body is 
thereforc given by 
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Figure 6.16 Forcer exerted on an clcmcnl of a body. 

where C denotes a counterclockwise contour coinciding with the body surface. 
Neglecting gravity, the pressurc is given by the Bernoulli equation 

I 
~ 3 o  + T P ~ ’  = p + $p(u* + v2) = p + $ p ( u  + iv)(u - i v ) .  

Substituting for p in Eq. (6.43), we obtain 

D - i L  = -i [pm + 4pU’ - i p ( ~  + i~)(u - i v ) ]dz* ,  (6.44) k 
Now the integral of the constant term ( p m  + i p U 2 )  around a closed contour is zero. 
Also, on the body surface the velocity vector and the surface element dz  are parallel 
(Figure 6.16), so that 

J- io u + i u =  u 2 + u * e  , 

dz = ldzl eie. 

The product (u + iv)dz* is therefore real, and we can equate it to its complex 
conjugate: 

(u + iu) de* = (u - iu) d z .  

Equation (6.44) then becomes 

(6.45) 

where we have introduced the complex velocity d w l d z  = u - iv .  Equation (6.45) 
is called the Blcrsius theorem, and applies to any plane steady irrotational flow. The 
integral need not be camed out along the contour of the body because the theory 
of complex variables shows that any contour surmunding the body cun be chosen, 
providcd that there are no singularities between thc body and the contour chosen. 



Kutta-Zhukhovsky Lift Theorem 
We now apply the Blasius theorem to a skady flow around an arbitrary cylindrical 
body, around which there is a clockwise circulation r. The velocity at inhity has 
a magnitudc U and is directcd along the x-axis. The flow can be considered a supcr- 
position of a uniform stream and a set of singularities such as vortcx, doublet, source, 
and sink. 

As there are no singularities outside the body, we shall take the contour C in 
the Blasius theorem at a very large distance from the body. From large distances, all 
singularities appear to be located near the origin z = 0. The complex potential is then 
of the form 

UI = Ue + - m Inz + - ir In z + - P + . . 
21s 2rr 2 

The first term represents a uni€om flow, the second ~ r m  represents a sourcc, the third 
term represents a clockwise vortcx, and the fourth term represents a doublet. Because 
the body contour is closed, the mass efflux of the sources must be absorbed by the 
si&. It follows that the sum of the strength of the sources and sinks is zero, thus wc 
should set m = 0. The Blasius theorem, Eq. (6.45), Lhcn becomes 

(6.46) 

To carry out the contour integral in Eq. (6.46), wc simply have to find the coeffi- 
cient of the term proportional to 1 /L in the integrand. The coefficient of 1 /z in a power 
series expansion for f (z) is called the residue of f(z) at z = 0. It is shown in complex 
variable theory that the contour integral of a function f ( z )  around the contour C is 
2ni times the sum of the residues at the singularities within C: 

f ( z )  dz = 2rri[sum of residues]. 

The residue of the intcgrand in Eq. (6.46) is easy to find. Clearly the term p / z 2  does 
not contribute to the residue. Completing the square (U + i r /2nz) ' ,  we see that the 
coefficient of 1 / z  is i r U/rr . This gives 

which shows that 

D = 0, 
L = pur. (6.47) 

I 

The first of these equations states that there is no drag experienced by a body in 
steady two-dimensional irrotational flow. The second equation shows that there is a 
lift force L = pur perpendicular to the stream, experienced by a two-dimensional 
body of arbitrary cross section. This result is called the Kutba-Zhuwlovsky lzft the- 
orem, which was demonstrated in the preceding scction for flow around a circular 



cylinder. The result will play a fundamental role in our study of flow around airfoil 
shapes (Chaptcr 15). We shall sec that the circulation dcveloped by an airfoil is ncarly 
proportiofid to U, so that thc lift is nearly proportional to U 2 .  

Thc following points can also be dernonstratcd. First, irrotational flow over a 
finite three-dimensional object has no circulation, and there can be no nct force on 
the body in steady statc. Second, in an unsteady flow a force is required to push a body, 
essentially because a mass of fluid has to be accclerated from rest. 

Let us redrive the Kutta-Zhukhovsky lift theorem from considerations of vector 
calculus without referencc to complex variablcs. From Eqs. (4.28) and (4.33), for 
steady flow with no body forccs, and with I the dyadic equivalent of the Kronecker 
delta Sij 

FB = - ~ l ( p u u + p I - u ) . d A , .  

Assuming an inviscid fluid, u = 0. Now additionally assume a two-dimcnsional 
constant density flow that is uniform at infinity u = Ui,. Then, from Bernoulli's 
theorcm, p + p u 2 / 2  = p x  + pU2/2  = PO, so p = po - pu2 /2 .  Rderring to Figure 
6.17, for two-dimensional flow dA1 = ds x iJz, where here z is the coordinate out 
of the paper. We will carry out the intcgration over a unit depth in z so that thc rcsult 
for FB will be force pcr unit depth (in z). 

With r = xi, + yiyr dr = dxi,  +dyiy = ds, dA1 = ds x i ,  . 1 = -iy dx +ix dy. 
Now let u = Ui, + u', where u' + 0 a,. r 4 30 at least as fast as 1 / r .  Substituting 
for uu and u2 in the intcgral for Fg, wc find 

Fu =-.ll (VUi,i, + Uix(ufix + diY) + (u'ix + diy)ixU 

+ ufuf + (ixix + iyiy)[po/p - u2/2 - UU' 

- (ua + vf2)/21 (-ir d x  + i, d y ) } .  

F i g m  6.17 Domain or integration for the Kulltl-Zhukhovsky theorem. 



Let r += 00 so that the contour C is far from the body. The constant terms U2, 
p o / p ,  -U2/2 integrate to zero around the closcd path. Thc quadratic terms u’u’: 
(uR + vR)/2 5 I / r 2  as r + oc and thc perimeter of the contour increases only 
as r .  Thus the quadratic terms + 0 as r + o. Separating the force into x and y 
components, 

FB = -i,pU [(u’dy - v’dx) + (u’dy - u’dy)] - iypU (u’dy + u’dx). 

We note that the first intcgrand is u’ - ds x i,, and that we may add the constant 
Vi, to each of the integrands because thc integration of a constant velocity over a 
closed contour or surface will result in zero force. The integrals for the force then 
become 

i SE 

J,. 1 Fg = -ixpU (Vi, + u’) - dAl - iypU (Vi, + u’) - ds. 

The first integral is zero by Eq. (4.29) (as a consequence of mass conservation 
for constant density flow) and the second is the circulation r by definition. Thus, 

F g  = -iYpUr (force/unit depth), 

where r is positive in the counterclockwise sense. We see that there is no force 
component in the dircction af motion (drag) undcr the assumptions necessary for 
the derivation (steady, inviscid, no body forces, constant density, two-dimensional, 
uniform at infinity) that were bclieved to be valid to a reasonable approximation for 
a wide varicty of flows. Thus it was labeled a paradox-d’ Alembert’s paradox (Jean 
Lc Rond d’Alembert, 16 November 1717-29 October 1783). 

12. Soume neur n Wall: MeChod oJlmages 
The melhod of imagcs is a way of determining a flow field due to one or more 
singularides near a wall. It was introduced in Chapter 5 ,  Section 7, where vortices 
near a wall were examined. We found that the flow due to a line vortex near a wall can 
be found by omitting the wall and introducing instead a vortex of opposite strength 
at the “image point.” The combination gencrates a straight streamline at the location 
of the wall, thereby satisfying the boundary condition. 

Another example of this technique is given here, namely, the flow due to a line 
source at a distancc u from a straight wall. This flow can be simulated by introducing 
an imagc source of the same strength and sign, so that thc complcx potential is 

m rn m 
w = -In (z -a) + - In(z + a) - - ha2,  

25r 2n 2n 
m m 
25r 2?r 

= -  1 n ( x ~ - y * - u ~ + i 2 x y ) - - 1 1 n a ~ .  (6.48) 

Wc know that the logarithm of any complex quantity C = I< I exp ( iQ)  can be written 
as In 5‘ = In 15 I + io. The imaginary part of Eq. (6.48) is lhereforc 

m 2-V @ = - tan-’ 
2?c x2 - y 2  - u2 
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Figorc 6.18 Irrotational flow due to two equal souzccs. 

from which the equation of streamlines is found a,. 

The streamline pattern is shown in Figure 6.1 8. The x and y axes form part of the 
streamline pattern, with the origin as a stagnation point. It is clear that the complex 
potential Eq. (6.48) represents three interesting flow situations: 

( I )  flow due to two equal sourCes (entire Figurc 6.18); 
(2) Bow due to a source near a plane wall (right half of Figure 6.18); and 
(3) flow through a narrow slit in a right-angled wall (first quadrant of Figure 6.18). 

13. Conformal Mqping 
We s h d  now introduce a mcthod by which complex flow patterns can be transformed 
into simple ones using a technique known as conjormal mcrpping i n  complex variable 
theory. Consider the functional relationship w = f(z), which maps a point in the 
w-plane to a point in the z-plane, and vice versa. We shall prove that infinitesimal 
figures in thc two planes preserve their geometric similarity if UJ = f ( z )  is analytic. 
Let lines C, and Ci in the z-planc be transformations of the curves C, and CL in the 
w-plane, respectively (Figure 6.19). Let Sz, S’z, Sw, and S’u; be infinitesimal elements 
along thc curves as shown. The four elements are related by 

d ti) Sw = -Sz, 
dz  
du: , 

b‘lU = -8 z. 
dz  

(6.49) 

(6.50) 
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Figure 6.19 Preservtllion of geometric similarity of small elemcnts in conformal mapping. 

w-plane 

6.20 Flow pattans in thc wplane and the z-planc. 

If w = f(z) is analytic, thcn dw/dz  is independent of orientation ofthe elements, and 
therefore has the same valuc in Eq. (6.49) and (6.50). These two equations ihcn imply 
that the elcments Sz and S'z are rolatcd by h e  sume arnounl (cqual to the argument 
of dw/de)  to obtain the elements S w  and S'UJ. It follows that 

a=B,  

which demonstrales that infinitesimal figures in the two planes are geometrically 
similar. Thc demonstration fails at singular point. at which dw/dz  is either zero or 
infinite. Because dw/dz is a function of z, the amount of magnification and rotation 
Lhdt an element Sz undergoes during transformation from the z-planc to thc w-plane 
varies. Consequently, luQe figures become distorted during the transformation. 

In application of conformal mapping, wc always choosc a rectangular grid in the 
w-plane consisting of constant Q, and 9 lines (Figure 6.20). In other words, wc define 
I$ and @ to be the real and imaginary parts of w: 

IL' = Q, + i@.  



The rtctangular net in thc w-plane represents a uniform flow in this plane. Thc con- 
stant 4 and $ lines are transformed into ccrtain curves in the z-plane through the 
transformation w = J'(z) .  The parfern in the z-plane is the physical pattern under 
investigation, and the images of constant 4 and @ lines in the z-plane form the equipo- 
tential lines and streamlines, respectivcly, of the desired flow. We say that UI = f(z) 
transforms a uniform flow in the w-plane into the desired flow in the z-plane. In fact, 
all he  preceding flow patterns studied through the transformation UI = f(z) can bc 
interpreted this way. 

If the physical pattern under investigation is too complicated, we may introduce 
intermediate transformations in going from the w-plane to the z-plane. For example, 
the transformation u; = In (sin z) can be broken into 

w = In( J' = sinz. 

Velocity components in the z-plane are given by 

An example of conformal mapping is shown in the next section. Additional applica- 
tions are discussed in Chapter 15. 

14. Flow urvund an Llliplic C'inder with Cimulation 
We shall briefly illustrate the method of conformal mapping by considering a trans- 
formation that has important applications in airfoil theory. Consider the following 
Iransformation: 

(6.51) 
b2 

z = J ' + -  
J ' :  

relating z and J' planes. We shall now show hat  a circle of radius b centered at the 
origin of the <-plane transforms into a straight line on the real axis or the z-plane. To 

Figure 6.21 
z = 5 -k I > ' / ( .  

Transformulion of a circle into an cllipse by means of thc Zhukhovsky transl-ormation 



prove this, consider a point < = b exp (io) on the circle (Figure 6.21), for which the 
corresponding point in the z-plane is 

z = bei9 + be-io = 2b cos 8.  

As 8 varies from 0 to A, z goes along the x-axis from 2h to -2h. As 8 varics from 5c 

to k, z goes from -2h to 2b. The circle of radius b in the <-plane is thus mnsformcd 
into a straight h e  of length 4b in the z-plane. It is clear that the region outside the 
circle in <-plane is mapped into the entire z-plane. It can be shown that the region 
inside the circle is also transformed into the entire z-plane. This, howevcr, is a1 no 
concern to us because we shall not consider the interior of the circle in the <-plane. 

Now consider a circle of radius a > b in the <-plane (Figure 6.21). Points 3' = 
a exp (io) on this circle are transformed to 

(6.52) 

which traces out an cllipse For various values of 8. This becomes clear by elimination 
of 8 in Eq. (6.52), giving 

(6.53) X 2  Y 2  + 
(a + b2/a)* (a - b2/a)2 = '. 

For various values of a =- b, Eq. (6.53) represents a .family of ellipses in the z-plane, 
with loci at x = f 2b. 

The flow around one of these cllipses (in the z-plane) can be determined by 
first hding the flow around a circle of radius a in the <-plane, and then using the 
transformation Eq. (6.5 1 ) to go to the z-plane. To be specific, suppose the desired flow 
in the z-plane is that offlow around an elliptic cylinder with clockwise circulation r, 
which is placed in a stream moving at U .  The corresponding flow in the <-plane is 
that of flow with the same circulation around a circular cylinder of radius u placed in 
a stream of the same strength U for which the complex potential is (see Eq. (6.37)) 

(6.54) 

The complex potential w ( z )  in the z-plane can be found by substituting the inverse 
of Eq. (6.5 I ) ,  namcly, 

< = i z  + ;(z2 - 4h2)'/2, (6.55) 

into Eq. (6.54). (Notc that the negative root, which falls inside h e  cylinder, has bcen 
excluded h m  Eq. (6.55).) Instead of finding the complex velocity in thc z-plane by 
directly differentiating IU(Z) ,  it is easier to find it as 

. dw d w d <  
u - - I v =  - = -- 

dz  d <  dz '  

The resulting flow around an elliptic cylinder w i h  circulation is qualitatively quite 
similar to that around a circular cylinder as shown in Figure 6.14. 



1.5. ihiquencws oJlrrO~ationul Flown. 
In Section 10 we saw that plane irrotational flow over a cylindrical object is nonunique. 
Tn particular, flows with m y  amount of circulation satisfy the same boundary 
conditions on the body and at infinity. With such an example in mind, wc are ready 
to make certain general statements concerning solutions of the Laplace equation. We 
shall see that the topology of the region of flow has a great influence on the uniqueness 
of the solution. 

Before we canmake these statements, we need to define certain terms. A reducible 
circuit is any closed curve (lying wholly in the flow field) that can be reduced to a 
point by continuous dcformation without ever cutting through the boundaries of thc 
flow field. We say that a region is sin& connected if every closed circuit in the region 
is reducible. For examplc, the region of flow around a body of revolution is reducible 
(Figurc 6.22a). In contrast, the flow field over a cylindrical object of infinite length is 
multiply connected because certain circuits (such as C1 in Figure 6.22b) are reducible 
while others (such as C2) are not reducible. 

To see why solutions are nonunique in a multiply connectcd region, consider the 
two circuits CI and Cz in Figure 6.22b. The vorticity everywhere within C1 is zero, 
thus Stokes’ theorem requires that the circulation around it must vanish. Tn contrast, 
the circulalion around C2 can have any strength r. That is, 

(6.56) 

where the loop around the integral sign has been introduced to emphasize that the 
circuit C2 is closed. As the right-hand side of Eq. (6.56) is nonzero, it follows that 
u 9 dx is not a “perfect differential,” which means that the line integral between any 
two paints depends on the path followed (u dx is called a p e ~ e c t  diflerentiul if it 
can be expressed as the diffcrential of a .function, say as u dx = d f .  In that case the 
line intcgral around a closed circuit must vanish). In Figure 6.22b, the line inlegals 
between P and Q are the same for paths 1 and 2, but not the same for paths 1 and 3. 
Thc solution is therefore nonunique, as was physically evident from the whole family 
of irrotational flows shown in Figure 6.14. 

i /c 
0 

Figure 6.22 Singly connccld and multiply conncctcd regions: (a) singly connected, (h) multiply con- 
nec ld .  
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Tn singly connected regions, circulation around every circuit is zero, and the solu- 
tion of V2q5 = 0 is unique when values of q5 are specified at the boundaries (the 
Dirichkt problem). When normal derivurives of q5 are specificd at the boundary (the 
Neumaiznprohlem), as in thc fluid flow problems studied here, the solution is unique 
within an arbitrary additive constant. Because the arbitrary constant is of no conse- 
quence, we shall say that the solution of the irrotational flow in a singly connccted 
region is unique. (Note also that the solution depends only on the instantaneous 
boundary conditions; the differential cquation V2q5 = 0 is independent oft.) 

Irrotational flow around a plane two-dimensional object is non- 
unique because it allows an arbitrary amount of circulation. Irrotational flow around 
a finite three-dimensional object is unique because there is no circulation. 

TnSections4and5ofChapter5 welearnedthatvorticityissolenoidal ( V . 0  = 0), 
or that vortex lines cannot begin or end anywhere in the fluid. Here we have learned 
that a circulation in a two dimensional flow results in a force normal to an oncoming 
stream. This is used to simulatc lifting flow over a wing by the following artifice, 
discussed in more detail in our chapter on Aerodynamics. Since Stokes’ theorem tells 
us that the circulation about a closed contour is equal to the flux of voaicity through 
anj7 surface bounded by that contour, the circulation about a thin airroil section is 
simulated by a continuous row of vortices (a vortex sheet) along the centerline of 
a wing cross-scction (the mean camber line d an airFoil). For a (real) finite wing, 
these vortices must bend downstream to form trailing vortices and terminate in starting 
vortices (far downstrcam), always forming closed loops. Although the wing may bc 
a finitc three dimensional shape, the conlour cannot cut. any d l h c  vortex lines without 
changing the circulation about the contour. Generally, the circulation about a wing 
docs vary in the spanwise direction, being a maximum at the root or centerline and 
tending to zero at the wingtips. 

Additional boundary conditions that the mean cambcr line be a streamline and 
that areal trailing edge be a stagnation point serve to rendcr the circulation distribution 
unique. 

Summury: 

3 6. Xuriwrical Soludion of T’lane lrm6ationUl Flow 
Exact solutions can be obtained only for Rows with simple geometries, and approxi- 
mate methods of solulion become necessary for practical flow problems. One of these 
approximate methods is that of building up a flow by superposing a distribution of 
sources and sinks; this method is illustrated in Scction 21 for axisymmelric flows. 
Another mcthod is to apply perturbation techniques by assuming that the body is thin. 
A third method is to solve the Laplace equation numerically. In this section we shall 
illustrate the numerical method in its simplest form. No attcmpt is made here to use 
the most efficient method. It is hopcd that the reader will have an opportunity to learn 
numerical mcthods that are becoming increasingly important in the applied sciences 
in a separate study. Sec Chapter 11 for introductory materid on several important 
techniques of computational fluid dynamics. 



Finite Difference Form of the Laplace Equation 
In finite differencc techniques we divide the flow field into a system of grid points, 
and approximate the derivatives by taking differenccs between values at adjacent grid 
points. Let the coordinates or a point be rcpresented by 

x = i A x  ( i = 1 , 2  ,..., ), 

y = .j Ay ( . j  = 1.: 2,. . . :). 
Here, Ax and Ay arc h e  dimensions of a grid box, and the integers i and j are the 
indices associated with a grid point (Figurc 6.23). Thc value of a variable + ( x ,  y )  
can be represented as 

+(x. y )  = @(i Ax, j AY) + i ! j :  

where $ii.,i is the value of 11. at thc grid point (i, j). Tn finite differencc form, the first 
derivatives of + are approximatcd a,. 

The quantities on thc right-hand side (such as 1 / 4 + 1 p , ~ )  are half-way between the 
grid points and therefore undefined. However, this would not bc a difficulty in the 

k M 4  

Figure 6.23 Adjacent grid boxcs in a nurncrical calculation. 



present problem because the Laplace equation does not involve fist derivatives. Both 
derivatives are written as first-order centered differences. 

The finite difference form of az$/axz is 

Using Eqs. (6.57) and (6.58), the Laplace equation for the streamfunction in a plane 
two-dimensional flow 

a*@ a2$ -+ -=oo ,  
ax2 ay2 

has a finite difference rcpresentation 

Taking Ax = Ay, for simplicity, this reduces to 

which shows that $ satisfies the Laplace equation if its value at a grid point equals 
the avemge of the values at the four surrounding points. 

Simple Iteration Technique 
We shall now illustrate a simple method of solution of Eq. (6.59) when the values 
of @ are given in a simple geometry. Assume the rectangular region of Figure 6.24, 
in which the flow field is divided into 16 grid points. Of these, the values of $ are 
known at the 12 boundary points indicated by open circles. The values of $ at the 
four intcrior points indicated by solid circles are unknown. For these interior points, 
the use of Eq. (6.59) gives 



1 3 

1.2 

294 3.4 414 

191 291 3.1 4.1 
Figure (1.24 Network or grid points in n rectangular region. I3oundary points with known values m- 
indicntcd by open cirulcs. The four interior points with unknown values arc indicated by solid circlcs. 

In the preccding equations, the known boundary values have been indicated by a 
supeixcript "B." Equation set (6.60) represents four linear algebraic equations in four 
unknowns and is thereforc solvable. 

Tn practice, however, thc flow field is likely to have a large number of grid points, 
and the solution of such a large niunbcr of simultaneous algebraic equations can only 
bc performed using a computer. One af the simplest tcchniques of solving such a 
sct is the itemtion merliod. Tn this a solution is initially a3sumed and then gradually 
improved and updated until Eq. (6.59) is satisfied at evcry point. Suppose the valucs 
of 3 at the four unknown points of Figure 6.24 are initially taken a,. zero. Using Eq. 
(6.60j, thc first estimate of $ 2 , ~  can bc computed as 

The old zero value for & 2  is now replaced by the preceding value. The first estimatc 
for the n u 1  grid point is then obtained as 

where tbe upduted value af @ ~ . 2  has becn used on the right-hand side. In this manner. 
we can sweep over the entire rcgion in a systcmatic inanner, ufwuys usirzg the hrest 
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available value at the paint. Once the first estimate at every point has been obtained, 
we can sweep over the entire region once again in a similar manner. The process is 
continued until the values of & j  do not change appreciably between two successive 
sweeps. The iteration process has now “converged.yy 

The foregoing scheme is particularly suitable for implementation using a com- 
puter, whereby it is easy to replace old values at a point as soon as a new value 
is available. In practice, a more efficient technique, for example, the successive 
over-relaxation method, will be used in a large calculation. The purpose here is not to 
describe the most efficient technique, but the one which is simplest to illustrate. The 
following example should make the method clear. 

’ 3.33 

1 1.67 

Example 6.1. Figure 6.25 shows a contraction in a channel through which the flow 
rate per unit depth is 5 m2/s. The velocity is uniform and parallel across the inlet and 
outlet sections. Find the flow field. 

Solution: Although the region of flow is plane two-dimensional, it is clearly 
singly connected. This is because the flow field interior to a boundary is desired, so 
that every fluid circuit can be reduced to a point. The problem therefore has a unique 
solution, which we shall detennine numerically. 

We know that the difference in 9 values is equal to the flow rate between two 
streamlines. Tf we take @ = 0 at the bottom wall, then we must have @ = 5 m2/s at the 
top wall. We divide the field into a system of grid points shown, with Ax = Ay = 1 m. 
Because A@/Ay (= u) is given to be uniform across the inlet and the outlet, we must 
have A$ = 1m2/s at the inlet and A@ = 5/3 = 1.67m2/s at the outlet. The 
resulting values of @ at the boundary points are indicated in Figure 6.25. 

2 

1 

e - - - 1 
0 0  0 0 0  

4 )  0 0 0 

1.1 2,l 
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I r. . i . r i y n i t r i r / r k  Irrr~t~riir,ricil I.yorr: 181 

The FORTRAN code for solving the problem is as follows: 

DIMENSION S(10, 6 )  

30 10 I=l, 6 
1 0  S ( 1 , l )  = o .  

DO 20 J = 2 , 3  
20 S ( 6 ,  J) = O .  

b Set $ = 0 on top and bottom walls 
DO 30 I = 7 ,  1 0  

30 S ( 1 ,  3 )  = O .  
DO 40 I=l, 10 

40 S ( 1 ,  6 )  = 5 .  

Set $ at inlet I DO 50 J = 2 ,  6 
50 S ( 1 ,  J) = J-1.  

Set fr at outlet DO 60 J = 4 , 6  
S(10, J) = ( 5 - 3 )  * ( 5 .  / 3 . )  6C 

30 1 0 0  N=l, 20 
30 70 I = 2 , 5  
30 70 J = 2 ,  5 

70  S ( 1 ,  J) = ( S ( 1 ,  J+1) + S ( I ,  J-1) + S ( I + 1 ,  J)  + S ( I - l ,  J ) )  / 4 .  
DO 80 J = 6 ,  9 
DO 80 J = 4 , 5  

80 S ( 1 ,  J) = ( S ( 1 ,  J+1) + S ( I ,  J-1) + S ( I + l ,  J) + S ( I - l ,  J ) )  / 4 .  

100 CONTINUE 
PRINT 1, ( ( S ( 1 ,  J ) ,  I=l, 101, J=1, 6) 

END 
1 FORMAT ( '  ' ,  10 E 1 2 . 4 )  

Hem, S denotes the stream fuiicuon $. The code first sets the boundary values. 
The iteration is pcrformed in the N loop. Tn practice, iterations will not be perfornied 
arbitrarily 20 timcs. Instcad the convergence of the iteration process will be checked, 
and the process is continued until some reasonable cirterion (such as less than 1% 
changc at every point) is met. These improvements are casy to implement, and thc 
code is left in its simplest form. 

The vali:es of I) at thc grid points aftcr 50 itcrations, and the corresponding 
sn-eamnlincs, are shown in Figure 6.26. 

It is a usual practice to iterate until successive itcrates change only by aprcscribed 
small amount. Thc solution is thcn said to have "convergcd." However. n caution is 
in order. To be sure a solution has been obtaincd, all of the terms in the cquation must 
be calculated and thc satisfaction of the equalion by the "solution" must be verified. 

Scveral examples ohrotational flow around plane two-dimensional bodies werc given 
in the preccding sections. We used Cartesian ( x :  y )  and plane polar (r,  8) coordinates. 
and found that thc problcni involved thc solution of the Laplace equation in 4 or $ 
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Figure 6.27 (a) Cylindrical and spherical courdinakr; (b) axisymrnctric flow. In Fig. 6.27, the cwrdinalc 
axes are not aligned according Lo Ihe convcntionril definitions. Specifically in (a), the polar axis fmm which 
0 ismeasumlisusi~llytdcen lobetlicz-axisandq isincasuredfmm Ihes-axis.In(b),theaxisofsyinmetry 
is usually takcn to be thc z-axis and the angle 0 01 Q is measurcd from the x-axis. 

with specified boundary conditions. We found that a very powerful tool in the analysis 
was the method of complex variables, including conformal transformation. 

Two streamfunctions are required to describe a fully three-dimensional 
flow (Chapter 4, Section 4), although a velocity potential (which satisfies the 
three-dimensional version of V2q5 = 0) can be defined if the flow is irrotational. 
If, however, the flow is symmetrical about axis, one of the streamfunctions is known 
because alJ streamlines must lie in planes passing through the axis of symmetry. 111 
cylindrical polar coordinates, one strcamfunction, say, x ,  may be taken as x = -p. 
In spherical polar coordinates (see Figure 6.27), the choice x = -p is also appro- 
priate if all streamlines are in p = const. planes through the axis of symmetry. Then 
pu = Vx x V@. We shall see that the streamfunction for these axisymmetic flows 
does not satisfy the Laplace equation (and consequently the method of complex vari- 
ables is not applicable) and the lines of constant q5 and @ are not orthogonal. Some 



simple examples of asisymmelric irrotational flows m u n d  bodies oirevolution, such 
as sphercs and airships. will be givcn in the rest of this chapler. 

In axisymniewic flow pi-oblcms, it is convenient to work with both cylindrical 
and spherical polar coordinates, often going from oiie sct to the other in the same 
probln,in. In this chapter cylindrical coordinates will be denoted by (R, (pI s), and 
sphcrical coordinates by (r, 0, (p). These are illustrated in Figure 6.27a, from which 
their rclatioii to Cartesian coordinates is secn lo be 

cy1 i ndrical sphcrici 
~~ ~~ ~ 

s = x x = r cos 0 (6.61) 
y = r sin 0 coscp 

5 = Ksincp : = r s h B s i n q  
= RCOSV 

Note that r is the distance from the origin, whereas R is the radial distance from 
the x-axis. The bodies of rcvolution will have their <axes coinciding with the x-axis 
(Figurc 6.2%). The resulting Bow pattern is independent of the azimuthal coordiiiate 
(p, and is identical in all planes containing the x-axis. Further, the velocity component 
up is xro. 

Important expressions for curvilinear coordinates an: listed hi Appendix B. For 
axisyinmclric flows, several relcvant expressions are presented in thc Eollowing for 
quick rcfcrence. 

Con fin Mi0 eqiiar ion : 

au, 1 a - + --(RuR) = 0 (cylindrical) (6.62) 
a.y R aR  

(Z6e sine) = 0 (spherical) (6.63) 
l a  ,l i a  
-7(r-urj  + -- 
r Or sine a0 

Lapluce cqiialioii: 

(6.64) 

V-4 = - [ A  ( r - G ) ]  + 7T r- sin8 dt) (sine$) = 0 (spherical) (6.63 

, 1 3  
V-4=-- a R  ( R- ig) + = 0 (cylindrical) 

- 1  ,ih$ 1 il 
1.2 ar 

auR ilux 
i)x aR 

(Up - - - (cylindrical) (6.66) 

(6.67) 



18. Simurnfiiriclion and hidocity Polwitial fiw 
,4xi~yninzetric Flow 

A streamfunction can be defined for axisymmetric flows becausc the coiitinuity equa- 
tion involves two terms only. In cylindrical coordinates, the continuity equation can 
be written as a a 

-(RZt.r) + - (RuR)  = 0 
a.r a R  

(6.68) 

which is satisfied by u = -Vp x V+, yielding 

1 a* u =-- 
' - R a R  

(cylindrical). (6.69) 
1 a* 
R ax U R  = ---- 

The axisymmetric stream function is sometimes called the S~okes streumfiutctiun. Tt 
has units of m3/s, in contrast to the streamfunction for plane flow, which has units of 
m2/s. Due to the symmetry of Row about the x-axis, constant + surfaces arc surfaces 
of revolution. Consider two streamsurfaces described by constant values of + and 
$ + d$ (Figure 6.28). The volumetric flow rate through the annular space is 

where Eq. (6.69) has been used. The form d$ = d Q/2n shows that the difference in 
+ values is the flow rate between two concentric streansurfaces per unit radian angle 
around the axis. This is consistent with the extended discussion of streamfunctions 
in Chapter 4, Section 4. The factor of 2rc is absent in plane two-dimensional flows, 
where d+ = d Q is the flow rate per unit depth. The sign convention is the same as 
for plane flows, namely, that + iiicreases toward the left if we look downstream. 

If the flow is also irrotational, then 
a11R au, 

%=---  = 0. 
a.r a R  

On substituting Eq. (6.69) into Eq. (6.70), we obtain 

n2$ 1 a$ a2@ 
aR2 R ~ R  ax' 

+-=0, - - -- 

(6.70) 

(6.71) 

which is different from the Laplace equation (6.64) satisfied by 4. It is easy to show 
that lines of constant 4 and * are not orthogonal. This is a basic difference between 
axisyininelric and plane flows. 

Tn spherical coordinatcs, the streamfhcdon is defined as u = -Vq x V$, 
yiclding 

1 a$ 
r*sine as 

1 a$ 

u, = -- 
(spherical), (6.72) 

ug = --XZ* 
which satisfies the axisymebic continuity equation (6.63). 
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Figure 6.28 Axisyniinctric streiunl’unclion. Thc volume Row riuk rhmugh two surainswhccs is %A$. 

The velocity polentidl for axisynimetric flow is defined as 

cy1 indric:ll sphcricnl 

(6.73) 

which sAsfies the condition of irrotationality in a plane containing the x-axis. 

Axisynimelric imtational flows can be devcloped in the same nminer a,. plane flows, 
except that complex variables cannot be used. Several clementary flows are reviewed 
briefly in this section, and some practical flows are treated in thc following sections. 

Uniform Flow 
For a uniform flow U parallel to the x-axis, thc velocity potential and streamfunclion 
m 

cylindrical spherical 

@ - U x  @ = IJr cos 0 (6.74) 
$ = SUR2 = 4 ~ r ’ s i i i ’ ~  

These cxpressions can be verified by using Eqs.  (6.69), (6.72), and (6.73). Equi- 
potential surfaces are planes normal to the x-axis, and streamsurfaces are coaxial 
tubcs. 
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Point Source 
For a point source of strength Q (m3//s), the velocity is ur = Q/4ar2.  It is easy to 
show (Exercise 6) that in polar coordinates 

Q Q fp = -- = -- cos8. 
47t r 47t 

(6.75) 

Equipotential surfaces are spherical shells, and streamsurfaces are conical surfaces 
on which 8 = const. 

Doublet 
For the limiting combination of a source4nk pair, with vanishing separation and 
large strength, it can be shown (Exercise 7) that 

(6.76) 

where in is the strength of the doublet, directed along the negative x-axis. Streamlines 
in an axial plane are qualitatively shnilar to those shown in Figure 6.8, except that 
they are no longer circles. 

Flow around a Sphere 
Irrotational flow around a sphere can be generated by the superposition of a uniform 
stream and an axisymmetric doublet opposing the stream. The stream function is 

(6.77) 

This shows that @ = 0 for 8 = 0 or a (any i'), or for i' = (2m/U)' /3  (any e). 
Thus all of the x-axis and the spherical surface of radius a = (2m/U)'I3 form the 
streamsurface + = 0. Streamlines of the flow are shown in Figure 6.29. Tn t e r n  of 
the radius a€ the sphere, velocity components are found from Eq. (6.77) as 

(6.78) 

Figure 6.29 IrrOk+tional flow part II sphere. 



The pressure cocfficieiit on the surface is 

(6.79) 

which is syminemcal, again denionstrating zero drag in steady irrotational flows. 

20. /.‘low amrind (I Strvamliried Body ofltc?r?oliilion 

As in planc Rows, the motion around a closed body of rcvolution can be generated 
by superposition of a source and a sink or equal sirength on a unifoim stream. The 
closed surfacc becoincs “streamlined” (that is, has a gradually tapering tail) if, ror 
example, thc sink is  distributed over a finitc length. Consider Figii-e 6.30, wherc there 
is a point source Q (m3/s) at the origin 0, and a line sink distributed on the x-axis 
froin 0 to A. Let thc volumc absorbed per unit length of the line sink be k (in2/s). 
An elemcntal length d t  of thc sink can be regarded as a point sink of strength k d t ,  
for wsch  ihe streamrimction at any point P is [sce Eq. (6.75)] 

The totd streanifunction at P due to the entire line sink from 0 to A is 

(6.80) 

X 

-a* 

Figure 6.30 
line sink from 0 lo A. 

Lrrohiional Ilow pas1 il s1maniliiid body gencraied by il point sc)urce at 0 and il diztributcd 



The integral can be evaluated by noting that x - .!f = R cot a. This gives de = 
R da/ sin’ a because .r and R remain constant as we go along the sink. The stream- 
function of the line sink is therefore 

d(sina!) -, k R 
4sr sin2 a! 

kR 1 1 k 
4rt sin8 s l~ la!~  4n 

= - [- - -1 = - (r  - T I ) .  (6.8 1 ) 

To obtain a closed body, we must adjust the strengths so that the efflux from the source 
is absorbed by the sink, that is, Q = ak. Then the streamfunction at any point P due 
to the superposition of a point sowre of strength Q, a distributed line sink of strength 
k = Q/a,  and a uniform stream of velocity U along the x-axis, is 

Q Q 1 
4n 4na 2 

+ = -- cos8 + -(r - rl) + -ur2 sin28. (6.82) 

A plot of the steady streamline pattern is shown in the bottom half of Figure 6.30, 
in which the top half shows instantaneous streamlines in a frame of reference at rest 
with the fluid at infinity. 

Here we have assumed that the strength of the line sink is uniform along its 
length. Other interesting streamlines can be generated by assuming that the strength 
k($) is nonuniform. 

21. P’low around an Arbilmry Body tf Revolution 
So far, in this chapter we have been assuming certain distributions of singularities, and 
determining what body shape results when the distribution is superposed on a uniform 
stream. The flow around IL body of given shape can be simulated by superposing a 
uniform stream on a series of souires and sinks of unknown strength distributed on a 
line coinciding with the axis of the body. The strengths of the sources and silks are then 
so adjusted that, when combined with a givcn uniform flow, a closed streamsurface 
coincides with the given body. The calculation is done numerically using a computer. 

Let the body length L be divided into N equal segments of length At ,  and let k,, 
be the strength (m’/s) of one of these line sources, which may be positive or negative 
(Figure 6.3 1). Then the stredunction at any “bod17 point” m due to the line source 
n is, using Eq. (6.81), 

where the negative sign is introduced because Eq. (6.81) is for a sink. When combined 
with a uniform stream, the streamfunction at m due to all N line sources is 



n 

Pigun! 6.31 
sources. 

Flow amind an arhitrnry axisyrnineeic shtlpc generaicd by superposition ofil rjcrics of linc 

Setting I),,, = 0 for all N values of in, we obtain a set of N linear algcbraic equations 
in N unknowns k,, (n = I ,  2 ,  . . . , N), which can be solvcd by the itcration technique 
described in Section 16 or some other inatrix inversion routine. 

22. Coiicliidirig Kernarks 
The theory of potential flow has reachcd a highly developed stage during the last 
250 years bccause of the efforts of theoretical physicists such as Euler, Bernoulli, 
D’ Alcmbert, Lagrangc, Stokes, Helmholtz, Kirchholl, and Kelvin. The special inter- 
est in thc subject has resulted from the applicability of potential thcory to other fields 
such as heat conduction, elasticity. and clectromagnetisrn. When applied to fluid flows, 
howcver, thc theory resulted in the prediction of zero drag on a body at variance with 
observations. Meanwhile, thc theory of viscous flow was developed during the mid- 
dle of the Nineteenth Century, after the NavicrStokcs equations werc fonnulated. 
The viscous solutions generally applied cither to veiy slow flows where the nonlinear 
advection terms in the cquations of motion were negligible, or to flows in which the 
advective terms were identically zero (such as the viscous flow through a straight 
pipe). The viscous solutions were highly rotational. and it was not clear where the 
irrotationai flow theory was applicahle and why. This was left for Prandtl to explain, 
as will be shown in Chapter IO. 

It is probably fair to say that thc theory ol irrotational flow does not occupy the 
center stage in fluid mechanics any longer. although it did so in the past. However, 
the subject is still quitc iiseful in several fields, especially in aerodynamics. We shall 
see in Chapter 10 that the pressure distribution around streamlined bodies can slill be 
predictedwith afair dcgree of accuracy froin the irrotational flow theory. InChapk: 15 
we shall sec that thc lift of an airfoil is duc to the development of circulation around 
it, and the magnitude of thc lilt a p e s  with the Kutla-Zhukhovsky lift theorcm. Thc 
technique of confonml mapping will also be essential in our study o€ flow around 
airfoil shapes. 



L?x?r.cixcs 
1. In Section 7, the dou@et potential 

w = p/z. 

was derived by combining a sourcc and a sink on the x-axis. Show that the same 
potential can also be obtained by superposing a clockwisc vortex of circulation -r 
on the y-axis at y = E,  and a counterclockwise vortex of circulation r at y = -E ,  

and letting 6 + 0. 

2. By integrating pressure, show that the drag on il plane half-body (Scction 8) 
is zero. 

3. Graphically generate the slreamlinc pattern for a plane half-body in rhc fol- 
lowing manner. Take a source of strength rn = 2001n2/s and a uniform stream U = 
10m/s. Draw radial streamlines €om the source at equal intervals of A0 = n/lO, 
with the cormsponding streamfunction interval 

Now draw s~anilincs of the uniform flow with thc same interval, that is, 

A@slrelm = U Ay = 10m2/s. 

This requires Ay = 1 m, which you can plot assuming a linear scale of 1 cm = 1 m. 
Now connect points of cqual3 = @wmt + @stma,,, . (Most students enjoy doing this 
excrcise ! ) 

4. Take a plane sourcc of slrength rn at point (-u, 0), a plane sink of equal 
strength at (a. 0), and superpose a uniform stream U directed along the x-'Wis. Show 
that lhere are two stagnation points locatcd on the x-axis at points 

m 

Show that the streamline passing through the stagnation points is given by = 0. 
Verify that thc line y? = 0 represents a closed oval-shaped body, whose maximum 
width h is given by the solution of the equation 

n Ull 
h = a cot (--) . 

The body gcneratcd by the supcrposition of a uniform stream and a source-sink pair is 
called a Rankine body. It becomes a circular cylinder as the source-sink pair approach 
cach other. 

5.  A two-dimensional potential vortex with clockwise circulation 1- is located at 
point (0, a)  above a Rat plate. Thc plalc coincides with the x-axis. A uiiifmn stream 
U direclcd along the x-axis flows over the vortex. Sketch the flow paltern and show 



that it represents thc flow ovcr an oval-shaped body. [Hint: htmduce the imagc vortex 
and locate the two stagnation points on the x-axis. ]  

If thc pressure at x = f o c  is p,xc;r and that h e l m  the plate is also p X ,  thcii show 
that the pressure at any point on the plate is given by 

Show that the total upward force on the plate is 

6. Consider a poinl source of strength Q (m'/s). Argue that the velocity com- 
ponents in spherical coordinates are U S  = 0 and it,. = Q/4nr2 and that the velocity 
potential andstreamfunctionmustbeoftheform# = # ( r )  and$ = +((e).Iiitcgrating 
the velocity, show that # = -Q/4nr  and @ = -Q cos ( e / 4 ~ .  

7. Consider a point doublet obtained as the limiting combination of a point 
source and a point sink as the scparation goes to zero. (See Section 7 for its two 
dimensional counterpart.) Show that the vdocity potential and streamfunction in 
spherical coordinates arc # = m cosB/r2 and + = -in sin2€J/r, where ni is the 
limiting value of Q Ss/4sr, with Q as the sourcc strength and 6s as the separation. 

8. A solid hemisphere of radius (i is lying on a Bat plate. A uniform stream U is 
flowing over it. Assuming irrotational flow, show that the density of the material must 
bc 

33 u2 
Ph 2 P (1 + G--) 9 

lo keep it on the plate. 

9. Considcr the plane flow around a circular cylinder. Use the Blasius theorem 
equation (6.45) to show that the drag is zero and thc lift is L = pur. (In Section 10. 
we derived thcse results by integrating the pressure.) 

10. There is a point source of strength Q (m3/s) at the origin, and a uniform 
line sink of strength k = Q/u  extending from s = 0 to x = a. The two are combined 
with a uniform stream LT pwdllel to the x-axis. Show that the combination represents 
the flow past a closed surface of revolution of airship shape, whose total length is Lhe 
difference of the roots of 

x2 x Q - (- f 1) = - 
a2 a 4z uti2 

11. Using a computer, determine the surface contour of an axisymmetric 
half-body formed by a linc source of strength k (m2/s) distributed uniformly along 
the x-axis from x = 0 to x = (I and a uniform stream. Note that the nose is more 
pointed than that formed by the combination of a point source and a uniform stream. 



By a mass balance (see Section 8), show that the far downstream asymptotic radius 
of the Id-body is r = Jm. 

12. For the flow described by Eq. (6.30) and skctched in Figure 6.8, show for 
p > 0 that it < 0 for y < x and u > 0 for y > x .  Also, show that v < 0 in the first 
quadrant and v > 0 in the second quadrant. 

13. A hurricane is blowing over a long “Quonset hut:’ that is, a long half-circular 
cylindrical cross-section building, 6 rn in diameter. If the velocity far upstream is 
iYX = 40m/s and pOc = 1.003 x 16N/m, pm = l.23kg/m3, find the force per 
unit depth on the building, assuming the pressure inside is pm. 

14. In a two-dimensional constant density potenlial flow, a source of strength in 
is locdtcd N meters above an infinite plane. Find the velocity on the plane, the pressure 
on the plane, and the reaction force on the planc. 
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1. In tmdt ion  
It is perhaps not an overstatement to say that wave motion is h e  most basic featurc 
of all physical phenomena. Waves are the meam by which information is transmitted 
bctween two points in space aid timc, without movement of the medium across the 
two points. The energy and phase or some disturbance travel during a wave motion, 
but motion of the matter is gencraUy small. Waves are generatcd due to the existence of 
some kind of “restoring .Force” that tends to bring the system back to its undisturbed 
state, and of some kind of “inertia” thal causcs the system to overshoot after thc 
system has returned to thc undisturbed state. One type of wavc motion is gcnerated 
when the restoring forces are due to the compressibility or elasticity of the miterial 
medium, which can be a solid, liquid, or gas. The resulting wave motion, in which the 
particles move to and €m in the direction of wave propagation, is called a cornpi-ession 
wave, eZastic waiv, or pressure wave. The small-amplitude variety of these is called 
a “sound wave.” Another common wave motion, and the one we are most familiar 
with from cveryday expericnce, is the one that occurs at the free surface 01 a liquid, 
with gravity playing the role of the restoring Foire. These am called suifuce gi -uv i~  
wuves. Gravity waves, however, can also exist at the interface between two fluids of 
different density, in which case they arc called intemd gr-avio wavcs. Thc particle 
motion in gravity waves can have components both along and perpendicular to the 
direction of propagation, as wc shall sce. 

In this chapter, we shall examine some basic features of wave motion and illustrate 
hem with gravity waves becausc these are the easiest to comprehend physically. The 
wave €requency will be assumed much larger than the Coriolis Frcquency. in which 
case the wave motion is unaRectcd by the earth’s rotation. Waves affected by planetary 
rotation will be considered in Chapter 14. Wave motion duc to compressibility cffecb 
will be considered in Chapter 16. Unless specified othciwise, we shall assume that the 
waves have small amplitude, in which casc the governing equation becomcs lincac 

2. 71r.c IFai:e Equation 

Many simplc “nondispersive” (to be defined later) wave motions of small amplitudc 
obey thc wave cquation 

which is a linear partial differential equation of thc hypcrbolic type. Here q is any 
type of disturbance, for example the displaceinelit of thc free surface in a liquid, 
variation of density in a compressible medium, or displaccrnent of a stretchcd string 
or mneinbranc. The incaning of parameter c will become clcar shortly. Waves tmveling 
only in the x direction are described by 

which has a gcneral solution OF the form 

q = .f(x - ct) + g(x + ct) ,  (7.3) 



wherc f and g are arbitrary functions. Equation (7.3), called d'Alemhem'.s solution, 
sigmtics that any arbitrary function of the combination (x f ct)  is a solution of the 
wave cquation; this can be verified by substitution of Eq. (7.3) into Eq. (7.2). It is 
easy Lo see that f ( x  - cr)  represents a wave propagating in the positive x direction 
with sped c, whereas g(x + cf) propagates in the negative x direction at speed e. 
Figurc 7.1 shows a plot of f ( x  - et)  at t = 0. At a later time t, the distance s needs to 
be larger for thc same valuc of ( x  - ct) .  Consequcntly, . f (x  - cr)  has thc same shapc 
as f ( x ) .  except displaced by an amount cr along the x-axis. Therefore, the speed of 
propagation of wave shape f ( x  - ct )  along thc positive x-axis is e. 

As ai cxample of solution of the wave equation, assume initial conditions in the 
form 

(7.4) 
arl 
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q (x .  0) = F ( x )  and - ( x :  0) = G(s). 

Then Eq. (7.3) requires that 

which gives the solution 

The casc of zero initial velocity [G(s) = 01 is interesting. It corresponds to an initial 
displaccment of the sui-face into an arbitrary profile F ( x ) ,  which is then left alone. 
In this case Eq. (7.5) reduces to f(x) = g(x) = F ( x ) / 2 ,  so that solution (7.5) 
becomes 

(7.6) 

The nature of this solution is illustrated in Figiue 7.2. It is apparcnt that half the initial 
disturbance propagates to the right and the other half propagates to the IcR. Widths 
of the two components are equal to the width of the initial disturbance. Note that 
boundary conditions have not been considercd in arriving at Q. (7.6). Instead, thc 
boundaries have been assumed to be so far away that the rcflected waves do not return 
to thc region of intercst. 

q = $ F ( x  - - ct)  + p ( x  + cr), 



X 

Figure 7.2 Wive prohles at Ihme timcr. The initial profile is F ( s )  and Ihc initid velocity is arruned 10 
be zem. Half thc iuitial dislurbnncc ppagatcs to thc right and the oIhw hall ppagtllcs to h c  left 

3. I Ihce Ynr.runc!tws 

According to Fourier’s principle, any arbitrary disturbance can be dccoinposed into 
sinusoidal wave components of different wavelengths and amplitudes. Conscquently, 
it is important to study sinusoidal waves of the Form 

q = a sin [ $ ( x  - Cf ) ]  . (7.7) 

The argumcnt 2 r ( x  - c t ) /h  is callcd the phase of the wave, and points of constail 
phase are those where the waveform has the sdme value, say a crest or trough. Since 
q vanes between fu, a is called the ainpfitude of the wave. The paramcter EL is callcd 
the wcrvelength becausc the value of q in Eq. (7.7) does not change if x is changed by 
4 3 .  Instead of using 1, it is more common to use the wivenumber. defined as 

2% k E -  
h ‘  

which is the number of complete waves in a length Z7. It can be rcgarded as the 
“spatial frequenq” (rad/m). The waveform Eq. (7.7) can then be written as 

q =asink(x-ct) .  (7.9) 



The period T of a wave is the time rcquired for the condition at a point to irpeat itself, 
and must equal thc time required for the wave to travel one wavelength: 

A. 
T = -. 

c 
(7.10) 

The number of oscillations at a point per unit time is thefrequency, given by 

(7.11) 
1 
T '  

v = -  

Clearly L' = A.u. The quantity 

o = 25rv = kc, (7.12) 

is called the circulurfmquenq; it is also called the "radian hquency" because it is 
the rare of change of pha5e (in radians) per unit time. The speed of propagation of the 
waveform is related to k and o by 

(7.13j 

which is called the plurse speed, as it is the rate at which the "phase" of Uie wavc 
(crests and troughs) propagates. We shall see that the phase speed may not be thc 
speed at which thc envelope of a p u p  of waves propagates. In terms of o and k, the 
waveform Eq. (7.7) is written as 

q = u sin(kx -ut). (7.14) 

So far we have been considcring waves propagating in the x direction only. For 
three-dimensional wavcs of sinusoidal shape, Eq. (7.14) is generalized to 

q = a sin(kx + Iy + nzz - or) = a sin(K x - or), (7.15) 

where K = (k, I ,  i n )  is a vector, called the nwveniimber vector, whose magnitude is 
given by 

K' = k' + 1' + in2. (7.16) 

It is easy to see that the wavclength of Eq. (7.15) is 

(7.17) 

which is illustrated in Figure 7.3 in two dimensions. The magnitude of phase velocity 
is c = w /  K, and the direction of propagation is that d K. Wc can thcrefore write thc 
phasc velocity as the vector 

w K  
K K  

c =  --, 

where K/ K reprcsents the unit vector in the direction or K. 

(7.18) 



t-$4 
Figuurt! 7.3 Wavc propagating in thc xy-planc. The hret shows how the components c, and cnJ. arc added 
to givc the rcsultant c. 

Froin Figure 7.3, it is also clear that the phase speeds (that is, the speeds of 
propagation of lincs of constant phase) in h c  threc Cartcsian directions arc 

0 0 0 
cy = - c; = -. 

I - m  
c, = - k (7.19) 

The preceding shows that the components c,. c,., aid c, are each largcr than the 
resultant c = w / K .  It is clear that the components of rhe phase velocity vector c do 
not obey the ride of vector addition. The method of obtaining c from thc components 
c:, and cF is illustrated at the top of Figure 7.3. The peculiarity of such an addition 
rule for the phase velocity vector merely reflects h e  fact that phase lines appear to 
propagate faster along directions not coinciding with h e  direction of propagation, 
say the x and y directions in Figure 7.3. In contrast, the componenh of h c  ”group 
velocity” vector cg do obey the usual vector addition rule, as we shall see later. 

Wc have assumcd that the waves exist without a mean flow. If the waves are 
s.LIDerposed on a uniform mean flow U, then the observcd phase spced is 

crJ=c+u.  

A dot product oi  the forcmentioned with the wavenumber vector K, and thc use of 
Eq. (7.18), gives 

w = w + U = K ,  (7.20) 

where ~0 is the obseived frequency at a fixed point, and w is the intrinsic frequency 
meatsurcd by an observer moving with the mean flow. It is apparent that the frequcncy 



of a wave is Doppler.shifted by an amount U 9 K due to the mean flow. Equation (7.20) 
is easy to uiderstand by considering a situation in which the intrinsic frequency w is 
zero and the flow pattern has a periodicity in the x direction of wavelength 2n/k. If 
this sinusoidal pattern is translated in the x direction at speed U, then the observed 
frequency at a fixed point is OJO = Uk. 

The effects of mean flow on frequency will not bc considered further in this 
chaptcr. Consequently, thc involved frequencies should be interpreted as thc intrinsic 
frcquency. 

In this section we shall discuss gravity waves at the free surface of a sca of liquid of 
uniform depth H, which rmiy be large or small compared to the wavelength h. We 
shall assume that thc amplitude a of oscillation of the free surrace is small, in the sense 
that both a / h  and a / H  are much smallcr than one. The condition a /h  << 1 implies 
that the slope of the sea surface is small, and the condition u / H  << 1 implies that the 
instantaneous depth does not differ significantly from the undisturbed depth. Thesc 
conditions allow us to linearize the problem. The frequency of the waves is assumed 
large compared to the Coriolis frequency, so that the waves are unaffected by h e  
earth's rotation. Hem, we shall neglect surface tension; in water its effect is limited 
to wavelengths (7 cm, as discussed in Section 7. The fluid is assumed to have small 
viscosity. so that viscous effects are confined to boundary layers and do not affect the 
wave propagation significantly. The motion is assumed to be generated from rest, say, 
by wind action or by dropping a stone. According to Kelvin's circulation theorem, 
rhe resulting motion is irivtariontil, ignoring viscous effects, Coriolis forces, and 
stratification (density variation). 

Formulation of the Problem 
Consider a case where the wavcs propagate in the s direction only, and that the 
motion is two dimensional in the xz-planc (Figure 7.4). Let the vertical coordinate z 
be measured upward froin the undisturbed free surface. The free surface displacement 
is q ( x .  r ) .  Because the motion is ii-rotational, a velocity potential 4 can be defined 

't 

H 

1 2 =-H 

Figure 7.4 Wave nommnclaturc. 



such that 

Substitution into the continuity equation 

gives the Laplace equation 
a%p a%p -+-=o. 
ax2 az2 

(7.21) 

(7.22) 

(7.23) 

Boundary conditions are to be satisfied at the [ne surface and at thc bottom. The 
condition at the bottom is zero n o d  velocity, that is 

at z = -H. (7.24) 

At the free surface, a kinematic boudui? condition is that the fluid particle never 
leaves the surface, that is 

D4J -= w,, at z = q ,  
Dr 

where D/Dr = a/ar + u(a/a.r), and tu,, is the vertical component of fluid velocity 
at the free surface. The forementioned condition can be written as 

(7.25) 

For small-amplitude waves both it and aq/a-r are small, so that the quadratic term 
u(aq/ax)  is one order smaller than other terms in Eq. (7.25), which then simplifies to 

(7.26) 

We can simpllfy this condition still further by arguing that the righl-hand side C N ~  be 
evaluated at z = 0 rather than at lhc free surface. To justify this, expand 8qb/az in a 
Taylor scries around z = 0: 

Therefore, to the first order of acciuacy desired hen, a$/az in Eq. (7.26) can be 
evaluated at z = 0. We then have 

aq a4 
at az at z = 0. - = -  (7.27) 

The error involved in approximating Eq. (7.26) by (7.27) is cxplained again later in 
this section. 



In addition to the kinematic condition at the surface, there is a dyncimic condition 
that the pressure just below the free surfacc is always equal to the ambient p i ~ m r e ,  
with surface tension neglected. Taking the ambient pressurc to be zero, the condition is 

p = O  at z = v .  (7.28) 

Equation (7.28) follows from thc boundary condition on t n, which is continuous 
across an interface as established in Chapter 4, Section 19. As before, we shall simplify 
this condition for sinall-amplitude waves. Since the motion is irrotational, Bernoulli's 
cquation (see Eq. (4.81)) 

22 + i (u2  + 102) + + gz = F ( t ) ,  
at - P 

(7.29) 

is applicable. Here, the function F ( t )  can be absorbed in a#/at by redefining 4. 
Neglecting the nonlinear term (u' + w') for small-amplitude waves, the linearized 
form of the unsteady Bernoulli equation is 

a4 P - + - + gz = 0. 
at P 

Substihition into thc surface boundary condition (7.28) gives 

a4 
at 
- + g q = O  at z = r ] .  

(7.30) 

(7.31 ) 

As behe ,  for small-amplitude waves, the term &$/at can be evaluated at z = 0 
rather than at z = r ]  to give 

- - g r ]  at z = 0 .  a4 
at  
_ -  

Solution of the Problem 
Recapitulating, we have tq solve 

a24 a'# 
-+--0. 

i ) ~ '  

subject to the conditions 

- - g r ]  at z=0. a4 
at 
_ -  

(7.32) 

(7.22) 

(7.24) 

(7.27) 

(7.32) 



IJI order to apply the boundary conditions, we need to assume a form for q(x.  1). The 
simplest case is that of a sinusoidal component with wavenumber k and frequency w, 
lor which 

q = COS(kx - wt) .  (7.33) 

One motivation for studying sinusoidal waves is that small-amplitude waves on a water 
surface become roughly sinusoidal some time after their generation (unless the water 
depth is very shallow). This is due to the phenomenon of wave dispersion discussed 
in Section 10. A second, and stronger, motivation is that an arbitrary disturbance 
can be decomposed into various sinusoidal components by Fourier analysis, and the 
mpoiise of the system to an arbitrary small disturbance is the sum of the responses 
to the various sinusoidal components. 

For a cosine dependence of q on (kx - ot), conditions (7.27) and (7.32) show 
that q5 must be a sine function of (kx - at). Consequently, we assume a separable 
solution of the Laplace equation in the form 

q5 = f(z) sin(kx - ut), (7.34) 

where f (z) and w(k) are to be determined. Substitution of Eq. (7.34) into the Laplace 
equation (7.22) gives 

--k2f d2 .f =0, 
dz2 

whose general solution is 
f ( e )  = Aek' + Be-kz. 

The vclocity potential is then 

q5 = (Ae" + Be-") sin(kx - wt).  (7.33 

The constants A aud B are now determined from the boundary conditions (7.24) and 
(7.27). Condition (7.24) gives 

B = Ae-2k". (7.36) 

Before applying condition (7.27) in the linearized form, let us explore what would 
happen if we applied it at z = q. From (7.35) we get 

Here we can set e kq 21 e 2: 1 if kq << 1, valid for small  slope of the free surface. 
This is efkctively what we are doing by applying the surface boundary conditions 
Eqs. (7.27) and (7.32) at z = 0 (instead of at z = q), which we justified previously 
by a Taylor serics expansion. 

Substitution of Eqs. (7.33) and (7.35) into the surface velocity condition (7.27) 
gives 

(7.37) k(A - E )  = (IO. 



The constants A and B can now be determincd from Eqs. (7.36) and (7.37) as 

The vclocity potential (7.35) then becomes 

from which the velocity components are found as 

sinhk(z + H) 
sinh k H  

111 = UW sin(ks - or). 

(7.38) 

(7.39) 

We have solved the Laplace equation using kinematic boundary conditions alone. 
This is typical of irrotational flows. In the last chapter we saw that the equation of 
motion, or its integral, thc Bernoulli equation, is brought into play only to find the 
prcssurz distribution, after he problem has bcen solved from kincinatic considerations 
alonc. In the present case, we shall find that application of the dynamic free surface 
condition (7.32) gives a relation between k and w. 

Substitution of Eqs. (7.33) and (7.38) into (7.32) gives thc dcsired relation 

w = J-. (7.40) 

Thc phase speed c = w / k  is related to the wave sizc by 

I 

~ 

This shows that the speed of propagation of a wave component depends on its 
wavenumbcr. Waves for which c is a function of k arc called dispersive because 
waves of different lengths, propagating at dZFerent spmds, “dispersc” or separate. 
(Dispersion is a word borrowed from optics, whcrc it sigilifies separation of different 
colors due to the speed of light in a medium dcpending on thc wavelength.) A relation 
such as Eq. (7.40), giving w as a function of k, is called a dispcwion relation because 
it expresses the nature of the dispersive process. Wave dispersion is a €undamental 
pmccss in many physical phenomena; its implications in gravity waves are discussed 
in Scctions 9 and 10. 

5. Sornc? l~bt~~r~rurx of Sutfacc C m L i i Q -  H%t~.?t?s 

Scvcral featurcs 01 surface gravity wavcs are discussccl in tlus scction. In particular, 
we shall examine thc nature of pressure change, particlc motion, and the energy flow 
duc to a sinusoidal propagating wave. Thc water depth H is arbitrary; simplitications 
that result from assuming the depth to be shallow or deep arc discussed in the next 
scction. 



Pressure Change Due to Wave Motion 
It is sometimes possible to measure wave parameters by placing pressure sensors at 
the bottom or at some other suitable depth. One would theEfore like to h o w  how deep 
the pressure fluctuations pcnetrate into the water. Pressure is given by the linearized 
Bernoulli equation 

a@ P - + - + gz = 0. 
a t  P 

If we define 
PI = p + pgz, (7.42) 

as theperturbation pressure, that is, the pressure change fromthe undisturbed pressure 
of -pgz, then Bernoulli’s equation gives 

a4 p l =  -p-. 
at 

On substituting Eq. (7.38), we obtain 

Paw2 cash k(z + H) cos(kx - p’ = - 
k sinhkH 

which, on using the dispersion relation (7.40), becomes 

p’ = pga 
cosh k(z + H) 

cosh k H COS(kX - wt).  

(7.43) 

(7.44a) 

(7.44b) 

The perturbation pressure therefore decays into the water column, and whether it 
could be detected by a sensor depends on the magnitude of the water depth in relation 
to the wavelength. This is discussed further in Section 6. 

Particle Path and Streamline 
To examine particle orbits, we obviously need to use Lagrangian coordinates. (See, 
Chapter 3, Section2foradiscussionof theLagrangiandescriptionJLet ( x o + ~ ,  ZO+ f) 
be the coordinates of a fluid particle whose rest position is (XO,  ZO),  as shown in Fig- 
ure 7.5. We can use (XO,  ZO) as a “tag” for particle identification, and write &o, ZO, t )  
and ((.TO, zo, r )  in the Lagrangian form. Then the velocity components are given by 

a6 
at ’ 

=- 

ar 
at ’ 

w = -  
(7.45) 

where the partial derivative symbol is used because the particle identity (XO.  ZO) is 
kept fixed in the time derivatives. For small-amplitude waves, the particle excursion 
(6,  () is small, and the velocity of a particle along its path is nearly equal to the fluid 
velocity at the mean position (XO.  ZO) at that instant, givcn by Eq. (7.39). Therefore, 
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Figure 7.5 Orbit oFa Ruid particlc whose mean position is (q). zn). 

Eq. (7.45) gives 

Inlegrating in time, we obtain 

cash k ( ~ o  + H )  6 = -(I sin(kx0 -or). 
sinh kH 

sinh k(z0 + H) 
s h h  k H < = a  cos(kxo - wt) .  

(7.46) 

Elimination of (kxn - ut) givcs 

~ ~ ~ h k ( i o + H ) ] '  /[usinhk(z(l+ H)I2 = 1. (7.47) 
sinhkH + 5'' sinhkH 

which rcpresents cllipses. Both the semimajor axis n coshIk(z0 + H)]/sinh kH and 
the semiminor axis a sinh[k(zo + fl)]/siiih RH decrcase with dcplh, the minor axis 
vanishing at LU = -H (Figurc 7.6b). Thc distance between foci remains constant 
with depth. Equation (7.46) shows that thc phase of the motion (that is, thc argument 
of thc sinusoidal term) is independent of zo. Fluid particles in any vertical column arc 
therefore in phase. That is, if onc of !hem is at the top of its orbit, then all particles at 
the same .VI) are at the top of their orbits. 

To find thc streamlinc pallern. wc need to dctermiue thc streamfunction @? related 
to the velocity components hy 

il @ coshk(z + H )  
az sinhkH 
- = 11 = C I W  COS(k.r - UJf). 

sinh k(z + H )  
sin(kx - o f ) .  

w 
BX sinh kH 
- = -711 = -1IW 

(7.48) 

(7.49) 



Figure 7.6 Particle orbits of wavc motion in deep, intermediate and shallow seas. 

where Eq. (7.39) has been introduced. Integrating Eq. (7.48) with respect to z, 
we obtain 

ao sinh k(r  + H) 
cos(kx - ot) + F ( x ,  t ) ,  ' = T  sinhiiH 

where F ( x , t )  is an arbitrary function of integration. Similarly, integration of 
Eq. (7.49) with respect to J gives 

'=- a" sinh k(r  -k 
k sinhkH 

cos(kx - ot) + G(z, t ) ,  

where G(z ,  t) is another arbitrary function. Equating the two expressions for @ wc 
see that F = G = hc t ion  of time only; this can be set to zcro if we regard $ as due 
to wave motion only, so that 3 = 0 when a = 0. Therefore 

aw sinhk(z + H) e = -  cos(kx - or). k sinhkH 

Let us examine the streamline structure at a particular timc, say, t = 0, when 

$ o( sinhk(z + H)coskx. 

(7.50) 

It is clear that $ = 0 at z = -H, so that the bottom wall is a part of the $ = 0 
streamline. However, $ is also zero at kx = f17/2, f3n/2, . . . €or any z. At these 
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Figure 7.7 Instantaneous strcanlinc pattern in ;I sdacc  gravity wivc pmpagating LO thc right. 

values of k x ,  Eq. (7.33) shows that q vanishes. The resulting stremiline pattern is 
shown in Figure 7.7. It is seen that the vebcio is in the direction qfpmpugation (and 
horizontal ) ut all depths below the crests, rmd opposite to the direction qfpropagurioii 
at all depths below truugh. 

Energy- Considerations 
Surface gravity waves posscss kinetic encrgy due to motion of the fluid and potcntial 
energy due to dcIbnnation of the free surface. Kinetic energy per unit horizontal area 
is found by integrating over the dcpth and avcraging over a wavelength: 

Here the z-integral is taken up to : = 0, because the integral up to z = q gives a 
highcr-order tcrm. Substitution of thc velocity components from Eq. (7.39) gives 

0 

pw’ [ 1 li u2 cos’(k.r - wt)  dx cosh’ k(z + H) dz 1, Ek = 
2sinh2kH h 

1 I. +,. Jd u2 sin2(kx - ut) dx lH sinh2k(z + H )  dz]  . (7.51) 

In tcrms of frcc su~facc displacemcnt q. the x-integrals in Eq. (7.5 I )  can be written as 

a2 cos2(kx - wt)  d.r = a’ sin2(kx - wt)  dx 



where 3 is the mean square displacement. The z-integrals in Eq. (7.51) are easy to 
evaluate by expressing the hyperbolic functions in terms of exponentials. Using thc 
dispersion relation (7.40), Eq. (7.51) finally becomes 

- 
Ek = ipgq’, (7.52) 

which is the kinetic energy of the wave motion per unit horizontal area. 
Consider next the potenrid energy of the wave system, defined as the work done 

to deform a horizontal fixe surface into the disturbed state. It is therefore equal to the 
djference of potential energies of the system in the disturbed and undisturbed states. 
As the potential energy of an element in the fluid (per unit length in y )  is pgz dx dz 
(Figure 7.Q the potential energy of the wave system per unit horizontal area is 

(7.53) 

(An easier way to arrive at the expression for E, is to note that the potential energy 
increase due to wave motion equals the work done in raising column A in Figure 7.8 
to the location of column By and integrating over halfthe wavelength. This is because 
an interchange of A and B over half a wavclength automatically forms a complete 
wavelength of the deformed surface. The mass of column A is pq dx and the center of 
gravity is raised by q when A is taken to B. This agrees with the last form in Eq. (7.53).) 
Equalion (7.53) can be written in terms af the mean square displacement as 

(7.54) 

Comparison of Eq. (7.52) and Eq. (7.54) shows that the average kinetic and potential 
energies are equal. This is called theprinciple ofequipartition ofenergy and is valid in 
conservative dynamical systems undergoing small oscillations that are unaffected by 

Figure 7.8 Cdculation of potential cnergy of a fluid column. 



planctary rotation. However, it is not valid when Coriolis forces mz included, as will 
be seen in Chapter 13. The total wave energy in the water columu per unit horizontal 
m a  is 

(7.55) 

where the last form in terms of the amplitude u is valid if 9 is assumed sinusoidal, 
since the average of cos' x over a wave~ength is 1/2. 

Next, consider the rdtc of transmission of energy due to a single sinusoidal com- 
ponent of wavenumber k. The energyJu.v across the vertical plane x = 0 is the 
pressnre work done by the fluid in thc region x < 0 on the fluid in the region x > 0. 
Per unit length of crcst, the time average energy flux is (writing p as the sum of a 
pertiirbation p' and a background pressure -pgz) 

2 
- 

E = E ,  + El: = pgq2 = ipga  ? 

F = ( pu d r )  = ([l p'rr d r )  - pg(u) i dz 

= (I: y'u dz) . (7.56) 

whcrc i ) denotcs an averagc over a wavc period; wc have used the fact that (u)  = 0. 
Substiluting for p' from Q. (7.44a) and u from Eq. (7.39), Eq. (7.56) becomes 

F = (cos2(kx - cot)) pu20" 1' cosh2 k(z + H )  dz. 
ksinh'kH -H 

The time average of cos'(kx - rut) is 1/2. The z-integral can be carried out by writing 
it in tenns of exponcntials. This tinally gives 

(7.57) 

The hst  factor is the wave energy given in Eq. (7.55). Thereforc, the second factor 
must be thc speed of propagation of wavc energy of component k, callcd the group 
speed. This is discusscd in Sections 9 and IO. 

6. ,. Ipprimirrintiims j&r llcep and Shallow Water 
The analysis in the preccding section is applicable whatever the magnitude of )c 

is in relation to the water depth H. Inteizsling simplifications result for H / ) c  << 1 
(shallow water) and HIE, >> 1 (dcep water). The expression for phase speed is givcn 
by Eq. (7.41 j, namely, 

(7.41) 

Approximations are now derived under two limiting conditions in which Eq. (7.41) 
takcs simple forms. 



Deepwater Approximation 
We know that tanhx --* 1 for x + 00 (Figure 7.9). However, x need not be very 
large for this approximation to be valid, because tanhx = 0.94138 for x = 1.75. It 
follows that, with 3% accuracy, Eq. (7.41) can be approximated by 

(7.58) 

for H > 0.28h (corresponding to k H > 1.75). Waves are therefore classified as 
deepwater waves if the depth is more than 28% of (he wavelength. Equation (7.58) 
shows that longer waves in deep water propagate faster. This feature has interesting 
consequences and is discussed fuaher in Sections 9 and 10. 

A dominant period of wind-generated surface gravity waves in the Ocean is 10 s, 
for which the dispersion relation (7.40) shows that the dominant wavelength is 150 m. 
The water depth on a typical continental shelf is e 100 m. and in the open ocean it 
is about -4 km. It follows that the dominant wind waves in the Ocean, even over the 
continental shelf, act as deep-water waves and do not feel thc effects of the ocean 
bottom until they arrive near the beach. This is not true of gravity waves generated by 
tidal forces and earthquakes; these may have wavelengths of hundreds of kilometers. 

In the preceding section we said that particle orbits in small-amplitude gravity 
waves describe ellipses given by Eq. (7.47). For H > 0.28A, the semimajor and 

Y 
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Figun! 7.9 Bchavior of hyperbolic functions. 
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semiminor axes or these ellipses each bccome ncarly equal to -aekZ. This €allows from 
thc approximation (valid fork H > 1.75) 

coshk(z + H) - sinh k(z + H) ru - .  ek: 
sinh kH sinh k H 

(Thc various approximations for hyperbolic functions used in this section can easily be 
vcrified by writing them in tenus or exponeiitials.) Thcrerore. for deep-water waves. 
particle orbits described by Eq. (7.46) simplify to 

= --a ek:l) sin(kx0 - of) 
C = CI ek" cos(k.uo - of). 

The orbits are themfore circlcs (Figure 7.6a), of which the radius at the surface equals 
u, the amplitude of the wave. The velocity components are 

a t  
at 

aJ' 
a t  

I I  = - = am& cos(kx - ut) 

UI = - = umekz sin(ii:r - or), 

whcre we havc omitted thc subscripts on (xu, io). (For sinal1 amplitudes the difference 
in velocity at the present and mcanpositions of a pmicle is negligible. The distinction 
between mean particle positions and Eulerian coordinates is therefore not necessary, 
unless finitc ainylitudc effects are considcred. as we will see in Section 14.) The 
vclocirj vcctor therefore rotatcs clockwise (for a wave travcling in the positive x 
dircction) at kqueiicy o, while its magnitude remains constant at 1 1 ~ ~ ) e ~ ~ ~ l .  

For deep-water waves, the perturbation pressure given in Eq. (7.44b) simplifies to 

j i  = pgaekZ cos(k:r - or). (7.59) 

This shows that pressure clmgc due to the presence of wavc motion dccays exponen- 
tially with depth, reaching 4% of its surface magnitude at a depth of A/2. A scnsor 
placcd ai the bottom cannot thercrore detcct gravity waves whose wavelengths are 
smallcr than twice the water depth. Such a sensor acts like a "low-pass filer,'' retaining 
longer waves aiid Ejecting shorter ones. 

Shallow-Water Approximation 
We know that tanh x 21 .r as x + 0 (Figure 7.9). For H/A << 1, we can therefore 
write 

2xH 2zH 
A A 

t a d _ ; -  - - -, 
in which case h e  phase specd Eq. (7.41) simplifies to 
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The approximation gives a better than 3% accuracy if H < 0.07A. Surface waves are 
therefore regarded as shllow-wurer wuves if the water depth is <7% of the wave- 
length. (The water depth has to be really shallow for waves to behave as shallow-water 
waves. This is consistent with thc comments made in what follows (Eq. (7.58)), that 
the water depth does not have to be really deep for water to behave as deep-water 
waves.) For these waves Eq. (7.60) shows that the wave speed is independent of 
wavelength and increases with water depth. 

To determine the approximate form of particle orbits for shallow-water waves, 
we substitute the followi& approximations into Eq. (7.46): 

coshk(z + H) 2: 1 

sinh k(z  + H )  = k(z + H )  

sinh k H  2: k H .  

The particle excursions given in Eq. (7.46) then become 

a 
kH 

6 = -- sin(kx - wr) 

< = LI 1 + - COS(kx - o f ) .  ( 3 
These represcnt thin ellipses (Figure 7.6c), with a deplh-independ-lit semim jor axis 
of a/kH and a semiminor axis of a(l + z / H ) ,  which linearly decrcases to zero at 
the bottom wall. From Eq. (7.39), the velocity field is found as 

U U  
u = -cos(kx -or) 

kH (7.61) 

which shows that the vertical component is much smaller than the horizontal 
componcnt. 

The pressm change from the undisturbcd state is found from Eq. (7.44b) to be 

(7.62) p' = pga cos(k:r - or) = pgq, 

where Eq. (7.33) has been used to express the pressure change in terms of q. This 
shows that the pressure change at any point is independent of depth, and equals the 
hydrostatic increase of pressure due to the surface elevation change q. The pressure 
jield is therefore complerely Iiydrosmic in shullow-wafer waves. Vertical accelera- 
tions are negligible because of the small  w-field. For this reason, shallow water waves 
are also called hydivstciric wcives. It is apparent that a pressure scnsor mounted at thc 
bottom can sense thesc wavcs. 

Wave Refraction in Shallow Water 
We shall now qualitatively describe the commonly observed phenomenon of refmc- 
tion of shallow-watcr waves. Consider a sloping beach, with depth contours parallel 
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Figure 7.10 Rcfmction of a surface gravity wave approaching a sloping beach. Nok that the crest lines 
tend to hecomnc parallel to the coast. 

to the coastline (Figure 7. IO). Assume that waves are propagating toward the coast 
from the deep ocean, with their crests at an angle to the coastline. Sufficiently near the 
coastline they begin to feel the effect of the bottom and finally become shallow-water 
waves. Their frequency does not change along the path (a fact that will be proved in 
Section 10). but the speed of propagation c = a and the wavelength h become 
smaller. Consequently, the crest lines, which are pcrpendicular to the local direction 
of c, tend to become parallel to the coast. This is why we see that the waves coming 
toward the beach always seem to have their crests parullel to the caardine. 

An interesting example of wave refraction occurs when a deep-water wave with 
straight crests approaches an island (Figure 7.11). Assume that the water depth 
becomes shallower as the island is approached, and the constant depth contours are 
circles concentric with the island. Figure 7.1 1 shows that the waves always come in 
towurd the island, even on the “shadow” side marked A! 

The bcnding of wave paths in an inhomogeneous medium is called wuve refriic- 
lion. In this caqe the source of inhomogeneity is h e  spatial dependence of H. The 
analogous phenomenon in optics is the bending of light due to density changes in 
its path. 

It was cxplained in Section 1.5 that the interface bctween two immiscible fluids is in a 
state of tension. The tension acts as a restoring force, enabling the interface to support 
waves in a manner analogous to waves on a stretched membrane or string. Waves due 
to the presence of surface tension are called capillary waves. Although gravity is not 
nceded to support these waves, the existence of surface tension alone without gravity 
is iincommon. We shall therefore examine the modification of the preceding results 
for pure gravity waves due to the inclusion of surface tension. 
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Fiyre 7.11 Kcfraction of a surrace gravity wave approaching an island with sloping bmh. Crest lincs. 
perpeiiBcular to the rays. are shown. Note flint h e  crest lines comc in toward thc island. cvcii on thc 
shadow side A. Reprinted with rhepemiission uf Mr.x Dorvthy Kinsmun Broiun: B. Kinsman. wild Waver 
Prenticc-Hall Englewood Cliffs. NJ, 1965. 

Figure 7.12 (a) Segment of a rree surface under he action of surface tension; (b) nct surkcc tcnsion 
kme on an clement. 

Let PQ = ds be an element of arc: on the free surfacc, whosc local radius of 
curvature is r (Figure 7.12a). Suppose pa is the pressure on the “atmospheric” sidc, 
and p is the pressure just inside the interface. The surface tension forces at P and Q, 
per unit length pcrpendicular to the plane of the paper, are each cqual to cr and directed 
along the tangents at P and Q. Equilibrium of forces on the arc PQ is considered in 
Figure 7.12b. The force at P is represented by scgment OA, and the force at Q is 
represented by segment OB. The resultant of OA and OB in a direction perpendicular 
to the arc PQ is reprcsented by 20C 21 ode .  Therefore, the balance of forces in a 
direction perpendicular to the arc PQ requires 



It .follows that the pressure difFerencc is related to the curvature by 

de cr 
ds r 

pa - p = 0- = -. 

The curvature l/r of q(x) is given by 

when the approximate expression is for small slopes. Therefore, 

a29 
ax2 

pa - p = cr-. 

Choosing the atmospheric pressure Pa to be zero, we obtain the coiidition 

Using the linearized Bernoulli equation 

34 P - + - +gz = 0, 
at P 

condition (7.63) becomes 

(7.63) 

(7.64) 

As before, far small-amplitude waves it is allowable to apply the surface boundary 
condition (7.64) at z = 0, instead at z = q.  

Solution of the wave problem including surface tension is identical to the one for 
pure gravity waves presented in Section 4, except that the pressure boundary condition 
(7.32) is replaced by (7.64). This only changes the dispersion relation w(k) ,  which is 
found by substitution of (7.33) and (7.38) into (7.64), to give 

w = ,/k ( g  + $) tanh kH. (7.65) 

Thc phase velocity is therefore 

. (7.66) c- = /(E + $) tanh kH = ,/( + %) tanh 21r H 

A plot of Eq. (7.66) is shown in Figure 7.13. It is apparent that the eflect of surface 
tension is to increase c above its value for pure gravity waves at all wavelengths. 
This is because the free surface is now “tighter,” and hence capable of generating 
more restoring forces. However, the effect of surface tension is only appreciable 
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Figure 7.13 Sketch of phase velodty vs wavelength in B surfacc gravity wave. 

for very small  wavelengths. A measure of these wavelengths is obtained by noting 
that thm is a minimum phase speed at A = A,, and surface tension dominates for 
A < A, (Figure 7.1.3). Setting d c / h  = 0 in Eq. (7.66), and assuming the deep-water 
approximation tanh(2aHlA) 2 I valid for H > 0.28A, we obtain 

(7.67) 

For an &-water interface at 20 "Cy the surface tension is u = 0.074 N/in, giving 

= 23.2 cm/s at A,,, = 1.73 cin. (7.68) 

Only small waves (say, A < 7 cm for an air-wakr interface), called ripples, arc there- 
fore affected by surface tension. Wavelengths t 4  rnm are dominated by surface ten- 
sion and are rather unaffectcd by gravity. From Eq. (7.66), the phase speed of these 
pure cupillnr~ wai~es is 

(7.69) 

where we have again assumed tanh(2nHlh) 2: 1. The sinallcst of these, traveling 
at a relatively large speed, can be found leading the waves generated by dropping a 
stone into a pond. 

8. SEarrding Nams 

So far, we have been studying propagating wwcs. Nonpropagating waves can be gen- 
erated by superposing two waves of the same amplitudc and wavelength, but moving 



in opposite directions. The resulting surface displacement is 

C O S ( ~ X  - U t )  + u cos(kx + w t )  = 2n COS kx COS wt. 

Tt follows that q = 0 for k.r = f n / 2 ,  Hn/2 . . . . Points of zero siirface displacement 
are called ~iudcs. The free surface therefore does not propagate, but simply oscillates 
up and down with frequency w, keeping the nodal points fixed. Such waves are cdkd 
srunding waves. The corresponding streamfunction, using Eq. (7.50), is both €or the 
cos(kx - ut) and cos(kx + wr) components, and for the sum. This gives 

aw suih k(z  + H) 
k sinhkH $ = -  [cos(kx - wr) - cos(kx + wt)l 

(7.70) 

The instantaneous streamline pattern shown in Figure 7.14 should be compared with 
the streamline pattern for a propagating wave (Figure 7.7). 

A limited body of water such as a lake forms standing waves by reflection from 
the walls. A standing oscillation in a lake is called a seiche (pronounced “saysh”), 
in which only ccrtain wavelengths and frequencies w (eigenvalues) are dowed by 
the system. Let L be tbe length of the lake, and assume that the waves are invariant 
along y. The possible wavelengths arc found by setting u = 0 at the two walls. 
Because u = a+/az, Eq. (7.70) gives 

u = % w  cOsh k(Z + 

sinh k H 
sin k.r sin wt. (7.71) 

Taking the walls at x = 0 and L, the condition of no flow through the walls requires 
sin ( k  L )  = 0, that is, 

k L = ( n + l ) n  n=OI 1 .2 ,  ...? 

which gives the allowable wavelengths as 

2L A=- 
I1 + 1 ‘  

(7.72) 

F i y e  7.14 Instantaneous stmainline paltcm in a standing surliice gravity wave. If this is rnodc n = 0. 
ihcn two succcssive vertical stredincs are a dirlance L apart. If this is rnodc n = I .  thcn lhe first and 
third vcrt.icp;I srreamlines are B distance L apart. 
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Figure 7.15 Normal modcs in a lab, showing dirtrihutions of u for h e  first two modes. This is consistent 
with thc streamliiie pattern of F i p  7.14. 

The largest wavelength is 2L and the next smaller is L (Figure 7.15). The allowed 
frequencies can be found from the dispersion relation (7.40), giving 

(7.73) 

which are the natural frequencies of the lake. 

9. Gmup I4?locidy and Energy Flux 
An interesting set of phenomena takes place when the phase speed of a wave depends 
on its wavelength. The most common example is the deep water g m 7 i l - y  wave, for 
which c is proportional to a. A wave phenomenon in which c depends on k is called 
dispemive because, as we shall see in the next section, tbe different wave components 
separate or ‘‘disperse“ from each other. 

In a dispersive system, the energy of a wave component does not propagate at 
the phase velocity c = w / k ,  but at the group velocity defined as cg = d o / d k .  To see 
this, consider the superposition of two sinusoidal components of equal amplitude but 
slightly different wavenumber (and consequently slightly Werent frequency because 
w = w(k)) .  Then the combination has a waveform 

r] = u cos(k1x - Ulf) + u cos(k2x - Wt) .  

Applying the trigonometric identity for cos A + cos B, we obtain 
I r] = 242 cos [$(k. - kl)X - z(* - w , ) f ]  cos [$il + k2)x - i(O1 + w2)t] . 

r ]  = 24J cos (; dk x - ; - d o  t )  cos(kx - o r ) .  

Writing k = (kl + k2)/2, w = (01 + w2)/2, dk = k? - kl, and d o  = wz - w1, 
we obtain 

(7.74) 
Here, cos(kx - w f )  is a progressive wave with a phase speed of c = w / k .  However, 
its amplitude 2u is modulated by a slowly varying function cos[dkx/2 - d o t / 2 ] ,  
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which has a large wavelength 4sr/dk, a large period 4sr/dw, and propagates at a spccd 
(=wavelengWperiod) of 
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(7.75) 

Multiplication of a rapidly varying sinusoid and a slowly varying sinusoid, as in 
Eq. (7.74, generates repeating wave groups (Figure 7.16). The individual wave com- 
ponents propagate with the speed c = w / k ,  but the envelope of the wave groups 
travels with the speed cg, which is therefon: called the group velocity. Tf cg < c. 
then the wave crests seem to appear .bin nowhere at a nodal point, proceed forward 
through the envclope, and disappear at the ncxt nodal point. If, on the othcr hand. 
cg > c, then the individual wave crests secm to emergc from a forward nodal point 
and vanish at a backward nodal point. 

Equation (7.75) shows that the group speed of wavcs of a certain wavenumber 
k is given by the slope of the fangent to the dispersion curve w(k) .  Tn contrast, the 
phase velocity is given by the slope of the radius vector (Figure 7.17). 

A particularly illuminating example of the idea of group velocity is provided 
by the concept of a ~ a v e  packer. formed by combining all wavenumbers in a cer- 
tain narrow band Sk around a central value k. In physical space, the wave appears 
nearly sinusoidal with wavclength 2x/k ,  but the amplitude dies m v q  in a length of 

2a cos+(dkx - duD t )  

Figure 7.16 Linear coinbination of two sinusoids. Cwming repe;ltcd wave groups. 

slope= cs 

Figure 7.17 Finding r and cg from dispersion dation o(k) .  



Energy 

Figure 7.18 A wave pnckct composed d ;L nmmw band or wavenumbcs Sk. 

order 1/Sk (Figure 7.18). Tf the spectral width Sk is narrow, then dccay of the wavc 
,amplitude in physical space is slow. The concept of such a wave packet is more real- 
istic than the one in Figure 7.16, which is rather unphysical because the wave groups 
repeat themselves. Suppose that, at some initial time, the wave group is represented by 

q = a ( x )  coskx. 

Tt can be shown (see, for example, Phillips ( 1  977), p. 25) that for small times the 
subsequent evolution of the wave profile is approximately described by 

q = a(x - cgt)  cos(kx - wc). (7.76) 

where cg = d o / d k .  This shows that the amplitude afa wuve packed rravels with the 
gr7)up speed. It foUows that cg must equal the speed of propagation of energy of a 
certain wavelength. The fact that cg is h c  speed of energy propagation is also evident 
in Figure 7.16 because the nodal points travel at cg and no energy can cross the nodal 
points. 

For surface gravity waves having the dispersion relation 

w =  j w ,  (7.40) 

the group velocity is found to be 

2kH 1. " 2  - [I -k sinh2kH 

The two limiting cases are 

cg = fc (deep water), 
cg = c (shallow water). 

(7.77) 

(7.78) 

The group velocity of deep-water gravity waves is h a t h e  phase speed. Shallow-watcr 
waves, on the other hand, arc nondiupersive, for which c = cg. For a linear nondis- 
persive system, any waveform preserves its shape in time because all the wavelengths 
that make up the wavcfonn travel at the same speed. For a pure capillary wave, thc 
p u p  velocity is cg = 3c/2 (Exercise 3). 



The rate of transmission of energy for gravity waves is given by Eq. (7.57), 
namely 

where E = pga2/2 is the average energy in the water column per unit horizontal 
area. Using Eq. (7.77), we conclude that 

I F = Ecg. I (7.79) 

This signifies that the rate of transmission of energy of a sinusoidal wave component 
is wave energy times the group velocif.y. This rcinforces our previous interpretation 
of the group velocity as the speed of propagation of energy. 

We have discussed the concept of group velocity in one dimension only, taking 
w to be a function of the wavenumber k in the direction of propagation. In three 
dimensions w(k. I ,  m)  is a function of the three components of the wavenumber 
vector K = (k, I ,  m) and, using Cartesian tensor notation, the group velocity vector 
is givcn by 

cgi = -, 

where Ki stands for any of the components of K. The group velocity vector is then 
the gradient of w in the wavenumber space. 

am 
a Ki 

10. G m i q  r&locity and Mwe llixpersion 
Physical Motivation 
We continue our discussion of group velocity in this section, focussing on how the 
di flerent wavelength and frequency components are propagated. Consider waves in 
deep water, for which 

C 
L .-E - cg = -, 2 

signifying that larger waves propagate faster. Suppose that a surface disturbance is 
generated by dropping a stone into a pool. The initial disturbance can be thought of 
as being composed of a great many wavelengths. A short time later, at t = t1, the sea 
surface may have the rather irregular profile shown in Figure 7.19. The appearance 
of the surface at a later time t2. however, is more regular, with the longer components 
(which have been traveling faster) out in front. The waves in front are the longest 
wavcs produced by the initial disturbance; we denote their length by Alllax, typically 
a few times larger than ihe stone. The leading edge of the wave system therefore 
propagates at the group speed corresponding to these wavelengths, that is, at the 
speed 

(Pure capillary waves can propagate faster than this speed, but they have small mag- 
nitude and get dissipated rather soon.) The region of initial disturbance becomes calm 



because there is a minimum group velocity of gravity waves due to the influence of 
surface tension, namely 17.8 c d s  (Exercise 4). The trailing edge of the wave systcm 
therefore travels at speed 

cgdn = 17.8 cm/s. 

With cg rrmx > 17.8 cm/s for ordinary sizes of stones, the length of the disturbed region 
gets larger, as shown in Figure 7.19. The wave heights are correspondingly smaller 
because there is a fixed amount of energy in the wave system. (Wave dispersion, 
therefore, nlakes the linearity assumption more accurate.) The smoothening of the 
profile and the spreading of the rcgion of disturbance continue until the amplitudes 
h o m e  imperceptible or the waves are damped by viscous dissipation. It is clear- 
that the initial supelposibon ojvarious wavelengths, runningfoi- s o m  time, will sort 
themselves out in the sense that the diffcrent sinusoidal components, Wering widely 
in their wavenumbers, become spatially sepamted, and am found in quite different 
places. This is a basic feature of the behavior of a dispersive system. 

The wave group as a whole travels slower than the individual crests. Therefm, 
if we try to follow the last crest at the i ~ a r  of the train, quite soon we h d  that it is the 
second one from the rear, a new crest has been born behind it. In fact, new crests are 
constantly "popping up from nowhere'' at the rear of the train, propagating thinugh 

Figure 7.19 Surlkce profiles at lhree values of time duc to a disturbance causcd by dropping a stoiic into 
a pool. 



the train, and finally disappearing in front of the train. This is because, by following a 
particular crest, we are traveling at twice the speed at which the energy or waves o€ a 
particular length is traveliiig. Consequently, we do not see CI wuve ojjxed wmelengrh 
if wefullow a purticular crest. In fact, an individual wave constantly becomes longer 
as it propagates through the train. When its length becomes equal to the longest wavc 
generated initially, it cannot evolve any more and dies out. Clearly, the waves in front 
of the train arc the longest Fourier components present in the initial disturbaiicc. 

Layer of Constant Depth 
We shall now prove that an observer traveling at c, would see no change in k if thc 
layer depth H is uniform everywhere. Consider a wavetrain of ”gradually varying 
wavelength,” such as the one shown at later time values in Figure 7.19. By this we 
mean that the distance betwcen successive crests varies slowly in space and time. 
Locally, we can describe the free surface displacemcnt by 

q = U ( X .  t )  cos[e(x, r ) ] ,  (7.80) 

where a(x? t) is a slowly varying amplitudc and e ( x ,  t) is the local phase. We know 
that the phase angle for a wavenumber k and fiquency w is 8 = k.lr - ut. For a 
gradually varying wavewain, we can define a local wavenumber k(x ,  t )  and a local 
frequency w ( x ,  t) as the rate of change of phase in space and time, respectively. 
That is, 

ae 
ax’ 

ae 
at 

k = -  

w = --. 

Cross differentiation gives 
ilk aw -+ -=o .  
at ax 

(7.81) 

(7.82) 

Now suppose we have a dispersion relation relating w solely to k in the form 
w = m(k) .  We can then writc 

aw dwak 
ax dk ax‘ 
- = -- 

so that Eq. (7.82) becomes 
ak ak 
at ax 
- + cg- = 0, (7.83) 

where cg = dw/dk. The left-hand side of Eq. (7.83) is similar to the material dcriva- 
tive and gives the rate of change of k as seen by an observer traveling at specd cg. 
Such an observer will always see the same wavelength. Gmup velocity is therefore 
the speed czt which wave number.^ are advected. This is shown in the xr-diagram of 
Figure 7.20, where wave crests are followed along lines dx/dr = c and wavelengths 
are preserved along the lines dx/dr = cg. Note that the width of the disturbed region, 
bounded by the first and last thick lines jn Figure 7.20, increases with time, and 
that the crests coiistantly appear at the back of the group and vanish at tbe front. 



Figum 7.20 Propagation of a wave group in il homqcneous icdium. represented 011 an xt-plot. Thin 
lines indicate paths taken by wavc crests, and thick lines represent paths along which k and w at con- 
stant. M. J.  Lighthill, Wuves in Fluids, 1978 aid reprinted with the pcnnission of Cambridge Univeiuity 
Prcss, London. 

Layer of Variable Depth H ( x )  
However, the conclusion that an observer traveling at cg sees only waves of the same 
length is true only for waves in a homogenwus medium, that is, a medium whose 
properties are uniform everywhere. Tn contrast, a sea of nonuniform depth H ( x )  
behaves likc an inhoinogeneous medium, provided the waves are shallow cnough to 
feel the bottom. In such a case it is thefiquemy of the wave, and not its wavelength, 
that remains constant along the path of propagation of energy. To demonstrate this, 
consider a case where H(.u)  is gradually varying (on the scale of a wavelength) so 
that we can still use the dispersion relation (7.40) with H replaced by H ( x ) :  

o = ,/gk ~anh[kH(x)]. 

Such a dispersion relation has a form 

o = o ( k ,  x ) .  

Tn such a case we can find the group velocity at a point as 

which on multiplication by aklar gives 
ak soak am 

g a t  ak at at ' 
c - = - - - -  - 

Multiplying Eq. (7.82) by c6 and using Eq. (7.86) we obtain 
am am - + cg- = 0. 
at ax 

(7.84) 

(7.85) 

(7.86) 

(7.87) 



Figure 7.21 Propagation ot'n wave group in w. inhomogeneous medium rcprcscnlcd on an xr-plot. Only 
r;iy paths along which o is constant tllc shown. M. J. Lighthill, Waiw in F1uid.v. 1978 and rcprinkd with 
the permissioii or Ciimhridgc University Press. London. 

In three diincnsions, this is written as 

which shows that w remains constant to an observer traveling with the group velocity 
in an inhomogeneous medium. 

Sumnzcrr-izing, an observer travcling at cg in a homogeneous medium sces con- 
stant valucs oCk, o ( k ) ,  c, and cg(k).  Consequently, ray paths describing p u p  veloc- 
ity in the XI-plane are straight lines (Figure 7.20). In an inbomogcneous medium 
only w remains constant along thc lines dx/dt  = c,., but k,  c, and cg can change. 
Consequently, ray paths are not stTaight in this case (Figure 7.21). 

1 I .  Aiiriliricmr Sdecperiing iri cd ;\bndi.spersii?e M?diizlni 
Until now we have assumed that the wavc aniplitude is small. This has enabled us to 
neglect the higher-ordcr terms in thc Bernoulli equation aid to apply the boundary 
conditions at z = 0 instead of at the free sufidcc i. = '1. One consequence of such 
lincar analysis ha .  been that waves of arbitrary shape propagate unchanged in form 
il'thc system is nondispersivr, such as shallow water waves. The unchanging lorin is 
a result of the fact that all wavclcngths, of which the initial waveform is composed, 
propagate at thc saiie speed c = m, provided all the sinusoidal componcnts satisfy 
the shallow-watcr approximation Hk << 1. We shall now see that the imchruiging 
waveform result is no longer valid ifjirrite ~implitude effects are considad. Several 
other nonlincar effects will also be discusscd in the followiig sections. 



Finite amplitude effects can be formally treated by the method ofcharucterisrics; 
this is discussed, for example, in L i e p m  and Roshko (1957) and Lighthill (1978). 
Tnstead, we shall adopt oiily a qualitative approach here. Consider a finite amplitude 
surface displacement consisting of an elevation and a deprcssion, propagating in 
shallow-water ofundisturbed depth H (Figure 7.22). Let alittlc wavelet be superposed 
on the elevation at point x ,  at which the water depth is H’(x)  and the fluid velocity 
due to the wave motion is u(x) .  Relative to an observer moving with the fluid velocity 
u, the wavelet propagates at the local shallow-water speed c’ = m. The speed of 
the wavelet relative to a frame of reference fixed in the undisturbed fluid is therefore 
c = c’ + u. It is apparent that the local wave sped c is no longer constant because 
c’(x) and u(x )  are variables. This is in contrast to the linearized theory in which u is 
negligible and c’ is constant because H’ 2: H. 

Let us now examine the effect of such a variable c on the wave profile. The value 
of c’ is larger for points on the elevation than for points on the depression. From 
Figure 7.7 we also know that the fluid velocity I I  is positive (that is, in the direction 
of wave propagation) under an elevation and negative under a depression. It follows 
that wave speed c is larger for points on the hump than for points on the depression, 
so that the waveform undergoes a “shearing deformation“ as it propagates, the region 
of elevation tending to overtake the region of depression (Figure 7.22). 

We shall call the front face AB a ‘%ompression region” because the elevation here 
is rising with h e .  Figure 7.22 shows that the net effect of nonlinearity is a steepening 

V I 

U 

Figure 7.22 Wave profilcs at four d u e s  of lime. At b the profilc has formcd a hydraulic jump. The 
p f i l e  at 13 is impossible. 
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of the Compression region. For h i t e  amplitude waves in a nondispersive medium 
like shallow water. therefore, then is an important distinction between compression 
and expansion regions. A compression region tends to steepen with time and form 
a jump, while an expansion region tends to flatten out. This eventually would lead 
to the shape shown at the top of Figurc 7.22. implying the physically impossible 
situation of three values of surfacc elevation at a point. However, before this happens 
the wave slope becomes nearly infinite (profile at f2 in Figure 7.22). so that dissipative 
processes including wave breaking arid fozlming become important, and the previous 
inviscid arguments bccome inapplicable. Such a waveform has the form of a front 
and propagates into still fluid at constant spccd that lies between a and a, 
where HI and H2 are the water depths on thc two sides of the fmnt. This is called 
the hydruulic jzunp. which is similar- to the shock wive iu a compressible flow. This 
is discussed further in the following section. 

12. l-fpiruulir Jiirnp 

In the previous seclion we saw how stccpening of the comprcssion region of a surface 
wave in shallow water leads to the formation of a jump, which subsequently propagates 
into the undisturhcd fluid at constant spccd and without furtha change in fonn. In 
this seclion we shall discuss certain characteristics d Row across such a jump. Before 
we do so, we shall introduce certain definitions. 

Consider the flow in a shallow canal of dcpth H. If the flow specd is 11, we may 
definc a nondiineiLsiona1 spced by 

U 11 Fr=---- 
&R- c '  

This is called thc Fmtde number, which is the ratio of thc speed of flow to thc speed of 
infinitesimal gravity waves. The flow is called supercriticaf if Fr > 1, and subcritical 
iF Fr e 1. The Froude numbcr is analogous to thc Mach riuntber in compressible flow, 
defined as the ratio of thc speed of flow to the speed of sound in the inedium. 

It w m  seen in the prcceding section that a hydraulic jump propagates into a still 
fluid at a speed (say, u1) that lies between the long-wave speeds on the two sides, 
namcly. c1 = and c1 = a (Figure 7.23~). Now suppose a leftward propa- 
gating jump is made stationary by superposing a flow U I  directed to the right. In this 
frame the fluid enters the jump at speed zi 1 and cxils at speed u2 < ii I (Figure 7.23b). 
Because c1 < 111 < r:, it follows that Frl > 1 and Fr:! < 1. Just as a compress- 
ible flow suddeidy changes from a supersonic to subsonic state by going through a 
shock wavc (Section 16.6). a supercritical Row in a shallow canal can change into a 
subcritical state by going through a hjdraiific jump. The depth of flow rises down- 
stream of a hydraulic jump, just as the pressure riscs downstream of a shock wave. TO 
continue the analogy, mechanical energy is lost by dissipating processes both within 
the hydraulic junip and within the shock wave. A corninon cxample ol' a stationary 
hydraulic jump is found at the foot of a dam, where thc flow almost always reaches 
a supercritical slate because or the frec fall (Figure 7.234. A tidal bore propagating 
into a river mouth is an example of a propagating hydraulic jump. 

Consider a control volume across a stationary hydraulic jump shown in Figure 
7.23.  The depth riscs from Hl to H2 and the vclocity falls from u1 to 111. If Q is 



(a) Example 

@) Stationary 

(c) Propagating 

Fwre 7.23 Hydraulic jump. 
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thc voluine rate of flow per unit width normal to the planc of the paper. then mass 
conservation requires 

Q = ~1 HI = 1i2Hz. 

Now use thc momentum principle (Section 4.8), which says that the sum of the 
forces on a control volumc equals the momentum outflow rate at section 2 minus the 
momentum inflow rate at section 1. The force at section 1 is the avenge pressure 
p g  HI /2 limes the area HI ; similarly, the force at section 2 is pgH,’/2. If the distance 
betwccn sections 1 and 2 is small, then the force exerted by the bottom wall of the 
canal is negligible. Thcn the momentum theorem gives 

Substituting u1 = Q / H I  and u2 = Q / H z  on the right-hand sidc, we obtain 

Q Q  

Canceling the factor (HI - Hz), wc obtain 

( $)2 + - H? - 2Fr: = 0, 
HI 

(7.88) 

(7.89) 

For supercritical flows Frl > 1,  for which Eq. (7.89) shows that H:! > H I .  Therefore, 
&pth of water increaqes downstrcain of the hydraulic jump. 

Although the solution HZ e iY1 for Frl < 1 is allowed by Eq. (7.89), such a 
solution violates the second law of therinodynsunics, because it implies an increase 
of inechanical energy of the flow. To see this, consider the mechanical energy of a 
fluid particle at the surrace. E = u2/2 + gH = Q 2 / 2 H 2  + gH. Eliminatjng Q by 
Eq. (7.88) we obtain, after some algebra, 

This shows that Hz e H1 implies E? > El, which violates the second law of ther- 
modynamics. Thc mechanical ciici-gy, in fact, drcirtrses in a hydraulic jump bccause 
of the eddying motion within the jump. 

A hydraulic jump not only appears at the rree surface, but also at density intcrfaces 
in  a stratified fluid, in the laboratory as well as in thc atmospherc and the ocean. (For 
examplc, sec Turner (1973), Figure 3.1 1, for his photograph of an internal hydraulic 
jump on the Icc side of a mountain.) 



13. Piriift? Arnplitudc FI4aue.s of Unchangirg Form in a 
Dispcrxiue :klediurn 

In Section 1 1 we considered a nondispersive medium, and found that nonlinear effects 
continually accumulate and add up until they become large changes. Such an accumu- 
lation is prevented in a dispersive medium because the different Fourier components 
propagate at different speeds and become separated from each other. In a dispersive 
system, then, nonlinear steepening could cancel out thc dispersive spreading, resulting 
in finite amplitude waves of constant form. This is indecd the case. A brief description 
of the phenomenon is given here; further discussion can be found in LighthiU (1978), 
Whitham (1974), and LeBlond and Mysak (1978). 

Note that if the amplitude is negligible, then in a dispersive system a wave of 
unchanging form can only be perfectly sinusoidal because the presence of any other 
Fourier component would cause the sinusoids to propagate at different speeds, result- 
ing in a change in the wave shape. 

Finite Amplitude Waves in Deep Water: The Stokes Wave 
In 1847 Stokes showed that periodic waves of finite amplitude are possible in deep 
water. In terms of a power series in the amplitude a, he showed that the surface 
elevation of irrotational waves in deep water is given by 

q = a COS k(x - ct)  + $ka2 COS 2 k ( ~  - cr) 

+ ik2a3 cos 3k(x - cr) + - - , (7.90) 

where the speed of propagation is 

c = /;(I + k”2). (7.91) 

Equation (7.90) is the Fourier series for the waveform q. The addition of Fourier 
components of different wavelengths in Eq. (7.90) shows that the wave profile q is 
no longer exactly sinusoidal. The argument5 in the cosine terms show that all the 
Fourier components propagate at the same speed c, so that the wave profile propa- 
gates unchanged in time. It has now been established that the existence of periodic 
wavetrains of unchanging form is a typical feature of nonlinear dispersive systems. 
Another important result, generally valid for nonlinear systems, is that the wave speed 
depends on the amplitude, as in Eq. (7.91). 

Periodic finite-amplitude irrotational waves in deep water are frequently called 
Stokes’ waves. They have a flattened trough and a peaked crest (Figure 7.24). The 
maximum possible amplitude is a,, = 0.071, at which point the crest becomes 

J3gure 7.24 Tlic Stokes wave. It is a finite amplitude pcriodic irmiational wave in deep water. 



a sharp 120.’ anglc. Attempts at gencrating waves of larger amplitude result in the 
appearancc of foam (white caps) at these sharp crcsts. In finite amplitude waves, fluid 
particlcs 110 longer tracc closed orbits, but undergo a slow drift in the direction of 
wave propagation; this is discussed in Scction 14. 

Finite Amplitude Waves in Fairly Shallow Water: Solitons 
Ncxl, consider nonlinear waves in a slightly dispersive system, such as “fairly long” 
waves with h / H  in the range betwccn 10 aud 20. Tn 1895 Korteweg and deVries 
showed that these waves approximately satisfy the nonlincar equation 

(7.92) 

when: co = m. This is thc Korteweg4leVries equutioii. The first two terms appear 
in thc linear nondispersive limit. The third term is due to finite amplitude effects 
and the fourth term results from the weak dispersion due to the water depth being 
not shallow enough. (Neglecting the nonlinear temi in Eq. (7.92), and substituting 
q = a exp(ik.r - iwt) ,  it is easy to show that the dispersion relation is c = cg( 1 - 
(1/6)k2 H’). This agrees with thc first two terms in the Taylor series expansion of the 
dispersion idation c = J ( g / k )  tanh RH for small kH. verifying that weak dispersive 
cffects are indeed properly accounted .for by the last tcnn in Eq. (7.92).) 

The ratio of nonlinear and dispcrsion terms in Eq. (7.92) is 

When a)c2/H3 is largcr than *16, nonlinear effects sharpen the forward facc of 
the wave, leading to hydraulic jump, as discussed in Section 11. For lowcr values 
of a l ’ j  H3, a balance can be achieved between nonlinear steepening and disper- 
sive spreading, and waves of unchanging form become possible. Analysis of the 
KortewqykVries equation shows that two types of solutions are then possible, a 
periodic solution and a solitary wave solution. The penodic solution is called cnoidal 
wave, because it is expressed in terms of elliptic functions denoted by crz(x). Tts wave- 
form is shown in Figure 7.25. The other possible solution of the Korteweg-deVries 
cquation involvcs only a singlc hump and is called 3 sditaty wave or soliton. Its 
profile is given by 

17 = LI sech’ [ (2)’” (.r - cf)] . 

wherc the speed of propagation is 

(7.93) 

show.ing that the propagation velocity increases with the amplitude of the hump. The 
validity of Eq. (7.93) can bc checked by substitution into Eq. (7.92). The waveform 
of the solitary wave is shown in Figurc 7.25. 



(a) cnoidal wave 

H solitary wave 

Figure 7.25 Cnoidd and solitary waves. Waves of unchmging form result because nonlinear steepening 
balances dispersive sprcading. 

An isolated hump propagating at constant speed with unchanging form and in 
fairly shallow water was first observed experimentally by S. Russell in 1844. Solitons 
have been observed to exist not only as surface waves, but also as internal waves 
in stratified fluid, in the laboratory as well as in the ocean; (See Figure 3.3, Turner 
(1 973)). 

14. Slokcs’ IlriJl 
Anyone who has observed the motion of a floating particle on the sea surface knows 
that thc particle moves slowly in the direction of propagation of the waves. This is 
called Stokes’ drift. Tt is a second-order or finite amplitude effect, due to which the 
particle orbit is not closed but has the shape shown in F i w  7.26. The mean velocity 
of aJIuidpun3cZe (that is, the Lagrangian velocity) is therefore not zero, although 
the mean velocity at u point (the Eulcrian velocity) must be zero if the process is 
periodic. The drift is essentially due to the fact that the particle moves forward faster 
(when it is at the top of its trajectory) than backward (when it is at the bottom of its 
orbit). Although it is a second-order effect, its magnitude is frequently significant. 

To find an expression for Stokes’ drift, we use Lagrangian specification, proceed- 
ing as in Section 5 but kceping a higher ordcr of accuracy in the analysis. Our analysis 
is adapted from the p~sentation given in the work by Phillips ( 1977, p. 43). Let ( x ,  z) 
be the instantaneous coordinates of a fluid particle whose position at t = 0 is (XO: zo). 
The initial coordinates (xo, LO) serve as a particle identification, and we can write 
its subsequent position as x(x0, LO. t) and z(xo, ZO, t), using thc Lagrangian form of 
specification. The velocity components of the ‘particle (XU,  io)” are U L ( X O ,  LO, t) and 
WJ.(XO. ZO. t). (Note that the subscript “L“ was not introduced in Section 5,  since to 
the lowest order we cquated the velocity at time t a€ a particle with mean coordinates 
(xo, zo) to the Eulerian velocity at t at location (xo, ZO). Hcre we arc taking the analysis 



-Ii8 
\1 

Mean positions of an 

ax 
111. = - 

at (7.94) 

whcre the partial derivative signs mean that the initial position (serving as a particle 
tag) is kept fixed in the h i e  derivativc. Thc position of aparlicle is found by intcgraling 

s = .ro + lrwa(xo, zo? t’) dt’ 

a. (7.94): 

(7.95) 
z = zn + WL(XO, ZO? t’) dt’. 6’ 

At time t the Eulerian velocity at (x, z )  equals thc Lagrangian velocity of parti- 
cle (xu, zo) al the same tiine, if ( x .  z) and (xo, zo) are related by Eq. (7.95). (No 
approximation is involved here! Thc equality is mmely a reflection of the fact that 
particle (xu. L”) occupies the position (I, z) at time t.) Denoting the Eulerian vclocity 
compoiicnts without subscript, we thercfore have 

lIL(X0. -5.0. f )  = u(x .  z ,  r ) .  

Expanding thc Eulerian velocity u ( x .  z. t) in il Taylor scrics about (xo, zo). we obtain 

and a similar cxpression for u : ~ .  The Stokcs drill is the time mean value of Eq. (7.96). 
As the lime mean ofthe first tcrm on the right-hand side of Eq. (7.96) is zero, the Stokes 



drift is given by the mean of the next two terms of Eq. (7.96). This was neglected in 
Section 5 ,  and the result was closed orbits. 

We shall now estimate the Stokes drift for gravity waves, using the deep water 
approximation for algebraic simplicity. The velocity components and particle dis- 
placements for this motion are given in Section 6 as 

u(x0, zo, t )  = amekzu cos(kx0 - wr), 

x - xo = -aekio sin(kx0 - wt),  

z - zo = ueku, COs(kx0 - ut). 

Substitution into the right-hand side of Eq. (7.96), taking time average, and using the 
fact that the time average of sin2 r over a time period is 1 /2, we obtain 

iL = a2&ezkal, (7.97) 

which is the S t o h  drifr in deep water. Its surFace value is a'wk, and the vertical 
decay rate is twice that for the Eulerian velocity components. It is therefore codined 
very close to the sea surface. For arbitrary water depth, it is easy to show that 

(7.98) 

The Stokes drift causes mass transport in the fluid, due to which it is also called 
the m s  transport velocity. Vertical fluid lines marked, for example, by some dye 
gradually bend over (Figure 7.26). Zn spite of this mass transport, the mean Eulerian 
velocity anywhere below the tiough is exactly zero (to any order of accuracy), if the 
flowisirrotational.Thisfollowshmtheconditionofirrotationality au/az = aw/ax, 
a vertical integral of which gives 

showing that the mean of u is proportional to the mean of a w l a x  over a wavelength, 
which is zero for periodic flows. 

1.5. #.hui?s al a l)t?nai[y Intetfaci? beliueen TnJinilery Dwp Fluids 
To this point we have considered only waves at the free surface of a liquid. However, 
waves can also exist at the interface between two immiscible liquids of different 
densities. Such a sharp density gradient can, for example, be generated in the ocean 
by solar heating of the upper layer, or in an estuary (that is, ariver mouth) or a fjord into 
which fresh (less saline) river water flows over oceanic water, which is more saline 
and consequently heavier. The situation can be idealized by considering a lighter fluid 
of density P I  lying over a heavier fluid of density pz (Figure 7.27). 

We assume that the fluids are infinitely deep, so that only those solutions that 
decay exponentially from the interface are allowed. In this section and in the rest of 
the chapter, we shall make use of the convenience of complex notation. For example, 
we shall represent the interface displacement t = a cos(kx - wt)  by 

c = R~ a ei(kx-or)  
1 



‘ t  
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Figure 7.27 lnkrnal wave at B density intcrhcc between two intinilcly dccp fluids. 

where Re stands for “the real part of,” and i = G. Tt is customary to omit the Re 
symbol and simply write 

I (7.99) = a ei(kx-@I)  

where it is implied thai only the real parr of rhe equuriun is nrennr. We are therefore 
carrying an extra imaginary part (which can be thought of as having no physical 
meaning) on the right-hand side of Eq. (7.99). The convenience of complex notation is 
that the algebra is simplified. essentially because differentiating exponentials is easier 
than differentiating trigonometric funclions. If desii-ed, the constant (I in Eq. (7.99) 
can be considered to be a complex number. For example, the profile 5 = sin(kx - wr) 
can be represented as the real part of C = -i exp i (kx - ut). 

We have to solve the Laplace cquation for the velocity potential in both layers, 
subject to the continuity of p and w at the interface. The equations are, therefore, 

(7. loo) 

subject to 

41 0 as z + m  (7.101) 

4z+ 0 as z+- -00  (7.102) 

at 2 = 0. 

(7.103) 

(7.104) 

Equation (7.103) follows froin equating the vertical velocity of the fluid on both 
sides of the interface to the rate of iise of the intcrface. Equation (7.104) follows 
from the continuity of pressurc across the interface. As in the case o€ surface waves, 
the boundary conditions are linearized and applied at L = 0 instead of at z = C. 
Conditions (7.101 ) and (7.102) require that the solutions of Eq. (7.100) must be of 



the form 

because a solution proportional to ekz is not dowed in the upper fluid, and a solution 
proportional to e-kr is riot allowed in the lower fluid. Here A and B can be complex. 
As in Section 4, the constants are determined from the kinematic boundary conditions 
(7.103), giving 

A = -B = iwa/k. 

The dynamic bounhy condition (7.104) then gives the dispersion relation 

w = i g k  (-) P2 - PI = s a ,  
P2 + P1 

(7.105) 

where .s2 (p3 - pl)/(pz + p1) is a small number if the density difference between 
the two liquids is small. The case of sinall density difference is relevant in geophysical 
situations; for example, a 10 "C temperature change causes the density of the upper 
layer of the Ocean to decrease by 0.3%. Equation (7.105) shows that waves at the 
interface between two liquids of infinite thichess travel like deep water surface waves, 
with o proportional to &$, but at a much reduccd frequency. In general, therefore, 
internal waves have a smaller Jrequency, and consequentlji u smaller phase speed, 
than surjaw waves. As expected, Eq. (7.105) reduces to the expression for surface 
waves if p1 = 0. 

The kinetic energy of the field can be found by integrating p(u2 + 1u2)/2 over 
the range z = fx. This gives the average kinetic energy per unit horizontal area of 
(see Exercise 7): 

Ek = 4</?2 - 

The potential energy can be calculated by finding the rate of work done in deforming 
a flat interface to the wave shape. In Figure 7.28, this involves a transfer of column 
A of density p2 to location E, a simultaneous transfer of column B of density to 
location A, and integrating the work over half the rvuvelengtli, since the resulting 
exchange forms a complete wavelength; see the previous discussion of Figure 7.8. 

Pz 

Figure 728 Calculation of pown tiid energy of a two-layer fluid. The work done in hnskrring clcrnent 
A to B equals thc weight of A times Ihe vertical displacerncnt of its ccnter of gravity. 
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16. R h e s  iri a Finile / A y w  Oiwdyifig wi Infinilely llc!cp Hirid 
As a second cxarnple of an intcmal wave at a density discontinuity, consider the case 
in which the upper layer is not infinitely thick but has a finite thickness; the lower 
layer is initially assumed to be infinitely thick. The case of two infinitely deep liquids, 
treated hi the preceding section, is then a spccial case of the present situation. Whereas 
only waves at the interlace were allowed in the preceding section, the presence of the 
free surface now allows an extra mode of suufacc waves. It is clear that the prescnt 
configuration will allow two modes of oscillation, onc in which the rrcc surface and 
the interface are in phasc and a second mode in which they arc opposikly directed. 

Let H be the thickuess of the upper layer, and let the origin be placed at thc mean 
position of the free surface (Figure 7.30). Thc equations are 

a2#1 a2#l 
- + 7 = 0  
ax2 dz- 

subject to 

42 + 0 at z +  --oo (7.107) 

Wl - + g r l = o  at 

at z = O  

at z = O  

(7.1 08) 

(7.109) 

at z = - H  (7.110) 

(7.1 11) 

T 

Bmtmpic mode 

- - - 
t 
c 

Baroclinic mode 

Figure 7.30 lbo males of motion (IC a layer of fluid overlying 110. infinitely dccp fluid. 



Assiune B free surface displacement of the form 

and an interface displacement of the form 

(7.113) - - hei(k.r-or) 

As befom, only the real part of the right-hand side is meant. Without losing generality, 
we can regard u as real, which means that we are considering a wave of the form 
q = u cos(kx - wt). The constant h should be left complex, because J' and q may 
not be in phase. Solution of the problem determines such phase differences. 

The velocity potcntials in h e  layers must be of the form 

, (7.1 14) 
(7.1 15) 

#, = ( A  eki + B e-k:) e i ( k x - o f )  

#2 = c 2: ei(k.r-or) 

Thc fotm (7.1 15) is chosen in order to satisfy Eq. (7.107). Conditions (7.1 08)-(7.110) 
give the constants in terms of the given amplitude a: 

(7.116) 

(7.1 17) 

(7.118) 

(7.11 9) 

Substitution into Eq. (7.1 1 1) gives the required dispersion relation w(k).  After some 
algebraic manipulations, the result can be writtcn as (Exercise 8) 

The two possible roots of this equation arc discussed in what follows. 

Bamtropic or Surface Mode 
One possible root of Eq. (7.120) is 

w2 = gk, (7.121) 

which is the same as that for a dcep water gravity wave. Equation (7.1 19) shows that 
in this case 

b = ne-'"! (7.122) 



implying that the amplitudc at the interface is reduced from that at ulc surface by 
the factor e-kH. Equation (7.122) also shows that the motions of the inlcrface and 
thc free surface are locked in phase; that is they go up or down simultaneously. This 
modc is similar to a gravity wave propagating on the free surface of the upper liquid, 
in which thc motion decays as e-kz from the frec surface. It is called the baroti-upic 
mode, because the surfaces of constant pressurc and density coincide in such a flow. 

Barnclinic: or Internal Mode 
The other possible root of Eq. (7.120) is 

, gk(p2 - p1) sinhkH 
w- = (7.123) 

which reduces to Eq. (7.105) if kH +. cc. Substitution of Eq. (7.123) into (7.119) 
shows that, a k r  some straightforward algebra, 

p2 cosh k H + PI sinh k H ’ 

(7.124) 

demonstrating that q and I have oppositc signs and that the interfacc displacement 
is much larger than the surface displacement if the density difference is small. This 
modc of behavior is called the barnclinic or intenrcrl mode because the surfaccs of 
constant pressure and dcnsity do no1 coincide. It can be shown that the horizontal 
velocity u changes sign across the interface. The existence of a density difference has 
therefore gencratcd a motion that is quite differciit from the barotropic behavior. The 
case studied in the previous section, in which the fluids have infinilc depth and no 
free surface, has only a baroclinic mode and no bslrotropic mode. 

I 7. Stmllow IM~JW Oi.vr[p&g an IIIJinilelv Diwp Fluid 
A very common simplification, frequcntly made in geophysical situations in which 
large-scalc motions are considered, involves assuming that the wavelengths are large 
compared to thc upper layer depth. For example. the dcpth of the oceanic upper layer, 
bclow which thcre is a sharp density gradient, could be a50m thick, and we may 
be intcrested in intcrfacial waves that are much longer than this. Thc approximation 
kH << 1 is called thc shlbw-water or long-wave upproximutian. Using 

sinh k H  1: k H. 
cosh k H  2: I ,  

the dispersion relation (7.123) corresponding to the bmoclinic mode reduces to 

2 - k2gH (P._ - P I  1 w -  
P2 

The phme velocity of wavcs at the intcrface is thcrefore 

(7.125) 

(7.126) 



where we have defined 
I I 

(7.127) 

which is called the reduced gruvit;v. Equation (7.126) is similar to the corresponding 
expression for szrrjke waves in a shallow homogeneous layer of thickness H, namely, 
I' = m, except that its speed is rcduced by the ractor J(p2 - p1)/p2. This agrees 
with our previous conclusion that internal waves generally propagate slower than 
surface wwcs. Under the shallow-water approximation, Eq. (7.124) reduces to 

r ]  = -f (y). (7.128) 

In Section 6 wc noted that, for surface waves, the shallow-water approximation is 
equivalent to the hydrostatic approxination, and results in a depth-indcpendent hori- 
zontal velocity. Such a conclusion also holds for intcrfacial waves. The €act that u I is 
independent of z follows from Eq. (7.1 14) on noling that ekr 2: e-kz 21 1. To see that 
pressure is hydrostatic, the perturbation prcssure in the upper layer determined from 
Eq. (7.1 14) is 

(7.129) 

where the constants given in Eqs. (7.116) and (7.1 17) have been used. This shows 
that p' is indcpenclent of L and equals the hydrostatic pressure change due to the free 
surface displacement. 

So far, the lower fluid has been assumed to be infinitely deep, resulting in an 
exponential decay of the flow field from the intcdace into the lower layer, with a 
decay scalc of the order of the wavelength. If the lower layer is now considercd thin 
cornparcd to the wavelength, then thc horizontal velocity will bc dcpth independent, 
and thc flow hydrostatic, in the lower layer. If both layers arc considered thin com- 
pared to the wavelength, thcn the flow is hydrostatic (and the horizontal velocity field 
depth-independent) in both layers. This is the shulluw-water or lung-wuve uppmxima- 
rion for a two-laycr fluid. In such a case the horizontal velocity field hi the barotropic 
mode has a discontinuity at the interface, which vanishes in the Boussinesq limit 
( p z  - PI )/PI << 1. Under thesc conditions the two modcs of a two-layer system havc 
a simple structure (Figure 7.3 1): a barotropic mode in which the horizontal velocity 
is depth independent across the entire water column; and a baroclinic mode in which 
the horizontal vclocity is directed in opposite directions in thc two layers (but is depth 
independent in each layer). 

We shall now scimrnarize the rcsults of interfacial waves presented in thc pre- 
ceding three sections. In the case ol LWO infhitely deep fluids, only the barocliuic 
mode is possiblc, and it has a frequency of w = E,/$. If the upper layer has finite 
thickness, then both baroclinic and barotropic modes arc possible. In the bmtropic 
niodc, q and ( are in phase, and the flow decreases cxponentially away from the.fi-ee 
.vu/jiace. hi the baroclinic mode, 17 and < are out of phase. the horizontal velocity 
changes direction across the interface, and the motion dccreases exponentially away 



Barntropic Barnclinic 

J?igure 7.31 Two modes of motion in a shallowwater. hvo-hycr system in ihc Boussinesq limi~ 

from the intetjuce. If we also make the long-wave approximation for ihc upper layer, 
then the phasc speed of interfacial waves in the baroclinic mode is c = m, the 
fluid velocity in the upper layer is almost horizontal and depth independent, and the 
pressure in thc upper layer is hydrostatic. II both layers are shallow, then the flow is 
depth independcnt aud hydrostatic in both laycrs; the two modes in such a system 
have the simple slructure shown in Figure 7.31. 

1S. Lquaiiorts qfiIl&bn .for. (I: Chnliriuoudy Slrali~ied Fluid 
Wc have considered surface gravity waves and internal gravity waves at a density 
discontinuity between two fluids. Internal waves also exist if the fluid is conthuously 
stratified, in which the vertical density profile in a state of res1 is a continuous function 
j (z) .  The equations 01 inotioii for intcrnal waves in such a medium will be derived 
in this scctioii, starting with the Boussinesq set (4.89) presentcd in Chaptcr 4. The 
Boussinesq approximation trcnts densily as constml, exccpt in the vertical inomentum 
equation. We shall assume that the wave motion is inviscid. The amplitudes will be 
assumed to be small, in which case the nonlincar terms can be neglectcd. We shall also 
assumc that the frequcncy of modon is much larger than thc Coriolis Ircquency, which 
therefore does not affect the motion. Effects o i  the eartli's rotation arc considered in 
Chapter 14. The set (4.89) then simplifies to 

- 0, 
DP 
Dt 
_ -  

(7.130) 

(7.131) 

(7.1 32) 

(7.133) 

(7.1 34) 

where po is a constant refcrence dcnsity. As noted in Chapter 4, the equation 
DplDt = 0 is not an expression or consenration of imss, which is expressed by 



V u = 0 in thc Boussinesq approximation. Rather. it expresses incomprcssibility 
of a fluid particle. If tempeiature is the only agency that changes the density, then 
Dp/Dt = 0 follows fivm the heat equation in the nondiffusive [om DT/Dr = 0 
and an incomprcssible (that is. p is not a function of p) equation of state in the 
form Spip = --a! ST, where -a! is the coefficicnt of thermal expansion. If thc den- 
sity changes are duc lo changes in the concentration S of a constituent, for example 
salinity in the ocean or water vapor in the atmosphere, then D p / D t  = 0 follows 
from DS/Dt = 0 (the nondiffusivc form of conservation of the constituent) and an 
incompressible equation of stale in the form of S p / p  = /l SS, where /? is the coeffi- 
cient describing how the density changes due to concentration of the constituent. In 
both cascs, the principle underlying the equation Dp/Dt = 0 is an incompressible 
equation of state. In terms of common usage, this equation is frequently called the 
“dcnsity equation,” as opposed to the conlhuity equation V u = 0. 

The equation set (7.130)-(7.134) consists of five equations in five unknowns 
(u ,  v ,  IS, p ,  p). We first express the equations in terms of chnges from a state of rcst. 
That is. we assume that thc flow is superimposed on a “background” state in which 
the dcnsity ,O(z) and pressure j ( z )  m in hydrostatic balance: 

1 d j  p g  
Pndz Po ‘  

0 = --- - - 

When the motion develops, the pressure and density change to 

p = p ( r )  + PI. 

p = P(r) + p’ .  

The density equation (7.133) then bccomes 

(7.135) 

(7.136) 

Here, ap/ar = ap/ax = a p / a y  = 0. Thc nonlinear ternis in the second, third, and 
fourth tcrms (namely, u ;Ip’/ax, v ap’/ay, and UJ ap‘/az) are also negligible for small 
amplitude motions. Thc linear part of the fourth term, that is. UI d p / d z ,  reprcsents a 
very important proccss and must be rctained. Equation (7.137) then simplifies to 

apt d p  
-++--0. 
at dz 

(7.138) 

which slates that the density perturbation at a point is generated only by tbe verti- 
cal advcction of the huckgr-oztnd density distribution. This is the linearized form or 
Eq. (7.133), with the vcrtical advection of density rctained in a lincarized Corm. Wc 
now introduce the definilion 

(7.139) R dP 
po dz 

N2 E ___.  

Here, N ( z )  has the units of €Tequency (rad/s) and is called theBi.unt-Vuisu~u~quenc?: 
or huoym~:y.fiquency. It plays a fundamental role in the study of stratified flows. 



We shall see in the next section that it has the significance of being the frequency of 
oscillation if a fluid particle is vertically displaced. 

Afier substitution of Eq. (7.136), the equations of motion (7.130)-(7.134) become 

(7.140) 

(7.14 I) 

(7.142) 

(7.143) 

(7.144) 

In deriving this set we have also used Eq. (7.135) and replaced the density equation by 
its linearized form (7.138). Comparing the sets (7.130X7.134) and (7.140b(7.144), 
we scc that the equatiuns satisfied by the yemi-barion densify and pressure are iden- 
tical to those satisfied & the totul p and p .  

In deriving thc equations for a stratified fluid, we have assumcd that p is a 
function of temperature T and concentration S of a constituent, but not of pressurc. 
At first this docs not seem to be a good assumption. The compressibility effects in the 
atmosphere are ccrtaiuly not negligible; even in the ocean the density changes due to 
the huge changes in the background pressure are as much as 4% which is 4 0  times 
the density changes due to the variations of the salinity and temperature. The effects 
of compressibility, however, can be handled within the Boussinesq approximation if 
we regard p in the defiilition of N as the background potential density, that is the 
density distribution from which the adiabatic changes of density due to the changes 
of prcssure have been subtracted out. The concept oi potential dcnsity is explained 
in Cliaptcr 1.  Oceanographers account for compressibility effects by converting all 
their density measurements to thc standard atmospheric pressure; thus, when they 
report variations hi density (what thcy call “sigma lee”) they arc generally reporting 
variations due only to changes in temperature and salinity. 

A useful equation for stratified flows is the one involving only UL The u and li 
can be eliminated by taking the time derivative of the continuity equation (7.144) and 
using the horizontal momentum equations (7.140) and (7.141). This givcs 

(7.145) 

where Vi 
p’ from Eqs. (7.142) and (7.143) gives 

a’/ax2 + a 2 / a y 2  is the horizuntal Laplacian operalor. Elimination o€ 

(7.14) 



Finally, p’ can be eliminated by laking Vi of Eq. (7.146), and using Eq. (7.145). This 
gives 

which can bc written as 

(7.147) 

where V’ a 2 / ~ x ’  + a 2 / a y 2  + iI2/3z2 = Vi + a2/az2 is the three-dimensional 
Laplacian operator. The w-equation will be used in the following section to dcrive 
the dispersion relation for internal gravity wavcs. 

19. Iritwnal Mimes in a Continmu&- L9rati@d IYuid 
In this chapter we have considered gravity waves at the surface or at a density dis- 
continuity; these waves propagate only in the horizontal direction. Because every 
horizontal direction is alike, such waves are isotmpic, in which only the magnitude 
of thc wavenumber vector matters. By taking tbe x-axis along the direction of wave 
propagation, we obtained a dispersion relation w(k) that depends only on the m g -  
nitude of the wavcnumber. We found that phases and groups propagate in the same 
direction, although at Merent spccds. I€, on the other hand, the fluid is continuously 
suatified, then the internal wavcs can propagate in any direction, at any angle to the 
vertical. Tn such a case the direction of the wavenumber vector becomes important. 
Consequently, we can no longer treat the wavenumber, phase velocity, and group 
velocity as scalars. 

a2 -v2w + N’VAW = 0, 
at1 

Any flow variable q can now be written as 

i(k.r+/p+nc-cut) - i ( K  x-cut) SI =90e  - 90e 

where 40 is the amplilude and K = ( k ,  I ,  m) is the wavenumber vector with com- 
ponents k ,  1 ,  and m in the three Cartesian directions. Wc cxpect that in this case the 
direction of wavc propagation should matter becausc horizontal directions are basi- 
cally differcnt from the vertical direction, along which the all-important gravity acts. 
Internal waves in a continuously stratified fluid therefore nnisotmpic, for which 
the fresuency is a function of all three components of K. This can be written in the 
following two ways: 

w = ~ ( k .  1. m) = o(K). (7.148) 

However, the waves are still horizontally isotropic because thc dependence of the 
wave field on k and I is similar, although the dependence on k and ni is dissimilar. 

The propagation of internal waves is a bamlinic process, in which the surfaces of 
constant pressurc do not coincidc with the surfaces of constant density. It was shown 
in Section 5.4, in connection with the demonstration of Kelvin’s circulation theorem, 
that baroclinic proccsses generate vorticity. InteinaX waves in a continuously stratiJied 
jluid are therefam not iirotutional. Waves at a density interface constitute a limiting 
cme in which all the vorticity is concentrated in the form of a velocity discontinuity 
rrt the integace. The Lrrplace equation can ther-efoiv be used bo describe thejiowfield 



within each Zayx However; internal waves in a continuous1.y szrutijied jhid cnnnot 
be described by the Lpluce equution. 

The first taqk is to derive the dispersion relation. We shall simplify the analysis 
by assuming that N is depth indcpendent, an assumption tha t  may seem ~mmdistic at 
fist. hi the ocean, for example, N is large a1 a depth of %200 in and small  elscwhere 
(see Figure 14.2). Figmz 14.2 shows that N .e 0.01 evcrywhere but N is largest 
between ~ 2 0 0  m and 2km. However, Ihc results obtained by treating N as constant 
;ire locdly valid if N varies slowly over the vcrtical wavelength 25r/ni of the motion. 
The so-called WKB approximation of internal waves, in which such a slow variation 
of N ( z )  is not neglected, is discussed in Chaptcr 14. 

Consider a wave propagating in three dimensions, for which the vertical vcloc- 
ity is 

= u,,, ei(k.r+ly+m~-wr) (7.149) 

where tug is the amplitude of fluctuations. Substituting into the governing equation 

a2 
-V2w + N'VAW = 0, 
at' 

gives the dispersion relation 

(7.147) 

(7.150) 

For simplicity of discussion we shall orient the xz-plane so as to contain the wave- 
number vector K. No generality is lost by doing this because the medium is hoii- 
zontally isotropic. For this choice of referencc axes wc have 1 = 0; tha t  is, the wave 
motion is two dimensional and invariant in the y-direction, aid k rcpresents the eiilirc 
horizontal wavcnumber. We can then write Eq. (7.150) as 

w =  kN kN 
JW = 7' (7.151) 

This is the dispersion relation for internal gravity waves and can also be writtcn a,, 

(7.152) i w = Ncost), 

where 6, is the anglc between the phase velocity vector c (and therefore K) and the 
horizontal direction (Figure 7.32). It follows that the Ircquency of an intcmal wave in a 
stratified fluid depends only on the direction of the wavenumber vector and not on the 
magnitude of the wavcnumber. This is in sharp contrast with surface and interfacial 
gravity waves, for which frequency depends only on the magnitude. The frequency 
lies jn thc range 0 .c w -= N ,  revealing one important significance of the buoyancy 
Iequency : N is the mmimirm possible fi-equeiicy if iiiteinul waves in a strutified.fluid. 

Before discussing the dispersion relation further, let LIS explore particle motion 
in an incompressible internal wave. Thc fluid motion can be written as 

1 (7.153) = ug ei(kx+l.v-mz--nrt) 



k 
COS0 = - K I/ 

k 

/ I  K and e 

E’igiu-e 7.32 Basic parameters olinicrnal waves. Note that e and c, are at right angles md havc opposite 
veaicnl components. 

plus two sitiiilar expressions .for u and M’. This gives 

- ikuo ei(tx+ly+nrz-wr) - - - iku. 
au - 
ax 

Thc continuity equation then requires that ku + Iv + niui = 0, that is, 

(7.154) 

showing that pcirticle motion isperpeizdicular to the wuvenzmber vector (Figure 7.32). 
Note that- only two conditions have been used to derive this result, namely the incom- 
pressible continuity equation and a trigonometric behavior in ull spatial directions. As 
such, thc rcsult is valid for many other wavc systems that meet these two conditions. 
These waves are called shear wuves (or transverse waves) because the fluid moves 
parallcl to the constant phase lines. Surface or interfacial gravity wa17es do not have 
this property because the field varies exponenriafly in the vertical. 

We can now intcrpret 8 in thc dispersion relation (7.152) as the angle bctween the 
p h c l c  motion and the vertical direction (Figure 7.32). The maximum frequency w = 
N occurs when 8 = 0, that is, when the particles move up and down vertically. This 
case cornsponds lo m = 0 (sce Eq. (7.15 1)). showing that the motion is independent 
of the z-coordinate. Thc resulting motion consists of a series of vertical colurmis, 
all oscillating at the buoyancy frcquency N, the flow field varying in thc horizontal 
direction only. 
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Figure 7.33 Blocking in shrmgly sb-&licd flow. Thc circular region represents a two-dimensional body 
with its axis along Ihe y direction. 

The w = 0 Limit 
At the opposite cxtreme we have w = 0 when 8 = x/2 ,  that is, when the particle 
motion is completely horizontal. In this limit our inkrnal wave solution (7.151) would 
seem to rcquire k = 0, that is, horizontal independcnce of the motion. However, such 
a conclusion is not valid; purc horizontal motion is not a limiting ca$e of internal 
waves, and it is necessary to examine the basic equations to draw any conclusion lor 
this case. An examination of the governing set (7.1.40)-(7.144) shows that a possible 
steady solution is w = p' = p' = 0, with u aid v any functions of .r and y satisfying 

(7.155) 

The z-dependence of u and v is arbitrary. The motion is thercfore two-dimensioixd 
in the horizontal plane, with the motion in the various horizontal planes decoupled 
from each othcr. This is why clouds in the upper atmosphere seem to move in flat 
horizontal sheets, as often observed in airplane flights (Gill, 1982). For a similar 
I-eason a cloud pattern pierced by a mountain peak soinetimes shows Kurman vurrex 
streets, a two-dimensional feature; see ihe striking photograph in Figure 10.18. A 
i-eslriction of strong stratification is necessary for such almost horizontal flows, for 
Eq. (7.143) suggests that the vertical motion is small if N is large. 

The forcgoing discussion leads to the interesting phenomcnon of blocking in 
a strongly stratified fluid. Coiisidcr a two-dimensional body placed in such a fluid, 
with its axis horizontal (Figure 7.33). The two dimensionality of the body requires 
a v / 8 y  = 0, so that Ihc continuity Eq. (7.155) rcduces to au/ax = 0. A horizontal 
layer of fluid ahcad af thc body, bounded by tangcnts abovc and below it, is therefore 
blocked. (For photographic evidencc see Figure 3.18 in the book by ?inner (1973).) 
This happens bccause lhc strong stratification suppresses the M: ficld and pi-events the 
fluid horn going around and over thc body. 

In the casc of isotropic gravity wavcs at a free surface and at a density discontinuity, 
we found hat c and c, are in the same dircction, although their rnagnitudcs can bc 
diflerent. This couclusioii is no longer valid for thc anisoiropic intcrnal wavcs in a 
continuously stratified fluid. In fact, as we shall see shortly, lhcy are peipendiculur to 
each olhcr, violating all our intuitions acqilired by obscrving surface gravity waves! 



In three dimensions, the dcfinition cg = dw/dk has to be generalized to 

(7.156) 

where i,. i,, i, are the unit vectors in the three Cartesian dimtions. As in the preceding 
section, we orient thc sz-plane so that the wavcnumber vecmr K lies in this plane 
and 1 = 0. Substituting Eq. (7.151). this givcs 

Nm c - -(i,m -iik). 
g -  K3 

The phase vclocitv is 

(7.1 57) 

(7.158) 

whmc K/ K represents the unit vcctor in the direction of K. (Note that c # i, (m/k) + 
iL(w/ntj, as explained in Section 3.) It lbllows fromEqs. (7.157) and (7.158) that 

(7.159) 

showing thal phase and group velocity veclors are peipeidiculai: 
Equations (7.157) and (7.1 58) show that the horizontal components of c and cg 

are in the same direction, while thcir vcrtical components are equal and opposite. In 
fact, c and cg form two sides of a right-angled triangle whose hypotenuse is horizontal 
(Figuie 7.34). Consequently. thc phase velocity has an upward component when thc 
p u p  velocity has a downward component, and vice versa. Equations (7.154) and 
(7.159) are consistent because c and K are parallel and cg and u are parallel. The fact 
that c and cg arc pcrpendicular, and havc opposite vertical components, is illustrated in 
Figure 7.35. It shows that the phasc lines are propagating toward the left and upward, 
whereas the wave groups are propagating to the left and downward. Wave cmsts are 
constantly appearing at one cdge 01 the group, propagating through the g~vup, and 
vanishing at the other cdge. 

The group velocity here has the usual significance of being the velocity ofprop- 
agation of energy of a certain sinusoidal Component. Supposc a source is oscillating 
at 1requcncy w. Thcn its energy will only be found radially outward along four beams 
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Figure 7..W Oricnhtion o f p h c  m d  gmup velocity in inkriirl wavcs. 



Figurr! 7.35 Illustration of phase and group propagation in internal waves. Positions of a wave group at 
two timcs are shown. Thc phase line PF’ at time tl propagates to PP at tz. 

oriented at an angle 0 with the vertical, where cos 8 = o / N .  This has been verified 
in a laboratory experiment (Figure 7.36). The source in this casc was a vertically 
oscillatiiig cylinder with its axis perpendicular to the planc of paper. The €Teguency 
was w < N. The light and dark lines in the photograph are lines of constant density, 
inade visible by an optical technique. The experiment showcd that the cnergy radiated 
along four beams that became morc vertical as the frequency was increased, which 
agrees with cos0 = o / N .  

23. Knergy C‘omsideradiorix of lirlcinal Maues in a 
Stra@kd Fluid 

In this section we shall derive the various cormnonly used expressions for potential 
energy of a continuously stratified fluid, and show that they are equivalent. We then 
show that the encrgy flux p‘u is cg times the wave energy. 

A mechanical energy equation for internal waves can be derived from 
Eqs. (7.140)-(7.142) by multiplying the first equation by pou, the sccond by pov, 
the third by f i w ,  and summing the results. This gives 

$& + v2 + w2) + gp‘w + v (p’u) = 0. (7.160) 1 
Hem the continuit yequation has beenused to write u ap’/ax+v ap’/iIy+w = 
V (p’u), which reprcsents thc net work done by pressure €orces. Another interpreta- 
tion is that V - (p’u) is the divergence of the enerKyJIux p’u, which inust change the 
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Figure 73 Waves generated in a stratified fluid of uniform buoyancy frequency N = 1 rad/s. The 
forcing agency is a horizontal cylinder, with its axis perpendicular to the plane of the paper, oscillathg 
vertically at frequency w = 0.71 rads. With w / N  = 0.71 = cos8, this agrees with the observed angle of 
8 = 45" made by the beams with the horizontal. The vertical dark line in the upper half of the photograph is 
the cylinder support and should be ignored. The light and dark radial lines represent contours of constant p' 
and are therefore constant phase lines. The schematic diagram below the photograph shows the directions 
of E and e, for the four beams. Reprinted with the permission of Dr. T. Neil Stevenson, University of 
Manchester. 



wave energy at a point. As the first term in Eq. (160) is the rate of change of kinetic 
energy, we can anticipate that the second term gp’w must be the rate of changc of 
potential energy. This is consistent with the energy principle derived in Chapter 4 
(see Eq. (4.62)), except that pJ and p’ replace p and p because we have subtracted 
the mean state of rest here. Using the density equation (7.143), the rate of change of 
potential energy can be written as 

(7.161) 

which shows that the potential energy per unit volume must be the positive quan- 
tity E,, = gZpR/2poN2. The potential energy can also be expressed in terms of the 
displacement f of a fluid particle, given by w = a( /a t .  Using the density equation 
(7.143), we can write 

_ -  apt N2Po af --- 
at g at’  

which requires that 
N%f pJ = -. 

g 
The potential energy per unit volume is therefore 

(7.162) 

(7.163) 

This expression is consistent with our previous result from Eq. (7.106) for two 
infinitely deep fluids, for whichthe average potential energy of the entire wakrcolumn 
per unit horizontal area was shown to be 

&?2 1 - P1)6a2, (7.164) 

wherc the interface displacement is of the form f = a cos(kx - ob) and (pz - p1) is 
the density discontinuity. To see the consistency, we shall symbolically represent the 
buoyancy frequency of a density discontinuity at z = 0 as 

(7.165) 

where S(z) is the Dirac delta function. (As with other relations involving the delta 
function, Eq. (7.165) is valid in the integral sense, that is, the integral (across the 
origin) of the last LWO terms is cqual because S(z) dz = 1.) Using Eq. (7.165), a 
vertical integral of Eq. (7.163), coupled with horizontal averaging over a wavelength, 
gives Eq. (7.164). Nok that for surface or interfacial waves Ek and E, represent 
kinetic and potential energies o€ the entire water column, per unit horizontal area. In 
a continuously stratified fluid, lhcy represent energies p r  unit volume. 

We shall now demonstrate that the average kinetic and potential energies are 
equal for internal wave motion. Substitute periodic solutions 

[u, U I ,  pJ, p’] = [i, 6, j j ,  81 ei(kx+mz-cur). 



Thcn all vari:tblcs can be expmsed in terms of M’: 

p’ = -- wn’m ,j, ci(kx-tn,ni-wr) 
k3 I 

(7.166) 

u = -- ’’ ,jj ei(kr+m;-or) 
k 

where y’ is derived from Eq. (7.145), p‘ from Eq. (7.143), and 26 from Eiq. (7.140). 
The averagc kinetic energy pcr un i t  volume is therefore 

(7.167) 

whcre we have uscd the fact that the average of cos2 x over a wavclcngth is 1/2. Thc 
avcrage potential ciiergy per unit volume is 

(7.168) 

whcrc we have usccl p” = 6’ N4p,2/2w2g2, found from Eq. (7.166) after taking its 
real part. Use of thc dispersion rclation w2 = k 2 N 2 / ( k 2  + m’) shows that 

Ek = Ep.  (7.169) 

which is a general result for small oscillations of a conservative system without 
Coriolis forces. The total wave cncrgy is 

(7.170) 

Last. we shall show that e, times thc wave encrgy equals thc energy flux. The 
average eitci-gy flux across a unit arca can be found h n  Eq. (7.166): 

(7.1 71 j 

Using Eqs. (7.157) and (7.170). group velocity times wave energy is 

Nni 
K3 

c,E = -[[i,m - i;k] 

which reduces to Eq. (7.171) on using the dispcrsion relation (7.1Sl). Tt follows that 

(7.172) I I F=c,E. . 
I 

This result also holds for surface or intcrfacial gravity waves. However, in that case 
F reprcsents the flux per unit width pcrpendicular to the propagation direction (inte- 
grated over thc cnlire depth), and E represents the energy per unit horizontal area. In 
Eq. (7.1 72), on die othcr hand, F is die flux per unit m a ,  and E is the encrgy per unit 
volume. 



Lximises 

1. Consider statioimy surface gravity waves in a rectangular container of length 
L and breadth by containing water of undisturbed depth H. Show that the velocity 
potenlial 

#I = A cos(mrrx/L) cos(nrry/h) cosh k(z + H) e-irur, 

satisfies V2#I = 0 and the wall boundary conditions, if 

( r n ~ / L ) ~  + ( n ~ / b ) ~  = k’. 

Here in and n are integers. To satisfy the free surface boundary condition, show that 
the allowable frequencies must be 

J = g k t a n h k H .  

[Hint: combine the two boundary conditions (7.27) and (7.32) inlo a single equalion 

2. This is a continuation of Exercise 1. A lake has the following dimensions 

L = 30km h = 2km H = 100m. 

a2#I/8t2 = -g a#/az at z = 0.1 

Suppose the rclaxation of wind sets up the mode m = 1 and n = 0. Show that the 
period of the oscillation is 3 1.7 min. 

3. Show that the group velocity of pure capillary waves in deep water, for which 
the gravitational effects are negligible, is 

Gg = %C. 

4. Plot the group velocity of surface gravity waves, including surface tension 0 ,  

as a function of A. Assuming deep water, show that the group velocity is 

1 g I +3uk2/pg 
c g = 2  /- ZJ-. 

Show that this becomes minimum at a wavenumber given by 

uk2 2 
1. - 

P6 & 
For water at 20 ’C ( p  = 1000kg/m3 and 0 = 0.074N/m), veiiry thal 

5. A r/wmcliize is a thin layer in the upper ocean ilcross which tcmperature and, 
consequently, density change rapidly. Suppose Lhc thermocline in n very deep ocean 
is at a depth of lOOm €om the ocean surface, and that the temperalurc drops across 
it froin 30 to 20’C. Show thal the reduced gravity is g’ = 0.025 m/s2. Neglecting 
Coriolis effects, show that the specd or pi-opagation of long gravity wavcs on such a 
hennocline is 1.58 m / s .  

~ g n l i l l =  17.8 C ~ S .  



6. Consider internal waves in a continuously stratified fluid or buoyancy fre- 
quency N = 0.02 s - ~  and average density 800kg/m3. What is the direction of ray 
paths if the frequency of oscillation is OJ = 0.01 s-'? Find the energy flux per unit 
area if the amplitude of vertical velocity is 6 = 1 c d s  and the horizontal wavelength 
is K meters. 

7. Consider jntcrnal waves at a dcnsiry interface bctween two infinitely deep 
fluids. Using the expressions given in Section 15, sliow that thc average kinetic energy 
per unit horizontal m a  is Ek = (p2 -p l )ga2 /4 .  This result was quotedbut not proved 
in Section 15. 

8. Considcr waves in a finite layer overlying an infinitely decp fluid. discussed 
in Section 16. Using the constants given in Eqs. (7.116)-(7.119)1 prove the dispcrsion 
relation (7.120). 

9. Solve the equation governing spherical waves i12p/ar2 = (c2 /r2) (a /8r)  
( f2Jp /&)  subject to the initial conditions: p(r .  0) = e-r, (8p/ar) (r ,  0)  = 0. 
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1. Indimduelion 

Two flows having different values of length scales, flow speeds, or fluid properties 
can apparently be different but still “dynamically similar”. Exactly what is meant 
by dynamic siinilarity will be explained later in this chapter. At this point it is only 
necessary to know that in a class of dynamically similar flows we can predict flow 
properties if we have experimental data on one of them. In this chapiptcr, we shall 
determine circuinstances under which two flows can be dynamically similar to one 
anohcr. We shall see that equality of certain relevant nondimensional parameters is 
a requirement for dynamic similarity. What these nondimensional parameiers should 
be depends on the nature of the problem. For example, one nondimensional parameter 
must involve the fluid viscosity if the viscous effects are important in the problem. 

The principle of dynamic similarity is a1 the hcart of cxperimental fluid mcchan- 
ics, in which the data should be unified and presented in tenns of nondimensional 
pmametcrs. Thc concept of similarity is also indispensable for designing modcls in 
which tests can bc conducted for predicting flow propcrties of full-scale objecls such 
as aircraft, submarines, and dams. An understanding of dynamic similarity is also 
important in theoretical fluid mechanics, cspecially when simplifications are to be 
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made. Undcr various limiting situations certain variables can be eliminated from our 
consideration, rcsulting in very useful relationships in which only the constants need 
to be determined from cxperiments. Such a procedurc is used extensively in turbu- 
lence theory. and leads, for example, to the well-known K-5/3 spcctral law discussed 
in Chapter 13. Analogous arguments (applied IO a different problem) are pmsented 
in Section 5 of the present chapter. 

Nondhneiisional paranetem for a problem can be determincd in two ways. They 
can be deduced directly from the governing di.lTerential equations if these equations 
arc known: this method is illustrated in thc next section. If, on the other hand, the 
governing differential equations are unknown, then the nondimensional parametcrs 
ca11 be detcrmined by pcr1ormhig a simple dimcnsional aiialysis on the variables 
involved. This method is illustrated in Section 4. 

The fonnulattion of all problems in fluid mechanics is in tcrms of the conscrvation 
laws inlass, momentum, and energy), constitutivc equations and cquations of state 
to define thc fluid, aid boundary c.onditions to spccify the problcm. Most oftcn, the 
conservation laws are written as partial diffcrcntial eqwitions and the conservation 
of momentum and cnergy may include the constitutivc cquations for st~ess and heat 
flux, respectively. Each tenn in the various equations has certain dimcnsions in terns 
of  units of rncasurements. Of course, all or the tenns in any givcn equation must have 
thc same dimcnsions. Now, dimensions or units of measuiwncnt are human con- 
structs for our conveniencc. No system d units has any inherent superiority over any 
other, despite lhc fact that in this text wc exhibit a preferencc for the units ordained 
by Napoleon BoiiaparZe (of France) over those ordained by King Henry V U  (of 
Englanclj. The point here is that any physical problem must bc expressible in com- 
pletely dimcnsionless form. Momover. the parameters uscd to render the dependent 
and indepcndent variables dinlensionless must appear in the equations or boundary 
conditions. One cannot define “refcrence” quantities that do not appcar in the prob- 
Icm: spurious dimensionless pararncters will be the result. If the procedure is done 
properly, there will be a reduction in the parametric dcpendence of the formulation, 
gcnerally by the numbcr of bidepcndent units. This is described i n  Sections 3 and 4 
in this chhaptcr. The parametric reductioii is called a similitude. Similitudcs greatly 
facilitate conelatioi~ of experimcntal data. In Chapter 9 we will encounter a situation 
in which thcre are no naturally occurring scales for length or time that can be used 
to render the formulation of a particular problem dimnensionlcss. As thc axiom that 
a dimcnsionless formulation is a physical necessity still holds, we must look for a 
dinicnsionless conibiiiation of the independent variablcs. This rcsults in a contraction 
of the dhnensionality of h e  spxc  requircd for thc solution, that is, a rcduction by 
onc in the number of kdependent variblcs. Such a reduction is called a similarity and 
resu11.s in what is callcd a similarity solution. 

2. RloritCirrierixii~tcrrzcll I+~r -~ i r td iJ rs  1Mwniiried.fiwri 

To illuswitc the method of dcterininiiig nondimensional paramcters from h e  gov- 
erning diffcrcntial equations, consider a flow in which bolh viscosity and gravity are 
important. An exaniplc of such a flow is h e  motion of a ship, whcre the drag experi- 
enced is cnuscd both by the gencration of surfacc waves and by friction on the surface 

D~fim?nliul Kqualioris 



258 Q?rtUrnk Sbriituri!y 

ofthe hull. All other effects such as surface tension and compressibility are neglected. 
The governing differential equation is the NavierStokes equation 

and two other equations for u and v. The equation can be nondimensionalized by 
defining a characteristic length scale 1 and a characteristic velocity scale U. In the 
present problem we can take 1 to be the length of the ship at the waterline and U 
to be the free-stream velocity at a large distance from the ship (Figure 8.1). The 
choice of these scales is dictated by their appeamnce in the boundary conditions; U 
is the boundary condition on the variable u and I occurs in the shape function of 
the ship hull. Dynamic similarity requires that the flows have geometric similarity 
of the boundaries, so that all characteristic lengths are proportional; for example, 
in Figure 8.1 we must have d / l  = d l / l ~ .  Dynamic similarity also requires that the 
flows should be kinemutically similar, that is, they should have geometrically similar 
streamlines. The velocities at the same relative location are therefore proportional, 
if the velocity at point P in Figure 8. I a is U / 2 ,  then the velocity at the correspond- 
ing point PI in Figure 8.lb must be U1/2. All length and velacity scales are then 
pmporbional in a class of dynamically similarjows. (Alternatively, we could take 
the characteristic length to be the depth d of the hull under water. Such a choice is, 
however, unconventional.) Moreover, a choice of 1 as the length of the ship makes 
the nondimensional distances of interest (that is, the magnitude o € x / l  in the region 
around the ship) of order one. Similarly, a choice of U as the frec-stream velocity 
rnakes the maximum value of the nondimensional velocity zr/U of ordcr one. For 
reasons that will become more apparent in the later chapters, it is of value to have all 
dimensionless variables of finite order. Approximations m y  then be based on any 
extreme size of the dimensionless parameters that will preface some of the terms. 

Accordingly, we intmduce the following nondimensional variables, denoted by 
primes: 

It is clear that the boundary conditions in terms of the nondimensional variables in 
Bq. (8.2) are independent of 1 and U. For example, consider the viscous flow over a 



circular cylinder of radius R. We choose the vclocity scale U to be tbe free-stream 
velocity and the lcngth scalc to be the radius R. In terms of nondimensional velocity 
11' = u / U  and the nondimensional coordinate T' = r / R .  the boundary condition at 
infinity is II' + 1 as r' 3 00, and thc condition a1 the surface of the cylinder is 
u I=Oat r '  = 1. 

There are instances where the shape fiinclion of a body may requirc two length 
scales, such as a lcnglh I and a thickness d. An additional dimensionlcss parameter, 
d / l  would result to describc he slenderncss of the body. 

Normalization, that is. dimensionless represcnlation of thc pressure, depcnds on 
lhe doininant effect in the flow unless the flow is pressure-gradient drivcn. In the 
latter case [or flow jn ducts or tubcs, the pressure should bc made dhncnsionless 
by a characteristic prcssure difference in the duct so that thc dirnensionlcss teim 
is finite. Tn other cases. when the flow is not prcssure-gradicnl driven, the pressure 
is a passive variablc and should be normalized to balance the dominant effect in 
the flow. Because pressurc enters only a gradicnl, the prcssive itself is not of 
consequencc; only prcssure differences are important. The conventional practice is 
to render y - pw dimensionless. Dcpcnding on the nature or the flow, this could bc 
in terms of' viscous stress ,uU/ l .  a hydrostatic pressure pgl, or ils in the preceding a 
dynamic pressure pU2. 

Substitution of Eq. (8.2) into Eq. (8.1) gives 

+-+%). a 2 d  
i ) r ,  +u -+v -+u1 - = - 

ijZ' UI axe d - p  dz" 
(8.3) 

It is appmnt that two flows (having differcnt values of (I, I, or v), will obcy the samc 
nondiincnsional differential cquation if the valucs of nondiinensional omups g l /  U 2  
and v/UI are idcnlical. Bccause the nondimensional boundary conditions are also 
identical in thc two flows, il follows that they will hcwe rhe strme noridimensionol 
sulutiorzs. 

The nondiniensional p,arameters U / / v  and U / J $  have been givcn special 
names: 

ap' gL rwr aUJ' ,all!' , ~ ~ ? l ! '  ,ad - 
ax' a y  azl 

( I 1  
Re - = Rcynolds number. 

Fr - = Froude number. 

Both Rc and R have to bc equal for dynamic similarity of two flows in which both 
viscous and gravitational effects are impoilant. Notc that thc mere presence of gravity 
does not make thc gravitational efkcts dyiainicdly important. For flow around an 
object in a homogeneous fluid, gi-avily is important only if surface waves are gencrated. 
Othemisc, [he effccl of gravity is simply to add a hydrostatic pressure to lhe entire 
system, which can be eliminated by absorbing gravity into the pressure lenn. 

Under dynamic similarity h e  nondimensional solutions are identical. Thcrefore, 
the local pressure a1 point x = (x. y ,  E) must be of the rorm 

11 

(8.4 U 

JK7 

X 
= f (Fr. Re: -) , j m  - Pw 

pu2 1 
(8.5) 



where (p - p x , ) / p U 2  is called the pressure coeficient. Similar relations also hold 
for any other nondimensional flow variable such as velocity u/ U and acceleration 
a l / U 2 .  11 follows that in dynamically similar flows the nondimensional local flow 
variables arc identical at corresponding points (that is, for idcntical values of x / l ) .  

In the foregoing analysis we have assumed that the imposed boundary conditions 
are steady. However, we have retained the time derivative in Eq. (8.3) becausc the 
rcsulting flow can still be unsteady; for example, unstablc waves can arise sponta- 
ncously under steady boundary conditions. Such unsteadiness must have a time scale 
proportional to l / U ,  as msumed in Eq. (8.2). Consider now a situation in which the 
imposed boundsuy conditions are unsteady. To be specific, consider an object having 
a characteristic length scale 1 oscillating with a frequency w in a fluid at rest at infinity. 
This is a problem having an imposed length scale and an imposed time scale 1 /w.  In 
such a c a x  a velocity scale can be derived from B and 1 to be U = 20. The preceding 
analysis then goes through, leading to thc conclusion that Re = U l / u  = wl'/u and 
Fr = U / n  = w f i  have to be duplicated for dynamic similarity of two flows in 
which viscous and gravitational effects are important. 

All nondimensional qumtitics are identical for dyiiamically similar flows. For 
Row around an immersed body, we can dcfiiie a nondimensional drag coemcient 

where D is the drag expcrienced by the body; use of the factor of 1/2 in Eq. (8.6) is 
conventional but not necessary. Tnstead of writing CD in terms of a length scale I ,  it 
is customarry to dcfiiie hc  drag coefficient more generally as 

D 
CD 3 - 

p U 2  A/2 ' 

where A is a characteristic area. For blunt bodies such as spheres and cylinders, A 
is taken to be a cross section pcrpendicular to the flow. Therefore, A = nd'/4 for a 
sphcre of diameter d, and A = bd for a cylinder of di'meter d and length h, with the 
axis of the cylinder perpendicular to the flow. For flow over a flat plate, on the other 
hand, A is taken to be the "wettcd area", that is, A = hf; here, 1 is the length of the 
place in the direction of flow ,and b is thc width perpendicular to the flow. 

The values of the drag cocfficient CD are identical for dynamically similar Rows. 
In thc present example in which the drag is caused both by gravitational and viscous 
effects, we must have a functional rclation of the form 

CD = .f(Frt Re). (8.7) 

For many flows the gravitational cffects are unimportant. An example is the flow 
around the body, such as an airfoil, that does not generate gravity waves. In that case 
Fr is irrclevant, and 

We recall h m  thc preccding discussion that spceds are low cnough to ignore com- 
pressibility effects. 

CD = m e ) .  (8.8) 



In many complicated flow problems the precise form of the differentid equations may 
not bc known. I n  this case the conditions for dynamic similiirity can be detcrmined 
by means of a dimensional analysis of the variablcs involved. A formal method of 
dimensional analysis is presented in the following section. Here we introduce certain 
ideas that are necded Ior performing a Iormal dimensional analysis. 

The underlying principle in dimensional analysis is that of dimensional homo- 
geneify, which statcs that all ternis in an equation must have the same dimcnsion. This 
is a basic check that we constantly apply when we derive an equation; if the term do 
not have the samc dimension, then the equation is not correct. 

Fluid flow probleim without clcc~romagnetic forces ‘and chemical reactions 
involve only mcchanical variables (such as velocity and density) and thermal vari- 
ables (such as temperature and specific heat). The dimensions of all these vari- 
ables can be expresscd in terms of four basic dimensions-inass M, length L, 
time T, and tempcralure 8. We shall denote the dimension of a variable 4 
by [q ] .  For example, the dimension of velocity is [u] = L/T, that of pres- 
sure is [p1 = [force]![area’l = MLT-*/L’ = M/LT’, and that of specific heal 
is [C] = [energy]/[mass][tempcrature] = MLT-2L/MB = L2/8T2. When thermal 
effects are not considered, all variables can bc expressed in tcrms of tbree funcla- 
niental dimensions, namely, M, L, and T. Tf tcmperature is considered only in coni- 
bination with Boltzmann’s constant ( k e )  or a gas constant ( R e ) ,  then the units of 
the combination are simply L2/T’. Then only the thrce dimensions M, L. and T arc 
required. 

The method of dimensional analysis presented hcre uses the idca of a “dimen- 
sional matrix” and its rank. Consider thc pressure drop Ap in a pipeline, which is 
cxpected to &ped  on the inside diametcr d of the pipe, its length I ,  the average size 
e of the wall roughness elemenls. the average flow velocity U, the fluid density p, 
and the fluid viscosity p. We can write the Iunctional dependence as 

f (Ap, d .  i, e ,  U. p .  p)  = 0. (8.9) 

The dimensions of the variables can be arranged in Ihe form oi the following matrix: 

A p  d 1 e U p  / L  

L -1. 1 1 1 1 -3 -1 
T - 2  0 0 0 - 1  0 - 1  

(8.10) 

Where wc have written the variables Ap. d ,  . . . on thc lop and their dimensions in a 
vertical coliunn undcmeath. For example, [Apl = ML-’T-2. An array of dinlensions 
such as Eq. (8.10) is called a dimensional ntutrix. The r-unk r of any matrix is defined 
to be the size of the largest square submatrix that has a nonzero determinant. Testing 
the determinant of tbe first three rows and columns, we obtain 

1 0 0  



l o  ’ 
; 1 -3 -1 
1-1 0 -1 

4. HutAingliurn ’R Pi Theoiu?rn 

Ofthe various formal methods of dimensional analysis, thc one that we shall describe 
was proposed by Buckingham in 1914. Let qI , q 2 .  . . . ~ q,, bc ii variables involved in 
a particular problein, so that there must exist a functional relationsship of the form 

f(qlvq2r - - - qrr) = 0. (8.11) 

Buckingham’s theorcm stales that the n vcrriubZes cun alnluy.~ be combined tu jam 
e.wctly (n - r )  independent iiandimensionul variubles, whei-e r is the rank of the 
diinensiunal n i a f k .  Each nondimensional parameter is called a ’TI number,” or more 
commonly a nondimensioizalproduct. (The symbol n is used because the nondimen- 
sional perainekr can be written as aproducrof the variables q1, . . . q,,, raised to some 
power, as we shall sm.) Thus, Eq. (8.1 1) can he written 5 ~ s  a functional relationship 

# ( I l l ?  np, . . . ?  = 0. (8.12) 

It will bc seen shortly that thc nondimensional parameters are not uniquc. However, 
(n - r )  of them are independent and form a coirplete set. 

The method of forming nondimensional parainetcrs proposed by Buckinghdm is 
best illustrated by an example. Consider again the pipe flow problcm expressed by 

f W. d ,  1,  e. U. P, 1.4 = 0, (8.13) 

whose dimensional matrix (8.10) has a rank of r = 3. Since there arc n = 7 variables 
in the problem, the number of iiondimensional paramcters must bc iz - r = 4. We 

= - I .  



first select any 3 (= I - )  of the variables as 'repeating variables", which we want to be 
repeated in all of our nondhneiisional parameters. These repeating variables must have 
different dimensions, and among them must contain all the fundamental dimensions 
M, L, and T. In many fluid flow problems we choose a characteristic velocity, a 
characteristic length, and a fluid property as the repeating variables. For thc pipe flow 
problem, let us choose U ,  d ,  and p as the repeating variables. Although other choices 
would result in a different set of nondimcnsional products, we can always obtain other 
complete sets by combining the ones we have. Therefore, any choice of the repeating 
variables is satisfactory. 

Each nondimensional product is formed by combining the three repeating vari- 
ables with one of the remaining variables. For example, let the first dimensional 
product be taken as 

The cxponents a, b, and c are obtained from the requirement that I l l  is dimensionless. 
This requires 

I l l  = Uadbp"Ap. 

M O L O P  = (LT-~)"(L)~(ML-~)"(ML-IT-~) = MC+1La+b-k-lT-a-2 

Equating indices, we obtain a = -2, b = 0, c = - 1, so that 

A similar procedure gives 
I 
d 

d '  

Il? = U@p"l= -. 
E 

I l .3  = UUdhpCe = - 

Therefore, the nondimensional representation of the problem has the form 

AP (8.14) 

Other dimensionless products can be obtained by combining the four in the preced- 
ing. For example, a group Apd'plp' can be formed Crom lll/ll:. Also, different 
nondimensional groups would have been obtained had 'we taken variables other than 
U, d ,  and p as the repeating variables. Whatever nondimensional groiips we obtain, 
only four of these arc independent for the pipe flow problem described by Eq. (8.13). 
Howevcr, the set in 3. (8.14) contains the most commonly used nondimensional 
parameters, which have familiar physical interpretation and have been given spe- 
cial names. Several of the common dimensionless paramcters will be discussed in 
Section 7. 

The pi theorem is a formal method of forming dimensionless groups. With some 
cxperience. it becomes quite easy to form the dimensionless numbers by simple 
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inspection. For example, since there are thi-ee length scalcs d, e, and I in Eq. (8.1 3), 
we can Form two groups such as e /d  and l ld .  We can also form A p / p U 2  as our 
dependent nondimensional variable; the Bernoulli cquation tells us that p U 2  has 
h e  same units as p. The nondimensional number that describes viscous effects is 
well known to be p U d / p .  Thcrefore, with some experience, we can fiud all the 
nondimensional variables by inspection alone, thus no formal analysis is needcd. 

5. ;Vimdimenn.iottaI hrutrmtders tmd Dpatnic lSirniIariv 
Arranging the variables in terms of dimensionless products is especially useful in 
pixxenting experimcntal data. Consider the case of drag on a sphere of diameter d 
moving a1 a speed U through a fluid of density p and viscosity p.  The drag force can 
be written as 

D = f ( d .  U, P ,  /A). (8.15) 
If we do not fonn dimensionless groups, we would havc to conduct an experiment 
to determine D vs d ,  keeping U, p ,  and p fixed. We would then have to conduct an 
experiment to detennine D as a function of U, keeping d, p. and p fixed, and so on. 
However, such a duplication of effort is unnecessary if we write Eq. (8.15) in tern 
of dimensionless groups. A dimensional analysis of Eq. (8.1.5) gives 

D PUJ 
pU2d2 - * (,> ' 
-- (8.16) 

reducing the number of variablcs from five to two, and consequently a single experi- 
mental curve (Figure 8.2). Not only is the prescntation of data united and simplified, 
the cost of experimentdtion is drastically reduced. It is clcar that we necd not vary thc 
fluid viscosity or density at all: we could obtain all the data of Figure 8.2 in one wind 
tunnel experiment in which we determine D for various values of U. However, if we 
want to find thc drag force for a fluid of different density or viscosity, wc can still use 
Figurc 8.2. Note that the Reynolds number in Eq. (8.16) is wriilcn as the independent 
variable because it can be extcmally controlled in an experiment. Tn contrast, the drag 
coefficient is written as a dependent variable. 

The idea of dimensionless products is intimately associated with the concept 
of similarity. Tn fact, a collapse of all thc data on a single graph such aq the one in 
Figure 8.2 is possible only because in this problcm all flows having the same value 
of Re = pUd/p are dynamically similar. 

For flow around a sphere, the pressure at any point x = ( x  ~ y, z )  can be written as 

P ( X )  - y, = f(d u. PI p; XI. 

A dimensional analysis gives the local pressurc coefficient: 

(8.17) 

requiring that nondimensional local Row variables be idcntical at corrcsponding points 
in dynamically similar flows. The difference between relations (8.16) and (8.17) 
should be uoted. Equation (8.16) is a relation between averdl quantitics (scales of 
motion), whereas (8.17) holds foculfy at a point. 



10-1 100 IO' 102 103 104 105 1V 

Figun! 8.2 Dmg coefficient for a sphere. The clwicteristic arca is taken as A = nd2/4 .  Thc mason for 
thc sudden drop or 4) at Rc - 5 x I d  is thc transition of the Inminx bouiibry layer Lo :I turbulent oiic, 
a5 expiaincd in Chapter 10. 

Prediction of Flow Behavior from Dimensional Considerations 
An interesting observation in Figure 8.2 is that CD cx 1 /Re at small Reynolds numbers. 
This can bc justified solely on dimensional grounds as follows. AI sinall values of 
Reynolds numbers we expect that the incaia forces in the equations of motion must 
become negligible. Then p drops out olEq. (8.15). requiring 

D = f ( d ,  U? p).  

The only diinensionless product that can be formed from the preceding is D / p U d .  
Because there is no other- nondimensional parameter on which D/pUd can depend, 
it can only be a constant: 

D cx pUd (Re << 1). (3.18) 

which is equivalent to C,, cx 1/Re. It is seen that the drug jbrce in u low Reynolds 
nuniber.flow is ZineurlypmportiunnI to the speed V; this is frequently called the Stokes 
law of resisrunce. 

At the opposite cxlrerne, Figure 8.2 shows that CD becomes independent of Re 
for values of Re > 1 03. This is because the drag is now due mostly to the formation 
of a turbulent wake, in which h e  viscosity only has an indirect influence on thc flow. 
(This will be clear in Chapter 13, where we shall see that the only eflect of viscosity 
as Rc + cm is lo dissipate the turbulent kinetic cnergy at increasingly smaller scales. 
The overall flow is controllcd by inertia forces alonc.) In this limit p drops oul of 
Eq. (8.15), giving 

D = . fW, U, P I .  



The only nondimensiontll product is then DlpU’d’, requiring 

D oc pU2d’ (Rc >> 11, (8.19) 

which is equivalent to CD = const. It is seen that thc drag jome isproportional to U 2  
for high Reynolds numberjZows. This rule is frequcntly applied to estimate various 
kinds of wind forces such as those on industrial structures, houses, automobiles, and 
the ocean surface. 

It is clear that veiy useful relationships can be established based on sound physical 
considerations coupled with a dimensional analysis. In the present case this procedure 
leads to D oc pUd for low Reynolds numbers, and D oc pU2d2 for high Reynolds 
numbers. Experiments can then be conducted to see if these relations do hold and to 
determine the unknown constants in these relations. Such arguments are constantly 
used in complicated fluid flow problems such as turbulence, where physical intuition 
plays a key role in research. A well-known example of this is the Kolinogorov K-5/3 
spectral law of isotropic turbulence presented in Chapter 13. 

The concept of similarity is h e  basis of model testing, in which test data on one flow 
can be applied to other flows. The cost of experimentation with full-scale objects 
(which are frequently called prototypes) can be greatly reduced by experiments on 
a smaller geomctically similar model. Alternatively, experiments with a relatively 
inconvenient fluid such as air or helium can be substituted by an experiment with an 
easily workable fluid such as water. A model study is invariably undertaken when a 
new aircraft, ship, submarine, or harbor is designed. 

In many flow situations both friction and gravity forces are impartant, which 
requires that both the Reynolds number and the Froude number be duplicated in a 
model testing. Since Re = UZ/u and Fr = U / n ,  simultaneous satisfaction of both 
criteria would require U oc 1 / I  and U oc 4 as the model length is varied. It follows 
that both the Reynolds and the Froude numbers cannot be duplicated simultaneously 
unless fluids of difkrent viscosities are used in the model and the prototype flows. 
This becomes impractical, m even impossible, as the requirement sometimes needs 
viscosities that cannot be met by common fluids. Tt is then necessary to decide which 
of the two forces is more important in the flow, and a model is designed on the 
basis of the corresponding dimensionless number. Corrections can then be applied to 
account for the inequality of the remaining dimensionless group. This is illustrated 
in Example 8.1, which follows this section. 

Although geomemc similarity is a precondition to dynamic similarity, this is 
not always possible to attain. In a model study of a river basin, a geometrically 
siinilar model results in a stream so shallow that capillary and viscous effects become 
dominant. In such a case it is nccessary to use a vertical scale larger than the horizontal 
scale. Such distorted modcls lack complete siinilitlide, and their results are corrected 
before making predictions on the prototype. 

Models of completely submerged objects are usually tested in a wind tunnel or 
in a towing tank wherc they are dragged through a pool of water. The towing tank 



is also used for testing models that are not coinpletely submerged, for example, ship 
hulls; these are towcd along thc frcc surface of the liquid. 

Example 8.1. A ship lOOm long is expected to sail at 1 O i d s .  It has a submerged 
surfacc d 300 m’. Find the model speed for ;L 1/25 scale modcl, ncglccting frictional 
eflects. The drag is measured to bc 60N when the model is tested in a towing tank at 
the model speed. Based on this information estimate the prototype drag after making 
corrections for frictional cffccts. 

We first cstimatc h e  model speed neglecting frictional effccts. Thcn 
the nondimensional drag force depends only on thc Froude number: 

Subutiuii: 

D /pU2l2  = .f ((I/&). (8.20) 

Equating Froude numbcrs for the model (denoted by subscript “m”) and prototype 
(denoted by subscript ‘’p”), we get 

The total drag on the model was measured to he 6ON at this model speed. Of 
the total measured drag, a part was due to frictional effccts. The hictional drag can 
be estimated by treating the surface of the hull as a flat plate. for which the drag 
coefficicnt CD is given in Figurc 10.9 as a function of thc Reynolds number. Using 
a vaIiic of u = m2/s for water, we get 

UX/u (model) = [,2(100/25)]/10-6 = 8 x lo6, 

U Z / U  (prototype) = IO(IOO)/IO-“ = io9. 

For thcse values of Reynolds numbers, Figure 10.9 gives thc frictional drag coeffi- 
cients d 

CD (model) = 0.003, 
C,) (prototype) = 0.0015. 

Using a valuc ol p = lo00 kg/m’ [or water, wc estimate 

Frictional drag on modcl = 4C”pU’A 
= 0.5(0.O03)( 1000)(2)2(300/25’) = 2.88 N 

Out of the total model drag of 60 N, the wave drag is thcrefore 60 - 2.88 = 57. I2 N. 
Now the wave drug slill obeys Eq. (8.20), which means that D/pUZ1’ for thc 

two flows are identical, where D rcpresenls wavc drag alone. Thcrefore 



Having estimated the wavc drag on the prototype, we proceed to determine its 
frictional drag. We obtain 

Frictional drag on prototype = ~ C D ~ U ’ A  
= (0.5)(0.0015)(1000)(10)2(300) = 0.225 x 1 6 N  

Therefore, total drag on prototype = (8.92 + 0.225) x 1 6  = 9.14 x 16 N. 
If wc did not c o m t  for the frictional effects, and assumcd that thc measured 

model drag watt all due to wave effects, then we would have found from Eq. (8.20) 
a prototype drag of 

D, = O,(~P/~~)(Z~/~,,,}~(U~/U,~)~ = 60(1)(25)2(10/2)2 = 9.37 x lo5 N. 

7. Sigrirjkncc of Cornrrion Nondinimsiona/ lbrwtrc~&rs 

So far, we have encountcred several nondimensioid groups such as the pressure 
coefficient ( p  - p r n ) / p U 2 ,  the drag coefficient 2D/pU21z, the Rcynolds number 
Rc = U l / v ,  and the Froude nuniber VI&$. Several independent nondimcnsional 
pammeters that commonly enter fluid flow pmblcms are listed and discussed briefly 
in this section. Other parameters will arise throughout thc rest of thc book. 

Reynolds Number 
The Rcynolds number is the ratio of inertia forcc to viscous force: 

Inertia force pualr/ax pU2/ i  Ui 
Viscous force pa2r{/ax’ p U / P  v 

Re o( o(-=---. 

Quality of Re is a requirement for (he dynamic similarity of flows in which viscous 
forces are important. 

Froude Number 
The Froude nuniber is defined as 

U 

Equality of Fr is a rcquiremcnt for the dynamic siniilarity or flows with a free surface 
in which gravity forces are dynamically significant. Some examples of flows in which 
gravity plays a significant i-ole are thc motion of a ship, flow in an opcn channel, and 
(he flow of a liquid over the spillway of a dam (Figure 8.3). 

Internal Froude Number 
In a density-stratified fluid the gravity force can play a significant role without Lhc 
presence of a free surface. Thcn the effcctive gravity force in a two-layer situalion is 
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the “buoyancy” force (p2 - p l ) g ,  as seen in the preceding chapter. In such a case we 
can definc an internal Froude number as 
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(8.21) 
U -- - Inertia force 1 ‘ I2 o( [ pI U ~ / I  1”’ 

Fr 
I [Buoyancy force (P2 - PI)R my 

where g’ = g(p2 - pl)/pl is the “reduced gravity.” For a continuously stratified fluid 
having a maximum buoyancy hquency N ,  we similarly define 

which is analogous to Eq. (8.21) since g’ = g(p2 - p l ) / p l  is similar to 
-p,’g(dp/dr)f = N21. 

Richardson Number 
Instead of defining the internal Froude number, it is more common to define a non- 
dimensional parameter that is equivalent to l/Frf2. This is called the Richardson 
number, and in a two-layer situation it is defined as 

(8.22) 

In a continuously stratified flow, we can similarly define 

(8.23) 

It is clear that the Richardson number has to be equal for the dynamic similarity of 
two density-stratified flows. 

Equations (8.22) and (8.23) define overall or bulk Richardson numbers in terms 
of the scules I, N ,  and CJ. In addition, we can define a Richardson number involving 
thc local values of velocity gradient and stratification at a certain depth z. This is 
called the grudienr Richardson number, and it is defined as 

N212 
u2 - 

N’(2)  Ri(z) = 
(dU/dz)? ‘ 

Local Richardson numbers will be important in our studies of instability and turbu- 
lence hi stratified fluids. 

Ship Open channel Spillway of dam 

Figure 8.3 Exainplcs or flows in which gravity is important. 



Mach Number 
The Mach number is dehed as 

Tnertia force pU2/1 u 
M E [  Conipressibil i ty forcc ]"2a[m] = ; 1  

where c is thc speed of sound. Equality of Mach nunibcrs is a requirement for the 
dynamic similarity of compressible flows. For cxample, the drag experienced by a 
body in a flow with compressibility effccts has the form 

CD = f(Re, M). 

Flows in which M .e 1 arc called subsonic, whereas flows in which M > 1 are called 
supcruonic. I1 will be shown in Chapkr 16 that compressi bility effects can be neglected 
if A4 .e 0.3. 

Prandtl Number 
The Prandtl number entcrs as a nondimensional parameter in flows involving heat 
conduction. It is defined as 

Momentum Wusivity v p/p CPp. pr= - _  - =--- - 
Heat diffusivity K k / p C ,  k ' 

Tt is lherefore a fluid property and not a flow variable. For air at ordinary temper- 
atures and pressures, Pr = 0.72, which is close to the value of 0.67 predicted from 
a simplificd kinetic theory model awuming hard sphci-es and monabmic molecules 
(Hirschfelder, Curtiss, and Bird (1954), pp. 9-1 6). For water at 20 "C, Pr = 7.1. Thc 
dynamic similarity of flows involving thermal effects requires equality of Prandtl 
numbers. 

Emmises 
1. Suppose that the power to drive a propeller of an airplane depends on d (diam- 

eter of the propeller), U (free-stream velocity), o (angular velocity of propeller), 
c (velocity of sound), p (density of fluid), and p (viscosity). Find the dimensioii- 
less groups. In your opinion, which of these are the most iinportant and should be 
duplicated in a model testing? 

2. A 1/25 scale model of a submarine is being tested in a wind tunncl in which 
p = 200 kPa and T = 300 K. If the prototype speed is 30km/hr, what should be the 
free-stream velocity in the wind tunnel? What is the drag ratio? Assume that the 
submarine would not operate near the free surface of the ocean. 
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I .  Intmduction 

Tn Chapters 6 and 7 we studied inviscid flows in which the viscous terms in the 
Navier-Stokes equations were dropped. The underlying assumption was that the vis- 
cous forces were confined to thin boundary layers near solid surfaces, so that the 
bulk of the flow could be regarded as inviscid (Figure 6.1). We shall see in the next 
chaptcr that this is indecd valid if the Reynolds number is large. For low valucs of 
the Reynolds number, however, the entireflow m y  be dominated by viscosity, and 
the inviscid flow theory is of little use. The purpose of this chapter is to present cer- 
tain solutions of the Navier-Stokes equations in somc simple situations, retaining the 
viscous term ~ V ’ U  everywhere in the flow. While the inviscid flow theory allows the 
fluid to “slip” past a solid sdace ,  real fluids will adhere to the surface because of 
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intermoldtlr interactions, that is, a real fluid satisfies the condition of zero relative 
velocity at a solid surface. This is the so-called nodip condirion. 

Before presenting the solutions, we shall first discuss certain basic ideas about 
viscous flows. Flows in which the fluid viscosity is important can be of two types, 
namely, laminar and turbufent. The basic dilfcrence between the two flows was dra- 
matically demonstrated in 1883 by Reynolds, who injected a thin slream of dye into 
the flow of water through a tube (Figure 9.1). At low rates of flow, the dye stream 
was observed to follow a well-defined straight path, indicating that the fluid moved 
in parallel layers (laminae) with no macroscopic mixing motion r?cfy)ss the layers. 
This is callcd a funzinorJlow. As the flow rate was increased beyond a certain critical 
value, the dye streak broke up into an irregular motion and spread throughout the 
cross section of the tube, indicating the presence of macroscopic mixing motions per- 
pendicular to the direction of flow. Such a chaotic fluid motion is called a tirrbulent 
flow. Reynolds demonstratcd that the transition from laminar to turbulent flow always 
occurred at a fixed value of the ratio Re = V d / v  N 3000, whei-e V is the velocity 
averaged over the cross section, d is the tube diameter, and v is the kinematic viscosity. 

Laminar flows in which viscous effects are iinportant throughout the flow are the 
subject of the present chapter; laminar flows iu which frictional effects are conhed to 
boundary layers near solid surfaces are discussed in the next chapter. Chapter 12 con- 
siders the stability of laminar flows and their transition to turbulence; fully turbulent 
flows are discussed in Chapter 13. We shall assume here that the flow is incompss- 
ible. which is valid for Mach numbers less than 0.3. We shall also assume that the 
flow is unstratifed and observed in a nonrotating coordinate system. Some solutions 
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Figure Y.1 Reynolds's expcrimcnt to dislinguish betwccn laminar and turbulcnt flows. 



or viscous flows in rotating coordinatcs, such as the Ekman layers, are presented i n  
Chapter 1.4. 

2. halogy belrmm I l m t  and I ?wtici[t- .Difliision 

For two-dimcnsional flows that take place j n  the xy-plane, the vorticity equation is 
( S ~ C  Eq. (5.13)j 

D W  

Dt 
- = VV2W. 

wherc w = a v / a x  - au/ay.  (For the sake of simplicity, wc havc avoided the vortex 
strclching term o Vu by assuming two dimensionality.) This shows that the rate of 
change of vorticity ao/at  at a point is due to advcction (-u Vu) and diffusion 
(vVLw) of vorticity. The equation is similar to thc hcat equation 

DT - = K V ~ T .  
Dt 

where K = k /pC, ,  is the Ihemial diffusivity. The similarity of thc cquations suggests 
that vorticity diffuses in a manner analogous to thc diffusion of heat. The similarity 
also brings out thc [act that the diffusive effects are controlled by u and K ,  and not by 
p and k. Ti1 fact, thc monienlum equation 

Du 1 

Dt P 
- = uv2u  - -vp. 

also shows that the accclcration due to viscous diffusion is proportional to u. Thus, 
air (11 = 15 x l.O-'mm'/s) is more diffisive than water ( u  = 10-6m2/s), although 
p for water is larger. Both v and K have the units of m'/s; h e  kineinatic viscosjty 
u is therefore also callcd momeiztuni difiiuivio, in analogy with K ,  which is called 
heat difiisivity. (Howcvcr. velocity cannot be simply regarded as being diffused and 
advccted in a flow because of thc pwsence of the pressure g d i e n t  t cm in Eq. (9.1). 
The analogy between heat and vorticily is more appropriate.) 

+3. ~'IY!#SIUU? Churige Due 10 Llpaniic t?'ech 

The equation or motion for the flow of a unifom density fluid is 

Du 
P E  = P8 - v p + pv'u. 

If the body of h i d  is at rest, the prcssure is hydrostatic: 

0 = pg - vp,. 

Subtracting, wc obtain 

(9.2) 

where pa p - p, is the pressure change due to dyiirunic e€ects. As there is no 
accepted terminology for Pd. we shall call it dyncmlic pressirre, although the term is 

Du 
Dt 

p- = -vp, + pvk, 



also used for pq2/2, where y is the specd. Other common terms for p d  are “modified 
pressure” (Batchelor, 1967) and “excess pressure” (Lighthill, 1986). 

For a fluid of uniform density, introduction of pd eliminates gravity from the 
differential equation a,, in Eq. (9.2). However, the process inay not e m l a t e  gravity 
from the problem. Gravity reappears in the problem if the boundary conditions are 
given in terms of the total pressure p. An example is the case of surface gravity waves, 
where the total pressure is fixed at the free surface, and the mere introduction d pd 
does not eliminate gravity from the problem. Without a free suiface, however, gravity 
has no dynamic role. Its only effect is to add a hydrostatic contribution to the pressure 
field. In the applications that follow, we shall use Eq. (9.2), but the subscript on p 
will be omitted, as it is understood that p stands for the dynamic pressur.e. 

4. S k d y  Fhw beLuw?n Ibrulld Hales 
Because of the presence of the nonlinear advection term u - Vu, very few exact 
solutions of the Navier-Stokes equations are known in closed form. In general, exact 
solutions are possible only when the nonlinearteims vanish identically. An example is 
the fully developed flow between iufinite parallel plates. The term “fully developed” 
signifies that we are considering regions beyond the developing stage near the entrance 
(Figure 9.2), where the velocity profile changes in the direction of flow because of the 
development of boundary layers from the two walls. Within this “entrance length,” 
which can be several times the distance between the walls, the velocity is uniform in 
the core increasing downstream and decreasing withx within the boundary layers. The 
derivative au/ax is therefore nonzero; the continuily equation au/ax + h / a y  = 0 
then requires that u # 0, so that the flow is not parallel to the walls within the entrance 
length. 

Consider the fully developed stage of the steady flow between two infinite parallel 
plates. The flow is driven by a combination of an externally imposed prcssure gradient 

, boundary layer 

entrance length fully developed 

Figurc 9.2 Dcvcloping and fully developed flows in a channel. The flow is fully dzvelopcd after thc 
bounhry layers mcrgc. 
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Figure Y.3 Flow bctwccii paralllld plates. 

(for example, rnaintaincd by a pump) and the motion of the upper plate at uniform 
speed ti. Take the x-axis along the lower plate andin the direction of flow (Figure 9.3). 
Two dimensionality of the flow requires that a/az = 0. Flow characteristics are also 
invariant in the .r direction, so that continuity requires h / B y  = 0. Since v = 0 at 
.v = 0, it ~ollows that 11 = 0 everywhere, which mflects the €act that the flow is parallel 
to the walls. The x-  and y-momentum equations are 

1 a p  d2u 0 = --- + v- 
p a.r d y '  

The y-momenlum equation shows that p is not a €unction of y. In the x-momentum 
equation, then, the &st tenn can only bc a fiinclion of x ,  while the second tcrtn can 
only be a function or y. The only way this can be satisfied is for both terms to be 
constant. The pressure gradient is thmjure a con.vtnni, which implies that the prcssurc 
varies linearly along the channel. Tntegi-ating the x-momentum equation twice, we 
obtain 

Y2 d p  
0 = -:- +/AU + A y +  B ,  

2 dx 
(9.3) 

where we have written dp/dx because p is a function of x alone. The constants of 
integration A and B are determined as follows. The lower boundary condition u = 0 
at y = 0 rcquires B = 0. The upper boundary condition u = U at y = 2h requires 
A = b(dp/d.r) - pU/2h.  The velocity profile equation (9.3) then becomes 

The vclocity profile is illusmtcd hi Figure 9.4 for various cases. 
The volume rate of flow per unit width of the channel is 



Two cases of special interest are discussed in what follows. 

Plane Couette Flow 
The flow driven by the motion of the upper plate alone, without ny externally imposed 
pressure gradient, is called a plane Couette flow. In this case E!q. (9.4) reduces to the 
h e a r  profile (Figure 9 . 4 ~ )  

YU 
2b 

u = -  (9.5) 

The magnitude of shear stress is 

which is uniform across thc channel. 

Plane Poiseuille Flow 
The flow driven by an externally imposed pressure gradient through two stationary flat 
walls is called a plane Poiseuille flow. In this case (9.4) reduces to the parabolic 
profile (Figure 9.4d) 



The magnitude of shear strcss is 

which shows that the stress distribution is linear with a magnitudc of b(dp/dx)  at the 
walls (Figure 9.4d). 

Tt is important to note that the coiutuncy afthepressure gdientund the LineuriQ 
ofthe shear stress distribution ure geneml results~or a fully developed chnnnelJIoiv 
and hoid even if the .frow is turbulent. Consider a control volume ABCD shown in 
Figure 9.3, and apply h e  momentum principle (see Eq. (4.20)), which states that the 
net fora on a control volume is equal to the nct outHux of momentum lhrough the 
surfaccs. Bccause the momentum fluxes across surfaccs AD and BC cancel each othcr, 
the forccs on the control volume must be in balance; pcr unit width perpendicular to 
the planc of paper, the force balance gives 

[. - (. - S L ) ]  2y' = 2Lt, (9.7) 

where y' is thc distance measured from the center of the channel. In Eq. (9.7), 2y' is 
the area of surfaces AD and BC, and L is the area of surface AB 01 DC. Applying 
Eq. (9.7) at thc wall, we obtain 

dP -b = to, 
dx (9.8) 

which shows that the pressure gradient dp/dx is constant. Equations (9.7) and (9.8) 
give 

(9.9) r = --to, 
b 

which shows that the magnitude of the shear stress increases lincmly €mm the center 
of the channel (Figure 9.4d). Note that no assumption about the nature of the flow 
(laminar or turbulent) has been made in deriving Eqs. (9.8) and (9.9). 

Tnstead of applying the momentum principle, we could have reached the forego- 
ing conclusions from the equation of motion in the form 

Y' 

Du d p  dt,, 
p- = -- + -, 

Dt dx dy 

where we have introduced subscripts on t and noted that the other slnss components 
are zero. As the left-hand sidc of the equation is zero, it follows that dp/dx must be 
a constant and -txe must bc linear in y. 

5. Shwdy Flaw in a Pipe 

Consider the fully developed lamimdrmotion through a tube of radius u. Flow through 
a tube is frequently called a circulur Puiseuilleflow. Wc employ cylindrical coordi- 
nates (r ,  8.  x ) ,  with the x-axis coinciding with the axis of thc pipc (Figure 9.5). The 
only nonzero component of velocity is the axial velocity u(r) (omitting the subscript 
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Figure 9.5 Liiminar flow through a tuhe. 

"Y' on u),  and none of the flow variables depend on 8 .  The equations of motion in 
cylindrical coordinates are given in Appendix B. The radial equation of motion gives 

showing that p is a function of x alone. The x-momentum equation gives 

As the first term can only be a function of x ,  and the second term can only be a 
function of r, it follows that both terms must be constant. The pressure therefore falls 
linearly along the length of pipe. Integrating twice, we obtain 

rz dp  
4 p  dx 

u = - - + A In Y + B. 

Because u must be bounded at r = 0, we must have A = 0. The wall condition u = 0 
at r = a gives B = - (u2/4p)(dp/dx) .  The velocity distribution therefore takes the 
parabolic shape 

r2 - a' dp  
u = -- 

4p dx' 
(9.10) 

From Appendix B, the shear stress at any point is 

In the present case the radial velocity u,. is zero. Dropping the subscript on t, we 
obtain 

du r d p  
t =p- = -- 

dr  2 d x '  
(9.1 1) 

which shows that the stress distribution is linear, having a maximum value at the 
wall of 

a dP 
2 dx 

to = --, (9.12) 

As in the previous section, Eq. (9.12) is also valid for turbulent flows. 



The volume rate of flow is 

nu4 dp 
0 8p dx 

Q = / “uZnrd r  = ---, 

where the negative sign offscts the negative value of dpldx. The average velocity 
ovcr the CIUSS section is 

6. Sleudy Flow belwtwn C’oncenlric Cyinders 

Another example in which the nonlinear advection terms drop out of the equations of 
motion is the steady Row between two concentric, rotating cylinders. This is usually 
called the circular CouetteJIow to distinguish it from the plane Couette Bow in which 
the walls are flat surfaces. Let the radius and angular velocity of the inner cylinder be 
R1 and ‘2, and those for the outer cylinder be R2 and !& (Figure 9.6). Using cylindrical 
coordinatcs, the equations of motion in the radial and tangential directions are 

The r-momentum cquation shows that the pressure increases radially outward due 
to thc centrifugal force. The pressure distribution can therefore be determined once 
ug ( r )  has been found. Tntegrating the &momentum equation twice, we obtain 

(9.13) 
B 
r 

uo = Ar + -. 

Figure 9.6 Circular Couetk flow. 
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Using the boundary conditions ue = 91 R1 at r = R I ,  and ue = !&R2 at r = R2, we 
obtain 

Substitution into Eq. (9.13) gives the velocity distribution 

Two limiting cases of the velocity distribution are considered in the following. 

Flow Outside 8 Cylinder Rotating in an Mnite Fluid 
Consider a long circular cylinder of radius R rotating with angular velocity Q in an 
infinite body of viscous fluid (Figure 9.7). The velocity distribution for the present 
problem can be derived from Eq. (9.14) if we substitute S22 = 0, R2 = oc, Q, = Q, 
and RI  = R. This gives 

QR2 
r 

ue = -: (9.15) 

which shows that the velocity distribution is that of an irrotational vortex for which the 
tangential velocity is inversely proportional to r. As discussed in Chapter 5, Section 3, 

Fipre J.7 Rotation of a solid cylinder of radius R in an infinite body of viscous tluid. The shape ol' thc 
free surlkc is also indicaicd. The flow field is viscous but irrotational. 



this is thc only cxamplc in which thc viscous solution is completely irrotational. Shear 
stresses do exist in this flow, but there is no net viscous force at a point. The shear 
stress at any point is given by 

which, for thc prcscnt case, reduces to 

2pQ R2 
rz 

rre = --. 

The forcing agent performs work on the fluid ai the rate 

It is easy to show that this rate of work equals the integral of the viscous dissipation 
over the flow field (Exercise 4). 

Flow Inside a Rotating Cylinder 
Considcr the steady rotation of a cylindrical tank containing a viscous fluid. The 
radius of thc cylindcr is R, and the angular velocity of rotation is R (Figure 9.8). 
The flow would reach a steady state after the initial transients have decayed. The 
steady velocity distribution for this case can be found from Eq. (9.14) by substituting 
521 = 0, R I  = 0, Q2 = R, and R2 = R. We get 

UI, = Qr, 

J surface free I 

(9.16) 

b - R - l  

E'igure Y.8 Steady rotation or a kink conwining viscous fluid. The shape of the fm zurl'acc is also 
i ndicatcd. 



which shows that the tangential velocity is directly proportional to the radius, so that 
the fluid elements move as in a rigid solid. This flow was discussed in greater detail 
in Chapter 5, Section 3. 

7. Impuhwely Started Hale: Similarity Solulions 
So far, we have considered steady flows with parallel stseamlines, both straight and 
circular. The nonlinear terms dropped out and the velocity became a function of one 
spatial coordinate only. In the transient counterparts of these problems in which the 
flow is impulsively started from rest, the flow depends on a spatial coordinate and 
time. For these problem, exact solutions st iu  exist bccause the nonlinear advection 
terms drop out again. One of these transient problems is given as Exercise 6. However, 
instead of considering the transient phase of all the problems already treated in the 
preceding sections, we shall consider several simpler and physically more revealing 
unsteady flow problems in this and the next three sections. First, consider the flow 
due to the impulsive motion of a flat plate parallel to itself, which is frequently called 
Stokes’Jirstproblem. (The problem is sometimes unfairly arsociated with the name of 
Rayleigh, who used Stokes’ solution to predict the thickness of a developing boundary 
layer on a semi-infinite plate.) 

Formulation of a Problem in Similarity Variables 
Consider an infinite flat plate along y = 0, surrounded by fluid (with constant p and p) 
for y > 0. The plate is impulsively given a velocity U at t = 0 (Figure 9.9). Since the 
rcsulting flow is invariant in thex direction, the continuity equation au/ax + i h / i l y  = 
0 requires h / a y  = 0. It follows that u = 0 everywhere because it is zero at y = 0. 

Figum 9.Y Laminar flow due to an irnpulsivcly started flat pliitc. 



IC the pressures at x = f o o  are maintained at the same level, we can show that 
the pressure gradients are zero everywhere as Iollows. Thc x- and y-momentum 
equations ace 

a~ ap a2u 
L L T ’  p- = -- + 

at ax ay 

The y-momentum equalion shows that p can only bc a function of x and t. This can 
be consistent with the x-momentum equation, in which the first and the last terms 
can only be functions of y and t only X a p / a x  is independent of x. Maintenance 
of identical pressures at x = f o o  therefore requires that a p / a x  = 0. Alternativcly, 
this can be established by observing that for an infinite plate the problem must be 
invariant under translation of coordinates by any finite constant in n. 

The governing equation is thercfore 

subject to 

u ( y .  0)  = 0 
u(0, t )  = U 

u(30, t )  = 0 

[initial condition], 
[surIace condition], 
[far field condition]. 

(9.17) 

(9.18) 
(9.19) 
(9.20) 

Thc problem is well posed, because Eqs.  (9.19) and (9.20) are conditions at two values 
of y ,  and Eq. (9.18) is a condition at one value oft; this is consistent with Eq. (9.17), 
which iiivolves a first derivative in t and a second derivative in y .  

The partial differential equution (9.17) cun be trunqformed into an ordinav 
diflerentiai equation fmm dimen.~ional considerations alone. Its real reason is the 
absence of scalcs for y and t as discussed on page 287. Let us write the solution as a 
functional rclation 

u = rp(U$ y ,  t, u) .  (9.2 1)  

An examination of the equation set (9.17H9.20) shows that the parameter U appears 
only in the surface condition (9.19). This dependence on U can be eliminated from 
the problem by rcgarding u / U  as the dependent variable, for then the equation set 
(9.17)-(9.20) can be written as 

auf a%‘ 
at ay2 
_ -  - v-, 

u’(y,  0 )  = 0: 
u’(0, t )  = 1, 

/ A I ( % ,  t )  = 0: 
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where u' 
the form 

u /  U. The preceding set is independent of U and must havc a solution of 

- = f(Y, t ,  V I -  (9.22) U 
Because the left-hand side of Eq. (9.22) is dimensionless, the right-hand side can only 
be a dimensionless function of y, t, and u. The only nondimensional variable formed 
from y ,  t, and u is y / f i ,  so that Eq. (9.22) must be of the form 

U 

(9.23) 

Any function of y / , h  would be dimensionless and could be used as the new inde- 
pendent variable. Why have we chosen to write it this way rather than ut/y2 or some 
other equivalent form? We have done so because we want to solve for a velocity profle 
as a function of distance from the plate. By thinking of the solution to this problem 
in this way, our new dimensionless similarity variable will feature y in the numerator 
to the first power. We could have obtained Eq. (9.23) by applying Buckingham's pi 
theorem discussed in Chapter 8, Section 4. There are four variablcs in Eq. (9.22), 
and two basic dimensions are involved, namely, length and time. 'Itclo dimensionless 
variables can therefore be formed, and they are shown in Eq. (9.23). 

We write Eq. (9.23) in the form 

U 
- = F ( q ) ,  (9.24) U 

where q is the nondimensjonal distancc given by 

Y q = -  
2 f i -  

(9.25) 

We see that the absence of scales for length and time resulted in a reduction of the 
dimensionality of the space required for the solution (from 2 to 1). The factor of 2 
has been introduced in the dehition of q for eventual algebraic simplification. The 
equationset(9.17k(9.20)cannow be wrimnintermsofq and F(q).FromEqs. (9.24 
and (9.25), we obtain 

Here, a prime on F denotes derivative with respect to 9. With these substitutions, Eq. 
(9.17) reduces to the ordinary differential equation 

-2qF' = F". (9.26) 



The boundary conditions (9.1 8)-(9.20) reduce to 

F ( X )  = 0, 
F(0)  = 1. 

(9.27) 
(9.28) 

Note that borh (9.18) and (9.20) reduce to the same condition F(m) = 0. This is 
expccted because the original Eq. (9.17) was a partial differential equation and needed 
two conditions in y and one condition in t .  Tn contrast, (9.26) is a second-order ordinary 
diffcrcmial equation and needs only two boundary conditions. 

Similarity Solution 
Equation (9.26) can be integratcd as follows: 

dF' 
F' 
- = -2qdq. 

Integrating oncc: we obtain 

which can be written as 
dF 
- = A e-v-, 
drl 

where A is a constant of integration. Integrating again, 

'1 
F(q)  = A d  e-"dq + B .  (9.29) 

Condition (9.28) gives 

from which B = 1. Condition (9.27) gives 

+ 1,  
2 

(where we havc uscd the result of a standard definite integral), from which A = 
- 2 / f i .  Solution (9.29) then becomes 

2 ' 1  F = 1 - - e-'q2dr]. Jri (9.30) 

Thc function 
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Figure 9.10 Simihrily solution or laminar tlow due to an impulsivcly svaacd flat plate. 

is called the “error function” and is tabulated in mathematical handbooks. Solution 
(9.30) can then be written as 

U - 
U (9.31) 

It is apparent that the sa1ulion.s at different times all collapse into a single curve of 
u / U  vs q ,  shown in Figure 9.10. 

The nature of the variation of u / U  with y for various valucs of t is sketched in 
Figurc 9.9. The solution clearly has a diffusive nature. At r = 0, a vortex sheet (that 
is, a vclocity discontinuity) is created at thc plate surface. The initial vorticity is in the 
form of a delta function, which is inhite at the plate surface and zero clscwhere. It can 
be shown that the integral 1,: o dy is independent of time (see the following section 
for a demonstration), so that no new vorticiry is generated aJter the initial time. The 
initial vorticity is simply diffused oulward, resulting in an increase in the width of 
flow. The situalion is analogous to a hear conduction problem in a semi-infinite solid 
extending from y = 0 to y = ,m. Initially, the solid has a uniform tempcrature, and at 
t = 0 the face y = 0 is suddcnly brought to a diffcrcnt temperature. The tcmperature 
Ciishibution for this problem is given by an equation similar to Eq. (9.31). 

We m y  arbitrarily define the thickncss of the diffusivc layer as the distancc at 
which u falls to 5% of U. From Figure 9.10, u / U  = 0.05 corresponds to q = 1.38. 
Thcrefore, in time t h e  diffusive effects propagate to a distance of order 

I S - 2 . 7 6 f i  1 (9.32) 



which increases as a. Obviously, the factor of 2.76 in the prcceding is somewhat 
arbitrary and can be changed by choosing a different ratio of u/  U as the definition 
for the edge of the diffusive layer. 

The present problcm illustrates an important class of fluid mechanical problems 
that have similarity solutions. Because of the absence of suitable scalcs to rcnder 
the independent variables dimensionlcss, the only possibility was a combination of 
variables that resulted in a reduction of independent variables (dimensionality a€ thc 
space) required to describe the problem. Tn this case the reduction was fmm two ( y ,  t) 
to one (q)  so that the formulation reduced from a partial differential equation in y,  t 
to an ordinary differential equation in q. 

The solutions at different times are selj=similur in the scnsc that they all collapse 
into a single curve if the velocity is scaled by U and y is scaled by thc thickness of the 
layer taken to be s ( t )  = 2 m .  Similarity solutions exist in situations in which there 
is no natural scale in the direction of similarity. In the present problem, solutions at 
different t and y arc similar because no length or time scales are imposed through 
the boundary conditions. Similarity would be violated if, for example, the boundary 
conditions are changed after a cerlain time t i ,  which introduces a time scale into the 
problem. Likewise, if the flow was bounded above by a parallel platc at y = b: there 
could be no similarity solution. 

An Alternative Method of Deducing the Form of q 

Instead of arriving at the form of q from dimensional considerations, it could be 
derived by a different method as illustrated in the following. Denoting the thickness 
of the flow by S ( f ) ,  we assume similarity solutions in the form 

U 
- = P ( q ) ,  U 

Y q = - .  
(0 

Then Eq. (9.17) becomes 

Thc dcrivatives in Eq. (9.34) are computed From Eq. (9.33): 

aq y d8 q d s  
at P d t  s dt'  
aq 1 
ay s '  

aq F' 
aY ay s ' 

ay2 6 ay 8 2 '  

-----=--- - 

-- - - 

- F'- = - aF _ -  

a2F 1 BF' F" - - 

(9.33) 

(9.34) 



Substitution into Eq. (9.34) and cancellation of factors give 

Since the right-hand si& can only be an explicit function of 17, the coefficient in 
parentheses on the left-hand side must be independent of t. This requires 

- const. = 2,  for example. 
6 dS 
v dt  
-- - 

Integration gives S2 = 4vt, so that the flow thickness is S = 2 6 .  Equation (9.33) 
then gives r ]  = y / ( 2 f i ) ,  which agrees with our previous finding. 

Method of Laplace Transform 
Finally, we shall illustrate the method of Laplace transform for solving the problem. 
k t  i ( y ,  s )  be the Laplace transform of u(y ,  t). Taking the transform of Eq. (9.17), 
we obtain 

d21i 
su = v-, 

dY2 
(9.35) 

where the initial condition (9.18) of zero velocity has been used. The transform of 
the boundary conditions (9.19) and (9.20) are 

U 
i(0, s) = -, 

S 
B(o0,  s) = 0. 

(9.36) 

(9.37) 

Equation (9.35) has the gencral solution 

where the constants A(s) and B(s)  are to be determined from Ihc boundary conditions. 
The condition (9.37) requires that A = 0, while Eq. (9.36) requires that B = U / s .  
We then have 

The inverse transform of the pmeding equation can be found in any mathematical 
handbook and is given by Eq. (9.31). 

We have discusscd this problem in detail because it illustrates thc basic diffusive 
nature of viscous flows and also the mathematical techniques involved in finding 
similarity solutions. Several other problems of this kind are discusscd in the following 
sections, but the discussions shall bc somewhat mom brief. 



3. Difliion of a V i r h  Sheet 
Consider the case in which the initial velocity field is in the form of a vortex shcct 
with u = U €or y > 0 and u = -U for y < 0. We want to investigate how the vortex 
sheet decays by viscous dflusion. The governing equation is 

au a2u - = v- 
at i)y' 

subject to 

U ( Y ,  0)  = U sgn(y), 
u ( x .  t )  = u, 

u ( - x ,  t )  = -u, 

where sgn(y) is the "sign function," defined a,. 1 €01 positive y and -1 for negative 
Y. As in thc previous section, the parameter U can be eliminated €om the governing 
set by regarding u / U  as the dependent variable. Then u / U  must bc a function of 
(y, t, v), and a dimcnsional analysis reveals that there must exist a similarity solution 
in the form 

The detailed arguments for the existence of a solution in this form are given in the 
preceding section. Substitution d h c  similarity form into the governing set transforms 
it into the ordinary differential equation 

F" = -2qF'. 
F(+oo)  = I ,  
F ( - m )  = - 1 ~ 

whose solution is 
w?) = e m o .  

The velocity distribution is therefore 

(9.38) 

A plot of the velocity distribution is shown in Figure 9.11. If we define the width of 
h e  transition layer as the distance between the points where u = f0.9SU, then the 
corresponding value of r,~ is f 1.38 and consequently the width of the transition layer 
is 5.52,';i. 

It is clear that the flow is essentially identical to that duc to the impulsive start 
of a flat plate discussed in the preceding section. In fact, each half of Figure 9.1 1 
is idcntical to Figure 9.10 (within an additive constant of f l) .  In both problems 
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Figure 9.11 Viscous decay of a vortex shect. Thc right panel shows thc nondimcnsional solution and thc 
left panel indicatcs h c  vorticity distribution at two tirncs. 

the initial delta-function-like vorticity is diffused away. Tn the presenl problem the 
magnitude of vorticity at any time is 

(9.39) 

This is a Gaussian distribution, whose width increases with timc as a, while the 
maximum value decreascs as I/&. The total amount of vorticity is 

which is independcnt of time, and equals the y-integral of the initial 
(delta-function-like) vorticity. 

9. Decay of a Line hrkx 

In Section 6 it was shown that when a solid cylinder of radius R is rotated at angu- 
lar specd s2 in a viscous fluid, the resulhg motion is irrotational with a velocity 
distribution US = !2R2/r .  The velocity distribution can be writkn as 

r 
U o  = - 9  

wherc r = 2n SZ R2 is thc circulation along any path surrounding the cylinder. Suppose 
the radius of the cylinder goes to zero while its angular velocity correspondingly 

2x1- 



inmeases in such a way that the product r = 2irQR' is unchanged. In the limit we 
obtain a line vortex of circulation r, which has an infinite velocity discontinuity at 
thc origin. 

Now suppose that the limiting (infinitely thin and fast) cylinder suddenly stops 
rotating at r = 0, thereby reducing the velocity at the origin to zero impulsively. Then 
the fluid would gradually slow down from the initial distribution because of viscous 
diffusion from the region near the origin. The flow can therefore be regarded as that of 
the viscous decay of a line vortex, for which all the vorticity is initially concentrated 
at the origin. The problem is the circular analog o€ the decay of a plane vortex sheet 
discussed in the preceding section. 

Employing cylindrical coordinates, the governing equation is 

subject to 

ug(r, 0 )  = r/27rr, (9.41) 
(9.42) 
(9.43) 

We expect similarity solutions here because there are no natural scales for Y and t 
introduced from the boundary conditions. Conditions (9.41) and (9.43) show that the 
dependence of the solution on the parameter r/21rr can be eliminated by defining a 
nondimensional velocity 

(9.44) 

which must have a dependence of the form 

u' = f ( r ,  t ,  u ) .  

As thc lcft-hand side of the preceding equation is nondimensional, the right-hand side 
must be a nondimensional function of r, t, and u. A dimensional analysis quickly 
shows that the only nondimensional group formed from thcsc is r/Jvb. Therefore, 
the problem must have a similarity solution d the form 

u' = F(q) ,  
(9.45) 

(Notc that we could have defined q = r/2& a$ in the previous problems, but the 
algebra is slightly simpler if we define it as inEq. (9.45).) Substitution of thc similarity 
solution (9.45) into the governing set (9.40X9.43) givcs 

F" + F' = 0, 

subject to 

F ( 0 )  = 1, 
P(0)  = 0. 
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Rprc! 9.12 Viscous dccrry of a line vortcx showing the iangcnlial velocity at diJTcrent times. 

The solution is 

The dimcnsional Velocity distribution is therefore 

F = 1 - e-q. 

(9.46) 

A sketch of the velocity diskibution for various values of f is given in Figurc 9.12. 
Near the center (r << 2 f i )  the flow has the form of a rigid-body rotation, whilc in 
the outcr region (r >> 2 f i )  the motion has the form of an irrotational vortex. 

The foregoing discussion applies to the &cay of a line vortex. Consider now 
the case where a line vortcx is suddenly introduced into a fluid at rest. This can be 
visualized as the impulsive start of an infinitely thin and fast cylindcr. It is easy to 
show that the velocity distribution is (Exercise 5 )  

(9.47) 

which should be compared to Eq. (9.46). The analogous problem in heat conduction 
is the sudden introduction of an infinitely thin and hot cylinder (containing a finite 
amount of heat) into a liquid having a different tcmperature. 

10. Flow llue to an Oscillahg Plate 
The unsteady parallel flows discussed in the three preceding sections had similarity 
solutions, because there were no natural scales in space and time. We now discuss 
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an unsteady parallel flow that does not have a similarity solution bccause of the 
existence ora natural time scale. Consider an idmite flat plate that executes sinusoidal 
oscillations parallel to itself. (This is sometimes called Stokes' secondproblem.) Only 
the steady periodic solution a~let- the slarting transients have died will be considcred, 
thus there are no initial conditions to satisfy. The governing equation is 
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subject to 
u(0, t) = u cos wt, 

u(00: r) = bounded. 

(9.48) 

(9.49) 

(9.50) 

In the stcady statc, thc flow variables must have a periodicity equal to the periodicity 
of the boundary motion. Consequently, we use a separable solution of the form 

= p r  .f ( Y ) ,  (9.51) 

where what is meant is the real part of the right-hand side. (Such a complex form 
of represcntation is discussed in Chapter 7, Section 15.) Here, f ( y )  is complex, 
thus u ( y ,  t) is allowed to have a phase difference with the wall velocity U cos wl.  
Substitution of Eq. (9.51) into the governing equation (9.48) gives 

(9.52) 

This is an equation with constant coefficients and must have exponential solu- 
tions. Substilution of a solution of the form f = exp(ky) gives k = m = 
&(i + l)-, where the two square roots of i have been used. Consequently, 
the solution of Eq. (9.52) is 

(9.53) 

The condition (9.50), which requires that the solutionmustremain boundcd a1 y = 30, 
needs B = 0. The solution (9.51) then becomes 

= A e i w ~  , - ( l + i ) y , h P  (9.54) 

The surface boundary condition (9.49) now givcs A = U. Taking the real part of Eq. 
(9.54), we finally obtain the velocity distribution for the problem: 

u = Ue-J-cos wt - y ( E). (9.55) 

The cosine term in Eq. (9.55) represents a signal propagating in the direction of 
y ,  while the exponcntial term represents a dccay in y. The flow thercfore resem- 
bles a damped wave (Figure 9.13). However, this is a dfision problcm and nor a 
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Figore 9.13 Velocity dishbution in laminar flow near an osdllating plalc. The distributions at wf = 0, 
x/2,  n, and 3n/2 are shown. Thc dillilsive distmcc is of order d = 4 m .  

wave-propagation problem because there are no rcstoring forces involved here. The 
apparent propagation is merely a result of the oscillating boundary condition. For 
y = 4 m ,  ihc amplitude of u is U exp(-4/&) = O.O6U, which means that the 
influence of the wall is confined within a distance of order 

s ‘c 4-, (9.56) 

which decreases with frequency. 
Note that the solution (9.55) cannot be mpresented by a single curve in krms of 

the nondimensional variables. This is expected because the frequency of the bound- 
ary motion introduces a natural time scale l/o into the problem, thereby violating 
the requiremcnts of self-similarity. There are two parameters in the governing set 
(9.48)-(9.50), namely, U and w. The parameter U can be eliminated by regarding 
u / U  as the dependent variable. Thus the solution must have a form 

U 
- = . f ( Y ,  t ,  0: V I .  (9.57) 

As there are fivc variables and two dimensions involved, it follows that there must be 
three dimensionless variables. A dimensional analysis of Eq. (9.57) gives u / U ,  of, 
and y m  as the three nondimensional variables as in Eq. (9.55). Self-similar solu- 
tions exist only when there is an absence of such naturally occurring scalcs requiring 
a reduction in the dimcnsionality of the space. 

An interesting point is that the oscillating plate has a constant diffusion dis- 
tance 6 = 4 m  that is in contrast to the casc of the impulsively started platc 

U 



in which the diffusion distance increases with time. This can be understood from 
the govcming cquation (9.48). In thc problcm of sudden accelcration of a plate, 
i12u/i)y2 is positive for all y (see Figure 9.10), which results in a positive au/at 
everywhere. The monotonic acceleration signifies that momentum is constantly 
diffused outward, which results in an ever-increasing width of flow. In contrast, 
in  thc casc of an oscillating plate, a2u/i3y2 (and therefore a u / a r )  constantly 
changes sign in y and t . Therefore, momentum cannot diffuse outward monotonically, 
which results in a constant width of flow. 

The analogous problem in heat conduction is that of a semi-infinite solid, the 
surhce of which is subjected to a periodic fluctuation of temperature. The resulting 
solution, analogous to Eq. (9.59, has been used to estimate the effective “eddy” 
diffusiviry in thc upper layer of the ocean from measurements of the phase difference 
(that is, h e  time lag between maxima) between the temperature fluctuations at two 
depths, generated by the diurnal cyclc of solar heating. 

11. Hifih and 1,ow Reynolds :I:Wnber 1~’Lowx 
Many physical problems can be describcd by ihe behavior of a system when a certain 
parameter is either very small or very large. Consider the problem of steady flow 
around an object dcscribed by 

pu vu = -vp + pv2u. (9.58) 

First, assume that the viscosity is small. Then the dominant balance in thc flow is 
between the pressure and inertia forces, showing that pressure changcs are of order 
pU2.  Consequently, we nondimensionalize the governing cquation (9.58) by scaling 
u by the frcc-strcam velocity U ,  pressure by p U 2 ,  and distance by a representative 
lcngth L of the body. Substituting the nondimensiond variables (denoted by primcs) 

the equation of motion (9.58) becomes 

1 
Re 

uf Vu’ = -Vp’ + -V2U’, 

(9.59) 

(9.60) 

where Re = U L v  is thc Reynolds number. For high Reynolds number flows, 
Eq. (9.60) is solved by treating 1/Re as a small parameter. As a h s t  approxima- 
lion, we may set 1/Re to zero everywhere in thc flow, thus reducing Eq. (9.60) lo 
the inviscid Euler equation. However, this omission of viscous terms cannot be valid 
near the body because thc inviscid flow cannot satisfy the no-slip condition at the 
body surface. Viscous forces do become important near the body becausc of the high 
shcar in a layer near the body surfacc. The scaling (9.59), which assumes that veloc- 
ity gradients are proportional to U/L, is invalid in thc boundary layer near the solid 
surface. We say that there is a region of nonunifornib): near the body at which point 
a perturbation expansion in terms of the small parameter 1 /Re becomes singulur. 
The proper scaling in the boundury luyer and the procedure of solving high Reynolds 
number Rows will be discussed in Chapter 10. 
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Now consider flows in the opposite limit of very low Rcynolds numbers, that 
is, Re + 0. It is clear that low Reynolds number flows will have ncgligible inertia 
forces and therefore the viscous and pressure forces should be in approximate balancc. 
For the governing equations to display this fact, we should have a small parameter 
multiplying the inertia forces in this case. This can be accomplished if thc variables 
are nondimensionalized properly to take into account the low Reynolds number nature 
of the flow. Obviously, the scaling (9.59), which leads to Eq. (9.60), is inappropriatc 
in this case. For if Q. (9.60) were multiplied by Re, then the small parameter Re 
would appear in front of not only the incrtia force term but also the pressure € m c  
term, and the governing equation would reduce to 0 = pVzu as Re + 0, which is 
not thc balance for low Reynolds number flows. Thc source of the inadequacy of the 
nondimemionalization (9.59) for low Reynolds number flows is that thc pressure is 
not of order p U 2  in this case. As we noted in Chapter 8, for these extcrnal flows, 
pressure is a passive variable and it must be normalized by the dominant efFcct(s), 
which here are viscous forces. The purpose of scaling is to obtain nondimensional 
variables that are of order one, so that pressure should be scaled by pUz  only in high 
Reynolds number flows in which the pressure forccs are of the order of the inertia 
forces. In contrast, in a low Reynolds numbcr flow the pressure forces are of the order 
of the viscous forces. For V p  to balance pVzu in Eq. (9.58), the pressure changes 
must have a magnitudc of the ordcr 

p - L p P u  - p U / L .  

Thus the proper nondimensionalization for low Reynolds number flows is 

(9.61) 

The variations of the nondimensional variables u‘ and p’ in the flow ficld are now 
of ordcr one. The pressure scaling also shows that p is proportional to p in a low 
Reynolds number flow. A highly viscous oil is used in the bearing of a rotating shaft 
because the high pressure developed in the oil film of thc bearing “lifts” the shaft and 
prevents metal-to-metal contact. 

Substitution of Eq. (9.61) into (9.58) gives the nondimensional equation 

Re uf . Vu’ = -Vp’ + v2u’. (9.62) 

In the limit Re + 0, Eq. (9.62) becomes the linear equation 

vp = p v h :  (9.63) 

where the variables have been converted back to thcir dimensional hm. 
Flows at Re << 1 are called creeping motions. They can bc due to small velocity, 

large viscosity, or (most coinmonly) the small sizc of the body. Examplcs of such 
flows are the motion of a thin film of oil in the bearing of a shaft, settling of sediment 
particles near the ocean bottom, and the fall of moisture drops in the atmosphere. In 
thc next section, we shall examine the creeping flow around a sphere. 



Sumrmri-y: The purpose of scaling is to generate nondimensional variables that 
are of order onc in the flow field (except in singular regions or boundary layers). 
The proper scales depend on the nature of theJlav a d  are obtained by equating 
the terms thut are most important in the flow field. For a high Reynolds number 
flow, thz dominant terms are the inertia and pressure forces. This suggests the scaling 
(9.59). resulting in the nondimensional equation (9.60) in which the small parameter 
multiplies the subdominant term (except in boundary layers). In contrast, the dominant 
terms for a low Reynolds number flow are the pressure and viscous forces. This 
suggests the scaling (9.611, resulting in the nondimensional equation (9.62) in which 
the small parameter multiplies the subdominant term. 

12. &?c?ping Flow murid a Sphere 
A solution for the creeping flow around a sphere wa, iirst given by Stokes in 185 1. 
Consider the low Reynolds number flow around a sphere of radius a placed in a uni- 
form stream CJ (Figure 9.14). Thc problem is axisymmetric, that is, the flow patterns 
are idcntical in all planes parallel to U and passing through the center of the sphere. 
Since Re + 0, as a first approximation we may ncglect the inertia forces altogether 
and solve the equation 

We can form a vorticity equation by taking the curl of the preceding equation, obtain- 
ing 

Here, we have used the fact hat thc curl of a gradient is zero, and that the order of thc 
operators curl and V2 can be interchanged. (The reader may verify this using indicia1 
notation.) The only component of vorticity in this axisymmetric problem is q,, the 
component perpendicular to (p = const. planes in Figure 9.14, and is given by 

v p  = pv2u. 

0 = v20. 

In axis,mmetric flows we can d e h e  a streamfunction I,$; these are given in Sec- 
tion 6.1 8. in  spherical coordinates, it is defined as u = -V(p x V$, so 

1 a$ 
r sine ar ua = ---. 1 

' - r2sine ae 
u =-- 

In terms of the streamfunction, the vorticity becomes 

- -1 [-- 1 a2$ 
u p -  r sine ar* 

The governing equation is 

Combining the last two equations, we obtain 

v2w, = 0. 

2 [$+-+-)I sin0 a 1 a $ = O .  
r2 ae sin0 a0 
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-re 9.14 Creeping flow ovee a sphcrc. The uppmpanel shows lhc blur slrars componena at the 
sllrke. n l c l o w c r ~  shows h ~ d i s t r i h t i r n  in rmanial (p = amst.) plane. 

The boundary conditions on the preceding equation ~IE 

Ma, e) = 0 [u, = o  atsurface], (9.65) 

*(oo, e) = ;ur2 sin2 e [uniform at 001. (9.67) 

The last condition follows from the fact that the stream function for a uniform flow 
is (1/2)Ur2 sin2 8 in spherical coordinates (see Eiq. (6.74)). 

ag/ar(a, e) = 0 [ue=O atsllrfacel, (9.66) 

The upsheam condition (9.67) suggests a separable solution of the form 

@ = f(r) sinz e. 
Substitution of th is  into the governing equation (9.64) gives 

whose solution is 
D 
r 

f = Ar4+ B i z  + Cr + -. 
The upstream boundary condition (9.67) r e q u k s  that A = 0 and B = U/2. The 
surface boundary condition then gives C = -3 Ua/4 and D = Ua3/4. The solution 

(9.68) 



The velocity components can thcn bc found as 

(9.69) 

The pressure can be found by integrating the momentum equation V p  = pV2u. The 
result is 

3ap u cos H 
p = -  + P x  2r2 

(9.70) 

Thc prcssure distribution is sketched in Figurc 9.14. The pressure is maximum at 
thc forward stagnation point where it equals 3pU/2a ,  and it is minimum at the rcar 
stagnation point where it equals -3pU/2a. 

Let us determine the drag .force D on the sphere. Onc way to do this is to apply the 
principlc or mechanical energy balancc over the entire flow ficld givcn in Eq. (4.63). 
This requires 

D U =  # d V ,  

which statcs that the work done by the cylindcr equals the viscous dissipation over 
the entirc flow; hcre, # is the viscous dissipation per unit volume. A morc direct way 
to dctciminc the drag is to integrate thc stress over the surfacc of the sphere. The force 
per unit area normal to a surhce, whose outward unit normal is n is 

s 

F; = t ; ,nj  = [ - p G i j  + q ] n ,  = -pni + o . . n .  11 I ?  

where tij is thc total stress tensor, and o;,j is the viscous strcss tcnsor. The component 
of the drag rorcc per unit area in thc direction of the uniform stream is thereforc 

[ - p cos 8 + or,. cos H - ore sin O],.,, , (9.71) 

which can be understood from Figure 9.14. TIic viscous stress componcnls are 

[;:2 E:]. ilu, 
or,. = 2p- = 2pu cos# 

g r o  = 1.1 [ r ;  (7) + ;,I = -- sin 8 ,  

- - - 
ar 

(9.72) 
a ug 1 a U r  3puu3 

2r4 

so that Eq. (9.7 1 ) becomes 

3pu 
-cos2f9 + o +  - 3pu sin28 = -. 3 w  

2a 2a 2a 

Thc drag Iorce is obtaincd by multiplying this by the surface area 4na2 ofthc sphere, 
which gives 

D = 6 ~ r p a U ,  (9.73) 



300 r h R h  

of which onethird is ptssure drag and two-thirds is skin fiction drag. It follows 
that the resistance in a creeping flow is proportional to the velocity; thk is known as 
Stokes’ law ofresisrance. 

In a well-known experiment to measure the charge of an electron, M i l l h  used 
Eq. (9.73) to estimate the radius of an oil drapret falling through air. Suppose p’ is 
the density of a spherical falling particle and p is the density of the surrounding fluid. 
Then the effective weight of the sphere is 4nu3g(p‘ - p)/3, which is the weight of 
the sphere minus the weight of the displaced fluid. The falling body is said to reach 
the ‘‘termid velocity” when it no longer accelerates, at which point the viscous drag 
equals the effective weight. Then 

+l3g(p’ - p) = 6sfjMu, 

h m  which the radius a can be estimated 
Millikan was able to deduce the charge on an electron making use of Stokes’ drag 

f o d a  by the following experiment. ’ k o  horizontal parallel plates can be charged 
by a battery (see Fii. 9.15). Oil is sprayed through a very fine hole in the upper plate 
and develops static charge (+) by losing a few (n) electrons in passing through the 
mall hole. IF the plates are charged, then an electric force neE will act on each of 
the dmps. Now n is not known but E = -V’/L, where Vj, is the battery voltage 
and L is the gap between the plates, prmrided that the charge density in the gap is 
very low. With the plates uncharged, measmment of the downward terminal velocity 
allowed the radius of a drop to be calculated assuming that the viscosity of the drop 
is much larger than the viscosity of the air. The switch is t h w n  to charge the upper 
plate negatively. The same droplet then reverses direction and is f o r c e d  upwards. It 
quickly achieves its terminal velocity Vu by virtue of the balance of upward forces 
(electric + buoyancy) and downward forces (weight + drag). This gives 

6sfpUua + (4/3)nu3g(p‘ - p) = neE, 

where U,, is measured by the obseMltion telescope and the radius of the particle is 
now known. The data then allow for the calculation of ne. As n must be an integer, 
data from many droplets may be Merenced to identify the minimum difFerence that 
must be e, the charge of a single electron. 

The drag coefficient, defined as the drag force nondimensionalized by pU2/2 
and the projected are xu’, is 

(9.74) 



where Re = h U / u  is thc Reynolds number based on the diametcr of the spherc. 
In Chapter 8, Section 5 it was shown lhat dimcnsional consideralions alone rcquire 
that CD should be inversely proportional to Rc for creeping motions. To rcpcat the 
argument, the drag force in a “massless” fluid (that is, Re << 1) can only have the 
dcpendence 

D = f ( p ,  U, a). 

The preceding relation involves four variables and thc t h m  basic dimensions of mass, 
length, and timc. Therefore, only one nondimcnsional parameter, namely, D / p U u ,  
can be formed. As thcrc is no second nondimensional parameter for it to depend on, 
D / p U a  must be a constant. This lcads to CD a I /Re. 

Thc flow pattern in a reference frame fixed to the fluid at infinity can be found 
by superposing a uniform velocity U to the left. This cancels out the first term in 
Eq. (9.68), giving 

$ = U r  s i n Q  * [ --+- : f3 ]  , 

which givcs the streamlinc pattern as sccn by an obscrver if the sphcre is dragged 
in front of him from right Lo left (Figurc 9.16). The paltern is symmctric between 

F i y e  9.16 Strcamlincs and vcltrity distributions in Stokcs’ solution ofcwcping flow duc u) a moving 
sphcre. Yore thc upslrcam and downstream symmcwy, which is a result ofcornplek neglca ornonlinenrity. 



the upstream and the downstream directions, whicb is a result of the linearity of the 
governing equation (9.63); reversing the dimtion of the f e s t r e a m  velocity merely 
changes n to -n and p to --p. The flow therefore does not have a “wakc” behind the 
.sphere. 

13. Abn+idy of,.h~ke~ ’ Sol&n and 
oseen’w Impnvemn.t 

The Stokes solution for a sphere is not valid at large distances ,h thc body bccause 
the advective terms are not negligible compared to the viscoUs terms at these distances. 
From Eq. (9.72), the largest viscous term is of the order 

viscous f d v o l u m e  = smxs gradient - - aqr+oo, 
r3 

while from Eq. (9.69) the largest ineaia force is 

sur pU2a 
inertia forcehroume - pur - - - asr+oo.  

ar r2 

Therefore, 
inertiaforce pUar r 
viscousforce p a a 

- -- - -Re- asr+00.  

This shows that the inertia farces are not negligible for distaaccs huger than r/a - 
l/Re. At sufsciently large distances, no matter how small Re may be, the neglected 

Solutions of problems involving a small parameter can be developed in terms 
of the perturbation series in which the highcr-order terms act as conrecrions on the 
lower-order terms. perturbation expansions are discussed briefly in the following 
chaptcr. If we r c g d  the Stokes solution as the first term of a series expansion in the 
small parameter Re, then the expansion is ‘n0nuniforrn’’ because it b d .  down at 
anity.  If we tried to calculate the next term (lo order Re) of the perturbation series, 
we would find that the velocity corresponding to thc h i g h e r d r  term bccomes 
unbounded at infinity. 

The situation becomes worse for two-dimensional objects such as the circular 
cylinder. Tn this case, the Stokes balancc V p  = pV2u has no soluiion at all hat  can 
satisfy the uniform flow boundary condition at infinity. From this, Stokes concluded 
that steady, slow flows around cylinders canmt exist in M~UIC. Tt ha.. now becn mdizcd 
that the nonexistence of a h t  approximation of the Stokes flow around a cylinder is 
due to the singuzlrr nature of low Reynolds number flows in which there is a region 
of nanunifurmity at infinity. The nonexistence of the second approximation far flow 
around a sphere is due Lo the same reason. In a different (and more f a m i b )  class 
of singular jxrturbation problems, the rcgion of nonuniformity is a thin layer (the 
“boundary layer‘? near ihe surface of an object. This is the chss of flows with Re + 
00, that will be discussed in the next chapter. For the= high Reynolds numbcr flows 
the small parameter 1/Re multiplies the higkst-order derivative in the governing 
equations, so that the solution wilh ]/Re identically set to zero cannot satisfy all 

terns became arbitrarily large. 



the boundary conditions. Tn low Reynolds number flows this classic symptom of 
the loss of the highcst derivative is absent, but it is a singular perlurbation problem 
nevertheless. 

In 1910 Oseen provided an improvement to Stokes‘ solution by partly accounting 
for the inertia terns at large distances. He made the substitutions 

I u = u + u ’  v = u ‘  w = w :  

where (u’: u’, w’) arc thc Cartcsian componcnts of the pcrturbation velocity, and arc 
small at large distances. Substituting these, the advection term of the x-momentum 
cquation becomes 

I aui I 
u 7 + u 7 + w’- 

3x dy 
au au au 

U T  + U T  +w- = 
dx 3J az 

Neglecting the quadratic terms, the equation of motion bccomcs 

where ui represents u’, v’, or w’. This is called Oseen’s e y u d o n ,  and the approxima- 
tion involved is called Oseen’s approximation. Tn essence, the Oseen approximation 
linearizes h e  advective term u h by U(au/ax), whcreas the Stokes approximation 
drops advection altogether. Near the body both approximations havc the same order 
of accuracy. However, the Oscen approximation is better in the far field where the 
velocity is only slightly different than U. Thc Oseen equations provide a lowest-order 
solution that is uniformly valid cverywhere in the flow field. 

The boundary conditions for a moving sphere arc 

u’ = li’ = UI’ = 0 at infinity 
u’ = -U, V I  = w’ = 0 at surface. 

The solution found by Oseen is 

(9.75) 

3 
l/a2 = [;I2 l r ]  Re - + -  sin'^ - -(I +cos e) $ 

wherc Re = 2aU/v is the Reynolds number based on diameter. Ncar the sdace  
r /a  rz 1, and a series expansion of the cxponential term shows that Oseen’s solution 
is identical to the Stokes solution (9.68) to the lowest order. Thc Oseen approximation 
predicts that the drag coefficient is 

cu = 24 (1 + &), 
Re 

which should be compared with the Stokes formula (9.74). Experimental results (see 
Figure 10.20 in the ncxt chapter) show that thc Oseen and the Stokcs formulas for 
Cn are both fairly accurate Tor Re < 5. 



The Streamlines - to the oseen solution (9.75) are shown m 
Figure 9.17, where a d o r m  flow of U is added to the left so as to generate the 
pat- of flow due to a sphere moving in front of a stationary obsemx. It is seen 
that the flow is no longer symmelrick but has a wake where the streamlines are closer 
togeher than in the Stokes flow. The velocities in the & arelargerthaninfront of 
the sphere. Relative tothe sphere, the flow is slower in the wake than i n h t  of the 

In 1957, Oseen’s Cmrection to Stokes’ solution was rationalized independently 
by Kaplun and proudman and Pearson in terms of matched asymptotic expansions. 
Here, we will obtain only the h t a d e r  correction. The full vorticity equation is 

S P k  

v x v x 0 =Rev x (u x 0). (9-76) 

In terms of the Stokes streamfunction @, 4. (9.64) is generalized to 

(9.77) 

where a(@, @@)/a(r, p) is shoahand notation for the Jacobian determinant with 
those fourelments, p = m e ,  and the operators 

p a i a  a2 1 -p2  a2 L=-- +--, &=-+-- 
I - p z a r  r a p  ar2 r2 ap2’ 

We have seen that the right-hand side of 4. (9.76) M (9.77) becomes of the same order 
a$ the left-hand side when Re r/u - 1 M r/u - l/Re. We will define the ”inner 
~gim” as r/u << ]/Re so that Stokes’ solution holds apxjmatdy. To obtain a 



better approximation in the inner region, we will write 

W, ,w Re) = $dr, PI + Re $1 (r, 1-4 + o(Re) ,  (9.78) 

where Khc sccond correction “ ~ ( R c ) ”  means that it tends to zero faster than Re in the 
limit Re + 0. (See Chapter 10, Section 12. Here p? is made dimensionless by Uu2 
and Rc = Va/u. )  Substiluting Eq. (9.78) into (9.77) and taking the limit Re -+ 0, 
we obtain D4$o = 0 and recover Stokes’ result 

Subtracting this, dividing by Re and taking thc limit Re -+ 0, we obtain 

which reduces to 

(9.79) 

(9.80) 

by using Eq. (9.79). This has the solution 

where CI is a constant of integration for thc solution to h e  homogeneous equation 
and is to bc dctermined by matching with the outer region solution. 

Tn the outcr mgion rRe = p is fmite. The lowest-ordcr outcr solution must be 
uniform flow. Then wc write the streamfuntion as 

I P 2  2 1 * ( p l  0; Re) = z- sin 0 + --QI(p, 0) + o Rc’ Rc 

Substituting in Eq. (9.77) and taking the limit Re + 0 yields 

where the opcrator 

The solution to Eq. (9.82) is round to be 

(9.82) 

where the constant of integration C2 is determined by matching in the overlap region 
between the inner and outer regions: I << r << 1/Re, Re << p << 1. 



The matching gives C2 = 314 and CI = -3116. Using this in Eq. (9.81) for the 
inner region solution, the O(Re) correction to the stream function (Eq (9.81)) has 
been obtained, fiom which the velocity components, shear stress, and pressure may 
be derived. Intcgcating over the surface of Lhe sphere of radius = a, we obtain the 
final result for the drag force 

D = 6npUa[l + ~ U U / ( ~ V ) ] ,  

which is consistent with Oseen’s result. Higher-order corrcctions were obtained by 
Chester and Breach (I 969). 

14. Hde-Shaw Plow 

Another low Reynolds number flow has seen wide application in flow visualization 
apparatus because of its peculiar and surprising property of reproducing the stream- 
lines of potential flows (that is, infinite Reynolds number flows). 

The Hele-Shaw flow is flow about a thin object filling a narrow gap between 
two parallel plates. Let the plates be located at x = f h  with Re = U,h/v << 1. 
Here, UO is the velocity upstream in the central plane (see Figure 9.1 8). Now place a 
circular cylinder of radius = a and width = 2b between the plates. We will require 
b/a = E << 1. The Helc-Shaw limit is Rc << E‘ << I .  Imagine flow about a thin coin 
with parallel plates bounding the ends of the coin. We are interested in the streamlines 
of the flow around the cylinder. The origin of coordinates (R,  8 ,  x )  (Appendix B) is 
taken at the center of the cylinder. 

Consider steady flow with constant density and viscosity in the absence of body 
forces. The dimensionless variables are, x’ = x / h ,  R’ = r /a ,  d = v/U,, p’ = 
(p - p,)/(pU,/b),  Re = U,b/v, E = b/a. Conservation of mass and momentum 
then take the following form (primcs suppressed): 

- + E  - - ( R u R ) + - -  = O .  ax [::R R auel ae 

f 

side view 

top view 

Figure 9.18 Hclc-Shaw flow. 



1 au, 1 a%, 
~ R Z  R aR ~2 a e 2  

- - -E + E ' ( %  +--+-- 

Bccauac Rc << e2 << 1, we take the limit Re + 0 first and drop thc convcctivc 
accclcration. Ncxt, we take the limit E + 0 to obtain thc outcr rcgion flow: 

ilu, 
- = O ( E )  + 0, 
ax 

u,(x = f l )  = 0, so u, = 0 throughout. 

With u,  = O ( r )  at most, a p / a x  = O ( c )  at most so p = p ( R ,  0). Inkgrating the 
momcnturn cquations with respect to x, 

where no slip has bccn satisfied on x = f I .  Thus we can write u = V4 For he  
~wo-diinensionalfielduK,u,,.Here,4 = -ip(l  -x2). Now werequirethatu, = O ( E )  

so that the first term in thc continuity equation is small compared with the others. Then 

Substituting in terms of thc vclocity potential 4, we havc V24 = 0 in R, N subjccl lo 
thc boundary conditions: 

34 
aR 

R = 1 ,  - = 0 

R + 30, 4 + RcosH(1 - x' ) /2  (uniform flow in each x = 
constant plane) 

(no mass flow normal to a solid boundary) 

The solution is just the potcntid flow over a circular cylinder (Eq. (6.35)) 

1 (:I. - X * )  4 = R C O S ~  1 + - - ( R 2 )  2 ' 
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wherex is just aparameter. Therefore, the sfrcamkx . correspondingtothisvelocity 
potential ace identical to the potential BOW s h r e m  of Eq. (6.35). This allows for 
the ccmstmction of an apparam to visualize such potential flows by dyc injection 
between two closely spaced glass PI-. The velocity diyiributim of h i s  flow is 

As R +  1 , u ~  + Obutthcreisaslipvelocityue + -2YinO(l -x2)/2. 
Asthisisa~~usflow,theremustexistathinregionnearR = lwhere 

Lhc slip velocity ug decreases rapidly to ZLXO to salisfy U g  = 0 on R = 1. This 
Lhin boundary layer is ~ e r y  close to the body snrface R = 1. Thus, UR a 0 and 
ilp/aR X 0 throughout the layer. NOW p = - R c o s e ( l +  1/R2) SO for R W 1, 

large so the dominant balance i s  
( i /R)ap/ae  w 2sine. ~n the e momentum quation, R e ~ t i v e ~  become ~ e r y  

It is clear liom this balance that a stretching by 1 / ~  is appmPriate in the boundary 
layer: i = ( R  - I)/€. IU these terms 

s u b j e c t t o u e = O o n i = O i d u ~ +  -2sin0(1-x2)/2asl?+ oo(matchwith 
outer region). The solution to this problem is 

00 

u e ( i ,  8, x )  = -(1- x2)  sine + An c o s k ~ e - ~ '  sine, kn = 
n=O 

We conclude that HebShaw flow indeed shdates pomtial flow (inviscid) strcam- 
lincx except for a vcry thinboundary layer ofthe order of the platc separalion adjacent 
to the body surface. 

15. F d I t d  
As in other fields, analytical methods in fluid flow problems are useful in understand- 
ing h e  physics and in makiug generalizati ons. However, it is probably fair to say 
that most ofthe analytically tractable problems in ordinary laminar flow have already 
been solvcd, and approximate mcthods are now neces.wy far m e r  advaucing our 
knowledge. Onc of- approximate techniques is Lhe permbation method, where 
the flow is assumed to deviate slightly h m  a basic linear state; perturbation mcthods 
ace d i d  in the following chapter- Another mehod that is playing an increas- 
ingly importanl role is that of solving the Navier-Stokes equations numerically using 
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a computer- A proper application of such techuiques q u i m  considerable care and 
familiarity w i h  various iterative techniques and their limitations. It i. hoped that the 
rcadcr will have the opportunity to learn numerical methods in a separate study. In 
Chapter 11, we willintroduce severalbask methods of computational fluid dynamics. 

k% 
1. Consider the laminar flow of a fluid layer falling down a plane inclined at an 

angle 0 with the horizontal. lf h is the thickness of Lhe layer in the fully developed 
stage, show that the velocity distributiun is 

where the x-axis points along thc frcc surEacc, and Lhc y-axis points txrward h e  plane. 
Show that the volume flow rate per unit width b 

gh3 sin 8 
Q =  3v I 

and the friczional s m s  on the wall is 

to = pgh sine. 

2. Consider the steady laminar flow tfirough the annular space formed by two 
coaxial tubes. Thc flow is along the axis of the tubes and is maintaincd by a pressure 
gradient dp/dx, where the x direction i s  Mien along the axis of the tubes. Shaw hat 
the velocity at any radiu.. r k 

where a is the radius of the inner tube and h is the radius ofthe oulcr Lube. find the 
radius at which the maximum velocity i s  rcached, the volume rate of flow, and thc 
strcss disbibution. 

3. A long vertical cylinder of radius b rotates with angular velocity R concen- 
trically outside a smaller stationary cylinder of radius a. The annular spam is filled 
with fluid of viscosity p- Show that the steady velocity distributian is 

r2 - a2 n2n 
b2-a’ r 

ug = --. 

Show that the torgue exerted on cither cylinder, pcr unit lengtn, equals 

4. con side^ a solid cyhdex of radius R, steadily rotaling at angular speed R in 

QR2 

4 ~ p Q a ~ h ~ / ( l ?  - a’). 

an infinite viscous fluid As shown in Section 6, he steady solution is imWati0nal: 

ug = -- 
r 
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Show that thc work done by the external agent in maintaining the flow (namely, thc 
value of 21r Rue t , .~  at r = R) equals thc total viscous dissipation rate in the flow field. 

5. Suppose a line vortex of circulation r is suddenly introduced into a fluid at 
rest. Show that the solution is 

Sketch the velocity distribution at different times. Calculate and plot the vorticity, and 
observe how it diffuses outward. 

6. Consider the development from rest of a plane Couctte flow. The flow is 
bounded by two rigid boundarics at = 0 and y = h, and the motion is started 
from rest by suddenly accelerating the lower plate to a steady velocity U.  Thc upper 
plate is held stationary. Notice that similarity solutions cannot exist because of the 
appearance of the parameter h. Show that the velocity distribution is given by 

2u O0 1 nay 
u(y ,  t )  = u (1 - - exp ( - n ~ ; )  sin h. 

n=l 

Sketch the flow pattern at various times, and observe how the velocity reaches the 
linear dislribution for large times. 

7. Planar Couette flow is generated by placing a viscous fluid between two infinite 
parallel plates and moving one plate (say, the upper one) at a vclocity U with respect 
to the other one. The plates are a distance h apart. lkvo immiscible viscous liquids are 
placed between the plates as shown in the diagram. Solve for the velocity distributions 
in the two fluids. 

A 
h fluid I - 

Y t  fluid 2 

8. Calculate the drdg on a spherical droplet of radius r = u, density p’ and 
viscosity p’ moving with velocity U in an infinite fluid of density p and viscosity p. 
Assumc Re = pUa/p << 1. Neglm surface tension. 

9. Consider a vcry low Reynolds number flow over a circular cyclinder of radius 
r = a. For r /a  = O( 1) in the Rc = Ua/u + 0 Limit, find the equation governing the 
streamfunction @(r, 0) and solve for $ with the least singular behavior for large r .  
There will be one rcmaining constant of integration to be determined by asymptotic 
matching with thc large r solution (which is not part of this problem). Find the domian 
of validity of your solution. 

IO. Consider a sphere of radius r = u rotating with angular velocity w about a 
diametcr so that Re = w 2 / u  << 1. Use the symmetries in the problem to solve the 
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mass and momentum equations directly for the azimuthal velocity up(~* e). Then find 
the .shear stress and toque on the sphere. 

11. A laminar shear layer develops immediately downslream of a velocity dis- 
continuity. Imagine parallel flow upslrcam of the origin with a velocity d.isc~~tinuity 
a t x = O s o t h a t u = U ~ f o r y ~ O a n d U = U ~ f o r y ~ O . T h e d e n s i t y m a y b e  
assumed constant and h e  appropriate Reynolds number is sufficiently large that the 
shear layer is thin (in comparison lo dislauce from the origin). Assume the static 
pressures are the same in both halves of the flow at x = 0. Describe any ambiguities 
or nonuniquenesses in a similarity formulation and how they may be resolved. In the 
special. case of small velocity di€hmce, solve explicitly 10 first order in the smallness 
paramem (velocity difference normalized by the average velocity) and show where 
the nonuniqwmess enters. 
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3 . Tntmduciian 

Until the beginning of the twentieth century. analpicd solulions of steady fluid flows 
were generally known for two typical situations . One of these was that of parallel 
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viscous flows and low Reynolds number flows, in which the nonlinear advective terms 
were zero and the balance a f h c e s  was that between the pressure and the viscous 
forces. The second type of solution was that of inviscid flows ammd bodies of various 
shapes,inwhich Ihebalanceofforceswasthatbetweentheinertiaand~sureforces. 
Although the equations of motion are nonlinear in this case, the velocity field can 
be determined by solving the linear Laplace equation. These irrotational solulions 
predicted pressure faces on a streamlined body that agreed slnrprisingly well with 
experimental data for flow of fluids of small viscosity. However, these solutions also 
predicted a zero dmg force and a nonzero tangential velocity at the surface, features 
that did not agree with the experiments. 

In 1905 Ludwig Prandtl, an engineer by profession and h f m  motivated to 
find realistic fields near bodies of various shapes, first hypothesized that, For small 
viscosity, the viscous f m  are negligible everywhere except close to the solidbound- 
aries where the no-slip condition had to be satisfied. The thickness of these boundary 
layers approaches zem as the viscosity goes to zero. prandtl’s hypothesis reconciled 
two rather contradictory facts. On one hand he .mpported the intuitive idea that the 
effects of Viscosity are indeed negliible in mast of the flow field if IJ is small. At the 
same time Prandtl was able to account for dmg by insisting that the n d i p  condition 
must be satisfied at the wall, no matter how small the viscosity. This reconciliation 
was Pmndtl’s aim, which he achieved brilliantly, and in such a simple way that it 
now seems strange that nobody before him thought of it. Prandtl also showed how 
the equations of motion within the boundary layer can be simplified. Since the time 
of primdtl, the concept d the boundary layer has been genedzed, and the matfie- 
matical techniques involved have been formalized, extended, and applied to various 
other branches of physical science. The concept of the boundary layer is considered 
one of the mmen . tones in the history of fluid mechanics. 

In this chapter we shall explore the boundary layer hypothesis and examine its 
consequences. We shall see that the equaticms of motion within the boundary layer 
can be simplified because of the layer’s thinness, and solutions can be obtained in 
certain cases. We shall also explore approximate methods of solving the flow within a 
boundary layer. Scrme experimental data on the dmg experienced by bodies of various 
shapes in high Reynolds number flows, including turbulent flows, will be examined. 
For those interested in sports, the mechanics of curving sparts balls will be e x p l d .  
Finally, the matfiemacical procedure of obtaining perhrrbation solutions in situations 
where thcre is a smaU pamameter (such as 1/Re in boundary layer flows) will be briefly 
outlined. 

2. ul,wrdary /Azp?? ,4pplv&mtdim 
In this section we shall see what simplifications of the equations of motion within the 
boundary layer are possible because of the layer’s Ihinness. Across Lhese layers, which 
exist only in high Reynold5 number flows, the velocity varies rapidly enough for the 
viscow forces to be important. This is shown in Figure 10.1, where the boundary 
layer thickness is greatly exaggerated (Around a typical airplane wing it is of order 
of a centimeter) Thin viscous layers exist not only next to solid walls but also in the 
€om of jets, wakes, and shear layers if fhe Reynolds number is sufficiently high. To 
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Figure 10.1 The boundary layer. Tts thickness is greatly exaggerated in he. 6 p .  Hcre, U, is Lbc 
oncoming vclocity and U i s  thc velocity at thc cdge of the boundary layer. 

be specific, we shall consider the case of a boundary layer next to a wall, adopting a 
curvilinear “boundary layer coordinate system” in which x is taken along the surface 
and y is taken normal to it. We shall refer to the solution of the irrotational flow 
outside the boundary layer as the “outer” problem and that of the boundary layer flow 
a9 the “inner” problem. 

The thickness of the boundary layer varies with x ;  let 8 be the average thickness 
of the boundary layer over the length of the body. A measure of 8 can be obtained by 
considering the order of magnitude of the various terms in the equations of motion. 
The steady equation of motion for the longitudinal component of velocity is 

(10.1) 

The Cartesian farm of the conservation laws is valid only when 8 / R  << 1, where 
R is the local radius of curvature of the body shape function. The more general 
curvilinear form for arbitrary R(x)  is given in Goldstein (1938) and Schlichting 
(1979). We generally expect 8 / R  to be small for large Reynolds number flows over 
slender shapes. The first equation to be affected is the y-momentum equation where 
centrifugal acceleration will enter the normal component of the pressure gradient. In 
Eq. (10.1) we have also neglected body forces and any variations of p and p. The 
essential features of viscous boundary layers can be more clearly illuslrated without 
additional complications. 

Lct acharacteristic magnitude of u in the flow field be U,, which can be identified 
with the upstream velocity at large distances from the body. Let L be the streamwise 
distance over which u changes appreciably. The longitudinal length of the body can 
serve as L, because u within the boundary layer does change by a large fraction of 
U, in a distance L (Figure 10.2). A measure of a u / k  is therefore U,/L, so that a 
measure of the first advective term in Eq. (10.1) is 

(10.2) 



where - is  to be intcrpreled as “of0rder”We shall see s h d y  that the other advective 
tam in Eq. (10.1) is of the samc order. A measwe ofthe viscous term in Eq. (10.1) is 

(10.3) 

Thc magnitude of 8 can now bc cslimaled by noting that thc advective and viscous 
t m s  should be of the samc d e x  within the boundary layer, if viscous terms are to 
bc imporcant. Equating Eqs. (1 0.2) and (10.3), we obtain 

This cstimale of8 cau also bc obtained by using results oi unsteady parallel flows 
discussed in the preceding chaptery in which we saw that viscous el€& mse to 
a distance of order f i  in time t .  As the time to flow along a body of length I,  is 
of ordcr L/Um, the width of the diffnsive layer at the end of the body is uf order 

A formal simplification of thc equations of motion within the boundary layer 
can now be performed. The basic idea is that variations across thc boundary layer are 
much faster than variations along the laycr, that is 

J W K .  

a a  a2 a2 
ax2 ay2 

- << -, 
ax ap 

- << -- 
The distances in the xdircction over which the velocity h c s  appreciably are of 
order L, but those in the y-didon are of order 8, which is much .smaller than L. 

k t  us 6rst determine a measw of tfie typical variation of u within the baundary 
layer. This can be done from an examination of the continuity equation au/ax + 
av/ay = 0. Because u >> u and a/ax ex slay, we expcct the two fe””~ of the 
continuity equation to bc uf the same order. This requires U,/L - u/8, ur that the 



variations of v are of order 

v - &J,/L - u,/&. 
Next we eslimatc the magniludc of variation of pressure within the boundary 

layer. Experimental dataonhigh Reynolds numbcr flows show that the pressure distri- 
bution is nearly that i n  an irrotational flow around the body, implying that Lhc pressure 
forces are of the order of the inertia forces. The requirement aplax - pu(au/ax) 
shows that thc pressure varialions within the flow field are of order 

P - Poc - P V i .  

The proper nondimensional variables in the boundary layer are thereforc 

where 8 = ,/-. The important point lo notice is that the distances across 
the boundixy layer have been magnified or “stretched” by defining y’ = y / 6  = 

In terms of these nondimensional variables, the complcte equations of motion 
(Y IL)&. 

for the boundary layer arc 

(1 0.5) 

apt 1 a%’ 1 a2d  
( 10.6) 

Re 

(10.7) 

when we have defined Re U,L/v aq an overall Reynolds number. In these equa- 
tions, each of the nondimensional variables and their derivatives is of order onc. For 
example, au’/ay’ - 1 in Eq. (10.5), essentially because the changes in u’ and y’ 
within thc boundary layer are each of order one, a consequencc of our normalization 
(10.4). Tt follows that the sizc of each tcrm in thc set (10.5) and (1 0.6) is determined 
by the prcsence of a multiplicating factor involving the pammeter Re. Tn particular, 
each Lerm in Eq. (1 0.5) is of order one except the second term on the right-hand side, 
whose magnitude is of order 1/Re. As Re + 00, these equations asymptotically 
become 

, a d  aut api a 2 d  + -3 
U’- + V I -  = -- 

ax! ay 3x1 ayl2 
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Theexerciseofgoing throughthenondimensianalizationhasv~ab~ since 
it has shown what terms drop out under the boundary layer assumption. Transform- 
ing back to d i m e n s i d  variables, the approximate equations of motion within h e  
boundary layer are 

(10.8) 

(1 0.9) 

(I 0.1 0) 

Equation (1 0.9) says that theprcssurc is appmximately unijknn acms the bound- 
ary Zuyer, an importaut result. The ptssunz at the surface is therefore equal to that at 
the edge of the boundary layer, and so it can be found from a solution of the i r rO ta td  
flow around the body. We say that h e  pressure is ‘%npod” on the boundaq layer 
by the oukr flow. This javtijies the experimentaljkt, pointed out m the prcceding 
section. that the observed su+e pressure is appmximatety equal to that calculated 
fmm the irtvmtionalflav theory. (A vanishing ap/ay, how-, is not valid if the 
boundary layer separates fnrm the wall or if the radius ofcnrvature ofthe surface is 
not large compared with the boundary layer thickness. This will be discussed later 
in the chapter.) The pressure gradient at the edge ofthe boundary layer can be found 
from the inviscid Euler equation 

(10.1 1) 

or fiwm its integral p + p@/2 = constant, which is the Bernoulli equation. This 
is because u, - I/& + 0. Here UJx) is the velocity at the edge of the bound- 
ary layer ( F i i  10.1). This is the matching of the outer imriscid solution with the 
boundary layer solution in the overlap domain of common validity. However, instead 
of hding dp/dx at the edge of the boundary layer, as a first approximation we cau 
apply Eq. (10.1 1) dong the swjiace of the body, neglectingthe existence ofthe bound- 
ary layer in the solution of the outer problem; the e m  goes to zero as the baundary 
layer becomes inueasbgly thin. In any event, the dp/dx term in Eq. (10.8) is to 
be regarded as known fmm an analysis of the outer problem, which must be solved 
before the boundary layer flow cau be solved. 

Fquations (10.8) and (10.10) are then used to dctearmne - uanduintheboundary 
layer. The boundary conditions are 

(1 0.12) 
(1 0.13) 
(1 0.14) 
(10.15) 



Condition (10.14) merely means that the boundary layer must join smoothly with 
the inviscid outer flow; points outside the boundary layer are represented by 
y = 00, although we mean this strictly in terms of thc nondimensional distance 
y / 8  = (y/L)& 00. Condition (10.15) implies that an initial velocity profile 
ui,(y) at some location xu is required for solving the problem. This is because thc 
presence of the terms u au/ax and u a2u/ay2 gives the boundary layer equations a 
pwdbolic character, with x playing the mlc of a timelike variable. Recall the Stokcs 
problem of a suddenly accelcrated plate, discussed in the preceding chapter, whcre 
the equation is au/ilt = u a2u/ay2. In such problems governed by parabolic equa- 
tions, the ficld at a certain time (or x in the problem hem) depends only on its pusr 
history. Boundary layers thereforc transfer effects only in the downstreurn direction. 
In contrast, the complete NavicrStokes equations are of elliptic nature. Elliptic equa- 
tions require specification on the bounding surface of the domain of solution. The 
Navier-Stokes equations are elliptic in velocity and thus require boundary conditions 
on the velocity (or its derivative normal to the boundary) upstream, downstream, and 
on the top and bottom boundaries, that is, all around. The upstream influencc of the 
downstream boundary condition is always of concern in computations. 

Zn summary, the simplifications achieved because of the thinness of the boundary 
layer are the following. First, diffusion in the x-direction is negligible compared to that 
in the y-direction. Second, the pmssure field can be found from the irrotational flow 
theory, so that it is regarded as a known quantity in boundary laycr analysis. Here, the 
boundary layer is so thin that the pressure does not change across it. Further, a crude 
estimate of the shear stress at the wall or skin friction is available from knowledgc 
of thc order cd the boundary layer thickness to - p U / 8  - (pU/L)&. The skin 
friction coefficient is 

As we shall see from the solutions to the problems in the following sections, this is 
indeed the correct order of magnitude. Only the finite numerical factor differs from 
problem to problem. 

It is useful to compare Eq. (10.5) with Eq. (9.60), where we nondimensional- 
ized both x-  and y-directions by the same length scale. Notice hat in Eq. (9.60) the 
Reynolds numbcr multiplies both diffusion terms, whereas in EQ. (1 0.5) the diffu- 
sion term in the y-direction has been explicitly made order one by a normalization 
appropriate within the boundary layer. 

3. DiJcwnl i k i ~ u ~ ~  of Boundary 1 a . r  Thickness 
As the velocity in the boundary layer smoolhly joins that of the outer flow, we have 
to decide how to delinc the boundary layer thickness. The three common measurcs 
are described here. 

The u = 0.99U Thickness 
One measure of the boundary thickness is the distance from the wall where the 
longitudinal velocity rcaches 99% of the local free stream velocity, that is where 
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I( = 0.99 U. We shall denote this as b. This definition of theboundary l a y e r t s s  
is howcver rather arbitrary, as we could very well have chosen the thickness as the 
point where u = 0.95 U. 

D@hemed Thickness 
A second measure of the boundary layer thickness, and one in which there is no 
arbitrariness, is the d i q k e n e n t  rhickness S*. This is defined as the distance by 
which the wall would have to be displaced outward in a hypothetical frictionless flow 
so as to maiutain the .same mass flux as in the actual flow. Let h be the distance €ram 
the wall 10 a point far outside the boundary layer (Figure 10.3). Fmm the dcfinition 
of S*, we obtain 

lh u dy = U(h - S*), 

where the left-hand side is the actual m a s  flux bclow h and the right-hand side is the 
mass flux in the frictionless flow with the walls displaced by S*. Letting h --+ 00, the 
aforementioned gives 

I 

(1 0.16) 

The upper limit in Eq. (10.16) may be allowed to extend to infinity because, as we 
shall show in the following, u/U + 0 exponentially fast in y as y --+ 00. 

The concept of dksplacement thickness is used in the design of ducts, intakes of 
air-bmthing engines, wind tunnels, etc. by first assuming a frictionless flow and then 
enlarging the passage walls by the displacement thickness so as to allow the same flow 
rate. Another use of 8* is in finding dp/dx at the edge of the boundary layer, needed €or 
solving the boundary layer equations. The fin* appmximation is to neglect the exis- 
tence of the boundary layer, and calculate the irmtational dp/dx over the body surface. 
A solution of the boundary layer equations gives !he displacement thickness, using 
Q. (1 0.16). The body surface is then displaced outward by this amount and a next 
approximation of dp/dx is found from a solution of the immional flow, and so on. 



I 
edge of boundary layer A 

Figure 10.4 Displaccment thickntxr and sfmudine displacement 

The displacement thickness can also be interpreted in an alternate and possibly 
more illuminating way. We shall now show that it is the distance by which the stream- 
lines outside the boundary layer are displaced due to the presence of the boundary 
layer. Figure 10.4 shows the displacement of streamlines over a flat plate. equating 
mass flux across two sections A and B, we obtain 

which gives 

Here h is any distance far from the boundary and can be replaced by 00 without 
changing the integral, which then reduces to Q. (10.16). 

Momentum Thickness 
A third measure of h e  boundary layer thickness is the momentum thickness 8, defined 
such that pU28 is the momentum loss due to the presence of the boundary layer. Again 
choose a streaniline such that its distance h is outside the boundary layer, and consider 
the momentum flux (=velocity times mass flow rate) below the streamline, per unit 
width. At section A the momentum flux is pU2h; that across section B is 

Lh pu 2 dy = pu2dy + pS*U2. 6""' 
The loss of momentum due to the presence of the boundary layer is therefore the 
difference between the momentum fluxes across A and B, which is defined as pU2& 

pU2h - lh pu2 dy - pS'U2 pU28. 



Substituting the expression €or S* gives 

Iiom which 

(10.1 7) 

where we have rcplaced h by x because 11 = U For > h.  

4. Boundary Lupr on a Hal l’lale widh a Sink ul 
&he hading Lid&: Ched Porm S06ulion 

Although all other texis start their boundary layer discussion with the uniform flow 
over a semi-infinite flat plate, there is an cven simpler related problem that can be 
solved in closed form in terns of elementary hnctions. Wc shall consider the large 
Reynolds number flow generated by a sink at the leading edge of a flat plak. The outer 
inviscid flow is represented by @ = m0/2n, m < 0 so that u, = m/217r, ug = 0 
[Chapter 6, Section 5 ,  Eq. (6.24) and Figure 6.61. This represents radially inward flow 
towards the origin. A flat plate is now aligned with thc x-axis so that its boundary is 
represented by 6, = 0. For large Rc, the boundary layer is thin so x = r cos0 = r 
because Q << 1. For simplicity in what follows we shall absorb thc 217 into thc in 
by dcfining m‘ = m/2n and then suppressing the prime. The velocity at the edge 
of the boundary layer is U,(x) = m/x, m < 0 and the local Reynolds number is 
U , ( x ) x / u  = m / u  = Rc,. Boundary laycr coordinates are used, as in Figure 10.1, 
with j normal to the plate and the origin at the leading edge. 

The boundary layer equations (10.8H10.10) with Eq. (10.1 1)  become 

a m  a U  au au m2 a2u 
- +- =o, u- +v- = --+ V- 
ax ay ax ay x3 ay2 

with the boundary conditions (10.12H10.15). We consider the limiting case Re, = 
Im/ul + 00. Because m < 0, the flow is from right (larger x )  to left (smaller x ) ,  
and the initial condition at x = xo is specified upstrcam, that is, at the largest x .  The 
solution is then determined for all x < XO, that is, downstream of thc initial location. 
The natural way to make the variablcs dimcnsionless and finite in the boundary layer 
is io normalize x by xo, y by xu/,/&, u by m / x ~ ,  u by m/(;ro&). The problem 
is fully two-dimensional and wcll posed [or an37 rea.sonable initial condition (10.15). 
Now, suppress the initial condition. The length scale XO, crucial to rendering the 
problcm properly dimensionless, has disappeared. How is one to construct a dimen- 
sionless formulation? We have seen bcfore that this situation results in a reduction in 
h e  dimensionality of the spacc rcquired for the solution. The variable y can bc made 
dimensionless only by x and must be sktched by to be finite in the boundary 
layer. The unique choice is thcn ( y / x ) a  = ( y / n ) , / m  = q. This is consistcnt 
with the similarity variablc for Stokes’ first problem r ]  = y / f i  whcn t is taken to 



be x / U  and U = m/x.  Finite numerical .factors are irrelevant here. Furthery we note 
that we have found that 8 - XO/& so with the xo scale absent, 8 - x / , / m  
and q = y/8. Next we will reduce mass and momentum conservation to an ordinary 
differential equation for the similarity sheamfunction. To reverse the flow we will 
define the streamfunction $ via u = --a$/ay, IJ = a+/ax (note sign change). We 
now have: 

a$ a2$ a$a2$ m2 a3+ 
ay ayax ax ay2 x3 ay3 v - 9  

---- - 

y + overlap with inviscid flow: 

The streamfunction is made dimen,.onless by its 
similarity form via 

a$ m 
a Y  x 

+ -. - 

order of magnitude and put in 

in this problem The pblem far f reduces to 

f”‘(q) - f’2 = -1, 
f(0) = 0, f’(0) = 0, f’(O0) = 1. 

This may be solved in closed form with the result 

A resnlt equivalent to this was first obtained by Pohlhausen (1921) in his solu- 
tion for flow in a comrergent chamel. From this simple solution we can establish 
several properties characteristic of laminar boundary layers. First, as q --+ 00, 
the matching with the inviscid solution occurs exponentially fast, as 
f ‘ (q)  - I - 12ae -6  + smaller tenns as q + 00. 

Next v /  U, is of the cozrect small onkc, 

The behavior of the displacement thickness is obtained from the definition 



The shear stress at the wall is 

Then the skin friction coefficient is 

Aside [om numerical [actors, which arc obviously problcm specific, the preced- 
ing rcsults arc univcrsally valid for all similarity solutions of the laminar bound- 
ary laycr cquations. Ue(x)  is lhc velocity at the edge of the boundary layer and 
ReL = U e ( x ) x / u .  In thcsc lcrms 

5. lhiinciury Lujvr on u Flu1 P luk  IHcisius Solulion 
We shall next discuss the classic problem of the boundary layer on a semi-hfinite 
Hat plate. Equations ( 1  0.8)-( 10.10) arc a valid asymptotic rcprcscnlation or Lhc hl l  
NavierStokes equations in the limit Re, + x. Thus with x measurcd from thc 
leading edge, the initial station xo (sec Eq. (10:IS)) must be sumciently far down- 
stream that V,XO/U >> 1. A major question in boundary layer theory is the extent 
of downstream memory of the initial state. If the extcrnal sham V,(x) admits a 
similarity solulion, is the initial condition forgotten and how soon? Serrin (1967) and 
Pcletier (1972) showed that for favorable pressure gradients (V, dU,/dx)  of similar- 
ity form, the initial condition is forgotten and thc larger the acceleration the sooner 
similarity is achicvcd. A decelerating flow will accentuate details of thc initial statc 
and similarity will ncvcr bc round despile its mathematical admissability. This is con- 
sistent with the experimental findings of Gallo el al. (1970). A flat plate for which 
V,(x)  = U = consl. is the borderline case; similarity is eventually achicvcd here. In 
the previous problem, the sink crcalcs a ripidly accelerating flow so that, if we could 
ever realizc such a flow: similarity would be achieved quickly. 

As thc inviscid solution gives u = U = const. cvcrywherc, Bp/Bx = 0 and the 
equations bccomc 

au  au B’u 
u- + 21- = u-, 

ax ~ 1 ’ 2  

- + - = o o I  BU at.9 

ax a4’ 
subjcct to: y = 0: u = II = 0,  x =- 0 

y + overlap at edge of boundary layer: 
x = xg : 

u + UI  

u ( y )  givcn: Kcx(, >> 1. 

( 10.1 8 )  

(1 0.19) 



For x large compared with XO. we can argue that the initial condition is forgomn 
With no longer available for rendering the independent variables dimensionless, a 
similarity solution wi l l  be obtained. Using our previous results, 

f (0) = f'(0) = 0, f (00) = 1. 

A dilkent but equally c o m t  method of obtaining he similarity form is described in 
what follows. The plate l e e  L (Figwe 10.4) has been taken very large so a solution 
independent of L has been sought. In addition, we limit our consideraton to a damain 
far downstream of- so the initial condition has been forgotten. 

similarity S o l U t i O ~ A t t e r n a t i v e ~  
We shall regard 8(x)  as an unknown function in the following analysis; the form 
af 8(x)  will follow h n  a requirement that a similarity solution must exht for this 
pblem. 

As there is no externally imposed length scale along x ,  the solutions at varions 
downstream locations must be self si- Blasius, a student of Prandtl, showed 
that a similarity solution can indeed be found for this pmblera Clearly, the velocity 
distributions at various downstream points can collapse into a single curve only if the 
solution has the form 

U 
- = g(ll), (10.20) U 

Whcre 
(1 0.21) 

At this point it is useful to pause a little and compare the situation with that of 
a suddenly accelerated plate (see Chapter 9, Section 7), fur which similarity solu- 
tions exist. In that case we argued that the parameter U drops out of the equations 

u / U  = f (y, t, IJ). A dimensional analysis then immediately showed that the h e  
tionalformmustbeu/U = F[y/G(t)l,whereS(t) - ~.Inthecurrentpmblemthe 
downstreamdistanceis timelike,butwecannotanalogouslywriteu/U = f(y, x ,  u), 
because u cannot be made nondimemional with the help of x or y. The dynamic rea- 
son for this is that U cannot be eliminated from the problem simply by regarding 
u / U  as the dependent variable, because U still remains in the problem through the 
dependence of 8 on U. The carrect dimensional argument in this case is that we must 
have a solution of the farm u/U = gb/&(x ) ] ,  where &(x) is a function of (U, x ,  v) 
and therefme can only be ofthe form 8 - ,/-. 

We now resume our search fur a similarity solution for the flat plate bounda~~ 
layer. As the problem is two-dimensional, it is easier to wodL with h streamfnncton 

andbomdary conditions if we d e k  u/u as the dependent variable, leading to 



de6ned by 

Using the similarity form (10.20), we obtain 

(10.22) I" P 
1c. = 1 udy  = 6 udq = S U g ( q ) d q  = U S f ( q ) ,  

0 

where we have defined 

(1 0.23) 

(Equalion (1 0.22) shows that the similarity form for the stream function is +/US = 
f (q ) ,  signifying that the scale for the streamfunction is proportional to the local flow 
mtc Ira.) 

In terns of the streamfunction, the governing sets (1 0.1 8) and ( 10.1 9) become 

a+ a2+ a + a +  
ay i f x i f y  ax ayz a y  - v-,  (10.24) 

subject to 

To express sets (10.24) and (10.25) in terms of thc similarity strcamfunction 
J ( q ) ,  we find the following derivatives from Eq. (10.22): 

rlll (10.26) 

(10.27) 

(10.28) 

(10.29) 

( 1  0.30) 

dS 3 Uqf" dS - - - u- - [ f  - f q ]  = a2+ 

a+ - = U f ' ,  
ay 

i12+ U f "  
a$ 6 ' 
a3+ ufii '  

axay  dx ay S dx' 

- 

- 
ay.3 82 ' 

where primes on f dcnote derivatives with respect to q. Substituting these derivatives 
in Eq. (1 0.24) and canccling terms, we obtain 

(10.31) 
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In Fq. (10.31), f and its derivatives do not explicitly depend on x. The equation can 
be valid only if 

- const. 
U8 d8 
v dx 
-- - 

Choosing the constant to be for eventual algebraic simplicity, an integration gives 

(1 0.32) 

w o n  (1 0.3 1 ) then becomes 

iff"+ f"'=O. (10.33) 

In terms of f, the initial and boundary conditions (10.25) become 

f'<oo> = 1, 
f (0 )  = f '(0) = 0. 

(10.34) 

A series solution of the nonlinear equation (10.33), subject to Fq. (10.34), was 
given by Blasius. It k much easier to solve the problem with a computer, using for 
example the Rmge-Kutta techuique. The resulting pf i l e  of u/ U = f '(7.1) is shown 
in Figure 10.5. The solution makes the pfiles at various downstream distances 
collapse into a single curve of u/U vs y , / m ,  and is in excellent agceement wilh 
~~dataibrlaminarfl~sathighReynoldsnnmbers.Thep~filehasapoint 
of inflection (that is, zero cu~v8fllce) at the wall, wherc a2u/ay2 = 0. This is a result 
of the absence of p r e s s m  gradient in the flow and will be discussed in section 7. 

0 1 2 3 4 5 6 I 

F@m 105 'Ihe Blasins similarity sohion of velacity distrihlinn in a laminar boundary hycr on a flat 
plate. The mmnentum thiclmaur B and dispkementi3* arc inrlieateahy amws on IIIC horizontal axia 



Matching with Extern1 Stream 
Wc find in this casc that the difference between f' and 1 - (l /~j)e-V~/~ + 0 
exponentially h . 1  as 9 + cc. 

'hamverse Velocity 
The lateral component of velocity is given by v = -J$/ax. From Eq. (10.26), this 
becomes 

a plot or which is shown in Figure 10.6. The transverse velocity increases .from 7xm 
at the mal1 to a maximum value at the edge of Lhc boundary layer, a pattern that is in 
agrccmcnt with thc strcamline shapes sketched in Figure 10.4. 

Boundary Layer Thickness 
From Figure 10.5, the disiancc whcrc u = 0.99 U is q = 4.9. Therefore 

(10.35) 

where we have defined a local Reynolds number 

ux 
Re, - 

V 

I 
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Figure 10.6 Tnnsvcixc vclocily component in a laminar boundary laycr on a flat plate. 



The parabolic growth (6 cx a) of the boundary layer thickness is in good agree+ 
ment with e- .ForairatordinarytempemtmesflowingatCJ=lm/s,the 
Reynoldsnumber at adistance of lm- the leading edge is Rex = 6 x l@, and 
Eq. (1 0.35) gives S, = 2 cm, showing that the boundary layer is indeed thin. 

The displacement and momentum lhicknesses, defined in Fqs. (10.16) and 
(10.13, m found to be 

a* = 1.12JG7F, 

e = 0.664JV/u. 
These thicknesses an? indicated along tfie abscissa of Figure 10.5. 

Skin Friction 
The local wall shear stress is TO = p(au/ay)o = p(a2+/ay2)oY where the subscript 
zero stands for y = 0. Ushg a2$/ay2 = Uf"/S given in Fq. (20.29). we obtain 
to = pVf "(0)/6, and finally 

0.332pU2 

To= %E 
(10.36) 

wall shear stress therefore decreases as x-lfl ,  a result of the thickening of the 
boundary layer and the associated decrease of the velocity grarlient Note that tfae 
wall shear stcess at the leading edge is predicted to be infinite. Clearly the boundary 
layer theory breaks down near the leading edge where the assumption a/ax  << a/ay 
is invalid The local Reynolds number Re, in the neighburhood of the leading edge 
is of order 1, for which the boundary layer assumptions are not valid. 

The wall shear stress is generally expressed in terms of the nondimensiunal skin 
friction coe#iCi??nt 

0.664 =o - - c -  * = (1/2)pV2 - a' (1 0.37) 

The drag force per unit width on one side ofaplate of length L is 

L 0.664pV2L 

& '  
D = i  q d x =  

where we have dehed Ref. U L / v  as the Reynolds number based on the plate 
length. This equatiun s h o ~ s  that the drag force is Pnopartiond to the f power of 
velocity. This should be compared with small Reynold.. number flows, where the 
drag is proportional to the h t  power a€ velocity. We shall see later in the chapter 
lhat the drag on a blunt body in a high Reynolds number flow is pmportional to the 
s q m  of velocity. 

The overall dmg c+en.f defined in the usual manner is 

D 1.33 
(1/2)pVZL = X' C D  (10.38) 
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Figure 10.7 Friction coemcient and drag codTcicn1 in a laminar boundary layer on a fat  plate. 

It is clear from Eq. (10.37) and (1.0.38) that 

I L  
CD = L h C f d x ,  

which says that thc overall drag coefficient is the avcragc of thc local friction coeffi- 
cient (Figure 1.0.7). 

We must keep in mind that carrying out an integration from x = 0 is of qucstion- 
able validity bccausc thc cqudtions and solutions are valid only for very large Re,. 

FdknerSkan Solution of the Laminar Boundary Layer Equations 
No discussion of laminar boundary layer similarity solutions would be complete 
without menticn of the work of V. W. Falkner and S. W. Skan ( 1  93 1 ). They found 
that U,(x) = ux" admits a similarity solution, as follows. We assume that Re., = 
ux("+ I)/Y js sufficiently largc so that thc boundary laycr cquations arc valid and any 
dependence on an initial condition has been forgotten. Then the initial station xu 
disappcars from thc problem and we may write 

Then u;U, = f'(q) and U,(dU,/dx) = nu2x2'-l. 
The x-momentum equation reduces to the similarity form 

n + l  
2 

f"' + - j-f' - n f ' 2  + n = 0, ( 1  0.39) 

f ( 0 )  = 0, f'(0) = 0, f'(30) = 1. (10.40) 

Thc BkdSiUS equalion (10.33) and (10.34) is a special case for n = 0, that is, 
U,(x) = U. Although there are similarity solutions possible for n e 0, these arc 
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not W y  to be seen in practice. Far n 2 0, all solutions of Eqs. (1 0.39) and (10.40) 
have the p p e r  behavior as detailed in the preceding. The numerical coe!fficients 
depend on n. SOEutions to Eqs. (10.39) and (10.40) are displayed in Figure 59.1 of 
Batchelor (1%7) and reprodnced here in Figure 10.8. They show a monotonically 
increasing shear stress [ f” (O) ]  as n increases. Forn = -0.0904. f”(0) = 0 so ro = 0 
and sepration is imminent all along the surface. Solutions far n < -0.0904 do not 
represent boundary layers. In most mal  flows, similarity solutions are not available 
and the boundary layer equations with boundary and initial conditions as written 
in Eqs. (10.8)-(10.15) must be solved A simple appmximate procechrre, the von 
Kmman momentum integral is discussed in the next section. More often the equa- 
tions will be integrated numerically by procedures that ~IE discussed in more detail in 
chapter 11. 

Breakdm afrmninar sohntim 

Agreement of the Blasius solution with cxperimental data breaks down at large down- 
stream distances where the local Reynolds number Re, is larger than some critical 
value, say &. At dese Reynolds numbers the laminar flow becomes unstable and 
a transition to turbulence takes place. The critical Reynolds number varies grcatly 
with rhe surface roughness, the intensity of existing fluctuations (that is, the degree of 
steadiness) within the outer irrotatonal flow, and the shape of the leading edge. For 
example, dE critical Reynolds number becomes lower if either the roughness of the 
wall surhce or the intensity of fluctuations in the fme stream is i n c h  Within a h  
tor of 5, dE critical Reynolds number far aboundary layer over a flatpk is foundlobe 

Re+p1106 (flalplate). 
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F i p  10.9 Schematic depiction oftlow over a semiinfinite flat plab. 

Figurc 10.9 schematically depicts the flow regimes on a semi-infinite flat plate. For 
finite Re, = U x / u  - 1, the full Navier-Stokes equations are required to dcscribc thc 
leading edge region properly. As Re, gets large at the downstream limit of thc lcading 
edge region, we can locate xo as the maximal upstream cxtcnt of the boundary layer 
cquations. For some distance x > xo, the initial condition is remembered. Finally, 
the influence of the initial condition may be neglected and the solution becomes of 
similarily form. For somewhat larger Re,, a bit farthcr downstream, thc first instability 
appears. Then a band of waves becomes amplified and interacts nonlinearly through 
the advective acceleration. As Re, increases, the flow becomes increasingly chaotic 
and irrcgular in the downstream direction. For lack of a better word, this is called 
transition. Eventually, the boundary layer becomes fully turbulent with a significant 
increase in shear stress at the plate TO. 

Afkr  undergoing transition, the boundary layer thickness grows faster lhan x 
(Figurc 103, and the wall shear stress increaqes faster with U than in a laminar 
boundary layer; in contrast, the wall shear stress for a laminar boundary layer varies 
as to cx U'.5. The increase in resistance is duc to thc greater macroscopic mixing in 
a turbulcnt flow. 

Figure 10.10 sketches the nature of the observed variation of the drag cocf- 
ficicnt in a flow over a flat plate, as a function or the Reynolds number. Thc 
lowcr curve applies i1 the boundary layer is laminar over the cntirc length of 
the plate, and the upper curve applies if the boundary layer is turbulent over the 
cntiir length. The curve joining the two applies if thc boundary layer is laminar 
over thc initial part and turbulent over the remaining part, as in Figurc 10.9. The 
cxact point at which thc observed drag deviates from the wholly laminar behavior 



depends on experimental ConditioIlS and the bansition shown in Figure 10.10 is at 
& = 5 ~ 1 6 .  

6. m n  Karman Momenlum l d e g d  
Exact dntions uF the boundary layer equations are possible only in simple cases, 
such as that over a flat plate. In m m  complicated problems a frequently applied 
approximate method d e s  only an integml ofthe boundary layer equations acfoss 
Lhc layer thickness. 'Ihe integral was derived by von Karman in 1921 and applied to 
sareral sitoations by Pohlhausen. 

The point of an integral formulation is to obtain the information hat is really 
required with minimum efforr The impartant results of boundary layer calculations 
arethewall shearstress,displacementthickness,andseparationpaint. W*hehe€p 
of the von K m a n  momentum intcgral derived in what follows and additional  con^ 

latiom, these results can be obtained easily. 
The equation is derived by integrating the boundary layer eqnation 

all a U  d u  a2u 
u- +v- = u- + v- 

ax ay dx ay2' 

fromy = O t o  y = h, whemh > 6 is any distancemtsidetheboundarylayer. Here 
the pressure gradient term has been e x p e s d  in terms of the velocity U(x)  at the 
edge of the bomdary layer, where the imriscid Mer equation applies. Adding and 
subtracting u(dU/dx), we obtain 

a2u 
aY2 

(U - u)- + u + V  = -v--. (1 0.41) 
du a(u-u)  a (u -u)  
dx ax a Y  



dU dU 
dx 

l ( U  - u ) x d y  = US*-. 

htqYating by parts, the third term give.., 

= lh *(V - u) dy ,  
0 ax 

w h m  wc have used the cunlinuity equation and the conditim that u = 0 at y = 0 
andu = U at y = h. The last term in Fq. (10.41) gives -VI $ d y  = -, to 

P 

Where To is the W d  ShtXU Sm.S. 
The integral dEq. (10.41) is thcrefare 

(10.42) 

The inlegral in 4. (10.42) c q d s  

i* L [ u ( U  - u)]dy  = 
d 

dx 
u(V - u)dy  = -(U20), 

wbere 0 is the momentum thidmes.. defined by 4. (1 0.17). Equation (10.42) then 
gi= 

(1 0.43) 

which is called the Karnuar momentum integml equalion. In Eq. (1 0.43), 0, 8*, and 
to are all unknown. Additional awumptiom mmt be made OT correlations provided 
to obtain a useful solution. It is valid for both laminar and turbnlent boundary layers. 

gradient and .should be emphidy spedied. The procedure of applying the integral 
approachistoassumeareasonablevelocitydistri~tion, satisfyingasmany conditions 
as possible. Equation (10.43) then predicts the boundary layer thickness and other 
parameters. 

The approximate method is only useful in situations w h  an exact sohiion does 
not exist. For illustrative purposcs, howcver, we shall apply it to the boundary layer 

In h c  lam case ro cannot be quated to molecular viscosity times the velocity 
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over a flat plate where U ( d U / d x )  = 0. Using definition (10.17) for 8,  Eq. (10.43) 
reduces to 

(10.44) 

Assume a cubic profile 

U Y Y2 Y3 - = U +  h- + C- + d - .  
U 6 62 6 3  

The four conditions that we can satisfy with this profile me chosen to be 

a% 
ay2 

u = 0, - = U  aty=O, 

au 

a)? 
u = LI, - = 0  a t y = 6 .  

The condition that a2u/ay2 = 0 at the wall is a requirement in a boundary layer 
over a flat plate, for which an application of the equation of motion (10.8) gives 
v(a2u/i3y2)() = U ( d U / d x )  = 0. Dctcnnination of the four constants reduces the 
assumed profile to 

-=-(-)--(  u 3 y  1 y 3  ) .  
u 2 6  2 s  

The term on the left- and right-hand sides of the momentum equation (10.44) are 
then 

[(U - u)udy = -U26, 39 
280 
3 uv 

P 

Substitution into the momentum integral equation gives 

39U2d6 3 u v  -- - - -- 
280 dx 2 6 . 

Integrating in x and using the condition S = 0 at x = 0, we obtain 

6 = 4 . 6 4 J q T ,  

which is remarkably close to thc cxact solution (10.35). The friction factor is 

(3/2)U v / 6  0.646 to - =- CJ = 
(1/2)PU2 - (1/2)U2 &’ 

which is also very closc to the exact solution of Eq. (10.37). 



pohlhausen found that a fourthdegme polynomial was necessary to exhibit sen- 
sitivity of the velocity profile to the pressure gradient; Adding mother term below w. (10.44). e(y/814 requires m additional boundary condition, azu/ay2 = o at 
y = 8. Wilh the assumption of a form for thc velocity profile, Eq. (10.43) may be 
reduced to an equation with one unknown, 8(x)  with V(x) ,  or tfie pressure gradient 
-4. This equation was solved approximately by Pohlhausen in 1921. This is 
described in Yih (1977, pp. 357-360). Subsequent improvements by Holstein and 
Bohlen (1940) are recounted in Schlichting (1979, pp. 357-360) and Rosenhead 
(1988, pp. 293-297). Sherman (1990, pp. 322-329) mlated the approximate solution 
due to Thwaites. 

7. LgkGtOfh?Wx? C d m L  

So far we have consided the boundary layer on a flat plate, for which the pssm 
gradienl of the external stream is m. Now suppose that the surface of the body is 
curved (Figure 10.1 1 ). Upstream of the highest point the streamlines ofthe outer flow 
converge, resulting in au increase of the free siream velocity V ( x )  and a consequent 
fall of pressure with x .  Downstream of the highest point the streamlines diverge, 
resultinginadecreawof U(x)  andariseinpressure.Iuthissection weshallinvestigate 
theefFectofsuchapressuregradientcmtheshapeoftheboundarylayerprofileu(x, y). 
Thc boundary layer equation is 

aU aU 1 ap a2u 
u- + v- = --- + v- 

ax ay p a x  ay2’ 

where the pressure gradient is found from the external velocity field as dp/dx 
= -pU(dU/dx), wilhx taken along the surface of the body. At the wall, theboundary 
layer equation becomes 



In an accelerating stream d p / d x  < 0, and therefore 

< 0 (accelerating). ($) Wall 

( 10.45) 

As the velocity profile has to blend in smoothly with the external profilc, the slope 
au/ay slightly below the edge of the boundary layer decreases withy from apositive 
valuc to zero; therefore, a2u/i)y2 slightly below thc boundary layer edge is negative. 
Equation (10.45) then shows that a2u/ay3 has the same sign at both the wall and the 
boundary layer edge, and presumably throughout the boundary layer. In contrast, for 
a decelerating external stream, the curvature of the velocity profile at thc wall is 

> 0 (decelerating). ($) wall 
(10.46) 

so that the curvature changes sign somewhere within the boundary layer. In other 
words, the boundary layer profile in a decelerating flow has a point of inflection 
where a2u/ay2 = 0. In the limiting case ol a flat plate, the point of inflection is at 
the wall. 

Thc shape of the velocity profiles in Figure 10.1 1 suggests that a decelerating 
pressure gradient tends to increase the thickncss of the boundary layer. This can also 
be seen from the continuity equation 

u(y) = - IY dy. 
0 ilx 

Comparcd to a flat plate, a decelerating external s h a m  causes a larger -au/ax within 
the boundary laycr bccause the deceleration of the outm flow adds to the viscous 
deceleration within the boundary layer. It follows from the foregoing equation that 
the u-field, directed away rTom the surface, is larger for a dccelerating flow. The 
boundary layer hercforc thickens not only by viscous diffusion but also by advcction 
away from the surface, resulting in a rapid increase in thc boundary layer thickncss 
with x. 

If p falls along thc dircction of tlow, dp/dx  < 0 and we say thal thc pressure 
gradient is “favorable.” If, on the other hand, the pressure rises along the direction 
of flow, d p / d x  > 0 and wc say that the pressure gradient is “adverse” or “uphill.” 
The rapid growth of the boundary layer thickness in a decelcrating stream, and thc 
associated large v-field, causes the imporlant phenomenon of separation, in which 
the exbrnal stream ccascs to flow nearly parallcl to the boundary surfacc. This is 
discussed in the next section. 

8. Separation 
We have sccn in the last section that the boundary layer in a decelerating stream 
has a point of inflection and grows rapidly. The existencc of the point of inflcction 
implics a slowing down of the region next to the wall, a conscquence of the uphill 
pressure gradient. Under a strong enough adverse pressure gradient, the flow ncxt 



Figme l O J 2  Stmmlincs and vclaciiy pfiles near a -on piru S. P o i  d inoection is indicated 
by 1. The dashed linerepmenm u = 0. 

to the wall mses direction, resulting in a region of backward flow (Figure 1.0.22). 
The z e v e z s e d  flow meets the forward flow at some point S at which the fluid near the 
d i c e  is transported out into the mainstream. We say hat the flow sepamtes h 
the wall. The separation point S is defined as the boundary between the forward flow 
and backward flow of the fluid near the wall, where the stcess vanishes: 

It is apparent hm the figure that one streamline intersects the wall at a definite angle 
at the point of separation. 

At lower Reynolds numbem the ~wersed flow downstream of the paint of sep 
d o n  forms part of a large steady vortex behind the surface (see Figure 10.15 in 
Section 9 for the range 4 < Re < 40). At higher Reynolds numbers, when the flow 
has boundary layer characteristics, the flow downsheam of separation is unsteady and 

How strong an adverse p r e s m  gradient the boundary layer can withstand with- 
out undergoing sepamtion depends on the geometry of lhe flow, and whether the 
boundary layer is laminar M turbulent. A steep pressure gdient., such as that behind 
a blunt body, invariably leads to a quick separation. In contrast., the boundary layer on 
the trailing surface of a thin body can overcome the weak pressure gradients involved. 
Therefore,toavoidseparationandlargedcag,thetrailingsectionofasubmergedbody 
should be gmdudly  reduced in size, giving it a so-called stnamlined shape. 

Evidence indicates Ihat the point of separation is insensitive to the Rcynolds 
number as long as the boundary layer is laminar. However, a rmnsirion fo furbuknce 
&Zap hunahy rclyer sepamtbn; that is, a turbulent boundary layer is more capable 
of withstanding an adverse p % s m  gradient. This is because the velocity profile 
in a turbulent boundary layer is "fuller" (Figure 10.13) and has more energy. Fa 
example, the laminar boundary layer over a circular cylinder separates at 82" from 

frequently chaotic. 



Figure 10.13 Coinparison of laminar and turbulcnt vclocity pmfiles in a boundary layer. 

.. . 

Figure 10.14 Separation or flow in B highly divergent chsmncl. 

the forward stagnation point, whercas a turbulent layer ovcr the same body separates 
at 125" (shown later in Figure 10.15). Experiments show that the pressure rcmains 
fairly uniform downstrcarn of separation and has a lower value than thc pressures on 
the forward face of the body. The resulting drag due to pressure forccs is calledfimn 
drag, as it depends crucially on the shape of the body. For a blunt body the form drag 
is larger than the skin €riction drag because of the occurrence of separation. (For a 
streamlined body, skin friction is generally larger than the form drag.) As long as 
the separation point is located at the same place on the body, h e  drag coefficient 
of a blunt body is nearly constant at high Reynolds numbers. However, the drag 
coefficient drops suddcnly when the boundary layer undergoes transition to turbulence 
(see Figure 10.20 in Section 9). This is because thc separation point thcn moves 
downstream, and thc wake becomes narrower. 

Separation takes place not only in external flows, but also in internal flows such as 
thal in a highly divergent channel (Figure 10.14). Upstream of the throat the prcssure 
gradient is favorable and the flow adheres to the wall. Downstream of the h a t  a 
large enough adverse pressure gradient can cause separation. 



The boundary layer equations are valid only as Iar downstream as the point of 
separalion. Bcyond it the boundary layer becoma so thick that the basic underly- 
ing assumption.. bccome invalid. Moreover, the parabolic character of the boundary 
layer equations qujnx that a numerical integration is possible only in the dkc- 
tion of advection (along which information is propagated), which is rcpstrecun within 
the w e d  flow region. A farward (downstream) integration of the boundary layer 
equation. therefore breaks down after the separation point. Last, we can no longer 
apply potential thcory to find the pressure distribution in the separated region, as the 
effective boundary or thc irrotational flow is no longer the solid surface but some 
unknown shape cncompassing part of the body plus the separated regia 

In gcncral, analytical soluticms of viscous flows can be found (possibly in terms of 
perturbation series) only in two limiting cases, namely Re << 1 and Re >> 1. Tn 
the Re << 1 limit the inertia forax are negligible over most of the flow field; the 
Stokes-Oseen solutions discusscd in the p d n g  chapter are of this type. In the 
w i t c  limit of Re >> 1 , the viscous forces are neagible everywhere except close 
io thc surfacc, and a solution may be attempted by matching an irrotational outcr 
flow with a boundary layer near the surface. In the intexmediate range of Reynolds 
numbers, finding aualytical solutions becomes almost an impossible task, and one has 
to depend on experimentation and numerical solutions. Some of these experimental 
flow patterns will be described in thi.. section, taking the flow over a circular cylinder 
as an example. Instead of discussing only the intermediate Reynolds number range, 
we shall describe the experimental data for the entire range of small to very high 
Reynolds numbers. 

Low Reynolds Numbers 
ZRt us start with a consideration of the creeping flow around a circular cylinder, 
charactcrizcd by Rc < 1. (Hen: we shall define Re = U,d/u, based on h e  upstream 
velocity and the cylinder diamctcr.) Vorlicity is gcnmed close to the surface because 
of the neslip boundary conditioL In the Stokes approximation this vorticity is sim- 
ply diffuscd, not advccted, which results in a lore and d t  symmetry. The Oseen 
approximation partially takes into account the advection of vorticity, and resulk in an 
asymmetric velocity distributionfurihm the body (which was ShowninFigure 9.17). 
Thc vorticity distribution is qualitatively analogous to the dye distribution c a u d  by 
a s o w  of colored fluid at the position of the body. The color diffuscs symmelrisally 
in very slow flows, but at higher flow speeds h c  dye source is mn6ned behind a 
parabolic boundary with thc dyc source at the focus. 

Aq Re is increased beyond l., the Oseen approximation breaks down, and the vor- 
ticity iu inueasingly coujined behind the cylinder becawc of advection. For Re > 4, 
two small auacbed or “standing” eddies appcar behind the cylinder. The wake is com- 
pletely laminar and the vortices act like ‘Wuidynamic rollers” over which the main 
stream flows (Figure 10.1 5). The eddies gct longer as Re is increased. 
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Figure 10.15 Some regimes or flow over a circular cylindcr. 

von Karman Vortex Street 

A very interesting sequcnce of events begins to develop when the Reynolds number is 
incrcased beyond 40, at which point the wake behind the cylinder becomes unstable. 
Pholographs show that the wake develops a slow oscillation in which the velocity 
is periodic in time and downstrcam distance, with the amplitudc of the oscillation 
increasing downstrcam. The oscillating wake rolls up into two staggered rows of 
vortices with opposite scnse of rotation (Figure 10.16). von Karman investigated the 
phenomenon as a problem of supcrposition olirrotational vortices; he concluded that 
a nonstaggered row of vortices is unstable, and a staggered row is stable only if the 
ratio of lateral distance between the vorlices to their longitudinal distance is 0.28. 
Because of thc similarity of the wake with footprints in a street, the staggered row of 
vortices behind a blunt body is called a von Kurmara vorrex street. The vortices move 
downstream at a speed smaller than the upstream velocity U,. This mcans that the 
vortex pattern slowly follows thc cylinder iC it is pulled Lhrough a stationary fluid. 

In the range 40 < Re < 80, the vortex street does no1 interact wilh thc pair 
of attached vortices. As Re is increased beyond 80 the vortex street €oms closer to 
h e  cylinder, and the attached eddics (whose downstream length has now grown to be 
about twice thc diameter of thc cylinder) themselves begin to oscillate. Finally the 
attached eddies periodically break off alternatcly from the two sides of the cylinder. 



Figure 10.16 von Karman vortex street downstream of a circular cylinder at Re = 55. Flow visualized by 
condensedmilk.S.’IBneda, Jour:Phys.Soc., Jlrpanu): 1714-1721,1%5,andreprintedwiththepermission 
of The Physical society of Ja~#m and Dr. !Watosh ‘Taneda 
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Figme 10.17 Spiral blades used for breaking up the spanwise coherence of vortex shedding fmm a 
cywcalrod. 

While an eddy on one side is shed, that on the other side forms, resulting in an unsteady 
flow near the cylinder. As vortices of opposite circulations are shed off alternately 
from the two sides, the circulation around the cylinder changes sign, resulting in 
an oscillating “lift” or lateral force. If the frequency of vortex shedding is close 
to the natural frequency of some mode of vibration of the cylinder body, then an 
appreciable lateral vibration has been observed to result. Engineering structures such 
as suspension bridges and oil drilling platforms are designed so as to break up a 
coherent shedding of vortices from cylindrical structures. This is done by including 
spiral blades protruding out of the cylinder surface, which break up the spanwise 
coherence of vortex shedding, forcing the vortices to detach at different times along 
the length of these structures (Figure 10.17). 

The passage of regular vortices causes velocity measurements in the wake to have 
a dominant periodicity. The frequency n is expressed as a nondimensional parameter 
known as the Strouhal number, defined as 



Experiments show that for a circular cylinder the value of S remains close to 0.2 1. for a 
large range of Reynolds numbcrs. For small values of cylinder diameter and moderate 
values of U,, the rcsulting frequencies of the vortex shedding and oscillating lift lie 
in the acoustic range. For example, at U, = 10m/s and a wire diameter of 2mm, 
the frequency corresponding to a Strouhal number of 0.21 is n = 1050 cyclcs per 
second. The “singing” of telephone and transmission lincs has been attributed to this 
phenomenon. 

Wcn and Lin (2001) conducted very careful experiments that purported to be 
strictly two-dimcnsional by using both horizontal and vertical soap film water tun- 
nels. They give a revicw of the recent literaturc on both the computational and exper- 
imental aspects of this problem. The asymptote cited here of S = 0.21 is for a flow 
including three-dimensional instabilities. Their experiments are in agreemcnt with 
two-dimensional computations and the data are asymptotic to S = 0.2417. 

Below Re = 200, the vortjces in the wake im laminar and continue to be so for 
very large distances downstnam. Above 200, thc vortex street becomcs unstable and 
irregular, and the flow within the vortices themselves becomes chaotic. However, the 
flow in the wake continues to have a strong frequency component corresponding to 
a Strouhal number d S = 0.21. Above a very high Reynolds number, say 5000, thc 
periodicity in the wake becomcs imperceptible, and the wake m a y  bc described as 
completely turbulent. 

Striking examples of vortex streets have also been obscrved in the atmosphere. 
Figure 1.0.18 shows a satellite photograph of the wakc bchind several isolated moun- 
tain peaks, through which the wind is blowing toward thc southeast. Thc mountains 
picrce through the cloud Icvel, and the flow pattern becomes visible by thc cloud 
pattern. The wakes behind at least two mountain peaks display the characteristics ofa 
von Karman vortex street. Thc strong density stratification in this flow has prcvented 
a vertical motion, giving the flow the two-dimensional character necessary for the 
formation of vortex streets. 

High Reynolds Numbers 
At high Rcynolds numbers thc frictional elTects upstream of scparation are confined 
near the surface of the cylinder, and the boundary layer approximation becomes 
valid a. far downstream as thc point of scpamtion. For Re c 3 x 16, the boundary 
layer remains laminar, although the wake may be completely turbulent. Thc laminar 
boundary layer separates at % 82” from thc forward stagnation point (Figure 10.15). 
The pressure in the wake downstream or the point of separation is nearly constant and 
lower than Lhc upstream pressure (Figure 10.19). As Lhc drag in this range is primarily 
due to the asymmetry in thc pressure distribution caused by scparation, and as the 
point or separation remains fairly stationary in this range, the drag coeflicient also 
stays constant at CD 21 1.2 (Figure 10.20). 

Importanl changcs take place bcyond the critical Reynolds number or 

Re, - 3 x lo-’ (circular cylindcr). 

In the range 3 x l.05 -= Re < 3 x lo6, the laminar boundary layer hecomcs unstable 
and undergoes transition to turbulcnce. We have seen in thc preceding scction that 
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Figore 10.18 A von Kannan vortex street downstream of mountain peaks in a strongly stratified atmo- 
sphexe. There are several mountain peaks along the linear, light-colored feature Nnning diagonally in the 
upper lefi-hand corner of the photograph. North is upward, and the wind is blowing toward the southeast. 
R E. Thomson and J. E R. m e r ,  Monfhly Wenther Review 105: 873-884,1977, and reprinted with the 
permission of the American Meteorlogical Society. 

because of its greater energy, a turbulent boundary layer, is able to overcome a larger 
adverse pressure gradient. In the case of a circular cylinder the turbulent boundary 
layer separates at 125" from the forward stagnation point, resulting in a thinner wake 
and a pressure distribution more similar to that of potential flow. Figure 10.19 com- 
pares the pressure distributions around the cylinder for two values of Re, one with a 
laminar and the other with a turbulent boundary layer. It is apparent that the pressures 
w i t h  the wake are higher when the boundary layer is turbulent, resulting in a sudden 
drop in the drag coefficient from 1.2 to 0.33 at the point of transition. For values of 
Re > 3 x lo6, the separation point slowly moves upstream as the Reynolds number 
is increased, resulting in an increase of the drag coefficient (Figure 10.20). 

It should be noted that the critical Reynolds number at which the boundary 
layer undergoes transition is strongly affected by two factors, namely the intensity 
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Fiyrc 10.19 Surface pressurc distribution around a circular cylinder at subcritical and supercritical 
Reynolds numbcrs. Note that the prcsrure is nearly constant within the wakc and that thc wake is n m w c r  
for flow at supcrcritical Re. 
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Figure 10.24 Measurcd drag coellicient of a circular cylindcr. The sudden dip is due to ihc transition or 
the boundary layer to turhulcnce and thc consequent downstream movement or Lhc point of scpamtim. 

of fluctuations existing in the approaching stream and the roughness or the surface, 
an increase in eilher of which decreases Re,,. The value of 3 x lo5 is found to be 
valid for a smooth circular cylinder at low levels of fluctuation of the oncoming 
stream. 
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Before concluding this section we shall note an inlercsting anecdotc about the 
von Karman vortex strect. The pattern was investigated expcrimentally by the French 
physicist Henri BCnard, well-hown for his observations of the instability of a layer 
of fluid healed from below. In 1954 von Karman wrotc that BCnard became "jealous 
because thc vortex street was connected with my name, and several times . . . claimed 
priority [or carlier observation of the phenomenon. In reply 1 oncc said '1 agrec that 
what in Berlin and London is called Karman Street in Paris shall be called Avenue 
de Henri Rinard.' After this wisecrack wc made peace and became good friends." 
von Karman also says that the phenomenon has been known for a long timc and is 
evcn found in old paintings. 

We close this scction by noting ha t  this flow illustratcs three instanccs where the 
solution is countcrintuitive. First, small causes can havc large effects. If wc solve for 
the flow of a fluid with zero viscosity around a circular cylinder, we obtain the results 
of Chapter 6, Section 9. The inviscid Flow has fore-aft symmctry and the cylindcr 
experiences zero drag. The bottom two pancls of Figure 10.15 illustrate the flow for 
small viscosity. For viscosity m small as you choosc, in the limit viscosity tends 
to zero, the flow musl look like the last panel in which there is substantial fore-aft 
asymmetry, a significant wake, and significanl drag. This is because of the necessity 
of a boundary laycr and the satisfaction of the no-slip boundary condition on thc 
sur€ace so long as viscosity is not cxactly zero. When viscosity is exactly zero, there 
is no boundary layer and there is slip at the surface. Thc rcsolution of d'Alembcrt's 
paradox is through the boundary layer, a singular perturbation of the NavierSlokcs 
equations in the direction normal to thc boundary. 

The sccond instance of counterintuitivity is that symmetric problems can have 
nonsymmelric solutions. This is evident in the intermediate Rcynolds number middle 
pancl of Figure 10.15. Beyond a Reynolds number or 2 4 0  the symmetric wakc 
becomes unstable and a pattcrn of alternating vorticcs called a von Karman vortcx 
street is establishcd. Yct the cquations and boundary conditions are symmetric about a 
central planc in the flow. If one were to solve only a half-problem, assuming symmctry, 
a solution would hc obtained, but it would be unstable to infinitesimal disturbanccs 
and unlikely to bc scen in the laboratory. 

Thc third instance of counterintuitivity is that there is a range or Reynolds num- 
bers where roughening the surracc of the body can reduce its drag. This is true for 
all blunt bodies, such as a spherc (to be discussed in the next scction). In this range 
of Rcynolds numbers, the boundary laycr on thc surface of a blunt body is laminar, 
but sensitive to disturbanccs such as surface roughness, which would cause earlier 
transition of the boundary layer to turbulence than would occur on a smooth body. 
Although, as we shall see, the skin friction of a turbulent boundary layer is much 
largcr than that of a laminar boundary layer, most of the drag is causcd by incomplete 
prcssurc rccovcry on the downstream side of a blunt body as shown in Figurc 10. 19, 
wthcr than by skin friction. In fact, it is because the skin friction of a turbulcnt bound- 
ary layer is much largcr, as a result of a larger velocity gI'adiml 511 the surface, that 
a turbulcnt boundary layer can remain attached [arther on thc downstrcam sidc of a 
blunt body, leading to a narrower wakc and morc complete pressure recovery and thus 
reduced drag. The drag reduction atwibutcd to thc turbulcnt boundary layer is shown 
in Figmr: 10.20 for a circular cylinder and Figure 10.21 for a spherc. 



Several features ofthe description of flow over a circular cylinder qualitatively apply 
to flows over other two-dimensional blunt bodies. For cxamplc, a vortex street is 
observed in a flow perpendicular to a Rat plate. The flow over a three-dimensional 
body, however, has one fundamental difference in that a regular vortex street is absent. 
For flow around a sphere at low Reynolds numbers, there is an attached eddy in the 
form of a doughnut-shaped ring; in fact, an axial section of the flow looks similar to 
that shown in Figure 10.15 for the range 4 e Re c 40. For Re > 130 the ring-eddy 
oscillates, and some of it breaks off periodically in the form of distorted vortex 

The behavior of the boundary layer around a sphere is similar to that around 
a circular cylinder. In particular it undergoes transition to turbulence at a critical 
Reynolds number of 

loops. 

Recr - 5 x lo5 (sphere), 

which corresponds to a sudden dip of the drag coefficient (Figure 10.21). As in the 
case of a circular cylinder, the separation point slowly moves upstream forpostcritical 
Reynolds numbers, accompanied by a risc in the drag coefficient. The behavior of the 
separation point lor flow around a sphere at subcritical and supercritical Reynolds 
numbers is responsible for the bending in the flight paths of sports balls, as explained 
in the following section. 

0.1 A 
I 

I I I I I I I 

0.1 1 IO I @  IO? lo4 1W 106 

Alum 10.21 Measured drag coellicicnl ol'a smooth sphere. The Stnkcs solution is CO = 24/Re, and ihc 
Oseen solulion is Cn = (%/Re)( 1 -k 3Re/ 16); thesc two solutions are discus& in Chaptcr9. Sections 12 
and 13. The incmsc ol' drag coefficient in the rangc AB ha? relevance in explaining why thc flight paths 
ol s p t s  balls bend in the air. 
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11. i&tmrriic:n. of Spowh Hullx 
The discussion of the preceding section could be used to explain why the trajectories 
of sports balls (such as those involved in tennis, cricket, and bascball games) bend in 
the air. The bending is commonly known as swing, swerve, or curve. The problem has 
been investigated by wind tunnel tests and by stroboscopic photographs of flight paths 
in ficld tests, a summary of which was given by Mchta (1985). Evidence indicates 
that the mechanics of bending is different for spinning and nonspinning balls. The 
following discussion givcs a qualitative explanation of the mechanics of flight path 
bending. (Readers not intemted in sports may omit this section!) 

Cricket Bdl Dynamics 
The cricket ball has a promincnt (1-mm high) seam, and tcsts show that the oricntation 
ofthe seam is responsible for bending of thc ball’s flight path. It is known to bend when 
thrown at high spceds of around 30 m/s, which is equivalent to a Reynolds number of 
Re = 1 05. Hcre we shall define the Reynolds number a,. Re = U,d/u, based on the 
translational speed U, of the ball and its diameter d. The operating Reynolds number 
is somewhar less than the critical value of Re, = 5 x l(9 nccessary for transition of 
the boundary layer on a smooth sphere into turbulencc. However, the presence of 
the seam is ablc to trip the laminar boundary Iaycr into turbulence on one side of 
the ball (the lower sidc in Figure 10.22), while the boundary layer on the other side 
remains laminar. Wc have seen in the preceding sections that because of greater energy 
a turbul cnt boundary layer separates lam. Typically, the boundary layer on thc laminar 
side scparates at 2 85’, whereas that on thc turbulent side separates at 120‘. Compared 
to region B, thc surface pressure near rcgion A is therefore closer to that given by 
the potcntial flow theory (which predicts a suction pressure of (Pmin - p x ) / ( i p U & )  
= - 1.25; see Eq. (6.79)). In other words, thc prcssurcs are lower on side A, resulting 
in a downward force on the ball. (Notc that Figurc 10.22 is a view of the flow pattcrn 
looking downward on the ball, so that it corrcsponds to a ball that bends to the left in its 
flight. The flight of a cricket ball oricnted as in Figure 10.22 is called an “outswinger” 

Re - lo5 

m = O M 6  kg 
d = 7 . 2 m  

I!Xgurc 10.22 The swing of a cricket ball. The seam is oriented in such a r a y  that the lateral force on the 
hall is downward in UIC l i p .  
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Figve 10.23 Smoke photograph of flow over a cricket ball. Flow is from left to right. Seam angle is 40”. 
flow speed is 17 m/s, Re = 0.85 x 1 6 .  R. Mehta, Ann. Rev Fluid Mech. 17 151-189.1985. Photograph 
reproduced with permission from theAnnua1 Review of Fluid Mechanics, Vol. 17 @ 1985 Annual Reviews 
w w .  AnnualReviews. org 

in cricket literature, in contrast to an “inswinger” for which the seam is oriented in 
the opposite direction so as to generate an upward force in Figure 10.22.) 

Figure 10.23, photograph of a cricket ball in a wind tunnel experiment, clearly 
shows the delayed separation on the seam side. Note that the wake has been deflected 
upward by the presence of the ball, implying that an upward force has been exerted 
by the ball on the fluid. It follows that a downward force has been exerted by the fluid 
on the ball. 

In practice some spin is invariably imparted to the ball. The ball is held along the 
seam and, because of the round arm action of the bowler, some backspin is always 
imparted along the seam. This has the important effect of stabilizing the orientation 
of the ball and preventing it from wobbling. A typical cricket ball can generate side 
forces amounting to almost 40% of its weight. A constant lateral force oriented in 
the same direction causes a deflection proportional to the square of time. The ball 
therefore travels in a parabolic path that can bend as much as 0.8 m by the time it 
reaches the batsman. 

It is known that the trajectory of the cricket ball does not bend if the ball is thrown 
too slow or too fast. In the former case even the presence of the seam is not enough 
to trip the boundary layer into turbulence, and in the latter case the boundary layer 
on both sides could be turbulent; in both cases an asymmetric flow is prevented. It is 



also clear why only a ncw: shiny ball is able to swing, because the rough surface of an 
old ball causes the boundary layer to become turbulcnt on both sides. Fast bowlers in 
cricket maintain one hemisphere of the ball in a smooth state by constant polishing. 
It therdorc sccms that most of the known facts about the swing of a micket ball 
have bccn adcquately explained by scicntific rcsearch. The feature that has not been 
explained is the universally obscrved fact that a cricket ball swings more in humid 
conditions. Thc changcs in density and viscosity due to changes in humidity can 
change the Rcynolds number by only 2%, which cannot explain this phenomcnon. 

Tennir Ball Dynamics 
Unlike the crickcr ball, the path of the tennis ball bcnds because of spin. A ball hit 
with topspin curves downward, whcreas a ball hit with underspin travcls in a much 
flatter trajectory. Thc dircction of the lateral force is therefore in the same sense as 
that of thc Magnus effect experienced by a circular cylinder in potential flow with 
circulation (see Chapter 6, Section 10). The mechanics, however, is different. The 
potential flow argument (involving the Bernoulli cquation) offered to account for the 
lateral force around a circular cylindcr cannot explain why a n.egurive Magnus cffcct 
is univcrsally obscrved at lower Reynolds numbers. (By a negativc Magnus effect we 
mcan a lateral force opposite to that experienced by a cylindcr with a circulation of 
the same sense as the rotation of the sphcrc.) The correct argument seems to be the 
asymmelric boundary layer scparation caused by the spin. In fact, the phenomenon 
was not properly explained until the boundary layer concepts wcrc undcrstood in 
thc twcnticth ccntury. Some pioneering experimental work on the bending paths 
of spinning spheres was conducted by Robins about two hundred ycars ago; the 
deflection of rotating spheres is sometimes called the Robins eflect. 

Experimental data onnonrotating spheres (Figure 10.21) shows that thc boundary 
layer on a sphere undergoes transition at a Reynolds number of % Rc = 5 x lo5, 
indicated by a sudden drop in the drag cocflicient. As discussed in the preceding 
scction, chis drop i s  duc lo thc triinsition of thc laminar boundary layer to turbulence. 
An important point for our discussion here is that for supercritical Reynolds numbers 
the separation point slowly moves upstream, as evidenced by the increase of the drag 
coefficient after the sudden drop shown in Figure 10.2 1. 

With this background, wc arc now in a position to understand how a spinning 
hall generates a negative Magnus effect at Re e Recr and a positive Magnus effect 
at Re > Re,,. For a clockwise rotation of the ball, the fluid velocity relutive ra the 
sutjfucc is larger on the lower side (Figure 10.24). For the lower Reynolds number 
case (Figure 10.24a), this causes a transition of thc boundary laycr on thc lowcr sidc, 
whilc thc boundary layer on the upper side remains laminar. The result is a delayed 
sqaration and lower pressure on the bottom surface, and a conscqucnt downward 
force on the ball. The force here js in a sense opposite to that of thc Magnus cffect. 

The rough surface of a tennis ball lowcrs thc critical Reynolds number, so that 
lor a well-hit tennis ball the boundary laycrs on both sidcs of the ball have already 
undergone transition. Due to the higher relative velocity, thc flow ncar the bottom has 
a higher Reynolds number, and is therefore farther along the Rc-axis of Figure 10.21, 
in the rmge AB in which the separation point mows upstrcam with an increase of 



turbulent 

turbulent 

(a) Re c Re, (b) Re > Re, 

Figure 10.24 Bending of rotating sphcrcs, in which F indicates the forcc cxcrtcd by the fluid: (a) ncgative 
Magnus effect; and (b) positive Magnus efiect. A wcll-hi1 lcnnis ball is likely to display h e  positive Magnus 
c ~ c c t .  

the Reynolds number. The scparation therefore occurs earlier on the bottom side, 
resulting in a higher pressure there than on the top. This causes an upward lift force 
and a positive Magnus efiect. Figure 10.24b shows that a tcnnis ball hit with undcr- 
spin generates an upward forcer this overcomes a large fraction of the weight of the 
ball, resulting in a much Battcr trajectory than that of a tennis ball hit with topspin. 
A “slice serve,” in which the ball is hit tangentially on the right-hand side, curves io 
the left duc to the same effect. (Presumably soccer balls curve in the air due to similar 
dynamics.) 

Baseball Dynamics 
A baseball pitchcr uses different kinds of dcliveries, a typical Reynolds numbcr being 
1.5 x lo5. One type of delivery is called a “curveball,” caused by sidcspin imparted 
by the pitcher to bend away from the side of thc throwing arm. A “screwball” has the 
opposite spin and curvedtrajectory. The dynamics of this is similar to that or aspinning 
tennis ball (Figurc 10.24b). Figure 10.25 is a photograph of the flow over a spinning 
baseball, showing an asymmetric separation, a crowding together of strcamlines at 
the bottom, and an upward deflection of the wake that corresponds to a downward 
forcc on the ball. 

The knuckleball, on the other hand, is released without any spin. In this case 
the path of the ball bends due to an asymmctric separation caused by the oricntation 
of the seam, much like the cricket ball. However, the cricket ball is Elcased with 
spin along thc seam, which stabilizes the orientation and results in a predictable 
bending. The hucklcbdll, on the othcr hand, tumbles in its flight because a1 a lack 
of stabilizing spin, rcsulting in an imgular orientation of the seam and a consequcnt 
irregular trajcctory. 

So far we havc considered boundary layers over a solid surface. The concept 01 
a boundary laycr, however, is more general, and the approximations involved are 
applicable if thc vorticity is confined in thin layers wifhout the presence of a solid 
surface. Such a laycr can be in the form 01 a jet of fluid ejected from an orifice, a wakc 
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Figure 10.25 Smoke photograph of flow around a spinning baseball. Flow is from left to right, flow 
speed is 21 m/s, and the ball is spinning counterclockwise at 15rev/s. [Photograph by E N. M. Brown, 
University of Notre Dame.] Photograph reproduced with permission, from the Annual Review of Ftuid 
Mechanics, Vol. 17 @ 1985 by Annual Reviews www.AnnualReviews.org. 

(where the velocity is lower than the upstream velocity) behind a solid object, or a 
mixing layer (vortex sheet) between two streams of different speeds. As an illustration 
of the method of analysis of these “free shear flows:’ we shall consider the case of 
a laminar two-dimensional jet, which is an efflux of fluid from a long and narrow 
orifice. The surrounding is assumed to be made up of the same fluid as the jet itself, 
and some of this ambient fluid is carried along with the jet by the viscous drag at the 
outer edge of the jet (Figure 10.26). The process of drawing in the surrounding fluid 
from the sides of the jet by frictional forces is called entrainment. 

The velocity distribution near the opening of the jet depends on the details of 
conditions upstream of the orifice exit. However, because of the absence of an exter- 
nally imposed length scale in the downstream direction, the velocity profile in the 
jet approaches a seIf-similar shape not far from the exit, regardless of the velocity 
distribution at the orifice. 

For large Reynolds numbers, the jet is narrow and the boundary layer approx- 
imation can be applied. Consider a control volume with sides cutting across the jet 
axis at two sections (Figure 10.26); the other two sides of the control volume are 
taken at large distances from the jet axis. No external pressure gradient is maintained 
in the surrounding fluid, in which d p / d x  is zero. According to the boundary layer 
approximation, the same zero pressure gradient is also impressed upon the jet. There 
is, therefore, no net force acting on the surfaces of the control volume, which requires 
that the rate of flow of x-momentum at the two sections across the jet are the same. 



Therefore 

u2 dy = independent of x ,  (10.47) 

wherc M is the momentum flux (= mass flux times velocity) of the jet. Alterna- 
t i v e ] ~ ~  Eq. (10.47) may be established by adding u (au/ax + a u / a y )  = 0 to the 
x-momentum equation in the jet to obtain 

2 p u - + P ( u g + u ~ ) = P q ,  3U a2u 

ax 

and integrating over all y.  Only the ikst term survives, yielding Eq. (10.47). Momen- 
tum flux is the basic externally controlled parameter in a jet and is hown from an 
evaluation of Eq. (10.47) at the orifice opening. The mass flux psu dy across the jet 
must increase downstream, as is explained later. 

The boundary layer equations are 

au  au  a2u 
u- + v- = v - ,  

ax ay a y  

subject to an initial condition, u(x0, y) at x = XO, and boundary conditions, 

u 4 0  a.y-+oo,  



where the conditions at y = 0 specify symmetry. Note that thc condition at infinity is 
u = 0 but u # 0 because of the entrainment of the surrounding fluid (Figure 10.26). 
Tntroducing a stramfunction 

a$ w 
a y ?  ax ' 

1: = -- u = -  

the boundary layer momentum equation becomes 

(10.48) 

For x >> XO, the initial condition is rorgottcn, so wc scck a similarity solution of 

a+ a2+ a$ a2$ a3$ 
as axay ax a4.2 ay3 

- v-. 

thc form 

(10.49) 

where m and n are unknown exponents, while u and h are constants chosen to make 
f and r,~ dirncnsionless. Substitution into Eq. (1 0.48) gives 

- LJbx,n+ll-l [(m - n ) f ' 2  - mf'] = f"'. 
v 

(10.50) 

The left-hand sidc cannot dcpcnd explicitly on x ,  as the right-hand side does not do 
so. This requires that in + n - 1 = 0. A second condition relating m and n is found 
by substituting Eq. (10.49) into the momentum constraint (1 0.47), giving 

oc: 
M = pa2b'-Ix21n n ff2dr,J = indcpcndcnt oFn, L 

which can be true only if 2m - n = 0. The exponents are therefore 

m = f ,  n = 2 .  3 

The valuc of n shows that the jet width increases as x2/3.  
The factors u and b in Eq. (10.49) can now be chosen so that r]  and f are 

dimensionless. These constants can depend only on the external parameter M and 
fluid properties p and v.  Equation (1  0.49) requires that bx" should have thc dirncnsion 
or length, so that h should havc the dimension of lengthlx" = (length)'l3. The 
combination v 2 p / M  has the unit of length and, accordingly, we choose 

b = ( % )  I !3 , 

where the factor 48 is written for later algebraic convcnicnce. Similarly Eq. (10.49) 
also requircs that ux"' = ux'I3 sbould have Lhc samc dimensions as the slreamrunc- 
tion. Dcnoting dimensions by 1 1, wc q u i r e  [a] = [~+b/]/[x]'/~ = L513T-'. The 
combination ( v M / ~ ) ' / ~  has this dimcnsion and. accordingly, we take 



Then Q. (1 0.50) becomes 

f” + 2 ( f ’ 2  +$”) = 0, 

f’(oc) = o1 
with boundary conditions 

f ( 0 )  = 0, f”(0)  = 0 

Although thc equation is nonlinear, it has the surprisingly simple solution of 

f = t a n h q .  

(Integrate twice and substitute f = g’/g.) Thc velocity distribution is found as 

which can be written as 

where 

is the velocity at the center of the jct. It is appmnt that u,, + 00 as x + 0, 
showing that the origin is a singularity of the solution. This is not important because 
the similarity solution is expected to be applicable to a real jet a,ymptotically as 
x + 00. Note that if we &fine Re, = umx/u,  then q = (y/x)&, modulo a 
finite factor (&). Further, $ = ( u ~ l r ~ ~ ) ~ / ~ f ( q )  modulo the samc &. 

The volume flux is 

which increases downstream as thc jet entrains the surrounding fluid. Far downstream, 
the volumc flux is much largcr than the original flux out of the orilice. The externally 
imposed constraint in this problem is thc jet momentum flux M and not the mass flux 
or centerline velocity, both of which vary with x .  

By drawing sketches of the profiles of u, uz, and u3,  the reader can verify that, 
under similarity, thc constraint 

must lead to 

and 



The last integral is proportional to the kinetic energy flux, which decreases down- 
stream bccausc of viscous dissipation. Thus, the constancy of momentum flux, 
increase cf mass flux, and decay of enerH flux are all related. 

Entrainrncnt of mass is sccn by examination of 

As r ]  + foo, tanh r ]  + f l  and scch’q + 0. Thus flow rmm thc top is downwards 
and flow from the bottom is upwards, both fccding thc jct additional mass. 

The laminar jet solution given here is not readily obscrvahlc bccausc the flow 
easily breaks up into turbulencc. Thc low critical Reynolds number for instability or 
a jet or wake is associated with the existence of a point of inflcction in  thc vclocity 
profile, as discussed in Chapter 12. Nevertheless, the laminar solution has rcvcalcd 
several significant ideas (namely constancy of momentum flux and incrcasc of mass 
flux) that also apply to a turbulent jet. However, the rdtc of spreading of a lurbulcnt 
jct is fastcr, being more like S o( x rather than S o( x2I3 (see Chapter 13). 

The Wall Jet 
An examplc or a two-dimensionaljet that also shares somc boundary layer character- 
istics is thc “wall jct.” The solution here is due to M. B. Glauert (1 956). We consider a 
fluid cxiting a narrow slot with its lower boundary bcing a planar wall taken along the 
x-axis (SCC Figurc 10.27). Near the wall J = 0 and the flow bchavcs like a boundary 
layer. but far from the wall it bchaves like a free jet. The boundary laycr analysis 
shows that for large Re, the jct is thin (S/x << 1) so ap/ay % 0 across it. The 
prcssurc is constant in the nearly stagnant outer fluid so p % const. throughout thc 
flow. The boundary layer cquations are 

a u  a v  
ax ay 
- + - = o o ,  

au au PU 
11- + v- = v-,  

ax ay iIy2 

(10.51) 

(10.52) 

subjcct. to the boundary conditions = 0: u = I: = 0; y + cc: u + 0. With 
an initial velocity distribution forgotten sufficiently far downstream that Rc, + cc, 
a similarity solution is availablc. However, unlike the frcc jcr, the momentum flux 
is not constant; instead, it diminishes downstream bccausc of h e  wall shear strcss. 
Onc relation connecting thc similarity exponcnts is obtained from the x-momcntum 

Y 

, . . .  ” -  ... .’ 

Figuun: 10.27 Thc planar wall jct. 
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equation as stated i n  the foregoing text. This gives m + n = 1. To obtain a sccond 
relation connecting in and n in the streamfunction 

(10.53) 

requires both insight and a bit of extra work. Although the universal similarity scaling 
applies here, it is not possible to see the correct form in advance; we will show it at 
the end of the problem. We start by integrating Eq. (1 0.52) from y to 00: 

Multiply this by u and integrate from 0 to w: 

The last term integrates LO 0 because of thc boundary conditions a1 both ends. Inte- 
grating the second term by parts and using Eq. (10.5 l) yields a term equal to the first 
term. Then wc have 

Now consider 

(10.54) 

Using Eq. (10.51) in the first tcnn on the right-hand si&, integrating by parts, and 
using Eq. (1 0.54), wc finally obtain 

dx lm ( u  Lrn u 2 d y )  d y  = 0. (10.55) 

This says that the flux of exterior momentum flux is constant downstream and is used 
as the second condition to obtain the similarity exponents m, n. Rewriting Fq. (1 0.52) 
in terms of tbe streamfunction u = a@/ay, u = -a@/Bx,  we obtain 

subject to: 

(1 0.56) 

(10.57) 



Substiluting he similarity form (1 0.53) into ( 1  0.56) we obtained m + n = 1. Substi- 
tuting Eq. (10.53) into (10.55) we obtain 3m - n = 0. Then m = t ?  iz = i. Now 
we let 

( 1  0.58) 

where f m  is the asymptote of . f (q ) :  r ]  --+ cc, is d a t e d  to the mass flux in the 
wall jet, and is the only dimensional constant besides u available for normalization. 
Substiluting Eq. (10.58) into Eqs. ( 1  0.56) and (1 0.57) yields 

f'" + ff" + 2jl2 = 0: f (0) = 0, f'(0) = 0, f '(90) = 0. (1 0.59) 

The introduction of .foe as a normalization parameter (so that in dimcnsionlcss form 
f(cc) = 1) indicates that the trivial solulion of Eq. (10.59) is to bc excluded. One 
integration of Eq. (10.59) and an evaluation or the constant of integration yields 
f f "  - $ . f '2  + f 2f' = 0. Here and in the following, f is madc dimcnsionlcss by fki 
and r ]  by 1 /f%. Multiplication by f-';' allows for a second integration 

(10.60) 

where we have used f (00) = 1 .  At r ]  = 0, f f 2 / f  = $, so f"(0)  = $( f ' 2 ( 0 ) / f ( O ) )  
= $ is related to the wall shear stress, to = p(au/ay)lo = ( 4 p . f & / ~ ' ) x - ~ ! ~  . 0 . 

The substitution f = g2 transforms Eq. (10.60) to 

which has thc solution in implicit form 

This is shown in Figure 10.28 (from Glauert). From this solution we can verify that 
as r ]  += 00, f' - 2&-4, so that it tcnds exponentially fast to its limiting value. 

We see that thc wall jet entrains mass downstream as x1l4 in constrast to thc frce 
jct -x1 l3 .  

To show that the similarity scalings are the same as in all other similarity solutions 
of the laminar boundary layer equations, we use Eqs. (10.58) and (1 0.62) to dcfine 
a suitablc average speed ii and jet thickness S. Suppose from Figure 10.28 we say 
the jet thickness js given by r ]  = 4 .  (Any finite number will do as well.) Thcn 
4 = fX8/(vx3/4) from EQ. (10.58) and US = 4x1f4fm, from ~ q .  (10.621, so that 
ii = f&/(ux' i2) .  Now Re, = i i x / v  = f&x' /* /u2  and (y/x)& = f m y / ( v ~ 3 / 4 )  
in agreement with Ekq. (10.58). Also, ( ~ i i x ) ' / ~ f ( r ] )  = fmx'I4 f = $/4 in conformity 
with the univcrsal similarity scaling. 



Figure 10.28 Variation ornormalizcd mass tlux (f) and normalkd velocity (f’) with similarly variablc 
q. Rcprinted with the permission of Carnbridgc University Ihss. 

13. Secondary Flows. 
L q c  Reynolds number flows with curved streamlincs tend to generatc additional 
velocity components because of properties of the boundary layer. Thcse components 
are called secondary flou7s and will be seen latcr in our discussion of instabilities 
(p. 453). An example of such a flow is made dramaticaUy visible by putting finely 
crushcd tea leaves, randomly dispcrsed, into a cup of water, and thcn stirring vig- 
orously in a circular motion. When the motion has ceased, all of the particles have 
collcctcd in a mound at the centcr of the bottom of tbe cup (see Figure 10.29). An 
explanation of this phcnomenon is given in terms of thin boundary lqcrs. The stir- 
ring motion impam a primary velocity ue(R) (see Appendix B1 for coordinates) 
largc enough for the Reynolds number to be largc enough [or the boundary layers 
on the sidewalls and bottom to be thin. The largest terms in thc R-momentum equa- 
tion are 

_ -  aP 4 - 
a R  R ‘ 

Away from the walls, the flow is inviscid. As the boundary layer on the bottom is thin, 
boundary layer theory yiclds a p p x  = 0 [om the x-momentum equation. Thus thc 
pressure in thc bottom boundary layer is the samc as for the inviscid flow just outside 
the boundary layer. However, within the boundary layer, ug is less than thc inviscid 
value at the edge. Thus p ( R )  is evcrywhere larger in the boundary layer than that 
rcquired for circular streamlines insidc the boundary layer, pushing the streamlines 
inwards. That is, thc p r e s s u ~  gradicnt within the boundary layer gcnerates an inwardly 
directcd u R . This motion is fed b37 a downwardly dircctcd flow in Lhc sidewall boundary 
layer and an outwardly directed flow on the top surface. This sccondary flow is dosed 
by an upward flow along the centcr. The visualization is accomplished by crushed tea 
leaves which are slightly denser than water. They descend by gravity or are driven 
outwards by cenlrifuugal acceleration. If they enter the sidewall boundary layer, they 
are msported downwards and Lhencc to the center by the secondary flow. If the 
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Figure 10.29 Secondary flow in a tea cup: (a) tea lcavcs randomly dispcrscd-initial state; (b) stirred 
vigomusly-.kansienL motion; and (c) find slalc. 

tea particles enter thc bottom boundary layer from above, hey are quickly swept 
to the center and dropped as the flow turns upwards. All the particlcs collect a1 the 
centcr of the bottom of the teacup. A practical application of this effect, illustrated in 
Exercise 9, relates to sand and silt transport by the Mississippi River. 

14. firlurbalion %hniques 
Thc pceding  sections, based on Prandll's seminal idea, h v c  revealed the physical 
basis of the boundary layer concept in a high Reynolds number Bow. In recent years, 
the boundary laycr method has become a powerful mathematical tcchnique used to 
solve a variety of other physical problems. Some elementary ideas involved in these 
mcthods are discussed here. The inkrested reader should consult other specializcd 



texts on the subject, such as van Dyke (1 973, Bender and Orszag (1978), and Nayfeh 
(1981). 

The essential idea is that the problem has a small pammeter E in either the 
governing equation or in the boundary conditions. In a flow at high Reynolds number 
the small  parameter is E = 1 /Re, in a creeping flow E = Re, and in flow around an 
airfoil E is the ratio of thickness to chord length. The solutions to these problems 
can frequently be written in terms of a series involving the small parameter, the 
higher-order terms acting as a perturbation on the lower-order terms. These methods 
are called perrurbufion techniqztes. The perturbation expansions frequently break 
down in certain regions, where the field dcvelops boundary layers. The boundary 
layers are treated diffcrently than other rcgions by expressing the lateral coordinate y 
in terns of the boundary layer thickness S and defining q = y/S.  The objective is to 
rescale variables so that they are all linitc in the thin singular region. 

Order Symbols and Gauge Functions 
Fqucntly we have a complicated function f ( s )  and we want to determine the nature 
of variation of f ( ~ )  as E + 0. The three possibilities are 

as ~ 4 0 ,  1 f ( ~ )  + 0 (vanishing) 
f ( ~ )  + A (bounded) 
f ( ~ )  + 00 (unbounded) 

where A is finite. However, this behavior is rather vague bccause it docs not say 
how fast f ( s )  goes to zero or inhity aq E + 0. To describe this behavior, we 
compare the rate at which f ( ~ )  goes to zero or infinity with the rate at which certain 
familiar functions go to zero or infinity. The familiar functions used for comparison 
purposes are called guugefunctiuns. The most common example of a scquence of 
gauge functions is 1, E ,  E*, I . . . . As an examplc, suppose wc want to find how sin E 
goes to zero as E + 0. Using the Taylor series 

E3 E5 sin&=&- -+ - -... 
3! 5 !  

we find that 

which shows that sin E tends to zcro at the same rate at which E tends to zcro. 
Another way of expressing this is to say that sin E is or order E as E + 0, which we 
write as 

sin E = O(E) as E + 0. 

Other examples are that 

a s E + O .  I cos E = O(1) 
COS E - 1 = O(E2) 



We can generalize the concept of “order” by the following statement. A function 
f ( ~ )  is considered to be of order of a gauge function g(E),  and writtcn 

f ( ~ )  = O [ ~ ( E ) ]  as E + 0, 

if 

f(E)  

E-+o g ( E )  
l im-=A, 

where A is nonzero and finite. Note that the size of the constant A is immaterial 
as far as thc mathematics is concerned. Thus, sin 7~ = O(E) just as sin E = O ( E ) ,  
and likewise 1000 = O( 1). Thus, the marhemuricaf order considered here is different 
from the physical order of magnitude. However, if the physical problem has been 
properly nondimensionalized, with the relevant scales judiciously choscn, then the 
consbat A will be OF reasonable size. (Incidentally, we commonly regard a factor of 
10 as a change oEone physical order of magnitude, so when we say that the magnitude 
of u is of order 10 cm/s, we mean that the magnitudc of u is expected (or hoped!) to 
be between 30 and 3 cds . )  

Sometimcs a comparison in terms of a familiar gaugc function is unavailable or 
inconvenient. Wc may say f ( ~ )  = 0[g(~)1 in the limit E + 0 if 

f (E)  

c->o g ( E )  
lim - = 0, 

so that f is small compared with g as E +. 0. For cxample, I lnsl = o ( ~ / E )  in the 
limit E + 0. 

Asymptotic Expansion 
An asymptotic expansion of a function, in terms of a given set of gauge functions, is 
essentially a scries representation with a finite number of terms. Supposc the sequence 
of gauge functions is gn ( E ) ,  such that each one is smaller than the preceding one in 
the sense that 

Rn+ I lim - = 0. 
s+o g” 

Then the asyrnproric cxpunsiun of f ( ~ )  is 01 the form 

f ( d  = ao + a m  ( E )  + azgz(E) + O[g&)I, (1 0.63) 

wherc a,, are independent of E .  Note that the remaindcr, or ihe error, is of ordcr of the 
first neglected term. We also write 

. f (E)  - a0 + algl(E) + azgZ(E): 

whcrc - means “asymptotically equal to.” The asymptotic expansion of f ( ~ )  as 
E + 0 is not unique, because a different choice of the gauge functions gn(&) would 



lcad to a different expansion. A good choice leads to a good accuracy with only a few 
terms in the expansion. The most frequently used sequence of gauge functions is the 
powcr series E” .  However, in many cases the wries in integral powers of E does not 
work, and other gaugc functions must be iiscd. There is a systematic way of arriving 
at the sequence of gauge functions, cxplained in van Dyke (1975), Bender and Orszag 
(1978), and Nayfeh (1981). 

An asymptotic expansion is a finite sequencc of limil statcments of h c  type 
Written in the preceding. Forexample, because lim,,o(sin E ) / &  = 1, sin E = &+o(e). 
Following up using the powers of E as gaugc functions, 

lim(sin e - = -3: I 
e-ro 

s ins=&--+o(E  E3 3 ). 
3! 

By continuing this process we can establish that the term o ( E ~ )  is better rcpresented 
by O(E’) and is in fact e 5 / 5 ! .  The series terminates with the order symbol. 

The interesting property of an asymptotic expansion is that tbe series (1  0.63) may 
not converge ilcxtended indefinitely. Thus, lor a fixed E ,  thc magnitude of a term may 
eventually incrcase as shown in Figure 10.30. Therefore, there is an optimum number 
of terms N(E)  at which the scries should bc truncated. The number N(E)  is difficult 
to guess, but that is of little consequcnce, because only one or two terms in the 
asymptotic cxpansion are calculated. The accurucy oJ’the uyrnptotic representation 
cun be arbitrarily irnpmved by keeping nfied,  und letting E + 0. 

We herc emphasize h c  distinction bctween convcrgence and asymptoticity. In 
cunveqen.ce we are concerncd with terms far out in an infinite scries, a,. We must 

r 
N (€1 

Figurc 1030 Tcrrns in a divcrgcnt asymptotic &a, in which N( t )  indicates thc optimum number of 
term at which the Kcrics should bc trunctiled. M. Van Dyke, Prlturhorion Methods in FZuidMecAonics, 
1975 and mprinted with the permission of Prof. Millon Van Dykc for The Parabolic l%ss. 
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havc a,, = 0 and, lor example, limndoc: I U , ~ + ~ / U ~  I < 1 for convergence. 
Aspzproticiry is a diflerent limit: n is fixed at a finite number and the approximation 
is improved as E (say) tends to its limit. 

The value of an asymptotic expansion becomes clear if we comparc thc 
convcrgcnt series for a Bessel function Jo(x),  given by 

x2 x4 X 6  
J()(X) = 1 - - + - - - + 

~ 2' 2242 224262 

with the first term of its asymptotic expansion 

(10.64) 

( 1  0.65) 

The convergent scrics ( 1  0.64) is useful when x is small, but more than cight lcrms 
are needed for three-place accuracy when x exceeds 4. In contrast, the one-term 
asymptotic representarion (10.65) givcs three-place accuracy for x > 4. Moreovcr, 
the asymptotic expansion indicates the shape or the function, whereas the infinitc 
series does not. 

Nonuniform Expansion 
Tn many situations we develop an asymptotic expansion for a function of two 
variablcs, say 

~ ( x :  E )  - C u , , ( x ) g n ( ~ )  as E + 0. (1  0.66) 
11 

If the expansion holds for all values of x, it is called unifurmZy vulid in x ,  and the prob- 
lem is describcd as a regulur perturbation problem. Tn this case any successive term 
is smaller than the preceding term for all x .  In some intercsting situations, however, 
the expansion may break down for certain values of x. For such values of x ,  u,,, (x) 
increases faster with m than g, , , (~)  decreaqes with in, so that thc term a,(x)g,, (E) is 
not smaller than thc preceding term. Whcn the asymptotic expansion (10.66) breaks 
down for certain values of x ,  it is called a nonunijiurlil expansion, and the problem is 
callcd a singular perturbation problem. For cxample, the series 

-- - 1 - E X  + E 2 X 2  - E 3 X 3  + e - * , 1 
1 + E X  

(10.67) 

is nonuniformly valid, because it breaks down when E X  = O( 1). No matter how small 
we make E ,  thc second term is not a conection of tbc first term for x > 1 / E .  We say 
that the singularity of the perturbation expansion (1 0.67) is at large x or at infinity. 
On the other hand, the expansion 

) , (10.68) 
E E 2  

2x 8x2 



is nonuniform because it breaks down when E/X = O(1). The singularity of this 
expansion is at x = 0, because it is not valid for x < E .  The regions ofnonunifor- 
mi0 are called bouiuhy layers; for Fq. (10.67) it is x > 1 / E ,  and €or Eq. (10.68) 
it is x < E. To obtain expansions that are valid within these singular regions, we 
need to write the solution in terms of a variable r ]  which is of ordcr 1 within the 
region of nonuniformity. It is evident that r ]  = EX for Eq. (10.67), and 9 = X/E for 
Eq. (1 0.68). 

In many cases singular perturbation problems are associatcd with thc small 
paramekr E multiplying the highest-order derivativc (as in the Blasius solution), 
so that the order of the differential equation drops by onc as E + 0, resulting in an 
inability to satisfy all the boundary conditions. In several other singular perturba- 
tion problems the small parameler does not multiply the highcst-order dcrivative. An 
cxample is low Reynolds number flows, for which the nondimensional governing 
equation is 

E U . V U = - V p + V  2 u, 

where E = Re << 1. In his case the singularity or nonuniformity is at infinity. This is 
discussed in Scction 9.13. 

1.5. An Ihunpb of a Regular IPrhrbalion Problem 
As a simple example of a perturbation expansion that is valid uniIormly everywhere, 
consider a plane Couetk flow with a uniform suction across the flow (Figure 10.31). 
The upper plate is moving parallel to itself at speed U and the lower plate is station- 
ary. The distancc between thc plates is d and there is a uniform downward suction 
velocity vl, with the fluid coming in through the upper plate and going out through thc 
bottom. For notational simplicity, we shall denote dimensional variablcs by a prime 
and nondimensiondl variables without primes: 

Ut 2.r 
u = -  Y r  

u' v = v '  y = -  
d '  

e<< 1 
Y 

0; 

Figurc 10.31 Uniform suction in a Couette flow, showing the velwiiy protile u(~9)  for E = 0 and E 1. 



As BIBx = 0 for all variablcs, the nondimensional equations are 

av 
aY 
- = 0 (continuity), (10.69) 

du 1 d'u 
v - = & & T  (x-momentum), 

dY 

subject to 

v(0) = v(1) = -us, 

u(0) = 0, 
u(1) = 1, 

(10.70) 

(10.71) 
(1 0.72) 
(10.73) 

where Re = U d l v ,  and vs = v : / U .  

thereforc must be 
The continuity equation shows that the lateral flow is independent of y and 

V ( Y )  = -Us7 

to satisfy the boundary conditions on t'. Thc x-momentum equation then becomes 

d2u du 
- + E - = = ,  
dy2 dy (1 0.74) 

where E = vsRe = v:d/v .  We assumc that the suction velocity is small, so that E << 1. 
The problem is to solve Eq. (10.74), subjcct lo Eqs. (10.72) and (1 0.73). An exact 
solution can casily be found for h is  problem, and will be presented at thc cnd of this 
section. However, an cxact solution may not exist in more complicated problems, and 
we shall illustrate the perturbation approach. Wc try a perturbation solution in integral 
powers of E ,  of the form, 

u ( y )  = uo(y)  + E U 1 ( 4 ' )  + E 2 u 2 ( y )  + 0 ( E 3 ) .  (1 0.75) 

(A powcr series in E may not always be possible, as remarked upon in the preceding 
section.) Our task is to determine uo(y), u I ( y ) ,  etc. 

Substituting Eq. (10.75) into Eqs. (10.74), (1O.72), and (10.73), we obtain 

subject to 

uo(o) + CUI (0) + E 2 u z ( o )  + oe3) = 0, (10.77) 
u o ( i ) + E U , ( i ) + E 2 u 2 ( i ) + ~ ( E 3 )  = 1. (10.78) 

Equations for the various orders are obtained by taking the limits of Eqs. (10.76)- 
(10.78) as E + 0, then dividing by E and Laking thc limit: E + 0 again, and so on. 



This is equivalent to equating terms with like powers of E.  Up to order E ,  this gives 
the following sets: 

Order E': 

uo(0) = 0, U ( ) ( l )  = 1. 
Order E ' :  

d2u, duo - - -- - 
dY2 dy ' 

The solution of thc zero-order problem (1 0.79) is 
u,(O) = 0, Ul(1) = 0. 

( 10.79) 

(1 0.80) 

uo = y. (10.81) 

Substituting this into the first-order problem (10.80), we obtain the solution 
Y 
2 

u1 = -(I -y). 

The complete solution up to order E is then 
E 

U(Y) = Y + $Y(l - Y)l + O(E9. (10.82) 

In this expansion the second term is less than the first term for all values of y as E + 0. 
The expansion is therefore uniformly valid for all y and the perturbation problem is 
regular. A sketch of the velocity profile ( 1 0.82) is shown in Figure 10.3 1. 

Tt is of interest to comparc the perturbation solution (1 0.82) with the exact solu- 
tion. The exact solution of (10.74), subject to Eqs. (10.72) and (10.73), is easily 
found to be 

(1 0.83) 

For E << 1, Equation (10.83) can be expanded in a power series of E ,  where the first 
few terms are identical to those in Eq. (10.82). 

16. An b m p l e  of a iSineplar Ycrlur-halion Pmbkem 
Consider again the problem of uniform suction across a plane Couette flow, discussed 
in the preceding section. For the case of weak suction, namely E = o:d/v << 1, we 
saw that the perturbation problem is regular and the series i s  uniFormly valid for all 
values of y.  A more interesting case is that of strong suction, dcfined as E >> I, for 
which we shall now see that thc perturbation expansion breaks down near one of h c  
walls. As before, the u-field is uniform everywhere: 

u(y) = -us. 

The governing equation is ( 1  0.74), which we shall now write as 
d2u du 

8-+--0, 
dY2 dY 

(10.84) 



subject to 

u(0) = 0, 
u(1)  = 1, 

(1  0.85) 
(1 0.86) 

where we have defined 

as thc small parameter. We try an expansion in powers of 8: 

U ( Y )  = uo(4’) + SUl(Y) + 8”2(y) + O(8”. (10.87) 

Subslitution into Eq. (10.84) leads to 

(1 0.88) duo - =o. 
dY 

The solution of this equation is uo = const., which cannot satisfj conditions at both 
J = 0 and y = 1. This is expected, because as 8 + 0 the highest order derivutive 
drops out of the governing equation (10.84), and the approximate solution cannot 
satisfy all thc boundary conditions. This happens no matter how many tcrms are 
included in the perturbation serics. A boundary layer is therefore expected near one 
of thc walls, where the solution varies so rapidly that the two krms in Eq. (10.84) arc 
of the samc order. 

The expansion ( 10.87), valid outside the boundary layers, is the “outer” expan- 
sion, thc first term of which is governed by Eq. (10.88). If the outcr expansion satisfies 
the boundary condition (1 OM), then the first tcrm in the expansion is uo = 0; if on 
the other hand the outer expansion satisfies the condition (10.86), then uo = 1. The 
outcr expansion should be smoothly matched to an “inner” expansion valid within the 
boundary layer. Thc two possibilities are sketched in Figure 10.32, where it is evident 
that a boundary layer occurs at the top plate if uu = 0, and it occurs at the bottom 
plate if uo = 1. Physical reasons suggest that a strong suction would tend to keep 
the profile of Lhe longitudinal velocity uniform near the wall through which the fluid 
enters, so that a boundary layer ai the lower wall seems more reasonable. Moreover, 
the E >> 1 case is then a continuation ofthe E << 1 behavior (Figure 10.31). We shall 
therefore proceed with this assumption and vcrify later in the scction that it is not 
mathematically possible to have a boundary layer at p = I .  

The location of the boundary layer is determined by the sign of the ratio of the 
dominant terms in the boundary layer. This is the case because the boundary layer 
must always decay into the domain and the &cay is generally exponential. The inward 
decay is required so as to match with the outer region solution. Thus a ratio of signs 
that is positive (when both terms are on the same side of the equation) requires the 
boundary layer to be at the left or bottom, that is, the boundary with the smaller 
coordinate. 

The first task is to determine the natural distance within the boundary laycr, where 
both terms in Eq. (10.84) must be of the same order. Tf y is a Lypical distance within 
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the boundary layer, this requires that 6/y2 = O( l/y), that is 

showing that the natural scale for measuring distances within the boundary layer is 6. 
We thcrcfore define a boundary layer coordinate 

which transrorms the governing equation (10.84) to 

du d2u 
dq  dq2' 

-- - (1 0.89) 

As in the Blaqius solution, q = 0(1) within the boundary layer and q + 00 far 
outside of it. 

The solution of Eq. (10.89) as q + 30 is to be matchcd to thc solution of 
Eq. (10.84) as y + 0. Anothcr way to solve thc problem is to write a cornpusire 
expansion consisting of both the outer and the inner solutions: 

whcre the term within { 
the boundary layer. All terms in the boundary layer comction { 
q + cc. Substitudng Eq. (10.90) into Eq. (10.84), we obtain 

} is regarded aq thc correction to the outer solution within 
) go to zero a3 

A systematic proccdure is to multiply Eq. (10.91) by powers of 6 and take limits as 
6 + 0, with first y held fixed and then q held fixed. When y is held fixed (which we 
write a,. y = O(1)) and 6 + 0, the boundary layer becomes progressively thinner 
and wc move outside and into thc outer region. When q is held fixed (Le, q = O(1)) 
and d + 0, we obtain the behavior within the boundary layer. 

Multiplying Eq. (10.91) by 6 and taking the limit as 6 + 0, with q = 0(1), 
wc obtain 

(10.92) 

which governs the first term of the boundary 
Eq. (10.91) as 6 + 0, with y = 0(1), gives 

duo - = 0, 
dY 

layer correction. Next, the limit of 

( I  0.93) 
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which governs the first term of thc outer solution. (Notc that in this limit r]  + 00, and 
consequently wc move outside the boundary layer where all correction terms go to 
zero, that is dri I /dr] + 0 and d'li I /dq2 + 0.) The next largest term in Eq. ( I  0.9 1 ) 
is obtained by considering the limit S + 0 with r]  = O( l), giving 

369 
- - 

dP1 d 2 i l  -+-=o, 
dr] dr1* 

and so on. It is clear thal our formal limiting procedurc is equivalent to setting the 
coefficients of like powers of S in Eq. (10.91) to zero, with the boundary layer terms 
treated separately. 

As the composite expansion holds everywhere, all boundary conditions can be 
applied on it. With the assumed solution of Eq. (10.90). the boundary condition 
equations (1 0.85) and (10.86) give 

u o ( ~ ) + ~ o ( 0 ) + s [ u l ( o ) + l i 1 ( 0 ) 1 + . . .  =o,  (10.94) 
(10.95) uo(l)+ 0 + S[Ul(1) + 01 + * - * = 1. 

Eyuating like powers of 6, we obtain thc following conditions 

uo(0) + fiO(0) = 0, U l ( 0 )  + il(0) = 0, (1 0.96) 
uo(1) = 1: u1(1) = 0. ( 1  0.97) 

We can now solvc Eq. (1 0.93) along with the first condition in Eq. (1 0.97), obtaining 

uo(p) = 1. ( 1  0.98) 

Next, we can solvc Eq. (1  0.92), along with the first condition in Eq. (1 0.96), namely 

PO(0) = -uo(O) = -1: 

and the condition Po(00) = 0. Thc solution is 

l io(r])  = -e-'i. 

To the lowest order, the composite expansion is, therefore, 

u(p) = 1 - e-q = 1 - e--P/'. (1 0.99) 

which we havc writtcn in tcrrns of both the inner variable r,~ and the outer vari- 
able y ,  because the composite expansion is valid cvcrywhere. The first term is the 
lowcsr-order outer solution, and the second term is the lowest-order correction in the 
boundary layer. 

Compurison with Exact Solution 
The exac~ solulioii of the problem is (see Eq. (10.83)): 

1 - e-Y/a 
W )  = 1 - - (10.100) 



We want to write the exact solution in powm of S and compare with ow perturbation 
solution. An important result to remember is that exp (-1 /a) decays faster than any 
power of 6 as S + 0, which follows from the fact that 

for any n, as can be verified by applying the l'H6pital rule n times. Thus, the denom- 
inator in Eq. (10.100) exponentially approaches 1, with no contribution in powers of 
S. It follom7s that the expansion of the exact solution in terms of a power series in 6 is 

( I  0.101) ~ ( y )  2: 1 - e+', 

which agrees with our composite expansion (10.99). Note that no terms in powers 
of 6 entcr in EQ. (10.101). Although in Eq. (10.99) we did not try to condnue our 
series to terms of order S and higher, the form of Eq. (10.101) shows that these extra 
terms would have turned out to be zero if we had calculated them. However, the 
nonexistence of terms proportional to S and higher is special to the current problem, 
and not a frequent event. 

Why There Cannot Be a Boundary Layer at y = 1 
So far we have assumed that the boundary layer could occur only at y = 0. Let us 
now investigate what would happen if we assumed that the boundary layer happened 
to be at y = 1. In this case we define a boundary layer coordinate 

(10.102) 1-Y 
<E- 

S '  

which increases into the fluid from the upper wall (Figure 10.32b). Then the 
lowest-order terms in the boundary conditions (10.96) and (10.97) are replaced by 

Figure 10.32 Couette flow with strong suction, showing two possible locations of thc boundary layer. 
Tbe one shown in (a) is the correct onc. 



whcrc Co(0) represents the value of io at the upper wall whcre < = 0. The first 
condition gives the lowest-order outer solution uo(y) = 0. To find the lowest-order 
boundary layer correction i t ) ( < ) ,  notc that the equation governing it (obtained by 
substituting Eq. (10.102) into Eq. (10.92)) is 

(1 0.103) 

subject to 

PO(0) = 1 - uo(1.) = 1: 
li()(N) = 0. 

A substitution of the form Co([) = exp(a<) into Eq. (10.103) shows that LI = + I ,  so 
that the solution to Eq. (10.103) is cxponentially increasing in < and cannot satisfy 
the condition at < = 00. 

3 7. llecqy of a Imninur Shear .Lu..-c!r 
Tt is shown in Chapter 12 (pp. 475476) that flows exhibiting an inflcction point in 
the streamwise velocity profilc arc highly unstable. Nevertheless, cxamination of the 
decay of a laminar shear layer illustrates some intercsting points. The problem of thc 
downstream smoothing of an initial velocity discontinuity has not been complclcly 
solved even now, although considerable literaturc might suggest otherwise. Thus it 
is appropriatc to close this chapter with a problem that remains to be put to rest. Sce 
Figure 10.33forageneral skctchoftheproblem.ThebasicparameterisRe, = U l x / u .  
In thcse terms the problem splits into dishct  rcgions as illustrated in Figure 10.9. 
This shown in the paper by Alston and Cohcn (1992), which also contains a bricf 
historical summary. In thc region for which Re, is finite, the full NavierStokes 
equations arc requircd for a solution. As Re, becomes large, S << x ,  u << u and 
the Navier-Stokes equations asymptotically decay to thc boundary layer equations. 
The boundary layer equations require an initial condition, which is provided by the 
downstream limit of the solution in the finitc Reynolds number region. Here we 
see that, because they are of elliptic form, thc full NavierStokes equations require 
downstream boundary conditions on u and u (which would have to be providcd 
by an asymptotic matching). Paradoxically it secms, thc downstream limit of the 
Navier-Stokes equations, represented by the boundary layer equations, cannot accept 
a downstream boundary condition because they are of parabolic form. The boundary 
layer equations govern the downstream evolution from a spccified initial station of 
the streamwise velocity profile. In this problem there must be a matching bctwecn 
thc downstream limit of the initial finite Reynolds number region and the initial 
condition for the boundary layer equations. Although thc boundary laycr cquations 
are a subset of the full Navier-Stokes equations and are generally appreciated to be the 
resolution of d’ Alembert’s paradox via a singular perturbation in the normal (say y-)  
direction, they are also a singular perturbation in the strcamwisc (say x-) direction. 
That is, the highest x derivative is dropped in the boundary layer approximation and 
the boundary conditon that must be dropped is the one downstream. This becomes an 



issue in numcrical solutions of the full NavierStokes equations. It arises downstream 
in this problem as well. 

If in Figure 10.33 the pressure in the top and bottom flow is the same, the boundary 
layer formulation valid for x > X O ,  Re,, >> 1 is 

a u  av a u  a u  a h  -+ -=o ,  u-+v-=u-, 
ax ay ax a y  ay2 

y + + x . :  U + U I ,  y+-mo: u + U 2 ,  

x = XO: U (XO, y) specified (initial condition). One boundary conditon on IJ is required. 
We can look for a solution sufficiently far downstream that the initial condition 

has been forgotten so that the similarity form has been achieved. Then, 

Tn these terms U / U I  = f’(r]) and 

f”’+i ff” = 0, f’(oo) = 1, f ’ ( -x)  = u2/u,. 
Of course a third boundary condition is required for a unique solution. This represents 
the need to specify one boundary condition on v .  Let us see how far we can go towards 
a solution and what the missing boundary condition actually pins down. Consider the 
trijnsfomation f ’ ( q )  = F (  f )  = u/ UI . Thcn 

and 



Figurc 10.34 Solution for F(f) from Eq. (10.104) sub,ject to boundary conditions (10.105) when 
?/?/L'; = 0.9. The wtllybul approximalion is the asymptotic solution for (111 - U z ) / U l  << I:  
F = I - r(u, - u2j/(2u:)~ t r fc  ( f / 2 ) .  

The Blasius equation transforms to 

(10.104) 

F ( f  =.x) = 1, F ( f  = -3G) = u2/u1. (10.105) 

This has a unique solution for the streamwise velocity u / U [  = F in terms of the 
similarity streamfunction .f (q)  with the expected propcrtics, which are shown in 
Figure 10.34. We can see from the (Blasius) cquation in q-space that the maximum 
oi the shear stress occurs whcrc .f = 0. This is thc inflection point in the velocity 
profile in q or y .  However, the inflection point in the F (  f )  curvc is located where 
f = -2 dF/d.f  < 0. This is below the dividing streamline f = 0. To put this back 
in physical space ( x ,  p), the transrormation must bc inverted, J dq = J d f / F (  f). 

The integral on the right-hand side can be calculated exactly but the correspon- 
dence between any integration limit on the right-hand side and that on the left-hand 
sidc is ambiguous. This solution admits a translation of q by any constant. The ambi- 
guity in the location in y (or q )  of the calculated profile was known to Prandtl. In the 
litcraturc, fivc difierent third boundary conditions havc been used. They are as follows: 

(a) J'(q = 0) = 0 (v  = 0 on y or q = 0); 
(b) Jf (q  = 0) = (1 + Uz/U1)/2 (average velocity on the axis); 
(c) q f f  - f' + 0 as q + cx: (u  + 0 as q + cc); 
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(d) qf'- f + Oas q + --o (v  + Oas q + -30); and 
(e) uu], + uv1-, = 0 or f'(qf' - f)lm + f'(qf' - f)]-= = 0 (von Karman; 

zero net transverse force). 

Alston and Cohen (1992) consider the limit of small velocity difference (U2 - U, ) /  
UI << 1 and show that none of these third boundary conditions are corrcct. As the 
velocity difference increases we can expect thc error in using any of thesc incorrect 
boundary conditions to increase. Of all of thcm, the last was the closest LO thc correct 
result. When UI > UZ, the dividing streamline II. = 0, which starts at Lhc origin, bends 
slowly downwards and its path can bc tracked only by starting the solution at the origin 
and following the evolution of the equations downstream. Thus, no simplc statement 
of a third boundary condition is possible to complete the similarity formulation. 

h ? r C i # C ! #  

1. Solve the Blasius sets (10.33) and (10.34) with a computer, using the 
Runge-Kutta scheme of numerical integration. 

2. A flat platc 4 m wide and 1 m long (in the direction of flow) is immerscd in 
kcroscnc at 20'C (u  = 2.29 x 10-6m2/s, p = 800 kg/m3) flowing with an undis- 
turbed velocity of 0.5 d s .  Verify that the Reynolds number is less than critical every- 
where, so that the flow is laminar. Show that the thichess of the boundary layer and 
the shcar strcss at thc center of the plate are 6 = 0.74cm and to = 0.2N/m2, and 
those at thc trailing edge are 6 = 1.05 cm and to = 0.14N/m2. Show also that the 
total frictional drag on one side of the plate is 1.14N. Assume that the similarity 
solution holds for the entirc plate. 

3. Airat20"CandIOOkF%(p = 1.167kg/m3,u = 1.5 x 1.0-5m2/s)flowsover 
a thin plate with a €ee-strcam velocity of 6 m/s. At a point 15 cm from the leading 
edge, determine the value of y at which u / U  = 0.456. Also calculate v and au/i3y 
at this point. [Answer: y = 0.857 mm, v = 0.39 cm/s, au/ay = 3020 s-' . You may 
not be able to get this much accuracy, because your answer will probably use certain 
figures in the chapter.] 

4. Assume that the velocity in the laminar boundary layer on a flat plate ha,, the 
profile 

. ny 
U 2s 
_ -  - sin -. 

Using the von Kannan momentum integral equation, show that 
s 4.795 0.655 

Notice that these arc very similar to the Blasius solution. 
5. Water flows over a flat plate 30 m long and 17 m wide with a free-stream veloc- 

ity of 1 m/s. Verify that the Reynolds number at the end of the plate is larger than the 
critical value for transition to turbulence. Using the drag coefficient in Figure 10.10, 
estimate the drag on the plate. 

6. Find the diameler of a parachute required to provide a fall velocity no larger 
than that caused by jumping h m  a 2.5 m height, if the total load is 8Okg. Assume 

- Cf = - 
x a%' &' 



that the propertics of air arc p = 1.167 kg/m3, u = 1.5 x 
parachute as a hemispherical shcll with CD = 2.3. [Answer: 3.9 m] 

m2/s, and mat thc 

7. Consider the roots oi thc algebraic equation 

x2 - (3 + 2 E ) X  + 2 + E = 0, 

for 6 << 1. By a perturbation expansion, show that thc roots are 

x = (  1 - & + 3 & 2 + - * * ,  
2 + 3 & - 3 & 2 + - . .  . 

(From Nayfch, 198 1, p. 28 and reprinted by permission of John Wiley & Sons, lnc.) 

8. Consider the solution of the equation 

&- d2y - (2x + 1)- dY + 2 y = o ,  E << 1, 
dx2 dx 

with the boundary conditions 

y ( 0 )  = Q, y(l) = B. 
Convincc yourself that a boundary layer at the left end does not gcnerate “matchable” 
expansions, and that a boundary layer at x = 1 is necessary. Show that the composite 
expansion is 

y = Q(2X + I )  + (B - 3Q)f?(’-x)’X + . . . . 
For the two valucs E = 0.1 and 0.01, sketch the solution if a = 1 and B = 0. (From 
Nayfeh, 1981, p. 284 and reprinted by permission of John Wiley & Sons, Tnc.) 

9. Consider incompressible, slightly viscous flow over a scmi-infinite flat plate 
with constant suction. Thc suction velocity u ( x ,  y = 0)  = vo e 0 is ordered by 
O(Rc-’/’) < uo/V < 0(1) where Re = U x / u  4 30. The flow upstream is parallel 
to the plate with speed U. Solve for u1 u in the boundary layer. 

10. Mississippi River boatmen know that when rounding a bend in the river, 
they must stay close to the outer bank or else they will run aground. Explain in fluid 
mechanical terms the reason For the cross-sectional shape of the rivcr at the bend: 

A-A 



1 1. Solve to leading order in E in the limit E + 0 

d 2 f  d f  
E[x-’ +cos (1nx)l- + cosx- + sinxf = 0, dx2 dx 

1 < x < 2, f (1) = 0, f (2) = cos2. 

12. A laminar shear layer develops immediately downstrcam of a velocity dis- 
continuity. Imagine parallel flow upstream of the origin with a velocity discontinuity 
at x = 0 so that u = U1 for y > 0 and u = U2 for y < 0. The density may be 
assumcd constant and the appropriate Reynolds number is sufficiently large that the 
shear layer is thin (in comparison to distance from the origin). Assume the static 
pressures are the same in both halves of the flow at x = 0. Describe any ambiguities 
or nonuniquenesses in a similarity formulation and how they may be resolved. In the 
special cslse of small velocity difference, solve explicitly to first order in the smallness 
parameter (velocity difference normalized by average velocity, say) and show where 
the nonuniqueness enters. 

13. Solve Eq. (10.104) subjcct to Eq. (10.105) asymptotically for small velocity 
difference and obtain the result in the caption to Figure 10.34. 
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Computational fluid dynamics (CFD) is a science that with thc help of digital com- 
puters produces quantitative predictions of fluid-flow phenomena bascd on those 
conservation laws (conservation of mass, momentum, and energy) governing fluid 
motion. These predictions normally occur under those conditions defined in terms 
of flow geometry, thc physical properties of a fluid, and the boundary and initial 
conditions of a flow field. The prediction generally conccms sets of vducs of the 
flow variables, for example, velocity, pressurc, or temperaturc at selected locations 
in the domain and for selected times. It may also evaluate the overall behavior of 
the flow, such as the flow rate or the hydrodynamic force acting on an object in 
the flow. 

378 



During the past four decades direrent types of numerical methods have been 
developed Lo simulatc fluid flows involving a widc range of applications. These 
methods include finite diffcrence, finite elemenl, finitc volume, and spectral methods. 
Some of them will be discussed in this chapter. 

The CFD predictions are never completely exact. Becausc many sources o f c m ~ r  
arc involved in the predictions, onc has to be veiy careful in interpreting the results 
produced by CFD techniques. The most common sourccs of error are: 

Discretiwtiun error. This is intrinsic to all numerical methods. This error is 
incurred whenever a condnous system is approximated by a discrete one where 
a finite number of localions in space (grids) or instants of time may have been 
used to resolve the flow field. Different n~imerical schcmes may have diKercnt 
orders or inagnitudc of the discretization error. Evcn with the same method, 
the discretization error will be different depcnding upon the distribulion of the 
grids uscd in a simulation. hi most applications. one needs to propcrly select a 
numerical method and choose a grid to control this error lo an acceptable level. 
lnput chtu ermr. This is due to the fact that both flow geomctry and fluid 
properties may be kuown only in an approxiinated way. 
lriittrrl and boundary condition ei-rui-. It is common that the initial and bound- 
ary conditions of a flow field may represent thc rcal situation too crudely. For 
example, flow information is needed at locations whcrc fluid enters and leaves 
the flow geometiy. Flow properties generally an: not known exactly and are 
thus only approximate. 
Mudelinng errar. More coniplicatcd flows may involve physical phenomcna that 
are not perfectly described by currcnt scientific theories. Models uscd to solve 
these problems cerlainly contain eimm, for example, turbulcncc modeling. 
atmospheric modeling, problems in multiphase flows, elc. 

As a rcsearch and design tool, CFD normally complements experimcntal and 
theoretical fluid dynamics. Howcvcr, CFD has a number of distinct advantages: 

It can be produced iiiexpensively and quickly. While the price of most items 
is increasing, computing costs are falling. According to Moore's law ba,ed on 
thc uhscrvation of the data for the last 40 years, CPU power will double cvcry 
18 months into the foreseeable €urnre. 
I t  gcncratcs coinplctc informatioii4FD produces detailed and cornprehen- 
sive information of all relevant variables throughout the domain of interest. 
This information can also be easily accessed. 
It allows easy change of the paranieters-0 permits input parameters to be 
varied easily over wide ranges, thereby facilitating design opthnizarion. 
Tt has the ability to simulate realistic conditions-CFD can simulate flows 
directly under practical conditions, unlike experiments, where a small-scale 
or a large-scale model may be needed. 
It has the ability to simulate ideal conditions--C.FD provides the convenience 
of switching off certain terms in the governing cquations, which allows onc 



to focus attention on a few essential parameters and eliminalc all irrelevant 
featurcs . 

0 It permits exploration or unnatural e v e n t P F D  allows events to be studied 
that every atleinpt is madc to prcvent, for example, conflagrations, explosions, 
or nuclcar power plant failures. 

2. IfTriitk IXfim?rtCt! ihthtJd 
The key to various nuinerical methods is to convert the partial diffcrent equations 
that govern a physical phenomenon into a system of algebraic cquations. Different 
techniques are available for this conversion. The finite difference method is onc of 
the most commonly used. 

Approximation to Derivatives 
Consider the one-dimensional transport cquation, 

(1 1.1) 

This is the classic convection-dilhsion problem for T ( x ,  t ) ,  where I I  is a convective 
velocity and D is a diffision cocfficient. For simplicity, let us assumc that u and D 
are two constants. This cquation is written in nondiinensional form. The boundary 
conditions for this problem arc 

aT 
J X  

T ( 0 .  t )  = g and -(I,, r )  = 4: (1 1.2) 

where g and q are the two constants. The initial condition is 

T ( x ,  0) = Ti(x) for 0 < x < L ,  (11.3) 

when. To(x) is a given function that satisfies the boundary conditions (1  1.2). 
Let us first discretize transport equation (1 1 .1 )  on a uniForm grid with a grid 

spacing Ax, as shown in Figure 11 .l. Equation ( 1  1 .1 )  is evaluated at spatial location 
x = .T; and time t = t,,. Dcfine T ( x ; ,  t,,) as die exact value of T ai location x' = xi 
and time r = t,,, and let bc its approximation. Using thc Taylor series cxpansion, 

ta+i . - 

t n  . 
t,- I - I - . 

- - . . 
- Ax Ax - - I 

-0 Xi-, Xi Xi+l xn= L 

- 
Figure 11.1 Unifonn grid in spdcc md time. 



we have 

where 0 (Ax') means terms of the order of Ax'. Therefore, the first spatial derivativc 
may be approximated as 

T;l - q!l + O(As) (forward difference) [E]:= Ax 
ly - T:l + O(A.r) (backward difference) - - 

AX 
- q.1,. 

- - + O ( A X ~ )  (central difference), (11.6) 2Ax 

and the second-order dcrivative may be approximated as 

- 2111' + T!:, + O(As2). 
AX2 

(1 1.7) 

The orders of accuracy of the approximalions (truncation errors) are also indicated 
in the expressions of Eqs. ( 1  1.6) and (1 1.7). Mom accurate approximations generally 
rcquire more values of thc variable on the neighboring grid points. Similar cxpressions 
can be derived for nonuniform grids. 

In the same fashion, thc time derivative can be discrctized as 

(11.8) 

where At  = tfl+l - rl, = tfl - i,, 1 is the constant timc step. 

Discretization and its Accuracy 
A discretization of the transport equation (1 1.1) is oblaincd by evaluating the equation 
at fixed spalid and tcmpod grid points and using the approximations for thc individ- 
iial derivative terms listed in the prcccding. When the first expression in Eq. (1 1.8) 



is used, together with Eq. (1  1.7) and the central difference in Eq. ( I  I .6), Eq. (1 1 . I )  
may be discretized by 

q"+l - y + * q;] - y-l - Til - 2 y  + TL1 + 0 (At, Ax'), (1 1.9) - 
At 2Ax Ax2 

or 

whcrc 
At At 

2Ax ' Ax2. 
a = U -  B = D -  (1.1.11) 

Once the values of are known, starting with the initial condition ( 1  1.3), the expres- 
sion (1 1.10) simply updatcs thc variablc for thc ncxt timc stcp r = ?,,-I. This scheme 
is h o w  as an explicit algorithm. The discretization (1 1.10) is fist-order accurate in 
lime and second-order accurate in space. 

As another example, when the backward difference expression in (1 1.8) is used, 
we will have 

or 

q1 +cx(q;l - TY1) - /3(q;l - 227 + T Y ] )  2 Ti"-'. ( 1  1-13) 

At each time step r = tn, here a syskm or algebraic cquations needs to be solved to 
advancc thc solution. This schcmc is known as an implicit algorithm. Obviously, for 
the same accuracy, the explicit schemc ( I 1.10) is much simpler than the implicit one 
(1 1.13). Howcvcr, thc cxplicit schcmc has limitations. 

Convergence, Consistency, and Stability 
The result €om h e  solution of the cxplicit scheme (11.10) or the implicit scheme 
(I  1.13) represents an approxiinale numerical solution to the original partial differen- 
tial equation ( 1 1.1). One certainly hopes that h c  approximate solution will be close 
to thc cxact one. Thus we introduce the concepts or camreigence, cunsisteizcy, and 
stability of the numerical solution. 

The approximate solution is said to hc conveqpt if it approaches the exact 
solution, as the grid spacings Ax and At tcnd to zero. We may d e h e  the solution 
error ;is the difference between thc approximate solutioii and the exact solution, 

e: = T/' - T ( x i ,  r,,). ( 1 1.14) 

Thus the approximate solution convcrgcs when cy 4 0 as Ax. At + 0. For a 
convergent solution, some mcasurc of the solution error can be estimated as 

11ey11 < KAxaAth, (11.15) 
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where the meaSure may bc the root mean square (m) of thc solution error on all the 
=gid points; K is a constaiit independent of the grid spacing Ax and the tiine step 
At: the indices u and h rcpresent the convergence rates at which the sollition error 
approaches zero. 

One may reverse the discretization process and examhe the h i t  of thc dis- 
cretizcd equations (11.10) and (1 1.131, as the grid spacing tends to zero. The dis- 
crctized equation is said to be consi.rrenf if it recovers the original partial differential 
equation (1 1.1) in thc limit of zero grid spacing. 

Lct us consider the explicit scheme (1 1. IO). Substitution of the Taylor scries 
expansions (1 1.4) and ( 1 1.5) into scheme ( 1 1. IO) produces 

(1 1.16) 

where 

is the truncation crror. Obviously, as thc grid spacing Ax, At + 0, this truncation 
error is of the order of O(Ar, Ax') and tends to zero. Therefore, explicit schcme 
(1 1. IO) or cxpression (1 1.16) recovers the original partial diffcrential equation (1 1.1 j 
or it is consistent. It is said to be first-order accurate in time and second-order accuratc 
in space, according to the order of magnitude of the truncation error. 

In addition to the truncation error introduced in thc discretization proccss, other 
soiirces of error may be prcscnt in the approximate solution. Spontaneous disturbances 
(such as the round-off error) may be introduced during either the evaluation or the 
tiurnerical solution process. A numerical approximation is said to be sruble il lhcsc 
disturbances decay and do not affcct the solution. 

The stability of explicit schernc ( 1 1.10) may be examincd using the voiiNeumann 
rncthod. Let us consider the error at a grid point 

e? = T!' - p .  (11.18) 

where T/' is the exact solution of the discretized system (1 1.10) and is the approxi- 
mate numerical solution of the seam systcrn. This error could be introduccd due to the 
round-off crror at each step of the computation. We need to monitor its decay/growth 
with tinic. Tt can be shown that the evolution of this crror satisfies the same homoge- 
neous algcbraic systcrn ( I  I .  IO) or 

( I  1.19) / l f l  - 5;. - (Q + m;!. ] + ( 1  - 2 m ;  + ( B  - ax:+,. 

The error djslributed along the grid lhc  can always be decomposed in Fourier space as 

( 1 1.20) 



where i = a, k is the wavenumbcr in Fouricr spacc and g" rcpmscnts the fiinction 
(o at time t = tlr . As the system is lincar, we can examinc onc cornponcnt of Eq. (1 1.20) 
at a time, 

6: = gn (k)e'"k"i. (11.21) 

The component at the next time level has a similar form 
$;+I = gn+l (k),&"kxi (1 1.22) 

Substituting thc prcccding two equations (1 1.21 ) and (1 1.22) into mor equation 
(1 1.19), we obtain 

] (11.23) a+l i d x ;  - R ~ ~ [ ( a  + p)eidq I + (1 - 2p)eizkxi + ( p  - a)eixk.ri+l g e  - 
or 

( 1  1.24) 

This ratio g"+'/g'' is called the amplification factor. The condition for stability is that 
the magnitude a1 the error should decay with time, or 

( 1  1.25) 

for a q 7  value of the wavenumber k. For h i s  explicit schcmc, the condition for stability 
equation (1  1.25) can be expressed as 

( 1.1.26) 

whcrc 8 = knAx.  The stability condition (11.26) also can be exprcsscd as 
(Noye, 1983), 

(1 1.27) 

For the pure difhsion problem (u = O), the stability condition ( 1  1.27) for this 

0 Q 4cu2 Q 28 < 1. 

explicit scheme requires hat 

1 1 Ax2 
2 O Q P Q -  or A t < - - .  2 0  

(1 1.28) 

which limits the she of the tiinc stcp. For the pure conveciion problcm (D = 0), 
condition (1  1.27) will never be satisfied, which indicates that the schcmc is always 
unstable and it incans that any error introduced during thc computation will explodc 
with tiinc. Thus, this explicit scheme is useless for pure convection problem. To 
improve thc stability of the explicit scheme lor the convection problem, one may use 
an upwind schcmc to approximate the convective term, 

qn+n+r = qJ - h(11" - q:,): (11.29) 

where the slability condition requires that 
At 
Ax 

It -  Q 1. (11.30) 



Condition (1 1.30) is known as the Courant-Friedrichs-kwy (CFL) condition. This 
condition indicates that a fluid particle should not travel more than one spatial grid in 
one time step. 

It can easily be shown that implicit scheme (1 1.13) is also consistent and 
unconditionally slablc. 

It is normally diflicult to show the convergence of an approximate solution the- 
oretically. However, the Lux Equivalence theorem (Richtmyer and Morton, 1967) 
states that: jhr un appmximntion to a well-posed linear initial vtrlue prwbleni, which 
.sn1isjies #he consistency condition, stability is a necessui y and sir@cieiit condition for 
the convergence of the solution. 

For convection-diffusion problems, the exact solution may change significantly 
in a narrow boundary layer. If the computational grid is not sufficiently fine to resolve 
the rapid variation of the solution in the boundary layer, the numerical solution may 
present unphysical oscillations adjacent to or in the boundary layer. To piwent thc 
oscillalory solution, a condition ou the cell Peclet number (or Reynolds number) is 
normally required (see Section 4), 

( 1  l.31 j 

3. kiinite Elernmt Method 
Thc finite eleinenl method was developed initially as an engineering procedure for 
stress and displacemcnt calculations in structural analysis. This method was subse- 
qucntly placed on a sound mathematical foundation with a variational inkrpretation 
or the potcntial energy of the system. For most fluid dynamics problems, finite cle- 
ment applications have used the Galerkin finite element formulation on which we will 
rocus in this section. 

Weak or Variational Form of Partial Differential Equations 
Le1 us consider again the one-dimcnsional transport problem ( I  1.1). The form of 
Eq. (1 1.1) with boundary condition (1 1.2) and initial conditions ( 1  1.3) is called the 
strong (or classical) foim of the problem. 

We first define a colleclion of trial solutions, which consists of all fuiictions 
that havc square-integrable h t  derivativcs ( H i  functions, Le., I;'.(T.x)2 dx < cc if 
T E H' ;I and satisfy the Dirichlet type of boundary condition (where the value or thc 
variable is specified) at x = 0. This is expressed as the trial functional space, 

9 = {TI T E H I .  T(O) = g}. (1 1.32) 

The variational space of the trial solution is dcfincd as 

which requires a corresponding homogeneous boundary condition. 



We next multiply the transport equation (1 1.1) by a function in the variational 
space (w E V), and integrate the product over the domain where the problem is 
defined, 

Integrating the right-hand side of Fiq. (1 1.34) by parts, we have 

(11.35) 

where theboundaryconditionsaT/ax(L) = q and w(0) = 0areapplied.Theintegd 
equation (1 1.35) is called the weak form of this problem. Therefore, the wcak form 
can be stated as: Find T E S such that for all u: E V, 

(11.36) 

It can be formally shown that the solution of the weak problem is identical to 
that of the slrong problem, or that thc strong and weak forms of the problem are 
equivalent. Obviously, if T is a solution of strong problem (1 1.1) and (1 1 .2), it must 
also be a solution of weak problem (1 1.36) using the procedure for derivation or 
the weak formulation. Howevcr, Ici us assume that T is a solution of weak problem 
(1 1.36). By reversing the order in deriving the weak formulation, we have 

aT a2r> [a,: ] I" ($ + 11% - D -  w d x  + D - ( L )  - q w(L) = 0. (11.37) 
ax2 

Satisfying Eq. (1 1.37) for all possible functions of w E V requires that 

i3T aT  a2T i)T 
at ax a.rz a s  - + u- - D -  = 0 for x E (0, L) and - (L)  - q = 0, (11.38) 

which means that solution T will also be a solution of the strong problem. It should 
be noted that the Dirichlet type of boundary condition (where the value ofthc variable 
is specified) is built into the trial functional space S, and is thus called an essential 
boundary condition. However, the Neuinann type of boundary condition (whcrc the 
dcrivative of the variable is imposed) is implicd by the weak formulation as indicdtcd 
in Eq. (1 1.38) and is referred to as a natural boundary condition. 

Galerkin's Approximation and Finite Element Interpolations 
As we have shown, the strong and wcak forms of the problem are equivalent and there 
is no approximdtioii involved between hesc two formulations. Finite elemnent methods 



start with the weak formulation of the problem. Le1 us construct finile-diincnsional 
approximations of S and V, which are denoted by Sh and V h ,  respectively. The super- 
script refers to a discretization with a characteristic grid size h .  The weak formulation 
(1 1.36) can bc rewritten using these new spaces as: Find T h  E S" such that for all 
X!h E v". 

= Dqwh(L).  (11.39) 

Normally, S" and V" will be subsets of S and VI respectively. This incans that if 
il function I$ E Sh then I$ E S, and if anothcr .function $ E V" then E V. 
'merefore. Eq. (1 1.39) dcfines an approximate solution T h  to the exact weak form of 
problem (1 1.36). 

It should be notcd that, up to the boundary condition T ( 0 )  = (o, the function 
spaces S" and V" arc composed of identical collections of functions. Wc may take 
out this boundary condition by defining a ncw function 

(11.40) v ~ ( x .  t )  = T (x, t )  - g h ( x ) .  

wherc (oh is a specific filnction that satisfics the boundary condition ~ " ( 0 )  = g. 
Thus, the functions 1:" and u!'' belong to the sane space V". Equation (1  1.39) can be 
rewritten in terms of the new runciion uk: Find T h  = vh + gh, whcrc E'' E V h ,  such 
that for all i i ih E V h ,  

h 

( 1  1.41) 

The operator ( I ( - ,  -) is dcfincd as 

The forniulation (1 I .4 I )  is callcd a Galerkin fonnulation. because the solution 
and the varialional functions arc in the same space. Again, the Galerkin ~orlnulation 
of the problem is an approximation to thc wcak formulation ( 1  1.36). Other classes 
of approximation metbods, called Petrov-Galerkin mcthods, are those in which the 
solution function may be contained in n collection of functions olhcr than V". 

Next we need 10 cxplicitly construct the finite-dimensional variational space 
V". Let us assume that the dimension or the space is it and that thc basis (sbape or 
iiiterpolation) functions for the space are 

N . ~ ( x ) .  A = 1.2. .... IZ. (11.13) 

Each shape function has to satisfy the boundary condition at x' = 0, 

Ni , (0 )=O.  A = 1 , 2  ..... n. (11.444) 



which is required by the space V h .  The form of the shape functions will be discussed 
later. Any function wh E V h  can be expressed as a linear combination of these sbape 
€mc tions, 

(1 1.45) 

where the coefficients c-4 are independent of x and uniqucly dcfinc this function. We 
may introducc onc additional function No to specify the function gh in Eq. (11.40) 
related to the essential bouiihy condition. This shape function has tbe property 

A=l  

No(0) = 1. (11.46) 

Thcrcfore, the function gh can be expressed as 

gh(X)  = giVo(-~)  and g’(0) = g. (1 1.47) 

With these definitions, the approximate solution can be written as 
n 

vh(x ,  t )  = E ~ A ( ~ ) N A ( X )  (11.48) 
A=l 

and 

where dn’s are functions of timc only for time-dependcnt problems. 

Matrix Equations and a Comparison with the Finite Difference Method 
With the construction of the finite-dimcnsional space V h ,  thc Galcrkin formulation of 
problem (I 1.41) leads to a coupled system of ordinary differential equations. Substi- 
tution of the expressions for the variational function (1 1.45) and for the approximate 
solution ( 1  1.48) into the Galerkiii formulation (1 1.41) yields 

where d~ = (d/dt)(dB). Rearranging the terms, Eq. (11.50) rcduces to 

&GA = 0, 
A=l 

wheiv 

(1 1.50) 

(1 1.5 1) 

(11.52) 
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A s  the Gderkin Ionnulation ( 1 1.4 1 ) should hold [or all possible functions o1wh E VI', 
thc cocficients ci1s should be mbiti-ary. The necesscy ixquircmcnt for Eq. (11.51) to 
hold is h a t  cach GA must be zero. that is, 

= DqNA(L)  - &NA. No)? (11.53) 

for A = 1 .2 ,  . . . . / I .  System olequations (1 1.53) constinites a systcm of n first-order 
ordinary differential equations (ODES) for the & s. This can bc put into a more concisc 
matrix form. Let us define 

where 

M . ~ B  = (N., N B )  d ~ .  (1  1.55) 

K A B  = 11 (NH..rNA)dX + ~h'B..rN,\..r)d-r* (11.56) 

I' 
I' I" 

F,: = DqN.4(L) - R U  (No,,N,:\)d.r - g D  ( N o . r N d l . x ) d ~ ~ .  (11.57) 6' I' 
Equation ( I  I .53) can thcn bc written as 

Md + Kd = F. (11.58j 

The system of cquations ( 1 1.58) is also termed the matrix form of thc problem. 
Usually. M is called thc mass matrix, K is the stiffness matrix, F is the force vector, 
and d is the disp1,laccmcnl vector. This system of ODES cean be integrated by numerical 
methods, for cxamplc, Rungc-Kutta methods, or discretized (in time) by fiilik dilrcr- 
cncc schemes as dcscrihcd in  thc previous section. The initial condition (1 1.3j will 
be used Tor inlegration. An alternalivc approach is to usc a finitc difFerence approxi- 
ination 10 the time derivative term in thc transport cquation ( 1  1.1 ) at thc bcginniiig of 
the process, for example, by replacing i;)T/i;)r with (T""" - T " ) / A t ,  and thcn using 
the finitc clcincnt nicthod to discretize the resulting equation. 

Now Icl us considcr rhc actual consmiction of the shape functions for the 
finite-dii;icnsioii~ial variational space. The simplest example is to use piecewise-linear 
finite eleincnt space. We first partition the domain [O. L ]  into IZ  nonoverlapping subin- 
tcrvais (clcincnts). A typical one is dcnotcd as [XA, XA+I]. The shape functions asso- 
ciaied with h e  interior nodes,A = I ,  2, . . . , rr - 1. are defined as 

( I 1.59) 

10 elsewhere. 



Figure 11.2 Piecewise-linear Iiiutc clcmcnt spacc. 

Further, for the boundary nodcs, thc shape functioiis are defined as 

(11.60) 

and 

These shape functions are graphically plotted in Figure 1 1.2. It should be noted that 
these shape functions have veq7 compact (local) support and satisfy NA(.TB) = JAB. 
where SAR is thc Kronecker delta (i.c., SAB = 1 if A = B, whereas 6.4s = 0 if 

With construction of the shape functions, the coefficients, 44s,  in the exprcs- 
sion for the approximate solution (11.49) represent the values of Th at the nodcs 
x = .TA (A = 1,2, . . . i t )  or 

d , ~  = T h ( l ~ )  = TA. 

A # B).  

(1 1.62) 

In ordcr to comparc thc discretized equations generated from thc finite element 
rnelhod with those from finite difference methods, we substitute Eq. (11.59) into 
Eq. (1 1 S3) and cvaluate the integrals. For an interior node x.4 (A = 1.2, . . . . 11 - 1 ), 
we have 

D 
122 

- -(TA - 1  - ~ T A  + TA+~) = 0, (1 1.63) 

where h is the uniform mesh six. The convective and diffusive terms in expression 
(1 1.63) have the same forms as thosc discretized using thc standard second-order finite 
Werence method (cciitral difference) in Eq. (1 1.1 2). However, in the finite elcnient 
scheme the time derivative term is presented with a the-point spatial average of the 
variable T, which diiffers froin the finite differencc method. In gencral, the Galerkin 
finite clcinent formulalion is equivalent to a finite difference melhod. The advantage 
of the finitc element method lies in its flexibility to handle complex gcometries. 

Element Point of View of the Finite Element Method 
So far, we havc been using a global vicw of the finite elemcnt method. The shape func- 
tions are dehedon thc global domain, as shown inFig1u-e 1 1.2. However, it is also con- 
venicnt to present thc finite element method using a local (or clcment) point of vicw. 
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c lmnr c sianJani clcmcnt in p a n t  domain 

Figurc 11.3 Global and local descriptions of an element. 

This viewpoint is useful for the evaluation of the integrals in Eqs.  (1 1.55)-( 1 1.57) 
and the actual computer irnplcmentation of the finite element method. 

Figure 11.3 depicts the global and local descriptions of thc eth element. The 
global description of the element e is just the "local" vicw of the full domain shown 
in Figure 11.2. Only two shape fiinctions are nonzero within this clcinent, NA-~ and 
,V.4. Using the local coordinate in the standard element (parent domain) as shown on 
the right-hand side of Figure 11.3, we can write the standard shape functions as 

Ni(t) = f(1- t )  and N2(t) = f(1 + 0- ( 1  1.64) 

Clearly, the standard shapc function N1 (or Nz) corresponds to the global shape 
function N , I - ~  (or NA). The mapping bctwccn thc domains of the global and local 
dcscriptions can casily bc gcnerated with tbe help of these shape functions, 

x ( t )  = Nl($)-r; +N2(t)x; = -xA-l)t +-r.4 +xA--I]- (1 1.65) 

with the uotation that x ;  = xd-1 and .rj = XA. One can also solve Eq. (1  1.65) for thc 
inverse map 

2x - x.4 -x&l 
= (1 1.66) 

Within thc clcmcnt e, the derivative of h e  shape functions can be evaluated using 

X'A - XA-1 

the mapping cquation (1 1.66), 

- 1  -- - (1 1 57) d N A  - dNAdE - 2 dN1 - - -- - 
d~ de dx .TA - x A - ~  dg X A  - X A - I  

and 

Thc global mass matrix (1 1.55). the global stiffness matrix ( 1  1.56), and thc global 
force vector ( 1  1.57) havc been defined as the integrals over the global domain [0, L] .  
These integrals may be written as the summation of intcgrals ovcr each element's 
domain. Thus 

JlCl  n.1 11,' 

M = EM', K = CK', F = CF'. (11.69) 

Mr = [Mis].  K' = [K.in].  P = (F'i}. ( 1  1.70) 
r-I c=l r=l 



(11.71) 

(1 1.72) 

Fi  = Dq&,,..,SAlt - gU ( N o . , N ~ ) d x  - g D  ( N o . . r N ~ : ~ ) d - r .  (11.73) 
Q" J J 

and ne = [xf . x;] = [ X A - I ,  XA] is the doinain of the eth element; and the first term 
on the right-hand side of Eq. (1 1.73) is nonzero only for e = iicl and A = n. 

Given the construction of the shape functions, most of the clement matrices and 
forcc vcctors in Eqs. (1 1.71 HI. 1.73) will bc zero. The nonzero ones require that 
A = e or e + 1 and B = e or e + 1. We may collect these nonzero terms and arrange 
them into the elcment mass matrix, stiffness matrix, and force vcctor as follows: 

m" = [ ~ ? l : ~ ] ,  kY = [ k 3 ,  f' = {.t:), u ,  h = 1,2, (1 1.74) 

( I  1.75) 

kzh = (Nb,xNu) d-r + D (Nb.xNa?x) d-r, (1 1.76) 
Q* J ne J 
gkz,  e = 1 

&; = 0 e = 2,3. ... ? n , ~  - 1 ( 1  1.77) I -DqSa2 c = ne]. 

Here, me, kC, and f' are defined with the local (element.) ordering, and represent the 
nonzero krms in the corresponding M', K', and F" with global ordering. The terms 
in local ordering nced to be mapped back into global ordcring. For this example, the 
mapping is defined as 

i f a = 2  
(1 1.78) 

for clement e. 
Therefore, in the element viewpoint., the global matrices and the global vector 

can be constructed by sumining the contributions of the element matrices and the 
element vector, respectively. The cvaluation of both thc element matrices and the 
clement vector can be performed on a standard clement using the mapping between 
Ihe global and local descriptions. 

The finite element methods for two- or thrce-dimensional problems will follow 
thc same baric steps introduced in this section. However, thc data structure and the 
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forms of the elerncnts or the shape functions will be inorc complicated. Refcr to 
Hughes (1 987) for a detailed discussioii. Tn Section 5 ,  we will present an cxample of 
a two-dimensional flow ovcr a circular cylinder. 

4. lricorrijmwsible Kscous Pliiid k7ow 
In this section, we will discuss numerical schemes for solving incompressible viscous 
fluid flows. We will Focus on techniques using thc primitive variables (velocity and 
pressurc). Other forniulations using streamfunction and vorticity are available in the 
literature (see Fletcher, 1988, vol. lI) and will not be discussed here bccause their 
extcnsions to thrce-dimensional flows are not straightforward. The schemes to be 
discussed normally apply to laminar flows. However, by incorporating additional 
appropriate turbulence models, these schcmcs will also be cffective for turbulent flows. 

For an incomprcssible Newtonian fluid, the fluid motion satisfics the 
NavierStokes equations 

(11.79) 

v.u=o, (1 1.80) 

wheir u is the velocity vector, g is the body force per unit inass, which could be thc 
gravitational accelcration, p is the pressure. and p :  p. are the density and viscosity 
of the fluid, respectively. With the proper scaling, Eq. (1 1.79) can be written in thc 
dimensionless fomi 

i3U 1 ,  - + (u . V)u = g - vp + -v-u. 
at Re 

(11.81) 

where Rc is the Reynolds number of thc flow. In some approaches, the convective 
term is rcwritteii in conservative form, 

(u. V)U = v - (uu), (1 1 .X2) 

becausc u i s  solenoidal. 
In order to guarantee that a flow problem is well-posed. appropriate initial and 

boundary coiiditions for thc problem must be specified. For limc-dependent flow 
problems, the initial condition for the velocity, 

u(x, t = 0) = uo(x), (1.1.83) 

is required. The initial velocity field has to satisfy the continuity equation V . uo 
= 0. At a solid surface, thc fluid velocity should equal the surface vclocity (no-slip 
condition). No boundary condition for the pressurc is required at a solid surface. IC 
the computational domain contains a section where thc fluid enters the domain, the 
fluid vdocity (and the pressurc) at this inflow boundary should be specified. If thc 
computational doinain contains a section where the fluid leaves the doinah (outflow 
section), appropriate outflow boundary conditions include zcro tangential velocity and 
zero normal stress, or zero velocity dcrivatives, as further discusscd in Gresho (1 99 I ). 



Because the conditions at the outflow boundary are artificial, it should be checked 
that the numerical results are not sensitive to the location of this boundary. In order 
to solve the NavierStokcs equations, it is also appropriate to specify the value or the 
pressure at one refcrcnce point in the domain, because the pressurc appcars only as a 
gradient and can be dctermined up to a constant. 

There are two major difficulties in solving the Navier-Stokes equations numer- 
ically. One is related lo the unphysical oscillatory solution often found in a 
convection-dominated problem. The other is the treatment of the continuity equation 
that is a constraint on the flow to determine the pressure. 

Convection-Dominated Problems 
As mentioned in Section 2, the exact solution may change significantly in a narrow 
boundary laycr for convection-dominated transport problems. If thc computational 
grid is not sufficiently fine to resolve the rapid variation of the solution in the boundary 
layer, the numerical solution may present unphysical oscillations adjacent to the 
boundary. Let us examine the steady transport problem in one dimension, 

( 1  1.84) 

with two boundary conditions 

T(0)  = O  and T ( L )  = 1. (11.85) 

Thc cxact solution for this problem is 

(11.86) 

where 

R = u L / D .  (11.87) 

is the global PeclCt number. For large values of R, solution ( 1  1.86) behaves as 

T = e - R ( l - x / L )  ( 1  1.88) 

The essential feature of this solution is the existence a€ a boundary layer at x = L, 
and its thickness S is of the order of -=*(A). S 

L 
( 1  1.89) 

At 1 - x / L  = 1/R, T is =37% of the boundary value while at 1 - x / L  = 2 / R ,  T 
is e13.576 of the boundary value. 

I F  central differences are used LO discrctizc the steady transport equation (1 1.84) 
using thc grid shown in Figure 1 1. l., the resulting T h i k  dnerence scheme is 



or 

where1hegridspacingA.r = L/nandtheccllPeclCtnumber RCen = uAx/D = R / n .  
From the scaling of the boundary thickness equation (ll.W), we know that it is of 
the order 

(11.92) 

Physically, if 1' represents h c  tcinperature in the transport problem (1 1.84), the con- 
vective term brings the hedl toward the boundary s = L while thc diffusive term 
conducu thc hcat away through the bounchy. Thesc two terms have to be balanced. 
The discrctized equation ( I 1.91 j has the same physical meaning. Let us examine this 
balance for a node next to thc boundary j = n - 1. When the cell PeclCt number 
Rccll > 2, according to Eq. ( I  1.92) the thickncss of the boundary layer is lcss than 
half thc grid spacing. and the exact solulion ( I 1.86) indicatcs that the kmpcratures 
Tj and Tj-l are already oulsidc the boundq7 laycr and are essentially zero. Thus, 
the two sides of the discrctizcd equation (1 1.91) cannot balance, or the conduction 
teriii is not strong enough to rcmove the heat convected to the boundary, assuming 
the solution is smooth. In order to force the heal balance, an unphysical oscillatory 
solulion with 1) < 0 is generated to enhance the conduction term in the discretized 
problem (1 1.91). To prcvent the oscillalory solution. the cell Pw16t number is nor- 
mally required lo bc lcss than two, which can be achieved by refining the grid to 
resolve the flow insidc the boundary layer. In some respect, an oscillatory solulion 
may be a virtue as it providcs a waning that aphysically important feature is not being 
propcrly irsolved. To reduce thc overall computational cost, nonuniform grids with 
local fine grid spacing inside the boundary layer will frequently be used to rcsolve 
the variablcs there. 

Another cominon method to avoid the oscillatory solution is to use a firsl-order 
upwind schcme, 

Rccll(Tj - Tj-1) = (Ti+, - 2Tj + Tj-I). ( 1  1.93) 

where n rorward difference scheme is uscd lo discretize the convectivc tenn. It is 
casy to see that this schernc rcduces the heat convecied to the boundary and thus 
prevents thc oscillatory solution. However, thc upwind scheme is not vcry accurate 
(only firsl-ordcr accurate). It can be easily shown that the upwind scheme (11.93) 
does not recover the original transport equation (1 1.84). Instead it is consistent with a 
slightly Merent transport equation (when the cell PeclCt numbcr is kept finite during 
the proccss), 

(1  1.94) 

Thus, another way to view the effect of the first-order upwind schcmc (11.93) is 
that it introduces a nuinerical diffusivity of the d u e  of OSR,llD, which enhances 
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the conduction of heat through the boundary. For an accuratc solution, onc nomally 
qu i r e s  that 0.5Rcd << 1, which is very restictive and does not o€€er any advantagc 
over the central difference scheme (1 1 9 1  ). 

Higher-order upwind schcmes may be introduced to obtain more accuralc 
nonoscillatory solutions without exccssivc grid refincment. Howcvcr, those schemes 
may be less robust. Refer to Fletcher (1988, vol. I, chapter 9) for discussions. 

Similsu-ly, thcrc are upwind schemes for finite clcmcnt incthods to solve 
convection-dominatcd problems. Most of those are based on the Petrov-Galcrkin 
approach and pcrmit an effective upwind treatment of the convective term along local 
streamlines (Brooks and Hughes, 1982). More recently, stabilized finite elcment meth- 
ods have been dcvcloped where a least-square term is added to the momentum balance 
equation to provide the necessary stability for convection-dominated flows (Frmctl 
et ul., 1992). 

Incompressibility Condition 
In solving the NavierStokcs cquations using the primitive variables (velocity and 
pressure), another numcricd difficulty lics in thc continuity equation: The continuity 
cquation can be regarded either as a conslraint on thc flow field to determine the pres- 
sure or the prcssure plays the role of the Lagrangc multiplier to satisfy the continuity 
equation. 

In a flow field, thc information (or disturbance) travels with both the flow and 
the speed of sound in the fluid. As thc spccd of sound is infinite in an iucompressible 
fluid, part of the information (pressure disturbance) is pmpagdted instantaneously 
throughout the domain. In many numerical schemes the pressure is often obtained 
by solving a Poisson equation. The Poisson equation may occur in cithcr continuous 
or discrete form. Some of these schemes will be described hcrc. In some of them, 
solving the pressure Poisson equation is the most costly step. 

Another common technique to surmount the diWcully of the incompressible 
limit is to introduce an artificial compressibility (Chorin, 1967). This formulation 
is normally used for steady problems with a pseudo-lransicnt foimulation. lu the 
formulation, the continuity equation is replaced by 

aP - + c*v . u = 0, 
at 

(11.95) 

where c is an arbilrary constant and could be the artificial speed of sound in a cor- 
responding compressible fluid with the equation or statc p = c2p. The formulation 
is called pseudo-transient because Eq. (11.95) does no1 have any physical mean- 
ing bcforc thc steady state is reached. However, when c is large, Eq. (11.95) can 
bc considered as an approximation to the unstcady solution of the incompressible 
NavierS tokes problem. 

MAC Scheme 
Most of numcrical schemes developed for compiitational fluid dynamics problcms can 
bc characterized as operator splitting algorithms. The operator splitting algorithms 
divide each time step into several substeps. Each substep solves one part of the operator 



and thus decouples thc numerical dirrculties associated with each part of the operator. 
For cxample? consider a system 

( 1  1.96) 

with initial condidon 4 (0) = 40, where the opcrdtor A inay be split into two operators 

A(#) = A I  (4) + Az(4). (11.97) 

Using a simple first-ordcr accurate Marchuk-Yanenko fractional-stcp scheme 
(Yanenko, 1971, Marchuk, 1975), the solulion of the system at cach time step 
#l-1 = @J( (n + I)At), (n = 0, 1 ~ . . . j is approximated by solving the following 
two succcssive problems: 

(1 1.98) 

(11.99) 

where 9' = &-), A f  = t + l  - t,,, and f;+l + f:" = f "+l  = f ( ( n  + 1)Ar). Thc 
time discretizations in Eqs. ( 1  1.98) and (1 1.99) are implicit. Some schemes to bc 
discussed in what follows actually use explicit discrelizations. However, the stability 
conditions for those explicit schcines must be satisfied. 

The MAC (marker-and-cell) method was first proposed by Harlow and Welsh 
(1 965) to solve flow problems with free suifaces. There are many variations of this 
method. It basically uses a finite difference discretization for the Navicr-Stokes equa- 
tions and splits the equations into two operators 

Each time step is divided into two subsleps as discussed in the Marchuk-Yanenko 
fractional-step scheme (1  1.98) and ( I  1.99). The first stcp solves a convection and 
diffusion problem, which is discretized cxplicitly 

(1  1.101) 

In thc sccond stcp. thc prcssure gradient operator is added (implicitly) and, at the 
same time, the incompressible condition is edorced 

( I  1.102) 

and 

v .  - - 0. ( 1 1.103) 

This step is also called a projection step to satisfy the incornprcssibility condition. 
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Figure 11.4 Staggered grid and a typical cell around ~ 2 . 2 .  

Normally, the MAC scheme is presented in discretized form. A preferred feature 
of the MAC method is the use of the staggered grid. An example of a staggered grid 
in two dimensions is shown in Figure 11.4. On this staggered grid, pressure variables 
are defined at the centers of the cells and velocity components are defined at the cell 
faces, as shown in Figure 11.4. 

Using the staggered grid, the two components of transport equation (1 1.101) can 
be written as 

where 

and 

are the functions interpolated at the grid locations for the x-component of the velocity 
at (i + $, j )  and for the y-component of the velocity at ( i ,  j + k), respectively, and 
at the previous time t = tn. The discretized form of Eq. (1 1.102) is 
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where Ax = s i + l  - xi and Ay = yj+l - yj are thc uniform grid spacing in the 
x- and y-dircctions, respectively. The discretized continuity equation (1 1.103) can be 
written as 

Substitution of the two velocity compnents from Eqs. (1 1.106) and ( I  1.107) into 
thc discretized continuily equation (1 1.108) generatcs a discrete Poisson equation for 
the pressiur 

The major advantage of the staggered grid is that it prevents the appearance 
of oscillatory solutions. On a normal grid, the prcssure gradient would havc to be 
approximated using two alternative grid points (not the adjacent ones) when a ccntrnl 
difference schcinc is used, that is 

. (11.110) Pi+I..i - P i - 1 . j  and (2) = Pi.j+-1 - 1li.j-1 

2A.u a~ i . j  2Ay 

Thus a wavy pressurn ficld (in a zigzag pattern) would be felt likc a uniform one 
by the momentum equation. However, on a staggered grid, the pressure grdicnt is 
approximated by the differcncc of the pressures between two adjacent grid points. 
Consequently, a pressure field with a zigzag pattern would no longer be re11 aq a 
uniform pressure field and could not arise tis a possible solution. It is also seen that 
the discretized continuity equation (1.l.lOSj contains the differences of the adjaccnt 
vclwity components, which would prevent a wavy velocity ficld fmm satisfying tlie 
continuity cquation. 

Another advantage of the staggered grid is its accuracy. For example, the trun- 
cation cmr for Eq. ( 1 1 . 1  OS) is O( Ax'. Ay2) even though only four grid points arc 
involved. The pressure gradient evaluatcd at thc ccll faccs 

- Pi+l..i - P i .  j - 
AX 

and 

(11.111) 

are all second-order accurate. 
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On the staggered grid, the MAC method does not require boundary conditions for 
the pressure equation (1 ]..log). Let us examine a pressure node next to the boundary, 
for example, pl.2 as shown in Figure 1 1 -4. When the n o d  velocity is specified at the 
boundary, u'$~ is known. In evaluating the discrete conthuity equation (1 1.108) at 
the pressure node (1,2), the velocity U Y ~ ! ~  should not be expressed in terms of u'$!r 
using Eq. (1 1.106). Therefore PO,? will not appear in Eq. ( 1 1.105), and 110 boundary 
condition lor the pressure is needed. It should also be noted that Eqs. (11.104) and 
(11.105) only update the velocity components for h e  intcrior grid points, and their 
values at the boundary grid points are not needed in the MAC schenic. Peyret and 
Tiiylor (1 983, chapter 6) also noticed that the numerical solution in the MAC mcthod 
is indcpendent: of the boundary values of u " + ' / ~  and u " + ~ / ~  and that a zero normal 
pressure gradient on the boundary would give satisfactory results. However, their 
explanation was more cumbersome. 

In summary, for each time step in the MAC scheme, the intermediate velocity 
components uli+l12,j and ui,i+l/2 in the interior of the domain are first evaluated using 
Eqs. (1 1.104) and (1 1.105), respectively. Next, the discrctc pressure Poisson equation 
(1 1.109) is solved. Finally, the velocity components at the new time step are obtaiued 
from Eqs. (11.106) and (11.107). In the MAC scheme, the most costly step is the 
solution of the Poisson equation for the pressurc (1 1.109). 

Chorin (1968) and Temam (1969) independently pmented a numerical schemc 
for the incompressible Navier-Stokes equations, tcrmed the projection method. Thc 
projcction method was initially proposed using h e  standard grid. However, when it is 
applied in an explicit fashion on the MAC-staggercd grid, it is identical to the MAC 
method as long as the boundary conditions are not considcrcd, as shown in Peyret 
and Taylor (1983, chapter 6). 

A physical interpretation of the MAC scheme or thc projection method is that 
the explicit update of the velocity field does not generate a divergence free velocity 
field in the k t  step. Thus, an irrotational correction field, in the form of a velocity 
potential which is proportional to the presswe, is added to the nondivergence-free 
velocily field in the second step in order to enforcc the incompressibility condition. 

As the MAC mehod uses an explicit schenic in the convection-difhsion step, 
the stability conditions for this method SUT (Peyret and Taylor, 1983, chapter 6), 

(1 1.1 12) 

rr+l/2 n + l / 2  

i ( u 3  + v2)At Re < 1 

and 
4At 

ReAx2 ' (1 1.1 13) 

when Ax = Ay. The stability conditions (1 1.1 12) and (1 1.113) are quite restrictive 
on thc sizc of the time step. Thcse restrictions can be removed by using implicit 
schemes for the convection-diffusion step. 

SIMPLE-Tjpe Formulations 
The semi-implicit method for pressure linked equations (SIMPLE) can be viewed as 
among those implicit schemes that avoid restrictive stability conditions. This melhod 
was first introduced by Pat& and Spalding (1972) and was dcsmibed in detail 
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by Patankar (1980). It uses a finite volume approach to discretize the Navier-Stokes 
equations. The finite volume discretization is derived from applying the conservation 
laws on individual cells defined on a staggered grid, such as the cells shown in 
Figure 11.5. Different (staggered) cells are defined around different variables. The 
fluxes at the cell faces are interpolated using the values at the neighboring grid points. 
Integrating over the corresponding control volumes (cells) on the staggered grid shown 
in Figure 11.5, the momentum equations in the x- and y-directions are written as 

respectively. The coefficients, a's, depend on the grid spacings, the time step, and the 
flow field at the current time step c = tn+l. Thus the equations are generally nonlinear 
and coupled. The summations denote the contributions from the four direct neighbor- 
ing nodes. The b terms represent the source terms in the momentum equations, and 
are also related to the flow field at the previous time step tn . Similarly, integrating over 
the main control volume shown in Figure 11.5% the continuity equation is discretized 
in the same form as Eq. (1 1.108), or 

Ay(uyz;p,  - 4'?&j) + A X ( $ ~ ~ l p  - $:11p) = 0. ( 1 1.1 16) 

There are a number of modified versions of the SIMPLE scheme, for example 
the SIMPLER (SIMPLE revised) by Patankar (1980) and the SIMPLEC (consistent 
SIMPLE) by Van Doormaal and Raithby (1984). They differ in the iterative steps 
with which Eqs. (1 1.1 14)-( 11.1 16) are solved. 

In the original SIMPLE, the iterative solution for each time step starts with an 
approximate pressure field p*.  Using this pressure, a "starred" velocity field u* is 
solved from 

a! r , i  .u t  r + l / 2 , j  + ~ u ~ b u ~ b  = b t j  + AY(P:+l,j - P : j ) ,  

UP Z J  .v* r, j+1/2 + X U i b v l b  = b,",j + Ax(p;j+l - P t j ) ,  

( 1 1.1 17) 

(1 1.1 18) 

which have the same forms as Eq. (1 1.1 14) and Eq. (1 1.115), respectively. This 
"starred" velocity field normally does not satisfy the continuity equation. Thus a 
correction to the pressure field is sought to modify the pressure 

p"+l = p* + pc, (11.119) 

I I 

I I I I I I 

Figure 11.5 Staggered grid and different control volumes: (a) around the pressure or the main variables; 
(b) around the x-component of velocity u; and (c) around the y-component of velocity u. 



,and at the same time provide a velocity correction uc such that the new velocity 

U"+l = u* + u', (1 1.120) 

satisfies the continuity equation (11.1 16). In SIMPLE, approximate fornx of thc 
discretized momentum equations (1 1.1 14) and (1 1.1 15) are used for the equations 
for the velocity correction uc 

(1 1.121) 

(1 1.122) 

In the approximation, the contributions from the neighboring nodes are neglected. 
Substitution of the new velocity (1 1.120) into the continuity equation (1 I .  116), with 
the velocity correctioiis given by the approximations ( 1 1.12 1 ) and (1 1.122), produccs 
an equation for the pressure correction 

a:jP;j + = - ~ ~ ( u ; + I / z . j  - uT-l/z.j) - A-r(v;j+i/* - ~ z j - 1 j 2 ) .  
(1 1.123) 

This prcssure correction equation can be viewed as a disguised discrete Poisson 
equation. 

In summary, the SIMPLE algorithm starts with an approximatc pressure field. Tt 
fist solves an intermediate velocity field u' from thc discretized momentum equations 
(1 1.1 17) and (1 1.1 1 8). Next, it solves a discrete Poisson equation (1 1.1 23) for the pres- 
sure correction. This pressure con-ection is then used to modify the prcssure using Eq. 
(11.119),andtoupdatcthevelocityatthenewcimcstepusin~Eqs. ( I  1.120)-(11.122). 

The solution to the pressure correction equation (1 1.123) was found to updatc 
the velocity field efEectively using Eqs. (11.121) and (1 1.122). However, it iisually 
overcorrects the pressure field, due to the approximations made inderiving the velocity 
corrections ( 1 1.1 2 1 ) and ( 1 1.122). Thus an under-relaxation parameter ap is necessary 
(Patankar, 1980, chapter 6) to obtain a convergent solution, 

pn+l  = p* + CYy . p". (1 1.124) 

This under-relaxalion parameter is usually very smal l  and may be determincd empiri- 
cally. The corrected pressure field is then lredtcd as a new "guesstimated" prcssui-e p' 
and the whole procedure is repcated until a convergcd solution is obtained. The STM- 
PLEC algorithm follows the samc steps as the SIMPLE one. Howevcr, it provides 
an expression for the under-relaxation parameter aP in Eq. (1.1.124). Thc SlMPLER 
algorithm solves the same pressure correction equation to update the vclocjty field aq 
SIMPLE does. However, it determines the new pressure field by solving an additional 
discrctc Poisson equation for pressure using the updated vclocity field (this will be 
discussed in more detail in thc next section). 

It is quite revcding to characterize the SIMPLE-type schcmes a, fractional-step 
schemcs described by Eqs. (11.98) and (1 1.99). For each time step, we recall that 



SIMPLE-type schemes involve two subsleps. The first is an implicit step for the 
nonlinear convection-difiision problem. 

The second step is Tor the pressurc and the incompressibility condition, 

and 

v . un+l = 0. 

In this iorinulalion the pressure is separated into Lhc form of 

p i i + l  - - pn + Spy"+l. 

(1 1.125) 

( 1 1.126) 

(1 1.127) 

( I .  I .  128j 

Equations (1 1.126) and (1 1.127) can be combined lo form the Poisson equation 
Tor the pressure correction Spii+', just as in the MAC scheme. This pressure cor- 
rection is employed to update both the velocity field and the pressure field using 
Eq. (11.126) and Eq. (11.128), ixspectively. The form of the second stcp ( I  1.126) 
and ( 1 I .  127) corresponds cxactly to the formulations in SIMPLEC by Van Doormaal 
and Raithby (1 984). Howcvcr, SIMPLEC was proposed based on a different physical 
reasoning. 

@-Scheme 
Thc MAC and SIMPLE-type algoritlum described in the preceding arc only 
first-order accurate in time. hi order to bavc a sccond-order accurate scheme for 
the NavierStokes equations, the 8-schemc of Glowinski (1991) may be used. 
The 8-scheme splits each time step symmetrically into thrcc subsleps, which are 
described here. 

0 Slep 1: 

uti+B - uii 

+ v P" '-lr 
~ v 2 u i i - I . o  - 

H At Re 

e Stcp 2: 

(1  1.129) 

(1 1.130) 

( I  1.131) 



v . U"+1 = 0. (1 1.133) 

It was shown that when ti = 1 - 1 /a = 0.29289.. . , cr+p = 1, and p = O/(l-O). 
the scheme is second-order accuratc. The first and third steps of the (-)-scheme are 
identical and are the Stokes flow problems. The second step, Eq. (1 1.13 I j, rcpi-esents 
a nonlinear convection-diffusion problem if u* = u " + ~ - ~ .  However, it was con- 
cluded that there is practically no loss in accuracy and stability if u* = u"+" is used. 
Numerical techniques for solving these substeps are discussed in Glowinski (1991). 

Mixed Finite Element Formulation 
Tlie weak Cormulation described in Section 3 can bc directly applied to the 
NavierStokes equations (1 1.8 1 )  and (1 1.80), and it gives 

(11.134) 

(1 1.135) 

where ii and @ are the variations of velocity and pressur, respectively. The rate of 
strain knsor is given by 

D[u] = ![vu 4- (1 1.136) 

Tlie Galcrkiii finite elemcnt formulalion for the problem is identical to 
Eqs. ( 1  1.134) and (1 1.133, except that all the functions arc chosen h m  finite- 
dimensional subspaces and are represented in the form of basis or interpolation 
functions. 

The main difficulty with this finite element formulation is the choicc of the inter- 
polation functions (or the type of the elements) for velocity and pressure. The finite 
element appiaximations that use the same interpolation functions for velocity and 
pressure suffer from a highly oscillatory pressw field. As described in the previous 
section, a similar bchwior in thc finite differcnce scheinc is prevented by introduc- 
ing h e  staggered grid. There are a number of options to overcome this problem 
with spurious prcssure. One of them is thc mixed finite element formulation that 
uses diffcixmt interpolation functions (or rmitc elements j for velocity and pressiuc. 
The requirenicnt for the mixed finite clement approach is rclated to thc so-called 
Babuska-Brezzi (or LBB) stability condition, or infiwtp condition. The dctailed dis- 
cussions for this condition can be found in Oden and Carey ( 1984). A common practicc 
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Figure '11.6 Mixcd l i i i ik clcmcnls. 

in the mixed Enite element lormulation is to use apressure intci-polation function that 
is one order lower than a velocity interpolation function. As an example in two diincn- 
sioiis. a triangilar element is shown in Figure 1 1.6a. On this mixcd clcmcnl, quadratic 
interpolation functions arc uscd for thc vclocity componcnts and arc dcfined on all six 
nodes, while lincar interpolation functions arc uscd for thc prcssure and arc defined 
on three vertices only. A slightly different approach is to use a pressure grid that is 
twice coarser than the velocity one, and then use thc same interpolation functions on 
both grids (Glowinski, 1991 ). For cxaniplc, a picccwise-linear prcssuix is dcfincd on 
the outside (coarser) triangle whilc a picccwisc-linear velocity is dcfincd on all four 
siibtriangles, as shown in Figure 1 1.6b. 

Another option to prcvcnt a spurious prcssurc lield is to use Ihc stabilizcd linitc 
element formulation while keeping the equal orclcr interpolations for vclocity and 
pressure. A general formulation in this approach is the Galcrkin/least-squares (GLS) 
stabilization (Teezduyar, 1992). Tn the GLS stabilization, Ihc stabilizing tcnns arc 
obtained by minimizing the squarrd rcsidual or the momentum equation integrated 
over each element domain. The choicc of the stabilization par'meter is discussed in 
Frmca ef rrl. ( 1992) and Frdnca and Fixy (1 992). 

Comparing the mixcd and thc stabilized finite element formulations, the nixed 
finite element method is pardmctcr frcc, as pointed out in Glowinski ( I99 1 ). There 
is no need to adjust the stabilization parameters, which could be a delicate problem. 
More iiiiportant. for a given flow pwblcni the desired finite element mesh size is 
gcnerally determined based on the velocity behavior (e.€., it is defined by the boundaiy 
or shear layer thickness). Thcrcforc, equal order interpolation will be niorc costly 
from the pressure point of view but without further gains in accuracy. Howcvcr, thc 
GLS-stdbilizcd finite element formulation has the additional benefit of preventing 
oscillatory solutions produced in thc Galcrkin finite element method due to the largc 
convective term in high Rcynolds number flows. 

Once he interpolation functions for the velocity and prcssivc in the mixed finite 
clcnicnt approximations are dctcrniined, the matrix form of  equations (I 1.134) mid 
( 1 1 . ? 35) can hc wiitten as 

(T) + (,". :) t) = (t) ( I 1 . I  37) 

where u and p arc thc vectors containing all unknown values of thc vclocity com- 
ponents and pressure dcfined on the finitc clement mesh, respcctively. Here u is the 
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first time derivative of u. Matrix M is the mass matrix corresponding to the time 
derivative term in Eq. (1 1.134). Matrix A depends on the value of u due to the nonlin- 
ear convective term in the momentum equation. The symmetry in the pressure terms 
in Eqs. (1 1.134) and (1 1.135) results in the symmetric arrangement of B and BT in 
algebraic system (1 1.137). Vectors f, and fp come from both the body force term in 
the momentum equation and the application of the boundary conditions. 

The ordinary differential equation (1 1.137) can be further discretized in time with 
finite difference methods. The resulting nonlinear system of equations is typically 
solved iteratively using Newton’s method. At each stage of the nonlinear iteration, 
the sparse linear algebraic equations are normally solved using either a direct solver 
such as Gauss elimination procedure for small system sizes or an iterative solver 
such as a generalized minimum residual method (GMRES) for large systems. Other 
iterative solution methods for sparse nonsymmetric systems can be found in Saad 
(1996). An application of the mixed finite element method is discussed as one of the 
examples given in the next section. 

5. 7 i n o h m p l e s  
We will solve two sample problems in this section. The first problem is an unbounded 
uniform flow past a circular cylinder. The fluid is incompressible and Newtonian. 
The flow Reynolds number is small such that the flow is steady and two dimensional. 
We will solve this problem using the SIMPLER formulation. The second problem is 
flow around a circular cylinder confined between two parallel plates. It will be solved 
using a mixed finite element formulation. 

SIMPLER Formulation for Flow past a Cylinder 
Consider a uniform flow U of a Newtonian fluid past a fixed circular cylinder of 
diameter d in the plane, as shown in Figure 11.7. We will limit ourselves to flows 
of low and medium Reynolds numbers such that they are steady, two dimensional, 
symmetric, and without instability. In the figure, the boundary section rl represents 
the inflow section, r2 is the outflow section, r3 and r4 are the symmetry boundaries, 
and rs is the boundary on the cylinder surface. The outer boundary sections rl and 
r2 are assumed to be far away from the cylinder. In this computation, the radius of 
the outer boundary R, is set at -50 times the radius of the cylinder. 

Figure 11.7 Flow geometry and boundaries. 



Thc prohlern can be nondirnensionalized using the djameter of the cylinder d as 
thc lcngh scale, h e  Iree stream velocity U as the velocity scale, arid pU' as the scale 
for pressure. We may write the NavierStokes equations ( 1  1.80) and ( I  1.81) in thc 
polar coordinate system shown in Figure 1 1.7 

(11.138) 

( 1 1.140) 

where u, and z i y  are the velocity components in the radial and angular directions, 
respectively. The Row Rcynolds number is Re = pUd/,u. 

The boundary conditions for this problem are specified as, 

at thc inflow boundary rl (r  = R,, 0 < 19 < n/2): 

u,. = - C O S H .  M e  =sine, (11.141) 

at the symmetry boundaries r3 and r4 (0.5 < r < R ,  H = 0 and 0 = JT): 

a l l ,  
- ao = 0, l l g  = 0, (1 1.142) 

aiid on the cylinder surfacc Ts (r  = 0.5.0 < 0 < x ) :  

At the outflow boundary r? ( r  = R ,  . n/2 .c H < T), the flow is assumcd lo 
bc coiivcctive dominant. For this sample problem we assumc that 

au, a M a  
- =o, - =o. 
ai- ar 

(11.144) 

In. the computation we solvc for both velocities and pressure. We may also 
evaluale the snminfirnclion @ and thc vorticity w by 

(1 1.145) 

(1 1.146) 



From the computed flow field, one can integrate the pressure and thc shear stress ovcr 
the cylinder surface to obtain the total drag acting on the cylinder. 
drag force per unit length on the cylinder is found lo bc 

where the nondimensiod viscous shear stress is expressed as 
+ aue/ar  - ue/r. The drag coefficient is then given by 

The dimensional 

(1 1.147) 

t r e  = av,/rM 

(11.148) 

The coupled equations (1 1.138)-(11.140) are solvcd with the SIMPLER algo- 
rithm discussed in Section 4. The SIMPLER formulalion is based on a finite volumc 
discretization on a staggered grid of the govcrning equations. In the S W L E R  for- 
mulation, Eqs. (1 1.139) and (1 1.140) can be rcorganized into foims convenient for 
intcgration over control volumes, 

(1  1.149) 

( 1  1.150) 

Thetermsontheright-handsideofEqs.(11.149)and(ll.l50) will betreatcdassourcc 
term,,. In SIMPLER formulation, the computational domain shown in Figure 11.7 is 
divided into small control volumes. At the center of each control volume lies a grid 
point. The pressure is discretized using its value at these grid points. The velocities 
11, and ue are discretixed using their values at the control volume faces in the i-- 

and &directions respectively. The geometric details of the control volume around a 
grid point are shown in Figure 11.8. The locations of the control volume faces are 
inarked by i, 9 + 1, j^, and j + 1, and the vclocities at these faces are dcnoted as ~ r ; . ~ ,  
~ r ; + , , ~ ,  q j ,  and q j + ,  (the velocity components u, and ue are replaced with v and it, 
respectively), as indicated in Figure 11.8. 

Figure I 1.9 shows the grid lines in the mesh uscd for computation. Thcre are 60 
uniform control volumes in the 8-dktion, and 50 nonuniform control volumcs in the 
r-direction with the smallest of them of the size 0.02d near the cylinder surface. The 
size of the control volume in the I--dh-cction progressively increascs with a constant 
factor of 1 .lo. Thc nondimensional radius of thc outer boundary is located a1 R, = 
23.8. The total number of grid points used in the mesh is 3224. 
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The first term on the left-hand side of Eq. (1 1.152) can be €urther discretized as 

As the velocities arc defined on thc faces of the main coiitrol volumes, the value 
of convective momentum flux ui,jui,j at the grid point needs to be interpolated. 
The first vclocity is approximated by taking the average of the velocities at two 
neighboring nodes 

G i , j  = i ( ~ i . j  + ~ i , j + + l ) .  (1 1.154) 

Depending on the interpolation methods used for the second velocity, df lmnt  numer- 
ical schemes can be derived. For example, using the simplc average E.. . = i j i . j ,  wc 
will have a cenlral difference scheme: but by choosing ui,j = ui.s if ui.j > 0 or 
ui.,j = 

1- 

if iji,j e 0, we will havc an upwind scheme. In general, we may write 

where the coefficient is defined by 

and the form of the fiuiction A (P) depends on the numerical schemes used for inter- 
polating the convective momentum flux; for example, A(P) = 1 for: the upwind 
scheme and A( P) = 1 - 0.5 P for the central difference scheme. We are going to use 
a power-law scheme in which A(P) = max(0, ( 1  - 0.1P)5), which is described in 
Pdtankar (1986, chapter5). Similarly, thc second term inEq. (1 1.152) can be writteii as 

where 

The othcr two terms in Ey. (1 1.152) can be organized into 



( 1  1.163) 

Substituting thc flux terms ( l l . lS5) ,  (11.157)+ (11.159j, and (11.160) back into 
Eq. ( 1 1.152), wc have 

a!"!v. f = a!':u. : . + ' IZ I :U .  : +a?':u - +aPv.v. - 
f . , r f . J  f . J 1 . . / + 1  f . J l . ] . - l  r ~ i + l . j  i . j r - 1 . j  

- (y;.j - j~j.j-l)rjAfi;+~ + hEj - [Cj.jrjAO;-,l - Zj,j-~rj-lAO;+~ 

+ i;+l.jArj - i;.jAri]i:. . f.] ?. (1 1.164) 

where 

a!'! I . , /  = O!LI 1 .  J + 'I.? 1:  J + a?. f . J  + ( I ; ; .  ( I  1.165) 

The kist tcrm in Bq. (11.164) is zcro due to the mass conservation over the control 
volume for vi . j .  Therefore, we filially havc 

The 0-momeiimm equation (1 1.150) can bc similarly discretized over thc control 
volume for u ; . ~  that is dcfined by r E [ r : ,  .I rj+,]  and 6 E [O i - l .  O i l 9  

(11.168) 

or 

(1  1.169) 



where the coefficients and the source tenn are defined as 

(11.171) 

(11.173) 

(1 1.173) 

Ef.3 = ;(“i.+I,j + q j )  md a,, = q u -  2 i + l , j  + U i . , j ) .  ( 1 1.176) 

As discusscd in Section 4, the continuity equation (1 1.151) can he uscd to form 
an equation For the pressiue. Let us inlroduce a pseudo-velocity field 11” and I;*: using 
lhe tnomenlum equations ( 1 I .  167) and ( 1 1.169) 

such that 

(1 1.179) 

Substituting Eqs. (11.179) and (11.180) into the continuity equation ( l l . l S l ) ,  we 
obtain the pressure equation, 



where 

( 1  1.184) 

(1 1.185) 

The solution for the nonlinearly coupled equations (1 1.167), (11.169), and 
(11.182) is obtaincd through an iterative procedurc. Thc procedure starts with a 
guesstiinated velocity field (u, u) .  It fist calculates the coefficients in the momen- 
tum equations and pseudo-velocity from Eqs. (1 1.1 77) and (1 1.178). It then solves 
thc pressure equation (1 1.182) to obtain a pressure field ,5. Using this pressure field, 
it then solves the monicntum equations (1 1.167) and (1  1.169) to obtain the velocity 
field (El, ij). Tn order to satisfy the mass conservation, this velocily field (C. L;) needs to 
be corrected through a pressure correction field p'. The pressure correction equation 
has thl= same foim as the pressure equation (1 1.182) with thc pseudo-velocity in the 
source tenn (11.185) replaced with the velocity field (iil i). This pressure correction 
is then used to inodify thc velocity field through 

(1.1.186) 

(11.187) 

This new velocity field is uscd as a new starting point for the procedure until the 
solution converges. 

Each of the discretiirxd equations, for example, thc pressure equation ( 1  1.182), 
is solved by a line-by-line iteration mcthod. In the method thc equation is written as 
tridiagonal systems along each r grid line (and each 0 grid line) and solved directly 
using the tridiagonal-matrix algorithm. Four sweeps (bottom + top 4 bottom in the 
j-direction and lcft -+ right + left in the i-direction) arc used for each iteration until 
Ihc solution converges. 

Thc numerical solution of the flow field at a Reynolds number of Re = IO is 
presented in the next two figures. Figurc 1 1.10 shows thc slreamlines in the neighbor- 
hood of the cylindcr. Figure 1 1.1 1 plots the isovorticity lines. The isovorticity lines 
are swept downstream by the flow and the high vorticity region i s  at the h n t  shoulder 
of the cylinder sudace where the vorticity is being created. 

We next plot thc drag coefficient Co as a function of the flow Reynolds number 
(Figure 1 1.12) and comparc that with thc rcsults from the literature. As thc figure 
indicates, the drag coefficients computed by this method agree satisfactorily with 
those obtaincd numerically by Sucker and Brduer (1 975). Takami and Kellcr ( 1  969), 
and Dennis and Chang (1  970). The calc~ilation stops at Rc = 40 because beyond that 
the wake behind the cylindcr becomes unsteady aid vortex shedding occurs. 



Figwe 11.10 Slnxmlines in the iicighborhood of thc cylinder for il Row of Rcynolds numhcr Re = 10. 
Tbc values ofthe incoming stretunlines, starting fmm thc bottom. arc: +/( Ud) = 0.01,0.05.0.2,0.4,0.6. 
0.8. 1.0, 1.2, 1.4.1.6.1.8.2.0,2.2, and 2.4, rcspcctively. 

F l p  11.11 Iwvorticity lines [or the tlow of Reynolds number Rc = 10. The wlucs of the vorticity, 
from Ilic iniiennozt linc, are o d / U  = 1.0,0.5,0.3,0:2, and 0.1, rcspectively. 

0.1 

- Present Calculation 

Sucker 8 Brauer (1975) 
+ Takami & Keller (1969) 
x Dennis 8 Chang (1970) 

1 10 
Rc 

I 
100 

Figure 11.12 Comparison ofthe drag coefficient Cn. 

Finite Element Formulation for Flow over 
a Cylinder Con6ued in a Channel 
We next consider the flow ovcr a circular cylinder moving along Lhc center of a 
channel. In the computalion, we Ti the cylinder and use the flow geometry as shown 
in Figure I l.13. The flow comes fmin the left with a uriifom velocity U. Bolh plates 
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Figure 11.13 Flow geometry of flow around a cylinder in a channel. 

. . . . .  

Figure 11.14 A finite element mesh around a cylinder. 

of the channel are sliding to the right with the same velocity U .  The diameter of the 
cylinder is d and the width of the channel is W = 4d. The boundary sections for the 
computational domain are indicated in the figure. The location of the inflow boundary 
rl is selected to be at xmin = -7.5d, and the location of the outflow boundary section 
I‘z is at xmax = 15d. They are both far away from the cylinder so as to minimize their 
influence on the flow field near the cylinder. In order to compute the flow at higher 
Reynolds numbers, we relax the assumptions that the flow is symmetric and steady. 
We will compute unsteady flow (with vortex shedding) in the full geometry and by 
using the Cartesian coordinates shown in Figure 1 1.13. 

The first step in the finite element method is to discretize (mesh) the computational 
domain described in Figure 11.13. We cover the domain with triangular elements. 
A typical mesh is presented in Figure 11.14. The mesh size is distributed in a way 
that finer elements are used next to the cylinder surface to better resolve the local flow 
field. For this example, the mixed finite element method will be used, such that each 
triangular element will have six nodes as shown in Figure 1 1.6a. This element allows 
for curved sides that better capture the surface of the circular cylinder. The mesh in 
Figure 1 1.14 has 3320 elements, 6868 velocity nodes, and 1774 pressure nodes. 

The weak formulation of the Navier-Stokes equations is given in Eqs. (1 1.134) 
and (1 1.135). For this example the body force term is zero, g = 0. In Cartesian coordi- 
nates, the weak form of the momentum equation (1 1.134) can be written explicitly as 

where Q is the computational domain and 6 = (i, C). As the variational func- 
tions ii and ij are independent, the weak formulation (1 1.188) can be separated into 



two equations, 

The weak form of the continuity equation (1 1.135) is expressed as 

(1 1.189) 

(1 1.1 90) 

(1 1.191) 

Given a triangulation of the computational domain, for example, the mesh shown 
inFigure 11.14,theweakformulationofEqs.(11.189)-(11.19l)canbeapproximated 
by the Galerkin finite element formulation based on the finite-dimensional djscretiza- 
tion aF thc flow variables. The Galerkin formulation can be written as 

and 

(1 1.194) 

where h indicates a given triangulation of the computational domain. 
The time derivatives in Eqs. (1 1.192) and (1 1.193) can be discretized by finite 

difference methods. We first evaluate all the tmm in Eqs. (1 1.192)-( 11.194) at a 
given time instant t = r,l+l (fully implicit discrctization). Then the time derivative in 
Eqs. (1 1.292) and (1 1.193) can be approximated as 

(1 1.1 95) 

where At = tn+l - r,) is the time step. The approximation in Eq. (1 1.195) is first-order 
accuratc in timc when IY = 1 and B = 0. It can he improved to second-order accurate 
by selecting ar = 2 and f i  = 1 which is a variation of the well-known Crank-Nicolson 
schemc. 



As Eqs. ( 1 1.192) md ( 1 1.193) illy: nonlincar, itcrativc mcthods are often used for 
thc solution. In Newton's method, the flow variables at the current time r = t,+l are 
often e.xpressed as 

whcrc u* and p* are the guesstimated valucs of velocity and pressure during the 
itcrdtion and u' and p' are the corrections sought at each itcration. 

Substitucing Eqs. (1 1.195) and (1  1.196) into Galerkin formulation 
( 1 1.192j-( 1 I .  194)' and linecu.izing the equations with respect to the correction vari- 
ables, wc havc 

(1 1.198) 

and 

As thc functions in the intcgrals, unless specificd otherwise, are all evaluatcd at the 
current tiinc instant tll+.1 thc tcinporal discretization in Eys. (1 1.197) and (1 I .  198) 
is fully implicit and unconditionally stable. The terms on the right-hand side of Eqs. 
( I 1. I97Hl1.199) represent the residuals of the corresponding equations and can be 
used to monitor the coiivergcnce oi the nonlinear itcration. 

Similar to the one-dimensional case in Section 3, the finite-dimensional dis- 
cretization of thc Bow variablcs cem be constructed using shape (or intcrpolation) 



functions, 

where N i ( x ,  y )  and N;(x, y) are the shape functions for velocity and pressure, 
respectiwly. They are not iiecessarily the same. In order to satisfy the LBB stability 
condition, the shape hct ion N: (x, y )  in the mixed finite elerncnt formulation should 
be one order higher than N i ( x ,  y ) .  as discussed in Section 4. The summation over 
A is through all the velocity nodes, while the summation over B runs through all 
the prcssure nodes. Thc variational functions may be expresscd in terms of the sine 
shape functions, 

ih = C ~ A N . ; ( X .  y ) !  i? = C ~,,N;(X. y ) .  
A .4 

$1 = C@&(X, y). 
B 

(1 1.201 ) 

Since the Galerkin formulation (1 1.197)-( I 1.199) is valid for all possible choices 
of the variational functions, the coefficients in (1 1.201) should be arbitrary. In 
this way, the Gderkin formulation (1 1.197)-( 11.199) reduces to a system of algc- 
braic equations, 

+- 1 ( 2--+-- aNi,  a N i  aNi.  a N , ; ) ]  dC2 
RC ax ax ay ay 

-N",N" + --A aN'J a N i ' )  dQ - C p B d + N L , s d n  
A Re a.r ay ax 

= - s,,, [ E ( u *  - 

( 1 1.202) 

+ 2 a a Ni)] dQ 
+-(-- 1 aNl.aN; 

Re ax ax ay ay 

B' Re By ax 

(1 1.203) 



and 

(1 1.204) 

for all the vclocity nodes A and pressure nodes R .  Equations (1 1.202)-( I 1.204) can 
be organized into a matrix .form, 

(1 1.205) 

whcrc 

and 

(1 1.207) 

(1 1.208 j 

(1 1.209) 



(1 1.214) 

(1 1.2 15) 

The practical evaluation of the integrals in Eqs. (11.207H11.215) is done 
elerncnt-wise. We need to construct thc shape functions locally and transform these 
global intcgrals hito local integrals over cach elemcnt. 

In the finite element method, the global shape functions have very compact sup- 
port. They arc zero everywhere except in the neighborhood around the corresponding 
grid point in the mesh. It is convenient to cast the global formulation using the elemcnt 
point of view (Section 3). In this element view, h e  local shape functions are defined 
inside each element. The global shape functions are the asscmbly ofthe relevant local 
ones. For example, the global shape function corresponding to thc grid point A in 
the finite element mesh consists of the local shape functions of all the elements that 
share this grid point. An element in the physical space can be mapped into a standard 
element, as shown in Figure 11.15 and the local shape functions can be defined on 
this standard element. The mapping is given by 

6 6 

~ ( 6 ,  = C X : 4 a O .  and YO! 9) = ~ Y E @ ~ ( E :  (1 1.21 6) 
u= I a=l 

where (x:, y;) are the coordinates of the nodes in thc element e. The local shape 
functions are For a quadratic triangular element they are defined as 

where < = I - 6 - q. As shown in Fi,prc 11.15, the mapping (11.216) is able to 
handle curved triangles. The variation of the flow variables within this element can 
also bc expressed in terms of their values at thc nodes of the element and the local 
shape functions, 

(1 1.218) 

Here the shape functions for velocities are quadratic and the same as the coordinates. 
The shapc functions for the pressure are chosen to be linear, thus one order less than 
those for the velocitics. They are given by 

*I =<I  h=t,  *3 = q .  (1 1.2 19) 



Figure 11.15 A qudradc triangular finite elemcnt mapping into thc standard element. 

Furthermore, the integration over the global computational domain can be writlen as 
the sunimatiou of the integrations over all the elements in the domain. As most of 
these integrations will bc zero, the nonzero ones are p u p c d  as element matrices and 
vectors, 

At 

(1 1.221) 

( I  1.222) 

( 11.223) 

(1 1.225) 

( 1 1.226) 



1 &?'=-J [-&*-u(f,,))-p-(f,,)+l*-+.*- a all a V *  if v* Cbflddn 
9' at ax ay 

(1 1.228) 

1 + le p* 2 d Q - - Re 

( 1 1.229) 

The indices a and a' run from 1 to 6, and h and b' run from 1 to 3. 

integration rules, 
Thc integrals in the preceding expressions can be evaluated by numerical 

(1 1.230) 

wheiz the Jacobian of the mapping ( 1  1.216) is given by J = xty,, - x,,yc. Here Ni,, 
is the numbcr numerical integration points and Wf is the weight of the Ith intcgation 
point. For this example, a seven-point integration formula with dcgree of precision 
of 5 (see Hughes, 1987) was used. 

The global matrices and vectors in Eq. (1 1.206) are the summalions of the element 
matrices mid vectors in Eq. (1 1.220) over all the elements. In the process of summation 
(assembly), a mapping of the local nodes in each element to the global node numbers 
is needed. This information is commonly available for any finite element mesh. 

Once the matrix equation ( I  1.205) is generated, we may impose the esscntial 
boundary conditions for the velocities. One simple method is to use the equation of 
Ihc boundary condition to replacc the corresponding equation in thc orjginal matrix 
or one can multiply a large constant to the equation of the boundary condition and 
add this equation to the original system of equations in order to preserve the structure 
of the matrix. The resulting matrix equation may be solved usjlig common direct or 
iterative solvers for a linear algebraic system of equations. 

Figures 11.16 and 11.17 display the streamlines and vorticity lines around the 
cylinder. at three Reynolds nuinbcrs Re = 1, 10, and 40. For these Rcynolds numbers, 
the flow is stcady and should be symmctric above and below the cylinder. How- 
ever, due to the imperfection in the mesh used for the calculation and as shown in 
Figure 1 1.14, the calculated flow field is not perfectly symmetric. Froin Figure 11.16 
wc observe the increase in the size of the wake behind thc cylindcr as the Reynolds 
numbcr increascs. InFigure 11.17 we see thc effects of the Rcynolds number in the vor- 
ticity buildup in front of the cylinder, and in the convection of the vorticity by the flow. 

We next compute the case with Reynolds number Re = 100. In this casc, the flow 
is expecwd to be unsteady. Periodic vortex shedding occurs. In ordcr to capture the 
details of the flow, we used a finer mesh than the one shown in Figure I 1.1 4. The finer 
mesh has 9222 elements, 183 16 velocity nodes and4797 pressure nodcs. In this calcu- 
lation, the flow starts from rcst. Initially, the flow is symmetric, and the wake behind 



5. fluo&amph 423 

Figure 11.16 Streamlines for flow around a cylinder at three different Reynolds numbers. 

- i -. 
( c )  R e d 0  

Figure 11.17 Vorticity lines for flow around a cylinder at three different Reynolds numbers. 

the cylinder grows bigger and stronger. Then, the wake becomes unstable, under- 
goes a supercritical Hopf bifurcation, and sheds periodically away from the cylinder. 
The periodic vortex shedding forms the well-known von Karman vortex street. The 
vorticity lines are presented in Figure 1 1.18 for a complete cycle of vortex shedding. 
The corresponding streamlines in the same time period are displayed in Figure 1 1.19. 

For this case with Re = 100, we plot in Figure 11.20 the history of the forces and 
torque acting on the cylinder. The oscillations shown in the lift and torque plots are 
typical for the supercritical Hopf bifurcation. The nonzero mean value of the torque 
shown in Figure 11.20~ is due to the asymmetry in the finite element mesh. It is 
clear that the flow becomes fully periodic at the times shown in Figures 1 1.18 and 
11.19. The period of the oscillation is measured at t = 0.0475s or 7 = 4.75 in the 
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Figure 11.18 Vorticity lines for flow around a cylinder at Reynolds number Re = 100. Here f = tU /d  
is the dimensionless time. 

nondimensional units. This period corresponds to a nondimensional Strouhal number 
S = n d / U  = 0.21, where n is the frequency of the shedding. In the literature, the 
value of the Strouhal number for an unbounded uniform flow around a cylinder is 
found to be ~ 0 . 1 6 7  at Re = 100 (e.g., see Wen and Lin, 2001). The difference could 
be caused by the geometry in which the cylinder is confined in a channel. 

6. Concluding Remarhx 
It should be strongly emphasized that CFD is merely a tool for analyzing fluid-flow 
problems. If it is used correctly, it would provide useful information cheaply and 
quickly. However, it could easily be misused or even abused. In today’s computer 
age, people have a tendency to trust the output from a computer, especially when they 
do not understand what is behind the computer. One certainly should be aware of the 
assumptions used in producing the results from a CFD model. 

As we have previously discussed, CFD is never exact. There are uncertainties 
involved in any CFD predictions. However, one is able to gain more confidence in 
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L 

Figure 11.19 Streamlines for flow around a cylinder at Reynolds number Re = 100. The dimensionless 
time is I = t U / d .  

CFD predictions by following a few steps. Tests on some benchmark problems with 
known solutions are often encouraged. A mesh refinement test is normally a must 
in order to be sure that the numerical solution converges to something meaningful. 
A similar test with the time step for unsteady flow problems is often desired. If the 
boundary locations and conditions are in doubt, their effects on the CFD predictions 
should be minimized. Furthermore, the sensitivity of the CFD predictions to some 
key parameters in the problem should be investigated for practical design problems. 

In this chapter we have discussed the basics of the finite difference and finite ele- 
ment methods and their applications in CFD. There are other kinds of numerical meth- 
ods, for example, the spectral method and the spectral element method, which are often 
used in CFD. They share the common approach that discretizes the Navier-Stokes 
equations into a system of algebraic equations. However, a class of new numerical 
techniques including lattice-gas cellular automata, the lattice Boltzmann method, and 
dissipative particle dynamics do not start from the continuum Navier-Stokes equa- 
tions. Unlike the conventional methods discussed in this chapter, they are based on 
simplified kinetic models that incorporate the essential physics of the microscopic or 
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rnesoscopic proccsses so hat the macroscopic-avengcd propcrtics obcy thc dcsircd 
inacroscopic NavierStokes equations. 

L7X?I.Ck?S 

condition ( 1 1.26). 

discretized forms is 

1. Show that the stability condition for the explicit scheme (11.10) is the 

2. For the heat conduction equation aT/iIt - D(a'T/a.r') = 0, one of the 

where s = D(Ar/As'). Show that this implicit algorithm is always stable. 

3. An insulated rod initially has a temperature of T ( s ,  0) = O'C (0 < x < 1). 
At r = 0. hot reservoirs (T = 1003C) are brought into contact with the two ends, 
A(x  = 0) and B ( x  = I ) :  T ( 0 ,  t )  = T(1, t )  = 100T.  Numerically find the temper- 
atm T ( X ,  t )  of any point in the rod. The governing equation of the problem is the 
heat conduction equation (aT/ar)  - D(a*T/tI.r') = 0. Thc cxact solution to this 
problem is 

sin [(2m - 1)nxj] 
N M  400 

T * ( . T ~ .  r,,) = 100 - 
(2m - 1)x nr=l 

where NM is the number of lems used in thc approximation. 

(a) Try to solve the problem with the explicit forward time and central space (FTCS) 
scheme. Use the parametcr s = D( A f  / A x 2 )  = 0.5 and 0.6 to test the stability 
of thc scheme. 

(bj Solve the problem wiih a stable explicit or implicit scheme. Test the rate of 
convergence numcrically using the error at x = 0.5. 

4. Derive the weak, Galerkin, and matrix forms of the rollowing strong problcm: 
Given functions D(x),  .f(.r), and constants g, h, find u ( x )  such that [ D ( - T ) U . ~ ] . ~  
+ f ( . r )  = 0 on R = (0, I ) ,  with u(0) = g and - ~ . ~ ( l )  = h. 

Write a computer program solving this problem using piecewise-linear shape 
functions. You may sct D = 1, g = 1, h = 1, and f ( x )  = sin(2nx). Check your 
numerical rcsuli with the exact solution. 

5 .  Solve numerically the steady convective transport equation u(tIT/a.x) 
= L)(#T/ i )xL)  for 0 < x < 1, with two boundary conditions T ( 0 )  = 0 and 
T(1) = 1, where it and D are Lwo constants: 

(a) use the ccntral finite differcnce scheme in Eq. ( I  1.91 ) and then compare it with 
the exact solution; and 

(b) usc the upwind scheme (1 I .93), and compare it with h e  exact solution. 



6. In h e  SIMPLER scheme applied for flow over a circular cylinder, write down 
explicitly the discretized momentum equations (1 1.167) and ( I 1.169) when the grid 
spacing is uniform and the central difference schemc is used for the conveclivc terms. 
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1. Irrfrujdiudion 
A phenomenon that may satisfy all conservation laws of nature exactly, may still be 
unobservable. For the phenomenon to occur in nalure, it has to satisfy one more con- 
dition, namely, it must be stable to small disturbances. In other words, infinitesimal 
disturbanccs, which are invariably present in any real system, must not amplify spon- 
taneously. A perfectly vertical rod satisfies all equations of motion, but it does not 
occur in nature. A smooth ball resting 011 the surfacc of a hemisphere is stable (and 
therefore observable) if the surface is concave upwards, but unstable to small displace- 
ments if the surface is convex upwards (Figure 12.1). In fluid flows, smooth laminar 
flows are stable to small  disturbances only when ccrtain conditions are satisficd. For 
example, in flows of homogcneous viscous fluids in a channel, the Reynolds number 
must be less than some critical value, and in a stratified shear flow, the Richardson 
number must be larger than a critical value. When these conditions are not satisfied, 
infinitesimal disturbances grow spontaneously. Sometimes the disturbances can grow 
to a finite amplitudc and reach equilibrium, resulting in a new steady state. The new 
state may then become unstablc to other typcs of disturbances, and may grow to yet 
another steady slatc, and so on. Fiidy, the flow becomes a superposition of various 
large disturbances of random phases, and reaches a chaotic condition that is com- 
monly described as “turbulent.” Finite amplitude effects, including the development 
of chaotic solutions, will be examined briefly later in thc chapter. 

The primary objective of this chapter, however, js the examination of stability 
of ccrtain fluid flows with respect to infinitesimal disturbanccs. We shall introduce 
perturbations on a particular flow, and determine whether the equations of motion 
demand that the perturbations should grow or decay with time. In this analysis the 
problem is linearized by neglecting t c m  quadratic in thc perhubation variables 
and their derivatives. This linear method of analysis, therefore, only examines the 
initial behavior of the disturbances. The loss of stability does not in itself constitute 
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Figure 12.1 Stnblc and unstiiblc systems. 
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a transition to turbulence, and Ihc linear theory can at best describe only thc vcry 
beginning of the process of Wansition to turbulence. Moreover. a real flow may 
be stable to infinitesimal disturbances (linearly stable), but still can hc unstablc to 
sufficiently large disturbances (nonlinearly unstable); this is schcrnatically repre- 
sented k Figure 12. I .  Thcse limitations of the Linear stability analysis should be kept 
in mind. 

Ncvcrthelcss, the successes of the linear stability lheory have been considerable. 
For example, tliere is almost an exact apcment  between experiments and theoretical 
prediction of the onset of thcrmal convection in a layer of fluid, and of thc onsct of 
!he ToUmien-Schlichting wavcs in  a viscous boundary layer. Taylor’s cxpciimentd 
vcrilication of his own theoretical prediction of the onset of secondary flow in a 
rotating Couette flow is so striking that it has led people to suggest that Taylor’s 
work is the first rigoivus confirmation of Navier-Stokes equations, on which the 
calculations are based. 

For our discussion wc shall choose prolileins that arc of importance in geophysical 
as well as cnginccring applications. None of the problems discussed in this chaptcr, 
however, conttins Coriolis rorces; the problem of “barocliilic instability,“ which docs 
contain the Coriolis frequency, is discussed in Chapter 14. Some examplcs will also 
be chosen to illustrate the basic physics rathcr than any potential application. Further 
details af these and other problems can be found in the books by Chandrasckhar 
(1961, 1481) and Drazin and Reid (1981). The rcvicw arlicle by Bayly, Orszdg, and 
Herbert ( 1988) is recommended For its insightful discussions after the readcr- has redd 
this chapter. 

Tlie method or linear stability analysis consists of introducing sinusoidal disturbances 
on a basic sfale (also called background or initial state), which is thc flow whose 
stability is being invcstigatcd. For example, thc velocity field of a basic state involving 
a flow parallel to the x-axis, and vzuying along the y-axis, is U = [U(y). 0.01. On 
this background flow we superpose a disturbance of h e  fonn 

where i ( p )  is a complex amplitude; it is undcrstood that the real part of the right-hand 
side is takcn to obtc?in physical quantities. (Thc complex fonn of nolation is explaincd 
jn Chapter 7, Section 15.) The reason solutions exponciitial in (x. z. t )  are allowed in 
Eq. (12.1 j is that, as we slid see, thc coefficients d t h e  differential cquation governing 
h e  perturbation in h i s  flow arc indepeiideiit of (x, z .  t). The flow field is assumed LO 
be unbounded in the x aiid z directions, hcncc the wdvenumbcr components k and m 
can only be real in odcr  that the depcndent variables rcmain boundcd as x, z + cc: 
CT = rr, + Sui is rcg&d as complcx. 

The behavior o€ the system for all possiblc K = [k .  0. in] is examined in the 
analysis. If or is positive for m y  value of the wavenumber, thc system is unstable to 
dismrbanccs of this wavenumbcr. If no such unstable state can be found, the system 



is stable. We say that 

a, < 0: stable, 

a, > 0: unstable, 

a, = 0: neutrally stable. 

The method of analysis involving the examhation of Fouricr componcnts such as 
Eq. ( 1  2.1) is called thc normul mode method. An arbitrary disturbance can be decoin- 
posed into a complete set of normal modes. In this method the stability of each of the 
modes is examined separately, as the linearity of the problcm implies that the various 
modcs do not interact. The method leads to an cigenvalue piDblem, as we shall sec. 

The boundary between stability and instability is called the mueiiial stute, for 
which a, = 0. Thcre can be two types of marginal states, depending on whether ai 
is also zero or nonzero in this state. If ai = 0 in the marginal state, then Eq. (12.1) 
shows that the marginal state is characterized by a srutiunary patrern of motion; we 
shall sce later that the instability here appears in the form of cellular cc~nivcriun or 
seconduiyflow (see Figure 12.12 later). For such marginal statcs one commonly says 
that the principle u f a c h g e  of sfubiliries is valid. (This exprcssion wm introduced 
by Poincad and Jeffreys, but its significance or usefulness is not cntirely clear.) 

If, on the other hand, ai # 0 hi the marginal state, then the instability sets in as 
oscillations of growing amplitudc. Following Eddington, such a inode af instability 
is frequently called “overstability” because the restoring forces are so strong that the 
system ovcrshoots its corresponding position on the other side of equilibrium. We 
prefcr to avoid this term and call it the oscillufory mode of instability. 

The diflercnce betwecn the neutral srure and the marginal slate should be noted 
as both have 0, = 0. However, the marginal state has the additional constraint that it 
lies at thc borderline between stable and unstable solutions. That is, a slight change 
of parameters (such as the Reynolds numbcr) froin the marginal statc can takc the 
system into an unstablc regime where a, > 0. In many cases we shall find the stability 
criterion by simply setting a, = 0, without formally demonstrating that it is indeed 
at the borderline of unstable and stable states. 

A layer of fluid heated from below is “top hcavy,” but does not necessari1.y undergo 
a convective motion. This is because the viscosity and hcrmal diffusivity of the 
fluid try to prevent the appearance of convective motion, and only for large enough 
tempcrature ,gadients is the laycr unstable. In this section we shall determine the 
condition necessary for Lhc onset of thermal instability in a layer of fluid. 

The first intensive experiments on instability caused by hcating a layer of fluid 
were conducted by B6nard in 1900. Benard cxperiincnted on only very thin layci-s 
(a millimeter or less) that had a free surface and observed beautiful hexagonal cells 
when the convcction developed. Stimulatcd by thcse experiments, Rayleigh in 19 I6 
derived the theoretical rcquiremcnt for the development of convective motion in a 
layer of fluid with two free surfaces. He showed thit the instability would occur when 



the adverse temperature gradient was large enough to make the ratio 

( 1  2.2) 

exceed a certain critical value. Here, g is the acceleration due to gravity, ar is the 
cocflicient of thennal expansion, r = -dT/dz is the vertical temperaturc gradicnt 
oCthe background state, d is thc depth of the layer, K is the thermal diffusivity. and v is 
the kinematic viscosity. Thc parameter Ra is called the Ravleigh nimiher, and we shall 
see shortly ha t  it reprcsents the ratio of the destabilizing effect of buoyancy force to 
the stabilizing effect of viscous force. It has been recognized only recently that most 
olthe motions observed b j  Bknard were imtubilities driven by the variation of su$uce 
tension with tenipemmre and not the thennal insfubility due to a top-heavy density 
gradieizl (Drazin and Reid 1981, p. 34). The impomice of instabilitics driven by 
surfacc tcnsion decreases as the Iaycr becomes thicker. Later expenmcnls on thennal 
convcction in thicker layers (with or without a free surface) hwc obtained convective 
cells of many foims, not just hcxagonal. Nevertheless, the phcnornenon of thermal 
convection in a layer of fluid is st i l l  commonly callcd the B6nai-d convecrioii. 

Rayleigh's solution of the thermal convection problem is considered a major 
triumph of the linear stability theory. The coiiccpt of critical Rayleigh nuinbcr finds 
application in such geophysical problems as solar convection, cloud formalion in the 
atinosphxe. aid the motion of the earth's core. 

Formulation of the Problem 
Consider a layer confined between two isothermal walls. hi whicb thc lower wall is 
inaintained at a highcr temperature. We start with the Boussinesq sct 

along with the continuity equation a17i/axi = 0. Here, the density is givcn by the 
equation of stale 6 = pO[ 1 - cr(f - TO)], with representing the reference density 
a1 the refercnce temperature TO. The total flow variables (background plus pertur- 
bation) arc represented by a tilde (-), a convention that will also be used in the 
following chapter. Wc decompose thc motion into a background state of no motion, 
plus pcnurbations: 

i i i  = 0 + Ui(X. I ) ,  

T = T ( z )  + T'(x. t ) .  

jj = P ( z )  + p ( x .  t ) ,  

( I  2.4) 

where the z-axis is taken vertically upward. The variables in the basic state are 
rcpresented by uppercase letters cxcept for thc tcmpemture, for which the symbol is T .  



The basic slate satisfies 

d2T 
dZ2  

0 = K - .  

(12.5) 

The preceding heat equation gives thc linear vertical temperature distribution 

T = To - r ( z  + d/2), ( I  2.6) 

where r = AT/d  is the magnitude of the vertical temperature gradient. and To is thc 
temperatun: of the lower wall (Figure 1.2.2). Substituting Eq. (1 2.4) inlo Eq. (12.3), 
we obtain 

Sublracting the mean state equation (12.5) from thc pernubed state equation (12.7), 
and ncglectiug squares of perturbations, we have 

rw = K V ~ T ' ,  
aT' -- 
at 

(12.8) 

(12.9) 

whcre w is the vertical component of velocity. The advection term in Eq. (12.9) 
results hmuj (aT /ax j )  = w(df ' /dz )  = -wr. Equations (12.8) and (12.9) govern 
the behavior of perturbations on the systcm. 

At this point it is useful to pause and show that the Rayleigh number defined 
by Eq. (12.2) is the d o  of buoyancy force to viscous force. From Eq. (12.9), h e  

figure 122 Dcfinition sketch for the Bknnard problem. 



vclocity scale is found by cquatjng h e  advective and diffusion terms, giving 

KT'ld' K r / d  K ,u Y ~ rr - - - 
r r - d '  

An cxmination of the last two tcrms in Eq. (12.8) shows that 

~uoyancy force p 7 "  gurd gardl 
Viscous force vw/d2 vui/d2 L'K ' 

hl -h l - - -  - 

which is the Rayleigh number. 

LaliL;xiim or the i = 3 componciit olEq. (12.8), we obtain 
Wc now write the perturbation equations in ternis of w and T' only. Taking the 

( 12.10) 

The pressure tcrm in Eq. (12.10) can bc eliminated by taking thc divergence of 
Eiq. (12.8) and using the continuity cquition i)rri/axi = 0. This gives 

Differentiating with respect to L, wc obtain 

so that Eq. (12.10) bccornes 

(12.1 1) 8 7  
at 
-(V'u;) = gcrV;,T'+ VV". 

where Vi 
Equations (12.9) and (12.11) govern the developrncnt of perturbations on the 

systcm. The boundary conditions on the upper and lower rigid sulfaccs are that the 
no-slip condition is satisfied and that the walls arc maintained at coixlanl tempera- 
tures. Thesc conditions requirc I I  = 1: = u: = T' = 0 at L = fd/2.  Because thc 
conditions on it and v hold for all :r and y, it follows Irom the continuity equation 
that i i i u / i ) z  = 0 at thc walls. The boundary coiiditions therefore can bc written as 

a'/h-' + a2/3y2 is the horizontal Laplacian opeiator. 

i )  w d 
u > = - -  - T ' = 0  a t z = f - .  

;I: 2 
(1 2.12) 

We shall usc dimnensionlcss independent variables in thc rest of the analysis. For 
this. we makc the transformation 

d' 
I + - t .  

K 

(x. y. 2 )  + (xd,  yd.  zd) .  

whcrc the old variables are on thc left-hand side and thc ncw variablcs are on thc 
right-hand side: notc hat  we arc avoiding thc introduction of new symbols for the 
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nondimensional variables. Equations (12.9), (12.11)? and (12.12) then become 

(12.13) 

(12.14) 

( 1 2.15) 

where Pr = v/K is the Prandtl number. 
The method of normal modes is now introduced. Because the coefficients of the 

governing set (1 2.13) and (1 2.14) are independent of x ,  y ,  and t ,  solutions exponential 
in these variables are allowed. We therefore assume normal modes of the form 

= eikx+ily+ut 

T I  = fp) eikx+ily-ul 

The requirement that solutions remain bounded as x ,  y + 00 implies that the 
wavenumbers k and 1 must be real. In other words, the normal inodes must be periodic 
in the directions of unboundedness. The growth rate cr = a, + ioi is allowed to be 
complex. With this dependence, the operators in Eqs. (12.13) and (12.14) transform 
as follows: 

a - + (7, 
at 
V i  -+ - K 2 ,  

V ' + - - K ,  d2 2 
dz2 

where K = Jm is the magnitude of the (nondimcnsional) horizontal wave- 
number. Equations ( 12.1 3) and ( I  2.141 hen become 

.. rd' .. 
[a - (0' - K 2 ) ] T  = -UI? 

K 

f, 
god' K 2  [E - (0'- K')] (D2 - K2)17, = -- 

Pr v 
where D = d/dz. Making the substitution 

K 

Equations (1.2.16) and (12.17) bccome 

(12.16) 

(12.17) 

(1 2.18) 

(12. I 9) 

where 
gord4 RaG-, 

K V  



is the Rayleigh numbcr. The boundary conditions (1 2.15) become 

W = D W = f = O  at:=&:. - (12.20) 

Before we can procccd further, we need to show that cr in this problem can only 
bc rcal. 

Proof That a Is Real for Ra > 0 
The sign of the real part 01 a (= a, + i q )  determines whethcr the flow is stslblc or 
unstable. We shall now show that for thc Btnard problem cr is real, and the riiargiFurf 
m i e  that separatcs slability from inslability is govcrned by a = 0. To show this, 
multiply Eq. (12.18) by f* (the complex conjugatc or f). aud integrate between 
fi, by parts if neccssary, using thc boundary conditions (12.20). The various terms 
transform as follows: 

where the limils on the integrals have not been explicitly written. Equation (12.18) 
then becomes 

which can be writtcn as 

(1.2.21) 

where 

Similarly, inultiply Eq. (12.19) by w' and integrate by parts. Thc first tenn in 
Q. (12.19) gives 



~ 

The second term in ( I  2.19) gives 

W*(D4 + K4 - 2K’D’)Wdz =s 
= W*D4Wdz + K4 1 W*W dz - 2 K ’ s  W*D2W dz 

= [W*D3W]!$ - DW*D”Wdz + K4/  I WI’dz 

-2K’[W*DW]!:12 +2K2 DW*DWdz s 
= /[ID2W12 +2K21DW12 + K41W12Jdz. (12.23) 

Using Eqs. (1 2.22) and (12.23), the integral of Eq. (12.19) becoines 

t7 
- J1 + J2 = Ra K 2  W*f dz, (12.24 Pr 

where 

51 E [IDWI2 +K21W12]d~, s 
Note that the four integrals I ] ,  12, 51, and 52 are all positive. Also, the right-hand 

si& of Eq. (12.24) is Ra K2 times the complex conjugate of the right-hand side 
or Eq. (12.21). We can thercfore eliminate the integral on the right-hand side of 
thesc equations by taking the complex conjugate of Eq. (1 2.21) and substituting into 
Eq. (12.24). This gives 

Equating imaginary paas 

+ Ra K211] = 0. 

We considcr only the top-heavy case, for which Ra > 0. The quantity within r ] is 
then positivc, and the preccding equation requircs that ai = 0. 

The Bhu-cl problem is one of two well-known problcms in which u is real. (The 
othcr one is the Taylor problem of Couette flow between rotating cylinders. discussed 
in the following section.) In most other probleins cr is complex, and the marginal stale 
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(gr = 0) contains propagating waves. In the B6nard and Taylor problems, however, 
the marginal state corresponds to r~ = 0, and is therefore stutiomry and does not 
contain propagating waves. In these the onsct of instability is marked by a transition 
from the background state to another steady state. In such a case we coinmonly say 
that the principle of exchange of stabilities is valid, and the instability sets in as a 
cellular convection, which will hc cxplained shortly. 
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Solution of tbe Eigenvalue Problem with Two Rigid Plates 
First, we give the solution for the case that is easiest to realize in a laboratory cxper- 
iment, namely, a layer of fluid confined between two rigid plates where no-slip con- 
ditions are satisfied. The solution to this problem was first given by J e h y s  in 1928. 
A much simpler solulion exists for a layer of fluid with two stress-frcc surfaces. This 
will bc discussed latcr. 

For [he marginal state o = OI and the set ( I  2.18) and (12.19) becomes 

(D2 - K2)f  = -W, 

(D' - K2)'W = Ra K 2 f .  
(12.25) 

Eliminating f, we obtain 

(D' - K2)3W = -RaK'W. (12.26) 

The boundary condition (12.20) beconics 

w = D w = @ -  K : ) ~ w = o  a t t = = i .  ( 12.27) 

We have a sixth-ordcr hornogencous differential equation with six homogeneous 
boundary conditions. Nonzero solutions for such a system can only exist €or a partic- 
ular valuc of Ra (for a given K). Ti is therefore an eigenvaluc problem. Note that thc 
Prandtl number has dropped out of the marginal state. 

The point to observe is that the problem is symmetric with mspect to the two 
boundaries, thus the eigenfunctions fall into two distinct classes-thosc with the 
vertical velocity symmetric about the midplanc z = 0, and those with the vertical 
velocity intisyimnetric about thc midplane (Figure 12.3). The gravest even mode 
therefor has one row ofcells, and the gravcst oddmode has two rows ofcells. It can be 
shown hat  the sniallest critical Rayleigh number is obtained by assuming disturbanccs 
in the form of the gravest even mode, which also agrees with experimental findings 
of a single row of cells. 

Bccause thc coefEcients of the govcrning equations ( 12.26) are indcpendent of 
:, the general solution can be expressed as 8 superposition of solutions of thc forni 

w = (?'lZ 

where the six roots of q are givcn by 



Gravest even mode Gravest odd mode 
Figure 12.3 Flow pattern uideigedmctirm slructure of t l ~  gravcst cven rnodc and the p v e s t  odd mode 
in Ihc BCnard problem. 

The h e .  roots of this equation are 

(12.28) 

Taking square roots, the six roots finally become 

where 
113 112 

q o = K [ ( $ )  - I ]  9 

and 4 and its conjugate q* are given by the two roots of Eq. (12.28). 
The even solution of Eq. (1 2.26) is therefore 

W = A cosqor + B coshqz + C CO.&~*Z .  

To apply the boundary conditions on this solution: we find Lhc following 
derivatives: 

D W = -A40 sin qoz + B y  sinh y r  + Cy* sinhq*z, 

(0‘ - K’)2W = A(qi + K’)’ COSqoZ + B(q2 - K 2 ) 2 ~ ~ ~ h q ~  

+ C(q*? - K2j2  cosh 4*z.  

The boundary conditions (12.27) then require 

4* cosh - 
2 

4 cash - 
2 
4 q sinh - 40 -40 sin - 

2 2 

40 
2 

cos - 

(qi + K’)’ COS 0 (4’ - K 2 ) 2  cosh - Y (4*2 - K’)’cosh - 
2 2 
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Figure 12.1 Stable and unstable regions for Binnnrd convection. 

Here, A, B: and C cannot all be zero i l  we want to have a nonzcm solution, which 
requires that the determinant of the matrix must vanish. This gives a relation between 
Ra and the corresponding eigenvalue K (Figurc 12.4). Points on the curve K ( R a )  
represent marginally stable states, which separate rcgions of stability and instability. 
The lowest value of Ra is found to be Racr = 1708, attajned at Kcr = 3.12. AS ull 
values of K m allowed by the system, the flow first becomes unstable when the 
Rayleigh number reaches a value of r i  Ra, = 1708. 

The wavelength at the onset of instability js 

2nd 
1 cr - - ~ 2 d .  - 

KCr 
Laboratmy experiments agree rcrnarkabl y wcll with these predictions, and the solu- 
tion of the Benard problcm is considered one of the major successes of the linear 
stability thcory. 

Solution with Stress-Free Surfaces 

We now give the solution for ;I layer o€ fluid with stress-free surfaccs. This case can 
he approxiiiiately rcalizcd in a laboratory experjmeiit if a laycr of liquid is floating on 



top of a somewhat heavier liquid. The main interest hi the problem, however, is that it 
allows a simplc solution, which was first given by Rayleigh. In this casc the boundary 
coiiditions are w = 1” = p(au/az + a w / a x )  = p(av/Bz + a m / a y )  = 0 at thc 
surfaccs, thc lattcr two conditions resulting from zero stress. Because w vanishes (for 
all x and y) on the boundaries, it follows that the vanishg stress conditions require 
aii/ilz = au/ar! = 0 at ihc boundaries. On differentiating the continuity equation 
with respect to z, it follows that a2w/az2 = 0 on the free surfaces. In terms of the 
complex amplitudes, the eigcnvaluc problem is theirforc 

(0’ - K2)3W = -Ra K’W, (12.29) 

with W = (D2 - K’)’W = D’W = 0 at the surfaces. By expanding (D2 - K2)’, 
the boundary conditions can be written as 

1 w = D ~ W  = D ~ W  = o at z = A ~ ,  

which should be compared with the conditions ( 12.27) for rigid boundaries. 

vmish on the boundaries. The cigenfunctions must therefore be 
Successive differentiation of Eq. (12.29) shows that ull even derivatives of W 

W = A sinnnz, 

when: A is any constant and n is an integer. Substitution into Eq. (12.29) leads to the 
eigenvalue relation 

Ra = (n2xZ + K 2 ) 3 / K 2 ,  (12.30) 

which gives the Rayleigh number in the marginal state. For a given K’, the lowest 
valuc of Ra occurs when n = 2 ,  which is thc gravest mode. The critical Rayleigh 
nuinbcr is obtained by finding the minimuin value of Ra as K 2  is varied, that is, by 
setting d Ra/dK’ = 0. This givcs 

d Ra 3 ( r z  + K2)2  (r2 + K’)3 
d K Z  - K2 K 4  

= 0, -- - 

which rcqiures K:r = nz/2.  Thc corresponding value of Ra is 

Q, = yn4 = 657. 

For a layer with a free uwer surface (where the stress is zero) and a rigid bottom 
wall, the solution of the eigenvalue problem gives Ra, = 1101 and K,, = 2.68. 
This case is of interest in laboratory experiments having the most visual effccts, as 
orighally conducicd by BCnard. 

Cell Patterns 
The linear theory specifies the horizontal wavelength at the onset or instability, but 
not the horizontal pattern of the convective cells. This is because a given wavenumber 



vector K can be deconiposed into two orthogonal components in an infinite number of 
ways. Tf we assume that the experimental conditions are horizontally isotropic, with 
no preferred directions, then regular polygons in the form of equilateral triangles, 
squarcs. and rcgular hcxagons arc all possiblc structurcs. Bhiard’s original experi- 
mcnts showed only hcxagondl patterns: but wc now know that he was observing a 
diffeiznt phenomenon. The obscrvations summarized in Draziii and Reid (1  981) indi- 
cate that hexagons frequenlly predominate initially. As Ra is increased, the cells tend 
to merge and fonn rolls, on the walls of which the fluid rises or sinks (Figure 12.5). 
The cell slniclure becomes more chaotic as Ra is increased furthcr, and the flow 
becomes turbulent when Ra > 5 x lo4. 

The magnitude or direction of flow in the cells cannot he predicted by linear 
theory. After a short time of exponential growth, the flow becomes large enough for 
the nodinear terms to be important and reaches a nonlinear equilibrium stage. Thc 
flow pattern for a hexagonal cell is sketched in Figure 12.6. Particles in the middle 
of the cell usually rise in a liquid and fall in a gas. This has been attributed to the 
property that thc viscosity of a liquid dccrcases with temperature, whereas that of 
il gas incrcascs with tcmperalure. The rising Ruid loses heat by themial conduction 
at thc top wall, travcls horizontally, and then sinks. For a steady cellular pancm, 
the continuous gcncration of kinctic cncrgy is balanced by viscous dissipation. Thc 
generation of kinctic encrgy is maintaincd by continuous rclease of potcntial cncrgy 
duc to hcatiiig at thc bottom and cooling at thc top. 

Rg~irc 12.5 Convcclion rolis in H R6w-d pniblcm. 

Figure 12.6 Plow palieni in B hcxagonnl Rbnad ~ ~ 1 1 .  



An interesting instability results when the density of the fluid depends on two 
opposing gradients. The possibility OC this phenomenon was fist suggestcd by 
S tomel  et al. (1956), but the dynamics of the process was first explained by 
Stem (1960). Turner (1973), and review articles by Huppert and Turner (1981), 
and Tbmer (1985) discuss the dyimics of this phenomenon and its applications 
to various fields such as astrophysics, engineering, and geology. Historically, the 
phenomenon was fist suggested with oceanic application i n  mind, and this is how 
we shall present it. For sea water the density depends on the temperature and 
salt content s’ (kilograms of salt per kilograms of water), so that the density is 
given by 

where the value of a! determines how fast the density dccreases with temperature, and 
the value of #? dctermines how fast the clcnsity increases with salinity. As defined here, 
both a and #3 are positive. The key factor in this instability is that the diffusivity K~ of 
salt in water is only 1% of the thermal diffusivity K .  Such a system can he unsruble even 
when the density decreases upwards. By means of the instability, the flow releases 
the potcntial energy of the component hat is “heavy at the top.” Therefore, the cffect 
ol diffusion in such a system can be to destabilize a stable density gradient. This is in 
contrast to a medium containing a single diffusing componcnt, for which the analysis 
of the prcccding section shows that the effect of diffusion is to stubilize the system 
even when it is heavy at the top. 

Finger Instability 
Considcr the two situations of Figure 12.7, both of which can be unstable although 
each is stably stratified in dcnsity (dp/dz  < 0). Considcr fist the case of hot and 
salty water lying over cold and fi-esh water (Figure 12.7a), that is, when the sys- 
tem is top heavy in sdt. In this casc both d T / d z  and d S / d r  are positivc, and 
we can arrange the composition of water such that thc density decreases upward. 
Because K~ << K ,  a displaced particle would be near thcnnal equilibrium with thc 
surroundings. but would exchangc negligible salt. A rising particle thercfore wo~ild 
be constantly lighter than the surroundings because of thc salinity dcficit, and 
would continue to risc. A parcel displaced downward would similarly continue 
to plunge downward. The basic state shown in Figurc 12.7d is thcrefore unsta- 
ble. Laboratory observations show that the instability in this casc appears in the 
form of a forest of long narrow convectivc cells, callcd sd t  jiizgeis (Figure 12.8). 
Shadowgraph images in the deep occan have confirmed their existcnce in 
nature. 

We can derive a criterion for instability by generalizing our analysis of the BCnd  
convection so as to include salt diffusion. Assume a layer of depth d confined betwccn 
stress-frcc boundaries maintained at constant temperature and constant salinity. If we 
rcpeat the dcrivation of the perturbation equations for the normal modes of the system, 
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Figure 12.7 ’ h o  kinds of double-diffusive instabilities. (a) Finger instability, showing up and downgoing 
salt fingers and their temperature, salinity, and density. Arrows indicate direction of motion. (b) Oscillating 
instability, finally resulting in a series of convecting layers separated by “diffusive” interfaces. Across these 
interfaces T and S vary sharply, but heat is transported much faster than salt. 

Figure 12.8 Salt fingers, produced by pouring salt solution on top of a stable temperature gradient. Flow 
Visualization by fluorescent dye and a horizontal beam of light. I. ’hrner, Nuturwissenschfien 7 2  70-75, 
1985 and reprinted with the permission of Springer-Verlag GmbH & Co. 



the equations ha t  replacc Eq. (12.25) are found to be 

(D2 - K 2 ) f  = -W. 
KS -(D2 - K2)i = -W, 

(D' - K2)*W = -Ra K'f + Rs' K'i. 

where S (z)  is the complex amplitude of h e  salinity perturbation, and we havc defined 

(12.31) 
K 

and 
gPd%S/dz) Rs' = 

V K  

Nolc that K (and not K ~ )  appcars in the definition of Rs'. In contrast to Eq. (12.31), 
a positive sign appe'ued in Eq. ( 12.25) in font  of Ra because in the preceding section 
Ra was defined to be positive for a top-heavy situation. 

It is secn fivm the first two of Eqs. (12.31) that the equalions for f and .?K,/K 

are the same. Thc boundary conditions are also tlic same for thew variables: 

Tt follows that we must lmvc f = ~ K J K  evcrywhere. Equations (12.31) therefore 
become 

(0' - K 2 ) f  = -W. 

(0' - K')2W = (Rs - Ra)K'f, 

where 

Rs' K g/?d'(dS/dz) RsE-- - 
4 VKS 

The preceding set is now idcntical to the set (12.25) for the BCnard convection, with 
(Rs - Ra) replacing Ra. For strcss-free boundaries, solutioii of h e  preceding scction 
shows that the critical value is 

RS - Ra = $n4 = 657, 

which can bc written as 

(1 2.32) 

Even if cx(dT/dz) - P(dS/dz) > 0 (i.e., decreases upward), the condition (1  2.32) 
can be quitc easily salisfied because K~ is much smdcr  tlian K. Thc flow can thci-cfore 
be made unstable simply by ensuring that the Factor wiihin [ ] is positive and making 
d large enough. 



The analysis prcdicts that thc latcral width ofthc ccll is of the ordcr of d ,  but such 
widc cells are not observed at supercritical stages when (Rs - Ra) far exceeds 657. 
Instead, long thin salt fingers are observed, as shown in Figure 12.8. If the s'dinity 
gradient is I'arge, then experiments as well as calculatioiis show that a deep layer 
of salt fingers beconies unstable and breaks down into a series of convective layers, 
with fingers codhied to the interfaces. Oceanographjc observations frequently show 
n series of staircase-shaped vertical distributions of salinity and tcmperature, with a 
positive overall dS/dz  and d T / d z :  this can indicate salt finger activity. 

Osciktiug Instability 
Consider next the case of cold and fresh water lying over hot and salty water 
(Figure 12.7b). h this case both dT/dz  and dS/& are negative, and we can choose 
thcir values such that the density decreases upwards. Again the system is unstable, but 
the dynamics are different. A particle displaced upward loses heat but no salt. Thus it 
bccomcs hcavier than the surroundings and buoyancy forces it back toward its initial 
position. resulting in ai oscillation. Howevcr, a stability calculation shows that a lcss 
than peifect heat conduction results in a growing oscillation, although some cncrgy 
is dissipated. In this case the growth rate cr is complcx. in contraqt to the situation of 
Figure 12.7a where it is red. 

Laboratory experiments show that thc initial oscillatory instability does not last 
long, and eventually rcsults in the formation of a number of Iiorizontal c~~.orwccring 
luyers, as sketched in Figure 12.7b. Consider thc situation whcn a stable salinity gra- 
dicnl in  an isothernial fluid is heated from below (Figurc 12.9). Thc initial instability 
starts as a growing oscillation near the bottom. As thc heating is continued beyond the 
initial appearance ofthe instability, a well-mixcd laycr dcvclops. capped by a salinity 
step, a tcmperature step, and no density step. The heat flux through this skp forms a 
thennal boundary layer, as shown in Figure 12.9. As the well-mixcd layer grows, the 
tcmpcrature step across the thennal boundary laycr bccoincs larger. Eventually, the 
Raylcigh number across the thermal boundary layer bccomcs critical. and a second 

Figure 13.9 Distributions ol' salinity. Lcmpmlure. and dewily. gcncmkd hy heating n linear ralinily 
gradient fium bclow. 



convecting layer forms on top of the fist. The second layer is maintained by heat flux 
(and negligible salt flux) across a s h - p  laminar interface on top of the first layer. This 
process conlinues until a sttlck of horizontal layers forms one upon another. From 
comparison with the Btnard convection, it is clear that inclusion of a stable salinity 
gradient hat prevented a complete overturning h m  top to bottom. 

The two exaniples in this section show that in a double-component syslern in 
which the diffusivities for the two components are different, the effect of diffusion 
can be destabilizing, even if the system is judged hydrostatically stable. hi contrast, 
diffusion is stabilizing in a single-component system, such as the B6nard systcm. The 
two requirements for the double-diffisive instability are that the diffusivities of the 
components be differcnt, and that the components make opposite contributions to 
the vertical density gradient. 

In this section we shall consider the instability of a Couelle flow between concentric 
rotating cyhders, aproblem first solved by Taylorin 1923. Tn many ways the problem 
is similar to the B6nard problem, in which there is a potentially unstable arrangement 
of M “adverse” temperature gradient. In the Couette flow problem the source of the 
instability is the adverse gradicnt of angular momentum. Whereas conveclion in a 
hcated layer is brought about by buoyant forces becoming laxe enough to overcome 
thc viscous resistance, the convection in a Couette flow is generated by the ceiitrifugal 
forccs being able to overcome the viscous forces. We shall first present Rayleigh’s 
discovery of an inviscid stability criterion for the problcm and then outline Taylor’s 
solution of the viscous case. Experiments indicate that the instability initially appears 
in the form of axisymmetric disturbances, for which a/aO = 0. Accordingly, we shall 
limit ourselves only LO the axisymrnetric ctlse. 

Rayleigh’s Inviscid Criterion 
The problem was first considered by Rayleigh in 1888. Neglecting viscous effects, 
he discovered the source of instability for this problem and demonstrated a necessary 
and sufficient condition for instability. Let UR(T)  be the vclocity at any radial dis- 
tance. For inviscid flows US (r) can be any function, but only certain distributions can 
be stablc. Imagine that two fluid rings of equal inasses at radial distances rl and r2 
O r , )  are interchanged. As the motion is inviscid, Kclvin’s theorem requires that the 
circulation r = 2mUo (proportional to the angular momentum rue) should remain 
constant during the interchange. That is, after the interchange, the fluid at i-2 will have 
thc circulation (namely, rl) that it had at rl beforc the interchange. Similarly, the fluid 
at rl will have the circulation (namely, r2) that it had at r2 before the intei-change. The 
conscrvation or circulation requires that the kictic energy E must change during the 
interchange. Because E = U i / 2  = r2 /8n2r2 ,  we have 



so that the kinetic energy change per unit mass is 

Becaiise r l  > rl , a velocity distribution for which I’i > ri would make A E pos- 
itivc, which iniplies that an external source of energy would be necessary to perform 
thc intcrchangc or the fluid rings. Under this condition a spontaneous interchange of 
the rings is not possible, and the flow is stable. On the other hand, if I?’ decreases 
with r ,  then an interchange of rings will result hi a release of energy: such a flow is 
uiistablc. It can be shown that in this situation the centrifugal force in the new location 
or an outwardly displaced ring is larger than the piwailing (radially inward) prcssurc 
gradient force. 

Raylcigh’s criterion can therefore be stated as follows: An inviscid Cazwtte$ow 
is unstable if 

dr’ - < 0 (unstable). 
dr 

Thc criterion is analogous to the inviscid requirement for static instability in a density 
strdtificd fluid: 

dij - > 0 (unstable). 
dz  

Therefore, thc “stratilication” of angular momentum in a Couette flow is unstable 
if it decrcascs radially outwards. Consider a situation in which the outer cylinder is 
held stationary and thc inncr cylinder is rotated. Then dr’/di .  < 0, and Rayleigh’s 
crilerion implies that the flow is inviscidly unstable. As in the BCnard problem, how- 
ever, merely having a potcntially unstable arrangement does not causc instability in 
a viscous medium. Thc inviscid Rayleigh criterion is modificd by Taylor‘s solution 
of the viscous problem, outlincd in what follows. 

Formulation of the Problem 
Using cylindrical polar coordinates (rt 8. z )  and assuming axial symmetry, the equa- 
tions of motion are 

r 
DU’, I ali; 
Dt p az 
a i r  iir 811. 
- + - + -1 = 0. 
ar I’ Bz 

- - - --- + VV3iL‘ 

(12.33) 

where 



and 

We clccompose the motion into a background slate plus perturbation: 

i i=u+u,  
j = P + p .  

The backgnuid state is given by (see Chaptcr 9, Section 6) 

1dP v2 
p dr r 

v, = vi = 0, us = V(i.). -- - - -, 

where 

V = Ar + B / r ,  

with constants defined as 

(12.34) 

(12.35) 

(12.36) 

QzR; - SZl Rf (S21 - !&)R:R; A =  , B E  
R; - R: R;- R: ' 

Here, S21 and SZ2 are the angular speeds of the inner and outer cylinders, respectively, 
and R1 and R2 are their radii (Figure 12.10). 

0, 

Figure 12.10 Delilition sketch or instability in rotating Couette flow. 



Substituting Eq. ( 12.34) into the equations of motion (12.33). neglecting nonlin- 
ear tcnns, and subtracting the background state (1.2.35), we obtain the perturbation 
cqualions 

i h ,  2V 
i!: I’ 
-- 

(12.37) 

i)u, 1.1,. i h ,  
- + - + - = 0. 
ilr I’ i3: 

As the cocfficicnts in lhese equations depend only on r, the cquations adinit solutions 
that dcpcnd on z and I exponentially. We therefore considcr normal mode solutions 
of the form 

(g,.. 11().  11;. p )  = (h,.. &I, ii,. r;) e‘‘+;kz. 

Thc rcquircincnl that the solutions remain houndcd as z -+ f o o  implies that the axial 
wavcnumber k mist be real. Af’tcr substituting the normal modes into (12.37) and 
climinating i, and a, we gct a couplcd syslcm of equations in ii, and GO. Undcr thc 
nat-rmv-,qup ~ ippvxinui f io~,  for which d = R2 - R I  is much smaller than (R1+ R2)/2. 
lhese equations finally hccoinc (see Chandrasekhar (1 961 ) for details) 

(D’ - k’ - a)(D’ - k’);,. = (1  + C T X ) ~ ~ ,  
(12.38) 

(D’ - k’ - a ) i l p  = -Ti~k’h,. 

where 

d 
dr 

D E - .  

We have also dcfiiiccl the Ziylor nuinber 

(12.39) 

11 is the ratio ofthc ccnlri~uugnl force to viscous force. and equals  VI d/v)2(d /R1)  
whcn oiily the inner cylindcr is rotating and tlic gap is nmow. 

Thc boundary conditions are 

c,. = Dc,  = fi;j = 0 at x = 0. 1. ( 12.40) 

Thc cigcnvalues k at the marginal state are found by setting the rcal part of a to zcro. 
On the basis of cxpcrimnental evidence, Taylor assuined that thc principle of cxchaige 
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of stabilities inus1 bc valid for this problem. and thc marginal slates are givcn by 
rn = 0. This was later proven to be true for cyliiiden rotating in the same directions, 
but a general demonstration for all conditions is still lacking. 

Discussion of Taylor’s Solution 
A solution ofthe cigenvalue problem ( I2.38), subjcct to Eq. (12.40), was obtained by 
Taylor. Figure 12.1 1 shows the results of his calculations and his own experiincntal 
vcritication of the analysis. The vertical axis represents the angular velocity of the 
inner cylinder (taken positive), and the horizontal axis represents thc aigular vdocity 
of the outer cylinder. Cylinders rotating in oppositc directions are represenkd by a 
negative S22. Taylor’s solution of thc marginal statc is indicated, with the region above 
the curve corrcspondiiig to instability. Rayleigh’s inviscid criterion is also indicated 
by the straight dashed line. It is apparcnt that the presence ai viscosity can stabilize 
a flow. Taylor’s viscous solution indicatcs that the flow remains stable until a critical 
Taylor number oi 

(12.41) 

is attained. The noncimnensional axial wavenumber at the onsct of instability is found 
to be k,, = 3.12, which implies that the wavelength at onset is ACT = 2xd/kc, 2: 2d. 
The height of one ccll is thereforc ncaly equal to d ,  so that the cross-scction of a cell 
is ncarly r? square. In thc limit Q2/Rl 4 1, thc critical Taylor number is identical 
to thc critical Rayleigh number for thermal convection discussed in thc preceding 
section, for which the solution was given by JeITrcys five years later. The agreement 

4OoO 

Figure 12.11 Taylor’s obscrvation and nm~w-gap calculation of maginit1 stahility in rwktting Couclk 
flow or watcr. The ratio of radii is R ~ / R I  = I .  14. The region above Uie curvc is unslilhlc. The dashed linc 
rq~rcseots Raylcigh’s inviscid criterion, with the region to the lcCl ofthe line ioprcrenting instabilily. 



is expected, because in this limit cr = 0, and thc eigenvalue problem (12.38) reduces 
to that of thc Bdnard problem (12.25). For cylinders rotating in opposite directions 
thc Raylcigh criterion predicts instability, but the viscous soliition can bc stahlc. 

Taylor's analysis of the problcm was cnorinousIy satisfying, both experimentally 
aid theoretically. He mcasurcd thc wavclenglh at the onset of instability by injecting 
dye and obtained ai1 almost cxact agreement with his calculations. The observed onset 
of instability in the Q I  &-plane (Figure 12.1 1 ) was also in remarkable agreement. 
This has prompted remarks such as "the closcncss of the agrccincnt bctwccn his 
tlicurctical and experimental results was without prcccdcnt in thc history of nuid 
nicchanics" (Drazin and Reid 198 1,  p. 1 OS j. Tt evcn lcd some people to suggest happily 
that the agreement can be regardcd i~s a vcrilication of the underlying NavierStokes 
equations. wlich make a host of assumptions iucluding il linearity between stress and 
strabi rate. 

The instability appcars in lhe form of counter-rotating toroidal (or doughnut- 
shaped) voi-rices (Figurc 12.12a) called Tuyloi- vortices. The streamlines are in the 
Ibnn of helises. with axes wrapping around the annulus. soniewhat like the stripes 
on a barber's pole. These vortices thcmsclvcs become unstable at higher values of 
Ta, whcn hey give rise to wavy vortices for which i ) / B H  # 0 (Figure 12.12h). In 
cffcct, the flow has now attained the next higher mode. The number of waves around 
thc annulus depends on the Taylor number, and the wave pattern travels around thc 
annulus. More complicated patterns of vortices result at a bigher rates of rotation, 
finally msulting in the occasional appearance or turbulent patches (Figure 12.12d), 
and then a fdly turbulent flow. 

Phenomena amlogous to thc Taylor vortices are called seconduiyflows because 
they a-e superposed on a priniiiry flow (such as the Couettc flow in thc present case). 
There are two other situations where a combination of curvcd slreamlines (which 
give rise to centrifugal forces) and viscosity i-esult in  instability and steady secondary 
flows in the fomi of vortices. One is the flow through a curved channel, driven by 
a pressure gradient. Thc other is the appearancc of Giirrler vortices in a boundary 
layer fl.ow along a coixave wall (Figure 12.13). Thc possibility of secondary flows 
signifies that the sohitioris o!l/ie Nuvier-Stokes pqucirioris lire noriimique in tbe sense 
that more than one steady solution is allowcd under the same boundary conditions. 
We can ierivc thc for111 of the primaily flow only if we exclude the secondary flow 
by appropriate assumplions. For example, wc can derive the expression ( I  2.36) for 
Couette flow 5y arsainiingthat Ur = 0 and U, = 0, which rule out the secondary flow. 

6. ~cli?ir,-Hcllrlihclt~ .Jrislubili?y 

Instability at Lhc inlerface betwccn two horizontal parallel streanis of different veloci- 
lies and densidcs, wilh the heavier fluid at lhe bottom, is called the Kellin-Helmholtz 
insrubililj. Thc iioiiic is also commonly uscd to describe thc instability of the more 
gciicral case where the variations or velocity and density are continuous tlnd occur 
over a finite thickness. Thc more general casc is discussed in thc following section. 

Assume that the laycrs have infinite depth and lhat the intcrfacc has zero thickness. 
Let U I  and P I  bc Ihc velocity and dcnsity of the basic statc in the upper Iaycr and 27: 
and p~ bc thosc in the bottom laycr (Figure 12.13). By Kelvin's circulation theorem. 





Figure 12.13 Giiiirllcr vorliccs in a houndary layer along B concaw wall. 

Figure 12.14 Disconlinuous shear xwss B dcnsily interface. 

Thc flow is decomposed into a basic stsltc plus perturbations: 

61 = UlX+41? 
42 = u2s + qk? I (12.43) 

wherc thc first tenns on thc right-hand side represent the basic flow of uniform streams. 
Subdtulion into Eq. (12.42) gives the perlurbation equations 

v24, = 0. v=& = 0. (12.44j 

subject to 

( 12.45) 

As discussed in Chaptcr 7, there arc kinematic and dynamic conditions to bc 
satisfied at thc interface. Thc kinematic boundary condition is that the fluid particlcs 



at the interface must move with the interface. Considering particles just above thc 
jntcrface, this requires 

This condition can be linearized by applying it at z = 0 instead of at z = f and 
by neglecting quadratic terms. Writing a similar equation for the lower laycr, the 
kineinatic boundary coiiditions are 

(1 2.46) 

(12.47) 

The dynamic boundary coiidition at the interface is that thc pressure must be 
continuous across the interface (if surface teiisioii is neglected), requiring pi = pz at 
z = f. The unsteady Bernoulli equations are 

a& 1 - j I  

a& 1 - P 2  

at + ,(v4# + - + gz = CI, 

7 + p 2 Y  + - + gz = cz. 
(12.48) P1 

dt P2 

In order that the pressurz be continuous in the uridistrrrbed stare (PI = Pz at z = O), 
the Bernoulli equation requires 

(12.49) 

Introducing the dccomposition (12.43) into the Bernoulli equations (1 2.48), and 
requiring i 1  = 6 2  at z = <, we obtain the following condition at the interface: 

1 2  PI(ZU, - Cl) = - C2). 

Subtracting the basic state condition (12.49) and neglecting nonlinear terns, we obtain 

PI[, + UI - + 4 = P2[ ar w2 + u2- a42 + 4 . ax :=U a.r 2 4  
(1 2.50) a41 341 

The perturbations therefore satisfy Eq. (12.44), and conditions (1 2.45). ( I  2.46), 
( I  2.47), and (12.50). Assume normal modes of the form 

(<, 41,h) = ( f ,  6 1 , 6 2 )  eik(x--c.f)? 

where k is real (and can be takcn posidvc without loss of gcnedity), but c = c, + i q  
is complex. The flow is unstable if there exists a positive c;. mote that in the preceding 



scctions we assumed a time dependence of the form exp(ot), which is more convcnicnt 
when thc instability appears in thc form of convective cells.) Substitution of the normal 
modcs into the Laplace equations (12.44) requires solutions of the form 

where solutions exponentially increasing [om the interface arc ignored because of 
Eq. ( 1  2.45). 

Now Eqs. (1  2.46), (12.47), and ( 12.50) give three homogeneous linear algebraic 
equations Tor determining the thrcc unknowns i ,  A ,  and B; solutions can therefore 
exist only forccrtain values of c(k). Thc kinematic conditions (1 2.46) and (12.47) give 

A = -i(U1 - ~ ) i :  
B = i(U2 - c) ( .  

The Bcrnoulli equation (1 2.50) gives 

Substituting for A and B, this gives thc cigenvalue relation for c(k) :  

kpl(U2 - c ) ~  + kpl (VI  - c ) ~  = g(p2 - p i ) ,  

for which the solutions are 

(1.2.5 1 ) g P 2 - P I  f 
k + P l  k P 2 + / ) I  

C =  

Tt is sccn that both solutions are neutrally stable (c real) as long as the second tcrm 
within the squarc root is smaller than the first; this gives the stable waves of the 
system. Howevcr, there is a growing solution (c; > 0) if 

R(P; - P : )  kPIP?(UI - w'. 
Equation ( 1 2.5 1) shows that for each growing solution there is a corresponding decay- 
ing solution. As explaincd more hlly in thc following scction, this happens bccause 
thc coefficients of the di€ferential equation and the boundary conditions are all real. 
Note also that thc dispersion relation of free waves in an initial static medium, given 
by Equation (7.105). is obtained from Eq. ( 1  2.5 I) by setting U I  = U2 = 0. 

If (/I  # U2. then one can always find a large enough k that satisfics the require- 
ment for instability. Becausc all wavelengths must bc allowed in aninstability analysis, 
we can say that the.flow is ulwaw unsluble (to slior~ wwves) if Ul # U2. 

Considcr now the flow of a homogeneous fluid ( P I  = p.) with a velocity djscon- 
tinuity, which we can call a vortex sheet. Equation ( I  2.51) gives 

2) f - ( ( /I  - UZ). c = - ( U 1 + U  
1 
2 2 
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Figure 12.15 Background velocity ficld as seen by w observer moving with the averiigw velocity 
(ul + u2)/2 or two I~YCIX.  

The vortex sheet is therefore always unstable to all wavelengths. It is also seen that 
the unstable wave moves with a phase velocity equal to the average velocity of the 
basic Row. This must be true from symmetry considerations. In a frame of refer- 
ence moving with the average velocity, the basic flow is symmctric and tbe wave 
thercfore should have no preference between the positive and negative x directions 
(FiguE 12.15). 

The Kelvin-Helmholtz instability is caused by the destabilizing cffect of shear, 
which overcomes the stabilizing effect of stratification. This kind of instability is easy 
lo generate in the laboratory by filling a horizontal glass tube (of rectangular cross 
scctioii) contaiuing two liquids of slightly different densities (one colored) and gently 
tilting it. This starts a current in the lower layer down thc plane and a currcnt in the 
upper layer up the plane. An cxample of instability generated hi this manner is shown 
in Figure 12.16. 

Shear instability of slratified fluids is ubiquitous in the atmosphere and the Ocean 
and belicved to be a major source a1 internal waves in them. Figure 12.17 is a striking 
photograph of a cloud pattern, which is clearly due to the existence of high shear across 
a sharp density gradient. Shnilar photographs of injected dye have been recorded in 
oceanic thermoclines (Woods, 1969). 

Figures 12.16 and 12.17 show die advanced nonlinear stage of the instability in 
which the inkdace is a rolled-up layer of vorticiiy. Such ,an observed evolution of thc 
interface is in agreemcnt with mults ofnumerical calculations in which the nonlinear 
terns are retained (Figure 22.18). 

The sourcc of energy for generating the Kelvin-Helmholtz instability is derived 
from the kinctic energy of the shear flow. The disturbances essentially sincar out thc 
gradienis until they cannot grow any longer. Figure 12. I9 shows a typical behavior, in 
which the unstable waves at the interface have transformed the sharp density proGIe 
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figure 12.18 Nonlinear nurncriad calculation or h e  evolution of a vorlcx sheet that has heeii given a 
small sinusoidal displacement of wdvclength A. Thc density cliffcimce across the iiilcrhw. is zero, aid 
C/o is thc velocity diiTccrcnce across thc sheet. J. S. 'Thrncr, Biwjancy Effecrs in Fluids, 1973 and repriiilcd 
with the permission of Cmibridgc University Picss. 
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Rgum 12.19 Smcaring out ol'rhiup density and velocity profilcs, rcsiilting in ~III incrcusc ofpokii1ial 
c n w  and a decrease ol'kinctic enesy. 

initial vclocity of the lower layer is zero and that of thc upper layer is UI. Then the 
linear velocity profilc after mixing is given by 



Consider thc change in kinetic energy only in the depth range -h < z < h,  as thc 
energy outsidc this range does not change. Then the initial and final kinetic energics 
per unit width ~ J X  

Thc kinctic enerey of the flow has thcrcfore decreased, altbough the total inomennun 
(=$ U &) is unchanged. This is a gcncral result: If the integral of U ( z )  does not 
chaiigc, then the integral of V 2 ( z )  decreases if the gradients decrease. 

In this section we havc coiisidercd h e  case of a discontinuous varialion across 
ai1 infinitely thin interface and shown that the flow is always unstable. The caSe of 
continiious variadon is considered iii the following section. We shall scc that a certain 
condition inust be satisfied in oidcr for the flow to be unstable. 

7. In.s&ibili@ of Cbrilhiuoiidy Sirul#ed I ~ u ~ d l d  Flows 
An instability of great geophysical importance is that of an inviscid stratified fluid 
in horizontal parallel flow. If the density and velocity vary discontinuously across 
an interface, the analysis in the preceding section shows that the flow is uncondi- 
tionally unstable. Although only the discontinuous case was studied by Kelvin and 
Hclmholtz, the more gciicral case of continuous distribution is also commonly called 
the Kehir.-Helmholtz instability. 

Thc problem bas a long history. In 1915, Taylor, on the basis of his calcula- 
tions with assumed distributions of velocity and density, conjectured that a gradient 
Richdrdsonnumber (to be defined shortly) must be less than forinstability. Otherval- 
ues of the critical Richardson number (ranging from 2 to $) were suggested by Prandtl, 
Goldstein, Richardson, Synge, and Chandraseklm. Fjnall y, Miles (1 961) was able to 
prove Taylor’s conjecture, and Howard (1961) immediatcly and elegantly generalized 
Miles’ proof. A short record of the history is given in Miles (1986). In this scction 
wc shall prove thc Richardson number criterion in the manncr given by Howard. 

Taylor-Goldstein Equation 
Consider a horizontal parallel flow U ( z )  dircctcd along the x-axis. The z-axis is taken 
vertically upwards. Thc basic flow is iii equilibrium with the undisturbed density field 
p(:) and the basic pressure field P ( z ) .  We shall oidy consider two-dimensional distur- 
bances on this basic state, assuming that thcy are more unstable than three-dimensional 
disturbances: this is called Squires’ theorem and is demonstrated in Section 8 in 
another context. The disturbed state has velocity, pressure, and density fields of 

rv + U. O , ~ U I .  P + p ,  p + P .  

The contiiiiuty equation rcduces to 

aU au; -+ -=o .  
ax az 



The disturbed vdocity field is assumed to satisfj the Boussinesq equation 

where the density variations are neglected except in the vertical equation of motion. 
Here, pu is a reference density. The basic flow satisfies 

Subtracting the last two equations and dropping nonlincar terms, we obtain thc per- 
turbation equation of motion 

aui sui all, g p  1 a P  
at axj 'axj p,, axi ' 

+ r r . - + + . -  =--J. 
I 3  

- 

The i = 1 and i = 3 components of the preceding equation are 

au  au a u  1 ap 
at az ax po ax' 
- +w- +u- = --- 

(1 2.52) au) a w  g p  1 ap 
at a s  PO Po az 
- + u  -=-----. 

In the absence of diffusion the density is conserved along the motion, which 
requires that D(density)/Dt = 0, or that 

Keeping only the linear terms, and using the fact that is a function of z only, we 
obtain 

which can be writtcn as 

where we have defined 

ap ap d p  
at ax dz  
- + u- + w -  =o, 

ap ap ~ N ~ U ;  
- + U T  - - = 0, 
at 3x 

( 1  2.53) 

as the buoyancy frequency. The last term in Eq. (1 2.53) reprcsents thc density change 
at a point due to the vertical advcction of the basic density ficld across the point. 

Thc continuity equation can be satisfied by defining a streamfunction through 

a* a* 
az ax 

w = --. u = - - ,  



Equations (1 2.52) and ( 1  2.53) thcn become 

(12.54) 

where subscripts denote parlial derivutives. 
As the coefficients of Q. (12.54) are independent of .r and t ,  exponential varia- 

tions in these variables are allowed. Consequently, we assume normal modc solulions 
or the form 

[ p :  p ,  *I = I.~%z). ~ ( e ) ,  $(:)I eik(x-cr’$ 

wherc quantities denoted by ( A )  arc complex amplitudcs. Bccaiise the flow is 
unbounded in x. the wavenumber k must be real. Thc cigcnvalue c = cr + ici can bc 
complcx, and the solution is unstable if there exists a ci > 0. Substituting the normal 
modes, Eq. (12.54) becomes 

1 . .  (U - c)+z - uz* = - - p ,  
Po 

(12.55) 

(12.56) 

(12.57) 

We want to obtain a single equation iu $. The pressure can be eliininated by 
taking the z-derivative of Eq. (12.55) and subtracting Eq. (12.56). The density can be 
eliminated by Eq. (12.57). This givcs 

This is the Taykr-Goldstein equrztiun, which governs the bchavior of perturbations 
in a stratified parallel flow. Note that the complex conjugate of the equation is also 
a valid equation because we can takc the imaginary part of the equation, change the 
sign, and add to the real part of the equation. Now because the Taylor-Goldstein 
equation does not involve any i, a complex conjugate of the equation shows that if 6 
is an eigenfunction with eigenvalue c for some k, then $* is a possible eigenfunction 
with cigenvalue c* for thc same k. Therefore, to each eigenvalue with apositive ci there 
is a corresponding eigenvaluc with a negativc ci. Tn other words, to each growing inode 
thew is a corresponding decaying mode. A nonzero c; therefore ensures instdbilily. 

The boundary conditions are that 71) = 0 on rigid boundaries at z = 0, d. This 
requires @,r = i k$  exp(ikx - ikct)  = 0 at the walls, which is possible only if 

(1 2.59) &(O) = $ ( d )  = 0. 



Richardson Number Criterion 
A necessary condition for linear instability of inviscid stratified p'uzlllel flows can be 
derived by defining a ncw variable # by 

Then we obtain the derivatives 

The Taylor-Goldsdn equation then becomes, after some i-earrangemenl, 

# = 0. (12.60) 
u - c  

1 
2 

d 
-((U - c ) # ~ }  - k'(U - C) + -UZZ + 
dZ 

Now multiply Eq. (1 2.60) by qF (the complex conjugate of #), integrate from z = 0 
to e = d, and use the boundary conditions (0) = # (d) = 0. The first term gives 

where we have used # = 0 at the boundaries. Integrals of the other term.. in Eq. (12.60) 
are also simple to manipulate. We finally obtain 

(12.61) 

The last term in the preceding is real. The imaginary part of the first term can be found 
by noting that 

Then the imaginary part of Eq. (12.61) gives 



The integral on the right-hand side is positive. If the flow is such that N2 > U,’./4 
cvcrywhere. then the preceding equation statcs that ci tiines a positive quantity equals 
ci tiines a negative quantity; this is impossible and requires that ci = 0 for such 21 

case. Defining the gmdieizt Richadson izuriiher 

we cmi say that Xinecrr stability is guarurrteed if the itzeyualily 

( 1  2.62) 

I Ri > 1 (stable). (1 2.63 j 

is scrti.yjicd everywhere in thefim-. 
Notc that h e  criterion does not state that thc flow is necessarily uustable if 

Ri e somewhere, or evcn cvcrywhere, in the flow. Thus Ri e 4 is a necessary 
but not sufficient condition .for instability. For example, iu a jetlike velocity profilc 
zt o( sech’z and an cxponential densityprofile, the flow does not becomc unstable unlil 
the Richardson nurnbcr falls below 0.214. A critical Richardson numbcr lower than 4 
is also found in the pmscncc ofboundaries, which stabiliie the flow. In fact, here is no 
unique critical Richardson numbcr that applies to all distributions of U ( z )  and iV(z). 
Howevzr, several calculations show lhal in inauy shear layers (having linear, tanh, 
or error h c t i o n  profiles for vclocily and density) the flow does becomc unstable to 
disturbances of certain wavclcngihs if the miiimum value of Ri in thc flow (which is 
gcnerally at the center of thc shear layer) is less than i. The “most unstablc” wave. 
defined as the first Lo become unstable as Ri is i-cduced below a, is found to have a 
wavelength A 2: 7h, whcrc h is the tlickness of the shear layer. Laboratory (Scotti 
and Corcos, 1972) as wcll as geophysical observations (Erikscn, 1978) show that the 
requirement 

Rimin e 4, 
is a useful guide for the prediction of instability of a stratified shear layer. 

Howard’s Semicircle Theorem 
A uscful result concerning the behavior of the complex phase speed c in an inviscid 
paralld shear flow, valid both with and without stralification, was derived by Howard 
(1961). To derivc this, rust subsritutc 

s F E -  
U - c ‘  

in [he Taylor-Goldstein equation (1 2.58). With the derivativcs 

&-- = (U - c ) F ~  + U,F. 
@zz = (U - C)F;_ + 2U,F, + U,,F, 



~ 

Equation (12.58) gives 

(17 - c)[(U - c)FZz + 2UzFz - k2(U - c)F]  + N2F = 0, 

where terns involving V,, have canceled out. This can be rearranged in the form 

Multiplying by F*, integrating (by parts if necessary) over the depth of flow, and 
using the boundary conditions, we obtain 

- /(U - c ) ~ &  F: dz - k’ / ( U  - c)’1FI2 dz  + / N 2  I F 1’ dz = 0, 

which can bc written as 

/(U -c)’Qdz = / NZIFIZdz, 
where 

Q = IFr12 +k2[FI2 ,  

is positive. Equating real and imaginary parts, we obtain 

/[(U - c,)’ - c:]Qdz = / N ~ I  F I ~  dz ,  (1  2.64) 

ci /(U - c,)Qdz = 0. (1  2.65) 

For instzlbility ci # 0, for which Eq. (12.65) shows that (U - c,) must change sign 
somewhere in the flow, that is, 

(12.66) 

which states that c, lies in the range of U. Recall that we have assumed solutions of 
the form 

eik(r-cr) - ik(.x-crr) kcir 
- e  e ,  

which imam that c, is the phase velocity in Lhe positive x direction, and kc; is the 
p w t h  rate. Equation (12.66) shows that c, is positive if U is everywherc positive, 
and is negative if U is everywhere negative. In these c a m  we can say that unstable 
waves propagate in the direction of the background flow. 

Limits on the maxiinum growth rate can also be predicted. Equation (12.64) gives 



which, on using Eq. (12.65), becomes 

(U- - e; - c,')Qdz > 0. (1 2.67) 1 '  ' 
Now because ( U i i i i n  - U) e 0 and ( (Imaa - U) > 0. it is always tnie that 

J(Uniiii - U)(unim - W Q ~ Z  < 0. 

which can be recast as 

JWniaxUiniii + u' - u ( u m a x  + Uniin)lQ dz < 0. 

Using Eq. ( 1  2.67), this gives 

/[UniaaUmin + C: + c.: - U(Uniax + Umin)lQdz < 0- 
On using Eq. (12.65): this becomes 

3 3  

WinaxUniiii + + (!r - Cr(uniax + Uinin)lQd~ < 0- J 
Because the quantity within [ ] is independent of z ,  and J Q  dz > 0, we must have 
[ ] < 0. With some rearrangcment, this condition can be written as 

This shows that the coiizylex w w e  rpelociiy c of m y  wzstuhle mode of u disturbmce 
in pcrrrrllel jlows of an. iniiwidfluid must lie imide the semicide in thc? upper hulf of 
the c-pr'tine, which has rhe rmgc of U as the dimnetel- (Figurc 12.20). This is called 
the Hoivud seniicircle rheowri. Tt statcs that the maximum growth rate is limited by 

The theorem is very uscful in searching for eigenvalues c(k) in numerical solution of 
instability prohlcms. 

In our studies of the RCnard and Taylor problcms. we encountcrcd two RQWS in which 
viscosity has a stabilizing eKect. Curiously. viscous effects Cdn also be destubilizing, 
as indicated by sevcrd cillciilations of wall-bounded parallel flows. In this scclion we 
shall derivc thc equation governing the stability of parallel flows of a homogeneous 
viscous fluid. Lct the primary flow be directed along the x direction and vary in thc 
y direction so that U = [ U ( y ) :  0.01. We decompose the total flow as the sum of the 



urnin 

Figurc 12.1) Thc How;lrd semicirclc thcorem. In s~vcral inviscid parallel flows Ilie complcx cigenvaluc 
c must lic witlun the semicirclc shown. 

basic flow plus the perhubation: 

ii = [U + M I  2;. w ] ,  
jj= P + p .  

Both the background and the perturbed flows satisfy the Navier-Stokes equations. 
The perturbed flow satisfies the x-momenhlm equation 

aU a a 
at a? - + (U + M ) p  + It) + v-(U + 24) 

a 1 .  
= - - ( P  ax + p )  + -VZ(U Re + u) ,  (12.68) 

where the variables have been nondimensionalized by a characteristic length scale L 
(say, h e  width of Row), and a characteristic velocity UO (say, the inaximum velocity 
of the basic flow); time is scaled by L/Uo and the pressure is scaled by pUi. The 
Reynolds number is defined as Re = UO L / u .  

The background flow satisfies 

ap I 
0 = -7 + -v2u. 

dx Re 

Subtracting from Eq. ( 12.68) and neglecting terms nonlinear in thc perturbations, we 
obtain the x-momentum equation for the perturbations: 

(12.69) 



Similarly thc y-momentum, z-momentum, and continuity equations for the 
pcrturbations are 

(12.70) 

all a, all) 
- + - + - = 0. 
3.r ay ilc 

Thc coellicients in the perturbation equations (1 2.69) and ( 12.70) depend only on yI 
so that thc cquations admit solutions exponential in x, z, and t .  Accordingly, we 
assumc normal modes of the form 

iu, = [qy), ei(kx-m:--keri (12.71) 

As the flow is unbounded in x and z, thc wavenumber components k and nn must be 
real. The wave spccd c = e,. + ici may bc complex. Without loss of generality, we 
can considcr only positive values for k and nt; the sense of propagation is then left 
open by kccping h e  sign of cr unspecified. The normal modes represent waves that 
travel obliqudy io the basic flow with a wavenumber of magnitude d m  and 
have an aniplitudc that varies in timc as cxp(kcit). Solutions are thercforc stable if 
ci e 0 and unstable if ci  > 0. 

On substitution of thc normal modes, the perturbation equations ( 12.69) and 
( 1  2.70) become 

1 
Re ik(U - c)il + CU, = - i k j  + -[[t,, - (k2 + n i 2 ) i J .  

1 
Re 

ik (U - c)G = -intb + -[Tc,, - (k' + nt2)1iI, 

ikil + il, + iniG = 0. 

( 1  2.72) 

where subscripts denote derivatives with respect to y .  These are the normal mode 
cquations for thrcc-dimensional disturbances. Bcforc proceeding further, wc shall 
first show thal only two-dimensional disturbances need to be considcred. 

Squire's Theorem 
A very useful simplification o f  h e  nonnal modc equations was achicved by Squire in 
1933, showing that ta cucli irrisrable thme-dimerisirmd disturbance there corresponds 
u imm rmsruhlr nvn-dirnmsi~,nnl one. To provc this theorem, consider the Squire 
trarisforniutioii 

P P  
L - k '  
- - -  

(12.73) 



Tn subslituting these transformations into Eq. (12.72): the iirst and third of Eq. (12.72) 
are added; the rest are simply transformed. The result is 

i k i  + i,, = 0. 

These equations are exactly the sanc as Eq. (12.72), but with nz = 5 = 0. Thus, 
to each three-dimeiisional probleni corresponds an cquivalent two-dimensional one. 
Moreover, Squire‘s translormation (1 2.73) shows that the equivalent two-dimensional 
problem is associated with a lower Reynolds number as > k. I1 follows hat the 
critical Reynolds number at which h e  instability starts is lower for two-dimensional 
disturbances. Therefore, we only need to coiisidcr a two-dimensional disturbance if 
we want to determine the minimum Reynolds number for the onset or instability. 

The three-dimensional disturbance ( 1  2.71) is a wave propagating obliquely to the 
basic flow. If we orient h e  coordinate system with the new x-axis in this direction, the 
cquations of motion are such that only the component of basic flow in this direction 
affects the disturbance. Thus, the effective Reynolds number is reduced. 

An argument without using the Reynolds numbcr is now given because Squirc’s 
theorem also holds for scveial other problems that do not involve h c  Reynolds numbcr. 
Equation ( 1  2.73) shows that the growth rate for a two-dimensional disturbance is 
cxp(kcit), whereas Eq. (12.71) shows that thc growth rate of a three-dimensional 
disturbance is exp(kcir). The two-dimensional growth rate is therefore larger because 
Squire’s transformation requires k > k and C = c. We can thercfore say that thc 
two-dimensional disturbances are more unstablc. 

OrrSommerfeld Equation 
Because of Squire’s theorem, we oiily need to consider the set (12.72) with 
nz = 8 = 0. The two-dimensionality allows the definition of a streamfunction 
@ ( x .  y ,  r )  for the perturbation field by 

w 
fiY il -r 

u = -  , v = - - - .  

We assume normal modes of the fomi 

(To be consistent, we should dcnote the complex amplitude of II. by 4; wc are using 
4 instead to follow the standard notation for this variable in the literature.) Then we 
must have 



A single equation in tcrms of 4 can now be found by eliminating the pressure 
from thc sei (12.72). This givcs 

wherc subscripts denote derivatives with respect lo y. It is a fourth-order ordinary 
diffwenlial equation. The boundary conditions at the walls are the no-slip conditions 
11 = u = 0, which rcquirc 

4 = 4,. = 0 at y = yl and y?. (1 2.75) 

Equation ( 12.74) is the well-known On.-Somrnerfeld equation, which govms 
the stability of nearly parallcl viscous flows such as those in a straight channcl or in 
a boundary laycr. Tt is essentially a vorticity equatioii bccausc the pressure has been 
eliminated. Solutions of the OrrSommerkeld equations arc difficult to obtain, and 
only the results of somc simple flows will be discussed in the latcr sections. However, 
we shall first discuss ccrtain rcsirlts obtained by ignoring thc viscous Leri in this 
eq ualion . 

9. Tnuisrid Slabili~?- o$l-+u-allel Floius 
Usetill insights into thc viscous stability of parallel flows can be obtained by first 
assuming that thc disturbances obey inviscid dynamics. The governjng equation can 
be found by letting Rc + 30 in the Orr-Sommcrfcld equation, giving 

(V - C)[f&! - I t 2 # ]  - U.,..,.#= 0, (12.76) 

which is called the KuyleigIi equriori. If the flow is boundcd by walls at yl and yz 
where I! = 0, then the boundary conditions are 

4 = 0 at y = y1 and y:. (1 2.77) 

The set [ 12.76) and (1  2.77) defines an eigenvalueproblem, with c(k)  as the eigcnvalue 
and 4 as thc cigcnfunction. As the equations do not involve i, taking the complex 
conjugate shows that if 4 is an eigenfunction with eigenvalue c for some k, then 
@* is also an cigenfunction with eigenvalue c* for the same k. Therefore, to each 
eigenvalue with a positive ci thcrc is a corresponding eigenvalue with a negative ci. 
Ti1 other words, to euch ginwing triode there is a corresponding decciying made. Stable 
solutions thcrefore can have only a real e.  Note that this is true of inviscid flows only. 
The viscous tcrm in the fiill On4ommerfeld equation (1 2.74) involves an i ,  and thc 
forcgoing conclusion is no longer valid. 

We sliall now show that certain velocity distributions V ( y )  art: potentially uiista- 
blc according to the inviscid Rayleigh equation (12.76). In this discussion it should 
be notcd thdl we are only assuming that the diufurhances obey iiiviscid dynamics: the 
hackgrouiid llow V ( J )  may hc chosen lo be choscn to be any profilc, for example, 
that of viscous flows such as Poiseuille flow or Rlasius flow. 



Rayleigh’s Inflection Point Criterion 
Rayleigh provcd that a necessary (but not suficieiit) criterion for instability of an 
inviscid paralleljow is that the basic velocity pinjile U (y) has a point of injection. 

To prove the theorem, rewrite the Rayleigh equation (12.76) in the form 

and consider the unstable mode lor which c; > 0: and therefore U - c # 0. Multiply 
this equation by 4*, integrate from yl to yz ,  by parts if necessary, and apply the 
boundary condition 4 = 0 at the boundaries. The first term transforms as follows: 

where the limits on the integrals have not been explicitly written. The Rayleigh equa- 
tion then gives 

(1 2.78) 

Thc first term is real. The imaginary part of the second term can be found by multi- 
plying the numerator and denominator by (U - c*). The imaginary part of Eq. (12.78) 
then gives 

(12.79) 

For the unstable case, for which ci # 0, Eq. (12.79) can be satisfied only if U,, changes 
sign at least once in the open interval y~ y e y2. In other words, for instability the 
background velocity distribution must have at lcast one point of inflection (where 
U,, = 0) within the flow. Clearly, the existence of a point of inflection does not 
&&antee a nonzero ci. The inflection point is therefore a nccessary but not sufficient 
condition for iiiviscid instability. 

Fjortoft’s Theorem 
Some seventy years after Rayleigh’s discovery, the Swedish meteorologist Fjortoft in 
1950 discovcd a stronger necessary condition for the instability of inviscid parallel 
flows. He showed that u necessary condition for instability qf inviscid parallelfiws 
is that U,,,(V - VI) < 0 samewhere in tltejow, where VI is the value of U at the 
point of inflection. To prove the theorem, take the real part of Eq. ( 12.78): 

(1  2.80) 

Suppose that the flow is unstable, so that ci # 0, and a point of inflection does exist 
according to the Rayleigh criterion. Then it follows from Eq. (12.79) that 

(12.81) 



Adding Eqs. (1 2.80) and (1 2.8 I), we obtain 

so that UJU - UJ) niirst be negative somewhere in thc flow. 
Some corninon vclocity profiles are shown in Figure 12.21. Only the two flows 

shown in the bottom row can possibly be unstable, for only they satisfy Fjortofi's 
thcorcm. Flows (a), (b), and (c) do not have any inflection point: flow (d) does satisfy 
Rdylcigh's condition but not Fjortoft's bccause U!,.(U - UI) is positive. Note that 

.::,... ......... ..::.. .>. .:: .... ....... ::- :.::s;:.:-:. 

(e) 0 

Figure 12.21 
Fjorltjft's critcrion of' inviscid instahilily. 

Fiamplcx of panllel flows. Poinls of inflection arc dcnokd by 1. Only (c) and (f) satisfy 



an alternate way of stating Fjortoft‘s theorem is that the magnitude of vorticit)l aftlze 
basic.flow must have a nurxinium within the region ufjiow, not at the boundary. In 
flow (d), the maximum magnitude of vorticity occurs at the walls. 

The criteria of Rayleigh and Fjortoft essentially point to the importance of having 
a point of inflection in the velocity profile. They show that flows in jets, wakes, shear 
layers, and boundary layers with adverse pressure gradients, all of which have a point 
of inflection and satisfy Fjortoii’s theorem, arc potentially imstable. On the other 
hand, plane Couette flow, Poiseuille flow, and a boundary layer flow with zero or 
favorable prcssure gradient have no point of inflection in the velocity profile, and are 
stable in the inviscid limit. 

However, ncither of the 1wo conditions is sufficient for instability. An example 
is the sinusoidal profile U = sin y, with boundaries at y = fh. It has been shown 
that the flow is stable if the width is restrictcd to 2b < n, although it has an inflection 
point at y = 0. 

Critical Layers 
Tnviscid parallel flows satisfy Howard’s semicircle theorem, which was proved in 
Section 7 for the more general case oi a stratified shear flow. The theorem states that 
the phase speed c, has a value that lies betwcen the minimum and thc maximum 
values of U ( y )  in the flow field. Now growing and decaying modes are Characterized 
by a nonzcro ci, whereas ncutral modes can have only a real c = e,. It lbllows that 
neutral modcs must have U = c somewhere in thc flow field. The neighborhood y 
around yc at which U = c = e, is called a criticd layer. The point yc is a critical 
point of the inviscid governing equation (12.76), because thc highest derivative drops 
out a1 lhis value of y. The solution of the eigcnfunction is discontinuous across this 
layer. Thc full OrrSommerfeld equation (12.74) has no such critical layer because 
the highcst-order derivative does not drop out when U = c. It is apparent that in a 
real flow a viscous boundary layer must form at the location whcm U = c, and the 
layer becomes thinner as Re -+ cc. 

The streamline pattern in the neighborhood of thc critical layer where U = c was 
given by Kclvin in 1888; our discussion here is adaptd froinDrazin and Reid (1981). 
Consider a flow viewed by an observer inoving with tlie phase velocity c = c,. Then 
thc basic velocity field seen by this observer is (U - c), so that the streamfunction 
duc to the basic flow is 

Q = (U - c ) d y .  s 
The total streamfunction is obtained by adding the perturbation: 

6 = / ( U  - c) dy + A#(y) eikx, (1 2.82) 

whcir: A is an arbitrary constant, and we lmve omitted the time factor on the second 
term because we are considering only neutral disturbances. Near the critical layer 
y = yc, a Taylor series expansion shows that Eq. (1 2.82) is approximately 

4 = $UYc(y - Y , ) ~  + A@(y,) C O S ~ X ,  



Figure 12.22 The Kelvin cill's cyc pallcrn nctlr tl critical layer. showing slrcamliiics as sccn by an ohscnw 
moving with thc wtlvc. 

where UVc is the value of U, at yc;  wc have taken the real part of the right-hand sidc, 
and t h n  @ ( y c )  to be real: Thc streamline pattern corresponding to the preceding 
equation is sketched in Figure 1.2.22, showing the so-called KeAin car's q e  pattern. 

IO. Some l t~sulh  of lbrwlld Piscoirx F10u:s 
Our intuitive expectation is that viscous clTects are stabilizing. The thcrnial and cen- 
trifugal convections discussed carlicr in this chapter have confirmed this intuitive 
cxpeclaiion. However, the conclusion that the effect of viscosity is srdbilizing is no1 
always m e .  Consider the Poiscuille Bow and the Blasius boundary layer profles in 
Figure 12.21, which do not have any inflection point and arc thcrerore inviscidly 
stable. These flows are known to undergo transition to turbulcncc at some Reynolds 
numbcr. which suggests that inclusion of viscous efiects may in k t  be desrubiliz- 
h g  in these flows. Fluid viscosity may thus have a dual effect in the sense that it 
can be stabilizing as wcll as destabilizing. This is indeed true as shown by srdbility 
calculations of parallcl viscous flows. 

The analytical solution of the OrrSommerleld equation is notorioiisly coin- 
plicated and will not be presented here. Thc viscous term in (12.74) contains the 
highest-order derivative, and therefore the eigcnrunction may contain regions of rapid 
variation in which thc viscous effects becomc important. Sophisticated asymptotic 
tcchniques are therefore nwded to treat these boundary layers. Alteinativcl y, solu- 
tions can be obtained numerically. For our purposes, we shall discuss only ccrlain 
Featurcs of these calculations. Additional information can be found in Drazin and 
Reid (1981), and in the revicw arlicle by Bayly, Orszag, and Herbert ( 1  988). 

Mixing Layer 
Consider a mixing layer with the vclocity profile 

L 
Y u = u"otanh-. 

A shbility diagrain for solution of the OrrSommcrfcld equation for this velocity 
distribution is skctched in Figurc 12.23. 1.t is seen that at all Reynolds numbers the 
flow is unstable to waves having low wavenumbcrs in the rangc 0 c k c k,,, wherc 
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Figure 12.23 Marginal stability curvc for ;1 shear layer u = Vu tanh(y/f . ) .  

the upper limit k,, depends on the Reynolds number Re = U"L/u. For high values of 
Re, the rangc of unstable wavenuinbers incrcases to 0 < k c 1/L, which corrcsponds 
to a wavelength range of 00 > A > 25r L. 11 is therefore essentially a long wavelcngth 
instability. 

Figure 12.23 implies that the critical Reynolds nuinbcr in a mixing layer is zcro. In 
fact, viscous calculations for all flows with "inncctional profiles" show a small critical 
Reynolds number; for example, for a jct of the form zi = Usech'(y/L), it is Re,, = 4. 
These wall-he shear flows therefore become unstable very quickly, and the inviscid 
criterion ha t  these flows are always unstable is a fairly good description. The reason 
the inviscid analysis works well in describing the stability characteristics of free shcar 
flows can be cxplained as follows. For flows with inflection points the eigenfunction 
of the inviscid solulion is smooth. On this zero-order approximation, the viscous 
term acts as a regular pci-turbation, and the resulting corrcction to thc eigenfunction 
and eigenvalues can be computed as a perturbation expansion in powcw of the sinall 
parameter 1 /Rc. This is t~uc even though the viscous term in the On-Sommerfcld 
equation contains the highest-order dcrivative. 

The instability in flows with iiiflcction points is observcd to form rolled-up blobs 
or vorticity, much like in Lhc calculations of Figurc 12.18 or in the photograph of 
F i p c  12.16. This behavior is robust and insensitive to Ihc detailed experimental 
conditions. They are therefore easily observed. In contrast, the unstable waves in a 
wall-hounded shear flow are extrcmely dimcult to obsei-ve, as discussed in the next 
section. 

Plane P o i s d e  Flow 
The flow in a channel with parabolic velocity distribution has no point of in flection and 
is inviscidly stable. Howcver, linear viscous calculations show that the flow becomes 
unstable at a critical Rcynolds number of 5780. Nonlinear calculations, which con- 
sidcr the distortion of the basic profile by the finite amplitude of the perturbations, 
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givc a critical number of 25 IO, which a p e s  better with the obscrvcd transition. In any 
case, the keresting point is that viscosity is destabilizing for this flow. The solution 
ol the Orr-Sommcifcld cqualion for the Poiseuillc Row and other parallel flows with 
rigid boundaries, which do not have an inflcction point, is complicated. In conmst 
to flows wilh inflection points, thc viscosity here acts as a singulur pcrturbation, and 
thc cigcnrunction has viscous boundary layers on the channel walls and around crib 
ical layers where U = cr. Thc waves that cause instability in thcsc flows are called 
Tol lmien~c l~ l i ch t jn~  waves, and their experimental dctcction is discussed in the next 
section. 

477 
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Plane Couette Flow 
This is thc flow confined between two parallcl plates; it is driven by the motion of 
onc of the plates parallel to itsclf. The basic velocity profile is lincar, with U = ry. 
Contrary to the expcrimcntally observed fact that thc flow does become turbulent 
at high values of Rc, all linear analyses havc shown that the flow is stable to small 
disturbanccs. 11 is now believed that thc instability is caused by disturbanccs of finite 
inagnitudc . 

Pipe Flow 
The absence of an inflection point in the velocity profile signifies that the flow is 
inviscidly stable. All linear stability calculations of the viscous pn)blem have also 
shown rhal the flow is stablc lo small disturbances. In contrast, most experiments 
show that the transition to turbulence takes placc at a Reynolds number of about 
Rc = U,,,,, d / u  - 3000. However, careful cxpcriments, some of them pcrformed 
by Rcynolds in his classic investigation of the onsct or turbulence, have been able to 
maintain laminar flow until Rc = 50,000. Beyond this thc observed flow is invariably 
turbulent. The observcd transition has been attributed to one of the following cfkcts: 
{I> It could bc a finite amplitude effcct; (2) he  turbulence may be initiated at the 
entrance of thc tube by boundary laycr instability (Figurc 9.2); and (3) the instability 
could be causcd by a slow rotation of rhc inlet flow which, whcn added to the Poiseuillc 
distribution, has been shown to result in instability. This is still under investigadon. 

Boundary Layers with Pressure Gradients 
Rccall from Chaptcr 10, Section 7 that a pressure falling in the direction of flow is said 
to have a “favorable” pdicn t ,  and a pressure rising in the direction of flow is said to 
have an “adverse” gradicnt. It was shown there that boundary layers with an adverse 
pressure gradient havc a point of inflection in the velocity profile. This has a dramatic 
:ffect on the stabilily characteristics. A schematic plot of the marginal stability curve 
Tor a boundary layer with favorable and adversc gradients of prcssure is shown in 
Figure 12.24. The ordinate in the plot represents the longitudinal wavenumber, and 
thc abscissa reprcscnts the Reynolds number based on the free-strcam velocity and 
the displacement thickness S* of the boundary laycr. The marginal stability curvc 
divides stablc and unstablc rcgions, with thc region within thc “loop” reprcsenting 
instability. Because the boundary layer thickness grows along h e  direction of flow, 
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Figure 12.24 Skctch of marginal stability curvcs h a  boundary hycr with favoniblc and advcrsc pressure 
gdicots. 

Rea increases with x ,  and points at various downstmam distances are reprcsented by 
larger values of Res. 

The following features can be noted in the figure. The flow is stablc for low 
Reynolds numbers, although it is unstable at higher Reynolds numbers. Thc cffect of 
inmasing viscosity is therefore stabilizing in this range. For boundary laycrs with a 
zero pressure gradient (Blasius flow) or a horable pressure gradient, the instability 
loop shrinks to zero as Rea + 30. This is consistent with the fact that these flows do 
not have a point of inflection in the velocity profilc and are thcrefore inviscidly stable. 
In contnst, for boundary layers with an adverse pressurc gradient, the instability 
loop does not. shrink to zero; the uppcr branch of the marginal stability curve now 
becomcs flat with a limiting value of k, as Rea + 00. The flow is then unstable to 
disturbanccs of wavelengths in thc range 0 < k k,. This is consistent with h c  
existence of a point of inflcction in thc velocity profile, and the results of the mixing 
layer calculation (Figure 12.23). Note also that the critical Reynolds number is lower 
for flows with adverse pressure gradients. 

Table 12.1 summarizes thc results of the linear stability analyses of some common 
parallel viscous flows. 

The first two flows in the table have points of inflection in the vclocity profile 
and are inviscidly UnStdblC; the viscous solution shows cither a zero or a small critical 
Reynolds number. The remaining flows are stable in the inviscid limit. Of thcse, the 
Blasius boundary layer and the planc Poiseuille flow are unstablc in the prcsence of 
viscosity, but have high critical Reynolds numbers. 

How can Vicosity Destabilize a Flow? 
Let us examine how viscous cffects can be destabilizhg. For this we derive an integral 
form of the kinetic encrgy equation in a viscous flow. The NavierStokes equation 



‘L’ABLE 12.1 Lincu Skihilily Rcsults of Common Viscous Pxdlcl Flows 

Plow u(J)/L’Q Recr R c m k s  
. . . 

Jct sech2(y/L) 4 
Shear layer lanh ()./fa) 0 Always unstllblc 
Blasius 520 Rc h a d  on b* 
Plane Poiseuille I - ( r /LY  5780 L = half-width 
I’ipe How 1 - ( r /  R ) 2  30 Always stablc 
Planc Coucttc Y I l -  30 Always s1ablc 

for the disturbed flow is 

Subtracting the equation of motion for the basic state, we obtain 

J U i  auj all, aui 1 i;)p a b i  
a x j  a x j  axi p h i  ax; i)r + u j -  + uj- + u j -  = +v-, 

which is the quation of motion of the disturbance. The integrated mechanical cnergy 
equation for the disturbance motion is obtdincd by multiplying this equation by ui 

and integrating ovcr the region of flow. Thc control volume is chosen to coincide with 
the walls whcm no-slip conditions are satisfied, and the length of thc control volume 
in the dircction of periodicity is choscn to be an integral number or wavelengths 
(Figurc 12.25). The various tcrms of h e  energy equation then simphfy as follows: 

Here, d A  is an element of surface arm of the control volume, and d V  is an 
element of volume. In thesc the continuity equation aui/8xi = 0: Gauss’ lheorem, 
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Figure 12.25 A conlrol volume with zcro net tlux xmss boundarics. 

and the no-slip and periodic boundary conditions have been used to show that the 
divergencc terms drop out in an integrated energy balance. We finally obtain 

where 
bances in a shear flow defined by U = [ U ( y ) ,  0, 01, the energy cquation becomes 

= u J@ui / a x i ) 2  d V is the viscous dissipation. For two-dimensional distur- 

f /  ; (u2+u2)dV = - u v - d v  -@.  saa: ( 12.83) 

This equation has a simple interpretation. The first Lcrrnis the rate of change of kinetic 
energy ofthe disturbance, and the second term is the rate of production of disturbancc 
energy by the interaction of the “Reynolds s~rcss” uu and the mean shear a U / a y .  The 
concept of Reynolds strcss will be cxplahed in the following chapter. Thc point to 
notc here is that the value of the product uu averaged over a period is zero if the 
vclocity components u and u are out of phase of 90”; for cxample, the mean value of 
uv is zero if u = sin t and t’ = cos $. 

In inviscid parallel flows without a point of inflection in the velocity profilc, the 
u and u components are such that the disturbance ficld cannot extract cnergy from 
the basic shear flow, thus resulting in stability. Thc presencc of viscosity, however, 
changes the phase relationship betwecn u and u, which C ~ U S C S  Reynolds shesscs such 
that the mcan value of -uu(aU/i3y) over thc flow field is positivc and largcr than the 
viscous dissipation. This is how viscous eflects can cause instability. 

1 I .  Ikpcritnenlal KeiiJicalion ifllhuizdary Layer .tmlubilily 
In this section we shall present the results of stability calculations ofthc Blasius bound- 
ary layer profile and compare them with cxperimcnts. Because of the nearly parallel 
nature of thc Blasius flow, most stability calculations are based on an analysis of the 



Orr-Sommcrfcld equation, which assumes a parallel flow. The first calculations were 
pcrformcd by Tollmien in 1929 and Schlichting in 1933. Instead of assuming cxactly 
the Blasius urofilc (which can be specified only numcrically), they used the profile 

0 < y / S  < 0.1724, 
U 
- = [ 1 - 1.03[1 - ( Y / S ) ~ ]  0.1724 < y/S < 1 ,  
u, 

which, like the Blasius profile, has a zcm curvature at the wall. The calculations 
of Tollmien and Schlichting showed that unstable waves appear when the Reynolds 
number is high cnougk the unstable waves in a viscous boundary layer are called 
Tollmien-Schfichting waves. Until 1947 these waves remained undetected, and the 
experimentalists of the period believed that thc transition in a real boundary layer was 
probably a finite amplitude effect. The speculation was that large disturbances causc 
locally adverse pressure gradients, which resulted in a local separation and consequcnt 
transition. The theoretical view, in contrast, was that small  disturbances of thc right 
frequency or wavelength can amplify if thc Rcynolds number is large enough. 

Verification of the theory was ha l ly  provided by some clever experiments con- 
ducted by Schubauer and Skramstad in  1947. The experiments were conducted in 
a “low turbulence” wind tunnel, specially designed such that the intensity of fluc- 
tuations of the free stream was small. The experimental techniquc used was novel. 
Instead of depending on natural disturbances, they introduced periodic disturbances 
of known frequency by means of a vibrating metallic ribbon stretched across the flow 
close to the wall. The ribbon was vibrated by passing an altcrnating current through it 
in the field of a rnagnct. The subsequent development of the disturbance was followed 
downstream by hot wire anemometers. Such techniques have now become standard. 

The cxperirnental data are shown in Figure 12.26, which also shows the cal- 
culations of Schlichting and thc more accurate calculations oi Shen. Instead of thc 
wavenumber, the ordinate represents the frequency of the wave, which is casier to 
measure. It is apparent that the apement  between Shen’s calculations and the expcr- 
imental data is very good. 

The detection of the TollmienSchlichting waves is regarded as a major accom- 
plishment of the lincar stability theory. The ideal conditions for their cxistence require 
two dimensionality and consequently a negligible intensity of fluctuations of thc frcc 
strcam. These waves have been found to bc very sensitive to small deviations from 
the ideal conditions. That is why they can be observed only under very carefully 
controlled experirncntal conditions and require artificial cxcitation. People who care 
about historical fairncss have suggested that the waves should only be referrcd to as 
TS waves, To honor Tollmien, Schlichting, Schubauer, and Skramstad. The TS waves 
have also been observed in natural flow (Bayly et al.. 1988). 

Nayfeh and Saric (i975) treated Falkner-Skan flows in a study of nonparallel sta- 
bility and found that generally there is a decrease in the critical Reynolds number. The 
decreasc is least for favorable pressure gradients, about 10% for zero pressure gradient, 
and grows rapidly as thc pressure gradient becomes more adverse. Grabowski (1980) 
applied linear stability theory to the boundary layer near a stagnation point on a body 
of revolution. His stability predictions were found to be close to thosc of parallel flow 
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Figurc 12.26 Marginal stability curvc for a UIasius boundary layer. Thcorclical solulions of Shen w d  
Schlichting m compared with cxperimenlal data of Schubauer and Shimstad. 

stability theory obtained from solutions of the OrrSommcrfeld equation. Reshotko 
(2001) provides a rcview of temporally and spatially transient growth as a path from 
subcritical (TollmienSchlichting) disturbanccs to transition. Growth or decay is stud- 
ied fromthe OmSommerfeld and Squire equations. Growth may occur because cigen- 
functions of thesc equations are not orthogonal as the opcrdtors are not self-adjoint. 
Results for Poiseuillc pipe flow and compressible blunt body flows arc given. 

1.2. Ciommmts on Aonlinear I@?ch 

To this point we have discussed only linear slability theory, which considers infinites- 
imal pcrturbalions and prcdicts exponential growth when the rclevant parameter 
exceeds a critical value. The cffect of thc perturbations on the basic ticld is neglccted 
in the linear theory. An examination of Eq. (‘I 2.83) shows that the perturbation field 
must be such that the mcan Reynolds stress UV (thc “mean” bcing over a wavelength) 
be nonzcro Cor thc perturbations to extract encrgy h m  the baqic shcar; similarly, the 
heat flux -must be nonzero in a thcrmal convection problem. These rectificd fluxes 
of momentum and hcat changc the basic velocity and temperature ficlds. The lincar 



instability theory neglects these changes of the basic state. A consequence of thc con- 
stancy of the basic state is that thc growth rate of the perturbations is also constanl, 
leading to an exponential growth. Within a short time of such initial growth thc pertur- 
bations becomc so large that the rectified fluxes of momentum and heat significantly 
changc rhc basic state, which in turn altcrs the growth of the perturbations. 

A lrequent effect of nonlincarity is to change the basic statc in such a way as 
to stop the growth of the disturbances after they havc rcached significant amplitude 
through thc initial exponential growth. (Notc, however, that the effect of nonlinearity 
can sometimcs be deslabilizing; for exarnplc, thc instability in a pipe flow may be 
a finite amplitude effect becausc thc flow is stable to infinitesimal disturbanccs.) 
Consider the thermal convcction in the annular space between two vcrtical cylinders 
rotating at the samc speed. The outer wall of the annulus is heated and the inner wall 
is coolcd. For small heating rates the flow js stcady. For large heating rates a system of 
regularly spaced waves develop and pmgrcss azimulhally at a uniForm speed without 
changing thcir shape. (This is the equilibrated form dbaroclinic instability, discussed 
in Chapter 14, Scclion 17.) At still larger hcating rates an irregular, aperiodic, or 
chaotic flow develops. The chaotic response to constant forcing (in this case the 
heating rate) is an inlcresting nonlinear effect and is discussed further in Section 14. 
Meanwhilc, a brief description of the transition lrom laminar to turbulent flow is given 
in the next section. 

1 3. Tmnaition 

The process by which a laminar flow changcs to a turbulent one is callcd lransition. 
lnstability of  a laminar flow does not immediately lead to turbulcnce, which is a 
severcl y nonlinear and chaotic sVagc characterized by macroscopic “mixing” of fluid 
particlcs. After the initial breakdown of laminar flow becausc or amplification of small 
disturbances, the flow goes through a complex sequencc of changes, finally resulting 
in tbe chaotic state we call turbulence. The process oftransition is greatly affected by 
such cxperimental conditions as intensity of fluctuations ol the free stream, roughness 
or the walls, and shapc or the inlet. The sequence of events that lead to turbulence is 
also gwatly dependent on boundary geometry. For cxample, the scenario or transition 
in a wall-bounded shear flow is dinerent from that in free shear flows such as jets 
and wakes. 

Early stagcs of the transition consist of a succession ol instabilities on increas- 
ingly complex basic flows, an idea first suggcsted by Landau in 1944. The basic 
stale of wall-boundcd parallel shear flows becomes unstablc to two-dimensional TS 
waves, which grow and eventually rcach equilibrium al some finite amplitude. This 
steady state can bc considered a ncw background statc, and calculations show that 
it is generally unstable to three-dimensional waves of short wavelength, which vary 
in the “spanwisc” direction. (If x is the direction of flow and y is thc directed nor- 
mal to thc boundary, then thc z-axis is spanwisc.) We shall call this the secondary 
in.Whiliiy. Interestingly, thc secondary instability does not rcach equilibrium at finite 
amplitude but directly cvolves to a fully turbulent flow. Rccent calculations of thc 
sccondsuy instability have been quite successful in rcproducing critical Reynolds 



numbers for various wall-bounded flows: as well as predicting three-dimensional 
slructures observed in experiments. 

A key experimcnt on the thrce-dimensional nature of the transition process in a 
boundary layer was perrormed by Klebanoff, Tidslrom, and Sargcnt (1962). They con- 
ducted a series of controlled expcriments by which they introduced three-dimensional 
disturbances on a field of TS waves in a boundary layer. The TS waves were as usual 
artificially generated by an electmmagnetically vibrated ribbon, and thc three dimcn- 
sionality of a particular spanwise wavelength was introduced by placing spacers 
(small pieces of transparent tape) at equal intervals underneath the vibrating ribbon 
(Figure 12.27). When the amplitude of thc TS waves became roughly 1% of the 
free-slrcam velocity, the three-dimcnsional perturbations grew rapidly and resultcd 
in a spanwise irregularity of the streamwise velocity displaying peaks and vallcys 
in the amplitude of u. The thrcc-dimensional disturbances continucd to grow until 
the boundary layer became fuUy turbulcnt. The chaotic flow sccms to result from the 
nonlinear cvolution of the secondary instability, and recent numerical calculations 
have accurately rcproduced sevcral charactcristic features of real flows (see Figures 7 
and 8 in Bayly et nl., 1988). 
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Figre 12.27 Tbdimenuional unstablc waves initiated hy vibrating ribbon. Measurcd distributions of 
intensity of the u-Huctuaticin ut two dislunccs from thc rihhon arc shown. P. S. KlehtmolTer el., Journal of 
Fluid Mechnnicr 1 2  1-34, 1962 and reprintcd with thc permission of Cambridge Univcrsity Press. 
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It is intercsting to compare the chaos obscrvcd in turbulent shear flows with that 
in controlled low-order dynamical systcms such as the Bkmard convcction or Taylor 
vortex flow. In these low-order flows only a very small number of modes participate 
in the dynamics becausc of the strong constraint of thc boundary conditions. All but 
a few low modes arc identically zero, and the chaos develops in an orderly way. As 
the constraints arc relaxed (we can think of this as increasing the number of allowcd 
Fouricr modes), the evolution of chaos becomes less orderly. 

Transition in a free shcar layer, such as a jet or a wakc, occurs in a di€€erent manner. 
Because of the inflectional velocity profiles involvcd, these flows are unstable at a very 
].ow Reynolds numbers, that is, of ordcr 10 compared to about lo3 for a wall-boundcd 
dow. The hrcakdown of the laminar flow therefore occurs quite readily and close 
to the origin of such a now. Transition in a frce shear layer is characterized by thc 
appearance of a mllcd-up row of vortices, whosc wavelength corresponds to the onc 
with the largcst growth rate. Frequently, thcse vortices p u p  themselves in thc form 
of pairs and result in a dominant wavclength twice that of the original wavelength. 
Small-scale mrbulencc dcvelops within these largcr scale vorlices, finally leading to 
turbulence. 

14. Ile~~?rnminiE;lic Chaos 
The discussion in the prcvious section has shown that dissipative nonlinear systcms 
such as fluid flows reach a random or chaotic state when thc pardmeter measuring 
nonlinearity (say, the Reynolds numbcr or the Rayleigh numbcr) is large. The change 
LO the chaotic stage generally takes placc through a sequencc of transitions, with the 
exact route dcpcnding on the system. It has been realized that chaotic behavior not only 
occurs in continuous systems having an infinite numbcr of degrees of freedom, but 
also in discrctc nonlinear systems having only a small number of degrees of fiecdoin, 
governed by ordinary nonlinear diflerential equations. In this context, a chaotic syslern 
is dcfincd as one in which thc solution is extremely sensitive tu initial conditions. That 
is, solutions with arbitrarily close initial conditions evolvc inlo quite different statcs. 
Other symptoms or a chaotic systcm are that the solutions are uperiudic, and that the 
spectrum is broadband instcad or being composcd of a few discrctc lines. 

Numerical integrations (to be shown latcr in this section) havc recently demon- 
strated that nonlincar systems governcd by a finite set of deterministic ordinary dir- 
ferential equations allow chaotic solutions in responsc to a steady forcing. This fact is 
interesting bccause in a dissipativc lineur system a constant forcing ultimately (after 
the decay or the transients) Icads to constant response, a periodic forcing leads to 
periodic response: and a random forcing Icads to random rcsponse. In thc prcsence of 
nonlinearity, howcvcr, 2 constant forcing can lead to a variable response, both peri- 
odic and aperiodic. Consider again thc experiment mentioned in Section 12, namely, 
thc thermal convcction in lhe annular spslce belwccn two verlical cylinders mvdling 
at h e  same specd. The outer wall of the annulus is heated and thc inner wall is 
coolcd. For small heating rates the flow is steady. For large heating ratcs a system 
of rcgularly spaced wavcs develops and progresses azimuthally at a uniform speed, 
without the wavcs changing shape. At still larger hcdting rates an irrcguhr, aperiodic, 
or chaotic Aow develops. This cxperiment shows lhal both pcriodic and aperiodic flow 
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can rcsult in a nonlinear system cven when the forcing (in this casc the heating rate) 
is constant. Another cxample is the periodic oscillation in the flow behind a blunt 
body at Re - 40 (associated with the initial appearancc of the von Karman vortex 
street) and Ihc breakdown of the oscillation into turbulent flow at larger values of thc 
Reynolds number. 

It has been found that transition to chaos in the solution of ordinary nonlinear 
differenlial equations displays a certain universnl behavior and proceeds in one of a 
few different ways. At the moment it is unclear whether the transition in fluid flows is 
closely related to the development of chaos in the solutions of these simple systems; 
this is undcr intense study. In this section we shall discuss some of thc elementary 
ideas involved, starting with certain dcfinitions. An introduction to the subject of 
chaos is given by BergC, Pomeau, and Vidal (1984); a useful review is given in 
Lanford (1982). The subject has far-reaching cosmic consequences in physics and 
evolutionary biology, as discusscd by Davies (1988). 

Phase Space 
Very few nonlinear equations have analytical solutions. For nonlinear systems, a typ- 
ical procedure is to find a numerical solution and display its properties in a space 
whose axes are the dependeizr variables. Consider the equation governing lhc motion 
of a simplc pendulum of length 1: 

R 
1 

X + - sin x = 0. 

where X is the ungufurdisplacement and X (= d2X/dt2) is the angular acceleration. 
(The cornponcnt of gravity parallel to the trajectory is -g sin X, which is balanced by 
the linear acceleration l X . )  The equation is nonlinear because of thc sin X term. The 
second-order equation can be split into two coupled first-order equations 

x = Y, 
R 
1 

Y = -- sinx. 
(1 2.84) 

Starting with some initial conditions on X and Y, one can integrate set (12.84). The 
behavior of thc system can be studied by describing how the variables Y (=X)  and X 
vary as a function of time. For the pendulum problem, thc space whose axes are X and 
X is called aphuse spare, and the evolution of thc system is describcd by a trujectory 
in this space. The dimension of the phasc space is called the degree of freedom of the 
systcm; it equals the number of independent initial conditions nccessq to specify 
lhe system. For examplc, the degree of hcdom lor the set ( I  2.84) is two. 

Attractor 
Dissipativc systems arc characterized by the existcnce of umucrors, which arc struc- 
tures in the phasc space toward which neighboring trajectories approach as t + oc. 
An attractor can be afiedpoint representing a stablc steady flow or a closed curve 
(called a limit cycle) rcpresenting a stable oscillation (Figure 12.28% b). Thc nature of 



8 )  

stable fixed point 

Extremum X 

stable h i t  cycle 

/ 

Y R  
(c) Bifurcation diagram 

Figure 12.28 Attractors in ii phasc plane. In (a), point P is an attractor. For a I l y g r  value of R, panel 
(h) shows :hat P bwomcx an unstablc fixcd point (a "repeller"), wd h c  mjectories are attracted Lo a limit 
cyclc. Panel (c) is the bilimalion diagram. 

he attractor dcpends on the valuc 01 he nonlinearity parameter, which will be denoted 
by R in this section. As R is increased, thc fixed point represcnting a steady solution 
may change from being an attractor to a repeller with spirally outgoing trajectories, 
signifying that thc steady flow has become unstable to infinitesimal perturbations. 
Frequently, thc trajectories arc then attracted by a limit cycle, which means that thc 
1mslable steady solution givcs way to a steady oscillation (Figure 12.28b). For cxam- 
plc, the steady Row behind a blunt body becomes oscillatory a,. Re is incrcased, 
resulting in thc periodic von Katman vortex strcct (Figure. IO. 16). 

The branching of a solution at a critical value R,  of the nonlinearity parameter 
is called a hifurcarion. Thus, we say that thc stable steady solution of Figure 12.28a 
bihrcates to a stable limit cycle as R incrcases through R,. This can bc mpresented 
on thc p p h  of a dcpcndent variablc (say, X) vs R (Figure 12.28~). At R = R,,, the 
solution curve branchcs into two paths; h e  two values of X on thcse branches (say, 



XI and X2) comspond to the maximum and minimum valucs of X in Figure 12.28b. 
It is seen that thc size of the limit cyclc grows larger as (R - Rcr) becomes larger. 
Limit cycles, representing oscillatory rcsponse with amplitude independent or initial 
conditions, are characteristic features of nonlinear systems. Linear stability thcory 
predicts an exponential growth of the perturbations if R > RETI but a nonlinear theory 
frequently shows that the perturbations eventually equilibrate to a stcady oscillation 
whose amplitude increases with (R - Rcr). 

The Lorenz Model of Thermal Convection 
Taking the cxample of thermal convection in a layer heatcd from below (the BCnard 
problem), Lorenz (1963) demonstrated that the dcvelopmcnt of chaos is associated 
with the attractor acquiring certain strange properties. He considercd a laycr with 
stress-free boundaries. Assuming nonlinear disturbances in the form of rolls invariant 
in the y direction, and dehing a streamrunction in the xz-plane by u = -a+/&, and 
w = a+/ax, he substituted solutions of the form 

+ o( X ( t )  cos nz sin k x ,  
T’ o( Y ( t )  cos K Z  cos kx + Z ( t )  sin 2nzl 

(12.85) 

into the equations of motion (12.7). Hcre, T’ is the departure of temperature from 
the state of no convection, k is the wavcnumber of the pcrturbalion, and thc bound- 
aries arc at z = &$. It is clear that X is proportional to the intcnsily of convectivc 
motion, Y is propo&ional to the tempcrature difference between the ascending and 
descending currents, and Z is proportional to the distortion of the average vertical 
profile of temperaturc from linearity. (Notc in Eq. ( 1  2.85) that the x-averagc of the 
term multiplied by Y (t) is zero, so that this term docs not cause distortion or thc basic 
temperaturc profile.) As discussed in Section 3, Raylcigh’s linear analysis showed that 
solutions of h e  form (12.85), with X and Y constants and 2 = 0, would dcvelop if Ra 
slightly exceeds the critical value Ra, = 27 n4/4. Equations (12.85) are expccted to 
give realistic results when Ra is slightly supercritical but not whcn strong convection 
occurs because only the lowest tcrms in a “Galerkin expansion” arc retained. 

On substitution of Eq. (12.85) into the equalions of motion, Lorenz finally 
obtained 

x = Pr(Y - X), 
Y = -xz + r X  - Y? 
Z = XY - bZ,  

(12.86) 

where Pr is the Prandtl number, r = Ra/Wr, and h = 4n2/(7r2 + k2) .  Equations 
(12.86) rcpresent a set of nonlinear equations with t h e  degrces 01 fkcedom, which 
means that the phase space is thrce-dimensional. 

Equations ( 12.86) allow lhe steady solution X = Y = 2 = 0, repmenting thc 
stale of no convection. For r > 1 the system possesses two additional steady-state 
solulions, which we shall denote by X = = &,/-, 2 = r - 1; lhc two 
signs correspond to the two possible senses of rotation of thc rolls. (The fact that these 
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stcady solutions satisfy EQ. (12.86) can easily be checked by substitution and setting 
X = Y = Z = 0.) Loren showed that the steady-state convection becomes unstablc 
if r is large. Choosing Pr = 10, b = 8/3, and r = 28, he numerically intcgralcd thc 
sct and found that the solution never repeats itself; it is apcriodic and wandcrs about 
in a chaotic manner. Figure 12.29 shows the variation of X ( t ) ,  starling with some 
initial conditions. (The variables Y ( t )  and Z ( t )  also bchavc in a similar way.) It is 
seen that the amplitude of the convccting motion initially oscillales around one of the 
steady values X = &,/-, with thc oscillations growing in magnitude. When 
it is large enough, thc amplitude suddenly goes through zero to start oscillations of 
opposite sign about thc other value of X. That is, the motion switches in a chaolic 
manner bctwccn two oscillatory limit cycles, with the number of oscillalions belween 
transitions secmingly random. Calculations show that thc variables X, Y, and Z have 
continuous spectra and that Lhe solution is extremely scnsitivc to initial conditions. 

Strange Attractors 
The trajcctories in the phase plane in thc Lorenz model of thermal convcclion are 
shown in Figure 12.30. Thc cenlers of the two loops rcprcscnt thc two steady con- 
vections X = y = &,/-, 2 = r - 1. Thc slruclure resembles two rathcr flat 
loops of ribbon, one lying slightly in front of the other along a central band with thc 
two joincd together at the bottom of that band. The lrajectories go clockwise around 
the left loop and counterclockwise around thc right loop; two trajectorics ncvcr inter- 
sect. The structurc shown in Figure 12.30 is an attractor because orbits starting with 
initial conditions oufsidc ofthe attractor merge on it and then follow it. The attraction 
is a rcsult or dissipation in the systcm. The aperiodic attractor, however, is unlikc the 
normal attractor in the form of a fixed point (representing steady motion) or a closed 
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‘X 
Figwe 1230 The Lorenz atwactor. Centers of Lhc two loops reprcscnt the two steady solutions (8. y ,  2). 

curve (representing a limit cyclc). This is because two trajectories on the aperiodic 
utrructor, with infinitesimally different initial conditions, follow each other closely 
only for a while, eventually diverging to very different final states. This is the basic 
reason for sensitivity to initial conditions. 

For these reasons thc aperiodic attractor is called a strunge attructor. The idea of 
a strange attractor is quite nonintuitive because it has the dual property of attraction 
and divergence. Trajectories are attracted from the neighboring region of phase space, 
but once on the attractor the trajectories eventually diverge and result in chaos. An 
ordinary attractor “forgets” slightly different initial conditions, whereas the strange 
attractor ultimately accentuates them. The idea of the strange attractor was first con- 
ccived by Lorem, and since then attractors of other chaotic systems have also been 
studied. They all have the common property of aperiodicity, continuous spectra, and 
sensitivity to initial conditions. 

Scenarios for Tkansition to Chaos 
Thus far we have studied discrete dynamical systems having only a small number 
of degrees of freedom and scen that aperiodic or chaotic solutions result whcn the 
nonlinearity parameter is large. Several routes or scenarios of transition to chaos in 
such systems have been identified. l b o  of these are described briefly here.. 

(1) Trunsition through subharmonic cascude: As R is increased, a typical non- 
linear system develops a limit cycle of a certain frequency w. With further 
increase of R, several systems are found to generate additional hquencies 
42, w/4 ,  w /8 ,  . . . . The addition of frequencies in the €om of wbhannonicv 
does not change the periodic nature of thc solution, but the period doubles 
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Figore 1231 Bifurcation diagrmn during period doubling. Thc period doubles at each vdw R. of the 
nonlinearity paramctcr. 1Jor large n the “bifxcation Lrcc” hwomes self similar. Chaos SCLS in beyond the 
accumulation point H,. 

each time a lower harmonic is added. The period doubling takes place more 
and more rapidly as R is increased, until an accumuhrion point (Figure 12.3 I ) 
is reached, bcyond which the solution wanders about in a chaotic manner. At 
tlis point the peaks disappear: from the spectrum, wbich bccomes continuous. 
Many systcms approach chaotic behavior through period doubling. 
Feigcnbaum (1980) provcd thc important rcsult that this kind of transition 
dcvclops in a universal way, independent or the particular nonlinear systems 
studicd. If R,, represcnts the value for dcvclopment of a ncw subharmonjc, 
thcn R ,  convergcs in a geometric serics with 

That is, thc horizontal gap bctween two bifurcation points is about a fifth of 
the previous gap. The vcrtical gap betwcen h e  branchcs of the bifurcation 
diagram also dccrcaqes, with each gap about two-fifths of the prcvious gap. In 
other words, thc bifurcation diagram (Figurc 12.3 1) becomes “self similar’’ as 
the accumulation point is approached. (Note that Figurc 12.31 has not been 
drawn to scalc, [or illustrative purposes.) Experiments in low Prandtl number 
fluids (such as liquid metals) indicate that BCnard convcction in the form of 
rolls develops oscillalory motion of a certain frequency w at Ra = 2 b .  As 
Ka is further increased, additional Irequencics w/2,  w/4, w/8 ,  w/l6,  and w/32  
have been obscrved. The convcrgence ratio has been mcasured to bc 4.4, close 



to the value of 4.669 predicted by Feigenbaum’s theory. The experimental 
evidence is discussed further in Bergt, Pomeau, and Vidal ( I  984). 

(2) Transition through quasi-periodic regime: Ruelle and Takens (1971) have 
mathematically proved that certain systems need only a small number of 
bifurcations to produce chaotic solutions. As the nonlinearity parameter is 
increased, the steady solution loses stability and bifurcates to an oscilla- 
tory limit cycle with frequency W I  . As R is increased, two more frequencies 
(e and w3) appear through additional bifurcations. In this scenario lhc ratios 
of the three frequencies (such as W I  /%) are irrurioml numbers, so that the 
motion consisting of the three frequencies is not exactly periodic. (When the 
ratios are rational numbers, the motion is exactly periodic. To see this, think 
of thc Fourier scries of a periodic function in which the various terms rcpre- 
sent sinusoids of thc fundamental frequency w and its harmonics 20 ,3w,  . . . . 
Some of the Fourier coefficients could be zero.) The spectrum for these sys- 
tems suddenly develops broadband characteristics of chaotic motion as soon 
as thc tbird frequency 03 appears. Thc exact point at which chaos sets in is 
not easy to detect in a measurement; in fact the third frequency may not be 
identifiable in the spectrum before it becomes broadband. Thc RuellsTakens 
theory is fundamcntally diffcrent from that of Landau, who conjecturcd that 
turbulcnce develops due to an injinite number of bifurcations, cach generating 
a new higher frequency, so that the spectrum becomes saturated with peaks and 
resembles a continuous one. According to BegC, Pomeau, and Vidal(1984), 
the Btnard convection experiments in wuter seem to suggest that turbulence 
in this case probably sets in according to the Ruclle-Takens scenario. 

The development of chaos in the Lorenz attractor is morc complicated and does 
not follow either of thc two routcs menlioncd in the preceding. 

Closure 
Perhaps the most intriguing characteristic of a chaotic system is the cxtreme sensitivity 
to initial codifiom. That is, solutions with arbitrarily close initial conditions evolvc 
into two quite different states. Most nonlinear systems arc susceptible to chaotic 
behavior. Thc extreme sensitivity to initial conditions implics that nonlinear phe- 
nomcna (includjng the wcather, in which Lorem was primarily intmsted when he 
studied the convcction problem) arc essentially unprcdictable, no matter how wcll we 
know the governing equations or the initial conditions. Although the subject of chaos 
has become a scientific revolution recently, the central idea was conceived by Henri 
PoincarC in 1908. He did not, of course, have the computing facilities to demonstrate 
it through numerical integration. 

It is important to realizc that the behavior of chaotic systems is not inrrimicully 
indeterministic; as such the implication of detcnninistic chaos is different from that of 
thc uncertainty principle of quantum mechanics. In any case, the extreme sensitivity 
to initial conditions implies that the future is essentially unknowable because it is 
never possiblc to know the initial conditioiis exuctly. As discussed by Davies (1988), 
this fact has interesting philosophical implications regarding the cvolution of the 
universc, including that of living species. 
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Wc have examined certain clcmenlary ideas about how chaotic bchavior may 
result in simplc nonlinear systems having only a small number or degrees offreedom. 
Turbulence in a continuous fluid medium is capable of displaying an infinite number 
of degrees of freedom, and it is unclear whethcr thc study of chaos can throw a great 
dcal wf light on more complicaled transitions such as thosc in pipe or boundary layer 
flow. However, the fact that nonlinear systems can have chaotic solutions for a large 
value of the nonlinearity parameter (sec Figurc 12.29 again) is an important result by 
itself. 

ILwmises 

1. Consider h e  thermal instability of a fluid confmed between two rigid plates, 
as discusscd in Section 3. It was stated lhcrc without proof that the minimum crilical 
Rayleigh numbcr of Ra, = 1708 is obtaincd for the gravest even mode. To vcrify 
this, consider the gravest odd mode for which 

W =Asinqoz+ Bsinhyz+Csinhq*z. 

(Compare this with the gravest even modc siruclure: W = A cos 90z + B cosh qr! 
+ Ccoshy*z.) Following Chandrasekhar (1961, p. 39), show that the minimum 
Raylcigh number is now 17,610, reached at the wavenumbcr K,, = 5.365. 

2. Consikr the centrifugal instability problem of Section 5. Making the 
narrow-gap approximation, work out the algebra of going from Eiq. (12.37) to 

3. Consider the centrifugal instability problem of Scclion 5. From Eqs. (1  2.38) 

Eq. (1 2.38). 

and (12.40), the cigcnvalue problem for determining the marginal stale (a = 0) is 

( D2 - k2)’i,.  = (1 + a x ) & ,  

( D2 - k2)2he = -Fd k%,: 

(1 2.87) 

(1 2.88) 

with i, = Dli, = l i e  = 0 at x = 0 and 1. Conditions on l o  are satisfied by assuming 
solutions of thc form 

30 

io = c,,, sinrnrx. (1 2.89) 

Inserting this in Eq. ( 1  2.87), obtain an equation Cor h,., and arrange so that the solution 
satisfies the four remaining conditions on i,. With f i r  dctermined in this manner 
and ho given by Eq. (12.89), Eq. (12.88) leads to an eigenvalue problem lor Ta(k). 
Following Chandrasekhar (1961, p. 300). show that the minimum Taylor number is 
givenbyEq.(12.41)andisreachedatkC, =3.12. 

4. Consider an infinitely deep fluid of density PI lying over an infinikly deep 
fluid of dcnsity pz > pi. By selling U1 = Uz = 0, Eq. (1 2.5 1) shows that 

f t r l  

( 12.90) 
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Arguc that if the whole system is given an upward vertical acceleration a, thcn g in 
Fq. ( I  2.90) is replaccd by g’ = g + a. It follows that there is instability if g’ < 0, 
that is, the system is given a downward acceleration of magnitude larger than g. This 
is called the Ruyleigh-Tuylor irastabiliry, which can be observed simply by rapidly 
accelerating a beakcr of water downward. 

5.  Consider the inviscid instability of parallel flows given by the Rayleigh 
equation 

(12.91) (V - c)(Cyy - k%) - UyyC = 0,  

where the y-component of the perturbation velocity if u = C exp(ikx - ikcr). 

Notc that this equation is identical to the Rayleigh equation (1 2.76) written in 
t m  of the strcam function amplitude 4, as it must because C = -ik#. For 
a flow bounded by walls at yl and y2, note that Lhc boundary conditions are 
identical in tcrms of 4 and C. 
Show that if c is an cigenvalue of Fq. (12.91), then so is its conjugate 
c* = c, - ici. What aspect of Eq. (12.91) allows the rcsult to bc valid? 
Lct V(y) be an unrisymmetric jet, so that V ( y )  = -V(-y) .  Dcmonstrate that 
if c(k) is an cigenvalue, thcn -c(k) is also an eigenvalue. Explain the result 
physically in tern$ of the possible directions of propagation of perturbadons 
in an antisymmetric flow. 
Let U ( y )  be a symmetric jet. Show that in this case t: is either symmetric or 
antisymmetric about y = 0. 

[Hint: Letting y +. - y ,  show that the solution C(-y)  satisfies Eq. (12.91) 
with the samc eigenvaluc c. Form a symmetric solution S ( y )  = C(p) + t : ( -y)  = 
S(-y),andanantisymmctricsolutionA(y) = ij(y)-C(-y) = -A(-y).Thcnwrite 
A[S-eqn] - S[A-eqn] = 0, wherc S-eqn indicates the differential equation (12.91) 
in terms of S. Canccling terms this reduccs to (SA’ - AS’)’ = 0, where thc prime 
(‘) indicates y-derivative. Intcgration givcs SA‘ - AS’ = 0, wherc the constant of 
intcgration is zero because of the boundary condition. Another integration gives S = 
bA, where b is a constant of integration. Becausc the symmetric and antisymmetric 
functions cannol be proportional, it follows that one of them must be zero.] 

Comments: If u is symmelric, then thc cross-stream vclocity has the same sign 
across the cntire jet, although the sign alternates every half of a wavelcngth along the 
jet. This mode is consequcntly callcd sinuous. On the other hand, if u is antisymmctric, 
then thc shape of the jet expands and contracts along the length. This mode is now 
generally called the suusuge instability bccause it resembles a line of linkcd sausagcs. 

6. For a Kelvin-Helmholtz instability in a continuously stratified ocean, obtain 
a globally integrated energy equation in the form 

‘ d / ( u ’ +  w 2 + g 2 p 2 / p ~ N 2 ) d V  = - uwU,dV. 
2 dt s 

(As in Figurc 12.25, the integration in x takes place over an intcgral number or 
wavelengths.) Discuss Lhc physical meaning of each term and Lhc mechanism of 
instability. 
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Most flows encountered in engineering practice and in nature are turbulent . The 
boundary layer on an aircraft wing is likely to be turbulent. the atmospheric boundary 
layer over the earth's surface is turbulcnt. and the major oceanic current. are turbu- 
lent . In this chapter we shall discuss certain elementary ideas about the dynamics of 
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turbulent flows. Wc shall see that such Rows do not allow a strict analytical study, and 
one depends hcavily on physical intuition and dimcnsional arguments. Tn spite of our 
cveryday expcrience with it: turbulence is not easy to define precisely. In fact, there 
is a tendency to conruse turbulent flows with “random flows.” With somc humor, 
Lcsieur (1987) said that “turbulcnce is a dangerous topic which is at thc origin of 
serious fights in scientific meetings since it represents extremely different points of 
view, all or which havc in common their complexity, as well as an inability to solve 
the problem. It is even dimcult to agree on what exactly is the problem to be solved.” 

Some characteristics of turbulent flows arc the following: 

Randomness: Turbulent flows seem irrcgular, chaotic, and unpredictable. 
Nonlincun’o: Turbulent flows arc highly nonlinear. The nonlinearity serves 
two purposes. First, it causes the rclcvant nonlinearity parameter, say the 
Reynolds numbcr Re, the Rayleigh number Ra, or the inverse Richardson num- 
ber Ri-’ , to cxceed a critical valuc. In unstable flows small perturbations grow 
spontaneously and frequently equilibrate as finite amplitude disturbances. On 
further exceeding the stability criteria, the new state can bccome unstable to 
morc complicated disturbances, and the flow evcntually reaches a chaotic state. 
Second, thc nonlinearity of a turbulent flow results in vortex stretching, a key 
process by which three-dimensional turbulent flows maintain their vorticity. 
Difusivity: Due to thc macroscopic mixing of fluid particlcs, turbulent flows 
are characterized by a rapid rate of diffusion of momentum and heat. 
h r t i c i ~ :  Turbulence is characterized by high levels of fluctuating vorticity. 
The identifiable structures in a turbulent flow are vaguely callcd eddies. Flow 
visualization of turbulent flows shows various structures-coalescing, divid- 
ing: stretching, and above all spinning. A characteristic feature of turbulence is 
the exislence of an cnormous rangc of eddy sizes. Thc large eddies havc a size 
of order of the width of the region of turbulent flow; in a boundary layer this is 
the thickncss of the laycr (Figure 13.1). .The large eddies contain most of the 

Fignrc 13.1 
boun&q layer thickncss. 

Turbulcnl Ilow in a boundary layer, showing that a I q c  cddy has a size of the tmlcr of 



energy. The energy is handed down from large to small eddics by nonlinear 
interactions, until it is dissipated by viscous diffusion in the smallest eddies, 
whose size is of the order of millimeters. 

(5 )  Dissipabion: The vortex stretching mechanism transfers energy and vorticity 
to increasingly smaller scales, until the gmhents become so large that they are 
smeared out (i.e., dissipated) by viscosity. Turbulent flows therefore require a 
continuous supply of energy to make up for the viscous losses. 

These features of turbulence suggest that many flows that seem “random,” such 
as gravity waves in the ocean or the atmosphere, are not turbulent because they are 
not dissipative, vortical, and nonlinear. 

Incompressible turbulcnt flows in systems not large enough to bc influenced by 
thc Coriolis forcc will be studied in this chapter. These flows are three-dimensional. In 
large-scale geophysical systems, on the other hand, the existence of stratification and 
Coriolis force severelyresmcts vertical motion andleads to a chaotic flow that is nearly 
“geostropic” and two-dimensional. Geostrophic turbulence is briefly commented on 
in Chapter 14. 

Turbulencc research is currently at the forefront of modem fluid dynamics, and some 
of the well-known physicists of this century have worked in this area. Among them 
are G. 1. Taylor, Kolmogorov, Reynolds, Prandtl, von Karman, Heisenberg, Landau, 
Millikan, and Onsagar. A brief historical outline is given in what follows; furthcr 
interesting details can be found in Monin and Yaglom (1 971). The reader is expected 
to fully appreciate these historical remarks only after reading the chapter. 

The first systematic work on turbulence was carried out by Osborne Reynolds 
in 1883. His experiments in pipe flows, discussed in Section 9.1, showed that the 
flow becomcs turbulent or irregular when the nondimensional ratio Re = UL/u, latcr 
named the Reynolds number by Sommerfeld, excceds a certain critical value. (Herc 
Y is the kinematic viscosity, U is the velocity scale, and L is the lcngth scale.) This 
nondimensional number subsequently proved to be the parameter that determines the 
dynamic similarity of viscous flows. Reynolds also separated turbulent variables as 
the sum of a mean and a fluctuation and arrived at the concept of turbulent stress. The 
discovery of the significance of Reynolds number and turbulent stress has proved to 
be of €undamenlal importance in our present knowledge of turbulence. 

In 1921 the British physicist G. I. Taylor, in a simple and elegant study of turbulenl 
diffusion, introduced the idea of a cornlation function. He showed that thc rms dis- 
tance of a particle from its source point initially increases with time ar cx t ,  and subse- 
qucntly as cx ,h, as in arandom walk. Taylorcontinued his oulstanding workin a series 
of papers during 1935-1 936 in which he laid down the foundation of the statistical 
theory of turbulence. Among the concepts he introduced were those of homogeneous 
and isotropic turbulence and of turbulence spectrum. Although real turbulent flows 
are not isotropic (the turbulent stresses, in fact, vanish for isotropic flows), the math- 
ematical techniques involved have proved valuable €or describing the smull scales of 
lwbulence, which are. isotropic. In 1915 Taylor also introduced the idea of mixing 
length, although it is generally credited to Prandtl for making full use of the idca. 



During the 1920s Prandtl and his student von Karman, working in Giittingen, 
Gcrmany, developed the semicmpirical theories of turbulence. The most successful 
of  hese was thc mixing length theory, which is based on an analogy with the conccpt 
of mean frec path in the kinetic theory of gases. By guessing at the correct form for the 
mixing length, Prandtl was able to deduce that the velocity profilc near a solid wall is 
logarithmic, onc or the most reliable results of turbulent flows. Tt is for this reason that 
subsequent textbooks on fluid mechanics havc for a long time glorified the mixing 
length theory. Recently, however, it has bccome clear that thc mixing length thcory is 
not helpful since here is really no rational way of predicting thc form of the mixing 
length. ‘In fact, the logarithmic law can bc justified from dimensional considerations 
alone. 

Sornc vcry important work was donc by the British meteorologist Lewis 
Richardson. In 1922 he wrotc the very first book on numerical weather prediction. 
In lhis book hc proposed that the turbulent kinetic energy is transferred from large 
to small eddies, until it is destroyed by viscous dissipation. This idea of a spectral 
cnergy cascadc is at the heart of our present understanding of turbulent flows. How- 
ever, Richardson’s work was largely ignored at thc time, and it was not until somc 
20 years latcr that the idca af a spectral cascade took a quantitative shape in the hands 
of Kolmogorov and Obukhov in Russia. Richardson also did another important piece 
or work that displayed his amazing physical intuition. On the basis of experimental 
data on the movcrnent of balloons in the atmosphere, he proposed that thc emective 
diffusion coemcient of apatchof turbulcnce is proportional lo L4l3,  whcre 2 is the scalc 
of tbe patch. This is d i e d  Richardson’s [our-third law, which has been subsequcnrly 
found to be in agreemcnt with Kolmogorov’s fivc-third law of spcctrum. 

The Russian mathematician Kolmogorov, gencrdly regarded as the greatest prob- 
abilist ofthc twentieth ccnlury, followed up on Richardson’s idea of a speckdl cnergy 
cascade. He bypothesized that he  statistics of small scales are isotropic and depend 
on only two parameters, namcly viscosity u and the ratc of dissipation E .  On dimen- 
sional grounds, hc derived that the smallest scales must be of size q = (u3/&)’l4. His 
second hypothesis was that, at scales much smaller than 1 and much larger than q: 
there must exist an incrtial subrange in which u plays no role; in this range the statis- 
tics dcpcnd oniy on a single pardmeter E .  Using this idca, in 1941 Kolmogorov and 
Obukhov independcntly derived that the spectrum in thc inertial subrange must be 
proportional to K ’ 5/3, when: K is the wavenumber. The five-third law is one of 
the most important results of turbulence theory and is in agreemcnt with obscrvations. 

There has been much progress in recent years in both theory and observations. 
Among lhese may be mentioned the experimental work on thc coherent structures 
ncar a solid wall. Obscrvations in the ocean and the atmosphere (which VOII Kdrman 
called “a giant laboratory for turbulencc research”), in which thc Reynolds numbers 
are vcry large, arc shedding ncw ligbt on the structure of stratified turbulcnce. 

3. Auwages 

Thc variables in a turbulent flow are not deterministic in dctails and h v e  to be treated 
as sroc:hu.sric or random variables. In this section we shall introducc certain dcfinitions 
and nomcnclature uscd in the thcory of random V~idbleS. 
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Figure 13.2 Stationary and nonstatiowy time scrics. 
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(b) Nonstationary 

Let u ( t )  be any measured variable in a turbulent flow. Consider first the case 
when the “average charactcristics’’ of u(t)  do not vary with time (Figure 13.2a). In 
such a case we can d e h e  the average variable as the time mean 

(13.1) 

Now consider a situation in which the average charactcristics do vary with time. An 
examplc is the decaying series shown in Figure 13.2b, which could represent the 
vclocity of a jet as lhc pressure in the supply tank falls. In this case the average is 
a function of time and cannot be formally defined by using E!q. (13.1), because we 
cannot specify how large the averaging interval to should be made in evaluating the 
integral ( 1  3.1). If we take to to be vcry largc then we may not get a “local” average, 
and if we take to to be very smal l  then we may not get a rcliable average. In such 
a ca$e, however, onc can still define an average by performing a large number of 
experiments, conducted undcr identical conditions. To definc this average precisely, 
we first need to introduce certain tcnninology. 

A colkction of experiments, pcrFonned under an identical sct of experimental 
conditions, is called an ensemble, and an average over the collection is called an 
ensemble uverage, or expected value. Figure 13.3 shows an example of several records 
of a random variable, for example, thc velocity in the atmospheric boundary laycr 
measured from 8 AIM to 10 AM in lhc morning. Each record is measured at the same 
place, supposedly undcr identical conditions, on different days. The ilh record is 
denoted by ui (t). (Here the superscript does not stand for power.) A11 records in the 
fi,ourc show that for some dynamic reason the velocity is decaying with time. In other 
words, the expected velocity at 8 AM is larger than that at 10 AM. It is clear that the 
average velocity at 9 AM can be €ound by adding togelher the velocily at 9 AM for 
each record and dividing the sum by the number of records. We thereforc define the 
ensemble average of u at time t to be 

. N 

(13.2) 
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Figure 13.3 An cnscmhle offunctions u(f). 

whcre N is a large number. From this it follows that thc average derivativc a1 a certain 
time is 

1 
- au I i ) d ( t )  au2( t )  au3( t )  

+T at at N at 
+-+... - =  - -  [ 

- ( u ' ( r )  + U 2 ( t )  + * * - } = -. 1 ;  i) 1 
=%[N 

This shows that the operationof differentiation commutes with the operationof enscm- 
ble avcraging, so that their orders can be interchanged. In a similar manner we can 
show that the operation of integrdtion also commutes with enscmble averaging. We 
thcrcfore have thc rules 

( 1  3.3) 

(13.4) 

Similar rules also hold when Lhe variablc is a function of space: 
- 

(13.5) 

u d ~ =  iidx. ( 1  3.6) 

The rulcs of commutation (13.3)-(13.6) will be constantly used in the algebraic 
manipulations throughout the chapter. 

a u  a i  
axi ax; '  
-=-  

S I  



As there is no way of controlling natural phenomena in the atmosphere and the 
ocean, it is very difficult to obtain observations under identical conditions. Consc- 
quently, in a nonstationary process such as the one shown in Figure 13.2b, the average 
value of u at a certain time is somelimcs determined by using Eq. (13.1 ) and choosing 
an appropriate avcraging lime to, small compared to the timc during which the avcrage 
properties change appreciably. In any case, for theoretical discussions, all averages 
defined by overbars in this chapter are to be regarded as ensemble avcrages. If the 
process also happens to be stationary, then the overbar can be d e n  to mcan the time 
averagc. 

The various averagcs of a random variable, such as its mcan and rms value, 
are collectively called the sfafistics of thc variable. When the statistics of a random 
variable are independent of time, we say that the underlying process is srarionuiy. 
Examples of stationary and nonstationary processes are shown in Figure 13.2. Fur u 
stationut-yprucess fhe time avemge (i.e., the average over a single record, defined by 
Eq. (13.1)) can be shown tu equal the ensemble average, resulting in considcrable 
simpliiication. Similarly, we definc a homogeneous process as one whose statistics 
are independent of space, for which the ensemble average equals the spatial averagc. 

The mean square value of a variable is called the variance. The square root of 
variance is cdkd the mot-meun-square (rms) value: 

The time series [u(t )  - ii], obtained after subtracting the mean U of the series, reprc- 
sents the fluctuation of the variable about its mcan. The nns value of the fluctuation 
is called the standard deviation, defined as 

us,, = [ (u - ii)*1’/2. 

The autocorrelation of a single variable u(r) at two times and sz is dcfined as 

(13.7) 

In the general case when the scries is not stationary, the overbar is to be regarded 
as an ensemble average. Then the corrclation can be computcd as follows: Obtain a 
number of records of u(t) ,  and on each record read off thc values of u at tl and t 2 .  

Then multiply the two values or u in each record and calculate the average value of 
thc product over the ensemble. 

The magnitude of this average product is small when a positive value of u(t1) is 
associated with both positive andnegative values of u(t2). In such acase the magnitude 
or R(t1: r2) is small, and we say that the values of u at and t2  are “weakly cornlaled.” 
lf, on the olhcr hand, a positive value of u(t1) is mostly associatcd with a positivc 
value ofu(tz), and a negative value of u (t1) is mostly associated with a negative valuc 
or u(t2), then the magnitude of R(t1, tz)  is large and posilivc; in such a case we say 



that the values or u(rl) and u(t2) are "strongly correlated." We may also have a case 
with R( t l , 12 )  large and negative, in which one sign of ~ ( 1 1 )  is mostly associated with 
the opposite sign ofu(t2). 

For a stationary process thc statistics (i.c., the various kinds of averages) are 
independent of the origin of time, so that we can shift the origin of time by any 
amount. Shifting the origin by fl, the autocorrelation (13.7) becomes u(O)u(t2 - t i )  
= u(O)u(r), where t = t2 - rl is the time lug. It is clear that we can also write this 
correlation as u(t)u(r + t), which is a function of r only, t being an arbitrary origin 
of measurement. We can therefore definc an uutucorrehtion function of a stationary 
pi-ocess by 

R ( r )  = u(t)u(r  + t). 
As we have assumed stationarity, the overbar in the aforementioned expression can 
also be regarded as a time avcrage. In such a case the method of estimating the 
comlation is to align the series u(r )  with u( t  + t) and multiply them vertically 
(Figure 13.4). 

We can also define a nurinulized autocorelalion fwctiun 

(1 3.8) 

where 2 is thc mean square value. For any runction u(r ) ,  it can be proved that 

(1 3.9) 

which is called the Schwartz ineyuu2ir;v. It is analogous to the rule that the inner 
product of two vectors cannot be larger than the producl of their magnitudes. For a 
stationary process the mean square value is independent of time, so that the right-hand 
side cd Eq. (13.9) equals 7. Using Eq. (13.9). it follows from Eq. (13.8) that 

r < 1. 

.- 
Figure 13.4 Method of calculating autocornlalion u(i)u(f + 7 ) .  



Fiprc 13.5 Autocorrelation l-unction and Ihc integral time scalc. 

Obviously, r(0)  = 1. For a stationary process thc autocorrelation is a symmetric 
function, because then 

R ( t )  = u(r)u(t + t) = u(t - t ) u ( r )  = u(t)u(t - t) = R ( - t ) .  

A typical autocorrelation plot is shown in Figure 13.5. Under normal conditions 
r goes to 0 as t + 00, because a process becomes uncorrelated with itsell dter a 
long time. A measure of the width of the correlation function can be obtained by 
replacing the measured autocorrelation distribution by a rectangle of height 1 and 
width 9 (Figure 13.5), which is therefore given by 

o(: 

3 1 r ( t ) d t .  (13.10) 

This is called the integral time scale, which is a measure of the timc over which u(t)  
is highly correlated with itself. In other words, 3 is a measure of the “memory” of 
thc process. 

Let S(w) denote the Fourier transform of the autocorrelation function R ( t ) .  By 
definition, this means that 

(13.11) 

Itcanbeshownthat,forEq.(13.11) tobetrue, R(t)mustbegivenintermsof S(w) by 

( 1 3.12) 

Wc say that Eqs. (1 3.11) and (13.1 2) define a “Fourier transform pair.” The relation- 
ships (1 3.1 1 )  and (1  3.12) are not special for the autocorrelation function, but hold 
for any function for which a Fourier transform can be defined. Roughly speaking, a 
Fourier transform can be defined if the function decays to zero fast enough at infinity. 



It is easy to show that S(w) is real and symmetric if R ( t )  is real and syinmetric 
(Exercise !). Substitution o f t  = 0 in Eq. (13.12) gives 

00 - 
u2 = l, S(w) d o .  (1 3.13) 

This shows that S(w)dw is the energy (more precisely, variance) in a lrequency 
band dw centered at w. Therefore, the function S(o) represents the way energy is 
distributed as a function of frequency w. We say that S(w) is the energy spectrum, 
and Eq. (13.11) shows that it is simply the Fourier transform of the autocorrclation 
function. From Eq. (13.11) it also follows that 

which shows that the value of the spectrum at zero frequency is proportional to the 
integral time scale. 

So far we have considered u as a function of time and have defined its autocor- 
relation R ( t ) .  In a similar manner we cm define an autocorrelation as a function of 
the spatial separation between measurements of the samc variable at two points. Let 
u(q, t )  and u (w + x, t )  denote thc measurements of u at points ~0 and xo + x. Then 
the spatial correlation is defined as u(x0, t ) u ( q ,  + x, t ) .  Tf the field is spatially homo- 
geneous, then the statistics are independent of the location XO, so that the correlation 
depends only on the separation x: 

N x )  = 4 x 0 ,  t)u(xo + x, t ) .  

We can now define an energy spectrum S(K) as a function of thc wavenumber vector K 
by the Fourier transform 

where 

(1  3.14) 

( I  3. IS) 

The pah (13.14) and (13.15) is analogous to Eqs. (13.11) and (13.12). In thc 
intcgral(13.14), dx is the shorthand notation for the volume element dx dy dz .  Simi- 
larly, in thc integral (1 3.15), dK = dk dZ dm is thc volume clement in the wavenumber 
space (k, 5, m). 

It is clear that we necd an instantaneous measurcment u(x)  as a function of 
position to calculatc the spatial correlations R ( x ) .  This is a difficult task and so we 
frequently detennine this value approximately by rapidly moving a probe in a desired 
direction. If the speed Uo oi waversing of thc probe is rapid enough, wc can assume 
that the turbulence field is “frozen” and does not change during the measurement. 
Although the probc actually records a time series u ( t ) ,  we may then transform it 



to a spatial series u(x) by replacing t by x/V”.  The assumption that thc turbulcnt 
fluctuations at a point are caused by the advection of a €ozen field past the point is 
called Taylor’s hypothesis. 

So far we have defined autocorrelations involving measurements of the same 
variable u. We can also define a cross-correlation functian between two stationary 
variables u(t)  and u(t)  as 

C ( r )  = rr(t)ZI(t + r ) .  

Unlikc the autocorrelation function, the cross-correlation function is not a symmetric 
function of the time lag r ,  because C(-z) = u(t)u(t - z) # C( t ) .  The valuc of the 
cross-correlation function at zero lag, that is u(t)u(t) ,  is simply written as iii7 and 
called Lhc “correlation” of u and ZI. 

5. Avtmged Qualions oJiWolion 
A turbulent flow instantaneously satisfies thc NavierStokes equations. However, il 
is virtually impossible to predict the flow in detail, as there is an enormous range 
of scales to be resolved, the smallcst spatial scales being less than millimeters and 
the smallest time scales being milliseconds. Even the most powerful of today’s com- 
putem would take an enormous amount of computing lime to prcdict the details of 
an ordinary turbulent flow, resolving all the h e  scales involved. Fortunately, we are 
generally interestcd in finding only the gross characteristics in such a flow, such as 
the dismbutions of mean velocity and temperature. In this section we shall derive the 
cquations of motion for the mean state in a turbulent flow and examine what cffect 
thc turbulent fluctuations may have on the mean flow. 

We assume that the density variations are caused by temperature fluctuations 
alonc. The density variations due to other sources such as the concentration of a solute 
can be handled within the prescnt framework by defining an equivalent temperature. 
Undcr the Boussinesq approximation, the equations of motion for the instantaneous 
variables are 

ai, 
- =o,  
ax, 

( 1 3.1 7) 

(13.18) 

As in the preceding chapter, we are denoting the instantaneous quantitics by a tilde (-). 
Let the variablcs be decomposed into their mean pad and a deviation from the mean: 

(1 3.19) 



(The corresponding density is f i  = ,6+ p’.) This is called theReynolds decomposition. 
As in the preceding chapter, the mean vebcig and the mean pwssure are denoted by 
uppercase letter.s, and their 1urbulentJluctuatir.~ am denoted by bwerctwe 1etter.s. 
This convention is impossible to use jbr  temperature cmd density, for which we use an 
overhcrrfbr the mean state and a primefr,r the turbulent part. The mean quantities 
(Ut P :  7) are to bc regarded as enscmble averages; for stationary flows they can also 
beregardcdas timeaverslges.TakingtheaverageofbothsidcsofEq. (13.1 9), weobtain 

- 
U i  = j = T! = 0, 

showing that the fluctuations have zcro mean. 
The equations satisfied by the mean flow are obtained by substituting the 

Reynolds dccornposition (1  3.19) into the inshntaneous Navier-Stoles equations 
(13.16)-(,13.18)andtakingtheaverageoftheequations.Thethreeequationstransform 
as follows. 

Mean Continuity Equation 
Avcraging the continuity equation (13.1 7), we obtain 

where we have used thc commutation rule (13.5). Using Ui = 0, we obtain 

( 1  3.20) 

which is the continuity equation for the mean flow. Subtracting this.fromthe continuity 
equation (13.17) for the total Row, we obtain 

(13.21) 

which is the continuity equation for thc turbulent fluctuation ficld. I t  is thercfore seen 
that the instantaneous, thc mean, and the turbulent parts of the velocity field are all 
nondivergent. 

Mean Momentum Equation 
The momcntum equation (13.1.6) gives 
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We shall takc the average of each term of this equation. The average of the timc 
derivative term is 

- a sui aui  au, aii, aui 
at at iIt at at ’ 

,(U; + U i )  = - + - = - + - = - 

where we have used the commutation rule (13.3), and i i i  = 0. Thc averagc of the 
advective term is 

where we have used the commutation rule (1 3.5) and iii = 0; the continuity equation 
a u j / a x j  = 0 has also been used in obtaining the last term. 

The average of the pressure gradicnt term is 

ap ay ap +-=---. a 
- - ( P + p ) = %  axi axi axi 

The average of the gravity term is 

g[l - a(T + T’ - To)] = g[1 - a(T - Ti ) ] ,  

where we have used T’ = 0. The average of the viscous term is 

a z  aZU; 
(Vi + U i )  = v-. 

ax jax j  a x j a x j  
v- 

Collecting terms, the mean of the momentum equation ( 1  3.22) takes the form 

(13.23) 

in Eq. (13.23) is generally nonzero, although Ui  = 0. This is The correlation 
discussed furthcr in what follows. 

Reynolds Stress 

Writing the term uiui on the right-hand side, the mean momentum equation ( 1  3.23) 
becomes 

which can be written a5 

(1 3.25) 



whcre 

I I :;j = -ps ; j  + p  - + - -ppouiuj .  (;: 2) - I ( 1  3.26) 

Compare Eqs. (13.25) and (13.26) with the corresponding equations for thc instanta- 
neem flow, given by (see Eqs. (4.13) and (4.36)) 

It is  seen from Eq. (13.25) that there is an additional stress --pow acting in a mean 
turbulent flow. In fact, these extra stresses on lhe mean field of a turbulent flow arc 
much largcr than the viscous contribution p(JUi /axj  + aUi /axj ) ,  exccpt very close 
to a solid surface where the fluctuations are small and mean flow gradients are large. 

The tcnsor --pow is called the Reynolds smxs tensor and h& the nine Cartesian 
components 

This is a symmetric tcnsor; its diagonal components are normal stresses, and the 
off-diagonal components are shear stresses. If the turbulent fluctuations are com- 
pletely isotropic, that is, if they do not have any directional preference, then the 
off-diagonal cornponcnts of w vanish, and u2 = v2 = u)’. This is shown in 
Figure 13.6, which shows a cloud of data points (sometimes called a “scatter plot”) 

- - -  
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Figure 13.6 Isotropic and anisompic turbulent ficlds. Each dot reprcscnts a uu-pair at a ccrldn timc. 



initial position 

Figure 13.7 Movement ol' a particlc in a turbulent shcm flow. 

on a uu-plane. The dots repment the instantaneous values of the uv-pair at diflcrent 
times. In the isotropic case there is no directional prefcrence, and the dots form a 
spherically symmetric pattern. In this case a positive u is equally likely to be asso- 
ciated with both a positive and a negative v .  Consequently, the average value otthe 
product uv is zem ifthe turbulence is isotropic. In contrast, the scatter plot in an 
anisotropic turbulent field has a polarity. The figure shows a case where a positive u 
is mostly associated with a negative v ,  giving UV < 0. 

It is easy to see why the average product of the velocity fluctuations in a turbulent 
flow is not expected to be zero. Consider a shear flow where the mean shear dCJ/dy 
is positive (Figure 13.7). Assume that a particle at level y is instantaneously traveling 
upward (u  > 0). On the average the particle retains its original velocity during the 
migration, and when it arrives at level y + dy it finds itself in a rcgion where a larger 
velocity prevails. Thus the particle tends to slow down the neighboring fluid particles 
after it has reached the level y +dy,  and causes a negative u. Conversely, the particles 
that travel downward (v e 0) tcnd to cause aposilive u in thenew level y - dy. On the 
average, therefore, a positive 1: is mostly associated with a negative u, and a negalive 
v is mostly associated with a positive u. The correlation ijij is therefore negative for 
the velocity field shown in Figure 13.7, where d U / d y  > 0. This makes sense, since 
in this caSe the x-momentum should tcnd to flow in the negative y-direction as the 
turbulence tends to diffuse the gradients and decrease dU/dy. 

The procedure of deriving Eh+ (1.3.26) shows that the Reynolds stress arises out 
ofthenonlinearterm i i j@i&/8xj)  ofthcequationofmotion. Ilisastresscxertedbythe 
turbulent fluctuations on the mean flow. Anothcr way to interpret the Reynolds stress 
is that it is the rate of mean momcntum transfer by turbulent fluctuations. Considcr 
again thc shear flow U ( y )  shown in Figure 13.7, where Lhc instantaneous velocity is 
(V + u, u ,  w). The fluctuating velocity components constantly transport fluid parti- 
cles, and associated momentum, across a plane AA normal to the y-direction. The 
instantaneous rate of mass transfer across a unit area is pou, and consequently the 
instantaneous rate of x-momenlum transfcr is po(V + u)v. Pcr unit area, the avcrage 
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Figure 13.8 Posilivc directions of Keynoldri slmses on a rectangular elcmcnt. 

rite of flow of x-momentum in the y-direction is therefore 

pO(U + u)u = poui + p0i-E = p O E .  

Generalizing, pow is the averugeJux of j-momentum along the i-direction, which 
also equals the average-flux of i-momentum along the j-direction. 

The sign convention for the Reynolds stress is the same as that explaincd in 
Chapter 2: Section 4 On a surface whose outward normal points in the positive 
x-dircclion, a positive rxXy points along the y-direction. According to this convention, 
the Reynolds stresses -po= on a rectangular element are dirccted as in Figure 13.8, 
if they are positive. The discussion in the preceding paragraph shows that such a 
Reynolds stress causes a mean flow of x-momentum along the negative y-direction. 

Mean Heat Equation 
The heat cquation (13.18) is 

The average of the Lime derivativc term is 

a -  aT a P  aT 
at at at ' 

% (T + T') = - + - = - 

The average of the advective term is 



The average of the diffusion term is 

a 2  a2T a2F a2T - ( F  + T’) = - + - = - 
ax; ax; ax; ax;’ 

Collecting terns, the mean heat qualion takes the form 

which can be written as 

Multiplying by poC,, wc obtain 

(1 3.27) 

(1 3.28) 

wherc the heat flux is given by 

- i  Q .  - -k- aT  +mC,u jT’ ,  
- axj 

( 1  3.29) 

and k = poC,,~ is the thermal conductivity. Equation (1 3.29) shows that the fluctu- 
ations cause an additional mean turbulent heurjlux of fi,C,uT’, in addition to the 
molecular heal flux of -kVT. For example, the surface of the earth becomes hot 
during the day, resulting in a decrease of the rncan temperature with height, and an 
associated turbulent convective motion. An upward fluctuating motion is then mostly 
associated with a positive temperature fluctuation, giving rise to an upward heat flux 
poC,wT‘ > 0. 

6. Kinetic Energy Bud@ ofiWean Flow 
In this section we shall examine the sources and sinks of mean kinetic energy of a 
turbulent flow. As shown in Chapter 4, Scction 13, a kinetic energy equation can be 
obtained by multiplying thc equation for DUIDt by U. The equation of motion for 
the mean flow is, from Eqs. (13.25) and (1 3.26), 

whcre thc stress is given by 

(1 3.30) 



Hcrc we have introduced the mean strain rate 

Multiplying Eq. (1 3.30) by Ui (and, of course, summing over i), we obtain 

On introducing cxpression ( 1  3.3 1 )  for t i j ,  we obtain 

Thc fomh term on the right-band sidc is proportional to S i j  (a Ui /ax,) = il Ui /ilxi = 0 
by continuity. The mean kinetic energy balance then becomcs 

(13.32) 

viscoua lms to loss to 

dissipation turbulmc potential 
ene%Y 

Thc icli-hand sidc represents thc rate of change of mean kinetic energy, and the 
right-hand side reprcscnts the various mechanisms that bring about l h i s  changc. The 
first three tcrms are in thc "RUX divergence" form. If Fq. (13.32) is integrated ovcr 
all space to obtain the ratc or changc of the total (or global) kinetic energy, thcn 
the divcrgence terms can be transformed into a surface intcgral by Gauss' theorem. 
These tcrms then would not contribute if the flow is confincd to a limited region in 
space, with U = 0 at sufficient distance. Lt follows that the first three terms can only 
rruizsporl or redistribute energy [om one rcgion to another, but cannot generate or 
dissipate it. Thc fii-st term rcprcsents the transport of mean kinetic cncrgy by the mcan 
prcssure, the second by thc mean viscous stresscs 2vEij,  and thc ihird by Rcynolds 
strcsses. 

The fourth term is thc product of the mean strain rate Eij and the mcan viscous 
strcss 2vEij .  It is a loss at every point in the flow and reprcsents h e  direct viscous 
dkvipofion of mean kinetic mergy. Thc energy is lost to thc agency that generates the 
viscous stress, and so reappears as the kinetic energy of molecular modon (hcat). 

The fifth term is analogous to the fourth tcrm. It can be writlen as 
~ ; u , ~ ( B U ; / a x j )  = W E i j ,  so that it is a product of the turbulent strcss and the mean 
strain rate field. (Note that the doubly contracted product or a symmctric tensor 

- 



and any tensor a Ui /ax  is equal to the product of uiui and symmetric part of a Vi / h j ,  

namely, Eij ; this is proved in Chapter 2, Section 11 .) If the mean flow is given by U ( y ) ,  
then W ( a U i / a x j )  = E ( d U / d y ) .  We saw in the preceding scction that is likely 
to be negative if d U / d y  is positive. The fifth term uiu,(aUi/axj) js therefore likely 
to be negative in shear flows. By analogy with the fourth term, it must represcnt an 
energy loss to the agency that generates turbulent stress, namely the fluctuating field. 
Indced, we shall see in the following section that this term appears on the right-hand 
side of an equation for the rate of change of turbulent kinetic energy, but with the 
sign reversed. Therefore, this term generally results in a loss of mean kinetic energy 
and a gain of turbulent kinetic energy. We shall call this term the shearproduction of 
turbulence by the interaction of Reynolds stresses and the mcan shear. 

The sixth term represents the work done by gravity on the mean vertical motion. 
For example, an upward mean motion results in a loss of mean kinetic energy, which 
is accompanied by an increase in the potential energy of the mean field. 

Thc two viscous terms in Eq. (13.32), namcly, the viscous transport 
2ua(Ui E i j ) / a x j  and the viscous dissipation -2uEijEij, are smallin afully turbulent 
flow at high Reynolds numbers. Compare, for example, the viscous dissipation and 
the shear production terns: 

where U is the scale for mean velocity, L is a length scale (for example, thc width of 
the boundary layer), and u,, is the rms value of the turbulent fluctuation; we have 
also assumed that urms and U are of the same order, since experiments show that 
urms is a substantial fraction of U. The direct influence of viscous terms is therefore 
negligible on the meun kinetic energy budget. We shall see in the following section 
that this is not true for the turbulent kinetic energy budget, in which the viscous terms 
play a major role. What happens is the following: The mean flow loses energy to 
the turbulent field by means of the shear production; the furbulent kinetic energy so 
generated is then dissipated by viscosity. 

7. Kinelic K n e w  Budget of Turbulcnl How 
An equation for the turbulent kinetic energy is obtained by first finding an equation 
for aulat and taking the scalar product with u. The algebra becomes compact if we 
use the “comma notation,” introduced in Chapter 2, Section 15, namely, that a comma 
denotes a spatial derivative: 

3 A  
A,i - 

axi ’ 

where A is any variable. (This notation is very simple and handy, but it may take a 
little practice to get used to it. It is used in this book only if the algebra would become 
cumbersome otherwise. There is only one other place in the book where this notation 
has been applied, namely Section 5.6. With a little initial patience, the reader will 
quickly see the convenience of this notation.) 



Equations of motion for the total and mean flows are, respectively, 

a 
a t  
-(Ui + U i )  + ( U j  + u j ) ( V i  + U i ) . , j  

1 

Po 
= --(I' + p ) , i  - gll - u(T + T' - q1)]Si:3 + u(U; + ~ i ) , j j ,  

Subtracting, we obtain thc equation of motion for the turbulent vclocity u;:  

d l l i  1 
- + U j U i . j  + ~ j U i . j  + ~ j ~ i ~ j  - ( W ) , j  = --pp.; + g a T ' G .  13 + v U i , j j -  
at Po 

(13.33) 

The equation for the turbulent kinctic energy is obtained by multiplying this cquation 
by ui and averaging. 

The first two terms on the left-hand side of Eq. (13.33) give 

i)ui a I -  
at at 2 u i -  = - (-.;) I 

-u;@Jq) . j  = -ii;@Jq).j = 0, 

where we have used thc continuity equation uiqi = 0 and U i  = 0. 
The first and second terms on the right-hand si& of Eq. (13.33) givc 

1 1 
-ui - ~ , i  = --GT)j 7 

Po Po 
u j g a T ' S i 3  = gawT'. 

- 

Thc last term on the right-hand side of Eq. (13.33) gives 

v u ; u i . j j  = v { u i u i . j j  + $ ( u i , j  + u j , i ) ( u i , j  - uj , ; ) } :  

where we have added the doubly contracted product of a symmetric tensor ( U ; J  + u j , i )  

and an antisymmetric tensor ( u i , ~  - u j , i ) ,  such a product bcing zero. In the first term 
on thc right-hand side, we can write u i ~ j  = ( U ~ J  + u j ~ ) , j  because ofihe continuity 
equation. Then wc can writc 

= v { u i ( u i , j  + . j : i ) , j  + (ui,,j + Uj: i ) ( . i , , j  - ;Ui.,j  - $ u j : i ) I  

= v{[ui(ui.j  + . j , i ) ~ : j  - i ( . i . j  + ujyiI2I- 



Defining the fluctuating strain rate by 

we finally obtain 

Collecting terms, the turbulent energy equation becomes 

Iranrpnrt - 
-uiujUi,j + ~ L I W T '  - 2veijeii. ( 1  3.34) 

shear pmd buoyant p d  ~iiscous dins 

The fmt three terms on the right-hand side are in Ihc flux divergence form and con- 
sequently represent the spatial transport of turbulent kinetic energy. The first two 
terms represent the transport by turbulence itself, whereas the third lerm is viscous 
lrdnsport . 

The fourth term -Ui,j also appears in the kinetic energy budgct of the mean 
flow with its sign rcversed, as seen by comparing Eq. (13.32) and Eq. (13.34). As 
argued in the preceding section, - W U i , j  is usually positive, so that this term rep- 
resents a loss of mean kinetic energy and a gain of turbulent kinetic energy. It must 
then represent the rate of generation of turbulent kinetic energy by thc interaction of 
the Reynolds stress with the mean shear Ui,j. Therefore, 

-aUi Shear production = -uiuj - 
axj 

(13.35) 

The fifth term gawT' can have either sign, depending on the nature of the back- 
ground temperature distribution T ( z ) .  In a stable situation in which the background 
temperature increases upward (as found, e.g., in the atmospheric bounddry layer at 
night), rising fluid elements are likely to be associated with a negative temperdture 
fluctuation, resulting in wT' e 0, which means a downward turbulent heat flux. In 
such a stable situation g a m  represents the rate of turbulent energy loss by work- 
ing against the stable background density gradient. In the opposite CSLSC, when the 
background density profile is unstable, the turbulent heat flux wT' is upward, and 
convective motions cause an increase of turbulent kinetic energy (Figure 13.9). We 
shall call g a m  thc buoyantproduction of turbulent kinetic energy, keeping in mind 
that it can also be a buoyant "destruction" if the turbulcnt heat flux is downward. 
Therefore, 

1 Buoyant production = gawT'. ( 1  3.36) - I  



\ 

E = Viscous dissipation = 2 u m .  

convection 

( 1  3.37) 

Figarc 13.Y Heat flux in an unstdblc environment? gencraling turhulenl kioctic cncrgy and lowcring the 
mcan potential cncrgy. 

The buoyant generation of turbulent kinetic energy lowcrs the potential cnergy 
of thc mean field. This can be understood from Figure 13.9, where it is seen that h e  
heavier fluid has moved downward in the final state as a rcsult of the heat flux. This 
can also be demonslrated by dcriving an equalion for thc mean potential cnergy, in 
which thc term gcrwT’appears with a negutive sign on the right-hand side. Thcrefore, 
the huoyunt generution of turbulent kinetic energy by the upward heat flux occurs at 
thc expense of the mean potenrial energy. This is in contrast to the shear pmduction 
of turbulent kinetic energy, which occurs at lhe expensc or the mean kineric energy. 

The sixth knn 2 v m  is the viscous dissipation of turbulent kinetic energy, and 
is usually denoted by E: 

This term is nor negligible in thc turbulent kinetic encrgy equation, allhough an 
analogous term (namely 2uE;) is negligible in the mean kinetic energy equation, as 
discussed in thc preceding section. In fact, the viscous dissipation E is of the ordcr of 
thc turbulence production terms (11IUICJi.j or gcrwT‘) in most locations. 

8. 7MultmCre Prociuclion and Cwcack! 
Evidence suggests that the largc eddies in a turbulent flow arc anisotropic, in  the 
scnse that thcy are “aware” of thc direction of mean shear or of background density 
gradient. In a complctcly isotropic field the off-diagonal components of the Reynolds 
stress cliuj are zero (see Section 5 here), as is the upward heat flux wT‘ because there 
i s  no prcltrence between thc upward and downward dircctions. In such an isolropic 



F i p  13.10 Large eddics oriented dong the principal dirations or a parallel shear flow. Note thal h e  
vortcx aligned wih the a-axis has a posilive u when M is negalive and a ncgative u when u is positivc, 
resulting in W e 0. 

case no turbulent energy can be extracted from the mean field. Therefore, turbulence 
must dcvelop anisotropy if it has to sustain itself against viscous dissipation. 

A possible mechanism of generating anisotropy in a turbulent shear flow is dis- 
cussed by Tennekes and Ludey ( 1  972, p. 41). Consider a parallcl shear flow U ( y )  
shown in Fiprc 13.10, in which the fluid elements translate, rotate, and undergo 
shearing deformation. The nature of deformation of an elemcnt depcnds on the ori- 
entation of the clement. An element oriented parallel to the xy-axes undergoes only 
a shear strain rate Ex,, = f dU/dy, but no linear strain rate (Exx = Eyp = 0). The 
strain rate tensor in the xy-coordinate system is therefore 

I- O $dU/dy 
idU/dy 0 

As shown in Chapter 3, Section 10, such a symmetric tensor can be diagonalized by 
rotating the coordinate system by 45". Along thesc principal axes (denoted by a and 
/I in Figure 13. IO), the strain rate tensor is 

E=[ gdU/dy 0 
0 -idU/dy 

so that there is a linear extension rate of Emu = f dU/dy, a linear compression rate 
of Epp = -: dU/dy, and no shear (Eap = 0). The kinematics of strctching and 
compression along the principal directions in a parallel shear flow is discussed further 
in Chapter 3, Section 10. 

The large eddies with vorticity oriented along the a-axis intensify in stren,@h due 
to the vortex stretching, and the ones with vorticity oriented along the &axis decay in 
strength. The net effect of the mean shear on the turbulent field is therefore to cause 



a predominance of eddics with vorticity oriented along the a-axis. As is evident in 
Figure 13.10, thesc cddies are associated with apositive u when u is negative, and with 
a negative u whcn u is positivc, resulting in a positive value for the shear production 

The largest cddies are of order of the width of the shear flow, for examplc the 
diameter of a pipe or the width of a boundary layer along a wall or along the uppcr 
surface of thc ocean. Thew eddies extract kinetic energy from the mean field. The 
eddies that are somewhal smaller than thcse are straincd by the velocity field of the 
largest cddies, and exhact energy from h e  larger eddics by the same mechanism of 
vortcx stretching. The much smaller eddies arc cssenliaUy advectcd in the velocity 
field of the large eddics, as the scales of the strain rate field of the large cddies are much 
larger than the size of a small eddy. Thcrdore, the small eddies do not interact with 
either thc large eddics or the mean ficld. The kinetic energy is therefore cascuded 
down J.om large to snzall eddies in n series of snwll steps. This process of energy 
criscude is essentially inviscid, as the vortex stretching mechanism arises jmna the 
nonlinear terms of the equations af motion. 

h B fully turbulent shcar flow (i.e., for large Reynolds numbers), therefoE, the 
viscosity of the fluid does not alTect the s h c i  production, if all other variablcs are 
held constant. The viscosity does, howevcr, determine thc scales at which turbulent 
cnergy is dissipated into hcat. From the expression E = 2ueijeij, it is clcar that the 
encrgy dissipation is effective only at very small scales, which have high fluctuating 
strain rates. The continuous strclching and cascade generate long and thin filaments, 
somewhat like “spaghetti.” When these fi lamcnls become thin enough, molecular 
diffusive effects arc able to smear out their vclocity gradients. These arc the small- 
est scales in a turbulent flow and are responsible for the dissipation of the lurbulent 
kinclic energy. Figure 13.1 1 illustrates the deformation of a fluid particle in a tur- 
bulent motion, suggesting that molecular effccls can act on thin filaments generatcd 
by continuous stretching. The large mixing rates in a turbulent flow, therefore, are 
essentially a result of the turbulent fluctuations generating thc large suijiuces on which 
the molecular diffusion finally acts. 

It is clear that E docs not depend on u, but is dctermined by the inviscid properties 
of the large cddies, which supply thc cnergy to thc dissipating scales. Suppose 1 is a 
typical length scale of the large eddies (which may bc taken equal to the integral length 

- E ( d  U/dy) .  

(Kolmogorov microscale) 

Ayre 13.11 
thc scale bccomcs of thc odcr of thc Kolmogorov microscalc. 

Successivc &limnations ol‘a marked h i d  cleinenl. Di flusivc cll’cc~s causc smearing whcn 
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scale defined h m  a spatial correlation function, analogous to the integral time scale 
defined by Eq. (13.10)), and u' is a typical scale of the fluctuating velocity (which 
may be taken equal to the rms fluctuating speed). Then the time scale of large eddies 
is of order l / d .  Observations show that the large eddies lose much of their energy 
during the time they turn over one or two times, so that the rate of energy transferred 
from large eddies is proportional to un times their frequency u'/Z. The dissipation 
rate must then be of order 

(13.38) 

signifying that the viscous dissipation is determined by the inviscid large-scale 
dynamics of the turbulent ficld. 

Kolmogorov suggested in 1941 that the size of the dissipating eddies depends 
on hose parameters that are relevant to the smallest eddies. These parameters are the 
rate E at which energy has to be dissipated by the eddies and the diffusivity u that does 
the smearing out of the vclocity gradients. As the unit of E is cm2/s3, dimensional 
reasoning shows that the lcngth scale formed from E and u is 

(1 3.39) 

which is called the Kolmogomv micmscale. A decrease afv merely decreases the scale 
at which viscous dissipation takes place, and not the rate of dissipatian E.  Estimates 
show that is of the order of millimeters in the ocean and the atmosphere. Tnlaboratory 
flows the Kolmogorov microscale is much smaller because of the largerrate of viscous 
dissipation. Landahl and Mollo-Christensen (1986) give a nice illustration of this. 
Suppose we are using a 100-W household mixer in 1 kg of water. As all the power is 
used to generate the turbulence, the rate of dissipation is E = 100 W/kg = 100 m2/s3. 
Using u = m2/s for water, we obtain q = mm. 

9. Speci.rum oJ Turbulence in lizertial Subrangc 

In Section 4 we &fined the wavenumber spectrum S(K), representing turbulent 
kinetic energy a, a function of the wavenumber vector K. Tf the turbulence is isotropic, 
then the spectrum becomes independent of the orientation a€ the wavenumber vector 
and depends on its magnitude K only. In that case we can wrile 

oc - 
u3 =$ S ( K ) d K .  

In this section we shall derive the Form d S ( K )  in a certain rangc of wavenumbers 
in which h e  turbulence is nearly isotropic. 

Somewhat vaguely, wc shall associate a wavenumber K with an eddy of size K-' . 
Small cddies are therefore represented by large wavenumbers. Suppose I is the scale 



of thc large eddics, which may bc h e  width of the boundary laycr. A1 the relativcly 
small scales represented by wavenumbers K >> 1 - I ,  there is no direct interaction 
between thc turbulence and the motion of the large, encrgy-containing eddies. This is 
because the small scalcs have been gencrakd by a long series of small steps, losing 
information at each stcp. The spectrum in this range oJfarge wtsvenumhers is nerrrly 
isotropic, as only thc large eddies are aware of the directions of mcan gradients. Thc 
spcctruin here docs not depend on how much encrgy is present at large scales (wherc 
most 01 the energy is contained), or the scales at which most of thc cnergy is present. 
The spectrum in this range depends only on the parametcrs that determine thc nature 
o€ h e  small-scale flow, so that we can write 

1 -  

lo" 

S 

10-2 

S = S ( K ,  E ,  u )  K >> I - ' .  

- 

- . . 

Thc range of wavenumbers K >> 1-' is usually called the equifihri-ium rcmge. The 
dissipating wavenumbers with K - r j - I ,  beyond which the spectrum falls off very 
rapidly, form the high end of thc equilibrium range (Figure 13.12). The lower cnd 
of this range, for which 1-' << K << q-' .  is called the inertial subrange, as only 
the n-dnsfer of encrgy by inertial forces (vortex stmtching) takes place in this rangc. 
Both production and dissipation are small in the inertial subrangc. The production of 
energy by large eddics causes a peak of S at a ccrlah K 2 1 ' - I ,  and the dissipation 
of energy causes a sharp drop of S for K =- I)'-'. The question is, how does S vary 
with K between the two limits in the inertial subrange? 

IO-' 

. . . . 

1 0-' 1V* IV' 1 

m 
Figure 13.12 A typical wavenumbcr spectrum observed in Lhc ocean, plotted on a log-log scalc. The 
unit of S is arbitrary, and the dots rcpresent hypothetical dah. 



S = AE2f3K-j/3 1-1 << K << q- ' ,  
~ ~ ~ _ _ _ _ _ _ _  

where A 21 1.5 has been €ound to be a universal constant, valid for all turbulent 
flows. Quation (13.40) is usually called Kalmoguraw's K-5/3  law. If the Reynolds 
number of the flow is large, then the dissipating eddics are much smaller than the 
energy-containing eddies, and the inertial subrange is quite broad. 

Because very large Reynolds numbcrs are difficult to generate in the laboratory, 
the Kolmogorov spectral law was not verified for many years. In fact, doubts were 
being raised about its theoretical validity. The first confirmation of the Kolmogorov 
law camc from the oceanic observations of Grant etaf. (1 962), who obtained a vdocity 
spectrum in a tidal flow through a narrow passage between two islands near the west 
coast of Canada. The velocity fluctuations were measured by hanging a hot film 
anemometer from the bottom of a ship. Based on the depth of water and the average 
flow velocity, the Reynolds number was of order lo8. Such large Reynolds numbers 
are typical of gcophysical flows, since the length scales are very large. The K-s/3 
law has since been verified in the ocean over a wide range of wavenumbers, a typical 
behavior being sketched in Figure 13.12. Notc that the spectrum drops sharply at 
K q  - 1, where viscosity begins to affect the spectral shape. The figure also shows 
that the spectrum departs fom the K-'I3 law for small values of the wavenumber, 
where thc turbulence production by large eddies bcgins to affect the spectral shape. 
Laboratory cxperimcnts are also in agreemcnt with the Kolmogorov spectral law, 
although in a namwcr range of wavenumbers because the Reynolds number is not as 
large as in geophysical flows. The K--'l3 law has become one of the most important 
results of turbulence theory. 

(1 3.40) 

Nearly parallel shear flows are divided into two classes-wall-free shear flows and 
wall-bounded shear flows. In this section we shall examine some aspects of turbulent 
flows hat are free of solid boundaries. Common examples of such flows are jets, 
wakes, and shear layers (Figure 13.1 3). For simplicity we shall consider only plane 
two-dimensional Bows. hisymmetric flows are discussed in Townsend (1 976) and 
Tennekes and Lumlcy (1 972). 

Intermittency 
Consider aturbulent flow confined to a limited region. To be specific we shall consider 
the example of a wake (Figm 13.13b), but our discussion also applies to a jet, a shear 



layer, or the outer part of a boundary layer on a wall. The fluid outside the turbulent 
region is either in irrotational motion (as in the case of a wake or H boundary layer), OT 

nearly static (as jn the case of a jet). Observations show that the instantaneous interface 
between thc turbulent and nonturbulent fluid is very sharp. In fact, the thickness of the 
interface must equal the size of h e  smallest scalcs in the flow, namely the Kolmogorov 



microscale. The interface is highly contorted due to the presence of eddies of various 
sizes. However, a photograph exposed for a long time does not show such an irregular 
and sharp interface but rather a gradual and smooth transition region. 

Measurements at a fixed point in the outer part or the turbulcnt region (say at 
point P in Figure 13.1 3b) show pcriods of high-hequency fluctuations as the point P 
moves into the turbulcnt flow and quiet pcriods as the point moves out ofthe turbulcnt 
region. Intermittency y is defincd as the faction of time the flow at apoint is turbulent. 
The variation of y across a wake is sketched in Figure 13.13b, showing lhdt y = 1 
near the center where thc flow is always turbulent, and y = 0 at the outer edge of 
the flow. 

Entrainment 
A flow can slowly pull the surrounding irrotational fluid inward by “€rictional” effects; 
the process is called enminment. The source of this “friction” is viscous in laminar 
flow and inertial in turbulent flow. The entminment of a laminar jet was discussed in 
Chapter 10, Section 12. The entrainment in a turbulcnt flow is similar, but the rate is 
much larger. After the irrotational fluid is drawn inside a turbulent region, the new 
fluid must be made turbulent. This is initiated by small eddies (which are dominated 
by viscosity) acting at the sharp intcrface between the turbulent and the nonturbulent 
fluid (Figure 13.14). 

Thc foregoing discussion 01 intennittcncy and entrainment applies not only to 
wall-he shear flows but also to the outer edge of boundary layers. 

Self-Preservation 
Far downstream, experiments show that the mean field in a wall-he shear flow 
becomcs approximately self-similar at various downswam distances. As the mean 
field is affected by the Reynolds stress through thc equations of motion, this means that 
the various turbulent quantities (such as Reynolds stress) also must reach self-similar 
states. This is indeed found to be approximately true (Townsend, 1976). The flow is 
then in a state of “moving equilibrium,” in which both the mean and the turbulent 
fields are determined solely by the local scales of lcngth and velocity. This is called 
self-preservation. Tn the self-similar statc, the mean velocity at various downstream 

viscous eddies 

irrotational fluid irrotational fluid 

turbulent fluid 
turbulent fluid 

4 
Figure 13.14 htrainmcnt of a nonturbulent fluid and its assimilation into turhuleni fluid by viscous 
aciion at lhc interke. 



distanccs is given by 

U 
- u, = f($) (jet), 

(13.41) 

u - UI 
- = f (5) u2 - u1 (shcar layer). 

Here S(x) is thc width offlow, Uc(x)  is thc centerline velocity for the jet and the wake, 
and UI  and U2 arc the velocities of the two strcams in a shear layer (Figure 13.13). 

Consequence of Self-Preservation in a Plane Jet 
We shall now dcrive how the centerline vclocity and width in a planc jct must vary 
if we assume that thc mean velocity profiles at various downstream distanccs arc self 
similar. This can be done by cxamining the equations of motion in differential form. 
An alternatc way is to examine an integral form of the equation of motion, derived in 
Chapter 10, Section 12. It was shown there that the momentum flux M = p I U 2  dy 
across the jet is independent of x ,  while the maTs flux pJU dy increaqes downstream 
due to entrainment. Exactly the same constraint applies to a turbulcnt jet. For the 
sake of readers who find cross references annoying, the integral constraint For a 
two-dimensional jet is rederived hcre. 

Consider a control volume shown by thc dotted line in Figurc 13.13a. in which thc 
horizontal surfaces of the control volume arc assumed to be at a large distance from 
the jct axis. At these large distances, there is a mean V field toward the jet axis due to 
entrainmcnt, but no U field. Therefore, the flow oFx-momentum through the horizon- 
tal surfaccs ollhe control volume is zero. Thc pressure is uniform throughout the flow, 
and the viscous forces are negligible. The nct force on the surfxc of the control vol- 
ume is therefore zero. The momentum principle for a control volumc (see Chapter 4, 
Section 8) states that thc net x-directed force on the boundary equals the ne# rate of 
outflow of x-momentum through the control surfaces. As thc net force here is zcro, 
the influx of x-momentum must equal the outflow of x-momentum. That is 

00 

U2 dy = independcnt oix: (1 3.42) 

where M is the momentum flux of thc jct (=integral of inass flux pUdy times 
velocity U). The momentum flux is the basic externally controlled parameter for a 
jet and is known from an evaluation of Eq. (13.42) at the orifice opening. The mass 
flux p l U  dg across thc jet must incrcasc because of entrainment of the surrounding 
fluid. 

The assumption of selr similarity can now bc used to predict how S and U, in a 
jet should vary with x .  Substitution or the self-similarity assumplion (1 3.41) into the 
integral constraint (1 3.42) gives 

M = d _  
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The preceding intcgral is a constant because it is completely expressed in terms of 
thc nondimensional function f(y/6). As A4 is also a constant, we must have 

V , ~ S  = const. (13.43) 

At this point we make anothcr important assumption. We assume that the 
Reynolds number is large, so that the gross characteristics of the flow are independent 
of thc Reynolds numbcr. This is callcd Reynolds number similurirq. The assumption 
is expected to be valid in a wall-free shear flow, as viscosity does not directly affect 
the motion; a d m a s e  of v, for cxample, merely decreases the scale of the dissipat- 
ing eddies, as discussed in Section 8. (The principle is not valid near a smooth wall, 
and as a consequcnce the drag coefficient for a smooth flat plate does not become 
independent of the Reynolds number as Re + x; see Figure 10.10.) For large Re, 
then, U, is independcnt of viscosity and can only depend on x, p ,  and M: 

A dimensional analysis shows that 

(13.44) 

so that Eq. ( I  3.43) requires 

6 a x  (jet). (1 3.45) 

This should be compared with the 6 o( x2I3 behavior of a Zumimr jet, derived in 
Chapter 10, Scction 12. Experiments show that the width of a turbulent jet does grow 
linearly, with a spreading angle of 4':. 

For two-dimensional wakes and shear layers, it can be shown (Townsend, 1976; 
Tennekes and Lumley, 1972) that the assumption of self similarity requires 

u, - u, a x-"2, 6 o( f i  (wake), 
U, - iJ2 = const., B a x  (shear layer). 

Turbulent Kinetic Energy Budget in a Jet 
The turbulent kinetic cnergy equation derived in Section 7 will now be applied to 
a two-dimcnsional jct. The encrgy budgct calculation uses the experimentally mea- 
surcd distributions of turbulence intensity and Reynolds strcss across the jet. There- 
fore, we present the distributions of these variables first. Measurements show that the 
turbulent intensities and Reynolds stress arc distributed as in Figurc 13.15. Here 
u2 is the intensity of fluctuation in thc downstream dircction x ,  3 is the inten- 
sity along the cross-stream direction y ,  and 3 is the intensity in the z-direction; 
q2 = (u2 + Y~ + w2) /2  is the turbulent kinctic encrgy per unit mass. The Reynolds 
stress is zero at h e  center of tbe jet by symmetry, since there is no reason for u at the 
center to bc mostly of one sign if u is either positive or negativc. The Reynolds stress 

- 

- - -  



Y 
Agre 13.15 Skckh of ohsewed variation of turbulent intensily and Rcynolds stress across a jcl. 

reaches a maximum magnitude roughly where a U / a y  is maximum. This is also close 
to the region whcrc Ihe turbulent kinetic energy reaches a maximum. 

Consider now the kinetic energy budget. For a two-dimensional jet under the 
boundary layer assumption a/ax << a/i1y, Eq. (13.34) becomes 

where - -  the left-hand side represcnts i)q'/at = 0. Here the viscous transport and a term 
(!' - u2 ) ( a U / a x )  arising out of thc shear produclion have been ncglected on the 
right-hand sidc because thcy are small. Thc balance of terms is analyzed in Townsend 
(1 976), and thc results are shown in Figurc 13.16, where T denotes turbulent transport 
rcpresented by the fourth term on the right-hand side of ( 1  3.46). The shear production 
is zero at the center whcre bolh a U / a y  and iiij are zero, and reacbes a maximum close 
to the position of thc maximum Reynolds strcss. Near the ccntcr, the dissipation is 
primarily balanced by the downstream advection -U(ifq2/ax) ,  which is positivc 
Secausc the turbulcnt inlensity y' decays downstream. Away from the center, but not 
too close to the outer edge of thc jet, the production and dissipation terms balance. In 
the outcr parts of thc jet, the transport term balances the cross-stream advection. Tn 
this region V is ncgative (i.e., toward the ccntcr) due to entrainment orthc smunding  
fluid, and alsoq2 decreases withy. Thercfore the cross-stream advcction -V(aq* /ay )  
is negativc, signifying that the entrainment velocity V tends to decrease thc turbulent 
kinetic cncrgy at the outer edge of the jet. The stationary statc is thereforc maintained 
by the transport term 1 carrying turbulent kinctic energy away from thc center (whcre 
T -= 0) into the outer parts of the jet (whcre T > 0). 
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Figure 13.16 Sketch d observed kinctic energy budget in a turbulent .jet. Turbulent hnspmt is indi- 
cated by T .  

3 1. Wall-Bounded Shear Flow 

The gross characteristics of free shear flows, discussed in the preccding section, are 
independent of viscosity. This is not truc of a turbulent flow bounded by a solid wall, 
in which the presence of viscosity dfccts the motion near the wall. The cffect of 
viscosity is reflected in the fact that the drag coeficient of a smooth flat plate depends 
on the Rcynolds number even for Re + 30, as seen in Figure 10.10. Therefore, 
the concept of Reynolds number similarity, which says that the gross characteristics 
are independent of Re when Re + 00, no longer applies. In this section we shall 
examine how the properties of a turbulent flow near a wall arc affectcd by viscosity. 
Bcfore doing his, we shall examine how the Reynolds stress should vary with distance 
from thc wall. 

Consider first a fully developed turbulent flow in a channel. By ‘’fully developed” 
we mcan that the flow is no longer changing in x (see Figure 9.2). Then the mean 
cquation of motion is 

whcre i = p(dU/dy )  - piE is the total smss. Because a P / a x  is a function of x 
alone and a t / a y  is a function of y alone, both of them must bc constants. The stress 
distribution is then linear (Figwc 13.17a). Away from thc wall 5 is due mostly io the 
Rcynolds stress, but close to the wall the viscous contribution dominates. In fact, at 
the wall thc velocity fluctuations and consequently the Rcynolds stresses vanish, so 
that the stress is cntirely viscous. 
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Vigure 13.17 Variation orshcslr stress across a channel and a boundary layer: (a) chwncl; wcl (b) hound- 
ary layer. 

In a boundary layer on a flat plate there is no pressurc gradient and the mean flow 
equation is 

av av a t  
PU- + p v -  = - ax a~ a . y l  

where t is a function of x and y. The variation of the stress across a boundary layer 
is sketched in Figure 13.17b. 

Inner Layer: Law of the Wall 
Consider the flow ncar the wall of a channel, pipe, or boundary layer. Le1 U, be the 
ke-stream vclocity in a boundary layer or the centerline velocity in a channel and 
pipe. Let S bc the width of flow, which may bc the width of thc boundary laycr, the 
channel half width, or the radius of the pipe. Assume that the wall is smooth, so that 
the height of the surface roughness elements is too small to affect the flow. Physical 
considerations suggest that thc velocity profile near the wall dcpends only on the 
parametcrs that are rclevant near the wall and does not depend on the free-stream 
velocity U, or the thickness of the flow S. Very ncar a smooth surface, then, wc 
expect that 

u = U(P7 v, Y ) ,  (13.47) 

where to is the shear stress at the wall. To express Eq. (13.47) in terms of dimen- 
sionless variables, notc that only p and q) involve the dimension of mass, so that 
thcsc two variablcs must always occur togethcr in any nondimensional p u p .  The 
important ratio 

(13.48) 
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has thc dimension of velocity and is called thefiction velocity. Equation (13.47) can 
then be written as 

u = U ( U * ,  V1 y). ( 1.3.49) 

This relates four variables involving only the two dimcnsions of length and time. 
According to thc pi theorem (Chapter 8, Section 4) there must bc only 4 - 2 = 2 
nondimensional groups U / u ,  and yu*/u, which should be related by some universal 
functional ronn 

U Y U  - = f (f-) = f(y+) 
u* 

(law a1 thc wall), (1 3.50) 

where y+ yuJu is the distance nondimensionalized by the viscous scurle u/u*. 
Equation (13.50) is called thc law ofthe wall, and states that U/u* must bc a universal 
function of yu,/u near a smooth wall. 

The inner part of the wall layer, right next to the wall, is dominated by viscous 
effects (Figurn 13.18) and is called the viscous subluyer. It used to be called the “lam- 
inar sublayer:” until experiments revealed the prcsence of considerable flucluations 
within the layer. In spite of the fluctuations, the Reynolds stresses arc st i l l  small here 
because of thc dominancc of viscous cffects. Bccause of the thinness of thc viscous 
sublayer, thc stress can bc taken as uniform within the layer and cqual to the wall 
shear stress 70. Thedorc the velocity gradient in the viscous sublayer is given by 

dU 
P- = 70, 

dY 

30 

20 

U - 
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10 

inner region + 

1 10 102 10 3 104 

y* 
Figure 13.18 Law of the wall. A typical data cloud is shadcd. 



which shows that the velocity distribution is linear. Tntcgrdting, and using thc no-slip 
boundary condition, we obtain 

YTO 

P 
U=-. 

In terms olnondimensional variables appropriau: for a wall layer, this can be written as 

- U - - y- (viscous sublayer). 
U* 

(13.51) 

Experim.ents show that the linear distribution holds up to yu,/v - 5,  which may be 
taken to be thc limit of the viscous sublayer. 

Outer Layer: Velocity Defat Law 
We now explore the form of thc velocity distribution in the outer part of a turbulent 
layer. The gross charactcrislics of the turbulcnce in the outcr rcgion are inviscid and 
resemble those of a wall-free turbulent flow. The existence of Reynolds stresses in the 
outer region results in a drag on the flow and generates a velociry deJecr (U, - V), 
which is cxpected to be proportional to the wall friction chardctcnzcd by u+. Jt follows 
that the vclocity distribution in the outer region must have the form 

= F ( 6 )  (velocity dcfcct law), (13.52) U - [JS 
UX 

where .$ = y / S .  This is called thc vebcify defect law. 

Overlap Layer: Logarithmic Law 
The velocity profiles in the inner and outcr parts of the boundary layer arc governed 
by differ-cnl laws (13.50) and (13.52), in which the independent variable y is scaled 
differently. Distances in the outer part are scaled by S, whereas thosc in the inner 
part are measured by the much smaller viscous sc:& v/u,. In other words, the small 
distances in the inner laycr are magnified by expressing them as yu, /v .  This is the typ- 
ical behavior in singular pcrturbation problems (see Chapter 10, Sections 14 and 16). 
In these problems the inncr and outer solutions are matched togethcr in a region of 
overlup by taking the limits y + 00 and e + 0 simulfmeously. Instead of matching 
vclocily, in this case it is more convenient to match thcir gradients. (The derivation 
given here closely follows Tennekes and Lumley (1972).) From Eqs. (13.50) and 
(1 3.52), the vclocity grddicnts in the inner and outcr regions are given by 

dU u: d.f 

dU u , d F  
dy S d e .  

_ -  -- - 
d y  v dY+!+' 

- = -- 

Equating (13.53) and (13.54) and multiplying by y/u* ,  we obtain 

d F  d J  1 6 -  = y-- = - 
d t  . dy+ k' 

(13.53) 

(13.54) 

(1  3.55) 



valid for large y+ and small e .  As the Icft-hand side can only be a €unction of 6 and 
the right-hand side can only be a function of y+,  both sides must be equal to the same 
universal constanl, say l/k, where k is called the von Kamun consrunt. Experiments 
show that k 21 0.41. Integration of Eq. (1 3.55) givcs 

(1 3.56) 

Experiments show that A = 5.0 and B = -1 .O for a smooth fiat plate, for which 
Eqs. (1 3.S6) become 

These are the velocity distributions in the overlap Iuyer, also called the inertial sub- 
Zuyer or simply thc lugariflzmic layer. As the derivation shows, these laws are only 
valid for large y7. and small y/S.  

The forcgoing method of justifying the logarithmic velocity distribution near a 
wall was first given by Clark B. Millikan in 1938, before thc formal theory of singular 
perturbation problems was fully developed. The logarithmic law, however, was hown 
from experiments conducted by the German researchers, and several derivations based 
on semiempirical theories were proposed by Fhndtl and von Karman. One such 
derivation by the so-callcd mixing length theory is presented in thc following section. 

The logarithmic velocity distribution near a surface can be derived solcly on 
dimensional grounds. In this layer the velocity gradient d U / d y  can only depend on 
thc local distance y and on the only relevant velocity scale near the surface, namcly u*. 
(The layer is far enough from the wall so lhdt the direct effcct of u is not rclcvant 
and far enough from the outer part of the turbulent layer so that the effect of S is not 
relevant.) A dimensional analysis gives 

diJ u, 
Cry ky’ 

wherc the von Karman constant k is introduccd for consistency with the prcceding 
formulas. Integration gives 

_ - _  - 

(13.59) U = -lny+const. 

It is thedorc apparent that dimensional considerations alone lead to the logarithmic 
velocity distribution near a wall. In fact, thc constant of integration can be adjusted 
to reduce Eq. (1 3.59) to Ey. ( 1  3.57) or (13.58). For example, matching the profile to 

u* 
k 



the edge of the viscous sublayer at y = 10.7v/u, reduces Eq. (13.59) to Eq. (13.57) 
(Excrcise 8). The logarithmic velocity distribution also applies to rough walls, as 
discussed l am in the section. 

The experimental data on the velocity distribution ncar a wall is sketchcd in 
Figure 13.18. It is a semilogarithmic plot in tcrms of the inner variables. Tt shows that 
the lincar velocity distribution (13.51) is valid for J+ < 5, so that we can take the 
viscoiis sublayer thickness to be 

5 v  S, 2 - 
u* 

(viscous sublayer thickness). 

The logaritlmic velocity distribution (13.57) is seen to be valid for 30 < y;. < 300. 
Thc upper limit on y . ,  howevcr, depends on thc Reynolds numbcr and becomes 
larger as Re increases. Therc is therefore a largc logarithmic ovcrlap region in flows 
zt large Reynolds numbers. Thc close analogy bctween the overlap rcgion in physical 
space and incrlial subrange in spectral space is cvident. In both regions, therc is litlle 
production or dissipation; thcre is simply an "inertial" transfer across the rcgion by 
inviscid nonlinear proccsscs. It is for this rcason that thc logarithmic laycr is called 
ihe inertial subluyer. 

As Eq. (1 3.58) suggcsts, a logarithmic velocity distribution in the overlap region 
can also bc plotted in terms of the outer variables of (U - Uno)/u, vs y / 8 .  Such plots 
shuw that the logarithmic distribution is valid for y/S < 0.2. Thc logarithmic law, 
..herefore, holds accuratcly in a rather small percentagc (-202) of thc total bound- 
ary layer thickness. The gcneral defect law (13.52), where F ( e )  is not necessarily 
!ogarithmic, holds almost everywhere cxcept in the inner part of thc wall layer. 

Thc region 5 < yi.. < 30, whcre the velocity distribution is neither linear nor 
logarithmic, is callcd the bufler layer. Neither the viscous slress nor thc Reynolds 
stress is negligiblc here. This layer is dynamically very important, as the turbulence 
production - iZ(dU/dy)  reachcs a maximum here due to the large velocity gradients. 

Wosnik et ul. (2000) very carefully reexamined turbulcnt pipe and channel flows 
and compared their results with superpipe data and scalings developed by Zagarola 
and Smits j1998), and others. Vcry briefly, Figure 13.18 is split into more regions 
in that a "mesolaycr" is requircd between thc buffer laycr and the incrlial sublaycr. 
Proper dcscription of the velocity in this mesolayer requires an offsct parameter in 
the logarithm of Eqs. (13.56). This is obtaincd by generalizing Eq. (13.55) to 

wherc si = u/d, a+ = uu,/v. 
Equations (13.56) bccome 

The valuc for u+ suggested by Wosnik et al. that best fits h e  supcrpipe data is 
u+ = -8. 



534 ltubulem 

The outer region of turbulent boundary layers (y+ > 100) is the subject of a 
similarity analysis by Castillo and Georgc (2001). They found that 90% of a turbu- 
lent flow under all pressure gadients is charactcrized by a single pressurc gradient 
parameter, 

A requircment for “equilibrium” turbulcnt boundary layer flows, to which their anal- 
ysis is mstricted, is that A = const., and this leads to similarity. Examination of 
data from many sources led them to conclude that “. . . then: appear to be almost no 
flows that are not in equilibrium. . . .” Their most remarkable result is that only three 
valucs of A correlate thc data for all pressurc gradients: A = 0.22 (adverse pressure 
gradicnts); A = -1.92 (favorable pressure gradients); and A = 0 (zero pmssure 
gradient). A direct consequence of A = const. is that S ( X )  - U&’’*. Data was well 
correlated by this result for both favorable and adverse pressure gradicnts. 

Rough Surface 

In dcriving the logarithmic law (1 3.57). we assumed that the flow in the inner laycr 
is determined by viscosity. This is true only in hydmdynumicaffy smooth surfaces, 
for which Lhc averagc height of the surface roughness clements is smaller than the 
thickncss of the viscous sublayer. For a hydrodynamically rough surface, on the othcr 
hand, the roughness elements prolrude out of the viscous sublayer. An example is 
thc flow near the surface of the earth, where the trecs and buildings act as rough- 
ness elements. This causes a wake behind each roughncss elemcnt, and the strcss is 
transmitted to the wall by the “pressure drag” on the roughness elements. Viscosity 
becomcs irrelevant for determining either the velocity distribution or thc overall drag 
on thc surface. This is why thc drag cocfficients for a rough pipe and a rough flat 
surface becomc indepcndent of the Reynolds number as Re + 00. 

The velocity distribution near a rough surface is agah logarithmic, although it 
cannot be represented by Eq. (13.57). To find its €om, we start with the general 
logarithmic law (13.59). The constant of integration can be dctermincd by noting that 
the mcan velocity U is cxpected to be ncgligiblc somewhere within the roughness 
elements (Figure 13.1.9b). We can thcrefore assume thal(13.59) applies for y > yo, 
where yo is a measure of the roughness heights and is defined as the value of y at 
which the logarithmic distribution givcs U = 0. Equation (1 3.59) then gives 

(13.60) 

Variation of lhhdent Intensity 
The experimcntal data of Lurbulent intensity and Reynolds stress in a channel flow arc 
given in Townsend (1 976). Figure 13.20 shows a schcmatic represcntation of thesc 
data, plotted both in terms of thc outer and thc inner variables. I1 is seen that the 
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1.ogdrithmic vclocity distributions near smooth and rough surfaces: (a) smooth wall; and 
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Figurc 13.20 Sketch of observcd variation or lurhulent intensity and Rcynolds rlrcss acniss a channel 
of half-width 6. Thc Icli pancls are plots as functions ol' lhc inncr variable y I , while the right pancls arc 
?lois as hnctions of the outer variahlc y/S. 

turbulent velocity fluctuations are or order u*. The longitudinal fluctuations are thc 
largest because the shear production initially feeds thc cnergy into the u-component; 
the energy is subscqucntly distributed into the latcral components zi and w. (Inciden- 
tally, in a convectivcly generated turbulencc thc turbulent energy is initially fed LO the 
vertical compon.cnt.) The turbulent intensity initially rises as the wall is approached, 



but goes to zero right at the wall in a very thin wall layer. As cxpected from phys- 
ical considerations, the normal component urns starts to feel the wall effect earlier. 
Figure 13.20 also shows that the distribution or each variable vcry close to the wall 
bccomes clear only when the distances are magnified by the viscous scaling v/u*. 
The Reynolds stress profile in terms of the inner variable shows that thc stresses are 
negligible within the viscous sublayer (y+ < 5) ,  bcyond which the Rcynolds stress 
is nearly constant throughout the wall layer. This is why the logarithmic layer is also 
called the constant stress layer. 

The equations for mean motion in a turbulent flow, given by Eq. ( 1  3.24), cannot 
be solved for Vi(x) unless we have an expression rclating the Reynolds stresses 
uiui in terms 01 thc mean velocity ficld. Prandtl and von Karman devcloped certain 
semiempirical lheorics that attempted to provide this rclationship. 

These theories arc based on an analogy between the momentum cxchanges both 
in turbulent and in laminar flows. Consider first a unidircctional laminar flow U ( y ) ,  
in which the shear stress is 

(1 3.61) 

where v is aproperty of the fluid. According Loihc kinetic theory of gases, Ihc diffusive 
properties of a gas are due to the molecular motions, which tcnd to mix momentum 
and heat throughout the flow. It can be shown that thc viscosity or a gas is of ordcr 

v - U A ,  (1 3.62) 

where a is the rms speed of molccular moiion, and ic is tbe mean frec path defined as 
the average distance traveled by a molecule between collisions. Thc proportionality 
constant in Eq. (13.62) is of order 1. 

One is temptcd to speculate that the diffusive behavior of a turbulent flow may 
be qualitatively similar to that of a laminar flow and may simply be represented by a 
much larger diirusivity. By analogy with (13.61), Boussincsq proposcd to represcnt 
the turbulent stress as 

(1 3.63) 

whem v, is the eddy viscusity. Note that, whcreas v is a known propcrty of the fluid, v, 
in (13.63) depends on the conditions of thejhw. We can always dividc the turbulcnt 
stress by thc mean velocity gradient and call it v,: but this is not progress unless 
wc can formulatc a rational mcthod [or finding lhc cddy viscosity from othcr known 
paramcters of a turbulent flow. 

The eddy viscosity relation (13.63) implies that the local gradient dctennines 
the flux. Howevcr, this cannot be valid if the eddies happcn to be largcr than the 
scale of curvature ofthe profile. Following Panofsky and Dutton (1984), consider thc 
atmospheric concentration profile of carbon monoxide (CO) shown in Figure 13.2 1. 



Figure 13.21 An illustration or breakdown or an eddy diffisivity type rclalion. Thc cddicr arc lurgcr 
than thc scdc olcurvature of the concentration profilc C(z) or carbon monoxide. 

h eddy viscosity relation would havc thc form 

( 1  3.64) 

where C is thc mean concentration (kilograms of CO per kilogram of air), c is its 
fluctuation, and K~ is the eddy diffusivity. A positive K~ requires that the flux of CO 
at P be downward. However, if the thermal convcction is strong enough, the largc 
eddies so generated can carry large amounts of CO from the ground to point P, and 
rcsuh in an upward flux thcrc. The direction of flux at P in this case is not determined 
by thc local gradient at P, but by the concentration difference bctwcen the surface and 
point P. Tn this case, the eddy diffusiviiy found from Eq. (I 3.64) would be negative 
and, therefore, not very meaningful. 

In cases where the concept of eddy Viscosity may work, we may use the analogy 
with Eq. (13.62), and write 

u, - U J l m r  (13.65) 

wherc u’ is a typical scalc of the fluctuating vclocity, and I ,  is the mixing fen@, 
defined as the cross-stream distance traveled by a fluid particle before it gives up its 
momentum and loses identity. The concept of mixing lenglh wa, first introduced by 
Taylor ( I9 1 9 ,  but the approach waq fully developed by Prandtl and his coworkcrs. 
As with Ihe eddy viscosity approach, little progress has been made by introducing the 
mixing length, bccause u‘ and 1, arc just as unknown as u, is. Experience shows that 
in many situations u’ is of thc order of either the local mean speed U or thc friction 
velocity u*. However, there does not seem to bc a rational approach for relating 1, to 
the mean flow field. 

Rmdtl derivcd the logarithmic velocity distribution ncar a solid surface by using 
the mixing lcngth theory in thc following manner. The scale or velocity fluctuations 
in a wall-bounded flow can bc taken as u’ - u*. Prandtl also argucd that the mixing 
length must be proportional to lhe distance y .  Then Eq. (1.3.65) gives 

V, = ku,y. 



538 lirrlrulrmx 

For points outside the viscous sublayer but still near the wall, the Reynolds stress can 
be taken equal to the wall stress pu i .  This gives 

which can be written as 

(13.66) 

This intcgrates to 

u 1  - = - Iny + const. 
us. k 

In recent years the mixing length theory has fallen into disfavor, as it is incorrect 
in principle (Tennekes and Lumley, 1972). It only works when there is a single length 
scale and a single time scale; for example in the overlap layer in a wall-bounded 
flow the only relevant length scale is y and the only time scale is y /u* .  However, 
its validity is then solely a consequence of dimensional necessity and not of any 
other fundamental physics. Indeed it was shown in the preceding section that the 
logarithmic velocity distribution near a solid surface can be derived from dimensional 
considerations alone. (Since u+ is the only characteristic velocity in the problem, the 
local velocity gradient dCJ/dy can only be a function of u* and y .  This leads to 
Eq. (13.66) merely on dimensional grounds.) Randtl’s derivation of h e  empirically 
known logarithmic velocity distribution has only historical value. 

However, the relationship (13.65) is useful for estimating the order of magnitude 
of the eddy diffusivity in a turbulent flow, if we interpret the right-hand side as 
simply the product of typical velocity and length scales of large eddies. Consider the 
thermal convection between two horizontal plates in air. The walls are separated by 
a distance L = 3 m, and the lower layer is warmer by AT = 1 “C. The equation of 
motion (13.33) for the fluctuating field gives the vertical acceleration as 

(13.67) 

where we have used the fact that the temperature fluctuations are expected to be of 
order AT and that a = 1/T for a perfect gas. The time to rise through a height L is 
t - Llw, so that Eq. (13.67) gives a characteristic velocity fluctuation of 

w - ,/gLAT/T 2( 0.1 m/s. 

It is fair to assume that the largest eddies are as large as the separation between the 
plates. The eddy diffusivity is therefore 

K~ - WL - 0.3 m2/s, 

which is much larger than the molecular value of 2 x m2/s. 



As noted in  the preceding, the Reynolds averaged NavierStokcs cquations do 
not rorm a closcd systcm. In ordcr for them to be predictive and useful in solving 
problems of scientific and engineering inkrest, closures must bc dcvclopcd. Reynolds 
stresses or higher correlations must be expressed in terms of themselves or lower cor- 
relations with empirically determincd constants. An cxcellent review of an important 
:lass of closures is provided by Spezialc (1991). Critical discussions of various clo- 
sures together with comparisons with each other, with expcriments, or with numerical 
simulations are given for several idealizcd problcms. 

A different approach to turbulencc modeling is rcprcsentcd by renormalization 
group (RNG) theories. Rather than use the Reynolds averaged equations, turbulence 
is simulated by a solenoidal isotropic random (body) force field f (force/mass). Here 
f is chosen to generate the velocity field described by the Kolmogorov spectrum in 
the limit of large wavenumber K. For very small eddies (larger wavenumbers beyond 
the ineajal subrange), the energy decays exponentially by viscous dissipation. The 
spectrum in Fouricr spacc (K) is truncated at a cutoff wavenumber and the effect 
of these very small scales is represented by a modified viscosity. Then an iteration 
is performed successively moving back the cutoff inlo the inertial range. Smith and 
Reynolds (1992) provide a tutorial on the RNG method developed several years 
earlier by Yakhot and Orszag. Lam (1992) develops results in a different way and 
offers insights and plausible explanations for the various arlificcs in the theory. 

13. Cohereril Slruclures in a Nhll Tapr 

The large-scalc identifiablc structures of turbulent events, called coherent sfrudures, 
dcpcnd on the type or flow. A possible structure of large eddies found in the outer parts 
of a b o u n d q  layer, and in a wall-free shear flow, was illustrated in Figure 13.10. In 
this scction wc shall discuss the coherent structures observed within the i m c r  kuyer 
of a wall-boundcd shcar flow. This is onc or the most active areas of current turbulent 
rcscarch, and rcvicws of the subject can be found in Cantwell (1981) and Landahl 
and Mollo-Christcnscn (1986). 

These structures are deduced from spatial correlation measurcmcnts, a certain 
amount of imagination, and plenty of flow visualization. Thc flow visualization 
involves thc introduction of a marker, one example of which is dye. Another involves 
the “hydrogen bubblc tccchnique,” in which he marker is generated electrically. A thin 
wire is strctched a ~ m s s  the Row, and a voltage is applied across it, generating a line 
of hydrogen bubbles that travel with the flow. The bubbles producc white spots in the 
photographs, and the shapes of the white regions indicate whew thc fluid is travcling 
raster or slower than the average. 

Flc)w visualization cxperiments by Kline et ul. (1967) led to onc of the most 
important advances in turbulcncc research. They showed that the inncr parl or thc 
wall layer in thc rangc S -= J+ e 70 is not a(: all passivc, as onc might think. In  Fact, 
it is perhaps dynamically thc most active, in spite of thc fact ha t  it occupies only 
about 1 % of thc total thickness of the boundary laycr. Figure 13.22 is a photograph 
from Klinc et al. (1967), showing the top view of thc flow within the viscous sublayer 
at a distancc y .  = 2.7 from the wall. (Here x is thc direction of flow, and z is the 
%panwisc” direction.! The wire producing the hydrogen bubbles in the figure was 



Figure l3.22 Top view of near-wall structure (at y+ = 2.7) in a turbulent boundary layer on a horizontal 
flat plate. The flow is visualized by hydrogen bubbles. S. J. Kline et al., Journal of Fluid Mechanics 30: 
741-773,1%7 and reprinted with the permission of Cambridge University Press. 

parallel to the z-axis. The streaky structures seen in the figure are generated by regions 
of fluid moving downstream faster or slower than the average. The figure reveals that 
the streaks of low-speed fluid are quasi-periodic in the spanwise direction. From 
time to time these slowly moving streaks lift up into the buffer region, where they 
undergo a characteristic oscillation. The oscillations end violently and abruptly as the 
lifted fluid breaks up into small-scale eddies. The whole cycle is called bursting, or 
eruption, and is essentially an ejection of slower fluid into the flow above. The flow 
into which the ejection occurs decelerates, causing a point of inflection in the profile 
u ( y )  (Figure 13.23). The secondary flow associated with the eruption motion causes 
a stretching of the spanwise vortex lines, as sketched in the figure. These vortex lines 
amplify due to the inherent instability of an inflectional profile, and readily break up, 
producing a source of small-scale turbulence. The strengths of the eruptions vary, and 
the stronger ones can go right through to the edge of the boundary layer. 

It is clear that the bursting of the slow fluid associates a positive u with a nega- 
tive u, generating a positive Reynolds stress -E. In fact, measurements show that 
most of the Reynolds stress is generated by either the bursting or its counterpart, 
called the sweep (or inrush) during which high-speed fluid moves toward the wall. 
The Reynolds stress generation is therefore an intermittent process, occurring perhaps 
25% of the time. 

14. lhrbulence in a Stratiped Medium 
Effects of stratification become important in such laboratory flows as heat transfer 
from a heated plate and in geophysical flows such as those in the atmosphere and in 
the ocean. Some effects of stratification on turbulent flows will be considered in this 
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Figm 13.23 Mechanics orslrcak brcak up. S. J. Kline el a/.: Journal ofFluidMechmim 30: 741-773, 
1967 wd icpr;.nted with the permission oTCmbridge University Prcss. 

section. Further discussion can be found in Tennckcs and Lumley (1972), Phillips 
( 1  9771, and Panorsky and Dutton (1984). 

As is customary in gcophysical literature, wc shall take the z-direction m upward, 
and the shcar flow will be denoted by U ( r ) .  For simplicity the flow will bc assumed 
homogeneous in thc horizontal plane, that is independcnt of x and y. The turbulcncc 
in a stratified mcdium dcpcnds critically on the static stability. Tu the neutrally stablc 
state of a comprcssiblc ciivironment the density decrcascs upward, because of the 
decrease of pressure, at a ratc dp,/dz called the adiabaiic density gmdient. This 
is discussed furthcr in Chaptcr 1 ,  Section 10. A medium is statically stable if the 
density decreascs fastcr than the adiabatic decrea9e. Thc effective density gradienl 
that determines the stability of the environment is then dctcrmined by the sign of 
d ( p  - p,)/Hz, where p -pa is called thcpotenriul dens@ In the following discussion, 
wc shall assume that the adiabatic variations of dcnsity have been subtracted out, so 
that whcn we talk about density or temperalurc, wc shall really mean potential density 
or potential temperature. 

The Richardson Numbers 
Lct LIS first cxamine the equation for turbulent kinetic energy (1 3.34). Omitting the 
viscous transport and assuming that the flow is independent oTx and y, it rcduccs to 

wherc q2 = (2 + 7 + 7 ) / 2 .  The first term on the right-hand side is the lransporl 
o€ turbulcnt kinctic energy by fluctuating w. The second term - E ( d U / d z )  is the 
production of turbulcnt cncrgy by thc intcraction of Rcynolds stress and the mean 



shear; this term is almost always positive. The third term gaurT' is the production of 
turbulent kinetic encrgy by the vertical heat flux; it is called the buoyant praduction, 
and was discusscd in more detail in Section 7. In an unstable cnvironmcnt, in which 
the mean tcmperalure T decreases upward, the heat flux urT' is positive (upward), 
signifying that the turbulence is gcncrated conveclively by upward heat fluxes. In the 
opposite case of a stable environment, the turbulence is suppressed by stratification. 
The ratio of the buoyant dcstruction of turbulent kinetic energy to the shear production 
is called theJlux Richardson number: 

- 
-gawT' buoyant destruction 

- Z ( d U / d z )  shear production ' 
Rf = - - (1 3.68) 

where we have oriented the x-axis in the direction of flow. As the shear production 
is positive, the sign of Rf depcnds on the sign of u;T'. For an unstable environment 
in which the heat flux is upward Rf is negative and for a stable environment it is 
positive. For Rf > I , the buoyant destruction removes turbulence at a rate larger than 
the rate at which it is produced by shear production. However, the critical valuc of Rf 
at which the turbulence ceaSes to be self-supporting is less than unity, as dissipation 
is necessarily a large fraction of the shear production. Observations indicate that the 
critical value is Rf,, 2: 0.25 (Panofsky and Dutton, 1.984, p. 94). If measurements 
indicate the presence of turbulent fluctuations, but at the same time a value of Rfmuch 
largcr than 0.25, then a fair conclusion is that thc turbulence is decaying. When Rf is 
negative, a large -RI means strong convection and weak mechanical turbulence. 

Instead of Rf, it is easier to measure the gradient Richardson number, defined as 

(13.69) 

where N is the buoyancy frequency. If we make the eddy coefficient assumptions 

- dU 
d z  

-uu: = ve-, 

then the two Richardson numbers are related by 

Ri = -RI. VC 

Ke 
(13.70) 

The ratio is the turbulent Prandd number, which determines the rclativc effi- 
ciency of the verlical turbulent exchanges of momentum and heat. The presence 
of a stable stratification damps the vertical transports of both heat and momentum; 
however, the momentum flux is reduced less because the internal waves in a sta- 
ble environment can transfer momentum (by moving vertically from one region to 
another) but not heat. Thereforc, v c / ~ c  > 1 for a stable environment. Equation (1 3.70) 
then shows that turbulence can persist even when Ri > 1, if the critical value of 0.25 
applies on thcJrux Richardson number (Turner, 1981; Bradshaw and Woods, 1978). 



In an unstable environment, on thc other hand, uc/Kc becomes small. In a neutral envi- 
ronment it is usually found that u, 21 K ~ ;  the idea of equating thc eddy coefficicnts of 
heat and momentum is called the Reynolds analug~. 

-3lonin-Obukhov Length 
The Richardson numbers are ratios that compare thc relative importance of mechanical 
and convecdve turbulence. Another parameter used for the same purpose is not aratio, 
but has the unil of length. It is the Monin-Obukhov length, defined as 

(13.71) 

where u* is the friction velocity, wT' is the heat flux, a is the coeficicnt of thermal 
expansion, and k is the von Karman constant introduced for convcnience. Although 
wT' is a function of z, thc parameter LM is eflectively a constant for the flow, as it 
is used only in thc logarithmic surfcc layer in which both the stress and the hcat 
flux urT' are nearly constant. The Monin-Obukhov length then bccomes a parametcr 
detcrmined from the boundary conditions 01 drag and the heat flux at the surface. 
Like Rf, it is positive for stable conditions and negative for unstable conditions. 

The significancc of LA, within thc surface layer becomes clearer if we write 
Rf in terms of L M ,  using the logarithmic velocity distribution (13.60), from which 
clU/dz = u , / k t .  (Notc that we are now using z for distances perpendicular to the 
surface.) Using UW = u: because of the near uniformity of stress in the logarithmic 
iayer, Eq. (13.68) becomcs 

(1 3.72) 

As Kf is the ratio of buoyant destruction to shear production of turbulence, (1 3.72) 
shows that LM is Ihc hcight at which these two effccts are of the same ordcr. 
For both stable and unstablc conditions, the effects of stratification are slight if 
z << ILMI. At these small heights, then, the velocity profile is logarithmic, as in a 
neutral environment. This is called a juired convection region, because the turbu- 
lence is mechanically forced. For z >> lLMl, thc cffccts of stratification dorninatc. 
In an unstable environmcnt, it follows that the turbulence is generated mainly by 
buoyancy at heights z >> -LM,  and thc shear production is negligible. Thc rcgion 
bcyond the forced convecting layer is thererorc called a zone of free conveclion 
(Figure 13.24), containing thcrmal plumes (columns of hot rising gascs) characteristic 
of free convection from heated platcs in the absence of shear flow. 

Observations as well as analysis show that the effect of stratification on thc vcloc- 
ity distribution in the surfacc Iaycr is given by the log-linear profile (Turner, 1973) 

:[ ZI LM z 1  

z Rf = -. 
L M  

U = -  I n - + + - .  

The form ofthis profile is skctchcd in Figure 13.25 for stable and unstable condjtions. 
It shows that the velocity is morc uniform than In z in the unstable case because of 
the enhanced vertical mixing due to buoyant convection. 
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Figure 13.24 Forccd md Ircc convection zones in an unstahle atmosphere. 

Fire 13.25 Effect of stability on velocity profiles in the surfacc Iaycr. 

Spectrum of Temperature! Fluctuations 
An equation for the intensity of temperature fluctuations T’z can be obtained in a 
m e r  identical to that used for obtaining the turbulcnt kinctic energy. The procedure 
is therefore to obtain an equation for DT’/Dt by subtracting those Tor DI”’/Dt and 
D T / D t ,  and then to multiply the resulting equation for DT’/Dt  by T’ and lake the 
avcrage. The result is 



-- 
where ZT E K ( i lT ' / ih j )2  is thc dissipution of temperature fluctuation, analogous 
to thc dissipation of turbulent kinetic energy E = 2 u m .  The first term on thc 
right-hand side is the generation o f F  by the mean temperature gradient, wT'being 
positive iIdT/dz is ncgativc. The second term on the right-hand sidc is the turbulent 
transport of T". 

A wavcnumbcr spcctrum ~f temperature fluctuations can bc dcfined such that 

As in thc case or rhc kinctic cncrgy spectrum, an inertial range of wavenumbcrs 
exisls in which ncither the production by largc-scale eddies nor the dissipation by 
conductive and viscous eITccts an: important. As thc temperature fluctuations are 
intimately associated with velocity fluctuations, r ( K )  in this rangc must depend not 
only on ET but also on the variables that determine the velocity spcctrum, namely E 

and K. Thcrcforc 

The unit or r is 'C' m, and ihe unit ore,' is "C2/s. A dimcnsional analysis gives 

which was first derived by Obukhov in 1949. Comparing with Eq. (13.40), it is 
apparent that the spectra of both velocity and temperature fluctuations in the inertial 
subrange have the same K 5 i 3  form. 

Th;: spcclrum bcyond the inertial subrange depends on whether thc Prandll num- 
ber U/K or the fluid is smaller or larger than one. We shall only consider the case or 
U / K  >> 1, which applies to water for which the Prandtl number is 7.1. Let I]T be the 
scale responsible for smearing out the tcmperaturc gradicnts and T,I be the Kolmogorov 
microscalc at which thc velocity gradicnts are smearcd out. For U / K  >> 1 wc cxpcct 
that vr << q,  because then the conductive effects are important at scales smaller than 
the viscous scales. In [act, Batchelor (1959) showed that T,IT 21 ~ ( K / u ) ' / *  << r ] .  In such 
a case there exists a range of wavenumbers I]-' << K << q;', in which the scalcs are 
not smdl enough for the thermal difisivity to smcar out thc tcmpcraturc fluctuation. 
Therefore, T(K) continucs farthcr up to qF' ,  although S(K) drops olT sharply. This 
is called the viscous convective .rubrange, because the spectrum is dominated by vis- 
cosity but is still actively convective. Batchelor (1959) showed that the spectrum in 
thc viscous convcctivc subrange is 

r(K) a K ' 4- l  << K << r]y'. (13.74) 

Figure 13.26 shows a cornpaison ol' vclocity and temperature spectra, observed in a 
tidal flow through anarrow channcl. The temperature spectrum shows that the spectral 
slopc incrcascs from - in the inertial subrange to - 1 in thc viscous convective 
subrange. 
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Hgum 13.26 Temperature and velocity spcctra mcasurcd by Grant et d. (1  968). Thc mclll;wcments were 
made at a depth or 23 rn in a lid passage through islands n w  thc coast of British Columhia, Canada. 
Wavenumber K is in cm-’. Solid poinL5 represml r in (“C)2/cm ’, and open points represent S in 
(crn/s)2/cm-’. Powcrs or K that tit the observation arc: indicakd by straight lines. 0. M. Phillips, The 
Dynumics offhe Upper Oceun, 1977 and rcpnnlcd with the permission of Cambridtg University h s s .  

15. Yhyhr ’x 1Kmiy of Turbulenl Dispersion 
The large mixing rate in a Lurbulent flow is due to the fact that the fluid parti- 
cles gradually wander away from their initial location. Taylor ( 1  921) studied this 
problem and calculated the rate at which a particle disperses (i.e., moves away) 
h m  its initial location. The presentation here is directly adapted from his clas- 
sic paper. He considered a point som emitting particles, say a chimney emit- 
ting smokc. The partides are emitted into a stationary and homogcncous turbulent 
medium in which the mean velocity is zero. Taylor used Lagrangian coordinates 
X(a, t ) ,  which is the present location at time t af a particlc that was at locadon a 
at time r = 0. Wc shall take the point source to be the origin of coordinates and 
consider an ensemble of experiments in which we measure the location X(0, t )  at 
time t of all the particles that started from the origin (Figure 13.27). For simplic- 
ity we shall suppress the first argument in X(0, t) and write X ( t )  to mean the same 
thing. 
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Fifiure 13.27 Thrcc cxpcrimcntd outcomcs ofX(r), the cunmt positions of particles from the origin at 
time t = 0. 

Rate of Dispersion of a Single Particle 
Consider the behavior of a singlc component of X, say X, (a = 1,2, or 3). (Wc arc 
using a Grwk subscript a! because we shall not imply the summation convention.) 
The average rate at which the magnitude of Xu increases wilh time can be found by 
finding d(X;) /d t ,  where the overbar dcnotcs cnsemblc averdgc and not time avcragc. 
We can write 

d -  dXu -(Xi) = 2xu- 
dr dt  ’ 

(13.75) 

where we have used the commutation rule (13.3) of averaging and differentiation. 
Defining 

dX, 
Uu = - 

dt  ’ 
as the Lugrungian velocity component of afluidparticle at timet, Eq. ( 1  3.75) becomes 

-(X:) dt  = 2X,u, = 2 [ g t u , ( t l ) d r r ]  u, 

= 2 I’ U, (t’)U,(t) dr’, 

d -  - 

(13.76) 

where we havc used the commutation rule ( 1  3.4) of averaging and integration. We 
have also written 

r t  

X, = J, ua(t’)dt’, 
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which is valid as X, and urn are associated with the same particle. Because the flow is 
assumed to be stationary, is independent of lime, and the autocorrelation of uU(t)  
and u, (t’) is only a function of the time difference f - t‘. Defining 

to be the autocorrelation of Lagrangian velocity components of a particle, Eq. (1 3.76) 
becomes 

d(z) = 2 2  lr r,(t’ - t )  dt’ 
dr 

(1 3.77) 

where we have changed the integration variable from f’ to t = t - t’. Integrating, we 
obtain 

(13.78) 

which shows how the variance of the particle position changes with time. 
Another useful form of Eq. (13.78) is obtained by inugrating it by p a t .  We have 

= t l’ r rn( t )  d t  - t’rrn(r’) dr’ I’ 
Equation (1 3.78) then becomes 

- 
g ( t )  = 2 Z t  I’ (1 - 5) r , ( t )  d t .  (13.79) 

f i o  limiling cases are examined in what follows. 

BehaviorJor small t: If t is small compared to the correlation scale of r , ( t ) ,  then 
r,(t) 2: 1 throughout the intcgral in Q. (13.78) (Figure 13.28). This gives 

- - 
x:(t) 21 u y .  (1  3.80) 

Taking the square root of both sides, we obtain 
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Figurc 13.28 Small and large valucs or time o n  a plot of the correlatioii runclion. 

which shows that thc m s  displxcment increases linearly with time and is proportional 
to the intensity of turbulent fluctuations in the medium. 

Belzawinrjur large i: Jf t is large compared with the correlation scale of r , ( t ) .  then 
t / r  in Eq. (13.79) is negligible, giving 

- - 
X ; ( t )  2: 2 ~ 3 - t :  ( 1  3.82) 

where 
3(i 

9 r u ( t ) d t ,  

is the integral tirnc scale detcrmined from tbe Lagrangian corrclation r , ( t ) .  Taking 
the square root, Eq. (13.82) gives 

(1.3.83) 

The t ‘ j 2  behavior or Eq. ( 1  3.83) at large times is similar to the behavior in a random 
wulk, in which the distance travclcd in a scries of random (Le., uncorrelated) steps 
increases at t l / * .  This similarity is due to the fact that for large t the fluid particles 
have ‘‘forgotten” thcir initial behavior at t = 0. In contrast, the small time behavior 
XLmy = i d r t  is due to complete correlation, with each experiment giving X, 2: u,r. 
The concept of random walk is discussed in what follows. 

Random Walk 
The followiiig discussion is adapted from Fcynman et al. ( 1  963, pp. 6-5 and 41-8). 
Imaginc a person walking in a random manner, by which we mean that there is 



Figure 13.29 Random walk. 

no correlation between the directions of two consecutive steps. Let the vector R,, 
represent the distance from the origin after n steps, and the vector L represent the nth 
step (Figure 13.29). We assume that each step hq the samc magnitude L. Then 

R, = R n - 1  +L, 

which gives 

Taking h e  average, we get 

(13.84) 

The last term is zero because there is no correlation between the direction of the 
nth step and the location reached after n - 1 steps. Using rule (13.84) successively, 
we get 

- -  
R; = R ; - ~  + L~ = R' ,,-2 + 2L2 - 

= R: + (n - l)Lz = nL2. 

The rms distance traveled after n uncorrelated steps, each of length L, is therefore 

( 1  3.85) 

which is called a random walk. 
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Figure 13.30 Averagc h p c  ora smoke p l u m  in a wind blowing unil-ormly along Lhcx-axis. G. T. Taylor. 
Pmc. London Matlmrical Society 2 0  106-21 1,1921. 

Behavior of a Smoke Plume in the Wind 
Taylor's analysis can be adapted to account fortbe prcsence of mean velocity. Consider 
the dispcrsion of smoke inlo a wind blowing in the x-direction (Figure 13.30). Then 
a photograph ofthe smokc plume, in which the film is exposed for a long time, would 
outline the avcrage width Ymr. As the x-direction in this problem is similar LO time 
in Taylor's problcm, the limiting behavior in Eqs. (13.81) and ( 1  3.83) shows that h e  
smoke plume is parabolic with a poinled vertex. 

Effective Diffusivity 
An equivalcnl eddy diffusivity can be cslimated from Taylor's analysis. The equiva- 
lence is based on the following idea: Consider the spreading of a concentraled source, 
say of heat or vorticity, in a fluid of consrunt diffusivity. Wha~ should the diLTusivity 
be in ordcr that the spreading rate equals that predicted by Eq. (13.77)? The problem 
of thc sudden introduction of a line vortex of strength r, considered in Chapter 9, 
Section 9, is such a problem of diffusion of a concentrated source. It was shown there 
that thc tangential vclocity in this flow is givcn by 

The solution is lhercfore proportional to exp( --r2/4uc), which has a Gaussian shape in 
the radial direction r ,  with a characteristic width ("standard deviation") of o = m. 
I t  follows that thc momentum diffusivity u i n  this problem is related to the variance 
u2 as 

1 do2 
2 dt ? 

v = -- (1 3.86) 



which can be calculated if a2(t) is known. Generalizing Eq. (13.86), we can say that 
the effectivc diffusivity in a problem of turbulent dispersion of a patch of particles 
issuing from a point is given by 

(13.87) 

w h m  we have used m. (1 3.77). From Eqs. (1 3.80) and (13.82), the two limiting 
cases of Eq. (1 3.87) are 

- 
K, t <<y, (13.88) 

K e ? U : T  t>>s. (13.89) 

Equation (13.88) shows the interesting fact that the eddy diffusivity initially 
increases with time, a behavior different from that in molecular diffusion with con- 
stant diffusivity. This can be undcrstood as follows. The dispersion (or separation) 
of particles in a patch is caused by eddies with scales less than or equal to the scale 
of the patch, since the larger eddies simply advect the patch and do not cause any 
separation d the particles. As the patch size becomes larger, and increasing range of 
eddy sizes is able to cause dispersion, giving K~ rx t .  This behavior shows that it is 
frequently impossible ta represent turbulent diflusion by means os a large but con- 
stant eddy digusivity. Turbulent diffusion does not behave like molecular diffusion. 
For large times, on the other hand, the patch si7e becomes larger than the largest eddies 
present, in which case the diffusive behavior bccomes similar to that of molecular 
W s i o n  with a constant diffusivity given by Eq. (13.89). 

- 

Ibcmiiwx 

symmetric if R ( t )  is real and symmetric. 

series 

1. Let R ( t )  and S(o) be a Fouricr transform pair. Show that S(o) is real and 

2. Calculate the mean, standard deviation, and rms value of the periodic time 

u( t )  = Uocosot + U .  

3. Show that the autocorrelation function u(t)u(t + t) of a periodic series 
u = U cos ot is itself periodic. 

4. Calculate the zero-lag cross-correlation u(t)u(t)  between two periodic series 
u( t )  = cos u t  and u(t )  = cos (or + 4). For values of q5 = 0, n/4, and n/2 ,  plot the 
scatter diagrams of u vs u at different times, as in Figure 13.6. Note that the plot is 
a straight line if 4 = 0, an ellipse if q5 = ~ / 4 ,  and a circle if q5 = n/2; the straight 
line, as well as the axes of the ellipse, are inclined at 45" to the uv-axes. Argue that 
the straight line signifies a perfect correlation, the ellipse a partial cornlation, and the 
circle a zero correlation. 

5. Mcasuremnts in an atmosphere at 20 "C show an rms vertical velocity of 
wml = 1 m/s and an rms temperature fluctuation of T,,, = 0.1 "C. 1l the correlation 
coefficient is 0.5, calculate the heat flux p C , Z .  
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6. A mass of IO kg of water is stirred by a mixer. Aftcr one hour or stirring, the 
temperaturc of the water riscs by 1.0 “C. What is the power output of the mixer in 
watts? What is thc size q of the dissipating eddies? 

7. A horizontal smooth pipe 20cm in diameter carries water at a temperature 
or 20’C. The drop of prcssure is  d p / d x  = 8N/m2 per meter. Assuming turbu- 
lent flow, verify that the thickness of the viscous sublayer is %0.25 mm. [Him Use 
d p / d x  = 2ro/R, as given in Eq. (9.12). This gives to = 0.4N/m2, and thcrcfore 
u* = 0.02 m1s.l 

8. Derive the logarithmic velocity profile for a smooth wall 

u 1 JU* 

u+ k v 
_ -  - - In - + 5.0, 

by starling from 

u* 
k 

U = - In y + const. 

and matching thc profilc to the edge of thc viscous sublayer at 

9. Estimate thc Monin-Obukhov length jn the atmospheric boundary layer if the 
surface stress is 0.1 N/m2 and the upward heat flux is 200 W/mZ. 

10. Consider a one-dimensional turbulcnt diffusion of parlicles issuing from a 
point sourcc. Assume a Gaussian Lagrangian correlation function of particle velocity 

= 10.7 u/u*.  

-$ / t 2  
Y ( T )  = e  ’ c ,  

where tc is a constant. By integrating the correlation function from T = 0 to cc, find 
the htcgrdl time scale 9 in terms of tc. Using the Taylor theory, estimatc the eddy 
diffusivity at lmgc times I / S  >> 1, givcn that the rms fluctuating velocity is 1 m/s 
and r, = 1 s. 

11. Show by dimensional reasoning as outlined in Scction IO that for 
self-preserving flows far downstream, U, - U, - x S - & for a wake, 
and U1 - U2 = const., S - x ,  for a shear layer. 
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Thc subject of geophysical fluid dynamics deals with the dynamics of the atmosphere 
and the ocean . It has recently become an important branch of fluid dynamics due to 
our increasing interest in thc environment . Thc field has been largely developed by 
meteorologists and oceanographers. but non-specialists have also been interested in 
the subject . Taylor was not a geophysical fluid dynamicist. but he held the position of 
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a meteorologist for some timc, and through this involvcmcnt he developed a special 
interest in the problems of turbulence and instability. Although Prandtl wdS mainly 
interested in the enginccring aspects of fluid mechanics, his well-known tcxtbook 
(Prandtl, 1952) contains scvcral sections dealing with meteorological aspects of fluid 
mechanics. Notwithstanding the pressure for spccialization that we all cxperience 
these days, it is worthwhilc to lcarn something of this fascinating field even if one’s 
primary interest is in another area of fluid mechanics. 

The importancc of the study of atmospheric dynamics can hardly be overcm- 
phasized. We live within the atmosphere and are almost helplcssly affected by the 
weather and its rather chaotic behavior. Thc motion of the atmosphere is intimately 
connected with that of the ocean, with which it exchanges Buxcs of momentum, hcat 
and moisture, and this makcs the dynamics of the ocean as important as that of thc 
atmosphere. The study of ocean currents is also important in its own right because of 
its relevance to navigation, fisheries, and pollution disposal. 

The two features bat distinguish geophysical fluid dynamics from other areas of 
fluid dynamics are thc rotation of the earth and the vertical dcnsity stratification of 
the medium. Wc shall see that thcsc two effects dominate the dynamics to such an 
extent that entircly ncw classes ofphcnomena arise, which have no counterpart in the 
laboratory scale flows we have studied in the preceding chapters. (For example, we 
shall see that the dominant mode ol‘ Row in the atmosphere and thc Ocean is along 
the lines of constant prcssure, not from high to low prcssures.) The motion of the 
atmosphere and the Ocean is naturally studied in a coordinate framc rotating with 
thc earth. This givcs rise to the Coriolis force, which is discussed in Chapter 4. Thc 
density stratification givcs rise to buoyancy force, which is introduccd in Chapter 4 
(Conservation Laws) and discussed in hrthcr detail in Chapter 7 (Gravity Waves). In 
addition, important relevant material is discussed in Chapter 5 (Vorticity), Chapter 10 
(Boundary Laycr), Chapter 12 (Instability), and Chapter 13 (Turbulence). The reader 
should be familiar with these before proceeding further with the present chapter. 

Because Coriolis forces and stratification cffects play dominating roles in both 
the atmosphere and the ocean, there is a great deal of similarity betwecn the dynam- 
ics of these two mcdia; this makcs it possible to study thcm together. There are also 
significant differenccs, however. For examplc the effects of lateral boundaries, due to 
the presence of continents, are important in the ocean but not in the atmosphcre. The 
intense currents (like the Gulf Strcam and thc Kuroshio) along the wcstern boundaries 
or the ocean have no atmospheric analog. On the other hand phenomena like cloud 
formation and latent hcat release due to moisture condensation are typically aimo- 
spheric phcnomena. Processes are gencrally slower in the ocean, in which a typical 
horizontal velocity is 0.1 m/s, although velocities or the order of 1-2 m/s arc found 
within the inknsc western boundary currcnts. In contrast, typical vclocities in thc 
atmosphcre are 10-20 m/s. The nomenclature can also bc different in the two fields. 
Meteorologists refer to a flow directcd to the wcst as an “casterly wind” (i.e.,fmm thc 
cast), while oceanographers refer to such a flow as a “westward current.” Atmosphcric 
scientists rel‘er to vertical positions by “hcights” measured upward from the earth‘s 
surface, while oceanographers rcfer to “dcpths” mcasured downward l‘rom the sea 
surracc. However, we shall always take thc vertical coordinate z to be upward, so no 
confusion should arise. 



Wc shall see that rotational effects caused by the prcsence of the Coriolis force 
have opposite signs in the two hemispheres. Note that all jigures and descriptions 
given here are valid for the northern hemisphere. In some cases the sensc of the 
rotational cffcct for the southern hemisphere has becn cxplicitly mentioned. When 
the sensc of thc rotational effect is left unspecified for the southcm hemisphere, it has 
to bc assumcd as opposite to that in the northern hemispherc. 

An important variable in the study of geophysical fluid dynamics is thc dcnsity strati- 
fication. In Eq. (1 3 8 )  wc saw that the static stability of a fluid medium is determind 
by thc sign of thc potcntial density gradient 

(14.1) 

when: c is thc speed of sound. A medium is statically stable if the potential density 
dccreases with height. Thc first term on the right-hand side corresponds to the in situ 
density change due to all sources such as pressure, temperature, and concentration of 
a constituent such as the salinity in the sea or the water vapor in the atmosphere. The 
second term on the right-hand side is the density gradient due to the pressure decrease 
with height in an adiabatic environment and is called the adiubatic densio gradient. 
The corresponding temperature gradient is called the udiubabic temperuture gradient. 
For incompressible fluids c = 30 and the adiabatic density gradient is zero. 

As shown in Chapter 1, Section 10, the temperature of a dry adiabatic atmosphere 
decreases upward at the rate of =lO”C/lan, that of a moist atmosphere decreases 
at the rate of =54”C/km. In the occan, thc adiabatic dcnsity gradicnt is gp/c2 
-4 x l.0-3 kg/m4, taking a typical sonic speed of c = 1520 m/s. The potential density 
in the ocean increases with depth at a much smallcr ratc of 0.6 x kg/m4, so 
that the two terms on thc right-hand side of Eq. (14.1) are nearly in balance. It 
follows that most of the in situ density increase with depth in the Ocean is due to 
ihc compressibility effects and not to changes in tempcrature or salinity. As potential 
density is the variable that determincs the static stability, oceanographers take into 
account the compressibility effects by rcfemng all their density measurements to the 
sca lcvel pressure. Unless specified otherwisc, throughout the present chapter potential 
density will simply be referred to as “density,” omitting the qualifier “potential.” 

The mean vertical distribution of the in situ temperature in the lower 50km of 
the atmosphcrc is shown in Figure 14.1. The lowest 10 km is called the troposphere, 
in which the temperature decrcases with height at the rate of 6.5 “Ckm. This is 
close to the moist adiabatic lapse rate, which means that the troposphere is close to 
being neutrally stable. The neutral stability is expected because turbulent mixing due 
to frictional and convective effects in the lower atmosphere keeps it well-stirred and 
therefore close to the neutral stratification. Practically all the clouds, weather changes, 
and water vapor of the atmosphere are found in the troposphere. The layer is  cappcd by 
the tropopciuse, at an average height of 10 km, abovc which the temperature increases. 
This highcr laycr is called the stratosphere, because it is very stably stratified. The 
increase of temperature with height in this laycr is caused by the absorption of the sun’s 
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ultraviolet rays by ozone. The stability of the layer inhibils mixing and conscquently 
acts as a lid on the turbulencc and convectivc motion of the troposphere. Thc increase 
of temperaturc stops at the stmrupause at a hcight of nearly 50 km. 

Thc vertical shcture of density in the ocean is sketched in Figure 14.2, showing 
typical profiles of potential density and tcmperalure. Most of the kmperaturc increase 



with height is due to the absorption of solar radiation within the upper layer of the 
occan. Thc dcnsity distribution in the ocean is also affected by the salinity. However, 
there is no characteristic variation of salinity with depth, and a decrease with depth 
is found to be as common as an increase with depth. In most cases, however, the 
vertical siructurc of density in the ocean is determined mainly by that of temperature, 
the salinity effects being secondary. The upper 50-200m of ocean is well-mixed, 
due to thc turbulence generated by the wind, waves, current shear, and the convcctive 
ovcrturning caused by surface cooling. The temperature gradients decrease with depth, 
becoming quite small below a depth of 1500 m. There is usually a large temperature 
gradient in the depth range of 100-500 m. This layer of high stability is called the 
thermocline. Figure 14.2 also shows the profilc of buoyancy frequency N, defined by 

where p of course stands for the potential density and po is a constant reference density. 
The buoyancy frequency reaches a typical maximum value of Nmax - 0.01 s-l (period - lOmin) in the thermocline and decreases both upward and downward. 

In this section we shall review the relevant equations of motion, which are derived and 
discussed in Chapter 4. The equations of motion for a stratified medium, observed in 
a system of coordinates rotating at an angular velocity P with respect to the “ k e d  
stars,” are 

v * u = o ,  
- Du +2Q x u = --Vp 1 - -k+F,  gP 
Dt Po Po (14.2) 

DP - = o l  
Dt 

where F is the friction force per unit mass. The diffusive effects in the density equation 
are omitted in set (14.2) because they will not be considered here. 

Set (14.2) makcs the so-calledBr~ussinesy approximation, discussed in Chapter 4, 
Section 18, in which the density variations are neglected everywhere cxcept in the 
gravity term. Along with other restrictions, it assumes that the vertical scale of the 
motion is less than the “scale height” of the medium c2/g, where c is the speed 
of sound. This assumption is very good in the ocean, in which c2/g - 200lan. In 
the atmosphere it is less applicable, because c2/g - 1Okm. Under the Boussinesq 
approximation, the principle of mass conservation is expressed by V u = 0. In 
contrast, the density equation DplDt = 0 follows fromthe nondiffusive heat equation 
DTIDt = 0 and an incompressible equation of state of the form Splpo = -cwST. 
(If the density is determined by the concentration S of a constituent, say the water 
vapor in the atmosphere or the salinity in the ocean, then DplDt = 0 follows from 
thc nondflusive conservation equation for the constituent in the form DS/ Dt = 0, 
plus the incompressible equation of state Splpo = BSS.) 



The equations can be written in tcrms of the pressure and density perturbations 
from a state of rest. In thc abscnce of any motion, suppose the density and pressure 
have the vertical distributions P(z) and P(z),  where the z-axis is taken vertically 
upward. As this state is hydrostatic, we must have 

dP - 
dz 
_ -  - - p g .  (14.3) 

In the presence of a flow field u(x, t), we can write thc density and pressure as 

(14.4) 

whcrc p' and pl are the changes from the state of rest. With this substitution, the first 
two terms on the right-hand side of the momentum equation in (1 4.2) give 

Subtracting the hydrostatic state (14.3), this bccomes 

which shows that we can replace p and p in Eq. (14.2) by the perturbation quantities 
pl and p'. 

Formulation of the Frictional Term 
The friction Iorce per unit mass F in Eq. (14.2) needs to be related to the velocity 
field. From Chapter 4, Section 7, the friction force is givcn by 

wherc t i j  is the viscous stress tensor. The stress in a laminar flow is caused by thc 
molecular exchanges of momcntum. From Eq. (4.41), the viscous stress tensor in an 
isotropic incompressible medium in laminar flow is given by 

In large-scale geophysical flows, however, the frictional E0n.c~ are provided by turbu- 
lent mixing, and Ihe molecular exchanges are negligible. The complexity a€ turbulent 
behavior makes it impossible to relatc the stress to the velocity field in a simple way. 
To proceed, then, wc adopt the eddy viscosity hypothesis, assuming that thc turbulent 
stress is proportional to the velocity gradient field. 



Geophysical mcdia arc in thc form of shallow stratified layers, in which the 
vertical velocities are much smaller than horizontal velocities. This means that thc 
cxchange of momentum across a horizontal surfacc is much weaker than that across a 
vcrtical surface. We expect then that the vedcal eddy viscosity u, is much smallcr than 
the horizontal eddy viscosity UH, and we assume that the turbulent stress components 
have the form 

( 1  4.5) 

The difficulty with set (14.5) is that the exprcssions for txz and tJZ depend on the fluid 
rotution in the vertical plane and not just the deformation. In Chaptcr 4, Section 10, we 
saw hat a requirement for a constitutive equation is that the stresses should be inde- 
pendent of fluid rotation and should dcpend only on thc deformation. Therefom, rxz 
should depend only on the combination ( a i r / &  + a w / a x ) ,  whcreas thc expression 
in Eq. (14.5) depends on both deformation and rotation. A tensorially correct gco- 
physical treatment of the frictional terms is discussed, for example, in Kamenkovich 
(1967). However, the assumed form (14.5) lcads to a simple fornulation for viscous 
effects, as we shall see shortly. As the eddy viscosity assumption is of questionable 
validity (which Pedlosky (197 1 ) describes as a "rather disreputable and dcsperak 
atlcmpt"), there does not secm to be any purposc in formulating the stress-strain 
relation in more complicated ways merely to obey h e  requirement of invariance with 
respcct to rotation. 

With the assumed form for the turbulent strcss, the components of the frictional 
force fi  = ati j / i1xj  become 

Estimates of the eddy cocfficients vary greatly. Typical suggcsted values are 
v, - 10m2/s and vH - lo5 m2/s for thc lower atmosphere, and u, - 0.01 m2/s 
and VH - 100 m2/s for the uppcr ocean. In comparison, thc molecular values are 
u = 1.5 x m2/s for air and u = 1W6 m2/s for water. 



4. Appmrimatc! LiipationsJor a Thin Layer on 

The atmosphere and the Ocean are very thin layers in which the depth scale of flow 
is a few kilometers, whereas the horizontal scale is of the order of hundreds, or even 
thousands, of kilometers. The trajectories of fluid elements are very shallow and 
the vertical velocities are much smaller than the horizontal vclocities. In fact, the 
continuity equation suggests that the scale of the vertical velocity W is related to that 
or the horizontal velocity U by 

W H  
u L '  

where H is the depth scale and L is the horizontal length scale. Stratification and 
Coriolis effects usually constrain the vertical velocity to be even smaller than U H / L .  

Large-scale geophysical flow problems should be solved using spherical polar 
coordinates. If, however, the horizontal length scales are much smaller than the radius 
of the earth (= 6371 km), then the curvature of the earth can be ignored, and the 
motion can be studied by adopting a bcul Cartesian system on a tangent plane 
(Figure 14.3). On this plane we take an xyz  coordinate system, with x increasing 
eastward, y northward, and z upward. The corresponding velocity components are u 
(eastward), v (northward), and w (upward). 

a Rotaling Sphem 

--- 

The earth rotates a1 a rate 

!J = 2~ rad/day = 0.73 x s-', 

around the polar axis, in an counterclockwise sense looking from above the north 
pole. From Figure 14.3, the components of angular velocity of thc carh in the local 

figure 143 Local Cartesian coordinates. Thc x-axis is inm h e  plane of the pnpcr. 



2 8  x U =  

whcre we have defined 

i j  k 
0 2Rcos8 2C2sin8 
u u  W 

(14.8) 

to be twice the vertical component of 8. As vorticity is twice the angular velocity, 
f is called the pluncrary vorticity. More commonly, f is referred to as the Coriolis 
purumeier, or thc Curiolisfkequency. It is posilivc in the northern hemisphere and 
negative in the southern hcmispherc, varying from f1.45 x lo4 s-' at the poles to 
zero at the equator. This makes sense, since a person standing at the north pole spins 
around himself in an counterclockwise sense at a rate S2, whereas a person standing 
at the equator does not spin around himsclf but simply translates. The quantity 

Ti = 27c/f, 

is called the incrtilrlperiud, for reasons that will bc clear in Section I 1. 
The vertical componcnt of the Coriolis force, namely -2Ru cos 8, is generally 

negligiblc compared to the dominant terms in the vertical equation of motion, namely 
gp'/f i  and p;'(ap'/az). Using Eqs. (14.6) and (14.7), the equations of motion (14.2) 
reducc to 

Du 1 ilp + uH ( a2u + a%) a2u - - f u  = --- 
Dt pu ax ax2 a y  a22 

+ vv-, - -  

(14.9) 



These are the equations of motion for a thin shell on a rotating earth. Note that only 
the vertical component of the earth's angular velocity appears as a consequence of 
thc flatness of the fluid trajectories. 

f-Plane Model 
The Coriolis parameter f = 2S2 sin 0 varics with latitude 0. However, we shall see 
later that this variation is important only for phenomena having very long timc scales 
(several weeks) or very long length scales (thousands of kilometers). For many pur- 
poses we can assume f to be a constant, say fo = 2S2 sin&, where & is the central 
latitude of the region under study. A model using a conqtant Coriolis parameter is 
called an.f-pZane model. 

/?-Plane Model 
The variation of f with latitude can bc approximatcly represented by expanding .f in 
a Taylor series about the central latitude 00: 

f = fo + 8% (14.10) 

where we defined 

2 ~ 2  COS eo 
R '  

Here, we have used f = 2S2 sin 8 and dO/dy = 1/R, where the radius of the carth is 
nearly 

R = 6371 lan. 

A model that takes into account the variation of the Coriolis parameter in thc simplified 
form f = fo + By, with p as constant, is called a B-plane model. 

Consider quasi-steady large-scale motions in the atmosphere or the ocean, away from 
boundaries. For these flows an excellent approximation for thc horizontal equilibrium 
is a balance between thc Coriolis force and the pressure gradient: 

(14.11) 

Here we have neglccted the nonlinear acceleration terms, which are of order U 2 / L ,  
in comparison to the Coriolis force -f U (U is the horizontal velocity scale, and L 



is the horizonla] length scale.) The ratio of the nonlincar term to thc Coriolis term is 
callcd the Rossby number: 

Nonlinear acceleralion U 2 / L  U 
- Ro. Rossby number = --- 

Coriolis force fU . f L  

For a typical atmospheric value of U - 10m/s, f - s-’, and L - loOokm, 
the Rossby number turns out to bc 0.1. Thc Rossby numbcr is even smaller for many 
flows in the occan, so that the neglect of nonlinear terms is justified for many flows. 

The balance of forces represented by Eq. (14.1 I ) ,  in which the horizontal pressure 
gradients arc balanccd by Coriolis forces, is called a geostrophic balance. In such a 
system thc velocity distribution can be determined from a measured distribution of 
thc pressure field. The geostrophic equilibrium brcaks down near the equator (within 
a latitude belt of f3’), whcre f becomes small. It also brcaks down if the frictional 
cffects or unsteadiness bccome important. 

Vclocities in a geostrophic flow arc perpcndicular to the horizontal pressure 
gradient. This is becausc Eq. (14.11) implies that 

(iu + j v )  V p  = - Po 1 . f  ( -i- E + j- ic) (i$+.i$)=u. 

Thus, the horizontal velocity is along, and not across, the lines of constant pressure. 
If f is rcgarded as constant, then thc geostrophic balance (14.1 1) shows that p / f p o  
can bc regarded as a smamfunction. The isobars on a weather map are therefore 
nearly the slrcamlines of the flow. 

Figure 14.4 shows the geostrophic flow around low and high prcssure centers 
in thc northern hemisphcre. Herc the Coriolis force acts to thc right of the velocity 
vcctor. This requircs the flow to be counterclockwise (viewed from above) around 
a low prcssure region and clockwise around a high pressure region. The scnse of 
circulation is opposite in the southern hemispherc, where the Coriolis force acts to 
the left of the velocity vector. (Frictional forces bccome important at lower levels in 
the atmosphere and rcsult in a flow partially acmss the isobars. This will be discussed 
in Section 7, where we will see that the Bow around a low pressure center spirals 
inwurd due to frictional effects.) 

The flow along isobars at first surprises a reader unfamiliar with the cffects 
of Ihc Coriolis force. A question commonly asked is: How is such a motion seL up? 
A typical manner of establishmcnt of such aflow is as follows. Consider a horizontally 
converging flow in thc surface laycr of the occan. The convergent flow sets up the 
sea surface in the form of a gentle “hill:’ with the sea surfacc dropping away from 
the ccnter of the hill. A fluid particle starting to move down the “hill” is deflected to 
the right in the northern hemisphere, and a steady statc is reachcd when thc particle 
finally movcs along thc isobars. 

Thermal Wind 
In thc presence of a horizontal gradient of density, thc geostrophic velocily devclops 
a vertical shear. Consider a situation in which the density contours slope downward 



Figure 14.4 Gcustrophic flow murid lour and high prcssure centers. Thc pressure force ( - V p )  is indi- 
cated by a thin wow, and hc Coriolis f m c  is indicated by a thick m w .  

1 2 X 

Figure 145 
indicated by solid lincs; and contours of constant dcnsiiy tlre indicated bjf dashed lincs. 

with x, the contours at lower levcls represenling higher density (Figure 14.5). This 
implies that ijp/ax is negativc, so lhal the density along Section 1 is larger than that 
along Section 2. Hydrostatic equilibrium requires that thc weights of columns Szr 
and Sz2 are equal, so that he separation across two isobars increases with x, that is 

, % e d  wind, indicated by heavy m w s  pointing into the plane of papcr. Isohm arc 



8z2 > dz,. Consequently, the isobaric surfaces must slope upward with x ,  with the 
slopc increa$ing with height, rcsulting in a positive a p / a x  whose magnitude increases 
with height. Since the geostrophic wind is to thc right of the horizontal pressure force 
(in the northern hemisphere), it follows that the geostrophic velocity is into the planc 
of the paper, and its magnitude increases with height. 

This is casy to demonstrate from an analysis of the geostrophic and hydrostatic 
balance 

aP 0 = -- - g p .  
az 

(14.12) 

(14.13) 

(14.14) 

Eliminating p between Eqs. (14.12) and (14.14), and also between Eqs. (14.13) and 
(1 4.14), we obtain, respectively, 

(14.15) 

Metcomlogisls call these the thermal wind equations because they give the vertical 
variation cd wind from measurements of horizontal tcrnperature gradients. The ther- 
mal wind is a baroclinic phcnomenon, because the surfaces of constant p and p do 
not coincide (Figure 14.5). 

Taylor-Proudman Theorem 
A striking phenomenon occurs in the geosmphic 00w of a homogeneous Ruid. It can 
only be observed in a laboratory experiment because stratification effects cannot be 
avoided in natural flows. Consider then a laboratory experiment in which a tank of 
fluid is steadily rotated at a high angular speed S2 and a solid body is movcd slowly 
along the bottom of the tank. The purpose of making large and the movcment of 
the solid body slow is to make the Coriolis force much largcr than the acceleration 
terms, which must be made negligible for geostrophic equilibrium. Away from the 
frictional effects of boundaries, the balancc is therefore geostrophic in the horizonta1 
and hydrostatic in the vertical: 

1 ap 
p a x '  -2nv = --- 

1 aP 2nu = ---, 
P BY 

1 ap 0 = --- -gR. 
p az 

(14.16) 

(1 4.17) 

(14.1X) 



It is useful to define an Elanan number as the ratio of viscous to Coriolis forces 
(per unit volume): 

viscous force p v U / L 2  v 
Coriolisforce p f U  fL2 

----- Ekman numbcr = - - - E .  

Under thc circumstances already described here, both Ro and E are small. 

equations gives 
Elimination of p by cross differentiation between the horizontal momentum 

2Q (; + E) = 0. 

Using the continuity equation, this gives 

aW 
- =o. az (1 4.19) 

Also, differentiating Eqs. (14.16) and(14.17) withrespccttoz, andusing Eq. (14.18), 
we obtain 

Equations (14.19) and (14.20) show that 

( 14.20) 

! au 

I az 
- =o,  (14.21) 

showing that the velocity vector cannot vary in the direction of P. In othcr words, 
steady slow motions in a rotating, homogeneous, inviscid fluid are two dimensional. 
This is the Taylor-Proudinan theorem, h t  derived by Proudman in 19 16 and demon- 
strated experimentally by Taylor soon afterwards. 

In Taylor’s expcriment, a tank was ma& to rotate as a solid body, and a small 
cyhdcr was slowly draggcd along the bottom of the tank (Figure 14.6). Dye was 
introduced from point A above the cylinder and directly ahead of it. In a nomotat- 
ing fluid the water would pass over the top of the moving cylinder. In the rotating 
experimcnt, however, the dyc divides at a point S, as if it had bccn blocked by an 
upward extension of the cylinder, and flows around this imaginary cylinder, called the 
Taylor column. Dye releascd from a point B within the Taylor column remained there 
and moved with the cylinder. The conclusion was that the flow outside h e  upward 
cxtension of the cylinder is the same as if the cylinder extended across the entire 
water depth and that a column of water directly above the cylinder moves with it. 
The motion is two dimensional, although the solid body does no1 extend across the 
enhe water depth. Taylor did a second experiment, in which he dragged a solid body 
puraZleZ to the axis of rotation. In accordance with awl& = 0, he observed that a 
column of fluid is pushed ahead. The lateral velocity components u and v were zero. 
In both of these experiments, there are shear layers at the edge of the Taylor column. 
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Figun! 14.6 Taylor's cxperimenr in a shngly r o t a h  flow of a homogcncous fluid. 

In  surnmuiy, Taylor's cxperiment established the following striking fact for steady 
inviscid motion of homogcncous fluid in a strongly rotating system: Bodies moving 
either parallcl or perpendicular to the axis of rotation carry along with their motion 
a so-called Taylor column of fluid, oriented parallel to the axis. The phenomenon is 
analogous LO lhe horizontal blocking caused by a solid body (say a mountain) in a 
strongly stratified system, shown in  Figure 7.33. 

In the preccding section, we discussed a steady hear inviscid motion expected to be 
valid away from frictional boundary layers. We shall now examine the motion within 
frictional layers ovcr horizontal surfaces. In viscous flows unaffected by Coriolis 
forccs and pressure gradients, the only tcnn which can balancc the viscous force is 
either the limc dcrivative au/i)r or the advection u -Vu. Thc balance of au/ar and 
the viscous force givcs rise to a viscous layer whose thickness increases with time, 
as in the suddenly accderated plate discusscd in Chapter 9, Section 7. The balance 





conditions (14.24) and (14.25) can be combined as pv,(dV/dz)  = t at z = 0, from 
whicb Eq. (14.28) givcs 

t J ( 1  - i )  
2PVv - A =  

Substitution of this into EQ. (14.28) givcs the vclocity components 

Thc Swedish oceanogaphcr Ekman worked out this solution in 1905. The solu- 
tion is shown in Figure 14.7 for the case of Ihc northern hemisphere, in which f 
is positive. The vclocities at various depths are plotted in Figure 14.74 where cach 
arrow represents the velocity vector at a certain depth. Such a plot of L’ vs u is some- 
times called a “hodograph” plot. The vertical distributions of u and u are shown 
in Figure 14.7b. The hodograph shows that thc surface velocity is dcflected 45‘: to 
thc right or Ihc applied wind stress. (In the southern hemisphere the dcflection is to 
thc left of thc surface strcss.) The vclocity vector rotates clockwise (looking down) 
with depth, and the rna,onitude exponentially decays with an e-folding scale of 8 ,  
which is called the Ekman Xuyer thickness. Thc tips of the velocity vcctor at various 
depths form a spiral, called the E&n~zn spiral. 

(a) Hodograph (b) Profiles of 14 ;ind v 

Figure 14.7 Ekman layer a1 a I-nx surlwc. The left pancl shows velocity a1 vurious dcpths; values of 
-z/S are indicalcd along the curve heed out by the tip of Ihc vclocity veckm. Thc right panel shows 
vcrlical diGtributionu oTu and I J .  



The components of the volume transport in the Ekman layer arc 

0 

[ m u  dz = 0, 

L m v d z  = -- 
t n 

Pf. 

(14.30) 

This shows that the net transport is to the right of the applied stress and is independent 
of LJ,. Tn fact, the result $u dz = -t/fr, follows directly from avertical integration of 
the equation of motion in the form -pf 1: = d(stress)/dz, so that the result does not 
depend on the eddy viscosity assumption. Thc fact that the transport is to the right 
of the applied stress makes scnse, because then the net (depth-integratcd) Coriolis 
force, dirccted to the right of the depth-integrated transport, can balance the wind 
stress. 

The horizontal uniformity assumed in the solution is not a serious limitation. 
Since Ekman layers near the Ocean surface have a thickness (-50 m) much smaller 
than the scale of horizontal variation ( L  > 100 km), the solution is still locally appli- 
cable. Thc absence of horizontal pressure gradient assumcd here can also be relaxcd 
easily. Because of the thinness of the layer, any imposed horizontal pressure gradi- 
ent remains constant across the layer. The presence of a horizontal pressurc gradient 
merely adds a depth-independent geostrophic velocity to the Ekman solution. Suppose 
thc sea surface slopes down to the north, so that there is a pressure force acting north- 
wad throughout the Ekman layer and below (Figure 14.8). This means that at thc 
bottom of the Ekman Iaycr (z/6 + -XI) there is a geostrophic velocity U to the 
right of the pressure force. The surface Ekman spiral forced by the wind stress joins 
smoothly to this geostrophic velocity as z /6  + -m. 

F i y e  14.8 Ekman layer at a Free. surface in h e  presence of a pressure gradient. The geostrophic vclwily 
li~rrcd by Ihc prcssurc gradient is 0. 



Pure Ekman spirals are not obscrved in the surface layer of the ocean, mainly 
because the assumptions of constant eddy viscosity and steadiness are particularly 
restrictive. When the flow is averaged over a few days, however, several instances 
have been found in which the current does look likc a spiral. One such example is 
shown in Figure 14.9. 

N 

Figurc 

-20 0 1 0 c d s  

v (crn/s) 

4.9 An observed velocity distribution near the coast of Oregon. ~ilocity is average lver 7 I ays. 
Wind s l m s  h d  a magniludc ol' 1 .  I dyn/crn2 and was dircclcd narly soulhward, as indicatcd at thc top of 
the figure. Theupper panel shows v d c a l  distributions of u and L', and the lowerpwcl shows thc hodogmph 
in which dcpths are indicated in meters. The hodograph is similar to that of a surface Ekman layer (of 
dcplh 16 m) lying ovcr lhc bollom Fkmao laycr (cxlcndiog liom a dcpth ol' 16 rn 10 tbc ocean bottom). 
F? Kundu, in l3oiIom Tubu/mce, I. C. J. Kihoul, cd., Elscvicr, 1977 and rcprinlcd wilh Ihc permission ol' 
Jacqucs C. J. Nihoul. 



Explanation in Terms of Vortex Tilting 
We have seen in prcvious chapters that the thickness of a viscous layer usually grows 
in a nomtating flow, either in time or in the direction of flow. The Ekman solution, 
in contrast, results in a viscous layer that does not grow either in time or space. This 
can be explained by examining the vorticity equation (Pedlosky, 1987). The vorticity 
components in the x -  and y-directions are 

aw a v  d v  
"x  = - - - - - -- 

ay az dz' 
au a w  du 

"Y = - - - - - 
az ax d ~ '  

- 

where we have used UJ = 0. Using these, the z-derivative of the equations of motion 
(14.22) and (14.23) gives 

-f-- dv d2w, - v,- 
dz  dz2 ' 
du d2m, 

-f-==-. 
dz  dz2 

(14.3 1) 

The right-hand si& of these equations represent diffusion of vorticity. Without 
Coriolis forces this diffusion would cause a thickening of thc viscous layer. The 
presence of planetary rotation, however, means that vertical fluid lines coincide with 
thc planctary vortcx lincs. Thc tilting of vertical fluid lines, represcntcd by tern, 
on the left-hand sidcs of Eqs. (1 4.3 l), then causes a rate of changc of horizontal 
component or v0aicit.y hat just cancels the diffusion term. 

7. Ekman I q v r  on a Rigid Surfie  
Consider now a horizontally independent and steady viscous laycr on a solid surface 
in a rotating Bow. This can be the atmospheric boundary layer over the solid earth or 
the boundary layer over the ocean bottom. We assume that at large distances from the 
surface the velocity is toward the x-direction and has a magnitude U. Viscous forces 
are negligible far from the wall, so that the Coriolis force can be balanced only by a 
pressure gradicnt: 

(1 4.32) 

This simply states that the flow outside the viscous layer is in geostrophic balance, 
U being the geostrophic vclwity. For our assumed case of positive U and f, we 
must have dpldy  e 0, so that the pressure falls with y-that is, the pressure force is 
directed along the positive y direction, resulting in a geostrophic flow U to the right 
of the pressure force in the northern hemisphere. The hori7antal prcssure gradient 
remains constant within the thin boundary layer. 



Near lhe solid surface thc viscous forces are important, so that the balance within 
the boundary layer is 

d2u 
dz2 

- f v = v,*-, 

d2v 
fu = vv- + fU, dz2 

(14.33) 

( 14.34) 

where we have replaced -p-'(dp/dy) by f U in accordance with Eq. (14.32). The 
boundary conditions are 

u = U ,  v = O  a s z + x . ,  (14.35) 
u = O ,  v = O  ati:=O, (14.36) 

where 1: i s  taken vertically upward from the solid surface. Multiplying Eq. (14.34) by 
I: and adding Eq. (14.33, the equations of motion become 

d2V if 
dz2 v,. 
-- - - (V - U), (14.37) 

where we have defined the complex velocity V = u + iv .  The boundary 
conditions (1.4.35) and (14.36) in terms of the complex velocity are 

V = U  a s z + m ,  
V = O  atz=O. 

(14.38) 
( 1  4.39) 

The particular solution of Eq. (14.37) is V = U .  The total solution is, thcrefore, 

v = ~ ~ - I l - i ) z / f i  + B ,(l+i)z/a + u, (14.40) 

,/m. To satisfy Eq. (14.38), we must have B = 0. Condition (14.39) where 6 
gives A = -U. The velocity components then become 

(14.41) 

According to Eq. (14.41), the tip of the velocity vector describes a spiral for various 
values of z (Figure 14.10a). As with the Ekman layer at a free surface, the frictional 
effects are confined within a layer of lhickncss S = Jm, which increases with v, 
and decreases with thc rotation rate f .  Interestingly, the layer thickness is indcpendent 
of the magnitude of the frcc-stream velocity U; this behavior is quite diffemnt from 
that: of a steady nonrotating boundary layer on a semi-infinite plate (the Blasius 
solution of Section 10.5) in which the thickness is proportional to 1 /a. 

Figure 14.10b shows the vertical distribution of the velocity components. Far 
from the wall the velocity is cntirely in the x-direction, and the Coriolis force balances 
the pressure gradient. As thc wall is approached, retarding effccts decrease u and the 
associated Coriolis force, so that thc pressure gradient (which is indcpendent of L) 



(a) Hodograph (b) Profiles of u and u 

Figure 14.10 Ekman layer at a rigid surtirce. The left panel shows velocity vccton at various heights; 
vdw of z/S are indicated along the curvc trxcd OUL by thc lip or h c  vclocity vectors. Thc right pancl 
shows vertical distributions or u and u. 

forces a component v in the direction of the pressure force. Using Eq. (14.41), the 
net transport in the Ekman layer normal to the uniform stream outside the layer is 

which is directed to the le# of the free-stream velocity, in the direction of the pressure 
force. 

If the atmosphere were in laminar motion, q. would be equal to its molecular 
value for air, and the Ekman layer thickness at a latitude of45O (where f 21 lo4 s-') 
would be M 6 - 0.4 m. The observed thickness of the atmospheric boundary layer 
is of order 1 km, which implies an eddy viscosity of order u,, - 50m2/s. In fact, 
Taylor (1915) tried to estimate the eddy viscosity by matching the predicted velocity 
distributions (14.41) with the observed wind at various heights. 

The Ekman layer solution on a solid surfacc dcrnonstrates that the three-way 
balance among the Coriolis force, the pressure force, and the frictional forcc within 
the boundary layer results in a component of flow directed toward the lower pressure. 
The balance of forces within the boundary layer is illustrated in Figure 14.1 1. The 
net frictional force on an element is oricntcd approximately opposite to the velocity 
vector u. It is clear that a balance of forces is possible only if the velocity vcctor has a 
component from high to low pressure, as shown. Frictional forces therefore cause the 
flow around a low-pressure center to spiral inward. Mass conservation requires that 
the inward converging flow should rise over a low-pressure system, resulting in cloud 
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E’igure 1411 Balance of forces within an Ekman layer, showing that vclocily u has B componcnt toward 
low prcssurc. 

formation and rdinfall. This is what happens in a cyclone, which is a low-pressure 
system.. In contrast, over a high-pressure system the air sink,, as it spirals outward 
due to Frictional effects. The arrival of high-pressure systems therefore brings in clear 
skies and fair weather, because the sinking air does not result in cloud formation. 

Frictional effects, in particular the Ekman transport by surface winds, play a 
fundamental role in the theory of wind-driven ocean circulation. Possibly the most 
important result of such theories was given by Henry Stommel in 1948. He showed 
that the northward increase of the Coriolis parameter f is responsible for making the 
currents along the western boundary of the Ocean (e.g., the Gulf Stream in the Atlantic 
and the Kuroshio in the Pacific) much stronger than the currents on the eastern side. 
These are discussed in books on physical Oceanography and will not be presented 
here. Instead, we shall now turn our attention to thc influencc of Coriolis forces on 
inviscid wave motions. 

8. Shallow- Nblcr Equalions 
Both surface and internal gravity waves were discussed in Chapter 7. The effect 
of planetary rotation was assumed to be small, which is valid if the frequency w 
of the wave is much larger than the Coriolis parameter f .  In this chapter we arc 
considzring phenomena slow enough for w to be comparable to f .  Consider surface 
gravity waves in a shallow laycr of homogeneous fluid whose mean deph is H. I.€ we 
restrict ourselves to wavelengths A. much larger than H, then the vertical velocities 
are much smaller than the horizontal velocities. In Chapter 7, Section 6 we saw that 
the acceleration awlat  is then negligiblc in the vertical momentum equation, so that 
the pressure distribution is hydrostatic. Wc also demonstrated that the fluid particles 
execute a horizontal rectilinear motion that is independent of z. When the effects 
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Figure 14.12 1-aycr or fluid on a flat bottom. 

of planetary rotation are included, the horizontal velocity is still depth-independent, 
although the particle orbits are no longer rectilinear but elliptic on a horizontal plane, 
as we shall SCC in the following section. 

Consider a layer of fluid over a flat horizontal bottom (Figure 14.12). Let z be 
measured upward from the bottom surfacc, and q be the displacement of the free 
surface. The pressure at height z from the bottom, which is hydrostatic, is given by 

The horizontal pressure gradients are therefore 

( 14.42) 

As these are independent of L, the resulting horizontal motion is also depth 
independent. 

Now consider the continuity equation 

i)u av a w  
ax ify az 
- + - + - = 0. 

As nulax and av/ay are independent of z, the continuity equation requires that UI 
vary linearly with z, from zero at the bottom to the maximum value at the free surface. 
Integrating vertically across the water column from z = 0 to z = H + q,  and noting 
that u and v are depth independcnt, we obtain 

(1 4.43) 

where w(q) is the vertical velocity at the surface and w(0) = 0 is the vertical velocity 
at the bottom. The surface velocity is given by 

Drl arl all arl w(q) = - = - +u-  + v - .  
Dt at ax ay 



The continuity cquation (14.43) Lhcn becomcs 

which can bc written as 

(14.44) 

This says simply that the divergence of the horizontal transporl depresses the free 
surface. For small amplitude waves, the quadratic nonlinear terms can be neglected 
in comparison to the linear terms, so that thc divergence term in Eq. (14.44) simplifies 
LO HV m u .  

The linearized continuity and momentum equations are then 

a u  all f v = -6- 
at ax 
-- 

i)V a? -+  fu=-g- .  
at 3.Y 

(1.4.45) 

In the momentum equations of (14.43, the pressurc gradient terms are written in the 
form (14.42) and the nonlinear advwtive terms have been neglected under the small 
amplitude assumption. Equations (14.43, called the shallow water equations, govern 
the motion of a layer of fluid in which the horizontal scale is much larger than thc 
depth of the layer. Thcse equations will be used in the following sections for studying 
various types of gravity waves. 

Although the preceding analysis has been formulatcd for a layer of homogeneous 
fluid, Eqs. (14.45) arc applicable to internal wavcs in a stratified medium, if we 
replaced H by the equivalent depth H,, defined by 

(14.46) 2 c = g H c ,  

where c is the spced of long nonrotating internal gravity waves. This will be demon- 
strated in the following section. 

9. .!I'ormal Modex in a Cbnlinuuuly Shli j ied l m p r  
In the prcceding section we considered a homogeneous medium and derived the 
governing cquations for waves of wavelength larger than the depth of thc fluid layer. 
Now considcr a continuously stratiEed mcdium and assume that the horizontal scale 
of motion is much larger than the vertical scalc. The pressure distribution is therefore 



hydrostatic, and the equations of motion are 

au av aw 
ax ay az - + - + - =o,  ( 14.47) 

(1 4.48) 

(14.49) 

(1 4-50) 

(14.51) 

where. p and p represent perfurbutions of pmssure and density from the state of 
rest. The advective term in the density cqusllion is written in the linearized form 
w(dp/de)  = -poN2w/g, where N(z) is thc buoyancy frequency. In this form the 
rate of change of density at a point is assumcd to be due only to the vertical advection 
of the background density distribution p ( z ) ,  as discussed in Chapter 7, Section 18. 

In a continuously stratified medium, it is convenient to use thc mcihod of separa- 
tion of variables and writc q = qn(x,  y, t)~,$~ ( z )  for some variable q. The solution 
is thus written as the sum of various vertical “modcs,” which are called normal modes 
because they turn out to be orthogonal to each other. The vertical structure of a mode is 
described by @,, and qn describes the horizontal propagation of the mode. Although 
each mode propagates only horizontally, the sum of a number of modes can also 
propagate vertically if the various qn are out of phase. 

We assume separable solutions of the form 

(1 4.53) 

(1 4.54) 

where. the amplitudes u,, v , ~ ,  p,,  w,, and p,, are functions of (xt y, t). The z-axis 
is measured from the upper free surface of the fluid layer, and z = -H rcpresents 
the bottom wall. The rearons for assuming the various forms of z-dependence in 
Eqs. (14.52)+4.54) are the following: Variables u,  v ,  and p have the same ver- 
tical structure in order to be consistent with Eqs. (14.48) and (14.49). Continuity 
equation (1 4.47) requires that the vertical structure of w should be the integral of 
$,, (z). Equation (1 4.50) rcquks that the vertical slructure of p must be thc e-dcrivative 
of the vertical structurc of p. 



Subsititution oiEqs. (14.53) and (14.54) into Eq. (14.51) gives 

This is valid for all values of L, and the modes are linearly independent, so the quantity 
within [ ] must vanish for each mode. This gives 

( 1  4.55) 

As rhc first term is a function of z alone and the second icrm is a function of (xl y ,  t) 
alone, for consistency both terms must be equal to a constant; we take the “separation 
constant” to be -1 /e,’. The vertical struclure is then given by 

Taking thc z-derivative, 

1 
(14.56) 

which is rhc differential equalion governing the vertical structure of the normal modes. 
Equation (14.56) has the so-called Sturm-Liouville form, for which the various solu- 
tions are orthogonal. 

Equation (14.55) also gives 

Substitution of Eqs. (14.52)-( 14.54) into Eqs.  ( 1  4.47)-(14.5 1) finally gives the normal 
mode equations 

au, av, 1 ap,, 
ax ay c; at 
- +-+--=o, (14.57) 

(14.58) 

( 1  4.59) 

(14.60) 

(14.61) 



Once Eqs. (14.57)-(14.59) have been solved for Unr t;n and p l l ,  the arnpltudes pn 
and wn can be obtained from Eqs. (14.60) and (14.61). The set (14.57X14.59) is 
identical to the set (14.45) governing the motion of a homogeneous layer, provided 
pn is identified with g q  and c,’ is identified with gH. In a stratified flow each mode 
(having a fixed vertical structure) behaves, in the horizontal dimensions and in time, 
just like a homogeneous layer, with an eyuivuknt depth Hc defined by 

(14.62) 

Boundary Conditions on llpn 

At the layer bottom, the boundary condition is 

w = O  a tz=-H.  

To write this condition in terms of I,%,, we first combine the hydrostatic equation 
(1 4.50) and the density equation (14.5 1) to give w in terms of p :  

The requirement w = 0 then yields the bottom boundary condition 

- = O  d+n a tz=-H.  
dz  

(1 4.64) 

We now formulate the surface boundary condition. The linearized surface bound- 
ary conditions are 

p = p o g q  atz=O, (14.65’) arl 
at ’ 

w = -  

where q is the free surface displacement. These conditions can be combined into 

aP 
at 
- = & g w  atz=O. 

Using Eq. (1 4.63) this becomes 

g a2P aP 
NZ az at at 
-- + - = O  atz=O. 

Substitution of the normal mode &composition (14.52) gives 

(1 4.65) 

The boundary conditions on @n are therefore Eqs. (14.64) and (14.65). 



Solution of Vertical Modes for Uniform N 
For a medium of uniform N, a simple solution can be found for $,. From Eqs.  (1 4.56), 
( 1  4.64), and (14.65), the vertical structure of the normal modes is given by 

d2@, NZ 
- + -&I = O? dz2 c,' 

with the boundary conditions 

d$n - = O  a t z = - H .  
dz 

( I  4.66) 

(14.67) 

( 1  4.68) 

The set (14.66H14.68) defines an eigenvalue problem, with @,, as the eigenfunction 
and e,, as the eigenvalue. The solution of Eq. ( 1  4.66) is 

Nz Nz 
Cn cn 

llrn = A, cos - + B, sin -. 

Application of the surface boundary condition (14.67) gives 

The bottom boundary condition (14.68) then givcs 

NH c,,N tan-=-, 
cn g 

( 1  4.69) 

( 14.70) 

whose roots define the eigenvalucs of the problem. 
The solution of Eq. (14.70) is indicated graphically in Figurc 14.13. The fist  

mot occurs for N H / c n  << 1, for which wc can write tan(NH/c,,) 2: NHIc, , ,  so that 
Eq. ( 1  4.70) gives (indicating this root by n = 0) 

e() = @i. 
Thc vertical modal structure is found from Eq. ( 1  4.69). Because the magnitude of an 
eigenfunction is arbitrary, we can set A0 = 1, obtaining 

NZ coN . N Z  NZz 
co 6 co K 

$0 =cos- - -sin- 2: 1 - - 2: I ,  

where we have used Nlzl/co << 1 (with N H / c o  << I ) ,  and N*z/g << 1 (with 
N2H/g = (NH/co) (coN/g )  << 1, both sides of Eq. (14.70) being much less 
than 1).  For this mode the vertical structure. or u, u, and p is thcrcforc ncarly 
depth-independent. The corresponding structure for w (given by 11)"dz. as indi- 
cated in Eq. (14.53)) is linear in z, with zero at the bottom and a maximum at the 
upper free surface. A stratified medium therefore has a mode of motion that behaves 



1 b NH -- 
c, 

Rgwe 14.13 Calculation of eigenvalues c,, of vertical normal modes in a tluid layer of depth H and 
unihm stratification N. 

like that in an unslratiiied medium; this mode does not feel the stratification. The 
n = 0 mode is called the barntropic mode. 

The remaining modes n 2 1 are barnclinic. For these modes c n N / g  << 1 but 
N H / c n  is not small, as can be seen in Figure 14.13, so that the baroclinic roots of 
Eq. (1  4.70) are nearly given by 

N H  
tan - = 0, 

Cn 

which gives 

N H  
c,, = -, 

nlr 
n = 1 , 2 , 3  ,.... (14.71) 

Taking a typical depth-avcrage oceanic value of N - s-' and H - 5km, the 
eigenvalue for the first baroclinic mode is c1 - 2 m/s. The corresponding equivalent 
depth is He = c:/g - 0.4m. 

An examination of the algebraic steps leading to Eq. (1 4.70) shows hat ncglecting 
the right-hand side is cquivalent to replacing the uppcr boundary condition (14.65') 
by UI = 0 at z = 0. This is called the rigid lid approximation. The barnclinic 
modes are negligibly distorted by the rigid lid apptnximution. In contrast, the rigid lid 
approximation applicd to the barntropic mode would yield co = m, as Eq. (14.71) 
shows for n = 0. Notc that the rigid lid approximation does not imply that the 
free surface displacement corresponding Lo the baroclinic modes is negligible in 
the ocean. Tn [act, excluding the wind waves and tides, much of thc free surface 
displacements in the ocean are due to baroclinic motions. The rigid lid approximation 



merely implies that, for baroclinic motions, the verlical displacements at thc surface 
are much smaller than those within the Ruid column. A valid baroclinic solution can 
therefore be obtained by setting w = 0 at z = 0. Further, the rigid lid approximation 
does not imply that the pressure is constant at the level surface z = 0; if a rigid lid 
were actually imposed at z = 0, then the pressure on the lid would vary due to the 
baroclinic motions. 

The vertical modc shape under the rigid lid approximation is given by the cosine 
distribution 

nxz 
H $,,=cos-, n = 0 , 1 , 2  ,... $ 

because it satisfies d$,, / d z  = 0 at z = 0, - H .  The nth mode $,, has n zero crossings 
within the layer (Figure 14.14). 

A decomposition into normal modcs is only possible in the absence of topo- 
graphic variations and mean currents with shcar. Tt is valid with or without Coriolis 
forces and with or without the #?-effect. Howcver, the hydrostatic approximation here 
means that the frequencies are much smaller than N. Under this condition the eigen- 
functions are independent of thc frcquency, as Eq. (14.56) shows. Without the hydro- 
static approximation the eigcnfunctions $,, become dependent on the frequency w. 
This is discusscd, for example, in LeBlond and Mysak ( 1  978). 

Summary: Small amplitude motion in a frictionless continuously stratified Ocean 
can be decomposed in terms or noninteracting vertical normal modes. The vertical 
structure of each mode is defincd by an eigenfunction $"(z). If the horizontal scale 
of the waves is much larger than thc vertical scale, then the equations governing 

Figure 14.14 Vertical distribution of a few normal modes in a stratified medium of uniform buoyancy 
frqucncs;. 



the horizontal propagation of each mode are identical to those of a shallow h u m -  
geneuus layer, with the layer depth H replaced by an equivalent depth He defined 
by c,' = gH,.  For a medium of constant N, the baroclinic (n 2 1) eigenvalues are 
given by c,, = N H / n n ,  while the bmtmpic eigenvalue is co = m. The rigid lid 
approximation is quite good for the baroclinic modes. 

IO. H@h- and T,ow-.Fmquency Regimes in 
Shallow- Wakr Fqualions 

We shall now examine what terms are negligible in the shallow-water equations for 
the various frequency ranges. Our analysis is valid for a single homogeneous layer 
or for a stratified medium. In the latter case H has to be interpreted as the equivalent 
depth, and c has to be interpreted as the speed of long nonrotating internal gravity 
waves. The /?-effect will be considered in this section. As f varies only northward, 
horizontal isotropy is lost whenever the /?-effect is included, and it becomes necessary 
to distinguish between the different horizontal dircctions. We shall follow the usual 
geophysical convention that the x-axis is directed eaqtward and the y-axis is directed 
northward, with u and t' the corresponding velocity components. 

The simplest way to perform the analysis is to examine the v-equation. A single 
equation for v can be derived by first taking the time derivatives of the momentum 
equations in (14.45) and using the continuity equation to eliminate allla?. This gives 

-- a2u f, av = g H -  a (-+E), au 
at2 3t ax ax 

Now take a /a t  of Eq. (14.73) and use &. (14.72), to oblain 

(14.72) 

(14.73) 

+ g H a  (e + g)] = g H -  a2 (e + E). (14.74) 
at3 ax ax a y a t  ax 

To eliminate u, we first obtain a vorticity equation by cross differentiating and sub- 
tracting the momentum equations in &. (14.45): 

- a (- au - E) - fo (E + E) - /?v = 0. 
at ay 

Here, we have made the customary /?-plane approximation, valid if the y-scale is small 
enough so that A f / f << 1. Accordingly, we have treated f as constant (and replaced 
it by an average value fo) except when d f / d y  appears; this is why we have written 
.fo in the second !.em of thc preceding equation. Taking the x-derivative, multiplying 
by g H ,  and adding to Eq. (14.74), we finally obtain a vorticity equation in terms of 
v only: 

(1 4.75) 

where V i  = a2/ax2 + az/i3y2 is the horizontal Laplacian operator. 



Equation (14.75) is Boussinesq, linear and hydrostatic, but otherwise quite gen- 
eral in the sensc that it is applicable to both high and low frequencies. Consider wave 
solutions of thc form 

,, = ; ei lkx-ly-o!)  

where k is the eastward wavenumber and I is the northward wavenumber. Then 
Eq. ( 1  4.75) givcs 

w.' - c2wK2 - f t w  - c2Bk = 0, (1.4.76) 

whcre K 2  = k2 + 1' and c = m. It can bc shown that all roots of Eq. (14.76) 
are rcal, two of the roots bcing superincnial (w > f) and thc third being subinertial 
(w << f). Equation (14.76) is thecompletedispersion relation for linear shallow-water 
equations. In various parametric ranges it takes simpler forms, representing simpler 
waves. 

First, consider high-hqucncy waves w >> f. Then the third term of Eq. (14.76) 
is negligible compared to the first term. Moreover, the fourth term is also negligible 
in this range. Compare, for example, the fourth and second terms: 

where we have assumed typical values of /3 = 2 x m-I s-', w = 3 f  - 3 x 1 s-', and h / K  - 1OOkm. For w >> .f, therefore, the balance is betwcen 
thc first and second terms in Eiq. (14.76), and the roots are w = f K m ,  which 
corrcspond to a propagation speed of w /  K = Jbsrr. Thc effects of both f and B are 
therefore negligiblc for high-frequency waves, as is expected as they are too fast to 
be affected by the Coriolis effects. 

Next considcr w > f, but w - f .  Then the third term in Eq. (14.76) is not 
negligible, but thc B-efiect is. Thesc are gravity waves influenced by Coriolis forces; 
gravity waves are discussed in the next section. However, the time scales an: still too 
shm For the motion to be affected by the 6-effect. 

Lasr, consider very slow waves for which w << f. Then the B-cffect becomes 
important, and thc first term in Q. (1 4.76) becomes negligible. Comparc, For example, 
the first and the last terms: 

Typical values for the occan are c - 200 m/s for the barntropic mode, c - 2 m/s for 
the baroclinic mode, = 2 x lo-'' ,-Is-', 2n/k - IOOkm, and w - IO-'s-'. 
This makes thc forementioned ratio about 0.2 x for the barotropic mode and 
0.2 ror the baroclinic mode. Thc first lerm in Eq. (14.76) is thereforc negligible for 
w << f. 

Equation (1  4.75) governs the dynamics ol: a variety of wave motions in the 
occan and the atmosphere, and the discussion in this section shows what tcrms can 
be dropped under various limiting conditions. An understanding of these limiting 
conditions will be useful in the €allowing sections. 



11. Gracily Waces wilh Kotalion 
Tn this chapter we shall examine several free-wave solutions of the shallow-water 
equations. In this section we shall study gravity waves with frequencies in thc 
range w > f, for which the &effect is negligible, as demonstrated in the preced- 
ing section. Consequcntly, the Coriolis frequency f is regarded as constant here. 
Consider progressive waves of the form 

tu, v ,  q )  = (i, i, fi)ei(kx+'Y-mr)$ 

whcre 2, i, and f i  are the complex amplitudes, and the real part of the right-hand side 
is meant. Thcn Eq. ( 1  4.45) gives 

-ioP - f i r  = -ikgfi, 

-iwi + f i = -ilgij: 

(14.77) 

( 14.78) 

(14.79) -iw$ + i H(kP + l e )  = 0. 

Solving for P and ir between Eqs. (14.77) and (14.78), we obtain 

gfi 
w z -  f2 t: = - ( - i f k + o Z ) .  

(14.80) 

Substituting these in Eq. (14.79), we obtain 

w2 - f 2  = gH(k2 + P). (14.81) 

This is the dispersion relation of gravity waves in the presence of Coriolis forces. 
(The relation can be most simply derived by setting the determinant of the sct of linear 
homogeneous equations (14.77)-(14.79) to zero.) It can be written as 

w2 = f2 + ~ H K ~ ,  (14.82) 

where K = 4- is the magnitude of the horizontal wavenumber. The disper- 
sion relation shows that the waves can propagate in any horizontal direction and have 
w > f .  Gravity waves alfected by Coriolis forces are called Poincurdwuves, Sverdrup 
wuves, or simply mtutionul gravity wuves. (Sometimes the name '%incar6 wave" is 
used to describe those rotational gravity waves that satisfy the boundary conditions 
in a channel.) In spik of heir name, the solution was first worked out by Kelvin 
(Gill, 1982, p. 197). A plot of Eq. (14.82) is shown in Figure 14.15. It is seen that 
the waves are dispersive except for w >> f when Eq. (14.82) gives d 2: g H K 2 ,  
so that the propagation speed is w / K  = a. The high-frequency limit agrees 
with our previous discussion of surface gravity waves unaffectcd by Coriolis 
forces. 
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Figure 1415 Dispersion relations for Poincar6 and Kclvin waves. 

Particle Orbit 
The symmetry of the dispersion relation (1 4.8 1 ) with respect to k and I means that the 
x -  and y-directions are not fell diffcrcntly by the wavefield. The horizontal isotropy 
is a result of treating .f as constant. (We shall see later that Rossby waves, which 
depend on the /%effect, are not horizontally isotropic.) We can therefore orient the 
x-axis along the wavenumber vecqor and set 1 = 0, so that the waveficld is invariant 
along the y-axis. To find the particleorbits, it is convenient to workwith real quantities. 
Let the displacement be 

q = ;i cos(kx - wr), 

where 6 is real. The corresponding velocity components can be found by multiplying 
Eq. (14.80) by exp(ikx - iwt) and taking the real part of both sides. This gives 

4 

f r i  
u = - COS(kx - ut), kH 

kH v = - sin(kx - ut). 
(14.83) 

To find h e  particle paths, take x = 0 and considcr three values of time corresponding 
to wt = 0, n /2 ,  and n. The corresponding values of u and v fnrm Eq. (14.83) show 
that the velocity vector rotates clockwise (in the northern hcmisphere) in elliptic 
paths (Figure 14.1 6). The ellipticity is expected, since the presence of Coriolis forces 
means that fu must generate au /8 t  according to the equation of motion (14.45). 
(In Eq. (l4.45), ar,~/ay = 0 due to our orienting the x-axis along the direction of 
propagation of the wave.) Particles are therefore constantly deflected to the right by 
the Coriolis force, resulting in elliptic orbits. The ellipses have un a i s  mrio of w / f ,  
and the major axis is oriented in the dimction of wave propagation. Thc cllipses 
become narrower as w1.f increases, approaching the rectilinear orbit of gravity waves 
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Figure 14.16 Pruticle orbit in a rotational gravity wave. Velocity componcnts comsponding to ut = 0, 
x/2,  and x arc indicatul. 

unaffected by planetary rotation. However, the sea surface in a rotational gravity wave 
is no different than that for ordinary gravity waves, namely oscillatory in the direction 
of propagation and invariant in the perpendicular direction. 

Inertial Motion 
Considcr the limit o + f ,  that is when the particle paths are circular. The dispersion 
relation (14.82) then shows that K + 0, implying a horizontal uniformity of the flow 
field. Equation (14.79) shows that ij must tend to zero in this limit, so that there 
are no horizontal pressure gradients in this limit. Because au/ax = h / a y  = 0, the 
continuity equation shows that w = 0. The particles thercfore move on horizontal 
sheets, each layer decouplcd from the one above and below it. The balance of forces is 

au 
-- f v = O ,  
at 
av 
- + f u  =o. 
at 

Thc solution of this set: is of the form 

u = q cos .ft. 
v = -q sin f t ,  

where. the speed 9 = 4- is constant along thc path. The radius r of the orbit 
can be found by adopting a Lagrangian point of view, and noting that the equilibrium 
of forces is between the Coriolis force f q and the centrifugal force ro2 = r f  ', 
giving r = q / f .  The limiting case of motion in circular orbits at a frequency f is 
called inertial motion, because in the absence of pressure. gradients a particle moves 
by virtue of its inertia alone. The corresponding period 2n/f is called the inertial 
period. Jn the absence of planetary rotation such motion would be along straight 
lines; in the presence of Coriolis forces the motion is along circular paths, called 



inertiul c i d c s .  Ncar-inertial motion is frequently generatcd in thc surfacc layer of 
the ocean by sudden changes of the wind field, essentially because the equations of 
motion (14.45) havc a natural frequency J’. Taking a typical c m n t  magnitude of 
4 - 0. I m/s, the radius of the orbit is r - 1 lan. 

12. Kelcin Nhce 

In the preceding section we considcred a shallow-wakr gravity wave propagating in 
a horizontally unbounded ocean. We saw that the crests are horizontal and oriented in 
a direction perpendicular to the direction of propagation. Thc absence of a transverse 
pressure gradient ar]/ay resulted in a transverse flow and clliptic orbits. This is clear 
from the third equation in (14.451, which shows that the presence of J’u must result in 
a u / a r  if av/8y  = 0. In this section wc consider a gravity wave propagating parallel 
to a wall, whose presence allows a pressure gradient aq /ay  hat  can decay away from 
thc wall. We shall see that this allows a gravity wave in which fu is gcostrophically 
balanced by -g(aq/ i ly) ,  and v = 0. Consequcntly the particle orbits are no1 clliptic 
but rectilinear. 

Consider first a gravity wavc propagating in a channel. From Figure 7.7 we know 
that the fluid velocity under a crest is “forward” (i.e., in the direction of propagation), 
and that under a n-ough it is backward. Figure 14.17 shows two transversc sections of 
thc wave, one through a crcst (left pancl) and the other through a trough (right pand). 
The wave is propagating into the plane of the paper, along the x-direction. Then the 
fluid vclocity under the crest is into the plane of the paper and that under the trough is 
out or thc plane of thc paper. The constraints of the side walls require that u = 0 at the 
walls, and we arc cxploring thc possibility of a wave motion in which u is zero cvery- 
where. Then Ihc cquation of motion along thc y-direclion requires that fu can only be 
geostrophically balanced by a transverse slope of the sea surfacc across the channel: 

all f u = -g-. 
ay 

In the northern hemisphcre, the surface must slope as indicated in the figurc, that is 
downward to the left under the crest and upward to the left under the trough, so that 

...... p:. .:;.;i’. 

mean level .i ..: ...... .... _- - - - - - - - - - - - - .: :: .... 

Section along crest Section along trough 

Figure 14.17 
the paper. 

Frcc surface distribution io a gravity WBVC propagating thmugh B channel into the planc or 
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Figure 14.18 Coastal Kelvin wave propagating dong thc x-axis. Sea sut-Face acmss a scction through a 
crcst is indicated by the continuous line, and that dong a trough is indicated by thc dashcd line. 

the pressure force has the current directed to its right. The result is that the amplitude 
of the wave is larger on the right-hand si& of the channel, looking into the direction 
of propagation, as indicated in Figure 14.17. The current amplitude, like the surface 
displacement, also decays to the left. 

If the left wall in Figure 14.17 is moved away to infinity, we get a gravity wave 
trapped to the coast (Figure 14.18). A coastally trapped long gravity wave, in which 
the transverse velocity u = 0 everywhere, is called a Kelvin wauc. It is clear that it can 
propagate only in a direction such that the coast is to the right (looking in the direction 
of propagation) in the northern hemisphere and to the left in the southern hemisphere. 
The opposite direction of propagation would result in a sea surface displacement 
increaqing exponentially away from the coast, which is not possible. 

An examination of the transverse momentum equation 

a v  arl - + fu = -g-, 
at a Y  

reveals fundamental differences between Poincad wavcs and Kelvin waves. For a 
Poincad wave the crests are horizontal, and the absence a€ a transverse pressure 
merit requires a h / a t  to balance the Coriolis force, resulting in elliptic orbits. In a 
Kelvin wave a transverse velocity is prevented by a geostrophic balance of fu and 

From the shallow-water set (14.43, the equations of motion for a Kelvin wave 
-&W?/aY). 

propagating along a coast aligned with the x-axis (Figure 14.18) are 
3 + H - = 0 :  aU 

at ax 

(14.84) 

as fu = -g-. 
a Y  



Assume a solution of thc form 

[u, q] = [i(y), ij(y)]e"k"-"". 

Then Eq. (14.84) gives 
- i ~ i j  + i H k i  = 0: 

-ioi = -igkij, 

dij f i = - g - .  
dY 

(14.85) 

The dispersion relation can be found solely from the fist two of these equations; h c  
third equation then determines the transvcrse structurc. Eliminating 1 between the 
first two, we obtain 

$[w2 - g H k 2 ]  = 0. 

A nontrivial solution is thcrefore possible only if o = & k m t  so that the wave 
propagates with a nondispcrsive speed 

(14.86) 

The pmpugation speed ofa Kelvin wuve is themfore identical to that afnonmtating 
gi-uvity waves. Tts dispersion cquation is a straight line and is shown in Figure 14.15. 
All frcquencies are possible. 

To determine thc transverse structure, eliminate i between the first and third of 
Eq. (14.85). giving 

dij f.. - f -q  = 0. 
d y  c 

Thc solution that decays away from the coast is 

f = qo ,-/Ylf 

where $0 is the amplitude at the coast. Thcrefore, the sea sur.,ce slope and the vclocity 
field for a Kelvin wave have the form 

q = V ( )  e-hlc cos k ( x  - c t ) ,  

cos k(x  - cr), = q"/= g ,-fy/c 
(14.87) 

where we have taken the mal parls, and have used Eq. (14.85) in obtaining thc u field. 
Equations (14.87) show hat thc transverse decay scale of thc Kelvin wave is 



which is called the Rossby radius of defonna6ion. For a deep sea of depth H = 5 km, 
and a midlatitude valuc of f = s-’ , wc obtain c = &% = 220 m/s and 
A = c / f  = 2200km. Tides are frequently in the form of coastal Kelvin waves of 
semidiurnal frequency. The tides are forced by the periodic changes in the gravita- 
tional attraction of the moon and the sun. These waves propagate along the boundaries 
of an Ocean basin and causc sea level fluctuations at coastal stations. 

Analogous to the surface or “external” Kelvin waves discussed in the preccding, 
we can have intemal Kelvin wuves at the interface between two fluids of different 
densities (Figure 14.1 9). If the lower layer is very deep, then thc speed of propagation 
is given by (see Eq. (7.126)) 

where H is the thickness of the upper layer and g’ = g(pz - p ~ ) / p z  is the reduced 
gravity. For a continuously stratified medium of depth H and buoyancy hquency N, 
internal Kelvin waves can propagate at any of the normal mode spccds 

c =  N H / n n ,  n = 1,2, .... 

The decay scale for intern1 Kelvin waves: A = c/f: is called the intern1 Rosvby 
rudius ofdeformation, whose value is much smaller than that for h e  exlernal Rossby 
radius of deformation. For n = 1, a typical value in the ocean is A = N H / n  f - 50 km, a typical atmospheric value is much larger, being of order A - 1000 km. 

lnternal Kelvin waves in the ocean are frequently forced by wind changes near 
coastal areas. For example? a southward wind along the west coast of a continent 
in the northern hemisphere (say, California) generates an Ekman layer at the ocean 
surface, in which the mass flow is uwuy from the coast (to the right of the applied wind 
stress). The mass flux in the near-surface layer is compensated by the movement of 

...;. 

.. ... 
..:: .::.. 
. :.. 
.%. .... 
. ._ . .. .. . 
. .  ... 
.:.. .. . ... 

Rgure 14.19 lnlcrnd Kelvin wavc at an inlcrrxc. Dashcd linc indicates position ofthe interface when 
it is at its maximum height. Displacement of the free surface is much smaller than that ol‘ the inkrl‘ace and 
is opposilcly dircclcd. 



dccper water toward the coast, which raises the thermocline. An upward movement of 
the thcimocline, as indicated by the dashed line in Figure 14.19, is called upwelling. 
The vertical movement of the thermocline in the wind-forced rcgion then propagates 
poleward along the coast as an internal Kelvin wave. 

13. hlential Vorlidy Conservation in 

In this section we shall derive a useful conservation law for the vorticity of a shal- 
low layer of fluid. From Section 8, the equations of motion for a shallow layer of 
homogeneous fluid are 

,'Shalluw-Waler Theory 

(14.88) 

(14.89) 

(1 4.90) 

whcrc h ( x ,  y ,  t )  is thc depth of flow and q is the height of the sea surface measured 
€om an arbitrary hOriZOntdl plane (Figure 14.20). The x-axis is taken eastward and the 
y-axis is taken northward, with u and v the corresponding velocity components. The 
Coriolis frequency f = fi, + By is regarded as dependent on latitude. The nonlinear 
terns have been retained, including those in the continuity equation, which has been 
written in the form (14.44); note that h = H + q. We saw in Section 8 that the constant 
density of the layer and the hydrostatic pressure distribution make the horizontal 
pressure gradient depth-independent, so that only a depth-independent current can be 
generatcd. The vertical velocity is linear in e. 

A vorticity equation can be derived by differcntiating Eq. (14.88) with respect to 
y ,  Eq. (14.89) with rcspcct to x ,  and subtracting. The pressure is climinated, and we 
obtain 

h I 

( 14.91) 

Fsure 14.20 Shallow layer of instanmwus &plh h(x ,  y 3  I ) .  



Following the customary #?-planc approximation, we have treated f as constant 
(and replaced it by an average value fo) except when clfldy appears. We now introduce 

a v  au  ( = - - -  - 
ax ay’  

as the vertical component of relutive Vorticity: that is, the vorticity measured relative 
to the rotating earth. Then the nonlinear terms in Eq. (1 4.91) can easily be rearranged 
in the form 

a(. ay 
ax ay 2.4- + v -  + (E + ;) t. 

Equation (14.91) then becomes 

at ax ay (i: i;) a t  a t  - + u - + v - +  -+-  ( ~ + f O ) + # ? u = O ,  

which can be written as 

(1 4.92) 

where D/ Dt is thc derivative following the horizontal motion of the layer: 

~a a a 
~t at ax ay 
- _ -  = + u - + v - - .  

The horizontal divergence (aulax + av/ay) in Eq. (14.92) can be eliminated by 
using the continuity equation (14.90), which can be written as 

Dh 
Dt  

Equation (14.92) then becomes 

This can be written as 

when we have used 

Df a f  af  af 
~t at ax ay 

- + u - + v - =  

(14.93) 

Because of thc absence of vertical shear, the vorticity in a shallow-water model 
is purely vertical and independent of depth. The relative vorticity measured with 
respect to the rotating ea& is {, while f is the planetary vorticity, so that the absolute 
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vorticity is (2' + f). Equation (14.93) shows that the rate of change of absolute vorticity 
is proportional to the absolute vorticity times the vertical stretching Dh/Dt of thc 
water column. It is apparent that DJ'/Dt  can be nonzero even if< = 0 initially. This is 
different from a nonrotating flow in which stretching a fluid line changes its vorticity 
only ilrhe line has an initial vorticity. (This is why the proccss was called the vortex 
stretching; see Chaptcr 5, Section 6.) The difference arises because vertical lines in a 
rotating earth contain the planetary vorticity evcn when 2' = 0. Note that the vortex 
riffing term, discussed in Chapter 5, Section 6, is absent in the shallow-water theory 
because the water moves in the form of vertical columns without evcr tilting. 

591 

Equation (1 4.93) can be written in the compact form 

(1 4.94) 

where j' = fo +By, and we have assumed By << fo. The ratio (f + f ) /  h is called the 
potential vorticity in shallow-water theory. Equation (14.94) shows that the potential 
vorticior is conserved along the motion, an important principle in geophysical h i d  
dynamics. Jn the ocean, outside regions of strong current vorticity such as coastal 
boundaries, the magnitude of is much smaller than that of .f. In such a case (C + f )  
has the sign of f. The principlc of conservation of potcntial vorticity means that an 
incrcase in h must make (2' + f) more positive in the northern hemisphere and more 
negative in the southern hemisphere. 

As an example of application of the potential vorticity equation, consider an 
castward flow over a step (at x = 0) running north-south, across which the layer 
thickness changes discontinuously from ho to hl (Figurc 14.21). The flow upstrcam 
of the step has a uniform speed U, so that the oncoming stream has no relativc vorticity. 
To conserve the ratio (< + f ) /  h,  the flow must suddenly acquire negative (clockwise) 
mlativc vorticity duc to the sudden decrease in laycr thickness. The relative vorticity 

. . .. .. 

Figure 14.21 Eastward flow over a  SI^, rcsulting in stahnary oscillations of wavelcnglh 2 7 m .  
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Figure 14.22 Wcvtward flow over a stcp. Unlike the eastward flow, thc wcstward flow is  not oscillatory 
and feels thc upskcam influence of thc slcp. 

of a fluid element just after paqsjng the step can bc found from 

_ -  f < + f  
ho hl ' 
- 

giving < = f (h I - ho)/lmo < 0, where f is evaluated at the upstream latitude of the 
streamline. Because ofthe clockwise vorticity, the fluid starts to move south at x = 0. 
The southward movement decreases f, so that 5' must correspondingly increase so 
as to keep (f + <) constant. This means that the clockwise curvature of the stream 
reduces, and eventually becomes a countcrclockwise curvature. In this manner an 
eastward flow over a step generates stationary undulatory flow on the downstream 
side. In Section 15 we shall SIX that the stationary oscillation is due to a Rossby wave 
generated at the step whose westward phase velocity is canceled by the castward 
current. We shall see that the wavelength is 2 n m .  

Supposc we try the same argument for a westward flow over a step. Then a 
particle should suddenly acquire clockwisc vorzicity as the depth of flow decreases 
at x = 0, which would require the partick to movc north. It would hen come into a 
region of larger f, which would rcquire ( to decrease further. Clearly, an exponential 
behavior is predicted, suggcsting that the argument is not correct. Unlike an eastward 
flow, a westward current fecls the upstream influence of the step so that it acquires a 
counterclockwise curvature hefore it encounters the step (Figure 14.22). The positive 
vorticity is balanced by a reduction in f, which is consistent with conservation of 
potenlid vorticity. At the location of thc step thc vorticity dccrcascs suddenly. Finally, 
far downstream of the stcp a fluid particle is again moving westward at its original 
latitudc. Thc westward flow over a topography is nut oscillatory. 

14. Inlernal Waum 

In Chapter 7, Section 19 we studicd internal gravity waves una€fected by Coriolis 
forces. We saw that they are not isotropic; in fact the direction of propagation 
with respect to the vertical determines their frequency. Wc also saw that their 



frequency satisfies the inequality w < N, wherc N is the buoyancy frequency. Their 
phase-velocity vector c and the group-velocity vector cg are perpendicular and have 
oppositely directed vertical components (Figure 7.32 and Figurc 7.34). That is, phases 
propagate upward if the groups propagate downward, and vice versa. In this section 
we shall study the effect of Coriolis forces on intcmal waves, assuming that f is 
independent of latitude. 

Intcrnal waves arc ubiquitous in the atmospherc and the ocean. Tn the lowcr atmo- 
sphere turbulent motions dominate, so that internal wave activity represents a minor 
component of thc motion. In contrast, the stratosphere contains very little convectivc 
motion becausc of its stable density distribution, and conscquently a great deal of 
internal wave activity. They gcnerally propagatc upward from the lower atmosphere, 
whcrc they are gcncrated. In the ocean they may be as common as the waves on 
the swface, and measurements show that they can cause the isotherms to go up and 
down by as much as 50-100 m. Sometimes rhc internal waves break and generate 
small-scalc turbulance, similar to the ‘‘foam’’ generated by breaking wavcs. 

We shall now examinc the naturc of the fluid motion in internal waves. The 
equations of motion arc 

a n  ijtl aw -+ -+ - =o,  
ax i)y az 

au  1 aP - - . f l ;  = --- 
at roo ax 
av 1 aP + f u  = --- 

Po a$ 
(14.95) 

ap mN2 
U’ = 0. 

at R 
We have not made the hydrostatic assumption because we are not assuming that the 
horizontal wavelength is long compared to the vertical wavelength. The advective 
term in thc dcnsity equation is writtcn in a linearized form w(db/dz)  = -poN2w/g. 
Thus the rate of change of dcnsity at a point is assumed to be due only to the ver- 
tical advection of the background density distribution b ( ~ ) .  Becausc internal wave 
activity is more intcnsc in the thermocline whcrc N varies appreciably (Figure 14.2), 
we shall bc somewhat more general than in Chapter 7 and not assume that N is 
depth-indcpendent. 

An quation for w can be formcd from the set (14.95) by climinating all other 
variables. Thc algebraic steps of such a pmcdurc are shown in Chapter 7, Scction 18 
without the Coriolis forces. This gives 

( 14.96) 

where 



and 

Because the coefficients of Eq. (14.96) are independent of the horizontal directions, 
Eq. (14.96) can have solutions that are trigonometric in x and y. Wc therefore assume 
a solution of the form 

( 1  4.97) i (kx4y-crJt) [u, u ,  1111 = [ i ( z ) ,  i ( z ) ,  zir(z)l e 

Substitution into Eq. (14.96) gives 

from which we obtain 

d 2 6  ( N 2  - 02) (kZ  + P) -+ w =O. 
dz2 0 2 -  f 2  

Defining 

Equation (14.98) bccomes 

d26  
- +m’6 = 0. 
de2 

(14.98) 

(14.99) 

(14.100) 

For m2 < 0, the solutions of EQ. (14.100) are exponential inz sig-ing that the result- 
ing motion is surface-trapped. It represents a surface wave propagating horizontally. 
For a positive m2, on the other hand, solutions are trigonometric in z, giving internal 
wavcs propagating vertically as well a$ horizontally. From Eq. (14.99), thcrcforc, 
internal wavcs arc possiblc only in thc frcqucncy range: 

where we have assumed N > f , as is true for much of tbc atmosphere and the ocean. 

WKB Solution 
To procccd further, we assume that N ( z )  is a slowly varying function in that its 
fractional changc over a vertical wavelength is much less lhan unily. We are therefore 
considering only thosc intcrnal waves whose vertical wavelength is shorl compared 
to lhe scale of variation of N. If H is a characteristic vertical distance over which N 
varies appreciably, then we are assuming that 

Hm >> 1. 
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For such slowly varying N ( z ) ,  we expect that m ( z )  given by Q. (14.99) is also a 
slowly varying function, that is, m(z)  changes by a small fraction in a distancc l / m .  
Under this assumption the waves locally behave like plane waves, as if m is constant. 
This is the so-called WKB upproximation (after Wentzel-Kramers-Brillouin), which 
applies when the properties af the medium (in this case N) are slowly varying. 

To derive the approximate WKB solution of Eq. (14.1 00), we look for a solution 
in the form 

1; = A ( Z ) ~ ' # ' ' ) ~  

where the phase 4 and the (slowly varying) amplitude A are real. (No generality is 
lost by assuming A to be real. Suppose it is complex and of the form A = A exp(ia), 
where A and a are real. Then 6 = A exp [i(4 + a)], a form in which (4 + a) is the 
phase. j Substitution into Eq. (14.100) gives 

. d A d 4  d24 
- + A  ml- - +r2--+iA-=O. 
d2A dz2  [ (:TI dz  d z  dz2  

Equating rhe real and imaginary parts, we obtain 

fi dz2  + A [ &  - ( 32] = 0, 

d A d 4  d24  
d z  dz  dz2 

2-- + A -  = O .  

(14.101 j 

(14.102) 

In Eq. (14.101) the term d 2 A / d z 2  is negligible because its ratio wilh the second 
term is 

1 -- d2 A / d z 2  
Am2 H2m2 "" 

Equation (14.101) then bccomes approximately 

- fm, -- d 4  
dz 

whose solution is 

4 = f / ' m d z ,  

the lower limit of the integral being arbitrary. 
The amplitude is determincd by writing Eq. (1 4.102) in the form 

d A  ( d 2 4 / d z 2 )  d z  - - ( d m / d z )  dz  1 drn 
A 2(d4ldz) 2m 2 m '  

- - -= -  

whcrc Eq. (14. 
that is, 

(14.103) 

03) has been used. Integrating, we obtain In A = - i ln  rn + const., 



where A" is a constant. The WKB solution of Q. (14.100) is therelorc 

(14.104) 

Because of neglect of the jl-effect, the waves must behave similarly in x and y, as 
indicated by the symmetry of the dispersion relation (14.99) in k and 1. Thereforc, we 
lose no gencrality by orienting the x-axis in the direction of propagation, and taking 

k > O  1 = 0  o > O .  

To find u and v in terms of w ,  use the continuity equation au/i)x + aw/az  = 0, 
noting that the y-derivatives are zero because of our setting E = 0. Substituting the 
wave solution (14.97) into the continuity quation gives 

(14.1 05) 

The z-derivative of Zir in Eq. (14.104) can bc obtained by mating thc denominator 
fi  as approximately constant because the variation of Cj is dominated by the wiggly 
behavior of the local planc wave solution. This givcs 

so that Eq. (14.105) bccomes 

( 1  4.106) 

An expression for ir can now be obtained from the horizontal equations of motion 
in Eq. ( I  4.95). Cross differentiating, we obtain the vorticity equation 

a a U  a v  iju a v  
- at (- ay - a,> = f (a* + ly) . 

Using thc wave solution Eq. (14.97), this.gives 

2 iw _ - _  - 
ir f' 

Equation (14.106) Lhcn gives 

(14.107) 

Taking mal parts of Eqs.  (14.104), (14.106), and (14.107), we obtain thc velocity field 

u = F -  cos ( k x  f 1' m dz - at) , 
k 

= 7- 
wk 

(14.108) 
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where the dispcrsion relation is 

(14.109) 

I 
The meaning of m(z)  is clear from Eq. (14.108). If we call the argument of the 
trigonometric terms the “phase,” then it is apparent that a(phase)/Jz = m(z) ,  so that 
m(z) is the local vertical wavenumber. Because we are treating k, m, w > 0, it is also 
apparent that the upper signs represent waves with upward phase pmpagulion, und 
the lower signs represent downwad phase pmpuga tion. 

Particle Orbit 
To find thc shape of thc hodograph in the horizontal planc, consider the point 
x = z = 0. ThenEq. (14.108) gives 

u = 7cosot:  
f (14.1 10) 

u = f- sin ot, 

whcre the amplitude of u has been arbitrarily set to onc. Taking thc upper signs in 
Eq. (14.1 lo), thc values of u and 2: are indicated in F i p c  14.23a for three values of 

0 

,. . 

X 

Figure14.23 Particleorbit in an intcrntll wavc.The upperpanel (a)shows projccliononahorizontal plane; 
points corresponding to 01 = 0, n/2, and K are indicalcd. Thc lowcr panel (b) shows a ihrcc-dimcnsiod 
:.icw. Sense of mration shown is valid for the northern hernisphcrc. 
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time corresponding to u t  = 0, n/2, and n. It is clear that the horizontal hodographs 
are clockwise ellipses, with the major axis h the direction of propagation x ,  and the 
axis ratio is f/o. The same conclusion applics for the lower signs in Q. (14.1 10). 
The particle orbits in the horizontal plane arc therefore identical to those of Poincark 
waves (Figure 14.16). 

However, the plane of the motion is no longer horizontal. From the velocity 
components Eq. (1 4.1 OS), we note that 

11 m 
- = 7- = 7 tanf3, 
W k 

(1.4.1 1 1 )  

wherc 6, = Lan-'(m/k) is thc angle made by the wavenumbcr vcctor K with 
the horizontal (Figure 14.24). For upward phase propagation, Eq. (1.4.1 1 1 )  gives 
u / w  = -tanO, so that w is negative if u is positive, as indicated in Figurc 14.24. 
A three-dimensional sketch of the particle orbit is shown in Figure 14.23b. It is casy 
to show (Exercise 6) that the phase velocity vector c is in the direction of K, that c 
and cg arc perpendicular, and that the fluid motion u is parallel to e,; these facts are 
dernonstratcd in Chapter 7 for internal waves unaffected by Coriolis forces. 

The velocity vector at any location rotates clockwise with time. Because of thc 
vertical propagation of phasc, the tips of the instuntuneous vectors also turn with depth. 
Consider the turning of the velocity vcctors with depth when the phase velocity is 
upward, so that the deeper currents have a phase lcad over the shallower currents 
(Figure 14.25). Because the currents at all depths rotate clockwise in rime (whether 
the vertical component of c is upward or downward), it follows that the tips of the 
instantaneous velocity vectors should fall on a helical spiral that turns clockwise with 
depth. Only such a turning in dcpth, coupled with a clockwise rotation of the velocity 
vectors with time, can result in a phase lead or Lhe deeper currents. In the opposite 

t, 
Figure 14.24 Vertical section of an intcmal wavc. Thc h c  p u d c l  h c s  u c  conrihn~ phisc hcu,  with 
the arrows indicating fluid motion along [he lines. 



Figure 14.25 Helical spiral traced out by thc lips olinstanltlncous vclocity vectors in an internal wavc 
with upward phasc speed. IIeavy arrows show the velocity oeclnrs a1 two dcplhs, and light m w s  indicate 
.hat thcy arc roltlling clockwisc with h e .  Note that the instantaneous vectors turn clockwisc with depth. 

casc of a downwurd phase propagation, the helix turns counterclockwise with dcpth. 
The direction of turning of the velocity vectors can also be found from Eq. ( I  4.1 OS), 
by considering x = t = 0 and finding u and u at various valucs of z .  

Discussion of the Dispersion Relation 
Thc dispcrsion dation (1 4.109) can be written as 

2 k2 
m2 

w - . f 2  = -(N2 - w2). (14.112) 

Tnhoducing tan 8 = m/ k, Eq. ( I  4.1 12) becomes 

w2 = f 2  sin20 + N~ cos28: 

which shows that w is a function of the angle made by the wavenumber with the 
horizontal and is not a function ofthe magnitude of K. For f = 0 the forementioned 
expression reduces to w = N cos 8, dcrivcd in Chapter 7, Section 19 without Coriolis 
forces. 

A plot of the dispersion relation (14.1 12) is presented in Figure 14.26, showing 
II) as r? function of k for various values of m. All curvcs pass through the point w = f, 
which represents inertial oscillations. rnically, N >> f in most of the atmosphere 
and the ocean. Because of thc widc scparation of the. upper and lower limits of the 
internal wave rangc f < w < N. various limiting cases are possiblc, as indicatcd in 
Figure 14.26. They are 

(1) Highfrequency regime (w - N ,  hut w < N ) :  In this range f 2  is negligible 
in comparison with w2 in the denominator of the dispcrsion relation (14.:I.W), 



1 high frequency (nonrotating) 

mid frcqucncy 
(hydrostatic, nonrotaling) 

low frequency (hydrostalk) 

Figure 14.26 Dispersion relation for internal wavcs. Thc dillkent regimes are indicakd on thc lefi-hand 
side of the figure. 

which reduces to 

N2k2 , that is, w 2: - 
m 2 + k 2 '  

k2(N2 - &) 
w2 

m c x  

Using tan 8 = m / k ,  this gives w = N cos 8. Thus, the high-frequency inter- 
nal waves are the samc as the nonrotating internal waves discussed in 
Chapter 7. 
hw-jkquency regime (w - f, but o 2 f ): In this range o2 can be neglected 
in comparison to N 2  in the dispersion relation (14.109), which becomes 

k2N2 
that is, w2 21 f 2  + -. k2N2 m cx- 

" 2 -  f 2 9  m2 

Thc low-frequency limit is obtained by making the hydrostatic assumption, 
that is, neglecting awlat in the vertical equation of motion. 
Midfrequency regime ( f  << w << N ) :  In this range the dispersion relation 
(14.109) simplifies to 

k2N2 m 2- 
0 2  ' 

so that both the hydrostatic and the nonrotating assumptions are applicable. 

Lee Wave 
Internal waves arc frequently found in the "lee" (that is, the downstream side) of 
mountains. In stably stratified conditions, the flow of air over a mountain causes 
a vertical displacement of fluid particles, which sets up intcmal waves as it moves 
downslrezun of the mountain. If the amplitude is large and the air is moist, the upward 
motion causes condensation and cloud formation. 

Due to the effect of a mean flow, the lee waves are stationary with respect to the 
ground. This is shown in Figure 14.27, where the westward phase speed is cancelcd 
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Pigure 1427 Slrcamlincs in a lee wavc. Thc Lhin line drawn through crests shows that Ihc phase pmpa- 
gates downward and westward. 

by the eastward mean flow. We shall detcrmine what wave parameters make this 
cancellation possible. The frequency of lee waves is much larger than f ,  so that 
rotational effects are negligible. The dispersion relation is thercfore 

N2k2 
m2 + k2' 

w2 = - (14.1 13) 

Howevcr, we now have to introduce the effects of the mean flow. The dispersion 
relation ( 1  4.1 13) is still valid if w is intcrpreted as the intrinsichquency, that is, the 
frequency measured in a frame of refcrence moving with the mean flow. In a medium 
moving with a velocity U, the observed frequency of waves at a fixed point is Doppler 
shifted to 

where w is the intrinsic .frequency; this is discussed further in Chapter 7, Section 3. 
For a stationary wavc q) = 0, which requires that the intrinsic frcquency is 
w = -K U = kU. (Here -K U is positive because K is westward and U is 
castward.) The dispersion relation ( 1  4.1 13) tbcn gives 

If the flow speed U is given, and the mountain introduces a typical horizontal 
wavenumber k ,  then the preceding equation determines the vcrtical wavenumber 
m that gencrates stationary waves. Waves that do not satisfy this condition would 
radiate away. 

The energy source of lee waves is at the surface. Thc energy thcrefore must prop- 
agate upward, and conwquently the phases propagate downward. The intrinsic phase 
spced is thercfore westward and downward in Figurc 14.27. With his information, 
we caa detcrmine which way thc constant phase lincs should lilt in a stalionary lee 
wave. Now that the wave pattern in Figure 14.27 would propagate to the left in the 
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absence of a mean velocity, and only with the constant phase lines tilting backwards 
with height would the flow at larger height lead the flow at a lower hcight. 

Further discussion of internal waves can be found in Phillips (1 977) and Mu& 
(1981); lee waves are discussed in Holton (1979). 

15. Rmsby Waw 
To this point we have discussed wave motions that are possible with a constant Coriolis 
liequency f and found that these waves have fiequcncies larger than f. We shall now 
consider wave motions that owe heir existence to thc variation of f with latitude. 
With such a variable f, the equations of motion allow a very important type of wavc 
motion called the Rossby wavc. Their spatial scales are so large in thc atmosphere that 
they usually have only a few wavelengths around the entire globe (Figure 14.28). This 
is why Rossby waves are also called planetary waves. In the ocean, however, their 
wavelengths are only about 100 km. Rossby-wave .hquencics obey the inequality 
w << f. Because of this slowness the time derivative terms are an order of mag- 
nitude smaller than the Coriolis forces and the pressure gradients in the horizontal 

Figure 14.28 Ohscrved hcight (in decamckm) of tbe 50 kF'a prcrsure surface in thc norzhcrn hemi- 
sphcrc. The ccnter or the piciurc reprcrjcnts thc north pole. Thc undulutions arc due LO Rossby waves 
(dm = WIOO). I. T. Houghton, The Physics oj'the Atmosphere, 1986 and reprintcd with Ihc permission 
ol' Cambridge University Press. 



cquations of motion. Such nearly geostrophic flows are cdlcd quasi-geusrrophic 
motions. 

Quasi-Ciostrophic Vorticity Equation 
We shall first derivc the governing equation for quasi-geostrophic motions. For sim- 
plicity, wc shall makc the customary pplane approximation valid for By << .fo, keep- 
ing in mind that the approximation is not a good one for atmospheric Rossby waves, 
which havc planetary scales. Although Rossby waves are frequently supcrposed on 
a mean flow, we shall derive h e  equations without a mean flow, and superpose a 
uniform mean flow at thc end, assuming thal thc perturbations are small and that a 
lincar superposition is valid. The first step is to simplify the vorticity equation for 
quasi-geos3ophic motions, assuming that the vebcit): is geoutmphic tu the lowest 
order. The small departures from gcostrophy, however, arc important because they 
determine the evolution of the flow with time. 

We start with tbc shallow-water potential vorticity equation 

which can bc written as 

We now expand the matcrial derivativc and substitute h = H + 17, where H is the 
uniform undisturbed depth of the layer, and q is the surface displaccment. This gives 

(14.1 14) 

Here, wc have used D j / D t  = v(d.f /dy)  = Bv. We have also replaccd f by .fn 
in thc second term bccause the /I-planc approximation neglects the variation of f 
except when it involvcs df/dy. For small perturbations we can neglect the quadratic 
nonlinear terms in Eq. (14.114)$ obtaining 

(14.1 15) 

This is the linearizcd form of the potential vorticity equation. Its quasi-geostrophic ver- 
sion is obtained if wc substitute the approximatc geostrophic cxpressions lor vclodty: 

(14.1 16) 

From this the vorticity is found as 

f = -  6 (a% -+- ;;) : 

.fo axz 



so that the vorticity equation (14.1 15) becomes 

Denoting c = a, this becomes 

(14.117) 

This is the quasi-geostrophic form of the linearized vorticity equation, which governs 
the flow of large-scale motions. The ratio c/fo is recognized as the Rossby radius. Note 
that wehavenot set av/at  = O,inEq.(14.115)duringthederivationofEq. (14.117), 
although a strict validity of the geostrophic relations (14.1 16) would require that the 
borizontal divergence, and hence aq/at ,  be zero. This is because the departure from 
strict geostrophy determines the evolution af the flow described by Eq. (14.117). 
We can therefore use the geostrophic relations for velocity everywhere except in the 
horizontal divergence term in the vorticity equation. 

Dispersion Relation 
Assume solutions of the form 

We shall regard w as positive; the signs of k and I then determine the direction of 
phase propagation. A substitution into the vorticity equation (14.1 17) gives 

I I 

k2 + Iz + ft/c2' 
i3k I ( 14.1 1 8) 

This is the dispersion relation for Rossby waves. The asymmetry of the dispersion 
relation with rcspect to k and I signifies that the wavc motion is not isotropic in 
the horizontal, which is expected because of the j?-effect. Although we have dcrived 
it for a single homogeneous layer, it is equally applicable to stratified flows if c is 
replaced by the corresponding intenzul value, which is c = for the reduced 
gravity model (see Chapter 7, Section 17) and c = N H / n n  for the nth mode of a 
continuously stratified model. For the barompic mode c is v q  large, and f - / c 2  is 
usually negligible in the denominator of Eq. (14.1 18). 

The dispersion relation w(k,  I) in Eq. (14.118) can be displayed as a surface, 
cslking k and X along the horizontal axes and w along the vertical axis. The section of 
this surface along I = 0 is indicated in the upper panel of Figure 14.29, and sections 
of the surface for three values of w are indicated in the bottom pancl. The contours 
of constant w are circles because the dispersion relation (14.118) can bc written as 
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k'igure 142Y Dispersion rclation f ~ ~ ( k .  I )  lor a Rorsby wave. The upper panel shows fr) vs k lor 1 = 0. 
Rcgions ol' posilivc and ncgntivc p u p  velocity cRx are indicated. Thc lowcr pancl shows n plan vicw of the 
surface m(k. I ) ,  showing conlours olconsiant w on a kl-plane. The values of ofo/,%: for the thrcc circlcx 
are 0.2, G.3, and 0.4. Amws perpendicular to contours indicatc directions or group vclocity vcctor E*. 
A. E. Gill, Armfh.;phcn~-Or.cun Dynamics, 1982 und rcprintcd wilh the permission of Academic 1 ' 1 ~ s  and 
Mn. Helen Saunders-Gill. 

The definition or group velocity 

Bw .Bw 
c, = i- + J- 

ak 3 1 '  

shows that the group velocity vector is the gradient or win  the wavenumber space. 
Thc dircction of cg is thcrefore perpendicular to the w contours, as indicated in the 



lower panel of Figurc 14.29. For I = 0, the maximum .frequency and zero group 
speed are attained at kc/Jo = - 1 , comsponding to % fo/Bc = 0.5. Thc maximum 
frequency is much smaller than the Coriolis frcquency. For examplc, in  the ocean the 
ratio ~ , , , ~ ~ / . f o  = 0.5#?c/fi is of order 0.1 for the barotropic mode, and of order 0.001 
for a baroclinic mode, taking a typical rnidlalitudc value of fo - 1 0-4 s.-' , a barotropic 
gravity wave speed of c - 200 m/s, and a baroclinic gravity wave spccd of c - 2 m/s. 
The shortest period of midlatitude baroclinic Rossby waves in the ocean can therefon 
be more than a ycar. 

The eastward phase speed is 

(14.1 19) 

The negative sign shows that the phase propagation is always westward. Thc phase 
spcedrcaches amaxhum when kZ+Z2 + 0, comsponding to very large wavelengths 
represented by the region near the origin of Figure 14.29. In this rcgion the waves are 
nearly nondispersive and have an easlward phase speed 

With = 2 x lo-" m-I s-l, a typical baroclinic value of c - 2m/s, and a mid- 
latitude value of fo - lo4 s-l, this gives c, - m/s. At these slow speeds thc 
Rossby waves would takc ycars to cross the width of the ocean at midlatitudes. The 
Rossby waves in the Ocean are therefore more important at lower latitudes, where 
hey propagatc faster. (The dispersion relation (14.1 18), howevcr, is not valid within 
a latitude band of 3" from the equator, for then the assumption of a near geoslrophic 
balance breaks down. A Merent analysis is needed in the tropics. A discussion of 
the wave dynamics of thc tropics is given in Gill (1982) and in the review paper by 
McCreary (1 985).) In the atmosphere c is much larger, and consequently the Rossby 
waves propagate h k r .  A typical large atmospheric disturbance can propagate aq a 
Rossby wave at a speed of several meters pcr second. 

Frcqucntly, the Rossby waves are superposcd on a strong eastward mean current, 
such as the atmospheric jet stream. If U is thc speed of this eastward current, then thc 
observed eslslward phase speed is 

B 
k2 + l2  + :ji/c2 ' 

c , = u -  (14.120) 

Stationary Rossby waves can therefore form when the eastward c m n t  cancels the 
westward phase spccd, giving c, = 0. This is how stationary waves are formed down- 
stream of the topographic step in Figure 14.21. A simple expression for thc wavelength 
results if we assume 1 = 0 and the flow is barotmpic, so that f,'/c' is negligible in 
m. (14.1.20).  hi^ gives u = p / k Z  lor stationary solutions, so-thzlt the wavelength 
is 2 n m .  

Finally, notc that we have been rather cavalier in deriving the quasi-geostrophic 
vorticity equation in this section, in thc sense that we have substituted the approximate 



geostrophic cxpressions for velocity without a formal ordering of the scales. Gill 
( I  982) has given a more precise derivation, cxpandjng in terms of a small paramem. 
Another way to justify the dispersion rclation (14.1 18) is to obtain it fiom the general 
dispersion rclation (14.76) derived in Section 10: 

w3 - c20(k’ + 1 2 )  - .fi;w - c2Bk = 0. (14.1 2 1) 

For w << f ,  the first term is negligible compared to the third, reducing Eq. (14.121) 
to Eq. (14.1 18). 

16. Bumhpic lnxtabilily 
In Chaptcr 12, Scction 9 we discussed the inviscid stability of a shear flow U ( y )  in a 
nonrotating system, and demonstrated that a necessary condition for its instability is 
that d2U/dy2  must change sign somewhere in the flow. This was called Rayleigh’s 
p i n 1  of injlecrion criterion. In terms of vorticity 4 = -dU/dy,  the criterion states 
that d i / d y  must change sign somewhere in the flow. We shall now show that, on a 
rotating earth, the criterion requires that d ( i  + f ) / d y  must change sign somewhere 
within the flow. 

Consider a horizontal current U (4’) in a medium of uniform density. In the absence 
of horizontal density gradients only the barotropic mode is allowed, and U ( y )  does 
not vary with depth. The vorticity equation is 

( 1  4.1 22) 

This is identical to the potential vorticity equation D/Dr[(C + f ) / h ]  = 0, with the 
added simplification that the layer depth is constant because 111 = 0. Lct thc total flow 
be decomposed into background flow plus a disturbance: 

u = U ( y )  + u’, 
I 

v = l i .  

The total vorticity is then 

wherc wc havc dcfined the perturbation streamfunction 

, u = - .  I a+ w u’ = -_ 
ily ax 

Substituting into Eq. (14.122) and linearizing, we obtain the perturbation vorticity 
cquaticin 

(14.123) 



Because the coefficients of Eq. (14.123) are independent of x and t ,  there can bc 
solutions of the form 

9 = $ ( y )  eik(x-cl )  

The phase spccd c is complex and solutions are unstable Xits imaginary part ci > 0. 
The perturbation vorticity equation (14.123) then becomes 

(U - c )  [E - k 2 ]  $ + [B - "1 dp2 4 = 0. 
dY2 

Comparing this with Eq. ( 1  2.76) derived without Coriolis forces, it is seen that the 
effect of planetary rotation is the replacement d -dzU/dy2 by (B - d2U/dy2).  
The analysis of thc scction therefore carries over to thc present case, resulling in the 
rollowing criterion: A necessary condition for the inviscid instabiliiy of a barotropic 
current U ( y )  is that the gradient of the absolute vorticity 

d -  d2U 
dY 
-((c +f) = B  - dy"' (14.1%) 

must change sign sumewhere in the $ow. This result was fist derived by Kuo 
(1 949). 

Bamtmpic instability quite possibly plays an important role in the instability of 
currents in the atmosphere and in the ocean. The instability has no prercrcnce for any 
lalitude, because the criterion involves and not f. However, the mcchanism presum- 
ably dominates in the tropics bccause midlatitudc disturbances prefcr the bumclinic 
instability mechanism discusscd in the following scction. An unshblc distribution or 
westward tropical wind is shown in Figure 14.30. 

Figurc 14.30 Iklilcs of vclocity and vorticiy or a wcstward tropicul wind. The velocity distribulion is 
barotropically unstable us d(5 + f)/dy changes sign within h e  flow. J. T. Houghton, The Physics of the 
Almvsphere, 1986 and reprinted with the permission of Cambridp University Prcss. 



17. Barnclinic Instability 

The weather maps at midlatitudes invariably show the presence of wavelike horizontal 
excursions or tcmpcrature and pressurc contours, superposed on castward mean flows 
such as thc jct strcam. Similar undulations are also found in the occan on eastward 
currcnts such as the Gulf Stream in the north Atlantic. A typical wavelength of thesc 
disturbances is observed to be or thc order of the internal Rossby radius, that is, about 
4000 km in the atmosphere and 100 km in the ocean. They sccm to be propagating as 
Rossby waves, but their erratic and unexpected appearance suggcsts that they are not 
forced by any external agency, but arc due to an inherent instabiZity of midlatitude 
eastward flows. In other words, the eastward flows have a spontaneous tendency 
to develop wavelikc disturbances. In this section we shall investigate the instability 
mechanism that is rcsponsible for the spontaneous rclaxation of eastward jets into a 
mcandering state. 

The poleward decrea$e of thc solar irradiation results in a poleward dccrease 
of the temperature and a consequcnt increase of the density. An idealizcd distri- 
bution of thc atmospheric density in thc northcm hcrnisphere is shown in Figurc 
14.3 1. Thc density increases northward due to the lowcr tcrnperatures near the poles 
and dccrcases upward because of static stability. According to the thermal wind 
relation (14.15), an eastward flow (such as the jet stream in thc atmosphere or the 
Gulf Strcarn in the Atlantic) in equilibrium with such a density structure must have 
a velocity that increases with height. A system with inclincd dcnsity surfaces, such 
as the one in Figure 14.31, has more potential energy than a systcm with horixon- 
tal density surraces, just as a systcm with an inclined free surface has more poten- 
tial energy than a system with a horizontal frcc surface. It is therefore potentially 
unstable because it can release thc storcd potcntial cnergy by means of an insta- 
bility thai would causc thc dcnsity surfaccs to flatten out. In the process, vertical 
shear or thc mcan flow U ( z )  would dccrcasc, and pcrturbations would gain kinetic 
energy. 

Instability of ban)clinic jcts that rclcasc potential cncrgy by flattening out the 
dcnsity surfaccs is callcd thc humclinic instabiliq. Our analysis would show that the 
preferred scale of thc unstablc wavcs is indccd or thc order of thc Rossby radius, as 
observed for the midlatitudc weathcr disturbances. The theory of baroclinic instability 

north Equator 

Figure 1431 Lines of constant dcnsily in thc northcrn hcmisphcric atmosphere. The lines a~ nearly 
horizontal and the slopcs are gnxtly cxaggcrulcd in lhc figurc. The velocity U ( z )  is into thc pkanc oI' 
Papa. 



was developed in the 1940s by Bjerknes et af. and is considered one of the major 
triumphs of geophysical fluid mechanics. Our presentation is essentially based on the 
review article by Pedlosky (1971). 

Consider a basic state in which the density is stably stratified in the vertical 
with a unijomz buoyancy frequency N, and increases northward at a constant rate 
a p / a y .  According to the thermal wind relation, the constancy of a p / a y  requires that 
the vertical shear of the basic eastward flow U ( z )  also be constant. The Beffcct is 
neglected as it is not an essential requirement of the instability. (The B-effect does 
modify the instability, however.) This is borne out by the spontaneous appearance of 
undulations in laboratory experiments in a rotating annulus, in which the inner wall 
is maintained at a higher temperature than the outer wall. The B-effect is absent in 
such an experiment. 

Perturbation Vorticity Equation 
The equations for total flow are 

au  au au 1 aP - + u - + v - -  f t ’= - - - ,  
at ax ay Po ax 
av av av  1 aP - + + - + v - + f u = - - -  
at ax dY Po aY’ 

aP 0 = -- - pg, 
az 

(14.125) 

au av a U 1  

ax ay az 
- + - + - = 0, 

aP aP aP aP - + u -  + v- + w- = 0,  
at ax ay az 

where pu is a constant reference density. We assume that the total flow is composed of 
a basic eastward jet V ( z )  in geostrophic equilibrium with the basic density structure 
p ( y .  z )  shown in Figure 14.31, plus perturbations. That is, 

l.4 = U ( z )  + U ’ ( X ?  y ,  z ) ,  
u = v’(x, y ,  z ) ,  
= w’(x, y ,  z ) ,  

P = P(Y9 2 )  + P ’ k  Y7 z ) ,  
P = F ( Y ,  z )  + P’(X, y ,  2) .  

Thc basic flow is in geostrophic and hydrostatic balance: 

1 a6 f U  = ---: 
Po aY 

az 
0 = -- a i  - p g .  

(14.126) 

(14.1 27) 



Eliminating the pressure, we obtain the thermal wind relation 

dU g ap - 
dz .fPo a Y ’  

( 14.128) 

which states that the eaqtward flow must increase with height because ap/ay > 0. 
For simplicity, we assume hat a p / a y  is constant, and that U = 0 at the surface z = 0. 
Thus the background flow is 

uoz U=-, H 
wherc UO is rhe velocity at the top of the layer at z = H. 

of motion in Eq. ( 1  4.123, obtaining 
We first form a vorticity equation by cross differentiating the horizontal equations 

(14.129) 

This is identical to Eq. ( 1  4.92), cxcept for the exclusion of the ,%effect here; the 
algebraic steps arc therefore not repeated. Substituting thc decomposition (14.1 26), 
and noting that < = {’ because the basic flow U = Uoz/H has no vertical componcnt 
of vorticity, (14.129) becomes 

( 14.1 30) 

where the nonlinear terms have been neglected. This is the perturbation vorticity 
equation, which we shall now write in tcrms of p’. 

Assume that the perturbations arc largc-scalc and slow, so that the velocity is 
nearly geostrophic: 

from which the perturbation vorticity is found as 

(14.1 31) 

(14.132) 

We now express w’ in Eq. (14.130) in terms of pl. The density equation gives 

Linearizing, we obtain 

(1 4.1 33) 



where NZ = -gp;'(ap/az). The perturbation density p' can be written in terms of 
p' by using the hydrostatic balance in Eq. (14.125), and subtracting the basic state 
(14.127). This gives 

- P'Rl ( 14.134) O=-- aP' 
az 

which states that the perturbations arc hydrostatic. Equation (14.133) then gives 

wherc we have written ap/ay in terms of the thermal wind dU/dz .  Using 
Eqs. (14.132) and (14.135), the perturbation vorticity equation (14.130) becomes 

(14.136) 

This is the equation that governs the quasi-geostrophic perturbations on an eastward 
current U (z) . 

Wave Solution 
We assume that the flow is confined between two horizontal planes at z = 0 and 
z = H and that it is unbounded in x and y. Real flows are likely to be bounded in the 
y direction, especially in a laboratory situation of flow in an annular region, where the 
walls set boundary conditions parallel to the flow. The boundedness in y, however, 
simply sets up n d  modes in the form sin(nny/l), where L is the width of the 
channel. Each of these modes can be replaced by a periodicity in y.  Accordingly, we 
assume wavelike solutions 

p' = b(z) e i(kr+ly-wr). (14.137) 

The perturbation vorticity equation (14.136) then gives 

where 

N2 
f 2  

az = -(I2 + P).  

The solution of Eq. (14.138) can be written a,, 

j? = A coshcr (z - F) + B sinhcr (z - :) . 

( 1  4. I 38) 

(1 4.1 39) 

(14.140) 

Boundary conditions have to be imposed on solution (14.140) in order to derive an 
instability criterion. 



Boundary Conditions 
The conditions arc 

w ' = O  atz=O,H.  

The corresponding conditions on p' can be found from Eq. (14.135) and U= Uoz/H. 
Wc obtain 

a2pi u o ~  a2pi uo ap' 
a t a z  H axaz H ax 

+--=0 atz=O,H,  

where we have also used U = Uoz/H. The two boundary conditions are therefore 

Instability Criterion 
Using Eqs. (14.137) and (1 4.140), the foregoing boundary conditions require 

whcrc c = w /  k is the eastward pha,e velocity. 
This is a pair of homogcneous equations lor the constants A and B. For nontrivial 

solutions to exist, the determinant of the coefficicnts must vanish. This gives, after 
some straightforward algebra, thc phasc vclocity 

a H  a H  - - tanh -) (- - coth "">. (14.141) 
2 a H  2 2 2 

Whcthcr thc solution grows with time depends on thc sign of the radicand. The 
behavior of the functions under thc radical sign is sketched in Figure 14.32. It is 
apparent that the first factor in thc radicand is positive because a H/2 > tanh(aH/2)  
for all values of aH. However, h e  second factor is negativc for small  values of a H 
for which a H / 2  < c o l h ( a H / 2 ) .  In this range the roots of c are complex conjugatcs, 
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Figure 14.32 Bamlinic instability. Thc upper panel shows bchavior of the functions in Eq. (14.141). 
and thc lowcr pmcl shows growth rates of unskiblc waves. 

with c = U0/2 f ici. Because we have aqsumed that the perturbations are of thc form 
exp(-ikct), the existence of a nonzero ci implies thc possibility of a perturbation 
that grows as exp(kcjt), and the solution is unstablc. The marginal stability is given 
by the critical value of (I! satislying 

aCH -- ffCH - coth ( T) , 
2 

whosc solution is 

ac H = 2.4, 

and thc flow is unstable if aH < 2.4. Using the definition of a in Eq. (14.139), it 
follows that the flow is unstable if 

HN 2.4 

f< Jrn' 
As all values of k and 1 are allowed, we can always find a value of k2 + I z  low enough 
to satisfy the forementioned inequality. ThcJIow is therefim always unstcrble (to low 
wweaumbers). For a north-south wavenumber 1 = 0, instability is ensured if the 
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easi-west wavcnumber k is small enough such that 

HN 2.4 
- < -. 

. I  k 
[ 14.1.42) 

Tn a continuously slxdtified ocean, the speed of a long internal wave for thc n = I 
baroclinic mode is c = N H / r r ,  so that the corresponding internal Rossby radius is 
c/.f = N H / i r f .  It is usual to omit the factor 17 and dcfine the Rossby radius in a 
continuously stratified fluid as 

HN 
A = - .  

.f 
The condition (1 4.142) for baroclinic instability is therefore that thc cast-west wave- 
length bc Iargc enough so that 

A > 2.6A. 

Howevcr, thc wavelength A = 2.6h docs not grow at the fastest rate. Tt can be 
shown from Eq. (14.141) that the wavclength with the largest growth rate is 

I A,,, = 3.9h. I 
This is therefore the wavelength that is obscrvcd whcn the instability develops. Typical 
values for f, N, and H suggest that A,,, - 4000 km in the atmosphere and 200 km 
in the ocean, which agree with observations. Waves much smaller than the Rossby 
rsldius do not grow, and the ones much larger than thc Rossby radius grow very 
slowly. 

Energetics 
The foregoing analysis suggests that thc cxistcncc of “weather waves” is due to the 
fact that small perturbations can grow spontancously when superposed on an east- 
ward current maintained by thc sloping density surfaces (Figure 14.31). Although 
thc basic current does have a vertical shear, the perturbations do not grow by extract- 
ing energy fiwn the vertical shear field. Inslead, they extract thcir cncrgy from the 
pofenfiu! energy stored in the system of sloping density surfaces. The energetics of thc 
baroclinic instability is therefore quite different than that of the Kelvin-Helmhollz 
instability (which also - has a vertical shear of the mean flow), where the perturba- 
tion Rcynolds smss u’w’ interacts with the vertical shear and cxtracts cncrgy from 
the niean shear flow. The baroclinic instability is not a shear flow instability; thc 
Rcynolds strcsscs arc too small bccausc of thc small w in quasi-gcostrophic large-scalc 
flows. 

The energetics of the baroclinic instability can be understood by examining the 
equalion [or the perturbation kinetic energy. Such an equation can be derived by 
multiplying the equations Cor au‘/at and au’/at by u’ and d, respectively, adding 
the two, and integrdting ovcr thc rcgion or flow. Because of the assumed periodicity 



in x and y .  the extent of the region of integration is chosen to be one wavelength in 
either direction. During this integration, the boundary conditions of zero normal flow 
on the walls and periodicity in x and y are used repeatedly. The procedure is similar 
to that for the derivation of Eq. (1 2.83) and is not repeated here. The result is 

- dK = --g 1 w’p’dx dy dz ,  
dt 

where K is the global perturbation kinetic energy 

K - (uI2 + VI2) dx dy  dz .  ”S  2 

In unstable flows we must have d K / d t  > 0, which requires that the volume inte- 
gral of w’p’ must be negative. Let us dcnotc the volume average of w’p’ by w’p’. 
A negative w’p’ means that on the average h e  lightcr fluid rises and the heavier 
fluid sinks. By such an inkrchangc thc center of gravity of the system, and therefore 
its potential energy, is lowered. The interesting point is that this cannot happen in 
a stably stratified system with horizontd density surfaces; in that case an exchange 
of fluid particles raises the potential energy. Moreover, a basic state with inclined 
density surfaces (Figure 14.31) cannot have w’p‘ < 0 if the particle excursions 
are vertical. If, however, the particle excursions fall within the wedge formed by 
the constant density lines and the horizontal (Figure 14.33), then an exchange of 
fluid particles takes lighter particles upward (and northward) and denser particles 
downward (and southward). Such an interchange would tend to make the density 
surfaces more horizontal, releasing potential energy from h e  mean density field 
with a consequent growth of the perturbation energy. This type of convection is 
called sloping convection. According to Figure 14.33 the exchange of fluid par- 
ticles within the wedge of instability results in a net poleward transport of heat 

- 
- 

- 

Figure 14.33 Wcdgc of instability (shudcd) in a bmxlinic instability. The wcdgc is bounded by con- 
slant density lincs and the horizonial. Unstable waves havc a particle trajectory that falls within thc 
wedge. 



li-om he tropics, which serves to redistributc thc larger solar hcat received by the 
tropics. 

Tn summary, baroclinic instability draws energy from the potential energy or 
the mean density ficld. The resulting eddy motion has particle trajectories ha t  are 
oriented at a small angle with the horizontal, so that the resulting heat transfer has a 
poleward component. The preferred scale of the disturbance is the Rossby radius. 

18. ~ ~ e ~ ~ r w p h i c  Tw-buluncw 

Two common modes ofinstability of alarge-scale cumnt system were presented in the 
preceding scctions. When the flow is strong enough, such instabilitics can make a flow 
chaotic or turbulcnt. A peculiarity of large-scale turbulence in the atmosphere or the 
ocean is that it is essentially two dimensional in nature. The existence of the Coriolis 
forcc, stratification, and small thickness of geophysical media severely restricts the 
vcrzical velocity in large-scale flows, which tend to be quasi-geostrophic, with the 
Coriolis h c e  balancing the horizontal prcssure gradient to the lowest order. Because 
vortex strctching, a key mechanism by which ordinary three-dimensional turbulcnt 
flows transfcr cncrgy from large to small scalcs, is absent in two-dimensional flow, 
one expects that thc dynamics of geostrophic turbulence are likely to be fundamcn- 
tally different from that of three-dimensional laboratory-scale turbulence discussed 
in Cha.ptcr 13. However, we can still call the motion ’‘turbulcnt” because it is unpre- 
dictablc and dnusive. 

A key result on the subjwt was discovered by the metcorologist Fjortoft (1953), 
and sincc then Kraichuan, k i t h ,  Batchelor, and others havc contributed to various 
aspects of the problem. A good discussion is given in Pedlosky (1 987), to which the 
reader is i-cferred for a fuller treatment. Here, we shall only point out a few important 
rcsul ts . 

An important variablc in the discussion of two-dimensional turbulcnce is ensrro- 
phy, which is the mean square vorticity2. Tn an isotropic turbulent field wc can define 
an energy spectrum S( K ) :  a function of the magnitude or the wavenumbcr K, as 

Tt can be shown that thc cnslrophy spectrum is K * S ( K ) ,  that is, 
XI - c2 = K 2 S ( K ) d K ,  

which makcs sense because vorlicity involves the spatial gradient of velocity. 
WC consider a frecly evolving turbulent field in which the shape of thc velocily 

spectrum changes with timc. The large scales are essentially inviscid, so that both 
energy and cnstrophy am ncarly conserved: 

( 14.143) 

(1 4.144) 



where terms proportional to thc molecular viscosity u have been neglected on 
the right-hand sides of the equations. The enstrophy conservation is unique to 
two-dimensional turbulence because of the absence of vortex stretching. 

Suppose that the energy spectrum initially contains all its energy at wavenumber 
KO. Nonlinear interactions transfer this energy to othcr wavenumbers, so that the 
sharp spectral peak smears out. For the sake of argument, suppose that all of the 
initial energy goes to two neighboring wavenumbers K I  and K2, with K I  < KO < K2.  
Conservation of energy and enstrophy rcquires that 

so = SI + s2, 

KiSo = K:SI + K;S2, 

where S,, is the spectral energy at K,,. From this we can find the ratios of energy and 
enstrophy spectra before and after the transfcr: 

( 14.145) 

As an example, suppose that nonlinear smearing transfers energy to wavenum- 
bers K1 = K0/2 and K2 = 2Ko. Then Eqs. (14.145) show that = 4 and 
K:St/K;S2 = 4, so that more energy goes to lower wavenumbers (large scales), 
whereas more enstrophy goes to higher wavenumbers (smaller scales). This impor- 
tant result on two-dimensional turbulence waq derived by Fjortoft (1953). Clearly, the 
constraint of enstrophy conservation in two-dimensional turbulence has prevented a 
symmetric spreading of the initial energy peak at KO. 

The unique character of two-dimensional turbulence is evident hcre. In 
small-scale three-dimensional turbulence studied in Chapkr 13, the energy goes to 
smaller and smaller scales until it is dissipated by viscosity. In geostrophic turbu- 
lencc, on the other hand, the energy goes to larger scdlcs, where it is less suscepti- 
ble to viscous dissipation. Numerical calculations are indeed in agreement with this 
behavior, which shows that the energy-containing eddics grow in si7s by coalesc- 
ing. On the other hand, the vorticity becomes increasingly confined to thin shear 
layers on the eddy boundaries; these shear layers contain very little energy. The 
backward (or inverse) energy cascade and forward enstrophy cascade are rcpresentcd 
schematically in Figure 14.34. Tt is clear that there are two "inertial" regions in the 
spectrum of a two-dimensional turbulent flow, nmcly, the energy cascade region and 
the enstmphy cascade region. Ilenergy is injected into the system at a rate E ,  hen the 
energy spectrum in the energy cascade region has the form S ( K )  o( E ~ / ~ K - ~ / ~ ;  the 
argument is essentially the same as in the case of the Kolmogorov spectrum in 
thrce-dimensional turbulence (Chapter 13, Section 9), cxcept bat the transfer is back- 
wards. A dimensional argument also shows that the energy spectrum in thc enstrophy 
cascade region is of thc form S ( K )  a K-3,  where Q is the forward cnstrophy 
flux to higher wavenumbers. There is negligible energy flux in the enstrophy cascade 
region. 
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Figure 14.34 Facrgy and enstrophy cascade in two-dimensional turbulcncncc. 

As the eddies grow in size, they become increasingly immune to viscous dis- 
sipation, and the inviscid assumption implied in Eq. (14.143) becomes incrcasingly 
applicable. (This would not be the case in three-dimensional turbulencc in which 
the eddies continue to decrease in size until viscous effects drain energy out of the 
system.) Tn contrast, the corresponding assumption in the enstrophy conservation 
equation (1 4.144) bccomes less and less valid as enstrophy goes to smaller scales, 
where viscous dissipation drains enstrophy out of the system. At later stagcs in the 
evolution, thcn, Eq. (1 4.144) may not be a good assumption. However, it can be shown 
(see Pedlosky, 1987) that the dissipation of enstrophy actually inlensi$es thc process 
of energy transfer to larger scales, so that the red cascade (that is, transfer to larger 
scales) of energy is a general result of two-dimensional turbulencc. 

The eddies, however, do not grow in size indefinitely. They become incrcslsingly 
slower as their length scale 1 increases, while their velocity scale u rcmains constant. 
Thc slower dynamics makes them increasingly wavelike, and the cddies transform 
into Rossby-wave packets as their length scale becomes of order (Rhines, 1975) 

1 - 6 (Rhines length), 

where /? = d f / d y  and u is the rms fluctuating speed. The Rossby-wave propagation 
results in an anisotropic clongation of the eddies in the east-west (“zonal”) direction, 
while the eddy size in the north-south direction stops growing a1 m. Finally, the 
vclocity ficld consists of zonally directcd jets whose north-south exlent is of order 
m. This has been suggested as an cxplanation for the existencc of zonal jets in 
the atmosphere of the planet Jupiter (Williams, 1979). The inverse energy cascadc 
regime may not occur in the earth’s atmosphere and the ocean at midlatitudes because 
the Rhines length (about lOOOkm in the atmosphere and lOOkm in the ocean) is of 



the order of the internal Rossby radius, where the energy is injected by baroclinic 
instability. (For thc inverse cascade Lo occur, J.7B needs to be larger than the scale 
at which energy is injected.) 

Eventually, however, the kinetic encrgy has to be dissipated by molecular effects 
at the Kolmogorov microscale 11, which is of the order of a few millimeters in 
the ocean and the atmosphcre. A fair hypothesis is that processes such as intcr- 
nal waves drain energy out of the mesoscale eddies, and breaking internal wavcs 
generate three-dimensional turbulence that hally cascades energy to molecular 
scales. 

t ! r n i M ? S  

1. The Gulf Stream flows northward along the east coast of the United States 
with a surface currcnt of average magnitude 2m/s. If the flow is assumed to be in 
geostrophic balance, find the average slope of the sea surface across the current at a 
latitude of 45" N. [Answer: 2.1 cm per km] 

2. A plate containing water ( u  = 10-6m2/s) above it rotates at a rate of 10 
revolutions per minute. Find the depth of the Ekman layer, assuming that the flow is 
laminar. 

3. Assume that the atmospheric Ekman layer over the earth's surface at a latitude 
of 45" N can be approximated by an eddy viscosity of u, = 10 m2/s. Tf the geostrophic 
velocity above the Ekman layer is 10 m/s, what is h e  Elanan transport across isobars? 
[Answer: 2203 m2/s] 

4. Find the axis ratio of a hodograph plot for a semidiurnal tide in the middle 
of the ocean at a latitude of 45" N. Assume that the midocean tides are rotational 
surface gravity waves of long wavelength and are unaffected by the proximity of 
coastal boundaries. Tf the depth of the ocean is 4 km, find the wavelength, the phase 
velocity, and the group velocity. Note, however, that the wavelength is compara- 
ble to the width of the ocean, so that the neglect of coastal boundaries is not very 
realistic. 

5. An internal Kelvin wave on the thmnocline of the ocean propagates along 
h e  west coast of Australia. The thermocline has a depth of 50m and has a nearly 
discontinuous density change of 2 kg/m3 across it. The layer below the therrnoclinc 
is decp. At a latitude of 30" S, find the direction and magnitude of the propagation 
speed and the decay scale perpendicular to the coast. 

6. Using the dispersion relation m2 = k2(NZ - 02))/(02 - J 2 )  €or internal 
waves, show that the group velocily vector is given by 

( N 2  - f 2 )  km 
(m2 + k2)3/2(m2J2 + k 2 N 2 ) 1 / 2  [m, 4 1  k g x .  cgz1 = 

[Hint: Differentiate the dispersion relalion partially with respect to k and m.] Show 
that cg and c are perpendicular and have oppositely directed vertical components. 
Vcrify that cg is parallel to u. 



7. Suppose the atmosphcre a~ a latitude of 45"N is idealized by a uniformly 
swalified layer of hcight 1 0 h ,  across which the potential ternperaturc increases by 
50T. 

What is the value of thc buoyancy frequency N ?  
Find thc speed of a long gravity wave corresponding to the n = 1 baroclinic 
modc. 
For the n = 1 mode, find the westward speed of nondispcrsive (i. e., very 
large wavelength) Rossby waves. [Answer: N = 0.01 279 s" I ; c1 = 40.71 m/s; 
c, = -3.12m/s] 

8. Consider a steady flow rovating between plane parallel boundaries a distance 
I, apart. Thc angular velocity is G? and a small rcctilinear velocity U is superposed. 
There is  a protuberance of hcight h << L in thc Row. The Ekman and Rossby numbers 
are both small: Ro << 1, E << I. Obtain an integral or the relevant equations or motion 
that relates the modified pressure and the streamfunction [or the motion, and show 
that the modified prcssure is constant on streamlines. 
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1. fnbwduchbn 
Aerodynamics is the branch of fluid mechanics that dcals with the determination 
of thc flow pas1 bodics of aeronautical interest. Gravity forccs are neglected, and 
viscosity is regarded as small so that thc viscous forces are confined to thin boundary 
laycrs (Figurc 10.1). The subject is callcd incompressible aerodynamics if the flow 
speeds are low enough (Mach number < 0.3) for the compressibility effects to be 
negligible. At larger Mach numbcrs the subject is normally called gas dyntrmics, 
which deals with flows in which compressibility effects are important. In this chapter 
we shall study some elementary aspects of incomprcssible flow around aircraft wing 
shslpes. The blades of turbomachines (such a,. turbines and compressors) have the 
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same cross section as that of an aircraft wing, so that much of our discussion will also 
apply to the flow around the blades of a turbomachine. 

Because the viscous effects are confined to thin boundary layers, the bulk of the 
flow is still irrotational. Consequently, a largc part of our discussion of irrotational 
flows presented in Chapter 6 is relevant here. It is assumed that the readcr is familiar 
with that chapter. 

2. Tlie AhvraJl and lix Conlmlx 

Alhough a book on fluid mechanics is not the proper place for describing an aimaft 
and its controls, we shall do this here in the hope that the reader will find it interesting. 
Figure 15.1 shows three views of an aircraft. The body oCthe aircraft, which houses the 
passengers and other payload, is called the.fuseluge. The engines (jets or propcllers) 
are often attached to the wings; somctimes they may be mounted on the .fuselage. 

right wina .--c /7 

enain'es \ \I 

--*"\$ left wing + 

cock 
7 

Figure 15.1 Thnx views of a transport slimdl mid it% contml surfacas (NASA). 



Figure 15.2 shows the plan view of a wing. The outer end of each wing is called the 
wing rip, and the distance between the wing tips is callcd the wing spun s. Thc distance 
between thc leading and trailing edges of the wing is called the chord Zengih c, which 
varies along the spanwise direction. The plan area of the wing is called the wing 
areu A .  Thc narrowness of the wing planform is measured by its aspect radio 

where E is the slvcrage chord length. 

three axes, called the pitch axis, the roll a i s ,  and the yuw axis (Figure 15.3). 
The various possible rotational motions of an aircraft can be referred to along 

direction of 
flight 

wing tip 

Figure 15.2 Wing planform geometry. 

L 

pitch axis 

Figure 15.3 Aircraft axcs. 
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Control Surfaces 

The aircraft is controlled by the pilot by moving certain control surfaces described in 
the following paragraphs. 

Aileron: Thesc are poaions of each wing near the wing tip (Figure 15.1). joined 
to the main wing by a hinged connection, as shown in Figure 15.4. They move 
differentially in the sense that one moves up while the other moves down. 
A depressed aileron incrcases the lift, and a raised aileron decreases the lift, 
so that a rolling moment results. The object of situating the ailerons near the 
wing tip is lo generate a large rolling moment. The pilot generally controls the 
ailerons by moving a control stick, whose movement to the left or right causes 
a roll to the left or right. In larger aircraft the aileron motion is controlled by 
rotating a small wheel that resembles one half of an autornobilc steering wheel. 
Elevator: The elevators are hinged to thc trailing edge of the tail plane. Unlike 
ailerons they move together, and theirmovemcnt gencrates a pitching motion of 
the aircraft. The elevator movements are imparted by the forward and backward 
movement of a control stick, so that a backward pull lifts the nose ofthe aircraft. 
Rudder: The yawing motion of the aircraft is govemcd by the hinged rear 
portion of the tail fin, called the rudder. The pilot controls the rudder by pressing 
his feet against two rudderpedals so arrangedthatmovingtheleftpedalforward 
moves the aircraft’s nose to the left. 
Flap: During take off, the speed of the aircraft is too small to generate enough 
lift to support the weight of the airmft. To overcome this, a seclion of the rear 
of the wing is “split,” so that it can be rotated downward to incrcase h e  lift 
(Figure 15.5). A further €unction of the flap is to increase both lift and drag 
during landing. 

Modem jet transports also have “spoiled’ on the top surface of each wing. Whcn 
raised slightly, they separate the boundary layer early on part of the top of the wing 

h 
Figure 15.4 The ailcmn. 

Fiyre 15.5 The flap. 



and this decreaTes its lift. They can be dcploycd together or individually. Rcducing 
the Mi on onc wing will bank the aircraft so that it would turn in the direction or 
the lowered wing. Deploycd together, lift would be decreased and the aircraft would 
descend to a new equilibrium altitudc. Spoilers have another function as well. Upon 
touchdown during landing they arc dcployed fully as flat plates nearly pcrpendicular 
to the wing surface. As such they add greatly to the drag to slow the aircraft and 
shortcn its roll down the runway. 

An aircraft is said to be in himmcd flight when there are no moments about 
its center of gravity. Trim tabs are small adjustablc surfaces within or adjacent to 
the major control surfaces described in the preceding: ailcrons, elevators, and rudder. 
Deflections of these surfaces may be set and held to adjust for a change in the aircraft's 
center ol gravity in flight due to consumption of fuel or a change in the direction of 
the prevailing wind with rcspcct to the flight path. These are set for steady level flight 
on a straight path with minimum deflection of the major control sudaces. 

3. AirJoil Cmmelry 

Figure 15.6 shows the shape of the cross section of a wing, called an airfoil section 
(spelled aerofoil in the British literature). The leading edge of the profile is generally 
rounded, whereas the trailing edge is sharp. The straight line joining the centers of 
curvature ofthe leading and trailing edges is called the thud. The meridian Line of the 
scction passing midway between the upper and lower surfaccs is called thc camber 
line. Thc maximum height 01 the camber line above the chord line is called the camber 
of the scction. Normally the camber varics 1rom nearly zero for high-speed supersonic 
wings, to ~ 5 %  of chord length [or low-speed wings. The angle a between the chord 
linc and thc diwction ol  Bight (i.e., the dh-ection of the undisturbed stream) is called 
the angle of attack or angle 

4. H m m  on o m  Airjbil 
The resultant aerodynamic forcc F on an airfoil can be resolved into a lijitfime L 
pwpendicular to the djrection of undisturbcd Bight and a drag.force D in the direction 
01 flight (Figure 15.7). Tn stcady lcvcl flight the drag is balanced by the thrust of 
the engine, and the lift equals the weight of the aircraft. These forces are exprcsscd 

incidence. 

, ---- --.., 

mailing edge 

Figure 15.6 Airli)il gc:)mctry. 



l 6 i  15.7 Forces on an airfoil. 

-2 

-1 
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Figure 15.8 Distribution of the pressurc coefficient ovcl an airfoil. Thc upper plrncl shows C, plotted 
normal to the surke and the lowcr panel shows C, plotted n o d  to the chord line. 

nondimensionally by defining the coefficients of lift and drag: 
L D c -  

= (1/2)pUZA' cD (1/2)pU2A' 
(15.1) 

The drag results from the tangential stress and normal pressure distributions on the 
surface. These are called thefriction d ~ g  and the pressure drug, respcctively. The lift 
is almost entirely due to the pressure distribution. Figure 15.8 shows the distribution 
of the pressure coefficient C,, = ( p  - p W ) / $ p U 2  at a moderate angle of attack. The 



outward arrows correspond to a negative C,,, while a positivc C ,  is represented by 
inward arrows. Tt is seen that the pressure coefficient is negativc over most of the 
surface, exccpt over small regions near the nose and thc tail. Howcver, the pressures 
over most of the upper surraCc are smaller than those ovcr the bottom surface, which 
results in a lift force. Thc top and bottom surfaces of an airfoil are popularly refcrred 
to as the suction side and the compression side, respectively. 

5. Kulla Conditiun 
In Chaptcr 6, Section 1 1 wc showed that the Lift per unit span in an irrotational flow 
ovcr a two-dimensional body of arbitrary cross section is 

L =pur, ( 1  5.2) 

whcrc U is the free-swam velocity and r is the circulation around the body. Rclation 
(1 5.2) is called the Ku#u-Zhkhovsky lifi theorem. The question is, how does a flow 
develop such a circulation? Obviously, a circular or elliptic cylinder does not develop 
any circulation around i1, unlcss it is rotated. It has been experimenlally observed that 
only bodies having a sharp trailing edge, such as an airfoil, can generatc circulation 
and lift. 

Figurc 15.9 shows the irrotational flow pattern around an airfoil for increasing 
values of clockwise circulalion. For r = 0, there is a stagnation point A located just 
below the leading edge and a stagnation point B on the top surface ncar the trail- 
ing cdge. When some clockwise circulation is superimposed, both stagnation points 
move slightly down. For a particular valuc of r, the stagnation point B coincides 
with the mailing edge. (If the circulation is further increased, thc rear stagnation 

Figure 15.3 Irrohtional flow pallcrn ovcr an drl'oil for various valucs ol'clwkwisc circulation. 



point moves to the lower surfacc.) As far as irrotational flow of an ideal fluid is con- 
ccrned, all these fow patterns arc possible solutions. A real flow, however, develops 
a specific amount of circulation, depending on the airfoil shape and the angle of 
attack. 

Consider the irrotational flow around the trailing edge of an airfoil. It is shown in 
Chapter 6, Section 4 that, for flow in a comer or included angle y ,  the velocity at the 
corner point is zero if y < 180’ and infinite if y > 180’ (see Figure 6.4). In thc upper 
two panels of Figure 15.9 the fluid goes from the lower to the upper side by turning 
around the trailing edge, so that y is slightly less than 360“. The resulting vclocity 
at the trailing edge is therefore infinitc in the uppcr two pancls of Figurc 15.9. In thc 
bottom panel, on the othcr hand, the trailing edge is a stagnation point hccausc y is 
slightly less than 180”. 

Photographs of flow around airfoils reveal that the pattern sketched in the bot- 
tom panel of Figure 15.9 is the one developed in practice. The German aerodynamist 
Wilhclm Kutta proposed the following rule in 1902: ZnjZow over a two-dimensional 
body with a sharp trailing edge, there develops a circulution of mugnitudejust su@- 
cient to m v c  the wur stugnation point to the truiling edge. This is called the Kulta 
Condition, sometimes also called thc Zhukhovsb hypothesis. At the beginning of the 
twentieth century it was merely an experimentally observed fact. Justification for this 
empjnical rule became clear after the boundary layer concepts were understood. In 
the following section we shall see why a real flow should satisfy the Kulta condition. 

Historical Notes 
According to von Karman (1954, p. 34), the connection between thc lift of airplane 
wings and thc circulation around thcm was recognized and developed by three per- 
sons. One of them was the Englishman Frederick Lanchester (1887-1946). He was a 
multisidccd and imaginative person, a practical engineer as wcll as an amateur math- 
cmatician. His trade was automobile building; in fact, hc was the chief engineer and 
general manager of the Lanchester Motor Company. Hc once took von Karman for 
a ride around Cambridge in an automobile that hc built himself, but von Karman 
“felt a little uneasy discussing aerodynamics at such rather frighlcning speed.’’ The 
second person is the German mathematician Wilhclm Kutta ( 1 867-1 944), well-known 
for the Runge-Kutta scheme used in the numcrical integration or ordinary differen- 
tial equations. He startcd out as a pure mathematician, but later became intcrested 
in aerodynamics. The third person is the Russian physicist Nikolai Zhukhovsky, 
who developed the mathematical roundations of the theory OF lift for wings of 
infinite span, independently of Lanchcstcr and Kutta. An exccllcnt book on the his- 
tory of flight and the sciencc 01 acrodynarnics was reccntly authored by Andcrson 
(1 998). 

6. &Jiicralion o$ Circidution 

We shall now discuss why a real flow around an airfoil should satisfy the Kutta 
condition. The explanation lics in the frictional and boundary layer nature of a real 
flow. Consider an airfoil starting from rest in a real fluid. The flow immediately after 



starting is irrolalional everywhere, bccause the vorticity adjacent to the surface has 
not yet diffuscd outward. The velocity at this stage has a near discontinuity adjaccnt 
to the surface. The flow has no circulation, and resembles the pattern in the upper 
panel of Figure 15.9. The fluid goes around the trailing edge with a very high velocity 
and overcomes a steep deccleration and pressure rise from the trailing edge to the 
stagnation point. 

Within a fraction of a sccond (in a time of the order of that taken by the flow 
to move one chord length), however, boundary laycrs develop on the airfoil, and the 
retarded fluid does not have sufficient kinetic energy to ncgotiatc the sleep pressure 
rise from the trailing edgc toward the rear stagnation point. This gcnerates a back-flow 
in the boundary layer and a scparation of the boundary layer at thc trailing edge. The 
consequence of all this is thc generalion of a shear layer, which rolls up inlo a spiral 
form under the action of its own induced vorticity (Figure 15. IO). Thc rollcd-up shear 
laycr is carried downstream by the flow and is left at the location whcre the air€oil 
started its motion. This is called the starting vortex. 

The sense of circulation of the starting vorlex is counterclockwise in Figurc 15.10, 
which means that it musl leave behind a clockwise circulation around thc airfoil. To 
see this, imagine that the fluid is stationary and the airfoil is moving to the left. Con- 
sider a material circuit ABCD, made up of the same fluid particles and large enough 
to enclose both thc initial and final locations of the airfoil (Figure 15.1 1). Initially 
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Figure 15.10 Formation ora spiral vortex shcct soon after an airroil begins to move. 
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Figure 15.11 A material circuit ABCD in a stationary Ruid wd an airfoil moving 10 the lefl. 



the trailing edge was within the region BCD, which now contains the starting vor- 
tex only. According to the Kelvin circulation thcorem, the circulation around any 
material circuit remains constant, if the circuit remains in a region of inviscid flow 
(although viscous processes may go on inside thc region enclosed by the circuit). 
The circulation around the large curve ABCD therefore remains zcro, since i t  was 
zcro initially. Consequently thc counterclockwise circulation of the starling vortex 
around DBC is balanced by an equal clockwise circulation around ADB. The wing is 
therefore left with a circulation r equal and oppositc to the circulation of the starting 
vortex. 

Tt is clear from Figure 15.9 that a value 01 circulation othcr than the one that 
moves the rear stagnation point exactly to the trailing edge would result in a sequence 
of cvents as just dcscribed and would lead to a readjustment or the flow. The only value 
of the circulation that would not result in fuaher rcadjustment is the one required by 
the Kutta condition. With every changc in the spced of thc a a o w  or in the angle of 
attack, a new starting vortex is cast off and left behind. A new value of circulation 
around the aidoil is established so as to place thc rear stagnation point at the trailing 
edge in each case. 

It is apparent that the viscosity of the fluid is not only responsible for the drag, 
hut alsofor the develupment of circulation and l@. In developing the circulation, the 
flow leads to a steady state where a further boundary layer separation is preventcd. 
The establishment of circulation around an airfoil-shaped body in a real fluid is a 
rcmarkable result. 

7. ConJormall 'lhxformalion fiw G'eneraling Air-oil Sh~pc! 
In the study of airfoils, one is interested in finding the flow pattern and pressure 
distribution. The direct solution of the Laplace equation for the prcscribed boundary 
shape of the airfoil is quite straightforward using a computcr, but analytically diflicult. 
In general the analytical soluiions are possible only when the airfoil is assumcd thin. 
This is called thin airfoil theory, in which the airfoil is replaced by a vortcx sheet 
coinciding with the camber line. An integral equation is dcveloped for the local 
vorticity distribution from the condition that the cambcr line bc a streamline (velocity 
tangent to the camber line). The velocity at each point on the camber line is the 
superposition (is., integral) of velocities induced at that point due to the vorticity 
distribution at all other points on the camber line plus that from thc oncoming stream 
(at infinity). Since the maximum camber is small, this is usually evaluated on the 
x-y-planc. The Kutta condition is represented by the requirement that the strength of 
the vortcx sheet at the trailing edge is zcm. This is treated in detail in Kucthe and 
Chow (1998, chapter 5) and Andcrson (199 1 , chapter 4). An indirecf way of solving 
the problem involves the method of conformal transformalion, in which a mapping 
function is determined such that the arbitrary airfoil shape is lransforrncd into a circle. 
Then a study of the Bow around the circle would dekrrnine thc flow pattern around 
the airfoil. This is called Theodorsen's method, which is complicated and will not be 
discussed here. 

Tnstead, wc shall deal with a case in which a given transformation maps a circle 
into an airfoil-like shape and dcterrnine the properties of the airfoil generated thereby. 
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Figure 15.12 Transformation or a circlc into a straight linc. 

This is the Zliukhuvskq. trunsjbnnutiun 

b2 
z = [ + -  

< '  
(1 5.3) 

where b is a constant. Tt maps rcgions of the (-plane into the z-plane, some examples 
of which are discussed in Chaptcr 6, Scction 14. Here, we shall assume circles of 
different configurations in the <-plane and examine their transformed shapes in the 
z-plane. Tt will be sccn that one of them will result in an airfoil shape. 

Ttansformation of a Circle into a Straight Line 
Consider a circle, centered at the origin in the [-plane, whose radius b is the same as 
the constant in thc Zhukhovsky transformation (Figure 15.12). For a point = b eie 
on the circle, the comsponding point in the z-plane is 

z = be'@ + be-" = 2hcos0. 

As 6, varics iom 0 to n, z goes along thc x-axis from 2b to -2b. As H varies from a 
to 2x, z goes from -2h to 2h. The circle of radius h in the (-plane is thus transformed 
into a stnight line of length 4b in the z-plane. It is clear that the region outside thc 
circle in thc <-plane is mapped into the en.iire z-plane. (It can be shown that the region 
inside the circle is also transformed into thc entire z-plane. This, howcvcr, is of no 
concern to us, since we shall not consider the interior of the circle in the [-plane.) 

Transformation of a Circle into a Circular Arc 
T x t  us consider a circle ofradius u (>h) in the (plane, the cenler of which is displaccd 
along the ri-axis mnd which cuts thc {-axis at ( f b ,  O), as shown in Figure 15.1 3. If a 
point on the circlc in the [-plane is rcprcsented by 5' = Reie, then the corresponding 
point in thc r-plane is 
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c-plane z-plane ' t  

Fiprc 15.13 Transformation of a circle into a circular arc. 

whose real and imaginary parts are 

x = (R + b2/R)cos0, 

y = (R - bz/R) sine. 

Eliminating R, we obtain 

(1 5.4) 

x2 sinze - y 2  cosze = 4b2 sin% cos2e. (15.5) 

To understand the shape of the curve represented by Eq. (15.5) we must express 0 in 
terms of x ,  y ,  and the known constants. From triangle OQP, we obtain 

QP2 = OP2 + OQ2 - 2(0Q)(OP) COS (Q8P). 

Using QP = a = b/ cos /.I and OQ = b tan B, this becomcs 

-- h2 - R2 + hZ tm2B - 2Rb tan/? COS(~~" - 0): 
cosq? 

which simplifies to 

2btan /?sine = R - bZ/R = y / s i n 0 ,  (1 5.6) 

where Eq. (15.4) has been used. We now eliminate 0 between Eqs. (15.5) and 
(15.6). First note from Eq. (15.6) that cos2e = (2btan f i  - y)/2btan p, and 
co120 = (2blan /? - y ) / y .  Then divide Eq. (15.5) by sin20, and substitute these 
expressions of cos20 and cot2e. This gives 

X' + ( y  + 2b cot 2/?)' = (2b csc 2p)'? 

where B is known from cos /? = b/a. This is the equation of a circle in the z-plane, 
having the center at (0, -2bcot28) and a radius of 2bcsc2B. The Zhukhovsky 
transformation has thus mapped a complete circle into a circular arc. 
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Vigm 15.14 Transformation of a c idc  inlo tl symmelric a i h i l .  

Transformation of a Circle into a Symmetric Aidoil 
lnstead of displacing the centcr of the circle along the imaginary axis of the (-plane, 
suppose that it is displaced to a point Q on the real axis (Figure 15.14). The radius of 
the circle is u (>b), and we assume that is slightly larger than h: 

n = h(l +e) c << 1. (15.7) 

A numerical evaluation of h e  Zhukhovsky transformation (15.3). with assumcd val- 
ues for a and h, shows that the corresponding shapc in the z-plane is a streamlincd body 
that is symmetrical about thcn-axis. Note that the airfoil in Figure 15.14 has arounded 
nose and thickness, while the one in Figure 15.1 3 has a camber but no thickness. 

Transformation of B Circle into a Cambered Airfoil 
As can be cxpccted from Figures 15.13 and 15.14, thc translormed figure in the z-plane 
will be a general airfoil with both camber and thickncss i i  the circle in the <-plane is 
displaced in both Y,I and directions (Figure 15.15). Thc following relations can be 
proved for e << 1: 

c 21 4b, 

camber 2: $c, 

T,,,~Jc Y 1.3 e. 

(1  5.8) 

Herc t,.,,= is the maximum thickness, wbich is reached nearly at the quarter chord 
position x = -b. The “cambcr,” defined in Figure 15.6, is indicated in Figurc 15.15. 

Such airfoils generatcd from the Zhukhovsky transformation arc called 
Zhukhovs~  airjids. They have the properly that the miling edge is a cusp, which 
mcans that the upper and lower surfaces are tangent to each othcr at the trailing 
edgc. Without thc Kutta condition, h e  trailing edge is a point of infinite vclocity, 
as discussed in Scction 5. If the trailing edge angle is nonzero (Figure 15.16a), the 
coincidence of the stagnation point with thc point of infinitc velocity still makes the 
hailing edgc a stagnation point, becausc of the following argument: The fluid velocity 
on the uppcr and lower surfaces is parallel to its rcspective surface. At the trailing 
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Ngum 15.15 Transformalion of a circie into a cambered airroil. 

(a) (b) 

RFPm 15.16 Shirpes of thc trailing edge: (a) tmiling edgc with finite rtndc; and (b) cusped trailing cdge. 

cdge this leads to normal velocities in different directions, which cannot be possible. 
The velocities on both sides of the airfoil must therefore be zero at the trailing edge. 
This is not true for the cusped trailing edge of a Zhukhovslq airfoil (Figure 15.16b). 
In that case the tangcnts to the upper and lower surfaces coincide at the trailing cdge, 
and the Ruid leaves thc trailing edge smoothly. The trailing edge for the Zhukhovsky 
airfoil is simply an ordinary point where the velocity is neither zero nor infinite. 

8. Tip qf7hukhiws&Air$oil 
The preccding section has shown how a circle is transformed into an airfoil with 
the help of the Zhukhovsky tramformation. We are now going to dctermine certain 
flow properties of such an airfoil. Consider flow around thc circle with clockwise 
circulation r in thc <-planc, in which the approach velocity is inclined at an angle Q 

with the 6-axis (Figurc 15.17). The comsponding pattern in thc z-planc is the flow 
around an airfoil with circulation r and anglc of attack a. 11 can be shown that the 
circulation does not change during a conformal transformation. If w = # + i$ is the 
complex potential, then the velocities in the two planes are relatcd by 

dw d w d c  
dz d( d z '  
-=-- 

Using the Zhukhovsky transformation (15.3), this becomcs 

du) dw c2 -=-- 
d t  d{ c2-bz '  (15.9) 
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Figure 15.17 Tmnsrormation of tlow around B d d c  into tlow around an airfoil. 

Here dw/dz = u - iv is the complex velocity in the z-plane, and dw/d( is the 
complex velocity in the <-plane. Equation (15.9) shows that the velocities in thc two 
planes become equal as < + 00, which means that the free-stream velocities are 
inclined at the same angle CY in the two planes. 

Point B with coordinates (h, 0) in the <-plane is transformed into the trailing 
edge B’ of the airfoil. Because c2 - b2 vanishes there, it follows from Q. (15.9) that 
the velocity at the trailing edge will in general be infinite. If, however, we arrange 
that B is a stagnation point in the <-plane at which du;/d< = 0, thcn dui/dz at the 
trailing edge will have the 0/0 form. Our discussion of Figure 15.16b has shown that 
this will in fact mul t  in a finite vclocity at B’. 

From Eq. (6.39), the tangential velocity at the surface ofthc cylinder is givcn by 

r 
= -2U sin0 - -, 

2na 
( 1 5.1 0)  



where 8 is measured Irom the diameter CQE. At point B, we havc 
0 = -(a + B).  Therefore Eq. (15.10) gives 

= 0 and 

r = 4nUa sin@ +#I), I (15.1 1) 

which is the clockwise circulation required by thc Kutta condition. It shows that the 
circulation around an airfoil depends on the speed U, the chord length c (-4a), the 
angle of attack a, and h e  cambedchord ratio 8/2. The coefficient of lift is 

L 
2: 2x(a + B),  

(1 /2)pU% I cL= (15.12) 

where we have used 4.a 2: c: L = pur, and sin@ + p )  2: (a + #I) for small angles 
of attack. Equation (15.12) shows that the lift can be increased by adding a certain 
amount of camber. The lift is zero at a negative angle of attack a = -PI so that the 
angle (a + B )  can be called the "absolute" angle of attack. The fact that the lift of an 
airfoil is proportional to the angle of attack is important, as it suggcsts that the pilot 
can control the lift simply by adjusting the attitude of thc airfoil. 

A comparison of the heoretical lift equation (1 5.12) with typical expcnmental 
results on a Zhukhovsky aifoil is shown in Figure 15.18. The small disagreement 
can bc attributed to the finite thickness of thc boundary layer changing thc effectivc 
shapc of the airfoil. The sudden drop of the lift at (a + 8) 2: 20" is due to a severe 
boundary layer separation, at which point thc airfoil is said to stall. This is discusscd 
in Scction 12. 

/ 
I 

I I 
I I 

Figurc 15.18 Comparison of theorelical and expcrimenltll lift cmlncicnts for II cambercd 7hukhovsky 
airfoil. 



Zhukhovsky airfoils are not practical for two basic rcasons. First, they demand a 
cusped trailing cdgc, which cannot be practically constructed or maintained. Second, 
ihc camber line in a Zhukhovsky airfoil is nearly a circular arc, and therefore the 
maximum camber lies close to the center of the chord. However, a maximum camber 
within thc lorward portion of the chord is usually preferred so as to obtain a desirable 
pressure distribution. To get around these difficulties, other families of airfoils have 
becn gcnerated Imm circles by means of more complicated transformations. Never- 
theless, the results for a Zhukhovsky airfoil given here have considerable application 
as rcfcrcrrcc valucs. 

9. N%ig of Finite &Span 
So far wc havc considered only two-dimensional flows around wings of infinite span. 
Wc shall now consider wings of finite span and examine how the lift and drag are 
modificd. Figure 15.19 shows a schematic view of a wing, looking downstream from 
thc aircraft. As the pressure on the lower surface of the wing is greater than that on 
thc uppcr surface, air flows around the wing tips from the lower into the upper side. 
Thcrcforc, lhcre is a spanwise component of velocity toward the wing tip on the under- 
side of the wing and toward the center on the upper side, as shown by the strcamlincs 
in Figure 15.20a. The spanwise momentum continues as the fluid gocs ovcr the wing 

d 

d 

(a) Top view 

wing 
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B 

(b) Cross seclion of trailing vortices 

i 

- upper streamlines 
- - + lowcr streamlines 

Figurc 15.20 
surfaces c.f :he wing; and (h) cross section of trailing vortices behind thc wing. 

Elow over a wing or l i n k  span: (a) top vicw ol'slrcainline patterns on Ihc upper and lowcr 



Figure 1531 Rolling up or trailing vortices lo rorrn tip wrticw. 

and into the wake downstream of the trailing cdge. On the swam surface extending 
downstream rmm the wing, thercfore, the lateral component of the flow is outward 
(toward the wing tips) on the undersidc and inward on the upper side. On this surlace, 
then, there is vorticity with axes orientcd in the streamwise direction. The vortices 
have opposite signs on the two sides of the central axis OQ. The streamwise vortex 
filaments downstream of the wing are called trailing vortices, which .Form a vortex 
sheet (Figure 15.20b). As discussed in Chapter 5,  Section 8, a vortex sheet is com- 
posed of closely spaccd vortex filamcnts and gencrates a discontinuity in tangential 
velocity. 

Downstream or the wing the vortex sheet rolls up into two distinct vortices, which 
are called tip vortices. The circulation around each of the tip vorticcs is equal to ro, the 
circulation at the center of the wing (Figure 15.21). The existcnce of the lip vortices 
becomes visually evident when an aircraft flies in humid air. The decreased pressure 
(duc to the high velocity) and temperature in the core d the tip vortices often cause 
atmospheric moisture to condense into droplets, which arc seen in the form of vapor 
trails extcnding for kilomcters across the s l y  

One of Hclmholtz's vortcx theorems states that a vortex filament cannot end in 
thc fluid, but must either end at a solid surface or form a closed loop or ''vorkx ring." 
In the case of the finitc wing, the tip vortices start at the wing and are joined Logcther 
at the other end by the starting vortices. The starting vortices are lcft behind at the 
point wherc the aircralt took off, and some of them may be left whcre the angle of 
attack was last changed. In any case, they are usually so far behind the wing that 
heir effect on the wing may be neglccted, and the tip vortices may bc regardcd as 
extending to an infinite distance behind thc wing. 

As the aircraft proceeds thc tip vorticcs get longcr, which mcans that kinetic 
cnergy is being conslantly supplied to generate the vortices. It lollows that an addi- 
tional drag [one is expericnced by a wing of finite span. This is called the induced 
drag, which is explored in thc following section. 

In this section wc shall formalize thc concepts presented in the preceding section and 
derive an expression for the lift and induced drag of a wing of finite span. The basic 



assumption of thc theory is that the value of the aspect ratio spdchord is large, 
so that the Bow around a section is approximatcly two dimensional. Although a 
formal mathematical account of the thcory was first published by handtl, many of 
the important underlying ideas were first conceived by Lanchester. The historical 
controversy regarding the credit for the lheory is noted at the cnd of thc section. 

Bound and Railing Vortices 
Tt is known that a vortcx, likc an airfoil, cxpcricnccs a lift force when placed in a 
uniform stream. Tn fact, thc disturbancc crcatcd by an airfoil in a uniform stream is in 
many ways similar to that created by a vortex filament. It therefore follows that a wing 
can be replaced by a vortex, with its axis parallel to the wing span. This hypothetical 
vortex filament replacing the wing is called the bomd vortex, “bound” signifying that 
it moves with the wing. We say that the bound vortex is located on a Zifing line, which 
is the core of the wing. Recall the discussion in Section 7 where the camber line was 
replaced by a vortex sheet in thin airfoil theory. This sheet may be regarded as the 
bound vorticity. According to one of the Helmholtz thcorcms (Chapter 5, Scction 4), 
a vortex cannot begin or end in the fluid; it must end at a wall or form a closed loop. 
The bound vortex therefore bends downstream and forms the lrailing vortices. 

The strength of the circulation around the wing varies along the span, being 
maximum at thc ccnter and zero at the wing tips. A relation can be derived between 
the distribution of circulation along the wing span and the strength of the trailing 
vortcx filamcnts. Suppose that the clockwise circulation of the bound vortex changes 
from r to r - d r  at a certain point (Figure 15.22a). Then anothcr vortcx AC of 
strength dr must emerge from the location of the change. Tn fact, the slrength and 
sign of the circulation around AC is such that, when AC is folded back onto AB, the 
circulation is uniform along thc composite vortex tube. (Recall the vortcx thcorem 
of Helmholtz, which says that the strength of a vortex tube is constant along iLs 
length.) 

Now considcr the circulation distribution l-(y) over a wing (Figure 15.22b). The 
change in circulation in length dy is dl’, which is a decrease if dy > 0. It follows 

(a) (b) 

Figure 15.22 Lifting linc lhcory: (a) change of \’ortcx rlrcnglh; and (b) nomcnclalurc. 
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that the magnitude of thc trailing vortex fdament of width d y  is 

The trailing vortices will be stronger near the wing tips where d r / d y  is thc largest. 

Downwash 
Let us determine the velocity induced at a point y I  on the lifting line by thc trailing 
vortex sheet. Consider a semi-hhite trailing vortex filament, whose one end is at the 
Lifting line. Such a vortcx of width dy ,  having a strength -(dr'/dy) dy ,  will induce 
a downward velocity of magnitude 

Note that this is hapthe velocity i n d u d  by an infinitely long vortex, which quals 
(circulation)/(2xr) where r is the distance from thc axis of the vortex. The bound 
vortcx makes no conhibution to the velocity induced at the lifting linc itself. 

The total downward velocity at y~ due to the entire vortex sheet is therefore 

(1.5.13) 

which is callcd the downivush at y~ on the lifting line of the wing. The vortex sheet 
also induces a smaller downward velocity in front ofthe airfoil and a larger one behind 
the airfoil (Figure 15.23). 

The cffcctive incident flow on any element of the wing is the resultant of U and w 
(Figure 15.24). Thc downwash therefore changes the attitude of the airfoil, decreasing 
thc "geometrical angle of attack" a by the angle 

w w  E=tan-?-  u u' 
so that the eflectivc angle ofattuck is 

W 
a, = a - E = a - -. U (15.14) 

l i n g  line 

I 
I 

Figure 15.23 Variation of downwash ahead of and behind an airfoil. 



Figurn 15.24 Lift and induced drag on a wing element dy. 

Because the aspect ratio is assumed large, E is small. Each element dy  of the finite 
wing may then be assumed to act as though it is an isolated two-dimensional section 
set in a stream of uniform velocity Ue, at an angle of attack a,. According to the 
Kutta-Zhukhovsky lift theorem, a circulation r supcrimposed on the actual resulrant 
velocity U, generates an elementary mrodynamic force dL,  = pUJ d y ,  which acts 
normal to U,. This force may be resolved into two components, the conventional 
lift force dL normal to the direction of flight and a component dDi parallel to thc 
direction of flight (Figure 15.24). Therefore 

d L  = d L , c o s ~ = p U , r d y c 0 ~ ~ 2 1 p U r d y ,  
dDi = d L , s i n & = p U C r d y s i n & 2 1 p w r d 4 ’ .  

In general w ,  r, U,, E, and cyc are all Cunctions of y ,  so that for the entire wing 

(15.15) 

These expressions havc a simple interpretation: Whereas the interaction of U and r 
generates L, which acts normal to U, the interaction of w and r generales Di, which 
acts normal to 10. 

Induced Drag 
The drag force Di induced by the trailing vortices is called the induced drug, which is 
zero for an airfoil of infinite span. It arises because a wing of finite span continuously 
crcatcs trailing vortices and the rate dgeneration of the kinetic energy of thc vortices 
must equal the ratc of work done against the induced drag, namcly Di U. For this reason 
the induced drag is also known as the vortex drug. It is analogous to the wuve drug 
experienced by a ship, which continuously radiates gravity waves during its motion. 
As we shall see, the induccd drag is the largest part of the total drag experienced by 
an airfoil. 



A basic reason why there must be a downward velocity behind the wing is 
the following: The fluid exerts an upward lift force on the wing, and therefore b e  
wing exerts a downward force on the fluid. The fluid must therefore constantly gain 
downward momentum as it goes past tbc wing. (See thc photograph of the spinning 
baqeball (Figure 10.25), which exerts an upward force on thc fluid.) 

For a given r(y), it is apparent that w(y) can be determined from Eq. (15.13) 
and Di can then be determined fom Eq. (15.15). However, r(y) itself depends on 
the distribution of w(y), essentially because the cffective angle of attack is changcd 
due to w(y). To see how r ( y )  may be cstirnated, Tist note that the lilt coefficient lor 
a two-dimensional Zhukhovsky airfoil is nearly CL = 217(a + b). For a finite wing 
we may assume 

(15.16) 

where (a - w /  V )  is the effectivc angle of attack, - s ( y )  is the angle of attack for: zero 
lift (found from experimental dah such as Figure 15.18), and K is a constant whose 
value is nearly 6 for most airfoils. (K = 2;r for a Zhukhovsky airfoil.) An expression 
for the circulation can be obtained by noting that the lift coefficient is related to the 
circulation as CL L/ ($pV*c)  = r / ( ; V c ) ,  so that I’ = iVcCL. The assumption 
Eq. (151.6) is then equivalent to thc assumption that the circulation for a wing of 
finitc span is 

( 15.1 7) 

For a given U, a, c(y) ,  and #? ( y ) ,  Eqs. (15.13) and (15.17) define an integral equation 
for dekrmjning r(y). (An integral equation is one in which the unknown function 
appears under an integral sign.) The problem can be solved numerically by iterativc 
techniques. Instead of pursuing this approach, in the next scction we shall assumc 
that r(y) is givcn. 

Lancheater versus Prandtl 
Thcre is some controversy in the literature about who should get more credit for 
developing modem wing theory. Since Prandtl in 1918 first published the thcory in 
a mathematical form, textbooks for a long time have called it the “Randtl Lifting 
Line Theory.” Lanchester was bitter about this, because he felt that his contributions 
werc not adequatcly recognizcd. The controversy has been discussed by von Karman 
(1 954, p. 50), who witncssed the dwclopment of the thcory. He givcs a lot ofcrcdit to 
Lanchester, but falls short of accusing his teacher Prandtl of bcing delibcrately unfair. 
Here we shall note a few facts that von M a n  brings up. 

Lanchester was thc first person to study a wing of finite span. He was also the 
h-st person to conceive that a wing can be rcplaced by a bound vortex, which bends 
backward to foim the tip vortices. Last, Lanchestcr was the first to recognize that thc 
minimum power necessary to fly is that requircd to generate the kinctic energy field 
of the downwash field. It secms, then, that Lanchester had conceived all of the basic 



ideas of the wing theory, which he published in 1907 in the form of a book called 
”Aerodynamics.” In Tact, a figurc from his book looks very similar to our Figure 15.21. 

Many ol these ideas werc cxplaincd by Lanchester in his talk at Gijttingen, long 
before Prandtl published his theory. Prandtl, his graduate student von Karman, and 
Carl Runge were all present. Runge, well-known €or his numerical integration scheme 
of ordinary differential equations, served as an interpreter, because ncithcr Lanchcstcr 
qor Prandtl could speak the other’s language. As von Karman said: “both Prandtl and 
Runge learned very much from these discussions.” 

However, Prdndtl did not want to recognize Lanchester for priority of ideas, 
saying that he conceivcd of thcm before he saw Lanchester’s book. Such controversies 
cannot bc scttlcd. And grcat mcn havc been involvcd in controversies before. For 
cxamplc, astTophyskist Stcphcn Hawking ( 1  988), who occupicd Newton’s chair at 
Cambridge (after Lighthill), described Newton to be a rather mean man who spent 
much of his later years in unfair attempts at discrediting Leibniz, in trying to force 
the Royal astronomer to release some unpublished data that he needed to verify his 
predictions, and in heated disputes with his lifelong nemesis Robert Hook. 

ln view of the fact that Lanchester’s book was already in print when Prandtl pub- 
lished his thcory, and the fact that Lanchcstcr had all the ideas but not a formal mathc- 
matical thcory, wc havc called it the “Li.liing Line Theory or Prandtl and Lanchester.” 

I 1. Resulk for Ellipdic C’imulalion Ilistribution 

Thc induced drag and other properties of a finite wing depend on thc distribution oT 
T(y). Tfie circulation distribution: however, dcpcnds in a complicated way on the 
wing planform, angle of attack, and so on. Tt can be shown that, for a given total lift 
and wing area, the induced drag is a minimum whcn thc circulation distribution is 
.:lliptic. (See, for e.g., Ashley and Landahl, 1965, Tor a proof.) Here we shall simply 
assume an elliptic distribution of the form (see Figure 15.22b) 

and deteminc thc rcsulting expressions for downwash and induced drag. 
The total lift Torce on a wing is then 

7r s/2 

L = 1 p W d y  = --puros. 
-VI2 4 

- 4roy Jr 
To deteminc thc downwash, we first find thc dcrivative of Eq. (1.5.1 8): 

- -  - 
d y  S,/=@‘ 

(15.18) 

(15.19) 



Writing y = ( y  - y i )  + y1 in the numerator, wc obtain 

The first integral has the valuc n/2. The second integral can be reduced to a standard 
form (listcd in any mathematical handbook) by substituting x = y - y1. On setting 
limits the second integral turns out to be zero, although the integrand is not an odd 
function. The downwash at y~ is thereforc 

(15.20) r0 
W ( Y l )  = - 9  2s 

which shows that, €or an elliptic circulation distribution, the induced velocity at the 
wing is constant along the span. 

Using Eqs. (15.18) and (15.20), the induced drag is found as 

Tn terms of the lift Eq. (15.19), this bccornes 

which can be written as 
I 

(15.21.) 

where we have defined the coefficients (hcrc: A is the wing planform area) 
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A 
A = - = aspect ratio 

Di L 
(1/2)pU2A' cL E (1/2)pU2A' 

C D ;  = 

Equation (15.21) shows that Cui + 0 in the two-dimensional limit A + m. More 
important, it shows that thc induced dmg coeflicient increases us rhe square of the 
liJr coe#cienl. Wc shall see in the following section that the induced drag generally 
makes the largest contribution to the total drag of an airfoil. 

Since an elliptic circulation distribution minimizes the induced drag, it is of inter- 
est to detcrmine the circumstances under which such a circulation can be established. 
Considcr an element d y  of thc wing (Figurc 15.25). The lift on thc element is 

d L  = pUI'dy = C ~ f p U ~ ~ d y ,  ( 1  5.22) 

where c d y  is an elemcntary wing area. Now if the circulation distribution is clliptic, 
then the downwash is independent of y. In addition, if the wing profile is gcomel- 
rically similar at every point along the span and has thc same geometrical angle of 
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Figure 15.25 Wing of elliptic planibrm. 

attack a, ihen the egective angle or atlack and hence thc lift coerficient CL will be 
indcpendent of y. Equation ( 1  5.22) shows that the chord length c is then simply pro- 
portional to r, and so c(y) is also elliptically distributed. Thus, an untwisted wing 
with clliptic planform, or composed of two semiellipscs (Figure 15.25), will generate 
an elliptic circulation distribution. However, the same effcct can also be achieved with 
nonelliptic planrorms if the anglc of attack varies along the span, that is, if the wing 
is givcn a "twist." 

1.2. I@ m d  !)rug Charackri.stics oJAi~foi1.s 
Before an aircrart is built its wings are tested in a wind tunnel, and the results are 
generally given as plots of C,. and CD vs the angle of attack. A typical plot is shown in 
Figure 15.26. It is seen that, in  a range of incidcnce angle from a = -4' to a = 12", 
the variation of CL with a is approximatcly linear, a typical value of dCL/da being 
xO.1  per degree. Thc lift reaches a maximum value at an incidence of %IS". If the 
anglc of attack is increased further, thc steep adversc prcssure gradient on the upper 
surface of the airfoil causa the flow to separate nearly at thc lcading edge, and a very 
large wakc is rormed (Figurc 15.27). The lift coefficient drops suddenly, and thc wing 
is said to s/ull. Beyond thc stalling incidcnce the lift cocfficient levels off again and 
remains at aO.74.8 for rairly large anglcs of incidencc. 

The maximum l iR coefficient dcpcnds largely on the Reynolds number Re. At 
lower values ofRe - 105-1 Oh, the flow separatcs before the boundary layerundergocs 
transition, and a very large wake is formcd. This givcs maximum lift cocfficients t0.9. 
At largcr Reynolds numbers, say Re > lo7, the boundary layer undergoes transition 
to turbulent flow before it separatcs. This produces a somewhat smaller wakc, and 
maximum lift coefficients of =z 1.4 are obtained. 

The angle of attack at zero lifi, denoted by -b here, is a function of the scclion 
camber. (For a Zhukhovsky airfoil, b = 2(camber)/chord.) The effect of increasing 
the airfoil camber is to raisc the entire graph of CL vs a, thus increasing thc maximum 
values of CL without stalling. A cambcrcd profile dclays stalling csscntially becausc 
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Figure 15.26 Ut and drag codkients vs angle of attack. 

F@re 15.27 Stalling of an airfoil. 

its leading edge points into the airstream while the rest of the airfoil is inclined to the 
stream. Rounding the airfoil nose is very helpful, for an airfoil of zero thickness would 
undergo separation at the leading cdge. Trailing edge flaps act to increase the camber 
when thcy are deployed. Then the maximum lift coefficient is increased, allowing for 
lower landing speeds. 

Various terms are in common usage to describe the different components of the 
drag. The total drag of a body can be divided into africrion drug due to the tangential 
stresses on the surface and pressure drag due to the normal stresses. The pressure drag 
can be furthcr subdivided into an induced drag and afiwm. drag. The induced drag is 
Lhc “drag due to lift” and results from the work done by the body to supply the kinetic 
energy of the downwash field as the trailing vortices incrcase in lcngth. The form drag 
is  defined as thc parc of the total pressure drag that remains a h  the induced drag is 
subtracted out. (Sometimes the skin friction and form drags are grouped together and 
called the projfe drug, which rcpresents the drag due to the “profile” alone and not 
due to the fmitcness of the wing.) The form drag depends strongly on h c  shape and 



orientation of the airfoil and can be minimized by good design. In contrast, relatively 
little can be done about the induced drag if the aspect ratio is fixed. 

Normally thc induced drag constitutes the major part of the total drag of a wing. 
4s Coi is ncarly proportional to Ci, and CL is nearly proportional to a, it rollows 
that Coi oc a2. This is why the drag cwfficient in Figure 15.26 seems to increase 
quadratically with incidence. 

For high-spced aircraft, the appearance of shock waves can adversely affect the 
behavior of thc lift and drag characteristics. In such caqes the maximumJlow speeds 
can be cbsc to or higher than the speed of sound even when the aircraft is flying at 
subsonic speeds. Shock waves can form when thc local flow speed exceeds the local 
specd dsound. To reduce their effect, the wings are given asweepbackangle, as shown 
in Figure 15.2. The maximum flow speeds depcnd primarily on the component of the 
oncoming stream perpendicular to the leading edge; this component is rcduced as a 
result of the sweepback. As a result, increased flight speeds are achievable with highly 
swept wings. This is particularly true when the aircraft fits at supersonic speeds, in 
which there is invariably a shock wave in rmnt of the nose of the fuselage, extending 
downstream in the €om of a cone. Highly swept wings are hen  used in ordcr that the 
wing does not pcnetrate this shock wave. For flight spceds exceeding Mach numbers 
of order 2, thc wings have such large sweepback angles ha t  they resernblc the Greek 
letter A; thcse wings are somctimes called delta wings. 

13. Pmpulxive Mechnniumw of’l+ish and B i d s  
The propulsive mechanisms or many animals utilize the aerodynamic principle of lift 
generation on winglike surfaces. We shall now describe some of the basic ideas of 
this interesting subject, which is discussed in more detail by Lighthill (1986). 

Locomotion of Fish 
First consider the caqe of a fish. It develops a forward thrust by horizontally oscillating 
its tail fmm side tu side. The tail has a cross section resembling that of a symmctric 
airfoil (Figure 15.28a). One-half of the oscillation is represented in Figure 15.28bb, 
which shows the top view of tbe tail. The sequence 1 to 5 represents the positions of 
the tail during the tail’s motion to the left. A quick change of orientutiun occurs at 
one extreme position of thc oscillation during 1 to 2; the tail then moves to the Icft 
during 2 to 4, and another quick change of orientation occurs at the othcr extreme 
during 4 to 5. 

Suppose the tail is moving to the left at speed V, and the fish is moving forward 
at speed U. The fish controls thesc magnitudes so that the resultant fluid velocity U, 
(relative to the tail) is inclined to the tail surface at a positive “angle of attack.” Thc 
resulting lift L is perpendicular to U, and has a [orward component L sin 8. (It is casy 
to verify that there is a similar forward propulsive force when he tail moves from IcIt 
to right.) This thrust, working at the rate U L sin 8 ,  propels the fish. To achieve this 
propulsion, the tail of thc Esh pushcs sideways on the water against a force of L cos 8,  
which rcquires work at the ratc VLcosO. As V / U  = tan0, idcally the conversion 
or energy is perfect-all of thc oscillatory work done by the fish tail goes into the 



(b) Top view of tail motion 

Figure 15.28 Propulsion of fish. (a) Cross section of the Pail along AA is a symmetric airfoil. Fivc 
positions of Ihc tail during its motion 10 the left lirc shown in (b). The lin force I, is normal to the resulkml 
speed U, of water with respect 10 the tail. 

translational mode. In practice, however, this is not the case because of the presence 
of induced drag and other effccts that generate a wake. 

Most fish stay afloat by controlling the buoyancy of a swim hladdcr inside their 
stomach. In contrast, some large marinc mammals such as whales and dolphins 
develop buth a forward thrust and a vertical lift by moving their tails vem'cally. 
They arc able to do this bccause thcir tail surface is horizonrul, in contrast to thc 
vertical tail shown in Figure 15.28. 

night of Birds 
Now consider the flight of birds, who flap their wings to gencrate horh the lift to 
support their body weight and the forward thrust to overcome h c  drag. Figurc 15.29 
shows a vertical section of the wing positions during the upstroke and downstroke 
of the wing. (Birds have cambered wings, but this is not shown in the figure.) The 
angle of inclination of the wing with the airstream changes suddenly at the end of each 
stroke, as shown. Thc important point is that the upstroke is inclincd at a greater angle 
to the airstream than the downstroke. As the figure shows, thc downstroke dcvelops a 
lift force L perpendicular to the ~ s u l t a n t  velocity of thc air relative LO the wing. Both 
a forward thrust and an upward force result from the downstroke. In contrast, very 
little aerodynamic force is developed during the upstroke, as the resultant vclocity 
is then nearly parallel to the wing. Birds thcreforc do most of the work during the 
downstroke, and the upstroke is "easy." 

14. LYuiling against h e  Mnd 
People have sailed without the aid of an engine €or thousands of years and havc 
known how to arrive at a destination against the wind. Actually, it is not possiblc 
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ection of thc wing is shown during upstroke and downslrokc. 
During thc downs&ke. a lirt hrcc I. acts n o d  to thc resultant spccd 0, of air with respcct to ihc wing. 
During tbc upstroke. Ur is ncarly pwdllel to lhc wing and wry lilllc adynamic  romc is generated. 

to sail cxactly against the wind, but: it is possiblc lo sail at ~ 4 0 4 5 ”  to the wind. 
Figurc 15.30 shows how this is made possible by the aerodynamic lift on the sail, 
which is a piece of large stretched cloth. The wind speed is U, and the sailing speed 
is V, SO that the apparent wind speed relative to the boat is U,. II the sail is properly 
orientcd, this givcs rise to a lift force perpendicular to U, and a drag force parallel to 
UT. The rcsultant forcc F can be rcsolved into a driving component (thrust) along the 
motion of the boat and a lateral component. The driving component performs work 
in moving the boat; most of this work goes into overcoming the frictional drag and 
in generating the gravity waves that radiate outward. The latcral componcnt does not 
cause much sideways drift because of the shape of the hull. It is clcar that the thrust 
decrcases as thc angle 0 dccrea9es and normally vanishes whcn 0 is ~40-45’. The 
energy for sailing comes from the wind field, which loses kinetic energy aftcr passing 
througb thc sail. 

In the foregoing discussion we havc not considered the hydrodynamic forces 
cxerted by the water on the bull. At constant sailing spccd the net hydrodynamic ibrce 
must bc equal and opposite to thenei aerodynamic force onthe sail. The hydrodynamic 
force can be dccornposed inlo a drag (parallel to the dirccrion of motion) and a 
lift. Thc lift is provided by the “keel,” which is a thin vcrlical surface extending 
downward from the bottom 01 the hull. For thc keel to act as a lifting surfacc, the 
longitudinal axis or the boat points at a small angle to thc direction o€ motion or the 
boat, as indicatcd near thc bottom right part of Figure 15.30. This “angle of attack” 
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Fiprc 15.30 Principlc ora sailboat. 

is generally <3" and is not noticeable. The hydrodynamic lift developed by the keel 
opposes the aerodynamic lateral force on the sail. It is clear that without the keel the 
latcral aerodynamic force on the sail would topple the boat around its longitudinal axis. 

To arrive at a destination directly against the wind, one has to sail in a zig-zag 
path, always maintaining an angle of %45" to the wind. For example, if the wind is 
corning from the east, we can fist proceed northeastward as shown, then change the 
orientation of the sail to proceed southeastward, and so on. In practice, a combination 
of a number of sails is used for effective maneuvering. The mechanics of sailing 
yachts is discussed in Herreshoff and Newman (1966). 

l!kCfViSt?# 

1. Consider an airfoil section in the xy-plane, the x-axis being aligned with the 
chordline. Examine the pressure forces on an element ds = (dx, dy) on the surface, 
and show that the net force (per unit span) in the y-direction is 

Fy = - lc pu dx + l f ' p l  d x ?  

where pu and pl are the pressures on the upper and the lower surfaces and c is the 
chord lenglh. Show that this relation can be rearranged in the form 

where C,  = (p - p m ) / ( $ p V 2 ) ,  and the integral represents the m a  enclosed in a 
C, vs x / c  diagram, such as Figure 15.8. Neglect shear stresses. [Note that Cy is not 



exactly thc lift coefficient, since the airstrcam is inclined at a small angle a with the 
x-axis.] 

2. The measured pressure distribution over a scction of a two-dimensional airfoil 
a1 4" incidcncc ha$ the following form: 

Upper Surface: C ,  is constant at -0.8 from the leading edge to a distance 
equal to 60% or chord and then increases linearly to 0.1 at the trailing edge. 
Lower Sudace: C,, is constant at -0.4 from the leading edge to a distance 
equal to 60% of chord and then increases lincarly to 0.1 at the trailing edge. 

Using the iesul ts of Exercise 1, show that the lift coefficient is nearly 0.32. 

3. The Zhukhovsky transformation z = [ + h2/[  transforms a circle of radius 
h, centcrcd at the origin o€ the (-plane, into a flat plate of length 4h in the z-plane. 
The circulation around ihe cylinder is such that the Kutta condition is satisfied at the 
trailing edge ofthe flat plate. If the platc is inclined at an angle a to a uniform stmam 
U, show that 

(i) The complex velocity in the [-plane is 

where r = 4ic U h  sin a. Notc that this represcnts flow 0 \ 7 e r  a circular cylinder 
with circulation, in which thc oncoming velocity is oriented at an angle a. 

(iij The velocity components at point P (-2b, 0) in the (-plane arc [iU cosa, 
:U sin CY]. 

(iii) The coordinates of the transformed point P' in the xy-plane arc [ -5h/2,0] .  
(iv) Thc velocity components at [-5h/2? 01 in the xy-plane are [U cos a, 3U sin a]. 

4. In Figure 15.13, the angle at A' has been markcd 2p. Prove this. [Hinr : Locatc 

5. Consider a cambered Zhukhovsky airfoil determined by h e  following 

thc center of thc circular arc in the z-planc.] 

parameters: 

a = 1.1, 

h = 1.0, 
p = 0.1. 

Using a computer, plot its contour by evaluating the Zhukhovsky transformation. Also 
plot a few streamlines, assuming an angle o€ attack of 5". 

6. A thin Zhukhovsky airfoil has a lift coefficicnt or 0.3 at zcro incidence. What 
is thc lili coefficient at 5'' incidence? 

7. An untwisted elliptic wing of 20-m span supports a weight of 80,000N in a 
levcl flight at 300 km/hr. Assuming sea level conditions, find (i) the induced drag and 
(ii) the circulation around sections halfway along each wing. 



8. The circulation across the span of a wing follows the parabolic law 

r= ro  I - -  ( :2) 

Calculate the induced velocity w at midspan, and compare the value with that obtained 
when the distribution is elliptic. 
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To this point we havc neglected the elTects of density variations due to pressurc 
changes . In this chapter we shall examine some elementary aspwts or flows in which 
the compressibility effects are important . Thc subject of comprcssible flows is also 
called gas dynamics. which has wide applications in high-specd flows around objects 
of cngineering interest . These include extemalfluws such as those around airplanes. 
and internal Jhws in ducts and passages such as nor~les  and diffusers used in jet 
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engines and rocket motors. Compressibility effccts are also important in astrophysics. 
Two popular books dealing with compressibility effects in enginering applications 
are those by Liepmann and Roshko (1957) and Shapiru (1953), which discuss in 
fuurtbcr dctail most of the material presented here. 

Our study in this chapter will be rather superficial and elemcntq bwause this 
book is essentially about incompressible flows. However, this small chapter on com- 
pressible flows is added because a complete ignorancc about compressibility effects 
is rather unsatisfying. Several startling and fascinating phenomena arise in compress- 
ible flows (especially in the supersonic range) that go against our intuition developcd 
from a knowledge of incomprcssible flows. Discontinuitics (shock waves) appear 
within the flow, and a ralhcr strange circumslance arises in which an increase or flow 
area accelerates a (supersonic) stream. Friction can also make the flow go faster and 
adding heat can lower thc temperature in subsonic duct flows. We will sec this latcr in 
h is  chapter. Some understanding of these phenomena, which have no counterpart in 
low-speed flows, is desirable even if the reader may not make much immediate usc of 
this knowledge. Except for our treatment of friction in constant area ducts, we shall 
limit our study to that of frictionless flows outside boundary layers. Our study will, 
however, havc a great dcal of practical valuc becausc the boundary layers arc espe- 
cially thin in high-speed flows. Gravitational effects, which are minor in high-speed 
flows, will be neglected. 

Criterion for Neglect of Compressibility Effects 
Compressibility effects are determined by the magnitude of the Mach number 
defined as 

where u is the spced of flow, and c is the spccd of sound given by 

wherc the subscript ‘Y’ signifies that the partial derivative is taken at constant cntropy. 
To see how Iargc the Mach number has to be For the comprcssibility effects to bc 
appreciable in a steady flow, consider the one-dimensional version of the continuity 
equation V. (pu) = 0, that is, 

ap au 
24- + p- = 0. 

ax ax 

The incomprcssibility assumption requires that 

ap au 
u- << p- 

ax ax 

or that 
sp su 
- << -. 
P U  

(16.1) 



h s s u r e  changes can be estimated from the definition of c, giving 

(16.2) 2 sp 21 c sp. 

The Euler equalion requircs 

SP u s u -  -. ( 1  6.3) 
P 

By combining Eqs.  (16.2) and (16.3), we obtain 

sp u2su 
p c 2 u ’  
_ -  -- - 

From comparison with Eq. (16.1) we see that the density changcs are negligiblc if 

112 
- c2 = M 2  << I .  

The constant density assumption is therejure valid i fM c 0.3, but not ut higher Much 
numbers. 

Although the significance of the ratio u/c  was known For a long time, the Swiss 
aerodynamist Jacob Ackeret introduced thc term “Mach number,” just as the term 
Rcynolds numbcr wa, introduced by Sommerfeld many years after Reynolds’ expcr- 
iments. The name of thc Austrian physicist Ernst Mach (18361916) was chosen 
bccause of his pioneering studies on supersonic motion and his invention of the 
so-called Schlieren method for optical studies of flows involving density changes; 
sec von b a n  (1954, p. 106). (Mach distinguished himself equally well in philos- 
ophy. Einstein acknowledgcd that his own thoughts on relativity were hfluenccd by 
“Mach’s principle,” which states that propertics of space had no indepcndent exis- 
tencc but are dctennined by the mass distribution within it. Strangely, Mach never 
acceptcd either thc theory of relativity or the atomic structure of matter.) 

Classification of Compressible Flows 
Compressible flows can be classificd in various ways, one of which is based on the 
Mach numbcr M. A common way of classifying flows is as follows: 

(i) IncompressibleJEow: M < 0.3 cverywhcre in the flow. Density variations duc 
LO pressurc changes can be ncglected. The ga. medium is compressible but the 
density may be regarded as constant. 

(ii) SubwnicJow: M exceeds 0.3 somcwhere in the flow, but does not cxceed I. 
anywherc. Shock waves do not appear in the flow. 

(iii) T‘unsonicfluw: Thc Mach number in thc flow lics in the rangc 0.8-1.2. Shock 
wavcs appear and lead to a rapid increasc of the drag. Analysis or transonic 
flows is difficult because the governing equations are inhcrcntly nonlinear, 
and also because a separation of the inviscid and viscous aspccts of thc flow 
is orten impossiblc. (The word “transonic” was invented by von Karman and 
Hugh Dryden, although thc latter argued in favor of having two s’s in the word. 
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von Karman (1954, p. 116) stated hat “T first introduced the term in a report to 
the U.S. Air Force. I am not sure whether the general who read the ~ 7 0 r d  knew 
what it meant, but his answer contained the word, so it seemed to be oficially 
accepted.”) 

(iv) SupersonicJlow: M lies in the range 1-3. Shock waves are generally prcsent. 
In many ways analysis of a flow that is supersonic everywhere is easier than an 
analysis of a subsonic or incompressible flow as we shall see. This is because 
information propagates along certain directions, called characteristics, and a 
determination of these directions greatly facilitates the compuktion of the flow 
IiCld. 

(v) HypersonicJlow: A4 > 3. The very high flow speeds cause severe heating in 
boundary layers, resulting in dissociation of molecules and other chemical 
effects. 

Useful Thermodynamic Relations 
As density changes are accompanied by temperature changes, thcrmodynamic prin- 
ciples will be constantly used here. Most of the necessary concepts and relations have 
been summarized in Sections 8 and 9 of Chapter 1, which may be reviewed before 
proceeding further. Some of the most frequently used relations, valid for a perfect gas 
with constant specific heats, are listed here for quick reference: 

Equation of stute p = pRT, 
Internul energy e = C,T, 

Enthalpy h = C,T, 
Y R  

y - I ’  
Specific heats C,  = - 

C,  - C ,  = R ,  

Speed of  sound 

Entropy change 

c = m, 
Tz P2 SZ - SI = C ,  In - - R In -, 
TI PI 

(1 6.4) 

(16.5) T2 P2 

TI PI 
= C,ln- - Rln- .  

An isentropic process of a perfcct gas between staks 1 and 2 obeys the following 
relations: 



Some important propertics or air at ordinary temperatures and prcssures are 

R = 287m2/(s2 K), 
C, = 1005 m2/(s2 K), 
C,  = 718m2/(s2K), 
y = 1.4. 

Thesc values will be usciul for solution of the exerciscs. 

2. Speed <$Sound 

We know that a pressure pulse in an incompressible flow behaves in the same way 
as that in a rigid body, where a displaced particlc simultaneously displaces all the 
particles in the medium. The effects of pressure or other changes are therefore instantly 
felt throughout the mcdium. A comprcssible fluid, in contrast, bchaves similarly to 
an elastic solid, in which a displaced particle compresses and increases the density of 
adjacent particles that move and increasc the density of the neighboring particles, and 
so on. In this way a disturbance in the form of an elastic wave, or a pressure wave, 
travels through Lhe medium. The speed of propagation is faster when the medium is 
more rigid. If thc amplitude ofthe elastic wave is infinitesimal, it is callcd an acoustic 
wave: or a sound wave. 

We shall now find an cxpression for the speed o i  propagation of sound. 
Figure 16. l a  shows an infinitcsimal pressurc pulse propagating to the l d t  with speed c 
into a still fluid. The fluid properties ahead ofthe wave are p, T, and p ,  while the flow 

moving wavc 

P+@ 
T+dT 

P / 
I 
L P+dP 

T 

P I (a) 

u = o  I 
I 

I 4-h 

Figure 16.1 Propagation ora sound wavc: (a) wavc propagating into still fluid; and (h) stationary wavc. 



speed is u = 0. The properties behind the wave arc p + d p ,  T + dT,  and p + dp, 
whereas the flow speed is du directed to the left. Wc shall see that a “compression 
wavc” (for which the fluid pressure rises after the passage of the wave) must movc 
the fluid in the dircction of propagation, as shown in Figure 16.la. In contrast, an 
“expansion wave” moves the fluid ”backwards.” 

To make the analysis steady, we superimpose a velocity c, dirccted to h c  right, 
on the entire system (Figure 16.lb). The wave is now stationary, and the fluid enters 
the wave with velocity c and leaves with a velocity c - du. Consider an area A on 
the wavefront. A mass balance gives 

A ~ c  = A(p + dp)(c - du).  

Because the amplitude is assumed small, we can neglect the second-order terms, 
obtaining 

du = c(dp/p).  (16.6) 

This shows that du > 0 if dp is positive, thus passage of a compression wave leaves 
behind a fluid moving in the direction of the wave, as shown in Figure 16. la. 

Now apply the momentum equation, which states that the net force in the 
x-direction on the control volume equals the rate of outflow of x-momentum minus 
the rate of inflow of x-momentum. This gives 

where viscous stresses have been neglected. Herc, Apc is the mass €low rate. The first 
term on the right-hand side represents the rate of outflow of x-momentum, and the 
second term represents the rate af i d o w  of x-momentum. Simplifying the momentum 
equation, we obtain 

d p  = pcdu. (1 6.7) 

Eliminating du between Eqs. (16.6) and (16.7), we obtain 

(16.8) 

If thc amplitude of the wave is iniinitesimal, then each fluid particle undergocs a 
nearly isentropic process as the wave passes by. The basic reason for this is that 
the irreversible entropy production is proportional to the squures of the velocity and 
temperature gradients (see Chapter 4, Section 15) and is therefore negligible for 
weak waves. The particles do undergo small temperature changes, but the changes 
are due to adiabatic expansion or compression and are not duc to heat transfer from 
the neighboring particles. The entropy of a fluid particle then remains constant as a 
weak wave passes by. This will also be demonstrated in Section 6, whcre it will be 
shown that the entropy change across the wave is dS a ( d ~ ) ~ ,  implying that dS goes 
to zero much faster than the rate at which the amplitude d p  tends to zero. 



It follows that the derivative dp/dp in Eq. ( 1  6.8) should be replaccd by the partial 
dcrivative at constant cntropy, giving 

(16.9) 

For a perfect gas, the use of p/pY = const. and p = pRT reduces the speed of sound 
( 16.9) to 

(1 6.10) 

For ah at 15 “C, this gives c = 340m/s. We note that the nonlinear terms that we 
have ncglccted do change thc shape of a propagating wavc depending on whether it 
is a compression or expansion, as follows. Because y > 1, the isentropic relations 
show that if dp > 0 (compression), thcn d T  > 0: and from Eq. (16.10) the sound 
speed c is increascd. Therefore, the sound speed behind thc h n t  is gmater than that 
at the front and the back of the wave catches up with the front of the wave. Thus the 
wave stcepens as it travels. The opposite is true [or an cxpansion wave, for which 
dp < 0 and dT < 0 so c decreases. The back of the wave falls farther behind the 
front so an cxpansion wave flattcns as it travels. 

Finite amplitude waves, across which there is a discontinuous change of pressure, 
will bc considcrcd in Section 6. These are called shock wuves. Tt will be shown that 
the finitc waves are not iscntropic and that thcy propagate through a still fluidfuster 
than thc sonic spccd. 

The first approximate cxpression for c was found by Newton, who assumed that 
dp was proportional to dp, as would be truc if the process undergone by a fluid 
particle was isothermal. In this nianner Ncwton arrived at thc expression c = m. 
He attributed the disc~pancy of this formula with expcrimental measuremcnts as 
duc to “unclcan ak.” The science of thcrmodynamics was virtually nonexistcnl at the 
timc, so that the idea of an iscntropic process was unknown to Newton. The correct 
cxpression for the sound sped  was first givcn by Laplace. 

3. llusic I?quatir,nsfiw Oni?-l)irni?mional Flow 
In this section we begin our study of certain compressible flows that can bc analyzcd 
by a one-dimcnsional approximation. Such a simplification is valid in flow lhrough a 
duct whose ccnterlinc does not have a largc curvature and whose cross section does 
not vary abruptly. The. overall behavior in such flows can hc studied by ignoring the 
variation of velocity and other properties across the duct and replacing thc properly 
distributions by their avcrage values ovcr the cross section (Figurc 16.2). The arca or 
the duct is taken as A ( x ) ,  and the flow propertics are taken a5 p ( x ) ,  p(x ) ,  u (x) ,  and 
so on. Unsteadiness can be introduced by including 2 as an additional independent 
variable. Thc forms of the basic equations in a one-dimensional compressible flow 
are discussed in what follows. 



. .  

liigurc 16.2 A onc-dimensional Bow. 

Continuity Equation 
For steady flows, conservation of mass requires that 

puA = indepcndent of x .  

Differentiating, we obtain 
dp du dA 
P U  
- + - + A = 0. (16.1 1) 

Energy Equation 
Consider a control volume within the duct, shown by the dashed line in F i p  16.2. 
The first law of thermodynamics for a control volume fixed in space is 

where u2/2 is the kinetic energy per unit mass. The first term on thc left-hand side rep- 
resents the rate of change of “stored energy” (the sum of internal and kinetic energies) 
within the control volumc, and the second term represents the flux of encrgy out of the 
control surface. The first term on thc right-hand side represents the rate of work done 
on the control surface, and the second term on the right-hand side repwents the hcat 
input through the control surface. Body forccs havc been neglected in Eq. (16.12). 
(Here, q is the heat flux per unit area per unit time, and dA is directed along the 
outward normal, so that 1 q - d A  is the rate of ourJow of heat.) Equation (16.12) can 
easily be derived by intcgrating the differential form given by Eq. (4.65) ovcr the 
control volume. 

Assume steady state, so thal the first term on thc left-hand side of Eq. (16.12) is 
zero. Writing ri = plul A ,  = p p ~ A 2  (where the subscripts denote sections 1 and 2). 
thc second term on the left-hand sidc in Eq. (16.12) gives 



The work donc on thc control surfaces is 

ujrijdAj = ulplAl  - U Z P ~ A ~ .  J 
Herc, we havc assumcd no-slip on the sidewalls and €rictional stresses on thc endfaces 
1 and 2 arc: negligible. The rate of heat addition to h e  control volumc is 

- 1 q - d A  = Qm, 

whcrc Q is  thc heat added per unit mass. (Checking units, Q is in Jkg, and liz is in 
kg/s, so that Q r i z  is in J/s.) Then Eq. (16.12) becomes, a h  dividing by r i z ,  

The first tcrm on thc right-hand side can be writtcn in a simple manner by noting that 

uA 
m 

= u ,  - 

where 1, is the specific volumc. This must be true because uA = tnu is the volumetric 
flow ratc through the duct. (Checking units, rir is the mass flow ratc in kg/s, and 
v is thc specific volume in m3/kg, so that riru is the volume flow rate in m3/s.) 
Equation (16.13) then becomes 

(16.14) 

It is apparent that plul is the work donc (per unit mass) by the surroundings in 
pushing fluid into the control volumc. Similarly, p21.9 is the work done by the fluid 
inside thc control volume on the surroundings in pushing fluid out of the control 
volume. Equation (1 6.14) therefore has a simple meaning. lntroducing thc enthalpy 
h 

1 2  1 2  
e2 + TU? -e l  - = P I V I  - ~ 2 ~ 2  + Q. 

e - yv, we obtain 

(16.15) 

Thisis thcenergy cquation, which is validevenifthcre are frictional or nonequilibrium 
conditions (e.g., shock waves) between scctions 1 and 2. It is apparent that thc sum u j  
enthalpy and kinetic eneQxy rem.ains constant in an udiahaticjuw. Therefore, enthalpy 
plays the same rolc in a flowing system that internal energy plays in a nonflowing 
system. Thc differcnce between thc lwo types of systems is IheJlOw work p u  izquircd 
to push matter across a section. 

Bernoulli and Euler Equations 
For inviscid flows, the steady form of the momcnlum cyuation is the Euler equation 

(16.16) 



Tntegrating along a streamline, we obtain the Bernoulli equation for a compress- 
ible flow: 

.I-uz + J = const., 
2 

(16.17) 

which agrees with Eq. (4.78). 

equation. To see this, note that this is an isentropic flow, so that the T dS equation 
For adiabaticfrictionless flows the Bemuulli equation is identical to the energy 

T d S  = dh - v d p ,  

gives 

dh = d p / p .  

Then the Euler equation (16.16) becomes 

u d u + d h = O ,  

which is identical to the adiabatic [om of h e  energy equation (16.15). The collapse 
of the momentum and energy equations is expected because the constancy of entropy 
has eliminated one of the flow variablcs. 

Momentum Principle for a Control Volume 
If the centerline of the duct is straight, then the sleady form o€ the momentum principle 
for a finite control volume, which cuts across the duct at sections 1 and 2, gives 

piAi - mA2 + F E fiuZA2 - piu;Ai, (16.18) 

wherc F is the x-component of the rcsultant force exerted on the fluid by thc walls. 
The momentum principle (16.18) is applicable even when there are frictional and 
dissipative processes (such as shock waves) within the control volume: 

If frictional processes are absent, then Eq. (16.18) reduces to the Eu1e.r equa- 
tion (16.16). To see this, consider an infinitesimal area change between sections l 
and 2 (Figure 16.3). Thcn the averagc pressure exerted by the walls on the control 
surface is ( p  + i d p ) ,  so that F = d A ( p  + sdp) .  Then Eq. (16.1 8) bccomes 

pA - ( p  + d p ) ( A  + d A )  + ( p  + i d p )  d A  = puA(u + du) - &A, 

where by canceling terms and neglecting second-order terms, this Educes to the Euler 
cquation (16.16). 



Figure 16.3 Applicalion of thc momentum principlc to an infinibsimal contrul volumc in a duct. 

4. 4Slagnalion and Sonic plujperlies 
A vcry useful reference state for computing compressible flows is the stagnation state 
in which the velocity is zero. Suppose the properties of the flow (such as h, p, u )  
arc known at a certain point. The stagnation properties at a point are defined as those 
that would be obtained if the local flow were imagined to slow down to zero velocity 
isentropiccrlly. The stagnation properties are denoted by a subscript zero. Thus the 
stagnation enthalpy is defined as 

h o G h + + ~ .  I 2  

For a perfect gas, this gives 

CpTo = CpT + f~', (16.19) 

which dc6nes the stugnarion tempercrture. 

From Eq. ( 1  6.19), wc obtain 
It is uselirl to express the ratios such as TO/ T in tcms of the local Mach number. 

U2 y-l u2 - 1 +- = 1 +-- 
T 2C, T 2 YRT' 
Tn _ -  

wherc we have uscd C ,  = yR/(y - I ) .  Themfore 

(16.20) 

from which thc slagnation tcmperature To can bc round ror a given T and M. 
The isentropic relations can hen be used to obtain the srcrgnatiun pressure and 



stagnutian density: 

(16.21) 

(16.22) 

In a general flow the stagnation properties can vary throughout the flow field. If, 
however, the flow is adiabatic (but not necessarily isentropic), then h+u2/2 is constant 
throughout the flow as shown in Eq. (16.15). It follows that ho, To, andco (= 4') 
are constant throughout an udiabaticflow, even in the presence of friction. In cantrust, 
the stagnation pressure po and density po decrease i f  there is friction. To sec this, 
consider the entropy change in an adiabatic 00w between sections 1 and 2, with 2 
being the downstream section. Let the flow at both scctions hypothetically be brought 
to rest by isentropic processes, giving the local stagnation conditions pol, p02, TQI, 
and To2. Then the entropy changc betwecn the two sections can be expresscd as 

where we have used Eq. (1 6.4) for computing entropy changes. The last term is zero 
for an adiabatic flow in which To2 = TOI. As the second law of thermodynamics 
requires that SZ > SI, it follows that 

Po2 Poll 

which shows that the stagnation pressure falls due to friction. 
It is apparent that all stagnation properties are constant along an isentropic flow. 

If such a 00w happens to sliut from a large reservoir where the fluid is practically at 
rest, then the properties in the reservoir equal h e  stagnation properties cverywhere 
in the flow (Figure 16.4). 

In addition to the stagnation properties, there is another useful set of refercnce 
quantities. These are called sonic or critical conditions and are denoted by an asterisk. 

Rgurel6.4 Anisentmpicproccsssmingfmrn areservoir. Sl~~ationpropwlicsarr uuniformcverywhere 
and are cqual 10 the properticu in the reservoir. 
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30 
289421 
14.4815 
9.6659 
7.2616 
5.8218 
4.8643 
4.1824 
3.6727 
3.2779 
2.9635 
2.7076 
2.4956 
2.3173 
2.1656 
2.0351 
1.9219 
1.8229 
1.7358 
1.6587 
1.5901 
1.S289 
1.4740 
1.4246 
1.3801 
1.3398 

Thus, p", p*, c*, and T* arc properties attained if the local fluid is imagined to expand 
or compress isentropically until it reaches M = 1. It is easy to show (Exercise 1) that 
the area of the passage A*, at which the sonic conditions are attained, is given by 

. 0.52 
0.54 
0.56 
0.58 
0.6 
0.62 
0.64 

, 0.66 
' 0.68 
0.7 
0.72 
0.74 
0.76 
0.78 
0.8 
0.82 

' 0.84 
0.86 
0.88 
0.9 
0.92 
0.94 
0% 
0.98 
1.0 
1.02 

Wc shall see in the following section that sonic conditions can only be reached at the 
rhraut of a duct, where the area is minimum. Equation ( 1  6.23) shows that we can find 
the throat area A* of an isentropic duct flow if we know the Mach numbcr M and the 
area A at some point of the duct. Note that it is not necessary that a throat actually 
should exist in the flow; thc sonic variables are simply reference values that are reached 
ifthe flow wcre brought to the sonic state isentropically. From its definition it is clear 
that the valuc of A* in a flow remains constant along an isentropic flow. The prcsence 
of shock waves, friction, or heat transfer changes the valuc of A* along the flow. 

The values of T , / T ,  p o / p ,  po/p, and A/A* at a point can bc determined from 
Eqs.  (16.20)-(16.23) if the local Mach number is known. For y = 1.4, these ratios 
arc tabulated in Table 16.1. The reader should examine this table at this point. 
Examples 16.1 and 16.2 given later will illustrate the use of this table. 
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0.3 
0.32 
0.34 
0.36 
0.38 
0.4 
0.42 
0.44 
0.46 
0.48 
0.5 

1 .o 
0.9997 
0.9989 
0.9975 
0.9955 
0.9930 
0.9900 
0.9864 
0.9823 
0.9776 
0.9725 
0.9668 
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0.9541 
0.9470 
0.9395 
0.93 1 5 
0.923 1 
0.9143 
0.9052 
0.8956 

0.8755 
0.8650 
0.8541 

0.8857 

0.~30 

1 .0 
0.9Y98 
0.9992 
0.9982 
0.9%8 
0.9950 
0.9928 
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0.9873 
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0.9619 
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0.7083 
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1.002Y . 
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1.01 13 
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TABLE 16.1 (Continued) 
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5. Ama-klocily Itclulions in Onci- Dimensional 

Some surprising conscquences or compressibility are dramatically dcmonstrated by 
considering an isentropic flow in a duct of varying area. Before wc demonstrate this 
effect, we shall make some brief comments on two common devices of varying area 
in which the flow can be approxiniately isentropic. One of them is the nozzle through 
which the flow expands from high to low prcssure to generatc a high-speed jet. An 
example of a nozzlc is the exit duct of a rocket motor. The second devicc is called 
the difiser, whose function is oppositc to that of a nozde. (Note that the diffuser has 
nothing to do with heat diffusion.) In a diffuser a high-speed jet is decelerated and 
compressed. For example, air enters the jet engine of an aircraft after passing through 
a diffuser, which raises thc pressure and teniperature of the air. In incompressible 
flow, a nozzle profile converges in the direction of flow to increase the velocity, while 
a diffuser profile diverges. We shall see that this conclusion is true for subsonic flows, 
but not for supersonic flows. 

Consider two sections of a duct (Figure 16.3). The continuity equation gives 

Isenhpic Plow 

dp du d A  - + - + - = 0. 
P U A  

( 1  6.24) 

In a constant density flow d p  = 0, for which the continuity cquation requires that a 
decreasing area leads to an increase of velocity. 

As the flow is assumed to be frictionless, we can use the Euler equation 

(16.25) 

where we have used the fact that c2 = dp/dp  in an isentropic flow. The Euler 
equation requires that an increasing speed (du > 0) in the direction or flow must be 
accompanied by a fall of pressure (dp -= 0). In terms of the Mach number, Eq. (16.25) 
becomes 

(1 6.26) 

This shows that for M << 1, the perccntagc change of density is much smaller than the 
percentage change of velocity. The density changes in the continuity equation ( 1  6.24) 
can therefore be neglccted in low Mach number flows, a fact also demonstrated in 
Section 1. 

Substituting Eq. (1 6.26) into Eq. ( 1  6.24), we obtain 
du -dA/A - 
u 1-M2' (1 6.27) 

This relation leads to the following important conclusions about compressible flows: 

(i) At subsonic spceds (M -= 1) a decrease of area increases thc specd of flow. 
A subsonic nozzle therefore must have a convergent profile, and a subsonic 
diffuser must have a divergent profile (uppcr row of Figure 16.5). The behavior 
is thercfore qualitatively the same as in incompressible flows. 
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Figure 16.5 Shapcs olnozxles and diffusers in subsonic and supersonic regimcs. NozAcs are shown in 
thc lcll column and diffusers are shown in thc right column. 

(ii) At supersonic spceds (M > 1) the denominator in Eq. (16.27) is negative, 
and we arrive at the surprising conclusion that an increase in area leads to 
an increase of speed. The reason for such a behavior can be understood from 
Eq. (16.26), which shows that for M > 1 the density decreases faster than the 
vclocity increases, thus the area must increase in an accelerating flow in order 
that the product Apu is constant. 

Thc supcrsonic portion of a nozzle therefore must have a divergent profile, while 
the supersonic part of a diffuser must have a convergent profile (bottom row or 
Figure 16.5). 

Suppose a nozzle is uscd to generate a supersonic stream, starting from low 
speeds at the inlet (Figure 16.6). Then the Mach number must increase continuously 
from M = 0 near the hlct to M > 1 at the exit. The foregoing discussion shows 
that the nozzle must converge in the subsonic portion and divcge in the supersonic 
portion. Such a nozzle is called a convergent-divergent nozzle. From Figure 16.6 it 
is clcar Lhat the Macb number must be unity at the throat, where thc area is neither 
increasing nor decreasing. This is consistent with Eq. (16.27), which shows that du 
can be nonzero at the throat only if M = 1. It follows that the sonic veZocity cun be 
achieved only at the throat oJa nozzle or c1 difwer and nowhere else. 

It docs not, however, follow that M must necessarily be unity at tbe throat. 
According to Eq. (1 6.27), we may havc a case where M # 1 at thc throat if du = 0 



throat 

M c l  - M = l  M>1 

b- subsonic 4 supersonic 

Fignrc 16.6 A convwgent4vergenl noz7k. The flow is conthously accclcrated fmm low spced to 
supersonic Mach numkr. 

M M 

1 .o 1 .o 

(a) (b) 

F iy t !  16.7 Convergcnt-divcrgent paseagcs in which [he condition at thc throat is not sonic. 

there. As an example, note that the flow in a convergent-divergcnt tube m y  be sub- 
sonic everywhere, with M increasing in the convergent portion and decreasing in the 
divergent portion, with it4 # 1 at thc throat (Figure 16.7a). The first half of the tube 
here is acting as a nozzle, whereas the second half is acting as a diffuser. Alternatively, 
we may have a convergent4vergent tube in which the flow is supersouic everywhere, 
with M decreasing in the convergent portion and increasing in the divergcnt por- 
tion, and again M # 1 at the throat (Figure 16.n). 



Example 16.1 

The nozzle of a rocket motor is designed to generate a thrust of 30,000N when 
operating at an altitude of 20 km. The prcssure inside the combustion chamber is 
loo0 kPa while the temperature is 2500 K. The gas constant of the fluid in the jet is 
R = 280m2/(s2 K), and y = 1.4. Assuming that the flow in Ihe nozzle is isentropic, 
calculatc the throat and exit areas. Use the isentropic table (Table 16.1). 

Solution: At an altitude of 20lan, the pressure of the standard atmosphere 
(Section A4 in Appendix A) is 5467 Pa. Tf subscripts “0” and “e” refer to the stagnation 
and exit conditions, then a summary of the information given is as follows: 

pc = 5467Pa, 
po = lOOOkPa, 

= 2500K, 

Thrust = peA& = 30,000N. 

Here, we have uscd the facts that the thrust equals mass flow rate times the exit velocity, 
and the pressurc inside the combustion chamber is nearly equal to the stagnation 
pressure. The pressure ratio at thc exit is 

For this ratio of pe/po, the isentropic table (Table 16.1) gives 

Me = 4.15, 
Ae - = 12.2, 
A* 
Te - = 0.225. 
TO 

The exit temperature and density are therefore 

T’ = (0.225)(2500) = 562K, 

pc = pe/RTe = 5467/(280)(562) = 0.0347kg/m3. 

The exit velocity is 

u, = M c m  = 4.15,/( 1.4)(280)(562) = 1948 m/s. 

Thc exit area is found from the expression for thrust: 

Thrust 30:OOO &=-- - = 0.228 m2. 
peu: (0.0347)(1948)2 

Because Ac/A* = 12.2, thc throat arca is 

0.228 
12.2 

A* = - = 0.0187m2. 



6. AGormal Shock Nime 
A shock wave is similar to a sound wave except that it has finite strength. Thc thick- 
ness of such a wavefront is of the order of micrometers, so that the properties vary 
almost discontinuously across a shock wave. The high gradients of velocity and tem- 
perature result in entropy production within the wave, due to which the isentropic 
relations cannot be uscd across the shock. In this section we shall derive the rcla- 
tions between properties of the flow on the two sides of a nor& shock, where the 
wavcfront is perpendicular to the direction of flow. We shall treat the shock wave as a 
discontinuity; some brief remarks will be made about shock stmcturc at the end of this 
section. 

To derive the relationships between the properties on the two sides of the shock, 
consider a control volume shown in Figure 16.8, where the sections 1 and 2 can 
be taken arbitrarily close to each other because of the discontinuous nature of the 
wave. The m a  change betwcen the upstream and the downstream sides can then be 
neglected. Thc basic equations are 

Continuity: P l U l  = p2u2, (16.28) 
2 ( 1  6.29) x-momentum: PI - p2 = n u ,  - plu, ,  

Energy: 

2 

h ]  + $4: = h2 + Lu2 2 2' 

In the application of thc momentum theorem, we havc neglected any frictional drag 
from the walls because such forces go to zero as the wave thickness goes to xro. 
Note that wc cannot use the Bernoulli equation because the process inside the wave is 
dissipative. We havc wriltendown four unknowns (h2, u2, p2, p2) and three equations. 
The additional relation comes from the perfect gas relationship 

F i  16.8 Normal shock wavc. 



so that h c  cncrgy cqualion becomes 

(1  6.30) 

Wc now havc thmc unknowns (ua, p2, p2) and threc equations ( 1  6.28)-( 16.30). 
Elimination cd p2 and u2 l o r n  these gives, dtcr some algebra, 

This can bc expresscd in terms of the upstream Mach number MI by noting that 
p u 2 / y p  = u 2 / y  RT = M2. The pressure ratio then becomes 

(16.31) 

Let us now derive a relation between M I  and M2. Because pu2 = pc2M2 = 
p ( y p / p )  M 2  = ypM’,  the momentum equation (1 6.29) gives 

PI + Y P M :  = P2 + YP&. 

Using Eq. (1  6.3 I ) ,  this givcs 

( y  - 1)M:+2 
2yM; + 1 - y ’ 

M: = ( 1  6.32) 

which is plottcd in Figure 16.9. Because M2 = MI (state 2 = state 1) is a solution 
of Eqs. (16.28)-(16.30), that is shown as well indicating two possible solutions for 
M2 for ail M1 > [ ( y  - 1 ) / 2 ~ ] ’ / ~ .  We show in what follows that M1 2 1 to avoid 
violation of thc sccond law of thermodynamics. The two possible solutions are: (a) no 
change of statc; and (b) a sudden transition from supersonic to subsonic flow with 
consequent increases in prcssm, dcnsily, and temperature. The density, velocity, and 
tempcraturc ratios can be similarly obtained. They arc 

(M; - 1). 
2(y - I )  YM: + 1 
(Y + M: 

- - I +  
T2 

TI 
_ -  

(16.33) 

( 1  6.34) 

The normal shock relations ( 1  6.3 1 )-( 16.34) were worked out indepcndcntly by 
the British cngineer W. J. M. Rankine (1820-1872) and the French ballistician 
Pierre Henry Hugoniot (1851-1887). These equations are sometimes known as thc 
Rankine-Hugoniot relations. 



fim 16.Y Normal shock-wave solution Mz(M1) for y = 1.4. Trivial (no change) solution is also 
shown. Asymptotes are I ( y  - 1)/2y]112 = 0.378. 

An important quantity is the change of entropy across the shock. Using Eq. (16.4), 
the entropy change is 

which is plotted in Figure 16.10. This shows that the entropy across an expansion 
shock would decrease, which is impermissible. Equation (16.36) demonstrates this 
explicitly in the neighborhood of MI = 1. Now assume that the upstream Mach 
number MI is only slightly larger than 1, so that Mf - 1 is a small quantity. It is 
straightforward to show that Eq. (1 6.35) then reduces to (Exercise 2) 

(16.36) 

This shows that we must have MI > 1 because the entropy of an adiabatic proccss 
cannot decrease. Equation (16.32) then shows that A42 -= 1. Thus, the Mach number 
changes fmm supersonic io subsonic values acmm u normal shock; a discontinuous 
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lFigure 16.10 Bntropy change (Si - Sl)/C, as a W o n  01 MI for y = 1.4. Notc higher- contact 
a l M = l .  

change from subsonic to supcrvonic conditions would bad to a violation ofihc second 
law of thermodynamics. (A shock wave is Lherefore analogous lo a hydraulic jump 
(Chapter 7, Section 12) in a gravity cmnt ,  in which the Fmde number jumps h m  
supercritical to subcritical values; see Figure 7.23.) Quatiom (16.31), (16.33), and 
(1  6.34) then show that thc jump in p, p, and T are also fmm low to high values, so 
that a shock wave compresses and heats a fluid. 

Note that tbe terms involving thc h c  Lwo powers of (M: - 1) do not appear in 
Bq. (16.36). U.siug the pressure ratio (16.31), Eq. (16.36) can be written 85 

3 &-Si y 2 -  1 Ap --.- - 
12Y2 ( P I )  - - 
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This shows that as h e  wave amplitude decreases, h e  entropy jump goes to zero 
much faster than Lhe rate at which the prcssum jump (or the jumps in velocity or 
tempmature) goes to zero. Weak shock waves are therefore nearly isentropic. This is 
why we argued that the propagation of .sound waves is an isentropic process. 

Because of the adiabatic nature of the process, thc stagnation properties TO and 
h" are constant across the shock. Tn mmt, the stagnation p q x d e s  po and po 
decrease across lhc shock due to the dissipalive process inside the wavefront. 

N o d  Shock Propagatlug in a Still Medium 
Frequently, one needs to calculate h e  properties of flow due to the propagation 
of a shock wave thmgh a still d u m ,  for examplc, due to an explosion. Thc 
transformation necessary to analy]~ this problem is indicated in Figure 16.1 1. The 
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Figure 16.11 Slationaq and moving shocks. 

left panel shows a stationary shock, with incoming and outgoing velocities u1 and u2, 
respectively. On this flow we add a velocity U I  directed to the left, so that the fluid 
entering the shock is stationary, and the fluid downstream of the shock is moving to 
the lej2 at a sped u1 - u2, as shown in the right panel of the figure. This is consis- 
tent with our remark in Section 2 that the passage of a compression wave "pushes" 
the fluid forward in thc direction of propagation of the wave. The shock speed is 
therefore u I ,  with a supcrsonic Mach number MI = u ~ / q  > 1. It €allows that afinite 
pressure disturbance propagates through a still.;Ruid at supersonic speed, in contrast 
to infinitesimal waves that propagate at the sonic speed. The expressions for all the 
thermodynamic properties of the flow, such as those given in Eqs. (36.31)-(16.36), 
are still applicable. 

Shock Structure 
We shall now note a few points about the structure of a shock wave. The viscous and 
heat conductive processes within the shock wave result in an entropy increase across 
the front. However, the magnitude of the viscosity p and thermal conductivity k only 
determines the thickness of the front and not the magnitude of the entropy increase. 
The entropy incrcase is determined solely by the upstream Mach number as shown 
by Eq. (16.36). We shall also see later that the wave drag experienced by a body due 
to thc appearance of a shock wave is indcpendent of viscosity or thermal conduc- 
tivity. (The situation here is analogous to the viscous dissipation in fully turbulent 
flows (Chapter 13, Section 8), in which the dissipation rate E is determined by the 
velocity and length scales of a large-scale turbulence field ( E  - u3/1)  and not by the 
magnitude of the viscosity; a changc in viscosity mcrely changes thc scale at which 
the dissipation takes place (namely, the Kolmogorov microscale).) 

The shock wave is in €act a very thin boundary layer. However, thc velocity 
gradient du/dx is entirely longitudinal, in contrast to the latcral velocity gradient 
involved in a viscous boundary layer near a solid surface. Analysis shows that the 
thickness 8 of a shock wave is given by 

6 Au 
- - 1, v 



whcn: thc Icft-hand side is a Reynolds number based on thc velocity change across 
the shock, its thickness, and the average value of viscosity. Taking a typical value 
for air of u - m2/s: and a velocity jump of Au - 100m/s, we obtain a shock 
thickncss of 

This is not much largw than the mcan frcc path (avcrage distance traveled by a 
molecule between collisions), which suggests that the continuum hypothesis becomes 
of questionable validity in analyzing shock structure. 

Nozzles are used to accelerate a fluid slream and are employcd in such systems as 
wind tunnels, rocket motors, and steam turbines. A pressure drop is maintained across 
it. In this section we shall examine the behavior of a nozzle as the exit pressurc is 
varicd. It will bc assumed that the fluid is supplicd from a large reservoir where the 
pressure is maintained at a constant value pn (the stagnation prcssurc), while the 
“back pressure” p~ in the exit chamber is varied. In the .following discussion, we 
need to note that the pressure pcxit at the exit plane of the nozzle must equal thc b&k 
pressure p~ if the flow at the exit plane is subsonic, but nol if it is supersonic. This 
must be tme because sharp pressure changes are only allowed in a supersonic flow. 

Convergent N o d e  
Consider first the case of a convergent nozzle shown in Figure 16.12, which examines 
a scqucnce or states a through c during which the back pressure is gradually lowered. 
For curve (3, the flow throughout the nozzle is subsonic. As p~ is lowered, the Mach 
number increases everywhere and the mass flux through the nozzle also increases. 
This continues until sonic conditions are reached at the exit, as represented by curve b. 
Further lowering of the back pressure has no effect on the flow inside the nozzle. This 
is bccausc the fluid at the exit is now moving downstream at the velocity at which 
pressure changes can propagale upstream. Changes in p~ therefore cannot propagate 
upstream after sonic conditions are reached at the exit. We say that the nozzle at this 
stage is choked because the mass flux cannot be increased by further lowering of 
back pressurc. If pH is lowered further (curve c in Figure 16.12), supcrsonic flow is 
gencratcd outside the nozzle, and the jet pressurc adjusts to p~ by means of a series 
of “oblique expansion waves,” as schematically indicated by the oscillating pressure 
distriblition for curve c. (The conccpts of oblique expansion waves and oblique shock 
waves will be explained in Scctions I O  and 1 1. It is only necessary to note here that 
they arc oriented at an angle to the dircction or flow, and that the pressure dwrcases 
through an oblique expansion wavc and increases through an oblique shock wave.) 

Convergent-Divergent N o d e  
Now consider thc casc of a convergent4ivergent passage (Figure 16.13). Complctcly 
subsonic flow applics to curve a. As p~ is lowered to ph, sonic condition is reachcd 
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Figure 16.12 Prcsrurc distribution along a convcrgcnl nozzle for different values of hack prcssure p e :  
(a) diagram olnoxzlc; and (b) pressure distributions. 

at the throat. On further reduction of the back pressure, the flow upstrcam of the 
throat does not respond, and the nozzle has “choked” in the sensc that it is allowing 
the maximum mass flow rate for thc given values of po and b o a t  area. There is a 
range dback prcssures, shown by curvcs c and d, in which the flow initially becomcs 
supersonic in the divergent portion, but then adjusts to the back pressure by means 
of a normal shock standing inside the nozzle. The flow downstrcam of the shock 
is, of course, subsonic. Tn this range the position of the shock moves downstream 
as p~ is decreased, and for CUNC d the normal shock stands right at the exit planc. 
Thc flow in the entire divergent portion up to the exit plane is now supcrsonic and 
remains so on further reduction of p ~ .  When thc back pressure is further reduced 
to pc,  thcrc is no normal shock anywhere within the nozzle, and the jet pressure 
adjusts to pe  by means of oblique shock waves outside the cxit plane. Thcse oblique 
shock waves vanish when pB = pr. On furthcr reduction of the back pressure, the 
adjustment to p~ takes place outside the exit plane by means of oblique expansion 
waves. 
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Higun! 16.13 Prcssurc distribution along a convergent-divergent nozzle for dittei-cnt values of back 
pressure p ~ .  Flow paltcrns hrcases c: d ,  e, and ,q are indicated schematically on the right. €1. W. Liepmann 
and A. Roshko, Hemen!.s ofGu.v llynarnics, Wilcy, New York 1957 and rcprinlcd with thc permission or 
Dr. h a m 1  Roshko. 

Example 16.2 

A convergcnt-divergent nozzle is operating under off-dcsign conditions, resulting in 
the presence of a shock wave in the diverging portion. A reservoir containing air at 
400 kPa and 800 K supplies the nozzJe, whose throat area is 0.2 m2. The upslream 
Mach numhcr of thc shock is MI = 2.44. The area at the exit is 0.7 m2. Find the area 
at the location of thc shock and the exit temperature. 

Solution: Figurc 16.14 shows the profile of the nozzle, where seclions 'I and 2 
represent conditions across the shock. As a shock wave can exist only in a supersonic 
strcam, wc know that sonic conditions arc reached at the throat, and thc throat area 
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equals the critical area A*. The values given are therefore 

po = 400 kPa, 
To = 800K, 

Athmt = AT = 0.2m2, 
Mi = 2.44, 

A3 = 0.7m2. 

Note that A* is constant upstream of the shock, up to which the process is isentropic; 
this is why we have set A h ,  = A f .  

The technique of solving this problem is to proceed downstream from the given 
stagnation conditions. Corresponding to the Mach number MI = 2.44, the isentropic 
table Table 16.1 gives 

so that 

AI = A2 = (2.5)(0.2) = 0.5 m’. 
This is the area at the location of the shock. Corresponding to M1 = 2.44, the normal 
shock Table 16.2 gives 

M2 = 0.519, 
Po2 - = 0.523. 
POI 

There is no loss of stagnation pressure up to section 1, so that 

Poi = Po, 
which gives 

p02 = 0.523~0 = 0.523(400) = 209.2Wa. 
The value of A* changes across a shock wave. The ratio A2/Az can be found from 
thc isentropic table (Table 16.1 ) corresponding to a Mach number of M2 = 0.5 19. 
(Note that A; simply denotes the area that would be reached if the flow from state 2 
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TABLE 16.2 (Confinued) 

MI M2 P ~ P I  TZPI (POh/(Pdi I  MI W P ~ I P I  7i/T1 (I)u)z/(w)I 

2.92 0.480 9.781 2.586 0.352 2.98 0.476 10.194 2.656 0.3.34 
2.94 0.479 9.918 2.609 0.346 3.00 0.475 10.333 2.679 0.328 
2.96 0.478 10.055 2.632 0.34) I 

, - . . ... 

were accelerated isentropically to sonic conditions.) Corresponding to M2 = 0.51 9, 
Table 16.1 gives 

A2 - = 1.3, 
4 

which gives 

A2 0.5 
2 -  1.3 1.3 

A* - - = - = 0.3846m2. 

The flow from section 2 to section 3 is isentropic, during which A* remains 
constant. Thus 

A3 A3 0.7 
A; A; 0.3846 

- - 1.82. _ -  - 

We should now find the conditions at the exit from the isentropic table (Table 16.1). 
However, we could locate the value of A /A* = 1.82 either in the supersonic or the 
subsonic branch of the table. As thc flow downstream of a normal shock can only 
be subsonic, we should use the subsonic branch. Corresponding to A/A*  = 1.82, 
Table 16.1 gives 

T 3  - = 0.977. 
TO3 

The stagnation temperature remains constant in 
= To. Thus 

an adiabatic process, so that To3 

T 3  = 0.977(800) = 782K. 

8. hflecis ofFric1ion and tlealing in Conslanl-Area Iluch 

In a duct of constant area, the cquations of mass, momentum, and energy reduced to 
one-dimensional steady form become 
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Here, j’ = ( . fn )x / (p lA)  is a dimensionless friction paramem and q = Q / h l  is a 
dimensionless healing paramctcr. Tn terms of Mach number, for a perfect gas with 
constant specific heats: thc momcntum and cnergy equations become, respectively, 

Using mass conservation, the equation of slatc p = p RT, and the definition of Mach 
number, all thermodynamic varidblcs can bc climinatcd resulting in 

1 
Bringing the unknown M2 to the left-hand sidc and assuming 4 and J’ are specified 
along with MI, 

A. M ; ( l +  ( (y  - 1)/2)M;) Mf(1 + ( ( v  - 1)/2)Mf + Y )  - - 
(1 + YM;)2 ( 1  + m; - f ) 2  

This is a biquadratic equation ror M? with thc solution 

- ( I  - 2dy)  f [ I  - 2d(y + 1)]”* 
h4; = 

( y  - I )  - 2Ay2 
(1 6.37) 

Figures 16.15 and 16.16 m plots or Eq. (16.37), A 4 2  = F ( M I )  first with J’ as a 
paramcxr (16.15) and q = 0 and then with g as a parameter and J’ = 0 (16.16). 
Generally, we specify the properties of the flow at the inlet station (station 1) and 
wish to calculate the properties at the outlet (station 2). Here, we will regard the 
dimensionless friction and hcdt transfcr f and q as spccificd. Thcn wc scc that once 
M2 is calculated from (16.37), all of thc othcr propcrlics may hc ohtaincd .from 
the dimensionless formiilation of the conservation laws. Whcn q and J’ = 0. two 
solutions are possible: thc hivial solution M I  = M2 and the normal shock solution 
that we obtained in Section 6 in thc prcccding. We also showed that the upper left 
branch of thc solution 1442 > 1 when MI e 1 is inaccessible because it violates 
thc sccond law or thermodynamics, that is, it results in  a spontancous dccrcasc of 
enu-opy. 

Effect of Friction 
Rcferring to the left branch of Figurc 16.15, the solution indicates thal for 
M I  e 1: M2 > MI so that friction accclcratcs a subsonic flow. Then the pressurc, 
dcnsity, and temperaiure are all diminished with rcspect to Ihe entrance values. How 
can friction makc thc Row go laster? Friction is manifcstcd by boundary layers at the 
walls. Thc boundary layer displacement thickncss grows downstream so that the flow 
bchaves as i l  it is in a convergent duct, which, as we have seen, is a subsonic nozzlc. 
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Figure 16.15 Flow in a constant-area duct with friction f as parameter; q = 0. Upper left quadrant is 
inaccessible because AS < 0. y = 1.4. 
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Figure 16.16 Flow in a constant-area duct with heatingkooling q as parameter; f = 0. Upper left 
quadrant is inaccessible because AIS < 0. y = 1.4. 



We will discuss in what follows what actually happens when there is no apparent 
solution for M2. When MI is supersonic, two solutions are gcncrally possible--one 
for which 1 < M2 < MI and the other where MI < 1. They arc connected by 
a normal shock. Whether or not a shock occurs dcpcnds on the downstream pres- 
sum. Thcrc is also the possibility of MI insufficiently large or f too large so that 
no solution is indicated. We will discuss that in the following but note that the two 
solutions coalesce when M2 = 1 and the flow is said to bc choked. At this condition 
thc maximum mass flow is passed by the duct. In the casc 1 e Mz < MI, the flow is 
decelcratcd and the pressure, density, and temperature all increase in the downstream 
direction. The stagnation pressure is always decreased by friction as the entropy is 
increased. 

Effect of Heat Transfer 
The rangc of solutions is twice as rich in this case as 4 may take both signs. 
Figure 16.16 shows that for 9 > 0 solutions are si& in most rcspccts to those 
with friction (J’ > 0). Heating accelerates a subsonic flow and lowers the pressure 
and density. However, heating generally increases the fluid temperature except in 
the limitcd rangc 1/47 < M1 < 1 in which the tendency to accelerate the fluid 
is greater than the ability of thc hcdt flux to raise the temperature. The energy from 
heat addition goes preferentially into increasing the kinetic energy of the fluid. The 
fluid temperature is decreased by hcating in this limited range of Mach number. Thc 
supersonic branch M2 > 1 when MI < 1 is inaccessiblc because those solutions 
violate the second law of thermodynamics. Again, as with .f too large or A41 too close 
to 1, there is a possibility with q too large of no solution indicated; this is discussed 
in what follows. When MI > 1, two solutions lor it42 are gcncrally possible and they 
are connected by a normal shock. The shock is absent if thc downstream pressure is 
low and present if the downstream pressure is high. Although 4 > 0 (and j > 0) 
does not always indicate a solution (if the flow has been choked), there will always 
be a solution for y < 0. Cooling a supersonic flow accelerates it, thus decreasing 
its pressure? temperature, and density. If no shock occurs, M2 > MI. Conversely, 
cooling a subsonic flow decelerates it so that the pressure and density increase. The 
temperature decreases when beat is removed from the flow except in the limited range 
I /a e MI < 1 in which the hcat rcmoval decclcratcs the flow so rapidly that the 
temperature increases. 

For high molecular weight gases, near crilical conditions (high pressure, low 
remperdturc), gasdynamic rclationships a$ developed hem for pcrrcct gases may bc 
complctcly diffemnl. Cramer and Fry (1993) found that such gases may support 
cxpansior shocks, accelerated flow through “antithroats,” and generally behave in 
unfamiliar ways. 

Choking by Friction or Heat Addition 
Wc can scc from Figures 16.15 and 16.16 that heating a flow or accounting for 
Criction L a constant-area duct will makc that flow tcnd towards sonic conditions. 
For any given MI, the maximum .f or 9 > 0 that is permissible is the one for 



which M = 1 at the exit station. The flow is then said to be choked, and no more 
masdtime can flow through that duct. This is analogous to flow in a convergent duct. 
Imagine pouring liquid through a funnel from one container into another. There is 
a maximum volumetric flow rate that can be passed by the funnel, and beyond that 
flow rate, the funnel overllows. The same thing happens here. If f or q is too large, 
such that no (steady-state) solution is possible, there is an external adjustment that 
reduces the mass flow rate to that for which the exit speed is just sonic. Both for 
MI .e 1 and M I  > 1 h e  limiting curves for .f and q indicating choked flow intersect 
M2 = 1 at right angles. Qualitatively, the effect is the same as choking by area 
contraction. 

9. Mach Cbne 
So Iar in this chapter we have considered one-dirncnsional flows in which the flow 
properlies varied only in the direction of flow. Tn this sixtion we begin our study of 
wave motions in more than one dimension. Consider a point source emitting infinites- 
imal pressure disturbances in a still fluid in which the spccd of sound is c. If the point 
disturbance is stationary, then the wavefronts are concentric spheres. This is shown 
in Figure 16.17a, whcre the wavefronts at intervals of At are shown. 

Now supposc that the source propagates to the left at speed U .e c. Figurc 16.17b 
shows four locations oI the source, that is, 1 through 4, at equal intervals of time A t ,  
with point 4 being the present location of the source. At point 1, the sourcc cmitted 
a wave that har spherically expanded to a radius of 3c At in an interval of dmc 3 At .  
During lh is  time the source has moved to location 4, at a distance of 3U A f  from 
point 1. The figure also shows the localions of thc wavefronts emitted while the 
SOUKC was at points 2 and 3. It is clear that the wavefronts do not intersect because 
U .e c. As in thc casc of the stationary source, the waveIronts propagate everywhere 
in the flow ficld, upstream and downstream. It thereforc follows that u body mowing 
al a subsonic speed influences the entireflowjeld; information propagates upstream 
as well as downstrcam of the body. 

Now consider a case where the disturbance moves supmonkally at U > c 
(Figure 16.17~). Tn this case the spherically cxpanding wavefronts cannot catch up 
with the faster moving disturbance and form a conical tangent surface called theMach 
cone. In plane two-dimensional flow, the tangent surFace is in thc form of a wedge, 
and the tangent lines are called Mach fines. An examination of thc figure shows that 
the half-anglc of thc Mach cone (or wedge), called the Mach angle p, is given by 
sinp = (c A t ) / ( U  At) ,  so that 

. smp= -. 
I M 
! *  (1 6.38) 

The Mach cone becomcs wider as M decreases and becomes a plane front (that is, 
p = 9W) when M = 1. 

Thc point source considered hcrc could be part oI a solid body, which sends out 
pressurc wavcs as it moves bough thc fluid. Moreover, Figurc 16.17~ applies equally 
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Mach cone 

(C) 

Figure 16.17 Wavefronts emined by a point source in a still fluid when the source speed U is: (a) V = 0; 
(b) U -z c; and (c) U =- c. 

if the point source is stationary and thc fluid is approaching at a supersonic speed CJ. 
Tt is clcar that in a supersonic flow an observer outside the Mach cone would not 
“hcar” a signal emitted by a point disturbance, hence this region is called the zone 
Qfsilence. In contrast, the region inside the Mach conc is called the zone ojacfion, 
within which the effects of the disturbance are felt. This explains why the sound of a 
supersonic airplane does not reach an observer until the Mach conc anives, aJer the 
plane has passed overhead. 

At every point in a planar supersonic flow thcre are two Mach lines, oriented at 
fl.~ to the local direction of flow. Information propagates along these lines, which 
are the churucferisrics of the governing diffcrcntial equation. It can be shown that the 
nature of the governing differential equation is hyperbolic in a supcrsonic Row and 
elliptic in a subsonic flow. 



10. Oblique Shock Waui! 

In Section 6 we examined the case of a normal shock wave, orientcd pcrpcndicular to 
the direction of flow, in which the velocity changes from supersonic to subsonic values. 
Howcver, a shock wave can also be oricntcd obliquely to the flow (Figure 16.18a), 
the velocity changing from VI to V2. The flow can be analyzed by considering a 
normal shock across which the normal velocity varies from u I to up and superposing 
a vclocity u parallel to it (Figure 16.18b). By considering conservation of momentum 
in a direction tangential to the shock, we may show that v is unchanged across a shock 
(Exercise 12). The magnitude and direction of the velocities on the two sides or the 
shock are 

VI = ,/- oricntcd at r7 = tan-'(uI/v), 

V2 = J U Z  + v2 

The n o d  Mach numbers are 

orientcd at r7 - 6 = tan-'(u2/v). 

Mnl = uI/q = it41 sin m > 1 ,  
M,,2 = U Z / C ~  = M2 S ~ ( O  - 8 )  < 1. 

Because u2 u1, them is a suddcn change of direction of flow across the shock; in 
fact the flow turns towurtl the shock by an amount S. The angle u is called the shock 
angle or wuve mgle and S is called the deflection angle. 

Supcrposition of the tangential velocity v does not affect thc static properties, 
which are therefore the same as those for anormal shock. The expressions for the ratios 
p2/p1, P ~ / P I ,  T ~ / T I ,  and (S2 - Sl)/C, are therefore those given by Eqs. (16.31), 
(16.33)-(16.35), if M I  is replaced by the normal component of h e  upstrcam Mach 
number MI sin u . For example, 

P2 2Y 
PI Y + l  
- = 1 + -(M,2sin2u - 1)$ (16.39) 

Figure 16.18 (a) Oblique shock wavc in which 8 = deflection anglc and u = shock angle; and (h) uniil- 
yxis by considering a normal shock and superposing a vclocity u parallel to Lhc shock. 



Thc normal shock table, Table 16.2, is therefore also applicable lo obliquc shock 
waves if we use MI sin CT in place or MI. 

The relation between the upstream and downstream Mach numbcrs can be found 
from Eq. (16.32) by rcplacing MI by MI sin o and Mz by M2 sin (a - 6). This gives 

(y  - I ) M :  sin2 a + 2 
2y~ ; s in ' o  + 1 - y '  

2 M: sin (a - 6) = (16.41) 

An imporlant relation is that between the deflection angle S and the shock angle 
for a givec MI, given in Eq. (16.40). Using the trigonometric identity for tan (a - S), 
this becomes 

( 16.42) 

X plot of this relation is given in Figure 16.19. The curves represent S vs a for constant 
MI. The value of M2 varies along the curves, and the locus of points corresponding 
to M2 = I is indicated. It is apparent that there is a maximum deflection angle S,, 

M: sin2rJ - 1 
tanS=2cota 

M ? ( y  +cos2a) + 2 '  

0" 10" 2oo 30" 40" 50" 60" 70" 80" 90" 

Wave angle (r 

Figure 16.19 Plot of obliquc shock solution. Thc stmng shock branch is indicated by dashed lines, and 
the heavy dotlcd linc indicaks the maximum deflection anglc 



for oblique shock solutions to bc possible; for example, S,, = 23 ' for MI = 2. 
For a given MI, S becomes zero at cr = n/2 comsponding to a normal shock, and 
at IT = 1-1 = sin-'(I/M~) comsponding to thc Mach angle. For a fixed M I  and 
6 .c 8-, thcrc arc two possiblc solutions: a weak shock corresponding to a smaller 
IT,  and a strong  hock comsponding to a largcr 6. Tt is clear that the flow downstream 
of a strong shock is always subsonic; in contrast, the flow downstrcim of a weak 
shock is generally supersonic, except in a small range in which S is slightly smaller 
than Sm. 

Generation of Oblique Shock Waves 
Consider the supersonic flow past a wedge of half-angle S, or thc flow over a wall 
that turns inward by an angle S (Figure 16.20). If MI and 6 arc givcn, then 0 can be 
obtained from Figure 16.19, and M,,z (and therefore M2 = M,,2/sin(a - 6)) can be 
obtained from the shock table, Tablc 16.2. An attached shock wave, corresponding 
to the weak solution, forms at h e  nose of the wedge, such that the flow is parallcl 
to the wedge after turning through an anglc 6. The shock angle CT decrcascs to thc 
Mach angle 1.11 = sin-'(] /MI) as thc dcflection S tends to zero. It is intcrcsting that 
the comer velocity in a supersonic flow is finitc. In contrast, the corner velocity in 
a subsonic (or incompressible) flow is either zcro or infinite, depending on whcthcr 
the wall shape is concave or convex. Moreover, thc strcamlines in Figure 16.20 arc 
siraight, and computation of the field is easy. By conlrast, the streamlines in a subsonic 
flow are curved, and thc computation of the flow field is not casy. The basic reaqon 
for this is that, in a supersonic flow, the disturbances do not propagate upstream of 
Mach lines or shock waves emanating from the disturbances, hcnce the flow field can 
bc constructed step by step, proceeding downstwm. In contrast, thc disturbances 
propagate both upstream and downstream in a subsonic flow, so that all features in 
the cntire flow field are related to each othcr. 

As 6 is incrcascd beyond S,,,, attached oblique shocks are not possible, and 
a detached curved shock stands in front of the body (Figure 16.21). The central 
strcamline goes through a normal shock and generates a subsonic flow in €on1 of the 
wedge. The strong shock solution of Figure 16.1.9 therefore holds ncar the nose ol the 
body. Farher out, the shock angle decreases: and the weak shock solution applies. 
If the wedge angle is not too largc, then the curved dctached shock in Figure 16.21 

Fiyrc 16.20 Ohliquc shocks in supersonic flow. 



weak shock 

strong shock 

I 
I 

I 

Figure 16.21 Dclachcd shock. 

becomes ar, oblique attached shock as the Mach number is increased. In the case 
of a blunt-noscd body, however, the shock at the leading edge is always dctached, 
although it moves closer to 1he body as thc Mach number is increased. 

We see that shock waves maj7 exist in supersonic flows and their location and 
orientation adjust to satisfy boundary conditions. In external flows, such as those just 
described, the boundary condition is that streamlines at a solid surface musl be tangent 
to that surface. In duct flows the boundary condition locating the shock is usually the 
downstream pressure. 

The Weak Shock Limit 
A simple and useful expression can be derived for the pressure change across a weak 
shock by considering thc limiting casc of a small dcflcction angle 6. We first nced to 
simplify Eq. ( 1  6.42) by noting hat as S +. 0, the shock angle a tends to the Mach 
anglc 1 ~ 1  = sin-'(I/Ml). 

sin2 Q - 1 + 0, 
(as 0 + .u and S +. 0). Then from Eqs. (16.39) and (16.42) 

Also from Eq. (16.39) we note that (p?  - p , ) / p l  + 0 as 

(16.44) 



The interesting point is that dation (1 6.44) is also applicable to a weak expansion 
wavc and not just a wcak comprcssion wave. By this we mean that thc prcssure 
inmase due Lo a small deflection of thc wall toward the flow is the samc as the 
pressure decrease due to a small dcflwtion of the wall w u y  from the flow. This is 
because the entropy change across a shock goes to zero much fastcr than the rate at 
which the pressure dimerence across thc wavc dccwases as our study of n o d  shock 
waves has shown. Very weak “shock waves” arc thcmfore approximately isentropic 
or reversible. Relationships for a weak shock wave can thcrcfore be applied to a weak 
expansion wave, except for some sign changes. In Scction 12, Eq. (16.44) will be 
applied in estimating the lift and drag of a thin airfoil in supersonic flow. 

11. Fkpansion and Cornpmtwion W iSupi?rsonic Flow 

Consider the supersonic flow over a gradually curved wall (Figure 16.22). The wave- 
fronts are now Mach lines, inclined at an angle of ,Y = sin-’ (1 /M) to the local 
direction of flow. The flow orientation and Mach numbcr arc constant on each Mach 
line. Tn the case of compression, the Mach numbcr dccrcases along the flow, so that 
the Mach angle increases. The Mach lines therefore coalcscc and form an oblique 
shock. In the case of gradual cxpansion, the ‘Mach number increases along the flow 
and the Mach lines diverge. 

Tf thc wall has a sharp deflection away from the approaching stream, then thc 
pattern of Figure 16.22b takes the form of Figurc 16.23. The flow expands through 
a “fan” of Mach lines centered at the corner, callcd thc Prandtl-Meyer expansion 
fun. The Mach number incrcases through the fan, with M2 > MI. The first Mach linc 
is inclined at an anglc of 1.11 to the local flow direction, while the last Mach linc is 
inclined at an anglc of , ~ 2  to the local flow direction. Thc pressure falls gradually along 
a streamline through thc fan. (Along the wall, however, thc pressure remains constant 
along the upstream wall, falls discontinuously at the comer, and thcn remains constant 
along the downstmam wall.) Figure 16.23 should be compared with Figure 16.20, in 
which the wall turns inward and generates a shock wavc. By contrast, the expansion 
in Figure 16.23 is gradual and iscntropic. 

. .  . . .  . . . .. :.::, 1 :, .. ,:: ,:, .’. .... 

Figure 16.22 Gradual cornprcsrion and expansion in supcrronic flow: (a) gradual compression. resulting 
in shock formation; and (h) gradual cxpansion. 



F'igurc 16.23 Thc PrandU-Mcycr expansion h. 

The flow through a Prandll-LMeyer €an is calculated as follows. From 
Figure 16.18b, conservation of momentum tangential to the shock shows that Ihc 
tangential velocity is unchanged, or 

VI cos CT = V2 cos(a - S) = V~(COS cr cos S + sin cr sin S). 

We are concerned here with very small dcflcctions, 6 + 0 so cr + p. Hcrc, cos S % 1, 
sin6 = S, V I  2 ~ 2 ( 1  +~tana), so ( ~ 2  - v I ) / v I  

Regarding this as appropriate for infinitesimal change in V for an infinitesi- 
mal deflection, we can write this as dS = - d V m / V  (first quadrant deflec- 
tion). Because V = Mc, d V /  V = dM/M + dc/c. With c = for a perfect 
gas, dcjc = dT/2T. Using Eq. (16.20) for adiabatic flow of a perfect gas, d T / T  

Stan0 = -s/-. 

= -(v - l)MdM/[,I + ((v - 1)/2)M2]. 
Then 

d@=T dM 
d6 = - 

M 1 + ((v - 1)/2)M2' 

Intcgdting 6 horn 0 (radians) and M from 1 gives 

S + v ( M )  = const., 

where 

is called thc Prandtl-Meyer function. Thc sign of d m  originatcs 
from the idcntification or tan fi = tan IL = 1 / d m  lor a first quadrant dcflcc- 
tion (uppcr half-plane). For a fourth quadrant deflection (lower half-plane), 
tan ,u = - 1 / d m .  For example, in Figurc 16.22 we would writc 

61 + v1 (MI) = 62 + k(Mz), 



whcrc, for cxample, SI,&, and M I  are given. Then 

v2Wz)  = 61 - 62 + vl(MI). 

In pancl (a), 61 - 82 < 0, so y < V I  and MZ < MI. In panel (b), 61 - 81 > 0, so 
y > V I  andMz > M I .  

12. Thin Airfoil Y%eory in Siqcrsonic Jlow 
Simplc cxprcssions can be derived for the lift and drag coefficients of an airfoil in 
supersonic flow if the thickness and angle of attack are small. The disturbances caused 
by a thin airfoil are small, and the total flow can be built up by superposition of small 
disturbances emanating from points on the body. Such a lincarizcd theory of lift and 
drag was developed by Ackerct. Because all flow inclinations are small, we can use 
the relation ( I  6.44) to calculate the pressure changes due to a change in flow direction. 
We can write this relation as 

(16.46) 

where pm and MJc refer to the properties of the h e  stream, and p is the prcssure at 
a point where the flow is inclined at an angle S to the liec-stream direction. The sign 
of S dctermines the sign of (p - pea). 

To see how the lift and drag of a thin body in a supersonic stream can be estimated, 
consider a flat plate inclined at a small angle (r to a stream (Figure 16.24). At the 
leading cdgc thcrc is a weak expansion fan on the top surfacc and a weak obliquc 
shock on the bottom surface. The streamlines ahead of these waves are straight. Thc 
streamlines above the plate turn through an angle (r by expanding through a centered 
Ian, downstream of which they become parallel to the plate with a pressurc p~ < p w .  
The uppcr streamlines then turn sharply across a shock cmanathg from h c  trailing 
edge, becoming parallel to the free stream once again. Opposite features occur for 
the streamlines below the plate. The flow first undergoes compression across a shock 
coming from the leading edge, which results in a pressurc p3 > p W .  It is, however, 
not important to distinguish between shocks and expansion waves in Figurc 16.24, 
because thc linearized theory trcats them the samc way, except for the sign of thc 
prcssure changes hey produce. 

The pressures above and below the platc can be found from Eq. (16.46), giving 

P3-POo - YMkU 
P w  -Jm. 

The pressurc difference across the plate is Lhcrefore 



p2 

Figure 16.24 Jnclined flat plate in a supersonic stream. Thc uppcr ptlncl sbows tbc flow pattern and the 
lowcr pancl shows the pressure distribution. 

If h is the chord length, then the lift and drag forces per unit span are 

(16.47) 

'The lift coefficient is defincd 
L - L c -  '. = (1/2)p,U&h - (1/2)yp,M&b' 

where wc have used the relation pU2 = ypM2. Using Eq. (16.47), the lift and drag 
coefficients for a Rat lifting surface arc 

(16.48) 



Thew cxpressions do not hold at transonic speeds MOc + 1, when the process of 
linearization used here bwaks down. The expression for the IiCt coefficient should be 
compared to the incompressible expression CI- 21 2na derived in the preceding chap- 
ter. Note that the flow in Figure 16.24 does have a circulation because the velocities 
at the upper and lower surfaces arc parallel but have different magnitudcs. However, 
in a supersonic flow it is not necessary to invokc the Kutta condition (discusscd in 
the preceding chapter) to dctcrmine the magnitude of the circulation. The flow in 
Figure 16.24 does leave lhc trailing edge smoothly. 

The drag in Eq. (16.48) is the wave drug experienced by a body in a supersonic 
stream, and exisls even in an inviscid flow. The d’Alembert paradox thercforc does 
not apply in a supersonic flow. The supersonic wave drag is analogous to the gravity 
wave drag experienced by a ship moving at a speed greatcr than the velocity of surface 
gravity waves, in which a systcm of bow waves is carricd with the ship. The magnitude 
of the supersonic wave drag is independent of the vdue of the viscosity, although the 
energy spcnt in overcoming this drag is finally dissipated through viscous cffects 
within the shock waves. In addition lo the wave drag, additional drags due to viscous 
and finite-span effects, considered in the preceding chapter, act on a mal wing. 

In this connection, it is worth noting the diflerence bctween the aidoil shapes 
used in subsonic and supersonic airplanes. Low-speed airfoils have a streandined 
shape, with a rounded nosc and a sharp trailing cdge. These features are not helpful 
in supersonic airfoils. The most cffcctive way of reducing the drag of a supcrsonic 
airfoil is to reduce its thickness. Supersonic wings are characteristically thin and have 
a sharp leading edgc. 

lhXW!iiS&V 

1. The critical arca A* of a duct flow was defined in Section 4. Show that the 
relation between A* and thc actual area A at a section, whcre the Mach number 
equals M, is that given by Eq. (16.23). This relation was not proved in the text. 
[Hint: Write 

A P*C* p * p o ~ *  c p*po T * F )  1 
A* PU p o p  c u  p o p  T o T M ’  

--__ =-- _ _ _  J- _---  - - 

Then use the relations given in Section 4.1 
2. The entropy change across a normal shock is given by Eq. (16.35). Show that 

this reduces to exprcssion (16.36) for weak shocks. [Hint: Lct M: - 1 << 1. Write 
thc terms within the two brackets [ ] [ ] in Eq. ( 1  6.35) in the [om [ 1 + EI][ 1 + ~2 p’, 
where E I  and ~2 are smal l  quantities. Then use series cxpansion In ( 1  + E )  = E 

-e2/2 + e3/3 + . - . . This gives Eq. (1 6.36) times a [unction of M1 in which we can 
set M I  = 1.1 

3. Show that the maximum velocity generated h m  a reservoir in which thc 
slagnation temperatun: equals To is 

Umax = 

What are the corresponding values of T and M? 
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4. In an adiabatic flow of air through a duct, the conditions at two points are 

u1 = 250m/s, 

pl = 200kPa, 
242 = 300m/s, 

Ti = 300K, 

p2 = 150 kh. 

Show that hc  loss of stagnation pressure is nearly 34.2kPa. What is the entropy 
increase? 

5. A shock wave generated by an cxplosion propagates through a s t i l l  atmo- 
sphere. IT thc prcssure downstream of the shock wave is 700 kPa, estimate the shock 
speed and the flow velocity downstrcam of thc shock. 

6. A wedge has a half-angle of 50". Moving through air, can it ever have an 
attached shock? What if the half-angle were a"? [Hint: The argumcnt is based entirely 
on Figure 16.19.1 

7. Air at standard atmospheric conditions is flowing over a surface at a Mach 
number of M I  = 2. At a downstream location, the surfacc takcs a sharp inward turn 
by an angie of 20". Find the wave angle 0 and the dowmtream Mach number. Repeat 
h c  calculation by using the weak shock assumption and determine its accuracy by 
comparison with the first method. 

8. A flat plate is inclined at 10' to an airstream moving at Moo = 2. If the chord 
length is b = 3 m, find the lift and wave drag per unit span. 

9. A perfect gas is stored in a large tank at the conditions specified by p,,, 
To. Calculate thc maximum mass flow rate that can exhaust through a duct of 
cross-scctional arca A. Assumc that A is small enough that during the time of interest 
p,, and r, do not changc significantly and that thc flow is adiabatic. 

10. For flow of a perrcct gas entering a constant area duct at Mach number Ml, 
calculale the maximum admissable values off, q for the same mass flow rak. Case (a) 
.f = 0; Case (b) q = 0. 

1 1. Using thin airfoil theory calculatc h e  lift and drag on the airfoil shape given 
by y,, = t sin(nx/c) for the upper surface and y/ = 0 for the lower surface. Assume 
a supcrsonic strcam parallel to h e  x-axis. Thc thickness rdtio t / c  << 1. 
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Appendik A 

Some Properties of 
Common Fluids 

Length: 

Mass: 

Time : 

Density: 

Velocity: 

FOrCC: 

Pressure: 

Energy: 

Energy flux: 

I m = 3.2808ft 
1 in. = 2.540cm 
1 milc = 1.609 km 
1 nautical mile = 1.852 km 

1 kg = 2.20461b 
1 metric ton = lOOOkg 

1 day = 86,400s 

1 kg/m3 = 0.062428 lb/ft3 

1 h o t  = 0.5 144 m / ~  

1 N = 105dp 

1 dyn/cm2 = 0.1 N/m2 = 0.1 Pa 
1 bar = lO5Pa 

1 J = 1 O7 erg = 0.2389 cal 

1 W/m2 = 2.39 x lo-’ calcm-2 s-l 

1 tal= 4.1865 

707 



A2. prOpc!rtic?w ofYm Wakr a1 Ahosphcric Pressm 
Here, p = density, Q = coefficient of thermal expansion, 1-1 = viscosity, 
v = kinematic viscosity, K = thermal diffusivity, Pr = Prandtl numbcr, and 
1.0 x 10" is written as 1.OE - n 

T 
'C 

a 
K-' 

0 
10 
20 
30 
40 
50 

lo00 
loa0 
997 
995 
9 2  
988 

- 0 . a  - 4 
M.9E - 4 

2.IE - 4 
3.0E - 4 
3.8E - 4 
4.33 - 4 

P 
kg m-' s-' 

. . . . . . . 
1.787E - 3 
1.307'6 - 3 
1.002E - 3 
0.7998 - 3 
0.653E - 3 
0.548B - 3 

v 
m2/s 

1.78E - 6 
1.307E-6 
I . W E  - 6 
0.802E - 6 
0.658E - 6 
0.5558 - 6 

. _. 

K 

m2/s 
. .. . - . .. 

1.33E - 7 
1.38E - 7 
1.42E - 7 
1.468-7 
1.52E-7 
1.58E - 7 

CP R 
J@-'K-' V / K  

.. 
4217 13.4 
4192 9.5 
4182 7.1 
4178 5.5 
4178 4.3 
4180 3.5 

Latent heat of vaporization at 100 "C = 2.257 x lo6 Jkg. 
Latent heat of melting of ice at 0 "C = 0.334 x lo6 Jkg. 
Density of ice = 920 kg/m3. 
Surface tension between water and air at 20 "C = 0.0728 N/m. 
Sound speed at 25 "C 21 1500 4 s .  

AX hper t i e s  of Dry Air at Atmc,xpheric Pressure 

T 
"C 

P 
w m 3  

P 4 m -Ig-] 
v 

m2/r 
K 

m2/s 

0 
10 
20 
30 
40 
60 
80 

100 

i.293 
1.247 
1.200 
1.165 
1.127 
1.060 
1.OOO 
0.946 

1.71E - 5 
1.76E - 5 
1.81E-5 
1.86E - 5 
1.8E - 5 
1.97E - 5 
2.07E - 5 
2.17E - 5 

1.33E - 5 
l.41E - 5 
1SOE - 5 
1.6OE - 5 
1.MB - 5 
1.86E - 5 
2.07E - 5 
2.29E - 5 

1.84E - 5 
1.96H-5 
2.08E - 5 
2.2513 - 5 
2.38E - 5 
2.65E - 5 
2.99E - 5 
3.28B - 5 

0.72 
0.72 
0.72 
0.71 
0.7 1 
0.71 
0.70 
0.70 

At 20 "C and 1 atm, 

C, = 1012 J kg-l K-' 
C, =718Jkg-'K-l 
y = 1.4 
Q = 3.38 x K-' 
c = 340.6 m/s (velocity of sound) 

Constants for dry air : 

Gas constant R = 287.04 Jkg-' K-' 
Molecular mss  m = 28.966 kg/kmol 



.14. .l’ivperlies oJ’h‘laridad AhrM.plzt?m 
The following average values are accepted by international agreement. Here, z is the 
height above sea level. 

z 
km 

0 
0.5 
1 
2 
3 
4 
5 
6 
8 

10 
12 
14 
16 
18 
20 

T 
“C 

15.0 
11.5 
8.5 
2.0 

-4.5 
-11.0 
-17.5 
-24.0 

-50.0 
-56.5 
-56.5 
-56.5 
-56.5 
-56.5 

. _. 

-37.0 

P P 
kF% kg/m3 

101.3 1.225 
95.5 1.168 
89.9 1.112 
79.5 1.007 
70.1 0.909 
61.6 0.819 
54.0 0.736 
47.2 0.660 
35.6 0.525 
26.4 0.413 
19.3 0.3 1 I 
14.1 0.226 
10.3 0.165 

5.5 0.088 

. - 

7.5 0.120 



Appendix B 

Curvilinear Coordinates 

B l .  Cjdindriricallblar Cootriw~&.s . . . . . . 710 
B2. Plmc l+hr (!odindcs . . . . . . . . . . . 7 12 

B3. S$i(?~kd Rdar Coordinates. . . . . . . . 712 

B l .  C$-lindrical I’olar Coordinates 
The coordinates are (R, 8, x ) ,  where f3 is the azimuthal angle (see Figure 3.lb, where 
(p is used instead of e). The equalions are presented assuming $ is a scalar, and 

u = i R u R  + bue + ixux, 

where i R ,  io, and i, are the local unit vectors at a point. 

Gradient of a scalar 

a$ i e a $  a$ 
aR R ae ax 

v+=iR-+-- +i,-. 

Laplacian of a scalar 

Divergence of a vector 

Curl of a vector 

Laplacian of a vector 

710 



Strain rate and viscous stress (for incompressible form oij = 2peij) 

Vorticity (o = V x u) 

Equation of continuity 

NavierStokes equations with constant p and v, and no body force 

whcrc 
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R2. Plane yolar Coordinates 
The plane polar coordinates are ( r , e ) ,  where r is the distance , h m  the origin 
(Figure 3.la). The equations for plane polar coordinates can be obtained from 
those of the cylindrical coordinates presented in Section B1, replacing R by r and 
suppressing all components and derivatives in the axial direction x .  Some of the 
expressions are repeated here because of their frequent occurrence. 

Struin rate and viscous stress (for incornpressiblc form ojj = 2peij) 

au, 1 
err = - - - -0 r r r  

ar 2p 
1 aue u, 1 

e00 = -- + - = -noel 
r 38 r 21.1 
r a  1 au, 1 ere = -- (5) + -- = -erg. 
2ar  r 2r a0 2p 

Vorticity 

l a  1 au, 
r ar r ae W, = --(rue) - --. 

Equation of continuily 

where 

H3. Spherieal .Mar Coodinatm 

The spherical polar coordinates used are (r, 8, Q), where Q is the azimuthal angle 
(Figure 3.1~). Equations are presented assuming @ is a scalar, and 

u = irur + i e ~ o  + i,u,, 

where i,, io ,  and t are the local unit vectors at a point. 



Gradient of ( I  sculur 

Lupluciun of a sculur 

DiveRenee o ja  vector 

1 a(r2u,) 1 ~(uos ind)  1 aue 
r2 ar rsine 30 r sin 8 ap 

+ --. v .u = -- + - 

Curl of a vector 

+-  
sin8 ap ar 

v x u = -  i r  [a(u,sine) sue] 5 [ r sin 6 ae aP 

lrrylrciun of u vector 

2 a(uesin8) 

Strain rute und viscous stress (for incompressible form uij = 2peij) 



Vorticity 

Equation of continuity 

Navierstokes equations with constant p and v, and no body force 

where 



Appendh C 

Founders of 
Modern Fluid Dynamics 

1,udwig /+and11 (15 7@5 - 19.53) 
Ludwig Prandtl was born in Freising, Germany, in 1875. He studied mechanical 
engineering in Munich. For his doctoral thesis he worked on a problem on elasticity 
under August Foppl, who himself did pioneering work in bringing together applied 
and theoreticdl mechanics. Later, Prandtl became Foppl’s son-in-law, following the 
good German academic tradition in those days. Tn 1901, he became professor of 
mechanics at the University of Hanover, where he continued his earlier efforts to 
provide a sound theontical basis for fluid mechanics. Thc famous mathematician 
Felix Klein, who stressed the use of mathematics in engineering education, became 
interested in Prandtl and enticed him to come to the University of Gattingen. handtl 
was a great admirer of Klein and kept a large portrait of him in his office. He served as 
professor of applied mechanics at Gottingen from 1904 to 1953; the quiet university 
town of Gotthgen becamc an international center of aerodynamic research. 

In 1904, h d t l  conceived the idea of a boundary layer, which adjoins the surface 
of a body moving through a fluid, and is perhaps the greatest single discovery in the 
history of fluid mechanics. He showed that frictional effects in a slightly viscous fluid 
are confined to a thin layer near the surface of h e  body; the rest of the flow can 
be considcred inviscid. The idea led to a rational way of simplifying the equations 
of motion in the different regions of the flow field. Since then the boundary layer 
technicjuc has been generalizcd and has become a most uscful tool in many branches 
of science. 

His work on wings of finite span (the Prandtl-Lanchester wing theory) eluci- 
dated h e  generation of induced drag. In compressible fluid motions he contributed the 
Prandtl-Glauert rule of subsonic flow, the Prandtl-Meyer expansion fan in supersonic 
flow around a comer, and published the first estimate of the thickness of a shock wave. 

715 
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He made notable innovations in the design of wind tunnels and other aerodynamic 
equipment. His advocacy of monoplanes greatly advanced heavier-than-air aviation. 
In experimental fluid mechanics he designed the Pitot-static tube for measuring veloc- 
ity. In turbulence theory he contributed the mixing length theory. 

Prandtl likcd to describe himself as a plain mechanical engineer. So naturally he 
was also interested in solid mechanics; for example, he dcvised a soap-film analogy 
for analyzing the torsion stresses of structures with noncircular cross sections. In 
this respect hc was like G. I. Taylor, and his famous student von K a r m ;  all three 
of them did a considerable amount of work on solid mechanics. Toward the end of 
his career Prandtl became interested in dynamic meteorology and publishcd a paper 
generalizing the Ekman spiral for turbulent flows. 

Prandtl was endowed with rare vision for understanding physical phenomena. His 
mastery of mathematical tricks was limited; indeed many of his collaborators were 
better mathematicians. However, Prandtl had an unusual ability of putting ideas in 
simple mathematical forms. In 1948, Prandtl published a simple and popular textbook 
on fluid mechanics, which has been referred to in several places here. His varied 
interest and simplicity of analysis is evideni throughout this book. Prandtl died in 
Gottingen 1953. 

Ccoflky Ingram %..or (1 886 - 19 75) 
Geoffrey Ingram Taylor’s name almost always includes his initials G. T. in re€erences, 
and his associates and friends simply refer to him as “G. I.” He was born in 1886 in 
London. He apparently inherited a bent toward mathematics from his mother, who wa! 
the daughter of George Boole, the originator of “Boolean algebra.” After graduation 
from the University of Cambridge, Taylor started to work with J. J. Thomson in pure 
physics. 

He soon gave up pure physics and changed his interest to mechanics of fluids 
and solids. At this time a research position in dynamic meteorology was created at 
Cambridge and it was awarded to Taylor, although he had no knowledge OF meteo- 
rology! At the age of 27 he was invited to serve as meteorologist on a British ship 
that sailed to Newfoundland to investigate the sinking of the Etunic. He took h e  
opportunity to make measurements of velocity, temperature, and humidity profiles 
up to 2000 m by flying kites and releasing balloons from the ship. These were the very 
k s t  measurements on the turbulent transfers of momentum and heat in the frictional 
layer of the atmosphere. This activity started his lifelong interest in turbulent flows. 

During World War 1 he was commissioned as a meteorologist by thc British 
Air Force. He learned to fly and became interested in aeronautics. He made thc fist 
measurements of the pressure distribution ovcr a wing in full-scale flight. Involvement 
in aeronautics led him to an analysis of the stress distribution in propeller shafts. 
This work finally resulted in a fundamental advance in solid mechanics, the “Taylor 
dislocation thcory.” 

Taylor had a extraordinarily long and productive research career (1909-1972). 
The amount and versatility of his work can be illustrated by the size and range of 
his Collected Works published in 1954: Volume 1 contains “Mechanics of Solids” 
(41 papers, 593 pages); Volume 11 contains “Meteorology, Oceanography, and 



Turbulent How” (45 papers, 5 15 pages); Volume Ill contains “Aerodynamics and 
the Mechanics of Projectiles and Explosions” (58 papers, 559 pages); and Volume 1V 
contains “Miscellaneous Papers on Mechanics of Fluids” (49 papers, 579 pages). 
Pcrhaps G. 1. Taylor is best known for his work on turbulence. When asked, however, 
what gave him maximum snrisfncrion, Taylor singled out his work on the stability of 
coucttc flow. 

Professor George Batchelor, who has encountered many great physicists at 
Cambridge, dcscribed G. 1. Taylor as one of the greatest physicists of the century. He 
combined a remarkable capacity for analytical thought with physical insight by which 
he knew “how things worked.” He loved to conduct simple experiments, not to gather 
data to understand a phenomenon, but to demonstrate his theoretical calculations; in 
most cases he already knew what the experiment would show. Professor Batchelor 
has stated that Taylor was a thoroughly lovable man who did not suffer from the 
maladjustment and self-concern that many or today’s institutional scientists seem to 
suffer (because of pressure!), and this allowed his creative energy to be used to the 
fullcst extent. 

Hc thought of himself as an amateur, and worked for pleasure alone. He did not 
take up a regular faculty position at Cambridge, had no teaching responsibilities, and 
did no1 visit another institution to pursue his research. He never had a secretary or 
applied for a research grant; the only facility he needed was a one-mom laboratory 
and one technical assistant. He did not “keep up with the literature:’ tended to take up 
problcins that were entirely new, and chose to work alone. Tnstead of mastering tensor 
notation, electronics, or numerical computations, G. I. Taylor chose to do things his 
own way, and did them better than anybody else. 

Supplemental Reading 
Batchelor, G. K. (1976). “Gcoffey Ingram Taylor, 1886- 1975.” Biographical Memoirs of Fellows qfthe 

Bdtchclor, G. K. (1986). “GeoMicy lngram Taylor, 7 Much 1886-27 June 1975.” Journal of Fluid 

Oswatitsch, K.  and K. Wicghardt (1987). “Ludwig Prandtl and his I(iri~-Wilhelm-Tnstitute:’ Annual 

Von Karman, T. (1954). Aedjnaniics. New York: McGmw-Hill. 

Royal Society 2 2  565633. 
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Review <$Fluid Mechanics 1Y 1-25. 
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Ackeret, Jacob, 663,702 
Acoustic waves, 665 
Adiabatic dcnsity gradient, 541,557 
Adiabatic process, 17 
Adiabatic temperalum gradient, 19,541,557 
Advection, 53 
Advective dcrivative, 53 
Aerodynamics 

aimaft parts and contmls, 630-633 
airfoil Iorccs, 633635 
&€oil geomehy, 633 
c o n f d  transformation, 638-642 
defined, 629 
finite wing span, 645446 
gas, 629 
generation or circulation, 636-638 
incompmsible. 629 
Kutta condition, 635-636 
lift and drag chmlcristics, 653-655 
h n d r l  and Lancheslcr lifting line 

propulsive mechanisms of fish and birds, 

sailing, 656-658 
Zhukhovsky &oil lift, 642-645 

Air, physical properties of, 708 
h a f t ,  ParLf and conhnls, 630-633 
Airfoil(s) 

anglc of attacklincidcnce, 633 
camber h e ,  633 
chord, 633 
compression si&, 635 
c o n r o d  mansformation, 638-642 
h g ,  inducedhrortcx, 646,649450 
finitc span, 645-646 
forces, 633-635 
geometry, 633 
lift and drag characteristics, 653-655 
skill, 644,653 
suction side, 635 
supersonic flow, 702-704 
thin airfoil hory, 638 
Zhukhovsky airfoil I ik  642-645 

theory, 646-651 

655-656 

AI tcrnating tensors, 35-36 
Analytic function, 153 
Angle of attackhcidcncc, 633,648 

Angular momentum principle/theorcm, for 

Antisymmclric tenm, 38-39 
A s p ?  ratio of wing, 631 
Asymptotic expansion, 361-363 
Atmosphcrc 

properties of standard, 709 
scale height or, 21 

aperiodic: 490 
dissiptllivc systems and, 186-488 
fixed point, 486 
timil cycle, 486 
strangc, 48WYO 

Autocombion function, 502 
normalized, 503 
of a stationary process, 503 

Avcrtlges, 499-502 
hisymmetric irrotational flow, 181-187 

fixed volume, 92-93 

Atlractors 

Babuska-Brezzi stability condition. 404 
Baroclinic flow, 132-133 
Bamclinic instability, 615-623 
Bmlinidintemal mode, 240,584 
Barotropic flow, 1 1 1 ,  13 I, 132 
Bama~pic instability, 61 3-614 
Barou’opidsurFacc mode, 239-240.584 
Baseball dynamics, 350 
Bknarcl, H., 345 

convection, 433 
thermal instability, 432-443 

Rcmoulli equation. 1 10-1 14 
applications of, 114-1 17 
cncrgy, 1 14 
onc-dimensional, 66%670 
steady llow, 112-1 I3 
unsteady irrotational flow, 1 13-1 14 
B-pltlnc model, 564 

Bifurcation, 487 
Bids, flight of. 656 
Blasius solution, boundary layer, 32%329 
Blasiulr thcwem, 166-167 
Blocking, in stratified flow, 24.8 
Body forces, 83 
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Body of xvolution 
flow moundarhiuary, 188-189 
flow around streamlined, 187-1 88 

Boundarycanditions, 121-122.619 
geophysical fluids, 582 
atinfinjty, 151 
kinematic, 200 
on solid surface, 15 I 

approximation. 3 13-31 8 
Ulasius solution, 323-329 
breakdown of laminar wlution, 330-332 
closed form solution, 321-323 
caicept, 3 1 2-3 1 3 
decay of laminar shcar laycr: 37 1-374 
displacement thickncss, 3 19-320 
drag coefficient, 328-329 
dynamics or spow halls, 347-350 
clTwt orpressure gradient, 335-336, 

477478 
FalknerSkan solution, 329-330 
flat plate and, 321-329 
flow past a circular cylinder. 339-345 
flow past a sphcrc, 346 
instability, 480-482 
Kwman momcnlum integral, 332-335 
momentum thickness, 320-321 
perturbation tcchniques, 359-37 1 

separation, 336-339 
simplification of equations, 313-318 
skin friction coellicient, 328-329 
technique, 2, 149 
transition to turhulence, 337-338 
twdimcnsional jets, 350-358 
u = 0.99U thickness, 31 8-319 

Round vortices, 64748 
Boussinesq approximation, 69.81, 108-109 

continuity cquation and, 118-119 
geophysical fluid and, 559-561 
hcal cquation and, 119-1 21 
momcnlum equation and, I 19 

Brunt-ViisiilB frequency, 243-244 
Buckingham's pi theorcm 262-264 
RulTcr layer, 533 
Bulk strain ri?tc, 57 
Bulk viscxity, m l c i e n t  of. 96 
Buoyancy tkeyucncy, 243.559 
Buoyant producljon, 516517,542 
Bursting in iirbulenr flow, 540 

Boundary layer 

secondary flows, 358-359 

Capillariv, 9 
Capillary waves, 213, 216 
Cascadc. cnsmphy, 624 
Cauchy-Riemann conditions, 150,153 
Cauchy's cyuation of motion, 87 
Ccnuihgal forcc, cl-fcct of, 102-103 

Centrifugal inrttihility ('llylor), 448453 
Cambcr linc, d o i l ,  633 
Chaos. deterministic, 485493 
Characteristics, method of, 226 
Chord, airfoil, 633 
Circular cylinder 

flow a1 various Rc, 339-345 
fow past boundary laycr, 339-345 
flow past, with circulation, 163-166 
flow past, without circulation, 1 6 0 - 1  63 

Circular Couctte flow, 279 
Circular Poiseuille flow, 277-279 
Circulation. 58-60 

Kelvin's theorem, 130-134 
Clausius-hhem inequality, 96 
Cnoidal waves, 23 1 
Cmllicient of hulk viscosity, 96 
Cohcrcnt rtrwturcs, wall layer, 539-540 
Comma notation, 4647,136 
Complex potential, 153 
Complex variables, 152-154 
Complex velocity, 154 
Cmpressihlc flow 

classification of, 663664 
friction and heating effects, 690-694 
internal vmus cxtemal: 661 
Mach cone. 694495 
Mach number, 662-663 
one-dimensional, 667471,676479 
shock waves, normal, 680-685 
shock waves, obliquc, 696-700 
spced of sound, fi65-667 
stagnation and sonic properties, 671475 
supersonic, 700-704 

Compmrriiblc medium, static cquilibrium of, 
17-1 x 

potential tcmperahm and density, 19-21 
scalc height of atmosphcrc, 21 

Compression wavcs, 194 
Computational fluid dynamics (CF'D) 

advantiigcs of, 379-380 
conclusions, 424427 
defined, 378 
cxamples of, 406424 
finitc dill-cmnce method, 38S38.5 
finite elcmcnt method, 385-393 
incornprcssiihlc viscous fluid tlow, 

393-4(K, 
sources of error, 379 

279-282 
Concentric cylinders. laminar flow hetween, 

Conformal mapping. 171-173 
application to airfoil, 638-642 
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Conscrvdon laws 
Bernoulli quation, 110-1 I7 
boundary wnditions, 121-122 
Boussinesq approximlion, 117-121 
di lkrcntial form, 76 
integral form, 76-77 
or mass, 79-81 
mechanical energy equation, 104-107 
of momentum, 86-88 
Navicr-Stokes equation, 97-99 
rotating frame. 99-1 04 
thcrmal cnergy equation, 108-109 
time duivatives of volume intcgals, 

77-79 
Conscrvative body fonus, 83,132 
Consistency, 382-385 
Constitutive equation, for Ncwtonian fluid, 

Continuity equation, 69-70,79,81 
Boussinesq approximation and, 118-1 19 
onedimensional, 668 

Continuum hypothesis, 4-5 
Control surfaces, 77 
Control volume, 77 
Convcction, 53 

94-97 

-dominated pmblcms, 3-396 
forccct 543 
free, 543 
sloping, 622 

Convergencc, 382-385 
Conversion hclors, 707 
Coriolis force, e f k t  of, 103-104 
Coriolis frequency, 563 
Coriolis parameter, 563 
Corrchtions and spcch, 50Z.506 
COUctk flow 

circular, 279 
plane, 276,477 

Crccping flow, mund a sphere, 2W-302 
CreCping molions, 296 
Crickct ball dynamics, 347-349 
Critical layers, 474-475 
Critical Re for transition 

over ~ k u l a r  cylindcr, 342-344 
over flat plate, 330-332 
over sphcrc, 346 

Cross-correlation huction, 506 
cms product, vcctor, 36-37 
Curl, vector, 37 
Curvilinear coordinates, 710-714 

ISAlcmhert’s p d o x ,  162, 170 
D’Alcmbert’s solution, 195 
Dead water phcnomenon, 237 
Decay of laminar shear laycr, 371-374 
Defect law! velocity, 531 
Deflection angle, 696 

Deformlion 
or fluid elements, 105-106 
Rossby radius of, 594 

D c p  of kedom, 486 
Delta wings, 655 
Density 

adiabdc density gradient, 541,557 
pokntial, 1%21 
stagnation: 672 

advcctive, 53 
Derivatives 

mterial, 52-S3 
particle, 53 
substantial, 53 
time dcrivatives of volumc integrals, 

77-79 
Deviatoric stress tensor, W 
Diffcrcntial equations, nondimensional 

parameters dctcrmined from, 
257-260 

Diffuser flow. 67-78 
Diffusion or vorticity 

from impulsively stiirtcd plate, 282-288 
from line vortex, 290-292 
rm vortex sheet, 289-290 

eddy, 537-538 
effective, 55 1-552 
heat, 273 
rnorncntum, 273 
thcrmal, 109, 120 
vorticity, 132,28!L292 

Dimcnsional homogcneity. 261 
Dimcnsional mtrix, 261-262 
Dipole. See Doublet 
Dirichlct problem, 176 
Discdzation errur, 379 

Dispersion 

Dihsivity 

of transport equation, 381-382 

01 pa~ticlcs, 547-549 
dation, 203,605-606,61(M13 
Taylor’s Ihcory, 546-552 

Dispersive wave, 203,221-225,248-250 
Displaccment thickness, 3 19-320 
Dissipation 

of mean kinetic encrgy, 51 3 
of tempmture fluctuation, 545 
of turbulent kin& energy, 5 17 
viscous, 105-106 

Hux, 104-105 
tensor, 37 
thetmm, 43.80 
vector, 37 

Doppler shift orhquency, 199 
Dot product, vector. 36 
Doubled.iKusive instability, 444-448 

Divergence 
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Doublct 
ir. axisymrnehic now. 186 
ir. plane flow. 157-159 

Downwash, 64-Y 
Drag 

characteristics for airfoils, 653-655 
on circular cylinder, 344 
coefficient, 264,328-329 
on flat plate, 328-329 
force, 633-635 
form, 338,654 
ir.duced/vortex. f146.649450 
pssire, 634.654 
pinfi le, 654 
skin friction, 328-329,634,654 
011 sphm, 346 
wave, 267-268,64Y, 7 W  

Dynamic prcssure, 115,273-274 
Dynamic similarity 

nondimcnsional pariimctcn and, 

mle of. 256-257 
3-64-266 

Dynamic viscosity, 7 

Eddy dittusivity, 537-539 
Eddy viscosily, 536-539 
ElTcctivc gravity h c c ,  102 
Eipnvalucs and cigcnvcctors ol symmctric 

tcnwrs, 4042 
Hinstcir summation convention, 27 

a1 l i ~  surhcc, 569-574 
on rigid surfxc, 574-577 
tickncss, 571 

Ekman number, 568 
Ekman spiral, 571-572 
Rkman transport at a free surfacc, 572 
Elastic waves, 194,665 
Elemen: point of view, 390-393 
Elliptic circulation, 651453 
Elliptic cylinder, ideal now. 173-174 
Elliptic equation, 151 
Energy 

Ekman hycI 

hamclinic instability, 62 1-623 
Bernoulli equation, I14 
spectrum, 505 

integral form, 76-77 
mechanical, 104-107 
one-dimensional, 668-669 
ttarmal, 108-IW 

gr-oup velocity and, 218-221 
ir, internal gravity wavc, 250-253 
in surrace gravity wave. 209 

Energy cquation 

Energy flux 

Enscmblc avcriigc, 500-501 
Ensmphy, 623 

Ensaophy cascade, 624 
Enthalpy 

dclincd, 13 
stagnation, 67 I 

in laminar jet, 35 1 
lurbulcnt, 524 

dchcCt, 14 
production, 109-1 10 

Enhinmcnt 

Entropy 

Epsilon dclta rclation, 36,99 
Equations or motion 

averagcd, 506-5 12 
Boussinesq, 119,55%560 
Cauchy’s. 87 
for Newtonian fluid, 94-97 
in rotating frame, 99-1 04 
for stratified mcdium, 559-561 
for thin layer on rotating sphere, 

562-564 
Equations of state, 13 

Bquilihrium rang, 521 
Equipartition of energy, 208 
Equivalent depth, 586 
Fuler equation, 98: 11 I, 3 17 

onc-dimcwional, 669670 
Rulcrian spcciliwlions, 51-52 
Exchangc ol stabilities, principlc ol, 432 
Expansion cocfidcnt, t h c r d ,  15-16, 17 

for perfect gas, I6 

Faher ,  V. W., 329 
FalknerSkan solution, 329-330 
Fick’s law of mass diffusion. 6 
Finitc difkxcncc method, 380-385,388-3W 
Finitc clcmcnt mclhod 

element point of view. 390-393 
Galerkin’s appmximation, 386-388 
matrix equations, 3813W 
wcak or variational l-orm, 385-386 

thermal cnergy quation and, 108-109 
First law of thermodynamics, 12-13 

Fish, locomotion of, 655-656 
Fixed point, 486 
Fixed region, mechanical cncrgy cqwtion and, 

107 
Fixed volume, 78 

angular momentum principlc ror, Y2-93 
momcntum principlc for, 88-90 

Fjortoft’s Ihcorem, 472474 
Flat plate, boundary layer and 

Blasius solution, 323-329 
closed form solution, 321-323 
drag coefficient, 328-329 

Fluid mechanics, applications, 1-2 
Fluid sltllics, 9-12 
Flux divcrgcncc, 104-105 
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Flux or vorticity, 60 
Force field, 83 
Fonx: potcntial, 83 
FOl.CeS 

confiervative body, 83,132 
Coriolis, 103-104 
on a surface, 32-35 

Forces in Ruid 

line, 84 
origin of, 8284  
surface, 83 

M Y ,  83 

Form drag, 338,654 
Fouriw’s law o€ h a t  conduction, 6 
Lplanc rnodcl, 564 
Frequency, HUVC 

circular or radian, 197 
Doppler shifted, 199 
intrinsic, 198 
observed, 198 

Friction, effects in constant-area duck, 
690-694 

Friction drag, 328-32Y. 634.654 
Froudc number, 227,25Y, 268 

internal, 26U-26Y 
Fully developed Row, 274 
Fuselage, 630 

Galerkin las t  squarcs (GLS). 405 
Galerkin’s approximation, 386-388 
Gas constant 

dcfincd, 16-1.7 
universal, 16 

Gas dynamics, 629 
See also Compressible Row 

Gases: 3 4  
Gauge €unclions, 360-361 
Gauge prcssurc, dcfincd, Y 
Gauss’ theorem, 4245,77 
Geophysical fluid dynamics 

approximalc qualions for lhin layer on 
rotating sphcrc, 562-564 

background information, 555-557 
baroclinic instability, 615-623 
barotropic instability, 61 3-614 
Ekman Iayycr at frce surface, 569-574 
Elanan laycr on rigid surface, 574-577 
equations of motion, 55%561 
geostrophic flow, 564-569 
gmvity waves with rotation, 988-591 
Kclvin waves, 59 1-595 
nonnal modes in continuous stratifid 

Rossby waves, 608-6 1 3 
shallow-water equations, 577-579, 

vertical variations of density, 557-559 

layer, 579-586 

586-587 

vorticity conmalion in shallow-water 
theory, 595-598 

Geostruphic bdmcc, 565 
Geostrophic flow, 564-569 
Geostrophic turbulence, 623-1526 
Glauert, M. B., 355 
Glowinski schcmc, 403404 
Giirtler voniccs, 453 
Gradient operator, 37 
Gravity force, effective, 102 
Gravity waves 

deep wafer, 210-21 1 
at density interface, 234-237 
dispersion, 203,221-225,248-250 
energy issucs, 250-253 
equation, 194-1 95 
finite amplitude, 230-232 
in finite layer, 238-240 
p u p  velocity and eneqg flux, 218-221 
hydraulic jump, 227-229 
internal, 245-248 
motion equations, 242-245 
nonlinear steepening, 225-227 
parameters, 196-199 
refraction, 212-213 
with rotation, 588-591 
shallow water, 21 I-213,240-242 
standing, 216-218 

in stratified fluid, 248-250 
surface, 203-209 
surface tension, 213-216 

concept, 209,218-227 
of decp water wave, 210-211 
energy Bux and, 21U-221 
Rossby waves, 61 1-612 
wave dispersion and, 221-225 

Stokes' drill, 232-234 

Group velocity 

Half-body, flow past a, 159-160 
Hardy, G. H., 2 
Harmonic function, 151 
Heat diflusion, 273 
Heat equation. 108-109 

Heat flux, turbulent, 512 
Heating, cKccts in constant-anxi ducts, 

6904% 
Hclc-Shaw flow, 306-308 
Hclmholtz vortex thcorcms, 134 
Htdogaph plot, 57 I 
Homogcncous turbulent flow, 502 
Howad‘s semicircle theorcm, 465-467 
Hupniot, Pierre Henry, 681 

Boussincsq equation and, 119-121 
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Hydraulic jmnp, 227-229 
Hydroskilics, I 1  
Hydrostatic waves, 21 2 
Hypcrwnic flow, 664 

Images, method of, 143,170-1 71 
Incomprcssihle aerodynamics. See 

Acrodynanics 
Tncompressihle fluids, 81,96 
Incompressible viscous fluid flow, 393 

convection-dominated problems. 

Glowinski scheme, 403-404 
incompressibility condition, 396 
MAC scheme. 396400 
ITLXC~ finik clcmcnt, 404-406 
SIhIFL.E>typ formulations, 400-403 

cocficicnt, 652 

394-396 

Induccdivorlcx drag, 646,640-650 

lncrua fotrcs, 296 
Inertial circles, 591 
Inertial motion, 590-591 
Incrlial pcriod, 563,591 
lncrlial sublaycr, 532-534 
~ncrlid subranbw, 520-522 
Inflection point criterion, Kayleigh, 472,613 
inf-sup condition, 404 
Initial and houndaqf condition mor, 379 
lnncr Lycr, law ol thc wall; 529-53 1 
Input daxi ermr, 379 
Instahility 

hackground inl'ormation; 430-431 
htlroclinic, 615423 
hamtmpic, 6 13-6 14 

ccnlrirugal (Taylor), 4411-453 
of coctinuously stratifid pmllcl flows, 

dcshbilizing clTwt or viscosity. 478480 
dcuhlc-diflusivc, 444-448 
inviscid stability of parallel Hows, 

Kclvin-Hclmholtx insltibility, 45346 1 
marginal vcrsus neutral state, 432 
rnethcd of normal modcs, 43 1-432 
mixing layer. 475-476 
ncnlinear effects, 482483 
Orr-Somrncrlcld cquation, 470-471 
oscillamry mode, 432,447448 
pipc flow, 477 
plane Couette Row, 477 
planc Poiscuillc Ilow. 476-477 
principle of exchange of stabilitics, 432 
results of p d l c l  viscous Ilows, 

475480 
sal1 linbwr, 444-447 

bcundary ldYCr. 477478,480482 

46147 

47 1-475 

sausagc inrhbility, 4Y4 
secondary, 483 
sinuous mode, 494 
Squire's theorem, 461,467,469-470 
thcrmal (Btnard), 43243 

Inlcgriil timc walc, 504 
Intermittency, 522-524 
Internal energy, 12,108-1O!J 
Internal Vroudc uurnbcr, 268-269 
Jntcmel gravity waves, I W 

See also Gravity waves 
energy flux, 250-253 
ai iulcrlacc, 234-237 
in slralificd fluid, 245-253 
in s~atificd fluid with rotation. 598-608 
WKB solution. 60-603 

Internal Kosshy radius or dcrormtllion, 5W 
Intrinsic frequency, 198,607 
Inversion, atmospheric, 19 
Inviscid stability of parallel flows, 471475 
htational fow, 59 

application of complex variables, 
152-1 54 

mund body ofrevolution, IX7-IX9 
axisymmetric, 1x1-187 
conformal mapping, 171-173 
douhlet/dipole. 157-159 
forces on two-dimensional body, 

i m p ,  mclhod or, 143, 170-171 
numcrical zolulion orplanc, 1761 81 
ovcr elliplic cylinder, 173-174 
past circular cyliodcr wih circulation, 

past circular cylinder withoui 

past half-body, 159-160 
relevance of, 148-150 
sources and sinks, 156 
uniqueness of, 175-176 
unsteady. 113-1 14 
veltrily potential and Laplace equation, 

1sn-152 
at wall angle, 154-156 

Irmtational vector, 38 
Irrotational vorlcx, -7,127-130. 157 
Isentropic flow, onLcdimmsiona1, 676-679 
Isentropic pmcess, 17 
Isotmpic tensors, 35,04 
Isotropic turbulence, 5W 
Ilcration method, 176181 

166-170 

163-166 

circulation, 160-163 

Jets, two-dimensional laminar, 350-358 

Karman. See under von Kaman 
Kclvin-Hclmhollz instability, 453461 
Kclvin's circulation theorem, 130-134 
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Kelvin waves 
CXtml: 591-594 
inkmal, 594-595 

dcfincd, 50 
Lagrangh and Ed& specifications, 

linear strain rate, 56-57 
material derivative, 52-53 
one, two-, and h d i m e n s i o n a l  flows, 

68-69 
parallcl shcw flows and, 63-64 
path lincs, 55-56 
polar coordinates, 72-73 
reference frames and strmnline patlem, 

relative motion near a point, 60-63 
shear strain rate, 58 
streak lines, 56 
sham function, 6%71 
streamlines, 53-55 
viscosity, 7 
vortcx flows d, 65-68 
vorti~+ty and ckulation, 58-60 

ofmeanflow,512-514 
of turbulent flow, 5 14-5 1 7 

microscale, 520 
spectriil law, 266,520-522 

K o m e g 4 V r i c s  cquation, 231 
Kronecker delta, 35-36 
Kutta, Wilhclm, 165,636 
Kutta condilion, 635436 
Kuna-Zhukhovlrky lift theorem, 165,168-170, 

Kinematics 

51-52 

56 

Kinetic energy 

KohObprOV, A. N., 499 

635 

Lagrangian spccifications, 51-52 
Iamb, H o m ~ q  1 13 
Lamb surfaces, 113 
Laminar boundary laycr cquations, 

Laminar flow 
Fdher-Skan solution, 32%330 

creeping flow, around a sphere, 297-302 
defined, 272 
diffusion of vortex sheet, 289-290 
HelAhaw, 306-308 
high and low Reynolds number flows, 

oscillaling plate, 292-295 
pressurn chaye, 273-274 
similarity solutions, 282-288 
slcady flow between concentric 

cylinders, 279-282 
skady fiow between parallel plates, 

274-277 
skady flow in a pipc, 277-279 

295-297 

Laminar jet, 350-358 
Laminar shear layer, decay or, 371-374 
Laminar solution, breakdown or, 330-332 
Lanchester, Frederick, 636 

Laplace equation, 150 

Laplace trzmdorm, 288 
Law of the wall, 529-53 1 
Lee wavc, 606408 
Jxibniz theorem, 77,78 
Lift force, airfoil, 63.3-635 

lifting line theory, 646-1551 

numerical solution, 176-1 81 

characteristics ror air€oils, 653-655 
zhukhovsky, 642-645 

Lifting line theory 
Randtl and Lanchcster, 646651 
results for clliptic circulation, 651-653 

Lift theorcm. Kutki-Zhukhovslq 165, 
168-170.635 

Limit cyclc, 486 
lincar strain rate, 56-58 
Line forces, 84 
Line vortex, 126,29&292 
Liquids, 3 4  
Logarithmic law, 53 1-534 
Jmng-wave approximation. See Shallow-water 

Lorew- E. 
approximation 

modcl of thermal convulion, 488489 
strange attractor, 48M90  

Mach, Emst, 663 
angle, 694 
cone, 694-695 
linc, 694 
number, 227,270,662-663 

MAC (marker-and-cell) scheme, 396-400 
Magnus effect, 166 
Marginal statc, 432 
Mass, conservation of, 79-81 
Mass transport velocity, 234 
Matcrid derivative, 52-53 
Material volume, 78-79 
Mathematical ordcr, physical d c r  of 

Matrices 
magnitudc vcrsus, 361 

dimensional, 261-262 
multiplication of, 28-29 
rank or, 261-262 
Iranspose of, 25 

Matrix cquations, 388-390 
Mean continuity equation, 507 
'Ucan heat equation, 511-512 
Mean momentum equation, 507-508 
Measurement, units of SI, 2-3 

conversion factors, 707 
Mcchanical energy cquation, 104-107 
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.Mixed h i t e  element, 404-406 
Mixing layer, 475476 
Mixing length, 536-539 
Modeling error, 379 
Modcl tcsling, 266268 
Momentum 

conservation of, 86-88 
diffusivity. 273 
thickness, 320-321 

Momcnlum quation, Roussincsq equation 

Momcnium integral, von Karman, 332-335 
Momenlxm principle, for contml volume, 

Momcn:.um principle, for fixed volume, 88-91 

Mooin-Obukhov Icnglh, 543 

and, 1 19 

6 7 W 7  I 

an@~lar. 92-93 

Narrow-gap approximation, 451 
NavierStok-s equation, 974.258 

convcction-dominated problems, 

incompressibility condition, 3% 
394-396 

Neumann problcm, I76 
Ncuval state, 432 
Newtonian fluid, Y4-97 

non-, 97 
Ncwlon’s law 

of friction, 7 
of motion, 86 

dckrmined from ditterential equations, 

d:mamic similarity and, 264-266 
dgnilicwce of, 268-270 

Nondimcnsionul parameters 

257-260 

Non-Newtonian fluid, 97 
Nonuniform cxpwsion, 363-364 

hionuniformity 
ut low Kcynolds number, 364 

See also Boundary layers 
high and low Kcynolds number flows, 

Oaeen’s equation, 303-306 
rcgion of, 364 
of Stokes’ solution, 302-306 

Nonrotating liamc, vorticity equation in, 

h’ormal:zed autucorrclation hnction. 503 
Kormal modcs 

295-297 

134-136 

i n  continuous shatificd Iaycr, 579-586 
instability, 431432 
for uriform N, 583-586 

Normal shock waves, 680485 
h’ormal strain rate, 56-58 
K(~s1ip condition, 272 
Nozxlc Ilow, compressiblc, 676479,685690 

Numerical solution 
Laplace equation, 176-181 
of plane flow, 1 76-1 8 1 

Obliquc shock waves, 696-700 
Observed frequency, 607 
One-dimensional approximation, 68 
Onc-dimensional flow 

arcdvclwity rchtions, 676-679 
equations for, 667471 

Order, mathematical versus physical order of 

Ordinary differential equations (ODES), 389 
Orifice flow, 115-1 17 
o r r s o ~ c r r c i d  quation, 470471 
Oscillating plate, flow due to, 292-295 
Oscillatory mode, 432,447-448 
Osccn’s approximation, 303-306 
Oseen’s equation, 303 
Outcr hycr, vclmity ddwt law, 53 1 
Overlap layer, logarithmic law, 531-534 

magnitude, 361 

wrallcl flows 
instability of continuously stmilied, 

inviscid sVdbility of. 471475 
results of viscous, 475480 

461467 

Parallel plates, stcady flow bctwccn, 274-277 
Parallel shear Rows, 63-64 
P h c l c  dcrivativc, 53 
particle orbit, 58%590,603-605 
Pascal’s law, 11 
Path functions, 13 
Path lines, 55-56 
Pcrfcct dilTcrcntial, 175 
PerfeLT gas, 16-17 
Pcrmutation symbol. 35 
Perturbation pmsure, 204 
Perturbation kchniqucs, 359 

asymptotic expansion, 361-363 
nonuniform cxpansion, 363-364 
order symboldgauge functions, 360-361 
rcgular, 364-366 
singular, 366-37 1 

Pcrturbation vorticity equation, 61 6-61 8 
Petrov-Calerkin methods, 387 
Phasc propagation, 61 2 
Phase space, 486 
Phcnomcnological laws, 6 
Physical ordcr of magnitude, mlhematical 

Pipe, steady laminar flow in a, 277-279 
Pipc flow, instability and, 477 
Pitch axis of aircral‘l, 63 1 
Pi lheorem, Ruckinghdm’s, 262-264 
Pitot tuhc, 114-115 

VCTSLLS, 361 
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Plane Couette flow, 276,477 
Plane irrotational flow, 176-181 
Plane jet 

self-preservation, 525-526 
turbulent kinetic energy, 526-528 

Plane Poiseuille flow, 276-277 
instability of, 47-77 

Planetary vorticity, 138,140,563 
Planetary waves. See Rossby waves 
Plastic statc, 4 
Poincd, &mi, 492 
P o i n d  wavcs, 588 
Point or inflection criterion, 336 
Poiscuillc flow 

circular, 277-279 
instability of, 476477 
plane laminar, 276-277 

cylindrical, 710-71 1 
plane, 712 

Pokntial, complex, 153 
Pokntial density gradient, 21,541 
Potential energy 

Polar coordinates, 72-73 

Sphericd. 712-714 

baroclinic instability, 621-623 
mcchnicd energy equation and, 

106-1 07 
of surface gravity wave, 208 

Potential flow. See Irrotational flow 
Pokntid temperature and density, 19-21 
Pokntial vorticity, 597 
F’randtl, Ludwig, 2,313 

biographical inkmuation, 715-716 
mixing lcngth, 536-539 
Prandtl iind Lanchester lifting line 

theory, 646-65 I 
Prdndu-Meyer expansion ran, 700-702 
Prandtl number, 270 

turbulent, 542 
Prcssure 

absolute, 9 
coefficient, 160,260 
dcfined, 5,9 
drag, 634,654 
dynamic, 1 15,27.3-274 
gauge, 9 
stagnation, I t 5  
wavcs, 194 

Prcssure gradient 
boundary layer and effect ol; 335-336, 

constant, 275 
hssurc  wave, 665 
Principal axes, 40,6M3,64 
Principle or exchange of stabilities, 432 
Profile drag, 654 
hudmtm theorem, Taylor-, 567-569 

477478 

Quasi-geostrophic motion, 60%610 
Quasi-periodic rcgimc, 492 

Random walk, 549-550 
Riinkine. W.J.M., 681 

Rankine-Hugoniot relations, 681 
Rayleigh 

v&, 67-68 

equation, 471 
inflection point critcrion, 472.613 
inviscid criterion, 44-9 
number, 433 

Reduced gravity, 241 
Reducible circuit, 175 
Refraction, shallow-watcr wave, 212-213 
Regular perturbation, 364-366 
Rclative vorticity, 596 
Rclaxation time, molecular, 12 
Renormalization group theories, 539 
Revmiblc processes, I 3  
Reynolds, O., 4Y8 
Reynolds d o g y ,  543 

decomposition, 506-507 
experiment on Rows, 272 
similarity, 526 
stress, 508-51 1 
transport theorem, 79 

high and low flows, 295-297: 339, 
Rcynolds number, 149,259,268,339 

342-345 
Rhincs Icngth, 625-626 
Richardson, L. E, 499 
Richardson number. 269,541-543 

criterion, 464465 
flux, 542 
gradient, 269,465,542 

Rigid lid approximation, 5114-586 
Ripples, 216 
Roll axis of aircraft, 631 
Root-mean-squarc (rms). 502 
Rossby number, 565 
Rossby radius of deformation, 594 
Rossby waves, 608-613 
Rotating cylinder 

flow inside, 281-282 
flow outside., 28&281 

vorticity equation in, 136-140 
Rotating frame, 99-1 W 

Rotation, gravity wavcs with, 588-591 
Rotation tensor. 6 I 
Rough surface turbulcnce, 534 
Runge-Kutta techniquc, 326,389 

Sailing, 656-658 
Salinity, 20 
Salt finger inskbility, 444-447 
Scalars, defined, 24 
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Scale height, atmosphere, 21 
Schlieren method, 663 
Schwartz inequality, 503 
Secondary news, 358-359.453 
Secondary instability, 483 
Second law ofthermodynamics. 14-15 

entmpy production and, 109-1 10 
Sccond-order 1cn:nsOt-s. 2%31 
Scicbc. 21 7 
Sclf-prcscrvaiion, tuhulcocc and, 524-526 
Separation, 336-339 
Shallow-water approximation, 240-242 
Shallow-wakr equations, 577-579 

Shallow-water theory! vorticity conservation 

Shear flow 

high and low frcqucncics, 586-587 

in, 595-598 

wall-bounded, 528-536 
W a l l - h ,  522-528 

Shcar pmdu-tion of turbulence, 514: 517, 

Shear strain rate, 55 
Shock angle, 696 
Shock waves 

5 17-520 

normel, 680-685 
obliqw, 696-700 
stnrcturc of, 684-685 

SI (bysthe international d’unih5s). units or 
mcasuremcnt, 2-3 

conversion Eactors, 707 

See also Dynamic similarity 
pomc!Ac, 258 
kinematic, 258 

ror bomdary layer, 32.3-330 
dccay or linc vortcx, 290-292 
diirusion ol vo*x sheel 289-290 
for impulsivcly starlcd pkc ,  282-288 
[or Iarninarjet, 350-358 

SIMPLER hrmulaiion, 406414 
SIMPLE-type formulations, 4OO-403 
Singly connected region, 175 
Singuluiiies, 153 
Singular pxturbalion, 36371,477 
Skan, S. W., 329 
Skin frictioc cocficicnl, 328-329 
Sloping ccnvwtion, 622 
Solenoidal vector, 38 
Solid-body rotation, 65-66, 127 
Solids, 3-4 
Soliujns, 231-232 
Sonic condilionr, 672 
Sonic properties, comprcssiblc flow, 671-675 
Sound 

Similarity 

Similarity solution, 257 

speed of, 15, 17,665-667 
waves, 665-667 

Source-sink 
axisymmetric, I86 
near a wall, 17&171 
plane, 156 

Spatial distribution, 10 
Specific heats. 13-14 
Spectrum 

cncrgy, 505 
as function of frequency, 505 
as function of wavenumber, 505 
in incrtial subrange. 520-522 
temperature fluctuations, 544-546 

creeping flow around, 297-302 
flow around, 186-187 
flow at various Re, 3 4  
Oscen’s approximation, 30.3-306 
Stokcs’ crccping flow around, 2Y7-302 

Sphere 

Sports balls, dynamics or, 347-350 
Squirc’rr thcorcm, 461,467,469470 
Stability, 382-385 

Stagnation density, 672 
Skignation flow, 155 
Stagnation points, 150 
Stagnation pmperties, compressi hle flow, 

Stagnation prcssure, 115.671 
Stagnation temperature, 671 
Standard deviation, 502 
Standing waves, 216-21 8 
Skirting vorkx, 637-638 
Stalc functions 13, 15 

surhcc tension, 8-Y 
Stationary turbulent flow, 502 
Statistics of a variable, 502 

See af.w Instability 

671-675 

sleady Row 
Bernoulli cquation and, 1 12-1 13 
bctwccn wnccnlric cylinrlcn, 279-282 
between parallel plates, 274-277 
in a pipe, 277-279 

Stokcs’ assumplion, 96 
Stokcs’ creeping flow around spheres, 297-302 

Stokes’ first pmblcm, 282 
Stokes’ law of rcsismcc, 265,300 
Stokes’ second problem, 2Y3 
Stokes’ stream runclion, 184 
Stokes’ Iheomm, 4 5 4 ,  60 
Stokes’ waves, 230-23 1 
Strain rate. 

Stokes' drik 232-234 

linearhormal, 56-57 
shear. 58 
tensor, 58 

!kUlbW WtOI’S, 4894Y0 
Stratificd Iaycr, normal modes in continuous, 

579-586 
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Stratified turbulence, 540-546 

Stratosphcrc, 557-558 
Streak lincs; 56,540 
Streamhnction 

SLIatopausc, 558 

gcncrdized, 81-82 
in axisymmclric flow, 184-185 
in planc flow, 69-71 
Stokcs, 184 

Strcamlincs, 53-55 
Strcss, at a point, 84-86 
Strcss tcnsor 

dcviatoric, 94 
normal or shcar, 84 
Reynolds, 5W 
symmetric, 84-86 

Strouhal numbw, 341 
Sturm-I,iouville form, 581 
Suhcritical gravity flow, 227 
Suhhmonic cawadc, 490492 
Sublaycr 

hcrlid, 532-534 
streaks, 540 
viscous, 530-531 

inertial, 520-522 
viscous convective, 545 

Subsonic tlow, 270.663 
Substanlid derivative, 53 
Supcrcnlial gravity tlow, 227 
Supcrsonic flow, 270,664 

~ h f i  theory, 702-704 
cxpansion and comprcssion, 700-702 

Subrange 

Surhce forces, 83.86 
Surracc gravity waves, 194, 199-203 

See also Gravity waves 
in  deep water, 210-21 1 

in shallow water, 21 1-213 
rcatures of, 203-209 

S t d x c  tension, 8 
Svcrdrup waves, 588 
Sweepback angle, 631,655 
Symmetric knsm: 38-39 

eigenvalucs and cigenvectors or, 4042 

Taylor, G. 1.. 498 
hiopphical information. 71 6-717 
ccntrifugal instability, 448-453 
column, 568 
hypolhcsis, 506 
number, 451 
theory or turbulcnt dispersion, 546-552 
vortices, 453 

Taylor4oldslcin cquation, 461463 
Thylor-Proudman theorem, 567-569 
TdS rclations, 15 
Tempcnture 

adiabatic kmperature gradient, 19,557 
flucuations, spectrum, 54-4-54 
pokntial, I !&21 
stagnation, 671 

Tennis ball dynamics, 349-350 
Tcnwrs, Cartesian 

boldface versus indicid notation, 47 
comma notation, 4647 
conlrxdon and multiplication, 3 1-32 
cmss product, 36-37 
dot product, 36 
eigenvalues and cipnvecton of 

symmetric, 4042 
force on a surlacc; 32-35 
Gauss' theorcrn. 42-45 
invariants or, 3 1 
isotropic, 35,94 
Kronecker delta and alkrnating, 35-36 
multiplication of malriccs, 28-29 
operator del, 37-38 
rotation of axes, 25-28 
scalars and vectors, 24-28 
second-ordcr, 29-31 
Stokcs' themem, 45-46 
strain rate, 58 
symmetric and wtisymmctric, 38-39 
vectnr or dyadic notation, 47-48 

Thwdomn's mcthod, 638 
Thermal conductivity, 6 
Thermal convection, Lorenz model of, 488489 
Thcrmd diffusivity, 109, 120 
Thcrmal energy, 12-13 
Thermal cncrlTy equation, 108-109 

Boussinesq equation and, 11%121 
Thermal cxpansion coeficicnt, 1 5 1  6,17 
" h e r d  instability (RQard), 432443 
Tbcrmal wind, $65-567 
Thermoclinc, 559 
Thermodynamic pssurc, 94 
Thcrmodynamics 

entmpy rclations, 15 
equations or state, 13,16 
first law or, 12-13, 108-10 
review or, 664465 
secondlaw o~,14-15,109-110 
specific hats, 13-14 
speed oTsound, 15 
thcrmal expansion coefficient, 15-1 6 

Thin airlbil theory, 638-642 
Thrcc-dimensional flows, 6 M 9  
I3me derivatives of volumc integrals 

gcncral case. 77-78 
fixed volumc, 78 
makrial volume, 78-79 

"lme lag, 503 
7Fp vodces, 646 
TollmienSchlichting wave, 431,477 
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Trailing vortices, 646,647448 
Transition to turbulence. 337-338.483485 
Transonic How, 663-664 
Transpow, 25 
'Ransport phcnomna, 5-7 
Transport terms, 105 
Tropopause, 557 
Troposphere. 557 
Ibrhulent flow/turbulcncc 

avcragd cquations or motion, 506-512 
avcragcs, 499-502 

cascdc or cnergy, 51 Y 
characteristics of. 497498 
coherent st111cture.., 539-540 
commutation rules, 501-502 
correlations and spectra, 502-506 
defined, 272 
dispersion of particles. 547-549 
dissipahg sciilcs, 519 
dissipalion of mean kinetic energy, 513 
dissipation of turbulent kinetic energy, 

eddy diffusivity, 537-539 
cddy viscosity, 536-539 
cnlrainmcnl, 524 
gcou(rophic, 623626 
hcat flux, 512 
homogeneous, 502 
incrlid suhlaycr, 532-534 
incrtial suhrangc, 520-522 
integral timc scalc, 504 
inwsity variations, 534-536 
intcrmirtcncy, 522-524 
isot;upic, 509-510 
in a jet, 525-528 
kketic energy of, 514-517 
kirclic cncrgy of mum flow; 512-514 
law of the wall, 529-531 
logarithmic law, 53 1-534 
mean continuity equation, 507 
mean hcat cquation, 51 1-512 
mcan momcntum cquation, 507-508 
mixing Icngh, 536-539 
Monin-Obukhov lcngth, 543 
rcscanh on, 498-499 
Reynolds analogy, 543 
Reyxolds strcss, 508-SI I 
rough surface, 534 
sclf-prcr;crva~ion, 524-526 
shear production, 5 14? 5 17.5 17-S20 
stationary, 502 
stnuifid, 540-546 
Taylor theory OF. 546-552 
tempcraturc fluctuations, 544-546 
traxition to, 337-338.48348s 
velocity defect law, 531 

buoyant PrOdUCtion, 5 16-5 17,542 

517 

viscous convective suhrmgc, 545 
viscous sublayer, 530-S31 
wall-bounded, 528-536 
~ a l l - l ~ ,  522-528 

Two-dimnsiod ff ows, 68-69. 166-1 70 
Two-dimcnsional jets. See Jets, 

two-dimcnsional 

Unbounded ocean, 591 
Udorm flow, axisymmetric flow, 185 
Udormity, 1W 
Unsteady irrotational Row, 11 3-1 14 
Upwelling, 595 

Vapor trails, 646 
Variables, random, 499-502 
Varhcc, 502 
Veclor(x) 

cmss product, 36-37 
curl of. 37 
defined. 24-28 
divergence of, 37 
dol product. 36 
opcrdbr dcl, 37-38 

Velocity defect law, 531 
Velocity gradient tensor, 61 
Velocity potential. 113, 150-152 
VCaical shcar. 565 
Viscoelastic. 4 
Viscosity 

coefficient of hulk, 96 
destabilizing, 467 
dynamic, 7 

irrotational vorticcs and, 127-1 30 
kincmatic, 7 
net force, 128, 129 
mtatiod v o r h s  and, 126-1 27 

ddy,  536-539 

Viscous conveclivc suhmngc, 545 
Viscous dissipation, 105-106 
Viscous fluid flow, incompressible, 3 9 3 4  
Viscous sublayer. 530-531 
Volumetric strain rate, 57 
von Karman, 636 

constant, 532 
momentum integral, 332-335 
vortcx slrccts, 248,340-342 

bound, 647448 
dccay, 28Y-292 
drag, 646.649450 
Giirllcr, 453 
Helmholtz theorems, 134 
interactions, 141-144 
irrotational, 157 
lines, 126.290-292 
sheet, 144445,28!&2!M), 457,646 

vortcx 
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Vortex (continue4 
starting, 637638 
stretching, 140,597 
’Ikylor, 453 
tilting, 140,574,597 

trailing, 646,647-648 
lubcs, 126 
von Karman voltex streets, 248, 

tip, 646 

34&342 
vortex now5 

irrotational, 66-67 
Rankine, 67-68 
solid-hody mtation, 65-66 

absolute, 13X, 596 

difision, 132,273,289-292 
cqution in nonrohting h e ,  134-1 36 
equation in rotating frame, 136-1 40 

Helmholtz vortex theorems, 1-34 
Kelvin’s ci~ulation Ihcorcm, 130-134 
perturbation vorticity equation, 616-618 
planetary, 138,140,563 
potential, 597 
quaui-gcoslrophic, 609-610 
rclative, 596 
shallow-water thwry, 595-598 

Vorticity, 58-60 

b m l h i c  flow Wd, 132-133 

nux of, 60 

Wall, law of the, 529-53 1 
Wall angle, flow at, 154-156 
Wall-bounded Shear flow, 528-536 
wd-rm hm flow, m-528 
Wall jet, 355-358 
Wall layer, coherent structures in. 539-540 
Wakr, physical propcrtics of, 708 
Wavelength, 1 % 
Wavcnumbcr, 196, 197 
Waves 

See u h  lnimnal gravity waves; Surfacc 

acoustic, 665 
amplitude or, lY6 
angle, 696 
capillary, 213 
cnoidal. 231 
compression, 1W 
deep-wakr, 210-21 1 
at density interface, 234-237 
dispemivc, 203,221-225,248-250 
drag, 267,649,704 

gravity waves 

clastic, 1W,665 
energy flux, 209,218-221 
equation, 194-195 
p u p  speed, 209,218-225 

Kelvin, 59 1-595 
lcc, 60fj-608 

parameters, 1961  99 
particlc path and skcmline, 204-207 
phase of, 196 
phasc spccd or, 197 
Poincd, 588 
potential energy, 208 
prcssurc, 194,665 
pressure. change, 204 
rcrmtion, 212-213 
Rossby, 608-613 
shallow-water, 21 1-21 2 
shock, 680-685 
solihnr, 23 1-232 
solution, 618 
sound, 665-667 
standing, 216-218 
Stokes’. 230-231 
surkcc tcnsion effects, 213-216 
Svdmp,  588 

Wedge instability, 622-623 

aspect ratio, 631 
hound v d w s ,  647-648 
drag, inducedhroriex, 646,64Y-650 
dcltii, 655 
finitc span, 645-646 
lift and drag characteristics, 653-655 
Prwdtl w d  Lanchester lifting linc 

span, 63 1 
tip, 63 1 
tip vortices, 646 
trailing vortices, 646,647-684 

hydrOStdtiC, 212 

packet, 219-220 

WWS) 

thcory, 646-65 1 

WKB approximation, 600-603 

Yaw axis of aircrak 63 1 

Zhukhovsky, N.. 
airfoil U, 642-645 
hypothesis, 636 
lift theorem, 165, 168470,635 
tranxrormation. 639-642 

Zonc of action, 695 
Zone of silcncc, 695 
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