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CHAPTER

Network Security Overview

Computer networks are typically a shared resource used by many applications
representing different interests. The Internet is particularly widely shared, being
used by competing businesses, mutually antagonistic governments, and opportu-
nistic criminals. Unless security measures are taken, a network conversation or a
distributed application may be compromised by an adversary.

Consider some threats to secure use of, for example, the World Wide Web.
Suppose you are a customer using a credit card to order an item from a website.
An obvious threat is that an adversary would eavesdrop on your network commu-
nication, reading your messages to obtain your credit card information. How might
that eavesdropping be accomplished? It is trivial on a broadcast network such as
an Ethernet, where any node can be configured to receive all the message traffic
on that network. Wireless communication can be monitored without any physi-
cal connection. More elaborate approaches include wiretapping and planting spy
software on any of the chain of nodes involved. Only in the most extreme cases,
such as national security, are serious measures taken to prevent such monitoring,
and the Internet is not one of those cases. It is possible and practical, however, to
encrypt messages so as to prevent an adversary from understanding the message
contents. A protocol that does so is said to provide confidentiality. Taking the
concept a step further, concealing the quantity or destination of communication
is called traffic confidentiality—because merely knowing how much communica-
tion is going where can be useful to an adversary in some situations.

Even with confidentiality there still remain threats for the website customer.
An adversary who can’t read the contents of your encrypted message might still
be able to change a few bits in it, resulting in a valid order for, say, a completely
different item or perhaps 1,000 units of the item. There are techniques to detect,
if not prevent, such tampering. A protocol that detects such message tampering
provides data integrity. The adversary could alternatively transmit an extra copy
of your message in a replay attack. To the website, it would appear as though
you had simply ordered another of the same item you ordered the first time. A
protocol that detects replays provides originality. Originality would not, however,
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preclude the adversary intercepting your order, waiting a while, then transmit-
ting it—in effect, delaying your order. The adversary could thereby arrange for
the item to arrive on your doorstep while you are away on vacation, when it can
be easily snatched. A protocol that detects such delaying tactics is said to provide
timeliness. Data integrity, originality, and timeliness are considered aspects of the
more general property of integrity.

Another threat to the customer is unknowingly being directed to a false web-
site. This can result from a DNS attack, in which false information is entered in
a domain name server or the name service cache of the customer’s computer.
This leads to translating a correct URL into an incorrect IP address—the address
of a false website. A protocol that ensures that you really are talking to whom
you think you’re talking is said to provide authentication. Authentication entails
integrity since it is meaningless to say that a message came from a certain partici-
pant if it is no longer the same message.

The owner of the website can be attacked as well. Some websites have been
defaced; the files that make up the website content have been remotely accessed
and modified without authorization. That is an issue of access control: enforcing
the rules regarding who is allowed to do what. Websites have also been subject to
denial of service (DoS) attacks, during which would-be customers are unable to
access the website because it is being overwhelmed by bogus requests. Ensuring
a degree of access is called availability.

Finally, the customer and website face threats from each other. Each could
unilaterally deny that a transaction occurred, or invent a nonexistent transaction.
Nonrepudiation means that a bogus denial (repudiation) of a transaction can be
disproved, and nonforgeability means that claims of a bogus (forged) transaction
can be disproved.

Although these examples have been based on Web transactions, there are com-
parable security threats in almost every network context. Although the Internet
was designed with the redundancy to survive physical attacks such as bombing, it
was not originally designed to provide the kind of security we have been discuss-
ing. Internet security mechanisms have essentially been patches. If a comprehen-
sive redesign of the Internet were to take place, integrating security would likely
be the foremost driving factor. That possibility makes this chapter all the more
pertinent.

The main tools for securing networked systems are cryptography and fire-
walls. The bulk of this chapter concerns cryptography-based security.

1.1 CRYPTOGRAPHIC TOOLS

We introduce the concepts of cryptography-based security step by step. The first
step is the cryptographic algorithms—ciphers and cryptographic hashes—that
are introduced in this section. They are not a solution in themselves, but rather
building blocks from which a solution can be built. The next step (Section 1.2)
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addresses the problem of distributing the keys, the secret parameters that are
input to cryptographic algorithms. In the next step (Section 1.3), we describe
how to incorporate the cryptographic building blocks into protocols that pro-
vide secure communication between participants who possess the correct keys.
Finally, Section 1.4 examines several complete security protocols and systems in
current use.

1.1.1 Principles of Ciphers

Encryption transforms a message in such a way that it becomes unintelligible to
any party that does not have the secret of how to reverse the transformation. The
sender applies an encryption function to the original plaintext message, result-
ing in a ciphertext message that is sent over the network, as in Figure 1.1. The
receiver applies a secret decryption function—the inverse of the encryption
function—to recover the original plaintext. The ciphertext transmitted across
the network is unintelligible to any eavesdropper, assuming she doesn’t know the
decryption function. The transformation represented by an encryption function
and its corresponding decryption function is called a cipber.

Cryptographers have been led to the principle, first stated in 1883, that encryp-
tion and decryption functions should be parameterized by a key, and furthermore
that the functions should be considered public knowledge—only the key need
be secret. Thus, the ciphertext produced for a given plaintext message depends
on both the encryption function and the key. One reason for this principle is that
if you depend on the cipher being kept secret, then you have to retire the cipher
(not just the keys) when you believe it is no longer secret. This means potentially
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FIGURE 1.1
Symmetric-key encryption and decryption.
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frequent changes of cipher, which is problematic since it takes a lot of work to
develop a new cipher. Also, one of the best ways to know that a cipher is secure
is to use it for a long time—if no one breaks it, it’s probably secure. (Fortunately,
there are plenty of people who will try to break ciphers and who will let it be
widely known when they have succeeded, so no news is generally good news.)
Thus, there is considerable cost and risk in deploying a new cipher. Finally, param-
eterizing a cipher with keys provides us with what is in effect a very large fam-
ily of ciphers; by switching keys we essentially switch ciphers, thereby limiting
the amount of data that a cryptanalyst (code-breaker) can use to try to break our
key/cipher, and the amount she can read if she succeeds.

The basic requirement for an encryption algorithm is that it turns plaintext
into ciphertext in such a way that only the intended recipient—the holder of the
decryption key—can recover the plaintext. What this means is that encrypted
messages cannot be read by people who do not hold the key.

It is important to realize that when a potential attacker receives a piece of
ciphertext, he may have more information at his disposal than just the ciphertext
itself. For example, he may know that the plaintext was written in English, which
means that the letter e occurs more often in the plaintext that any other letter; the
frequency of many other letters and common letter combinations can also be pre-
dicted. This information can greatly simplify the task of finding the key. Similarly,
he may know something about the likely contents of the message; for example,
the word “login” is likely to occur at the start of a remote login session. This may
enable a known plaintext attack, which has a much higher chance of success
than a cipbertext only attack. Even better is a chosen plaintext attack, which may
be enabled by feeding some information to the sender that you know the sender
is likely to transmit—such things have happened in wartime, for example.

The best cryptographic algorithms, therefore, can prevent the attacker from
deducing the key even when the individual knows both the plaintext and the
ciphertext. This leaves the attacker with no choice but to try all the possible
keys—exhaustive, “brute-force” search. If keys have » bits, then there are 2" possi-
ble values for a key (each of the 7 bits could be either a zero or a one). An attacker
could be so lucky as to try the correct value immediately, or so unlucky as to try
every incorrect value before finally trying the correct value of the key, therefore,
she would have tried all 2” possible values; the average number of guesses to dis-
cover the correct value is halfway between those extremes, 2”/2. This can be made
computationally impractical by choosing a sufficiently large key space and by mak-
ing the operation of checking a key reasonably costly. What makes this difficult is
that computing speeds keep increasing, making formerly infeasible computations
feasible. Furthermore, although we are concentrating on the security of data as it
moves through the network—that is, the data is sometimes vulnerable for only a
short period of time—in general, security people have to consider the vulnerabil-
ity of data that needs to be stored in archives for tens of years. This argues for
a generously large key size. On the other hand, larger keys make encryption and
decryption slower.
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Most ciphers are block cipbers: they are defined to take as input a plaintext
block of a certain fixed size, typically 64 to 128 bits. Using a block cipher to
encrypt each block independently—known as electronic codebook (ECB) mode
encryption—has the weakness that a given plaintext block value will always result
in the same ciphertext block. Hence recurring block values in the plaintext are
recognizable as such in the ciphertext, making it much easier for a cryptanalyst to
break the cipher.

To prevent this, block ciphers are always augmented to make the ciphertext
for a block vary depending on context.Ways in which a block cipher may be aug-
mented are called modes of operation. A common mode of operation is cipher
block chaining (CBC), in which each plaintext block is XORed with the previous
block’s ciphertext before being encrypted. The result is that each block’s cipher-
text depends in part on the preceding blocks (i.e., on its context). Since the first
plaintext block has no preceding block, it is XORed with a random number. That
random number, called an initialization vector (IV),is included with the series of
ciphertext blocks so that the first ciphertext block can be decrypted. This mode
is illustrated in Figure 1.2. Another mode of operation is counter mode, in which
successive values of a counter (e.g., 1, 2, 3, .. .) are incorporated into the encryp-
tion of successive blocks of plaintext.

Plaintext block 3

Plaintext block 2

Plaintext block 1

Plaintext block O

Encryption ., Bjocks of ciphertext
function

Initialization vector

(For block 0 only)
FIGURE 1.2
Cipher block chaining (CBC).
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1.1.2 Symmetric-Key Ciphers

In a symmetric-key cipher, both participants! in a communication share the same
key. In other words, if a message is encrypted using a particular key, the same key
is required for decrypting the message. If the cipher illustrated in Figure 1.1 were
a symmetric-key cipher, then the encryption and decryption keys would be iden-
tical. Ssymmetric-key ciphers are also known as secret-key ciphers since the shared
key must be known only to the participants.

The U.S. National Institute of Standards and Technology (NIST) has issued stan-
dards for a series of symmetric-key ciphers. Data Encryption Standard (DES)
was the first, and it has stood the test of time in that no cryptanalytic attack bet-
ter than brute-force search has been discovered. Brute-force search, however, has
gotten faster. DES’s keys (56 independent bits) are now too small given current
processor speeds. Consequently, NIST updated the DES standard in 1999 to indi-
cate that DES should only be used for legacy systems. Nonetheless, DES is still
widespread.

NIST also standardized the cipher Triple DES (3DES), which leverages the
cryptanalysis resistance of DES while in effect increasing the key size. A 3DES
key has 168 (= 3 * 56) independent bits, and is used as three DES keys; let’s call
them DES-key1l, DES-key2, and DES-key3. 3DES-encryption of a block is performed
by first DES-encrypting the block using DES-key1, then DES-decrypting the result
using DES-key2, and finally DES-encrypting that result using DES-key3. Decryption
involves decrypting using DES-key3, then encrypting using DES-key2, then
decrypting using DES-keyl.

The reason 3DES encryption uses DES decryption with DES-key?2 is to interop-
erate with legacy DES systems. If a legacy DES system uses a certain key, then 3DES
can compute the same encryption function by using that key for each of DES-keyl,
DES-key2, and DES-key3: In the first two steps we encrypt and then decrypt with
the same key, producing the original plaintext, which we then encrypt again.

Although 3DES solves DES’s key-length problem, it inherits some other short-
comings. Software implementations of DES/3DES are slow because it was origi-
nally designed, by IBM, for implementation in hardware. Also, DES/3DES uses a
64-bit block size;a larger block size is more efficient and more secure.

3DES is being superseded by the Advanced Encryption Standard (AES) issued
by NIST in 2001. The cipher selected to become that standard (with a few minor
modifications) was originally named Rijndael (pronounced roughly like “Rhine
dahl”) based on the names of its inventors, Daemen and Rijmen. AES supports key
lengths of 128, 192, or 256 bits, and the block length is 128 bits. AES permits fast
implementations in both software and hardware. It doesn’t require much memory,
which makes it suitable for small mobile devices. AES has some mathematically

We use the term participant for the parties involved in a secure communication since that is the
term we have been using throughout the chapter to identify the two endpoints of a channel. In the
security world, they are typically called principals.
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proven security properties and, as of 2005, there are not known to have been any
successful attacks against it.

1.1.3 Public-Key Ciphers

An alternative to symmetric-key ciphers is asymmetric, or public-key, ciphers.
Instead of a single key shared by two participants, a public-key cipher uses a pair
of related keys, one for encryption and a different one for decryption. The pair
of keys is “owned” by just one participant. The owner keeps the decryption key
secret so that only the owner can decrypt messages; that key is called the private
key. The owner makes the encryption key public, so that anyone can encrypt
messages for the owner; that key is called the public key. Obviously, for such a
scheme to work it must not be possible to deduce the private key from the public
key. Consequently, any participant can get the public key and send an encrypted
message to the owner of the keys, and only the owner has the private key neces-
sary to decrypt it. This scenario is depicted in Figure 1.3.

Because it is somewhat unintuitive, we emphasize that the public encryption
key is useless for decrypting a message—you couldn’t even decrypt a message
that you yourself had just encrypted unless you had the private, decryption key. If
we think of keys as defining a communication channel between participants, then
another difference between public-key and symmetric-key ciphers is the topol-
ogy of the channels. A key for a symmetric-key cipher provides a channel that is
two-way between two participants—each participant holds the same (symmetric)
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key that either one can use to encrypt or decrypt messages in either direction.
A public/private key pair, in contrast, provides a channel that is one-way, and many-
to-one from everyone who has the public key to the (unique) owner of the pri-
vate key, as illustrated in Figure 1.3.

An important additional property of public-key ciphers is that the private
decryption key can be used with the encryption algorithm to encrypt messages
so that they can only be decrypted using the public encryption key. This prop-
erty clearly wouldn’t be useful for confidentiality since anyone with the public key
could decrypt such a message. (Indeed, for two-way confidentiality between two
participants, each participant needs its own pair of keys, and each encrypts mes-
sages using the other’s public key.) This property is, however, useful for authentica-
tion since it tells the receiver of such a message that it could only have been created
by the owner of the keys (subject to certain assumptions that we will get into later).
This is illustrated in Figure 1.4. It should be clear from the figure that anyone with
the public key can decrypt the encrypted message, and assuming that the result of
the decryption matches the expected result, it can be concluded that the private
key must have been used to perform the encryption. Exactly how this operation is
used to provide authentication is the topic of Section 1.3. As we will see, public-key
ciphers are used primarily for authentication and to confidentially distribute sym-
metric keys, leaving the rest of confidentiality to symmetric-key ciphers.

A bit of interesting history: The concept of public-key ciphers was first pub-
lished in 1976 by Diffie and Hellman. Subsequently, however, documents have
come to light proving that Britain’s Communications-Electronics Security Group
had discovered public-key ciphers by 1970, and the U.S. National Security Agency
(NSA) claims to have discovered them in the mid-1960s.

The best-known public-key cipher is RSA, named after its inventors: Rivest,
Shamir, and Adleman. RSA relies on the high computational cost of factoring large
numbers. The problem of finding an efficient way to factor numbers is one that
mathematicians have worked on unsuccessfully since long before RSA appeared
in 1978, and RSA’s subsequent resistance to cryptanalysis has further bolstered
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confidence in its security. Unfortunately, RSA needs relatively large keys, at least
1,024 bits, to be secure. This is larger than keys for symmetric-key ciphers
because it is faster to break an RSA private key by factoring the large number on
which the pair of keys is based than by exhaustively searching the key space.

Another public-key cipher is ElGamal. Like RSA, it relies on a mathematical
problem, the discrete logarithm problem, for which no efficient solution has been
found, and requires keys of at least 1,024 bits. There is a variation of the discrete
logarithm problem, arising when the input is an elliptic curve, that is thought to
be even more difficult to compute; cryptographic schemes based on this problem
are referred to as elliptic curve cryptography.

Public-key ciphers are, unfortunately, several orders of magnitude slower than
symmetric-key ciphers. Consequently, symmetric-key ciphers are used for the vast
majority of encryption, while public-key ciphers are reserved for use in authenti-
cation (Section 1.1.4) and session key establishment (Section 1.2).

1.1.4 Authenticators

Encryption alone does not provide data integrity. For example, just randomly modi-
fying a ciphertext message could result in a value that decrypts into valid-appearing
plaintext, in which case the tampering would be undetectable by the receiver.
Nor does encryption alone provide authentication. It is meaningless to say that a
message came from a certain participant if the contents of the message have been
modified. To some extent one may focus on either of authentication or data integ-
rity temporarily, but they are fundamentally inseparable.

An authenticator is a value, to be included in a transmitted message, that can
be used to verify simultaneously the authenticity and the data integrity of a mes-
sage. We defer discussion of the use of authenticators in protocols to Section 1.3.
Here we focus on the algorithms that produce authenticators.

To support data integrity, an authenticator includes redundant information about
the message contents; it is like a checksum or cyclic redundancy check (CRC). To
support authentication, an authenticator includes some proof that whoever created
the authenticator knows a secret that is known only to the alleged sender of the
message; for example, the secret could be a key, and the proof could be some value
encrypted using the key. There is a mutual dependency between the form of the
redundant information and the form of the proof of secret knowledge. We discuss
several workable combinations.

We initially assume that the original message need not be confidential—that a
transmitted message will consist of the plaintext of the original message plus an
authenticator. Later we will consider the case where confidentiality is desired.

One kind of authenticator combines encryption and a cryptographic bash func-
tion. A cryptographic hash function (also known as a cryptographic checksum) is
a function that outputs sufficient redundant information about a message to expose
any tampering. Just as a checksum or CRC exposes bit error introduced by noisy
links, a cryptographic checksum is designed to expose deliberate corruption of
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messages by an adversary. The value it outputs is called a message digest and, like
an ordinary checksum, is appended to the message. All the message digests pro-
duced by a given hash have the same number of bits regardless of the length of the
original message. Since the space of possible input messages is larger than the space
of possible message digests, there will be different input messages that produce the
same message digest, like collisions in a hash table. Cryptographic hash algorithms
are treated as public knowledge, as with cipher algorithms.

An authenticator can be created by encrypting the message digest. The receiver
computes a digest of the plaintext part of the message, and compares that to the
decrypted message digest. If they are equal, then the receiver would conclude that
the message is indeed from its alleged sender (since it would have to have been
encrypted with the right key) and has not been tampered with. No adversary could
get away with sending a bogus message with a matching bogus digest because she
would not have the key to encrypt the bogus digest correctly. An adversary could,
however, obtain the plaintext original message and its encrypted digest by eaves-
dropping. The adversary could then (since the hash function is public knowledge)
compute the digest of the original message, and generate alternative messages look-
ing for one with the same message digest. If she finds one, she could undetectably
send the new message with the old authenticator. Therefore, security requires that
the hash function have the one-way property: It must be computationally infea-
sible for an adversary to find any plaintext message that has the same digest as the
original.

For a hash function to meet this requirement, its outputs must be fairly randomly
distributed. For example, if digests are 128 bits long and randomly distributed, then
you would need to try 2!?7 messages, on average, before finding a second message
whose digest matches that of a given message. If the outputs are not randomly
distributed—that is, if some outputs are much more likely than others—then for
some messages you could find another message with the same digest much more eas-
ily than this, which would reduce the security of the algorithm. If you were instead
just trying to find any collision—any two messages that produce the same digest—
then you would need to compute the digests of only 2°* messages, on average. This
surprising fact is the basis of the birthday attack—see the exercises for more details.

The most common cryptographic hash algorithms are Message Digest 5 (MD5)
and Secure Hash Algorithm 1 (SHA-1). MD5 outputs a 128-bit digest, and SHA-1
outputs a 160-bit digest. Researchers have recently discovered techniques for find-
ing MD5 collisions much more efficiently than brute force, and well within com-
putational feasibility. This led to recommendations to shift from MD5 to SHA-1.
Even more recently researchers have discovered techniques that find SHA-1 colli-
sions somewhat more efficiently than brute force, but are not yet computationally
feasible. Although collision attacks (attacks based on finding any collision) are
not as great a risk as preimage attacks (attacks based on finding a second mes-
sage that collides with a given first message), these are nonetheless serious weak-
nesses. NIST has proposed to phase out SHA-1 by 2010, in favor of four variants of
SHA that are collectively known as SHA-2.
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In this approach (encrypted message digest) to generating an authenticator, the
digest encryption could use either a symmetric-key cipher or a public-key cipher.
If a public-key cipher is used, the digest would be encrypted using the sender’s
private key (the one we normally think of as being used for decryption), and the
receiver—or anyone else—could decrypt the digest using the sender’s public key.

A digest encrypted with a public-key algorithm but using the private key is
called a digital signature because it provides nonrepudiation like a written signa-
ture. The receiver of a message with a digital signature can prove to any third party
that the sender really sent that message, because the third party can use the sender’s
public key to check for herself. (Symmetric-key encryption of a digest does not have
this property because only the two participants know the key; furthermore, since
both participants know the key, the alleged receiver could have created the message
herself.) Any public-key cipher can be used for digital signatures. Digital Signature
Standard (DSS) is a digital signature format that has been standardized by NIST.
DSS signatures may use any one of three public-key ciphers, one based on RSA,
another on ElGamal, and a third called Elliptic Curve Digital Signature Algorithm.

Another kind of authenticator is similar, but instead of encrypting a hash, it
uses a hashlike function that takes a secret value (known to only the sender and
the receiver) as a parameter, as illustrated in Figure 1.5. Such a function outputs an
authenticator called a message authentication code (MAC). The sender appends the
MAC to her plaintext message. The receiver recomputes the MAC using the plaintext
and the secret value, and compares that recomputed MAC to the received MAC.

A common variation on MAGCs is to apply a cryptographic hash (such as MD5 or
SHA-1) to the concatenation of the plaintext message and the secret value, as illus-
trated in Figure 1.5. The resulting digest is called a hashed message autbentication
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FIGURE 1.5
Computing a MAC (a) versus computing an HMAC (b).
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code (HMAC) since it is essentially a MAC. The HMAC, but not the secret value, is
appended to the plaintext message. Only a receiver who knows the secret value
can compute the correct HMAC to compare with the received HMAC. If it weren’t
for the one-way property of the hash, an adversary might be able to find the input
that generated the HMAC and compare it to the plaintext message to determine
the secret value.

Up to this point, we have been assuming that the message wasn’t confidential,
so the original message could be transmitted as plaintext. To add confidentiality
to a message with an authenticator, it suffices to encrypt the concatenation of the
entire message including its authenticator—the MAC, HMAC, or encrypted digest.
Remember that, in practice, confidentiality is implemented using symmetric-key
ciphers because they are so much faster than public-key ciphers. Furthermore, it
costs little to include the authenticator in the encryption, and it increases secu-
rity. A common simplification is to encrypt the message with its (raw) digest, such
that the digest is only encrypted once; in this case, the entire ciphertext message
is considered to be an authenticator.

Although authenticators may seem to solve the authentication problem, we
will see in Section 1.3 that they are only the foundation of a solution. First, how-
ever, we address the issue of how participants obtain keys in the first place.

1.2 KEY PREDISTRIBUTION

To use ciphers and authenticators, the communicating participants need to know
what keys to use. In the case of a symmetric-key cipher, how does a pair of par-
ticipants obtain the key they share? In the case of a publickey cipher, how do
participants know what public key belongs to a certain participant? The answer
differs depending on whether the keys are short-lived session keys or longer-lived
predistributed keys.

A session key is a key used to secure a single, relatively short episode of com-
munication: a session. Each distinct session between a pair of participants uses a
new session key, which is always a symmetric-key key for speed. The participants
determine what session key to use by means of a protocol—a session-key estab-
lishment protocol. A session-key establishment protocol needs its own security
(so that, for example, an adversary cannot learn the new session key); that security
is based on the longer-lived predistributed keys.

There are several motivations for this division of labor between session keys
and predistributed keys:

m Limiting the amount of time a key is used results in less time for computation-
ally intensive attacks, less ciphertext for cryptanalysis, and less information
exposed should the key be broken;

m Predistribution of symmetric keys is problematic;
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m Public-key ciphers are generally superior for authentication and session-
key establishment but too slow to use encrypting entire messages for
confidentiality.

This section explains how predistributed keys are distributed, and Section 1.3
will explain how session keys are then established. We henceforth use “Alice” and
“Bob” to designate participants, as is common in the cryptography literature. Bear
in mind that although we tend to refer to participants in anthropomorphic terms,
we are more frequently concerned with the communication between software
or hardware entities such as clients and servers that often have no direct relation-
ship with any particular person.

1.2.1 Predistribution of Public Keys

The algorithms to generate a matched pair of public and private keys are pub-
licly known, and software that does it is widely available. So if Alice wanted to
use a public-key cipher, she could generate her own pair of public and private
keys, keep the private key hidden, and publicize the public key. But how can she
publicize her public key—assert that it belongs to her—in such a way that other
participants can be sure it really belongs to her? Not via email or Web, because an
adversary could forge an equally plausible claim that key x belongs to Alice when
x really belongs to the adversary.

A complete scheme for certifying bindings between public keys and
identities—what key belongs to whom—is called a public key infrastructure
(PKD. A PKI starts with the ability to verify identities and bind them to keys out-
of-band. By “out-of-band,” we mean something outside the network and the com-
puters that comprise it, such as in the following scenarios. If Alice and Bob are
individuals who know each other, then they could get together in the same room
and Alice could give her public key to Bob directly, perhaps on a business card. If
Bob is an organization, Alice the individual could present conventional identifica-
tion, perhaps involving a photograph or fingerprints. If Alice and Bob are com-
puters owned by the same company, then a system administrator could configure
Bob with Alice’s public key.

Establishing keys out-of-band doesn’t scale well, but it suffices to bootstrap a
PKI. Bob’s knowledge that Alice’s key is x can be widely, scalably disseminated
using a combination of digital signatures and a concept of trust. For example,
suppose that you have received Bob’s public key out-of-band, and that you know
enough about Bob to trust him on matters of keys and identities. Then Bob could
send you a message asserting that Alice’s key is x and—since you already know
Bob’s public key—you could authenticate the message as having come from Bob.
(Remember that to digitally sign the statement, Bob would append a cryptographic
hash of it that has been encrypted using his private key.) Since you trust Bob
to tell the truth, you would now know that Alice’s key is x, even though you
had never met her or exchanged a single message with her. Using digital signatures,
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Bob wouldn’t even have to send you a message; he could simply create and publish
a digitally signed statement that Alice’s key is x. Such a digitally signed statement of
a public-key binding is called a public-key certificate, or simply a certificate. Bob
could send Alice a copy of the certificate, or post it on a website. If and when you
need to verify Alice’s public key, you could do so by getting a copy of the certificate,
perhaps directly from Alice—as long as you trust Bob and know his public key. You
can see that by starting from a very small number of keys (in this case, just Bob’s)
you could build up a large set of trusted keys over time. More on this topic below.

One of the major standards for certificates is known as X.509. This standard
leaves a lot of details open, but specifies a basic structure. A certificate clearly
must include

The identity of the entity being certified;

The public key of the entity being certified;

The identity of the signer;

The digital signature;

A digital signature algorithm identifier (which cryptographic hash and which
cipher).

An optional component is an expiration time for the certificate. We will see a par-
ticular use of this feature below.

Since a certificate creates a binding between an identity and a public key, we
should look more closely at what we mean by “identity” For example, a certificate
that says,“This public key belongs to John Smith” may not be terribly useful if you
can’t tell which of the thousands of John Smiths is being identified. Thus, cer-
tificates must use a well-defined namespace for the identities being certified. For
example, certificates are often issued for email addresses and DNS domains.

There are different ways a PKI could formalize the notion of trust. We discuss
the two main approaches.

Certification Authorities

In this model of trust, trust is binary; you either trust someone completely, or not
at all. Together with certificates, this allows the building of chains of trust. If X
certifies that a certain public key belongs to Y, and then Y goes on to certify that
another public key belongs to Z, then there exists a chain of certificates from X to
Z, even though X and Z may have never met. If you know X’s key—and you trust
X and Y—then you can believe the certificate that gives Z’s key. In other words, all
you need is a chain of certificates, all signed by entities you trust, as long as it leads
back to an entity whose key you already know.

A certification authority or certificate autbority (CA) is an entity claimed (by
someone) to be trustworthy for verifying identities and issuing public-key certifi-
cates. There are commercial CAs, governmental CAs, and even free CAs. To use a
CA, you must know its own key. You can learn that CA’s key, however, if you can
obtain a chain of CA-signed certificates that starts with a CA whose key you already
know. Then you can believe any certificate signed by that new CA.
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Tree-structured certification authority hierarchy.

A common way to build such chains is to arrange them in a tree-structured hier-
archy, as shown in Figure 1.6. If everyone has the public key of the root CA, then
any participant can provide a chain of certificates to another participant and know
that it will be sufficient to build a chain of trust for that participant.

Alternatively, there could be multiple CAs whose public keys are considered
well known (i.e., obtained out-of-band). As a bookkeeping device, such a CA can
generate its own certificate, signing it with the very key defined in the certificate.
Such certificates are known as self-certifying certificates. Web browsers such as
Firefox and Microsoft’s Internet Explorer come preequipped with self-certifying
certificates for a set of CAs; in effect, the browser’s producer has decided these
keys can be trusted. These certificates are accepted by SSL/TLS, the protocol most
often used to secure Web transactions (Section 1.4.3).

There are still significant issues with building chains of trust. First of all, even
if you are certain that you have the public key of the root CA, you need to be sure
that every CA from the root on down is doing its job properly. If just one CA is
willing to issue certificates to entities without verifying their identities, then what
looks like a valid chain of certificates becomes meaningless. X.509 certificates
provide the option of restricting the set of entities that the subject of a certificate
is, in turn, trusted to certify.

Web of Trust

An alternative model of trust is the web of trust exemplified by Pretty Good
Privacy (PGP), which is further discussed in Section 1.4.3. PGP is a security sys-
tem for email, so email addresses are the identities to which keys are bound and
by which certificates are signed. In keeping with PGP’s roots as protection against
government intrusion, there are no CAs. Instead, every individual decides whom
he trusts and how much he trusts them—in this model, trust is a matter of degree.
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In addition, a public-key certificate can include a confidence level indicating how
confident the signer is of the key binding claimed in the certificate. So a given
user may have to have several certificates attesting to the same key binding before
he is willing to trust it.

For example, suppose you have a certificate for Bob provided by Alice; you can
assign a moderate level of trust to that certificate. However, if you have additional
certificates for Bob that were provided by C and D, each of whom is also moder-
ately trustworthy, that might considerably increase your level of confidence that
the public key you have for Bob is valid. In short, PGP recognizes that the problem
of establishing trust is quite a personal matter and gives users the raw material to
make their own decisions, rather than assuming that they are all willing to trust in
a single hierarchal structure of CAs. To quote Phil Zimmerman, the developer of
PGP, “PGP is for people who prefer to pack their own parachutes.”

PGP has become quite popular in the networking community, and PGP key-
signing parties are a regular feature of IETF meetings. At these gatherings, an indi-
vidual can

m Collect public keys from others whose identity he knows;

m Provide his public key to others;

m Get his public key signed by others, thus collecting certificates that will be
persuasive to an increasingly large set of people;

m Sign the public key of other individuals, thus helping them build up their set
of certificates that they can use to distribute their public keys;

m Collect certificates from other individuals whom he trusts enough to sign keys.

Thus, over time a user will collect a set of certificates with varying degrees of trust.

Certificate Revocation

One issue that arises with certificates is how to revoke, or undo, a certificate. Why
is this important? Suppose that you suspect that someone has discovered your
private key. There may be any number of certificates in the universe that assert
that you are the owner of the public key corresponding to that private key. The
person who discovered your private key thus has everything he needs to imper-
sonate you: valid certificates and your private key. To solve this problem, it would
be nice to be able to revoke the certificates that bind your old, compromised key
to your identity, so that the impersonator will no longer be able to persuade other
people that he is you.

The basic solution to the problem is simple enough. Each CA can issue a cer
tificate revocation list (CRL), which is a digitally signed list of certificates that
have been revoked. The CRL is periodically updated and made publicly available.
Because it is digitally signed, it can just be posted on a website. Now, when Alice
receives a certificate for Bob that she wants to verify, she will first consult the lat-
est CRL issued by the CA. As long as the certificate has not been revoked, it is valid.
Note that if all certificates have unlimited life spans, the CRL would always be getting
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longer, since you could never take a certificate off the CRL for fear that some copy
of the revoked certificate might be used. However, by attaching an expiration date
to a certificate when it is issued, we can limit the length of time that a revoked cer-
tificate needs to stay on a CRL. As soon as its original expiration date is passed, it
can be removed from the CRL.

To overcome certain deficiencies of CRLs, Online Certificate Status Protocol
(OCSP) was created. OCSP is used to communicate with, and between, OCSP serv-
ers called OCSP responders to check a certificate’s validity.

1.2.2 Predistribution of Symmetric Keys

If Alice wants to use a secret-key cipher to communicate with Bob, she can’t just
pick a key and send it to him because, without already having a key, they can’t
encrypt this key to keep it confidential and they can’t authenticate each other. As
with public keys, some predistribution scheme is needed. Predistribution is harder
for symmetric keys than for public keys for two obvious reasons:

= While only one public key per entity is sufficient for authentication and con-
fidentiality, there must be a symmetric key for each pair of entities who wish
to communicate. If there are NV entities, that means NV — 1)/2 keys.

m Unlike public keys, secret keys must be kept secret.

In summary, there are a lot more keys to distribute, and you can’t use certificates
that everyone can read.

The most common solution is to use a key distribution center (KDC). A KDC
is a trusted entity that shares a secret key with each other entity. This brings the
number of keys down to a more manageable N — 1, few enough to establish out-
of-band for some applications. When Alice wishes to communicate with Bob, that
communication does not travel via the KDC. Rather, the KDC participates in a pro-
tocol that authenticates Alice and Bob—using the keys that the KDC already shares
with each of them—and generates a new session key for them to use. Then Alice
and Bob communicate directly using their session key. Kerberos (Section 1.3.3) is
a widely used system based on this approach.

1.3 AUTHENTICATION PROTOCOLS

We described how to encrypt messages and build authenticators in Section 1.1,
and how to predistribute the necessary keys in Section 1.2. It might seem as if
all we have to do to make a protocol secure is append an authenticator to every
message and, if we want confidentiality, encrypt the message.

There are two main reasons why it’s not that simple. First, there is the problem
of a replay attack: an adversary retransmitting a copy of a message that was previ-
ously sent. If the message was an order you had placed to a website, for example,
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then the replayed message would appear to the website as though you had ordered
more of the same. Even though it wasn’t the original incarnation of the message, its
authenticator would still be valid; after all, the message was created by you, and
it wasn’t modified. In a variation of this attack called a suppress-replay attack, an
adversary might merely delay your message (by intercepting and later replaying it),
so that it is received at a time when it is no longer appropriate. For example, an
adversary could delay your order to buy stock from an auspicious time to a time
when you would not have wanted to buy. Although this message would in a sense
be the original, it wouldn’t be timely. Originality and timeliness may be considered
aspects of integrity. Ensuring them will in most cases require a nontrivial, back-and-
forth protocol.

The other problem we have not yet solved is how to establish a session key.
A session key is a symmetric-key cipher key generated on the fly and used for just
one session, as described in Section 1.2. This too involves a nontrivial protocol.

What these two issues have in common is authentication. If a message is not
original and timely, then from a practical standpoint we want to consider it as not
being authentic, not being from whom it claims to be. And when is it more criti-
cal to be sure whom a message is from than when you are arranging to share a
new session key? Usually, authentication protocols establish a session key at the
same time, so that at the end of the protocol Alice and Bob have authenticated
each other and they have a new symmetric key to use. Without a new session key,
the protocol would just authenticate Alice and Bob at one point in time; a ses-
sion key allows them to efficiently authenticate subsequent messages. Generally,
session-key establishment protocols perform authentication (a notable exception
is Diffie-Hellman, Section 1.3.4). So the terms authentication protocol and session-
key establishment protocol are almost synonymous.

There is a core set of techniques used to ensure originality and timeliness in
authentication protocols. We describe those techniques before moving on to par-
ticular protocols.

1.3.1 Originality and Timeliness Techniques

We have seen that authenticators alone do not enable us to detect messages that
are not original or timely. One approach is to include a timestamp in the message.
Obviously the timestamp itself must be tamperproof, so it must be covered by the
authenticator. The primary drawback to timestamps is that they require distrib-
uted clock synchronization. Since our system would then depend on synchroniza-
tion, the clock synchronization itself would need to be defended against security
threats; this in addition to the usual challenges of clock synchronization. Another
issue is that distributed clocks are synchronized to only a certain degree—a cer-
tain margin of error. Thus, the timing integrity provided by timestamps is only as
good as the degree of synchronization.

Another approach is to include a nonce—a random number used only once—
in the message. Participants can then detect replay attacks by checking whether
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FIGURE 1.7
A challenge-response protocol.

a nonce has been used previously. Unfortunately this requires keeping track of
past nonces, of which a great many could accumulate. One solution is to combine
the use of timestamps and nonces, so that nonces are required to be unique only
within a certain span of time. That makes ensuring uniqueness of nonces manage-
able while requiring only loose synchronization of clocks.

Another solution to the shortcomings of timestamps and nonces is to use one
or both of them in a challenge-response protocol. Suppose we use a timestamp. In
a challenge-response protocol, Alice sends Bob a timestamp, challenging Bob to
encrypt it in a response message (if they share a symmetric key) or digitally sign
it in a response message (if Bob has a public key, as in Figure 1.7). The encrypted
timestamp is like an authenticator that additionally proves timeliness. Alice can
easily check the timeliness of the timestamp in a response from Bob since that
timestamp comes from Alice’s own clock—no distributed clock synchronization
needed. Suppose instead that the protocol uses nonces. Then Alice need only
keep track of those nonces for which responses are currently outstanding and
haven’t been outstanding too long; any purported response with an unrecognized
nonce must be bogus.

The beauty of challenge-response, which might otherwise seem excessively
complex, is that it combines timeliness and authentication; after all, only Bob (and
possibly Alice, if it’s a symmetric-key cipher) knows the key necessary to encrypt
the never-before-seen timestamp or nonce. Timestamps or nonces are used in
most of the authentication protocols that follow.

1.3.2 Public-Key Authentication Protocols

Both of the public-key authentication protocols we present assume that Alice and
Bob’s public keys have been predistributed to each other via some PKI (Section
1.2.1).We mean this to include the case where Alice includes her certificate in her
first message to Bob, and the case where Bob searches for a certificate about Alice
when he receives her first message.

This first protocol (Figure 1.8) relies on Alice and Bob’s clocks being synchro-
nized. Alice sends Bob a message with a timestamp and her identity in plaintext plus
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A public-key authentication protocol that depends on synchronization.
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A public-key authentication protocol that does not depend on synchronization. Alice checks
her own timestamp against her own clock, and likewise for Bob.

her digital signature. Bob uses the digital signature to authenticate the message, and
the timestamp to verify its freshness. Bob sends back a message with a timestamp
and his identity in plaintext, and a new session key encrypted (for confidentiality)
using Alice’s public key, all digitally signed. Alice can verify the authenticity and fresh-
ness of the message, so she knows she can trust the new session key. To deal with
imperfect clock synchronization, the timestamps could be augmented with nonces.
The second protocol (Figure 1.9) is similar but does not rely on clock synchro-
nization. In this protocol, Alice again sends Bob a digitally signed message with a
timestamp and her identity. Because their clocks aren’t synchronized, Bob cannot be
sure that the message is fresh. Bob sends back a digitally signed message with Alice’s
original timestamp, his own new timestamp, and his identity. Alice can verify the
freshness of Bob’s reply by comparing her current time against the timestamp that
originated with her. She then sends Bob a digitally signed message with his original
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The Needham-Schroeder authentication protocol.

timestamp and a new session key encrypted using Bob’s public key. Bob can ver-
ify the freshness of the message because the timestamp came from his clock, so he
knows he can trust the new session key. The timestamps essentially serve as conve-
nient nonces, and indeed this protocol could use nonces instead.

1.3.3 Symmetric-Key Authentication Protocols

As explained in Section 1.2.2, only in fairly small systems is it practical to predis-
tribute symmetric keys to every pair of entities. We focus here on larger systems,
where each entity would have its own master key shared only with a KDC. In this
case, symmetric-key-based authentication protocols involve three parties: Alice,
Bob, and a KDC. The end product of the authentication protocol is a session key
shared between Alice and Bob that they will use to communicate directly, without
involving the KDC.

The Needham-Schroeder authentication protocol is illustrated in Figure 1.10.
Note that the KDC doesn’t actually authenticate Alice’s initial message and doesn’t
communicate with Bob at all. Instead the KDC uses its knowledge of Alice’s and
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Bob’s master keys to construct a reply that would be useless to anyone other than
Alice (because only Alice can decrypt it), and contains the necessary ingredients
for Alice and Bob to perform the rest of the authentication protocol themselves.

The nonce in the first two messages is to assure Alice that the KDC’s reply
is fresh. The second and third messages include the new session key and Alice’s
identifier, encrypted together using Bob’s master key. It is a sort of symmetric-key
version of a public-key certificate; it is in effect a signed statement by the KDC
(because the KDC is the only entity besides Bob who knows Bob’s master key)
that the enclosed session key is owned by Alice and Bob. Although the nonce in
the last two messages is intended to assure Bob that the third message was fresh,
there is a flaw in this reasoning.

Kerberos

Kerberos is an authentication system based on the Needham-Schroeder protocol
and specialized for client-server environments. Originally developed at MIT, it is
an IETF standard and available as both open source and commercial products. We
will focus here on some of Kerberos’s interesting innovations.

Kerberos clients are human users, and users are authenticated using pass-
words. Alice’s master key, shared with the KDC, is derived from her password—if
you know the password, you can compute the key. Kerberos assumes anyone can
physically access any client machine; therefore, it is important to minimize the
exposure of Alice’s password or master key not just in the network, but also on
any machine where she logs in. Kerberos takes advantage of Needham-Schroeder
to accomplish this. In Needham-Schroeder, the only time Alice needs to use her
password is when decrypting the reply from the KDC. Kerberos client-side soft-
ware waits until the KDC’s reply arrives, prompts Alice to enter her password,
computes the master key and decrypts the KDC'’s reply, and erases all information
about the password and master key to minimize its exposure. Also note that the
only sign a user sees of Kerberos is when the user is prompted for a password.

In Needham-Schroeder, the KDC'’s reply to Alice plays two roles: It gives her the
means to prove her identity (only Alice can decrypt the reply), and it gives her a sort
of symmetric-key certificate or “ticket” to present to Bob—the session key and Alice’s
identifier, encrypted with Bob’s master key. In Kerberos, those two functions—
and the KDC itself, in effect—are split up (Figure 1.11). A trusted server called
an authentication server (AS) plays the first KDC role of providing Alice with
something she can use to prove her identity—not to Bob this time, but to a sec-
ond trusted server called a ticket-granting server (TGS). The TGS plays the second
KDC role, replying to Alice with a ticket she can present to Bob. The beauty of this
scheme is that if Alice needs to communicate with several servers, not just Bob, then
she can get tickets for each of them from the TGS without going back to the AS.

In the client-server application domain for which Kerberos is intended, it is
reasonable to assume a degree of clock synchronization. This allows Kerberos to
use timestamps and life spans instead of Needham-Shroeder’s nonces, and thereby
eliminate the Needham-Schroeder security weakness explored in Exercise 4.
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FIGURE 1.11
Kerberos authentication.

Kerberos supports a choice of cryptographic algorithms including the hashes SHA-
1 and MD5 and the symmetric-key ciphers AES, 3DES, and DES.

1.3.4 Diffie-Hellman Key Agreement

The Diffie-Hellman key agreement protocol establishes a session key without
using any predistributed keys. The messages exchanged between Alice and Bob
can be read by anyone able to eavesdrop, and yet the eavesdropper won’t know
the session key that Alice and Bob end up with. On the other hand, Diffie-Hellman
doesn’t authenticate the participants. Since it is rarely useful to communicate
securely without being sure whom you’re communicating with, Diffie-Hellman is
usually augmented in some way to provide authentication.

The protocol has two parameters, p and g, both of which are public and may be
used by all the users in a particular system. Parameter p must be a prime number.
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The integers mod p (short for modulo p) are 0 through p — 1, since x mod p is the
remainder after x is divided by p, and form what mathematicians call a group under
multiplication. Parameter g (usually called a generator) must be a primitive root of
p: for every number # from 1 through p — 1 there must be some value & such that
n = g¥ mod p. For example, if p were the prime number 5 (a real system would use
a much larger number), then we might choose 2 to be the generator g since:

1=2mod p
2 =2'mod p
3 = 23mod p
4 =2’mod p

Suppose Alice and Bob want to agree on a shared symmetric key. Alice and Bob,
and everyone else, already know the values of p and g. Alice generates a random
private value a and Bob generates a random private value b. Both a and b are
drawn from the set of integers {1, ..., p — 1}. Alice and Bob derive their corre-
sponding public values—the values they will send to each other unencrypted—as
follows. Alice’s public value is

gmod p
and Bob’s public value is
gP mod p
They then exchange their public values. Finally, Alice computes
g mod p = (g mod p)*mod p
and Bob computes
g" mod p = (g? mod p)’mod p.

Alice and Bob now have g*’ mod p (which is equal to g* mod p) as their shared
symmetric key.

Any eavesdropper would know p, g,and the two public values g” mod p and g°
mod p.If only the eavesdropper could determine a or b, she could easily compute
the resulting key. Determining a or b from that information is, however, compu-
tationally infeasible for suitably large p, @, and b; it is known as the discrete loga-
rithm problem.

On the other hand, there is the problem of Diffie-Hellman’s lack of authentication.
One attack that can take advantage of this is the man-in-the-middle attack. Suppose
Mallory is an adversary with the ability to intercept messages. Mallory already
knows p and g since they are public, and she generates random private values
c and d to use with Alice and Bob, respectively. When Alice and Bob send their pub-
lic values to each other, Mallory intercepts them and sends her own public values,
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A man-in-the-middle attack.

as in Figure 1.12. The result is that Alice and Bob each end up unknowingly sharing
a key with Mallory instead of each other.

A variant of Diffie-Hellman sometimes called fixed Diffie-Hellman supports
authentication of one or both participants. It relies on certificates that are similar
to public-key certificates but instead certify the Diffie-Hellman public parameters
of an entity. For example, such a certificate would state that Alice’s Diffie-Hellman
parameters are p, g, and g% mod p (note that the value of a would still be known
only to Alice). Such a certificate would assure Bob that the other participant in
Diffie-Hellman is Alice—or else the other participant won’t be able to compute
the secret key, because she won’t know a.If both participants have certificates for
their Diffie-Hellman parameters, they can authenticate each other. If just one has
a certificate, then just that one can be authenticated. This is useful in some situa-
tions; for example, when one participant is a web server and the other is an arbi-
trary client—the client can authenticate the web server and establish a session
key for confidentiality before sending a credit card number to the web server.

1.4 SECURE SYSTEMS

At this point, we have seen many of the components that are required to build a
secure system. These components include cryptographic algorithms, key predis-
tribution mechanisms, and authentication protocols. In this section we examine
some complete systems that use these components.

These systems can be roughly categorized by the protocol layer at which they
operate. Systems that operate at the application layer include Pretty Good Privacy
(PGP), which provides electronic mail security, and Secure Shell (SSH), a secure
remote login facility. At the transport layer, there is the IETF’s Transport Layer
Security (TLS) standard and the older protocol from which it derives, SSL (Secure
Socket Layer). The IPsec (IP security) protocols, as their name implies, operate at
the IP (network) layer. 802.11i provides security at the link layer of wireless net-
works. This section describes the salient features of each of these approaches.

These security protocols have the ability to vary which cryptographic algo-
rithms they use. The idea of making a security system algorithm-independent is a
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very good one, because you never know when your favorite cryptographic algo-
rithm might be proved to be insufficiently strong for your purposes. It would be
nice if you could quickly change to a new algorithm without having to change the
protocol specification or implementation.

1.4.1 Pretty Good Privacy (PGP)

Pretty Good Privacy (PGP) is a widely used approach to providing security for
electronic mail. It provides authentication, confidentiality, data integrity, and non-
repudiation. Originally devised by Phil Zimmerman, it has evolved into an IETF
standard known as OpenPGP.

PGP’s confidentiality and receiver authentication depend on the receiver hav-
ing a known public key. PGP’s sender authentication and nonrepudiation depend
on the sender having a known public key. These public keys are predistributed
using certificates and a web-of-trust PKI, as described in Section 1.2.1. PGP sup-
ports RSA and DSS for public-key certificates. These certificates may additionally
specify which cryptographic algorithms are supported or preferred by the key’s
owner.

Note that “PGP” refers to both a protocol and an application that uses the pro-
tocol. The protocol involves only a single message transmitted in one direction,
with the interesting feature being the format of that message.

When Alice has a message to email to Bob, her PGP application goes through
the steps illustrated in Figure 1.13. First, the message is digitally signed by Alice;
MD5 and SHA-1 are among the hashes that may be used in the digital signature.
Then her PGP application generates a new session key for just this one message;
AES and 3DES are among the supported symmetric-key ciphers. The digitally
signed message is encrypted using the session key. Then the session key itself,
encrypted using Bob’s public key, is appended to the message. Alice’s PGP applica-
tion reminds her of the level of trust she had previously assigned to Bob’s public
key, based on the number of certificates she has for Bob and the trustworthiness
of the individuals who signed the certificates. Finally—not for security, but to con-
form to email’s SMTP protocol—a base64 encoding is applied to the message to
convert it to an ASCII-compatible representation. Upon receiving the PGP message
in an email, Bob’s PGP application reverses this process step-by-step to obtain the
original plaintext message and confirm Alice’s digital signature—and reminds Bob
of the level of trust he has in Alice’s public key.

Email has unusual characteristics that allow PGP to embed an adequate authen-
tication protocol in this one-message data transmission protocol, avoiding the need
for any prior message exchange. Alice’s digital signature suffices to authenticate her.
Although there is no proof that the message is timely, legitimate email isn’t timely,
and the session key and the data it encrypts arrive simultaneously anyway. Although
there is no proof that the message is original, Bob is an email user and probably a
fault-tolerant human who can recover from duplicate emails. Alice can be sure that
only Bob could read the message because the session key was encrypted with his
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FIGURE 1.13
PGP’s steps to prepare a message for emailing from Alice to Bob.

public key. Although this protocol doesn’t prove to Alice that Bob is actually there
and received the email, email doesn’t guarantee delivery anyway.

1.4.2 Secure Shell (SSH)

The Secure Shell (SSH) protocol is used to provide a remote login service, and is
intended to replace the less-secure Telnet and rlogin programs used in the early
days of the Internet. (SSH can also be used to remotely execute commands and
transfer files, like the Unix rsh and rcp commands, respectively, but we will focus
on how SSH supports remote login.) SSH is most often used to provide strong
client/server authentication/message integrity—where the SSH client runs on the
user’s desktop machine and the SSH server runs on some remote machine that
the user wants to log into—but it also supports confidentiality. Telnet and rlogin
provide none of these capabilities. Note that “SSH” is used to refer to both the SSH
protocol and applications that use it.
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To better appreciate the importance of SSH on today’s Internet, consider that
a few short years ago telecommuters used dialup modems to connect their home
computers to work (or school). This meant that when they logged in, their pass-
words were sent in the clear over a phone line and the LAN at work. Sending your
password in the clear over a LAN isn’t a great idea, but at least it’s not as risky as
sending it across the Internet. Today, however, telecommuters often subscribe to
ISPs that offer high-speed cable modem or DSL service, and they go through these
ISPs to reach work.This means that when they log in, both their passwords and all
the data they send or receive potentially pass through any number of untrusted
networks. SSH provides a way to encrypt the data sent over these connections,
and to improve the strength of the authentication mechanism they use to log in.

The latest version of SSH, version 2, consists of three protocols:

m SSH-TRANS, a transport layer protocol;
m SSH-AUTH, an authentication protocol;
m SSH-CONN, a connection protocol.

We focus on the first two, which are involved in remote login. We briefly discuss
the purpose of SSH-CONN at the end of the section.

SSH-TRANS provides an encrypted channel between the client and server
machines. It runs on top of a TCP connection. Any time a user uses an SSH applica-
tion to log into a remote machine, the first step is to set up an SSH-TRANS channel
between those two machines. The two machines establish this secure channel by
first having the client authenticate the server using RSA. Once authenticated, the cli-
ent and server establish a session key that they will use to encrypt any data sent
over the channel. This high-level description skims over several details, including the
fact that the SSH-TRANS protocol includes a negotiation of the encryption algorithm
the two sides are going to use. For example, AES is commonly selected. Also, SSH-
TRANS includes a message integrity check of all data exchanged over the channel.

The one issue we can’t skim over is how the client came to possess the serv-
er’s public key that it needs to authenticate the server. Strange as it may sound, the
server tells the client its public key at connection time. The first time a client con-
nects to a particular server, the SSH application warns the user that it has never
talked to this machine before, and asks if the user wants to continue. Although it
is a risky thing to do, because SSH is effectively not able to authenticate the server,
users often say “yes” to this question. The SSH application then remembers the
server’s public key, and the next time the user connects to that same machine, it
compares this saved key with the one the server responds with. If they are the
same, SSH authenticates the server. If they are different, however, the SSH appli-
cation again warns the user that something is amiss, and the user is then given
an opportunity to abort the connection. Alternatively, the prudent user can learn
the server’s public key through some out-of-band mechanism, save it on the client
machine, and thus never take the “first time” risk.

Once the SSH-TRANS channel exists, the next step is for the user to actually
log onto the machine, or more specifically, authenticate himself to the server.
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SSH allows three different mechanisms for doing this. First, since the two
machines are communicating over a secure channel, it is OK for the user to sim-
ply send his password to the server. This is not a safe thing to do when using
Telnet since the password would be sent in the clear, but in the case of SSH, the
password is encrypted in the SSH-TRANS channel. The second mechanism uses
public-key encryption. This requires that the user has already placed his public
key on the server. The third mechanism, called host-based authentication, basi-
cally says that any user claiming to be so-and-so from a certain set of trusted hosts
is automatically believed to be that same user on the server. Host-based authenti-
cation requires that the client host authenticate itself to the server when they first
connect; standard SSH-TRANS only authenticates the server by default.

The main thing you should take away from this discussion is that SSH is a fairly
straightforward application of the protocols and algorithms we have seen through-
out this chapter. However, what sometimes makes SSH a challenge to understand is
all the keys a user has to create and manage, where the exact interface is operat-
ing system dependent. For example, the OpenSSH package that runs on most Unix
machines supports a ssh-keygen command that can be used to create public/pri-
vate key pairs. These keys are then stored in various files in directory .ssh in the
user’s home directory. For example, file ~/.ssh/known_hosts records the keys for
all the hosts the user has logged into, file ~/.ssh/authorized_keys contains the pub-
lic keys needed to authenticate the user when he logs into this machine (i.e., they are
used on the server side), and file ~/.ssh/identity contains the private keys needed
to authenticate the user on remote machines (i.e., they are used on the client side).

Finally, SSH has proven so useful as a system for securing remote login, it has
been extended to also support other insecure TCP-based applications, such as
X Windows and IMAP mail readers. The idea is to run these applications over a
secure SSH tunnel. This capability is called port forwarding and it uses the SSH-
CONN protocol. The idea is illustrated in Figure 1.14, where we see a client on

Host A Host B
Application ... Direct connection | Application
client server

Forwarded connection
SSH SSH

FIGURE 1.14
Using SSH port forwarding to secure other TCP-based applications.
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host A indirectly communicating with a server on host B by forwarding its traffic
through an SSH connection. The mechanism is called port forwarding because
when messages arrive at the well-known SSH port on the server, SSH first decrypts
the contents, and then forwards the data to the actual port at which the server is
listening.

1.4.3 Transport Layer Security (TLS, SSL, HTTPS)

To understand the design goals and requirements for the Transport Layer Security
(TLS) standard and the Secure Socket Layer (SSL) on which TLS is based, it is helpful
to consider one of the main problems that they are intended to solve. As the World
Wide Web became popular and commercial enterprises began to take an interest in
it, it became clear that some level of security would be necessary for transactions
on the Web. The canonical example of this is making purchases by credit card.
There are several issues of concern when sending your credit card information
to a computer on the Web. First, you might worry that the information would be
intercepted in transit and subsequently used to make unauthorized purchases. You
might also worry about the details of a transaction being modified, for example, to
change the purchase amount. And you would certainly like to know that the com-
puter to which you are sending your credit card information is in fact one belong-
ing to the vendor in question and not some other party. Thus, we immediately see
a need for confidentiality, integrity, and authentication in Web transactions. The first
widely used solution to this problem was SSL, originally developed by Netscape
and subsequently the basis for the IETF’s TLS standard.

The designers of SSL and TLS recognized that these problems were not specific
to Web transactions (i.e., those using HT'TP) and instead built a general-purpose
protocol that sits between an application protocol such as HTTP and a transport
protocol such as TCP. The reason for calling this “transport layer security” is that,
from the application’s perspective, this protocol layer looks just like a normal
transport protocol except for the fact that it is secure. That is, the sender can open
connections and deliver bytes for transmission, and the secure transport layer will
get them to the receiver with the necessary confidentiality, integrity, and authenti-
cation. By running the secure transport layer on top of TCP, all of the normal fea-
tures of TCP (reliability, flow control, congestion control, etc.) are also provided to
the application. This arrangement of protocol layers is depicted in Figure 1.15.

Application (e.g., HTTP)
Secure transport layer
TCP

IP
Subnet

FIGURE 1.15
Secure transport layer inserted between application and TCP layers.
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When HTTP is used in this way, it is known as HTTPS (Secure HTTP). In fact,
HTTP itself is unchanged. It simply delivers data to and accepts data from the SSL/
TLS layer rather than TCP. For convenience, a default TCP port has been assigned to
HTTPS (443). That is, if you try to connect to a server on TCP port 443, you will
likely find yourself talking to the SSL/TLS protocol, which will pass your data through
to HTTP provided all goes well with authentication and decryption. Although stand-
alone implementations of SSL/TLS are available, it is more common for an implemen-
tation to be bundled with applications that need it, primarily web browsers.

In the remainder of our discussion of transport layer security, we focus on
TLS. Although SSL and TLS are unfortunately not interoperable, they differ in only
minor ways, so nearly all of this description of TLS applies to SSL.

Handshake Protocol

A pair of TLS participants negotiate at runtime which cryptography to use. The
participants negotiate a choice of:

m Data integrity hash, MD5 or SHA, used to implement HMACs.

m Symmetric-key cipher for confidentiality. Among the possibilities are DES,
3DES, and AES.

m Session-key establishment approach. Among the possibilities are Diffie-
Hellman, fixed Diffie-Hellman, and public-key authentication protocols using
RSA or DSS.

Interestingly, the participants may also negotiate the use of a compression algo-
rithm, not because this offers any security benefits, but because it’s easy to do
when you'’re negotiating all this other stuff and you’ve already decided to do some
expensive per-byte operations on the data.

In TLS, the confidentiality cipher uses two keys, one for each direction, and
similarly two initialization vectors. The HMACs are likewise keyed with different
keys for the two participants. Thus, regardless of the choice of cipher and hash, a
TLS session requires six keys. TLS derives all of them from a single shared master
secret. The master secret is a 384-bit (48-byte) value that is in turn derived in part
from the session key that results from TLS’s session-key establishment protocol.

The part of TLS that negotiates the choices and establishes the shared master
secret is called the handshake protocol. (Actual data transfer is performed by
TLS’s record protocol.) The handshake protocol is at heart a session-key estab-
lishment protocol, with a master secret instead of a session key. TLS supports
a choice of approach to session-key establishment, ranging from public-key cer-
tificates to Diffie-Hellman. These call for correspondingly different protocols.
Furthermore, the handshake protocol supports a choice between mutual authenti-
cation of both participants, authentication of just one participant (this is the most
common case; e.g., authenticate a website but not a user), or no authentication
at all (anonymous Diffie-Hellman). Thus, the handshake protocol knits together
several session-key establishment protocols into a single protocol.
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Rather than trying to explain in detail how the handshake protocol is able to
accommodate all these variations, we describe it at a high level (Figure 1.16). The
client initially sends a list of the combinations of cryptographic algorithms that it
supports, in decreasing order of preference. The server responds giving the single
combination of cryptographic algorithms it selected from those listed by the cli-
ent. These messages also contain a client-nonce and a server-nonce, respectively,
that will be incorporated in generating the master secret later.

At this point the negotiation phase is complete. The server now sends addi-
tional messages based on the negotiated session-key establishment protocol (one
of the possibilities is anonymous Diffie-Hellman, so it wouldn’t be accurate to call
it an authentication protocol). That could involve sending a public-key certificate

Client Server

FIGURE 1.16
Handshake protocol to establish TLS session.
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or a set of Diffie-Hellman parameters. If the server requires authentication of the
client, it sends a separate message indicating that. The client then responds with
its part of the negotiated key exchange protocol.

Now the client and server each have the information necessary to generate
the master secret. The session key that they exchanged is not in fact a key, but
instead what TLS calls a premaster secret. The master secret is computed (using a
published formula incorporating both MD5 and SHA) from this premaster secret,
the client-nonce, and the server-nonce.

Using the keys derived from the master secret, the client then sends a message
that includes a hash of all the preceding handshake messages, to which the server
responds with a similar message. This enables them to detect any discrepancies
between the handshake messages they sent and received, such as would result, for
example, if a man-in-the-middle modified the initial unencrypted client message to
weaken its choices of cryptographic algorithms.

Record Protocol

Within a session established by the handshake protocol, TLS’s record protocol
adds confidentiality and integrity to the underlying transport service. Messages
handed down from the application layer are:

1. Fragmented or coalesced into blocks of a convenient size for the following
steps;

2. Optionally compressed,

3. Integrity-protected using an HMAC;

4. Encrypted using a symmetric-key cipher;

5. Passed to the transport layer (normally TCP) for transmission.

The record protocol uses an HMAC as an authenticator. The HMAC uses MD5 or
SHA-1, whichever was negotiated by the participants. The client and server have
different keys to use when computing HMACs, making them even harder to break.
Furthermore, each record protocol message is assigned a sequence number, which
is included when the HMAC is computed—even though the sequence number is
never explicit in the message. This implicit sequence number prevents replays or
reorderings of messages. This is needed because, although TCP guarantees sequen-
tial no-duplicate messages under normal assumptions, those assumptions do not
include an adversary that can intercept TCP messages and send bogus ones. On
the other hand, it is TCP’s delivery guarantees that make it possible for TLS to rely
on a legitimate TLS message having the next implicit sequence number in order.
Another interesting feature of the TLS protocol, which is quite a useful feature
for Web transactions, is the ability to “resume” a session. To understand the motiva-
tion for this, it is helpful to understand how HTTP makes use of TCP connections.
Each HTTP operation, such as getting a page of text or an image from a server,
requires a new TCP connection to be opened. Retrieving a single page with a num-
ber of embedded graphical objects might take many TCP connections. Opening a
TCP connection requires a three-way handshake before data transmission can start.
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Once the TCP connection is ready to accept data, the client would then need to
start the TLS handshake protocol, taking at least another two RTTs (and consum-
ing some amount of processing resources and network bandwidth) before actual
application data could be sent. The resumption capability of TLS alleviates this
problem.

Session resumption is an optimization of the handshake that can be used in
those cases where the client and the server have already established some shared
state in the past. The client simply includes the session ID from a previously estab-
lished session in its initial handshake message. If the server finds that it still has
state for that session, and the resumption option was negotiated when that session
was originally created, then the server can reply to the client with an indication
of success, and data transmission can begin using the algorithms and parameters
previously negotiated. If the session ID does not match any session state cached at
the server, or if resumption was not allowed for the session, then the server will
fall back to the normal handshake process.

1.4.4 IP Security (IPsec)

Easily the most ambitious of all the efforts to integrate security into the Internet
happens at the IP layer. Support for IPsec, as the architecture is called, is optional
in IPv4 but mandatory in IPvO.

IPsec is really a framework (as opposed to a single protocol or system) for
providing all the security services discussed throughout this chapter. IPsec pro-
vides three degrees of freedom. First, it is highly modular, allowing users (or more
likely, system administrators) to select from a variety of cryptographic algorithms
and specialized security protocols. Second, IPsec allows users to select from a
large menu of security properties, including access control, integrity, authenti-
cation, originality, and confidentiality. Third, IPsec can be used to protect nar-
row streams (e.g., packets belonging to a particular TCP connection being sent
between a pair of hosts) or wide streams (e.g., all packets flowing between a pair
of gateways).

When viewed from a high level, IPsec consists of two parts. The first part is
a pair of protocols that implement the available security services. They are the
Authentication Header (AH), which provides access control, connectionless mes-
sage integrity, authentication, and antireplay protection, and the Encapsulating
Security Payload (ESP), which supports these same services, plus confidentiality.
AH is rarely used so we do not discuss it further. The second part is support
for key management, which fits under an umbrella protocol known as Internet
Security Association and Key Management Protocol ISAKMP).

The abstraction that binds these two pieces together is the security associa-
tion (SA). An SA is a simplex (one-way) connection with one or more of the avail-
able security properties. Securing a bidirectional communication between a pair
of hosts—corresponding to a TCP connection, for example—requires two SAs,
one in each direction. Although IP is a connectionless protocol, security depends



1.4 Secure Systems

on connection state information such as keys and sequence numbers. When cre-
ated, an SA is assigned an ID number called a security parameters index (SPD by
the receiving machine. A combination of this SPI and the destination IP addresses
uniquely identifies an SA. ESP’s header includes the SPI so the receiving host can
determine which SA an incoming packet belongs to, and hence, what algorithms
and keys to apply to the packet.

SAs are established, negotiated, modified, and deleted using ISAKMP. It defines
packet formats for exchanging key generation and authentication data. These for-
mats aren’t terribly interesting because they provide a framework only—the exact
form of the keys and authentication data depend on the key generation technique,
the cipher, and the authentication mechanism that is used. Moreover, ISAKMP
does not specify a particular key exchange protocol, although it does suggest the
Internet Key Exchange (IKE) as one possibility, and IKE is what is used in practice.

ESP is the protocol used to securely transport data over an established SA. In
IPv4, the ESP header follows the IP header; in IPvG, it is an extension header. Its for-
mat uses both a header and a trailer, as shown in Figure 1.17. The SPI field lets the
receiving host identify the security association to which the packet belongs. The
SeqNum field protects against replay attacks. The packet’s PayloadData contains
the data described by the NextHdr field. If confidentiality is selected, then the data
is encrypted using whatever cipher was associated with the SA. The PadLength
field records how much padding was added to the data; padding is sometimes nec-
essary because, for example, the cipher requires the plaintext to be a multiple of a
certain number of bytes, or to ensure that the resulting ciphertext terminates on a
4-byte boundary. Finally, the AuthenticationData carries the authenticator.

IPsec supports a tunnel mode as well as the more straightforward trans-
port mode. Each SA operates in one or the other mode. In a transport mode SA,
ESP’s payload data is simply a message for a higher layer such as UDP or TCP. In
this mode, IPsec acts as an intermediate protocol layer, much like SSL/TLS does
between TCP and a higher layer. When an ESP message is received, its payload is
passed to the higher-level protocol.

SPI
SeqNum

PayloadData

Q Padding (0-255 bytes)

| PadLength |  NextHdr

AuthenticationData

FIGURE 1.17
|Psec’s ESP format.
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ESP payload

IP header, dest=a.b.c.d | ESP header | inner IP packet, destination=w.x.y.z | ESP trailer |

FIGURE 1.18

An IP packet with a nested IP packet encapsulated using ESP in tunnel mode. Note that the
inner and outer packets have different addresses.

In a tunnel mode SA, however, ESP’s payload data is itself an IP packet, as in
Figure 1.18.The source and destination of this inner IP packet may be different
from those of the outer IP packet. When an ESP message is received, its payload
is forwarded on as a normal IP packet. The most common way to use the ESP
is to build an IPsec tunnel between two routers, typically firewalls. For example,
a corporation wanting to link two sites using the Internet could open a pair of
tunnel-mode SAs between a router at one site and a router at the other site. An
IP packet outgoing from one site would, at the outgoing router, become the pay-
load of an ESP message sent to the other site’s router. The receiving router would
unwrap the payload IP packet and forward it on to its true destination.

These tunnels may also be configured to use ESP with confidentiality and
authentication, thus preventing unauthorized access to the data that traverses this
virtual link and ensuring that no spurious data is received at the far end of the
tunnel. Furthermore, tunnels can provide traffic confidentiality, since multiplex-
ing multiple flows through a single tunnel obscures information about how much
traffic is flowing between particular endpoints. A network of such tunnels can be
used to implement an entire virtual private network (VPN). Hosts communicating
over a VPN need not even be aware that it exists.

1.4.5 Wireless Security (802.11i)

Wireless links are particularly exposed to security threats due to the lack
of any physical security. The IEEE 802.11i standard provides authentica-
tion, message integrity, and confidentiality to 802.11 (Wi-Fi) at the link layer.
Wi-Fi Protected Access 2 (WPA2) is often used as a synonym for 802.11i, although
it is technically a trademark of The Wi-Fi Alliance that certifies product compliance
with 802.11i.

For backward compatibility, 802.11i includes definitions of first-generation secu-
rity algorithms—Wired Equivalent Privacy (WEP) and 802.11 entity authentication—
that are now known to have major security flaws. We will focus here on 802.11i’s
newetr, stronger algorithms.

802.11i authentication supports two modes. In either mode, the end result
of successful authentication is a shared pairwise master key. Personal mode,
also known as pre-shared key (PSK) mode, provides weaker security but is
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FIGURE 1.19
Use of an authentication server in 802.11i.

more convenient and economical for situations like a home 802.11 network.The
wireless device and the access point (AP) are preconfigured with a shared pass-
phrase—essentially a very long password—from which the pairwise master key is
cryptographically derived.

802.11i’s stronger authentication mode is based on the IEEE 802.1X frame-
work for controlling access to a LAN, which uses an authentication server (AS), as
in Figure 1.19.The AS and AP must be connected by a secure channel and could
even share the same host.The AP forwards authentication messages between the
wireless device and the AS.The protocol used for authentication is the Extensible
Authentication Protocol (EAP). EAP is designed to support multiple authentication
methods—smart cards, Kerberos, one-time passwords, public-key authentication,
and so on—as well as both one-sided and mutual authentication. So EAP is better
thought of as an authentication framework than a protocol. Specific EAP-compli-
ant protocols, of which there are many, are called EAP methods. For example, EAP-
TLS is an EAP method based on TLS authentication. 802.11i does not place any
restrictions on what the EAP method can use as a basis for authentication. It does,
however, require an EAP method that performs mutual authentication because
not only do we want to prevent an adversary accessing the network via our
AP, we also want to prevent an adversary fooling our wireless devices with a
bogus, malicious AP. The end result of a successful authentication is a pairwise
master key shared between the wireless device and the AS, which the AS then
conveys to the AP.

With a pairwise master key in hand, the wireless device and the AP execute a
session-key establishment protocol called the 4-way handshake to establish a pair-
wise transient key. This pairwise transient key is really a collection of keys that
includes a session key called a temporal key. This session key is used by the pro-
tocol, called CCMP, that provides 802.11i’s data confidentiality and integrity.
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CCMP stands for CTR (counter mode) with CBC-MAC (Cipher-Block Chaining
with Message Authentication Code) protocol. CCMP uses AES in counter mode
to encrypt for confidentiality. Recall that in counter-mode encryption, successive
values of a counter are incorporated into the encryption of successive blocks of
plaintext (Section 1.1.1).

CCMP uses a message authentication code (MAC) as an authenticator. The MAC
algorithm is based on CBC (Section 1.1.1), even though CCMP doesn’t use CBC in
the confidentiality encryption. In effect, CBC is performed without transmitting
any of the CBC-encrypted blocks, solely so that the last CBC-encrypted block can
be used as a MAC (only its first 8 bytes are actually used). The role of initialization
vector is played by a specially constructed first block that includes a 48-bit packet
number—a sequence number. (The packet number is also incorporated in the confi-
dentiality encryption, and serves to expose replay attacks.) The MAC is subsequently
encrypted along with the plaintext in order to prevent birthday attacks, which
depend on finding different messages with the same authenticator (Section 1.1.4).

1.5 FIREWALLS

A firewall is a system that is the sole point of connectivity between the site it pro-
tects and the rest of the network, as illustrated in Figure 1.20. It is usually imple-
mented as part of a router, although a personal firewall may be implemented
on an end-user machine. Firewall-based security depends on the firewall being
the only connectivity to the site from outside; there should be no way to bypass
the firewall via other gateways, wireless connections, or dial-up connections. The
“wall” metaphor is misleading in the context of networks since it is the absence of
connectivity—not the presence of a barrier—that prevents communication. In terms
of walls, a firewall is like the only door (connection) through a wall (the absence

Firewall
L
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Random external user
FIGURE 1.20
A firewall filters packets flowing between a site and the rest of the Internet.
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of any other connection). A firewall provides access control by restricting which
messages it will relay between the site and the rest of the network; it forwards mes-
sages that are allowed, and filters out messages that are disallowed. For example, it
might filter out all incoming messages addressed to a particular IP address or to a
particular TCP port number.

In effect, a firewall divides a network into a more-trusted zone internal to the
firewall, and a less-trusted zone external to the firewall. This is useful if you do not
want external users to access a particular host or service within your site. Much
of the complexity comes from the fact that you want to allow different kinds of
access to different external users, ranging from the general public, to business
partners, to remotely located members of your organization. A firewall may also
impose restrictions on outgoing traffic, to prevent certain attacks and to limit
losses if an adversary succeeds in getting access inside the firewall.

Firewalls may be used to create multiple zones of trust, such as a hierarchy of
increasingly trusted zones. A common arrangement involves three zones of trust:
the internal network, the demilitarized zone (DMZ), and the rest of the Internet.
The DMZ is used to hold services such as DNS and email servers that need to
be accessible to the outside. Both the internal network and the outside world
can access the DMZ, but hosts in the DMZ cannot access the internal network.
Therefore, if an adversary succeeds in compromising a host in the exposed DMZ,
it still cannot access the internal network. The DMZ can be periodically restored
to a“clean” state.

Firewalls filter based on IP, TCP, and UDP information, among other things.
They are configured with a table of addresses that characterizes the packets they
will, and will not, forward. By addresses, we mean more than just the destination’s
IP address, although that is one possibility. Generally, each entry in the table is a
4-tuple: It gives the IP address and TCP (or UDP) port number for both the source
and destination.

For example, a firewall might be configured to filter out (not forward) all pack-
ets that match the following description:

<192.12.13.14,1234,128.7.6.5,80 >

This pattern says to discard all packets from port 1234 on host 192.12.13.14
addressed to port 80 on host 128.7.6.5. (Port 80 is the well-known TCP port for
HTTP) Of course it’s often not practical to name every source host whose packets
you want to filter, so the patterns can include wildcards. For example,

< **128.7.6.5,80 >

says to filter out all packets addressed to port 80 on 128.7.6.5, regardless of what
source host or port sent the packet. Notice that address patterns like these require
the firewall to make forwarding/filtering decisions based on level 4 port numbers,
in addition to level 3 host addresses. It is for this reason that network layer fire-
walls are sometimes called level 4 switches.

39



40

CHAPTER 1 Network Security Overview

In the preceding discussion, the firewall forwards everything except where
specifically instructed to filter out certain kinds of packets. A firewall could
also filter out everything unless explicitly instructed to forward it, or use a mix
of the two strategies. For example, instead of blocking access to port 80 on host
128.7.6.5, the firewall might be instructed to only allow access to port 25 (the
SMTP mail port) on a particular mail server, for example,

< *,%128.19.20.21,25 >

but to block all other traffic. Experience has shown that firewalls are very fre-
quently configured incorrectly, allowing unsafe access. Part of the problem is that
filtering rules can overlap in complex ways, making it hard for a system adminis-
trator to correctly express the filtering she intends. A design principle that maxi-
mizes security is to configure a firewall to discard all packets other than those
that are explicitly allowed.

Many client-server applications dynamically assign a port to the client. If a cli-
ent inside a firewall initiates access to an external server, the server’s response
would be addressed to the dynamically assigned port. This poses a problem: How
can a firewall be configured to allow an arbitrary server’s response packet but dis-
allow a similar packet for which there was no client request? This is not possible
with a stateless firewall, which evaluates each packet in isolation. It requires a
stateful firewall, which keeps track of the state of each connection. An incoming
packet addressed to a dynamically assigned port would then be allowed only if it
is a valid response in the current state of a connection on that port.

Modern firewalls also understand and filter based on many specific application-
level protocols such as HTTP, Telnet, or FTP. They use information specific to that
protocol, such as URLs in the case of HTTP, to decide whether to discard a message.

1.5.1 Strengths and Weaknesses of Firewalls

At best, a firewall protects a network from undesired access from the rest of the
Internet; it cannot provide security to legitimate communication between the
inside and the outside of the firewall. In contrast, the cryptography-based security
mechanisms described in this chapter are capable of providing secure communica-
tion between any participants anywhere. This being the case, why are firewalls so
common? One reason is that firewalls can be deployed unilaterally, using mature
commercial products, while cryptography-based security requires support at both
endpoints of the communication. A more fundamental reason for the dominance
of firewalls is that they encapsulate security in a centralized place, in effect factor-
ing security out of the rest of the network. A system administrator can manage the
firewall to provide security, freeing the users and applications inside the firewall
from security concerns—at least some kinds of security concerns.

Unfortunately, firewalls have serious limitations. Since a firewall does not
restrict communication between hosts that are inside the firewall, the adversary
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who does manage to run code internal to a site can access all local hosts. How
might an adversary get inside the firewall? The adversary could be a disgruntled
employee with legitimate access. Or the adversary’s software could be hidden in
some software installed from a CD or downloaded from the Web. Or an adversary
could bypass the firewall by using wireless communication or telephone dial-up
connections.

Another problem is that any parties granted access through your firewall, such
as business partners or externally located employees, become a security vulner-
ability. If their security is not as good as yours, then an adversary could penetrate
your security by penetrating their security.

Another problem for firewalls is that a service that appears safe to expose may
have a bug that makes it unsafe. A classic example is PHE a phone booklike service
that was available on many websites for looking up names and addresses. A buffer-
overflow bug in PHF made it possible for anyone to execute an arbitrary command
on the web server by using her browser to enter the command in an input field of
the PHF form. Such bugs are discovered regularly, so a system administrator has to
constantly monitor announcements of them. Administrators frequently fail to do
so, since firewall security breaches routinely exploit security flaws that have been
known for some time and have straightforward solutions.

In addition to the (unintended) bugs that may be left accessible by a firewall,
there are also what could be thought of as intended, deliberate bugs. Malware
(malicious software) is software that is designed to act on a computer in ways con-
cealed from and unwanted by the computer’s user. Viruses, worms, and spyware
are common types of malware. (“Virus” is sometimes used synonymously with mal-
ware, but we will use it in the narrower sense in which it refers to only a particular
kind of malware.) Like buggy software, malware code need not be natively execut-
able object code; it could as well be interpreted code such as a script or an execut-
able macro such as those used by Microsoft Word.

Viruses and worms are characterized by the ability to make and spread cop-
ies of themselves; the difference between them is that a worm is a complete pro-
gram, while a virus is a bit of code that is inserted (and inserts copies of itself) into
another piece of software, so that it is executed as part of the execution of that
piece of software.Viruses and worms typically cause problems such as consuming
network bandwidth as mere side effects of attempting to spread copies of them-
selves. Even worse, they can also deliberately damage a system or undermine its
security in various ways. They could, for example, install a backdoor, which is soft-
ware that allows remote access to the system without the normal authentication.
This could lead to a firewall exposing a service that should be providing its own
authentication procedures but has been undermined by a backdoor.

Spyware is software that, without authorization, collects and transmits private
information about a computer system or its users. Usually spyware is secretly
embedded in an otherwise useful program, and is spread by users deliberately
installing copies. The problem for firewalls is that the transmission of the private
information looks like legitimate communication.
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A natural question to ask is whether firewalls (or cryptographic security) could
keep malware out of a system in the first place. Most malware is indeed transmitted
via networks, although it may also be transmitted via portable storage devices such
as CDs and memory sticks. One of the two approaches used by antimalware appli-
cations is to observe programs for suspicious behavior as they execute—clearly
not feasible for a firewall that is not on the end-user machine. The other approach
is searching for segments of code from known malware, an approach already lim-
ited by the ability of clever malware to tweak its representation in various ways.
The main problem with implementing this approach in a firewall is the impact on
network performance. Cryptographic security cannot eliminate the problem either,
although it does provide a means to authenticate the originator of a piece of soft-
ware and detect any tampering, such as when a virus inserts a copy of itself.

1.6 CONCLUSION

Networks such as the Internet are shared by parties with conflicting interests. The
job of network security is to keep them from spying on or interfering with each
other’s use of the network. Confidentiality is achieved by encrypting messages.
Data integrity can be assured using cryptographic hashing. The two techniques
can be combined to guarantee authenticity of messages.

Symmetric-key ciphers such as AES and 3DES use the same secret key for
both encryption and decryption, so sender and receiver must share the same key.
Public-key ciphers such as RSA use a public key for encryption, and a secret, pri-
vate key for decryption, so any party can use the public key to encrypt a message
so that it is readable only by the holder of the private key. The fastest technique
known for breaking established ciphers such as AES and RSA is brute-force search
of the space of possible keys, which is made computationally infeasible by the use
of large keys. Most encryption for confidentiality uses symmetric-key ciphers due
to their vastly superior speed, while public-key ciphers are usually reserved for
authentication and session-key establishment.

An authenticator is a value attached to a message to verify the authenticity and
data integrity of the message. One way to generate an authenticator is to encrypt
a message digest that is output by a cryptographic hash function such as MD5
or SHA-1. If the message digest is encrypted using the private key of a public-
key cipher, the resulting authenticator is considered a digital signature, since the
public key can be used to verify that only the holder of the private key could
have generated it. Another kind of authenticator is a message authentication code,
which is output by a hashlike function that takes a shared secret value as a param-
eter. A hashed MAC is a MAC computed by applying a cryptographic hash to the
concatenation of the plaintext message and the secret value.

A session key is used to secure a relatively short episode of communication. The
dynamic establishment of a session key depends on longer-lived predistributed keys.
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The ownership of a predistributed public key by a certain party can be attested to
by a public-key certificate that is digitally signed by a trusted party. A public-key
infrastructure is a complete scheme for certifying such bindings, and depends on a
chain or web of trust. Predistribution of keys for symmetric-key ciphers is different
because public certificates can’t be used and because symmetric-key ciphers need a
unique key for each pair of participants. A key distribution center is a trusted entity
that shares a predistributed secret key with each other participant, so that they can
use session keys, not predistributed keys, between themselves.

Authentication and session-key establishment require a protocol to assure the
timeliness and originality of messages. Timestamps or nonces are used to guaran-
tee the freshness of the messages. We saw two authentication protocols that use
public-key ciphers, one that required synchronized clocks and one that did not.
Needham-Schroeder is a protocol for authenticating two participants who each
share a master symmetric-key cipher key with a key distribution center. Kerberos
is an authentication system based on the Needham-Schroeder protocol and spe-
cialized for client-server environments. The Diffie-Hellman key agreement proto-
col establishes a session key without predistributed keys and authentication.

We discussed several systems that provide security based on these crypto-
graphic algorithms and protocols. At the application level, PGP can be used to pro-
tect email messages and SSH can be used to securely connect to a remote machine.
At the transport level, TLS can be used to protect commercial transactions on
the World Wide Web. At the network level, the IPsec architecture can be used to
secure communication among any set of hosts or gateways on the Internet.

A firewall filters the messages that pass between the site it protects and the
rest of the network. Firewalls filter based on IP, TCP, and UDP addresses, as well
as fields of some application protocols. A stateful firewall keeps track of the state
of each connection so that it can allow valid responses to be delivered to dynami-
cally assigned ports. Although firewall security has important limitations, it has the
advantage of shifting some responsibility for security from users and applications
to system administrators.

Unlike attacks on confidentiality, where an adversary is trying to gain access to
information it is not allowed to see, a denial-of-service (DoS) attack involves an
adversary trying to keep you from accessing information or resources you have
every right to access.

One well-known denial-of-service attack is called a SYN attack, named after
the TCP’s connection setup packet. In a SYN attack, a remote attacker floods your
machine with SYN packets, causing it to spend all its cycles setting up bogus TCP
connections. The key to this attack is that, unlike simply flooding a machine with
bogus data packets, each SYN packet requires nontrivial processing to determine
that it’s OK to just throw the packet away. Firewalls offer some level of protection,
in that they can be programmed to drop all packets from a known attacking host,
but it’s easy for the attacker to simply put a different source IP address in each SYN
packet.
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Another well-known DoS attack is to send a stream of “Christmas tree pack-
ets” to a router—packets with all the “lights” turned on (e.g., all known IP options
enabled). The router spends so much time processing these options that it fails to
process BGP updates.

A less well-known example illustrates how subtle a denial-of-service attack can
be. An attacker flooded an ISP’s router with IP packets carrying a serial sequence
of IP addresses. The sequence blew the router’s first-level route cache, which ulti-
mately caused the router’s processor to spend all its time building new forwarding
tables. This happened at the expense of the router responding to its neighbors’
routing probes, which caused the neighbors to believe the router was down.

Protecting against denial-of-service attacks involves three steps. The first is
to account for all resources consumed by every user (or flow). The second is to
detect when the resources consumed by a given user exceed those allowed by
some system policy. Once an attack is detected, the final step is to reclaim the
consumed resources using as few additional resources as possible; otherwise,
removal of an offending user becomes a denial-of-service attack in its own right.
Unfortunately, few of today’s systems—including both hosts and routers—accu-
rately account for all resources used in the system, let alone define a policy as to
what constitutes a denial-of-service attack.

In general, however, it is difficult to detect when a resource-usage policy has
been violated because the attacker doesn’t necessarily send a large stream of attack
packets from the same source. Instead, the attacker may bombard you with inno-
centlooking packet streams from many sources. This is known as a distributed
denial-of-service (DDoS) attack, and involves the attacker first compromising a large
set of machines (so-called zombies) and then turning all of these zombies against
you at the same time. For example, highly visible sites like CNN, Yahoo!, eBay, and
Amazon were brought down by a DDoS attack in February 2000. In the end, DDoS
attacks are problematic because it is almost impossible to distinguish between a
legitimate heavy load from many sources (i.e.,a flash crowd) and a DDoS attack.

FURTHER READING

The first two security-related papers, taken together, give a good overview of the
topic. The article by Lampson et al. contains a formal treatment of security, while the
Satyanarayanan paper gives a nice description of how a secure system is designed in
practice. The third paper gives an overview of the IPsec security architecture and is
the right place to start to fully understand the state of security in the Internet today.

Lampson, B., et al.“Authentication in Distributed Systems: Theory and Practice.” ACM Transactions
on Computer Systems, 10(4): 265-310, November 1992.

Satyanarayanan, M. “Integrating Security in a Large Distributed System.” ACM Transactions on
Computer Systems,7(3): 247-280, August 1989.

Kent, S., and K. Seo. “Security Architecture for the Internet Protocol”Request for Comments
4301, December 2005.



Further Reading

There are several good books covering the full gamut of network security. We
recommend Schneier [Sch95], Stallings [Sta03], and Kaufman et al. [KPS02].
The first two give comprehensive treatments of the topic, while the last gives
a very readable overview of the subject. The full IPsec architecture is defined
in a series of RFCs: [Ken05a], [Eas05], [MG98a], [MG98b], [MD98], [KenO5b],
[Kau05]. A book by Barrett and Silverman [BSO1] gives a thorough description
of SSH. Menezes et al. [MvOV906] is a comprehensive cryptography reference (a
copy can be freely downloaded from the URL listed below).

A discussion of the problem of recognizing and defending against denial-of-
service attacks can be found in Moore et al. [MVSO1], Spatscheck and Peterson
[SP99], and Qie et al. [QPP02]. Recent techniques used to identify the source of
attacks can be found in papers by Bellovin [Bel0O], Savage et al. [SWKAOO], and
Snoeren et al. [SPST 01]. The increasing threat of DDoS attacks is discussed by
Garber [Gar00] and Harrison [Har00], and early approaches to defending against
such attacks are reported in a paper by Park and Lee [PLO1].

Finally, we recommend the following live references:

ftp://cert.org/pub: A collection of security-related notices posted by the Computer Emergency
Response Team (CERT).

http://www.cacr.math.uwaterloo.ca/hac/: Downloadable copy of [MvOV96], a comprehen-
sive cryptography reference.
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CHAPTER

Network Attacks

2.1 INTRODUCTION

Information assurance (IA) deals with security and dependability of systems and
networks. In this chapter, we provide an overview of issues, terminology, and tech-
niques related to the security of the network. Network security comprises of ongo-
ing activities that (a) assess the network for its current state of security, (b) have
in place protection and prevention mechanisms against security threats, (¢) imple-
ment detection mechanisms to rapidly identify security attacks that may have been
successful, and (d) have policies, procedures, and techniques in place to respond to
attacks.We discuss these aspects in a succinct manner in this chapter. In Section 2.2,
we describe the network communications and how they are vulnerable to security
attacks and provide a brief overview of security services. Section 2.3 is devoted to
mechanisms that are used to protect networks from security threats or prevent suc-
cessful attacks and here we discuss firewalls and cryptographic protocols. Intrusion
detection is examined in Section 2.4 and response mechanisms are considered in
Section 2.5.

2.2 NETWORK ATTACKS AND SECURITY ISSUES

In this section, we provide a very brief overview of communications across net-
works and discuss some specific attacks that illustrate how security is impacted in
networks.

2.2.1 Network Communications

It is instructive to examine, at a very high level, how two hosts on the Internet
usually make connections to one another to understand how attacks occur over
the network. However, our goal here is not to explain protocols from a communi-
cations perspective (such as performance, reliability, and so on) or explore their
details. Please note that what is described below corresponds only to a typical
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scenario and there are exceptions and many different possible variations for com-
munications across the Internet.

Let us suppose that a client application on host A on network P wishes to con-
nect to a server application on host B on network Q.The client and server appli-
cations run as processes on the respective hosts. The client application creates
data that is sent down the protocol stack to the transport layer. The transport
layer adds information to this data in a structured manner creating a segment that
is passed down to the network layer.The transmission control protocol (TCP) and
the user datagram protocol (UDP) are two common transport layer protocols.The
transport layer segment forms the payload of a network layer packet or datagram
usually carried by the Internet protocol (IP). The IP datagram is further carried
by a link or medium access control (MAC) layer protocol in a frame on each link
between host A and host B (examples are Ethernet and WiFi). Each link may have
its own physical layer-dependent transmission mechanisms.

At the transport layer, a port number will identify the process in host A; let us
denote this port number as P,. Host A will have an IP address that belongs to net-
work P; let us denote this as IP,.The tuple <P,, IP,>, which is sometimes called
a socket, is a globally unique identifier of the client process that intends to com-
municate with the server process. Similarly, the server process will be associated
with a port number Py and an IP address IPg. A connection between the client
and server can thus be uniquely identified through the tuple <P,, IP,, Py, IPg>.
The transport layer segment consists of a header containing the source port P,
and the destination port Pg. The IP datagram has a header that contains the source
IP address IP, and the destination IP address IPg.

Network interface cards only recognize the MAC address. When the network
interface card in host A creates a MAC frame on the physical medium of network P,
it typically uses a 48-bit source MAC address and a 48-bit destination MAC address.
Obviously, host B is on a different network, possibly using a different link and phys-
ical layer. Thus, the destination MAC address does not belong to host B, but instead
to a gateway or router that connects network P to other networks or the Internet.
The IP address of the gateway is either manually installed in host A or host A finds
this information using a dynamic bost configuration protocol (DHCP). DHCP
is also used to dynamically assign IP addresses to hosts in a network. However,
knowledge of simply the IP address of the gateway does not suffice since the MAC
address is necessary for the frame to be received by the gateway. A mapping of
the IP address to the MAC address can be obtained using the address resolution
protocol (ARP). Similarly, when a frame arrives at the gateway from the Internet to
the host on the network Q, the gateway will have to use the ARP to determine the
MAC address of the destination host. The gateway is responsible for routing the
IP datagram in the received MAC frame to another router in the Internet, which
forms a node on one of the available paths to the destination network Q. Such
paths are determined using routing information through routing protocols like the
routing information protocol (RIP), open shortest path first (OSPF), and border
gateway protocol (BGP).
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How does the application process on host A know the IP address of host B?
Usually, the IP address is not known, instead a domain name such as “www.cnn
.com” that is human friendly is used in the application. It is necessary for host A to
use the domain name service (DNS) to determine the IP address of host B.This
has to happen prior to the actual data being sent in an IP packet to host B. Each
network has a local name server that is known to every host in that network (pos-
sibly through DHCP). Host A contacts the local name server when the application
process in host A desires to send a packet to host B with information about host
B (say “www.cnn.com”). If the local name server has cached information about
the IP address of host B, it provides that information to host A immediately. If not,
it contacts a root name server (there are only 13 of these worldwide). The root
name servers have information about authoritative name servers that in turn have
information related to hosts on their networks. In the above example, the root
name server may provide the local name server of network P, the IP address of the
authoritative name server for network Q.The local name server of network P then
contacts the authoritative name server of network Q to obtain the IP address of
host B.Then the IP address is forwarded to host A.

Now suppose that host A was successful in finding the IP address of host B
using DNS.The application process in host A with port number P, sends data to a
process in host B with port number Pz. How did the process in host A know the
port number Pg? Standard applications have standard port numbers. For example,
a web server usually employs the port number 80, a telnet server uses 23, a web
server running the secure sockets layer (SSL) uses 443, the simple mail transport
protocol (SMTP) uses 25, and so on. Port numbers may also be changed after ini-
tial contact as in the case of protocols like the file transfer protocol (FIP) or appli-
cations like Skype. Although port numbers for standard services are well known,
this does not automatically imply that such services are not available at other port
numbers. For instance, it is quite possible to run a web server at a port number
other than 80.

Services on servers “listen” for initial contact from clients at the standard port
numbers.These are what we call “open” ports. When a packet from host A arrives
at host B, it is sent up the protocol stack to the transport layer where the server
that is listening at port number Py receives the application data in the trans-
port layer segment. The server processes the data appropriately and responds
to the client at port number P, which is known because of the initial received
packet.

Figure 2.1 shows a very simplified view of some of the many protocols and
applications that are common in networked communications today. It is to be
noted that this is just a very small fraction of the protocols and applications in
use. Each of these protocols could perhaps create security problems because they
are capable of being abused by malicious entities in ways in which they were not
anticipated to be used.

Security problems occur for a variety of reasons, but one common reason is that
servers listening at known ports have bugs in their implementation (e.g., buffer
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FIGURE 2.1

Simplified view of the many protocols that impact network communications.

overflows). For example, it is possible for a malicious entity (we will refer to a
malicious entity—a human, a criminal organization, or software—as Oscar in this
chapter) to craft packets that can be sent to buggy services. When a service is
compromised, it can enable Oscar to take control over the host.This means Oscar
can perhaps install malicious software on the host, use the host to launch other
malicious packets, steal files that are stored on the host or on other hosts on the

network that trust the compromised host, and so on as described in the following
examples.

2.2.2 Some Example Security Attacks

The emergence of very large cyber-crime operations has moved network security
attacks from the realm of hobbyists to criminal organizations, making them more
dangerous with potential for great economic harm. In this section, we discuss
some specific security attacks that will lead us to a general discussion of security
attacks and security services in the next section. We do not provide an exhaus-
tive list of attacks but have picked a few for illustration. The web site of US-CERT
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(United States Computer Emergency Readiness Team) [1] is a good source for past
and recent vulnerabilities and security incidents.

TCP SYN Flood Attack

As mentioned earlier, TCP is the most common transport layer protocol. It is used
by many application layer protocols like the HyperText Transfer Protocol (HTTP)
and FTP. TCP was designed to provide reliable service on top of the unreliable net-
work layer provided by IP. So among other things, TCP is connection oriented and
it carefully maintains buffers, windows, and other resources to count segments
and track lost segments. When host A wants to connect to host B, a “three-way”
handshake occurs to set up the connection. First, host A sends a TCP segment with
a SYN flag set (this is one of six flags used for synchronization—bits—in TCP for
indicating information). Host B acknowledges the SYN segment with its own TCP
segment with the SYN flag and ACK flag (used to acknowledge the receipt of the
SYN packet) set. Host A completes the handshake with a TCP segment with the
ACK flag set.Then data transfer begins. Whenever a server receives a SYN segment
from a client, it sets aside some resources (e.g., memory) anticipating a completed
handshake and subsequent data transfer. As there are limited resources at a server,
only a set number of connections can be accepted. Other requests are dropped.
Oscar can make use of this “feature” to deny services to legitimate hosts by send-
ing a flood of crafted SYN segments to a server with possibly spoofed source IP
addresses.The server responds with SYN-ACK segments and waits for completion
of the handshake, which never happens. Meanwhile, legitimate requests for con-
nection are dropped. Such an attack is called a SYN flood attack and has been the
cause of denial of service to popular web servers in recent years. Note that Oscar
primarily makes use of a feature in a communications protocol to launch denial
of service (DoS).The absence of authentication of the source IP address makes it
difficult to block such attacks since it is hard to separate legitimate requests from
malicious requests. Similarly, Internet Control Message Protocol {CMP) and other
protocols can be used to launch floods that result in DoS. Distributed DoS (DDoS)
attacks have recently made headlines by bringing down several popular web sites
in recent years as well as launching attacks on root DNS servers. A taxonomy of
DDosS attacks is available in Mirkovic and Reiher [2].

Address Spoofing and Sequence Number Guessing Attacks

Several services use the IP address or host name to provide access to the ser-
vice. As discussed previously, it is very easy for Oscar to craft packets. Spoofing IP
addresses is as trivial as spoofing host names.There have been instances of attacks
where root access to certain hosts has been obtained by sending crafted pack-
ets with spoofed IP addresses. In many of the attacks, it is not sufficient to spoof
IP addresses; it is also necessary to guess sequence numbers (of other protocols
carried in the IP packet as payload such as TCP or DNS). For example, we previ-
ously discussed the TCP three-way handshake. As part of the handshake, both the
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client and the server use initial sequence numbers that are incremented in the cor-
responding acknowledgments. If the IP address is spoofed and Oscar wishes to
fool the server into believing that a legitimate client has connected with it, Oscar
needs to “guess” the sequence number generated by the server.This is because the
server’s SYN-ACK segment is delivered to an IP address that does not belong to
Oscar (and hence Oscar may not receive the response from the server).The server
sequence number is supposed to be random and difficult to guess. However,
poor implementations of TCP have allowed malicious entities to easily guess the
sequence number generated by the server. Similarly, spoofed DNS responses that
can poison the DNS cache (see the section below on pharming) can be generated
if the sequence numbers associated with DNS requests can be guessed.

Worm Attacks

Worms are self-replicating, malicious software programs that can crash hosts or
services, open trapdoors for installing keyboard sniffers, or perform other mali-
cious activity. Once a worm is installed on a host, it probes other networked hosts
for bugs or vulnerabilities in services that can be exploited.This essentially means
that the worm sends crafted packets to certain port numbers at IP addresses. If
the services listening to such port numbers are vulnerable, the worm can exploit
such vulnerabilities to install itself on such hosts. For example, in July 2001, web
servers running Microsoft’s Internet Information Server (IIS) software were dis-
covered to have a buffer overflow bug. Although a patch was issued for this bug,
not every host running IIS was patched. The Code Red (two versions) and Code
Red II worms exploited this bug and spread it rapidly across the Internet [3]. It is
estimated that Code Red infected at least 350,000 hosts.

The speed with which a worm spreads depends on the design of the worm
(e.g., the rate at which it scans for other vulnerable hosts), whether patches exist
for the vulnerability exploited by the worm, the number of hosts running the vul-
nerable software, and the clean-up rate [4]. The way worms find other hosts to
exploit can also influence their spread. Many early worms would randomly pick IP
addresses to probe for vulnerabilities. This, however, meant that many IP addresses
would either not belong to hosts that existed or to hosts that did not run the
vulnerable service or operating system, thereby limiting the spread of the worm.
Others had a hard-coded sequence of IP addresses that would be probed. This
meant that infected hosts would likely probe other infected hosts first.

Recent worms are intelligent—they look for “neighboring” IP addresses first.
Some worms use Internet search engines to discover vulnerable hosts. However,
most search engines present the same set of results for a query, thereby reducing
the set of hosts scanned for vulnerabilities. The most rapidly spreading worms use
email and entries in the address books of infected hosts to reach a variety of legiti-
mate and potentially vulnerable hosts. In the past, exploits for vulnerabilities would
not appear quickly, but it is common to see so-called “zero-day” exploits today.
A zero-day exploit, for instance, can result in a worm that can be released on the same
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day that a vulnerability is discovered in a service.This makes it almost impossible to
patch the exploit in time, enabling the worm to spread extremely rapidly.

Phishing, Evil Twins, and Pharming

Phishing is an example of a social engineering security attack where legitimate
users are fooled into revealing information such as logins, passwords, credit card
numbers, and so on by making them visit web sites that look like legitimate sites,
but are actually fake ones run by criminal organizations. Legitimate users can visit
such sites, for instance, by clicking on links that appear in emails that look legiti-
mate. Most phishing attacks target financial organizations like banks or e-com-
merce sites like Paypal or eBay.

Recently, a special form of phishing attacks, called “evil twins,” has appeared
whereby WiFi access points are placed in areas (e.g., hot spots like coffee shops
or hotels) close to where legitimate service is being provided by some service
provider. When a legitimate user tries to connect to such access points placed by
Oscar, a web page, similar to ones displayed by legitimate service providers, is dis-
played. It is common for subscribers to enter credit card and other sensitive infor-
mation on these web pages, enabling Oscar to steal such information.

Pharming is a more dangerous security attack. As described previously, DNS is
used to discover IP addresses associated with domain names. In the case of pharm-
ing, DNS caches can be poisoned with fake entries so that a user sees a fake web
site even if a legitimate URL is typed in the browser. DNS cache poisoning is pos-
sible when name servers use vulnerable versions of software that can be exploited
with unsolicited DNS responses. Once again, the impact is similar to phishing
attacks where a legitimate user will reveal sensitive information to the criminals.

2.2.3 Security Attacks, Services, and Architecture

In the previous section, we have seen some examples of security attacks, such as
denial of service, session hijacking, worms, and social engineering. One way of
classifying security attacks is to consider their nature—whether they are passive
or active. In the case of passive attacks, Oscar does not interfere with the informa-
tion flow or storage (e.g., eavesdropping), making such attacks hard to discover.
It is important to prevent such attacks. Active attacks (such as masquerading)
involve interference and participation by Oscar. As they are hard to prevent, they
must be detected and stopped as rapidly as possible.

Security attacks can be of many types: eavesdropping (interception) on infor-
mation and revealing such information; interrupting the flow or availability of
information; masquerading as a legitimate entity to access services, information,
or resources; and fabricating information with the aim of causing damage are
all different security attacks. Security attacks usually do not occur in one shot.
Oscar typically first engages in mapping out the victim’s network, resources, IP
addresses, open services, and so on.This is sometimes called reconnaissance, and
Oscar may try to get information that appears to be harmless if revealed, but may
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impact security later. This is followed up by exploitation of vulnerabilities, theft of
information, taking over of hosts, and so on. An excellent treatment of the secu-
rity attack process is available in Bejtlich [5].

The common security services to protect against security attacks as defined in
the literature are confidentiality, authentication, integrity, nonrepudiation, and
availability [6]. Confidentiality implies that information or data is kept secret
from unauthorized entities, specifically Oscar. In the case of authentication, it is
necessary for communicating parties to (a) ensure at the start of communications
that they are communicating with who they think they are communicating with,
that is, Oscar should not fool an honest Alice into thinking that she is communicat-
ing with an honest Bob, and (b) ensure that after communications have been estab-
lished and verified to be between legitimate parties, that Oscar does not hijack the
communications session and interpose himself as one of the legitimate parties.The
second part of authentication is often called message authentication and it is com-
bined with integrity. In such a case, once legitimate communications have been
established, it is necessary to ensure that any messages exchanged have not been
modified, fabricated, reordered, replayed, or deleted. Nonrepudiation refers to a
security service where once a person has sent a message, he or she cannot deny
having created the message. Availability refers to a security service that ensures
that services are made available to an authorized person in a timely manner.

Note that all security services may not be present all the time, and differ-
ent protocols and applications support different subsets of security services.
Sometimes architectural methods (using firewalls, screened subnets, and demilita-
rized zones) are necessary for ensuring some of the security services (e.g., confi-
dentiality or availability).

2.3 PROTECTION AND PREVENTION

In this section, we consider security mechanisms for protection against and pre-
vention of security attacks. We consider firewalls and perimeter security in Section
2.3.1 and cryptographic protocols in Section 2.3.2.The interested reader is referred
to Northcutt et al. [7] and Cheswick et al. [8] for more details on firewalls. A good
reference that considers cryptography and cryptographic protocols is Stinson [9].

2.3.1 Firewalls and Perimeter Security

To block malicious packets from entering a network, it is common to employ fire-
walls. Firewalls in olden days referred to thick walls of brick constructed especially
for preventing the spread of fires from one building to another. Firewalls today
refer to hardware, software, and policies to prevent the spread of security attacks
into an organization’s (or individual’s) network or host. As discussed previously
in Section 2.2, attacks of many kinds occur due to maliciously crafted packets that
arrive at the target network. If such packets can be identified and discarded, they



2.3 Protection and Prevention

Y

Drop
Firewall

FIGURE 2.2
Schematic of a firewall.

will no longer be a threat to the security of the network. This is in essence the
idea behind firewalls. However, it is not trivial to efficiently identify such pack-
ets correctly all the time. As shown in Figure 2.2, the firewall sits between the
“inside” and the “outside.” The inside is usually what needs to be protected. The
term firewall can mean many things today, from a simple packet filter to a com-
plex intrusion prevention system that is capable of examining a series of packets
and reconstructing sessions for comparison with known attack signatures.

A packet filter is the simplest type of firewall. It filters incoming or outgo-
ing packets based on rules created manually by the administrator of a network.
Packet filters usually have a default “drop” policy. This means that if a packet does
not satisfy any of the rules that allow it into the inside, it is dropped. Each packet
is considered independently without consideration of previous or future packets,
making packet filters fast and capable of handling high data rates.The simpler the
rules are, the faster the filtering and the smaller the performance hit. Cisco’s stan-
dard access control lists (ACLs) filter packets based solely on source IP addresses.
In this case, it is easy to filter packets with source IP addresses that are obviously
spoofed or other packets from sources that are not expected to communicate
with the inside. Examples are IP packets that arrive from the outside with non-
routable source IP addresses, loopback IP addresses, or IP addresses that belong to
hosts on the inside. However, standard ACLs cannot block packets to specific hosts
on the inside or packets that correspond to specific protocols. The extended ACL
from Cisco allows a packet filter to look at source and destination IP addresses,
TCP or UDP port numbers, and TCP flags and make decisions on whether or not a
packet should be allowed into the inside. Other firewall software (e.g., IPTables in
Linux) and hardware have equivalent access control lists for filtering packets.

The rules in the packet filter are considered in strict order creating potential
for configuration errors as the list of rules grows in size. One way of overcoming
this problem is to use so-called dynamic packet filters or stateful firewalls. Dynamic
packet filters build rules on the fly. The assumption is that hosts on the inside are
to be trusted. When they send packets to open connections with hosts on the out-
side, a stateful firewall builds a rule on the fly that allows packets from the specific
external host (and port number at that host) to the specific internal host (and the
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port number at this host). The rule is deleted when the connection is terminated.
This reduces the number of hard-coded rules and makes it difficult for Oscar to
guess what packets may make it through a firewall.

Packet filters can still be fooled through a variety of loopholes that exist (e.g.,
by sending fragmented packets). In order to determine whether or not packets
are legitimate, it is often necessary to look at the application payload. Sometimes it
is even necessary to reconstruct the application data.This is possible if proxy fire-
walls are used. Proxy firewalls consist of hardened hosts (usually dual-homed) that
run reduced modules of certain applications. When an internal host makes a con-
nection to the outside, it really makes a connection (say, TCP) with the proxy fire-
wall. The proxy then makes a connection to the external host.Thus, there are two
connections that exist. External hosts only see the proxy firewall. They are not
even aware of the existence of other internal hosts. When packets are returned,
they make their way up the protocol stack where the application (with reduced
features) reconstructs the data. If the data is legitimate, it is forwarded to the inter-
nal host. Moreover, Oscar can gain very little knowledge during reconnaissance
because internal hosts are not visible to the outside world. However, proxy fire-
walls create performance bottlenecks.They also do not support a variety of appli-
cations, often frustrating legitimate network communications.

Architectural approaches can approximate the benefits of proxy firewalls, and yet
keep performance levels reasonable. One common approach is to screen the inside
from the outside by using one or more packet filters. In Figure 2.3, for example,
packet filter A allows packets (from most legitimate hosts on the outside) through
interface p to reach either the web server or the mail server. As almost anyone can
reach these servers, this is called a demilitarized zone (DMZ).If it is also a router, it
does not advertise the existence of the inside network to the outside world. Similarly,
packet filter B allows packets from either the web server or the mail server to the
inside through interface . Thus, the inside network is screened from the outside.

Note that packet filters can also be used to stop packets from the inside from
going out (e.g., through interfaces s and g in Figure 2.3).This may be necessary if

- - q s . ™ ~
, Outside 4 P & 34— DmZ r/.‘ﬂ—s—, Inside

N’ Packet Packet '
Filter B

Filter A

Web Mail
Server Server

FIGURE 2.3
Schematic of a screened subnet and demilitarized zone.
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hosts on the inside have been compromised and are launching attacks, or hosts
are trying to access services not allowed by corporate policy.

Nowadays, firewalls are more than simple packet filters. They can maintain state,
do load balancing (if multiple firewalls are used), do some inspection of application
payloads, detect attacks based on known signatures, maintain logs useful for foren-
sics or analysis, and also act as endpoints for connectivity to mobile users who
need to connect to the inside from the outside. For example, firewalls can now be
the terminating points for virtual private network (VPN) connections using IPSec
or SSL, which make use of cryptography to prevent outsiders from connecting to
the inside or monitoring connections made by mobile employees.We discuss cryp-
tographic protocols next.

2.3.2 Cryptographic Potocols

Security services such as confidentiality and integrity can be provided to com-
munication protocols using cryptography. In this section, we provide a brief over-
view of the important topics in cryptography and cryptographic protocols. More
details can be found in Stallings [6], Cheswick et al. [8], and Kaufmann [10].
Cryptographic protocols make use of cryptographic primitives that are used to
provide the required security services. A classification of such primitives is shown in
Figure 2.4. Cryptology is the broad discipline that includes the science of designing

Cryptology
Protocols
Cryptography Cryptanalysis
Secret .
No key key Public key
Hash Block Stream Integer Discrete
functions cipher cipher factorization logarithms

MACS or Digital

MICs signatures
FIGURE 2.4

Classification of cryptographic primitives.
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ciphers (cryptography) and that of breaking ciphers (cryptanalysis). Data that is
encrypted is called “plaintext” and the result of encryption is called “ciphertext.”
Ciphers or encryption algorithms can be classified into secret key and public key
categories.

In the case of secret key encryption, two honest parties, say Alice and Bob,
share a secret key k& that is used with an encryption algorithm. Both encryption
and decryption make use of the same key k& and both parties have knowledge
of the key. Secret key algorithms can further be classified into block ciphers and
stream ciphers. Block ciphers encrypt “blocks” of data (e.g., 64, 128, or 256 bits) at
a time. Each block is encrypted with the same key. Common block ciphers include
the Advanced Encryption Standard (AES), Blowfish, and CAST. Stream ciphers use
the key & to generate a key stream.The key stream is XORed with the data stream
to create the ciphertext. At the receiver, the same key stream is generated and
XORed with the ciphertext to obtain the data. Block ciphers can be used to create
key streams through standard modes of operation [6,9]. RC4 is a common stream
cipher that is not derived from a block cipher. It is recommended that the key size
for good security with block or stream ciphers should be at least 128 bits today. It
is common to assume that everyone, including Oscar, knows the encryption algo-
rithms, but the key is secret and known only to honest communicating parties, in
this case, Alice and Bob.

Public key encryption is based on the property that given a pair of related
information, one part of the information can be revealed. However, the other part
of the information cannot be discovered even with knowledge of the first part.
For example, if some large prime numbers are randomly selected and multiplied,
revealing the product does not enable others to guess or calculate the prime num-
bers that are factors of the product.This property is used in RSA.The information
that is revealed is called the “public key” and the information kept secret is called
the “private key”To encrypt information, the public key is used.To decrypt infor-
mation, the private key is used. Another mathematical technique used for pub-
lic key encryption is based on discrete logarithms. Because of the mathematical
nature of public key encryption, key sizes are typically longer for good security—
around 1,024 bits for RSA.

Public key encryption is also computationally expensive. Consequently, it
is common to use public key encryption for key establishment and digital sig-
natures. Confidentiality and integrity of bulk data are achieved using secret key
schemes. Although the public key of an honest party like Alice can be made pub-
lic, its authenticity needs to be verified since Oscar can claim to be Alice and pub-
lish his key as hers. It is common to use digital certificates signed by one of a
few trusted certification authorities to verify the authenticity of the public key
(see below for more on digital signatures). This approach is used in modern web
browsers for e-commerce applications.

We also include hash functions in the classification in Figure 2.4.They are not
strictly encryption schemes.They map any sized data to a fixed-size digest. Given
the digest, it is considered infeasible to obtain any data that maps to the digest if
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the size of the digest is at least 160 bits. Popular hash functions in use today are
MD-5 and SHA.

Block ciphers and hash functions can be used to create message authbenti-
cation codes (MACs) or message integrity checks (MICs). These are checksums
on data created using block ciphers or hash functions with a shared secret key
between the communicating parties. MACs or MICs provide message authentica-
tion and integrity. If Oscar were to fabricate a message or modify a legitimate mes-
sage, the checksum would always fail, alerting the receiver of a problem with the
received data.The Cipher Block Chaining MAC (CBC-MAC) that uses block ciphers
and keyed-hash MAC (HMAC) that employs hash functions are popular standard
implementations of MACs.

Digital signatures are like physical signatures.They attest some information and
are bound to that information. Typically this involves encrypting the hash value of
some information with the private key of a public key/private key pair. Suppose
Alice generated some data and created a digital signature of the data. Anyone can
verify the signature because decrypting the signature requires the public key,
which is available to everyone. No one except Alice can generate the signature
because she is the only one in possession of the private key. Recall that knowl-
edge of the public key does not help Oscar or others deduce the private key.

The cryptographic primitives discussed above are used in cryptographic proto-
cols, which are designed with specific security objectives in mind. Cryptographic
protocols are notoriously hard to design since they will likely have pitfalls that
are hard to detect [10]. A good example of a cryptographic protocol that fails
to meet most of its security objectives is the Wired Equivalent Privacy (WEP)
protocol used in legacy IEEE 802.11 wireless local area networks [11]. Moreover,
cryptographic primitives make use of keys shared between communicating par-
ties. Establishing secret keys between legitimate parties interested in communicat-
ing, such that Oscar does not obtain any knowledge of the keys, is not trivial and
requires cryptographic protocols. Key establishment is usually based on master
keys established with trusted third parties or public key cryptography.

Most well-designed cryptographic protocols have three phases. In the first
phase, the communicating entities identify or authenticate themselves to one
another. In some cases the entity authentication is unilateral (i.e., Alice authen-
ticates herself to Bob, but not vice versa). Entity authentication makes use of
passwords, PIN, pass phrases, biometrics, security tokens, and the like. Challenge-
response protocols that do not require an entity to reveal the password, but only
demonstrate knowledge of the password, are commonly used for entity authenti-
cation. In the second phase, or as part of the first phase, the communicating enti-
ties also establish keys for security services to be provided next. Establishment
of keys can be in two ways: key transport or distribution, where one party gener-
ates the keys (or a master key) and transports them securely to the other party,
or key agreement, where both parties exchange information used in the secure
creation of the same key at both ends. It is common for both parties to exchange
random numbers, sequence numbers, or time stamps (called nonces, or numbers
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used once) that are used as input in key generation. In the third phase, the estab-
lished keys are used to provide confidentiality (through encryption with a block
or stream cipher) and integrity (through MACs or MICs). We briefly describe some
examples in the following sections.

Kerberos

Kerberos is used for authenticating users when they access services from work-
stations, typically on a local area network. An authentication server shares a pass-
word with all users and a key with a ticket-granting server. When a user logs on to a
workstation, the workstation contacts the authentication server.The authentication
server issues a ticket to the user and also sends a key that the user will share with
the ticket-granting server.This key is encrypted with the user’s password.The work-
station will not be able to retrieve the key if the user is not legitimate. Thus, recov-
ery of the key to be shared with the ticket-granting server indirectly authenticates
the user. Note that in this phase, a key has been transported to the user as well.
Of course, this assumes that a password has been manually shared between the
user and the authentication server.The ticket itself is encrypted with a key shared
between the authentication server and the ticket-granting server. It includes, among
other things, the key that has been transported to the user. When the user desires
to access a service, the workstation presents the ticket to the ticket-granting server
and a message authentication code created using the key that was initially received
from the authentication server.This verifies the user’s legitimacy to the ticket-grant-
ing server, which then issues a key and a ticket to the workstation for use with
the requested service. A similar authentication mechanism is used with the server
providing the service. Kerberos is more complicated than what has been described
here. More details are available in Stallings [6] and Kaufmann et al. [10].

IPSec

IPSec encrypts all IP traffic between two hosts, or two networks, or combinations
of hosts with possibly different terminating points for different security services.
Keys may be manually established or a very complex protocol called Internet Key
Exchange (IKE) can be used for authenticating entities to one another and estab-
lishing keys. Keys are established as part of a unidirectional “security association”
that specifies the destination IP address, keys, encryption algorithms, and “proto-
col” to be used. “Protocol” here corresponds to one of two specific security ser-
vices provided by IPSec: Authentication Header (AH) and Encapsulated Security
Payload (ESP).In AH, a MAC is created on the entire IP packet minus the fields in
the IP header that change in transit. This enables the receiver to detect spoofed
or modified IP packets. However, the payload is in plaintext and visible to anyone
who may be capable of capturing the IP packet. ESP provides confidentiality and
integrity to the payload of the IP packet but not the header. Use of the two pro-
tocols in the above manner is called “transport mode.” It is also possible to use a
“tunnel mode” where the original IP packet is tunneled in another IP packet.This
makes the original IP packet the payload, thereby protecting it completely.
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SSL

The secure sockets layer (the latest version is called transport layer security, or TLS)
is used in web browsers to secure data transfer, especially for e-commerce appli-
cations, banking, and other confidential transactions. At a high level, the browser
is not required to be authenticated by the server (although this is possible and
optional in SSL).The user employing the web browser is authenticated using pass-
words or other techniques proprietary to the organization using the server. The
server, however, is authenticated by the browser through its digital certificate. This
provides the user some assurance that the transaction is taking place with a legiti-
mate bank or e-commerce site. Note that the use of SSL is not the assurance of
authenticity of the server since any site or any server could use SSL. It is the infor-
mation contained in the digital certificate that authenticates the server.The digital
certificate contains the public key of the server, signed by a certification authority.
The browser creates a random secret, encrypts it with the server’s public key, and
sends it to the server.This random secret, along with previously exchanged nonces,
is used to generate keys (at both the server and the browser) that are used for
encryption with block or stream ciphers (RC-4 is commonly used) and integrity
with message authentication codes.

2.4 DETECTION

Irrespective of the protection and prevention mechanisms in place, it is pos-
sible that security attacks succeed and proceed in an organization’s network. It is
extremely important to detect such attacks at the earliest onslaught so that action
can be taken to stop further damage. More details of detection mechanisms and pro-
cesses can be found in Bejtlich [5], Northcutt and Novak [12],and Amoroso [13].

Intrusion detection is the broad term used to describe the process for iden-
tifying the fact that a security attack has occurred (or is occurring). There is no
single method for identifying attacks; typically, three methods are used. In host-
based intrusion detection, audit trails, logs, deployment of suspicious code, logins,
and so on are monitored to detect the occurrence of a security attack. In network-
based intrusion detection, the packets entering the network are examined to see
if they correspond to signatures of known security attacks. Anomaly-based intru-
sion detection looks for abnormal usage of network or system resources and flags
potential problems.

Audit trail processing, used with host-based intrusion detection, is usually done
offline. Care has to be taken to ensure that logs in hosts have not been tampered
with. Logs from many hosts and systems may have to be correlated to detect attacks.
Network-based intrusion detection is in real time as packets are captured.This can
be problematic if the amount of data flowing into the network is extremely large, as
the buffering capacity may be limited and packets may be dropped by an intrusion
detection system (IDS). Using signatures of known attacks is a common technique
used for intrusion detection. However, this may miss new and unidentified attacks.
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If signatures are made too specific, security attacks may be missed resulting in false
negatives. If signatures are made too general, it is likely that some normal traffic and
activity are flagged as a security attack resulting in false positives.Thus, careful tun-
ing are often necessary to detect intrusions with low false positives or negatives.
The algorithms used for intrusion detection can be fairly complex, making use of
data mining, pattern matching, decision making, and so on.

Often, IDSs deploy sensors to probe or monitor the network or systems in
question. It is necessary to deploy sensors on either side of a firewall to get an idea
of the attacks that are being blocked. Multiple redundant sensors may be neces-
sary depending on the network topology. Sensors themselves may have to be net-
worked to correlate the collected data. Such a network may or may not be separate
from the network that is being monitored. The Internet Engineering Task Force is
working on formats for exchange of intrusion detection information.

It is possible that IDSs may themselves be subject to security attacks.There are
techniques that Oscar may employ to thwart detection by IDSs (such as fragmen-
tation, flooding, unrelated attacks). Recent trends in intrusion detection include
distributed intrusion detection where system administrators from all over the
world submit their monitored information to a service that then performs correla-
tions to detect and identify attacks.

There are several kinds of intrusion detection systems available today includ-
ing specialized appliances from vendors. SNORT is an open-source intrusion
detection system that is available for free. While evaluating an IDS, it is necessary
to consider the types of attacks that an IDS can detect, the operating systems it
supports, whether it can handle huge amounts of traffic, if it is capable of display-
ing large amounts of data in an easily understandable manner, the management
framework that it provides, and its complexity.

Today, combinations of IDSs and firewalls, called intrusion prevention systems
(IPSs), are also available. Rate-based IPSs block traffic flows if they are seen to
exceed normal rates. Signature-based IPSs block traffic when signatures of known
security attacks are detected. Such systems are part of the intrusion response
systems.

Honeypots or Internet traps are systems used to detect and divert security
attacks. Such systems look like real resources, perhaps with vulnerabilities. Their
value lies in the fact that Oscar may probe them, launch attacks against them, and
perhaps compromise some of the systems. Monitoring Oscar’s activities using hon-
eypots can help detect other attacks against real systems or design methods of
prevention.

2.5 ASSESSMENT AND RESPONSE

It is important to periodically assess the security of the network and systems in
an organization. Additionally, assessment becomes important after a security inci-
dent has been detected and a response to the attack has been put in place. In this
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section, we briefly consider elements of assessment and response. See Northcutt
et al. [7], Whitacker and Newman [14],and McNab [15] for more details.

Assessment of a network can be done using external auditors who can per-
form penetration tests (act essentially like Oscar, but not damage systems), enu-
merate the entities in the network, discover potential vulnerabilities, and verify if
the protection and prevention mechanisms (like firewalls, access control schemes,
password management) are working as they are expected. Vulnerability assess-
ment tries to identify the presence of known vulnerabilities that can be and
must be patched if patches are available. Since vulnerabilities are often operat-
ing system specific, vulnerability scanners may not pick up all vulnerabilities pres-
ent on hosts in a network. Nessus is a popular open-source vulnerability scanner.
Commercial options also exist.

Responding to security attacks when detected is also an important aspect of
security. The person in charge of a network needs to be immediately notified if
an attack is detected (possibly through redundant means of communication). The
security incident must be documented clearly. There must be processes in place
to contact vendors and other external help if necessary. Actions to mitigate the
impact of the security attack must be taken, followed by eradication of the vulner-
ability that caused the attack.An assessment of reasons as to why the attack was
successful and steps to prevent recurrence must be taken.

2.6 CONCLUSION

In this chapter, a high-level overview of network security was provided.The way
network communications take place was discussed. Example security attacks
were described. Terminology associated with security services was introduced.
Protection against attacks using firewalls and prevention mechanisms that make
use of cryptography were considered with examples of Kerberos, IPSec, and SSL.
Detection of security attacks, security assessment of networks and systems, and
response to security incidents were briefly discussed.
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CHAPTER

Security and Privacy
Architecture

Security and privacy of user, application, device, and network resources and data
are increasingly important areas of network architecture and design. Security is
integrated within all areas of the network and impacts all other functions on the
network. For the proper functioning of security within a network, it is crucial that
the relationships among security mechanisms, as well as between the security
architecture and other component architectures, be well understood.

Overlaying security onto a developed network was an acceptable approach in
the past. Today, however, security must be integrated into the network from the
beginning in order for the network to meet the needs of the users and for secu-
rity to provide adequate protection.

3.1 OBJECTIVES

In this chapter you will learn about various security mechanisms (such as physi-
cal security, protocol and application security, encryption/decryption, and perim-
eter and remote access security), how to determine the relationships both among
these mechanisms and between security and the other architectural components,
and how to develop the security architecture.

3.1.1 Preparation

To be able to understand and apply the concepts in this chapter, you should be
familiar with the basic concepts and mechanisms of security. Some recommended
sources of information include:

m Hacking Exposed: Network Security Secrets & Solutions, Third Edition, by
Stuart McClure, Joel Scambray, and George Kurtz, McGraw-Hill Osborne
Media, September 2001.

m Information Security Architecture: An Integrated Approach to Security in
the Organization, by Jan Killmeyer Tudor, Auerbach, September 2000. 65
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m Firewalls and Internet Security: Repelling the Wily Hacker, Second Edition,
by William R. Cheswick, Steven M. Bellovin, and Aviel D. Rubin, Addison-
Wesley Professional, February 2003.

m [nside Network Perimeter Security: The Definitive Guide to Firewalls,
Virtual Private Networks (VPNs), Routers, and Intrusion Detection Systems,
Second Edition, by Stephen Northcutt, Karen Fredrick, Scott Winters, Lenny
Zeltser, and Ronald W. Ritchey, New Riders Publishing, June 2005.

m Computer Security Handbook, by Seymour Bosworth and Michel Kabay,
John Wiley & Sons, April 2002.

3.2 BACKGROUND

Network security is defined here as the protection of networks and their services
from unauthorized access, modification, destruction, or disclosure. It provides assur-
ance that the network performs its critical functions correctly and that there are no
harmful side effects. Network privacy is a subset of network security, focusing on
protection of networks and their services from unauthorized access or disclosure.
This includes all user, application, device, and network data. Whenever the term net-
work security is used in this book, it includes all aspects of network privacy as well.

There are three classic security considerations: protecting the integrity, the con-
fidentiality, and the availability of network and system resources and data. These
considerations are discussed throughout this chapter and are integral to the secu-
rity architecture. Effective security and privacy combine an understanding of what
security means to each of the components of the system—users, applications,
devices, and networks—together with the planning and implementation of secu-
rity policies and mechanisms. Security in the network needs to protect network
resources from being disabled, stolen, modified, or damaged. This includes protect-
ing devices, servers, users, and system data, as well as the users’ and organization’s
privacy and image.

Attacks against the system range from seemingly innocuous unauthorized prob-
ing and use of resources to keeping authorized users from accessing resources
(denial of service), to modifying, stealing, or destroying resources.

This chapter covers how security and privacy may be determined and brought
into the network architecture and design. This is an area of great interest and rapid
expansion and change in the networking community, so we present concepts and
mechanisms that should be valid across a wide range of security requirements. We
discuss elements of security administration and various security and privacy mech-
anisms, consider how to develop a security plan, and examine requirements for
security. We also define security policies, perform risk analysis for the architecture
and design, and develop a security and privacy plan. We then discuss the security
and privacy architecture.
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3.3 DEVELOPING A SECURITY AND PRIVACY PLAN

The development of each component architecture is based on our understanding
of why that function is needed for that particular network. While one may argue
that security is always necessary, we still need to ensure that the security mecha-
nisms we incorporate into the architecture are optimal for achieving the security
goals for that network. Therefore, toward developing a security architecture, we
should answer the following questions:

1. What are we trying to solve, add, or differentiate by adding security mecha-
nisms to this network?
2. Are security mechanisms sufficient for this network?

While it is likely that some degree of security is necessary for any network, we
should have information from the threat analysis to help us decide how much
security is needed. As with the performance architecture, we want to avoid imple-
menting (security) mechanisms just because they are interesting or new.

When security mechanisms are indicated, it is best to start simple and work
toward a more complex security architecture when warranted. Simplicity may be
achieved in the security architecture by implementing security mechanisms only in
selected areas of the network (e.g., at the access or distribution [server] networks),
or by using only one or a few mechanisms, or by selecting only those mechanisms
that are easy to implement, operate, and maintain.

In developing the security architecture, you should determine what problems
your customer is trying to solve. This may be clearly stated in the problem defini-
tion, developed as part of the threat analysis, or you may need to probe further to
answer this question. Some common areas that are addressed by the security archi-
tecture include:

Which resources need to be protected

‘What problems (threats) are we protecting against

The likelihood of each problem (threat)

This information becomes part of your security and privacy plan for the net-
work. This plan should be reviewed and updated periodically to reflect the
current state of security threats to the network. Some organizations review
their security plans yearly, others more frequently, depending on their require-
ments for security.

Note that there may be groups within a network that have different security
needs. As a result, the security architecture may have different levels of security.
This equates to the security perimeters or zones introduced in the previous chap-
ter. How security zones are established is discussed later in this chapter.

Once you have determined which problems will be solved by each security
mechanism, you should then determine if these security mechanisms are sufficient
for that network. Will they completely solve the customer’s problems, or are they
only a partial solution? If they are a partial solution, are there other mechanisms that
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are available, or will be available within your project time frame? You may plan to
implement basic security mechanisms early in the project, and upgrade or add to
those mechanisms at various stages in the project.

3.4 SECURITY AND PRIVACY ADMINISTRATION

The preparation and ongoing administration of security and privacy in the net-
work are quite important to the overall success of the security architecture. Like
the requirements and flows analyses, understanding what your threats are and
how you are going to protect against them is an important first step in developing
security for your network. In this section we discuss two important components
in preparing for security: threat analysis and policies and procedures.

3.4.1 Threat Analysis

A threat analysis is a process used to determine which components of the sys-
tem need to be protected and the types of security risks (threats) they should be
protected from (Figure 3.1). This information can be used to determine strategic
locations in the network architecture and design where security can reasonably
and effectively be implemented.

A threat analysis typically consists of identifying the assets to be protected, as
well as identifying and evaluating possible threats. Assets may include, but are not
restricted to:

m User hardware (workstations/PCs)

Servers

Specialized devices

Network devices (hubs, switches, routers, OAM&P)

Software (OS, utilities, client programs)

Services (applications, IP services)

Data (local/remote, stored, archived, databases, data in-transit)

And threats may include, but are not restricted to:

m Unauthorized access to data/services/software/hardware
m Unauthorized disclosure of information

ardware Theft

Corruption

— Unauthorized Access

— Unauthorized Disclosure .
Viruses/Worms

—Denial of Service Physical Damage ——

FIGURE 3.1
Potential assets and threats to be analyzed.
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m Denial of service

m Theft of data/services/software/hardware

m Corruption of data/services/software/hardware
m Viruses, worms, Trojan horses

m Physical damage

One method to gather data about security and privacy for your environment is to
list the threats and assets on a worksheet. This threat analysis worksheet can then
be distributed to users, administration, and management, even as part of the require-
ments analysis process, to gather information about potential security problems.

An example of such a worksheet is presented in Figure 3.2. The results shown in
this worksheet were determined during the requirements analysis process and are
specific to a particular organization. Depending on the organization, the results of a
threat analysis can be quite different from those shown in Figure 3.2. For example,
a threat analysis can consist of the information and assets that need to be protected,
in terms of confidentiality, integrity, and availability. This analysis can be combined
with lists of threats that are currently out there, as well as potential vulnerabilities.

Threat analyses are by their nature subjective. One of the ways to minimize
the degree of subjectivity is to involve representatives from various groups of the
organization to participate in the analysis process. This helps to get many different

Effect/ User Network )
Likelihood Hardware Servers Devices Software | Services Data
Unauthorized Access B/A B/B C/B A/B B/C A/B

Unauthorized
Disclosure B/C B/B C/C A/B B/C A/B
Denial of Service B/B B/B B/B B/B B/B D/D
Theft A/D B/D B/D A/B C/C A/B
Corruption A/IC B/C C/C A/B D/D A/B
Viruses B/B B/B B/B B/B B/C D/D
Physical Damage A/D B/C C/IC D/D D/D D/D
Effect: Likelihood:
A: Destructive B: Disabling A: Certain  B: Likely
C: Disruptive  D: No Impact C: Unlikely D: Impossible
FIGURE 3.2

An example of a threat analysis worksheet for a specific organization.
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perspectives into the analysis. It is also recommended that you review your threat
analysis periodically, such as annually, to identify changes in your environment. As
an organization grows and changes, and as the outside world changes, the degrees
and types of threats to that organization will also change. A periodic threat analysis
ensures that new threats are included and shows where new security mechanisms
may be applied to the network. Along with this, a periodic review of security poli-
cies and procedures is also recommended. Subsequent reviews may highlight pre-
viously overlooked areas in the network, system, and environment.

3.4.2 Policies and Procedures

There are many trade-offs in security and privacy (as with all other architectural
components), and it can be a two-edged sword. Sometimes security is confused
with control over users and their actions. This confusion occurs when rules, regu-
lations, and security guardians are placed above the goals and work that the organi-
zation is trying to accomplish. The road toward implementing security starts with
an awareness and understanding of the possible security weaknesses in the net-
work and then leads to the removal of these weaknesses. Weaknesses can generally
be found in the areas of system and application software, the ways that security
mechanisms are implemented, and in how users do their work. This last area is
where educating users can be most beneficial.

Security policies and procedures are formal statements on rules for system, net-
work, and information access and use, in order to minimize exposure to security
threats. They define and document how the system can be used with minimal security
risk. Importantly, they can also clarify fo users what the security threats are, what can
be done to reduce such risks, and the consequences of not helping to reduce them.

At a high level, security policies and procedures can present an organization’s
overall security philosophy. Examples of common high-level security philosophies
are to deny specifics and accept everything else, or to accept specifics and deny
everything else, as in Figure 3.3. The term specific refers to well-defined rules about

Deny Specifics/Accept Everything Else Accept Specifics/Deny Everything Else
(Open Network) (Closed Network)
Access Access
Control List Control List
(ACL) ACL
Traffic All Other Traffic Traffic Traffic Matching
Flows Is Passed Flows ACL Is Passed
| —>
External == Internal External Internal
Network/ —L_ Network/
Internet Security Network Internet Security g Network
Device Device
Traffic Matching All Other Traffic
ACL Is Dropped Is Dropped

FIGURE 3.3

Example of security philosophies.
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who, what, and where security is applied. For example, it may be a list of specific
routes that can be accepted into this network, or users that are permitted access to
certain resources.

Security that denies specifics and accepts all else reflects an open network
philosophy, requiring a thorough understanding of potential security threats, as
these should be the specifics to be denied. It can be difficult to verify the security
implementation for this philosophy, as it is hard to define “all else.”

On the other hand, security that accepts specifics and denies all else reflects a
closed network philosophy, requiring a thorough understanding of user, applica-
tion, device, and network requirements, as these will become the specifics to be
accepted. It is easier to validate this security implementation, as there is a finite
(relatively small) set of “accepted” uses. Of the two philosophies, accept specifics/
deny all else is the more common philosophy.

When you develop security policies and procedures, remember that, in order
for them to be useful, they should be straightforward to implement for your envi-
ronment (keeping in mind who will be supporting them), enforceable, and have
clearly defined areas of responsibility.

Policies and procedures should include:

Privacy statements (monitoring, logging, and access)
Accountability statements (responsibilities, auditing)
Authentication statements (password policies, remote access)
Reporting violations (contact information, procedures)

Examples of security policies and procedures are acceptable use statements, secu-
rity incident-handling procedures, configuration-modification policies, and net-
work access control lists (ACLs). Each of these has a place in the security and
privacy plan. These policies and procedures should describe not only how net-
work resources can be accessed, used, and modified, but also why, to help users
understand the policies they are being asked to accept and work with. Incident-
handling procedures can be particularly helpful in making users aware of what to
do when a security problem arises, bringing them into the security process rather
than just subjecting them to it.

The list of areas for policies and procedures shown below can be used as a
starting point to apply to the security architecture:

User Access to the System

m Authorization of use

Authentication of identity and use of passwords

Training and acceptance of responsibility for compliance
Notices that corporate equipment is not private property
Expectations of the right to privacy

Administrator Skills and Requirements for Certification
m Superusers as well as administrators
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System Configuration and Management

m Maintenance

Virus/Trojan protection

Patching operating systems and applications

Monitoring CERT advisories for notices of hacks

Overseeing who can and cannot connect devices to the network
Managing notice screens during login or startup

Establishing what data get backed up

Establishing what data get saved off-site

Developing contingency computing plans

Determining what to do when the system is attacked

3.5 SECURITY AND PRIVACY MECHANISMS

There are several security mechanisms available today and many more on the
horizon. However, not all mechanisms are appropriate for every environment.
Each security mechanism should be evaluated for the network it is being applied
to, based on the degree of protection it provides, its impact on users’ ability to do
work, the amount of expertise required for installation and configuration, the cost
of purchasing, implementing, and operating it, and the amounts of administration
and maintenance required.

In this section we cover physical security and awareness, protocol and appli-
cation security, encryption/decryption, network perimeter security, and remote
access security.

3.5.1 Physical Security and Awareness

Physical security is the protection of devices from physical access, damage, and
theft. Devices are usually network and system hardware, such as network devices
(routers, switches, hubs, etc.), servers, and specialized devices, but can also be soft-
ware CDs, tapes, or peripheral devices. Physical security is the most basic form of
security, and the one that is most intuitive to users. Nevertheless, it is often over-
looked when developing a security plan. Physical security should be addressed as
part of the network architecture even when the campus or building has access
restrictions or security guards.
Ways to implement physical security include the following (see Figure 3.4):

m Access-controlled rooms (e.g., via card keys) for shared devices (servers)
and specialized devices

m Backup power sources and power conditioning

m Off-site storage and archival

m Alarm systems (e.g., fire and illegal entry alarms)



3.5 Security and Privacy Mechanisms

Application
oS
Network

H—Network>

User omputer

S

5 Servers
o

o

Redundant
Power Off-Site Storage

Controlled Access

FIGURE 3.4
Areas of physical security.

Physical security also applies to other types of physical threats, such as natu-
ral disasters (e.g., fires, earthquakes, and storms). Security from natural disasters
includes protection from fire (using alarm systems and fire-abatement equipment),
water (with pumping and other water-removal/protection mechanisms), and
structural degradation (through having devices in racks attached to floors, walls,
etc.). Addressing physical security lays the foundation for your entire network
security and privacy plan.

Security awareness entails getting users educated and involved with the day-
to-day aspects of security in their network, and helping them to understand the
potential risks of violating security policies and procedures. Security awareness
can be promoted through providing sessions on security, where users have a
chance to discuss the issues and voice their opinions and problems with security
mechanisms, policies, and procedures, and potentially offer options for security
and privacy; by providing users with bulletins or newsletters (or adding informa-
tion to the organization’s newsletter) on network security and what users can do
to help;and by providing users with information on the latest security attacks.

3.5.2 Protocol and Application Security

In this section we consider some common protocol and application security mech-
anisms: IPSec, SNMP, and packet filtering.

IPSec is a protocol for providing authentication and encryption/decryption
between devices at the network layer. IPSec mechanisms consist of authentica-
tion header (AH) and encapsulating security payload (ESP). There are two modes
that IPSec operates in: transport and tunneling. In transport mode the IP payload is
encrypted using ESP, while the IP header is left in the clear, as shown in Figure 3.5.

In tunnel mode (Figure 3.6) IPSec can be used to encapsulate packets between
two virtual private network (VPN) gateways (IP, and IP. in the figure).
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E—WNetwork >
User Computer

= ipy

VPN Gateway User Computer

Transport Mode

<4—|P Header—»4— P Payload —»

Dest: d Src: a ESP Payload
-4— Encrypted —»

FIGURE 3.5

The transport mode of IPSec.

User Computer

VPN Gateway VPN Gateway User Computer

fumeese 2 0 >

<¢— |P Header —»-|P Payload®»
Dest:d | Src:a | |

<4— |P Header —»<¢—— IP Payload ——»
| Dest: ¢ | Src: b | Dest: d | Src: a | |
<4— Encrypted ——»

<¢— |P Header —»<&-IP Payload-»
| Dest: d | Src: a |

FIGURE 3.6
The tunnel mode of IPSec.

The tunneling process consists of the following:

m IPSec tunnels are created between VPN gateways IP, and IP. in Figure 3.6

m IP packets are encrypted using ESP

m These packets are then encapsulated within another IP packet,and addressed
with the ends of the IPSec tunnel (AP, and IP.)

m At the end of the tunnel (the VPN gateway serving IP), the original packet is
unencapsulated and decrypted and sent to its destination (IPy).

This is an example of tunneling, or encapsulating information within protocol
headers for the purpose of isolating and protecting that information. Note that this
is different from traditional protocol encapsulation, which is used to support vary-
ing functions at each protocol layer. Virtual private networks apply this tunneling
concept to create multiple isolated networks across a common infrastructure.
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Deny All Other Ports

FIGURE 3.7
An example of packet filtering.

Tunneling and VPNs are common methods for building an isolated network
across a common infrastructure such as the Internet.

Security for the Simple Network Management Protocol version 3 (SNMPv3)
is described in the user-based security model (USM), protecting against modifica-
tion of information, masquerades, disclosure (eavesdropping), and message stream
modification. SNMP Security provides the following security capabilities:

m SNMP message verification (data integrity), user identity verification (data
origin authentication), and data confidentiality (via authProtocol, authKey,
privProtocol, and privKey)

m Detects SNMP messages that have exceeded time thresholds (message
timeliness/limited replay) (via snmpEnginelD, snmpEngineBoots, and
snmpEngineTime)

SNMP security also includes authentication mechanisms (autbProtocol) and
encryption/decryption mechanisms (privProtocol):

= HMAC-MD5-96 (128-bit message digest algorithm (MD5) cryptographic hash-
function, message authentication codes (HMAC) mode, truncated to 96 bits)

m HMAC-SHA-96 (Secure Hash Algorithm)

m CBC-DES (Cipher Block Chaining Mode Symmetric Encryption/Decryption
protocol

SNMP security also provides for modifying MIB views and access modes. For example,
it is possible to have different MIB views definable for different groups, and access
modes (RO, RW) are also definable for different groups,and are tied to MIB views.

Packet filtering is a mechanism in network devices to explicitly deny or pass
packets at strategic points within the network. It is often used to deny packets to
or from particular IP addresses or ports (services), as in Figure 3.7.
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Device Device

FIGURE 3.8
Encryption/decryption of network traffic.

3.5.3 Encryption/Decryption

‘While other security mechanisms provide protection against unauthorized access
and destruction of resources and information, encryption/decryption protects
information from being usable by the attacker. Encryption/decryption is a secu-
rity mechanism where cipher algorithms are applied together with a secret key
to encrypt data so that they are unreadable if they are intercepted. Data are then
decrypted at or near their destination. This is shown in Figure 3.8.

As such, encryption/decryption enhances other forms of security by protect-
ing information in case other mechanisms fail to keep unauthorized users from
that information. There are two common types of encryption/decryption: public
key and private key. Software implementations of public key encryption/decryp-
tion are commonly available. Examples include data encryption standard (DES)
private key encryption, triple DES private key encryption, and Rivest, Shamir, and
Adleman (RSA) public key encryption.

Public key infrastructure (PKI) is an example of a security infrastructure that
uses both public and private keys. Public key infrastructure is a security infrastruc-
ture that combines security mechanisms, policies, and directives into a system that
is targeted for use across unsecured public networks (e.g., the Internet), where
information is encrypted through the use of a public and a private cryptographic
key pair that is obtained and shared through a trusted authority. PKI is targeted
toward legal, commercial, official, and confidential transactions, and includes crypto-
graphic keys and a certificate management system. Components of this system are:

Managing the generation and distribution of public/private keys
Publishing public keys with UIDs as certificates in open directories
Ensuring that specific public keys are truly linked to specific private keys
Authenticating the holder of a public/private key pair

PKI uses one or more trusted systems known as Certification Authorities (CA),
which serve as trusted third parties for PKI. The PKI infrastructure is hierarchical,
with issuing authorities, registration authorities, authentication authorities, and
local registration authorities.

Another example is the secure sockets library (SSL). Secure sockets library is
a security mechanism that uses RSA-based authentication to recognize a party’s
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digital identity and uses RC4 to encrypt and decrypt the accompanying transac-
tion or communication. SSL has grown to become one of the leading security pro-
tocols on the Internet.

One trade-off with encryption/decryption is a reduction in network performance.
Depending on the type of encryption/decryption and where it is implemented in
the network, network performance (in terms of capacity and delay) can be degraded
from 15% to 85% or more. Encryption/decryption usually also requires administra-
tion and maintenance, and some encryption/decryption equipment can be expen-
sive. While this mechanism is compatible with other security mechanisms, trade-offs
such as these should be considered when evaluating encryption/decryption.

3.5.4 Network Perimeter Security

For network perimeter security, or protecting the external interfaces between
your network and external networks, we consider the use of address translation
mechanisms and firewalls.

Network address translation, or NAT, is the mapping of IP addresses from one
realm to another. Typically this is between public and private IP address space.
Private IP address space is the set of IETF-defined private address spaces (RFC 1918):

m Class A 10.x.x.x 10/8 prefix
m Class B 172.16.x.x 172.16/12 prefix
m Class C 192.168.x.x 192.168/16 prefix

NAT is used to create bindings between addresses, such as one-to-one address
binding (static NAT); one-to-many address binding (dynamic NAT); and address
and port bindings (network address port translation, or NAPT).

While NAT was developed to address the issues of address space exhaustion,
it was quickly adopted as a mechanism to enhance security at external interfaces.
Routes to private IP address spaces are not propagated within the Internet; there-
fore, the use of private IP addresses hides the internal addressing structure of a
network from the outside.

The security architecture should consider a combination of static and dynamic
NAT and NAPT, based on the devices that are being protected. For example, static
NAT is often used for bindings to multiple-user devices such as servers or high-end
computing devices, while dynamic NAT is used with generic computing devices.

Firewalls are combinations of one or more security mechanisms, implemented
in network devices (routers) placed at strategic locations within a network.
Firewalls can be filtering gateways, application proxies with filtering gateways, or
devices running specialized “firewall” software.

3.5.5 Remote Access Security

Remote access consists of traditional dial-in, point-to-point sessions, and virtual
private network connections, as shown in Figure 3.9. Security for remote access
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FIGURE 3.9
Remote access mechanisms.
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FIGURE 3.10
Remote access considerations.

includes what is commonly known as AAAA: authentication of users; authorization
of resources to authenticated users; accounting of resources and service deliv-
ery; and allocation of configuration information (e.g., addresses or default route).
AAAA is usually supported by a network device such as a network access server
(NAS) or subscriber management system (SMS).

Remote access security is common in service-provider networks (see also the
service-provider architectural model), but it is evolving into enterprise networks
as enterprises recognize the need to support a remote access model for their
networks.

Considerations when providing remote access are as follows (see Figure 3.10):

m Method(s) of AAAA
m Server types and placement (e.g., DMZ)
m Interactions with DNS, address pools, and other services
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FIGURE 3.11
Process for PPP/PPPoE session establishment.

Figure 3.11 shows the protocol interaction of the point-to-point protocol
(PPP), PPP over Ethernet (PPPoE), and remote access dial-in user service (RADIUS)
in a remote access network.

This figure shows the process of establishing a PPPoOE session, upon which a
PPP session is started. PPPoE provides a shim between Ethernet and PPP, support-
ing the point-to-point nature of PPP sessions over a broadcast Ethernet network.
Thus, a PPPOE session starts with a broadcast packet, the PPPoE active discovery
initiation (PADI). This packet begins a handshake between the user’s computer
and NAS, consisting of PADI, PPPoE active discovery offer (PADO), PPPoOE active
discovery request (PADR), and PPPoOE active discovery session (PADS) packets.
The PPP session can begin at the completion of this part of the process.
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A PPP session has three stages: link establishment, authentication, and network
layer. Each stage builds on the previous one to establish the PPP session. Once PPPOE
and PPP sessions have been established, the user can begin using the network.

Authentication in a remote access network is typically accomplished via a
combination of PPP, PPPoE, PAP, CHAP, and RADIUS protocols. Other authentica-
tion mechanisms at the remote access network include tokens, smart cards, digital
certificates, and callback. VPNs and tunnels can also be considered as part of the
remote access network.

VPNs are an example of what can be considered a subarchitecture. VPNs, by
themselves, can require their own set of architectural considerations. This is partic-
ularly true when they make an extranet, which is an intranet extended to include
access to or from selected external organizations (e.g., customers, suppliers) but
not to the general public. Such considerations include equipment types, tunneling
protocols and security, VPN locations, policies on VPN provisioning and support,
and the use of routing protocols such as the border gateway protocol (BGP) or
multi-protocol label switching (MPLS).

Finally, remote access security should also consider wireless communica-
tions and portable computing devices using standards such as 802.11 and
Homephoneline Networking Alliance (homePNA). Wireless can target a number of
environments, such as mobility, portability, and nomadic computing.

3.6 ARCHITECTURAL CONSIDERATIONS

In developing our security architecture we need to evaluate potential security
mechanisms, where they may apply within the network, as well as the sets of
internal and external relationships for this component architecture.

3.6.1 Evaluation of Security Mechanisms

At this point we have requirements, goals, type of environment, and architectural
model(s) and are ready to evaluate potential security mechanisms. As with each
component architecture, when evaluating mechanisms for an architecture, it is best
to start simple and work toward more complex solutions only when necessary.

Where a security mechanism will apply in a given network depends primarily
on where security requirements are located throughout the network, and what
the security requirements are, based on the results of the requirements analysis
and the security and privacy plan.

Architectural models can help in determining where security mechanisms
can be applied in the network. For example, the Access/Distribution/Core archi-
tectural model, which separates a network based on function, can be used as a
starting point for applying security mechanisms. Using this model, security can
be increased at each level, from access network to distribution networks to core
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FIGURE 3.12
The Access/Distribution/Core architectural model as a starting point for security.

networks, by either adding security mechanisms or by enhancing the amount of
security provided by each mechanism. This is shown in Figure 3.12.

In this figure, security is increased from access to distribution to core areas,
either by adding security mechanisms at each area or by increasing the level of
security (i.e., enhancing security) at each level. For this architectural model, most
traffic flows are sourced/sinked at access networks, and travel across distribution
and core networks. By adding mechanisms or enhancing mechanisms at each
level, a traffic flow will encounter higher levels of security as it moves from access
to distribution to core networks.

In Figure 3.12 traffic flows from User A to User C travel across both access and
distribution networks and would encounter two levels of security: Level 1 and
Level 2 firewalls, where Level 2 is greater security than Level 1. A Level 2 firewall
may have a more complete access control list (ACL), stricter rules for filtering traf-
fic, or greater logging and detection capability.

Traffic flows from User C to User A travel across access, distribution, and core
networks. As traffic moves from User C to the core network, it would encounter
multiple security mechanisms (intrusion detection, firewalls, encryption/decryp-
tion, and packet filters), with security increasing from access to distribution to
core. In addition, as traffic moves from the core network to User A, it encounters
three levels of firewalls.

In a similar fashion, the service provider and intranet/extranet architectural
models can also be used to develop a framework for security in a network.

Security perimeters (i.e., security zones or cells) can be developed within a
network, to accommodate multiple levels of security requirements. Two common
methods of developing security zones are to increase security as you move deeper
into the network (an example of this is shown in Figure 3.12), or to develop zones
wherever they are needed in the network, regardless of topology.

When security zones are developed to increase security as you move deeper
into a network, they become embedded within each other, as shown in Figure 3.13.
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Security zones embedded within each other.

In a sense the security levels look like the layers of an onion, with the innermost
layers having the highest level of security.

Security zones are based on the various security requirements determined dur-
ing the requirements analysis process and should be described in the security and
privacy plan. There may be requirements for different levels of security, coupled
to groups of users, their applications, their devices, or devices that are shared
among users. Security zones developed to meet such requirements may be scat-
tered throughout the network and may even overlap one another. An example of
this is presented in Figure 3.14.

In this figure five security zones are shown, based on different security require-
ments. The first zone (Security Level 1) covers the entire network and is intended
to provide a general level of security for all users, applications, and devices. This
may include intrusion detection and logging. The second zone (Security Level 2)
provides a higher level of security between this network and all external net-
works. This may include NAT and firewalls.

The third zone (Security Level 3) provides another level of security for an entire
group of users, applications, and/or devices (Group D), whose security requirements
are different from the rest of the network. For example, this group may handle financial
and/or proprietary information for the company. The fourth zone (Security Level 4)
provides security for a subset of users, applications, and/or devices from multiple
groups (Groups A and B). These are select users, applications, and/or devices whose
security needs are different from others in their groups. For example, they may be
working on company-classified projects, producing data that need to be protected
from the rest of the groups. The third and fourth zones may apply mechanisms to
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Developing security zones throughout a network.

protect their data, such as encryption/decryption, and may have access protection
via firewalls and/or packet filtering. The fifth zone (Security Level 5) is security for
devices used by multiple users, such as servers. This zone may employ monitoring,
logging, and authentication to verify user access.

Figures 3.12,3.13, and 3.14 show how security mechanisms may be applied in
a network to achieve multiple security levels or zones.

3.6.2 Internal Relationships

Interactions within the security architecture include trade-offs, dependencies, and
constraints among each of the security mechanisms for your network. For exam-
ple, some security mechanisms require the ability to look at, add to, or modify
various information fields within the packet. NAT changes IP address information
between public and private address domains. Encryption/decryption mechanisms
may encrypt information fields, making them unreadable to other mechanisms.

3.6.3 External Relationships

External relationships are trade-offs, dependencies, and constraints between the
security architecture and each of the other component architectures (addressing/
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Security mechanisms may restrict or preclude performance within each zone.

routing, network management, performance, and any other component architec-
tures you may develop). There are some common ones, some of which are pre-
sented below.

Interactions between security and addressing/routing. NAT is an address-
ing mechanism that is often used to enhance security. Therefore, when it is applied
for security, it also impacts addressing for the network. In addition, dynamic address-
ing can interfere with address-specific protective measures and with logging. It
is more difficult to determine what is going on when IP addresses are changed
frequently.

Interactions between security and network management. Security
depends on network management to configure, monitor, manage, and verify secu-
rity levels throughout the network. In addition, there is a need for maintenance
access even during attacks where in-band access to network devices is not avail-
able. For example, when devices are not at the same location, using dial-up for out-
of-band access is a potential fall-back position to take.

Interactions between security and performance. Security and perfor-
mance are often at odds, as security mechanisms can impact network performance.
The security zones described earlier in this chapter can constrain performance
within the areas described by the zones. When security is a high priority, security
mechanisms that impact traffic flows may restrict performance mechanisms to
operate within security zones, or result in performance being minimized for that
zone (Figure 3.15).

When performance is high priority, particularly when there is a need to pro-
vision end-to-end performance among select users, applications, or devices, per-
formance mechanisms may preclude the use of intrusive security mechanisms in
those areas of the network.
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3.7 CONCLUSION

In this chapter we discussed various potential security mechanisms for your secu-
rity architecture, including physical security, protocol and application security,
encryption/decryption, and perimeter and remote access security. Based on infor-
mation from the requirements analysis, we developed input for a security and pri-
vacy plan. We also discussed elements of both internal and external relationships
for the security architecture.
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From denial-of-service to Smurf attacks, hackers that perpetrate exploits have
captured both the imagination of the public and the ire of victims. There is
some reason for indignation and ire. A survey by the Computer Security Institute
placed the cost of computer intrusions at an average of $970,000 per company
in 2000.

Thus there is a growing market for intrusion detection, a field that consists of
detecting and reacting to attacks. According to IDC, the intrusion-detection market
grew from $20 million to $100 million between 1997 and 1999 and is expected to
reach $518 million by 2005.

Yet the capabilities of current intrusion detection systems are widely accepted
as inadequate, particularly in the context of growing threats and capabilities. Two
key problems with current systems are that they are slow and that they have a
high false-positive rate. As a result of these deficiencies, intrusion detection serves
primarily as a monitoring and audit function rather than as a real-time component
of a protection architecture on par with firewalls and encryption.

However, many vendors are working to introduce real-time intrusion detec-
tion systems. If intrusion detection systems can work in real time with only a
small fraction of false positives, they can actually be used to respond to attacks by
either deflecting the attack or tracing the perpetrators.

Intrusion detection systems (IDSs) have been studied in many forms since
Denning’s classic statistical analysis of host intrusions. Today, IDS techniques are
usually classified as either signature detection or anomaly detection. Signature
detection is based on matching events to the signatures of known attacks.

In contrast,anomaly detection, based on statistical or learning theory techniques,
identifies aberrant events, whether known to be malicious or not. As a result,
anomaly detection can potentially detect new types of attacks that signature-based
systems will miss. Unfortunately, anomaly detection systems are prone to falsely
identifying events as malicious. Thus this chapter does not address anomaly-based
methods.

Meanwhile signature-based systems are highly popular due to their relatively
simple implementation and their ability to detect commonly used attack tools.
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The lightweight detection system Snort is one of the more popular examples
because of its free availability and efficiency.

Given the growing importance of realtime intrusion detection, intrusion
detection furnishes a rich source of packet patterns that can benefit from network
algorithmics. Thus this chapter samples three important subtasks that arise in the
context of intrusion detection. The first is an analysis subtask, string matching,
which is a key bottleneck in popular signature-based systems such as Snort. The
second is a response subtask, traceback, which is of growing importance given the
ability of intruders to use forged source addresses. The third is an analysis sub-
task to detect the onset of a new worm (e.g., Code Red) without prior knowledge.

These three subtasks only scratch the surface of a vast area that needs to
be explored. They were chosen to provide an indication of the richness of the
problem space and to outline some potentially powerful tools, such as Bloom fil-
ters and Aho-Corasick trees, that may be useful in more general contexts. Worm
detection was also chosen to showcase how mechanisms can be combined in
powerful ways.

This chapter is organized as follows. The first few sections explore solutions
to the important problem of searching for suspicious strings in packet payloads.
Current implementations of intrusion detection systems such as Snort (www.snort
.org) do multiple passes through the packet to search for each string. Section 4.1.1
describes the Aho-Corasick algorithm for searching for multiple strings in one pass
using a trie with backpointers. Section 4.1.2 describes a generalization of the clas-
sical Boyer-Moore algorithm, which can sometimes act faster by skipping more
bits in a packet.

Section 4.2 shows how to approach an even harder problem—searching for
approximate string matches. The section introduces two powerful ideas: min-
wise hashing and random projections. This section suggests that even complex
tasks such as approximate string matching can plausibly be implemented at wire
speeds.

Section 4.3 marks a transition to the problem of responding to an attack, by
introducing the IP traceback problem. It also presents a seminal solution using
probabilistic packet marking. Section 4.4 offers a second solution, which uses
packet logs and no packet modifications; the logs are implemented efficiently
using an important technique called a Bloom filter. While these traceback solu-
tions are unlikely to become deployed when compared to more recent standards,
they introduce a significant problem and invoke important techniques that could
be useful in other contexts.

Section 4.5 explains how algorithmic techniques can be used to extract auto-
matically the strings used by intrusion detection systems such as Snort. In other
words, instead of having these strings be installed manually by security analysts,
could a system automatically extract the suspicious strings? We ground the discus-
sion in the context of detecting worm attack payloads.

The implementation techniques for security primitives described in this chap-
ter (and the corresponding principles) are summarized in Figure 4.1.
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e N
Number Principle Used In

P15 Integrated string matching using Aho—Corasick Snort

P3a, 5a | Approximate string match using min-wise hashing | Altavista

P3a Path reconstruction using probabilistic marking Edge sampling
P3a Efficient packet logging via Bloom filters SPIE
\PSa Worm detection by detecting frequent content EarlyBird
FIGURE 4.1

Principles used in the implementation of the various security primitives discussed in this
chapter.

Quick Reference Guide

Sections 4.1.1 and 4.1.2 show how to speed up searching for multiple strings in packet
payloads, a fundamental operation for a signature-based IDS. The Aho—Corasick algo-
rithm of Section 4.1.1 can easily be implemented in hardware. While the traceback
ideas in Section 4.4 are unlikely to be useful in the near future, the section intro-
duces an important data structure, called a Bloom filter, for representing sets and also
describes a hardware implementation. Bloom filters have found a variety of uses and
should be part of the implementor’s bag of tricks. Section 4.5 explains how signatures
for attacks can be automatically computed, reducing the delay and difficulty required to
have humans generate signatures.

4.1 SEARCHING FOR MULTIPLE STRINGS IN
PACKET PAYLOADS

The first few sections tackle a problem of detecting an attack by searching for sus-
picious strings in payloads. A large number of attacks can be detected by their use
of such strings. For example, packets that attempt to execute the Perl interpreter
have peri.exe in their payload. For example, the arachNIDS database of vulnerabili-
ties contains the following description.

An attempt was made to execute perl.exe. If the Perl interpreter is available
to Web clients, it can be used to execute arbitrary commands on the Web server.
This can be used to break into the server, obtain sensitive information, and poten-
tially compromise the availability of the Web server and the machine it runs on.
Many Web server administrators inadvertently place copies of the Perl interpreter
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into their Web server script directories. If perl is executable from the cgi directory,
then an attacker can execute arbitrary commands on the Web server.

This observation has led to a commonly used technique to detect attacks in so-
called signature-based intrusion detection systems such as Snort. The idea is that
a router or monitor has a set of rules, much like classifiers. However, the Snort
rules go beyond classifiers by allowing a 5-tuple rule specifying the type of packet
(e.g., port number equal to Web traffic) plus an arbitrary string that can appear
anywhere in the packet payload.

Thus the Snort rule for the attempt to execute perl.exe will specify the proto-
col (TCP) and destination port (80 for Web) as well as the string “perl.exe” occur-
ring anywhere in the payload. If a packet matches this rule, an alert is generated.
Snort has 300 such augmented rules, with 300 possible strings to search for.

Early versions of Snort do string search by matching each packet against each
Snort rule in turn. For each rule that matches in the classifier part, Snort runs a
Boyer-Moore search on the corresponding string, potentially doing several string
searches per packet. Since each scan through a packet is expensive, a natural
question is: Can one search for all possible strings in one pass through packet?

There are two algorithms that can be used for this purpose: the Aho-Corasick
algorithm and a modified algorithm due to Commentz-Walter, which we describe
next.

4.1.1 Integrated String Matching Using Aho—Corasick

A trie can be used to search for a string that starts at a known position in a packet.
Thus Figure 4.2 contains a trie built on the set of two strings “babar” and “barney”;
both are well-known characters in children’s literature. The trie is built on charac-
ters and not on arbitrary groups of bits. The characters in the text to be searched
are used to follow pointers through the trie until a leaf string is found or until fail-
ure occurs.

The hard part, however, is looking for strings that can start anywhere in a
packet payload. The naivest approach would be to assume the string starts at byte
1 of the payload and then traverses the trie. Then if a failure occurs, one could
start again at the top of the trie with the character that starts at byte 2.

However, if packet bytes form several “near misses” with target strings, then for
each possible starting position, the search can traverse close to the height of the
trie. Thus if the payload has L bytes and the trie has maximum height b, the algo-
rithm can take L - b memory references.

For example, when searching for “babar” in the packet payload shown in
Figure 4.2, the algorithm jogs merrily down the trie until it reaches the node corre-
sponding to the second “a” in “babar” At that point the next packet byte is a “b” and
not the “r” required to make progress in the trie. The naive approach would be to
back up to the start of the trie and start the trie search again from the second byte
“a”in the packet.



4.1 Searching for Multiple Strings in Packet Payloads

( b a b a b a r. . . (Packet payload) )

barney

FIGURE 4.2

The Aho-Corasick algorithm builds an alphabetical trie on the set of strings to be searched
for. A search for the string “barney” can be found by following the “b” pointer at the root, the
“a” pointer at the next node, etc. More interestingly, the trie is augmented with failure pointers
that prevent restarting at the top of the trie when failure occurs and a new attempt is made to

match, shifted one position to the right.

However, it is not hard to see that backing up to the top is an obvious waste
(P1) because the packet bytes examined so far in the search for “babab” have
“bab” as a suffix, which is a prefix of “babar” Thus, rather than back up to the top,
one can precompute (much as in a grid of tries) a failure pointer corresponding
to the failing “b” that allows the search to go directly to the node corresponding
to path “bab” in the trie, as shown by the leftmost dotted arc in Figure 4.2.

Thus rather than have the fifth byte (a “b”) lead to a null pointer, as it would in
a normal trie, it contains a failure pointer that points back up the trie. Search now
proceeds directly from this node using the sixth byte “a” (as opposed to the sec-
ond byte) and leads after seven bytes to “babar.”

Search is easy to do in hardware after the trie is precomputed. This is not hard
to believe because the trie with failure pointers essentially forms a state machine.
The Aho-Corasick algorithm has some complexity that ensues when one of the
search strings, R, is a suffix of another search string, S. However, in the security
context this can be avoided by relaxing the specification (P3). One can remove
string S from the trie and later check whether the packet matched R or S.

Another concern is the potentially large number of pointers (256) in the Aho-
Corasick trie. This can make it difficult to fit a trie for a large set of strings in
cache (in software) or in SRAM (in hardware). One alternative is to use, say, Lulea-
style encoding to compress the trie nodes.
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4.1.2 Integrated String Matching Using Boyer—Moore

The famous Boyer-Moore algorithm for single-string matching can be derived by
realizing that there is an interesting degree of freedom that can be exploited (P13)
in string matching: One can equally well start comparing the text and the target
string from the last character as from the first.

Thus in Figure 4.3 the search starts with the fifth character of the packet,a “b,
and matches it to the fifth character of, say, “babar” (shown below the packet), an
“r” When this fails, one of the heuristics in the Boyer-Moore algorithm is to shift
the search template of “babar” two characters to the right to match the rightmost
occurrence of “b” in the template.! Boyer-Moore’s claim to fame is that in practice
it skips over a large number of characters, unlike, say, the Aho-Corasick algorithm.

To generalize Boyer-Moore to multiple strings, imagine that the algorithm con-
currently compares the fifth character in the packet to the fifth character,“e,” in the
other string, “barney” (shown above the packet). If one were only doing Boyer-
Moore with “barney;” the “barney” search template would be shifted right by four
characters to match the only “b” in barney.

When doing a search for both “barney” and “babar” concurrently, the obvious
idea is to shift the search template by the smallest shift proposed by any string
being compared for. Thus in this example, we shift the template by two charac-
ters and do a comparison next with the seventh character in the packet.

Doing a concurrent comparison with the last character in all the search strings
may seem inefficient. This can be taken care of as follows. First, chop off all char-
acters in all search strings beyond L, the shortest search string. Thus in Figure 4.3,
L is 5 and “barney” is chopped down to “barne” to align in length with “babar.”

There is a second heuristic in Boyer-Moore, but studies have shown that this simple Horspool
variation works best in practice.
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Having aligned all search string fragments to the same length, now build a trie
starting backwards from the last character in the chopped strings. Thus, in the
example of Figure 4.3 the root node of the trie would have an “e” pointer point-
ing toward “barne” and an “r” pointer pointing towards “babar” Thus comparing
concurrently requires using only the current packet character to index into the
trie node.

On success, the backwards trie keeps being traversed. On failure, the amount to
be shifted is precomputed in the failure pointer. Finally, even if a backward search
through the trie navigates successfully to a leaf, the fact that the ends may have
been chopped off requires an epilogue, in terms of checking that the chopped-off
characters also match. For reasonably small sets of strings, this method does better
than Aho-Corasick.

The generalized Boyer-Moore was proposed by Commentz-Walter. The appli-
cation to intrusion detection was proposed concurrently by Coit, Staniford, and
McAlerney and Fisk and Varghese. The Fisk implementation has been ported
to Snort.

Unfortunately, the performance improvement of using either Aho-Corasick or
the integrated Boyer-Moore is minimal, because many real traces have only a few
packets that match a large number of strings, enabling the naive method to do
well. In fact, the new algorithms add somewhat more overhead due to slightly
increased code complexity, which can exhibit cache effects.

‘While the code as it currently stands needs further improvement, it is clear that
at least the Aho-Corasick version does produce a large improvement for worst-
case traces, which may be crucial for a hardware implementation. The use of
Aho-Corasick and integrated Boyer-Moore can be considered straightforward appli-
cations of efficient data structures (P15).

4.2 APPROXIMATE STRING MATCHING

This section briefly considers an even harder problem, that of approximately
detecting strings in payloads. Thus instead of settling for an exact match or a pre-
fix match, the specification now allows a few errors in the match. For example,
with one insertion “perl.exe” should match “perl.exe” where the intruder may
have added a character.

While the security implications of using the mechanisms described next need
much more thought, the mechanisms themselves are powerful and should be part
of the arsenal of designers of detection mechanisms.

The first simple idea can handle substitution errors. A substitution error is a
replacement of one or more characters with others. For example, “parl.exe” can
be obtained from “perl.exe” by substituting “a” for “e.” One way to handle this is to
search not for the complete string but for one or more random projections of the
original string.
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FIGURE 4.4

Checking for matching with a random projection of the target string “babar” allows the
detecting of similar strings with substitution errors in the payload.

For example, in Figure 4.4, instead of searching for “babar” one could search for
the first, third, and fourth characters in “babar”Thus the misspelled string “babad”
will still be found. Of course, this particular projection will not find a misspelled
string such as “rabad.” To make it hard for an adversary, the scheme in general can
use a small set of such random projections. This simple idea is generalized greatly
in a set of papers on locality-preserving hashing.

Interestingly, the use of random projections may make it hard to efficiently
shift one character to the right. One alternative is to replace the random projec-
tions by deterministic projections. For example, if one replaces every string by
its two halves and places each half in an Aho-Corasick trie, then any one substi-
tution error will be caught without slowing down the Aho-Corasick processing.
However, the final efficiency will depend on the number of false alarms.

The simplest random projection idea, described earlier, does not work with
insertions or deletions that can displace every character one or more steps to the
left or right. One simple and powerful way of detecting whether two or more
sets of characters, say, “abcef” and “abfecd,” are similar is by computing their
resemblance.

The resemblance of two sets of characters is the ratio of the size of their
intersection to the size of their union. Intuitively, the higher the resemblance, the
higher the similarity. By this definition, the resemblance of “abcef” and “abfecd” is
5/6 because they have five characters in common.

Unfortunately, resemblance per se does not take into account order, so “abcef”
completely resembles “fecab.” One way to fix this is to rewrite the sets with
order numbers attached so that “abcef” becomes “la2b3c4e5f” while “fecab” now
becomes “1f2e3c4a5b.” The resemblance, using pairs of characters as set elements
instead of characters, is now nil. Another method that captures order in a more
relaxed manner is to use shingles by forming the two sets to be compared using
as elements all possible substrings of size & of the two sets.

Resemblance is a nice idea, but it also needs a fast implementation. A naive
implementation requires sorting both sets, which is expensive and takes large stor-
age. Broder’s idea is to quickly compare the two sets by computing a random (P3a,
trade certainty for time) permutation on two sets. For example, the most practi-
cal permutation function on integers of size at most m — 1 is to compute P(X) =
ax + b mod m, for random values of a and b and prime values of the modulus .
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For example, consider the two sets of integers {1, 3, 5} and {1, 7, 3}. Using the
random permutation {3x + 5 mod 11}, the two sets become permuted to {8, 3, 9}
and {8, 4, 3}. Notice that the minimum values of the two randomly permuted sets
(i.e., 3) are the same.

Intuitively, it is easy to see that the higher the resemblance of the two sets, the
higher the chance that a random permutation of the two sets will have the same
minimum. Formally, this is because the two permuted sets will have the same mini-
mum if and only if they contain the same element that gets mapped to the minimum
in the permuted set. Since an ideal random permutation makes it equally likely for
any element to be the minimum after permutation, the more elements the two sets
have in common, the higher the probability that the two minimums match.

More precisely, the probability that two minimums match is equal to the
resemblance. Thus one way to compute the resemblance of two sets is to use
some number of random permutations (say, 16) and compute all 16 random per-
mutations of the two sets. The fraction of these 16 permutations in which the
two minimums match is a good estimate of the resemblance.

This idea was used by Broder to detect the similarity of Web documents.
However, it is also quite feasible to implement at high link speeds. The chip must
maintain, say, 16 registers to keep the current minimum using each of the 16 ran-
dom hash functions. When a new character is read, the logic permutes the new
character according to each of the 16 functions in parallel. Each of the 16 hash
results is compared in parallel with the corresponding register, and the register
value is replaced if the new value is smaller.

At the end, the 16 computed minima are compared in parallel against the 16
minima for the target set to compute a bitmap, where a bit is set for positions in
which there is equality. Finally, the number of set bits is counted and divided by
the size of the bitmap by shifting left by 4 bits. If the resemblance is over some
specified threshold, some further processing is done.

Once again, the moral of this section is not that computing the resemblance
is the solution to all problems (or in fact to any specific problem at this moment)
but that fairly complex functions can be computed in hardware using multiple
hash functions, randomization, and parallelism. Such solutions interplay principle
P5 (use parallel memories) and principle P3a (use randomization).

4.3 IP TRACEBACK VIA PROBABILISTIC MARKING

This section transitions from the problem of detecting an attack to responding to
an attack. Response could involve a variety of tasks, from determining the source
of the attack to stopping the attack by adding some checks at incoming routers.

The next two sections concentrate on traceback, an important aspect of
response, given the ability of attackers to use forged IP source addresses. To
understand the traceback problem it helps first to understand a canonical denial-
of-service (DOS) attack that motivates the problem.
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In one version of a DOS attack, called SYN flooding, wily Harry Hacker wakes
up one morning looking for fun and games and decides to attack CNN. To do so
he makes his computer fire off a large number of TCP connection requests to the
CNN server, each with a different forged source address. The CNN server sends
back a response to each request R and places R in a pending connection queue.

Assuming the source addresses do not exist or are not online, there is no
response. This effect can be ensured by using random source addresses and
by periodically resending connection requests. Eventually the server’s pending-
connection queue fills up. This denies service to innocent users like you who wish
to read CNN news because the server can no longer accept connection requests.

Assume that each such denial-of-service attack has a traffic signature (e.g.,
too many TCP connection requests) that can be used to detect the onset of an
attack. Given that it is difficult to shut off a public server, one way to respond to
this attack is to trace such a denial-of service back to the originating source point
despite the use of fake source addresses. This is the IP traceback problem.

The first and simplest systems approach (P3, relax system requirements) is to
finesse the problem completely using help from routers. Observe that when Harry
Hacker sitting in an IP subnetwork with prefix § sends a packet with fake source
address H, the first router on the path can detect this fact if H does not match .
This would imply that Harry’s packet cannot disguise its subnetworks, and offend-
ing packets can be traced at least to the right subnetwork.

There are two difficulties with this approach. First, it requires that edge rout-
ers do more processing with the source address. Second, it requires trusting edge
routers to do this processing, which may be difficult to ensure if Harry Hacker has
already compromised his ISP. There is little incentive for a local ISP to slow down
performance with extra checks to prevent DOS attacks to a remote ISP,

A second and cruder systems approach is to have managers that detect an
attack call their ISP, say, A. ISP A monitors traffic for a while and realizes these
packets are coming from prior-hop ISP B, who is then called. B then traces the
packets back to the prior-hop provider and so on until the path is traced. This is
the solution used currently.

A better solution than manual tracing would be automatic tracing of the
packet back to the source. Assume one can modify routers for now. Then packet
tracing can be trivially achieved by having each router in the path of a packet P
write its router IP address in sequence into P’s header. However, given common
route lengths of 10, this would be a large overhead (40 bytes for 10 router IDs),
especially for minimum-size acknowledgments. Besides the overhead, there is the
problem of modifying IP headers to add fields for path tracing. It may be easier to
steal a small number of unused message bits.

This leads to the following problem. Assuming router modifications are pos-
sible, find a way to trace the path of an attack by marking as few bits as possible
in a packet’s header.

For a single-packet attack, this is very difficult in an information theoretic sense.
Clearly, it is impossible to construct a path of 10 32-bit router IDs from, say, a 2-byte
mark in a packet. One can’t make a silk purse from a sow’s ear.
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However, in the systems context one can optimize the expected case (P11),
since most interesting attacks consist of hundreds of packets at least. Assuming
they are all coming from the same physical source, the victim can shift the path
computation over time (P2) by making each mark contribute a piece of the path
information.

Let’s start by assuming a single 32-bit field in a packet that can hold a single
router ID. How are the routers on the path to synchronize access to the field so that
each router ID gets a chance, over a stream of packets, to place its ID in the field?

A naive solution is shown in Figure 4.5. The basic idea is that each router inde-
pendently writes its ID into a single node ID field in the packet with probability p,
possibly overwriting a previous router’s ID. Thus in Figure 4.5, the packet already
has R1 in it and can be overwritten by R3 to R1 with probability p.

The hope, however, is that over a large sequence of packets from the attacker
to the victim, every router ID in the path will get a chance to place its ID without
being overwritten. Finally, the victim can sort the received IDs by the number of
samples. Intuitively, the nodes closer to the victim should have more samples, but
one has to allow for random variation.

The two problems with this naive approach are that too many samples (i.e.,
attack packets) are needed to deal with random variation in inferring order, and
the attacker, knowing this scheme, can place malicious marks in the packet to
fool the reconstruction scheme into believing that fictitious nodes are close to the
victim because they receive extra marks.

To foil this threat, p must be large, say, 0.51. But in this case, the number of
packets required to receive the router IDs far away from the victim becomes very
large. For example, with p = 0.5 and a path of length L = 15, the number of pack-
ets required is the reciprocal of the probability that the router farthest from the
victim sends a mark that survives. This is p(1 — p)*~! = 2715 because it requires
the farthest router to put a mark and the remaining L — 1 routers not to. Thus
the average number of packets for this to happen is % = 32,000. Attacks have a
number of packets, but not necessarily this many.

The straightforward lesson from the naive solution is that randomization is
good for synchronization (to allow routers to independently synchronize access to
the single node ID field) but not to reconstruct order.The simplest solution to this

15

Overwrite R1 to
R3 with probability p
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Victim | R2, 2 samples

R3, 6 samples

Sampled nodes

sorted by sample frequency

R1, 1 sample

FIGURE 4.5

Reconstructing an attack path by having each router stamp its ID independently, with
probability p, into a single node ID field. The receiver reconstructs order by sorting, assuming
that closer routers will produce more samples.
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FIGURE 4.6

Edge sampling improves on node sampling by sampling edges and not nodes. This allows
trivial order reconstruction based on edge distance and not sample frequency.

problem is to use a hop count (the attacker can initialize each packet with a differ-
ent TTL, making the TTL hard to use) as well as a node ID. But a hop count by itself
can be confusing if there are multiple attacks going on. Clearly a mark of node X
with hop count 2 may correspond to a different attack path from a mark of node
Y with hop count 1.

The solution provided in the seminal paper avoids the aliasing due to hop
counts by conceptually starting with a pair of consecutive node IDs and a hop
count to form a triple (R, S, ), as shown in Figure 4.6.

When a router R receives a packet with triple (X, Y, b), R generates a random
number between 0 and 1. If the number is less than the sampling probability p,
router R writes its own ID into the mark triple, rewriting it as (R, —, 0), where the —
character indicates that the next router in the path has still to be determined. If the
random number is greater than p, then R must maintain the integrity of the previ-
ously written mark. If » = 0, R writes R to the second field because R is the next
router after the writer of the mark. Finally, if the random number is greater than p,
R increments b.

It should be clear that by assuming that every edge gets sampled once, the
victim can reconstruct the path. Note also that the attacker can only add ficti-
tious nodes to the start of the path. But how many packets are required to find all
edges? Given that ordering is explicit, one can use arbitrary values of p.

In particular, if p is approximately 1/L, where L is the path length to the farthest
router, the probability we computed before of the farthest router sending an edge
mark that survives becomes p(1 — p)' ! = p/(1 — p)e, where e is the base of natu-
ral logarithms. For example, for p = 1/25, this is roughly 1/70, which is fairly large
compared to the earlier attempt.

What is even nicer is that if we choose p = 1/50 based on the largest path
lengths encountered in practice on the Internet (say, 50), the probability does
not grow much smaller even for much smaller path lengths. This makes it easy to
reconstruct the path with hundreds of packets as opposed to thousands.

Finally, one can get rid of obvious waste (P1) and avoid the need for two node
IDs by storing only the Exclusive-OR of the two fields in a single field. Working
backwards from the last router ID known to the victim, one can Exclusive-OR
with the previous edge mark to get the next router in the path, and so on. Finally,
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by viewing each node as consisting of a sequence of a number of “pseudonodes,’
each with a small fragment (say, 8 bits) of the node’s ID, one can reduce the mark
length to around 16 bits total.

4.4 1P TRACEBACK VIA LOGGING

A problem with the edge-sampling approach of the previous section is that it
requires changes to the IP header to update marks and does not work for single-
packet attacks like the Teardrop attack. The following approach, traceback via log-
ging, avoids both problems by adding more storage at routers to maintain a com-
pressed packet log.

As motivations, neither of the difficulties the logging approach gets around are
very compelling. This is because the logging approach still requires modifying
router forwarding, even though it requires no header modification. This is due
to the difficulty of convincing vendors (who have already committed forwarding
paths to silicon) and ISPs (who wish to preserve equipment for, say, 5 years) to
make changes. Similarly, single-packet attacks are not very common and can often
be filtered directly by routers.

However, the idea of maintaining compressed searchable packet logs may be
useful as a general building block. It could be used, more generally, for, say, a net-
work monitor that wishes to maintain such logs for forensics after attacks. But
even more importantly it introduces an important technique called Bloom filters.

Given an efficient packet log at each router, the high-level idea for traceback is
shown in Figure 4.7. The victim V first detects an attack packet P; it then queries
all its neighboring routers, say, Rg and Ry, to see whether any of them have P in
their log of recently sent packets. When Ry replies in the affirmative, the search
moves on to Ry, who asks its sole neighbor, R;. Then R- asks its neighbors Rs and
R, and the search moves backward to A.

The simplest way to implement a log is to reuse one of the techniques in tra-
jectory sampling. Instead of logging a packet we log a 32-bit hash of invariant
content (i.e., exclude fields that change from hop to hop, such as the TTL) of the
packet. However, 32 bits per packet for all the packets sent in the last 10 minutes
is still huge at 10 Gbps. Bloom filters, described next, allow a large reduction to
around 5 bits per packet.

4.4.1 Bloom Filters

Start by observing that querying either a packet log or a table of allowed users is a
set membership query, which is easily implemented by a hash table. For example,
in a different security context, if John and Cathy are allowed users and we wish
to check if Jonas is an allowed user, we can use a hash table that stores John and
Cathy’s IDs but not Jona’s.
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FIGURE 4.7

Using a packet log to trace an attack packet P backwards from the victim V to the attacker A
by having the currently traced node ask all its neighbors (the dotted lines) if they have seen P
(solid line).

Checking for Jonas requires hashing Jonas’s ID into the hash table and follow-
ing any lists at that entry. To handle collisions, each hash table entry must contain
a list of IDs of all users that hash into that bucket. This requires at least W bits per
allowed user, where W is the length of each user ID. In general, to implement a
hash table for a set of identifiers requires at least W bits per identifier, where W is
the length of the smallest identifier.

Bloom filters, shown in Figure 4.8, allow one to reduce the amount of memory
for set membership to a few bits per set element. The idea is to keep a bitmap of
size, say, 5N, where N is the number of set elements. Before elements are inserted,
all bits in the bitmap are cleared.

For each element in the set, its ID is hashed using & independent hash func-
tions (two in Figure 4.8, H1 and H2) to determine bit positions in the bitmap to
set. Thus in the case of a set of valid users in Figure 4.8, ID John hashes into the
second and next-to-last bit positions. ID Cathy hashes into one position in the mid-
dle and also into one of John’s positions. If two IDs hash to the same position, the
bit remains set.

Finally, when searching to see if a specified element (say, Jonas) is in the set,
Jonas is hashed using all the % hash functions. Jonas is assumed to be in the set if
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Allowed
users
)

P 1 |<<-- H1 (John)

H1 (Jonas)

H2 (Jonas) --»] 1 |<€-- H1 (Cathy)

1 |<-- H2 (John)
—
1 bit

Is Jonas an allowed user?
FIGURE 4.8

A Bloom filter represents a set element by setting k bits in a bitmap using k independent hash
functions applied to the element. Thus the element John sets the second (using H1) and next-
to-last (using H2) bits. When searching for Jonas, Jonas is considered a member of the set
only if all bit positions hashed to by Jonas have set bits.

all the bits hashed into by Jonas are set. Of course, there is some chance that Jonas
may hash into the position already set by, say, Cathy and one by John (see Figure
4.8). Thus there is a chance of what is called a false positive: answering the mem-
bership query positively when the member is not in the set.

Notice that the trick that makes Bloom filters possible is relaxing the speci-
fication (P3). A normal hash table, which requires W bits per ID, does not make
errors! Reducing to 5 bits per ID requires allowing errors; however, the percent-
age of errors is small. In particular, if there is an attack tree and set elements are
hashed packet values, as in Figure 4.7, false positives mean only occasionally bark-
ing up the wrong tree branch(es).

More precisely, the false-positive rate for an m-size bitmap to store n members
using & hash functions is

A — A — 1/m)knyk o (1 — ekn/myk

The equation is not as complicated as it may appear: (1 — 1/m)*" is the probabil-
ity that any bit is not set, given n elements that each hashes & times to any of m
bit positions. Finally, to get a false positive, all of the & bit positions hashed onto
by the ID that causes a false positive must be set.

Using this equation, it is easy to see that for £ = 3 (three independent hash
functions) and 5 bits per member (zn/n = 5), the false-positive rate is roughly 1%.
The false-positive rate can be improved up to a point by using more hash func-
tions and by increasing the bitmap size.
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Hardware implementation of packet logging using Bloom filters. Note the use of two-level
memory: SRAM for random read-modify-writes and DRAM for large row writes.

4.4.2 Bloom Filter Implementation of Packet Logging

The Bloom filter implementation of packet logging in the SPIE system is shown
in Figure 4.9 (the picture is courtesy of Sanchez et al.). Each line card calculates a
32-bit hash digest of the packet and places it in a FIFO queue. To save costs, sev-
eral line cards share, via a RAM multiplexor, a fast SRAM containing the Bloom filter
bitmap.

As in the case of counters, one can combine the best features of SRAM and
DRAM to reduce expense. One needs to use SRAM for fast front-end random
access to the bitmap. Unfortunately, the expense of SRAM would allow storing
only a small number of packets. To allow a larger amount, the Bloom filter bit-
maps in SRAM are periodically read out to a large DRAM ring buffer. Because these
are no longer random writes to bits, the write to DRAM can be written in DRAM
pages or rows, which provide sufficient memory bandwidth.

4.5 DETECTING WORMS

It would be remiss to end this chapter without paying some attention to the prob-
lem of detecting worms. A worm (such as Code Red, Nimda, Slammer) begins
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with an exploit sent by an attacker to take over a machine. The exploit is typically
a buffer overflow attack, which is caused by sending a packet (or packets) con-
taining a field that has more data than can be handled by the buffer allocated by
the receiver for the field. If the receiver implementation is careless, the extra data
beyond the allocated buffer size can overwrite key machine parameters, such as
the return address on the stack.

Thus with some effort, a buffer overflow can allow the attacking machine to
run code on the attacked machine. The new code then picks several random IP
addresses? and sends similar packets to these new victims. Even if only a small
fraction of IP addresses responds to these attacks, the worm spreads rapidly.

Current worm detection technology is both retroactive (i.e., only after a new
worm is first detected and analyzed by a human, a process that can take days, can
the containment process be initiated) and manual (i.e., requires human interven-
tion to identify the signature of a new worm). Such technology is exemplified by
Code Red and Slammer, which took days of human effort to identity, following
which containment strategies were applied in the form of turning off ports, apply-
ing patches, and doing signature-based filtering in routers and intrusion detection
systems.

There are difficulties with these current technologies.

1. Slow Response: There is a proverb that talks about locking the stable door
after the horse has escaped. Current technologies fit this paradigm because
by the time the worm containment strategies are initiated, the worm has
already infected much of the network.

2. Constant Effort: Every new worm requires a major amount of human work
to identify, post advisories, and finally take action to contain the worm.
Unfortunately, all evidence seems to indicate that there is no shortage of
new exploits. And worse, simple binary rewriting and other modifications
of existing attacks can get around simple signature-based blocking (as in
Snort).

Thus there is a pressing need for a new worm detection and containment strategy
that is real time (and hence can contain the worm before it can infect a significant
fraction of the network) and is able to deal with new worms with a minimum of
human intervention (some human intervention is probably unavoidable to at least
catalog detected worms, do forensics, and fine-tune automatic mechanisms). In
particular, the detection system should be content agnostic. The detection system
should not rely on external, manually supplied input of worm signatures.

Instead, the system should automatically extract worm signatures, even for
new worms that may arise in the future.

2By contrast, a virus requires user intervention, such as opening an attachment, to take over the
user machine. Viruses also typically spread by using known addresses, such as those in the mail
address book, rather than random probing.
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Can network algorithmics speak to this problem? We believe it can. First, we
observe that the only way to detect new worms and old worms with the same
mechanism is to abstract the basic properties of worms.

As a first approximation, define a worm to have the following abstract features,
which are indeed discernible in all the worms we know, even ones with such vary-
ing features as Code Red (massive payload, uses TCP, and attacks on the well-known
HTTP port) and MS SQL Slammer (minimal payload, uses UDP, and attacks on the
lesser-known MS SQL port).

1. Large Volume of Identical Traffic: These worms have the property that at
least at an intermediate stage (after an initial priming period but before full
infection), the volume of traffic (aggregated across all sources and destina-
tions) carrying the worm is a significant fraction of the network bandwidth.

2. Rising Infection Levels: The number of infected sources participating in
the attack steadily increases.

3. Random Probing: An infected source spreads infection by attempting to
communicate to random IP addresses at a fixed port to probe for vulner-
able services.

Note that detecting all three of these features may be crucial to avoid false posi-
tives. For example, a popular mailing list or a flash crowd could have the first fea-
ture but not the third.

An algorithmics approach for worm detection would naturally lead to the fol-
lowing detection strategy, which automatically detects each of these abstract fea-
tures with low memory and small amounts of processing, works with asymmetric

flows, and does not use active probing. The high-level mechanisms? are:

1. Identify Large Flows in Real Time with Small Amounts of Memory:
Mechanisms can be described to identify flows with large traffic volumes
for any definition of a flow (e.g., sources, destinations). A simple twist on
this definition is to realize that the content of a packet (or, more efficiently,
a hash of the content) can be a valid flow identifier, which by prior work
can identify in real time (and with low memory) a high volume of repeated
content. An even more specific idea (which distinguishes worms from valid
traffic such as peer-to-peer) is to compute a hash based on the content as
well as the destination port (which remains invariant for a worm).

2. Count the Number of Sources: Mechanisms can be described using simple
bitmaps of small size to estimate the number of sources on a link using small
amounts of memory and processing. These mechanisms can easily be used
to count sources corresponding to high traffic volumes identified by the pre-
vious mechanism.

3Each of these mechanisms needs to be modulated to handle some special cases, but we prefer to
present the main idea untarnished with extraneous details.
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3. Determine Random Probing by Counting the Number of Connection
Attempts to Unused Portions of the IP Address: One could keep a simple
compact representation of portions of the IP address space known to be
unused. One example is the so-called Bogon list, which lists unused 8-bit
prefixes (can be stored as a bitmap of size 256). A second example is a
secret space of IP addresses (can be stored as a single prefix) known to an
ISP to be unused. A third is a set of unused 32-bit addresses (can be stored
as a Bloom filter).

Of course, worm authors could defeat this detection scheme by violating any of
these assumptions. For example, a worm author could defeat Assumption 1 by
using a very slow infection rate and by mutating content frequently. Assumption
3 could be defeated using addresses known to be used. For each such attack
there are possible countermeasures. More importantly, the scheme described
seems certain to detect at least all existing worms we know of, though they differ
greatly in their semantics. In initial experiments at UCSD as part of what we call
the EarlyBird system, we also found very few false positives where the detection
mechanisms complained about innocuous traffic.

4.6 CONCLUSION

Returning to Marcus Ranum’s quote at the start of this chapter, hacking must be
exciting for hackers and scary for network administrators, who are clearly on dif-
ferent sides of the battlements. However, hacking is also an exciting phenomenon
for practitioners of network algorithmics—there is just so much to do. Compared
to more limited areas, such as accounting and packet lookups, where the basic
tasks have been frozen for several years, the creativity and persistence of hackers
promise to produce interesting problems for years to come.

In terms of technology currently used, the set string-matching algorithms seem
useful and may be ignored by current products. However, other varieties of string
matching, such as regular expression matches, are in use. While the approximate
matching techniques are somewhat speculative in terms of current applications,
past history indicates they may be useful in the future.

Second, the traceback solutions only represent imaginative approaches to the
problem. Their requirements for drastic changes to router forwarding make them
unlikely to be used for current deployment as compared to techniques that work
in the control plane. Despite this pessimistic assessment, the underlying tech-
niques seem much more generally useful.

For example, sampling with a probability inversely proportional to a rough
upper bound on the distance is useful for efficiently collecting input from each
of a number of participants without explicit coordination. Similarly, Bloom filters
are useful to reduce the size of hash tables to 5 bits per entry, at the cost of a
small probability of false positives. Given their beauty and potential for high-speed
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implementation, such techniques should undoubtedly be part of the designer’s bag
of tricks.

Finally, we described our approach to content-agnostic worm detection using
algorithmic techniques. The solution combines existing mechanisms described
earlier in this book. While the experimental results on our new method are still
preliminary, we hope this example gives the reader some glimpse into the possi-
ble applications of algorithmics to the scary and exciting field of network security.
Figure 4.1 presents a summary of the techniques used in this chapter, together
with the major principles involved.
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Concepts in [P Security

No topic related to the Internet, with the possible exceptions of the flee availabil-
ity of pornography and the plague of unwanted spam email, has received more
attention in the mainstream media than “security.” For the average user the con-
cerns are predominantly viruses that may infect their personal computers, causing
inconvenience or damage to their data. Increasingly we also hear about white-col-
lar e-criminals who steal personal financial details or defraud large institutions
after illegally gaining entry to their computer systems.

We are also now all familiar with catastrophic failures of parts of the Internet.
Although these are sometimes caused by bugs in core components (such as rout-
ers) or by the perennial backhoe cutting a cable or fiber, they are increasingly the
responsibility of individuals whose sole joy is to pit their wits against those who
maintain the Internet. Sometimes known as hackers, these people attempt to pen-
etrate network security, or cause disruption through denial of service attacks for
a range of motives.

Corporate espionage is of relatively little concern to most people, but within
every forward-looking company there is a person or a department responsible for
keeping the company’s secrets safe. At the same time, the populist war against ter-
rorism invokes contradictory requirements—that the government should be able
to keep its information private while at the same time examining the affairs of sus-
pects without them being able to hide their communications.

Whatever the rights and wrongs of the politics and sociology, Internet security
is a growth industry. This chapter provides an overview of some of the issues
and shows the workings of the key security protocols. It introduces the security
algorithms without going into the details of the sophisticated mathematics behind
encryption algorithms or key generation techniques. For this type of information
the reader is referred to the reference material listed at the end of the chapter.

The first sections of the chapter examine the need for security, where within
the network it can be applied, and the techniques that may be used to protect data
that is stored in or transmitted across the network. There then follows a detailed
examination of two key security protocols: IPsec, which provides security at the
IP packet level, and Transport Layer Security (TLS), which operates at the transport
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layer and provides the Secure Sockets Layer (SSL). After a brief discussion of some
of the ways to secure Hypertext Transfer Protocol (HTTP) transactions, which are
fundamental to the operation of web-based commerce, the chapter describes how
hashing and encryption algorithms are used in conjunction with keys to detect
modification of data or to hide it completely—the Message Digest Five (MDS)
hashing algorithm is presented as the simplest example. The chapter concludes
with an examination of how security keys may be securely exchanged across the
network so that they may be used to decrypt or verify transmitted data.

5.1 THE NEED FOR SECURITY

It is fair to say that when the Internet was first conceived, security was not
given much consideration. In fact, the whole point of the Internet was to enable
information to be shared and distributed freely. It is only as a greater number of
computers have been connected together, and the sort of information held on
computers and distributed across the Internet has grown in quantity and sensitiv-
ity, that network security has become an issue.

There are two fundamental issues. First, there is a need to keep information
private for access only by authorized parties. Whether it is classified government
material, sensitive commercial information, your credit card number, or just a note
suggesting that you meet your friend in the bar in half an hour, there is strong moti-
vation to protect any information sent across the Internet from prying eyes. This
desire extends beyond protection of data transmitted over the Internet, and should
also be considered to cover the safeguarding of files stored on computers attached
to the Internet, and access to computing resources and programs. Some of the solu-
tions to this issue can be seen by users on private networks as they are required to
log on to their workstations, password protect key documents, and digitally sign
their emails.

The second security issue concerns protection of the infrastructure of the
Internet. This covers prevention of attacks on the configuration of devices in the
network, theft of network resources, and the malicious jamming of nodes or links
with spurious data that makes it impossible for legitimate messages to get through.

Somewhere between these two cases comes prevention of unauthorized
access to secure locations on computers. This access may be in order to read privi-
leged information, or it may be to replace it with something else, or even simply
to delete it. A popular gag among hackers is to replace the content of a web site
with slogans or pictures that are neither relevant nor helpful to the cause that the
site was promoting.

The Internet has been shown repeatedly to be quite fragile. The accidental mis-
configuration of a key router may result in large amounts of data looping or being
sent off into a void. Malicious changes to routing information may have a similar
effect. At the time of writing, the English-language web site of the Arab news service
alJazeera is unreachable because someone has stolen its DNS entry on several key
servers, resulting in all attempts to reach http://www.aljazeera.net being redirected
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to another site that displays an American patriotic message. Such intervention in the
smooth operation of the Internet, although no doubt a great deal of fun to the per-
petrator, is at best an inconvenience for the normal user of the Internet. For the com-
mercial organizations that depend on exchanging information across the Internet or
on customers visiting their web sites, these disruptions are a more serious matter.

Various techniques are used to compromise Internet security. The most obvi-
ous technique involves simply impersonating another user to access that user’s
computer. Remote access protocols such as Telnet and FTP make this particularly
easy. Of course, data that is sent on the Internet can be examined quite easily
using a sniffer, provided access to a computer on the network can be gained or a
sniffer can be hooked up to the network at some point.

Even when passwords and authentication or encryption are used, it may be
possible for someone to capture a sequence of commands and messages and
replay them at a later time to gain access. Such replay attacks can at least confuse
the receiving application and waste system resources, but may return information
such as encryption keys, or may provide access to applications on a remote server.

Denial of service attacks result in degradation of service to legitimate network
users. There is no immediately obvious benefit to the perpetrator, although the
example in the next section describes how denial of service may be used to trick
network operators into giving away their secrets. Denial of service is increasingly
a tool of “Internet anarchists” who target organizations with whom they have a
disagreement and block access to or from those organizations’ private networks.

5.1.1 Choosing to Use Security

On the face of it, it would seem that anyone would be crazy to consider using the
Internet without steeping themselves and their computers in the deepest security.
Yet most individual users connect their personal computer to the Internet daily
without significant consideration of the risks to their data, and only those whose
computers are attached to the Internet for prolonged periods of time using high-
speed links consider that they are at risk. Even a large proportion of corporations
apply only the simplest gatekeeping security to prevent unwarranted access into
their private networks, and take little or no precautions for the safety of the data
that they send across the Internet.

To some extent this is a statistical question: What are the chances of a hacker
stumbling across my computer? The answer is that it is currently fairly unlikely,
unless you draw attention to yourself, for example, by being a hated multinational
corporation with a reputation for polluting the environment, or by writing text-
books on Internet security. The statistical trend, however, may not be in our favor
and, just as we have all become aware of the dangers of computer viruses and
have equipped ourselves with software to detect and remove viruses, so we will
need to protect our computers from hackers who write or use programs that
search the Internet for unsecured computers.

There are other trade-offs to consider, too. Not the least of these is price, and
although a lot can now be done for the home computer at a very low price, the
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best corporate Internet security comes at a greater cost. There are also perfor-
mance costs associated with data encryption and authentication as the algorithms
used perform multiple computations on each byte of data that is transmitted. The
effect on the rate of data transmission can be reduced by using dedicated security
hardware that is optimized for the computations that are needed, but that pushes
the price up again. Work is also progressing to develop faster algorithms that are
equally secure.

The last consideration is the complexity of a fully secure system. In many cases
there are configuration issues to be addressed as security keys must be entered
into the system at the sender and receiver—some of these issues can now be
solved using key distribution protocols (see Section 5.8). And the complexity of a
security system may lead to maintenance problems, with confusion and misjudg-
ment by network operators, as illustrated by the following cautionary (and possi-
bly apocryphal) tale from the early days of networking.

A bank used to transport all its computer data on tape every night from a
major branch to its head office. The bank installed a computer link between the
sites to make the transfer more efficient and timely. Not being entirely ignorant, it
applied a simple encryption algorithm to the data.

As time went by, the bankers became uncomfortable that their encryption
algorithm might be too easy to crack, so they bought an upgrade to the soft-
ware that had a far more sophisticated encryption routine. In due course, they
upgraded the software and left the program to run overnight. To their consterna-
tion, the next morning they discovered that the data received at the head office
was garbled and couldn’t be decoded. A quick experiment showed that if they
turned off the encryption, the data was transmitted fine, but with encryption
enabled the computer at the head office was unable to make sense of the data.

With pressure mounting and the bank due to open, the manager made the
obvious decision; the new encryption software was broken and must be disabled
for the transmission. So, the data was sent to the head office unencrypted and
business went on as usual. The software developers were called but could find
nothing wrong with their programs, and so, eventually, hardware engineers came
to inspect the leased line between the offices. They, of course, found the point
at which the criminals had intercepted the data and mangled everything that
was encrypted, allowing through anything that was in the clear. Examination of
the bank’s records showed that once the nightly transaction had started without
encryption, the resourceful thieves had inserted their own records into the data
and had siphoned off their share of the money.

5.2 CHOOSING WHERE TO APPLY SECURITY

Security within an IP network can be applied at any or all of a set of different
levels. Physical security governs the connectivity and access to private networks;
protocol-level security controls and safeguards the essential protocols that make
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the Internet work; application security can be used to protect sensitive data and
to limit access to applications; transport and network layer security is used to pro-
tect data flows across public or exposed networks and connections.

Choosing between these options is as much a matter of strategic network plan-
ning as it is a requirement for protecting individual pieces of data. Security consul-
tants expend a great deal of effort helping their customers pick exactly the right
combination of options to achieve a secure and yet manageable system since it is
often the case that increased security is paid for through ever more complex con-
figuration requirements. The consequences of a poorly designed security system
extend beyond the problems described in the previous section—an overzealous
or badly administered scheme can bar or frustrate legitimate users. The sections
that follow briefly outline the levels at which security can be applied.

5.2.1 Physical Security

Perhaps the most obvious and strongest form of security is a physical break in
the connectivity. It is very hard for an intruder to gain access to your network or
data if there are no connections to the outside world. This approach still forms
the foundation of many corporate security models, but as networks grow in size
they often include links that are hard to protect (for example, those that run
between buildings) and this introduces a vulnerability that a determined outsider
may exploit. At the same time, external access to and from the wider Internet
and for dial-up connectivity is now almost ubiquitous. Although certain physical
connectivity constraints can be applied to both dial-up links and more permanent
external links, the gates stand open welcoming the hacker into private networks
and offering malicious or just nosy individuals the scope to examine private data
exchanges.

Even when there are physical connections from a private network to the out-
side world, there are some connectivity constraints that can be applied to help
bar the doors. On dial-up links caller ID detection or call-back facilities can limit
unauthorized access, and permanent links to the Internet are, of course, both few
and well known. Nevertheless, such physical security can provide only limited
protection for the private network and gives no safeguard for data once it has left
the privacy of the corporate network. Software safeguards are needed.

Some simple software configuration control measures can be made at a physi-
cal level to enhance security. These techniques are referred to as Access Control
(see Section 5.3.1) and are used to limit the access available to a node or network
by source IP address and by user ID and password.

5.2.2 Protecting Routing and Signaling Protocols

Routing protocols are used to distribute information about links and reachability
so that IP packets can be successfully delivered. Although the information distrib-
uted by these protocols is not very sensitive (some network providers may want
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to keep their network topology secret), the protocols themselves are vulnerable
to malicious attacks that can cause a break-down in the services provided to end
users—a denial of service attack. For example, if someone injected OSPF messages
into a network that appeared to advertise a low-cost link from one side of the
network to the other, this might find its way into the paths computed by all or
most of the nodes in the network, causing traffic to be misrouted and possibly
lost entirely.

Similarly, signaling and other IP-based protocols are used to manage network
resources and to direct traffic along specific paths. These protocols are also vul-
nerable to attack, particularly from message replay or spoofing.

Routing and signaling protocols typically offer some security protection
through authentication schemes (discussed in Section 5.3.2). These processes
allow nodes to verify that a message really was sent by the partner from which
it appears to come and, combined with sequence numbering schemes within the
protocols themselves, also protect against replay attacks.

In practice, however, authentication is rarely used by deployed routing and
signaling implementations. This has something to do with the configuration and
management overheads (each node must know a security key for use when authen-
ticating a message from each other node with which it might communicate), and
also derives from the fact that network providers are able to apply other security
schemes (physical, access control, and network level) to achieve the same ends.

5.2.3 Application-Level Security

For a majority of users the most important aspect of IP security is the protec-
tion of their user data as it is transferred across the network. It has been argued
that the greatest facilitator of the recent exponential growth of the Internet has
been the development of reliable and truly secure techniques for encrypting data.
Without these mechanisms it is unlikely that Internet commerce would have
become so popular because the sensitive nature of financial details (such as credit
card numbers) limits the likelihood of people participating in online transactions
across a public network.

Similarly, commercial information is widely regarded as being sufficiently sensi-
tive that it should be protected from prying eyes. The fact that the overwhelming
percentage of corporate data is so banal as to be tedious, and that this information
outweighs valuable data to such an extent as to hide it quite efficiently, is rightly
not considered as an effective security measure. The enthusiastic and determined
criminal will be willing to wade through thousands of unimportant emails that
set out lunch arrangements or discuss the latest ballgame, in the hope of discov-
ering something of value. Companies, therefore, do not send information “in the
clear” across the Internet. Data in file transfers and email exchanges is routinely
encrypted as it is transferred between company sites over public networks.

Application security normally takes one of two forms. First, the user can
encrypt or password protect the data to be transferred. Many applications such
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as word processors or file compression tools allow the user to require the use
of a password before the file can be opened. This password is usually encrypted
and stored within the file so that the receiving application requires the user to
enter the same password before the data can be viewed. All nontrivial appli-
cations assume that the use of a password also implies that the data should be
encrypted—this is wise since the application in question is not the only tool that
could be used to examine the file.

The second application security mechanism is embedded in the applications
that are used to transfer files or data as distinct from those that the user uses to
operate on the data. For example, email programs often allow the user to encrypt
individual emails so that the recipient must specify a password before being
allowed to read what was sent. An equally important concept is secure exchange
of data on web-based transactions—using security extensions to the Hypertext
Transfer Protocol (HTTP), it is possible for a user to send and receive sensitive
data such as credit card numbers using encryption techniques.

A final concept that is popular, especially in email exchanges, is the digital sig-
nature. This technique allows the receiver to verify that the message being read
was really sent by the apparent author, and that the message has not been modi-
fied by a third party.

Application security has strengths and weaknesses. It allows the user full con-
trol of the level of security applied to different transactions, but at the same time
it allows the user to make a mistake or simply forget to take appropriate measures.
Security modules must be implemented for each application since the rules and
methods for applying security within each application protocol differ. Although
these modules should be able to share common libraries for encryption and
decryption, the applications are developed by different software companies and
cannot necessarily rely on the presence of a third-party security library that the
consumer would have to purchase and install. So each application may need to
include its own security implementation. The alternative to this is offered by apply-
ing security across the board to all traffic at a lower layer, as described in the next
two sections, but this may mean that more security is used than is actually required,
slowing data transfer.

5.2.4 Protection at the Transport Layer

Transport protocols are responsible for delivering data on behalf of applications
over an IP network. Different transport-layer protocols provide different levels of
service, ranging from simple datagram dispatch to guaranteed in-order delivery
of data.

The more sophisticated transport protocols include some elements of security
that may be used by applications that do not, themselves, include modules that
offer secure data transfer. This has the advantage of collecting together all security
code in a single place (the transport stack module) and relieving applications from
having to include such features. On the other hand, the security enhancements are
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not available in all transport protocols (for example, the popular User Datagram
Protocol), which limits the popularity of transport-layer security.

Perhaps the biggest issue with transport-layer security is that it does not hide
or protect important fields in the transport protocol headers. These fields indicate
the source and destination of the data and give clues to the purpose of the mes-
sage exchanges. Additionally, these unprotected fields are fundamental to the suc-
cessful delivery of the data: if they are modified, the service may be interrupted.

5.2.5 Network-Level Security

The best alternative to application-level security is provided at the network layer
where the whole content of IP packets, and even the IP headers themselves, are
secured. This solution has many advantages. It is available for all IP traffic between
any pair of end points, so it is useful to protect application data and also can be
used to secure routing and signaling exchanges.

IP security (IPsec) is the mainstay of network-level security. It is used to
authenticate the sender of messages, to verify that message data has not been tam-
pered with, and to hide information from prying eyes. IPsec is used for a wide
range of applications, from protecting signaling and routing flows to providing
Virtual Private Networks (VPNs) across the public Internet.

5.3 COMPONENTS OF SECURITY MODELS

Security is achieved by building on the three distinct components described in
the sections that follow. These are Access Control, in which limits are placed on
the ability of a remote system or user to access the local system; authentication,
in which the sender’s identity and the data he or she sends is authenticated to
be genuine and free from modification; and encryption, in which the data is pro-
tected by a cipher. These components may be applied at all levels within the
network.

5.3.1 Access Control

Access controls provide some of the simpler, but also most widespread, forms of
security. Building on the concept of physical security, in which there is no con-
nectivity to the outside world, access controls attempt to limit the users who
can connect to a network, host, or application. The most familiar access control
comes in the form of user names and passwords; before users can access a given
application they must supply their name and password. In many operating sys-
tems and applications it is possible to configure user groups that have different
privileges—users are assigned to a specific group and this limits what activities
they can perform, with only the most privileged user group being able to access
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the most sensitive data and perform security-related tasks (such as assigning users
to groups).

User name and password protection provides a simple lock and key mode of
access control, and with it comes the problem of the user who leaves the door
open. What happens if a user connects to an application and then walks away
from the computer? Couldn’t someone else happen by and use the other user’s
access permissions? To help combat this, many applications automatically log
users out after a period of inactivity, and some even prompt users to reenter their
password every so often regardless of activity.

But just as someone may lend a friend his or her ATM card and tell the friend
the PIN to save a trip to the bank, so user names and passwords may not be
treated to particularly high levels of secrecy. In addition, passwords have to be
remembered by users who may have accounts on many computers and so they
tend to be common words or names. Programs used by hackers to attempt to gain
access to computer systems by repeatedly trying user names and passwords take
these human failings into account and are coded to try the default password set-
tings first (things like “password”) and then run through a series of well-known
common passwords, before resorting to words selected from a dictionary. It is an
interesting anthropological note that the password “NCC1701D” (the serial num-
ber of the starship Enterprise) is one of the most common passwords.

A further level of security can be achieved by using a dedicated computer or pro-
gram known as a firewall to provide a security gateway between your private net-
work and the outside world. The firewall is inserted between the private domain and
the public network, as shown in Figure 5.1. Normally, access to and from the Internet
would be provided by connectivity to a gateway router, but in this case all exchanges
between the private network and the Internet also go through the firewall router.

Firewall Gateway
Router Router

Private
== Network

[ ]

o

—— Internet

I

FIGURE 5.1

A firewall gateway provides additional security by filtering packets that are sent between a
private network and the Internet.

115



116

CHAPTER 5 Concepts in IP Security

Firewalls are responsible for applying access control. They filter the IP pack-
ets that they forward based on many properties, including source and destination
IP address, payload protocol, transport port number, and any other quality that
the security manager deems appropriate. The simplest configurations are called
IP Access Lists and are lists of remote IP addresses that are allowed to source mes-
sages that will be passed into the private network through the firewall. Other
common filters limit access only to designated hosts (destination IP addresses)
and even then restrict incoming packets to those that carry a particular protocol
(such as TCP) and target specific port numbers (such as port 80 for web access).
Packets that are not allowed through are simply discarded—no special error mes-
sage is returned because this would surely help a hacker discover a way to pen-
etrate the security.

Filters applied at firewalls can be inclusive or exclusive (or both)—that is, they
may be a list of packets that is allowed through, or a list of packets that will be
denied access. There are advantages and disadvantages to each approach and a
trade-off must be made between the cost of misconfigurations that allow inadver-
tent access and those that block legitimate use. The latter can normally be fixed
quite simply and (provided that the security manager does not panic or overreact
when responding to an annoyed user) it is usually considered better to build up a
profile of users and packet types that are allowed access than to try to list each of
the sources that is not allowed.

A further firewall model inserts an additional computer between the firewall
router and the gateway router. This computer serves as an application gateway, and
all connections from one side of the firewall to the other are terminated and regen-
erated at this node, as shown in Figure 5.2. The application gateway can be made
additionally secure by applying access control on each side so that the only con-
nections allowed are between the private network and the application gateway, and
between the application gateway and the Internet. The application gateway maps
connection requests onto connections to real hosts within the private network, hid-
ing those nodes from the outside world—a feature similar to that supplied by HTTP

Application
Gateway
Firewall Gateway/Firewall
Router Router
I!I» Private e —
iy Network S -— nierne
FIGURE 5.2

Application security may be enhanced by the use of an application gateway positioned
between two firewall routers.
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proxies. Similarly, such gateways may map application protocols or even network
protocols, providing access to the Internet for proprietary or nonstandard networks.

Firewall security may actually be condensed to run on a single box so that an
application gateway may be combined with a firewall router, or a home computer
may run simple access control on its dial-up connection to the Internet.

Firewalls are a popular security solution because they are a simple concept and
they provide a single point of security management. This allows the responsibility
for security to be placed in the hands of a single person who has only to man-
age and configure a single computer. Such an approach is also cheap to imple-
ment, requiring the addition of only one network element and providing security
through a simple software solution. On the other hand, this form of packet filtering
may cause an undesirable bottleneck in the path of legitimate data traffic since all
packets must pass through the one point of connection and each must be subject
to a series of checks against the configured rules.

In the end, however, access control is of only limited efficacy. Malicious users
may impersonate others either by stealing their user names and passwords, or by
changing their IP addresses to get through the firewall. The very nature of the
firewall includes the crack through which an intrusion may occur.

This means that full security must be achieved through more complex tech-
niques described in the sections that follow.

fire wall »:a wall constructed to prevent the spread of fire.

5.3.2 Authentication

Authentication serves two purposes: it validates that the user or the sender of a
message is who he or she claims to be, and it ensures that the message received
is genuine and has not been tampered with. At an application level, authentica-
tion is usually provided through a user ID and password exchange building on
the application access control mechanisms already described. Application-level
authentication is most often applied to transactions or sessions (that is, at a rela-
tively high level), although individual components of transactions may be authen-
ticated through the use of digital signatures.

At a per-message level in routing, signaling, and transport protocols, or in IP
itself, authentication usually takes the form of a validation process applied to parts
or the whole of the message being transported. The sender runs an algorithm over
the whole of the message (usually in conjunction with a secret string called a key)
and includes the output from the algorithm with the message that is sent. The
receiver runs the same algorithm over the message using the same key and checks
that its result is the same as the one it received. Any attempt by a third party to
modify the message will cause the receiver’s answer to differ from the one in the
message. Since the key is not transmitted, and since it is known only to the sender
and the receiver, the attacker cannot patch up the message to defeat the authenti-
cation process.
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The use of sequence numbers within the protocol messages protected by an
authentication scheme helps defeat replay attacks because a replayed message
with an incremented sequence number will fail the authentication test, and a
replayed message without a change to the sequence number will be rejected by
the protocol.

5.3.3 Encryption

Authentication is all very well, but it does not protect the privacy of data that is
sent through a public network or over public connections. This data is exposed
and may easily be read by anyone using reasonably simple technology. The obvi-
ous risks to passwords, financial details, and confidential information require the
use of other techniques to hide or encrypt the data that is sent.

Encryption techniques on the Internet are not really that dissimilar to those
used in all of the best spy movies. Some formula is applied to the source data to
convert it into a stream of apparently meaningless characters. This information
can then be safely transmitted across the Internet to the recipient, who applies
another formula to decrypt the message and discover the data.

Successful encryption algorithms rely on the fact that someone who intercepts
a message cannot readily decrypt it. The first approach to this technique is to keep
the encryption and decryption formulae secret—if the algorithms are good, no
one will be able to interpret the messages that are exchanged. The problem with
this technique is that the algorithm must be well known for the security process
to have wide application, which defeats its efficacy as a primary security measure.

The solution is to enhance the encryption algorithms with keys. These keys
provide additional input to the encryption and decryption processes, making
them unique even when the algorithms are well known. The keys are private to
the sender and receiver of the messages.

Encryption may be applied at any level within the network. In many cases,
applications or users encrypt all or part of the data they want to send—this is, for
example, how credit card details are exchanged during commercial transactions
on the World Wide Web. In other circumstances, the transport or network pro-
tocols are asked to provide encryption on behalf of the applications—the most
widespread encryption and authentication technique at the network layer is pro-
vided by IPsec, discussed in the next section.

Authentication and encryption may be applied independently or in combination.

5.4 IPsec

IP security (IPsec) defines a standard way in which IP datagrams may be authen-
ticated or encrypted when they are exchanged between two nodes. The security
architecture for IPsec is described in RFC 2401, and RFC 3457 explains some com-
mon scenarios in which IPsec may be used. The protocol extensions for IPsec
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are defined in RFC 2402 (authentication) and RFC 2406 (encryption) and are
explained in the sections that follow.

Secure packet exchanges using IPsec occur between a pair of cooperating
nodes that establish a Security Association (SA). The SA essentially defines the
type of security (authentication and/or encryption), the algorithms, and the keys
to be applied to all IP packets exchanged between the nodes. As a point of preci-
sion, SAs are actually unidirectional, but it would be normal to instantiate them in
both directions using the same characteristics with the possible exception of the
keys, which might be different for each direction.

IPsec may be deployed end-to-end between host computers or across the net-
work by proxy security servers on behalf of the hosts. That is, the SA may extend
from data source to data sink, or may cover only part of the path between the two
end points.

5.4.1 Choosing between End-to-End and Proxy Security

Figure 5.3 shows the difference between end-to-end security and the proxy
model. In the end-to-end case, the Security Association extends from the source to
the destination and packets are fully encrypted or authenticated along the whole
length of their path. This is the maximally secure solution.

For proxy security, a node part-way along the data path (a proxy) is responsible
for applying IPsec to the IP packets and transferring them to another proxy that
validates or decrypts the packets before passing them on to the final destination.

Source Destination
= ===
. ) «
; =< ==
—> A—> ==

.....

Proxy Security
FIGURE 5.3

IPsec may be applied in an end-to-end model or across only part of the network using proxy
security.

119



120

CHAPTER 5 Concepts in IP Security

Proxy security has the obvious drawback that the packets are exposed for part
of their path. However, it has many positive points that make it useful and popular.
First, it reduces the implementation complexity at the end points—in the proxy
model, one proxy may serve multiple end points, allowing the security code to
be concentrated just on the proxies. This process extends to allow a single SA to
carry traffic belonging to multiple data streams. This is possible if several hosts
served by one proxy want to communicate with other hosts served by a second
proxy. In this mode of operation, the IP packets from the data streams are grouped
together and treated to the same security measures and forwarded to the same
remote proxy as if down a tunnel.

A final advantage of the proxy model is that, in IPsec, it hides the source and
destination IP information as packets traverse the core network. As will be seen
in later sections, when packets enter the IPsec tunnel they are completely encap-
sulated in a new IP packet that flows between proxies—this increases the secu-
rity by not exposing the end points of the data flows.

End-to-end security is used when individual remote nodes connect into net-
works (for example, when dialing in through a public network). Proxy security
is used when using a public network to connect together networks belonging to
the same company to form a virtual private network (VPN).

5.4.2 Authentication

As described in Section 5.3.2, authentication is achieved by processing the mes-
sage with a key. This is illustrated in Figure 5.4. In IPsec the IP header, data pay-
load, and a key are processed through an authentication algorithm to produce
authentication data. This authentication data is placed in an Authentication

IP Header Data Key

.

A4
‘ IP Header

Authentication
Header

Data

FIGURE 5.4

IPsec authentication is used to verify that the sender of a message is legitimate and that the
message has not been tampered with.
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Header inserted between the IP header and the payload. The Authentication
Header is shown in Figure 5.5.

The hashing algorithm is performed on the whole IP packet to be transmit-
ted—that is, the IP header and the data. The value generated by the hashing pro-
cess is placed in the Authentication Data field of the Authentication Header and
transmitted to the destination. At the destination, the algorithm is performed
again on the IP header and the data (but not the Authentication Header) using the
same key. The result is compared with the transmitted authentication data to ver-
ify that no modification of the packet has occurred. This process and the format
of the IPsec Authentication Header are described in RFC 2402.

Any authentication algorithm may be used, and plenty are defined. IPsec
places a requirement on implementations that at least the Message Digest Five
(MD5) algorithm is supported (see Section 5.7.1). It is (obviously) a requirement
that both the sender and the receiver know which authentication algorithm is
in use, and the values of the keys. IPsec does not discuss how this information is
exchanged or configured, but Section 5.8 describes some possibilities.

One issue should be immediately apparent: some of the values in the IP header
may legitimately be modified as the packet traverses the network and this will
invalidate the authentication process. To avoid this problem the hashing algo-
rithm is applied to the IP packet with certain key fields (TTL, ToS, checksum, and
flags) set to zero. Further, the next protocol field is modified by the insertion of
the Authentication Header; it is set to 51 (0x33) to indicate that an Authentication
Header is present. The hashing algorithm is applied to the IP packet at the source
before the insertion of the Authentication Header, and at the destination it is
performed after the removal of the Authentication Header. The Authentication
Header, shown in Figure 5.5, carries the payload protocol for restoration into the
IP header, and indicates its own length for ease of removal.

One last observation should be made about the insertion of an Authentication
Header. The presence of the header may cause the IP packet size to exceed the

1 2
1]2[3]4]5]6]7[8]9]o]1]2]3]4]5]6][7[8]9]o[1]2][3]4]5]6]7]8]9]0]1
Authentication
Header Length

(e} (=]

Next Protocol Reserved

Security Parameter Index

Sequence Number

i Authentication Data
FIGURE 5.5

The IPsec Authentication Header is inserted into IP packets to carry authentication
information.
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MTU size for the link into the network. If fragmentation is not allowed, the size of
source data packets must be modified before authentication can be used because,
otherwise, the packet may be fragmented. Note that fragmentation at the source
node is no different from fragmentation within the network—it is performed on
the whole IPsec packet, including the Authentication Header (there is no ques-
tion of one Authentication Header per fragment) and so the fragments must be
reassembled at the destination before they can be authenticated.

The Authentication Header (shown in Figure 5.5) includes a Security Parameter
Index (SPD) that is used to identify the Security Association that manages this
packet. Given a source and destination address pairing, the SPI uniquely identi-
fies the security context, telling the receiver which algorithms and keys to apply.
The SPI should be generated randomly to reduce predictability and to limit the
chances of a restarting node accidentally reusing an old Security Association. The
SPI values O through 255 are reserved. A Sequence Number is designed to help
prevent denial of service attacks in which malicious parties capture and replay
packets or sequences of packets. The sequence number may help the destination
node determine that received packets are duplicates or are out of order and dis-
card them without further processing. Finally, the Authentication Header contains
the output of the hashing algorithm in a field that will vary in length depending
on the algorithm in use.

Authentication can be applied in the end-to-end model or using proxies: in
each case the format of the message is the same.

5.4.3 Authentication and Encryption

When data is encrypted an encryption algorithm is fed with a stream of data and
an encryption key. The output is a new stream of data that may be longer than
the original data. When IPsec encryption is used in end-to-end mode, the data part
of the source IP packet is encrypted and transported with the original IP header.
The encrypted data is named the Encapsulated Security Payload (ESP) and is
placed between an ESP header and trailer, as shown in Figure 5.6.

In proxy IPsec encryption the whole source IP packet (header and data) is
encrypted as shown in Figure 5.7. A new packet is built with a new IP header
that handles the passage down the tunnel from one proxy to the other. The data
of this new packet is the encrypted source packet encapsulated between an ESP
header and trailer.

Many encryption algorithms exist, and they operate on keys of varying com-
plexity. A massive industry has grown up around the conflicting desires of pri-
vacy and transparency, conspiracy and law enforcement. Suddenly, mathematicians
who devise these procedures discover that they can be popular if they work in
this field. IPsec mandates that implementations must at least support the Data
Encryption Standard (DES). This algorithm is discussed in Section 5.7.

The IPsec encryption process is described in RFC 2406. The ESP packet format
shown in Figure 5.8 starts off simply enough. After the normal IP header, which
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FIGURE 5.6
|Psec encryption may be applied to the IP payload data in the end-to-end security model.

IP Header Data Key
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Trailer
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FIGURE 5.7

When IPsec encryption is used in the proxy security model the whole IP packet is encrypted
and encapsulated in a new packet.

carries a next protocol value of 50 (0x32) to indicate that an ESP header is pres-
ent, the ESP header begins with an SPI and Sequence Number that are used in the
same way as they are in the authentication process described in the previous sec-
tion. From here on, however, the packet seems to be a bit of a mess! It is easiest to
understand how it is constructed by working from the end toward the beginning.
If authentication is in use in addition to encryption, this will be known to both
the source and the destination and a piece of authentication data (the output from

the hashing algorithm) with a well-known length will be appended to the packet.

In front of this comes a single byte that identifies the protocol of the encrypted
payload. In the IP case described here this field does not appear to be necessary—
surely we know that the payload is an IP packet?—but there is no reason this
method of encryption and encapsulation shouldn’t be used to carry non-IP traffic
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FIGURE 5.8
In IPsec encryption an IP packet is converted into an Encapsulating Security Payload packet.

across an IP network. In our case, if proxy security is in use, the next protocol field
is set to 0x04 to indicate IPv4, otherwise the next protocol field is copied from the
next header field of the original IP header and indicates the payload type.

Continuing to work backwards through the packet, we reach a count of pad-
ding bytes. The padding is present at the end of the encrypted payload data and
serves several purposes.

m It may be necessary to ensure that the Next Protocol field ends on a 4-byte
boundary, which is an encoding requirement.

m Some encryption algorithms may function over data that is presented only
in multiples of a certain number of bytes (such as 4, 8, or 16). Padding is
therefore necessary to bring the number of bytes in the IP header and data
up to the right number of bytes.

m It may be advantageous to vary the length of packets being sent across a
network to better hide the operations being carried out. A trivial example
could be the transfer of a password; although the encryption algorithm will
hide the password, the packet length could expose the length of the pass-
word. Adding padding helps to mask this information.

Working further backwards we reach the encrypted data itself. This is the IP header
and data that is being sent across the network. The last field we reach is the optional
Initialization Vector. This field is specific to the encryption algorithm and includes
any information needed by the decryption algorithm before it can operate—some
algorithms include this field directly with the data and others extract specific mean-
ings that guide their operations.
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If IPsec is not used to protect the data at the network layer, then the next alter-
native is to use some form of protection at the transport layer, as described in the
next section.

5.5 TRANSPORT-LAYER SECURITY

Transport-layer security is provided by the Transport Layer Security Protocol (TLS)
defined in RFC 2246. This protocol is in fact two small protocols designed to run
over TCP, being inserted between applications and the transport protocol usually
through the use of the Secure Sockets Layer (SSL).

The TLS Handshake Protocol is used to correlate what encryption and authen-
tication operations are used on the TCP connection—these may also include data
compression. The TLS Record Protocol provides a mechanism for the exchange
of handshake messages and is responsible for authentication and encryption of
data exchanged over TCP connections. It uses standard algorithms to hash or
encode the data that is passed to it over the secure sockets API. The sockets API
allows applications to stream data in arbitrary blocks, but most encryption algo-
rithms operate on records of a defined length, so the first thing the TLS Record
Protocol must do is buffer data to build up complete records ready for processing.
Conversely, large blocks of data must be segmented into records of 2'4 bytes or
less so that they may be properly handled. Figure 5.9 shows how the protocols
are arranged and where the Sockets and Secure Sockets APIs fit in.

Annoyingly, the message formats in RFC 2246 are specified in a notation a little
like “C” or XDR so that they appear as data structures. For most purposes this may
be sufficient because the structures can simply be picked up, made to compile,
and used to build and decode messages, but it should be recalled that although
structure packing rules may vary by compiler the message formats on the wire
must remain constant. The format of the basic TLS record is shown in Figure 5.10.
Records are sent as the payload of IP packets with the next header field set to 56

Secure Sockets API

TLS Handshake
Protocol

Sockets API

_________ TLS Record Protocol

UDP TCP
IP
Network Protocol
FIGURE 5.9

The Secure Sockets Layer provides an additional level of function above TCP.
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FIGURE 5.10

The Transport Layer Security record format.

Table 5.1 Defined Values for the TLS Record Content Type
Value Meaning

20 Change of cipher specification
21 TLS alert

22 Handshake message

23 Data

(0x38) to indicate TLS. The Content Type field indicates whether the record is car-
rying data or is being used to manage the process; the defined values are shown
in Table 5.1. The protocol version number is 3.1 and is encoded in two fields (the
value 3.1 is historic: TLS is based on a previous protocol called SSL, the protocol
that provided the Secure Sockets Layer, which had reached version 3.0 when TLS
version 1.0 was invented).

Each TLS Record message may contain a control message or data. If the data
(or control message) is too large to fit into one message it must be fragmented
and sent in a series of messages. Each fragment may not be larger than 2'4 bytes
after it has been subject to decompression. The use of data compression or data
encryption for the payloads of the data messages is selected through configura-
tion or through the use of the TLS Handshake Protocol described in the following
section.

5.5.1 The Handshake Protocol

The TLS Handshake Protocol is optional in transport-layer security. It is used to
dynamically negotiate and exchange security parameters (algorithms, keys, etc.)
for use within the context of a TCP connection. If the Handshake exchanges are
not used, security parameters must be exchanged through some other means (for
example, manual configuration).
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Transport Layer Security Handshake Protocol messages are carried in TLS records and have a
common header.

Handshake messages are carried in TLS Record Protocol exchanges. The record
type 23 (handshake) is used, and one or more record fragments may be used to
carry the message (note that the maximum handshake message length is 224 and
that a fragment can carry only 2! bytes). Each message has a common format, giv-
ing the message type and length, and is then followed by message-specific fields.
This is shown in Figure 5.11 with the Record Protocol header.

The Handshake Protocol is an end-to-end protocol—the messages are
exchanged between the TCP TLS client and server across the network. The basic
exchange of messages is initiated by the client sending a Client Hello, as shown
in Figure 5.12. The Client Hello indicates the client’s desire to establish a security
session on this TCP connection, defines a session ID, and lists the security and
compression algorithms the client supports and is willing to use.

The server responds with a series of messages that define the server’s security
parameters. The Server Hello message acknowledges the Client Hello and narrows
the lists of security and compression algorithms down to just one of each. The
Certificate and Server Key Exchange messages are optional and are used to con-
vey security information (the identity of the server and the server’s security keys,
respectively) if required. Similarly, the server may optionally send a Certificate
Request if it wishes the client to identify itself in a secure way. The server indi-
cates that it has completed this sequence of messages by sending a server Hello
Done message.

The client now embarks upon a sequence of messages to pass its certification
information to the server. Some of the messages are optional, depending upon
whether the server sent an optional request. The Certificate message identifies
the client in response to a Certificate Request. The Client Key Exchange message
is identical in format to the Server Key Exchange message and reports the client’s
security parameters. The client confirms that the certificate sent by the server
(if one was sent) is acceptable by sending a Certificate Verify message. Now the
protocol needs to switch from unencrypted message exchange (which it has used
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so far) to encoded messages. It wants to do this by sending a trigger message so
that the receiver also knows that encryption is in use, so it sends a Change Cipher
Spec message. But the Change Cipher Spec message is not part of the Handshake
Protocol; it is a TLS Record Protocol message. This allows it to be used even when
the Handshake Protocol is not in use, for example, when encryption informa-
tion is configured or exchanged in some other way. Once the use of the cipher
has been enabled, the client completes its sequence of messages with a Finished

message.

The ball is now back with the server. All that remains for the server to do is
enable its own use of encryption for messages sent on the connection. It does this

by sending a Change Cipher Spec message followed by a Finished message.
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The order of messages shown in Figure 5.12 is important. The only permis-
sible deviation is when an optional message is not included.

The sequence of messages shown in Figure 5.12 may also be reinitiated dur-
ing the life of a secure TCP connection to renegotiate the security parameters.
This may be desirable if the transactions carried on the connection suddenly
reach a point at which additional security is needed, or if the connection has been
open for a configured time such that the client or server believes it is time to
change the key. In this case the client may send a new Client Hello to restart the
exchange, or the server may send a Hello Request to trigger the client to send a
Client Hello.

Figure 5.13 shows the TLS Handshake Protocol messages converted from
their pseudo “C” to byte format. Many of the fields are enumerations of options
or types or encryption options and the lists of values can be looked up in RFC
2246. Certificates and the distinguished names of certifying authorities are taken
from the ISO’s X.509 directory standards. Keys, key information, and signatures
are dependent on the encryption algorithms and options selected.

The Finished message bears a little further examination. The message exchange
up to and including the Change Cipher Spec message has been in the open (assum-
ing that a lower-layer security system such as IPsec is not in use), which means
that it was vulnerable to interception and manipulation. What is needed is a way
to verify that the received messages were identical to those sent. The Finish mes-
sage does this by performing an authentication hashing algorithm on the combined
byte stream produced by concatenating together some of the messages and secu-
rity information already exchanged. The 12-byte authentication data in the Finish
message is the output of the Pseudo Random Function (PRF) defined in RFC 2246.
The input to the PRF is as follows.

m The Master Secret (a 48-byte secret key shared between the end points).
m A Finished Label (the text string “client finished” or “server finished”).

m The output of two distinct hashing algorithms, each applied to the concatena-
tion of all of the Handshake Protocol messages sent by this node on this session
up to this point in time (not including this message, not including the Record
Protocol headers, and not including the Hello Request message if it was sent).

The two hashing algorithms used are Message Digest Five (MD5) and Secure
Hash Algorithm One (SHA-1).

5.5.2 Alert Messages

TLS alert messages have the fragment length set to 2 and carry 2 bytes of error
information. The first byte indicates the severity of the error (1 means warning,
2 means fatal), and the second byte indicates the specific error using a value from
Table 5.2.When an error is detected on a TLS connection, the node identifying the
problem sends an alert message—this may be in response to a message that forms
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Transport Layer Security Handshake Protocol messages are specified in RFC 2246 using a
notation similar to “C,” but may be converted into byte format.
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Table 5.2 TLS Alert Messages Carry a Descriptive Error Code

Error Code  Severity Meaning

0 Warning close_notify: Notifies the recipient that the sender will
not send any more messages (data or control) on this
connection. The receiver should respond with a close_
notify to terminate the session. This is a warning message
so that the remote node may respond.

10 Fatal unexpected_message: Indicates a protocol violation.

20 Fatal bad_record_mac: Authentication of a received record has
failed.

21 Fatal decryption_failed: Decryption failed because of the format
of the encrypted data.

22 Fatal record_overflow: The record length received was too large.

30 Fatal decompression_failure: Decompression produced an
invalid record (for example, the record length was too large
after decompression).

40 Fatal handshake_failure: Could not agree on an acceptable set
of connection parameters during the handshake process.

42 Warning bad_certificate: A certificate was corrupt.

43 Warning unsupported_certificate: An unsupported certificate type
was used.

44 Warning certificate_revoked: A certificate was revoked by the
signer.

45 Warning certificate_expired: A certificate has expired.

46 Warning certificate_unknown: A certificate was unusable for some
other reason.

47 Fatal illegal_parameter: Some parameter exchanged during the
handshake process was out of range or unknown.

48 Fatal unknown_ca: A Certificate Authority certificate could not
be matched.

49 Fatal access_denied: The certificate is valid but does not afford
the requested access according to local policy.

50 Fatal decode_error: A message could not be decoded because
of an encoding error or a parameter out of range.

b1 Warning decrypt_error: A handshake cryptographic operation failed,

including being unable to correctly verify a signature,
decrypt a key exchange, or validate a finished message.

(Continued)
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Table 5.2 (Continued)

Error Code  Severity Meaning

60 Fatal export_restriction: An attempt to export a key failed.
70 Fatal protocol_version: Recognized but unsupported protocol
version received.
71 Fatal insufficient_security: Specific handshake failure when the
server requires more security than the client has offered.
80 Fatal internal_error: An internal programming error or resource
shortage has occurred.
90 Warning user_canceled: Abort the current handshake process.
Should be followed by a close_notify.
100 Warning no_renegotiation: Reject cipher renegotiation for an active
session.

part of the handshake procedure, or may report an error with data exchanged on
the connection.When a fatal alert message is sent or received, both parties immedi-
ately close the connection without sending any further messages and are required
to forget any session identifiers, keys, and secrets associated with the connection.

5.6 SECURING THE HYPERTEXT TRANSFER PROTOCOL

Securing the Hypertext Transfer Protocol (HTTP) was an important advance in
Internet security that made possible much of today’s web-based commerce in a
secure environment. Without a solution to security issues in the World Wide Web it
is unlikely that the Internet would have grown beyond a giant information base, and
online shopping as we know it would never have taken off.

Two strategies have evolved. The first is called the Secure Hypertext Transfer
Protocol (S-HTTP) and offers a set of extensions to HITP. The second approach,
called HTTPS, involves running standard HTTP communications over TCP using
the Secure Sockets Layer (SSL).

S-HTTP is described in RFC 2660, and is a set of extensions to HTTP. A single
new HTTP method is defined; the Secure method allows clients to initiate an
exchange of encryption and key information so that subsequent data messages
may be encrypted or digitally signed. RFC 2617 offers client-server identity authen-
tication functions through additional fields for standard HTTP methods.

S-HTTP is less used than HTTPS because S-HTTP leaves the HTTP message
headers exposed. In HTTPS, the entire HTTP communication is packaged within
SSL (see Section 5.5) and is completely encrypted. For HI'TPS operations, URLs
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are prefixed with bttps.// and port number 443 is used in place of the standard
HTTP port 80.

When users start to access a secure web site using HTTPS they usually see a
dialog box prompting them to accept the certificate sent from the web server.
This implies a close implementation tie-up between the HTTP engine and the pro-
tocol stack implementing the SSL.

Securing HTTP communications allows users to build semiprivate web sites,
which lets companies provide web-based access to their corporate email systems.
This has been developed so that many companies offer their customers selective
access to sensitive sites that hold customer-specific details shared between the
supplier and consumer (such as databases of reported faults, software patches for
download, etc.).

5.7 HASHING AND ENCRYPTION: ALGORITHMS AND KEYS

Hashing and encryption algorithms are used for the most basic authentication
procedures and for the highest security encryption of data. Each algorithm takes
as input the raw data to be transmitted and a key. A key is a binary value that is
used to lock and unlock the data. Keys vary in length from 32 bits to 256 bits or
larger—for any specific algorithm it is generally the case that the larger the key;,
the more difficult it is to crack the encryption code.

As described in the preceding sections, authentication algorithms use the data
and key to generate an authentication code. The receiver can run the same algo-
rithm with the same key on the received data and compare the resulting authen-
tication code to the one transmitted with the data. Encryption algorithms use
the key to convert the data into a series of apparently meaningless bytes that the
receiver must unscramble before they can be used. The data may be unscram-
bled using a paired algorithm and a partner key corresponding to those used for
encryption, or the same algorithm and the same key may be used, depending on
the encryption technique employed.

The most basic hashing algorithm is the cyclic redundancy check (CRC). CRC is
used in IP to validate that data has not been accidentally modified, for example, by
errors during the transmission process. It is valuable for that purpose and will dis-
cover a very high proportion of accidental errors, but it is of absolutely no use as an
authentication algorithm since there are well-known procedures for modifying the
CRC value for any change made to the data. More complex hashing algorithms are
used for authentication in conjunction with a security key.

Encryption algorithms tend to be more complex and have longer keys. The
standard minimum encryption algorithm is the Data Encryption Standard (DES)
described in Section 5.7.2, but many more sophisticated approaches have been
developed. There are two keying techniques used in cryptography; the secret key
model has already been described and functions by the sender and receiver both
knowing (and keeping secret) the key so that they can successfully exchange data.
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This is a fine procedure, but as already explained it requires some form of key
exchange between end points. This is not only insecure, because someone might
intercept this key exchange, but it is dependent on the trustworthiness of both
the sender and the receiver since, for example, once the receiver knows the send-
er’s key he or she can impersonate the sender or intercept other encrypted data.

Curiously, the solution to this problem is to make the key public knowledge.
In public key cryptography one algorithm but two keys are used: one to encrypt
the data and the other to decrypt it. One of these keys is freely advertised but the
other is kept secret. So, for example, a node wishing to receive secret data would
advertise the encryption key to use, but would keep secret the decryption key.
The remote node would use the advertised (public) encryption key to encode
the data and would send it to the recipient where it could be decoded using the
secret key. Conversely, a node wishing to prove its identity will advertise a pub-
lic decryption key, but keep secret its encryption key—in this way anyone can
decode its digital signature and know that only the owner of the secret encryp-
tion key can have sent the message. This technique can be extended to message
digest techniques to provide public key authentication.

In practice, algorithms that use two keys (dual key algorithms) are more com-
plex and slower to operate since they require each byte of data to be handled
many times. This makes them far from ideal for use in bulk data transfer, but for-
tunately a solution exists. A secret key algorithm is used to encode the data (that
is, it is encrypted using an algorithm that can be encoded and decoded using a
single key) and the secret key itself is encrypted using a public key algorithm.
The encrypted secret key need only be exchanged once for each transaction and
can be used to decode all of the data.

5.7.1 Message Digest Five (MD5)

The simplest authentication hashing algorithm in popular use is the Message
Digest version 5 (MD5) algorithm described in RFC 1321; RFC 1828 describes how
to apply the algorithm to authentication. Support for this algorithm is mandated in
several protocols (such as RSVP) and must be supported as a minimum require-
ment of IPsec. MD5 produces a 16-byte authentication code (the message digest)
from data of any length with or without a key of any length. Without a key, MD5
can be used like the CRC to detect accidental changes in data. It can be applied to
individual messages, data structures, or entire files. But since a hacker could readily
recompute the message digest and so mask a malicious change to the data, a key is
used (appended or prepended to the data) to make it impossible for a third party
to determine the correct MD5 authentication code of a modify packet.

Figure 5.14 shows some sample code to implement the MD5 authentication
algorithm by way of evidence that even the simplest authentication algorithms
are nontrivial. The guts of the algorithm are the RSA Data Security, Inc. MD5
Message-Digest Algorithm and are copied from RFC 1321. In the code, a top-
level function, MD5( ), is called with a data buffer and a key; it returns a 16-byte
authentication code. This function processes the following strings in turn: the key,
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/* Function to perform MD5 digest hashing on a buffer with a key */
/* Returns the message digest in a 16 byte string that is supplied */
void MD5 (char *input buffer, char* input key, char *output digest)
{
u_int32 digest[4];
u_int32 bit_ count[2];
u_char work_buffer([64];
u_char pad buffer[64] ={
ox8o, o, 0, 0, 0, O, O, O
o, o, o, 0, 0, 0, 0, O,
o, 6, o, 0, 0, 0, O, O
o, o, 0, 0, 0, O, O, O
u_char bit_string(8];
u_int32_  buffer len=strlen(input buffer) ;
u_int32 key len=strlen(input key) ;
u_int32 pad len;
u_int32 ii, jj;

copo ©
o o o ©
©coo o
coo2
coop°

o o o o
o o o o
o O o o

—~

/* Pre-initialize the digest to well-known values */
/* Placing the low order bytes first, the 16 bytes */
/* should be filled with 0x01 23 45 67 89 ab cd ef */
/* oxfe dc ba 98 76 54 32 10 */
digest [0] =0x67452301;

digest [1] =0xefcdab89;

digest [2] =0x98badcfe;

digest [3]=0x10325476;

/* initialize the bit counts */

bit count [0]=0;

bit count [1]=0;

/* Start the digest with the key */
if (key string !=NULL)
_MD5_work (&digest, &bit count, key string, key len, &work buffer);
/* Pad to the next 64 byte boundary */
pad len=key len % 64;
if (pad_len !=0)
_MD5_work (&digest, &bit count, &pad buffer, pad len, &work buffer) ;

/* Perform first pass MD5 calculation on the string */
_MD5_work (&digest, &bit count, input buffer, buffer len, &work buffer);

/* Update the digest with the key (again) */
if (key string !=NULL)
_MD5_work (&digest, &bit_ count, key string, key len, &work buffer);

/* Pad the combined string to a length of 56 modulo 64 */
/* The value 56 leaves sufficient space for the 8 byte string */
/* representation of the message length */
/* Update the digest with the padding */
pad_len=(bit_count [0]/8) % 64;
if (pad_len>56)

pad_len=pad len - 56;

FIGURE 5.14
Code to implement MD5 authentication.
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else
pad_len=56+64 - pad len;
if (pad_len ! = 0)
_MD5_work (&digest, &bit_count, &pad buffer, pad len, &work buffer);

/* Convert the bit count into a string and add it to the digest */
/* This fits into the last 8 bytes of the work buffer */
for (ii=0; 1ii<2; ii++)
for (§j=0; jj<4; jj++)
bit string[jj+(ii * 4)]=(u_char) ((bit_count [ii] >> (jj * 8)) &Oxff);
MD5_work (&digest, &bit_count, &bit_string, 8, &work_buffer) ;

/* Move digest data into the output string */
for (i1i=0; 1ii<4; 1ii++)
for (jj=0; jj<4; jj++)
output_digest [jj+(ii * 4)]=(u_char) ((digest[ii] > (jj * 8)) &Oxff);

return;

}

/* Function to process a buffer in 64 byte pieces */
void MD5 work (u_int32 *digest, u_int32 *bit count, u char- *input buffer,
u_int32- len, u_char- *work buffer)

u_int32 bytes needed;

u_int32 offset=0;

/* Is the work buffer partially full? */

/* If so, how many bytes are needed to fill it up? */
bytes needed=64 - ((bit_count[0]/8) % 64);

/* Update count of number of bits added by this string */
bit_len=len * 8;
bit_count [0] +=bit_len;
if (bit_count [0] < bit_ len)

bit count [1]++;
/* Don’t forget to handle the case where len * 8 overflows */
bit_count [1]+=((u_int32)len >> 29);

/* Try to £ill up the work buffer and do the hash */
while (len > bytes needed) {
memcpy (work buffer [64 - bytes needed], input buffer[offset], bytes needed) ;
_MD5_hash(digest, work buffer);
len-=bytes_needed;
offset+=bytes needed;
bytes needed=64;

/* Copy any spare bytes into the work buffer */
if (len > 0) {
assert (len < 64);
memcpy (work buffer[0], input buffer[offset], len);

}
FIGURE 5.14 (Continued)
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return;

}

/* Function to do the actual MD5 hashing */
void MD5 hash (u_int32 *digest, u char *work buffer)
{
u_int32 work digest [16];
u_int32 ii, jj;
u_int32 a = digest [0], b = digest [1], c = digest [2], d = digest [3];

/* Convert 64 bytes of buffer into integers */

for (ii=0; 1i < 16; ii++)
for (3j=0; Jjj < 4; jj++)
work _digest [ii] +=( (u_int32) (work buffer([(ii * 4)+jjl) << (3 * 8) );
/* Now do the ghastly MD5 magic */
/* The following code is taken from RFC1321 and is copyright RSA Data Security, */
/* Inc. to which the following copyright notice applies. */
/* Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved */
/* License to copy and use this software is granted provided that it is identified */
/* as the “RSA Data Security, Inc. MD5 Message-Digest Algorithm” in all material */
/* mentioning or referencing this software or this function. */
/* License is also granted to make and use derivative works provided that such */
/* works are identified as “derived from the RSA Data Security, Inc. MD5 Message */
/* Digest Algorithm” in all material mentioning or referencing the derived work. */
/* RSA Data Security, Inc. makes no representations concerning either the */
/* merchantability of this software or the suitability of this software for any */
/* particular purpose. It is provided “as is” without express or implied warranty */
/* of any kind. */
/* These notices must be retained in any copies of any part of this documentation */
/* and/or software. */
#define F(x, vy, z) (((x) &(y)) |
#define G(x, vy, z) ((( )
#define H(x, vy, z) ((x
#define I(x, y, z) ((y

#define ROTATE LEFT (x, n) (((x) << (n)) | ((x) >> (32-(n))))

#define FF (a, b, ¢, 4, x, s, ac) \
(@) += F ((b), (c), (d))+(x)+(u_int32) (ac); \
(a) = ROTATE LEFT ((a), (s)); \
(a) += (b);

#define GG (a, b, ¢, 4, x, s, ac) \
(a) += G ((b), (c), (d))+(x)+(u_int32) (ac); \
(a) = ROTATE LEFT ((a), (s)); \
(a) += (b);

#define HH (a, b, ¢, d, x, s, ac) \
(a) +=H ((b), (c), (d))+(x)+(u_int32) (ac); \
(a) = ROTATE IEFT ((a) , (s)); \
(a) +=(b);

#define II (a, b, ¢, d, x, s, ac) \
(a) +=I ((b), (c), (d))+(x)+(u_int32) (ac); \
(a) = ROTATE LEFT ((a), (s)), \
(

a) +=),;

FIGURE 5.14 (Continued)
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/* Round 1 */

FF (a, b, ¢, d, x[ 0], 7, 0xd76aa478);
FF (d, a, b, ¢, x[ 1], 12, 0xe8c7b756) ;
FF (c, d, a, b, x[ 2], 17, 0x242070db) ;
FF (b, ¢, d, a, x[ 3], 22, Oxclbdceee);
FF (a, b, ¢, d, x[ 4], 7, 0xf57cofaf);
FF (d, a, b, ¢, x[ 5], 12, 0x4787c62a);
FF (c, d, a, b, x[ 6], 17, 0xa8304613) ;
FF (b, ¢, d, a, x[ 71, 22, 0xfd469501) ;
FF (a, b, ¢, 4, x[ 8], 7, 0x698098d8) ;
FF (d, a, b, ¢, x[ 9], 12, 0x8b44f7af);
FF (c, d, a, b, x[10], 17, Oxffffs5bbl);
FF (b, ¢, d, a, x[11], 22, 0x895cd7be) ;
FF (a, b, ¢, 4, x[12], 7, 0x6b901122) ;
FF (d, a, b, ¢, x[13], 12, 0xfd987193);
FF (c, d, a, b, x[14], 17, 0xa679438e);
FF (b, ¢, d, a, x[15], 22, 0x49b40821);
/* Round 2 */

GG (a, b, ¢, d, x[ 1], 5, 0xfele2562);
GG (d, a, b, ¢, x[ 6], 9, 0xc040b340) ;
GG (c, d, a, b, x[11l], 14, 0x265e5a51);
GG (b, ¢, d, a, x[ 0], 20, Oxe9b6c7aa);
GG (a, b, ¢, d, x[ 5], 5, 0xd62f105d);
GG (d, a, b, ¢, x[10], 9, 0x2441453);
GG (c, d, a, b, x[15], 14, 0xd8ale68l);
GG (b, ¢, d, a, xI[ 4], 20, 0xe7d3fbcs8);
GG (a, b, ¢, d, x[ 9], 5, 0x2lelcdeé);
GG (d, a, b, ¢, x[14], 9, 0xc33707d6) ;
GG (c, d, a, b, x[ 3], 14, 0xf4d50d87);
GG (b, ¢, d, a, x[ 8], 20, 0x455al4ed);
GG (a, b, ¢, d, x[13], 5, 0xa%e3e905);
GG (d, a, b, ¢, x[ 2], 9, Oxfcefa3fs);
GG (¢, d, a, b, x[ 7], 14, 0x676£02d9) ;
GG (b, ¢, d, a, x[12], 20, 0x8d2a4c8a);
/* Round 3 */

HH (a, b, ¢, 4, x[ 5], 4, 0xfffa3942);
HH (4, a, b, ¢, x[ 8], 11, 0x8771£f681) ;
HH (¢, d, a, b, x[11], 16, 0x6d9d6122);
HH (b, ¢, d, a, x[14], 23, 0xfde5380c);
HH (a, b, ¢, d, x[ 1], 4, Oxadbeeadd);
HH (d, a, b, ¢, x[ 4], 11, O0x4bdecfa9);
HH (c, d, a, b, x[ 7], 16, 0xf6bb4b60) ;
HH (b, ¢, d, a, x[10], 23, Oxbebfbc70);
HH (a, b, ¢, d, x[13], 4, 0x289b7ech);
HH (d, a, b, ¢, x[ 0], 11, Oxeaal27fa);
HH (c, d, a, b, x[ 3], 16, 0xd4ef3085) ;
HH (b, ¢, d, a, x[ 6], 23, 0x4881d05);
HH (a, b, ¢, d, x[ 9], 4, 0xdod4do39);
HH (d, a, b, ¢, x[12], 11, 0xe6db99e5) ;
HH (b, ¢, d, a, x[ 2], 23, 0xc4ac5665) ;
HH (¢, d, a, b, x[15], 16, 0x1fa27cf8) ;

FIGURE 5.14 (Continued)
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/* Round 4 */

IT (a, b, ¢, d, x[ 01, 6, 0xf4292244);
II (d, a, b, ¢, x[ 7], 10, 0x432aff97);
II (¢, d, a, b, x[14], 15, 0xab9423a7) ;
II (b, ¢, d, a, x[ 5], 21, 0xfc93a039) ;
IT (a, b, ¢, d, x[12], 6, 0x655b59c3) ;
IT (d, a, b, ¢, x[ 3], 10, 0x8f0ccc92) ;
IT (c, d, a, b, x[10]1, 15, oxffeff47d);
II (b, ¢, d, a, x[ 1], 21, 0x85845ddl) ;
II (a, b, ¢, d, x[ 8], 6, 0x6fa87e4f);
IT (d, a, b, ¢, x[15], 10, 0xfe2ce6el) ;
IT (c, d, a, b, x[ 6], 15, 0xa3014314) ;
II (b, ¢, d, a, x[13], 21, 0x4e0811lal);
II (a, b, ¢, d, xI[ 4], 6, 0xf7537e82);
II (d, a, b, ¢, x[11], 10, 0xbd3af235) ;
IT (c, d, a, b, x[ 2], 15, 0x2ad7d2bb) ;
IT (b, ¢, d, a, x[ 9], 21, 0xeb86d391) ;

/* Finally update the digest and return */

digest [0]+= a,
digest [1]1+= b;
digest [2]1+= c;
digest [3]1+= d;
return;

}

FIGURE 5.14 (Continued)

padding up to a 64-byte boundary, the data buffer, the key, and more padding. Each
string is passed to _MD5_work( ), which chops the data into 64-byte segments
and passes them to _MD5_hash( ) to be processed through the algorithm.

MD5 has been discovered to have some security flaws, and work is ongoing to
develop fixes and to devise more secure alternatives.

5.7.2 Data Encryption Standard (DES)

The Data Encryption Standard (DES) is the basic encryption algorithm mandated
by IPsec. It was standardized by the U.S. National Bureau of Standards as Federal
Information Processing Standards Publication 46-2 (superceding FIPS 46-1). DES
is a federally approved mathematical algorithm for encrypting and decrypting
binary-coded information.

DES uses a minimum 64-bit key of which 56 bits are available to define the
key itself, and 8 bits (one per byte) are used to provide error detection on the key
itself. The eighth bit in each byte is set to give parity in the byte—that is, it is set
so that there are an even number of bits set to 1 within the byte.

Four modes of DES operation are defined, each providing an increased level of
complexity and, thus, a better level of security. The Electronic Codebook (ECB)
mode is the direct application of the DES algorithm to encrypt and decrypt data,
deriving its name from the way secret messages used to be encoded and decoded by
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hand using a book of codes. The Cipher Block Chaining (CBC) mode is an enhanced
mode of ECB that chains together blocks of cipher text to increase the size and
therefore complexity of the encoded data. The Cipher Feedback (CFB) mode uses
previously generated cipher text together with the message to be encoded as input
to the DES algorithm, effectively chaining together the source message with a pseu-
dorandom stream of bytes. The Output Feedback (OFB) mode is identical to CFB
except that the previous output of the DES is used as input in OFB.

The DES algorithm is sufficiently complex to warrant its exclusion from this
book. For a detailed description of the process refer to the National Institute of
Standards and Technology web page listed at the end of this chapter.

5.8 EXCHANGING KEYS

The generation and distribution of keys are fundamental to the operation of security
systems. Historically, keys have been “randomly” generated at a central location and
distributed to the encryption and decryption sites using the most reliable methods
available. Often, this has involved writing the key down on a piece of paper that
is then carried to the computers concerned, where it is manually entered into the
system. Presumably, the message self-destructed a few seconds later.

Computers have made it possible to achieve a new degree of randomness in key
generation and also to distribute keys more freely, but a significant problem is that
keys cannot be encrypted when they are transmitted—if they were the user would
not be able to interpret them. This means that the most sensitive piece of data, the
key to all of the rest of the data, is sent in the open and is easy to intercept.

As described in Section 5.7, dual key cryptography algorithms allow the
receiver to tell the sender a public key to use to encode secret data while retain-
ing a separate secret key to decode the data. Since the public key is used only for
encryption it does not matter that other users might view it. The secret key that
is used to decrypt the messages is never exposed. This method can be used to
encrypt other keys that need to be exchanged across public networks—a useful
feature since dual key encryption algorithms are considerably more burdensome
to operate if applied to all messages.

Key exchange is, therefore, an important aspect of Internet security and is the
subject of several protocols. These protocols are also used to allow encryption/
decryption partners to negotiate which algorithms and features they will use on
the Security Association they maintain.

The Internet Key Exchange (IKE) described in RFC 2409 is the merger of
two previous protocols: the OAKLEY key exchange protocol (RFC 2412) and the
Internet Security Association and Key Management Protocol (ISAKMP; RFC 2408).
The reader might wonder why the merged protocol has a numerically lower RFC
number than one of the constituent parts, but this is just an editorial issue as a
batch of RFCs were all published at the same time. In all senses, IKE and ISAKMP/
OAKLEY are identical.
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5.8.1 Internet Key Exchange

ISAKMP provides the necessary negotiation facilities to agree on the level of security
required and the algorithms to use. It also allows end points to exchange keys in the
most secure fashion possible. It is also important to note that the protocol includes
strong authentication of the end points so that a node may know for certain that it
is really talking to the correct remote node—otherwise it would be possible for an
impostor to participate in a conversation using all of the security techniques and
being sent the prized data in a form that it would be able to decrypt.

The first job of ISAKMP is to establish the SA between the end points. This
function is taken from ISAKMP and requires a message exchange over TCP or UDP
using port number 500 to initiate the SA, negotiate options, exchange public keys,
and exchange identity certification information. The elements here are not dis-
similar to those described for the Transport Layer Security Handshake protocol in
Section 5.5.1, although the message flows are different.

Each ISAKMP message begins with a common message header that identifies
the message and the SA to which it applies. The body of the message is made up
of a series of payloads. The type of the first payload is indicated in the common
header, and each payload announces the type of the subsequent payload if one
exists. The format of the payloads depends on their type. Figure 5.15 shows the

[0] 1] [2] [3]
o[1T12[314]5]el7I819fof112[3[4]5[617[8[9l0]112]3[4[5]6]7[8[9]0]1
Initiator Cookie
Initiator Cookie (continued)
Responder Cookie
Responder Cookie (continued)
Header
Major Minor
First Payload Version | Version| Exchange Type | Reserved |A|C|E
Message ID
Message Length (in bytes including header)
Next Payload Reserved Payload Length
Payload
i Payload
Next &ag#oea;d =0 Reserved Payload Length
Payload
i Payload
FIGURE 5.15

ISAKMP messages comprise a common header followed by one or more payloads.
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ISAKMP common header with two payloads. The initiator and responder cookies
identify the SA at the end points. The protocol version defined by RFC 2408 is
1.1. The Message ID is a randomly generated number created by the sender of a
request message and echoed in a response, allowing correlation with minimal risk
of collision. The Message Length is given in bytes and covers the whole message,
including the header. The Exchange Type indicates the ISAKMP mode of opera-
tion and so dictates which payloads are required—possible values for this field are
shown in Table 5.3. Three flags are used as follows:

A—Authentication Only: The payloads of this message should be subjected
to authentication but not encryption.

C—Commit: Used to request (force) a complete message exchange before the
contents of a message are put into use.

E—Encrypted: Indicates that the payloads are encrypted using the agreed
encryption algorithm.

Table 5.3 ISAKMP Exchange Types Carried in the Common Message Header

Exchange Type Meaning
0 None.

1 The Base Exchange is designed to allow the Key Exchange and
Authentication-related information to be transmitted together.
Combining the Key Exchange and Authentication-related infor-
mation into one message reduces the number of round-trips
at the expense of not providing identity protection.

2 The Identity Protection Exchange separates the Key Exchange
from the Identity and Authentication-related information providing
protection of the identity information at the expense of two
additional messages since identities are exchanged under the
protection of a previously established common shared secret.

3 The Authentication Only Exchange provides for the transmission
of only authentication-related information. This exposes the
authentication feature without the extra expense of computing
keys. When using this exchange during negotiation, none of the
transmitted information will be encrypted.

4 The Aggressive Exchange allows the security association, key
exchange, and authentication payloads to be transmitted together
in a single message. This reduces the number of round-trips at the
expense of not providing identity protection.

5 The Informational Exchange provides a one-way transmission of
information that can be used for security association management.
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Table 5.4 ISAKMP Payload Types Identify the Components of Messages

Payload Type
0

Meaning
No more payloads.

1

Security Association Parameters. Sets the context for the
establishment of a security association by specifying the use

to which this association will be put. Contains a Domain of
Interpretation (DOI) field that is set to the value 1 to indicate IPsec.

The Proposal payload defines the identity of the security association
and includes the operational protocol (IPsec, TLS, OSPF, etc.) and
the cookies (sometimes known as the Security Parameter Index, or
SPI) used in that protocol to represent the association.

The Transform payload suggests or agrees on the security
processes and algorithms available or chosen for use on the
security association.

The Key Exchange payload is used to exchange keys.

The end points identify themselves using the Identification
payload, which is context specific depending on the Domain of
Interpretation and the identity type chosen.

A Certificate payload provides strong authentication of the identity
of an end point using one of a variety of standardized means.

The Certificate Request payload can be included in any message
and requests that the remote node immediately respond with a
message that includes a Certificate payload. (Compare with the
Certificate Request in the TLS handshake protocol.)

The Hash payload is included in messages if the use of message
authentication has been agreed to. The payload contains the
output of the hashing algorithm applied to all or part of the
message as negotiated using the Transform payload.

The transform payload may also negotiate the use of digital
signatures. If so, the Signature payload is included in all messages
to authenticate their origins.

10

A pseudorandom identifier is included in the Nonce payload to
help prevent against replay attacks. The value of this identifier

is changed for each instance of the security association, but is
constant for the life of one association. Since the Nonce is only
present in encrypted messages it is not externally visible and can
be verified to be consistent on all messages in one association and
a super-security-conscious end node can keep track of previous

values to protect against an intruder replaying previous messages.

(Continued)
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Table 5.4 (Continued)
Payload Type Meaning

11 The Notification payload contains information data specific to the
DOI context.
12 The Delete payload officially “contains a protocol-specific security

association identifier that the sender has removed from its security
association database and is, therefore, no longer valid.” That is to
say, it is used to terminate a security association.

13 ISAKMP messages may optionally include Vendor ID payloads to
identify the communicating implementations.

The First Payload field of the ISAKMP header indicates the type of the first
payload element in the message body. Each payload element also contains a Next
Payload field to indicate the type of the next payload. These types are listed in
Table 5.4. Each payload also includes a Length field that indicates the length of
the payload in bytes, including the Next Payload and Length fields.

The Exchange Types listed in Table 5.4 dictate how the ISAKMP end points
exchange information—that is, which payload elements they send in which mes-
sages. The main differences are in how the elements are combined and therefore
how much protection is available to the information that is sent. In general there
is a trade-off between sending a few messages packed with unprotected informa-
tion, and sending more messages in which the information in the later messages is
protected by security negotiated by the earlier messages.

Figure 5.16 illustrates the messages exchanged when an SA is established using
the Base Exchange. In step 1 the initiator sends a request carrying the Security
Association, Proposal, and Transform payloads to show that it wants to establish
a Security Association and to advertise the types of security it wants to apply and
the algorithms that it supports. It also includes a Nonce payload to randomize the
message. The responder checks that the Nonce is new and, if it is willing to estab-
lish a Security Association, responds with the precise subset of security options
and algorithms that will be applied (step 2). The initiator then generates keys and
sends them together with proof of its identity (step 3) and the responder com-
pletes the exchange with its keys and proof that it is who it says it is. The SA is
now fully established and data transfer can begin. Note that since the identities
and keys are sent on the same message, the identities cannot actually be protected
by the security mechanisms.

The Identity Protection Exchange provides protection for the identity exchange.
This is achieved by introducing an additional message exchange and sharing out the
payloads as shown in Figure 5.17. The Nonce is moved from the initial exchange
(steps 1 and 2) to the new exchange (steps 3 and 4) that also swaps keys. Once the
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5.8 Exchanging Keys

The ISAKMP messages and payloads exchanged during the establishment of a security
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The ISAKMP Identity Protection Exchange provides additional security during the

establishment of a security association.
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Initiator Responder

Security Association, Proposal, Transform, Key
Exchange, Nonce, Identity

Security Association, Proposal, Transform, Key
Exchange, Nonce, Identity, Signature, Certificate

®

FIGURE 5.18

The number of messages exchanged to set up a security association can be kept down to just
three using the Aggressive Exchange.

Signature, Certificate, Hash

keys are known they can be applied to all subsequent messages and so the identity
exchanges (steps 5 and 6) can be protected by the authentication algorithms and
sent along with a Hash payload.

Alternatively, the Aggressive Exchange cuts the number of messages sent to
a bare minimum, as shown in Figure 5.18. In this case, the initiator reduces its
Proposal and Transform options so that the responder has no choice other than
acceptance or refusal. The initiator can therefore generate its keys up front and it
sends these on the initial message along with its identity (step 1). The responder
replies with all information in one go (step 2),leaving the initiator to certify its iden-
tity and maybe use the authentication algorithm to protect this final stage (step 3).

nonce \'nin()s\ 7 [ME nanes, alter. (fr. incorrect division of then anes in such
phrases as to then anes for the one purpose) of anes one purpose, irreg. fr. an one,
fr. OE an]: the one, particular, or present occasion, purpose, or use <for the ~>.
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CHAPTER

|P Security in Practice

Claims that IPv4 security was neglected by the founders are based on the argu-
ment that early IPv4 networks were insecure things strung together on trust
between naive but ultimately honorable academicians. However, at the very start
the Internet Protocol was defined as a U.S. Department of Defense (DoD) stan-
dard, and security was certainly a consideration. Nevertheless, the IETF has given
considerably more explicit attention to IPv6 security than was accorded to IPv4
during its early development.

The desirability and utility of authentication and security features at the IP
layer have been debated for years. This chapter discusses how authentication
and security, including secure password transmission, encryption, and digital sig-
natures on datagrams, are implemented under IP through the Authentication
Header (AH) and Encapsulating Security Payload (ESP) options. Before examin-
ing the IP Security Protocol (IPsec), however, we will take a look at the IP secu-
rity architecture described in RFC 2401, “Security Architecture for the Internet
Protocol,” and the different pieces of that architecture.

IPv4 as originally designed offered no real security features; it was intended
simply as an internetworking protocol. While not necessarily a problem for a net-
working protocol used largely in research and academic settings, the increase in
importance of IP networking to the general business and consumer networking
environments makes the potential harm resulting from attacks more devastating
than ever. This section examines the following.

Issues of security for IP

Security goals defined for IP
Cryptographic elements of IPsec
Protocol elements of IPsec
Implementing IPsec

The next section takes a look at the specifics of IPsec, as well as some of the tools
being assembled to achieve these goals. 149
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6.1 IP SECURITY ISSUES

IPsec as defined in RFC 2401 provides a security architecture for the Internet
Protocol—not a security architecture for the Internet. The distinction is impor-
tant: IPsec defines security services to be used at the IP layer, both for IPv4 and
IPv6. It is often said that IPv6 is “more secure” than IPv4, but the difference is that
IPsec is required for all IPv6, whereas it is optional for IPv4 nodes.

The IP Security Protocol (IPsec) provides an interoperable and open standard
for building security into the network layer rather than at the application or trans-
port layer. Although applications can benefit from network-layer security, the most
important application IPsec enables is the creation of virtual private networks
(VPNs) capable of securely carrying enterprise data across the open Internet.

IPsec is often used in conjunction with tunnel management protocols, includ-
ing the Layer 2 Tunneling Protocol (L2TP), the Layer 2 Forwarding (L2F) proto-
col designed by Cisco Systems, and Microsoft’s Point to Point Tunneling Protocol
(PPTP). RFC 2661, “Layer Two Tunneling Protocol ‘L2TP,” defines L2TP as a stan-
dards track specification for tunneling packets sent over a PPP link.

While the tunnel management protocols offer access security services, they
don’t provide authentication or privacy services, so they are often used in con-
junction with IPsec—which does provide those services. However, saying that
IPsec specifies protocols for encrypting and authenticating data sent within IP
packets is an oversimplification and even obscures IPsec’s full potential. IPsec
enables the following.

Encryption of data passing between two nodes, using strong public and pri-
vate key cryptographic algorithms

Authentication of data and its source, using strong authentication mechanisms
Control over access to sensitive data and private networks
Integrity verification of data carried by a connectionless protocol (IP)

Protection against replay attacks, in which an intruder intercepts packets
sent between two IP nodes and resends them after decrypting or modifying
them

Limitation of traffic analysis attacks, in which an intruder intercepts pro-
tected data and analyzes source and destination information, size and type
of packets, and other aspects of the data, including header contents that
might not otherwise be protected by encryption

End-to-end security for IP packets, providing assurance to users of endpoint
nodes of the privacy and integrity of their transmissions

Secure tunneling through insecure networks such as the global Internet and
other public networks
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Integration of algorithms, protocols, and security infrastructures into an over-
arching security architecture.

As defined in RFC 2401, “Security Architecture for the Internet Protocol,” the
goal of the IP security architecture is “to provide various security services for traf-
fic at the IP layer, in both the IPv4 and IPv6 environments.” This means security
services that have the following features.

Interoperable As with all Internet protocols, interoperability is a fundamental
goal. This means that any IP node supporting IPsec can communicate with any
other node supporting IPsec. There is a basic set of cryptographic algorithms for
encryption and integrity checking, which all IPsec nodes must support, although
individual nodes and implementations may support many more, optional, algo-
rithms. Although some nodes are configured to prefer newer or less open algo-
rithms, all nodes are required to support the basic ones.

High quality The baseline for security through IPsec must be set high enough
to guarantee a reasonable degree of actual security. Algorithms and key lengths that
are to be vulnerable to attack are not acceptable. For example, data encrypted with
40-bit encryption keys can be brute-forced or successfully and quickly decrypted
by trying every combination. The number of possible keys is 24 — 1, or roughly
1000 billion; on average, the correct key will be discovered after trying half (about
500 billion) of those combinations. Such attacks are almost trivially easy with com-
mercial off-the-shelf hardware, and thus 40-bit keys are not considered to provide
“high-quality” security.

Cryptographically based Cryptographers work with algorithms for encryp-
tion, secure hashing, and authentication. Encryption algorithms allow regular data
to be transformed into cypbertext, data scrambled so that only the entity hold-
ing an appropriate key can decrypt it. Secure hash algorithms operate on any size
chunk of data to generate a fixed-length sequence of bits (the hash). An entity can
confirm the integrity of the data by running the hashing algorithm on received
data; if the transmitted hash and the calculated hash agree, the data is verified as
having been sent without change. Authentication of entities through the use of
digital signatures depends on public key algorithms. Data encrypted with the pub-
lic key of a public/private key pair can be decrypted only by an entity with access
to the private key; likewise, if an entity encrypts something (such as the text of
a message) with its private key, then anyone with access to the public key can
decrypt the message and confirm that the sender has access to that key.

By basing IPsec on cryptography rather than on any other mechanisms for
security, the protocol designers place limits on the security goals possible to attain
through its use while at the same time ensuring that those security goals will be
achieved through the use of verifiable and reliable mechanisms.

The IP security architecture allows systems to choose the required security proto-
cols, identify the cryptographic algorithms to use with those protocols, and exchange
any keys or other material or information necessary to provide security services.

As may be evident from its highly qualified description, public key cryptography-
based mechanisms require that all participants can be confident that public keys

151



152

CHAPTER 6 [P Security in Practice

are issued only to the entities identified with those keys. When a public key is
published purporting to represent Microsoft Corporation, the possibility that the
key has been properly issued to Microsoft and not to a computer criminal should
approach 100% certainty. Unfortunately, as was demonstrated in early 2001 when
it was reported that leading public key infrastructure vendor Verisign, Inc., issued
two public key certificates to an impostor claiming to represent Microsoft, this is
not always possible.

As a network-layer protocol, IPsec provides security only at the network layer.
This means that packets can be protected from the point at which they enter the
IP network (the source node’s IP interface) to the point at which they leave the IP
network (the destination node’s IP interface). IPsec cannot substitute for proper
application or transportlayer security mechanisms, and IPsec cannot protect
against attackers taking control of the source or destination nodes or processes.

6.2 SECURITY GOALS

Computer security can be said to embody three general goals.

Authentication The ability to reliably determine that data has been received
as it was sent and to verify that the entity that sent the data is what it claims
to be. Successful authentication means preventing attackers from imperson-
ating an authorized entity.

Integrity The ability to reliably determine that the data has not been modified
during transit from its source to its destination. Successfully maintaining data
integrity means preventing an attacker from modifying authentic data with-
out detection as well as preventing the acceptance of data that has been
corrupted somewhere in the network clouds (as happens occasionally).

Confidentiality The ability to transmit data that can be used or read only by
its intended recipient and not by any other entity. Successfully maintain-
ing data confidentiality means preventing anyone other than the intended
recipient(s) from being able to access private data.

Developments in modern cryptography, specifically in the use of public key cryp-
tography (discussed in the next section), make possible the combination of these
three goals in one set of functions. These goals—authentication, integrity, and
confidentiality—are achieved through three related functions.

Digital signatures unequivocably link the holder of a particular secret with
data represented as having been signed by that entity.

Secure hashes digitally “summarize” a sequence of data using a repeatable
process that will produce identical results only if the data sequence being
verified matches the data sequence produced by the sender.
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Encryption is the process of performing a reversible transformation on read-
able data so as to render it unreadable by anyone other than the holder of
the appropriate decryption key.

Some or all of these functions are possible in combination or individually in pro-
tocols at every layer of the TCP/IP stack, from IP (through IPsec) to the transport
layer (through TLS, the Transport Layer Security protocol) to security functions
provided through applications.

The goal of IPsec is to provide security mechanisms for all versions of IP!
IPsec provides security services at the IP layer, and systems may require other sys-
tems to interact with it securely with IPsec and a particular set of security algo-
rithms and protocols. While IPsec mandates support for a basic set of algorithms,
it also allows nodes to negotiate acceptably secure interaction with other systems
with optional algorithms. IPsec provides the framework within which nodes can
negotiate appropriate algorithms, protocols, key lengths, and other aspects of
secure communication.

IPsec allows maintenance of the following.

Access control IPsec allows security protocols to be invoked governing the
secure exchange of keys, allowing authentication of users for access control
purposes.

Connectionless integrity IPsec allows nodes to validate each IP packet inde-
pendent of any other packet. There is no need to verify sequences of pack-
ets or even to have access to other packets exchanged by the same nodes.
Connectionless integrity is enabled through use of secure hashing tech-
niques, similar to the use of check digits but with greater reliability and less
likelihood of tampering from unauthorized entities.

Data origin authentication Identifying the source of the data contained in
an IP packet is another security service provided by IPsec. This function is
accomplished through the use of digital signatures.

Defense against packet replay attacks As a connectionless protocol, IP is
subject to the threat of replay attacks, where an attacker sends a packet that
has already been received by the destination host. Replay attacks can harm
system availability by tying up receiving system resources. IPsec provides a
packet countermechanism that protects against this ploy.

Encryption Data confidentiality—keeping access to data from anyone but
those with proper authorization—is provided through the use of encryption.

Limited traffic flow confidentiality Encrypting data is not always suffi-
cient to protect systems; merely knowing the endpoints of an encrypted

'IPsec support is mandatory for IPv6 nodes, but optional for IPv4 nodes.
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exchange, the frequency of such interaction, or other information about the
transmissions can provide a determined attacker with enough information
to disrupt or subvert systems. IPsec provides some limited traffic flow con-
fidentiality through the use of IP tunneling, especially when coupled with
security gateways.

All of these functions are possible through proper use of the Encapsulating
Security Payload (ESP) Header and the Authentication Header (AH). A handful of
cryptographic functions is specified for IPsec and is described briefly in the next
section.

Public key encryption provides a mechanism for performing almost all of these
functions with a single set of processes. AH provides mechanisms for applying
authentication algorithms to an IP packet, whereas ESP provides mechanisms for
applying any kind of cryptographic algorithm to an IP packet including encryp-
tion, digital signature, and/or secure hashes. IPsec is aimed at eliminating certain
types of attacks, including the following.

Denial of service (DoS) attacks These occur when an entity uses network
transmissions to prevent legitimate users from using network resources. For
example, an attacker may flood a host with TCP SYN requests and thereby
crash a system, or the attack may consist of repeated transmission of long
mail messages with the intention of filling up a user’s or site’s bandwidth
with nuisance traffic.

Spoofing attacks These occur when an entity transmits packets that misrep-
resent the packets’ origins. For example, one type of spoofing attack occurs
when the attacker sends a mail message with the From: header indicating
the source of the message as, say, the president of the United States. More
insidious and almost as easy to engineer are those attacks that occur when
packets are sent out with an incorrect source address in the headers.

Man-in-the-middle attacks (MITMs) These occur when an attacker (Alice)
positions herself between two communicating entities (call them Bob and
Carol) and intercepts all their transmissions. Alice poses as Bob when com-
municating with Carol, and as Carol when communicating with Bob. Alice,
as a result, is able to send whatever data she wants to Bob instead of what
Carol wants to send to Bob. MITM attacks are relatively easy when transmis-
sions are not encrypted or authenticated. However, Alice can successfully
attack even a protected data stream if she is able to either gain access to
Carol’s secret keys (or be issued a set of her own public/secret key pairs
that is sufficiently similar to Carol’s that Bob will be fooled).

This last attack is important because it raises the issue of handling keys. As just
noted, encryption and digital signature functions require the use of keys to decrypt
and/or verify data, and digital certificates are one mechanism by which public
keys can be distributed. Although all public key infrastructure (PKI) providers,
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including Verisign, make their own efforts to validate all applications, the problem
is not a matter of technology. As noted earlier, Verisign issued two digital certificates
to someone who improperly posed as a representative of Microsoft; a sufficiently
motivated attacker will presumably use every possible tactic to get a desired certi-
fication. An attacker’s ability to forge credentials (from letterhead on which to type
a request for a corporate digital certificate to passport, birth certificate, or other
documents submitted to support a fraudulent application) may exceed the ability
of the PKI provider to detect them.

As a result of this potential vulnerability, IPsec requires a mechanism by which
keys can be securely administered and distributed in a way that associates public
keys with the entities that are supposed to own them.

As just noted, IPsec secures IP—noft the Internet and certainly not the systems
connected to the Internet or the processes running on those systems. IPsec must
be considered only one part of the organizational security strategy. While IPsec-
protected traffic may pass unscathed across the global Internet, before it leaves
its source and after it arrives at its destination, that traffic will be vulnerable to
attacks on local links, local systems, processes, and the protocols used there.

6.3 ENCRYPTION AND AUTHENTICATION ALGORITHMS

Rather than relying on secrecy to protect an encryption or authentication scheme
(an approach known as “security through obscurity”), TCP/IP security protocols
always specify that cryptographic algorithms be well known and accessible. This
is done for several reasons, not the least of which is that as an open protocol suite,
TCP/IP protocol specifications must be published freely. The most important rea-
son, however, is that secrecy is a poor safeguard over security.

Attempting to keep an encryption algorithm secret is almost impossible, partic-
ularly if it is being used by anyone other than the person who knows the secret.
Attackers have many cryptanalysis tools at their disposal for breaking codes, and
they need only have access to ciphertexts to break them. Having access to the
software used to encrypt and/or decrypt data with the secret algorithm makes
the task much easier: the attacker must only determine what the software does to
the data to figure out how to reverse the operation.

The greatest advantage that published algorithms provide is the benefit of
scrutiny by researchers and others seeking to find ways to further improve or
break the algorithms. The more trained experts examine an algorithm, the less
likely they are to overlook an “obvious” attack.

Security algorithms and protocols are hard to design because there are so
many different ways to attack them—and designers can’t always imagine them all.
Although national security organizations as well as corporations may have their
own top-secret codes, secrets are hard to keep. Spies and other criminals are well
known for their skill at motivating (through bribery, extortion, or other means)
people who know secrets to share them.

155



156

CHAPTER 6 [P Security in Practice

The prevailing wisdom in security holds that a good encryption or authenti-
cation algorithm should be secure even if an attacker knows what algorithm is
being used. This is particularly important for Internet security, since an attacker
with a sniffer will often be able to determine exactly what kind of algorithm is
being used by listening as systems negotiate their connections.

In this section we’ll cover five types of important cryptographic functions.

Symmetric encryption

Public key encryption

Key exchange

Secure hashes (message digests)
Digital signature

6.3.1 Symmetric Encryption

Most people are familiar with symmetric encryption, if only at a visceral, intui-
tive level: Plaintexts are encrypted with a secret key and some set of procedures,
and they are decrypted with the same key and the same set of procedures. If
you have the key, you can decrypt all data that has been encrypted with that key.
Sometimes known as secret key encryption, symmetric encryption is computa-
tionally efficient and it is the most frequent type of encryption for network trans-
mission of volumes of data.

In October 2000, the National Institute of Standards and Technology (NIST)
announced that the Rijndael’ data encryption algorithm had been selected for the
Advanced Encryption Standard (AES), replacing the outdated Data Encryption
Standard (DES) algorithm originally developed during the 1970s by IBM. DES
uses 56-bit keys, although a variation called triple DES encrypts data three times
with the DES algorithm, providing improved security.

Using a secure encryption requires using sufficiently long keys. Shorter keys
are vulnerable to brute-force attacks, in which an attacker uses a computer to try
all the different possible keys. Key lengths on the order of 40 bits, for example, are
considered insecure because they can be broken by brute-force attacks in very
short order by relatively inexpensive computers. Single-DES has been brute-forced
as well; in general, 128-bit and longer keys are likely to be secure against such
attacks for the immediate future.

Symmetric encryption algorithms can be vulnerable to other types of attacks.
Most applications that use symmetric encryption for Internet communications use
session keys, meaning that the key is used for only a single-session data transmission
(sometimes several keys are used in one session). Loss of a session key thus com-
promises only the data that was sent during that session or portion of a session.

2According to an FAQ at the NIST Web site, “The algorithm’s developers have suggested the fol-
lowing pronunciation alternatives: ‘Reign Dahl, ‘Rain Doll, and ‘Rhine Dahl’” The AES home page is
http://csrc.nist.gov/encryption/aes/.



6.3 Encryption and Authentication Algorithms

These are some of the other symmetric encryption algorithms that have been
or are currently being used for Internet applications.

RC2/RC4 These commercial symmetric encryption algorithms were devel-
oped and marketed by the cryptography firm RSA.

CAST Developed in Canada and used by Nortel’s Entrust products, CAST sup-
ports up to 128-bit keys.

IDEA The International Data Encryption Algorithm supports 128-bit keys. It
was patented by Swiss firm Ascom, which granted permission for IDEA to
be used for free noncommercial use in the seminal and open source encryp-
tion program Pretty Good Privacy (PGP), written by Philip Zimmermann
and published for a time by Network Associates, Inc.

GOST This algorithm was reportedly developed by a Soviet security agency.

Blowfish This algorithm was developed by Bruce Schneier and released to the
public domain.

Twofish This was Bruce Schneier’s submission to the AES competition.

Skipjack This algorithm was developed by the National Security Agency for
use with the Clipper chip’s escrowed key system.

6.3.2 Public Key Encryption

Public key encryption, also called asymmetric encryption, uses pairs of keys:
One, the public key, is associated with the other, the secret key. The public key
is intended to be made public. Any data encrypted with the public key can only
be decrypted with the secret key and any data encrypted with the secret key can
be decrypted with the public key.

Anyone can get a public key and encrypt some data with it. That data can be
decrypted only by the holder of the secret key. As long as an entity can keep its
secret key a secret, other entities can be sure that any data encrypted with the pub-
lic key will be accessible only to the holder of the associated secret key. The holder
of the secret key can encrypt something using that secret key and make it available
to another entity. That entity can verify the first entity as holding the secret key of
a particular public key pair by decrypting the data with the public key.

Public key encryption tends to be computationally intensive and is most
often used to encrypt session keys for network transmissions as well as for digital
signatures.

The most commonly used type of public key encryption is the RSA algorithm
developed by Ron Rivest, Adi Shamir, and Len Adleman. RSA defines a mechanism
for choosing and generating the secret/public key pairs, as well as for the actual
mathematical function to be used for encryption.
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6.3.3 Key Management

One of the most complex issues facing Internet security professionals is how to
manage keys. This includes not only the actual distribution of keys through a key
exchange protocol but also the negotiation of key length, lifetime, and crypto-
graphic algorithms between communicating systems.

An open channel (an open communication medium over which transmissions
can be overheard) like the global Internet complicates the process of sharing a
secret. This process is necessary when two entities need to share a key to be
used for encryption. Some of the most important cryptographic algorithms relate
to the process of sharing a key over an open channel securely, in a way that keeps
the secret from anyone but the intended recipients.

Diffie-Hellman key exchange is an algorithm that allows entities to exchange
enough information to derive a session encryption key. Alice (the customary
entity name for the first participant in a cryptographic protocol) calculates a value
using Bob’s public value and her own secret value (Bob is the second participant
in cryptographic protocols). Bob calculates his own value and sends it to Alice;
they each then use their secret values to calculate their shared key. The math-
ematics are relatively simple (but outside the scope of this book); the bottom line
is that Bob and Alice can send each other enough information to calculate their
shared key but not enough for an attacker to be able to figure it out.

Diffie-Hellman is often called a public key algorithm, but it is not a public key
encryption algorithm. Diffie-Hellman is used to calculate a key, but that key must
be used with some other encryption algorithm. Diffie-Hellman can be used for
authentication, though, and is also used by PGP.

Key exchange is integral to any Internet security architecture, and candidates
for the IPsec security architecture include the Internet Key Exchange (IKE)
protocol and the Internet Security Association and Key Management Protocol
(ISAKMP).

ISAKMP is an application protocol, using UDP as its transport, which defines dif-
ferent types of messages that systems send to each other to negotiate the exchange
of keys. The mechanisms and algorithms for doing the actual exchanges, however,
are not defined in ISAKMP—it is a framework to be used by the specific mecha-
nisms. The mechanisms, often based on Diffie-Hellman key exchange, have been
defined in a number of different proposals over the years. These are some of them.

Photuris Based on Diffie-Hellman, Photuris adds the requirement that the
requesting node send a cookie, a random number that is used as a sort of
session identifier. The cookie is sent first, and the server acknowledges the
request by returning the cookie. This reduces the risk from denial of service
attacks made by attackers forging their source addresses. Photuris also
requires all parties to sign their negotiated key to reduce the risk of a
man-in-the-middle attack (in which an attacker pretends to be Bob to one
system’s Alice, while pretending to be Alice to the other system’s Bob).
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SKIP Sun Microsystems’ Simple Key-management for Internet Protocols
(SKIP) is also based on Diffie-Hellman key exchange, but rather than requir-
ing parties to use random values to calculate their keys, SKIP calls for the
use of a secret table that remains static. The parties look up secret values
in this table and then transmit calculated values based on some secret value
from the table.

OAKLEY Although this mechanism shares some features with Photuris, it pro-
vides different modes of key exchange for situations where denial of service
attacks are not a concern.

By defining a separate protocol, ISAKMP, for the generalized formats required
to do key and Security Association exchanges, it can be used as a base to build
specific key exchange protocols. The foundation protocol can be used for any
security protocol, and it does not have to be replaced if an existing key exchange
protocol is replaced.

It should be noted that manual key management is an important option and
in many cases is the only option. This approach requires individuals to personally
deliver keys and configure network devices to use them. Even after open stan-
dards have been firmly determined and implemented, particularly as commercial
products, manual key management will continue to be an important choice.

As more research is done with IPsec, work on an IKE successor protocol
(sometimes called Son-of-IKE) is ongoing, with IKEv2 one candidate protocol that
(as of 2002) is a work in progress.

6.3.4 Secure Hashes

A hash is a digital summary of a chunk of data of any size. Simple types of hashes
include check digits; secure hashes produce longer results (often 128 bits or lon-
ger). Good secure hashes are extremely difficult for attackers to reverse-engineer
or subvert in other ways. Secure hashes can be used with keys or without, but
their purpose is to provide a digital summary of a message that can be used to
verify whether some data that has been received is the same as the data sent. The
sender calculates the hash and includes that value with the data; the recipient cal-
culates the hash on the data received. If the results match the attached hash value,
the recipient can be confident in the data’s integrity.

Commonly used hashes include the MD2, MD4, and MD5 message digest func-
tions published by Network Associates. The Secure Hash Algorithm (SHA) is a
digest function developed as a standard by NIST. Hashes may be used on their
own or as part of digital signatures.

6.3.5 Digital Signature

Public key encryption, as noted previously, relies on key pairs. Digital signatures
rely on the property of public key encryption that allows data encrypted with
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an entity’s secret key to be decrypted with the public key of the pair. The sender
calculates a secure hash on the data to be signed and then encrypts the result
using a secret key. The recipient calculates the same hash and then decrypts the
encrypted value attached by the sender. If the two values match, the recipient
knows that the owner of the public key was the entity that signed the message
and that the message was not modified during transmission.

The RSA public key encryption algorithm can be used for digital signatures:
The signing entity creates a hash of the data to be signed and then encrypts that
hash with its own secret key. The certifying entity then calculates the same hash
on the data being received, decrypts the signature using the signing entity’s pub-
lic key, and compares the two values. If the hash is the same as the decrypted sig-
nature, then the data is certified.

Digital signatures carry with them several implications.

m A signature that can be certified indicates that the message was received
without any alteration from the time it was signed to the time it was received.

m If a signature cannot be certified, then the message was corrupted or tam-
pered with in transit, the signature was calculated incorrectly, or the signa-
ture was corrupted or tampered with in transit. In any case, an uncertifiable
signature does not necessarily imply any wrongdoing but does require that
the message be resigned and resent in order to be accepted.

m If a signature is certified, it means that the entity associated with the public
key was the only entity that could have signed it. In other words, the entity
associated with the public key cannot deny having signed the message. This
is called nonrepudiation and is an important feature of digital signatures.

There are other mechanisms for doing digital signatures, but RSA is probably the
most widely used one and is implemented in the most popular Internet products.

6.4 IPSEC: THE PROTOCOLS

IPsec is a security tunneling protocol, defining a mechanism that allows a node to
encrypt and/or authenticate packets and encapsulate the secured packets (which
may now be literally indecipherable, having been encrypted) into new packets.
Figure 6.1 illustrates the basic idea behind IPsec and other security tunneling
protocols.

IPsec depends on the use of security gateways, which encapsulate IP packets
on behalf of their clients. In Figure 6.1, the security gateway labeled “X” serves,
among others, hosts A’, B’, and C'; “Y” serves hosts A, B, and C. The PC off on the
side has its own, software, security gateway. In this example, the tunnel from X to
Y carries all secured traffic between the two pictured Internets. In this case, each
security gateway integrates all traffic for its local network and encrypts and/or
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Security tunneling across a hostile network.

authenticates all of it between itself and the security gateway at the other end. If
all traffic is being encrypted (a good bet), then any attacker sitting inside the pub-
lic Internet could intercept these packets but would get relatively little informa-
tion from them. At best, the attacker would discover that there is a secure tunnel
between X and Y, but she would likely learn only how much traffic was being sent
between the two security gateways.

The security gateways create secure tunnels, as shown in Figure 6.2, by accept-
ing IP packets sent from one node (A) to another (B). A sends off the packets as
if they were going to be delivered directly to B; the security gateway X then takes
those packets (along with any others from the same network) and treats them
as raw data to be sent to security gateway Y. The packets sent by A are shown
as open envelopes to signify that they have not been encrypted, while the pack-
ets sent from X are shown as sealed envelopes to indicate that they contain the
encrypted packets sent from A.
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The original IPsec specifications define security protocols for the Authentication
Header (AH) and the Encapsulating Security Payload (ESP) IP options, as header
options (for IPv4) or header extensions (for IPvG). As their names imply, AH pro-
vides an authentication mechanism, whereas ESP provides an encryption (“encap-

sulated security”) mechanism for privacy.

6.5 IP AND IPSEC

IPsec provides security services for either IPv4 or IPv0, but the way it provides
those services is slightly different in each.When used with IPv4, IPsec headers are

inserted after the IPv4 header and before the next-layer protocol header.
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IPv6 simplifies header processing: Every IPv6 packet header is the same length,
40 octets, but any options can be accommodated in extension headers that follow
the IPv6 header. IPsec services are provided through these extensions.

The ordering of IPsec headers, whether within IPv4 or IPv6, has significance.
For example, it makes sense to encrypt a payload with the ESP Header and then
use the Authentication Header to provide data integrity on the encrypted pay-
load. In this case, the AH Header appears first, followed by the ESP Header and
encrypted payload. Reversing the order, by doing data integrity first and then
encrypting the whole lot, means that you can be sure of who originated the data
but not necessarily certain of who did the encryption.

6.5.1 Security Associations

The Security Association (SA) is a fundamental element of IPsec. RFC 2401
defines the SA as “a simplex ‘connection’ that affords security services to the traf-
fic carried by it” This rather murky definition is clarified by a description; an SA
consists of three things.

m A Security Parameter Index (SPD)
m An IP destination address
m A security protocol (AH or ESP) identifier

As a simplex connection, the SA associates a single destination with the SPI; thus,
for typical IP traffic there will be two SAs: one in each direction that secure traffic
flows (one each for source and destination host). SAs provide security services by
using either AH or ESP but not both (if a traffic stream uses both AH and ESP, it has
two—or more—SAS).

The Security Parameter Index (SPD) is an identifier indicating the type of IP
header the security association is being used for (AH or ESP). The SPI is a 32-bit
value identifying the SA and differentiating it from other SAs linked to the same
destination address. For secure communication between two systems, there would
be two different security associations, one for each destination address.

Each security association includes more information related to the type of
security negotiated for that connection, so systems must keep track of their SAs
and what type of encryption or authentication algorithms, key lengths, and key
lifetimes have been negotiated with the SA destination hosts.

6.5.2 Using Security Associations

As mentioned earlier, ISAKMP provides a generalized protocol for establishing
SAs and managing cryptographic keys within an Internet environment. The pro-
cedures and packet formats needed to establish, negotiate, modify, and delete
SAs are defined within ISAKMP, which also defines payloads for exchanging key
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generation and authentication data. These formats provide a consistent frame-
work for transferring this data, independent of how the key is generated or what
type of encryption or authentication algorithms are being used.

ISAKMP was designed to provide a framework that can be used by any secu-
rity protocols that use SAs, not just IPsec. To be useful for a particular security
protocol, a Domain of Interpretation, or DOI, must be defined. The DOI groups
related protocols for the purpose of negotiating security associations—security
protocols that share a DOI all choose protocol and cryptographic transforms from
a common namespace. They also share key exchange protocol identifiers, as well
as a common interpretation of payload data content.

While ISAKMP and the IPsec DOI provide a framework for authentication and
key exchange, ISAKMP does not actually define how those functions are to be
carried out. The IKE protocol, working within the framework defined by ISAKMP,
does define a mechanism for hosts to perform these exchanges.

The sending host knows what kind of security to apply to the packet by look-
ing in a Security Policy Database (SPD). The sending host determines what pol-
icy is appropriate for the packet, depending on various selectors (for example,
destination IP address and/or transport-layer ports), by looking in the SPD. The
SPD indicates what the policy is for a particular packet: Either the packet requires
IPsec processing of some sort—in which case it is passed to the IPsec module for
processing—or it does not—in which case it is simply passed along for normal IP
processing.

Outbound packets must be checked against the SPD to see what kind (if any)
of IPsec processing to apply. Inbound packets are checked against the SPD to see
what kind of IPsec service should be present in those packets.

Another database, called the Security Association Database (SAD), includes all
security parameters associated with all active SAs. When an IPsec host wants to
send a packet, it checks the appropriate selectors to see what the SAD says is
the security policy for that destination/port/application. The SPD may reference
a particular SA, so the host can look up the SA in the SAD to identify appropriate
security parameters for that packet.

6.5.3 Tunnel and Transport Mode

IPsec defines two modes for exchanging secured data: funnel mode and transport
mode. IPsec transport mode protects upper-layer protocols and is used between
end nodes. This approach allows end-to-end security because the host originating
the packet is also securing it, and the destination host is able to verify the security,
either by decrypting the packet or certifying the authentication.

Tunnel mode IPsec protects the entire contents of the tunneled packets. The
tunneled packets are accepted by a system acting as a security gateway, encapsu-
lated inside a set of IPsec/IP headers, and forwarded to the other end of the tun-
nel, where the original packets are extracted (after being certified or decrypted)
and then passed along to their ultimate destination.
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The packets are only secured as long as they are “inside” the tunnel, although the
originating and destination hosts could be sending secured packets themselves, so
that the tunnel systems are encapsulating packets that have already been secured.

Transport mode is good for any two individual hosts that want to communi-
cate securely; tunnel mode is the foundation of the Virtual Private Network, or
VPN. Tunnel mode is also required any time a security gateway (a device offering
IPsec services to other systems) is involved at either end of an IPsec transmission.
Two security gateways must always communicate by tunneling IP packets inside
IPsec packets; the same goes for an individual host communicating with a secu-
rity gateway. This occurs any time a mobile laptop user logs into a corporate VPN
from the road, for example.

Tunneling, shown in Figure 6.3, allows two systems to set up SAs to enable
secure communications over the Internet. Network traffic originates on one sys-
tem, is encrypted and/or signed, and is then sent to the destination system. On
receipt, the datagram is decrypted or authenticated, and the payload is passed
along up the receiving system’s network stack where it is finally processed by
the application using the data. This is a transparent mode use of security asso-
ciations, because the two hosts could be communicating just as easily without
security headers—and because the actual IP headers of the datagrams must be
exposed to allow them to be routed across the Internet.

An SA can also be used to tunnel secure IP through an internetwork. Figure 6.4
shows how this works. All IP packets from system A are forwarded to the security
gateway X, which creates an IP tunnel through the Internet to security gateway Y,
which unwraps the tunneled packets and forwards them. Security gateway Y might
forward those packets to any of the hosts (B, C, or D) within its own local intranet,
or it could forward them to an external host, like M. It all depends on where the
originating host directs those packets. Whenever an SA destination node is a secu-
rity gateway, it is by definition a tunneled association. In other words, tunneling can
be done between two security gateways (as shown in Figure 6.4), or it can be done
between a regular node and a security gateway. Thus, host M could create a tun-
neled connection with either security gateway, X or Y. It is tunneled by virtue of the
fact that datagrams sent from M are passed first to the security gateway, which then
forwards them appropriately after decrypting or authenticating.

§ (] Encryption/Authentication Header >
I
A Internet B
FIGURE 6.3

A pair of hosts using IPsec to communicate transparently across the Internet.
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IP security tunneling.

6.5.4 Encapsulating Security Payload (ESP)

Specified in RFC 24006, “IP Encapsulating Security Payload (ESP),” the ESP Header
allows IP nodes to exchange datagrams whose payloads are encrypted. The ESP
Header is designed to provide several different services (some overlapping with
the Authentication Header), including the following.

m Confidentiality of datagrams through encryption

m Authentication of data origin through the use of public key encryption

m Antireplay services through the same sequence number mechanism as pro-
vided by the Authentication Header

m Limited traffic flow confidentiality through the use of security gateways

The ESP Header can be used in conjunction with an Authentication Header. In
fact, unless the ESP Header uses some mechanism for authentication, it is recom-
mended that the Authentication Header be used with the ESP Header.

The ESP Header must follow any headers that need to be processed by nodes
intermediate to the destination node—all data that follows the ESP Header will
be encrypted, with the encrypted payload beginning directly after the last ESP
Header field (see following).

ESP can be used in tunnel or transport mode, similar to the Authentication
Header. In transport mode, the IP Header and any Hop-by-Hop, Routing, or
Fragmentation Extension Headers precede the Authentication Header (if present),
followed by the ESP Header. Any Destination Options Headers can either precede
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or follow the ESP Header, or even both; any Headers that follow the ESP Header
are encrypted.

The result appears, in many respects, to simply be a regular IP datagram trans-
mitted from source to destination, with an encrypted payload. This use of ESP in
transport mode is appropriate in some cases, but it allows attackers to study traf-
fic between the two nodes, noting which nodes are communicating, how much
data they exchange, when they exchange it, and so forth. All this information may
potentially provide the attacker with some information that helps defeat the com-
municating parties.

An alternative is to use a security gateway, much as just described for the
Authentication Header. A security gateway can operate directly with a node or
can link to another security gateway. A single node can use ESP in tunnel mode by
encrypting all outbound packets and encapsulating them in a separate stream of
IP datagrams that are sent to the security gateway. That gateway then can decrypt
the traffic and resend the original datagrams to their destinations.

When tunneling, the ESP Header encapsulates the entire tunneled IP datagram
and is an extension to the IP Header directing that datagram to a security gateway.
It is also possible to combine ESP Headers with Authentication Headers in several
different ways; for example, the tunneled datagram may have a Transport-Mode
Authentication Header.

The following ESP Header format (taken from RFC 2406) includes the Next
Header field, which appears near the end of the ESP Header and indicates the
presence (and identity) of any other headers (such as AH) that may follow. The
rest of the ESP Header consists of the following.

Security Parameter Index (SPI) This is the same 32-bit value referred to in
the section on the Authentication Header. This value is used by the com-
municating nodes to refer to a security association, which can be used to
determine how the data should be encrypted.

0 1 2 3
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Sequence Number This 32-bit value is set to zero to start and is incremented

by one with each datagram sent. As just described for the Authentication
Header, the sequence number can be used to protect against replay attacks,
and a new security association must be set up before this value cycles
through all 232 values.

Payload DataThis is a variable-length field and actually contains the encrypted

portion of the datagram, along with any supplementary data necessary for
the encryption algorithm (e.g., initialization data). The payload begins with
an initialization vector, a value that must be sent in plaintext; encryption
algorithms need this value to decrypt the protected data.

Padding The encrypted portion of the header (the payload) must end on the

appropriate boundary, so padding may be necessary.

Padding Length This field indicates how much padding has been added to

the payload data.

Next Header This field operates as it normally does with other IPv6 exten-

sion headers; it just appears near the end of the header (where it can be
given confidentiality protection) rather than at the beginning so that the
next layer protocol can be hidden from any unauthorized third parties.

Authentication Data This is an Integrity Check Value (ICV) calculated on the

entire ESP Header (except for the authentication data). This authentication
calculation is optional. The ICV is discussed at greater length following.

6.5.5 Authentication Header

The Authentication Header can be used to do the following.

Provide strong integrity services for IP datagrams, which means the AH can
be used to carry content verification data for the IP datagram.

Provide strong authentication for IP datagrams, which means that the AH
can be used to link an entity with the contents of the datagram.

Provide nonrepudiation for IP datagrams, assuming that a public key digital
signature algorithm is used for integrity services.

Protect against replay attacks through the use of the sequence number field.

The Authentication Header can be used in tunnel mode or in transport mode,
which means that it can be used to authenticate and protect simple, direct data-
gram transfers between two nodes, or it can be used to encapsulate an entire
stream of datagrams that is sent to or from a security gateway.

AH is specified in RFC 2402, “IP Authentication Header,” and the header is
shown on page 115 (taken from RFC 2402).

In transport mode, the Authentication Header protects the payload of the orig-
inal IP datagram as well as the parts of the IP Header that do not change from
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hop to hop (e.g., the Hop Limit field or Routing Headers). Figure 6.5 shows what
happens to a transport mode IP datagram as the Authentication Header is calcu-
lated and added to it (the Destination Options Header may also appear before the
Authentication Header). The destination IP address and extension headers are
protected only insofar as they do not change from hop to hop.

When the Authentication Header is used in tunnel mode, however, it is used
differently. Figure 6.6 shows the difference. The original destination IP address,
along with the entire original IP datagram, is encapsulated into an entirely new IP
datagram that is sent to the security gateway. Thus, the entire original IP datagram
is fully protected, as are the portions of the encapsulating IP Headers that don’t
change.

AH header fields include the following.

Payload length This 8-bit field indicates the entire length of the Authentica-
tion Header in units of 32-bit words, minus 2.

As originally defined, the Authentication Header consisted of 64 bits of header,
with the rest devoted to authentication data (see the following). Thus, the pay-
load length field merely indicated the length (in 32-bit words) of the authenti-
cation data. With the addition of the Sequence Number field (see the following),
this value now equals the length of the authentication data plus the length of the
Sequence Number field.

Datagram prior to calculating AH

| dest IP hdr ext headers AH dest options TCP Data
| <======- authenticated except for fields that change ---------- >|
FIGURE 6.5

Adding an Authentication Header to an IP datagram in transport mode.

Original IP datagram

FIGURE 6.6
Adding an Authentication Header to an IP datagram in tunnel mode.
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Reserved The next 16 bits are reserved for future use; at present, they must be
set to all zeros.

Security Parameter Index (SPI) This 32-bit value is an arbitrary number.
Together with the destination IP address and security protocol (in this case,
AH to indicate the Authentication Header), the SPI uniquely identifies the
security association to be used for the Authentication Header. An SPI value
of zero is for local use only and should never be transmitted; values from
1 through 255 are reserved by the Internet Assigned Numbers Authority
(IANA) for future use.

Sequence Number This 32-bit value is a mandatory counter; it is also included
by the sender, although it may not always be used by the recipient. Starting
from zero, this counter is incremented with every datagram sent and is used
to prevent replay attacks. When the recipient is using it for antireplay pur-
poses, it will discard any datagrams that duplicate a sequence number that
has already been received. This means that when the counter is ready to
cycle through (when 232 datagrams have been received), a new security
association must be negotiated—otherwise, the receiving system will dis-
card all datagrams once the counter is reset.

Authentication Data This field contains the Integrity Check Value (ICV),
which is the heart of the Authentication Header. The contents must be a
multiple of 32 bits in length and may contain padding to attain that length.
Calculation of this value is discussed in the next section.

6.5.6 Calculating the Integrity Check Value (ICV)

The Authentication Data fields in the AH and ESP Headers are variable-length fields,
each of which contains an Integrity Check Value (ICV). The field is variable length
to accommodate variations from ICV algorithms, and the length is specified by the
selected function. This is an optional field: It is included only when an authentica-
tion service is in use for the SA that corresponds to the header, and information
about the ICV function in use is maintained along with the rest of the SA data.

The ICV calculation is a bit tricky in that some of the data being authenticated
may be modified en route, such as IP header hop counts. According to RFC 2402
the AH ICV is computed on the IP header fields that either don’t change in tran-
sit or whose values on arrival can be predicted, the AH header itself (though the
Authentication Data field is set to zero for the calculation), and the upper-level pro-
tocol data that is being authenticated (this is assumed to be unchanged in transit).

The ESP ICV, according to RFC 2400, is computed on the entire ESP packet,
excluding the Authentication Data field. This includes the SPI, Sequence Number,
Payload Data, Padding (if present), Pad Length, and Next Header; the last four fields
will be in ciphertext form, since encryption is performed prior to authentication.
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These are the suggested algorithms for ICV.

Message Authentication Codes (MACs), the results of which are then
encrypted with an appropriate symmetric encryption algorithm (for
example, AES)

Secure hash functions, such as MD5 or SHA-1 (an updated version of SHA)

To comply with the standard, implementations must support MD5 and SHA-1
keyed hashing, at least.

6.5.7 IPsec Headers in Action

IPsec security services are provided through the AH and ESP Headers in conjunc-
tion, of course, with appropriate and relevant key management protocols. The AH
protocol is specified in RFC 2402, “IP Authentication Header”; ESP is specified in
RFC 24006,“IP Encapsulating Security Payload (ESP).”

Either security header may be used by itself, or both may be used together in
various combinations of transport or tunnel modes. When used together with AH
encapsulating ESP, packet authentication can be checked prior to decrypting the
ESP Header payload. These headers can also be nested when using IPsec tunnel-
ing: An originating node can encrypt and digitally sign a packet, and then send it
to the local security gateway. That gateway may then reencrypt and resign the
packet as it sends it off to another security gateway.

The ESP and AH authentication services are slightly different: ESP authenti-
cation services are ordinarily provided only on the packet payload, whereas AH
authenticates almost the entire packet including headers.

The Sequence Number field is mandatory for all AH and ESP Headers and is
used to provide antireplay services. Every time a new packet is sent, the Sequence
Number is increased by one (the first packet sent with a given SA will have a
Sequence Number of 1).

When the receiving host elects to use the antireplay service for a particular
SA, the host checks the Sequence Number: If it receives a packet with a Sequence
Number value that it has already received, that packet is discarded.

The Authentication Data field contains whatever data is required by the
authentication mechanisms specified for that particular SA to authenticate the
packet. The ICV may contain a keyed Message Authentication Code (MAC) based
on a symmetric encryption algorithm (such as AES or Triple-DES) or a one-way
hash function such as MD5 or SHA-1.

The most obvious difference between ESP and AH is that the ESP Header’s
Next Header field appears at the end of the security payload. Of course, since the
header may be encapsulating an encrypted payload, you don’t need to know what
next header to expect until after you've decrypted the payload—thus, the ESP
Next Header field is placed after rather than before the payload.

ESP’s authentication service covers only the payload itself, not the IP head-
ers of its own packet as with the Authentication Header. And the confidentiality
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service covers only the payload itself; obviously, you can’t encrypt the IP headers
of the packet intended to deliver the payload and still expect any intermediate
routers to be able to process the packet. Of course, if you're using tunneling, you
can encrypt everything, but only everything in the tunneled packet itself.

6.6 IMPLEMENTING AND DEPLOYING IPSEC

IP-layer security protects IP datagrams. It does not necessarily have to involve the
user or any applications. This means users may be merrily using all of their appli-
cations without ever being aware that all their datagrams are being encrypted or
authenticated before being sent out to the Internet (of course, that situation will
only occur as long as all the encrypted datagrams are properly decrypted by hosts
at the other end).

As a result, one question that comes up is how to implement IPsec. RFC 2401
suggests several strategies for implementing IPsec in a host or in conjunction with
a router or firewall.

Integrated implementation Integrate IPsec into the native IP implemen-
tation. This approach is probably the best, but also the most difficult, as it
requires rewriting the native IP implementation to include support for IPsec.
Integrating IPsec into the IP stack adds security natively and makes it an inte-
gral part of any IP implementation. However, it also requires that the entire
stack be updated to reflect the changes.

“Bump-in-the-stack” (BITS) Implement IPsec “beneath” the IP stack and above
the local network drivers. The IPsec implementation monitors IP traffic as it
is sent or received over the local link, and IPsec functions are performed on
the packets before passing them up or down the stack. This works reason-
ably well for individual hosts doing IPsec.

This approach inserts special IPsec code into the network stack just below the
existing IP network software and just above the local link software. In other
words, this approach implements security through a piece of software that inter-
cepts datagrams being passed from the existing IP stack to the local link layer
interface. This software then does the necessary security processing for those
datagrams and hands them off to the link layer. This approach can be used to
upgrade systems to IPsec support without requiring that their IP stack software
be rewritten.

“Bump-in-the-wire” (BITW) Implement IPsec in a hardware cryptographic
processor. The crypto processor gets its own IP address; when used for indi-
vidual hosts, the bump-in-the-wire acts much like a BITS implementation,
but when the same processor provides IPsec services to a router or firewall,
it must behave as a security gateway—meaning that it must do IPsec secu-
rity protocols in tunnel mode.
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This approach uses external cryptographic hardware to perform the security pro-
cessing. The device is usually an IP device that acts as a sort of a router or, more
accurately, security gateway for all IP datagrams from any system that sits behind
it. When such a device is used for a single host, it works very much like the BITS
approach, but implementation can be more complex when a single BITW device
is used to screen more than one system.

These options differ more in terms of where they are appropriate than in
subjective terms. Applications that require high levels of security may be better
served with a hardware implementation. Applications that run on systems for
which new IPsec-compliant network stacks are not available may be better served
by the BITS approach.

6.7 CONCLUSION

Network security is probably the subject of as many books and chapters within
technical books as IP. This chapter provides a concise introduction to IP secu-
rity issues and security goals, starting with the definition of the challenges facing
security managers and the tools at their disposal. IPsec provides authentication
services through the use of public key encryption, digital signature, and secure
hashing tools; it provides privacy services through the use of public and secret
key encryption as well.

On top of these cryptographic tools, however, IPsec requires additional proto-
cols to handle the secure and verifiable distribution and management of encryp-
tion keys. IPsec combines these cryptographic and security protocols with IP,
using security associations to link packets with hosts and a pair of optional IP
security headers (ESP and AH) to transmit IP packets securely.

IPsec is often linked to IPv6 because while IPsec support in IPv4 is optional, it
is mandatory for all IPv6-capable hosts. Although some cite “security” as a reason
to prefer IPv6 over IPv4, to a great degree the same level of security is possible if
IPsec were mandatory for all IPv4 nodes.
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CHAPTER

Security in Wireless Systems

7.1 INTRODUCTION

Although radio has existed for almost 100 years, most of the population uses
wireline phones. Only over the last 30 years have large numbers of people used
wireless or cordless phones. With this exposure, users of wireless phones and the
news media have challenged two bedrocks of the telecommunications industry:
privacy of conversation and billing accuracy.

The current concepts of privacy of communications and accuracy of billing are
based on the telephone company’s ability to route an individual pair of wires to each
residence and office. Thus, when a call is placed on a pair of wires, the telephone
company can correctly associate the call on a wire with the correct billing account
[1-4]. Similarly, since there is a pair of wires from a home to the telephone company
central office, no one can easily listen to the call. For most people, a wiretap is an
abstract concept that only concerns someone who is involved in illegal activities.

Communications on shared media can be intercepted by any user of the
media. When the media are shared, anyone with access to the media can listen to
or transmit on the media. Thus, communications are no longer private. In shared
media, the presence of a communication request does not uniquely identify the
originator, as it does in a single pair of wires per subscriber. In addition, all users of
the network can overhear any information that an originator sends to the network
and can resend the information to place a fraudulent call. The participants of the
phone call may not know that their privacy is compromised (see Figure 7.1).
When the media are shared, privacy and authentication are lost unless some
method is established to regain it. Cryptography provides the means to regain
control over privacy and authentication [5].

In the past, there have been attempts to control privacy and authentication
through noncryptographic means. These have failed thus far. The designers of the
original cellular service in the United States implemented authentication of the
mobile telephone using a number assignment module (NAM) and an electronic
serial number (ESN). The NAM would be implemented in a programmable read
only memory (PROM) for easy replacement when the phone number changed. 175
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Mobile User Mobile User

Network

Which of these
calls is private?

Wireline
Network

Wireline
User

FIGURE 7.1

Mobile system privacy.

The ESN would be implemented in a tamper-resistant module that could not be
changed without damaging the cellular telephone. In practice, many manufac-
turers implement the NAM and the ESN in either battery-backed random access
memory (RAM) or electrically erasable PROM (EEPROM). The manufacturer and
the installer place the data in the phone via external programming.

Similarly, the designers assumed that privacy of cellular communications
would occur because 900-MHz scanners would be difficult and too expensive to
build. When those scanners became easily available, the U.S. Congress passed the
Electronic Communications Privacy Act in 1986, and in 1992 the FCC banned the
importation and manufacture of scanners covering cellular phone bands. In prac-
tice, the laws do not help since there are millions of scanners in existence today.
Furthermore, cellular test equipment is easy to build or buy, and most cellular
phones can be placed in a maintenance mode that allows them to monitor any
channel. Any cellular phone can be easily converted to a cellular scanner.

To provide the proper privacy and authentication for a mobile station, a cryp-
tographic system is essential. Some of the cryptographic requirements are in the
air interface between the mobile station and base station. Other requirements are
on databases stored in the network and on information shared between systems
in the process of handoff to provide service for roaming units.

In this chapter we examine the requirements needed for privacy and authentica-
tion of wireless systems, and then we discuss how each of the cellular and personal
communications services (PCS) systems supports these requirements. The chapter
discusses four levels of voice privacy. We then identify requirements in the areas
of privacy, theft resistance, radio system requirements, system lifetime, physical
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requirements as implemented in mobile stations, and law enforcement needs. We
will examine different methods that are in use to meet these needs.

7.2 SECURITY AND PRIVACY NEEDS OF A WIRELESS SYSTEM
7.2.1 Purpose of Security

Most frauds result in a loss to the service provider. It is important to recognize
that this loss may be in terms of:

m No direct financial loss, but results in lost customers and an increase in use
of the system with no revenue.

m Direct financial loss, where money is paid out to others, such as other net-
work carriers and operators of value-added networks such as a premium
rate service line.

m Potential loss of business, where customers may move to another service
provider because of the lack of security.

m Failure to meet legal and regulatory requirements, such as license condi-
tions, or data protection legislation.

The objective of security for most wireless systems is to make the system as
secure as the public switched telephone network. The use of radio as the trans-
mission medium allows a number of potential threats from eavesdropping on the
transmissions. It was soon apparent in the threat analysis that the weakest part of
the system was the radio path, as this can be easily intercepted.

The technical features for security are only a small part of the security require-
ments; the greatest threat is from simpler attacks such as disclosure of the encryp-
tion keys, an insecure billing system, or corruption. A balance is required to
ensure that these security processes meet these requirements. At some point in
time judgment must be made of the cost and effectiveness of the security measure
limitation.

7.2.2 Privacy Definitions

When most people think of privacy, they think of either of two levels [6,13]: none,
and privacy that is used by military users.

However, as we describe here, there are four levels of privacy that need to be
considered.

m Level 0: None. With no privacy enabled, anyone with a digital scanner could
monitor a call.

m Level 1: Equivalent to wireline. As discussed earlier, most people think
wireline communications are secure. Anyone in the industry knows that they
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are not, but the actions to tap a line often show the existence of the tap. With
wireless communications, the tap can occur without anyone’s knowledge.
Therefore, the actions to tap a wireline call must be translated into a differ-
ent requirement for a wireless system. With this level of security, the types
of conversations that would be protected are the routine everyday conver-
sations of most people. These types of communications would be personal
discussions that most people would not want exposed to the general pub-
lic—for example, details of a recent operation or other medical procedure,
family financial matters, mail order using a credit card, family discussions,
request for emergency services (911), and discussions of vacation plans (thus
revealing when a home will be vacant).

m Level 2: Commercially secure. This level would be useful for conversa-
tions in which the participants discuss proprietary information—for exam-
ple, stock transactions, lawyer-client discussions, mergers and acquisitions,
or contract negotiations. A cryptography system that allows industrial activi-
ties to be secure for about 10-25 years would be adequate. If one particular
conversation was broken, the same effort would be needed to break other
conversations.

m Level 3: Military and government secure. This is the level that an aver-
age person thinks of when cryptography is discussed. This would be used
for the military activities of a country and nonmilitary government commu-
nications. The appropriate government agency would define requirements
for this level.

7.2.3 Privacy Requirements

In this section we discuss the privacy needs of a wireless telephone user. Figure 7.2
is a high-level diagram of a wireless system that shows areas where intruders can
compromise privacy. A user of a mobile system needs privacy in the following areas:

m Privacy of call setup information. During a call setup, the mobile station
will communicate information to the network. Some of the information that
a user or mobile station could send includes calling number, calling card
number, or type of service requested. The system must send all this informa-
tion in a secure fashion.

m Privacy of speech. The system must encrypt all spoken communications
so that intruders cannot intercept the signals by listening on the airwaves.

m Privacy of data. The system must encrypt all user communications so that
intruders cannot intercept the data by listening on the airwaves.

m Privacy of user location. A user should not transmit information that
enables an eavesdropper to determine the user’s location. The usual method
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Privacy requirements.

to meet this requirement is to encrypt the user ID. Three levels of protection

are often needed:

1. Eavesdropping of radio link

2. Unauthorized access by outsiders to the user location information stored
in the network visitor location register (VLR) and home location register
(HLR)

3. Unauthorized access by insiders to the user location information stored
in the network. This level is difficult to achieve, but not impossible

m Privacy of user identification. When a user interacts with the network,
the user ID is sent in a way that does not show user identification. This pre-
vents analysis of user calling patterns based on user ID.

m Privacy of calling patterns. No information must be sent from a mobile
that enables a listener of the radio interface to do traffic analysis on the
mobile user. Typical traffic analysis information is:

- Calling number

- Frequency of use of the mobiles
- Caller identity

- Privacy of financial transactions

If the user transmits credit card information over any channel, the system must
protect the data. Users may order items from mail order houses via a telephone
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that is wireless. Users may choose to voice their credit card numbers rather than
dialing them via touch-tone phone.

Users may access bank voice response systems, where they send account
data via tone signaling. Users may access calling card services of carriers and may
speak or use tone signaling to send the card number.

All these communications need to be private. Since the user can send the infor-
mation on any channel—voice, data, or call control—the system must encrypt all
channels.

7.2.4 Theft Resistance Requirements

The system operator may or may not care if a call is placed from a stolen mobile
station as long as the call is billed to the correct party. The owner of a mobile sta-
tion will care if the unit is stolen.

The mobile terminal design should reduce theft of the mobile station by mak-
ing reuse of a stolen mobile station difficult. Even if the mobile station is regis-
tered to a new legitimate account, the use of the stolen mobile station should be
stopped. The mobile station design should also reduce theft of services by making
reuse of a stolen mobile station unique information difficult. Requirements needed
to accomplish the reduction in theft are:

m Clone-resistant design. In the current wireless systems, cloning of mobile
stations is a serious problem; methods must be put in place to reduce or elim-
inate fraud from cloning. To achieve fraud reduction, mobile station unique
information must not be compromised by any of the following means:

1. Over the air: Someone listening to a radio channel should not be able to
determine information about the mobile station and then program it into
a different mobile station.

2. From the network: The databases in the network must be secure. No
unauthorized person should be able to obtain information from those
databases.

3. From network interconnect: Systems will need to communicate with
each other to verify the identity of roaming mobile stations. A system
operator could perpetrate fraud by using the security information about
roaming mobile stations to make clone mobile stations.

4. The communication scheme used between systems to validate roam-
ing mobile stations should be designed so that theft of information by
a fraudulent system does not compromise the security of the mobile
station.

5. Thus, any information passed between systems for security checking of
roaming mobile stations must have enough information to authenticate
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the roaming mobile station. It must also have insufficient information to
clone the roaming mobile station.

6. From users cloning their own mobile station: Users can perpetrate fraud
on the system. Multiple users could use one account by cloning mobile
stations. The requirements for reducing or eliminating this fraud are the
same as those to reduce repair and installation fraud described below.

m Installation and repair fraud. Theft of service can occur when the ser-
vice is installed or when a terminal is repaired. Multiple mobile stations can
be programmed with the same information (cloning). The cryptographic
system must be designed so that installation and repair cloning is reduced
or eliminated.

m Unique user ID. More than one person may use a handset. It is necessary
to identify the correct person for billing and other accounting information.
Therefore, the user of the system must be uniquely identified in the system.

m Unique mobile station ID. When all security information is contained in
a separate module (smart card), the identity of the user is separate from the
identity of the mobile station. Stolen mobile stations can then be valuable
for obtaining service without purchasing a new (full price) mobile station.
Therefore, the mobile station should have unique information contained
within it that reduces or eliminates the potential for stolen mobile stations
to be registered with a new user.

7.2.5 Radio System Requirements

When a cryptographic system is designed, it must function in a hostile radio envi-
ronment characterized by bit errors caused by:

m Multipath fading and thermal noise. The characteristics of the radio
channel affect the choice of cryptographic algorithms. The radio signals will
take multiple diverse routes from the mobile station to the base station. The
effect of multiple diverse routes that can be severe and cause burst errors is
fading. Although the system may be interference limited, there may be condi-
tions when the limiting factor on performance is thermal noise. The choice
of cryptographic modes must include both of these channel characteristics.

m Interference. The mobile systems may initially share a radio spectrum with
other users. The modulation scheme and cryptographic system must be
designed so that interference with shared users of the spectrum does not
compromise the security of the system.

m Jamming. Although usually thought about only in the context of military
communications, civilian systems can also be jammed. As wireless communi-
cation becomes ubiquitous, jamming of the service can also be a method of



182

CHAPTER 7 Security in Wireless Systems

breaking the security of the system. Therefore, cryptographic systems must
work in the face of jamming.

= Support of handoff. When the call handoff occurs to another radio port
in the same or adjacent mobile system, the cryptographic system must main-
tain synchronization.

7.2.6 System Lifetime Requirements

It has been estimated that computing power doubles every 18 months. An algo-
rithm that is secure today may be breakable in 5 to 10 years. Since any system
being designed today must work for many years after design, a reasonable require-
ment is that the procedures must last at least 20 years. The algorithm must have
provisions to be upgraded in the field.

7.2.7 Physical Requirements

Any cryptographic system used in a mobile station must work in the practical
environment of a mass-produced consumer product. Therefore, the cryptographic
system must meet the following requirements:

m Mass production. It can be produced in mass quantities (million of units
per year).

m Exported and/or imported. The security algorithm must be capable of
being exported and imported. Two problems are solved with export and
import restrictions lifted:

1. It can be manufactured anywhere in the world.
2. It can be carried on trips outside the United States.
As an alternative, if an import/export license for the algorithm cannot
be obtained, the following restrictions must apply:
- Either only U.S. manufacturing or two-stage manufacturing
- All mobile stations must be made in the United States or all mobile sta-
tions made outside the United States will have final assembly in the
United States
- All mobile stations must be impounded on leaving the United States

m Basic handset requirements. Any cryptographic system must have mini-
mum impact on the following mobile station requirements:
- Size

Weight

Power drain

Heat dissipation

Microprocessor speed

Reliability

- Cost



7.2 Security and Privacy Needs of a Wireless System

m Low-cost level 1 implementation. Level 1 implementation would be
expected as a baseline for most mobile systems. Therefore, level 1 implemen-
tation must be low cost. Designers obtain low-cost solutions by implementa-
tions that can be done either in software or in low-cost hardware. Software
solutions are attractive. Often mobile stations have spare read only memory
(ROM), RAM, and central processing unit (CPU) cycles in microprocessors.

7.2.8 Law Enforcement Requirements

When a valid court order is obtained in the United States, current telephones (either
wired or wireless) are relatively easy to tap by the law enforcement community.
The same requirements described in this chapter to ensure privacy and authenti-
cation of wireless mobile communications make it more difficult to execute legiti-
mate court wiretap orders.

The law enforcement community can wiretap mobile stations after properly
obtaining court orders.When an order is obtained, there are several ways a mobile
system operator can meet the needs of the order. Any method used must not
compromise the security of the system. Figure 7.3 shows possible approaches to
tapping the call. The tap can be done over the air or at a central switch.

Wiretap
at Switch

D

Court
order

e Strong Encryption

Wiretap Vehicle

Key Escrow
Agency

FIGURE 7.3
Law enforcement requirements.
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This discussion assumes that only the radio portion of the link is encrypted
and the call appears in the clear in the wired portion of the network. If end-to-
end encryption is used, other means must be considered to obtain the informa-
tion since the call never appears clear except at the end points.

Over-the-Air Tap

When the tap is done over the air, a wiretap van is required. The van is driven
to inside the cell where the call is placed. A centrally located base station (BS)
receives interference from mobile stations in many cells or may not be able to
receive a low-power mobile station at all.

In a large-cell mobile system, wiretap stations could be deployed in each cell,
but in a small cell system, the number of tap points would be too high. Therefore,
a wiretap van is needed and is driven to the correct cell where the call is placed.

After the van is driven to the correct cell, it needs to be close to the mobile
station. A van might have an antenna that is a maximum of 6 to 10 feet high ver-
sus a BS antenna that has a height of 25 to 100 feet or more. Thus, the van must
be closer to the mobile station than a cell radius. A quick rule of thumb for the
wiretap van is that if the mobile station is in line of sight, then the wiretap van
can receive the mobile station transmission.

If a wiretap van is used, then the transmissions of the mobile station must be
decrypted. The following are possibilities:

m No encryption: This approach makes tapping the easiest; if no encryption
is used, anyone can listen to a call over the airwaves. Thus, law enforcement
personnel can listen to and record a call, and so can anyone else.

m Breakable algorithms: If the algorithm is weak enough, law enforcement
agencies can break the algorithm when permitted to do so by an appro-
priate court order. Unfortunately, given the proliferation of desktop/laptop
personal computers, any algorithm that can be easily broken by the law
enforcement community will also be quickly broken by anyone else.

m Strong encryption: Strong encryption makes it difficult, if not impossible,
for the wiretap van to decrypt the transmission. One method to resolve this
dilemma is to use a key escrow system where all cryptographic keys would
be available from an appropriate key escrow agency. With a court order, the
information could be obtained by law enforcement agencies so that they
could listen to and record a call.

Wiretap at Switch

Since all mobile calls must be routed through a central switch, those calls that use
radio-link-only encryption can be tapped at the central switch under a court order.

This is the preferred method for low-power wireless calls. This method leaves
it to the user and system provider to have appropriate levels of security in the
wireless portion of the call.
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1.3

REQUIRED FEATURES FOR A SECURED WIRELESS
COMMUNICATIONS SYSTEM

For wireless communications to be secure the following features must be avail-
able [8-12]:

User authentication proves that the users are who they claim to be.

Data authentication consists of data integrity and data origin authenti-
cation. With data integrity the recipient can be sure that the data has not
changed. Data origin authentication proves to the recipient that the stated
sender has originated the data.

Data confidentiality means the data is encrypted so that it is not disclosed
while in transit.

Nonrepudiation corresponds to a security service against denial by either
party of creating or acknowledging a message.

Authorization is the ability to determine whether an authenticated entity
has the permission to execute an action.

Audit is a history of events that can be used to determine whether anything
has gone wrong and, if so, what it was, when it went wrong, and what caused it.

Access control enables only authorized entities to access resources.

Availability ensures that resources or communications are not prevented
from access or transmission by malicious entities.

Defense against denial of service is the attack corresponding to the secu-
rity service of availability.

1.4

METHODS OF PROVIDING PRIVACY AND
SECURITY IN WIRELESS SYSTEMS

North American and European cellular and PCS systems support a variety of air
interface protocols. They include:

The Advanced Mobile Phone System (AMPS)

The 1S-54/1S-136 TDMA protocol

The IS-95 CDMA

The cdma2000

The Global System for Mobile communications (GSM)
The Wideband CDMA (WCDMA) system

Across these protocols, there are four security models that have been used for cel-
lular/ PCS phones in the United States and Europe.
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1.

MIN/ESN: The original AMPS used a 10-digit mobile identification number
(MIN) and a 32-bit ESN. All data is sent in clear text. Data is shared between
systems with bad (incorrect) MINs, ESNs, and MIN/ESN pairs.When a mobile
station (MS) roams into a system, first the bad list is checked, and then a mes-
sage is sent to the home system to validate the MIN/ESN pair. The intersys-
tem communications are sent via Signal System 7 (SS7) using an ANSI 1S-41
protocol.

As an improvement to this approach, some systems require that a user
enter a PIN before placing the calls. The main advantage of the personal
identification number (PIN) is that it can be changed in the network when
it is compromised, and the user can continue to have the same phone num-
ber. Cellular phones that are cloned must have their phone number (MIN)
changed to stop the fraudulent use.

Shared secret data (SSD): The TDMA and CDMA systems in the United
States use SSD stored in the network and the mobile phone. At service initi-
ation time, a secret key is stored in the phone and the network. AMPS, IS-95
CDMA, I8-54/1S-136 TDMA, and cdma2000 all support SSD. The intersystem
communications are sent via SS7 using an ANSI IS-41 protocol.

All mobile stations are assigned an ESN at the time of manufacturing.
They are also assigned a 15-digit international mobile subscriber identity
(IMSD) that is unique worldwide, an A-key, and other data at the time of ser-
vice installation. When the MS is turned on, it must register with the system.
‘When it registers, it sends its IMSI and other data to the network. The VLR in
the visiting system then queries the HLR for the security data and service pro-
file information. The VLR then assigns a temporary mobile subscriber identity
(TMSD) to the MS. The MS uses the TMSI for all further access to that system.
The TMSI provides anonymity of communications since only the MS and the
network know the identity of the MS with a given TMSI. When the MS roams
into a new system, some air interfaces use the TMSI to query the old VLR and
then assign a new TMSI; other air interfaces request that the MS send its IMSI
and then assign a new TMSI.

Each time an MS places or receives a call, a call counter (CHCNT) is
incremented. The counter is also used for clone detection since clones will
not have a call history identical to the legitimate phone.

Security triplets (token based): GSM uses its own unique algorithm and
does not share secrets between cellular or PCS systems. It uses a token-
based authentication scheme.When an MS roams into a system, a message is
sent to the home system asking for sets (3 to 5 typically) of triplets (unique
challenge, response to the challenge, and a voice privacy key derived from
the challenge). Each call that is placed or received uses one triplet. After
all triplets are used up, the visited system must send a new message to the
home system to get another set of triplets. The intersystem communica-
tions use the CCITT SS7 and GSM mobile application part (MAP) protocol.
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Each system operator can choose its own authentication method. The MS
and the HLR each support the same method and have common data. Each
MS sends a registration request; then the network sends a unique challenge.
The MS calculates the response to its challenge and sends a message back to
the network. The VLR contains a list of triplets; the network compares a trip-
let with responses it receives from the MS. If the response matches, the MS
is registered with the network. The just-used triplet is discarded.

4. Public key: The public key system is analogous to the lock and its com-
binations. A public key algorithm relies on two cryptographic keys, inti-
mately related to each other but each not derivable from the other. Public
key systems do not need communications to the home system to validate
the MS. The intersystem communications are still needed to validate the
account and get user profile information.

7.5 WIRELESS SECURITY AND STANDARDS

The National Institute of Standards and Technology (NIST) expects that future IEEE
802.11 (and possibly other wireless technologies) products will offer advanced
encryption standard (AES)-based data link-level cryptographic services that are
validated under the U.S. Federal Information Processing Standard (FIPS) 140-2 [7].
As these will mitigate most concerns about wireless eavesdropping or active wire-
less attacks, their use is strongly recommended when they become available.

= IEEE 802.11—WLAN. Data security using encryption is an optional func-
tionality of medium access control (MAC). The functionality is called wired
equivalent privacy (WEP). Encryption is only supplied between stations and
not on an end-to-end basis. No key management is specified. Authentication
is performed by assigning an Extended Service Set ID (ESSID) to each access
point (AP) in the network and by using the ESSID in a challenge-response
authentication scheme. WEP was shown to have severe security weaknesses.
Wi-Fi protected access (WPA) was introduced by the Wi-Fi Alliance as an
intermediate solution to WEP insecurities. WPA implemented a subset of
IEEE 802.11i specifications, which will be discussed in the following section.

m European and North American Systems. Almost all information being
sent between an MS and the network is encrypted, and sensitive informa-
tion is not transmitted over a radio channel.

7.6 IEEE 802.11 SECURITY

The IEEE 802.11 Wi-Fi wireless local area network (WLAN) standard addressed
security with the WEP protocol, which proved relatively easy to crack and was
shown to have major security weaknesses. IEEE 802.11i, also known as Wi-Fi
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protected access 2 (WPA2),is an improved security protocol for IEEE 802.11.IEEE
802.11i includes stronger encryption, authentication, and key management strate-
gies that go a long way toward guaranteeing data and system security.

The new data-confidentiality protocols in 802.11i are the temporal key integ-
rity protocol (TKIP) and counter-mode/block chaining message autbentica-
tion code protocol (CCMP). 802.11i also uses an 802.1X key distribution system
to control access to the network. Because 802.11 handles unicast and broadcast
traffic differently, each traffic type has different security concerns. 802.11i uses a
negotiation process to select the correct confidentiality protocol and key system
for each traffic type. Other features introduced in 802.11i include key caching and
preauthentication.

The TKIP is a data confidentiality protocol, which improves the security of
products using WEP. Among WEP’s numerous flaws are its lack of a message integ-
rity code and its insecure data-confidentiality protocol. The message integrity code
enables devices to authenticate that the packets are coming from the claimed
source. This authentication is important in a wireless system where traffic can be
easily injected. The TKIP uses a mixing function to defeat weak-key attacks. The
mixing function creates a per frame key to avoid the WEP weaknesses.

The CCMP is a data-confidentiality protocol to handle packet authentication
as well as encryption. For confidentiality CCMP uses AES in counter mode. For
authentication and integrity, CCMP uses a cipher block chaining message authenti-
cation code (CBC-MAC).In 802.11i, CCMP uses a 128-bit key. The block size is 128
bits. The CBC-MAC size is 8 octets, and nonce size is 48 bits. There are two bytes
of 802.11 overhead. The CBC-MAC, the nonce, and the 802.11 overhead make
the CCMP packet 16 octets larger than an unencrypted 802.11 packet. Although
slightly slower, the larger packet is not a bad exchange for increased security.

The CCMP protects some fields that are not encrypted. The additional parts
of the 802.11 frame that are protected are known as additional authentication
data (AAD). AAD includes the packet source and destination and protects against
attackers replaying packets to different destinations.

The 802.1X provides a framework to authenticate and authorize devices con-
necting to the network. It prevents access to the network until such devices pass
authentication. The 802.1X also provides a framework to transmit key informa-
tion between authenticator and supplicant. For 802.11i, the access point takes the
role of the authenticator and the client card the role of supplicant. The supplicant
authenticates with the authentication server through the authenticator. In 802.1X,
the authenticator enforces authentication. The remote authentication dial-in user
service (RADIUS) protocol (see Section 7.9) is typically used between authentica-
tor and authentication server. Once the authentication server concludes authen-
tication with the supplicant, the authentication server informs the authenticator
of the successful authentication and passes established keying material to the
authenticator. At that point, the supplicant and authenticator share established
key material through extensive authentication protocol over LANs (EAPOL)-key
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exchange. If all exchanges have been successful, the authenticator allows traffic to
flow through the controlled port giving the client access to the network.
The 802.11i EAPOL-key exchange uses a number of keys and has a key hier-

archy to divide initial key material into useful keys. The two key hierarchies are:

pairwise key hierarchy and group key hierarchy. In the 802.11i specification, these
exchanges are referred to as the 4-way handshake and the group key handshake.
The 4-way handshake does several things:

m Confirms the pairwise master key (PMK) between the suppliant and
authenticator

Establishes the temporal keys to be used by the data-confidentiality protocol
Authenticates the security parameters that were negotiated

Performs the first group key handshake

Provides keying material to implement the group key handshake

Wireless clients often roam back and forth between access points. This has a
negative effect on the system performance. Key caching reduces the load on the
authentication server and reduces the time required to get connected to the net-
work. The basic concept behind the key caching is for a client and access point

to retain a security association when the client roams away from the access point.

When the client roams back to the access point, the security association can be
restarted.

Preauthorization enables a client to establish a PMK security association to an
access point with which the client has yet not been associated. Preauthorization
provides a way to establish a PMK security association before a client associates.
The advantage is that the client reduces the time that it is disconnected from the
network. Preauthorization has limitations. Clients performing preauthorization
will add load to the authorization server. Also, since preauthorization is done at
the IEEE 802 layer, it does not work across IP subnets.

7.7 SECURITY IN NORTH AMERICAN CELLULAR/
PCS SYSTEMS

The ANSI-41 authentication features are independent of the air-interface protocol
used to access the network, and subscribers are never involved in the process. A
successful outcome of authentication occurs when it can be shown that the MS
and the network possess identical results of a calculation performed in both the
MS and the network. The authentication center (AC) is the primary functional
entity in the network responsible for performing this calculation, although the
serving system (i.e., the VLR) may also be allocated certain responsibilities. The
authentication calculations are based on a set of algorithms, collectively known as
the cellular autbentication and voice encryption (CAVE) algorithm.
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The authentication process and algorithm are based on the following two
secret numbers:

1. Authentication key (A-key) (64-bit)
2. Shared secret data (SSD) (128-bit)

The A-key is a 64-bit secret number that is the permanent key used by the authen-
tication calculations in both the MS and the AC. The A-key is permanently installed
into the MS and is securely stored at the AC in the network when a new subscrip-
tion is obtained.

Once the A-key is installed in the MS, it should not be displayed or retrievable.
The MS and the AC are the only functional entities ever aware of the A-key; it is
never transmitted over the air or passed between systems. The primary function
of the A-key is as a parameter used in calculation to generate the SSD.

The COUNT is a 6-bit parameter that is intended to provide additional security
in case the A-key or SSD is compromised. The current value of the COUNT is main-
tained by both the MS and the authentication controller. The respective counts
should generally be the same—they may not always match exactly due to radio
transmission problems or system failures in the network. If the respective counts
differ by a large enough range, or frequently do not match, the AC may assume that
a fraudulent condition exists and take corrective action. Note that a COUNT mis-
match detection does not conclusively indicate that the particular MS accessing
the system is fraudulent—only that a clone may exist.

7.7.1 Shared Secret Data Update

The SSD is a 128-bit secret number that is essentially a temporary key used by
authentication calculations in both the MS and the AC. The SSD may also be
shared with the serving system via a number of ANSI-41 messages. The SSD is a
semipermanent value. It can be modified by the network at any time, and the net-
work can command the MS to generate a new value.

The SSD is obtained from calculations using the A-key, the ESN, and a random
number shared between the MS and the network. SSD calculation results in two
separate 64-bit values, SSD_A and SSD_B. SSD_A is the value used for the authenti-
cation process, whereas SSD_B is used for encryption algorithms for privacy and
to encrypt and decrypt selected messages on the radio traffic channel. Figure 7.4
shows the SSD generation process. At any time, the network can order the MS to
update the SSD by generating the new SSD with a new SSD random number for
security purposes.

7.7.2 Global Challenge

For a global and unique challenge authentication process, the ANSI-41 stan-
dard is used [8, 9]. In a global challenge the serving system presents a numeric
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Global challenge authentication process (no SSD sharing with the serving system).

authentication challenge to all mobile stations that are using a particular radio
control channel. The ANSI-41 AC verifies that the numeric authentication response
from an MS attempting to access the system is correct. This is called a global
challenge because the challenge indicator and random number used for the chal-
lenge are broadcast on the radio control channel and are used by all mobile sta-
tions accessing that control channel.

The authentication process flow diagram (when SSD is not shared with the
serving system) is given in Figure 7.5.

1. The serving system generates a random number (RAND) and sends it to the
MS in the overhead message on the control channel.
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2. MS calculates an authentication result using CAVE and transmits that result
back to the serving system when it accesses the system for registration, call
origination, or paging response purposes.

3. The serving system forwards the authentication result and the random
number to AC.

4. The AC independently calculates an authentication result and compares it
to the result received from the MS. If the results match, the MS is consid-
ered successfully authenticated. If the results do not match, the MS may be

considered fraudulent and service may be denied.

If the SSD is shared, then the serving system performs the calculations.

7.7.3 Unique Challenge

In the ANSI-41 unique challenge, the authentication controller directs the serving
system to present a numeric authentication challenge to a single MS that either is
requesting service from the network or is already engaged in a call. The serving
system presents the numeric authentication challenge to the MS and verifies that
the numeric authentication response provided by the MS is correct. The unique
challenge is so named because the challenge indicator and the random number
used for the challenge are directed to a particular MS, whereas a global challenge
is required by each MS. Figure 7.6 shows the basic unique challenge procedure for
authentication when SSD is not shared.

MS Serving System
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AC authentication
result, random #
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random # ESN
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Basic unique challenge authentication process when SSD is not shared.
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1. The AC generates a random number and uses it to calculate an authenti-
cation result. The AC sends both the random number and authentication
result to the serving system.

2. The serving system forwards the random number to the MS.
3. The MS calculates an authentication result and sends it to the serving system.

4. The serving system compares the result from the AC with the result from
the MS. If the results match, the MS is considered to have successfully
responded to the challenge. If they do not match, the MS may be consid-
ered fraudulent and service may be denied. Either way, the serving system
reports the results to the AC.

If SSD is shared, the serving system may initiate the unique challenge process and
would report a failure to the AC.

7.8 SECURITY IN GSM, GPRS, AND UMTS
7.8.1 Security in GSM

GSM allows three-band phones to be used seamlessly in more than 160 countries.
In GSM, security is implemented in three entities:

m Subscriber identity module (SIM) contains IMSI, TMSI, PIN, MSISDN, authen-
tication key K; (64-bit), ciphering key (K,) generating algorithm A8, and authen-
tication algorithm A3. SIM is a single chip computer containing the operating
system (OS), the file system, and applications. SIM is protected by a PIN and
owned by an operator. SIM applications can be written with a SIM tool kit.

m GSM handset contains ciphering algorithm A5.

m Network uses algorithms A3,A5,A8; K; and IDs are stored in the authentica-
tion center.

Both A3 and A8 algorithms are implemented on the SIM. The operator can decide
which algorithm to use. Implementation of an algorithm is independent of hard-
ware manufacturers and network operators.

A5 is a stream cipher. It can be implemented very efficiently on hardware. Its
design was never made public. A5 has several versions: A5/1 (most widely used
today), A5/2 (weaker than A5/1; used in some countries), and A5/3 (newest ver-
sion based on the Kasumi block cipher).

The authentication center contains a database of identification and authentica-
tion information for subscribers including IMSI, TMSI, location area identity (LAD),
and authentication key (K)). It is responsible for generating (RAND), response
(RES), and ciphering key (K,.), which are stored in HLR/VLR for authentication
and encryption processes. The distribution of security credentials and encryption
algorithms provides additional security.
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GSM uses information stored on the SIM card within the phone to provide
encrypted communications and authentication. GSM encryption is only applied
to communications between a mobile phone and the base station. The rest of the
transmission over the normal fixed network or radio relay is unprotected, where
it could easily be eavesdropped or modified. In some countries, the base station
encryption facility is not activated at all, leaving the user completely unaware of
the fact that the transmission is not secure.

GSM encryption is achieved by the use of a shared secret key. If this key is com-
promised it will be possible for the transmission to be eavesdropped and for the
phone to be cloned (i.e., the identity of the phone can be copied). The shared secret
key could easily be obtained by having physical access to the SIM, but this would
require the attacker to get very close to the victim. However, it has been shown by
research that the shared secret key can be obtained over the air from the SIM by
transmitting particular authentication challenges and observing the responses.

If the base station can be compromised then the attacker will be able to eaves-
drop on all the transmission being received. The attacker will also have access
to the shared secret keys of all the mobile phones that use the base station, thus
allowing the attacker to clone all of the phones.

Authentication in the GSM system is achieved by the base station sending out
a challenge to the mobile station. The MS uses a key stored on its SIM to send
back a response that is then verified. This only authenticates the MS, not the user.

A 64-bit key is divided to provide data confidentiality. It is not possible to
encrypt all the data; for example, some of the routing information has to be sent
in clear text.

GSM Token-Based Challenge

The security-related information consisting of triplets of RAND, signature response
(SRES), and K, is stored in the VLR. When a VLR has used a token to authenticate
an MS, it either discards the token or marks it used. When a VLR needs to use a
token, it uses a set of tokens that is not marked as used in preference to a set that
is marked used.

When a VLR successfully requests a token from the HLR or an old VLR, it discards
any tokens that are marked as used. When an HLR receives a request for tokens,
it sends any sets that are not marked as used. Those sets shall then be deleted or
marked as used. The system operator defines how many times a set may be reused
before being discarded. When HLR has no tokens, it will query the authentication
center for additional tokens.

The token-based challenge can be integrated into various call flows (e.g., reg-
istration, handoff). It is described separately here for clarity. Figures 7.7 and 7.8
show the call flows of token-based challenges.

1. The serving system sends a RAND to the MS.
2. The MS computes the SRES using RAND and the authentication key (K)) in
the encryption algorithm.
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3. The MS transmits the SRES to the serving system.

4. The MSC sends a message to the VLR requesting authentication.

5. The VLR checks the SRES for validity.

6. The VLR returns the status to the MSC.

7. The MSC sends a message to the MS with a success or failure indication.

Both GSM and North American systems use the international mobile equipment
identity (IMED) stored in the equipment identity register (EIR) to check mal-
functions and fraudulent equipment. The EIR contains a valid list (list of valid
mobiles), a suspect list (list of mobiles under observation), and a fraudulent list
(list of mobiles for which service is barred) (see Figure 7.9 for call flow).

7.8.2 Security in GPRS

The general packet radio service (GPRS) allows packet data to be sent and received
across a mobile network (GSM). GPRS can be considered an extension to the GSM
network to provide 3G services. GPRS has been designed to allow users to con-
nect to the Internet, and as such is an essential first step toward 3G networks
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for all mobile operations. In GPRS, TMSI is replaced by P-TMSI and P-TMSI signa-
ture as alternative identities. The HLR GPRS register maps between internet pro-
tocol (IP) addresses and IMSI.

GPRS security functionality is equivalent to the existing GSM security.
Authentication and encryption setting procedures are based on the same algo-
rithms, keys, and criteria as in GSM systems.

GPRS provides identity confidentiality to make it difficult to identify the user.
This is achieved by using a temporary identity where possible. When possible,
confidentiality also protects dialed digits and addresses. As in GSM, the device is
authenticated by a challenge-response mechanism. This only verifies that the smart
card within the device contains the correct key. GPRS does not provide end-to-end
security so there is a point where the data is vulnerable to eavesdropping or attack.
If this point can be protected, e.g.,in a physically secure location, this is not a prob-
lem. However, if end-to-end security is required, there are other standards that can
be used over GPRS; such as the wireless application protocol (WAP) and Internet
protocol security (IPSec).

In GPRS authentication is performed by serving GPRS support node (SGSN)
instead of VLR. The encryption is not limited to radio part, but it is up to SGSN.
An IP address is assigned after authentication and ciphering algorithm negotiation.

7.8.3 Security in UMTS

The security in universal mobile telecommunications services (UMTS) is built
upon the security of GSM and GPRS. UMTS uses the security features from GSM
that have proved to be needed and robust. UMTS security tries to ensure com-
patibility with GSM in order to ease interworking and handoff between GSM and
UMTS. The security features in UMTS correct the problems with GSM by address-
ing its real and perceived security weaknesses. New security features are added as
necessary for new services offered by UMTS and to take into account the changes
in network architecture. In UMTS the SIM is called UMTS SIM (USIM).

UMTS uses public keys. In UMTS mutual authentication between the mobile
and BS occurs; thus there is no fake BS attack. UMTS has increased key lengths and
provides end-to-end security. The other security features of UMTS are listed below:

m Subscriber individual key K.

m Authentication center and USIM share

- User-specific secret key K;

- Message authentication functions f7, f>; and

- Key generating functions f3, f4, fs.

The authentication center has a random number generator.

The authentication center has a scheme to generate fresh sequence numbers.
USIM has a scheme to verify freshness of received sequence numbers.
Authentication functions f, f, are:

- MAC XMAO); and

- RES (XRES).
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m Key generating functions f3, f4, /5 are:
- f5:ciphering key CK (128 bit);
- fiintegrity key IK (128 bit); and
- fstanonymity key AK (128 bit).

m Key management is independent of equipment. Subscribers can change
handsets without compromising security.

m Assure the user and network that CK/IK have not been used before.

m For operator-specific functions, UMTS provides an example called Milenage
based on the Rijndael block cipher.

m Integrity function fo and ciphering function f3 are based on the Kasumi
block cipher.

7.9 DATA SECURITY

The primary goals in providing data security are confidentiality, integrity, and
availability. Confidentiality deals with the protection of data from unauthorized
disclosures of customers and proprietary information. Integrity is the assurance
that data has not been altered or destroyed. Availability is to provide continuous
operations of hardware and software so that parties involved can be assured of
uninterrupted service.

In this section, we focus upon commonly used data security methods includ-
ing firewalls, encryption, and authentication protocols.

7.9.1 Firewalls

Firewalls have been used to prevent intruders from securing Internet connection
and making unauthorized access and denial of service attacks to the organization
network. This could be for a router, gateway, or special purpose computer. The
firewalls examine packet flowing into and out of the organization network and
restrict access to the network. There are two types of firewalls: (1) packet filter-
ing firewall, and (2) application-level gateway.

The packet filter examines the source and destination address of packets
passing through the network and allows only the packets that have acceptable
addresses. The packet filter also examines IP addresses and TCP (transmission
control protocol) ports. The packet filter is unaware of applications and what an
intruder is trying to do. It considers only the source of data packets and does not
examine the actual data. As a result, malicious viruses can be installed on an autho-
rized user computer, giving the intruder access to the network without authorized
user knowledge.

The application-level gateway acts as an intermediate host computer between
the outside client and the internal server. It forces everyone to log in to the gate-
way and allows access only to authorized applications. The application-level
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gateway separates a private network from the rest of the Internet and hides indi-
vidual computers on the network. This type of firewall screens the actual data.
If the message is deemed safe, then it is sent to the intended receiver. These fire-
walls require more processing power than packet filters and can impact network
performance.

7.9.2 Encryption

Encryption is one of the best methods to prevent unauthorized access of an
intruder. Encryption is a process of distinguishing information by mathematical
rules. The main components of an encryption system are: (1) plaintext (not an
encrypted message), (2) encryption algorithm (works like a locking mechanism to
a safe), (3) key (works like the safe’s combination), and (4) ciphertext (produced
from a plaintext message by an encryption key).

Decryption is the process that is the reverse of encryption. It does not always
use the same key or algorithm. Plaintext results in decryption. The following
types of keys are used in encrypting data.

Secret Key (symmetric encryption)

Both sender and recipient share a knowledge of the same secret key. The scram-
bling technique is called encryption. The message is referred to as plaintext or
clear text, and the encrypted version of it is called ciphertext. The encryption of
a plaintext x into a ciphertext y using a secret key e, is given as (see Figure 7.10):

» = e (x) Ciphertext
The corresponding decryption yields
x = d,(p) Plaintext

where d,, is the decryption key.

Plaintext x Plaintext x
Encryption Decryption
Key e Key dj
—> ex(x) d(y) A —
Intruder A
Listening/ )
v Eavesdropping T lMasqueradlng

Network

FIGURE 7.10
Encryption using a secret key.
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Ideally, the encryption scheme should be such that it cannot be broken at all.
Because there are no practical methods of achieving such an unconditional security,
encryption schemes are designed to be computationally secure. The encryp-
tion and decryption algorithms use the same key, and, hence, such algorithms are
called symmetric key algorithms. The symmetric key algorithm is vulnerable to
interception and key management is a challenge. The strength of this algorithm
depends upon the length of the key. Longer keys are more difficult to break. If the
length of a secret key is 7 bits, at least 2" ! steps would be required to break the
encryption.

The data encryption standard (DES) defined by US NIST performs encryp-
tion in hardware thereby speeding up the encryption and decryption operation.
Additional features of DES are:

1. DES is a block cipher and works on a fixed-size block of data. The message
is segmented into blocks of plaintext, each comprising 64 bits. A unique
56-bit key is used to encrypt each block of plaintext into a 64-bit block of
ciphertext. The receiver uses the same key to perform the decryption oper-
ation on each 64-bit data block it receives, thereby reassembling the blocks
into a complete message.

2. The larger the key, the more difficult it is for someone to decipher it. DES
uses a 56-bit key and provides sufficient security for most commercial appli-
cations. Triple-DES is the extended version of DES, which applies DES three
times with two 56-bit keys.

International data encryption algorithm (IDEA) is a block cipher method similar
to DES. It operates on 64-bit blocks of plaintext and uses a 128-bit key. The algo-
rithm can be implemented either in hardware or software. It is three times faster
than DES and is considered superior to DES.

The key sizes used in current wireless systems are not sufficiently large enough
for good security. IS-136 uses a 64-bit A-key that is secure, but is still considered to
be weak.

Public Key (or asymmetric encryption)

Public key encryption uses longer keys than does symmetric encryption. The key
management problem is greatly reduced because the public key is publicized and
the private key is never distributed. There is no need to exchange keys.

In a public key system, two keys are used, one for encrypting and one for
decrypting. The two keys are mathematically related to each other but knowing one
key does not divulge the other key. The two keys are called the “public key” and the
“private key” of the user. The network also has a public key and a private key.

The sender uses a public key to encrypt the message. The recipient uses its
private key to decrypt the message. Public key infrastructure (PKI) is a set of hard-
ware, software, organizations, and policies to public key encryption work on the
Internet. There are security firms that provide PKI and deploy encrypted channels
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Source: S Receiver: R
Kp : public key Ciphertext: K(m) K: secret key
Plaintext m — \ ¢ —>
| RSA encryption I \\ N} I RSA decryption |

Plaintext: m = K, [K,,(m)]

FIGURE 7.11
RSA algorithm operation.

to identify users and companies through the use of certificates—VeriSign Inc.
Xcert offers products based on PKI.

Public Key Algorithms

Rivet-Shamir-Adleman (RSA) Algorithm The RSA algorithm [7] is based on
public key cryptography. The pretty good privacy (PGP) version of RSA is a public
domain implementation available for noncommercial use on the Internet in North
America. It is often used to encrypt e-mail. Users make their public keys available
by posting them on web pages. Anyone wishing to send an encrypted message to
that person copies the public key from the web page into the PGP software and
sends the encrypted message using the person’s public key.

Two interrelated components of the RSA are (see Figure 7.11):

1. Public key and the private key
2. The encryption and decryption algorithm

Steps in the RSA algorithm are:

m Choose two large prime numbers, p and g (RSA labs recommend that the
product of p and g be on the order of 768 bits for personal use and 1024
bits for corporate use).

m Computen =pgandz=(p — 1) X (g — D.

m Choose a number, e, less than 7z, which has no common factors (other than 1)
with z (in this case e and z are the prime numbers).

m Find a number 4 such that ed — 1 is exactly divisible by z.

m The public key available to the world is the pair of numbers (7, e), and the
private key is the pair of numbers (nz, d).

Encrypted value m® mod(n) = C 7.0

Plaintext m = C* mod(n) (7.2
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Example 7.1
Using the prime numbers p = 5 and g = 7, generate public and private keys for the RSA
algorithm.

Solution

n=pg=5x7=35z=((p—-1)-(g-1)=4X6=24

choose e = b, because 5 and 24 have no common factors except 1

choose d = 29 since ed—1 =5 X 29 -1 = 144. This is exactly divisible by z (24).
Public key (35, 5)

Private key (35, 29)

If the sender sends a letter e that has a numeric representation of 5, show that the receiver
gets the letter e. The calculations are shown below.

Sender:

Plaintext letter m: numeric mé ciphertext:
representation C=mfmod n

e 5 5% = 3125 10

Receiver:

Ciphertext ¢ m= ¢’mod n Plaintext letter

10 10%° 5 e

Diffie-Hellman (DH) Algorithm The Diffie-Hellman key exchange algorithm was
proposed in 1976. It is a widely used method for key exchange and is based on
cyclic groups. In practice, multiplicative groups of prime field Zp or the group of
an elliptic curve are most often used. If the parameters are chosen carefully, the DH
protocol is secure against passive (i.€.,an attacker can only eavesdrop) attacks. The
DH key exchange is a cryptographic protocol that allows two parties that have
no prior knowledge of each other to jointly establish a shared secret key over an
insecure communications channel. This key can then be used to encrypt subse-
quent communications using a symmetric key cipher. The implementation of pro-
tocol uses the multiplicative groups of integers modulo p, where p is prime and g
is primitive mod p.
The algorithm works as follows (see Figure 7.12):

. Ron and Mike agree to use a prime number p and base g.

Mike chooses a secret integer a € {2,3,4, ..., p — 1} and sends Ron g* mod p.
Ron chooses a secret integer b € {2,3,4, ..., p — 1} and sends Mike g" mod p.
. Ron computes (g mod p)” mod p = K.

. Mike computes (g” mod p)* mod p = K.

. Mike and Ron use K as the secret key for encryption.

SV RN N R
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Mike Ron
a, g, p b
> g pA
A= g?mod p B=g’modp
K= B%mod p 3 B K= A’mod p

K = AP mod p = (g2 mod p)?mod p = (g? mod p)@mod p = B2 mod p
FIGURE 7.12

Diffie-Hellman key exchange algorithm.

It should be noted that only a, b and g”? = g"* are kept secret. All other values
are sent in clear. Once Mike and Ron compute the shared secret key they can use
it as an encryption key, known to them only, for sending messages across the same
open communications channel.

Example 7.2

Determine the secret encrypting key, K, using the Diffie-Hellman key exchange algorithm, if
two parties agree to use a prime number p = 23 and base g = b. Party A selects its secret
number a = 6 and party B chooses its secret number b = 15.

Solution

Party A sends to party B g2 mod p = 5% mod 23 = 8.
Party B sends to party A g? mod p = 5% mod 23 = 19.
Party A computes (g? mod p)? mod p = 192 mod 23 = 2.
Party B computes (g% mod p)? mod p = 8'° mod 23 = 2.
Parties A and B use K = 2 as the secret key for encryption.

One-Time Key Method

The one-time key method is based on the generation of a new key every time data
is transmitted. A single-use key is transmitted in a secure (encoded) mode and,
once used, becomes invalid. In some implementations, the central system does not
issue a key for a new connection until the user supplies the previously used key.

Elliptic Curve Cryptography (ECC)

The features of the ECC are discussed below:

m ECC is a public key encryption technique that is based on elliptic curve theory.

m ECC can be used in conjunction with most public key encryption methods,
such as RSA and Diffie-Hellman.

m ECC can yield a level of security with a 164-bit key, while other systems
require a 1024-bit key.
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m Because ECC helps to establish equivalent security with lower computing
power and battery resources, it is widely used for mobile applications.

m Many manufacturers (3COM, Cylink, Motorola, Pitney Bowes, Siemens, TRW,
and VeriFone) have included support for ECC in their products.

Digital Signature

A digital signature provides a secure and authenticated message transmission
(enabled by public key enabling (PKE)). It provides proof identifying the sender.
The digital signature includes the name of the sender and other key contents (e.g.,
date, time, etc.). The features of the digital signature method are discussed below:

m A digital signature can be used to ensure that users are who they claim to be.

m The signing agency signs a document, 72, using a private decryption key, dp,
and computes a digital signature dg(m).

m The receiver uses the agency’s public key, eg, and applies it to the digital sig-
nature, dg(m), associated with the document, 2, and computes e, [d,(m2)] to
produce m.

m This algorithm is very fast, especially with hash functions.

m It is only used in message authentication codes when a secure channel is used
to transmit unencrypted messages, but needs to verify their authenticity.

m It is also used in the secure channels of a secure socket layer (SSL).

7.9.3 Secure Socket Layer

SSL is a protocol that uses a session-level layer in the Internet to provide a secure
channel. SSL is widely used on the web. In SSL, the server sends its public key and
encryption technique to be used to the browser. The browser generates a key for
the encryption technique and sends it to the server. Communications between
server and browser are encrypted using the key generated by the browser.

The features of SSL are:

m Negotiate cipher suite, which is a collection of encryption and authentica-
tion algorithms.

m Bootstrapped secure communication, which eliminates the need for third
parties, and uses unencrypted communications for initial exchanges.

m Public key crypto for secret keys and secret key crypto for data.

7.9.4 IP Security Protocol (IPSec)

IPSec is a widely used protocol that can be employed with other application-layer
protocols (not just for web applications such as SSL). The operations of IPSec
between A and B involve:

m A and B generate and exchange two random keys using Internet key
exchange (IKE).



7.9 Data Security

m A and B combine the two numbers to create an encryption key to be used
between them.

m A and B negotiate the encryption technique to be used such as DES or 3DES.

m A and B then begin transmitting data using either the transport mode, in
which only the IP payload is encrypted or tunnel mode, in which the entire
IP packet is encrypted.

7.9.5 Authentication Protocols

Authentication of a user is used to ensure that only the authorized user is permit-
ted into the network and into the specific resource inside the network. Several
methods used for authentication are user profile, user account, user password, bio-
metrics, and network authentication.

The user profile is assigned to each user account by the manager. The user
profile determines the limits of a user in accessing the network (i.e., allowable
login day and time of day, allowable physical locations, allowable number of incor-
rect login attempts). The user profile specifies access details such as data and net-
work resources that a user can access and type of access (e.g., read, write, create,
delete). The form of access to the network may be based on the password, card,
or one-time password. With a biometric-based form of access, the user can gain
access based on finger, hand, or retina scanning by a biometric system. It is con-
venient and does not require remembering a password. Biometric-based methods
are used in high-security applications.

Network authentication requires a user to log in to an authentication server,
which checks the user ID and password against a database, and issues a certificate.
The certificate is used by the user for all transactions requiring authentications.
Kerberos is one of many commonly used authentication protocols. Two other authen-
tication protocols that have been used are remote authentication dial-in user service
(RADIUS) and terminal access controller access control system + (TACACS+).

Kerberos is a secret key network authentication protocol that uses a DES
cryptographic algorithm for encryption and authentication. It was designed to
authenticate requests for network resources. Kerberos is based on the concept of
a trusted third party that performs secure verification of users and services. The
primary use of Kerberos is to verify that users and the network services they use
really are who and what they claim to be. To accomplish this, a trusted Kerberos
server issues tickets to users. These tickets, which have a limited life span, are
stored in a user’s credential cache. The tickets are used in place of standard user
name and password authentication mechanisms.

RADIUS is a distributed client/server system that secures the network against
unauthorized access. In the Cisco implementation, RADIUS clients run on Cisco
routers and send authentication requests to a server. The central server contains
all user authentication and network service access information. RADIUS is the
only security protocol supported by wireless authentication protocol.

TACACS+ (improved TACAS) is a security application that provides central-
ized validation of users attempting to gain access to a router or network access
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server. TACACS+ services are maintained in a database on a TACACS+ daemon
running on a UNIX, Windows NT, Window 2000 workstation. TACACS+ provides
for separate and modular authentication, authorization, and accounting facilities.

A network administrator may allow remote users to have network access
through public services based on remote-access solutions. The network must be
designed to control who is allowed to connect to it, and what they are allowed to
do once they get connected. The network administrator may find it necessary to
configure an accounting system that tracks who logs in, when they log in, and what
they do once they have logged in.

Authentication, authorization, and accounting (AAA) security services pro-
vide a framework for these kinds of access control and accounting functions.
The user dials into an access server that is configured with challenge handshake
authentication protocol (CHAP). The access server prompts the user for a name
and password. The access server authenticates the user’s identity by requiring
the user name and password. This process of verification to gain access is called
autbentication. The user may now be able to execute commands on that server
once it has been successfully authenticated.

The server uses a process for authorization to determine which commands
and resources should be made available to that particular user. Authorization asks
the question, what privileges does this user have? Finally, the number of login
attempts, the specific commands entered, and other system events can be logged
and time-stamped by the accounting process. Accounting can be used to trace a
problem, such as a security breach, or it may be used to compile usage statistics or
billing data. Accounting asks questions such as: What did this user do and when
was it done? The following are some of the advantages in using AAA:

m AAA provides scalability. Typical AAA configurations rely on a server or
group of servers to store user names and passwords. This means that local
databases don’t have to be built and updated on every router and access
server in the network.

m AAA supports standardized security protocols—TACACS+, RADIUS, and
Kerberos.

m AAA lets the administrator configure multiple backup systems. For example,
an access server can be configured to consult a security server first and a
local database second.

m AAA provides an architectural framework for configuring three different
security features: authentication, authorization, and accounting.

7.10 AIR INTERFACE SUPPORT FOR AUTHENTICATION
METHODS

The various air interfaces used for PCS and cellular systems in Europe and North
America support one or more of the different authentication methods. Only the
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Table 7.1 Summary of Authentication Methods for PCS and Cellular Systems in
Europe and North America
Air Interface MIN/ESN Type of Token-  Public  Type of
Authentication Based Key Voice Privacy
SSD Supported
AMPS X None
CDMA 1S-95 X Strong
TDMA 1S-136 X Strong
GSM X Strong
cdma2000 X Strong
UMTS X Strong

older AMPS supports MIN/ESN as the authentication method. All of the digital
systems in North America, except for GSM1900, support SSD. GSM supports only
token-based authentication. UMTS supports token-based authentication along
with some advanced security features. cdma2000 supports SSD. Table 7.1 summa-
rizes this information.

7.11 SUMMARY OF SECURITY IN CURRENT WIRELESS
SYSTEMS

Each of the security methods satisfies the security needs for a wireless system in
different ways. The older AMPS has poor security. The digital systems using either
SSD or tokens meet most of the security needs of the wireless systems except
full anonymity. The public key-based security system meets all the requirements,
including anonymity, but is not yet fully implemented. Privacy of communications
is maintained via encryption of signaling, voice, and data for the digital systems.
The AMPS sends all data in the clear and has no privacy unless the user adds it to
the system. The following is a summary of the support for security requirements
for the PCS and cellular systems in North America and Europe (see Table 7.2).

7.11.1 Billing Accuracy

Since AMPS phones can be cloned from data intercepted over the radio link, bill-
ing accuracy for AMPS is low to none. For other systems, when authentication is
done, billing accuracy is high. If a system operator gives service before authentica-
tion or even if authentication failure occurs, then billing accuracy will be low.
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Table 7.2 Summary of Support for Security Requirements for PCS and Cellular
Systems in Europe and North America

Feature MIN/ESN SSD Token-Based Public Key
(AMPS)
Privacy of Communication
m Signaling None High: High: High:
messages are messages are  messages are
encrypted encrypted encrypted
m \oice None High: voice is High: voice is High: voice is
encrypted encrypted encrypted
m Data None High: data is High: data is High: data is
encrypted encrypted encrypted
Billing Accuracy
m Accuracy None: High: if High: if High: if
phones can  authentication  authentication  authentication
be cloned is done is done is done
Privacy of User Information
m | ocation None Moderate: Moderate: High: public
using IMSI/ using IMSI/ key provides
TMSI TMSI full anonymity
m User ID None Moderate: Moderate: High: public
using IMSI/ using IMSI/ key provides
TMSI TMSI full anonymity
m Calling None High: using High: using High: public
Pattern TMSI and TMSI and key provides
encryption encryption full anonymity
Theft Resistance of MS
m Qver the Air None High High High
m From Network Depends Depends on Depends Depends on
on system system design  on system system design
design design
m From Inter- Depends Depends on Depends on Depends on
connection on system system design  system design  system design
design
m Cloning None High Medium High

(Continued)
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Table 7.2 (Continued)
Feature MIN/ESN SSD Token-Based Public Key
(AMPS)
Handset Algorithm Algorithm Algorithm Micro-
Design run in micro- run in micro- run in processor
processor of  processor of microprocessor speed may be
handset handset of handset fast enough
for some
algorithms
Law Easily met Must wiretap Must wiretap at  Must wiretap
Enforcement on the air at the switch the switch at the switch
Needs interface (if
van is nearby
to MS or at
the switch)

7.11.2 Privacy of Information

Privacy of user information is high for the public key system, moderate for the
SSD and token-based systems (since sometimes IMSI is sent in cleartext), and low
for the AMPS.

7.11.3 Theft Resistance of MS

MS theft resistance is high over-the-air transmission for all systems except the
AMPS. Since the token-based system in GSM doesn’t support a call history count,
it has a lower resistance to cloning than the SSD or public key systems. Earlier
AMPS phones using MIN/ESN have no resistance to cloning, but now they sup-
port SSD. The resistance of stealing data from network interconnects or from
operations systems (OS) in the network depends on the system design.

7.11.4 Handset Design

All of the authentication and privacy algorithms easily run in a standard 8-bit
microprocessor used in mobile stations, except the public key systems.

7.11.5 Law Enforcement

The AMPS is relatively easy to tap at the air interface. The digital systems will
require a network interface since privacy is maintained over the air interface.

The network requirements currently meet most of the needs of the law
enforcement community doing legal wiretaps.
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7.12 CONCLUSION

In this chapter, we discussed the requirements for strong privacy and authenti-
cation of wireless systems, and outlined how each of the cellular and PCS sys-
tems supports these requirements. Four levels of voice privacy were presented.
We then identified requirements in the areas of privacy, theft resistance, radio
system requirements, system lifetime, physical requirements as implemented in
mobile stations, and law enforcement needs. We also examined different methods
of authentication that are in use to satisfy these needs.

The chapter described the requirements that any cryptographic system should
meet to be suitable for use in a ubiquitous wireless network. We also examined
security models and described how they met security requirements.
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CHAPTER

Mobile Security and
Privacy

The phenomenal growth of the Internet has given rise to a variety of network
applications and services that are pervading our daily life at a staggering pace. This
trend is being boosted by myriad mobile devices that essentially make it possible
to access network resources anywhere, anytime. In parallel, security and privacy
issues have surfaced in almost every aspect of the mobile computing paradigm,
from wireless communication security to network denial of service (DoS) attacks,
to secure network protocols, and to mobile privacy. Furthermore, the inherent
characteristics of mobile computing have imposed greater challenges on mobile
security and privacy solutions than on general wired network security approaches.

This chapter explores a wide range of mobile security and privacy issues, pre-
sents a big picture of this broad area, and offers some insight into the fundamen-
tal security problems surrounding the design of secured mobile wireless systems
and applications. The chapter begins with a security primer summarizing a set of
basic network security concepts and security schemes, followed by an in-depth
coverage of security issues in cellular networks, wireless LAN, Bluetooth, and
other emerging mobile wireless systems. When presenting each topic, we intro-
duce technical aspects of each problem and discuss some proposed approaches
for solving them.When possible, we then outline some real-world solutions to the
underlying problems. Readers will be able to quickly obtain a solid understanding
of key mobile security and the related privacy issues.

The security issues surrounding mobile wireless networks and applications
can be categorized as follows:

Message confidentiality
Message integrity
Message authentication
Nonrepudiation
Access control

When discussing differences between security and privacy, we consider this list to
be comprised of security problems, whereas identity and location anonymity are
topics relevant to mobile privacy.
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8.1 SECURITY PRIMER

Let us first consider a typical scenario in a mobile computing paradigm, where it
is possible to use a mobile device (e.g., cell phone, PDA, smart phone, laptop com-
puter) to access a network service using a variety of wireless communication tech-
nologies, such as a wireless local area network (LAN) or cdma2000.This operation
involves utilizing some type of hardware (i.e., the mobile device being used), one
or more wireless network devices, a back-end wired or wireless network infrastruc-
ture, and software, such as the application and supporting mobile operating system
of the mobile device, operational and management software on wireless devices,
and application software on destination servers.The scenario becomes much more
complicated when group communication is being performed. Nevertheless, the
fundamental question is how we can secure the entire communication environ-
ment. This problem can be approached from several different perspectives:

m End user’s perspective—An end user may use the mobile device for many
purposes, including online shopping, online banking, and personal com-
munication with friends and colleagues, or the end user may utilize such
services as online maps, weather forecasts, or online gaming. Because in
many cases sensitive information is sent back and forth, the end user’s major
concerns are likely to include data confidentiality and integrity, as well as
authenticity of the other party with which the user is connected.

m Service provider’s perspective—A service provider has to provide a secure
network infrastructure for various mobile applications and services that
directly interface to end users. This implies secured communication over
wireless networks and wired networks. The service provider and the end
user have to authenticate each other, and the computing platform should
guarantee that no information will be divulged during the communication
between them. The service provider also has to protect the network infra-
structure against attacks.

m Employer’s perspective—Enterprise networks must be able to ensure the
security of corporate assets. This is particularly crucial when the enterprise
network provides both wired and wireless access. A well-defined, highly
secured wired enterprise network may be completely open to attackers if a
wireless access extension to the enterprise network is not secured. For exam-
ple, a rogue access point in an enterprise network may essentially provide a
means to bypass corporate firewalls and directly access network resources.

Many technical notions, terms, and technologies have been introduced to address
security problems in common network environments. Table 8.1 provides a brief
summary of this terminology.

Depending on the nature of security problems encountered in the mobile
wireless world, they can be addressed in one or more layers of the network proto-
col stack. Radio modulation techniques such as FHSS (Frequency Hopping Spread
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Table 8.1 Security Terminology

Term
Encryption

Description

The transformation of some information (cleartext or plaintext)
into a form (ciphertext) that is only readable by intended
recipients who hold some decryption keys

Confidentiality

A security function that ensures that no one except the intended
recipient who holds some key is able to obtain the message
being transferred between the sender and the recipient

Integrity

A security function that allows the intended recipient to detect
any modification to a message from a sender performed by a
third party

Authentication

A security function that enables verification of the identity of a
person, a data object, or a system

Nonrepudiation

A security function that ensures that a message sender cannot
deny a message it sends previously

Cryptography Mathematical foundations of security mechanisms facilitating the
four security functions: confidentiality, integrity, authentication,
and nonrepudiation

Secret key A type of cryptographic mechanism that enables the sender

cryptography and the intended recipient to use the same shared key for

security functions

Public key/private
key cryptography

Another type of cryptographic mechanism in which two keys
are used by an entity—a public key that is made available

to anyone and a private key derived from the public key and
known only to the owner and sometimes some trusted parties

Symmetric key
encryption

An encryption mechanism that allows the sender and recipient
to use the same secret shared key to encrypt and decrypt a
message; also called secret key encryption

Asymmetric key

An encryption mechanism in which the message sender uses

encryption the intended recipient’s public key to encrypt a message and
the recipient uses his or her private key to decrypt it
Cipher The mathematical algorithm that is used to encrypt cleartext

Message digest

Fixed-size output of a one-way hash function applied to a
message of arbitrary size

Message A code of a message that is computed based on the message
authentication and a secret key such that the intended recipient who holds the
code (MAC) secret key can verify the integrity of the message

Hash MAC A MAC that is computed using a one-way cryptographic hash
(HMAC) function such as MD5 and SHA-1 and a key

(Continued)
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Table 8.1 (Continued)
Term Description

Digital signature A code that is computed based on the message or a hash
code of the message and the private key of the sender such
that anyone can verify the integrity of the message using the
sender’s public key; the sender “signs” the message (digital
signature is the public key equivalent of MAC)

Digital certificate A form of electronic certificate document issued by a generally
trusted certificate authority (CA) to certify someone’s public
key; a digital certificate, signed by the CA, contains the owner’s
identity, the owner’s certified public key, the name of the issuer
(the CA that issued the digital certificate), certificate expiration
date, and some other information; a CA’s public key is often
distributed with software packages such as web browsers and
e-mail software

Public key A public-key-based architecture that uses digital certificate
infrastructure signed by a CA to create, manage, distribute, and verify public
(PKI) keys and their associated identity information

Pretty good A technique developed by Phil Zimmermann that uses
privacy (PGP) asymmetric key encryption for e-mail encryption and

authentication between two entities

Authorization The process of granting and denying specific services to an
entity based on its identity and established policy

Spectrum) can be used to provide wireless signal transmission security at the
physical layer. Link encryption is often used in wireless networks where an access
point or master serves as the gateway for everyone. Internet protocol security
(IPSec) is an example of a network layer security mechanism. End-to-end security
can be addressed at the transport layer. Applications usually have to deal with user
authentication and access control. This chapter focuses on security solutions at
the data link layer and above which invariably leverage cryptographic principles
as building blocks.

A cryptographic system is the realization of a cryptographic scheme or mecha-
nism that can be integrated into a general computer or network system to provide
specific security services. The two types of a cryptographic system are symmet-
ric key systems and asymmetric public key systems. Symmetric key systems such
as the Data Encryption Standard (DES) and Advanced Encryption Standard (AES)
use the same secret key for encryption and decryption, thus requiring a secured
way to distribute the key; for example, the Diffie-Hellman key exchange proto-
col (explained later in Section 8.1.4) specifies a method for symmetric key dis-
tribution. In contrast, public key systems use two different keys for encryption
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FIGURE 8.1
Symmetric cryptography and asymmetric cryptography.

and decryption: a public key, which is known to the public, and a corresponding
Pprivate key, which is known only to the owner of the key pair. The public/pri-
vate key pair generation algorithm ensures that it is mathematically impossible to
deduce the private key based on a public key.An important characteristic of pub-
lic key cryptographic systems is that the two keys are mathematically related in
such a way that data encrypted by a public key can only be decrypted using the
corresponding private key, and vice versa. Figure 8.1 depicts both symmetric key
cryptography and asymmetric public key cryptography. Public key systems essen-
tially provide a foundation for various security solutions to the problems listed
earlier. The basic idea of these approaches is that a message from a sender can be
encrypted using its private key and the recipient can verify that the message is,
in fact, from the sender (sender authentication). Conversely, by using the recipi-
ent’s public key to encrypt data, the sender can be assured that only the intended
recipient is able to decrypt the scrambled data (recipient authentication). As dis-
cussed below, very often a public/private key pair is used in combination with
other techniques to provide secure communication during a session. In order to
ensure public key authenticity while it is being distributed in a network, the pub-
lic key infrastructure (PKI) can be used (explained later in Section 8.1.3).

Public key cryptography was first proposed in 1976 by Whitfield Diffie and
Martin Hellman as an encryption scheme. Public key cryptographic systems have
been widely used to provide confidentiality and authentication between senders
and recipients and to secure transmission of some negotiated secret such as a ses-
sion key between them. In the latter case, the cryptographic system is a hybrid
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system combining both asymmetric cryptography and symmetric cryptography.
Popular public key cryptographic systems include RSA and elliptic curve cryptog-
raphy (ECO).

8.1.1 Ciphers and Message Confidentiality

The first issue in message security is to encrypt the message such that no one
except the intended recipient is able to recover the message content. In the con-
text of symmetric key cryptography, this is often done by a block cipher using
some secret key. A block cipher takes a fixed length of information (for example, a
128-bit block of cleartext) and uses a secret key to produce ciphertext, usually of
the same length as the cleartext block. A block cipher also supplies a decryption
function that takes the cipher text and the secret key and then produces the origi-
nal cleartext. For messages that are larger than block size, a cipher may employ
a particular mode to deal with the message. A mode defines the way a cipher is
applied to cleartext. An important concept in data encryption is the well-known
Kerckhoffs’ principle, which states that an encryption scheme should be secure
even if the algorithm used is known to the public. This means that an attacker is
well aware of the algorithm and the ciphertext of a message but not the secret key.

Asymmetric encryption algorithms use public/private key pairs for encryption
and decryption, thus they do not require the two parties involved to share the
same secret key. A good cipher should make it computationally difficult for an
attacker to decrypt a message without knowing the key (i.e., the shared secret key
or the private key being used for encryption). Popular symmetric block ciphers
are DES/Triple-DES and AES, whereas well-known asymmetric ciphers include
RSA and ECC. Generally, asymmetric ciphers are much slower than symmetric
ones in terms of encryption speed. In addition to the common ciphers introduced
below, a number of technology-specific ciphers such as the A5 algorithm are used
in global system for mobile (GSM)/general packet radio service (GPRS) systems.
Following is a brief introduction to these ciphers:

m Data Encryption Standard (DES) and Triple-DES—DES uses a 56-bit secret
key to encrypt message blocks of 64 bits. There are 16 identical stages of
processing, called rounds, and an initial and final permutation. The Feistel
function determines how data are processed throughout those rounds
using carefully generated subkeys for each round. DES has been a federal
standard of data encryption for years but was finally superseded by AES in
2002, due to its weakness of using short 56-bit keys. In fact, as a result of
the fast advancement in computing power, DES has been broken by brute
force attacks in one to two days with the help of some powerful comput-
ers. Triple-DES is a relatively improved DES in that it uses three DES opera-
tions sequentially to compute the ciphertext. It performs a DES encryption,
then a DES decryption, and then a DES encryption again.Triple-DES is gener-
ally considered a better cipher than DES. Its main drawback is computation
overhead incurred by the three DES procedures.



8.1 Security Primer

m Advanced Encryption Standard (AES)—AES has a fixed block size of 128 bits
and a key size of 128,192, or 256 bits. A data block is organized into a 4 X 4
array, or state. AES may require 10 to 14 rounds of computation, depend-
ing on the key size. Because many operations in a single round can be
performed in parallel, AES is comparatively easier to implement in both
hardware and software and can be done much faster than DES. The real
name of the cipher is Rijndael, a combination of the two designer’s names:
Joan Daemen and Vincent Rijmen. Rijndael was chosen by the National
Institute of Standards and Technology (NIST) to be the government standard.
As of this writing, no attack has broken AES.

m Blowfish and Twofish—Blowfish is yet another block cipher developed by
Bruce Schneier in 1993. It uses a key up to 448 bits over blocks of 64 bits.
Blowfish has 16 rounds following the Feistel function. Blowfish is generally
regarded as a compact and fast replacement of DES. Twofish specifies block
size of 128 bits and uses a key size up to 256 bits. Twofish also made it to
the final list of the AES contest but lost to Rijndael. There is no reported suc-
cessful attack over Blowfish and Twofish.

Other well-known block ciphers are CAST-128, CAST-256, RC5, and RC6, among
others. It is important to remember that, with regard to data encryption on mobile
devices, computational overhead becomes a much more severe problem than on
desktop computers; hence, while choosing a cipher to encrypt packets in a wire-
less network, those ciphers with low overhead such as RC5 will be advantageous.

In addition to block ciphers, another type of cipher is the stream cipher.
Unlike block ciphers, a stream cipher encrypts one bit or one byte at a time.The
two types of stream ciphers are synchronous and self-synchronizing ciphers.
Synchronous stream ciphers require a key to produce a keystream, which in turn
is used to compute the ciphertext. The computation is done by XORing (exclusive
OR operation) the keystream with the cleartext. Decryption follows in the same
manner. Self-synchronizing stream ciphers do not require a key. Instead, they use
some bits of the previous ciphertext to produce the keystream. Stream ciphers
are primarily used to secure network data transmission where the cleartext is a
stream of bits rather than a static data block.

RC4 is the most widely used stream cipher, although it has been shown that
RC4 is not always secure. RC4 was designed by Ron Rivest of RSA Security in 1987.
RC4 (Rivest Cipher 4) is one of the four ciphers that Rivest developed. In RC4, a
variable-length key is first used to perform a permutation of one byte according to
a key scheduling algorithm.The result, along with two index pointers, is fed into a
pseudo-random generation algorithm (PRGA) to produce the keystream, which will
be XORed with the cleartext to obtain the cipher. RC4 has been found to have seri-
ous vulnerability in the key scheduling algorithm that in some special cases may
enable an attacker to recover the encryption key [1].This weakness has been lever-
aged by some researchers to break wireless equivalent privacy (WEP) encryption,
the security mechanism of IEEE 802.11b wireless LAN, which uses RC4 for data
encryption. Details regarding this WEP vulnerability are provided in Section 8.3.
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Most commercial security software supports a list of block or stream ciphers
from which users can choose. A well-known opensource cipher implementation is
the libcrypto library in the OpenSSL package (http://www.openssl.org/). Both Java
and Microsoft .Net provide a package of these ciphers.In addition, they are also sup-
ported in the mobile platforms J2ME and .Net Compact Framework. Cryptographic
schemes discussed in the rest of this section, such as hashing algorithms, digital sig-
natures, and digital certificates, are generally supported by these libraries.

8.1.2 Cryptographic Hash Algorithms and Message Integrity

Aside from message confidentiality, another security problem is how to ensure
message integrity—that is, how to protect data from being modified between the
two parties. One-way hashing was introduced for this purpose. Simply put, a one-
way hash algorithm, sometimes referred to as a message digest algorithm, makes
sure that any modification to a message can be detected. A cryptographic hash
algorithm or message digest algorithm in this regard must possess the following
security properties:

m Fixed-length output—Given any size of message, it must produce a fixed
size result, which is the hash code.

m One-way—Given a message m and a hash algorithm b, it is easy to compute
b(m); however, given a hash code x and hash algorithm b, it is computation-
ally impossible to find m such that h(m) = x.

m Collision resistance—Because a hash algorithm is effectively a mapping
between a large code space to a considerably smaller code space, collisions
are bound to happen, meaning that brute force attacks are theoretically pos-
sible. The challenge is how to find collisions within a reasonable amount of
time, given a state-of-the-art computing facility. The two types of collision
resistance are strong collision resistance and weak collision resistance. Strong
collision resistance means it is computationally impossible to find two differ-
ent messages that can be hashed into the same code, whereas weak collision
resistance means it is impossible to find a message that can be hashed into
the same hash code of another given message.

Depending on how a hash algorithm operates, the two types of cryptographic
hash algorithms are keyed and keyless. Keyed hash algorithms take a message and
a key to compute the hash code, while keyless hash algorithms simply use the
message to compute the hash code. Keyless hash algorithms are used to detect
modifications to a message, assuming that the hash code of the original message is
correctly transmitted to the recipient. Because of the collision resistance property,
any change to the transmitted message can be detected immediately; however a
problem arises when an attacker modifies the intercepted message, generates a
hash code, and sends the tampered message and its hash code to the recipient. In
this case,a hash code produced by a keyless hash algorithm fails to ensure message
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integrity. Message authentication code (MAC) algorithms solve this problem by
including a key (either a symmetric secret key or the private key of the sender) in
the computation of the hash code; thus, attackers are unaware that the key cannot
generate the correct hash code for a modified message. Hash algorithms can also
be used in digital signatures (introduced in the next section). Following is a list of
widely used cryptographic hash algorithms:

m Message digests 4 and 5 (MD4 and MD5)—MD)5 splits a message into blocks
of 512 bits and then performs four rounds of hashing to produce a 128-bit
hash code. MD4 is a weaker hash algorithm that only performs three rounds
of hashing. In August 2004, collisions for MD5 were announced by Wang
et al. [2].Their attack technique was reported to take only an hour; on a fairly
powerful computer they were able to find an alternative message for a given
message, yet both created the same hash code, proving that MD5 is vulner-
able to a weak collision attack. Using the same technique, they also devised a
method to manually attack MD4 and two other hash algorithms, HAVAL-128
and RIPEMD. MD5 is still widely used in existing systems, ranging from digital
signature to file checksum; however, neither MD4 nor MD5 should be consid-
ered for future systems due to the collision problem, especially for systems
utilizing MD5 to generate digital signatures and digital certificates.

m Secure bash algorithm 1 (SHA-1)—SHA-0 was initially proposed in 1993 as
a hashing standard by the National Security Agency (NSA) and was standard-
ized by NIST. Later, in 1995, SHA-O was replaced by SHA-1 after the NSA found
a weakness in SHA-0. The weakness was also discovered by Chabaud and
Joux. Based on MD4, SHA-1 works on blocks of 512 bits and produces a 160-
bit hash code. SHA-1 adds an additional circular shift operation that appears
to have been specifically intended to address the weaknesses found in SHA-O.
The 160-bit hash code of SHA-1 may not be sufficiently strong against brute
force attacks. It has been reported that the same team of Chinese researchers
who broke MD5 has found a way to significantly reduce the computational
complexity of discovering collisions in SHA-1. As it turns out, the problem
of SHA-1 is the hash code size. NIST published three SHA hash algorithms
that produce larger hash codes: SHA-256, SHA-384, and SHA-512. These hash
algorithms are able to generate hash codes of 256 bits, 384 bits, and 512 bits,
respectively. Not surprisingly, they are significantly slower than SHA-1.

m RACE integrity primitives evaluation message digest -160 (RIPEMD)—
RIPEMD-160 was developed in 1996 by Dobbertin et al. It is an improved
version of the original RIPEMP, which was developed in the framework of
the EU project RIPE (RACE Integrity Primitives Evaluation, 1988-1992).
There are also variants of RIPEMD supporting hash code length of 128 bits,
160 bits, 256 bits, and 320 bits. RIPEMD collisions were reported in 2004 [2],
and RIPEMD is not used as often as SHA-1.

m Message digest and MAC (Message Authentication Code)—Message digest
ensures that if someone in the middle alters a message, the recipient will
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detect it. On the sender side, the sender will hash a message or a file (for
checksum computation) to be downloaded using a one-way hashing algo-
rithm (such as MD5 or SHA-1, described above), attach the result (the mes-
sage digest) to the message, and send it out. Upon receiving the message, the
recipient will apply the same hash algorithm to the received message body
and compare the result with the received message digest. If they match,
the message has been transmitted intact; otherwise, the message has been
changed in some way on its way to the recipient, and the recipient may sim-
ply reject the message.

If an attacker forges a hash code of a modified message, the hashing algorithm may
utilize a cryptographic key as part of the input in addition to the message being
transmitted. More generally, a MAC that is computed based on the message and a
cryptographic key can be used to guarantee message integrity. If the computation
is done using a hash algorithm, such a technique is referred to as HMAC, which
essentially uses a keyless hash algorithm and a key to implement the algorithm
of a keyed hash algorithm. Well-known HMAC algorithms include HMAC-MD5,
HMAC-SHA1, and HMAC-RIPEMD. MAC can also be computed using symmet-
ric block ciphers such as DES; for example, a message can be encrypted using
the DES CBC (Cipher Block Chaining) mode. The ciphertext can then be used as
MAC. Furthermore, to prevent tampering of the message digest itself, the sender
can encrypt the message digest using its own private key so the recipient, with
the sender’s public key at hand, can be assured that this message has come from the
sender.This scheme is referred to as digital signature and will be discussed in the
next subsection.

As a last note, an attacker may launch a message reply attack by simply resend-
ing a number of legitimate messages previously captured. The recipient may be
fooled by such legitimate messages. To counteract these attacks, the sender can
use a sequence number for each message that is contained in the integrity-
protected part of the message. The sequence number keeps increasing so replayed
messages will not be accepted.

8.1.3 Authentication

Common authentication mechanisms are digital signature, digital certificate, and
PKI, which are described in the following text.

Digital Signature

Digital signature is designed to assure recipients that the senders of messages
are really who they claim to be and the messages have not been modified along
the way. Similar to a signature in the real world, the sender digitally signs a mes-
sage, and the receipt is able to verify the authenticity of the message by looking at
the digital signature. In other words, digital signature offers authentication of the
sender and message integrity.
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Digital signing and verification between two parties are conducted as shown
in Figure 8.2.The sender:

m Prepares cleartext to send (e.g., an e-mail or a packet).

m Hashes the data using a cryptographic hash algorithm to generate a message
digest; hashing is not reversible.

m Encrypts the message digest with the sender’s private key, which generates
the digital signature that uniquely identifies the sender.

m Appends the digital signature to the original cleartext and sends it to the
recipient. Of course, the cleartext can be encrypted using symmetric or
asymmetric ciphers.

The recipient:

m Uses the sender’s public key to decrypt the digital signature; the result is
used in the next step.

m Hashes the received message body with the same algorithm used by the
sender.

m Compares the decrypted message digest with the computation result from
the previous step; if they are the same, the message must be originated from
the sender, and the message has not been altered.

Now let’s see if an attacker can impersonate the sender. Without the sender’s pri-
vate key, the attacker has no way to create a valid digital signature for the message
because on the recipient side, after the message is hashed, the result will never be
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Digital signature.
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the same as the result after decryption of the digital signature. On the other hand,
an attacker who chooses to tamper with the sender’s message body will also fail,
as the hash code of the received message will become inconsistent with that car-
ried in the digital signature.

PKI and Digital Certificate

Asymmetric cryptographic systems (introduced above) assume that a party knows
the other’s public key. A problem with public authenticity is how someone hold-
ing the public key of someone else can be sure that the key does, indeed, belong
to that person. What if the distribution of public keys is not at all secure? For exam-
ple, an attacker could generate and publish bogus public keys of some victims.
The general architecture to address this issue is public key infrastructure (PKI).
In a PKI system, the certificate authority (CA) has a public key but its private key is
not known to everyone in the system. A single CA PKI is depicted in Figure 8.3(a).
To join the PKI system, a user must generate his or her own public/private key
pair and ask the CA to certify the public key.The CA will then verify the identity
and the associated public key. The CA then signs a digital document stating that
the public key really does belong to the person in question.This digital document
is a digital certificate and should be sent to a recipient whenever the person is
about to communicate with some party with public key encryption or digital
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FIGURE 8.3

PKI architecture.
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signing. Because everyone in the PKI system knows the public key of the CA, they
can check the authenticity of the certificate and thus the public key of the sender.
The certificate usually contains the owner’s identity, a signature of the CA, and an
expiration date.Table 8.2 shows common fields in a digital certificate. The X.509
standard defines the format of a digital certificate.

In reality, a PKI system is organized into multiple levels in a hierarchy to dis-
tribute certificate generation and verification among a number of CAs, as shown in
Figure 8.3(b). On the top of the tree is the root CA, who is trusted by every user and
every other CA.In effect, a chain-of-trust relationship can be established regardless
of which low-level CA a user selects, as those CAs can always find a common high-
level CA within the hierarchy. Verification is done in the same way as DNS (Domain
Name Server) resolution. For example, in a two-level CA system, the public key cer-
tificate of a user consists of two parts: (1) a message issued by a high-level CA to
certify a low-level CA and (2) a message issued by the low-level CA who will even-
tually certify the public key of the user. This forms a trust chain of two CAs, and
path validation can be conducted.Thus, any party who elects to receive a user cer-
tificate (as well as the certificate of the CA certifying the user certificate) must first
compute the public key of the low-level CA serving that user and then obtain the
user certificate. As the number of levels increases, certificate verification requires
more computation. A variance of hierarchical PKI is a trust list architecture, in
which some high-level CAs maintain a list of trusted CAs in another hierarchy.
A trust chain is therefore established with the trust list instead of a root CA.

A third PKI architecture, mesh PKI, is shown in Figure 8.3(c). There is no publicly
trusted root CA in a mesh PKI. A CA in a mesh PKI may choose to trust a subset

Table 8.2 Field in a Digital Certificate

Field Description

Version Version number

Serial number Unique ID of the certificate

Certificate signature algorithm Encryption and hashing algorithms used
to create the signature in the certificate

Issuer ID of the issuing CA

Validity Duration for which the certificate is valid

Subject Owner information

Subject public key info Subject’s public key algorithm (RSA, for
example) and public key

Extensions Additional information regarding the
certificate

Certificate Signature Value Signature of the CA
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of other CAs. Users always trust the CA issuing the certificates. Path validation of
a user certificate may involve a means to discover the path itself. A bridge CA can
be used to link a hierarchical PKI to a mesh PKI. It is not a root CA trusted by
everyone; rather, it serves as a common intermediate CA in a trust chain.

8.1.4 Key Management

Key management refers to the process of creating, distributing, and verifying cryp-
tographic keys. It determines how an entity binds to a key. Here, we introduce the
Diffie-Hellman (DH) key exchange protocol, RSA, and ECC.

Diffie-Hellman Key Exchange Protocol

The DH key exchange protocol provides a means for two parties to agree on the
same secret key over an insecure communication channel. In its simplest form,
each party send to the other a number that is computed with a chosen secret
number respectively. The same secret key is thus determined based on the number
received from the other party; however, if the two numbers are transmitted over
an insecure channel, it is computationally difficult for any third party to recover
the secret key. The DH key exchange protocol uses a pair of publicly available
numbers (p and g) along with the user’s random variables for the computation
of a secret number. In this case, p is a large prime number and g is an integer less
than p, where p and g satisfy the following property: For any number n between
1 and p — 1 inclusive, there is a number 7z such that n = g” mod p. Each of the two
parties engaging in the DH key exchange protocol will first generate a private ran-
dom variable. Let’s say the variables are a and b. Each party proceeds to compute
g% mod p and g” mod p and they exchan