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Preface

MATLAB® (short for MATrix LABoratory) is a special-purpose computer program
optimized to perform engineering and scientific calculations. It started life as a pro-
gram designed to perform matrix mathematics, but over the years it has grown into
a flexible computing system capable of solving essentially any technical problem.

The MATLAB program implements the MATLAB language and provides a
very extensive library of predefined functions to make technical programming tasks
easier and more efficient. This extremely wide variety of functions makes it much
easier to solve technical problems in MATLAB than in other languages such as
Fortran or C. This book introduces the MATLAB language and shows how to use
it to solve typical technical problems.

This book is not primarily a “how to use MATLAB” text (although students
will learn how to use MATLAB to solve problems while using the text). Instead, the
book teaches MATLAB as a technical programming language in place of other
languages such as Basic, Fortran, or C++. Most engineering curricula now require
MATLAB and use it as an essential tool throughout the program. At the same time,
most engineering curricula require students to become familiar with at least the
basics of computer programming. The intention of this book is to satisfy both
requirements simultaneously in a single course, freeing up precious time in engi-
neering degree programs.

This book makes no pretense at being a complete description of all of
MATLAB’s hundreds of functions. Instead, it teaches the student how to use MAT-
LAB as a language to solve problems and how to locate any desired function with
MATLAB’s extensive on-line help facilities.
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Essentials of MATLAB Programming, Second Edition is designed to serve as
the text for an “Introduction to Programming/Problem Solving” course for fresh-
man engineering students. This material should fit comfortably into a nine-week,
three-hour course.

The Advantages of MATLAB for Technical Programming

MATLAB has many advantages compared to conventional computer languages for
technical problem solving. Among them are the following:

1. Ease of Use
MATLAB is an interpreted language, like many versions of Basic. Like
Basic, it is very easy to use. The program can be used as a scratch pad to
evaluate expressions typed at the command line, or it can be used to execute
large prewritten programs. Programs may be easily written and modified
with the built-in integrated development environment, and debugged with
the MATLAB debugger. Because the language is so easy to use, it is ideal
for educational use as well as for the rapid prototyping of new programs.

Many program development tools are provided to make the program
easy to use. They include an integrated editor/debugger, on-line documen-
tation and manuals, a workspace browser, and extensive demos.

2. Platform Independence
MATLAB is supported on many different computer systems, providing a
large measure of platform independence. At the time of this writing, the lan-
guage is supported on Windows 2000/XP/Vista, Linux, Unix, and the
Macintosh. Programs written on any platform will run on all of the other
platforms, and data files written on any platform may be read transparently
on any other platform. As a result, programs written in MATLAB can
migrate to new platforms when the needs of the user change.

3. Predefined Functions
MATLAB comes complete with an extensive library of predefined func-
tions that provide tested and prepackaged solutions to many basic technical
tasks. For example, suppose that you are writing a program that must cal-
culate the statistics associated with an input data set. In most languages, you
would need to write your own subroutines or functions to implement calcu-
lations such as the arithmetic mean, standard deviation, median, and the
like. These and hundreds of other functions are built right into the MAT-
LAB language, making your job much easier.

In addition to the large library of functions built into the basic MAT-
LAB language, there are many special-purpose toolboxes available to help
solve complex problems in specific areas. For example, a user can buy stan-
dard toolboxes to solve problems in signal processing, control systems, com-
munications, image processing, and neural networks, among many others.



4. Device-Independent Plotting
Unlike other computer languages, MATLAB has many integral plotting and
imaging commands. The plots and images can be displayed on any graphi-
cal output device supported by the computer on which MATLAB is run-
ning. This capability makes MATLAB an outstanding tool for visualizing
technical data.

5. Graphical User Interface
MATLAB includes tools that allow a program to interactively construct a
graphical user interface (GUI) for his or her program. With this capability,
the programmer can design sophisticated data analysis programs that can be
operated by relatively inexperienced users. 

Features of  This Book

Many features of this book are designed to emphasize the proper way to write reli-
able MATLAB programs. These features should serve a student well as he or she is
first learning MATLAB and should also be useful to the practitioner on the job.
They include the following:

1. Emphasis on Top-Down Design Methodology
The book introduces a top-down design methodology in Chapter 3, and uses
it consistently throughout the rest of the book. This methodology encour-
ages a student to think about the proper design of a program before begin-
ning to code. It emphasizes the importance of clearly defining the problem
to be solved as well as the required inputs and outputs before any other work
is begun. Once the problem is properly defined, it teaches the student to
employ stepwise refinement to break the task down into successively small-
er sub-tasks, and to implement the sub-tasks as separate subroutines or
functions. Finally, it teaches the importance of testing at all stages of the
process, both unit testing of the component routines and exhaustive testing
of the final product.

The formal design process taught by the book may be summarized as
follows:

1. Clearly state the problem that you are trying to solve.
2. Define the inputs required by the program and the outputs to be pro-

duced by the program.
3. Describe the algorithm that you intend to implement in the program.

This step involves top-down design and stepwise decomposition,
using pseudocode or flow charts.

4. Turn the algorithm into MATLAB statements.
5. Test the MATLAB program. This step includes unit testing of spe-

cific functions, and also exhaustive testing of the final program with
many different data sets.

Preface | xiii



2. Emphasis on Functions
The book emphasizes the use of functions to logically decompose tasks into
smaller sub-tasks. It teaches the advantages of functions for data hiding. It
also emphasizes the importance of unit-testing functions before they are
combined into the final program. In addition, the book teaches about the
common mistakes made with functions and how to avoid them.

3. Emphasis on MATLAB Tools
The book teaches the proper use of MATLAB’s built-in tools to make pro-
gramming and debugging easier. The tools covered include the
Editor/Debugger, Workspace Browser, Help Browser, and GUI design tools.

4. Good Programming Practice Boxes
These boxes highlight good programming practices when they are intro-
duced for the convenience of the student. In addition, the good program-
ming practices introduced in a chapter are summarized at the end of the
chapter. An example Good Programming Practice Box is shown here.

✷ Good Programming Practice:

Always indent the body of an if construct by two or more spaces to improve the
readability of the code.

5. Programming Pitfalls Boxes
These boxes highlight common errors so that they can be avoided. An
example Programming Pitfalls Box is shown here.

�Programming Pitfalls:

Make sure that your variable names are unique in the first 63 characters. Otherwise,
MATLAB will not be able to tell the difference between them.

Pedagogical Features

This book is specifically designed to be used in a freshman “Introduction to
Programming/Problem Solving” course. It should be possible to cover this material
comfortably in a nine-week, three-hour course. If there is insufficient time to cover
all of the material in a particular engineering program, Chapters 6 and 7 may be
deleted, and the remaining material will still teach the fundamentals of
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programming and using MATLAB to solve problems. This feature should appeal to
harassed engineering educators trying to cram ever more material into a finite cur-
riculum.

The book includes several features designed to aid student comprehension. A
total of 12 quizzes appear scattered throughout the chapters, with answers to all
questions included in Appendix C. These quizzes can serve as a useful self-test of
comprehension. In addition, there are approximately 130 end-of-chapter exercises.
Answers to all exercises are included in the Instructor’s Manual. Good program-
ming practices are highlighted in all chapters with special Good Programming
Practice boxes, and common errors are highlighted in Programming Pitfalls boxes.
End-of-chapter materials include Summaries of Good Programming Practice and
Summaries of MATLAB Commands and Functions.

The book is accompanied by an Instructor’s Manual that contains the solutions
to all end-of-chapter exercises. The source code for all examples in the book is
available from the book’s Web site, and the source code for all solutions in the
Instructor’s Manual is available separately to instructors.

I would like to thank the following reviewers for their comments:

Randy Freeman, Northwestern University
Thomas N. Gambill, University of Illinois—Urbana Champaign
Arlene A. Guest, Naval Postgraduate School
Dieter S. Schmidt, University of Cinncinnati.

A Final Note to the User

No matter how hard I try to proofread a document such as this book, it is inevitable
that some typographical errors will slip through and appear in print. If you should
spot any such errors, please drop me a note via the publisher, and I will do my best
to get them eliminated from subsequent printings and editions. Thank you very
much for your help in this matter.

I will maintain a complete list of errata and corrections at the book’s World
Wide Web site, which is www.cengage.com/engineering. Please check that site for
any updates and/or corrections.

STEPHEN J. CHAPMAN

Melbourne, Australia
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C H A P T E R 1
Introduction to
MATLAB

MATLAB (short for MATrix LABoratory) is a special-purpose computer program
optimized to perform engineering and scientific calculations. It started life as
a program designed to perform matrix mathematics, but over the years it has
grown into a flexible computing system capable of solving essentially any techni-
cal problem.

The MATLAB program implements the MATLAB programming language, and
provides a very extensive library of predefined functions to make technical pro-
gramming tasks easier and more efficient. This book introduces the MATLAB
language as it is implemented in MATLAB Version 7.5 and shows how to use it
to solve typical technical problems.

MATLAB is a huge program with an incredibly rich variety of functions. Even
the basic version of MATLAB without any toolkits is much richer than other tech-
nical programming languages. There are more than 1000 functions in the basic
MATLAB product alone, and the toolkits extend this capability with many more
functions in various specialties.This book makes no attempt to introduce the user
to all of MATLAB’s functions. Instead, it teaches a user the basics of how to write,
debug, and optimize good MATLAB programs, and provides a subset of the most
important functions. Just as importantly, it teaches the programmer how to use
MATLAB’s own tools to locate the right function for a specific purpose from the
enormous choice available.

1



1.1 The Advantages of MATLAB

MATLAB has many advantages compared to conventional computer languages
for technical problem solving. Among them are

1. Ease of Use
MATLAB is an interpreted language, similar to many versions of Basic.
Like Basic, it is very easy to use. The program can be used as a scratch
pad to evaluate expressions typed at the command line, or it can be used
to execute large prewritten programs. Programs may be easily written and
modified with the built-in integrated development environment and can
be debugged with the MATLAB debugger. Because the language is so
easy to use, it is ideal for the rapid prototyping of new programs.

Many program development tools are provided to make the program
easy to use. They include an integrated editor/debugger, on-line docu-
mentation and manuals, a workspace browser, and extensive demos.

2. Platform Independence
MATLAB is supported on many different computer systems, providing a
large measure of platform independence. At the time of this writing, the
language is supported on Windows XP/Vista, Linux, several versions of
Unix, and the Macintosh. Programs written on any platform will run on
all of the other platforms, and data files written on any platform may be
read transparently on any other platform. As a result, programs written in
MATLAB can migrate to new platforms when the needs of the user change.

3. Predefined Functions
MATLAB comes complete with an extensive library of predefined func-
tions that provide tested and prepackaged solutions to many basic techni-
cal tasks. For example, suppose that you are writing a program that must
calculate the statistics associated with an input data set. In most lan-
guages, you would need to write your own subroutines or functions to
implement calculations such as the arithmetic mean, standard deviation,
median, and so forth. These and hundreds of other functions are built into
the MATLAB language, making your job much easier.

In addition to the large library of functions built into the basic MATLAB
language, there are many special-purpose toolboxes available to help solve
complex problems in specific areas. For example, a user can buy standard
toolboxes to solve problems in signal processing, control systems, commu-
nications, image processing, and neural networks, among many others.
There is also an extensive collection of free user-contributed MATLAB
programs that are shared through the MATLAB Web site.

4. Device-Independent Plotting
Unlike most other computer languages, MATLAB has many integral plot-
ting and imaging commands. The plots and images can be displayed on

2 | Chapter 1 Introduction to MATLAB



1.2 Disadvantages of MATLAB | 3

any graphical output device supported by the computer on which MAT-
LAB is running. This capability makes MATLAB an outstanding tool for
visualizing technical data.

5. Graphical User Interface
MATLAB includes tools that allow a programmer to interactively con-
struct a graphical user interface (GUI) for his or her program. With this
capability, the programmer can design sophisticated data analysis pro-
grams that can be operated by relatively inexperienced users.

6. MATLAB Compiler
MATLAB’s flexibility and platform independence is achieved by com-
piling MATLAB programs into a device-independent pcode, and then
interpreting the pcode instructions at run-time. This approach is similar
to that used by Microsoft’s Visual Basic language. Unfortunately, the
resulting programs can sometimes execute slowly because the MATLAB
code is interpreted rather than compiled. We will point out features
that tend to slow program execution when we encounter them. Recent
versions of MATLAB have partially overcome this problem by introduc-
ing just-in-time (JIT) compiler technology. The JIT compiler compiles
portions of the MATLAB code as it is executed to increase overall
speed.

A separate MATLAB compiler is available. This compiler can com-
pile a MATLAB program into a stand-alone executable that can run
without a MATLAB license. This is a great way to convert a prototype
MATLAB program into an executable suitable for sale and distribution
to users.

1.2 Disadvantages of MATLAB

MATLAB has two principal disadvantages. The first is that it is an interpreted
language and, therefore, can execute more slowly than compiled languages.
This problem can be mitigated by properly structuring the MATLAB program
to maximize the performance of vectorized code, and through the use of the JIT
compiler.

The second disadvantage is cost; a full copy of MATLAB is five to ten
times more expensive than a conventional C or Fortran compiler. This relatively
high cost is more than offset by the reduced time required for an engineer or
scientist to create a working program, so MATLAB is cost-effective for busi-
nesses. However, it is too expensive for most individuals to consider purchas-
ing. Fortunately, there is also an inexpensive Student Edition of MATLAB,
which is a great tool for students wishing to learn the language. The Student
Edition of MATLAB is essentially identical to the full edition.



1.3 The MATLAB Environment

The fundamental unit of data in any MATLAB program is the array. An array is
a collection of data values organized into rows and columns and known by a sin-
gle name. Individual data values within an array can be accessed by including the
name of the array followed by subscripts in parentheses that identify the row and
column of the particular value. Even scalars are treated as arrays by MATLAB—
they are simply arrays with only one row and one column. We will learn how to
create and manipulate MATLAB arrays in Section 1.4.

When MATLAB executes, it can display several types of windows that
accept commands or display information. The three most important windows are
Command Windows, where commands may be entered, Figure Windows, which
display plots and graphs, and Edit Windows, which permit a user to create and
modify MATLAB programs. We will see examples of all three types of windows
in this section.

In addition, MATLAB can display other windows that provide help and that
allow the user to examine the values of variables defined in memory. We will
examine some of these additional windows here.  We will examine the others
when we discuss how to debug MATLAB programs.

1.3.1 The MATLAB Desktop

When you start MATLAB Version 7.5, a special window called the MATLAB
desktop appears. The desktop is a window that contains other windows showing
MATLAB data, plus toolbars and a “Start” button similar to that used by
Windows XP or Vista. By default, most MATLAB tools are “docked” to the desk-
top, so that they appear inside the desktop window. However, the user can choose
to “undock” any or all tools, making them appear in windows separate from the
desktop.

The default configuration of the MATLAB desktop is shown in Figure 1.1.
It integrates many tools for managing files, variables, and applications within the
MATLAB environment.

The major tools within or accessible from the MATLAB desktop are the
following:

� The Command Window
� The Command History Window
� The Start Button
� The Documents Window, including the Editor/Debugger and the Array Editor
� The Figure Windows
� The Workspace Browser
� The Help Browser
� The Path Browser

We will discuss the functions of these tools in subsequent sections of this chapter.

4 | Chapter 1 Introduction to MATLAB



1.3.2 The Command Window

The right-hand side of the default MATLAB desktop contains the Command
Window. A user can enter interactive commands at the command prompt (») in
the Command Window, and they will be executed on the spot.

As an example of a simple interactive calculation, suppose that you want
to calculate the area of a circle with a radius of 2.5 m. This can be done in the
MATLAB Command Window by typing

» area = pi * 2.5^2
area =

19.6350

MATLAB calculates the answer as soon as the Enter key is pressed and
stores the answer in a variable (really a 1 � 1 array) called area. The con-
tents of the variable are displayed in the Command Window as shown in

1.3 The MATLAB Environment | 5

Figure 1.1 The default MATLAB desktop. The exact appearance of the desktop may differ slightly
on different types of computers.



Figure 1.2, and the variable can be used in further calculations. (Note that p is
predefined in MATLAB, so we can just use pi without first declaring it to
be 3.141592. . . .)

If a statement is too long to type on a single line, it may be continued on suc-
cessive lines by typing an ellipsis ( . . . ) at the end of the first line, and then con-
tinuing on the next line. For example, the following two statements are identical:

x1 = 1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6

and

x1 = 1 + 1/2 + 1/3 + 1/4 ...
+ 1/5 + 1/6

Instead of typing commands directly in the Command Window, a series of
commands can be placed into a file, and the entire file can be executed by typing
its name in the Command Window. Such files are called script files. Script files
(and functions, which we will see later) are also known as M-files, because they
have a file extension of “.m”.

6 | Chapter 1 Introduction to MATLAB

Figure 1.2 The Command Window appears on the right side of the desktop. Users enter commands
and see responses here.



1.3.3 The Command History Window

The Command History Window displays a list of the commands that a user has
entered in the Command Window. The list of previous commands can extend back
to previous executions of the program. Commands remain in the list until they are
deleted. To reexecute any command, simply double-click it with the left mouse
button. To delete one or more commands from the Command History window,
select the commands and right-click them with the mouse. A popup menu will be
displayed that allows the user to delete the items (see Figure 1.3).

1.3.4 The Start Button

The Start Button (see Figure 1.4, on page 8) allows a user to access MATLAB
tools, desktop tools, help files, and so forth. It works just like the Start button on
a Windows desktop. To start a particular tool, just click on the Start Button and
select the tool from the appropriate submenu.
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Figure 1.3 The Command History Window, showing two commands being deleted.



1.3.5 The Edit/Debug Window

An Edit Window is used to create new M-files or to modify existing ones. An
Edit Window is created automatically when you create a new M-file or open an
existing one. You can create a new M-file with the “File/New/M-file” selection
from the desktop menu, or by clicking the toolbar icon. You can open an exist-
ing M-file file with the “File/Open” selection from the desktop menu, or by click-
ing the toolbar icon.

An Edit Window displaying a simple M-file called calc_area.m is shown in
Figure 1.5. This file calculates the area of a circle given its radius and displays the
result. By default, the Edit Window is an independent window not docked to
the desktop, as shown in Figure 1.5(a). The Edit Window can also be docked to the
MATLAB desktop. In that case, it appears within a container called the Documents
Window, as shown in Figure 1.5(b). We will learn how to dock and undock a win-
dow later in this chapter.

The Edit Window is essentially a programming text editor, with the MATLAB
languages features highlighted in different colors. Comments in an M-file file
appear in green, variables and numbers appear in black, complete character
strings appear in magenta, incomplete character strings appear in red, and lan-
guage keywords appear in blue.

After an M-file is saved, it may be executed by typing its name in the
Command Window. For the M-file in Figure 1.5, the results are as follows:

» calc_area
The area of the circle is 19.635

The Edit Window also doubles as a debugger, as we shall see in Chapter 2.
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Figure 1.4 The Start Button, which allows a user to select from a wide variety of MATLAB and
desktop tools.



Figure 1.5 (a) The MATLAB Editor, displayed as an independent window. (b) The MATLAB
Editor, docked to the MATLAB desktop.

(a)

(b)
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1.3.6 Figure Windows

A Figure Window is used to display MATLAB graphics. A figure can be a two-
or three-dimensional plot of data, an image, or a graphical user interface (GUI).
A simple script file that calculates and plots the function sin x is shown here.

% sin_x.m: This M-file calculates and plots the
% function sin(x) for 0 <= x <= 6.
x = 0:0.1:6
y = sin(x)
plot(x,y)

If this file is saved under the name sin_x.m, then a user can execute the file by
typing “sin_x” in the Command Window. When this script file is executed,
MATLAB opens a Figure Window and plots the function sin x in it. The resulting
plot is shown in Figure 1.6.

1.3.7 Docking and Undocking Windows

MATLAB windows such as the Command Window, the Edit Window, and Figure
Windows can either be docked to the desktop or undocked. When a window is
docked, it appears as a pane within the MATLAB desktop. When it is undocked, it
appears as an independent window on the computer screen separate from the desk-
top. When a window is docked to the desktop, the upper-right corner contains a
small button with an arrow pointing up and to the right ( ). If this button is
clicked, then the window will become an independent window. When the window
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Figure 1.6 MATLAB plot of sin x versus x.



is an independent window, the upper-right corner contains a small button with an
arrow pointing down and to the right ( ). If this button is clicked, the window will
be redocked with the desktop. Figure 1.5 shows the Edit Window in both its docked
and undocked state. Note the undock and dock arrows in the upper-right corner.

1.3.8 The MATLAB Workspace

A statement such as

z = 10

creates a variable named z, stores the value 10 in it, and saves it in a part of com-
puter memory known as the workspace. A workspace is the collection of all the
variables and arrays that can be used by MATLAB when a particular command,
M-file, or function is executing. All commands executed in the Command Window
(and all script files executed from the Command Window) share a common work-
space, so they can all share variables. As we will see later, MATLAB functions dif-
fer from script files in that each function has its own separate workspace.

A list of the variables and arrays in the current workspace can be generated
with the whos command. For example, after M-files calc_area and sin_x
are executed, the workspace contains the following variables.

» whos
Name Size Bytes Class Attributes

area 1x1 8 double
radius 1x1 8 double
string 1x32 64 char
x 1x61 488 double
y 1x61 488 double

Script file calc_area created variables area, radius, and string, while
script file sin_x created variables x and y. Note that all of the variables are in
the same workspace, so if two script files are executed in succession, the second
script file can use variables created by the first script file.

The contents of any variable or array may be determined by typing the appro-
priate name in the Command Window. For example, the contents of string can
be found as follows:

» string
string =
The area of the circle is 19.635

A variable can be deleted from the workspace with the clear command.
The clear command takes the form

clear var1 var2 ...

where var1 and var2 are the names of the variables to be deleted. The command
clear variables or simply clear deletes all variables from the current
workspace.
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1.3.9 The Workspace Browser

The contents of the current workspace can also be examined with a GUI-based
Workspace Browser. The Workspace Browser appears by default in the upper-
left corner of the desktop. It provides a graphic display of the same information
as the whos command, and it also shows the actual contents of each array if the
information is short enough to fit within the display area. The Workspace
Browser is dynamically updated whenever the contents of the workspace
change.

A typical Workspace Browser window is shown in Figure 1.7. As you can
see, it displays the same information as the whos command. Double-clicking on
any variable in the window will bring up the Array Editor, which allows the user
to modify the information stored in the variable.
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Figure 1.7 The Workspace Browser and Array Editor. The Array Editor is invoked by double-clicking
a variable in the Workspace Browser. It allows a user to change the values contained in a
variable or array.



One or more variables may be deleted from the workspace by selecting them
in the Workspace Browser with the mouse and pressing the delete key, or by right-
clicking with the mouse and selecting the delete option.

1.3.10 Getting Help

There are three ways to get help in MATLAB. The preferred method is to use the
Help Browser. The Help Browser can be started by selecting the icon from
the desktop toolbar, or by typing helpdesk or helpwin in the Command
Window. A user can get help by browsing the MATLAB documentation, or he or
she can search for the details of a particular command. The Help Browser is
shown in Figure 1.8.
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There are also two command-line–oriented ways to get help. The first way is
to type help or help followed by a function name in the Command Window. If
you just type help, MATLAB will display a list of possible help topics in the
Command Window. If a specific function or a toolbox name is included, help will
be provided for that particular function or toolbox.

The second way to get help is the lookfor command. The lookfor
command differs from the help command in that the help command searches
for an exact function name match, whereas the lookfor command searches the
quick summary information in each function for a match. This makes lookfor
slower than help, but it improves the chances of getting back useful information.
For example, suppose that you were looking for a function to take the inverse of
a matrix. Since MATLAB does not have a function named inverse, the com-
mand “help inverse” will produce nothing. On the other hand, the command
“lookfor inverse” will produce the following results:

» lookfor inverse
INVHILB Inverse Hilbert matrix.
ACOS Inverse cosine.
ACOSH Inverse hyperbolic cosine.
ACOT Inverse cotangent.
ACOTH Inverse hyperbolic cotangent.
ACSC Inverse cosecant.
ACSCH Inverse hyperbolic cosecant.
ASEC Inverse secant.
ASECH Inverse hyperbolic secant.
ASIN Inverse sine.
ASINH Inverse hyperbolic sine.
ATAN Inverse tangent.
ATAN2 Four quadrant inverse tangent.
ATANH Inverse hyperbolic tangent.
ERFINV Inverse error function.
INV Matrix inverse.
PINV Pseudoinverse.
IFFT Inverse discrete Fourier transform.
IFFT2 Two-dimensional inverse discrete Fourier transform.
IFFTN N-dimensional inverse discrete Fourier transform.
IPERMUTE Inverse permute array dimensions.

From this list, we can see that the function of interest is named inv.

1.3.11 A Few Important Commands

If you are new to MATLAB, a few demonstrations may help to give you a feel for
its capabilities. To run MATLAB’s built-in demonstrations, type demo in the
Command Window, or select “demos” from the Start Button.
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The contents of the Command Window can be cleared at any time using the
clc command, and the contents of the current Figure Window can be cleared at
any time using the clf command. The variables in the workspace can be cleared
with the clear command. As we have seen, the contents of the workspace per-
sist between the executions of separate commands and M-files, so it is possible
for the results of one problem to have an effect on the next one that you may
attempt to solve. To avoid this possibility, it is a good idea to issue the clear
command at the start of each new independent calculation.

Another important command is the abort command. If an M-file appears to
be running for too long, it may contain an infinite loop, and it will never termi-
nate. In this case, the user can regain control by typing control-c (abbreviated ^c)
in the Command Window. This command is entered by holding down the control
key while typing a “c”. When MATLAB detects a ^c, it interrupts the running
program and returns a command prompt.

The exclamation point (!) is another important special character. Its special
purpose is to send a command to the computer’s operating system. Any charac-
ters after the exclamation point will be sent to the operating system and executed
as though they had been typed at the operating system’s command prompt.
This feature lets you embed operating system commands directly into MATLAB
programs.

Finally, it is possible to keep track of everything done during a MATLAB
session with the diary command. The form of this command is

diary filename

After this command is typed, a copy of all input and most output typed in the
Command Window is echoed in the diary file. This is a great tool for recreating
events when something goes wrong during a MATLAB session. The command
“diary off” suspends input into the diary file, and the command “diary on”
resumes input again.

1.3.12 The MATLAB Search Path

MATLAB has a search path that it uses to find M-files. MATLAB’s M-files are
organized in directories on your file system. Many of these directories of M-files
are provided along with MATLAB, and users may add others. If a user enters a
name at the MATLAB prompt, the MATLAB interpreter attempts to find the
name as follows:

1. It looks for the name as a variable. If it is a variable, MATLAB displays
the current contents of the variable.

2. It checks to see whether the name is an M-file in the current directory. If
it is, MATLAB executes that function or command.

3. It checks to see whether the name is an M-file in any directory in the
search path. If it is, MATLAB executes that function or command.

1.3 The MATLAB Environment | 15



Note that MATLAB checks for variable names first, so if you define a vari-
able with the same name as a MATLAB function or command, that function or
command becomes inaccessible. This is a mistake commonly made by novice
users.

�Programming Pitfalls:

Never use a variable with the same name as a MATLAB function or command.
If you do so, that function of command will become inaccessible.

Also, if there is more than one function or command with the same name, the
first one found on the search path will be executed, and all of the others will be
inaccessible. This is a common problem for novice users, since they sometimes
create M-files files with the same names as standard MATLAB functions, mak-
ing them inaccessible.

�Programming Pitfalls:

Never create an M-file with the same name as a MATLAB function or
command.

MATLAB includes a special command (which) to help you find out just
which version of a file is being executed and where it is located. This can be
useful in finding filename conflicts. The format of this command is which
functionname, where functionname is the name of the function that
you are trying to locate. For example, the cross-product function cross.m can
be located as follows:

» which cross
C:\Program Files\MATLAB\R2007a\toolbox\matlab\specfun\cross.m

The MATLAB search path can be examined and modified at any time by
selecting “Desktop Tools/Path” from the Start Button or by typing editpath in
the Command Window. The Path Tool is shown in Figure 1.9. It allows a user to
add, delete, or change the order of directories in the path.

Other path-related functions include

� addpath—Adds directory to MATLAB search path.
� path—Displays MATLAB search path.
� path2rc—Adds current directory to MATLAB search path.
� rmpath—Removes directory from MATLAB search path.
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Figure 1.9 The Path Tool.

1.4 Using MATLAB as a Scratch Pad

In its simplest form, MATLAB can be used as a scratch pad to perform mathemati-
cal calculations. The calculations to be performed are typed directly into the
Command Window, using the symbols �, �, *, /, and ^ for addition, subtraction,
multiplication, division, and exponentiation, respectively. After an expression is
typed, the results of the expression will be automatically calculated and displayed.
For example, suppose we would like to calculate the volume of a cylinder of radius r
and length l. The area of the circle at the base of the cylinder is given by the equation

A � �r2 (1-1)

and the total volume of the cylinder will be

V � Al (1-2)

If the radius of the cylinder is 0.1 m and the length is 0.5 m, then the volume of
the cylinder can be found using the MATLAB statements (user inputs are shown
in boldface):

» A = pi * 0.1^2
A =

0.0314
» V = A * 0.5
V =

0.0157

Note that pi is predefined to be the value 3.141592. . . . Also, note that the value
stored in A was saved by MATLAB and was reused when we calculated V.



Quiz 1.1

This quiz provides a quick check to see if you have understood the
concepts introduced in Chapter 1. If you have trouble with the quiz,
reread the sections, ask your instructor, or discuss the material with a
fellow student. The answers to this quiz are found in the back of the
book.

1. What is the purpose of the MATLAB Command Window? The Edit
Window? The Figure Window?

2. List the different ways that you get help in MATLAB. 

3. What is a workspace? How can you determine what is stored in a
MATLAB workspace?

4. How can you clear the contents of a workspace?

5. The distance traveled by a ball falling in the air is given by the
equation

Use MATLAB to calculate the position of the ball at time t � 5 s if
x0 � 10 m, v0 � 15 m/s, and a � �9.81 m/sec2.

6. Suppose that x � 3 and y � 4. Use MATLAB to evaluate the follow-
ing expression:

The following questions are intended to help you become familiar with
MATLAB tools.

7. Execute the M-files calc_area.m and sin_x.m in the Command
Window (these M-files are available from the book’s Web site). Then
use the Workspace Browser to determine which variables are defined
in the current workspace. 

8. Use the Array Editor to examine and modify the contents of variable
x in the workspace. Then type the command plot(x,y) in the
Command Window. What happens to the data displayed in the Figure
Window?

1.5 Summary

In this chapter, we learned about the basic types of MATLAB windows, the work-
space, and how to get on-line help. The MATLAB desktop appears when the pro-
gram is started. It integrates many of the MATLAB tools in single location. These

x2y3

sx 2 yd2

x 5 x0 1 v0t 1
1

2
at2

18 | Chapter 1 Introduction to MATLAB



tools include the Command Window, the Command History Window, the Start
Button, the Workspace Browser, the Array Editor, and the Current Directory
viewer. The Command Window is the most important of the windows. It is the one
in which all commands are typed and results are displayed.

The Edit/Debug window is used to create or modify M-files. It displays the
contents of the M-file with the contents of the file color-coded according to func-
tion: comments, keywords, strings, and so forth. This window can be docked to
the desktop, but by default it is independent.

The Figure Window is used to display graphics.
A MATLAB user can get help by using either the Help Browser or the

command-line help functions help and lookfor. The Help Browser allows full
access to the entire MATLAB documentation set. The command-line function
help displays help about a specific function in the Command Window.
Unfortunately, you must know the name of the function in order to get help about
it. The function lookfor searches for a given string in the first comment line of
every MATLAB function and displays any matches.

When a user types a command in the Command Window, MATLAB searches
for that command in the directories specified in the MATLAB path. It will exe-
cute the first M-file in the path that matches the command, and any further
M-files with the same name will never be found. The Path Tool can be used to
add, delete, or modify directories in the MATLAB path.

1.5.1. MATLAB Summary

The following summary lists all of the MATLAB special symbols described in
this chapter, along with a brief description of each one.

1.6 Exercises

1.1 The following MATLAB statements plot the function y(x) � 2e�0.2x for the
range 0 � x �10.

x = 0:0.1:10;
y = 2 * exp( -0.2 * x);
plot(x,y);

Special Symbols

+ Addition

- Subtraction

* Multiplication

/ Division

^ Exponentiation
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Use the MATLAB Edit Window to create a new empty M-file, type these
statements into the file, and save the file with the name test1.m. Then,
execute the program by typing the name test1 in the Command Window.
What result do you get?

1.2 Get help on the MATLAB function exp using: (a) The “help exp” com-
mand typed in the Command Window, and (b) the Help Browser.

1.3 Use the lookfor command to determine how to take the base-10 loga-
rithm of a number in MATLAB.

1.4 Suppose that u � 1 and v � 3. Evaluate the following expressions using
MATLAB:

(a)

(b)

(c)

(d )

1.5 Use the MATLAB Help Browser to find the command required to show
MATLAB’s current directory. What is the current directory when MATLAB
starts up?

1.6 Use the MATLAB Help Browser to find out how to create a new directory
from within MATLAB. Then, create a new directory called mynewdir
under the current directory. Add the new directory to the top of MATLAB’s
path.

1.7 Change the current directory to mynewdir. Then open an Edit Window
and add the following lines:

% Create an input array from –2*pi to 2*pi
t = -2*pi:pi/10:2*pi;

% Calculate |sin(t)|
x = abs(sin(t));

% Plot result
plot(t,x);

Save the file with the name test2.m, and execute it by typing test2 in
the Command Window. What happens?

1.8 Close the Figure Window, and change back to the original directory that
MATLAB started up in. Next type “test2” in the Command Window.
What happens, and why?
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C H A P T E R 2
MATLAB Basics

In this chapter, we will introduce some basic elements of the MATLAB language.
By the end of the chapter, you will be able to write simple but functional
MATLAB programs.

2.1 Variables and Arrays

The fundamental unit of data in any MATLAB program is the array. An array
is a collection of data values organized into rows and columns and known by a
single name (see Figure 2.1 on page 22). Individual data values within an array
are accessed by including the name of the array followed by subscripts in paren-
theses that identify the row and column of the particular value. Even scalars are
treated as arrays by MATLAB—they are simply arrays with only one row and
one column.

Arrays can be classified as either vectors or matrices. The term “vector” is
usually used to describe an array with only one dimension, while the term
“matrix” is usually used to describe an array with two or more dimensions. In this
text, we will use the term “vector” when discussing one-dimensional arrays, and
the term “matrix” when discussing arrays with two or more dimensions. If a par-
ticular discussion applies to both types of arrays, we will use the generic term
“array.”

The size of an array is specified by the number of rows and the number of
columns in the array, with the number of rows mentioned first. The total number
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Figure 2.1 An array is a collection of data values organized into rows and columns.

Array Size

b � [1 2 3 4]

c 5 £
1

2

3

§

a 5 £
1 2

3 4

5 6

§ This is a 3 � 2 matrix, containing 6 elements. 

This is a 1 � 4 array containing 4 elements, known as a row
vector.

This is a 3 � 1 array containing 3 elements, known as a
column vector.

Individual elements in an array are addressed by the array name followed by
the row and column of the particular element. If the array is a row or column
vector, then only one subscript is required. For example, in the preceding arrays
a (2,1) is 3 and c(2) � 2.

A MATLAB variable is a region of memory containing an array, which is
known by a user-specified name. The contents of the array may be used or modified
at any time by including its name in an appropriate MATLAB command.

of elements in the array will be the product of the number of rows and the number
of columns. For example, the sizes of the following arrays are
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MATLAB variable names must begin with a letter followed by any combi-
nation of letters, numbers, and the underscore (_) character. Only the first 63
characters are significant; if more than 63 are used, the remaining characters will
be ignored. If two variables are declared with names that differ only in the 64th
character, MATLAB will treat them as the same variable. MATLAB will issue a
warning if it has to truncate a long variable name to 63 characters.

�Programming Pitfalls:

Make sure that your variable names are unique in the first 63 characters.
Otherwise, MATLAB will not be able to tell the difference between them.

When writing a program, it is important to pick meaningful names for the
variables. Meaningful names make a program much easier to read and to maintain.
Names such as day, month, and year are quite clear even to a person seeing a
program for the first time. Since spaces cannot be used in MATLAB variable
names, underscore characters can be substituted to create meaningful names. For
example, exchange rate might become exchange_rate.

✷ Good Programming Practice:

Always give your variables descriptive and easy-to-remember names. For example,
a currency exchange rate could be given the name exchange_rate. This
practice will make your programs clearer and easier to understand.

It is also important to include a data dictionary in the header of any program
that you write. A data dictionary lists the definition of each variable used in a pro-
gram. The definition should include both a description of the contents of the item
and the units in which it is measured. A data dictionary may seem unnecessary at
the time the program is being written, but it is invaluable when you or another
person have to go back and modify the program at a later time.

✷ Good Programming Practice:

Create a data dictionary for each program to make program maintenance easier.

The MATLAB language is case sensitive, which means that uppercase and
lowercase letters are not the same. Thus the variables name, NAME, and Name
are all different in MATLAB. You must be careful to use the same capitalization



every time that variable name is used. Although it is not required, it is customary
to use all lowercase letters for ordinary variable names.

✷ Good Programming Practice:

Be sure to capitalize a variable exactly the same way each time that it is used. It
is good practice to use only lowercase letters in variable names.

The most common types of MATLAB variables are double and char.
Variables of type double consist of scalars or arrays of 64-bit double-precision
floating-point numbers. They can hold real, imaginary, or complex values. The
real and imaginary components of each variable can be positive or negative numbers
in the range 10�308 to 10308, with 15 to 16 significant decimal digits of accuracy.
They are the principal numerical data type in MATLAB.

A variable of type double is automatically created whenever a numerical
value is assigned to a variable name. The numerical values assigned to double
variables can be real, imaginary, or complex. A real value is just a number. For
example, the following statement assigns the real value 10.5 to the double
variable var:

var = 10.5

An imaginary number is defined by appending the letter i or j to a number1. For
example, 10i and –4j are both imaginary values. The following statement
assigns the imaginary value 4i to the double variable var:

var = 4i

A complex value has both a real and an imaginary component. It is created by
adding a real and an imaginary number together. For example, the following state-
ment assigns the complex value 10 � 10i to variable var:

var = 10 + 10i

Variables of type char consist of scalars or arrays of 16-bit values, each rep-
resenting a single character. Arrays of this type are used to hold character strings.
They are automatically created whenever a single character or a character string
is assigned to a variable name. For example, the following statement creates a
variable of type char whose name is comment and stores the specified string
in it. After the statement is executed, comment will be a 1 � 26 character array.

comment = 'This is a character string'

In a language such as C, the type of every variable must be explicitly
declared in a program before it is used. These languages are said to be strongly
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1An imaginary number is a number multiplied by The letter i is the symbol for used by
most mathematicians and scientists. The letter j is the symbol for used by electrical engineers,
because the letter i is usually reserved for currents in that discipline.
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typed. In contrast, MATLAB is a weakly typed language. Variables may be created
at any time by simply assigning values to them, and the type of data assigned to
the variable determines the type of variable that is created.

2.2 Creating and Initializing Variables in MATLAB

MATLAB variables are automatically created when they are initialized. There are
three common ways to initialize a variable in MATLAB:

1. Assign data to the variable in an assignment statement.
2. Input data into the variable from the keyboard.
3. Read data from a file.

The first two ways will be discussed here, and the third approach will be dis-
cussed in Section 2.6.

2.2.1 Initializing Variables in Assignment Statements

The simplest way to initialize a variable is to assign it one or more values in an
assignment statement. An assignment statement has the general form

var = expression;

where var is the name of a variable and expression is a scalar constant, an
array, or combination of constants, other variables, and mathematical operations
(�, �, etc.). The value of the expression is calculated using the normal rules of
mathematics, and the resulting values are stored in a named variable. The semi-
colon at the end of the statement is optional. If the semicolon is absent, the value
assigned to var will be echoed in the Command Window. If it is present, noth-
ing will be displayed in the Command Window even though the assignment has
occurred.

Simple examples of initializing variables with assignment statements include

var = 40i;
var2 = var/5;
x = 1; y = 2;
array = [1 2 3 4];

The first example creates a scalar variable of type double and stores the imag-
inary number 40i in it. The second example creates a scalar variable and stores
the result of the expression var/5 in it. The third example creates a variable and
stores a 4-element row vector in it. The third example shows that multiple
assignment statements can be placed on a single line, provided that they are sep-
arated by semicolons or commas. Note that if any of the variables had already
existed when the statements were executed, their old contents would have
been lost.
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The last example shows that variables can also be initialized with arrays of
data. Such arrays are constructed using brackets ([]) and semicolons. All of the
elements of an array are listed in row order. In other words, the values in each
row are listed from left to right, with the topmost row first and the bottommost
row last. Individual values within a row are separated by blank spaces or commas,
and the rows themselves are separated by semicolons or new lines. The following
expressions are all legal arrays that can be used to initialize a variable:
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[3.4] This expression creates a 1 � 1 array (a scalar) containing the
value 3.4. The brackets are not required in this case.

[1.0  2.0  3.0] This expression creates a 1 � 3 array containing the row vector
[1 2 3].

[1.0; 2.0; 3.0] This expression creates a 3 � 1 array containing the column

vector .

[1, 2, 3; 4, 5, 6] This expression creates a 2 � 3 array containing the matrix

.

[1, 2, 3 This expression creates a 2 � 3 array containing the matrix

4, 5, 6]
. The end of the first line terminates the first row.

[] This expression creates an empty array, which contains no
rows and no columns. (Note that this is not the same as an array
containing zeros.)

c1 2 3

4 5 6
d

c1 2 3

4 5 6
d

£
1

2

3

§

The number of elements in every row of an array must be the same, and the num-
ber of elements in every column must be the same. An expression such as

[1 2 3; 4 5];

is illegal because row 1 has three elements while row 2 has only two elements.

�Programming Pitfalls:

The number of elements in every row of an array must be the same, and the
number of elements in every column must be the same. Attempts to define an
array with different numbers of elements in its rows or different numbers of
elements in its columns will produce an error when the statement is executed.



The expressions used to initialize arrays can include algebraic operations and
all or portions of previously defined arrays. For example, the assignment statements

a = [0 1+7];
b = [a(2) 7 a];

will define an array a � [0 8] and an array b � [8 7 0 8].
Also, not all of the elements in an array must be defined when it is created.

If a specific array element is defined and one or more of the elements before it
are not, then the earlier elements will automatically be created and initialized to
zero. For example, if c is not previously defined, the statement

c(2,3) = 5;

will produce the matrix . Similarly, an array can be extended by

specifying a value for an element beyond the currently defined size. For example,
suppose that array d � [1 2]. Then the statement

d(4) = 4;

will produce the array d � [1 2 0 4].
The semicolon at the end of each assignment statement shown previously has

a special purpose: it suppresses the automatic echoing of values that normally
occurs whenever an expression is evaluated in an assignment statement. If an
assignment statement is typed without the semicolon, the result of the statement
is automatically displayed in the Command Window as follows:

» e = [1, 2, 3; 4, 5, 6]
e = 

1     2     3
4     5     6

If a semicolon is added at the end of the statement, the echoing disappears.
Echoing is an excellent way to quickly check your work, but it seriously slows
down the execution of MATLAB programs. For that reason, we normally suppress
echoing at all times by ending each line with a semicolon.

However, echoing the results of calculations makes a great quick-and-dirty
debugging tool. If you are not certain what the results of a specific assignment
statement are, just leave off the semicolon from that statement, and the results will
be displayed in the Command Window as the statement is executed.

✷ Good Programming Practice:

Use a semicolon at the end of all MATLAB assignment statements to suppress
echoing of assigned values in the Command Window. This greatly speeds
program execution.

c 5 c0 0 0

0 0 5
d
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✷ Good Programming Practice:

If you need to examine the results of a statement during program debugging,
you may remove the semicolon from that statement only so that its results are
echoed in the Command Window.

2.2.2 Initializing with Shortcut Expressions

It is easy to create small arrays by explicitly listing each term in the array, but
what happens when the array contains hundreds or even thousands of elements?
It is just not practical to write out each element in the array separately!

MATLAB provides a special shortcut notation for these circumstances using
the colon operator. The colon operator specifies a whole series of values by
specifying the first value in the series, the stepping increment, and the last value
in the series. The general form of a colon operator is

first:incr:last

where first is the first value in the series, incr is the stepping increment, and
last is the last value in the series. If the increment is one, it may be omitted.
This expression will generate an array containing the values first,
first+incr, first+2*incr, first+3*incr, and so forth as long as
the values are less than or equal to last. The list stops when the next value in
the series is greater than the value of last.

For example, the expression 1:2:10 is a shortcut for a 1 � 5 row vector
containing the values 1, 3, 5, 7, and 9. The next value in the series would be 11,
which is greater than 10, so the series terminates at 9.

» x = 1:2:10
x = 

1  3  5  7  9

With colon notation, an array can be initialized to have the hundred values 

. . . , p as follows:

angles = (0.01:0.01:1.00) * pi;

Shortcut expressions can be combined with the transpose operator (') to
initialize column vectors and more complex matrices. The transpose operator
swaps the row and columns of any array that it is applied to. Thus the expression

f = [1:4]';

generates a 4-element row vector  [1 2 3 4], and then transposes it into the

4-element column vector f � . Similarly, the expressions≥
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g = 1:4;
h = [g' g'];

will produce the matrix h � .

2.2.3 Initializing with Built-In Functions

Arrays can also be initialized using built-in MATLAB functions. For example, the
function zeros can be used to create an all-zero array of any desired size. There
are several forms of the zeros function. If the function has a single scalar argu-
ment, it will produce a square array using the single argument as both the num-
ber of rows and the number of columns. If the function has two scalar arguments,
the first argument will be the number of rows, and the second argument will
be the number of columns. Since the size function returns two values contain-
ing the number of rows and columns in an array, it can be combined with the zeros
function to generate an array of zeros that is the same size as another array. Some
examples using the zeros function follow:

a = zeros(2);
b = zeros(2,3);
c = [1 2; 3 4];
d = zeros(size(c));

These statements generate the following arrays:

a = b = 

c = d = 

Similarly, the ones function can be used to generate arrays containing all
ones, and the eye function can be used to generate arrays containing identity
matrices, in which all on-diagonal elements are one, while all off-diagonal
elements are zero. Table 2.1 (see on page 30) contains list of common MATLAB
functions useful for initializing variables. 

2.2.4 Initializing Variables with Keyboard Input

It is also possible to prompt a user and initialize a variable with data that the user
types directly at the keyboard. This option allows a script file to prompt a user for
input data values while it is executing. The input function displays a prompt
string in the Command Window and then waits for the user to type in a response.
For example, consider the following statement:

my_val = input('Enter an input value:');

c0 0

0 0
dc1 2

3 4
d

c0 0 0

0 0 0
dc0 0

0 0
d

≥
1 1

2 2

3 3

4 4

¥
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When this statement is executed, MATLAB prints out the string 'Enter an
input value:', and then waits for the user to respond. If the user enters a
single number, it may be simply typed in. If the user enters an array, it must be
enclosed in brackets. In either case, whatever is typed will be stored in variable
my_val when the return key is entered. If only the return key is entered, then an
empty matrix will be created and stored in the variable.

If the input function includes the character 's' as a second argument, then
the input data is returned to the user as a character string. Thus, the statement

» in1 = input('Enter data: ');
Enter data: 1.23

stores the value 1.23 into in1, while the statement

» in2 = input('Enter data: ','s');
Enter data: 1.23

stores the character string '1.23' into in2.

Quiz 2.1

This quiz provides a quick check to see if you have understood the
concepts introduced in Sections 2.1 and 2.2. If you have trouble with
the quiz, reread the sections, ask your instructor, or discuss the material
with a fellow student. The answers to this quiz are found in the back of
the book.

1. What is the difference between an array, a matrix, and a vector?
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Table 2.1 MATLAB Functions Useful for Initializing Variables

Function Purpose

zeros(n) Generates an n � n matrix of zeros.

zeros(m,n) Generates an m � n matrix of zeros.

zeros(size(arr)) Generates a matrix of zeros of the same size as arr.

ones(n) Generates an n � n matrix of ones.

ones(m,n) Generates an m � n matrix of ones.

ones(size(arr)) Generates a matrix of ones of the same size as arr.

eye(n) Generates an n � n identity matrix.

eye(m,n) Generates an m � n identity matrix.

length(arr) Returns the length of a vector, or the longest dimension of a two-dimensional array.

size(arr) Returns two values specifying the number of rows and columns in arr.



2. Answer the following questions for the array shown here.

(a) What is the size of c?
(b) What is the value of c(2,3)?
(c) List the subscripts of all elements containing the value 0.6. 

3. Determine the size of the following arrays. Check your answers by
entering the arrays into MATLAB and using the whos command or
the Workspace Browser. Note that the later arrays may depend on the
definitions of arrays defined earlier in this exercise.

(a) u = [10 20*i 10+20];
(b) v = [-1; 20; 3];
(c) w = [1 0 -9; 2 -2 0; 1 2 3];
(d) x = [u' v];
(e) y(3,3) = -7;
( f ) z = [zeros(4,1) ones(4,1) zeros(1,4)'];
(g) v(4) = x(2,1);

4. What is the value of w(2,1) after the statements in question 3 are
executed?

5. What is the value of x(2,1) after the statements in question 3 are
executed?

6. What is the value of y(2,1) after the statements in question 3 are
executed?

7. What is the value of v(3) after statement (g) is executed?

2.3 Multidimensional Arrays

As we have seen, MATLAB arrays can have one or more dimensions. One-
dimensional arrays can be visualized as a series of values laid out in a row or
column, with a single subscript used to select the individual array elements
(Figure 2.2a see on page 32). Such arrays are useful to describe data that is a
function of one independent variable, such as a series of temperature measure-
ments made at fixed intervals of time.

Some types of data are functions of more than one independent variable. For
example, we might wish to measure the temperature at five different locations at
four different times. In this case, our 20 measurements could logically be grouped
into five columns of four measurements each, with a separate column for each
location (Figure 2.2b). In this case, we will use two subscripts to access a given
element in the array: the first one to select the row and the second one to select

c 5 £
1.1 23.2 3.4 0.6

0.6 1.1 20.6 3.1

1.3 0.6 5.5 0.0

§
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the column. Such arrays are called two-dimensional arrays. The number of ele-
ments in a two-dimensional array will be the product of the number of rows and
the number of columns in the array.

MATLAB allows us to create arrays with as many dimensions as necessary
for any given problem. These arrays have one subscript for each dimension, and an
individual element is selected by specifying a value for each subscript. The total
number of elements in the array will be the product of the maximum value of each
subscript. For example, the following two statements create a 2 � 3 � 2 array c:

» c(:,:,1)=[1 2 3; 4 5 6];
» c(:,:,2)=[7 8 9; 10 11 12];
» whos c

Name   Size   Bytes   Class   Attributes

c     2x3x2    96   double

This array contains 12 elements (2 � 3 � 2). Its contents can be displayed just
like any other array.

» c
c(:,:,1) =

1  2  3
4  5  6

32 | Chapter 2 MATLAB Basics

Figure 2.2 Representations of one- and two-dimensional arrays.



c(:,:,2) =
7  8  9
10 11 12

2.3.1 Storing Multidimensional Arrays in Memory

A two-dimensional array with m rows and n columns will contain m � n elements,
and these elements will occupy m � n successive locations in the computer’s
memory. How are the elements of the array arranged in the computer’s mem-
ory? MATLAB always allocates array elements in column major order. That is,
MATLAB allocates the first column in memory, then the second, then the third,
and so forth, until all of the columns have been allocated. Figure 2.3 (see on page
34) illustrates this memory allocation scheme for a 4 � 3 array a. As we can see,
element a(1,2) is really the fifth element allocated in memory. The order in
which elements are allocated in memory will become important when we discuss
single-subscript addressing in the following section, and low-level I/O functions
in Chapter 8.

This same allocation scheme applies to arrays with more than two dimensions.
The first array subscript is incremented most rapidly, the second subscript is
incremented less rapidly, and so forth, and the last subscript in incremented most
slowly. For example, in a 2 � 2 � 2 array, the elements would be allocated in the
following order: (1,1,1), (2,1,1), (1,2,1), (2,2,1), (1,1,2), (2,1,2), (1,2,2), (2,2,2).

2.3.2 Accessing Multidimensional Arrays with One
Dimension

One of MATLAB’s peculiarities is that it will permit a user or programmer to treat
a multidimensional array as though it were a one-dimensional array whose length
is equal to the number of elements in the multidimensional array. If a multidi-
mensional array is addressed with a single dimension, then the elements will be
accessed in the order in which they were allocated in memory.

For example, suppose that we declare the 4 � 3 element array a as follows:

» a = [1 2 3; 4 5 6; 7 8 9; 10 11 12]
a =

1 2 3
4 5 6
7 8 9

10 11 12

Then the value of a(5) will be 2, which is the value of element a(1,2),
because a(1,2) was allocated fifth in memory.

Under normal circumstances, you should never use this feature of MATLAB.
Addressing multidimensional arrays with a single subscript is a recipe for
confusion.
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Figure 2.3 (a) Data values for array a. (b) Layout of values in memory for array a.



✷ Good Programming Practice:

Always use the proper number of dimensions when addressing a multidimen-
sional array.

2.4 Subarrays

It is possible to select and use subsets of MATLAB arrays as though they were
separate arrays. To select a portion of an array, just include a list of all of the
elements to be selected in the parentheses after the array name. For example,
suppose array arr1 is defined as follows:

arr1 = [1.1 -2.2 3.3 -4.4 5.5];

Then arr1(3) is just 3, arr1([1 4]) is the array [1.1 -4.4], and
arr1(1:2:5) is the array [1.1 3.3 5.5].

For a two-dimensional array, a colon can be used in a subscript to select all
of the values of that subscript. For example, suppose

arr2 = [1 2 3; -2 -3 -4; 3 4 5];

This statement would create an array arr2 containing the values

With this definition, the subarray arr2(1,:) would be

[1 2 3], and the subarray arr2(:,1:2:3) would be 

2.4.1 The end Function

MATLAB includes a special function named end that is very useful for creating
array subscripts. When used in an array subscript, end returns the highest value
taken on by that subscript. For example, suppose that array arr3 is defined as
follows:

arr3 = [1  2  3  4  5  6  7  8];

Then arr3(5:end) would be the array [5 6 7 8], and array(end)
would be the value 8.

The value returned by end is always the highest value of a given subscript.
If end appears in different subscripts, it can return different values within the
same expression. For example, suppose that the 3 � 4 array arr4 is defined as
follows:

arr4 = [1 2 3 4; 5 6 7 8; 9 10 11 12];

£
1 3

2 2 2 4

3 5

§ .

£
1 2 3

22 23 24

3 4 5

§ .
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Then the expression arr4(2:end,2:end) would return the array

Note that the first end returned the value 3, while the second

end returned the value 4!

2.4.2 Using Subarrays on the Left-Hand Side of an
Assignment Statement

It is also possible to use subarrays on the left-hand side of an assignment statement
to update only some of the values in an array, as long as the shape (the number of
rows and columns) of the values being assigned matches the shape of the subarray.
If the shapes do not match, then an error will occur. For example, suppose that the
3 � 4 array arr4 is defined as follows:

» arr4 = [1 2 3 4; 5 6 7 8; 9 10 11 12]
arr4 =

1   2   3   4
5   6   7   8
9  10 11 12

Then the following assignment statement is legal, since the expressions on both
sides of the equal sign have the same shape (2 � 2):

» arr4(1:2,[1 4]) = [20 21; 22 23]
arr4 =

20   2   3  21
22   6   7  23
9  10  11  12

Note that the array elements (1,1), (1,4), (2,1), and (2,4) were updated. In con-
trast, the following expression is illegal because the two sides do not have the
same shape:

» arr5(1:2,1:2) = [3 4]
??? In an assignment A(matrix,matrix) = B, the
number of rows in B and the number of elements in
the A row index matrix must be the same.

�Programming Pitfalls:

For assignment statements involving subarrays, the shapes of the subarrays on
either side of the equal sign must match. MATLAB will produce an error if they
do not match.

There is a major difference in MATLAB between assigning values to a subar-
ray and assigning values to an array. If values are assigned to a subarray, only those
values are updated, while all other values in the array remain unchanged. On the

c 6 7 8

10 11 12
d .
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other hand, if values are assigned to an array, the entire contents of the array are
deleted and replaced by the new values. For example, suppose that the 3 � 4 array
arr4 is defined as follows:

» arr4 = [1 2 3 4; 5 6 7 8; 9 10 11 12]
arr4 =

1 2 3 4
5 6 7 8
9 10 11 12

Then the following assignment statement replaces the specified elements of arr4:

» arr4(1:2,[1 4]) = [20 21; 22 23]
arr4 =

20 2 3 21
22 6 7 23
9 10 11 12

In contrast, the following assignment statement replaces the entire contents of
arr4 with a 2 � 2 array:

» arr4 = [20 21; 22 23]
arr4 =

20  21
22  23

✷ Good Programming Practice:

Be sure to distinguish between assigning values to a subarray and assigning
values to an array. MATLAB behaves differently in these two cases.

2.4.3 Assigning a Scalar to a Subarray

A scalar value on the right-hand side of an assignment statement always matches the
shape specified on the left-hand side. The scalar value is copied into every element
specified on the left-hand side of the statement. For example, assume that the
3 � 4 array arr4 is defined as follows:

arr4 = [1 2 3 4; 5 6 7 8; 9 10 11 12];

Then the expression that follows assigns the value one to four elements of the
array.

» arr4(1:2,1:2) = 1
arr4 =

1   1   3   4
1   1   7   8
9 10 11 12
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2.5 Special Values

MATLAB includes a number of predefined special values. These predefined values
may be used at any time in MATLAB without initializing them first. A list of the
most common predefined values is given in Table 2.2. 

These predefined values are stored in ordinary variables, so they can be over-
written or modified by a user. If a new value is assigned to one of the predefined
variables, then that new value will replace the default one in all later calculations.
For example, consider the following statements that calculate the circumference
of a 10 cm circle:

circ1 = 2 * pi * 10
pi = 3;
circ2 = 2 * pi * 10

In the first statement, pi has its default value of 3.14159 . . . , so circ1 is
62.8319, which is the correct circumference. The second statement redefines pi
to be 3, so in the third statement circ2 is 60. Changing a predefined value in
the program has created an incorrect answer and has also introduced a subtle and
hard-to-find bug. Imagine trying to locate the source of such a hidden error in a
10,000 line program!
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Table 2.2 Predefined Special Values

Function Purpose

pi Contains p to 15 significant digits.

i, j Contain the value i

Inf This symbol represents machine infinity. It is usually gener-
ated as a result of a division by 0.

NaN This symbol stands for Not-a-Number. It is the result of an
undefined mathematical operation, such as the division of
zero by zero.

clock This special variable contains the current date and time in the
form of a 6-element row vector containing the year, month,
day, hour, minute, and second.

date Contains the current data in a character string format, such as 
24-Nov-1998.

eps This variable name is short for “epsilon.” It is the smallest
difference between two numbers that can be represented on
the computer.

ans A special variable used to store the result of an expression if
that result is not explicitly assigned to some other variable. 

s!21d .



�Programming Pitfalls:

Never redefine the meaning of a predefined variable in MATLAB. It is a recipe
for disaster, producing subtle and hard-to-find bugs.

Quiz 2.2

This quiz provides a quick check to see if you have understood the concepts
introduced in Sections 2.3 through 2.5. If you have trouble with the quiz,
reread the sections, ask your instructor, or discuss the material with a fellow
student. The answers to this quiz are found in the back of the book.

1. Assume that array c is defined as shown, and determine the contents
of the following subarrays:

(a) c(2,:)
(b) c(:,end)
(c) c(1:2,2:end)
(d ) c(6)
(e) c(4:end)
( f ) c(1:2,2:4)
(g) c([1 3],2)
(h) c([2 2],[3 3])

2. Determine the contents of array a after the following statements are
executed.

(a) a = [1 2 3; 4 5 6; 7 8 9];
a([3 1],:) = a([1 3],:);

(b) a = [1 2 3; 4 5 6; 7 8 9];
a([1 3],:) = a([2 2],:);

(c) a = [1 2 3; 4 5 6; 7 8 9];
a = a([2 2],:);

3. Determine the contents of array a after the following statements are
executed.

(a) a = eye(3,3);
b = [1 2 3];
a(2,:) = b;

c 5 £
1.1 23.2 3.4 0.6

0.6 1.1 20.6 3.1

1.3 0.6 5.5 0.0

§
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(b) a = eye(3,3);
b = [4 5 6];
a(:,3) = b’;

(c) a = eye(3,3);
b = [7 8 9];
a(3,:) = b([3 1 2]);

2.6 Displaying Output Data

There are several ways to display output data in MATLAB. This simplest way is
one we have already seen—just leave the semicolon off of the end of a statement
and it will be echoed to the Command Window. We will now explore a few other
ways to display data.

2.6.1 Changing the Default Format

When data is echoed in the Command Window, integer values are always displayed
as integers, character values are displayed as strings, and other values are printed
using a default format. The default format for MATLAB shows four digits after
the decimal point, and it may be displayed in scientific notation with an exponent
if the number is too large or too small. For example, the statements

x = 100.11
y = 1001.1
z = 0.00010011

produce the following output: 

x =
100.1100

y =
1.0011e+003

z =
1.0011e-004

This default format can be changed in one of two ways: from the main MATLAB
Window menu, or using the format command. You can change the format by
selecting the “File/Preferences” menu option. This option will pop up the
Preferences Window, and the format can be selected from the Command Window
item in the preferences list (see Figure 2.4 here).

Alternatively, a user can use the format command to change the prefer-
ences. The format command changes the default format according to the values
given in Table 2.3 (see on page 42). The default format can be modified to dis-
play more significant digits of data, force the display to be in scientific notation,
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Figure 2.4 (a) Selecting preferences on the MATLAB Menu. (b) Selecting the desired numeric
format within the Command Window preferences.

(a)

(b)
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Table 2.3 Output Display Formats

Format Command Results Example1

format short 4 digits after decimal (default format) 12.3457

format long 14 digits after decimal 12.34567890123457

format short e 5 digits plus exponent 1.2346e+001

format short g 5 total digits with or without exponent 12.346

format long e 15 digits plus exponent 1.234567890123457e+001

format long g 15 total digits with or without exponent 12.3456789012346

format bank “dollars and cents” format 12.35

format hex hexadecimal display of bits 4028b0fcd32f707a

format rat approximate ratio of small integers 1000/81

format compact suppress extra line feeds

format loose restore extra line feeds

format + only signs are printed +

1The data value used for the example is 12.345678901234567 in all cases. 

to display data to two decimal digits, or to eliminate extra line feeds to get more
data visible in the Command Window at a single time. Experiment with the com-
mands in Table 2.3 for yourself.

Which of these ways to change the data format is better? If you are working
directly at the computer, it is probably easier to use the menu item. On the other hand,
if you are writing programs, it is probably better to use the format command,
because it can be embedded directly into a program. 

2.6.2 The disp function

Another way to display data is with the disp function. The disp function
accepts an array argument and displays the value of the array in the Command
Window. If the array is of type char, then the character string contained in the
array is printed out.

This function is often combined with the functions num2str (convert a
number to a string) and int2str (convert an integer to a string) to create messages
to be displayed in the Command Window. For example, the following MATLAB
statements will display “The value of pi = 3.1416” in the Command Window.
The first statement creates a string array containing the message, and the second
statement displays the message.

str = ['The value of pi = ' num2str(pi)];
disp (str);



2.6.3 Formatted output with the fprintf function

An even more flexible way to display data is with the fprintf function. The
fprintf function displays one or more values together with related text and lets
the programmer control the way in which the displayed value appears. The general
form of this function when it is used to print to the Command Window is

fprintf(format,data)

where format is a string describing the way the data is to be printed, and data
is one or more scalars or arrays to be printed. The format is a character string
containing text to be printed along with special characters describing the format
of the data. For example, the function

fprintf('The value of pi is %f \n',pi)

will print out 'The value of pi is 3.141593' followed by a line feed.
The characters %f are called conversion characters; they indicate that the a
value in the data list should be printed out in floating-point format at that location
in the format string. The characters \n are escape characters; they indicate that
a line feed should be issued so that the following text starts on a new line. There
are many types of conversion characters and escape characters that may be used
in an fprintf function. A few of them are listed in Table 2.4, and a complete
list can be found in Chapter 8. 

It is also possible to specify the width of the field in which a number will be dis-
played and the number of decimal places to display. This is done by specifying the
width and precision after the % sign and before the f. For example, the function

fprintf('The value of pi is %6.2f \n',pi)

will print out 'The value of pi is 3.14' followed by a line feed. The
conversion characters %6.2f indicate that the first data item in the function
should be printed out in floating-point format in a field six characters wide,
including two digits after the decimal point.

The fprintf function has one very significant limitation: it displays only
the real portion of a complex value. This limitation can lead to misleading results
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Table 2.4 Common Special Characters in fprintf Format Strings

Format String Results

%d Display value as an integer.

%e Display value in exponential format.

%f Display value in floating-point format.

%g Display value in either floating-point or exponential 
format, whichever is shorter.

\n Skip to a new line. 



when calculations produce complex answers. In those cases, it is better to use the
disp function to display answers.

For example, the following statements calculate a complex value x and display
it using both fprintf and disp:

x = 2 * ( 1 - 2*i )^3;
str = ['disp: x = ' num2str(x)];
disp(str);
fprintf('fprintf: x = %8.4f\n',x);

The results printed out by these statements are

disp:  x = -22+4i
fprintf: x = -22.0000

Note that the fprintf function ignored the imaginary part of the answer.

�Programming Pitfalls:

The fprintf function displays only the real part of a complex number, which
can produce misleading answers when working with complex values.

2.7 Data Files

There are many ways to load and save data files in MATLAB, most of which are
addressed in Chapter 8. For the moment, we will consider only the load and
save commands, which are the simplest ones to use.

The save command saves data from the current MATLAB workspace into
a disk file. The most common form of this command is

save filename var1 var2 var3

where filename is the name of the file where the variables are saved, and var1,
var2, etc. are the variables to be saved in the file. By default, the file name will
be given the extension “mat,” and such data files are called MAT-files. If no vari-
ables are specified, then the entire contents of the workspace are saved.

MATLAB saves MAT-files in a special compact format that preserves
many details, including the name and type of each variable, the size of each
array, and all data values. A MAT-file created on any platform (PC, Mac, Unix,
or Linux) can be read on any other platform, so using MAT-files is a good way
to exchange data between computers if both computers run MATLAB.
Unfortunately, the MAT-file is in a format that cannot be read by other pro-
grams. If data must be shared with other programs, then the -ascii option
should be specified, and the data values will be written to the file as
ASCII character strings separated by spaces. However, the special information
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(e.g., variable names and types) is lost when the data is saved in ASCII format,
and the resulting data file will be much larger.

For example, suppose the array x is defined as

x=[1.23 3.14 6.28; -5.1 7.00 0];

The the command “save x.dat x –ascii” will produce a file named
x.dat containing the following data:

1.2300000e+000 3.1400000e+000 6.2800000e+000
-5.1000000e+000 7.0000000e+000 0.0000000e+000

This data is in a format that can be read by spreadsheets or by programs written
in other computer languages, so it makes it easy to share data between MATLAB
programs and other applications.

✷ Good Programming Practice:

If data must be exchanged between MATLAB and other programs, save the
MATLAB data in ASCII format. If the data will be used only in MATLAB, save
the data in MAT-file format.

MATLAB doesn’t care what file extension is used for ASCII files. However,
it is better for the user if a consistent naming convention is used, and an extension
of “dat” is a common choice for ASCII files.

✷ Good Programming Practice:

Save ASCII data files with a “dat” file extension to distinguish them from
MAT-files, which have a “mat” file extension.

The load command is the opposite of the save command. It loads data
from a disk file into the current MATLAB workspace. The most common form
of this command is

load filename

where filename is the name of the file to be loaded. If the file is a MAT-file,
then all of the variables in the file will be restored, with the names and types the
same as before. If a list of variables is included in the command, then only those
variables will be restored. If the given filename has no extent, or if the file
extent is .mat, then the load command will treat the file as a MAT-file.

MATLAB can load data created by other programs in comma- or space-
separated ASCII format. If the given filename has any file extension other
than .mat, the load command will treat the file as an ASCII file. The contents
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of an ASCII file will be converted into a MATLAB array having the same name
as the file (without the file extension) that the data was loaded from. For exam-
ple, suppose that an ASCII data file named x.dat contains the following data:

1.23 3.14 6.28
-5.1 7.00 0

Then the command “load x.dat” will create a 2 � 3 array named x in the
current workspace, containing these data values.

The load statement can be forced to treat a file as a MAT-file by specifying
the –mat option. For example, the statement

load –mat x.dat

would treat file x.dat as a MAT-file even though its file extent is not .mat.
Similarly, the load statement can be forced to treat a file as an ASCII file by
specifying the –ascii option. These options allow the user to load a file prop-
erly even if its file extent doesn’t match the MATLAB conventions.

Quiz 2.3

This quiz provides a quick check to see if you have understood the con-
cepts introduced in Sections 2.6 and 2.7. If you have trouble with the quiz,
reread the sections, ask your instructor, or discuss the material with a fel-
low student. The answers to this quiz are found in the back of the book.

1. How would you tell MATLAB to display all real values in exponen-
tial format with 15 significant digits?

2. What do the following sets of statements do? What is the output from
them?

(a) radius = input('Enter circle radius:\n');
area = pi * radius^2;
str = ['The area is ' num2str(area)];
disp(str);

(b) value = int2str(pi);
disp(['The value is ' value '!']);

3. What do the following sets of statements do? What is the output from
them?

value = 123.4567e2;
fprintf('value = %e\n',value);
fprintf('value = %f\n',value);
fprintf('value = %g\n',value);
fprintf('value = %12.4f\n',value);
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2.8 Scalar and Array Operations

Calculations are specified in MATLAB with an assignment statement, whose
general form is

variable_name = expression;

The assignment statement calculates the value of the expression to the right of
the equal sign and assigns that value to the variable named on the left of the
equal sign. Note that the equal sign does not mean equality in the usual sense of
the word. Instead, it means store the value of expression into location
variable_name. For this reason, the equal sign is called the assignment
operator. A statement such as

ii = ii + 1;

is complete nonsense in ordinary algebra, but it makes perfect sense in MATLAB.
It means take the current value stored in variable ii, add one to it, and store the
result back into variable ii.

2.8.1 Scalar Operations

The expression to the right of the assignment operator can be any valid combina-
tion of scalars, arrays, parentheses, and arithmetic operators. The standard
arithmetic operations between two scalars are given in Table 2.5.

Parentheses may be used to group terms whenever desired. When parentheses
are used, the expressions inside the parentheses are evaluated before the
expressions outside the parentheses. For example, the expression 2 ^ ((8+2)/5)
is evaluated as follows:

2 ^ ((8+2)/5) = 2 ^ (10/5)
= 2 ^ 2
= 4

2.8.2 Array and Matrix Operations
MATLAB supports two types of operations between arrays, known as array
operations and matrix operations. Array operations are operations performed
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Table 2.5 Arithmetic Operations between Two Scalars

Operation Algebraic Form MATLAB form

Addition a � b a + b

Subtraction a � b a - b

Multiplication a � b a * b

Division a/b

Exponentiation ab a ^ b

a

b



between arrays on an element-by-element basis. That is, the operation is per-

formed on corresponding elements in the two arrays. For example, if 

and then Note that for these operations to

work, the number of rows and columns in both arrays must be the same. If not,
MATLAB will generate an error message.

Array operations may also occur between an array and a scalar. If the opera-
tion is performed between an array and a scalar, the value of the scalar is applied

to every element of the array. For example, if then 

In contrast, matrix operations follow the normal rules of linear algebra,
such as matrix multiplication. In linear algebra, the product c = a � b is
defined by the equation

For example, if a and b then a � b

Note that for matrix multiplication to work, the number of columns in matrix a
must be equal to the number of rows in matrix b.

MATLAB uses a special symbol to distinguish array operations from matrix
operations. In the cases where array operations and matrix operations have a dif-
ferent definition, MATLAB uses a period before the symbol to indicate an array
operation (for example, .*). A list of common array and matrix operations is
given in Table 2.6. 

New users often confuse array operations and matrix operations. In some cases,
substituting one for the other will produce an illegal operation, and MATLAB will
report an error. In other cases, both operations are legal, and MATLAB will perform
the wrong operation and come up with a wrong answer. The most common problem
happens in working with square matrices. Both array multiplication and matrix
multiplication are legal for two square matrices of the same size, but the resulting
answers are totally different. Be careful to specify exactly what you want!

�Programming Pitfalls:

Be careful to distinguish between array operations and matrix operations in your
MATLAB code. It is especially common to confuse array multiplication with
matrix multiplication.
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�

Example 2.1

Assume that a, b, c, and d are defined as follows: 

a b

c d � 5

What is the result of each of the following expressions?

(a) a + b (e) a + c
(b) a .* b (f ) a + d
(c) a * b (g) a .* d
(d) a * c (h) a * d

SOLUTION

(a) This is array or matrix addition: a + b 5 c0 2

2 2
d

5 c3
2
d

5 c2 1 2

0 1
d5 c1 0

2 1
d
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Table 2.6 Common Array and Matrix Operations

Operation MATLAB Form Comments

Array Addition a + b Array addition and matrix addition are identical.

Array Subtraction a - b Array subtraction and matrix subtraction are identical.

Array Multiplication a .* b Element-by-element multiplication of a and b. Both arrays
must be the same shape, or one of them must be a scalar.

Matrix Multiplication a * b Matrix multiplication of a and b. The number of columns
in a must equal the number of rows in b.

Array Right Division a ./ b Element-by-element division of a and b: a(i,j)/
b(i,j). Both arrays must be the same shape, or one of
them must be a scalar.

Array Left Division a .\ b Element-by-element division of a and b, but with b in the
numerator: b(i,j)/a(i,j). Both arrays must be the
same shape, or one of them must be a scalar.

Matrix Right Division a / b Matrix division defined by a * inv(b), where inv(b)
is the inverse of matrix b.

Matrix Left Division a \ b Matrix division defined by inv(a) * b, where inv(a)
is the inverse of matrix a.

Array Exponentiation a .^ b Element-by-element exponentiation of a and b:
a(i,j) ^ b(i,j). Both arrays must be the same shape,
or one of them must be a scalar.



(b) This is element-by-element array multiplication:  a. * b

(c) This is matrix multiplication: a * b

(d) This is matrix multiplication: a * c

(e) The operation a + c is illegal, since a and c have different numbers of
columns.

(f ) This is addition of an array to a scalar: a + d

(g) This is array multiplication:  a .* d

(h) This is matrix multiplication: a * d 
�

The matrix left division operation has a special significance that we must
understand. A 3 � 3 set of simultaneous linear equations takes the form 

a11x1 � a12x2 � a13x3 � b1

a21x1 � a22x2 � a23x3 � b2 (2-1)

a31x1 � a32x2 � a33x3 � b3

which can be expressed as

Ax � B (2-2)

where and 

Equation (2-2) can be solved for x using linear algebra. The result is

x � A�1B (2-3)

Since the left division operator A \ B is defined to be inv(A) * B, the left
division operator solves a system of simultaneous equations in a single statement!

✷ Good Programming Practice:

Use the left division operator to solve systems of simultaneous equations.

x 5 £
x1

x2

x3

§ .A 5 £
a11 a12 a13

a21 a22 a23

a31 a32 a33

§ , B 5 £
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b3

§ ,

5 c 5 0

1 0 5
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1 0 5
d

5 c 6 5
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5 c 3

8
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5 c 2 1 2

2 2 5
d
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0 1
d
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2.9 Hierarchy of Operations

Often, many arithmetic operations are combined into a single expression. For
example, consider the equation for the distance traveled by an object starting from
rest and subjected to a constant acceleration:

distance = 0.5 * accel * time ^ 2

There are two multiplications and an exponentiation in this expression. In such an
expression, it is important to know the order in which the operations are evaluated.
If exponentiation is evaluated before multiplication, this expression is equiva-
lent to

distance = 0.5 * accel * (time ^ 2)

But if multiplication is evaluated before exponentiation, this expression is equiv-
alent to

distance = (0.5 * accel * time) ^ 2

These two equations have different results, and we must be able to unambiguously
distinguish between them.

To make the evaluation of expressions unambiguous, MATLAB has estab-
lished a series of rules governing the hierarchy or order in which operations are
evaluated within an expression. The rules generally follow the normal rules of
algebra. The order in which the arithmetic operations are evaluated is given in
Table 2.7.
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Table 2.7 Hierarchy of Arithmetic Operations

Precedence Operation

1 The contents of all parentheses are evaluated,
starting from the innermost parentheses and working
outward.

2 All exponentials are evaluated, working from left to
right.

3 All multiplications and divisions are evaluated, working
from left to right.

4 All additions and subtractions are evaluated, working from
left to right.



�

Example 2.2

Variables a, b, c, and d have been initialized to the following values:

a = 3; b = 2; c = 5; d = 3;

Evaluate the following MATLAB assignment statements:

(a) output = a*b+c*d;
(b) output = a*(b+c)*d;
(c) output = (a*b)+(c*d);
(d) output = a^b^d;
(e) output = a^(b^d);

SOLUTION

(a) Expression to evaluate: output = a*b+c*d;
Fill in numbers: output = 3*2+5*3;
First, evaluate multiplications
and divisions from left to right: output = 6 +5*3;

output = 6 + 15;
Now evaluate additions: output = 21

(b) Expression to evaluate: output = a*(b+c)*d;
Fill in numbers: output = 3*(2+5)*3;
First, evaluate parentheses: output = 3*7*3;
Now, evaluate multiplications
and divisions from left to right: output = 21*3;

output = 63;

(c) Expression to evaluate: output = (a*b)+(c*d);
Fill in numbers: output = (3*2)+(5*3);
First, evaluate parentheses: output = 6 + 15;
Now evaluate additions: output = 21

(d) Expression to evaluate: output = a^b^d;
Fill in numbers: output = 3^2^3;
Evaluate exponentials
from left to right: output = 9^3;

output = 729;

(e) Expression to evaluate: output = a^(b^d);
Fill in numbers: output = 3^(2^3);
First, evaluate parentheses: output = 3^8;
Now, evaluate exponential: output = 6561;

�

As we see in the preceding example, the order in which operations are
performed has a major effect on the final result of an algebraic expression.
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It is important that every expression in a program be made as clear as possi-
ble. Any program of value must be not only written but also maintained and mod-
ified when necessary. You should always ask yourself, “Will I easily understand
this expression if I come back to it in six months? Can another programmer look
at my code and easily understand what I am doing?” If there is any doubt in your
mind, use extra parentheses in the expression to make it as clear as possible.

✷ Good Programming Practice:

Use parentheses as necessary to make your equations clear and easy to understand.

If parentheses are used within an expression, then the parentheses must
be balanced. That is, there must be an equal number of open parentheses and close
parentheses within the expression. It is an error to have more of one type than
the other. Errors of this sort are usually typographical, and they are caught by the
MATLAB interpreter when the command is executed. For example, the expression

(2 + 4)/2)

produces an error during when the expression is executed.

Quiz 2.4

This quiz provides a quick check to see if you have understood the con-
cepts introduced in Sections 2.8 and 2.9. If you have trouble with the quiz,
reread the sections, ask your instructor, or discuss the material with a fel-
low student. The answers to this quiz are found in the back of the book.

1. Assume that a, b, c, and d are defined as follows, and calculate the
results of the following operations if they are legal. If an operation is,
explain why it is illegal. 

d � �3

(a) result = a .* c;
(b) result = a * [c c];
(c) result = a .* [c c];
(d) result = a + b * c;
(e) result = a + b .* c;

c 5 c1
2
d

b 5 c0 21

3 1
da5 c 2 1

21 2
d
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2. Solve for x in the equation Ax � B, where and 

2.10 Built-in MATLAB Functions

In mathematics, a function is an expression that accepts one or more input values
and calculates a single result from them. Scientific and technical calculations
usually require functions that are more complex than the simple addition,
subtraction, multiplication, division, and exponentiation operations that we have
discussed so far. Some of these functions are very common and are used in many
different technical disciplines. Others are rarer and specific to a single problem
or a small number of problems. Examples of very common functions are the
trigonometric functions, logarithms, and square roots. Examples of rarer func-
tions include the hyperbolic functions, Bessel functions, and so forth. One of
MATLAB’s greatest strengths is that it comes with an incredible variety of built-
in functions ready for use.

2.10.1 Optional Results

Unlike mathematical functions, MATLAB functions can return more than one
result to the calling program. The function max is an example of such a function.
This function normally returns the maximum value of an input vector, but it can
also return a second argument containing the location in the input vector where
the maximum value was found. For example, the statement

maxval = max ([1 –5 6 –3])

returns the result maxval � 6. However, if two variables are provided to store
results in, the function returns both the maximum value and the location of the
maximum value.

[maxval, index] = max ([1 –5 6 –3])

produces the results maxval � 6 and index � 3.

2.10.2 Using MATLAB Functions with Array Inputs

Many MATLAB functions are defined for one or more scalar inputs and produce
a scalar output. For example, the statement y = sin(x) calculates the sine of
x and stores the result in y. If these functions receive an array of input values,

B 5 £
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1

0
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A 5 £
1 2 1

2 3 2

21 0 1

§
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Table 2.8 Common MATLAB Functions

Function Description

Mathematical Functions

abs(x) Calculates |x|.

acos(x) Calculates cos�1 x.

angle(x) Returns the phase angle of the complex value x, in radians.

asin(x) Calculates sin�1 x.

atan(x) Calculates ten�1 x.

atan2(y,x) Calculates over all four quadrants of the circle (results

in radians in the range ).

cos(x) Calculates cos x, with x in radians.

exp(x) Calculates ex.

log(x) Calculates the natural logarithm loge x.

[value,index] = max(x) Returns the maximum value in vector x, and optionally the 
location of that value.

[value,index] = min(x) Returns the minimum value in vector x, and optionally the 
location of that value.

mod(x,y) Remainder or modulo function.

sin(x) Calculates sin x, with x in radians.

sqrt(x) Calculates the square root of x.

tan(x) Calculates tan x, with x in radians.

Rounding Functions

ceil(x) Rounds x to the nearest integer towards positive infinity:
ceil(3.1) = 4 and ceil(-3.1) = -3.

fix(x) Rounds x to the nearest integer towards zero: fix(3.1) = 3
and fix(-3.1) = -3.

2p # tan21
y

x
# p

tan21
y

x

then they will calculate an array of output values on an element-by-element basis.
For example, if x = [ 0 pi/2 pi 3*pi/2 2*pi], then the statement

y = sin(x)

will produce the result y = [0 1 0 –1 0].

2.10.3 Common MATLAB Functions

A few of the most common and useful MATLAB functions are shown in Table 2.8.
These functions will be used in many examples and homework problems. If you

(continued)



need to locate a specific function not on this list, you can search for the function
alphabetically or by subject using the MATLAB Help Browser.

Note that unlike most computer languages, MATLAB allows many functions
to work correctly for both real and complex inputs. MATLAB functions auto-
matically calculate the correct answer, even if the result is imaginary or complex.
For example, the function sqrt(-2) will produce a runtime error in languages
such as C��, Java, or Fortran. In contrast, MATLAB correctly calculates the
imaginary answer, as follows:

» sqrt(-2)
ans =

0 + 1.4142i

2.11 Introduction to Plotting

MATLAB’s extensive, device-independent plotting capabilities are among its
most powerful features. They make it very easy to plot any data at any time. To
plot a data set, just create two vectors containing the x and y values to be plotted,
and use the plot function.

For example, suppose that we wish to plot the function y � x2 � 10x + 15 for
values of x between 0 and 10. It takes only three statements to create this plot. The
first statement creates a vector of x values between 0 and 10 using the colon oper-
ator. The second statement calculates the y values from the equation (note that we
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floor(x) Rounds x to the nearest integer towards minus infinity:
floor(3.1) = 3 and floor(-3.1) = -4.

round(x) Rounds x to the nearest integer.

String Conversion Functions

char(x) Converts a matrix of numbers into a character string. For ASCII
characters the matrix should contain numbers � 127.

double(x) Converts a character string into a matrix of numbers.

int2str(x) Converts x into an integer character string 

num2str(x) Converts x into a character string.

str2num(s) Converts character string s into a numeric array.

Table 2.8 Common MATLAB Functions (Continued)

Function Description

Rounding Functions



are using array operators here so that this equation is applied to each x value on
an element-by-element basis). Finally, the third statement creates the plot.

x = 0:1:10;
y = x.^2 – 10.*x + 15;
plot(x,y);

When the plot function is executed, MATLAB opens a Figure Window and
displays the plot in that window. The plot produced by these statements is shown
in Figure 2.5.

2.11.1 Using Simple xy Plots

As we saw in the preceding text, plotting is very easy in MATLAB. Any pair of
vectors can be plotted versus each other as long as both vectors have the same
length. However, the result is not a finished product, since there are no titles, axis
labels, or grid lines on the plot.

Titles and axis labels can be added to a plot with the title, xlabel, and
ylabel functions. Each function is called with a string containing the title or
label to be applied to the plot. Grid lines can be added or removed from the plot
with the grid command: grid on turns on grid lines, and grid off turns
off grid lines. For example, the following statements generate a plot of the
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Figure 2.5 Plot of y � x2 � 10x � 15 from 0 to 10.
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function y � x2 � 10x + 15 with titles, labels, and gridlines. The resulting plot is
shown in Figure 2.6.

x = 0:1:10;
y = x.^2 – 10.*x + 15;
plot(x,y);
title ('Plot of y = x.^2 – 10.*x + 15');
xlabel ('x');
ylabel ('y');
grid on;

2.11.2 Printing a Plot

Once created, a plot may be printed on a printer with the print command by
clicking on the “print” icon in the Figure Window or by selecting the “File/Print”
menu option in the Figure Window.

The print command is especially useful because it can be included in a
MATLAB program, allowing the program to automatically print graphical
images. The form of the print command is

print <options> <filename>

If no filename is included, this command prints a copy of the current figure on
the system printer. If a filename is specified, the command prints a copy of the
current figure to the specified file.

Figure 2.6 Plot of y � x2 � 10x � 15 with a title, axis labels, and gridlines.
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2.11.3 Exporting a Plot as a Graphical Image

The print command can be used to save a plot as a graphical image by speci-
fying appropriate options and a filename.

print <options> <filename>

There are many different options that specify the format of the output sent to
a file. One very important option is –dtiff. This option specifies that the output
will be to a file in Tagged Image File Format (TIFF). Since this format can be
imported into all of the important word processors on PC, Mac, Unix, and Linux
platforms, it is a great way to include MATLAB plots in a document. The fol-
lowing command will create a TIFF image of the current figure and store it in a
file called my_image.tif:

print –dtiff my_image.tif

Other options allow image files to be created in other formats. Some of the
most important image file formats are given in Table 2.9. 

In addition, the “File/Save As” menu option on the Figure Window can be
used to save a plot as a graphical image. In this case, the user selects the filename
and the type of image from a standard dialog box (see Figure 2.7 on page 60).

2.11.4 Multiple Plots

It is possible to plot multiple functions on the same graph by simply including
more than one set of (x, y) values in the plot function. For example, suppose that
we wanted to plot the function f(x) � sin 2x and its derivative on the same plot.
The derivative of f(x) � sin 2x is

(2-4)

To plot both functions on the same axes, we must generate a set of x values and
the corresponding y values for each function. Then to plot the functions, we
would simply list both sets of (x, y) values in the plot function as follows:

x = 0:pi/100:2*pi;
y1 = sin(2*x);

d

dt
 sin 2x 5 2 cos 2x

Table 2.9 print Options to Create Graphics Files

Option Description

-deps Creates a monochrome encapsulated postscript image.

-depsc Creates a color encapsulated postscript image.

-djpeg Creates a JPEG image.

-dpng Creates a Portable Network Graphic color image.

-dtiff Creates a compressed TIFF image.



60 | Chapter 2 MATLAB Basics60 | Chapter 2 MATLAB Basics

Figure 2.8 Plot of f (x) � sin 2x and f (x) � 2cos 2x on the same axes.

Figure 2.7 Exporting a plot as an image file using the “File/Save As” menu item.

y2 = 2*cos(2*x);
plot(x,y1,x,y2);

The resulting plot is shown in Figure 2.8.
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2.11.5 Line Color, Line Style, Marker Style, and Legends

MATLAB allows a programmer to select the color of a line to be plotted, the style
of the line to be plotted, and the type of marker to be used for data points on the
line. These traits may be selected using an attribute character string after the x and
y vectors in the plot function.

The attribute character string can have up to three characters, with the first
character specifying the color of the line, the second character specifying the style
of the marker, and the last character specifying the style of the line. The charac-
ters for various colors, markers, and line styles are shown in Table 2.10.

The attribute characters may be mixed in any combination, and more than
one attribute string may be specified if more than one pair of (x, y) vectors are
included in a single plot function call. For example, the following statements
will plot the function y � x2 � 10x � 15  with a dashed red line and will include
the actual data points as blue circles (see Figure 2.9 on page 62).

x = 0:1:10;
y = x.^2 – 10.*x + 15;
plot(x,y,'r–',x,y,'bo');

Legends may be created with the legend function. The basic form of this
function is

legend('string1','string2',..., pos)

Table 2.10 Table of Plot Colors, Marker Styles, and Line Styles

Color Marker Style Line Style

y yellow . point - solid

m magenta o circle : dotted

c cyan x x-mark -. dash-dot

r red + plus -- dashed

g green * star <none> no line

b blue s square

w white d diamond

k black v triangle (down)

^ triangle (up)

< triangle (left)

> triangle (right)

p pentagram

h hexagram

<none> no marker
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Figure 2.9 Plot of the function y � x2 � 10x � 15 with a dashed red line, showing the actual data
points as blue circles.

where string1, string2, etc. are the labels associated with the lines plotted,
and pos is an string specifying where to place the legend. The possible values for
pos are given in Table 2.11 and are shown graphically in Figure 2.10.

The command legend off will remove an existing legend2.
An example of a complete plot is shown in Figure 2.11 (see on page 64), and

the statements to produce that plot are shown subsequently. They plot the func-
tion f (x) � sin 2x and its derivative f �(x) � 2 cos 2x on the same axes, with a solid
black line for f (x) and a dashed red line for its derivative. The plot includes a title,
axis labels, a legend in the top left corner of the plot, and grid lines.

x = 0:pi/100:2*pi;
y1 = sin(2*x);
y2 = 2*cos(2*x);
plot(x,y1,'k-',x,y2,'b—');
title ('Plot of f(x) = sin(2x) and its derivative');
xlabel ('x');
ylabel ('y');
legend ('f(x)','d/dx f(x)','tl')
grid on;

2Before MATLAB 7.0, the pos parameter took a number in the range 0–4 to specify the location of
a legend. This usage is now obsolete, but it is still supported for backwards compatibility.
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Table 2.11 Values of pos in the legend Command

Value Legend Location

'NW' Above and to the left

'NL' Above top left corner

'NC' Above center of top edge

'NR' Above top right corner

'NE' Above and to right

'TW' At top and to left

'TL' Top left corner

'TC' At top center

'TR' Top right corner

'TE' At top and to right

'MW' At middle and to left

'ML' Middle left edge

'MC' Middle and center

'MR' Middle right edge

'ME' At middle and to right

'BW' At bottom and to left

'BL' Bottom left corner

'BC' At bottom center

'BR' Bottom right corner

'BE' At bottom and to right

'SW' Below and to left

'SL' Below bottom left corner

'SC' Below center of bottom edge

'SR' Below bottom right corner

'SE' Below and to right

Figure 2.10 Possible locations for a plot legend.
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2.11.6 Logarithmic Scales

It is possible to plot data on logarithmic scales as well as linear scales. There are
four possible combinations of linear and logarithmic scales on the x and y axes,
and each combination is produced by a separate function as follows:

1. The plot function plots both x and y data on linear axes.
2. The semilogx function plots x data on logarithmic axes and y data on

linear axes.
3. The semilogy function plots x data on linear axes and y data on loga-

rithmic axes.
4. The loglog function plots both x and y data on logarithmic axes.

All of these functions have identical calling sequences—the only difference is
the type of axis used to plot the data. Examples of each plot are shown in
Figure 2.12.

2.12 Examples

The following examples illustrate problem solving with MATLAB.

Figure 2.11 A complete plot with title, axis labels, legend, grid, and multiple line styles.
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�

Example 2.3—Temperature Conversion

Design a MATLAB program that reads an input temperature in degrees Fahrenheit,
converts it to an absolute temperature in kelvin, and writes out the result.

SOLUTION The relationship between temperature in degrees Fahrenheit (°F) and
temperature in kelvin (K) can be found in any physics textbook. It is

(2-5)

The physics books also give us sample values on both temperature scales, which
we can use to check the operation of our program. Two such values are

� The boiling point of water 212° F 373.15 K
� The sublimation point of dry ice -110° F 194.26 K

Our program must perform the following steps:

1. Prompt the user to enter an input temperature in °F.
2. Read the input temperature.
3. Calculate the temperature in kelvin from Equation (2-5).
4. Write out the result, and stop.

We will use function input to get the temperature in degrees Fahrenheit and func-
tion fprintf to print the answer. The resulting program is as follows:

T sin kelvind 5 B5

9
 T sin 8Fd 2 32.0R 1 273.15

Figure 2.12 Comparison of linear, semilog x, semilog y, and log-log plots.
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%  Script file: temp_conversion
%
% Purpose:
% To convert an input temperature from degrees Fahrenheit to
% an output temperature in kelvin.
%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 01/03/07 S. J. Chapman Original code
%
% Define variables:
% temp_f — Temperature in degrees Fahrenheit
% temp_k — Temperature in kelvin 

% Prompt the user for the input temperature.
temp_f = input('Enter the temperature in degrees Fahrenheit: '); 

% Convert to kelvin.
temp_k = (5/9) * (temp_f - 32) + 273.15; 

% Write out the result.
fprintf('%6.2f degrees Fahrenheit = %6.2f kelvin.\n', ...

temp_f,temp_k);

To test the completed program, we will run it with the known input values
given above. Note that user inputs appear in bold face in the following:

» temp_conversion
Enter the temperature in degrees Fahrenheit: 212
212.00 degrees Fahrenheit = 373.15 kelvin.
» temp_conversion
Enter the temperature in degrees Fahrenheit: -110
-110.00 degrees Fahrenheit = 194.26 kelvin.

The results of the program match the values from the physics book.
�

In the foregoing program, we echoed the input values and printed the out-
put values together with their units. The results of this program make sense
only if the units (degrees Fahrenheit and kelvin) are included together with
their values. As a general rule, the units associated with any input value should
always be printed along with the prompt that requests the value, and the units
associated with any output value should always be printed along with that
value.
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✷ Good Programming Practice:

Always include the appropriate units with any values that you read or write in a
program.

The foregoing program exhibits many of the good programming practices
that we have described in this chapter. It includes a data dictionary that defines
the meanings of all of the variables in the program. It also uses descriptive vari-
able names, and appropriate units are attached to all printed values.

�

Example 2.4—Electrical Engineering: Maximum Power Transfer to a Load

Figure 2.13 shows a voltage source V � 120 V with an internal resistance RS of
50 	 ( supplying a load of resistance RL. Find the value of load resistance RL that
will result in the maximum possible power being supplied by the source to the
load. How much power be supplied in this case? Also, plot the power supplied to
the load as a function of the load resistance RL.

Figure 2.13 A voltage source with a voltage V and an internal resistance RS supplying a load of
resistance RL.

SOLUTION In this program, we need to vary the load resistance RL and compute
the power supplied to the load at each value of RL. The power supplied to the load
resistance is given by the equation

PL � I 2RL (2-6)

where I is the current supplied to the load. The current supplied to the load can
be calculated by Ohm’s Law:

(2-7)I 5
V

RTOT

5
V

RS 1 RL
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The program must perform the following steps:

1. Create an array of possible values for the load resistance RL. The array
will vary RL from 1 	 to 100 	 in 1 	 steps.

2. Calculate the current for each value of RL.
3. Calculate the power supplied to the load for each value of RL.
4. Plot the power supplied to the load for each value of RL, and determine the

value of load resistance resulting in the maximum power.

The final MATLAB program is as follows:

% Script file: calc_power.m
%
% Purpose:
% To calculate and plot the power supplied to a load as
% as a function of the load resistance.
%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 01/03/07 S. J. Chapman Original code
%
% Define variables:
% amps — Current flow to load (amps)
% pl — Power supplied to load (watts)
% rl — Resistance of the load (ohms)
% rs — Internal resistance of the power source (ohms)
% volts — Voltage of the power source (volts) 

% Set the values of source voltage and internal resistance
volts = 120;
rs = 50; 

% Create an array of load resistances
rl = 1:1:100; 

% Calculate the current flow for each resistance
amps = volts ./ ( rs + rl ); 

% Calculate the power supplied to the load
pl = (amps .^ 2) .* rl; 

% Plot the power versus load resistance
plot(rl,pl);
title('Plot of power versus load resistance');
xlabel('Load resistance (ohms)');
ylabel('Power (watts)');
grid on;
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When this program is executed, the resulting plot is shown in Figure 2.14.
From this plot, we can see that the maximum power is supplied to the load when
the load’s resistance is 50 	. The power supplied to the load at this resistance is
72 watts.

�

Note the use of the array operators .*, .^, and ./ in the preceding program.
These operators cause the arrays amps and pl to be calculated on an element-
by-element basis.

�

Example 2.5—Carbon 14 Dating

A radioactive isotope of an element is a form of the element that is not stable.
Instead, it spontaneously decays into another element over a period of time.
Radioactive decay is an exponential process. If Q0 is the initial quantity of a
radioactive substance at time t � 0, then the amount of that substance that will be
present at any time t in the future is given by

Q(t) � Q0e
�
t (2-8)

where 
 is the radioactive decay constant.

Figure 2.14 Plot of power supplied to load versus load resistance.
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Figure 2.15 The radioactive decay of carbon 14 as a function of time. Notice that 50 percent of the
original carbon 14 is left after about 5730 years have elapsed.

Because radioactive decay occurs at a known rate, it can be used as a clock
to measure the time since the decay started. If we know the initial amount of the
radioactive material Q0 present in a sample and the amount of the material Q left
at the current time, we can solve for t in Equation (2-8) to determine how long the
decay has been going on. The resulting equation is

(2-9)

Equation (2-9) has practical applications in many areas of science. For exam-
ple, archaeologists use a radioactive clock based on carbon 14 to determine the
time that has passed since a once-living creature died. Carbon 14 is continually
taken into the body while a plant or animal is living, so the amount of it present
in the body at the time of death is assumed to be known. The decay constant 

of carbon 14 is well known to be 0.00012097/year, so if the amount of carbon
14 remaining now can be accurately measured, then Equation (2-9) can be used
to determine how long ago the living creature died. The amount of carbon
14 remaining as a function of time is shown in Figure 2.15.

tdecay 5 2
1



 loge

Q

Q0
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Write a program that reads the percentage of carbon 14 remaining in a sample,
calculates the age of the sample from it, and prints out the result with proper units.

SOLUTION Our program must perform the following steps:

1. Prompt the user to enter the percentage of carbon 14 remaining in the
sample.

2. Read in the percentage.
3. Convert the percentage into the fraction .

4. Calculate the age of the sample in years using Equation (2-9).
5. Write out the result, and stop.

The resulting code is as follows:

%  Script file: c14_date.m
%
%  Purpose:
% To calculate the age of an organic sample from the percentage
% of the original carbon 14 remaining in the sample.
%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 01/05/07 S. J. Chapman Original code
%
% Define variables:
% age -- The age of the sample in years
% lambda -- The radioactive decay constant for carbon-14,
% in units of 1/years.
% percent -- The percentage of carbon 14 remaining at the time
% of the measurement
% ratio -- The ratio of the carbon 14 remaining at the time
% of the measurement to the original amount of
% carbon 14. 

% Set decay constant for carbon-14
lambda = 0.00012097;

% Prompt the user for the percentage of C-14 remaining.
percent = input('Enter the percentage of carbon 14 remaining:\n'); 

% Perform calculations
ratio = percent / 100; % Convert to fractional ratio
age = (-1.0 / lambda) * log(ratio); % Get age in years 

% Tell the user about the age of the sample.
string = ['The age of the sample is ' num2str(age) ' years.'];
disp(string);

Q

Q0
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To test the completed program, we will calculate the time it takes for half of
the carbon 14 to disappear. This time is known as the half-life of carbon 14.

» c14_date
Enter the percentage of carbon 14 remaining:
50
The age of the sample is 5729.9097 years.

The CRC Handbook of Chemistry and Physics states that the half-life of
carbon 14 is 5730 years, so output of the program agrees with the reference book.

�

2.13 Debugging MATLAB Programs

There is an old saying that the only sure things in life are death and taxes. We can
add one more certainty to that list: if you write a program of any significant size,
it won’t work the first time you try it! Errors in programs are known as bugs, and
the process of locating and eliminating them is known as debugging. Given that
we have written a program and it is not working, how do we debug it?

Three types of errors are found in MATLAB programs. The first type of error
is a syntax error. Syntax errors are errors in the MATLAB statement itself, such
as spelling errors or punctuation errors. These errors are detected by the
MATLAB compiler the first time that an M-file is executed. For example,
the statement

x = (y + 3)/2);

contains a syntax error because it has unbalanced parentheses. If this statement
appears in an M-file named test.m, the following message appears when test
is executed.

» test
??? x = (y + 3)/2)

|
Missing operator, comma, or semi-colon. 

Error in ==> d:\book\matlab\chap2\test.m
On line 2 ==>

The second type of error is the run-time error. A run-time error occurs
when an illegal mathematical operation is attempted during program execution
(for example, attempting to divide by 0). These errors cause the program to return
Inf or NaN, which is then used in further calculations. The results of a program
that contains calculations using Inf or NaN are usually invalid.
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The third type of error is a logical error. Logical errors occur when the pro-
gram compiles and runs successfully but produces the wrong answer.

The most common mistakes made during programming are typographi-
cal errors. Some typographical errors create invalid MATLAB statements.
These errors produce syntax errors that are caught by the compiler. Other
typographical errors occur in variable names. For example, the letters in some
variable names might have been transposed, or an incorrect letter might be
typed. The result will be a new variable, and MATLAB simply creates the
new variable the first time that it is referenced. MATLAB cannot detect
this type of error. Typographical errors can also produce logical errors. For
example, if variables vel1 and vel2 are both used for velocities in the
program, then one of them might be inadvertently used instead of the other one
at some point. You must check for that sort of error by manually inspecting
the code.

Sometimes a program will start to execute, but run-time errors or logical
errors occur during execution. In this case, there is either something wrong
with the input data or something wrong with the logical structure of the pro-
gram. The first step in locating this sort of bug should be to check the input
data to the program. Either remove semicolons from input statements or add
extra output statements to verify that the input values are what you expect
them to be.

If the variable names seem to be correct and the input data is correct, then
you are probably dealing with a logical error. You should check each of your
assignment statements.

1. If an assignment statement is very long, break it into several smaller
assignment statements. Smaller statements are easier to verify.

2. Check the placement of parentheses in your assignment statements. It is a
very common error to have the operations in an assignment statement
evaluated in the wrong order. If you have any doubts as to the order in
which the variables are being evaluated, add extra sets of parentheses to
make your intentions clear.

3. Make sure that you have initialized all of your variables properly.
4. Be sure that any functions you use are in the correct units. For example,

the input to trigonometric functions must be in units of radians, not
degrees.

If you are still getting the wrong answer, add output statements at various
points in your program to see the results of intermediate calculations. If you can
locate the point where the calculations go bad, then you know just where to look
for the problem, which is 95 percent of the battle.

If you still cannot find the problem after going through all of these steps,
explain what you are doing to another student or to your instructor, and let them
look at the code. It is very common for people to see just what they expect to see
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Table 2.12 Hierarchy of Operations

Precedence Operation

1 The contents of all parentheses are evaluated, starting from the
innermost parentheses and working outward.

2 All exponentials are evaluated, working from left to right.

3 All multiplications and divisions are evaluated, working from left
to right.

4 All additions and subtractions are evaluated, working from left to
right.

when they look at their own code. Another person can often quickly spot an error
that you have overlooked time after time.

✷ Good Programming Practice:

To reduce your debugging effort, make sure that during your program design you

1. Initialize all variables.
2. Use parentheses to make the functions of assignment statements clear.

MATLAB includes a special debugging tool called a symbolic debugger,
which is embedded into the Edit/Debug Window. A symbolic debugger is a tool
that allows you to walk through the execution of your program one statement at
a time and to examine the values of any variables at each step along the way.
Symbolic debuggers allow you to see all of the intermediate results without hav-
ing to insert a lot of output statements into your code. We will learn how to use
MATLAB’s symbolic debugger in Chapter 3.

2.14 Summary

In this chapter, we have presented many of the fundamental concepts required
to write functional MATLAB programs. We learned about the basic types of
MATLAB windows, the workspace, and how to get on-line help.

We introduced two data types: double and char. We also introduced
assignment statements, arithmetic calculations, intrinsic functions, input/output
statements, and data files.

The order in which MATLAB expressions are evaluated follows a fixed hier-
archy, with operations at a higher level evaluated before operations at lower lev-
els. The hierarchy of operations is summarized in Table 2.12. 
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The MATLAB language includes an extremely large number of built-in func-
tions to help us solve problems. This list of functions is much richer than the list
of functions found in other languages such as Fortran or C, and it includes device-
independent plotting capabilities. A few of the common intrinsic functions are
summarized in Table 2-8, and many others will be introduced throughout the
remainder of the book. A complete list of all MATLAB functions is available
through the on-line Help Desk.

2.14.1 Summary of Good Programming Practice

Every MATLAB program should be designed so that another person who is
familiar with MATLAB can easily understand it. This is very important, since a
good program may be used for a long period of time. Over that time, conditions
will change, and the program will need to be modified to reflect the changes. The
program modifications may be done by someone other than the original pro-
grammer. The programmer making the modifications must understand the origi-
nal program well before attempting to change it.

It is much harder to design clear, understandable, and maintainable programs
than it is to simply write programs. To do so, a programmer must develop the dis-
cipline to properly document his or her work. In addition, the programmer must
be careful to avoid known pitfalls along the path to good programs. The follow-
ing guidelines will help you to develop good programs:

1. Use meaningful variable names whenever possible. Use names that can be
understood at a glance, like day, month, and year.

2. Create a data dictionary for each program to make program mainte-
nance easier.

3. Use only lower-case letters in variable names, so that there won’t be errors
due to capitalization differences in different occurrences of a variable
name.

4. Use a semicolon at the end of all MATLAB assignment statements to sup-
press echoing of assigned values in the Command Window. If you need to
examine the results of a statement during program debugging, you may
remove the semicolon from that statement only.

5. If data must be exchanged between MATLAB and other programs, save
the MATLAB data in ASCII format. If the data will be used only in
MATLAB, save the data in MAT-file format.

6. Save ASCII data files with a “dat” file extent to distinguish them from
MAT-files, which have a “mat” file extent.

7. Use parentheses as necessary to make your equations clear and easy to
understand.

8. Always include the appropriate units with any values that you read or
write in a program.
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2.14.2 MATLAB Summary

The following summary lists all of the MATLAB special symbols, commands, and
functions described in this chapter, along with a brief description of each one. 

Special Symbols

[ ] Array constructor

( ) Forms subscripts

' ' Marks the limits of a character string.

, 1. Separates subscripts or matrix elements.

2. Separates assignment statements on a line.

, Separates subscripts or matrix elements.

; 1. Suppresses echoing in Command Window.

2. Separates matrix rows.

3. Separates assignment statements on a line.

% Marks the beginning of a comment.

: Colon operator, used to create shorthand lists

+ Array and matrix addition

- Array and matrix subtraction

.* Array multiplication

* Matrix multiplication

./ Array right division

.\ Array left division

/ Matrix right division

\ Matrix left division

.^ Array exponentiation

' Transpose operator

Commands and Functions

... Continues a MATLAB statement on the following line.

abs(x) Calculates the absolute value of x.

ans Default variable used to store the result of expressions not
assigned to another variable.

acos(x) Calculates the inverse cosine of x. The resulting angle is in radi-
ans between 0 and p.

asin(x) Calculates the inverse sine of x. The resulting angle is in radians
between �p/2 and p/2.
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atan(x) Calculates the inverse tangent of x. The resulting
angle is in radians between �p/2 and p/2.

atan2(y,x) Calculates the inverse tangent of y/x, valid over the
entire circle. The resulting angle is in radians
between �p and p.

ceil(x) Rounds x to the nearest integer towards positive
infinity: floor(3.1) = 4 and floor
(-3.1) = -3.

char Converts a matrix of numbers into a character
string. For ASCII characters the matrix should
contain numbers � 127.

clock Current time

cos(x) Calculates cosine of x, where x is in radians.

date Current date

disp Displays data in Command Window.

doc Open HTML Help Desk directly at a particular
function description.

double Converts a character string into a matrix of numbers.

eps Represents machine precision.

exp(x) Calculates ex.

eye(m,n) Generates an identity matrix.

fix(x) Rounds x to the nearest integer towards zero:
fix(3.1) = 3 and fix(-3.1) = -3.

floor(x) Rounds x to the nearest integer towards minus
infinity: floor(3.1) = 3 and floor
(-3.1) = -4.

format + Print + and – signs only.

format bank Print in “dollars and cents” format.

format compact Suppress extra linefeeds in output.

format hex Print hexadecimal display of bits.

format long Print with 14 digits after the decimal.

format long e Print with 15 digits plus exponent.

format long g Print with 15 digits with or without exponent.

format loose Print with extra linefeeds in output.

format rat Print as an approximate ratio of small integers.

format short Print with 4 digits after the decimal.

format short e Print with 5 digits plus exponent.

format short g Print with 5 digits with or without exponent.

fprintf Print formatted information.
(continued)
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grid Add or remove a grid from a plot

i .

Inf Represents machine infinity (�).

input Writes a prompt and reads a value from the keyboard.

int2str Converts x into an integer character string. 

j .

legend Adds a legend to a plot.

length(arr) Returns the length of a vector, or the longest
dimension of a two-dimensional array. 

load Load data from a file.

log(x) Calculates the natural logarithm of x.

loglog Generates a log-log plot.

lookfor Look for a matching term in the one-line 
MATLAB function descriptions.

max(x) Returns the maximum value in vector x, and
optionally the location of that value.

min(x) Returns the minimum value in vector x, and
optionally the location of that value.

mod(m,n) Remainder or modulo function.

NaN Represents not-a-number.

num2str(x) Converts x into a character string.

ones(m,n) Generates an array of ones.

pi Represents the number �.

plot Generates a linear xy plot.

print Prints a Figure Window.

round(x) Rounds x to the nearest integer.

save Saves data from workspace into a file.

semilogx Generates a log-linear plot.

semilogy Generates a linear-log plot.

sin(x) Calculates sine of x, where x is in radians.

size Get number of rows and columns in an array.

sqrt Calculates the square root of a number.

str2num Converts a character string into a number.

tan(x) Calculates tangent of x, where x is in radians.

title Adds a title to a plot.

zeros Generate an array of zeros.

"21

"21

Commands and Function (Continued)
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2.15 Exercises

2.1 Answer the following questions for the following array.

array1 � .

(a) What is the size of array1?
(b) What is the value of array1(1,4)?
(c) What is the size and value of array1(:,1:2:5)?
(d) What is the size and value of array1([1 3],end)?

2.2 Are the following MATLAB variable names legal or illegal? Why?

(a) dog1
(b) 1dog
(c) Do_you_know_the_way_to_san_jose
(d) _help
(e) What's_up?

2.3 Determine the size and contents of the following arrays. Note that the later
arrays may depend on the definitions of arrays defined earlier in this exercise.

(a) a = 2:3:8;
(b) b = [a' a' a'];
(c) c = b(1:2:3,1:2:3);
(d) d = a + b(2,:);
(e) w = [zeros(1,3) ones(3,1)' 3:5'];
(f) b([1 3],2) = b([3 1],2);
(g) e = 1:-1:5;

2.4 Assume that array array1 is defined as shown, and determine the con-
tents of the following subarrays:

array1 �

(a) array1(3,:)
(b) array1(:,3)
(c) array1(1:2:3,[3 3 4])
(d) array1([1 1],:)

≥
1.1 0.0 22.1 23.5 6.0

0.0 23.0 25.6 2.8 4.3

2.1 0.3 0.1 20.4 1.3

21.4 5.1 0.0 1.1 23.0

¥

≥
0.0 0.5 2.1 23.5 6.0

0.0 21.1 26.6 2.8 3.4

2.1 0.1 0.3 20.4 1.3

1.1 5.1 0.0 1.1 22.0

¥
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2.5 Assume that value has been initialized to 10p, and determine what is
printed out by each of the following statements:

disp (['value = ' num2str(value)]);
disp (['value = ' int2str(value)]);
fprintf('value = %e\n',value);
fprintf('value = %f\n',value);
fprintf('value = %g\n',value);
fprintf('value = %12.4f\n',value);

2.6 Assume that a, b, c, and d are defined as follows, and calculate the results
of the following operations if they are legal. If an operation is, explain why
it is illegal.

a � b �

c � d � eye(2)

(a) result = a + b;
(b) result = a * d;
(c) result = a .* d;
(d) result = a * c;
(e) result = a .* c;
(f) result = a \ b;
(g) result = a .\ b;
(h) result = a .^ b;

2.7 Evaluate each of the following expressions.

(a) 11/5 + 6
(b) (11/5) + 6
(c) 11/(5 + 6)
(d) 3 ^ 2 ^ 3
(e) 3 ^ (2 ^ 3)
(f) (3 ^ 2) ^ 3
(g) round(-11/5) + 6
(h) ceil(-11/5) + 6
(i) floor(-11/5) + 6

2.8 Use MATLAB to evaluate each of the following expressions.

(a) (3 � 4i)(�4 � 3i)
(b) cos�1(1.2)

c2
1
d

c21 3

0 2
dc 2 1

21 4
d
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2.9 Solve the following system of simultaneous equations for x:

-2.0 X1 + 5.0 X2 + 1.0 X3 + 3.0 X4 + 4.0 X5 - 1.0 X6 = 0.0
2.0 X1 - 1.0 X2 - 5.0 X3 - 2.0 X4 + 6.0 X5 + 4.0 X6 = 1.0
-1.0 X1 + 6.0 X2 - 4.0 X3 - 5.0 X4 + 3.0 X5 - 1.0 X6 = -6.0
4.0 X1 + 3.0 X2 - 6.0 X3 - 5.0 X4 - 2.0 X5 - 2.0 X6 = 10.0
-3.0 X1 + 6.0 X2 + 4.0 X3 + 2.0 X4 - 6.0 X5 + 4.0 X6 = -6.0
2.0 X1 + 4.0 X2 + 4.0 X3 + 4.0 X4 + 5.0 X5 - 4.0 X6 = -2.0

2.10 Position and Velocity of a Ball If a stationary ball is released at a
height h0 above the surface of the Earth with a vertical velocity v0, the
position and velocity of the ball as a function of time will be given by
the equations

(2-10)

v(t) � gt � v0 (2-11)

where g is the acceleration due to gravity (�9.81 m/s2), h is the height
above the surface of the Earth (assuming no air friction), and v is the verti-
cal component of velocity. Write a MATLAB program that prompts a user
for the initial height of the ball in meters and velocity of the ball in meters
per second, and plots the height and velocity as a function of time. Be sure
to include proper labels in your plots.

2.11 The distance between two points (x1, y1) and (x2, y2) on a Cartesian coordi-
nate plane is given by the equation

(2-12)

(See Figure 2.16 on page 82). Write a program to calculate the distance
between any two points (x1, y1) and (x2, y2) specified by the user. Use good
programming practices in your program. Use the program to calculate the
distance between the points (�3, 2) and (3, �6).

2.12 The distance between two points (x1, y1, z1) and (x2, y2, z2) in a three-
dimensional Cartesian coordinate system is given by the equation

(2-13)

Write a program to calculate the distance between any two points (x1, y1, z1)
and (x2, y2, z2) specified by the user. Use good programming practices in

d 5 "sx1 2 x2d2 1 sy1 2 y2d2 1 sz1 2 z2d2

d 5 "sx1 2 x2d2 1 sy1 2 y2d2

hstd 5
1

2
gt 2 1 v0t 1 h0
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your program. Use the program to calculate the distance between the points
(�3, 2, 5) and (3, �6, �5).

2.13 Decibels Engineers often measure the ratio of two power measurements
in decibels, or dB. The equation for the ratio of two power measurements in
decibels is

(2-14)

where P2 is the power level being measured, and P1 is some reference power
level.

(a) Assume that the reference power level P1 is 1 milliwatt, and write a
program that accepts an input power P2 and converts it into dB with
respect to the 1 mW reference level. (Engineers have a special unit
for dB power levels with respect to a 1 mW reference: dBm.) Use
good programming practices in your program.

(b) Write a program that creates a plot of power in watts versus power in
dBm with respect to a 1 mW reference level. Create both a linear xy
plot and a log-linear xy plot.

2.14 Power in a Resistor The voltage across a resistor is related to the current
flowing through it by Ohm’s law (see Figure 2.17)

V = IR (2-15)

and the power consumed in the resistor is given by the equation

P = IV (2-16)

Write a program that creates a plot of the power consumed by a 1000 	
resistor as the voltage across it is varied from 1 V to 200 V. Create two plots,

dB 5 10 log10

P2

P1

Figure 2.16 Distance between two points on a Cartesian plane.
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one showing power in watts, and one showing power in dBW (dB power
levels with respect to a 1 W reference).

2.15 Hyperbolic cosine The hyperbolic cosine function is defined by the
equation

(2-17)

Write a program to calculate the hyperbolic cosine of a user-supplied
value x. Use the program to calculate the hyperbolic cosine of 3.0.
Compare the answer that your program produces to the answer produced by
the MATLAB intrinsic function cosh(x). Also, use MATLAB to plot the
function cosh(x). What is the smallest value that this function can have?
At what value of x does it occur?

2.16 Energy Stored in a Spring The force required to compress a linear
spring is given by the equation

F � kx (2-18)

where F is the force in newtons and k is the spring constant in newtons per
meter. The potential energy stored in the compressed spring is given by the
equation

(2-19)

where E is the energy in joules. The following information is available for
four springs:

Spring 1 Spring 2 Spring 3 Spring 4

Force (N) 20 30 25 20

Spring constant k (N/m) 200 250 300 400

E 5
1

2
kx2

cosh x 5
ex 1 e2x

2

Figure 2.17 Voltage and current in a resistor.
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+
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Figure 2.18 A simplified version of the front end of an AM radio receiver.

Determine the compression of each spring, and the potential energy stored
in each spring. Which spring has the most energy stored in it?

2.17 Radio Receiver A simplified version of the front end of an AM radio
receiver is shown in Figure 2.18. This receiver consists of an RLC tuned cir-
cuit containing a resistor, a capacitor, and an inductor connected in series.
The RLC circuit is connected to an external antenna and ground as shown
in the picture.

The tuned circuit allows the radio to select a specific station out of all
the stations transmitting on the AM band. At the resonant frequency of the
circuit, essentially all of the signal V0 appearing at the antenna appears
across the resistor, which represents the rest of the radio. In other words, the
radio receives its strongest signal at the resonant frequency. The resonant
frequency of the LC circuit is given by the equation

(2-20)

where L is inductance in henrys (H) and C is capacitance in farads (F).
Write a program that calculates the resonant frequency of this radio set
given specific values of L and C. Test your program by calculating the fre-
quency of the radio when L � 0.25 mH and C � 0.10 nF. 

2.18 Radio Receiver The average (rms) voltage across the resistive load in
Figure 2.18 varies as a function of frequency according to Equation (2-21).

(2-21)VR 5
R

BR2 1 avL 2
1
vCb2

V0

ƒ0 5
1

2p!LC
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where v � 2�f and f is the frequency in hertz. Assume that L � 0.25 mH,
C � 0.10 nF, R � 50 	, and V0 � 10 mV.

(a) Plot the rms voltage on the resistive load as a function of frequency.
At what frequency does the voltage on the resitive load peak? What is
the voltage on the load at this frequency? This frequency is called the
resonant frequency f0 of the circuit.

(b) If the frequency is changed to 10% greater than the resonant frequency,
what is the voltage on the load? How selective is this radio receiver?

(c) At what frequencies will the voltage on the load drop to half of the
voltage at the resonant frequency?

2.19 Suppose two signals were received at the antenna of the radio receiver
described in the previous problem. One signal has a strength of 1 V at a fre-
quency of 1000 kHz, and the other signal has a strength of 1 V at 950 kHz.
Calculate the voltage VR that will be received for each of these signals. How
much power will the first signal supply to the resistive load R? How much
power will the second signal supply to the resistive load R? Express the
ratio of the power supplied by signal 1 to the power supplied by signal 2 in
decibels (see Problem 2.12 above for the definition of a decibel). How
much is the second signal enhanced or suppressed compared to the first sig-
nal? (Note: The power supplied to the resistive load can be calculated from
the equation ).

2.20 Aircraft Turning Radius An object moving in a circular path at a constant
tangential velocity v is shown in Figure 2.19 (see on page 86). The radial
acceleration required for the object to move in the circular path is given by
the Equation (2-22)

(2-22)

where a is the centripetal acceleration of the object in m/s2, v is the tangential
velocity of the object in m/s, and r is the turning radius in meters. Suppose that
the object is an aircraft, and answer the following questions about it:

(a) Suppose that the aircraft is moving at Mach 0.85, or 85% of the speed
of sound. If the centripetal acceleration is 2 g, what is the turning
radius of the aircraft? (Note: For this problem, you may assume that
Mach 1 is equal to 340 m/s, and that 1 g � 9.81 m/s2).

(b) Suppose that the speed of the aircraft increases to Mach 1.5. What is
the turning radius of the aircraft now?

(c) Plot the turning radius as a function of aircraft speed for speeds
between Mach 0.5 and Mach 2.0, assuming that the acceleration
remains 2 g.

(d) Suppose that the maximum acceleration that the pilot can stand is
7 g. What is the minimum possible turning radius of the aircraft at
Mach 1.5?

a 5
v 2

r

P 5 V 2
R/R



(e) Plot the turning radius as a function of centripetal acceleration for
accelerations between 2 g and 8 g, assuming a constant speed of
Mach 0.85.
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Figure 2.19 An object moving in uniform circular motion due to the centripetal acceleration a.



C H A P T E R 3
Branching
Statements and
Program Design

In the previous chapter, we developed several complete working MATLAB pro-
grams. However, all of the programs were very simple, consisting of a series of
MATLAB statements that were executed one after another in a fixed order. Such
programs are called sequential programs.They read input data, process it to pro-
duce a desired answer, print out the answer, and quit.There is no way to repeat
sections of the program, and there is no way to selectively execute only certain
portions of the program depending on values of the input data.

In the next two chapters, we will introduce a number of MATLAB state-
ments that allow us to control the order in which statements are executed in a
program. There are two broad categories of control statements: branches,
which select specific sections of the code to execute and loops, which cause
specific sections of the code to be repeated. Branches are discussed in this chap-
ter, and loops are discussed in Chapter 4.

With the introduction of branches and loops, our programs are going to
become more complex, and it will get easier to make mistakes.To help avoid pro-
gramming errors, we will introduce a formal program design procedure based
upon the technique known as top-down design.We will also introduce a com-
mon algorithm development tool known as pseudocode.

We will also study the MATLAB logical data type before discussing branches,
because branches are controlled by logical values and expressions.

3.1 Introduction to Top-Down Design Techniques

Suppose that you are an engineer working in industry and that you need to write
a program to solve a particular problem. How do you begin?

87
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When given a new problem, there is a natural tendency to sit down at a key-
board and start programming without “wasting” a lot of time thinking about the
problem first. It is often possible to get away with this “on-the-fly” approach to
programming for very small problems, such as many of the examples in this
book. In the real world, however, problems are larger, and a programmer attempt-
ing this approach will become hopelessly bogged down. For larger problems, it
pays to completely think out the problem and the approach you are going to take
to it before writing a single line of code.

We will introduce a formal program design process in this section and then
apply that process to every major application developed in the remainder of the
book. For some of the simple examples that we will be doing, the design process
will seem like overkill. However, as the problems that we solve get larger and
larger, the process becomes more and more essential to successful programming.

When I was an undergraduate, one of my professors was fond of saying,
“Programming is easy. It’s knowing what to program that’s hard.” His point was
forcefully driven home to me after I left university and began working in industry on
larger-scale software projects. I found that the most difficult part of my job was to
understand the problem I was trying to solve. Once I really understood the problem,
it became easy to break the problem apart into smaller, more easily manageable
pieces with well-defined functions, and then to tackle those pieces one at a time.

Top-down design is the process of starting with a large task and breaking it
down into smaller, more easily understandable pieces (sub-tasks) which perform
a portion of the desired task. Each sub-task may in turn be subdivided into smaller
sub-tasks if necessary. Once the program is divided into small pieces, each piece
can be coded and tested independently. We do not attempt to combine the sub-
tasks into a complete task until each of the sub-tasks has been verified to work
properly by itself.

The concept of top-down design is the basis of our formal program design
process. We now introduce the details of the process, which is illustrated in Fig-
ure 3.1. The steps involved are as follows.

1. Clearly state the problem that you are trying to solve.
Programs are usually written to fill some perceived need, but that need
may not be articulated clearly by the person requesting the program.
For example, a user may ask for a program to solve a system of simul-
taneous linear equations. This request is not clear enough to allow a
programmer to design a program to meet the need; he or she must first
know much more about the problem to be solved. Is the system of
equations to be solved real or complex? What is the maximum number
of equations and unknowns that the program must handle? Are there
any symmetries in the equations which might be exploited to make the
task easier? The program designer will have to talk with the user
requesting the program, and the two of them will have to come up with
a clear statement of exactly what they are trying to accomplish. A clear
statement of the problem will prevent misunderstandings, and it will
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also help the program designer to properly organize his or her thoughts.
In the example we were describing, a proper statement of the problem
might have been:

Design and write a program to solve a system of simultaneous linear
equations having real coefficients and with up to 20 equations in 20
unknowns.

Start

State the problem you
are trying to solve

Define required inputs
and outputs

Decomposition

Stepwise refinement

Top-down design process
Convert algorithms into
MATLAB statements

Design the algorithm

Test the resulting
MATLAB program

Finished!

Figure 3.1 The program design process used in this book.



2. Define the inputs required by the program and the outputs to be pro-
duced by the program.
The inputs to the program and the outputs to be produced by the program
must be specified so that the new program will properly fit into the overall
processing scheme. In the preceding example, the coefficients of the
equations to be solved are probably in some preexisting order, and our
new program needs to be able to read them in that order. Similarly, it
needs to produce the answers required by the programs that may follow it
in the overall processing scheme, and to write out those answers in the
format needed by the programs following it.

3. Design the algorithm that you intend to implement in the program.
An algorithm is a step-by-step procedure for finding the solution to a
problem. It is at this stage in the process that top-down design techniques
come into play. The designer looks for logical divisions within the prob-
lem and divides it up into sub-tasks along those lines. This process is
called decomposition. If the sub-tasks are themselves large, the designer
can break them up into even smaller sub-sub-tasks. This process contin-
ues until the problem has been divided into many small pieces, each of
which does a simple, clearly understandable job.

After the problem has been decomposed into small pieces, each piece
is further refined through a process called stepwise refinement. In step-
wise refinement, a designer starts with a general description of what the
piece of code should do and then defines the functions of the piece in
greater and greater detail until they are specific enough to be turned into
MATLAB statements. Stepwise refinement is usually done with
pseudocode, which is described in the next section.

It is often helpful to solve a simple example of the problem by hand
during the algorithm development process. If the designer understands the
steps that he or she went through in solving the problem by hand, then he
or she will be in better able to apply decomposition and stepwise refine-
ment to the problem.

4. Turn the algorithm into MATLAB statements.
If the decomposition and refinement process was carried out properly, this
step will be very simple. All the programmer will have to do is to replace
pseudocode with the corresponding MATLAB statements on a one-for-
one basis.

5. Test the resulting MATLAB program.
This step is the real killer. The components of the program must first be test-
ed individually, if possible, and then the program as a whole must be tested.
When testing a program, we must verify that it works correctly for all legal
input data sets. It is very common for a program to be written, tested with
some standard data set, and released for use, only to find that it produces the
wrong answers (or crashes) with a different input data set. If the algorithm
implemented in a program includes different branches, we must test all of the
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possible branches to confirm that the program operates correctly under every
possible circumstance.

Large programs typically go through a series of tests before they are released
for general use (see Figure 3.2). The first stage of testing is sometimes called unit
testing. During unit testing, the individual sub-tasks of the program are tested sep-
arately to confirm that they work correctly. After the unit testing is completed, the
program goes through a series of builds during which the individual sub-tasks are
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Figure 3.2 A typical testing process for a large program. 



combined to produce the final program. The first build of the program typically
includes only a few of the sub-tasks. It is used to check the interactions among those
sub-tasks and the functions performed by the combinations of the sub-tasks. In suc-
cessive builds, more and more sub-tasks are added, until the entire program is com-
plete. Testing is performed on each build, and any errors (bugs) that are detected are
corrected before moving on to the next build.

Testing continues even after the program is complete. The first complete ver-
sion of the program is usually called the alpha release. It is exercised by the pro-
grammers and others very close to them in as many different ways as possible, and
the bugs discovered during the testing are corrected. When the most serious bugs
have been removed from the program, a new version called the beta release is pre-
pared. The beta release is normally given to “friendly” outside users who have a
need for the program in their normal day-to-day jobs. These users put the program
through its paces under many different conditions and with many different input
data sets, and they report any bugs that they find to the programmers. When those
bugs have been corrected, the program is ready to be released for general use.

Because the programs in this book are fairly small, we will not go through
the sort of extensive testing described in the preceding text. However, we will fol-
low the basic principles in testing all of our programs.

The program design process may be summarized as follows:

1. Clearly state the problem that you are trying to solve.
2. Define the inputs required by the program and the outputs to be produced

by the program.
3. Design the algorithm that you intend to implement in the program.
4. Turn the algorithm into MATLAB statements.
5. Test the MATLAB program.

✷ Good Programming Practice:

Follow the steps of the program design process to produce reliable, understand-
able MATLAB programs.

In a large programming project, the time actually spent programming is
surprisingly small. In his book The Mythical Man-Month1, Frederick P. Brooks,
Jr. suggests that in a typical large software project, one-third of the time is spent
planning what to do (steps 1 through 3), one-sixth of the time is spent actually
writing the program (step 4), and fully one-half of the time is spent in testing and
debugging the program! Clearly, anything that we can do to reduce the testing
and debugging time will be very helpful. We can best reduce the testing and
debugging time by doing a very careful job in the planning phase and by using
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good programming practices. Good programming practices will reduce the number
of bugs in the program and will make the ones that do creep in easier to find.

3.2 Use of Pseudocode

As a part of the design process, it is necessary to describe the algorithm that you
intend to implement. The description of the algorithm should be in a standard
form that is easy for both you and other people to understand, and the description
should aid you in turning your concept into MATLAB code. The standard forms
that we use to describe algorithms are called constructs (or sometimes struc-
tures), and an algorithm described using these constructs is called a structured
algorithm. When the algorithm is implemented in a MATLAB program, the
resulting program is called a structured program.

The constructs used to build algorithms can be described in a special way
called pseudocode. Pseudocode is a hybrid mixture of MATLAB and English. It
is structured like MATLAB, with a separate line for each distinct idea or segment
of code, but the descriptions on each line are in English. Each line of the
pseudocode should describe its idea in plain, easily understandable English.
Pseudocode is very useful for developing algorithms, since it is flexible and easy
to modify. It is especially useful since pseudocode can be written and modified
with the same editor or word processor used to write the MATLAB program—
no special graphical capabilities are required.

For example, the pseudocode for the algorithm in Example 1.3 is

Prompt user to enter temperature in degrees Fahrenheit
Read temperature in degrees Fahrenheit (temp_f)
temp_k in kelvins (5/9) * (temp_f - 32) + 273.15
Write temperature in kelvins

Notice that a left arrow ( ) is used instead of an equal sign (�) to indicate that
a value is stored in a variable, since this avoids any confusion between assignment
and equality. Pseudocode is intended to aid you in organizing your thoughts
before converting them into MATLAB code.

3.3 The Logical Data Type

The logical data type is a special type of data that can have one of only two
possible values: true or false. These values are produced by the two special
functions true and false. They are also produced by two types of MATLAB
operators: relational operators and logic operators.

Because logical values are stored in a single byte of memory, they take up
much less space than numbers, which usually occupy 8 bytes.

The operation of many MATLAB branching constructs is controlled by logical
variables or expressions. If the result of a variable or expression is true, then one sec-
tion of code is executed. If not, then a different section of code is executed.

d

d
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To create a logical variable, just assign a logical value it to in an assign-
ment statement. For example, the statement

a1 = true;

creates a logical variable a1 containing the logical value true. If this variable is
examined with the whos command, we can see that it has the logical data type.

» whos a1
Name Size Bytes  Class
a1        1x1 1  logical array

Unlike programming languages such as Java, C++, and Fortran, it is legal in
MATLAB to mix numerical and logical data in expressions. If a logical value is
used in a place where a numerical value is expected, true values are converted
to 1 and false values are converted to 0 and then used as numbers. If a numer-
ical value is used in a place where a logical value is expected, nonzero values are
converted to true and 0 values are converted to false and then used as logi-
cal values.

It is also possible to explicitly convert numerical values to logical values and
vice versa. The logical function converts numerical data to logical data, and
the real function converts logical data to numerical data.

3.3.1 Relational Operators

Relational operators are operators with two numerical or string operands that
yield a logical result, depending on the relationship between the two operands.
The general form of a relational operator is

a1 op a2

where a1 and a2 are arithmetic expressions, variables, or strings, and op is one of
the operators given in Table 3.1.

Table 3.1 Relational Operators

Operator Operation

== Equal to

~= Not equal to

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to
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If the relationship between a1 and a2 expressed by the operator is true, then the
operation returns a true value; otherwise, the operation returns false.

Some relational operations and their results are given here:

The last relational operation is true because characters are evaluated in alphabet-
ical order.

Note that both true and 1 are shown as the result of true operations, and both
false and 0 are shown as the result of false operations. MATLAB is a bit schiz-
ophrenic about how the results of logical operations are displayed. When a rela-
tional operator is evaluated in the Command Window, the result of the operation
will be displayed as a 0 or a 1. When it is displayed in the Workspace Browser, the
same value will be show as false or true (see Figure 3.3 on page 96).

Relational operators may be used to compare a scalar value with an array. For

example, if and b = 0, then the expression a > b will yield the

logical array (shown as in the Command Window).

Relational operators may also be used to compare two arrays, as long as both

arrays have the same size. For example, if and b � ,

then the expression a >= b will yield the  logical array 

(shown as  in the Command Window). If the arrays have different sizes,

a runtime error will result.
Note that since strings are really arrays of characters, relational operators

can compare two strings only if they are of equal lengths. If they are of unequal
lengths, the comparison operation will produce an error. We will learn of a more
general way to compare strings in Chapter 6.

The equivalence relational operator is written with two equal signs, while the
assignment operator is written with a single equal sign. These are very different
operators that beginning programmers often confuse. The == symbol is a
comparison operation that returns a logical result, while the = symbol assigns the
value of the expression to the right of the equal sign to the variable on the left of

c1 0

1 1
d

ctrue false

true true
d

c 0 2

22 21
da 5 c 1 0

22 1
d

c1 0

0 1
dc true false

false true
d

a 5 c 1 0

22 1
d

Operation Result

3 < 4 true (1)

3 <= 4 true (1)

3 == 4 false (0)

3 > 4 false (0)

4 <= 4 true (1)

'A' < 'B' true (1)
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the equal sign. It is a very common mistake for beginning programmers to use a
single equal sign when trying to do a comparison.

�Programming Pitfalls:

Be careful not to confuse the equivalence relational operator (==) with the
assignment operator (=).

In the hierarchy of operations, relational operators are evaluated after all
arithmetic operators have been evaluated. Therefore, the following two expres-
sions are equivalent (both are true).

7 + 3  <  2 + 11
(7 + 3) < (2 + 11)
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Figure 3.3 The result of a relational operator is a true or false value that can be stored in a logical
variable. In the example shown here, the result of the operator 10 > 5 is displayed as a 1
on the Command Window, and as a true in the Workspace Browser.



3.3.2 A Caution About the == and ~= Operators

The equivalence operator (==) returns a true value (1) when the two values
being compared are equal, and a false (0) when the two values being compared
are different. Similarly, non-equivalence operator (~=) returns a false (0) when
the two values being compared are equal, and a true (1) when the two values
being compared are different. These operators are generally safe to use for com-
paring strings, but they can sometimes produce surprising results when two
numeric values are compared. Due to roundoff errors during computer calcula-
tions, two theoretically equal numbers can differ slightly, causing an equality or
inequality test to fail.

For example, consider the following two numbers, both of which should be
equal to 0.

a = 0;
b = sin(pi);

Since these numbers are theoretically the same, the relational operation a == b
should produce a 1. In fact, the results of this MATLAB calculation are

» a = 0;
» b = sin(pi);
» a == b
ans =

0

MATLAB reports that a and b are different because a slight roundoff error in the
calculation of sin(pi) makes the result 1.2246 � 10�16 instead of exactly zero.
The two theoretically equal values differ slightly due to roundoff error!

Instead of comparing two numbers for exact equality, you should set up your
tests to determine if the two numbers are nearly equal to each other within some
accuracy that takes into account the roundoff error expected for the numbers
being compared. The test

» abs(a – b) < 1.0E-14
ans =

1

produces the correct answer, despite the roundoff error in calculating b.

✷ Good Programming Practice:

Be cautious about testing for equality with numeric values, since roundoff errors
may cause two variables that should be equal to fail a test for equality. Instead,
test to see if the variables are nearly equal within the roundoff error to be
expected on the computer you are working with.
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3.3.3 Logic Operators

Logic operators are operators with one or two logical operands that yield a logi-
cal result. There are five binary logic operators—AND (& and &&), inclusive OR
(| and ||), and exclusive OR (xor)—and one unary operator—NOT (~). The
general form of a binary logic operation is

l1 op l2

and the general form of a unary logic operation is

op l1

where l1 and l2 are expressions or variables and op is one of the following logic
operators shown in Table 3.2. If the relationship between l1 and l2 expressed by
the operator is true, then the operation returns a value of true (displayed as 1
in the Command Window); otherwise, the operation returns a value of false
(0 in the Command Window).

The results of the operators are summarized in truth tables, which show the
result of each operation for all possible combinations of l1 and l2. Table 3.3 shows
the truth tables for all logic operators.

Logical ANDs
The result of an AND operator is true if and only if both input operands are true.
If either or both operands are false, the result is false, as shown in Table 3.3.
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Table 3.2 Logic Operators

Operator Operation

& Logical AND

&& Logical AND with shortcut evaluation

| Logical Inclusive OR

|| Logical Inclusive OR with shortcut evaluation

xor Logical Exclusive OR

~ Logical NOT

Table 3.3 Truth Tables for Logic Operators

Inputs and or xor not

l1 l2 l1 & l2 l1 && l2 l1 | l2 l1 || l2 xor(l1, l2) ~l1

false false false false false false false true

false true false false true true true true

true false false false true true true false

true true true true true true false false



Note that there are two logical AND operators: && and &. Why are there two
AND operators, and what is the difference between them? The basic difference
between && and & is that && supports short-circuit evaluations (or partial evalu-
ations), while & doesn’t. That is, && will evaluate expression l1 and immediately
return a false value if l1 is false. If l1 is false, the operator never evaluates
l2, because the result of the operator will be false regardless of the value of l2.
In contrast, the & operator always evaluates both l1 and l2 before returning
an answer.

A second difference between && and & is that && works only between scalar
values, while & works with either scalar or array values, as long as the sizes of the
arrays are compatible.

When should you use && and when should you use & in a program? Most of
the time, it doesn’t matter which AND operation is used. If you are comparing
scalars and it is not necessary to always evaluate l2, then use the && operator. The
partial evaluation will make the operation faster in the cases where the first
operand is false.

Sometimes it is important to use shortcut expressions. For example, suppose
that we wanted to test for the situation where the ratio of two variables a and b is
greater than 10. The code to perform this test is

x = a/b > 10.0

This code normally works fine, but what about the case where b is zero? In that
case, we would be dividing by zero, which produces an Inf instead of a number.
The test could be modified to avoid this problem as follows:

x = (b ~= 0) && (a/b > 10.0)

This expression uses partial evaluation, so if b = 0, the expression a/b > 10.0
will never be evaluated, and no Inf will occur.

✷ Good Programming Practice:

Use the &AND operator if it is necessary to ensure that both operands are eval-
uated in an expression or if the comparison is between arrays. Otherwise, use
the &&AND operator, since the partial evaluation will make the operation faster
in the cases where the first operand is false. The & operator is preferred in
most practical cases.

Logical Inclusive ORs
The result of an inclusive OR operator is true if either of the input operands are
true. If both operands are false, the result is false, as shown in Table 3.3.

Note that there are two inclusive OR operators: || and |. Why are there two
inclusive OR operators, and what is the difference between them? The basic
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difference between || and | is that || supports partial evaluations, while |
doesn’t. That is, || will evaluate expression l1 and immediately return a true
value if l1 is true. If l1 is true, the operator never evaluates l2, because the result
of the operator will be true regardless of the value of l2. In contrast, the | opera-
tor always evaluates both l1 and l2 before returning an answer.

A second difference between || and | is that || works only between scalar
values, while | works with either scalar or array values, as long as the sizes of the
arrays are compatible.

When should you use || and when should you use | in a program? Most of
the time, it doesn’t matter which OR operation is used. If you are comparing scalars
and it is not necessary to always evaluate l2, use the || operator. The partial evalu-
ation will make the operation faster in the cases where the first operand is true.

✷ Good Programming Practice:

Use the | inclusive OR operator if it is necessary to ensure that both operands
are evaluated in an expression or if the comparison is between arrays.
Otherwise, use the || operator, since the partial evaluation will make the oper-
ation faster in the cases where the first operand is true. The | operator is pre-
ferred in most practical cases.

Logical Exclusive OR
The result of an exclusive OR operator is true if and only if one operand is true
and the other one is false. If both operands are true or both operands are
false, then the result is false, as shown in Table 3.3. Note that both operands
must always be evaluated in order to calculate the result of an exclusive OR.

The logical exclusive OR operation is implemented as a function. For example,

a = 10;
b = 0;
x = xor(a, b);

This result is true. The value of a is nonzero, so it will be converted to true.
The value of b is zero, so it will be converted to false. Therefore, the result of
the xor operation will be true.

Logical NOT
The NOT operator is a unary operator, having only one operand. The result of a
NOT operator is true if its operand is false and false if its operand is
true, as shown in Table 3.3.

Using Numeric Data with Logic Operators
Real numeric data can also be used with logic operators. Since logic operators
expect logical input values, MATLAB converts nonzero values to true and zero
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values to false before performing the operation. Thus, the result of ~5 is
false (0 in the Command Window) and the result of ~0 is true (1 in the
Command Window).

Logic operators may be used to compare a scalar value with an array. For 

example, if and b � false, then the expression 

a & b will yield the result (displayed as in the 

Command Window). Logic operators may also be used to compare two arrays, as 

long as both arrays have the same size. For example, if 

and then the expression a | b will yield the result 

(displayed as in the Command Window). If the arrays 

have different sizes, a runtime error will result.
Logic operators may not be used with complex or imaginary numeric data.

For example, an expression such as “2i & 2i” will produce an error when it is
evaluated.

Hierarchy of Operations
In the hierarchy of operations, logic operators are evaluated after all arithmetic
operations and all relational operators have been evaluated. The order in which
the operators in an expression are evaluated is as follows:

1. All arithmetic operators are evaluated first in the order previously
described.

2. All relational operators (==, ~=, >, >=, <, <=) are evaluated, working
from left to right.

3. All ~ operators are evaluated.
4. All & and && operators are evaluated, working from left to right.
5. All |, ||, and xor operators are evaluated, working from left to right.

As with arithmetic operations, parentheses can be used to change the default
order of evaluation. Examples of some logic operators and their results follow.

�

Example 3.1

Assume that the following variables are initialized with the values shown, and
calculate the result of the specified expressions:

value1 = true
value2 = false
value3 = 1

c1 1

0 1
dc true true

false true
d

b 5 c true true

false false
d ,

a 5 c true false

false true
d

c0 0

0 0
dcfalse false

false false
d

a 5 c true false

false true
d
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value4 = -10
value5 = 0
value6 = [1 2; 0 1]

Expression Result Comment

(a) ~value1 false

(b) ~value3 false The number 1 is converted to true before the
operation is applied.

(c) value1 | value2 true

(d ) value1 & value2 false

(e) value4 & value5 false –10 is converted to true and 0 is converted to
false before the operation is applied.

( f ) ~(value4 & value5) true –10 is converted to true and 0 is converted to
false before the operation is applied.

(g) value1 + value4 �9 value1 is converted to the number 1 before the
addition is performed.

(h) value1 + (~value4) 1 The logical value1 is converted to the number 1
before the addition is performed. The number 
value4 is converted to true before the NOT is 
performed. Then ~value4 is evaluated to be 
false. This false value is converted to 0 before 
the addition, so the final result is 1 � 0 � 1.

(i) value3 && value6 Illegal The && operator must be used with scalar operands.

( j) value3 & value6 This operation is an AND between a scalar and an 
array operand.

�

The ~ operator is evaluated before other logic operators. Therefore, the
parentheses in part ( f ) of the preceding example were required. If they had been
absent, the expression in part ( f ) would have been evaluated in the order
(~value4) & value5.

3.3.4 Logical Functions

MATLAB includes a number of logical functions that return true whenever the
condition they test for is true, and false whenever the condition they test for is
false. These functions can be used with relational and logic operator to control the
operation of branches and loops.

A few of the more important logical functions are given in Table 3.4.

c true true

false true
d
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Quiz 3.1

This quiz provides a quick check to see if you have understood the con-
cepts introduced in Section 3.3. If you have trouble with the quiz, reread
the sections, ask your instructor, or discuss the material with a fellow
student. The answers to this quiz are found in the back of the book.

Assume that a, b, c, and d are as defined, and evaluate the following
expressions.

a = 20; b = -2;
c = 0; d = 1;

1. a > b

2. b > d

3. a > b && c > d

4. a == b

5. a && b > c

6. ~~b

Assume that a, b, c, and d are as defined, and evaluate the following
expressions.

a = 2;

7. ~(a > b)

8. a > c && b > c

9. c <= d

10. logical(d)

d 5 c22 1 2

0 1 0
d;c 5 c0 1

2 0
d;

b 5 c1 22

0 10
d;
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Table 3.4 Selected MATLAB Logical Functions

Function Purpose

ischar(a) Returns true if a is a character array and false otherwise.

isempty(a) Returns true if a is an empty array and false otherwise.

isinf(a) Returns true if the value of a is infinite (Inf) and false otherwise.

isnan(a) Returns true if the value of a is NaN (not a number) and false otherwise.

isnumeric(a) Returns true if a is a numeric array and false otherwise.

logical Converts numerical values to logical values: if a value is nonzero, it is converted to
true. If it is zero, it is converted to false.



11. a * b > c

12. a * (b > c)

Assume that a, b, c, and d are as defined. Explain the order in which
each of the following expressions are evaluated, and specify the results
in each case:

a = 2; b = 3;
c = 10; d = 0;

13. a*b^2 > a*c

14. d || b > a

15. (d | b) > a

Assume that a, b, c, and d are as defined, and evaluate the following
expressions.

a = 20; b = -2;
c = 0; d = 'Test';

16. isinf(a/b)

17. isinf(a/c)

18. a > b && ischar(d)

19. isempty(c)

20. (~a) & b

21. (~a) + b

3.4 Branches

Branches are MATLAB statements that permit us to select and execute specific
sections of code (called blocks) while skipping other sections of code. They are vari-
ations of the if construct, the switch construct, and the try/catch construct.

3.4.1 The if Construct

The if construct has the form

if control_expr_1
Statement 1
Statement 2 Block 1
...

elseif control_expr_2
Statement 1
Statement 2 Block 2
...
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else
Statement 1
Statement 2 Block 3
...

end

where the control expressions are logical expressions that control the operation of
the if construct. If control_expr_1 is true (nonzero), then the program executes the
statements in Block 1 and skips to the first executable statement following the end.
Otherwise, the program checks for the status of control_expr_2. If control_expr_2
is true (nonzero), then the program executes the statements in Block 2 and skips to
the first executable statement following the end. If all control expressions are zero,
then the program executes the statements in the block associated with the else
clause.

There can be any number of elseif clauses (0 or more) in an if construct,
but there can be at most one else clause. The control expression in each clause
will be tested only if the control expressions in every clause above it in the
construct are false (0). Once one of the expressions proves to be true and the cor-
responding code block is executed, the program skips to the first executable state-
ment following the end. If all control expressions are false, then the program
executes the statements in the block associated with the else clause. If there is
no else clause, then execution continues after the end statement without
executing any part of the if construct.

Note that the MATLAB keyword end in this construct is completely differ-
ent from the MATLAB function end that we used in Chapter 2 to return the high-
est value of a given subscript. MATLAB tells the difference between these two
uses of end from the context in which the word appears within an M-file.

In most circumstances, the control expressions will be some combination of
relational and logic operators. As we learned earlier in this chapter, relational and
logic operators produce a true (1) when the corresponding condition is true and a
false (0) when the corresponding condition is false. When an operator is true, its
result is nonzero, and the corresponding block of code will be executed.

As an example of an if construct, consider the solution of a quadratic equa-
tion of the form

ax2 � bx � c � 0 (3-1)

The solution to this equation is

(3-2)

The term b2 � 4ac is known as the discriminant of the equation. If b2 � 4ac > 0,
then there are two distinct real roots to the quadratic equation. If b2 � 4ac � 0,
then there is a single repeated root to the equation, and if b2 � 4ac < 0, then there
are two complex roots to the quadratic equation.

Suppose that we wanted to examine the discriminant of a quadratic equation
and to tell a user whether the equation has two complex roots, two identical

x 5
2b 6 "b2 2 4ac

2a
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real roots, or two distinct real roots. In pseudocode, this construct would take
the form

if (b^2 - 4*a*c) < 0
Write msg that equation has two complex roots.

elseif (b**2 - 4.*a*c) == 0
Write msg that equation has two identical real roots.

else
Write msg that equation has two distinct real roots.

end

The MATLAB statements to do this are

if (b^2 - 4*a*c) < 0
disp('This equation has two complex roots.');

elseif (b^2 - 4*a*c) == 0
disp('This equation has two identical real roots.');

else
disp('This equation has two distinct real roots.');

end

For readability, the blocks of code within an if construct are usually indented
by two or three spaces, but this is not actually required.

✷ Good Programming Practice:

Always indent the body of an if construct by two or more spaces to improve
the readability of the code. Note that indentation is automatic if you use the
MATLAB editor to write your programs.

It is possible to write a complete if construct on a single line by separating
the parts of the construct by commas or semicolons. Thus the following two con-
structs are identical:

if x < 0
y = abs(x);

end

and

if x < 0; y = abs(x); end

However, this should be done only for very simple constructs.

3.4.2 Examples Using if Constructs

We will now look at two examples that illustrate the use of if constructs.
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Example 3.2—The Quadratic Equation

Write a program to solve for the roots of a quadratic equation, regardless of type.

SOLUTION We will follow the design steps outlined earlier in the chapter.

1. State the problem.
The problem statement for this example is very simple. We want to write
a program that will solve for the roots of a quadratic equation, whether
they are distinct real roots, repeated real roots, or complex roots.

2. Define the inputs and outputs.
The inputs required by this program are the coefficients a, b, and c of the
quadratic equation

ax2 � bx � c � 0 (3-1)

The output from the program will be the roots of the quadratic equation,
whether they are distinct real roots, repeated real roots, or complex
roots.

3. Design the algorithm.
This task can be broken down into three major sections, whose functions
are input, processing, and output:

Read the input data
Calculate the roots
Write out the roots

We will now break each of the foregoing major sections into smaller, more
detailed pieces. There are three possible ways to calculate the roots, depending on
the value of the discriminant, so it is logical to implement this algorithm with a
three-branched if construct. The resulting pseudocode is

Prompt the user for the coefficients a, b, and c.
Read a, b, and c
discriminant ← b^2 - 4 * a * c
if discriminant > 0

x1 ← ( -b + sqrt(discriminant) )/( 2 * a )
x2 ← ( -b - sqrt(discriminant) )/( 2 * a )
Write msg that equation has two distinct real roots.
Write out the two roots.

elseif discriminant == 0
x1 ← -b / ( 2 * a )
Write msg that equation has two identical real roots.
Write out the repeated root.

else
real_part ← -b / ( 2 * a )
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imag_part ← sqrt ( abs ( discriminant ) )/( 2 * a )
Write msg that equation has two complex roots.
Write out the two roots.

end

4. Turn the algorithm into MATLAB statements.
The final MATLAB code is as follows:

% Script file: calc_roots.m
%
% Purpose:
%   This program solves for the roots of a quadratic equation
%   of the form a*x**2 + b*x + c = 0.  It calculates the answers
%   regardless of the type of roots that the equation possesses.
%
% Record of revisions:
%     Date       Programmer          Description of change
%     ====       ==========          =====================
%   01/12/07    S. J. Chapman       Original code
%
% Define variables:
%   a           -- Coefficient of x^2 term of equation
%   b           -- Coefficient of x term of equation
%   c           -- Constant term of equation
%   discriminant -- Discriminant of the equation
%   imag_part   -- Imag part of equation (for complex roots)
%   real_part   -- Real part of equation (for complex roots)
%   x1         -- First solution of equation (for real roots)
%   x2         -- Second solution of equation (for real roots)

% Prompt the user for the coefficients of the equation
disp ('This program solves for the roots of a quadratic ');
disp ('equation of the form A*X^2 + B*X + C = 0. ');
a = input ('Enter the coefficient A: ');
b = input ('Enter the coefficient B: ');
c = input ('Enter the coefficient C: ');

% Calculate discriminant
discriminant = b^2 - 4 * a * c;

% Solve for the roots, depending on the value of the discriminant
if discriminant > 0 % there are two real roots, so...

x1 = ( -b + sqrt(discriminant) )/( 2 * a );
x2 = ( -b - sqrt(discriminant) )/( 2 * a );
disp ('This equation has two real roots:');
fprintf ('x1 = %f\n', x1);
fprintf ('x2 = %f\n', x2);
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elseif discriminant == 0  % there is one repeated root, so...

x1 = ( -b )/( 2 * a );
disp ('This equation has two identical real roots:');
fprintf ('x1 = x2 = %f\n', x1);

else % there are complex roots, so ...

real_part = ( -b )/( 2 * a );
imag_part = sqrt ( abs ( discriminant ) )/( 2 * a );
disp ('This equation has complex roots:');
fprintf('x1 = %f +i %f\n', real_part, imag_part );
fprintf('x1 = %f -i %f\n', real_part, imag_part );

end

5. Test the program.
Next, we must test the program using real input data. Since there are three
possible paths through the program, we must test all three paths before we
can be certain that the program is working properly. From Equation (3-2),
it is possible to verify the solutions to the following equations:

x2 � 5x � 6 � 0 x � �2, and x � �3

x2 � 4x � 4 � 0 x � �2

x2 � 2x � 5 � 0 x � �1 � i2

If this program is executed three times with the foregoing coefficients, the
results are as follows (user inputs are shown in boldface):

» calc_roots
This program solves for the roots of a quadratic
equation of the form A*X^2 + B*X + C = 0.
Enter the coefficient A: 1
Enter the coefficient B: 5
Enter the coefficient C: 6
This equation has two real roots:
x1 = -2.000000
x2 = -3.000000
» calc_roots
This program solves for the roots of a quadratic
equation of the form A*X^2 + B*X + C = 0.
Enter the coefficient A: 1
Enter the coefficient B: 4
Enter the coefficient C: 4
This equation has two identical real roots:
x1 = x2 = -2.000000
» calc_roots
This program solves for the roots of a quadratic
equation of the form A*X^2 + B*X + C = 0.
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Enter the coefficient A: 1
Enter the coefficient B: 2
Enter the coefficient C: 5
This equation has complex roots:
x1 = -1.000000 +i 2.000000
x1 = -1.000000 -i 2.000000

The program gives the correct answers for our test data in all three possi-
ble cases.

�

�

Example 3.3—Evaluating a Function of Two Variables

Write a MATLAB program to evaluate a function f (x, y) for any two user-
specified values x and y. The function f (x, y) is defined as follows:

SOLUTION The function f(x, y) is evaluated differently depending on the signs of
the two independent variables x and y. To determine the proper equation to apply,
it will be necessary to check for the signs of the x and y values supplied by
the user.

1. State the problem.
This problem statement is very simple: Evaluate the function f(x, y) for
any user-supplied values of x and y.

2. Define the inputs and outputs.
The inputs required by this program are the values of the independent
variables x and y. The output from the program will be the value of the
function f(x, y).

3. Design the algorithm.
This task can be broken down into three major sections, whose functions
are input, processing, and output:

Read the input values x and y
Calculate f(x,y)
Write out f(x,y)

We will now break each of the foregoing major sections into smaller,
more detailed pieces. There are four possible ways to calculate the
function f(x, y), depending upon the values of x and y, so it is logical to

f sx, yd 5 μ
x 1 y x $ 0 and y $ 0

x 1 y2 x $ 0 and y , 0

x2 1 y x , 0 and y $ 0

x2 1 y2 x , 0 and y , 0
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implement this algorithm with a four-branched if statement. The result-
ing pseudocode is

Prompt the user for the values x and y.
Read x and y
if x ≥ 0 and y ≥ 0

fun x + y
elseif x ≥ 0 and y < 0

fun x + y^2
elseif x < 0 and y ≥ 0

fun x^2 + y
else

fun x^2 + y^2
end
Write out f(x,y)

4. Turn the algorithm into MATLAB statements.
The final MATLAB code is as follows:

% Script file: funxy.m
%
% Purpose:
%   This program solves the function f(x,y) for a
%   user-specified x and y, where f(x,y) is defined as:
%                
%               
%                x + y             x >= 0 and y >= 0
%                x + y^2           x >= 0 and y < 0
%      f(x,y) = x^2 + y           x < 0  and y >= 0
%                x^2 + y^2         x < 0  and y < 0
%               
%
% Record of revisions:
%     Date       Programmer          Description of change
%     ====       ==========          =====================
%   01/12/07    S. J. Chapman       Original code
%
% Define variables:
%   x     -- First independent variable
%   y     -- Second independent variable
%   fun  -- Resulting function

% Prompt the user for the values x and y
x = input ('Enter the x coefficient: ');
y = input ('Enter the y coefficient: ');

% Calculate the function f(x,y) based upon
% the signs of x and y.

d

d

d

d
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if x >= 0 && y >= 0
fun = x + y;

elseif x >= 0 && y < 0
fun = x + y^2;

elseif x < 0 && y >= 0
fun = x^2 + y;

else % x < 0 and y < 0, so
fun = x^2 + y^2;

end

% Write the value of the function.
disp (['The value of the function is ' num2str(fun)]);

5. Test the program.
Next, we must test the program using real input data. Since there are four
possible paths through the program, we must test all four paths before we
can be certain that the program is working properly. To test all four possi-
ble paths, we will execute the program with the four sets of input values
(x, y) � (2, 3), (2, –3), (–2, 3), and (–2, –3). Calculating by hand, we see that

If this program is compiled and then run four times with the foregoing
values, the results are as follows:

» funxy
Enter the x coefficient: 2
Enter the y coefficient: 3
The value of the function is 5
» funxy
Enter the x coefficient: 2
Enter the y coefficient: -3
The value of the function is 11
» funxy
Enter the x coefficient: -2
Enter the y coefficient: 3
The value of the function is 7
» funxy
Enter the x coefficient: -2
Enter the y coefficient: -3
The value of the function is 13

The program gives the correct answers for our test values in all four
possible cases.

�

ƒs22, 23d 5 s22d2 1 s23d2 5 13

 ƒs22, 3d 5 s22d2 1 3 5 7

 ƒs2, 23d 5 2 1 s23d2 5 11

 ƒs2, 3d 5 2 1 3 5 5
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3.4.3 Notes Concerning the Use of if Constructs

The if construct is very flexible. It must have one if statement and one end
statement. In between, it can have any number of elseif clauses, and may also
have one else clause. With this combination of features, it is possible to imple-
ment any desired branching construct.

In addition, if constructs may be nested. Two if constructs are said to be
nested if one of them lies entirely within a single code block of the other one. The
following two if constructs are properly nested.

if x > 0
...
if y < 0

...
end
...

end

The MATLAB interpreter always associates a given end statement with the
most recent if statement, so the first end in the preceding closes the if y < 0
statement, while the second end closes the if x > 0 statement. This works
well for a properly written program, but it can cause the interpreter to produce
confusing error messages in cases where the programmer makes a coding error.
For example, suppose that we have a large program containing a construct like
the one that follows.

...
if (test1)

...
if (test2)

...
if (test3)

...
end
...

end
...

end

This program contains three nested if constructs that may span hundreds of lines
of code. Now suppose that the first end statement is accidentally deleted during
an editing session. When that happens, the MATLAB interpreter will automati-
cally associate the second end with the innermost if (test3) construct and
the third end with the middle if (test2). When the interpreter reaches the
end of the file, it will notice that the first if (test1) construct was never
ended, and it will generate an error message saying that there is a missing end.
Unfortunately, it can’t tell where the problem occurred, so we will have to go back
and manually search the entire program to locate the problem.
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It is sometimes possible to implement an algorithm using either multiple
elseif clauses or nested if statements. In that case, a programmer may choose
whichever style he or she prefers.

�

Example 3.4—Assigning Letter Grades

Suppose that we are writing a program that reads in a numerical grade and assigns
a letter grade to it according to the following table:

95 < grade       A
86 < grade ≤ 95 B
76 < grade ≤ 86 C
66 < grade ≤ 76 D
0 < grade ≤ 66 F

Write an if construct that will assign the grades as previously described using
(a) multiple elseif clauses and (b) nested if constructs.

SOLUTION

(a) One possible structure using elseif clauses is

if grade > 95.0
disp('The grade is A.');

elseif grade > 86.0
disp('The grade is B.');

elseif grade > 76.0
disp('The grade is C.');

elseif grade > 66.0
disp('The grade is D.');

else
disp('The grade is F.');

end

(b) One possible structure using nested if constructs is

if grade > 95.0
disp('The grade is A.');

else
if grade > 86.0

disp('The grade is B.');
else

if grade > 76.0
disp('The grade is C.');

else
if grade > 66.0

disp('The grade is D.');
else

disp('The grade is F.');
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end
end

end
end

�

It should be clear from the preceding example that if there are a lot of mutu-
ally exclusive options, a single if construct with multiple elseif clauses will
be simpler than a nested if construct.

✷ Good Programming Practice:

For branches in which there are many mutually exclusive options, use a single if
construct with multiple elseif clauses in preference to nested if constructs.

3.4.4 The switch Construct

The switch construct is another form of branching construct. It permits a
programmer to select a particular code block to execute based on the value of a
single integer, character, or logical expression. The general form of a switch
construct is

switch (switch_expr)
case case_expr_1

Statement 1
Statement 2 Block 1
...

case case_expr_2
Statement 1
Statement 2 Block 2
...

...
otherwise

Statement 1
Statement 2 Block n
...

end

If the value of switch_expr is equal to case_expr_1, then the first code block will
be executed, and the program will jump to the first statement following the end
of the switch construct. Similarly, if the value of switch_expr is equal to
case_expr_2, then the second code block will be executed, and the program will
jump to the first statement following the end of the switch construct. The same
idea applies for any other cases in the construct. The otherwise code block is
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optional. If it is present, it will be executed whenever the value of
switch_expr is outside the range of all of the case selectors. If it is not pres-
ent and the value of switch_expr is outside the range of all of the case selec-
tors, then none of the code blocks will be executed. The pseudocode for the case
construct looks just like its MATLAB implementation.

If many values of the switch_expr should cause the same code to exe-
cute, all of those values may be included in a single block by enclosing them in
brackets, as shown in the following. If the switch expression matches any of the
case expressions in the list, then the block will be executed.

switch (switch_expr)
case {case_expr_1, case_expr_2, case_expr_3}

Statement 1
Statement 2 Block 1
...

otherwise
Statement 1
Statement 2 Block n
...

end

The switch_expr and each case_expr may be either numerical or string values.
Note that at most one code block can be executed. After a code block is exe-

cuted, execution skips to the first executable statement after the end statement.
Thus if the switch expression matches more than one case expression, only the
first one of them will be executed.

Let’s look at a simple example of a switch construct. The following state-
ments determine whether an integer between 1 and 10 is even or odd and then
print out an appropriate message. It illustrates the use of a list of values as case
selectors, as well as the use of the otherwise block.

switch (value)
case {1,3,5,7,9}

disp('The value is odd.');
case {2,4,6,8,10}

disp('The value is even.');
otherwise

disp('The value is out of range.');
end

3.4.5 The try/catch Construct

The try/catch construct is a special form of branching construct designed to
trap errors. Ordinarily, when a MATLAB program encounters an error while run-
ning, the program aborts. The try/catch construct modifies this default
behavior. If an error occurs in a statement in the try block of this construct, then
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instead of aborting, the code in the catch block is executed and the program
keeps running. This allows a programmer to handle errors within the program
without causing the program to stop.

The general form of a try/catch construct is as follows:

try
Statement 1
Statement 2 Try Block
...

catch
Statement 1
Statement 2 Catch Block
...

end

When a try/catch construct is reached, the statements in the try block of a
will be executed. If no error occurs, the statements in the catch block will be
skipped and execution will continue at the first statement following the end of the
construct. On the other hand, if an error does occur in the try block, the program
will stop executing the statements in the try block and immediately execute the
statements in the catch block.

An example program containing a try/catch construct follows. This pro-
gram creates an array and asks the user to specify an element of the array to
display. The user will supply a subscript number, and the program displays the
corresponding array element. The statements in the try block will always be
executed in this program, whereas the statements in the catch block will be exe-
cuted only if an error occurs in the try block.

% Initialize array
a = [ 1 -3 2 5];
try

% Try to display an element
index = input('Enter subscript of element to display: ');
disp( ['a(' int2str(index) ') = ' num2str(a(index))] );

catch
% If we get here an error occurred
disp( ['Illegal subscript: ' int2str(index)] );

end

When this program is executed, the results are

» try_catch
Enter subscript of element to display: 3
a(3) = 2
» try_catch
Enter subscript of element to display: 8
Illegal subscript: 8
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Quiz 3.2

This quiz provides a quick check to see if you have understood the con-
cepts introduced in Section 3.4. If you have trouble with the quiz,
reread the section, ask your instructor, or discuss the material with
a fellow student. The answers to this quiz are found in the back of
the book.

Write MATLAB statements that perform the functions described
in the following text.

1. If x is greater than or equal to zero, then assign the square root of x
to variable sqrt_x and print out the result. Otherwise, print out an
error message about the argument of the square root function, and set
sqrt_x to zero.

2. A variable fun is calculated as numerator/denominator. If
the absolute value of denominator is less than 1.0E-300, write
“Divide by 0 error.” Otherwise, calculate and print out fun.

3. The cost per mile for a rented vehicle is $1.00 for the first 100 miles,
$0.80 for the next 200 miles, and $0.70 for all miles in excess of
300 miles. Write MATLAB statements that determine the total cost
and the average cost per mile for a given number of miles (stored in
variable distance).

Examine the following MATLAB statements. Are they correct or incor-
rect? If they are correct, what do they output? If they are incorrect, what
is wrong with them?

4. if volts > 125
disp('WARNING: High voltage on line.');

if volts < 105
disp('WARNING: Low voltage on line.');

else
disp('Line voltage is within tolerances.');

end

5. color = 'yellow';
switch ( color )
case 'red',

disp('Stop now!');
case 'yellow',

disp('Prepare to stop.');
case 'green',

disp('Proceed through intersection.');
otherwise,

disp('Illegal color encountered.');
end
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6. if temperature > 37
disp('Human body temperature exceeded.');

elseif temperature > 100
disp('Boiling point of water exceeded.');

end

3.5 Additional Plotting Features

This section describes additional features of the simple two-dimensional plots
introduced in Chapter 2. These features permit us to control the range of x and y
values displayed on a plot, to lay multiple plots on top of each other, to create
multiple figures, to create multiple subplots within a figure, and to provide
greater control of the plotted lines and text strings. In addition, we will learn how
to create polar plots.

3.5.1 Controlling x- and y-Axis Plotting Limits

By default, a plot is displayed with x- and y-axis ranges wide enough to show
every point in an input data set. However, it is sometimes useful to display only
the subset of the data that is of particular interest. This can be done using the
axis command/function (see the Sidebar on page 120, about the relationship
between MATLAB commands and functions).

Some of the forms of the axis command/function are shown in Table 3.5.
The two most important forms are shown in bold type—they let a programmer get
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Table 3.5 Forms of the axis Function/Command

Command Description

v = axis; This function returns a 4-element row vector containing [xmin
xmax ymin ymax], where xmin, xmax, ymin, and ymax are
the current limits of the plot.

axis ([xmin xmax ymin ymax]); This function sets the x and y limits of the plot to the specified
values.

axis equal This command sets the axis increments to be equal on both axes.

axis square This command makes the current axis box square.

axis normal This command cancels the effect of axis equal and axis square.

axis off This command turns off all axis labeling, tick marks, and back-
ground.

axis on This command turns on all axis labeling, tick marks, and back-
ground (default case).



the current limits of a plot and modify them. A complete list of all options can be
found in the MATLAB on-line documentation.

To illustrate the use of axis, we will plot the function f(x) � sin x from 2p
to �2p, and then restrict the axes to the region to 0 � x � p and 0 � y � 1.
The statements to create this plot follow, and the resulting plot is shown in
Figure 3.4a.

x = -2*pi:pi/20:2*pi;
y = sin(x);
plot(x,y);
title ('Plot of sin(x) vs x');
grid on;
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Command/Function Duality

Some items in MATLAB seem to be unable to make up their minds whether they
are commands (words typed out on the command line) or functions (with argu-
ments in parentheses). For example, sometimes axis seems to behave like a
command and sometimes it seems to behave like a function. Sometimes we treat
it as a command: axis on, and other times we might treat it as a function:
axis([0 20 0 35]). How is this possible?

The short answer is that MATLAB commands are really implemented by
functions, and the MATLAB interpreter is smart enough to substitute the func-
tion call whenever it encounters the command. It is always possible to call the
command directly as a function instead of using the command syntax. Thus the
following two statements are identical:

axis on;
axis ('on');

Whenever MATLAB encounters a command, it forms a function from the
command by treating each command argument as a character string and call-
ing the equivalent function with those character strings as arguments. Thus
MATLAB interprets the command 

garbage 1 2 3

as the following function call:

garbage('1','2','3')

Note that only functions with character arguments can be treated as com-
mands. Functions with numerical arguments must be used in function form
only. This fact explains why axis is sometimes treated as a command and
sometimes treated as a function.
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(a)

Figure 3.4 (a) Plot of sin x versus x. (b) Closeup of the region [0 p 0 1].

(b)



The current limits of this plot can be determined from the basic axis function.

» limits=axis
limits =

-8  8  -1  1

These limits can be modified with the function call axis([0 pi 0 1]). After
that function is executed, the resulting plot is shown in Figure 3.4b.

3.5.2 Plotting Multiple Plots on the Same Axes

Normally, a new plot is created each time that a plot command is issued, and
the previous data are lost. This behavior can be modified with the hold command.
After a hold on command is issued, all additional plots will be laid on top of
the previously existing plots. A hold off command switches plotting behavior
back to the default situation, in which a new plot replaces the previous one.

For example, the following commands plot sin x and cos x on the same axes.
The resulting plot is shown in Figure 3.5.

x = -pi:pi/20:pi;
y1 = sin(x);
y2 = cos(x);
plot(x,y1,'b-');
hold on;
plot(x,y2,'k--');
hold off;
legend ('sin x','cos x');

122 | Chapter 3 Branching Statements and Program Design

Figure 3.5 Multiple curves plotted on a single set of axes using the hold command.



3.5.3 Creating Multiple Figures

MATLAB can create multiple Figure Windows, with different data displayed in
each window. Each Figure Window is identified by a figure number, which is a
small positive integer. The first Figure Window is Figure 1, the second is Figure 2,
and so forth. One of the Figure Windows will be the current figure, and all new
plotting commands will be displayed in that window.

The current figure is selected with the figure function. This function
takes the form “figure(n),” where n is a figure number. When this command
is executed, Figure n becomes the current figure and is used for all plotting com-
mands. The figure is automatically created if it does not already exist. The cur-
rent figure may also be selected by clicking on it with the mouse.

The function gcf returns the number of the current figure. This function can
be used by an M-file if it needs to know the current figure.

The following commands illustrate the use of the figure function. They cre-
ate two figures, displaying ex in the first figure and e�x in the second one.

figure(1)
x = 0:0.05:2;
y1 = exp(x);
plot(x,y1);
figure(2)
y2 = exp(-x);
plot (x,y2);

3.5.4 Subplots

It is possible to place more than one set of axes on a single figure, creating mul-
tiple subplots. Subplots are created with a subplot command of the form

subplot(m,n,p)

This command divides the current figure into m � n equal-sized regions,
arranged in m rows and n columns, and creates a set of axes at position p to
receive all current plotting commands. The subplots are numbered from left to
right and from top to bottom. For example, the command subplot(2,3,4)
would divide the current figure into six regions arranged in two rows and three
columns and would create an axis in position 4 (the lower left one) to accept new
plot data (see Figure 3.6 on page 124).

If a subplot command creates a new set of axes that conflict with a previ-
ously existing set, then the older axes are automatically deleted.

The commands that follow create two subplots within a single window and dis-
play the separate graphs in each subplot. The resulting figure is shown in Figure 3.7
(see on page 124).

figure(1)
subplot(2,1,1)
x = -pi:pi/20:pi;
y = sin(x);
plot(x,y);
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Figure 3.7 A figure containing two subplots.

Subplot generated in
position 4 (the lower
left hand corner)

Figure 3.6 The axis created by the subplot(2, 3, 4) command.



title('Subplot 1 title');
subplot(2,1,2)
x = -pi:pi/20:pi;
y = cos(x);
plot(x,y);
title('Subplot 2 title');

3.5.5 Enhanced Control of Plotted Lines

In Chapter 1 we learned how to set the color, style, and marker type for a line. It
is also possible to set four additional properties associated with each line:

� LineWidth—Specifies the width of each line in points.
� MarkerEdgeColor—Specifies the color of the marker or the edge

color for filled markers.
� MarkerFaceColor—Specifies the color of the face of filled markers.
� MarkerSize—Specifies the size of the marker in points.

These properties are specified in the plot command after the data to be plotted
in the following fashion:

plot(x,y,'PropertyName',value,...)

For example, the following command plots a 3-point wide solid black line with
6-point wide circular markers at the data points. Each marker has a red edge and
a green center, as shown in Figure 3.8.
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Figure 3.8 A plot illustrating the use of the LineWidth and Marker properties.



x = 0:pi/15:4*pi;
y = exp(2*sin(x));
plot(x,y,'-ko','LineWidth',3.0,'MarkerSize',6,...

'MarkerEdgeColor','r','MarkerFaceColor','g')

3.5.6 Enhanced Control of Text Strings

It is possible to enhance plotted text strings (titles, axis labels, etc.) with format-
ting such as boldface, italics, and so forth, and with special characters such as
Greek and mathematical symbols.

The font used to display the text can be modified by stream modifiers. A
stream modifier is a special sequence of characters that tells the MATLAB inter-
preter to change its behavior. The most common stream modifiers are

� \bf—Boldface.
� \it— Italics.
� \rm—Removes stream modifiers, restoring normal font.
� \fontname{fontname}—Specify the font name to use.
� \fontsize{fontsize}—Specify the font size.
� _{xxx}— The characters inside the braces are subscripts.
� ^{xxx}— The characters inside the braces are superscripts.

Once a stream modifier has been inserted into a text string, it will remain in effect
until the end of the string or until canceled. Any stream modifier can be followed
by braces {}. If a modifier is followed by braces, only the text within the braces
is affected.

Special Greek and mathematical symbols may also be used in text strings.
They are created by embedding escape sequences into the text string. These
escape sequences are the same as those defined in the TeX language. A sample of
the possible escape sequences is shown in Table 3.6; the full set of possibilities is
included in the MATLAB on-line documentation.

If one of the special escape characters \, {, }, _, or ^ must be printed, pre-
cede it by a backslash character.

The following examples illustrate the use of stream modifiers and special
characters.
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String Result

\tau_{ind} versus \omega_{\itm} versus vm

\theta varies from 0\circ to 90\circ u varies from 0° to 90°

\bf{B}_{\itS} BS


ind



3.5.7 Polar Plots

MATLAB includes a special function called polar, which plots data in polar
coordinates. The basic form of this function is

polar(theta,r)

where theta is an array of angles in radians, and r is an array of distances. It is
useful for plotting data that is intrinsically a function of angle.

�

Example 3.5—Cardioid Microphone

Most microphones designed for use on a stage are directional microphones,
which are specifically built to enhance the signals received from the singer in the
front of the microphone while suppressing the audience noise from behind the
microphone. The gain of such a microphone varies as a function of angle accord-
ing to the equation

(3-3)

where g is a constant associated with a particular microphone, and u is the angle
from the axis of the microphone to the sound source. Assume that g is 0.5 for

Gain 5 2gs1 1 cos ud
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Table 3.6 Selected Greek and Mathematical Symbols

Character Character Character
Sequence Symbol Sequence Symbol Sequence Symbol

\alpha a \int �

\beta b \cong �

\gamma g \Gamma � \sim �

\delta d \Delta � \infty �

\epsilon e \pm �

\eta h \leq �

\theta u \geq �

\lambda 
 \Lambda � \neq �

\mu � \propto �

\nu � \div �

\pi � \Pi � \circ �

\phi � \leftrightarrow

\rho � \leftarrow

\sigma � \Sigma � \rightarrow

\tau t \uparrow

\omega v \Omega \downarrow T	

c

S

d

4



a particular microphone, and make a polar plot of the gain of the microphone as a
function of the direction of the sound source.

SOLUTION We must calculate the gain of the microphone versus angle and then
plot it with a polar plot. The MATLAB code to do this is as follows:

% Script file: microphone.m
%
% Purpose:
%   This program plots the gain pattern of a cardioid
%   microphone.
%
% Record of revisions:
%      Date       Programmer          Description of change
%      ====       ==========          =====================
%    01/05/07    S. J. Chapman       Original code
%
% Define variables:
%   g        -- Microphone gain constant
%   gain     -- Gain as a function of angle
%   theta    -- Angle from microphone axis (radians)

% Calculate gain versus angle
g = 0.5;
theta = 0:pi/20:2*pi;
gain = 2*g*(1+cos(theta));

% Plot gain
polar (theta,gain,'r-');
title ('\bfGain versus angle \theta');

The resulting plot is shown in Figure 3.9 on page 129. Note that this type of micro-
phone is called a “cardioid microphone” because its gain pattern is heart-shaped.

�

�

Example 3.6—Electrical Engineering: Frequency Response of a Low-Pass Filter

A simple low-pass filter circuit is shown in Figure 3.10. This circuit consists of a
resistor and capacitor in series, and the ratio of the output voltage Vo to the input
voltage Vi is given by the equation 

(3-4)
Vo

Vi

5
1

1 1 j2pfRC
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where Vi is a sinusoidal input voltage of frequency f, R is the resistance in ohms,
C is the capacitance in farads, and j is (electrical engineers use j instead
of i for , because the letter i is traditionally reserved for the current in
a circuit).

Assume that the resistance R � 16 k	, and capacitance C � 1 mF, and plot
the amplitude and frequency response of this filter.

SOLUTION The amplitude response of a filter is the ratio of the amplitude of the
output voltage to the amplitude of the input voltage, and the phase response of
the filter is the difference between the phase of the output voltage and the phase

!21
!21
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Figure 3.9 Gain of a cardioid microphone.

Figure 3.10 A simple low-pass filter circuit.
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of the input voltage. The simplest way to calculate the amplitude and phase
response of the filter is to evaluate Equation 3-4 at many different frequencies.
The plot of the magnitude of Equation 3-4 versus frequency is the amplitude
response of the filter, and the plot of the angle of Equation 3-4 versus frequency
is the phase response of the filter.

Because the frequency and amplitude response of a filter can vary over a
wide range, it is customary to plot both of these values on logarithmic scales. On
the other hand, the phase varies over a very limited range, so it is customary to
plot the phase of the filter on a linear scale. Therefore, we will use a loglog plot
for the amplitude response, and a semilogx plot for the phase response of the
filter. We will display both responses as two subplots within a figure.

The MATLAB code required to create and plot the responses is as follows:

% Script file: plot_filter.m
%
% Purpose:
%    This program plots the amplitude and phase responses
%    of a low-pass RC filter.
%
% Record of revisions:
%      Date       Programmer          Description of change
%      ====       ==========          =====================
%    01/15/07    S. J. Chapman       Original code
%
% Define variables:
%   amp      -- Amplitude response
%   C         -- Capacitiance (farads)
%   f         -- Frequency of input signal (Hz)
%   phase    -- Phase response
%   R         -- Resistance (ohms)
%   res      -- Vo/Vi

% Initialize R & C
R = 16000;               % 16 k ohms
C = 1.0E-6;              % 1 uF

% Create array of input frequencies
f = 1:2:1000;

% Calculate response
res = 1 ./ ( 1 + j*2*pi*f*R*C );

% Calculate amplitude response
amp = abs(res);

% Calculate phase response
phase = angle(res);
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% Create plots
subplot(2,1,1);
loglog( f, amp );
title('Amplitude Response');
xlabel('Frequency (Hz)');
ylabel('Output/Input Ratio');
grid on;

subplot(2,1,2);
semilogx( f, phase );
title('Phase Response');
xlabel('Frequency (Hz)');
ylabel('Output-Input Phase (rad)');
grid on;

The resulting amplitude and phase responses are shown in Figure 3.11. Note that
this circuit is called a low-pass filter because low frequencies are passed through
with little attenuation, whereas high frequencies are strongly attenuated.

�
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Figure 3.11 The amplitude and phase response of the low-pass filter circuit.
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Example 3.7—Thermodynamics: The Ideal Gas Law

An ideal gas is one in which all collisions between molecules are perfectly
elastic. It is possible to think of the molecules in an ideal gas as perfectly hard
billiard balls that collide and bounce off of each other without losing kinetic
energy.

Such a gas can be characterized by three quantities: absolute pressure (P),
volume (V), and absolute temperature (T). The relationship among these quanti-
ties in an ideal gas is known as the Ideal Gas Law, as expressed in Equation (3-5):

PV � nRT (3-5)

where P is the pressure of the gas in kilopascals (kPa), V is the volume of the gas
in liters (L), n is the number of molecules of the gas in units of moles (mol), R is
the universal gas constant (8.314 L� kPa/mol � K), and T is the absolute tempera-
ture in kelvins (K). (Note: 1 mol � 6.02 � 1023 molecules)

Assume that a sample of an ideal gas contains 1 mole of molecules at a tem-
perature of 273 K, and answer the following questions.

(a) How does the volume of this gas vary as its pressure varies from 1 to
1000 kPa? Plot pressure versus volume for this gas on an appropriate set
of axes. Use a solid red line, with a width of two pixels.

(b) Suppose that the temperature of the gas is increased to 373 K. How does
the volume of this gas vary with pressure now? Plot pressure versus vol-
ume for this gas on an the same set of axes as part (a). Use a dashed blue
line, with a width of two pixels.

Include a bold face title and x- and y-axis labels on the plot, as well as leg-
ends for each line.

SOLUTION The values that we wish to plot both vary by a factor of 1000, so an
ordinary linear plot will not produce a useful plot. Therefore, we will plot the data
on a log-log scale.

Note that we must plot two curves on the same set of axes, so we must issue
the command hold on after the first one is plotted, and hold off after the
plot is complete. It will also be necessary to specify the color, style, and width of
each line, and to specify that labels be in bold face.

A program that calculates the volume of the gas as a function of pressure and
creates the appropriate plot is shown here. (Note that the special features control-
ling the style of the plot are shown in boldface.)

% Script file: ideal_gas.m
%
% Purpose:
%   This program plots the pressure versus volume of an
%   ideal gas.
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%
% Record of revisions:
%      Date       Programmer          Description of change
%      ====       ==========          =====================
%    01/16/07    S. J. Chapman       Original code
%
% Define variables:
%   n         -- Number of atoms (mol)
%   P         -- Pressure (kPa)
%   R         -- Ideal gas constant (L kPa/mol K)
%   T         -- Temperature (K)
%   V         -- volume (L)

% Initialize nRT
n = 1;                   % Moles of atoms
R = 8.314;              % Ideal gas constant
T = 273;                % Temperature (K)

% Create array of input pressures.  Note that this
% array must be quite dense to catch the major
% changes in volume at low pressures.
P = 1:0.1:1000;

% Calculate volumes
V = (n * R * T) ./ P;

% Create first plot
figure(1);
loglog( P, V, 'r-', 'LineWidth', 2 );
title('\bfVolume vs Pressure in an Ideal Gas');
xlabel('\bfPressure (kPa)');
ylabel('\bfVolume (L)');
grid on;
hold on;

% Now increase temperature
T = 373;                 % Temperature (K)

% Calculate volumes
V = (n * R * T) ./ P;

% Add second line to plot
figure(1);
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loglog( P, V, 'b--', 'LineWidth', 2 );
hold off;

% Add legend
legend('T = 273 K','T = 373 k');

The resulting volume versus pressure plot is shown in Figure 3.12.
�

3.5.8 Annotating and Saving Plots

Once a plot has been created by a MATLAB program, a user can edit and anno-
tate the plot using the GUI-based tools available from the plot toolbar. Figure 3.13
shows the tools available, which allow the user to edit the properties of any
objects on the plot or to add annotations to the plot. When the editing button 
( ) is selected from the toolbar, the editing tools become available for use.
When the button is depressed, clicking any line or text on the figure will cause it
to be selected for editing, and double-clicking the line or text will open a Property
Editor Window that allows you to modify any or all of the characteristics of that
object. Figure 3.14 shows Figure 3.12 after a user has clicked on the blue line to
change it to a 3-pixel-wide dashed line.

The figure toolbar also includes a Plot Browser button ( ). When this but-
ton is depressed, the Plot Browser is displayed. This tool gives the user complete
control over the figure. He or she can add axes, edit object properties, modify data
values, and add annotations such as lines and text boxes.
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Figure 3.12 Pressure versus volume for an ideal gas. 



Figure 3.13 The editing tools on the figure toolbar.  

Figure 3.14 Figure 3.12 after the blue line has been modified using the editing tools built into the
figure toolbar. 
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If it is not otherwise displayed, the user can enable a Plot Edit Toolbar by
selecting the “View/Plot Edit Toolbar” menu item. This toolbar allows a user to
add lines, arrows, text, rectangles, and ellipses to annotate and explain a plot.
Figure 3.15 shows a Figure Window with the Plot Edit Toolbar enabled.

Figure 3.16 shows the plot in Figure 3.12 after the Plot Browser and the Plot
Edit Toolbar have been enabled. In this figure, the user has used the controls on
the Plot Edit Toolbar to add an arrow and a comment to the plot.

When the plot has been edited and annotated, you can save the entire plot in
a modifiable form using the “File/Save As” menu item from the Figure Window.
The resulting figure file (*.fig) contains all the information required to re-
create the figure plus annotations at any time in the future.

Quiz 3.3

This quiz provides a quick check to see if you have understood the con-
cepts introduced in Section 3.5. If you have trouble with the quiz, reread
the section, ask your instructor, or discuss the material with a fellow stu-
dent. The answers to this quiz are found in the back of the book.

1. Write the MATLAB statements required to plot sin x versus cos 2x
from 0 to 2p in steps of p/10. The points should be connected by
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a 2-pixel-wide red line, and each point should marked with a 6-pixel-
wide blue circular marker.

2. Use the Figure Editing tools to change the markers on the previous
plot into black squares. Add an arrow and an annotation pointing to
the location x � p on the plot.

Write the MATLAB text string that will produce the following expressions:

3. f(x) � sin u cos 2f

4. Plot of versus x

Write the expression produced by the following text strings:

5. '\tau\it_{m}'

6. '\bf\itx_{1}^{2} + x_{2}^{2} \rm(units: \bfm^{2}\rm)'

7. How do you display the backslash (\) character in a text string?

gx2
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3.6 More on Debugging MATLAB Programs

It is much easier to make a mistake when writing a program containing branches
and loops than it is when writing simple sequential programs. Even after going
through the full design process, a program of any size is almost guaranteed not to
be completely correct the first time it is used. Suppose that we have built the pro-
gram and tested it, only to find that the output values are in error. How do we go
about finding the bugs and fixing them?

Once programs start to include loops and branches, the best way to locate an
error is to use the symbolic debugger supplied with MATLAB. This debugger is
integrated with the MATLAB editor.

To use the debugger, first open the file that you would like to debug using
the “File/Open” menu selection in the MATLAB Command Window. When the
file is opened, it is loaded into the editor and the syntax is automatically color-
coded. Comments in the file appear in green, variables and numbers appear in
black, character strings appear in red, and language keywords appear in blue.
Figure 3.17 shows an example Edit/Debug window containing the file
calc_roots.m.

Let’s say that we would like to determine what happens when the program is
executed. To do this, we can set one or more breakpoints by right-clicking the
mouse on the lines of interest and choosing the “Set/Clear Breakpoint” option.
When a breakpoint is set, a red dot appears to the left of that line containing the
breakpoint, as shown in Figure 3.18 (see on page 140).

Once the breakpoints have been set, execute the program as usual by typing
calc_roots in the Command Window. The program will run until it reaches
the first breakpoint and stop there. A green arrow will appear by the current line
during the debugging process, as shown in Figure 3.19 (see on page 141). When
the breakpoint is reached, the programmer can examine and/or modify any vari-
able in the workspace by typing its name in the Command Window. When the
programmer is satisfied with the program at that point, he or she can either step
through the program a line at a time by repeatedly pressing F10 or else run to the
next breakpoint by pressing F5. It is always possible to examine the values of any
variable at any point in the program.

When a bug is found, the programmer can use the Editor to correct the
MATLAB program and save the modified version to disk. Note that all break-
points may be lost when the program is saved to disk, so they may have to be set
again before debugging can continue. This process is repeated until the program
appears to be bug-free.

Two other very important features of the debugger are found in the “Debug”
menu. The first feature is “Set/Modify Conditional Breakpoint.” A conditional
breakpoint is a breakpoint at which the code stops only if some condition is true.
For example, a conditional breakpoint can be used to stop execution inside a for
loop on its 200th execution. This can be very important if a bug appears only after
a loop has been executed many times. The condition that causes the breakpoint to

138 | Chapter 3 Branching Statements and Program Design



stop execution can be modified, and the breakpoint can be enabled or disabled
during debugging.

The second feature is “Set Error Breakpoints for All Files.” If an error is
occurring in a program that causes it to crash or generate warning messages, the
programmer can turn this item on and execute the program. It will run to the point
of the error and stop there, allowing the programmer to examine the values of
variables and determine exactly what is causing the problem.

A final critical feature is found on the “Tools” menu. It is “Show M-Lint
Report.” M-Lint is a program that examines one or more M-files and reports any
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Figure 3.17 An Edit/Debug window with a MATLAB program loaded. 



examples of improper or questionable usage. It is a great tool for locating errors,
poor usage, or obsolete features in MATLAB code, including such things as vari-
ables that are defined but never used. You should always run M-Lint over your
programs when they are finished as a final check to ensure that everything has
been done properly.

Take some time now to become familiar with the Editor/Debugger and its
supporting tools—it is a very worthwhile investment.

140 | Chapter 3 Branching Statements and Program Design

Figure 3.18 The window after a breakpoint has been set. Note the red dot to the left of the line with
the breakpoint.



3.7 Summary

In Chapter 3 we have presented the basic types of MATLAB branches and the
relational and logic operations used to control them. The principal type of branch
is the if construct. This construct is very flexible. It can have as many elseif
clauses as needed to construct any desired test. Furthermore, if constructs can
be nested to produce more complex tests. A second type of branch is the switch
construct. It may be used to select among mutually exclusive alternatives
specified by a control expression. A third type of branch is the try/catch con-
struct. It is used to trap errors that might occur during execution.
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Figure 3.19 A green arrow will appear by the current line during the debugging process.



Chapter 3 also included additional information about plots. The axis com-
mand allows a programmer to select the specific range of x and y data to be plot-
ted. The hold command allows later plots to be plotted on top of earlier ones, so
that elements can be added to a graph a piece at a time. The figure command
allows the programmer to create and select among multiple Figure Windows, so
that a program can create multiple plots in separate windows. The subplot
command allows the programmer to create and select among multiple plots with-
in a single Figure Window.

In addition, we learned how to control additional characteristics of our plots,
such as the line width and marker color. These properties may be controlled by
specifying 'PropertyName', value pairs in the plot command after the
data to be plotted.

Text strings in plots may be enhanced with stream modifiers and escape
sequences. Stream modifiers allow a programmer to specify features such as bold-
face, italic, superscripts, subscripts, font size, and font name. Escape sequences
allow the programmer to include special characters such as Greek and mathemat-
ical symbols in the text string.

The MATLAB symbolic debugger and related tools such as M-Lint make
debugging MATLAB code much easier. You should invest some time to become
familiar with these tools.

3.7.1 Summary of Good Programming Practice

The following guidelines should be adhered to when programming with branch
or loop constructs. By following them consistently, your code will contain fewer
bugs, will be easier to debug, and will be more understandable to others who may
need to work with it in the future.

1. Follow the steps of the program design process to produce reliable, under-
standable MATLAB programs.

2. Be cautious about testing for equality with numeric values, since round-
off errors may cause two variables that should be equal to fail a test for
equality. Instead, test to see if the variables are nearly equal within the
roundoff error to be expected on the computer you are working with.

3. Use the &AND operator if it is necessary to ensure that both operands are
evaluated in an expression or if the comparison is between arrays.
Otherwise, use the && AND operator, since the partial evaluation will
make the operation faster in the cases where the first operand is false.
The & operator is preferred in most practical cases.

4. Use the | inclusive OR operator if it is necessary to ensure that both
operands are evaluated in an expression, or if the comparison is between
arrays. Otherwise, use the || operator, since the partial evaluation will
make the operation faster in the cases where the first operand is true.
The | operator is preferred in most practical cases.

5. Always indent code blocks in if, switch, and try/catch constructs
to make them more readable.
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6. For branches in which there are many mutually exclusive options, use a
single if construct with multiple elseif clauses in preference to nested
if constructs.

3.7.2 MATLAB Summary

The following summary lists all of the MATLAB commands and functions
described in this chapter, along with a brief description of each one.

Commands and Functions

axis (a) Set the x and y limits of the data to be plotted.
(b) Get the x and y limits of the data to be plotted.
(c) Set other axis-related properties.

figure Select a Figure Window to be the current Figure Window. If the selected Figure
Window does not exist, it is automatically created.

hold Allows multiple plot commands to write on top of each other.

if construct Selects a block of statements to execute if a specified condition is satisfied.

ischar(a) Returns a 1 if a is a character array and a 0 otherwise.

isempty(a) Returns a 1 if a is an empty array and a 0 otherwise.

isinf(a) Returns a 1 if the value of a is infinite (Inf) and a 0 otherwise.

isnan(a) Returns a 1 if the value of a is NaN (not a number) and a 0 otherwise.

isnumeric(a) Returns a 1 if the a is a numeric array and a 0 otherwise.

logical Converts numeric data to logical data, with nonzero values becoming true
and zero values becoming false.

polar Create a polar plot.

subplot Select a subplot in the current Figure Window. If the selected subplot does not
exist, it is automatically created. If the new subplot conflicts with a previously
existing set of axes, they are automatically deleted.

switch construct Selects a block of statements to execute from a set of mutually exclusive
choices based on the result of a single expression.

try/catch construct A special construct used to trap errors. It executes the code in the try block. If
an error occurs, execution stops immediately and transfers to the code in the
catch construct.

3.8 Exercises

3.1 Evaluate the following MATLAB expressions:

(a) 5 >= 5.5
(b) 20 > 20
(c) xor( 17 - pi < 15, pi < 3 )
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(d) true > false
(e) ~~(35/17) == (35/17)
( f ) (7 <= 8) == (3/2 == 1)
(g) 17.5 && (3.3 > 2.)

3.2 The tangent function is defined as tan u� sin u/cos u. This expression can
be evaluated to solve for the tangent as long as the magnitude of cos u is
not too near to 0. (If cos u is 0, evaluating the equation for tan u will pro-
duce the nonnumerical value Inf.) Assume that u is given in degrees, and
write the MATLAB statements to evaluate tan u as long as the magnitude
of cos u is greater than or equal to 10�20. If the magnitude of cos u is less
than 10�20, write out an error message instead.

3.3 The following statements are intended to alert a user to dangerously high
oral thermometer readings (values are in degrees Fahrenheit). Are they cor-
rect or incorrect? If they are incorrect, explain why and correct them.

if temp < 97.5
disp('Temperature below normal');

elseif temp > 97.5
disp('Temperature normal');

elseif temp > 99.5
disp('Temperature slightly high');

elseif temp > 103.0
disp('Temperature dangerously high');

end

3.4 The cost of sending a package by an express delivery service is $15.00 for
the first two pounds, and $5.00 for each pound or fraction thereof over two
pounds. If the package weighs more than 70 pounds, a $15.00 excess
weight surcharge is added to the cost. No package over 100 pounds will be
accepted. Write a program that accepts the weight of a package in pounds
and computes the cost of mailing the package. Be sure to handle the case
of overweight packages.

3.5 In Example 3.3, we wrote a program to evaluate the function f(x, y) for any
two user-specified values x and y, where the function f(x, y) was defined
as follows:

The problem was solved by using a single if construct with four code
blocks to calculate f(x, y) for all possible combinations of x and y. Rewrite
program funxy to use nested if constructs, where the outer construct
evaluates the value of x and the inner constructs evaluate the value of y.

f sx, yd 5 μ
x 1 y x $ 0 and y $ 0

x 1 y2 x $ 0 and y , 0

x2 1 y x , 0 and y $ 0

x2 1 y2 x , 0 and y , 0
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3.6 Write a MATLAB program to evaluate the function

for any user-specified value of x, where x is a number <1.0 (note that ln is
the natural logarithm, the logarithm to the base e). Use an if structure to
verify that the value passed to the program is legal. If the value of x is
legal, calculate y(x). If not, write a suitable error message and quit.

3.7 Write a program that allows a user to enter a string containing a day of the
week (“Sunday,” “Monday,” “Tuesday,” etc.) and uses a switch construct
to convert the day to its corresponding number, where Sunday is consid-
ered the first day of the week and Saturday is considered the last day of the
week. Print out the resulting day number. Also, be sure to handle the case
of an illegal day name! (Note: Be sure to use the 's' option on function
input so that the input is treated as a string.)

3.8 Suppose that a student has the option of enrolling for a single elective dur-
ing a term. The student must select a course from a limited list of options:
“English,” “History,” “Astronomy,” or “Literature.” Construct a fragment
of MATLAB code that will prompt the student for his or her choice, read
in the choice, and use the answer as the case expression for a switch con-
struct. Be sure to include a default case to handle invalid inputs.

3.9 Ideal Gas Law The Ideal Gas Law was defined in Example 3.7. Assume
that the volume of 1 mole of this gas is 10 L, and plot the pressure of the
gas as a function of temperature as the temperature is changed from 250 to
400 kelvins. What sort of plot (linear, semilogx, etc.) is most appropriate
for this data?

3.10 Antenna Gain Pattern The gain G of a certain microwave dish antenna
can be expressed as a function of angle by the equation

(3-6)

where u is measured in radians from the boresite of the dish, and sinc x =
sin x/x. Plot this gain function on a polar plot, with the title “Antenna
Gain vs U” in boldface.

3.11 The author of this book now lives in Australia. Australia is a great place to
live, but it is also a land of high taxes. In 2002, individual citizens and res-
idents of Australia paid the following income taxes:

Taxable Income (in A$) Tax on This Income

$0–$6,000 None

$6,001–$20,000 17¢ for each $1 over $6,000

$20,001–$50,000 $2,380 plus 30¢ for each $1 over $20,000

$50,001–$60,000 $11,380 plus 42¢ for each $1 over $50,000

Over $60,000 $15,580 plus 47¢ for each $1 over $60,000

Gsud 5 |sinc 4u |�for 2
p

2
# u #

p

2

ysxd 5 ln
1

1 2 x
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In addition, a flat 1.5% Medicare levy is charged on all income. Write a
program to calculate how much income tax a person will owe based on this
information. The program should accept a total income figure from the
user and calculate the income tax, Medicare Levy, and total tax payable by
the individual.

3.12 Refraction When a ray of light passes from a region with an index of
refraction n1 into a region with a different index of refraction n2, the light
ray is bent (see Figure 3.20). The angle at which the light is bent is given
by Snell’s Law as expressed in Equation (3-7)

(3-7)n1 sin u1 5 n2 sin u2
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Figure 3.20 A ray of light bends as it passes from one medium into another one. (a) If the ray of light
passes from a region with a low index of refraction into a region with a higher index of
refraction, the ray of light bends more towards the vertical. (b) If the ray of light passes
from a region with a high index of refraction into a region with a lower index of
refraction, the ray of light bends away from the vertical. 

Index of Refraction n1Region 1

Region 2 Index of Refraction n2

q1

q1 > q2

q2

(a)

Index of Refraction n1Region 1

Region 2
Index of Refraction n2

q1

q1 < q2

q2

(b)



where u1 is the angle of incidence of the light in the first region, and u2 is
the angle of incidence of the light in the second region. Using Snell’s Law,
it is possible to predict the angle of incidence of a light ray in Region 2 if
the angle of incidence u1 in Region 1 and the indices of refraction n1 and
n2 are known. The equation to perform this calculation is

(3-8)

Write a program to calculate the angle of incidence (in degrees) of a light ray
in Region 2 given the angle of incidence u1 in Region 1 and the indices of
refraction n1 and n2. (Note: If n1 > n2, then for some angles u1, Equation 3-7
will have no real solution, because the absolute value of the quantity 

will be greater than 1.0. When this occurs, all light is reflected

back into Region 1, and no light passes into Region 2 at all. Your program
must be able to recognize and properly handle this condition.)

The program should also create a plot showing the incident ray, the
boundary between the two regions, and the refracted ray on the other side
of the boundary.

Test your program by running it for the following two cases: (a) n1 � 1.0,
n2 � 1.7, and u1 � 45°. (b) n1 � 1.7, n2 � 1.0, and u1 � 45°.

3.13 Assume that the complex function f(t) is defined by the equation

Plot the amplitude and phase of function f for 0 � t � 4.
3.14 High-Pass Filter Figure 3.21 shows a simple high-pass filter consisting

of a resistor and a capacitor. The ratio of the output voltage Vo to the input
voltage Vi is given by the equation

(3-9)

Assume that R � 16 k	 and C � 1 mF. Calculate and plot the amplitude
and phase response of this filter as a function of frequency.

Vo

Vi

5
j2p fRC

1 1 j2p fRC

ƒstd 5 s1 1 0.25idt 2 2.0

an2

n1

 sin u1b

u2 5 sin21an2

n1

 sin u1b
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Figure 3.21 A simple high-pass filter circuit.
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3.15 The Spiral of Archimedes The spiral of Archimedes is a curve described
in polar coordinates by the equation

r � ku (3-10)

where r is the distance of a point from the origin, and u is the angle of that
point in radians with respect to the origin. Plot the spiral of Archimedes for
0 � u � 6p when k � 0.5. Be sure to label you plot properly.

3.16 Output Power from a Motor The output power produced by a rotating
motor is given by the equation

(3-11)

where tIND is the induced torque on the shaft in newton-meters, vm is the
rotational speed of the shaft in radians per second, and P is in watts.
Assume that the rotational speed of a particular motor shaft is given by the
equation

and the induced torque on the shaft is given by

Plot the torque, speed, and power supplied by this shaft versus time for 
0 � t � 10 s. Be sure to label your plot properly with the symbols tIND and
vm where appropriate. Create two plots, one with the power displayed on a
linear scale and one with the output power displayed on a logarithmic
scale. Time should always be displayed on a linear scale.

3.17 Plotting Orbits When a satellite orbits the Earth, the satellite’s orbit will
form an ellipse with the Earth located at one of the focal points of the
ellipse. The satellite’s orbit can be expressed in polar coordinates as

(3-12)

where r and u are the distance and angle of the satellite from the center
of the Earth, p is a parameter specifying the size of the size of the orbit,
and e is a parameter representing the eccentricity of the orbit. A circular
orbit has an eccentricity � of 0. An elliptical orbit has an eccentricity of
0 � � � 1. If � > 1, the satellite follows a hyperbolic path and escapes
from the Earth’s gravitational field.

Consider a satellite with a size parameter p � 1000 km. Plot the orbit
of this satellite if (a) � � 0; (b) � � 0.25; (c) � � 0.5. How close does each
orbit come to the Earth? How far away does each orbit get from the Earth?
Compare the three plots you created. Can you determine what the param-
eter p means from looking at the plots?

r 5
p

1 2 e cos u

tIND 5 10e20.2t N ? m

vm 5 188.5s1 2 e20.2td rad/s

P 5 tINDvm
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C H A P T E R 4
Loops

Loops are MATLAB constructs that permit us to execute a sequence of state-
ments more than once. There are two basic forms of loop constructs: while
loops and for loops.The major difference between these two types of loops
is in how the repetition is controlled.The code in a while loop is repeated an
indefinite number of times until some user-specified condition is satisfied. By
contrast, the code in a for loop is repeated a specified number of times, and
the number of repetitions is known before the loops starts.

4.1 The while Loop

A while loop is a block of statements that are repeated indefinitely as long as
some condition is satisfied. The general form of a while loop is

while expression
...
... Code block
...

end

The controlling expression produces a logical value. If the expression is true,
the code block will be executed, and then control will return to the while state-
ment. If the expression is still true, the statements will be executed again. This
process will be repeated until the expression becomes false. When control
returns to the while statement and the expression is false, the program will
execute the first statement after the end.
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The pseudocode corresponding to a while loop is

while expr
...
...
...

end

We will now show an example statistical analysis program that is imple-
mented using a while loop.

�

Example 4.1—Statistical Analysis

It is very common in science and engineering to work with large sets of numbers,
each of which is a measurement of some particular property that we are interested
in. A simple example would be the grades on the first test in this course. Each
grade would be a measurement of how much a particular student has learned in
the course to date.

Much of the time, we are not interested in looking closely at every single
measurement that we make. Instead, we want to summarize the results of a set of
measurements with a few numbers that tell us a lot about the overall data set.Two such
numbers are the average (or arithmetic mean) and the standard deviation of the set of
measurements. The average or arithmetic mean of a set of numbers is defined as

(4-1)

where xi is sample i out of N samples. If all of the input values are available in an
array, the average of a set of number may be calculated by the MATLAB function
mean. The standard deviation of a set of numbers is defined as

(4-2)

Standard deviation is a measure of the amount of scatter on the measurements;
the greater the standard deviation, the more scattered the points in the data set are.

Implement an algorithm that reads in a set of measurements and calculates
the mean and the standard deviation of the input data set1.

SOLUTION This program must be able to read in an arbitrary number of meas-
urements, and then calculate the mean and standard deviation of those measure-
ments. We will use a while loop to accumulate the input measurements before
performing the calculations.
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array. In this exercise, we are creating our own program to calculate the standard deviation. In a real
problem, we would normally just use the built-in function.



When all of the measurements have been read, we must have some way of
telling the program that there is no more data to enter. For now, we will assume
that all the input measurements are either positive or zero, and we will use a neg-
ative input value as a flag to indicate that there is no more data to be read. If a
negative value is entered, then the program will stop reading input values and will
calculate the mean and standard deviation of the data set.

1. State the problem.
Since we assume that the input numbers must be positive or zero, a
proper statement of this problem would be calculate the average
and the standard deviation of a set of measurements, assuming that all
of the measurements are either positive or zero, and assuming that
we do not know in advance how many measurements are included in
the data set. A negative input value will mark the end of the set of
measurements.

2. Define the inputs and outputs.
The inputs required by this program are an unknown number of positive
or zero numbers. The outputs from this program are a printout of the mean
and the standard deviation of the input data set. In addition, we will print
out the number of data points input to the program, since this is a useful
check that the input data was read correctly.

3. Design the algorithm.
This program can be broken down into three major steps:

Accumulate the input data
Calculate the mean and standard deviation
Write out the mean, standard deviation, and
number of points

The first major step of the program is to accumulate the input data. To do
this, we will have to prompt the user to enter the desired numbers. When
the numbers are entered, we will have to keep track of the number of
values entered, plus the sum and the sum of the squares of those values.
The pseudocode for these steps is

Initialize n, sum_x, and sum_x2 to 0
Prompt user for first number
Read in first x
while x >= 0

n ← n + 1
sum_x ← sum_x + x
sum_x2 ← sum_x2 + x^2
Prompt user for next number
Read in next x

end
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Note that we have to read in the first value before the while loop starts
so that the while loop can have a value to test the first time it executes.

Next, we must calculate the mean and standard deviation. The
pseudocode for this step is just the MATLAB versions of Equations (4-1)
and (4-2).

x_bar ← sum_x / n
std_dev ← sqrt((n*sum_x2 - sum_x^2)/(n*(n-1)))

Finally, we must write out the results.

Write out the mean value x_bar
Write out the standard deviation std_dev
Write out the number of input data points n

4. Turn the algorithm into MATLAB statements.
The final MATLAB program is shown as follows:

% Script file: stats_1.m
%
% Purpose:
% To calculate mean and the standard deviation of
% an input data set containing an arbitrary number
% of input values.
%

% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 01/24/07 S. J. Chapman Original code
%
% Define variables:
% n -- The number of input samples
% std_dev -- The standard deviation of the input samples
% sum_x -- The sum of the input values
% sum_x2 -- The sum of the squares of the input values
% x -- An input data value
% xbar -- The average of the input samples

% Initialize sums.
n = 0; sum_x = 0; sum_x2 = 0;

% Read in first value
x = input('Enter first value: ');

% While Loop to read input values.
while x >= 0
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% Accumulate sums.
n      = n + 1;
sum_x  = sum_x + x;
sum_x2 = sum_x2 + x^2;

% Read in next value
x = input('Enter next value:  ');

end

% Calculate the mean and standard deviation
x_bar = sum_x / n;
std_dev = sqrt( (n * sum_x2 - sum_x^2)/(n * (n-1)) );

% Tell user.
fprintf('The mean of this data set is: %f\n', x_bar);
fprintf('The standard deviation is:    %f\n', std_dev);
fprintf('The number of data points is: %f\n', n);

5. Test the program.
To test this program, we will calculate the answers by hand for a simple
data set, and then compare the answers to the results of the program. If we
used three input values: 3, 4, and 5, then the mean and standard deviation
would be

When these values are fed into the program, the results are

» stats_1
Enter first value: 3
Enter next value: 4
Enter next value: 5
Enter next value: -1
The mean of this data set is: 4.000000
The standard deviation is:    1.000000
The number of data points is: 3.000000

The program gives the correct answers for our test data set.
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In the preceding example, we failed to follow the design process completely.
This failure has left the program with a fatal flaw! Did you spot it?

We have failed because we did not completely test the program for all possi-
ble types of inputs. Look at the example once again. If we enter either no numbers
or only one number, then we will be dividing by zero in the preceding equations!
The division-by-zero error will cause divide-by-zero warnings to be printed,
and the output values will be NaN. We need to modify the program to detect this
problem, tell the user what the problem is, and stop gracefully.

A modified version of the program called stats_2 is shown following this
paragraph. Here, we check to see if there are enough input values before per-
forming the calculations. If not, the program will print out an intelligent error
message and quit. Test the modified program for yourself.

% Script file: stats_2.m
%
% Purpose:
% To calculate mean and the standard deviation of
% an input data set containing an arbitrary number
% of input values.
%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 01/24/07 S. J. Chapman Original code
% 1. 01/24/07 S. J. Chapman Correct divide-by-0 error if
% 0 or 1 input values given.
%
% Define variables:
% n -- The number of input samples
% std_dev -- The standard deviation of the input samples
%   sum_x -- The sum of the input values
%   sum_x2 -- The sum of the squares of the input values
%   x -- An input data value
%   xbar -- The average of the input samples

% Initialize sums.
n = 0; sum_x = 0; sum_x2 = 0;

% Read in first value
x = input('Enter first value: ');

% While Loop to read input values.
while x >= 0

% Accumulate sums.
n = n + 1;
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sum_x  = sum_x + x;
sum_x2 = sum_x2 + x^2;

% Read in next value
x = input('Enter next value:  ');

end

% Check to see if we have enough input data.
if n < 2   % Insufficient information

disp('At least 2 values must be entered!');

else % There is enough information, so
% calculate the mean and standard deviation

x_bar = sum_x / n;
std_dev = sqrt( (n * sum_x2 - sum_x^2)/(n * (n-1)) );

% Tell user.
fprintf('The mean of this data set is: %f\n', x_bar);
fprintf('The standard deviation is:    %f\n', std_dev);
fprintf('The number of data points is: %f\n', n);

end

Note that the average and standard deviation could have been calculated with
the built-in MATLAB functions mean and std if all of the input values are saved
in a vector and that vector is passed to these functions. You will be asked to cre-
ate a version of the program that uses the standard MATLAB functions in an exer-
cise at the end of this chapter.

4.2 The for Loop

The for loop is a loop that executes a block of statements a specified number of
times. The for loop has the form

for index = expr
...
... Body
...

end
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where index is the loop variable (also known as the loop index) and expr is
the loop control expression, whose result is an array. The columns in the array
produced by expr are stored one at a time in the variable index, and then the
loop body is executed, so that the loop is executed once for each column in the
array produced by expr. The expression usually takes the form of a vector in
shortcut notation first:incr:last.

The statements between the for statement and the end statement are known
as the body of the loop. They are executed repeatedly during each pass of the for
loop. The for loop construct functions as follows:

1. At the beginning of the loop, MATLAB generates an array by evaluating
the control expression.

2. The first time through the loop, the program assigns the first column of
the array to the loop variable index, and the program executes the state-
ments within the body of the loop.

3. After the statements in the body of the loop have been executed, the pro-
gram assigns the next column of the array to the loop variable index, and
the program executes the statements within the body of the loop again.

4. Step 3 is repeated over and over as long as there are additional columns in
the array.

Let’s look at a number of specific examples to make the operation of the
for loop clearer. First, consider the following example:

for ii = 1:10
Statement 1
...
Statement n

end

In this case, the control expression generates a 1 � 10 array, so statements 1
through n will be executed 10 times. The loop index ii will be 1 the first time,
2 the second time, and so on. The loop index will be 10 on the last pass through
the statements. When control is returned to the for statement after the tenth pass,
there are no more columns in the control expression, so execution transfers to the
first statement after the end statement. Note that the loop index ii is still set to
10 after the loop finishes executing.

Second, consider the following example:

for ii = 1:2:10
Statement 1
...
Statement n

end

In this case, the control expression generates a 1 � 5 array, so statements 1
through n will be executed five times. The loop index ii will be 1 the first time,
3 the second time, and so on. The loop index will be 9 on the fifth and last pass
through the statements. When control is returned to the for statement after the
fifth pass, there are no more columns in the control expression, so execution
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transfers to the first statement after the end statement. Note that the loop index
ii is still set to 9 after the loop finishes executing.

Third, consider the following example:

for ii = [5 9 7]
Statement 1
...
Statement n

end

Here, the control expression is an explicitly written 1 � 3 array, so statements 1
through n will be executed three times with the loop index set to 5 the first time,
9 the second time, and 7 the final time. The loop index ii is still set to 7 after the
loop finishes executing.

Finally, consider the following example:

for ii = [1 2 3;4 5 6]
Statement 1
...
Statement n

end

In this case, the control expression is a 2 � 3 array, so statements 1 through n will

be executed three times. The loop index ii will be the column vector 

the first time, the second time, and the third time. The loop index ii is

still set to after the loop finishes executing. This example illustrates the fact

that a loop index can be a vector.
The pseudocode corresponding to a for loop looks like the loop itself:

for index = expression
Statement 1
...
Statement n

end

�

Example 4.2—The Factorial Function

To illustrate the operation of a for loop, we will use a for loop to calculate the
factorial function. The factorial function is defined as
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The MATLAB code to calculate N factorial for positive value of N would be

n_factorial = 1
for ii = 1:n

n_factorial = n_factorial * ii;
end

Suppose that we wish to calculate the value of 5!. If n is 5, the for loop control
expression would be the row vector [1 2 3 4 5]. This loop will be executed
five times, with the variable ii taking on values of 1, 2, 3, 4, and 5 in the
successive loops. 

The resulting value of n_factorial will be 1 � 2 � 3 � 4 � 5 � 120.

�

�

Example 4.3—Calculating the Day of Year

The day of year is the number of days (including the current day) which have
elapsed since the beginning of a given year. It is a number in the range 1 to 365 for
ordinary years, and 1 to 366 for leap years. Write a MATLAB program that accepts
a day, month, and year, and calculates the day of year corresponding to that date.

SOLUTION To determine the day of year, this program will need to sum up the
number of days in each month preceding the current month, plus the number of
elapsed days in the current month. A for loop will be used to perform this sum.
Since the number of days in each month varies, it is necessary to determine the
correct number of days to add for each month. A switch construct will be used
to determine the proper number of days to add for each month.

During a leap year, an extra day must be added to the day of year for any
month after February. This extra day accounts for the presence of February 29 in
the leap year. Therefore, to perform the day of year calculation correctly, we must
determine which years are leap years. In the Gregorian calendar, leap years are
determined by the following rules:

1. Years evenly divisible by 400 are leap years.
2. Years evenly divisible by 100 but not by 400 are not leap years.
3. All years divisible by 4 but not by 100 are leap years.
4. All other years are not leap years.

We will use the mod (for modulus) function to determine whether or not a year is
evenly divisible by a given number. The mod function returns the remainder after
the division of two numbers. For example, the remainder of 9/4 is 1, since 4 goes
into 9 twice with a remainder of 1. If the result of the function mod(year,4)
is zero, then we know that the year was evenly divisible by 4. Similarly, if the
result of the function mod(year,400) is zero, then we know that the year was
evenly divisible by 400.

A program to calculate the day of year is shown at the end of this paragraph.
Note that the program sums up the number of days in each month before the
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current month, and that it uses a switch construct to determine the number of
days in each month.

% Script file: doy.m
%
% Purpose:
% This program calculates the day of year corresponding
% to a specified date. It illustrates the use switch and
% for constructs.
%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 01/27/07 S. J. Chapman Original code
%
% Define variables:
% day -- Day (dd)
% day_of_year -- Day of year
% ii -- Loop index
% leap_day -- Extra day for leap year
% month -- Month (mm)
% year -- Year (yyyy)

% Get day, month, and year to convert
disp('This program calculates the day of year given the ');
disp(' specified date.');
month = input('Enter specified month (1-12): ');
day = input('Enter specified day(1-31):    ');
year = input('Enter specified year(yyyy):   ');

% Check for leap year, and add extra day if necessary
if mod(year,400) == 0

leap_day = 1; % Years divisible by 400 are leap years
elseif mod(year,100) == 0

leap_day = 0; % Other centuries are not leap years
elseif mod(year,4) == 0

leap_day = 1; % Otherwise every 4th year is a leap
year
else

leap_day = 0; % Other years are not leap years
end

% Calculate day of year by adding current day to the
% days in previous months.
day_of_year = day;
for ii = 1:month-1
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% Add days in months from January to last month
switch (ii)
case {1,3,5,7,8,10,12},

day_of_year = day_of_year + 31;
case {4,6,9,11},

day_of_year = day_of_year + 30;
case 2,

day_of_year = day_of_year + 28 + leap_day;
end

end

% Tell user
fprintf('The date %2d/%2d/%4d is day of year %d.\n', ...

month, day, year, day_of_year);

We will use the following known results to test the program:

1. Year 1999 is not a leap year. January 1 must be day of year 1, and
December 31 must be day of year 365.

2. Year 2000 is a leap year. January 1 must be day of year 1, and December
31 must be day of year 366.

3. Year 2001 is not a leap year. March 1 must be day of year 60, since January
has 31 days, February has 28 days, and this is the first day of March.

If this program is executed five times with the dates as given, the results are

» doy
This program calculates the day of year given the
specified date.
Enter specified month (1-12): 1
Enter specified day(1-31): 1
Enter specified year(yyyy): 1999
The date  1/ 1/1999 is day of year 1.

» doy
This program calculates the day of year given the
specified date.
Enter specified month (1-12): 12
Enter specified day(1-31): 31
Enter specified year(yyyy): 1999
The date 12/31/1999 is day of year 365.

» doy
This program calculates the day of year given the
specified date.
Enter specified month (1-12): 1
Enter specified day(1-31): 1
Enter specified year(yyyy): 2000
The date  1/ 1/2000 is day of year 1.
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» doy
This program calculates the day of year given the
specified date.
Enter specified month (1-12): 12
Enter specified day(1-31): 31
Enter specified year(yyyy): 2000
The date 12/31/2000 is day of year 366.

» doy
This program calculates the day of year given the
specified date.
Enter specified month (1-12): 3
Enter specified day(1-31): 1
Enter specified year(yyyy): 2001
The date  3/ 1/2001 is day of year 60.

The program gives the correct answers for our test dates in all five test cases.
�

�

Example 4.4—Statistical Analysis

Implement an algorithm that reads in a set of measurements and calculates the
mean and the standard deviation of the input data set, when any value in the data
set can be positive, negative, or zero.

SOLUTION This program must be able to read in an arbitrary number of meas-
urements and then calculate the mean and standard deviation of those measure-
ments. Each measurement can be positive, negative, or zero.

Since we cannot use a data value as a flag this time, we will ask the user for
the number of input values and then use a for loop to read in those values. The
modified program that permits the use of any input value is shown at the end of
this paragraph. Verify its operation for yourself by finding the mean and standard
deviation of the following five input values: 3, –1, 0, 1, and –2.

% Script file: stats_3.m
%
% Purpose:
% To calculate mean and the standard deviation of
% an input data set, where each input value can be
% positive, negative, or zero.
%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 01/27/07 S. J. Chapman Original code
%

4.2 The for Loop | 161



% Define variables:
%   ii -- Loop index
%   n -- The number of input samples
%   std_dev -- The standard deviation of the input samples
%   sum_x -- The sum of the input values
%   sum_x2 -- The sum of the squares of the input values
%   x -- An input data value
%   xbar -- The average of the input samples

% Initialize sums.
sum_x = 0; sum_x2 = 0;

% Get the number of points to input.
n = input('Enter number of points: ');

% Check to see if we have enough input data.
if n < 2 % Insufficient data

disp ('At least 2 values must be entered.');

else % we will have enough data, so let's get it.

% Loop to read input values.
for ii = 1:n

% Read in next value
x = input('Enter value:  ');

% Accumulate sums.
sum_x  = sum_x + x;
sum_x2 = sum_x2 + x^2;

end

% Now calculate statistics.
x_bar = sum_x / n;
std_dev = sqrt( (n * sum_x2 - sum_x^2) / (n * (n-1)) );

% Tell user.
fprintf('The mean of this data set is: %f\n', x_bar);
fprintf('The standard deviation is:    %f\n', std_dev);
fprintf('The number of data points is: %f\n', n);

end

�
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4.2.1 Details of Operation

Now that we have seen examples of a for loop in operation, we must examine
some important details required to use for loops properly.

1. Indent the bodies of loops. It is not necessary to indent the body of a
for loop as we have shown previously. MATLAB will recognize the loop
even if every statement in it starts in column 1. However, the code is much
more readable if the body of the for loop is indented, so you should
always indent the bodies of loops.

✷ Good Programming Practice:

Always indent the body of a for loop by two or more spaces to improve the
readability of the code.

2. Don’t modify the loop index within the body of a loop. The loop index
of a for loop should not be modified anywhere within the body of the
loop. The index variable is often used as a counter within the loop, and
modifying its value can cause strange and hard-to-find errors. The exam-
ple shown that follows is intended to initialize the elements of an array,
but the statement “ii = 5” has been accidentally inserted into the body
of the loop. As a result, only a(5) is initialized, and it gets the values that
should have gone into a(1), a(2), and so forth.

for ii = 1:10
...
ii = 5;    % Error!
...
a(ii) = <calculation>

end

✷ Good Programming Practice:

Never modify the value of a loop index within the body of the loop.

3. Preallocating Arrays. We learned in Chapter 2 that it is possible to
extend an existing array simply by assigning a value to a higher array
element. For example, the statement

arr = 1:4;
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defines a 4-element array containing the values [1 2 3 4]. If the
statement

arr(8) = 6;

is executed, the array will be automatically extended to eight elements and
will contain the values [ 1 2 3 4 0 0 0 6]. Unfortunately, each
time that an array is extended, MATLAB has to (1) create a new array,
(2) copy the contents of the old array to the new longer array, (3) add the
new value to the array, and then (4) delete the old array. This process is
very time-consuming for long arrays.

When a for loop stores values in a previously undefined array, the loop
forces MATLAB to go through this process each time the loop is executed. On
the other hand, if the array is preallocated to its maximum size before the loop
starts executing, no copying is required, and the code executes much faster. The
code fragment shown here shows how to preallocate an array before the starting
the loop.

square = zeros(1,100);
for ii = 1:100
square(ii) = ii^2;

end

✷ Good Programming Practice:

Always preallocate all arrays used in a loop before executing the loop. This
practice greatly increases the execution speed of the loop.

4. Vectorizing Arrays. It is often possible to perform calculations with
either for loops or vectors. For example, the following code fragment
calculates the squares, square roots, and cube roots of all integers between
1 and 100 using a for loop.

for ii = 1:100
square(ii) = ii^2;
square_root(ii) = ii^(1/2);
cube_root(ii) = ii^(1/3);

end

The following code fragment performs the same calculation with vectors.

ii = 1:100;
square = ii.^2;
square_root = ii.^(1/2);
cube_root(ii) = ii.^(1/3);
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Even though these two calculations produce the same answers, they are
not equivalent. The version with the for loop can be more than 15 times
slower than the vectorized version! This happens because the statements
in the for loop must be interpreted2 and executed a line at a time by
MATLAB during each pass of the loop. In effect, MATLAB must inter-
pret and execute 300 separate lines of code. In contrast, MATLAB only
has to interpret and execute four lines in the vectorized case. Since
MATLAB is designed to implement vectorized statements in a very effi-
cient fashion, it is much faster in that mode.

In MATLAB, the process of replacing loops by vectorized statements
is known as vectorization. Vectorization can yield dramatic improve-
ments in performance for many MATLAB programs.

✷ Good Programming Practice:

If it is possible to implement a calculation either with a for loop or by using vec-
tors, implement the calculation with vectors. Your program will be much faster.

4.2.2 The MATLAB Just-in-Time (JIT) Compiler

A just-in-time (JIT) compiler was added to MATLAB 6.5 and later versions. The
JIT compiler examines MATLAB code before it is executed and, where possible,
compiles the code before executing it. Since the MATLAB code is compiled
instead of being interpreted, it runs almost as fast as vectorized code. The JIT
compiler can sometimes dramatically speed up the execution of for loops.

The JIT compiler is a very nice tool when it works, since it speeds up the
loops without any action by the programmer. However, the JIT compiler has many
limitations that prevent it from speeding up all loops. A full list of JIT compiler
limitations appears in the MATLAB documentation, but some of the more impor-
tant limitations are

1. The JIT accelerates only loops containing double, logical, and
char data types (plus integer data types that are not discussed in this
book). If other data types such as cell arrays or structures3 appear in the
loop, it will not be accelerated.

2. If an array in the loop has more than two dimensions, the loop will not be
accelerated.

3. If the code in the loop calls external functions (other than built-in func-
tions), it will not be accelerated.
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4. If the code in the loop changes the data type of a variable within a loop,
the loop will not be accelerated.

Because of these limitations, a good programmer using vectorization can
almost always create a faster program than one relying on the JIT compiler.

✷ Good Programming Practice:

Do not rely on the JIT compiler to speed up your code. It has many limitations,
and a programmer can typically do a better job with manual vectorization.

�

Example 4.5—Comparing Loops and Vectors

To compare the execution speeds of loops and vectors, perform and time the fol-
lowing four sets of calculations:

1. Calculate the squares of every integer from 1 to 10000 in a for loop
without initializing the array of squares first.

2. Calculate the squares of every integer from 1 to 10,000 in a for loop,
using the zeros function to preallocate the array of squares first, but call-
ing an external function to perform the squaring. (This will disable the JIT
compiler.)

3. Calculate the squares of every integer from 1 to 10000 in a for loop,
using the zeros function to preallocate the array of squares first, and
calculating the square of the number in-line. (This will allow the JIT
compiler to function.)

4. Calculate the squares of every integer from 1 to 10000 with vectors.

SOLUTION This program must calculate the squares of the integers from 1 to
10000 in each of the four ways just described, timing the executions in each case.
The timing can be accomplished using the MATLAB functions tic and toc.
Function tic resets the built-in elapsed time counter, and function toc returns
the elapsed time in seconds since the last call to function tic.

Since the real-time clocks in many computers have a fairly coarse granularity,
it may be necessary to execute each set of instructions multiple times to get a valid
average time.

A MATLAB program to compare the speeds of the four approaches is shown
as follows:

% Script file: timings.m
%
% Purpose:
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% This program calculates the time required to
% calculate the squares of all integers from 1 to
% 10,000 in four different ways:
% 1. Using a for loop with an uninitialized output
% array.
% 2. Using a for loop with a preallocated output
% array and NO JIT compiler.
% 3. Using a for loop with a preallocated output
% array and the JIT compiler.
% 4. Using vectors.
%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 01/29/07 S. J. Chapman Original code
%
% Define variables:
% ii, jj -- Loop index
% average1 -- Average time for calculation 1
% average2 -- Average time for calculation 2
% average3 -- Average time for calculation 3
% average4 -- Average time for calculation 4
% maxcount -- Number of times to loop calculation
% square -- Array of squares

% Perform calculation with an uninitialized array
% "square". This calculation is done only once
% because it is so slow.
maxcount = 1; % Number of repetitions
tic; % Start timer
for jj = 1:maxcount

clear square % Clear output array
for ii = 1:10000

square(ii) = ii^2; % Calculate square
end

end
average1 = (toc)/maxcount;  % Calculate average time

% Perform calculation with a pre-allocated array
% "square", calling an external function to square
% the number. This calculation is averaged over 10
% loops.
maxcount = 10; % Number of repetitions
tic; % Start timer
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for jj = 1:maxcount
clear square % Clear output array
square = zeros(1,10000); % Pre-initialize array
for ii = 1:10000

square(ii) = sqr(ii); % Calculate square
end

end
average2 = (toc)/maxcount; % Calculate average time

% Perform calculation with a preallocated array
% "square". This calculation is averaged over 100
% loops.
maxcount = 100; % Number of repetitions
tic; % Start timer
for jj = 1:maxcount

clear square % Clear output array
square = zeros(1,10000); % Pre-initialize array
for ii = 1:10000

square(ii) = ii^2; % Calculate square
end

end
average3 = (toc)/maxcount; % Calculate average time

% Perform calculation with vectors. This calculation
% averaged over 1000 executions.
maxcount = 1000; % Number of repetitions
tic; % Start timer
for jj = 1:maxcount

clear square % Clear output array
ii = 1:10000; % Set up vector
square = ii.^2; % Calculate square

end
average4 = (toc)/maxcount; % Calculate average time

% Display results
fprintf('Loop / uninitialized array = %8.4f\n', average1);
fprintf('Loop / initialized array / no JIT = %8.4f\n', average2);
fprintf('Loop / initialized array / JIT = %8.4f\n', average3);
fprintf('Vectorized = %8.4f\n', average4);

When this program is executed using MATLAB 7.5 on a 2.4 GHz Pentium
IV computer, the results are as follows:

» timings
Loop / uninitialized array =   0.1111
Loop / initialized array / no JIT =   0.0922
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Loop / initialized array / JIT =   0.0002
Vectorized =   0.0001

The loop with the uninitialized array and the loop with the initialized array
but no JIT were very slow compared to the loop executed with the JIT compiler
or the vectorized loop. The vectorized loop was the fastest way to perform the cal-
culation, but if the JIT compiler works for your loop, you get most of the accel-
eration without having to do anything! As you can see, designing loops to allow
the JIT compiler to function4 or replacing the loops with vectorized calculations
can make an incredible difference in the speed of your MATLAB code!

�

The M-Lint code checking tool can help you identify problems with unini-
tialized arrays that can slow the execution of a MATLAB program. For example,
if we run M-Lint on program timings.m, the code checker will identify the
uninitialized array and write out a warning message (see Figure 4.1).

4.2.3 The break and continue Statements

There are two additional statements that can be used to control the operation of
while loops and for loops: the break and continue statements. The
break statement terminates the execution of a loop and passes control to the
next statement after the end of the loop, and the continue statement terminates
the current pass through the loop and returns control to the top of the loop.

If a break statement is executed in the body of a loop, the execution of the
body will stop, and control will be transferred to the first executable statement
after the loop. An example of the break statement in a for loop is

for ii = 1:5
if ii == 3;

break;
end
fprintf('ii = %d\n',ii);

end
disp(['End of loop!']);

When this program is executed, the output is

» test_break
ii = 1
ii = 2
End of loop!

Note that the break statement was executed on the iteration when ii was 3, and
control transferred to the first executable statement after the loop without execut-
ing the fprintf statement.
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Figure 4.1 The M-Lint code checker can identify some problems that will slow down the execution
of MATLAB loops. 

(a)

(b)



If a continue statement is executed in the body of a loop, the execution of
the current pass through the loop will stop and control will return to the top
of the loop. The controlling variable in the for loop will take on its next value, and
the loop will be executed again. An example of the continue statement in a for
loop is

for ii = 1:5
if ii == 3;

continue;
end
fprintf('ii = %d\n',ii);

end
disp(['End of loop!']);

When this program is executed, the output is

» test_continue
ii = 1
ii = 2
ii = 4
ii = 5
End of loop!

Note that the continue statement was executed on the iteration when ii was
3, and control transferred to the top of the loop without executing the fprintf
statement.

The break and continue statements work with both while loops and
for loops.

4.2.4 Nesting Loops

It is possible for one loop to be completely inside another loop. If one loop is
completely inside another one, the two loops are called nested loops. The fol-
lowing example shows two nested for loops used to calculate and write out the
product of two integers.

for ii = 1:3
for jj = 1:3

product = ii * jj;
fprintf('%d * %d = %d\n',ii,jj,product);

end
end

In this example, the outer for loop will assign a value of 1 to index variable ii,
and then the inner for loop will be executed. The inner for loop will be exe-
cuted three times with index variable jj having values 1, 2, and 3. When the
entire inner for loop has been completed, the outer for loop will assign a value
of 2 to index variable ii, and the inner for loop will be executed again. This
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process repeats until the outer for loop has executed three times, and the
resulting output is

1 * 1 = 1
1 * 2 = 2
1 * 3 = 3
2 * 1 = 2
2 * 2 = 4
2 * 3 = 6
3 * 1 = 3
3 * 2 = 6
3 * 3 = 9

Note that the inner for loop executes completely before the index variable of the
outer for loop is incremented.

When MATLAB encounters an end statement, it associates that statement with
the innermost currently open construct. Therefore, the first end statement in the
nested loops above closes the “for jj = 1:3” loop, and the secondend statement
closes the “for ii = 1:3” loop. This fact can produce hard-to-find errors if an
end statement is accidentally deleted somewhere within a nested loop construct.

If for loops are nested, they should have independent loop index variables.
If they have the same index variable, then the inner loop will change the value of
the loop index that the outer loop just set.

If a break or continue statement appears inside a set of nested loops,
then that statement refers to the innermost of the loops containing it. For exam-
ple, consider the following program:

for ii = 1:3
for jj = 1:3

if jj == 3;
break;

end
product = ii * jj;
fprintf('%d * %d = %d\n',ii,jj,product);

end
fprintf('End of inner loop\n');

end
fprintf('End of outer loop\n');

If the inner loop counter jj is equal to 3, then the break statement will be
executed. This will cause the program to exit the innermost loop. The program
will print out “End of inner loop”, the index of the outer loop will be increased
by 1, and execution of the innermost loop will start over. The resulting output
values are

1 * 1 = 1
1 * 2 = 2
End of inner loop
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2 * 1 = 2
2 * 2 = 4
End of inner loop
3 * 1 = 3
3 * 2 = 6
End of inner loop
End of outer loop

4.3 Logical Arrays and Vectorization

We learned about the logical data type in Chapter 3. Logical data can have one
of two possible values: true (1) or false (0). Scalars and arrays of logical
data are created as the output of relational and logic operators.

For example, consider the following statements:

a = [1 2 3; 4 5 6; 7 8 9];
b = a > 5;

These statements produced two arrays a and b. Array a is a double array

containing the values  while array b is a logical array with the

logical property set, containing the values When the whos

command is executed, the results are as follows:

» whos
Name Size Bytes Class

a 3x3 72 double array
b 3x3 9 logical array

Grand total is 18 elements using 81 bytes

Logical arrays have a very important special property—they can serve as a
mask for arithmetic operations. A mask is an array that selects the elements of
another array for use in an operation. The specified operation will be applied to
the selected elements and not to the remaining elements.

For example, suppose that arrays a and b are as defined previously. Then the
statement a(b) = sqrt(a(b)) will take the square root of all elements for
which the logical array b is true and leave all the other elements in the array
unchanged.

» a(b) = sqrt(a(b))
a =

1.0000 2.0000 3.0000

£
0 0 0

0 0 1

1 1 1

§ .

£
1 2 3

4 5 6

7 8 9

§ ,
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4.0000 5.0000 2.4495
2.6458    2.8284    3.0000

This is a very fast and very clever way of performing an operation on a subset of
an array without needing loops and branches.

The following two code fragments both take the square root of all elements
in array a whose value is greater than 5, but the vectorized approach is more
compact and elegant than the loop approach.

for ii = 1:size(a,1)
for jj = 1:size(a,2)

if a(ii,jj) > 5
a(ii,jj) = sqrt(a(ii,jj));

end
end

end

b = a > 5;
a(b) = sqrt(a(b));

4.3.1 Creating the Equivalent of if/else Constructs with
Logical Arrays

Logical arrays can also be used to implement the equivalent of an if/else con-
struct inside a set of for loops. As we saw in the previous section, it is possible
to apply an operation to selected elements of an array using a logical array as a
mask. It is also possible to apply a different set of operations to the unselected ele-
ments of the array by simply adding the not operator (~) to the logical mask. For
example, suppose that we wanted to take the square root of any elements in a two-
dimensional array whose value is greater than 5, and to square the remaining
elements in the array. The code for this operation using loops and branches is

for ii = 1:size(a,1)
for jj = 1:size(a,2)

if a(ii,jj) > 5
a(ii,jj) = sqrt(a(ii,jj));

else
a(ii,jj) = a(ii,jj)^2;

end
end

end

The vectorized code for this operation is

b = a > 5;
a(b) = sqrt(a(b));
a(~b) = a(~b).^2;

The vectorized code is significantly faster than the loops-and-branches version.
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Quiz 4.1

This quiz provides a quick check to see if you have understood the con-
cepts introduced in Sections 4.1 through 4.3. If you have trouble with
the quiz, reread the section, ask your instructor, or discuss the material
with a fellow student. The answers to this quiz are found in the back of
the book.

Examine the following for loops and determine how many times
each loop will be executed.

1. for index = 7:10

2. for jj = 7:-1:10

3. for index = 1:10:10

4. for ii = -10:3:-7

5. for kk = [0 5 ; 3 3]

Examine the following loops and determine the value in ires at
the end of each of the loops.

6. ires = 0;
for index = 1:10

ires = ires + 1;
end

7. ires = 0;
for index = 1:10

ires = ires + index;
end

8. ires = 0;
for index1 = 1:10

for index2 = index1:10
if index2 == 6

break;
end
ires = ires + 1;

end
end

9. ires = 0;
for index1 = 1:10

for index2 = index1:10
if index2 == 6

continue;
end
ires = ires + 1;

end
end
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10. Write the MATLAB statements to calculate the values of the function

for �6p � t � 6p at intervals of p/10. Do this twice, once using
loops and branches and once using vectorized code.

4.4 The MATLAB Profiler

MATLAB includes a profiler, which can be used to identify the parts of a pro-
gram that consume the most execution time. The profiler can identify “hot spots,”
where optimizing the code will result in major increases in speed.

f std 5 e sin t for all t where sin t . 0

0 elsewhere
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Figure 4.2 (a) The MATLAB Profiler is opened using the “Tools/Open Profile” menu option on the
Edit/Debug Window. (b) The profiler has a box in which to type the name of the program
to execute, and a pushbutton to start profiling. 
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The MATLAB profiler is started by selecting the “Tools/Open Profiler”
option on the Edit/Debug Window (see Figure 4.2). A Profiler Window opens,
with a field containing the name of the program to profile and a pushbutton to
start the profile process running.

After the profiler runs, a Profile Summary is displayed, showing how much
time is spent in each function being profiled (see Figure 4.3a). Clicking on any
profiled function brings up a more detailed display showing exactly how much
time was spent on each line when in that function (see Figure 4.3b).  With this
information, the programmer can identify the slow portions of the code and
work to speed them up with vectorization and similar techniques. For example,
the profiler will highlight loops that run slowly because they can’t be handled
by the JIT compiler.

Normally, the profiler should be run after a program is working properly. It
is a waste of time to profile a program before it is working.

✷ Good Programming Practice:

Use the MATLAB Profiler to identify the parts of programs that consume the
most CPU time. Optimizing those parts of the program will speed up the over-
all execution of the program.

4.4 The MATLAB Profiler | 177

Figure 4.3 (a) The Profile Summary, indicating the time spent in each profiled function. 

(a)



178 | Chapter 4 Loops

(b)

Figure 4.3 (continued) (b) A detailed profile of function timings.



4.5 Additional Examples

�

Example 4.6—Fitting a Line to a Set of Noisy Measurements

The velocity of a falling object in the presence of a constant gravitational field is
given by the equation

(4-3)

where v(t) is the velocity at any time t, a is the acceleration due to gravity, and v0

is the velocity at time 0. This equation is derived from elementary physics—it is
known to every freshman physics student. If we plot velocity versus time for the
falling object, our (v, t) measurement points should fall along a straight line.
However, the same freshman physics student also knows that if we go out into the
laboratory and attempt to measure the velocity versus time of an object, our
measurements will not fall along a straight line. They may come close, but they
will never line up perfectly. Why not? Because we can never make perfect meas-
urements. There is always some noise included in the measurements, which dis-
torts them.

There are many cases in science and engineering where there are noisy sets
of data such as this, and we wish to estimate the straight line which “best fits” the
data. This problem is called the linear regression problem. Given a noisy set of
measurements (x, y) that appear to fall along a straight line, how can we find the
equation of the line

y � mx + b (4-4)

that “best fits” the measurements? If we can determine the regression coefficients
m and b, then we can use this equation to predict the value of y at any given x by
evaluating Equation 4-4 for that value of x.

A standard method for finding the regression coefficients m and b is the
method of least squares. This method is named “least squares” because it pro-
duces the line y � mx � b for which the sum of the squares of the differences
between the observed y values and the predicted y values is as small as possible.
The slope of the least squares line is given by

(4-5)

and the intercept of the least squares line is given by

(4-6)

where

is the sum of the x values
is the sum of the squares of the x valuesgx2

gx

b 5 y 2 mx

m 5
sgxyd 2 sgxdy

sgx2d 2 sgxdx

vstd 5 at 1 v0
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is the sum of the products of the corresponding x and y values
is the mean (average) of the x values
is the mean (average) of the y values

Write a program that will calculate the least-squares slope m and y-axis inter-
cept b for a given set of noisy measured data points (x, y). The data points should
be read from the keyboard, and both the individual data points and the resulting
least-squares fitted line should be plotted.

SOLUTION

1. State the problem.
Calculate the slope m and intercept b of a least-squares line that best fits
an input data set consisting of an arbitrary number of (x, y) pairs. The
input (x, y) data is read from the keyboard. Plot both the input data points
and the fitted line on a single plot.

2. Define the inputs and outputs.
The inputs required by this program are the number of points to read, plus
the pairs of points (x, y).

The outputs from this program are the slope and intercept of the least-
squares fitted line, the number of points going into the fit, and a plot of
the input data and the fitted line.

3. Describe the algorithm.
This program can be broken down into six major steps:

Get the number of input data points
Read the input statistics
Calculate the required statistics
Calculate the slope and intercept
Write out the slope and intercept
Plot the input points and the fitted line

The first major step of the program is to get the number of points to
read in. To do this, we will prompt the user and read his or her answer with
an input function. Next we will read the input (x, y) pairs one pair at a
time using an input function in a for loop. Each pair of input value
will be placed in an array ([x y]), and the function will return that array
to the calling program. Note that a for loop is appropriate because we
know in advance how many times the loop will be executed.

The pseudocode for these steps is

Print message describing purpose of the program
n_points ← input('Enter number of [x y] pairs: ');
for ii = 1:n_points

temp ← input('Enter [x y] pair: ');

y
x
gxy
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x(ii) ← temp(1)
y(ii) ← temp(2)

end

Next, we must accumulate the statistics required for the calculation.
These statistics are the sums , , , and . The pseudocode
for these steps is

Clear the variables sum_x, sum_y, xum_x2, and sum_y2
for ii = 1:n_points

sum_x ← sum_x + x(ii)
sum_y ← sum_y + y(ii)
sum_x2 ← sum_x2 + x(ii)^2
sum_xy ← sum_xy + x(ii)*y(ii)

end

Next, we must calculate the slope and intercept of the least-squares
line. The pseudocode for this step is just the MATLAB versions of
Equations 4-4 and 4-5.

x_bar ← sum_x / n_points
y_bar ← sum_y / n_points
slope ← (sum_xy-sum_x * y_bar)/( sum_x2 - sum_x * x_bar)
y_int ← y_bar - slope * x_bar

Finally, we must write out and plot the results. The input data points
should be plotted with circular markers and without a connecting line, and
the fitted line should be plotted as a solid 2-pixel-wide line. To do this, we
will need to plot the points first, set hold on, plot the fitted line, and set
hold off. We will add titles and a legend to the plot for completeness.

4. Turn the algorithm into MATLAB statements.
The final MATLAB program is as follows:

%
% Purpose:
%   To perform a least-squares fit of an input data set
%   to a straight line, and print out the resulting slope
%   and intercept values.  The input data for this fit
%   comes from a user-specified input data file.
%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 01/30/07 S. J. Chapman Original code
%

gxygx2gygx
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% Define variables:
% ii -- Loop index
% n_points -- Number in input [x y] points
%   slope -- Slope of the line
%   sum_x -- Sum of all input x values
%   sum_x2 -- Sum of all input x values squared
%   sum_xy -- Sum of all input x*y yalues
%   sum_y -- Sum of all input y values
%   temp -- Variable to read user input
%   x -- Array of x values
%   x_bar -- Average x value
%   y -- Array of y values
%   y_bar -- Average y value
%   y_int -- y-axis intercept of the line

disp('This program performs a least-squares fit of an ');
disp('input data set to a straight line.');
n_points = input('Enter the number of input [x y] points: ');

% Read the input data
for ii = 1:n_points

temp = input('Enter [x y] pair: ');
x(ii) = temp(1);
y(ii) = temp(2);

end

% Accumulate statistics
sum_x = 0;
sum_y = 0;
sum_x2 = 0;
sum_xy = 0;
for ii = 1:n_points

sum_x  = sum_x + x(ii);
sum_y  = sum_y + y(ii);
sum_x2 = sum_x2 + x(ii)^2;
sum_xy = sum_xy + x(ii) * y(ii);

end

% Now calculate the slope and intercept.
x_bar = sum_x / n_points;
y_bar = sum_y / n_points;
slope = (sum_xy - sum_x * y_bar) / ( sum_x2 - sum_x * x_bar);
y_int = y_bar - slope * x_bar;
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% Tell user.
disp('Regression coefficients for the least-squares line:');
fprintf('  Slope (m) = %8.3f\n', slope);
fprintf('  Intercept (b) = %8.3f\n', y_int);
fprintf('  No. of points = %8d\n', n_points);

% Plot the data points as blue circles with no
% connecting lines.
plot(x,y,'bo');
hold on;

% Create the fitted line
xmin = min(x);
xmax = max(x);
ymin = slope * xmin + y_int;
ymax = slope * xmax + y_int;

% Plot a solid red line with no markers
plot([xmin xmax],[ymin ymax],'r-','LineWidth',2);
hold off;

% Add a title and legend
title ('\bfLeast-Squares Fit');
xlabel('\bf\itx');
ylabel('\bf\ity');
legend('Input data','Fitted line');
grid on

5. Test the program.
To test this program, we will try a simple data set. For example, if every
point in the input data set falls exactly along a line, then the resulting
slope and intercept should be exactly the slope and intercept of that line.
Thus the data set

[1.1 1.1]
[2.2 2.2]
[3.3 3.3]
[4.4 4.4]
[5.5 5.5]
[6.6 6.6]
[7.7 7.7]

should produce a slope of 1.0 and an intercept of 0.0. If we run the pro-
gram with these values, the results are

» lsqfit
This program performs a least-squares fit of an
input data set to a straight line.
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Enter the number of input [x y] points: 7
Enter [x y] pair: [1.1 1.1]
Enter [x y] pair: [2.2 2.2]
Enter [x y] pair: [3.3 3.3]
Enter [x y] pair: [4.4 4.4]
Enter [x y] pair: [5.5 5.5]
Enter [x y] pair: [6.6 6.6]
Enter [x y] pair: [7.7 7.7]
Regression coefficients for the least-squares line:

Slope (m)   =    1.000
Intercept (b) =    0.000
No. of points =    7

Now let’s add some noise to the measurements. The data set becomes

[1.1 1.01]
[2.2 2.30]
[3.3 3.05]
[4.4 4.28]
[5.5 5.75]
[6.6 6.48]
[7.7 7.84]

If we run the program with these values, the results are

» lsqfit
This program performs a least-squares fit of an
input data set to a straight line.
Enter the number of input [x y] points: 7
Enter [x y] pair: [1.1 1.01]
Enter [x y] pair: [2.2 2.30]
Enter [x y] pair: [3.3 3.05]
Enter [x y] pair: [4.4 4.28]
Enter [x y] pair: [5.5 5.75]
Enter [x y] pair: [6.6 6.48]
Enter [x y] pair: [7.7 7.84]
Regression coefficients for the least-squares
line:
Slope (m)   =   1.024
Intercept (b) =   -0.120
No. of points =   7

If we calculate the answer by hand, it is easy to show that the program
gives the correct answers for our two test data sets. The noisy input data
set and the resulting least-squares fitted line are shown in Figure 4.4.

�
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This example uses several of the plotting capabilities introduced in Chapter 3.
It uses the hold command to allow multiple plots to be placed on the same axes,
the LineWidth property to set the width of the least-squares fitted line, and
escape sequences to make the title boldface and the axis labels bold italic.

�

Example 4.7—Physics:The Flight of a Ball

If we assume negligible air friction and ignore the curvature of the Earth, a ball
that is thrown into the air from any point on the Earth’s surface will follow a par-
abolic flight path (see Figure 4.5a on page 186). The height of the ball at any time
t after it is thrown is given by Equation 4-7

(4-7)

where y0 is the initial height of the object above the ground, vy0 is the initial ver-
tical velocity of the object, and g is the acceleration due to the Earth’s gravity.

ystd 5 y0 1 vy0t 1
1

2
gt 2
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The horizontal distance (range) traveled by the ball as a function of time after it
is thrown is given by Equation 4-8

(4-8)

where x0 is the initial horizontal position of the ball on the ground, and vx0 is the
initial horizontal velocity of the ball.

If the ball is thrown with some initial velocity v0 at an angle of u degrees with
respect to the Earth’s surface, then the initial horizontal and vertical components
of velocity will be

(4-9)

(4-10)

Assume that the ball is initially thrown from position (x0, y0) � (0, 0) with
an initial velocity v0 of 20 meters per second at an initial angle of u degrees. Write
a program that will plot the trajectory of the ball and also determine the horizon-
tal distance traveled before it touches the ground again. The program should plot
the trajectories of the ball for all angles u from 5 to 85° in 10° steps, and should

vy0 5 v0 sin u

vx0 5 v0 cos u

xstd 5 x0 1 vx0t
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Figure 4.5 (a) When a ball is thrown upwards, it follows a parabolic trajectory. (b) The horizontal and
vertical components of a velocity vector v at an angle u with respect to the horizontal.
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determine the horizontal distance traveled for all angles u from 0 to 90° in 1°
steps. Finally, it should determine the angle u that maximizes the range of the ball
and plot that particular trajectory in a different color with a thicker line.

SOLUTION To solve this problem, we must determine an equation for the time
that the ball returns to the ground. Then, we can calculate the (x, y) position of the
ball using Equations 4-7 through 4-10. If we do this for many times between 0
and the time that the ball returns to the ground, we can use those points to plot the
ball’s trajectory.

The time that the ball will remain in the air after it is thrown may be calcu-
lated from Equation 4-7. The ball will touch the ground at the time t for which
y(t) � 0. Remembering that the ball will start from ground level  (y(0) � 0), and
solving for t, we get:

(4-7)

so the ball will be at ground level at time t1 � 0 (when we threw it), and at time

(4-11)

From the problem statement, we know that the initial velocity v0 is 20 meters
per second and that the ball will be thrown at all angles from 0° to 90° in 1° steps.
Finally, any elementary physics textbook will tell us that the acceleration due to
the earth’s gravity is –9.81 meters per second squared.

Now let’s apply our design technique to this problem.

1. State the problem.
A proper statement of this problem would be: Calculate the range that a
ball would travel when it is thrown with an initial velocity of v0 of 20 m/s
at an initial angle u. Calculate this range for all angles between 0° and
90°, in 1° steps. Determine the angle u that will result in the maximum
range for the ball. Plot the trajectory of the ball for angles between 5° and
85° in 10° increments. Plot the maximum-range trajectory in a different
color and with a thicker line. Assume that there is no air friction.

2. Define the inputs and outputs.
As the problem has been defined, no inputs are required. We know from
the problem statement what v0 and u will be, so there is no need to input
them. The outputs from this program will be a table showing the range of
the ball for each angle u, the angle u for which the range is maximum, and
a plot of the specified trajectories.

t2 5 2
2vy0

g

 0 5 avy0 1
1

2
gtbt

 0 5 0 1 vy0t 1
1

2
gt 2
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3. Design the algorithm.
This program can be broken down into the following major steps:

Calculate the range of the ball for u between 0 and 90°
Write a table of ranges
Determine the maximum range and write it out
Plot the trajectories for u between 5 and 85°
Plot the maximum-range trajectory

Since we know the exact number of times that the loops will be
repeated, for loops are appropriate for this algorithm. We will now refine
the pseudocode for each of the major steps previously given.

To calculate the maximum range of the ball for each angle, we will first
calculate the initial horizontal and vertical velocity from Equations 4-9 and
4-10. Then we will determine the time when the ball returns to Earth from
Equation 4-11. Finally, we will calculate the range at that time from
Equation 4-7. The detailed pseudocode for these steps is shown at the end
of this paragraph. Note that we must convert all angles to radians before
using the trig functions!

Create and initialize an array to hold ranges
for ii = 1:91

theta ← ii – 1
vxo ← vo * cos(theta*conv)
vyo ← vo * sin(theta*conv)
max_time ← -2 * vyo / g
range(ii) ← vxo * max_time

end

Next, we must write a table of ranges. The pseudocode for this step is

Write heading
for ii = 1:91

theta ← ii – 1
print theta and range

end

The maximum range can be found with the max function. Recall that
this function returns both the maximum value and its location. The
pseudocode for this step is

[maxrange index] ← max(range)
Print out maximum range and angle (=index-1)

We will use nested for loops to calculate and plot the trajectories. To
get all of the plots to appear on the screen, we must plot the first trajectory
and then set hold on before plotting any other trajectories. After plotting
the last trajectory, we must set hold off. To perform this calculation, we
will divide each trajectory into 21 time steps and find the x and y positions
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of the ball for each time step. Then, we will plot those (x, y) positions. The
pseudocode for this step is

for ii = 5:10:85

% Get velocities and max time for this angle
theta ← ii – 1
vxo ← vo * cos(theta*conv)
vyo ← vo * sin(theta*conv)
max_time ← -2 * vyo / g

Initialize x and y arrays
for jj = 1:21

time ← (jj-1) * max_time/20
x(time) ← vxo * time
y(time) ← vyo * time + 0.5 * g * time^2

end
plot(x,y) with thin green lines
Set "hold on" after first plot

end
Add titles and axis labels

Finally, we must plot the maximum range trajectory in a different
color and with a thicker line.

vxo ← vo * cos(max_angle*conv)
vyo ← vo * sin(max_angle*conv)
max_time ← -2 * vyo / g

Initialize x and y arrays
for jj = 1:21

time ← (jj-1) * max_time/20
x(jj) ← vxo * time
y(jj) ← vyo * time + 0.5 * g * time^2

end
plot(x,y) with a thick red line
hold off

4. Turn the algorithm into MATLAB statements.
The final MATLAB program is as follows:

% Script file: ball.m
%
% Purpose:
%   This program calculates the distance traveled by a ball
%   thrown at a specified angle "theta" and a specified
%   velocity "vo" from a point on the surface of the Earth,
%   ignoring air friction and the Earth's curvature. It
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%   calculates the angle yielding maximum range, and
also
%   plots selected trajectories.
%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 01/30/07 S. J. Chapman Original code
%
% Define variables:
% conv -- Degrees to radians conv factor
% gravity -- Accel. due to gravity (m/s^2)
% ii, jj -- Loop index
% index -- Location of maximum range in array
% maxangle -- Angle that gives maximum range (deg)
% maxrange -- Maximum range (m)
% range -- Range for a particular angle (m)
% time -- Time (s)
% theta -- Initial angle (deg)
% traj_time -- Total trajectory time (s)
% vo -- Initial velocity (m/s)
% vxo -- X-component of initial velocity (m/s)
% vyo -- Y-component of initial velocity (m/s)
% x -- X-position of ball (m)
% y -- Y-position of ball (m)

% Constants
conv = pi / 180; % Degrees-to-radians conversion factor
g = -9.81; % Accel. due to gravity
vo = 20; % Initial velocity

%Create an array to hold ranges
range = zeros(1,91);

% Calculate maximum ranges
for ii = 1:91

theta = ii - 1;
vxo = vo * cos(theta*conv);
vyo = vo * sin(theta*conv);
max_time = -2 * vyo / g;
range(ii) = vxo * max_time;

end

% Write out table of ranges
fprintf ('Range versus angle theta:\n');
for ii = 1:91

theta = ii - 1;
fprintf(' %2d    %8.4f\n',theta, range(ii));

end
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% Calculate the maximum range and angle
[maxrange index] = max(range);
maxangle = index - 1;
fprintf ('\nMax range is %8.4f at %2d degrees.\n',...

maxrange, maxangle);

% Now plot the trajectories
for ii = 5:10:85

% Get velocities and max time for this angle
theta = ii;
vxo = vo * cos(theta*conv);
vyo = vo * sin(theta*conv);
max_time = -2 * vyo / g;

% Calculate the (x,y) positions
x = zeros(1,21);
y = zeros(1,21);
for jj = 1:21

time = (jj-1) * max_time/20;
x(jj) = vxo * time;
y(jj) = vyo * time + 0.5 * g * time^2;

end
plot(x,y,’b’);
if ii == 5

hold on;
end

end

% Add titles and axis lables
title ('\bfTrajectory of Ball vs Initial Angle \theta');
xlabel ('\bf\itx \rm\bf(meters)');
ylabel ('\bf\ity \rm\bf(meters)');
axis ([0 45 0 25]);
grid on;

% Now plot the max range trajectory
vxo = vo * cos(maxangle*conv);
vyo = vo * sin(maxangle*conv);
max_time = -2 * vyo / g;

% Calculate the (x,y) positions
x = zeros(1,21);
y = zeros(1,21);
for jj = 1:21
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time = (jj-1) * max_time/20;
x(jj) = vxo * time;
y(jj) = vyo * time + 0.5 * g * time^2;

end
plot(x,y,'r','LineWidth',3.0);
hold off

The acceleration due to gravity at sea level can be found in any physics
text. It is about 9.81 m/s2, directed downward.

5. Test the program.
To test this program, we will calculate the answers by hand for a few of the
angles and compare the results with the output of the program.
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0° 20 m/s 0 m/s 0 s 0 m

5° 19.92 m/s 1.74 m/s 0.355 s 7.08 m

40° 15.32 m/s 12.86 m/s 2.621 s 40.15 m

45° 14.14 m/s 14.14 m/s 2.883 s 40.77 m

x 5 vx0t2t2 5 2
2vy0

g
vy0 5 v0 sinuvx0 5 v0 cosuu

When program ball is executed, a 91-line table of angles and ranges is
produced. To save space, only a portion of the table is reproduced here.

» ball
Range versus angle theta:

0 0.0000
1 1.4230
2 2.8443
3 4.2621
4 5.6747
5 7.0805

...
40 40.1553
41 40.3779
42 40.5514
43 40.6754
44 40.7499
45 40.7747
46 40.7499
47 40.6754
48 40.5514
49 40.3779



50 40.1553
...

85 7.0805
86 5.6747
87 4.2621
88 2.8443
89 1.4230
90 0.0000

Max range is 40.7747 at 45 degrees.

The resulting plot is shown in Figure 4.6. The program output matches our hand
calculation for the angles previously calculated to the 4-digit accuracy of the hand
calculation. Note that the maximum range occurred at an angle of 45°.

�

This example uses several of the plotting capabilities introduced in 
Chapter 3. It uses the axis command to set the range of data to display, the
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hold command to allow multiple plots to be placed on the same axes, the
LineWidth property to set the width of the line corresponding to the maximum-
range trajectory, and escape sequences to create the desired title and x- and y-axis
labels.

However, this program is not written in the most efficient manner, since there
are a number of loops that could have been better replaced by vectorized state-
ments. You will be asked to rewrite and improve ball.m in Exercise 4.11 at the
end of this chapter.

4.6 Summary

There are two basic types of loops in MATLAB, the while loop and the for
loop. The while loop is used to repeat a section of code in cases where we do
not know in advance how many times the loop must be repeated. The for loop
is used to repeat a section of code in cases where we know in advance how many
times the loop should be repeated. It is possible to exit from either type of loop at
any time using the break statement.

4.6.1 Summary of Good Programming Practice

The following guidelines should be adhered to when programming with loop con-
structs. By following them consistently, your code will contain fewer bugs, will
be easier to debug, and will be more understandable to others who may need to
work with it in the future.

1. Always indent code blocks in while and for constructs to make them
more readable.

2. Use a while loop to repeat sections of code when you don’t know in
advance how often the loop will be executed.

3. Use a for loop to repeat sections of code when you know in advance how
often the loop will be executed.

4. Never modify the values of a for loop index while inside the loop.
5. Always preallocate all arrays used in a loop before executing the loop.

This practice greatly increases the execution speed of the loop.
6. If it is possible to implement a calculation either with a for loop or using

vectors, implement the calculation with vectors. Your program will be
much faster.

7. Do not rely on the JIT compiler to speed up your code. It has many
limitations, and a programmer can typically do a better job with manual
vectorization.

8. Use the MATLAB Profiler to identify the parts of programs that consume
the most CPU time. Optimizing those parts of the program will speed up
the overall execution of the program.
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4.6.2 MATLAB Summary

The following summary lists all of the MATLAB commands and functions
described in this chapter, along with a brief description of each one.
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Commands and Functions

break Stop the execution of a loop, and transfer control to the first 
statement after the end of the loop.

continue Stop the execution of a loop, and transfer control to the top of 
the loop for the next iteration.

for loop Loops over a block of statements a specified number of times.

tic Resets elapsed time counter.

toc Returns elapsed time since last call to tic.

while loop Loops over a block of statements until a test condition becomes 
0 (false).

4.7 Exercises

4.1 Write the MATLAB statements required to calculate y(t) from the equation

for values of t between –9 and 9 in steps of 0.5. Use loops and branches to
perform this calculation.

4.2 Rewrite the statements required to solve Exercise 4.1 using vectorization.
4.3 Write the MATLAB statements required to calculate and print out the

squares of all the even integers between 0 and 50. Create a table consist-
ing of each integer and its square, with appropriate labels over each
column.

4.4 Write an M-file to evaluate the equation y(x) � x2 � 3x � 2 for all values
of x between �1 and 3, in steps of 0.1. Do this twice, once with a for
loop and once with vectors. Plot the resulting function using a 3-point-
thick dashed red line.

4.5 Write an M-file to calculate the factorial function N!, as defined in
Example 4.2. Be sure to handle the special case of 0! Also, be sure to
report an error if N is negative or not an integer.

4.6 Examine the following for statements and determine how many times
each loop will be executed.

(a) for ii = -32768:32767
(b) for ii = 32768:32767

ystd 5 e23t2 1 5 t $ 0

3t2 1 5 t , 0



(c) for kk = 2:4:3
(d) for jj = ones(5,5)

4.7 Examine the following for loops and determine the value of ires at the
end of each of the loops and also the number of times each loop executes.

(a) ires = 0;
for index = -10:10

ires = ires + 1;
end

(b) ires = 0;
for index = 10:-2:4

if index == 6
continue;

end
ires = ires + index;

end

(c) ires = 0;
for index = 10:-2:4

if index == 6
break;

end
ires = ires + index;

end

(d) ires = 0;
for index1 = 10:-2:4

for index2 = 2:2:index1
if index2 == 6

break
end
ires = ires + index2;

end
end

4.8 Examine the following while loops and determine the value of ires
at the end of each of the loops and the number of times each loop
executes.

(a) ires = 1;
while mod(ires,10) ~= 0

ires = ires + 1;
end

(b) ires = 2;
while ires <= 200

ires = ires^2;
end
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(c) ires = 2;
while ires > 200

ires = ires^2;
end

4.9 What is contained in array arr1 after each of the following sets of state-
ments are executed?

(a) arr1 = [1 2 3 4; 5 6 7 8; 9 10 11 12];
mask = mod(arr1,2) == 0;
arr1(mask) = -arr1(mask);

(b) arr1 = [1 2 3 4; 5 6 7 8; 9 10 11 12];
arr2 = arr1 <= 5;
arr1(arr2) = 0;
arr1(~arr2) = arr1(~arr2).^2;

4.10 How can a logical array be made to behave as a logical mask for vector
operations?

4.11 Modify program ball from Example 4.7 by replacing the inner for
loops with vectorized calculations.

4.12 Modify program ball from Example 4.7 to read in the acceleration due
to gravity at a particular location and to calculate the maximum range of
the ball for that acceleration. After modifying the program, run it with
accelerations of �9.8 m/s2, �9.7 m/s2, and �9.6 m/s2. What effect does
the reduction in gravitational attraction have on the range of the ball?
What effect does the reduction in gravitational attraction have on the best
angle u at which to throw the ball?

4.13 Modify program ball from Example 4.7 to read in the initial velocity
with which the ball is thrown. After modifying the program, run it with
initial velocities of 10 m/s, 20 m/s, and 30 m/s. What effect does chang-
ing the initial velocity v0 have on the range of the ball? What effect does
it have on the best angle u at which to throw the ball?

4.14 Program lsqfit from Example 4.6 required the user to specify the num-
ber of input data points before entering the values. Modify the program so
that it reads an arbitrary number of data values using a while loop and
stops reading input values when the user presses the Enter key without
typing any values. Test your program using the same two data sets that
were used in Example 4.6. (Hint: The input function returns an empty
array ([]) if a user presses Enter without supplying any data. You can use
function isempty to test for an empty array and stop reading data when
one is detected.)

4.15 Modify program lsqfit from Example 4.6 to read its input values from
an ASCII file named input1.dat. The data in the file will be organized
in rows, with one pair of (x, y) values on each row, as shown here:

1.1   2.2
2.2   3.3
...
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Test your program using the same two data sets that were used in Example
4.6. (Hint: Use the load command to read the data into an array named
input1 and then store the first column of input1 into array x and the
second column of input1 into array y.)

4.16 MATLAB Least-Squares Fit Function MATLAB includes a standard
function that performs a least-squares fit to a polynomial. Function
polyfit calculates the least-squares fit of a data set to a polynomial of
order N:

(4-12)

where N can be any value greater than or equal to 1. Note that for N � 1,
this polynomial is a linear equation, with the slope being the coefficient
a1 and the y-intercept being the coefficient a0. The form of this function is

p = polyfit(x,y,n)

where x and y are vectors of x and y components, and n is the order of the fit.
Write a program that calculates the least-squares fit of a data set to a

straight line using polyfit. Plot the input data points and the resulting fit-
ted line. Compare the result produced by the program using polyfit with
the result produced by lsqfit for the input data set in Example 4.6.

4.17 Program doy in Example 4.3 calculates the day of year associated with
any given month, day, and year. As written, this program does not check
to see whether the data entered by the user is valid. It will accept nonsense
values for months and days and do calculations with them to produce
meaningless results. Modify the program so that it checks the input values
for validity before using them. If the inputs are invalid, the program should
tell the user what is wrong and quit. The year should be a number greater
than zero, the month should be a number between 1 and 12, and the day
should be a number between 1 and a maximum that depends on the month.
Use a switch construct to implement the bounds checking performed on
the day.

4.18 Write a MATLAB program to evaluate the function

for any user-specified value of x, where ln is the natural logarithm (loga-
rithm to the base e). Write the program with a while loop, so that the pro-
gram repeats the calculation for each legal value of x entered into the
program. When an illegal value of x is entered, terminate the program.
(Any x � 1 is considered an illegal value.)

4.19 Fibonacci Numbers The nth Fibonacci number is defined by the follow-
ing recursive equations:

f (1) � 1

f (2) � 2

f (n) � f (n � 1) � f (n � 2)

ysxd 5 ln
1

1 2 x

psxd 5 an x n 1 an21x
 n21 1 c 1 a1x 1 a0
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Therefore, f (3) � f (2) � f (1) � 2 � 1 � 3, and so forth for higher num-
bers. Write an M-file to calculate and write out the nth Fibonacci number
for n > 2, where n is input by the user. Use a while loop to perform the
calculation.

4.20 Current Through a Diode The current flowing through the semicon-
ductor diode shown in Figure 4.7 is given by the equation

(4-13)

where iD � the voltage across the diode, in volts
vD � the current flow through the diode, in amps
I0 � the leakage current of the diode, in amps
q = the charge on an electron, 1.602 � 10�19 coulombs
k = Boltzmann’s constant, 1.38 � 10�23 joule/K
T = temperature, in kelvins (K)

The leakage current I0 of the diode is 2.0 mA. Write a program to calculate
the current flowing through this diode for all voltages from �1.0 V to �0.6
V, in 0.1 V steps. Repeat this process for the following temperatures: 75 °F
and 100 °F, and 125 °F. Create a plot of the current as a function of applied
voltage, with the curves for the three different temperatures appearing as
different colors.

4.21 Tension on a Cable A 200 pound object is to be hung from the end of a
rigid 8-foot horizontal pole of negligible weight, as shown in Figure 4.8
(see on page 200). The pole is attached to a wall by a pivot and is support-
ed by an 8-foot cable that is attached to the wall at a higher point. The ten-
sion on this cable is given by the equation

(4-14)

where T is the tension on the cable, W is the weight of the object, lc is the
length of the cable, lp is the length of the pole, and d is the distance along
the pole at which the cable is attached. Write a program to determine the
distance d at which to attach the cable to the pole in order to minimize the

T 5
W ? lc ? lp

d!lp2 2 d2

iD 5 I0ae
qvD

kT 21b
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tension on the cable. To do this, the program should calculate the tension
on the cable at regular one-foot intervals from d � 1 foot to d � 7 feet, and
should locate the position d that produces the minimum tension. Also, the
program should plot the tension on the cable as a function of d, with appro-
priate titles and axis labels.

4.22 Bacterial Growth Suppose that a biologist performs an experiment in
which he or she measures the rate at which a specific type of bacterium
reproduces asexually in different culture media. The experiment shows that
in Medium A the bacteria reproduce once every 60 minutes and in Medium
B the bacteria reproduce once every 90 minutes. Assume that a single bac-
terium is placed on each culture medium at the beginning of the experi-
ment. Write a program that calculates and plots the number of bacteria
present in each culture at intervals of three hours from the beginning of the
experiment until 24 hours have elapsed. Make two plots, one a linear xy
plot and the other a linear-log (semilogy) plot. How do the numbers of
bacteria compare on the two media after 24 hours?

4.23 Decibels Engineers often measure the ratio of two power measurements in
decibels, or dB. The equation for the ratio of two power measurements
in decibels is

(4-15)

where P2 is the power level being measured and P1 is some reference power
level. Assume that the reference power level P1 is 1 watt, and write a pro-
gram that calculates the decibel level corresponding to power levels
between 1 and 20 watts, in 0.5 W steps. Plot the dB-versus-power curve on
a log-linear scale.

dB 5 10 log10
P2

P1
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4.24 Geometric Mean The geometric mean of a set of numbers x1 through
xn is defined as the nth root of the product of the numbers:

(4-16)

Write a MATLAB program that will accept an arbitrary number of posi-
tive input values and calculate both the arithmetic mean (i.e., the average)
and the geometric mean of the numbers. Use a while loop to get the
input values and terminate the inputs when a user enters a negative num-
ber. Test your program by calculating the average and geometric mean of
the four numbers 10, 5, 2, and 5.

4.25 RMS Average The root-mean-square (rms) average is another way of cal-
culating a mean for a set of numbers. The rms average of a series of num-
bers is the square root of the arithmetic mean of the squares of the numbers:

(4-17)

Write a MATLAB program that will accept an arbitrary number of posi-
tive input values and calculate the rms average of the numbers. Prompt the
user for the number of values to be entered and use a for loop to read in
the numbers. Test your program by calculating the rms average of the four
numbers 10, 5, 2, and 5.

4.26 Harmonic Mean The harmonic mean is yet another way of calculating
a mean for a set of numbers. The harmonic mean of a set of numbers is
given by the equation:

(4-18)

Write a MATLAB program that will read in an arbitrary number of posi-
tive input values and calculate the harmonic mean of the numbers. Use any
method that you desire to read in the input values. Test your program by
calculating the harmonic mean of the four numbers 10, 5, 2, and 5.

4.27 Write a single program that calculates the arithmetic mean (average), rms
average, geometric mean, and harmonic mean for a set of positive num-
bers. Use any method that you desire to read in the input values. Compare
these values for each of the following sets of numbers:

(a) 4, 4, 4, 4, 4, 4, 4
(b) 4, 3, 4, 5, 4, 3, 5
(c) 4, 1, 4, 7, 4, 1, 7
(d ) 1, 2, 3, 4, 5, 6, 7

4.28 Mean Time between Failure Calculations The reliability of a piece of
electronic equipment is usually measured in terms of mean time between
failures (MTBF), where MTBF is the average time that the piece of equip-
ment can operate before a failure occurs in it. For large systems containing

harmonic mean 5
N

1

x1
1

1

x2
1 c1

1

xN

rms average 5 B
1

N
g
N

i51
xi

2

geometric mean 5 "n x1x2x3 cxn
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many pieces of electronic equipment, it is customary to determine the
MTBFs of each component and to calculate the overall MTBF of the sys-
tem from the failure rates of the individual components. If the system is
structured like the one shown in Figure 4.9, every component must work in
order for the whole system to work, and the overall system MTBF can be
calculated as

(4-19)

Write a program that reads in the number of series components in a sys-
tem and the MTBFs for each component and then calculates the overall
MTBF for the system. To test your program, determine the MTBF for a
radar system consisting of an antenna subsystem with an MTBF of
2000 hours, a transmitter with an MTBF of 800 hours, a receiver with an
MTBF of 3000 hours, and a computer with an MTBF of 5000 hours.

MTBFsys 5
1

1

MTBF1
1

1

MTBF2
1 c1

1

MTBFn
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C H A P T E R 5
User-Defined
Functions

In Chapter 3, we learned the importance of good program design. The basic
technique that we employed is top-down design. In top-down design, the pro-
grammer starts with a statement of the problem to be solved and the required
inputs and outputs. Next, he or she describes the algorithm to be implemented
by the program in broad outline, and applies decomposition to break the algorithm
down into logical subdivisions called sub-tasks. Then, the programmer breaks
down each sub-task until he or she winds up with many small pieces, each of
which does a simple, clearly understandable job. Finally, the individual pieces are
turned into MATLAB code.

Although we have followed this design process in our examples, the results
have been somewhat restricted, because we have had to combine the final
MATLAB code generated for each sub-task into a single large program.There has
been no way to code, verify, and test each sub-task independently before com-
bining them into the final program.

Fortunately, MATLAB has a special mechanism designed to make sub-tasks
easy to develop and debug independently before building the final program. It is
possible to code each sub-task as a separate function, and each function can be
tested and debugged independently of all of the other sub-tasks in the program.

Well-designed functions enormously reduce the effort required on a large
programming project.Their benefits include

1. Independent testing of sub-tasks. Each sub-task can be written as an
independent unit.The sub-task can be tested separately to ensure that it
performs properly by itself before combining it into the larger program.
This step is know as unit testing. It eliminates a major source of prob-
lems before the final program is even built.

203



2. Reusable code. In many cases, the same basic sub-task is needed in
many parts of a program. For example, it may be necessary to sort a list
of values into ascending order many different times within a program, or
even in other programs. It is possible to design, code, test, and debug a
single function to do the sorting, and then to reuse that function when-
ever sorting is required. This reusable code has two major advantages:
it reduces the total programming effort required, and it simplifies debug-
ging, since the sorting function only needs to be debugged once.

3. Isolation from unintended side effects. Functions receive input data
from the program that invokes them through a list of variables called an
input argument list, and return results to the program through an
output argument list. Each function has its own workspace with its
own variables, independent of all other functions and of the calling
program. The only variables in the calling program that can be seen by the
function are those in the input argument list, and the only variables in the
function that can be seen by the calling program are those in the output argu-
ment list. This is very important, since accidental programming mistakes
within a function can only affect the variables within function in which the
mistake occurred.

Once a large program is written and released, it has to be maintained.
Program maintenance involves fixing bugs and modifying the program to han-
dle new and unforeseen circumstances.The programmer who modifies a pro-
gram during maintenance is often not the person who originally wrote it. In
poorly written programs, it is common for the programmer modifying the pro-
gram to make a change in one region of the code, and to have that change
cause unintended side effects in a totally different part of the program. This
happens because variable names are re-used in different portions of the pro-
gram. When the programmer changes the values left behind in some of the
variables, those values are accidentally picked up and used in other portions of
the code.

The use of well-designed functions minimizes this problem by data hiding.
The variables in the main program are not visible to the function (except for
those in the input argument list), and the variables in the main program cannot
be accidentally modified by anything occurring in the function. Therefore, mis-
takes or changes in the function’s variables cannot accidentally cause unintended
side effects in the other parts of the program.

✷ Good Programming Practice:

Break large program tasks into functions whenever practical to achieve the
important benefits of independent component testing, reusability, and isolation
from undesired side effects.
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5.1 Introduction to MATLAB Functions

All of the M-files that we have seen so far have been script files. Script files are
just collections of MATLAB statements that are stored in a file. When a script file
is executed, the result is the same as it would be if all of the commands had been
typed directly into the Command Window. Script files share the Command
Window’s workspace, so any variables that were defined before the script file
starts are visible to the script file, and any variables created by the script file
remain in the workspace after the script file finishes executing. A script file has
no input arguments and returns no results, but script files can communicate with
other script files through the data left behind in the workspace.

In contrast, a MATLAB function is a special type of M-file that runs in its
own independent workspace. It receives input data through an input argument
list, and returns results to the caller through an output argument list. The gen-
eral form of a MATLAB function is

function [outarg1, outarg2, ...] = fname(inarg1, inarg2, ...)
% H1 comment line
% Other comment lines
...
(Executable code)
...
(return)
(end)

The function statement marks the beginning of the function. It specifies the
name of the function and the input and output argument lists. The input argument
list appears in parentheses after the function name, and the output argument list
appears in brackets to the left of the equal sign. (If there is only one output argu-
ment, the brackets can be dropped.)

Each ordinary MATLAB function should be placed in a file with the same
name (including capitalization) as the function, and the file extent “.m”. For
example, if a function is named My_fun, then that function should be placed
in a file named My_fun.m.

The input argument list is a list of names representing values that will be
passed from the caller to the function. These names are called dummy argu-
ments. They are just placeholders for actual values that are passed from the caller
when the function is invoked. Similarly, the output argument list contains a list of
dummy arguments that are placeholders for the values returned to the caller when
the function finishes executing.

A function is invoked by naming it in an expression together with a list of
actual arguments. A function can be invoked by typing its name directly in the
Command Window, or by including it in a script file or another function. The
name in the calling program must exactly match the function name (including
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capitalization)1. When the function is invoked, the value of the first actual argu-
ment is used in place of the first dummy argument, and so forth for each other
actual argument/dummy argument pair.

Execution begins at the top of the function, and ends when either a
return statement, an end statement, or the end of the function is reached.
Because execution stops at the end of a function anyway, the return state-
ment is not actually required in most functions, and is rarely used. Each item
in the output argument list must appear on the left side of a least one assign-
ment statement in the function. When the function returns, the values stored in
the output argument list are returned to the caller, and may be used in further
calculations.

The use of an end statement to terminate a function is a new feature of
MATLAB 7.0. In earlier versions of MATLAB, the end statement was only used
to terminate structures such as if, for, while, etc. It is optional in MATLAB 7
unless a file includes nested functions, which are a special feature not covered in
this book. We will not use the end statement to terminate a function unless it is
actually needed, so you will not see it used in this book.

The initial comment lines in a function serve a special purpose. The first
comment line after the function statement is called the H1 comment line.
It should always contain a one-line summary of the purpose of the function.
The special significance of this line is that it is searched and displayed by the
lookfor command. The remaining comment lines from the H1 line until
the first blank line or the first executable statement are displayed by the
help command. They should contain a brief summary of how to use the
function.

A simple example of a user-defined function is shown at the end of this para-
graph. Function dist2 calculates the distance between points (x1, y1) and (x2, y2)
in a Cartesian coordinate system.

function distance = dist2 (x1, y1, x2, y2)
%DIST2 Calculate the distance between two points
% Function DIST2 calculates the distance between
% two points (x1,y1) and (x2,y2) in a Cartesian
% coordinate system.
%
% Calling sequence:
% distance = dist2(x1, y1, x2, y2)
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puters, and a warning on Windows-based computers.



% Define variables:
% x1 –– x-position of point 1
% y1 –– y-position of point 1
% x2 –– x-position of point 2
% y2 –– y-position of point 2
% distance –– Distance between points

% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 02/01/07 S. J. Chapman Original code

% Calculate distance.
distance = sqrt((x2-x1).^2 + (y2-y1).^2);

This function has four input arguments and one output argument. A simple script
file using this function is shown as follows:

% Script file: test_dist2.m
%
% Purpose:
% This program tests function dist2.
%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 02/01/07 S. J. Chapman Original code
%
% Define variables:
%   ax     –– x-position of point a
%   ay     –– y-position of point a
%   bx     –– x-position of point b
%   by     –– y-position of point b
%   result –– Distance between the points

% Get input data.
disp('Calculate the distance between two points:');
ax = input('Enter x value of point a:   ');
ay = input('Enter y value of point a:   ');
bx = input('Enter x value of point b:   ');
by = input('Enter y value of point b:   ');

% Evaluate function
result = dist2 (ax, ay, bx, by);
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% Write out result.
fprintf('The distance between points a and b is %f\n',result);

When this script file is executed, the results are

» test_dist2
Calculate the distance between two points:
Enter x value of point a: 1
Enter y value of point a: 1
Enter x value of point b: 4
Enter y value of point b: 5
The distance between points a and b is 5.000000

These results are correct, as we can verify from simple hand calculations.
Function dist2 also supports the MATLAB help subsystem. If we type

“help dist2”, the results are

» help dist2
DIST2 Calculate the distance between two points

Function DIST2 calculates the distance between
two points (x1,y1) and (x2,y2) in a Cartesian
coordinate system.

Calling sequence:
res = dist2(x1, y1, x2, y2)

Similarly, “lookfor distance” produces the result

» lookfor distance
DIST2 Calculate the distance between two points
MAHAL Mahalanobis distance.
DIST Distances between vectors.
NBDIST Neighborhood matrix using vector distance.
NBGRID Neighborhood matrix using grid distance.
NBMAN Neighborhood matrix using Manhattan-distance.

To observe the behavior of the MATLAB workspace before, during, and after
the function is executed, we will load function dist2 and the script file
test_dist2 into the MATLAB debugger, and set breakpoints before, during
and after the function call (see Figure 5.1). When the program stops at the break-
point before the function call, the workspace is as shown in Figure 5.2 (a) (see on
page 210). Note that variables ax, ay, bx, and by are defined in the workspace,
with the values that we have entered. When the program stops at the breakpoint
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within the function call, the function’s workspace is active. It is as shown in
Figure 5.2 (b). Note that variables x1, x2, y1, y2, and distance are defined
in the function’s workspace, and the variables defined in the calling M-file not
present. When the program stops in the calling program at the breakpoint after the
function call, the workspace is as shown in Figure 5.2 (c). Now the original vari-
ables are back, with the variable result added to contain the value returned by
the function. These figures show that the workspace of the function is different
than the workspace of the calling M-file.
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Figure 5.2 (a) The workspace before the function call. (b) The workspace during the function call.
(c) The workspace after the function call.

(a)

(b)

(c)
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5.2 Variable Passing in MATLAB:
The Pass-by-Value Scheme

MATLAB programs communicate with their functions using a pass-by-value
scheme. When a function call occurs, MATLAB makes a copy of the actual argu-
ments and passes them to the function. This copying is very significant, because
it means that even if the function modifies the input arguments, it won’t affect the
original data in the caller. This feature helps to prevent unintended side effects,
in which an error in the function might unintentionally modify variables in the
calling program.

This behavior is illustrated in the function shown at the end of this paragraph.
This function has two input arguments: a and b. During its calculations, it mod-
ifies both input arguments.

function out = sample(a, b)
fprintf('In     sample: a = %f, b = %f %f\n',a,b);
a = b(1) + 2*a;
b = a .* b;
out = a + b(1);
fprintf('In     sample: a = %f, b = %f %f\n',a,b);

A simple test program to call this function is shown here.

a = 2; b = [6 4];
fprintf('Before sample: a = %f, b = %f %f\n',a,b);
out = sample(a,b);
fprintf('After  sample: a = %f, b = %f %f\n',a,b);
fprintf('After  sample: out = %f\n',out);

When this program is executed, the results are

» test_sample
Before sample: a = 2.000000, b = 6.000000 4.000000
In     sample: a = 2.000000, b = 6.000000 4.000000
In     sample: a = 10.000000, b = 60.000000 40.000000
After  sample: a = 2.000000, b = 6.000000 4.000000
After  sample: out = 70.000000

Note that a and b were both changed inside function sample, but those changes
had no effect on the values in the calling program.

Users of the C language will be familiar with the pass-by-value scheme,
since C uses it for scalar values passed to functions. However C does not use
the pass-by-value scheme when passing arrays, so an unintended modification
to a dummy array in a C function can cause side effects in the calling program.
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MATLAB improves on this by using the pass-by-value scheme for both scalars
and arrays2.

�

Example 5.1—Rectangular-to-Polar Conversion

The location of a point in a Cartesian plane can be expressed in either the rectangular
coordinates (x, y) or the polar coordinates (r, u), as shown in Figure 5.3. The relation-
ships among these two sets of coordinates are given by the following equations:

(5-1)

(5-2)

(5-3)

(5-4)

Write two functionsrect2polar andpolar2rect that convert coordinates from
rectangular to polar form, and vice versa, where the angle u is expressed in degrees.

u 5 tan21
y

x

r 5 "x2 1 y2

y 5 r sin u 

x 5 r cos u
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2The implementation of argument passing is MATLAB is actually more sophisticated than this dis-
cussion indicates.  As pointed out previously, the copying associated with pass-by-value takes up a lot
of time, but it provides protection against unintended side effects. MATLAB actually uses the best of
both approaches: it analyzes each argument of each function, and determines whether or not the func-
tion modifies that argument. If the function modifies the argument, then MATLAB makes a copy of
it. If it does not modify the argument, then MATLAB simply points to the existing value in the call-
ing program. This practice increases speed while still providing protection against side effects!

Figure 5.3 A point P in a Cartesian plane can be located by either the rectangular coordinates (x, y)
or the polar coordinates (r, u).
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SOLUTION We will apply our standard problem-solving approach to creating
these functions. Note that MATLAB’s trigonometric functions work in radians, so
we must convert from degrees to radians and vice versa when solving this prob-
lem. The basic relationship between degrees and radians is

180� � p radians (5-5)

1. State the problem.
The problem can be stated succinctly as

Write a function that converts a location on a Cartesian plane
expressed in rectangular coordinates into the corresponding
polar coordinates, with the angle u is expressed in degrees. Also,
write a function that converts a location on a Cartesian plane
expressed in polar coordinates with the angle u is expressed in
degrees into the corresponding rectangular coordinates.

2. Define the inputs and outputs.
The inputs to function rect2polar are the rectangular (x, y) location
of a point. The outputs of the function are the polar (r, u ) location of the
point. The inputs to function polar2rect are the polar (r, u ) location
of a point. The outputs of the function are the rectangular (x, y) location of
the point.

3. Describe the algorithm.
These functions are very simple, so we can directly write the final
pseudocode for them. The pseudocode for function polar2rect is:

x ← r * cos(theta * pi/180)
y ← r * sin(theta * pi/180)

The pseudocode for function rect2polar will use the function
atan2, because that function works over all four quadrants of the
Cartesian plane. (Look that function up in the MATLAB Help Browser!)

r ← sqrt( x.^2 + y .^2 )
theta ← 180/pi * atan2(y,x)

4. Turn the algorithm into MATLAB statements.
The MATLAB code for the selection polar2rect function is shown
here.

function [x, y] = polar2rect(r,theta)
%POLAR2RECT Convert rectangular to polar coordinates
% Function POLAR2RECT accepts the polar coordinates
% (r,theta), where theta is expressed in degrees,
% and converts them into the rectangular coordinates
% (x,y).
%
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% Calling sequence:
%   [x, y] = polar2rect(r,theta)

% Define variables:
%   r        -- Length of polar vector
%   theta    -- Angle of vector in degrees
%   x        -- x-position of point
%   y        -- y-position of point

% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 02/01/07 S. J. Chapman Original code

x = r * cos(theta * pi/180);
y = r * sin(theta * pi/180);

The MATLAB code for the selection rect2polar function is shown
here.

function [r, theta] = rect2polar(x,y)
%RECT2POLAR Convert rectangular to polar coordinates
% Function RECT2POLAR accepts the rectangular coordinates
% (x,y) and converts them into the polar coordinates
% (r,theta), where theta is expressed in degrees.
%
% Calling sequence:
%   [r, theta] = rect2polar(x,y)

% Define variables:
%   r        -- Length of polar vector
%   theta    -- Angle of vector in degrees
%   x        -- x-position of point
%   y        -- y-position of point

% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 02/01/07 S. J. Chapman Original code

r = sqrt( x.^2 + y .^2 );
theta = 180/pi * atan2(y,x);

Note that these functions both include help information, so they will
work properly with MATLAB’s help subsystem and with the lookfor
command.
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5. Test the program.
To test these functions, we will execute them directly in the MATLAB
Command Window. We will test the functions using the 3-4-5 triangle,
which is familiar to most people from secondary school. The smaller
angle within a 3-4-5 triangle is approximately 36.87�. We will also test
the function in all four quadrants of the Cartesian plane to ensure that the
conversions are correct everywhere.

» [r, theta] = rect2polar(4,3)
r =

5
theta =

36.8699
» [r, theta] = rect2polar(-4,3)
r =

5
theta =

143.1301
» [r, theta] = rect2polar(-4,-3)
r =

5
theta =

-143.1301
» [r, theta] = rect2polar(4,-3)
r =

5
theta =

-36.8699
» [x, y] = polar2rect(5,36.8699)
x =

4.0000
y =

3.0000
» [x, y] = polar2rect(5,143.1301)
x =

-4.0000
y =

3.0000
» [x, y] = polar2rect(5,-143.1301)
x =

-4.0000
y =

-3.0000
» [x, y] = polar2rect(5,-36.8699)
x =

4.0000
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y =
-3.0000

»
These functions appear to be working correctly in all quadrants of the
Cartesian plane.

�

�

Example 5.2—Sorting Data

In many scientific and engineering applications, it is necessary to take a random
input data set and to sort it so that the numbers in the data set are either all in
ascending order (lowest-to-highest) or all in descending order (highest-to-
lowest). For example, suppose that you were a zoologist studying a large pop-
ulation of animals, and that you wanted to identify the largest 5% of the animals
in the population. The most straightforward way to approach this problem would
be to sort the sizes of all of the animals in the population into ascending order,
and take the top 5% of the values.

Sorting data into ascending or descending order seems to be an easy job.
After all, we do it all the time. It is simple matter for us to sort the data (10, 3, 6,
4, 9) into the order (3, 4, 6, 9, 10). How do we do it? We first scan the input data
list (10, 3, 6, 4, 9) to find the smallest value in the list (3), and then scan the
remaining input data (10, 6, 4, 9) to find the next smallest value (4), etc. until the
complete list is sorted.

In fact, sorting can be a very difficult job. As the number of values to be sorted
increases, the time required to perform the simple sort described previously
increases rapidly, since we must scan the input data set once for each value sorted.
For very large data sets, this technique just takes too long to be practical. Even
worse, how would we sort the data if there were too many numbers to fit into the
main memory of the computer? The development of efficient sorting techniques
for large data sets is an active area of research, and is the subject of whole courses
all by itself.

In this example, we will confine ourselves to the simplest possible algorithm
to illustrate the concept of sorting. This simplest algorithm is called the selection
sort. It is just a computer implementation of the mental math described previ-
ously. The basic algorithm for the selection sort is:

1. Scan the list of numbers to be sorted to locate the smallest value in the list.
Place that value at the front of the list by swapping it with the value cur-
rently at the front of the list. If the value at the front of the list is already
the smallest value, then do nothing.

2. Scan the list of numbers from position 2 to the end to locate the next
smallest value in the list. Place that value in position 2 of the list by swap-
ping it with the value currently at that position. If the value in position 2
is already the next smallest value, then do nothing.
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3. Scan the list of numbers from position 3 to the end to locate the third
smallest value in the list. Place that value in position 3 of the list by swap-
ping it with the value currently at that position. If the value in position 3
is already the third smallest value, then do nothing.

4. Repeat this process until the next-to-last position in the list is reached. After
the next-to-last position in the list has been processed, the sort is complete.

Note that if we are sorting N values, this sorting algorithm requires N-1 scans
through the data to accomplish the sort.

This process is illustrated in Figure 5.4. Since there are 5 values in the data
set to be sorted, we will make 4 scans through the data. During the first pass
through the entire data set, the minimum value is 3, so the 3 is swapped with the
10 which was in position 1. Pass 2 searches for the minimum value in positions 2
through 5. That minimum is 4, so the 4 is swapped with the 10 in position 2. Pass
3 searches for the minimum value in positions 3 through 5. That minimum is 6,
which is already in position 3, so no swapping is required. Finally, pass 4 search-
es for the minimum value in positions 4 through 5. That minimum is 9, so the 9
is swapped with the 10 in position 4, and the sort is completed.

�Programming Pitfalls:

The selection sort algorithm is the easiest sorting algorithm to understand, but
it is computationally inefficient. It should never be applied to sort large data
sets (say, sets with more than 1000 elements). Over the years, computer scien-
tists have developed much more efficient sorting algorithms. The sort and
sortrows functions built into MATLAB are extremely efficient and should be
used for all real work.
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We will now develop a program to read in a data set from the Command
Window, sort it into ascending order, and display the sorted data set. The sorting
will be done by a separate user-defined function.

SOLUTION This program must be able to ask the user for the input data, sort the
data, and write out the sorted data. The design process for this problem is given
in the following text.

1. State the problem.
We have not yet specified the type of data to be sorted. If the data is
numeric, then the problem may be stated as follows:

Develop a program to read an arbitrary number of numeric input
values from the Command Window, sort the data into ascending
order using a separate sorting function, and write the sorted data to
the Command Window.

2. Define the inputs and outputs.
The inputs to this program are the numeric values typed in the Command
Window by the user. The outputs from this program are the sorted data
values written to the Command Window.

3. Describe the algorithm.
This program can be broken down into three major steps:

Read the input data into an array
Sort the data in ascending order
Write the sorted data

The first major step is to read in the data. We must prompt the user
for the number of input data values, and then read in the data. Sine we will
know how many input values there are to read, a for loop is appropriate
for reading in the data. The detailed pseudocode is shown here.

Prompt user for the number of data values
Read the number of data values
Preallocate an input array
for ii = 1:number of values

Prompt for next value
Read value

end

Next we have to sort the data in a separate function. We will need to make
nvals-1 passes through the data, finding the smallest remaining value
each time. We will use a pointer to locate the smallest value in each pass.
Once the smallest value is found, it will be swapped to the top of the list
of it is not already there. The detailed pseudocode is shown here.

for ii = 1:nvals-1

% Find the minimum value in a(ii) through a(nvals)
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iptr ← ii
for jj == ii+1 to nvals

if a(jj) < a(iptr)
iptr ← jj

end
end

% iptr now points to the min value, so swap a(iptr)
% with a(ii) if iptr ~= ii.
if i ~= iptr

temp ← a(i)
a(i) ← a(iptr)
a(iptr) ← temp

end
end

The final step is writing out the sorted values. No refinement of the
pseudocode is required for that step. The final pseudocode is the combi-
nation of the reading, sorting and writing steps.

4. Turn the algorithm into MATLAB statements.
The MATLAB code for the selection sort function is shown here.

function out = ssort(a)
%SSORT Selection sort data in ascending order
% Function SSORT sorts a numeric data set into
% ascending order.  Note that the selection sort
% is relatively inefficient.  DO NOT USE THIS
% FUNCTION FOR LARGE DATA SETS.  Use MATLAB’s
% ''sort'' function instead.

% Define variables:
%   a        -- Input array to sort
%   ii       -- Index variable
%   iptr     -- Pointer to min value
%   jj       -- Index variable
%   nvals    -- Number of values in ''a''
%   out      -- Sorted output array
%   temp     -- Temp variable for swapping

% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 02/02/07 S. J. Chapman Original code

% Get the length of the array to sort
nvals = length(a);
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% Sort the input array
for ii = 1:nvals-1

% Find the minimum value in a(ii) through a(n)
iptr = ii;
for jj = ii+1:nvals

if a(jj) < a(iptr)
iptr = jj;

end
end

% iptr now points to the minimum value, so swap a(iptr)
% with a(ii) if ii ~= iptr.
if ii ~= iptr

temp    = a(ii);
a(ii)   = a(iptr);
a(iptr) = temp;

end
end

% Pass data back to caller
out = a;

The program to invoke the selection sort function is shown here.

% Script file: test_ssort.m
%
% Purpose:
%    To read in an input data set, sort it into ascending
%    order using the selection sort algorithm, and to
%    write the sorted data to the Command Window.  This
%    program calls function ''ssort'' to do the actual
%    sorting.
%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 02/02/07 S. J. Chapman Original code
%
% Define variables:
%   array  -- Input data array
%   ii     -- Index variable
%   nvals  -- Number of input values
%   sorted -- Sorted data array

% Prompt for the number of values in the data set
nvals = input('Enter number of values to sort:  ');
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% Preallocate array
array = zeros(1,nvals);

% Get input values
for ii = 1:nvals

% Prompt for next value
string = ['Enter value ' int2str(ii) ':  '];
array(ii) = input(string);

end

% Now sort the data
sorted = ssort(array);

% Display the sorted result.
fprintf('\nSorted data:\n');
for ii = 1:nvals

fprintf(' %8.4f\n',sorted(ii));
end

5. Test the program.
To test this program, we will create an input data set and run the program
with it. The data set should contain a mixture of positive and negative
numbers as well as at least one duplicated value to see if the program
works properly under those conditions.

» test_ssort
Enter number of values to sort: 6
Enter value 1: -5
Enter value 2: 4
Enter value 3: -2
Enter value 4: 3
Enter value 5: -2
Enter value 6: 0

Sorted data:
-5.0000
-2.0000
-2.0000
0.0000
3.0000
4.0000

The program gives the correct answers for our test data set.  Note that it
works for both positive and negative numbers as well as for repeated
numbers.

�
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5.3 Optional Arguments

Many MATLAB functions support optional input arguments and output arguments.
For example, we have seen calls to the plot function with as few as two or as many
as seven input arguments. On the other hand, the function max supports either one
or two output arguments. If there is only one output argument, max returns the max-
imum value of an array. If there are two output arguments, max returns both the
maximum value and the location of the maximum value in an array. How do
MATLAB functions know how many input and output arguments are present, and
how do they adjust their behavior accordingly?

There are eight special functions that can be used by MATLAB functions to
get information about their optional arguments, and to report errors in those argu-
ments. Six of these functions are introduced here, and the remaining two will be
introduced in Chapter 7 after we learn about the cell array data type. The func-
tions introduced now are:

� nargin—This function returns the number of actual input arguments
that were used to call the function.

� nargout—This function returns the number of actual output arguments
that were used to call the function.

� nargchk—This function returns a standard error message if a function is
called with too few or too many arguments.

� error—Display error message and abort the function producing the
error. This function is used if the argument errors are fatal.

� warning—Display warning message and continue function execution.
This function is used if the argument errors are not fatal, and execution can
continue.

� inputname—This function returns the actual name of the variable that
corresponds to a particular argument number.

When functions nargin and nargout are called within a user-defined
function, these functions return the number of actual input arguments and the
number of actual output arguments that were used to when the user-defined func-
tion was called.

Function nargchk generates a string containing a standard error message
if a function is called with too few or too many arguments. The syntax of this
function is

message = nargchk(min_args,max_args,num_args);

where min_args is the minimum number of arguments, max_args is the max-
imum number of arguments, and num_args is the actual number of arguments.
If the number of arguments is outside the acceptable limits, a standard error mes-
sage is produced. If the number of arguments is within acceptable limits, then an
empty string is returned.
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Function error is a standard way to display an error message and abort the
user-defined function causing the error. The syntax of this function is
error('msg'), where msg is a character string containing an error message.
When error is executed, it halts the current function and returns to the key-
board, displaying the error message in the Command Window. If the message
string is empty, error does nothing, and execution continues. This function
works well with nargchk, which produces a message string when an error
occurs and an empty string when there is no error.

Function warning is a standard way to display a warning message that
includes the function and line number where the problem occurred, but let execu-
tion continue. The syntax of this function is warning('msg'), where msg is a
character string containing a warning message. When warning is executed, it
displays the warning message in the Command Window, and lists the function
name and line number where the warning came from. If the message string is
empty, warning does nothing. In either case, execution of the function continues.

Function inputname returns the name of the actual argument used when a
function is called. The syntax of this function is

name = inputname(argno);

where argno is the number of the argument. If argument is a variable, then its
name is returned. If the argument is an expression, then this function will return
an empty string. For example, consider the function

function myfun(x,y,z)
name = inputname(2);
disp(['The second argument is named ' name]);

When this function is called, the results are

» myfun(dog,cat)
The second argument is named cat

» myfun(1,2+cat)
The second argument is named

Function inputname is useful for displaying argument names in warning and
error messages.

�

Example 5.3—Using Optional Arguments

We will illustrate the use optional arguments by creating a function that accepts
an (x, y) value in rectangular coordinates, and produces the equivalent polar rep-
resentation consisting of a magnitude and an angle in degrees. The function will
be designed to support two input arguments, x and y. However, if only one argu-
ment is supplied, the function will assume that the y value is zero and proceed
with the calculation. The function will normally return both the magnitude and
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the angle in degrees, but if only one output argument is present, it will return only
the magnitude. This function is shown here.

function [mag, angle] = polar_value(x,y)
%POLAR_VALUE Converts (x,y) to (r,theta)
% Function POLAR_VALUE converts an input (x,y)
% value into (r,theta), with theta in degrees.
% It illustrates the use of optional arguments.

% Define variables:
% angle -- Angle in degrees
% msg -- Error message
% mag -- Magnitude
% x -- Input x value
% y -- Input y value (optional)

% Record of revisions:
% Date Programmer Description of change
% ==== ========== ===================== 
% 02/03/07 S. J. Chapman Original code

% Check for a legal number of input arguments.
msg = nargchk(1,2,nargin);
error(msg);

% If the y argument is missing, set it to 0.
if nargin < 2

y = 0;
end

% Check for (0,0) input arguments, and print out
% a warning message.
if x == 0 & y == 0

msg = 'Both x any y are zero: angle is meaningless!';
warning(msg);

end

% Now calculate the magnitude.
mag = sqrt(x.^2 + y.^2);

% If the second output argument is present, calculate
% angle in degrees.
if nargout == 2

angle = atan2(y,x) * 180/pi;
end

We will test this function by calling it repeatedly from the Command Window.
First, we will try to call the function with too few or too many arguments.

» [mag angle] = polar_value
??? Error using ==> polar_value
Not enough input arguments.
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» [mag angle] = polar_value(1,-1,1)
??? Error using ==> polar_value
Too many input arguments.

The function provides proper error messages in both cases. Next, we will try to
call the function with one or two input arguments.

» [mag angle] = polar_value(1)
mag =

1
angle =

0
» [mag angle] = polar_value(1,-1)
mag =

1.4142
angle =

-45

The function provides the correct answer in both cases. Next, we will try to call
the function with one or two output arguments.

» mag = polar_value(1,-1)
mag =

1.4142
» [mag angle] = polar_value(1,-1)
mag =

1.4142
angle =

-45

The function provides the correct answer in both cases. Finally, we will try to call
the function with both x and y equal to zero.

» [mag angle] = polar_value(0,0)

Warning: Both x any y are zero: angle is meaningless!
> In d:\book\matlab\chap5\polar_value.m at line 32
mag =

0
angle =

0

In this case, the function displays the warning message, but execution
continues.

�
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Note that a MATLAB function may be declared to have more output
arguments than are actually used, and this is not an error. The function does not
actually have to check nargout to determine if an output argument is present.
For example, consider the following function:

function [z1, z2] = junk(x,y)
z1 = x + y;
z2 = x - y;
end % function junk

This function can be called successfully with one or two output arguments.

» a = junk(2,1)
a =

3
» [a b] = junk(2,1)
a =

3
b =

1

The reason for checking nargout in a function is to prevent useless work. If a
result is going to be thrown away anyway, why bother to calculate it in the first
place? A programmer can speed up the operation of a program by not bothering
with useless calculations.

Quiz 5.1

This quiz provides a quick check to see if you have understood the con-
cepts introduced in Sections 5.1 through 5.3. If you have trouble with the
quiz, reread the section, ask your instructor, or discuss the material with a
fellow student. The answers to this quiz are found in the back of the book.

1. What are the differences between a script file and a function?

2. How does the help command work with user-defined functions?

3. What is the significance of the H1 comment line in a function?

4. What is the pass-by-value scheme? How does it contribute to good
program design?

5. How can a MATLAB function be designed to have optional arguments?

For questions 6 and 7, determine whether the function calls are correct
or not. If they are in error, specify what is wrong with them.

6. out = test1(6);
function res = test1(x,y)
res = sqrt(x.^2 + y.^2);
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7. out = test2(12);
function res = test2(x,y)
error(nargchk(1,2,nargin));
if nargin == 2

res = sqrt(x.^2 + y.^2);
else

res = x;
end

5.4 Sharing Data Using Global Memory

We have seen that programs exchange data with the functions they call through a
argument lists. When a function is called, each actual argument is copied, and the
copy is used by the function.

In addition to the argument list, MATLAB functions can exchange data with
each other and with the base workspace through global memory. Global memory
is a special type of memory that can be accessed from any workspace. If a vari-
able is declared to be global in a function, then it will be placed in the global
memory instead of the local workspace. If the same variable is declared to be
global in another function, then that variable will refer to the same memory loca-
tion as the variable in the first function. Each script file or function that declares
the global variable will have access the same data values, so global memory pro-
vide a way to share data between functions.

A global variable is declared with the global statement. The form of a
global statement is

global var1 var2 var3 ...

where var1, var2, var3, etc. are the variables to be placed in global memory.
By convention, global variables are declared in all capital letters, but this is not
actually a requirement.

✷ Good Programming Practice:

Declare global variables in all capital letters to make them easy to distinguish
from local variables.

Each global variable must be declared to be global before it is used for the
first time in a function—it is an error to declare a variable to be global after it has
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already been created in the local workspace3. To avoid this error, it is customary
to declare global variables immediately after the initial comments and before the
first executable statement in a function.

✷ Good Programming Practice:

Declare global variables immediately after the initial comments and before the
first executable statement each function that uses them.

Global variables are especially useful for sharing very large volumes of data
among many functions, because the entire data set does not have to be copied
each time that a function is called. The downside of using global memory to
exchange data among functions is that the functions will only work for that spe-
cific data set. A function that exchanges data through input arguments can be
reused by simply calling it with different arguments, but a function that
exchanges data through global memory must actually be modified to allow it to
work with a different data set.

Global variables are also useful for sharing hidden data among a group of
related functions while keeping it invisible from the invoking program unit.

✷ Good Programming Practice:

You may use global memory to pass large amounts of data among functions
within a program.

�

Example 5.4—Random Number Generator

It is impossible to make perfect measurements in the real world. There will always
be some measurement noise associated with each measurement. This fact is an
important consideration in the design of systems to control the operation of such
real-world devices as airplanes, refineries, and nuclear reactors. A good engi-
neering design must take these measurement errors into account, so that the noise
in the measurements will not lead to unstable behavior (no plane crashes, refin-
ery explosions, or meltdowns!).

Most engineering designs are tested by running simulations of the operation
of the system before it is ever built. These simulations involve creating
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mathematical models of the behavior of the system, and feeding the models a
realistic string of input data. If the models respond correctly to the simulated
input data, then we can have reasonable confidence that the real-world system
will respond correctly to the real-world input data.

The simulated input data supplied to the models must be corrupted by a sim-
ulated measurement noise, which is just a string of random numbers added to the
ideal input data. The simulated noise is usually produced by a random number
generator.

A random number generator is a function that will return a different and
apparently random number each time it is called. Since the numbers are in fact
generated by a deterministic algorithm, they only appear to be random4. However,
if the algorithm used to generate them is complex enough, the numbers will be
random enough to use in the simulation.

One simple random number generator algorithm is described in the follow-
ing text5. It relies on the unpredictability of the modulo function when applied to
large numbers. Recall from Chapter 4 that the modulus function mod returns the
remainder after the division of two numbers. Consider the following equation:

(5-6)

Assume that ni is a non-negative integer. Then because of the modulo function,
ni�1 will be a number between 0 and 134455 inclusive. Next, ni�1 can be fed into
the equation to produce a number ni�2 that is also between 0 and 134455. This
process can be repeated forever to produce a series of numbers in the range
[0,134455]. If we didn’t know the numbers 8121, 28411, and 134456 in advance,
it would be impossible to guess the order in which the values of n would be pro-
duced. Furthermore, it turns out that there is an equal (or uniform) probability
that any given number will appear in the sequence. Because of these properties,
Equation 5-6 can serve as the basis for a simple random number generator with a
uniform distribution.

We will now use Equation 5-6 to design a random number generator whose
output is a real number in the range [0.0, 1.0)6.

SOLUTION We will write a function that generates one random number in the
range 0 � ran � 1.0 each time that it is called. The random number will be based
on the equation

(5-7)

where ni is a number in the range 0 to 134455 produced by Equation 5-7.

rani 5
ni

134456

ni11 5 mod s8121 ni 1 28411, 134456d
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The particular sequence produced by Equations 5-6 and 5-7 will depend on
the initial value of n0 (called the seed) of the sequence. We must provide a way
for the user to specify n0 so that the sequence may be varied from run to run.

1. State the problem.
Write a function random0 that will generate and return an array ran
containing one or more numbers with a uniform probability distribution
in the range 0 � ran � 1.0, based on the sequence specified by
Equations 5-6 and 5-7. The function should have one or two input argu-
ments (m and n specifying the size of the array to return. If there is one
argument, the function should generate square array of size m � m. If
there are two arguments, the function should generate an array of size
m � n. The initial value of the seed n0 will be specified by a call to a
function called seed.

2. Define the inputs and outputs.
There are two functions in this problem: seed and random0. The input
to function seed is an integer to serve as the starting point of the
sequence. There is no output from this function. The input to function
random0 is one or two integers specifying the size of the array of ran-
dom numbers to be generated. If only argument m is supplied, the function
should generate a square array of size m � m. If both arguments m and n
are supplied, the function should generate an array of size n � m. The out-
put from the function is the array of random values in the range [0.0, 1.0).

3. Describe the algorithm.
The pseudocode for function random0 is

function ran = random0 ( m, n )
Check for valid arguments
Set n ← m if not supplied
Create output array with ''zeros'' function
for ii = 1:number of rows

for jj = 1:number of columns
ISEED ← mod (8121 * ISEED + 28411, 134456 )
ran(ii,jj) ← iseed / 134456

end
end

where the value of ISEED is placed in global memory so that it is saved
between calls to the function. The pseudocode for function seed is trivial:

function seed (new_seed)
new_seed ← round(new_seed)
ISEED ← abs(new_seed)

The round function is used in case the user fails to supply an integer, and
the absolute value function is used in case the user supplies a negative
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seed. The user will not have to know in advance that only positive integers
are legal seeds.

The variable ISEED will be placed in global memory so that it may
be accessed by both functions.

4. Turn the algorithm into MATLAB statements.
Function random0 is shown here.

function ran = random0(m,n)
%RANDOM0 Generate uniform random numbers in [0,1)
% Function RANDOM0 generates an array of uniform
% random numbers in the range [0,1).  The usage
% is:
%
% random0(m) -- Generate an m x m array
% random0(m,n) -- Generate an m x n array

% Define variables:
% ii -- Index variable
% ISEED -- Random number seed (global)
% jj -- Index variable
% m -- Number of columns
% msg -- Error message
% n -- Number of rows
% ran -- Output array

% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 02/04/07 S. J. Chapman Original code
%
% Declare global values
global ISEED % Seed for random number generator

% Check for a legal number of input arguments.
msg = nargchk(1,2,nargin);
error(msg);

% If the n argument is missing, set it to m.
if nargin < 2

n = m;
end

% Initialize the output array
ran = zeros(m,n);
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% Now calculate random values
for ii = 1:m

for jj = 1:n
ISEED = mod(8121*ISEED + 28411, 134456 );
ran(ii,jj) = ISEED / 134456;

end
end

Function seed is shown here.

function seed(new_seed)
%SEED Set new seed for function RANDOM0
% Function SEED sets a new seed for function
% RANDOM0. The new seed should be a positive
% integer.

% Define variables:
% ISEED -- Random number seed (global)
% new_seed -- New seed

% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 02/04/07 S. J. Chapman Original code
%
% Declare globl values
global ISEED % Seed for random number generator

% Check for a legal number of input arguments.
msg = nargchk(1,1,nargin);
error(msg);

% Save seed
new_seed = round(new_seed);
ISEED = abs(new_seed);

5. Test the resulting MATLAB programs.
If the numbers generated by these functions are truly uniformly distrib-
uted random numbers in the range 0 � ran � 1.0, then the average of
many numbers should be close to 0.5 and the standard deviation of
thenumbers should be close to 

Furthermore, if the range between 0 and 1 is divided into a number
of equal-size bins, the number of random values falling in each bin should
be about the same. A histogram is a plot of the number of values falling
in each bin. MATLAB function hist will create and plot a histogram
from an input data set, so we will use it to verify the distribution of ran-
dom number generated by random0.

To test the results of these functions, we will perform the following tests:

1. Call seed with new_seed set to 1024.
2. Call random0(4) to see that the results appear random.

1!12
.
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3. Call random0(4) to verify that the results differ from call to call.
4. Call seed again with new_seed set to 1024.
5. Call random0(4) to see that the results are the same as in list item 2.

This verifies that the seed is properly being reset.
6. Call random0(2,3) to verify that both input arguments are being

used correctly.
7. Call random0(1,100000) and calculate the average and standard

deviation of the resulting data set using MATLAB functions mean

and std. Compare the results to 0.5 and 

8. Create a histogram of the data from (7) to see if approximately equal
numbers of values fall in each bin.

We will perform these tests interactively, checking the results as we go.

» seed(1024)
» random0(4)
ans =

0.0598 1.0000 0.0905 0.2060
0.2620 0.6432 0.6325 0.8392
0.6278 0.5463 0.7551 0.4554
0.3177 0.9105 0.1289 0.6230

» random0(4)
ans =

0.2266 0.3858 0.5876 0.7880
0.8415 0.9287 0.9855 0.1314
0.0982 0.6585 0.0543 0.4256
0.2387 0.7153 0.2606 0.8922

» seed(1024)
» random0(4)
ans =

0.0598 1.0000 0.0905 0.2060
0.2620 0.6432 0.6325 0.8392
0.6278 0.5463 0.7551 0.4554
0.3177 0.9105 0.1289 0.6230

» random0(2,3)
ans =

0.2266 0.3858 0.5876
0.7880 0.8415 0.9287

» arr = random0(1,100000);
» mean(arr)
ans =

0.5001
» std(arr)
ans =

0.2887

1!12
.

5.4 Sharing Data Using Global Memory | 233



» hist(arr,10)
» title('\bfHistogram of the Output of random0');
» xlabel('Bin');
» ylabel('Count');

The results of these tests look reasonable, so the function appears to be work-
ing. The average of the data set was 0.5001, which is quite close to the theoreti-
cal value of 0.5000, and the standard deviation of the data set was 0.2887, which
is equal to the theoretical value of 0.2887 to the accuracy displayed. The his-
togram is shown in Figure 5.5, and the distribution of the random values is roughly
even across all of the bins.

�

MATLAB includes two standard functions that generate random values from
different distributions. They are

� rand—Generates random values from a uniform distribution on the
range [0, 1)

� randn—Generates random values from a normal distribution

Both of them are much faster and much more “random” than the simple function
that we have created. If you really need random numbers in your programs, use
one of these functions.
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Functions rand and randn have the following calling sequences:

� rand()—Generates a single random value
� rand(n)—Generates an n � n array of random values
� rand(m,n)—Generates an m � n array of random values

5.5 Preserving Data between Calls to a Function

When a function finishes executing, the special workspace created for that func-
tion is destroyed, so the contents of all local variables within the function will dis-
appear. The next time that the function is called, a new workspace will be creat-
ed, and all of the local variables will be returned to their default values. This
behavior is usually desirable, since it ensures that MATLAB functions behave in
a repeatable fashion every time they are called.

However, it is sometimes useful to preserve some local information within
a function between calls to the function. For example, we might which to create a
counter to count the number of times that the function has been called. If such
a counter were destroyed every time the function exited, the count would never
exceed 1!

MATLAB includes a special mechanism to allow local variables to be pre-
served between calls to a function. Persistent memory is a special type of mem-
ory that can only be accessed from within the function, but is preserved
unchanged between calls to the function.

A persistent variable is declared with the persistent statement. The
form of a global statement is

persistent var1 var2 var3 ...

where var1, var2, var3, etc. are the variables to be placed in persistent
memory.

✷ Good Programming Practice:

Use persistent memory to preserve the values of local variables within a func-
tion between calls to the function.

�

Example 5.5—Running Averages

It is sometimes desirable to calculate running statistics on a data set on-the-fly as
the values are being entered. The built-in MATLAB functions mean and std
could perform this function, but we would have to pass the entire data set to them
for re-calculation after each new data value is entered. A better result can be
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achieved by writing a special function that keeps track of the appropriate running
sums between calls, and only needs the latest value to calculate the current aver-
age and standard deviation.

The average or arithmetic mean of a set of numbers is defined as

(5-8)

where xi is sample i out of N samples. The standard deviation of a set of numbers
is defined as

(5-9)

Standard deviation is a measure of the amount of scatter on the measurements;
the greater the standard deviation, the more scattered the points in the data set are.
If we can keep track of the number of values N, the sum of the values , and
the sum of the squares of the values , then we can calculate the average and
standard deviation at any time from Equations 5-8 and 5-9.

Write a function to calculate the running average and standard deviation of a
data set as it is being entered.

SOLUTION This function must be able to accept input values one at a time and
keep running sums of N, , and , which will be used to calculate the cur-
rent average and standard deviation It must store the running sums in global
memory so that they are preserved between calls. Finally, there must be a mech-
anism to reset the running sums.

1. State the problem.
Create a function to calculate the running average and standard deviation
of a data set as new values are entered. The function must also include a
feature to reset the running sums when desired.

2. Define the inputs and outputs.
There are two types of inputs required by this function:

1. The character string 'reset' to reset running sums to zero.
2. The numeric values from the input data set, present one value per func-

tion call.

The outputs from this function are the mean and standard deviation of the
data supplied to the function so far.

3. Design the algorithm.
This function can be broken down into four major steps:

Check for a legal number of arguments
Check for a 'reset', and reset sums if present
Otherwise, add current value to running sums
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Calculate and return running average and std dev
if enough data is available.  Return zeros if
not enough data is available.

The detailed pseudocode for these steps is
Check for a legal number of arguments
if x == 'reset'

n ← 0
sum_x ← 0
sum_x2 ← 0

else
n ← n + 1
sum_x ← sum_x + x
sum_x2 ← sum_x2 + x^2

end

% Calculate ave and sd
if n == 0

ave ← 0
std ← 0

elseif n == 1
ave ← sum_x
std ← 0

else
ave ← sum_x / n
std ← sqrt((n*sum_x2 – sum_x^2)/(n*(n-1)))

end

4. Turn the algorithm into MATLAB statements.
The final MATLAB function is shown here.

function [ave, std] = runstats(x)
%RUNSTATS Generate running ave / std deviation
% Function RUNSTATS generates a running average
% and standard deviation of a data set.  The
% values x must be passed to this function one
% at a time.  A call to RUNSTATS with the argument
% 'reset' will reset the running sums.

% Define variables:
% ave -- Running average
% msg -- Error message
% n -- Number of data values
% std -- Running standard deviation
% sum_x -- Running sum of data values
% sum_x2 -- Running sum of data values squared
% x -- Input value
%
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% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 02/05/07 S. J. Chapman Original code

% Declare persistent values
persistent n % Number of input values
persistent sum_x % Running sum of values
persistent sum_x2 % Running sum of values squared

% Check for a legal number of input arguments.
msg = nargchk(1,1,nargin);
error(msg);

% If the argument is 'reset', reset the running sums.
if x == 'reset'

n = 0;
sum_x = 0;
sum_x2 = 0;

else
n = n + 1;
sum_x = sum_x + x;
sum_x2 = sum_x2 + x^2;

end

% Calculate ave and sd
if n == 0

ave = 0;
std = 0;

elseif n == 1
ave = sum_x;
std = 0;

else
ave = sum_x / n;
std = sqrt((n*sum_x2 - sum_x^2)/(n*(n-1)));

end

5. Test the program.
To test this function, we must create a script file that resets runstats,
reads input values, calls runstats, and displays the running statistics.
An appropriate script file is shown here.

% Script file: test_runstats.m
%
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% Purpose:
% To read in an input data set and calculate the
% running statistics on the data set as the values
% are read in.  The running stats will be written
% to the Command Window.
%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 02/05/07 S. J. Chapman Original code
%
% Define variables:
% array -- Input data array
% ave -- Running average
% std -- Running standard deviation
% ii -- Index variable
% nvals -- Number of input values
% std -- Running standard deviation

% First reset running sums
[ave std] = runstats('reset');

% Prompt for the number of values in the data set
nvals = input('Enter number of values in data set:  ');

% Get input values
for ii = 1:nvals

% Prompt for next value
string = ['Enter value ' int2str(ii) ':  '];
x = input(string);

% Get running statistics
[ave std] = runstats(x);

% Display running statistics
fprintf('Average = %8.4f; Std dev = %8.4f\n',ave, std);

end

To test this function, we will calculate running statistics by hand for
a set of 5 numbers, and compare the hand calculations to the results from
the program. If a data set is created with the following 5 input values

3.,    2.,    3.,    4.,    2.8
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The output of the test program for the same data set is

» test_runstats
Enter number of values in data set: 5
Enter value 1: 3
Average =   3.0000; Std dev =   0.0000
Enter value 2: 2
Average =   2.5000; Std dev =   0.7071
Enter value 3: 3
Average =   2.6667; Std dev =   0.5774
Enter value 4: 4
Average =   3.0000; Std dev =   0.8165
Enter value 5: 2.8
Average =   2.9600; Std dev =   0.7127

so the results check to the accuracy shown in the hand calculations.
�

5.6 Function Functions

“Function function” is the rather awkward name that MATLAB gives to a function
whose input arguments include the names of other functions. The functions that are
passed to the “function function” are normally used during that function’s execution.

For example, MATLAB contains a function function called fzero. This
function locates a zero of the function that is passed to it. For example, the
statement fzero('cos',[0 pi]) locates a zero of the function cos between
0 and p, and fzero('exp(x)-2',[0 1]) locates a zero of the function
“exp(x)-2” between 0 and 1. When these statements are executed, the result is

» fzero('cos',[0 pi])
ans =

1.5708
» fzero('exp(x)-2',[0 1])
ans =

0.6931
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then the running statistics calculated by hand would be as shown in the
following table:

Value n x x2 Average Std_dev

3.0 1 3.0 9.0 3.00 0.000

2.0 2 5.0 13.0 2.50 0.707

3.0 3 8.0 22.0 2.67 0.577

4.0 4 12.0 38.0 3.00 0.816

2.8 5 14.8 45.84 2.96 0.713

gg



The keys to the operation of function functions are two special MATLAB
functions, eval and feval. Function eval evaluates a character string as
though it had been typed in the Command Window, while function feval eval-
uates a named function at a specific input value.

Function eval evaluates a character string as though it has been typed
in the Command Window. This function gives MATLAB functions a chance
to construct executable statements during execution. The form of the eval
function is

eval(string)

For example, the statement x = eval('sin(pi/4)') produces the result

» x = eval('sin(pi/4)')
x =

0.7071

An example in which a character string is constructed and evaluated using the
eval function is shown here:

x = 1;
str = ['exp(' num2str(x) ') –1'];
res = eval(str);

In this case, str contains the character string 'exp(1) –1', which eval
evaluates to get the result 1.7183.

Function feval evaluates a named function defined by an M-file at a spec-
ified input value. The general form of the feval function is

feval(fun,value)

For example, the statement x = feval('sin',pi/4) produces the result

» x = feval('sin',pi/4)
x =

0.7071

Some of the more common MATLAB function functions are listed in Table 5.1.
Type help fun_name to learn how to use each of these functions.
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Table 5.1 Common MATLAB Function Functions

Function Name Description

fminbnd Minimize a function of one variable.

fzero Find a zero of a function of one variable.

quad Numerically integrate a function.

ezplot Easy to use function plotter.

fplot Plot a function by name.



�

Example 5.6—Creating a Function Function

Create a function function that will plot any MATLAB function of a single vari-
able between specified starting and ending values.

SOLUTION This function has two input arguments, the first one containing the
name of the function to plot and the second one containing a two-element vector
with the range of values to plot.

1. State the problem.
Create a function to plot any MATLAB function of a single variable
between two user-specified limits.

2. Define the inputs and outputs.
There are two inputs required by this function:

1. A character string containing the name of a function.
2. A two-element vector containing the first and last values to plot.

The output from this function is a plot of the function specified in the first
input argument.

3. Design the algorithm.
This function can be broken down into four major steps:

Check for a legal number of arguments
Check that the second argument has two elements
Calculate the value of the function between the

start and stop points
Plot and label the function

The detailed pseudocode for the evaluation and plotting steps is

n_steps ← 100
step_size ← (xlim(2) – xlim(1)) / n_steps
x ← xlim(1):step_size:xlim(2)
y ← feval(fun,x)
plot(x,y)
title(['\bfPlot of function ' fun '(x)'])
xlabel('\bfx')
ylabel(['\bf' fun '(x)'])

4. Turn the algorithm into MATLAB statements.
The final MATLAB function is shown here.

function quickplot(fun,xlim)
%QUICKPLOT Generate quick plot of a function
% Function QUICKPLOT generates a quick plot
% of a function contained in a external M-file,
% between user-specified x limits.
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% Define variables:
%   fun       -- Name of function to plot in a char string
%   msg       -- Error message
%   n_steps   -- Number of steps to plot
%   step_size -- Step size
%   x         -- X-values to plot
%   y         -- Y-values to plot
%   xlim      -- Plot x limits
%
% Record of revisions:
%     Date       Programmer          Description of change
%     ====       ==========          =====================
%   02/07/07    S. J. Chapman        Original code

% Check for a legal number of input arguments.
msg = nargchk(2,2,nargin);
error(msg);

% Check the second argument to see if it has two
% elements.  Note that this double test allows the
% argument to be either a row or a column vector.
if ( size(xlim,1) == 1 & size(xlim,2) == 2 ) | ...

( size(xlim,1) == 2 & size(xlim,2) == 1 )

% Ok—continue processing.
n_steps = 100;
step_size = (xlim(2) - xlim(1)) / n_steps;
x = xlim(1):step_size:xlim(2);
y = feval(fun,x);
plot(x,y);
title(['\bfPlot of function ' fun '(x)']);
xlabel('\bfx');
ylabel(['\bf' fun '(x)']);

else
% Else wrong number of elements in xlim.
error('Incorrect number of elements in xlim.');

end

5. Test the program.
To test this function, we must call it with correct and incorrect input argu-
ments, verifying that it handles both correct inputs and errors properly.
The results are shown here.

» quickplot('sin')
??? Error using ==> quickplot
Not enough input arguments.
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» quickplot('sin',[-2*pi 2*pi],3)
??? Error using ==> quickplot
Too many input arguments.

» quickplot('sin',-2*pi)
??? Error using ==> quickplot
Incorrect number of elements in xlim.

» quickplot('sin',[-2*pi 2*pi])

The last call was correct, and it produced the plot shown in Figure 5.6.
�

5.7 Subfunctions and Private Functions

MATLAB includes several special types of functions that behave differently than
the ordinary functions we have used so far. Ordinary functions can be called by
any other function, as long as they are in the same directory or in any directory
on the MATLAB path.

The scope of a function is defined as the locations within MATLAB from
which the function can be accessed. The scope of an ordinary MATLAB function
is the current working directory. If the function lies in a directory on the
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MATLAB path, then the scope extends to all MATLAB functions in a program,
because they all check the path when trying to find a function with a given name.

In contrast, the scope of the other function types that we will discuss in the
rest of this chapter is more limited in one way or another.

5.7.1 Subfunctions

It is possible to place more than one function in a single file. If more than one
function is present in a file, the top function is a normal or primary function,
while the ones below it are subfunctions. The primary function should have the
same name as the file it appears in. Subfunctions look just like ordinary func-
tions, but they are only accessible to the other functions within the same file. In
other words, the scope of a subfunction is the other functions within the same file
(see Figure 5.7).

Subfunctions are often used to implement “utility” calculations for a main
function. For example, the file mystats.m shown at the end of this paragraph
contains a primary function mystats and two subfunctions mean and median.
Function mystats is a normal MATLAB function, so it can be called by any
other MATLAB function in the same directory. If this file is in a directory included
in the MATLAB search path, it can be called by any other MATLAB function,
even if the other function is not in the same directory. By contrast, the scope of
functions mean and median is restricted to other functions within the same file.
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Figure 5.7 The first function in a file is called the primary function. It should have the same name as
the file it appears in, and it is accessible from outside the file. The remaining functions
in the file are subfunctions; they are only accessible from within the file.

mystats

median

mean

File mystats.m

Function mystats is
accessible from outside the file.

Functions mean and median
are only accessible from inside
the file.



Function mystats can call them and they can call each other, but a function out-
side of the file cannot. They are “utility” functions that perform a part the job of
the main function mystats.

function [avg, med] = mystats(u)
%MYSTATS Find mean and median with internal functions.
% Function MYSTATS calculates the average and median
% of a data set using subfunctions.

n = length(u);
avg = mean(u,n);
med = median(u,n);

function a = mean(v,n)
% Subfunction to calculate average.
a = sum(v)/n;

function m = median(v,n)
% Subfunction to calculate median.
w = sort(v);
if rem(n,2) == 1

m = w((n+1)/2);
else

m = (w(n/2)+w(n/2+1))/2;
end

5.7.2 Private Functions

Private functions are functions that reside in subdirectories with the special name
private. They are only visible to other functions in the private directory, or
to functions in the parent directory. In other words, the scope of these functions
is restricted to the private directory and to the parent directory that contains it.

For example, assume the directory testing is on the MATLAB search
path. A subdirectory of testing called private can contain functions that
only the functions in testing can call. Because private functions are invisi-
ble outside of the parent directory, they can use the same names as functions
in other directories. This is useful if you want to create your own version of a
particular function while retaining the original in another directory. Because
MATLAB looks for private functions before standard M-file functions, it will
find a private function named test.m before a non-private function named
test.m.

You can create your own private directories simply by creating a subdirectory
called private under the directory containing your functions. Do not place
these private directories on your search path.
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When a function is called from within an M-file, MATLAB first checks the
file to see if the function is a subfunction defined in the same file. If not, it checks
for a private function with that name. If it is not a private function, MATLAB
checks current directory for the function name. If it is not in the current directory,
MATLAB checks the standard search path for the function.

If you have special-purpose MATLAB functions that should only be used
by other functions and never be called directly by the user, consider hiding them
as subfunctions or private functions. Hiding the functions will prevent their
accidental use, and will also prevent conflicts with other public functions of the
same name.

5.7.3 Order of Function Evaluation

In a large program, there could possibly be multiple functions (subfunctions,
private functions, nested functions, and public functions) with the same name.
When a function with a given name is called, how do we know which copy of the
function will be executed?

The answer this question is that MATLAB locates functions in a specific
order as follows:

1. MATLAB checks to see if there is a subfunction with the specified name.
If so, it is executed.

2. MATLAB checks for a private function with the specified name. If so, it
is executed.

3. MATLAB checks for a function with the specified name in the current
directory. If so, it is executed.

4. MATLAB checks for a function with the specified name on the MATLAB
path. MATLAB will stop searching and execute the first function with the
right name found on the path.

5.8 Summary

In Chapter 5, we presented an introduction to user-defined functions. Functions
are special types of M-files that receive data through input arguments and return
results through output arguments. Each function has its own independent work-
space. Each normal function (one that is not a subfunction) should appear in a
separate file with the same name as the function, including capitalization.

Functions are called by naming them in the Command Window or another
M-file. The names used should match the function name exactly, including capi-
talization. Arguments are passed to functions using a pass-by-value scheme,
meaning that MATLAB copies each argument and passes the copy to the func-
tion. This copying is important, because the function can freely modify its input
arguments without affecting the actual arguments in the calling program.
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MATLAB functions can support varying numbers of input and output argu-
ments. Function nargin reports the number of actual input arguments used in a
function call, and function nargout reports the number of actual output argu-
ments used in a function call.

Data can also be shared between MATLAB functions by placing the data in
global memory. Global variables are declared using the global statement.
Global variables may be shared by all functions that declare them. By convention,
global variable names are written in all capital letters.

Internal data within a function can be preserved between calls to that func-
tion by placing the data in persistent memory. Persistent variables are declared
using the persistent statement.

Function functions are MATLAB functions whose input arguments include
the names of other functions. The functions whose names are passed to the func-
tion function are normally used during that function’s execution. Examples are
some root-solving and plotting functions.

Subfunctions are additional functions placed within a single file.
Subfunctions are only accessible from other functions within the same file.
Private functions are functions placed in a special subdirectory called private.
They are only accessible to functions in the parent directory. Subfunctions and
private functions can be used to restrict access to MATLAB functions.

5.8.1 Summary of Good Programming Practice

The following guidelines should be adhered to when working with MATLAB
functions.

1. Break large program tasks into smaller, more understandable functions
whenever possible.

2. Declare global variables in all capital letters to make them easy to distin-
guish from local variables.

3. Declare global variables immediately after the initial comments and
before the first executable statement each function that uses them.

4. You may use global memory to pass large amounts of data among func-
tions within a program.

5. Use persistent memory to preserve the values of local variables within a
function between calls to the function.

6. Use subfunctions or private functions to hide special-purpose calculations
that should not be generally accessible to other functions. Hiding the
functions will prevent their accidental use, and will also prevent conflicts
with other public functions of the same name.

5.8.2 MATLAB Summary

The following summary lists all of the MATLAB commands and functions
described in this chapter, along with a brief description of each one.
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5.9 Exercises

5.1 What is the difference between a script file and a function?
5.2 When a function is called, how is data passed from the caller to the func-

tion, and how are the results of the function returned to the caller?
5.3 What are the advantages and disadvantages of the pass-by-value scheme

used in MATLAB?
5.4 Modify the selection sort function developed in this chapter so that it

accepts a second optional argument, which may be either 'up' or 'down'.
If the argument is 'up', sort the data in ascending order. If the argument
is 'down', sort the data in descending order. If the argument is missing, the
default case is to sort the data in ascending order. (Be sure to handle the case
of invalid arguments, and be sure to include the proper help information in
your function.)
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Commands and Functions

error Displays error message and aborts the function producing the error. This function is used if
the argument errors are fatal.

eval Evaluates a character string as though it had been typed in the Command Window. 

ezplot Easy-to-use function plotter.

feval Calculates the value of a function f(x) defined by an M-file at a specific x.

fmin Minimize a function of one variable.

fplot Plot a function by name.

fzero Find a zero of a function of one variable.

global Declares global variables.

hist Calculate and plot a histogram of a data set.

inputname Returns the actual name of the variable that corresponds to a particular argument number.

nargchk Returns a standard error message if a function is called with too few or too many arguments.

nargin Returns the number of actual input arguments that were used to call the function.

nargout Returns the number of actual output arguments that were used to call the function.

persistent Declares persistent variables.

quad Numerically integrate a function.

rand Generates random values from a uniform distribution.

randn Generates random values from a normal distribution.

return Stop executing a function and return to caller.

warning Displays a warning message and continues function execution. This function is used if the
argument errors are not fatal, and execution can continue.



5.5 Modify function random0 so that it can accept 0, 1, or 2 calling argu-
ments. If it has no calling arguments, it should return a single random
value. If it has 1 or 2 calling arguments, it should behave as it currently
does.

5.6 As function random0 is currently written, it will fail if function seed is
not called first. Modify function random0 so that it will function prop-
erly with some default seed even if function seed is never called.

5.7 Write a function that uses function random0 to generate a random value
in the range [�1.0, 1.0). Make random0 a subfunction of your new
function.

5.8 Write a function that uses function random0 to generate a random value
in the range [low, high), where low and high are passed as calling
arguments. Make random0 a private function called by your new
function.

5.9 Dice Simulation It is often useful to be able to simulate the throw of a
fair die. Write a MATLAB function dice that simulates the throw of a
fair die by returning some random integer between 1 and 6 every time that
it is called. (Hint: Call random0 to generate a random number. Divide
the possible values out of random0 into six equal intervals, and return the
number of the interval that a given random value falls into.)

5.10 Road Traffic Density Function random0 produces a number with a
uniform probability distribution in the range [0.0, 1.0). This function is
suitable for simulating random events if each outcome has an equal prob-
ability of occurring. However, in many events, the probability of occur-
rence is not equal for every event, and a uniform probability distribution
is not suitable for simulating such events.

For example, when traffic engineers studied the number of cars pass-
ing a given location in a time interval of length t, they discovered that the
probability of k cars passing during the interval is given by the equation

for t � 0, l ! 0, and k � 0, 1, 2, . . . (5-10)

This probability distribution is known as the Poisson distribution; it occurs
in many applications in science and engineering. For example, the number
of calls k to a telephone switchboard in time interval t, the number of bac-
teria k in a specified volume t of liquid, and the number of failures k of a
complicated system in time interval t all have Poisson distributions.

Write a function to evaluate the Poisson distribution for any k, t, and
l. Test your function by calculating the probability of 0, 1, 2, . . . , 5 cars
passing a particular point on a highway in 1 minute, given that l is 1.6 per
minute for that highway. Plot the Poisson distribution for t = 1 and l = 1.6.

5.11 Write three MATLAB functions to calculate the hyperbolic sine, cosine,
and tangent functions:

tanhsxd 5
e x 2 e2x

e x 1 e2xcoshsxd 5
e x 1 e2x

2
sinhsxd 5

e x 2 e2x

2

Psk, td 5 e2
t s
 tdk

k!
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Use your functions to plot the shapes of the hyperbolic sine, cosine, and
tangent functions.

5.12 Write a single MATLAB function hyperbolic to calculate the hyper-
bolic sine, cosine, and tangent functions as defined in the previous problem.
The function should have two arguments. The first argument will be a string
containing the function names 'sinh', 'cosh', or 'tanh', and the sec-
ond argument will be the value of x at which to evaluate the function. The
file should also contain three subfunctions sinh1, cosh1, and tanh1 to
perform the actual calculations, and the primary function should call the
proper subfunction depending on the value in the string. [Note: Be sure to
handle the case of an incorrect number of arguments, and also the case of an
invalid string. In either case, the function should generate an error.]

5.13 Cross Product Write a function to calculate the cross product of two
vectors V1 and V2:

where and Note
that this function will return a real array as its result. Use the function to
calculate the cross product of the two vectors and

5.14 Sort with Carry It is often useful to sort an array arr1 into ascending
order, while simultaneously carrying along a second array arr2. In such
a sort, each time an element of array arr1 is exchanged with another ele-
ment of arr1, the corresponding elements of array arr2 are also
swapped. When the sort is over, the elements of array arr1 are in ascend-
ing order, while the elements of array arr2 that were associated with
particular elements of array arr1 are still associated with them. For
example, suppose we have the following two arrays:

Element arr1 arr2

1. 6. 1.

2. 1. 0.

3. 2. 10.

After sorting array arr1 while carrying along array arr2, the contents of
the two arrays will be:

Element arr1 arr2

1. 1. 0.

2. 2. 10.

3. 6. 1.

V2 5 [0.5, 3, 2].
V1 5 [22, 4, 0.5]

V2 5 Vx2 i 1 Vy2 j 1 Vz2 k.V1 5 Vx1 i 1 Vy1 j 1 Vz1 k

1 sVx1Vy2 2 Vx2Vy1d k

V1 3  V2 5 sVy1Vz2 2 Vy2Vz1d i 1 sVz1Vx2 2 Vz2Vx1d j
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Write a function to sort one real array into ascending order while carrying
along a second one. Test the function with the following two 9-element
arrays:

a = [1, 11, -6, 17, -23, 0, 5, 1, -1];
b = [31, 101, 36, -17, 0, 10, -8, -1, -1];

5.15 Use the Help Browser to look up information about the standard MAT-
LAB function sortrows, and compare the performance of sortrows
with the sort-with-carry function created in the previous exercise. To do
this, create two copies of a 1000 � 2 element array containing random
values, and sort column 1 of each array while carrying along column 2
using both functions. Determine the execution times of each sort function
using tic and toc. How does the speed of your function compare with
the speed of the standard function sortrows?

5.16 Figure 5.8 shows two ships steaming on the ocean. Ship 1 is at position
(x1, y1) and steaming on heading u1. Ship 2 is at position (x2, y2) and
steaming on heading u2. Suppose that Ship 1 makes radar contact with an
object at range r1 and bearing f1. Write a MATLAB function that will cal-
culate the range r2 and bearing f2 at which Ship 2 should see the object.

5.17 Minima and Maxima of a Function Write a function that attempts to
locate the maximum and minimum values of an arbitrary function f(x)
over a certain range. The function being evaluated should be passed to the
function as a calling argument. The function should have the following
input arguments:

first_value -- The first value of x to search
last_value -- The last value of x to search
num_steps -- The number of steps to include in the search
func -- The name of the function to search
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Figure 5.8 Two ships at positions x1, y1 and x2, y2 respectively. Ship 1 is traveling at heading u1, and
Ship 2 is traveling at heading .u2
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The function should have the following output arguments:

xmin -- The value of x at which the minimum was found
min_value -- The minimum value of f(x) found
xmax -- The value of x at which the maximum was found
max_value -- The maximum value f(x) found

Be sure to check that there are a valid number of input arguments, and that
the MATLAB help and lookfor commands are properly supported.

5.18 Write a test program for the function generated in the previous exercise.
The test program should pass to the function function the user-defined
function f (x) � x3 � 5x2 � 5x � 2, and search for the minimum and max-
imum in 200 steps over the range �1 � x � 3. It should print out the
resulting minimum and maximum values.

5.19 Derivative of a Function The derivative of a continuous function f(x) is
defined by the equation

(5-11)

In a sampled function, this definition becomes

(5-12)

where �x � xi�1 � xi. Assume that a vector vect contains nsamp sam-
ples of a function taken at a spacing of dx per sample. Write a function
that will calculate the derivative of this vector from Equation 5-12. The
function should check to make sure that dx is greater than zero to prevent
divide-by-zero errors in the function.

To check your function, you should generate a data set whose deriva-
tive is known, and compare the result of the function with the known
correct answer. A good choice for a test function is sin x. From elementary 
calculus, we know that (sin x) � cos x. Generate an input vector 
containing 100 values of the function sin x starting at x � 0, and using a step
size �x of 0.05. Take the derivative of the vector with your function, and then
compare the resulting answers to the known correct answer. How close did
your function come to calculating the correct value for the derivative?

5.20 Derivative in the Presence of Noise We will now explore the effects of
input noise on the quality of a numerical derivative. First, generate an
input vector containing 100 values of the function sin x starting at x = 0, and
using a step size �x of 0.05, just as you did in the previous problem. Next,
use function random0 to generate a small amount of random noise with a
maximum amplitude of �0.02, and add that random noise to the samples in
your input vector (see Figure 5.9). Note that the peak amplitude of the noise
is only 2% of the peak amplitude of your signal, since the maximum value
of sin x is 1. Now take the derivative of the function using the derivative

d
dx

f rsxid 5
f sxi11d 2 f sxid

�x

d

dx
f sxd 5 lim

�xS0

f sx 1 �xd 2 f sxd
�x
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function that you developed in the last problem. How close to the theoret-
ical value of the derivative did you come?

5.21 Linear Least Squares Fit Develop a function that will calculate slope
m and intercept b of the least-squares line that best fits an input data set.
The input data points (x, y) will be passed to the function in two input
arrays, x and y. (The equations describing the slope and intercept of the
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Figure 5.9 (a) A plot of sin x as a function of x with no noise added to the data. (b) A plot of sin x as
a function of x with a 2% peak amplitude uniform random noise added to the data.



least-squares line given in Example 4.6 in the previous chapter.) Test your
function using a test program and the following 20-point input data set:

Sample Data to Test Least Squares Fit Routine

No. x y No. x y

1 �4.91 �8.18 11 �0.94 0.21

2 �3.84 �7.49 12 0.59 1.73

3 �2.41 �7.11 13 0.69 3.96

4 �2.62 �6.15 14 3.04 4.26

5 �3.78 �5.62 15 1.01 5.75

6 �0.52 �3.30 16 3.60 6.67

7 �1.83 �2.05 17 4.53 7.70

8 �2.01 �2.83 18 5.13 7.31

9 0.28 �1.16 19 4.43 9.05

10 1.08 0.52 20 4.12 10.95

5.22 Correlation Coefficient of Least-Squares Fit Develop a function that
will calculate both the slope m and intercept b of the least-squares line that
best fits an input data set, and also the correlation coefficient of the fit.
The input data points (x, y) will be passed to the function in two input
arrays, x and y. The equations describing the slope and intercept of the
least-squares line are given in Example 4.6, and the equation for the
correlation coefficient is

(5-13)

where

is the sum of the x values
is the sum of the y values

is the sum of the squares of the x values

is the sum of the squares of the y values
is the sum of the products of the corresponding x and y values

n is the number of points included in the fit

Test your function using a test driver program and the 20-point input data
set given in the previous problem.

gxy
gy2

gx2

gy
gx

r 5
n AgxyB 2 AgxB AgyB

ÅSAngx2B 2 AgxB 2T SAngy2B 2 AgyB 2T
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5.23 Recursion A function is said to be recursive if the function calls itself.
MATLAB functions are designed to allow recursive operation. To test this
feature, write a MATLAB function to evaluate the factorial function,
which is defined as follows:

(5-14)

where N is a positive integer. The function should check to make sure
that there is a single argument N, and that N is a non-negative integer. If
it is not, generate an error using the error function. If the input argu-
ment is a non-negative integer, the function should evaluate N! using
Equation (5-14).

5.24 The Birthday Problem The Birthday Problem is: if there are a group of
n people in a room, what is the probability that two or more of them have
the same birthday? It is possible to determine the answer to this question
by simulation. Write a function that calculates the probability that two or
more of n people will have the same birthday, where n is a calling argu-
ment. (Hint: To do this, the function should create an array of size n and
generate n birthdays in the range 1 to 365 randomly. It should then check
to see if any of the n birthdays are identical. The function should perform
this experiment at least 5000 times, and calculate the fraction of those
times in which two or more people had the same birthday.) Write a test pro-
gram that calculates and prints out the probability that 2 or more of n peo-
ple will have the same birthday for n = 2, 3, . . . , 40.

5.25 Use function random0 to generate a set of three arrays of random num-
bers. The three arrays should be 100, 1000, and 2000 elements long. Then,
use functions tic and toc to determine the time that it takes function
ssort to sort each array. How does the elapsed time to sort increase as
a function of the number of elements being sorted? (Hint: On a fast com-
puter, you will need to sort each array many times and calculate the aver-
age sorting time in order to overcome the quantization error of the system
clock.)

5.26 Gaussian (Normal) Distribution Function random0 returns a
uniformly-distributed random variable in the range [0, 1), which means
that there is an equal probability of any given number in the range occur-
ring on a given call to the function. Another type of random distribution is
the Gaussian Distribution, in which the random value takes on the classic
bell-shaped curve shown in Figure 5.10. A Gaussian Distribution with an
average of 0.0 and a standard deviation of 1.0 is called a standardized nor-
mal distribution, and the probability of any given value occurring in the
standardized normal distribution is given by the equation

(5-15)psxd 5
1

!2p
e2x2/2

N! 5 eNsN 2 1d! N � 1

1 N 5 0
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It is possible to generate a random variable with a standardized normal dis-
tribution starting from a random variable with a uniform distribution in the
range [�1, 1) as follows:

1. Select two uniform random variables x1 and x2 from the range [�1, 1)
such that . To do this, generate two uniform random vari-
ables in the range [�1, 1), and see if the sum of their squares happens
to be less than 1. If so, use them. If not, try again.

2. Then each of the values y1 and y2 in the following equations will be a
normally-distributed random variable.

(5-16)

(5-17)

where

(5-18)

Write a function that returns a normally distributed random value each
time that it is called. Test your function by getting 1000 random values,
calculating the standard deviation, and plotting a histogram of the distri-
bution. How close to 1.0 was the standard deviation?

5.27 Gravitational Force The gravitational force F between two bodies of
masses m1 and m2 is given by the equation

(5-19)F 5
Gm1m2

r2

r 5 x2
1 1 x2

2

y2 5 Å
22 ln r

r
x2

y1 5 Å
22 ln r

r
x1

x1
2 1 x2

2 , 1
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Figure 5.10 A Normal probability distribution.



where G is the gravitation constant (6.672 � 10�11 N m2/kg2), m1 and m2

are the masses of the bodies in kilograms, and r is the distance between the
two bodies. Write a function to calculate the gravitational force between
two bodies given their masses and the distance between them. Test you
function by determining the force on an 800 kg satellite in orbit 38,000 km
above the Earth. (The mass of the Earth is 5.98 � 1024 kg.)

5.28 Rayleigh Distribution The Rayleigh distribution is another random num-
ber distribution that appears in many practical problems. A Rayleigh-
distributed random value can be created by taking the square root of the sum
of the squares of two normally distributed random values. In other words, to
generate a Rayleigh-distributed random value r, get two normally distributed
random values ( n1 and n2), and perform the following calculation:

(5-20)

(a) Create a function rayleigh(n,m) that returns an n � m array of
Rayleigh-distributed random numbers. If only one argument is sup-
plied [rayleigh(n)], the function should return an n � n array
of Rayleigh-distributed random numbers. Be sure to design your func-
tion with input argument checking, and with proper documentation for
the MATLAB help system.

(b) Test your function by creating an array of 20,000 Rayleigh-distributed
random values and plotting a histogram of the distribution. What does
the distribution look like?

(c) Determine the mean and standard deviation of the Rayleigh
distribution.

5.29 Constant False Alarm Rate (CFAR) A simplified radar receiver chain
is shown in Figure 5.11a. When a signal is received in this receiver, it con-
tains both the desired information (returns from targets) and thermal
noise. After the detection step in the receiver, we would like to be able to
pick out received target returns from the thermal noise background. We
can do this be setting a threshold level, and then declaring that we see a
target whenever the signal crosses that threshold. Unfortunately, it is occa-
sionally possible for the receiver noise to cross the detection threshold

r 5 "n2
1 1 n2

2
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(a)

Figure 5.11 (a) A typical radar receiver. 
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even if no target is present. If that happens, we will declare the noise spike
to be a target, creating a false alarm. The detection threshold needs to be
set as low as possible so that we can detect weak targets, but it must not
be set too low, or we get many false alarms.

After video detection, the thermal noise in the receiver has a Rayleigh
distribution. Figure 5.11b shows 100 samples of a Rayleigh-distributed
noise with a mean amplitude of 10 volts. Note that there would be one false
alarm even if the detection threshold were as high as 26! The probability
distribution of these noise samples is shown in Figure 5.11c.

Detection thresholds are usually calculated as a multiple of the mean
noise level, so that if the noise level changes, the detection threshold will
change with it to keep false alarms under control. This is known as con-
stant false alarm rate (CFAR) detection. A detection threshold is typical
quoted in decibels. The relationship between the threshold in dB and the
threshold in volts is

(5-21)

or

(5-22)

The false alarm rate for a given detection threshold is calculated as:

(5-23)

Write a program that generates 1,000,000 random noise samples with
a mean amplitude of 10 volts and a Rayleigh noise distribution. Determine
the false alarm rates when the detection threshold is set to 5, 6, 7, 8, 9, 10,
11, 12, and 13 dB above the mean noise level. At what level should the
threshold be set to achieve a false alarm rate of 10�4?

Pfa 5
Number of False Alarms

Total Number of Samples

dB 5 20 log10a Threshold svoltsd
Mean Noise Level svoltsd

b

Threshold svoltsd 5 Mean Noise Level svoltsd 3 10
dB
20



C H A P T E R 6
Additional Data
Types and Plot
Types

In previous chapters, we were introduced to three fundamental MATLAB data
types: double, logical, and char. In this chapter, we will learn additional
details about the double and char data types.

First, we will learn how to create, manipulate, and plot complex values in the
double data type. Then,we will learn more about using the char data type and
how to extend MATLAB arrays of any type to more than two dimensions.

The chapter concludes with a discussion of additional types of plots available
in MATLAB.

6.1 Complex Data

Complex numbers are numbers with both a real and an imaginary component.
Complex numbers occur in many problems in science and engineering. For exam-
ple, complex numbers are used in electrical engineering to represent alternating
current voltages, currents, and impedances. The differential equations that
describe the behavior of most electrical and mechanical systems also give rise to
complex numbers. Because they are so ubiquitous, it is impossible to work as an
engineer without a good understanding of the use and manipulation of complex
numbers.

A complex number has the general form

c � a � bi (6-1)

where c is a complex number, a and b are both real numbers, and i is . The
number a is called the real part and b is called the imaginary part of the complex
number c. Since a complex number has two components, it can be plotted as a

"21
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point on a plane (see Figure 6.1). The horizontal axis of the plane is the real axis,
and the vertical axis of the plane is the imaginary axis, so that any complex number
a � bi can be represented as a single point a units along the real axis and b units
along the imaginary axis. A complex number represented this way is said to be
in rectangular coordinates, since the real and imaginary axes define the sides of
a rectangle.

A complex number can also be represented as a vector of length z and angle u
pointing from the origin of the plane to the point P (see Figure 6.2). A complex
number represented this way is said to be in polar coordinates.

The relationships among the rectangular and polar coordinate terms a, b, z, and
u are

a � z cos u (6-2)

b � z sin u (6-3)

(6-4)

(6-5)

MATLAB uses rectangular coordinates to represent complex numbers. Each
complex number consists of a pair of real numbers (a,b). The first number (a) is

u 5 tan21
 
b

a

z 5 "a2 1 b2

c 5 a 1 bi 5 z/u
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Figure 6.1 Representing a complex number in Rectangular Coordinates.
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the real part of the complex number, and the second number (b) is the imaginary
part of the complex number.

If complex numbers c1 and c2 are defined as and
then the addition, subtraction, multiplication, and division of

c1 and c2 are defined as

(6-6)

(6-7)

(6-8)

(6-9)

When two complex numbers appear in a binary operation, MATLAB performs
the required additions, subtractions, multiplications, or divisions between the two
complex numbers using versions of the preceding formulas.

6.1.1 Complex Variables

A complex variable is created automatically when a complex value is assigned to
a variable name. The easiest way to create a complex value is to use the intrinsic
values i or j, both of which are predefined to be . For example, the "21

c1

c2
5

a1a2 1 b1b2

a2
2 1 b2

2 1
b1a2 2 a1b2

a2
2 1 b2

2 i

c1 3 c2 5 sa1a2 2 b1b2d 1 sa1b2 1 b1a2di

c1 2 c2 5 sa1 2 a2d 1 sb1 2 b2di

c1 1 c2 5 sa1 1 a2d 1 sb1 1 b2di

c2 5 a2 1 b2i,
c1 5 a1 1 b1i

Figure 6.2 Representing a complex number in Polar Coordinates.
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following statement stores the complex value  4 � i3 into variable c1:

» c1 = 4 + i*3
c1 =

4.0000 + 3.0000i

Alternatively, the imaginary part can be specified by simply appending an i or j
to the end of a number:

» c1 = 4 + 3i
c1 =

4.0000 + 3.0000i

The function isreal can be used to determine whether a given array is real
or complex. If any element of an array has an imaginary component, then the
array is complex, and isreal(array) returns a 0.

6.1.2 Using Complex Numbers with Relational Operators

It is possible to compare two complex numbers with the �� relational operator to see
whether they are equal to each other and to compare them with the ~� operator to see
whether they are not equal to each other. Both of these operators produce the expect-
ed results. For example, if and , then the relational opera-
tion produces a 0, and the relational operation produces a 1.

However, comparisons with the !, �, !�, or <� operators do not produce
the expected results. When complex numbers are compared with these relational
operators, only the real parts of the numbers are compared. For example, if

and , the relational operation produces a true
(1) even though the magnitude of c1 is really smaller than the magnitude of c2.

If you ever need to compare two complex numbers with these operators, you
will probably be more interested in the total magnitude of the number than we are
in the magnitude of only its real part. The magnitude of a complex number can be
calculated with the abs intrinsic function (see the following text), or directly from
Equation 6-4.

(6-10)

If we compare the magnitudes of and given previously, the results are more
reasonable: abs(c1) > abs(c2) produces a 0, since the magnitude of c2 is
greater than the magnitude of c1.

�Programming Pitfalls:

Be careful when using the relational operators with complex numbers. The rela-
tional operators !, !�, �, and �� compare only the real parts of complex
numbers, not their magnitudes. If you need to use these relational operators with
complex numbers, it will probably be more sensible to compare the total mag-
nitudes rather than only the real components.

c2c1

k c k 5 "a2 1 b2

c1 . c2c2 5 3 1 i8c1 5 4 1 i3

c1 ,5 c2c1 55 c2

c2 5 4 2 i3c1 5 4 1 i3
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6.1.3 Complex Functions

MATLAB includes many functions that support complex calculations. These
functions fall into three general categories:

1. Type conversion functions These functions convert data from the com-
plex data type to the real (double) data type. Function real converts
the real part of a complex number into the double data type and throws
away the imaginary part of the complex number. Function imag converts
the imaginary part of a complex number into a real number.

2. Absolute value and angle functions These functions convert a com-
plex number to its polar representation. Function abs(c) calculates the
absolute value of a complex number using the equation

where c � a � bi. Function angle(c) calculates the angle of a complex
number using the equation

angle(c) = atan2(imag(c),real(c))

producing an answer in the range �p � u � p.
3. Mathematical functions Most elementary mathematical functions are

defined for complex values. These functions include exponential func-
tions, logarithms, trigonometric functions, and square roots. The functions
sin, cos, log, sqrt, and so forth will work as well with complex data
as they will with real data.

Some of the intrinsic functions that support complex numbers are listed in
Table 6.1.

absscd 5 "a2 1 b2

6.1 Complex Data | 265

Table 6.1 Some Functions that Support Complex Numbers

Function Description

conj(c) Computes the complex conjugate of a number c. If ,
then conj(c)5 a 2 bi.

real(c) Returns the real portion of the complex number c.

imag(c) Returns the imaginary portion of the complex number c.

isreal(c) Returns true (1) if no element of array c has an imaginary
component. Therefore, ~isreal(c) returns true (1) if an
array is complex.

abs(c) Returns the magnitude of the complex number c.

angle(c) Returns the angle of the complex number c, computed from the
expression atan2(imag(c), real(c)).

c 5 a 1 bi
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Example 6.1—The Quadratic Equation (Revisited)

The availability of complex numbers often simplifies the calculations required
to solve problems. For example, when we solved the quadratic equation in
Example 3.2, it was necessary to take three separate branches through the pro-
gram depending on the sign of the discriminant. With complex numbers available,
the square root of a negative number presents no difficulties, so we can greatly
simplify these calculations.

Write a general program to solve for the roots of a quadratic equation,
regardless of type. Use complex variables so that no branches will be required
based on the value of the discriminant.

SOLUTION

1. State the problem.
Write a program that will solve for the roots of a quadratic equation,
whether they are distinct real roots, repeated real roots, or complex roots,
without requiring tests on the value of the discriminant.

2. Define the inputs and outputs.
The inputs required by this program are the coefficients a, b, and c of the
quadratic equation

(3-1)

The output from the program will be the roots of the quadratic equation,
whether they are real, repeated, or complex.

3. Describe the algorithm.
This task can be broken down into three major sections, whose functions
are input, processing, and output:

Read the input data
Calculate the roots
Write out the roots

We will now break each of the foregoing major sections into smaller,
more detailed pieces. In this algorithm, the value of the discriminant
is unimportant in determining how to proceed. The resulting
pseudocode is

Prompt the user for the coefficients a, b, and c.
Read a, b, and c
discriminant ← b^2 - 4 * a * c
x1 ← ( -b + sqrt(discriminant) ) / ( 2 * a )
x2 ← ( -b - sqrt(discriminant) ) / ( 2 * a )

ax2 1 bx 1 c 5 0
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Print 'The roots of this equation are: '
Print 'x1 = ', real(x1), ' +i ', imag(x1)
Print 'x2 = ', real(x2), ' +i ', imag(x2)

4. Turn the algorithm into MATLAB statements.
The final MATLAB code is as follows:

% Script file: calc_roots2.m
%
% Purpose:
% This program solves for the roots of a quadratic equation
% of the form a*x**2 + b*x + c = 0. It calculates the answers
% regardless of the type of roots that the equation possesses.
%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 02/24/07 S. J. Chapman Original code
%
% Define variables:
%   a -- Coefficient of x^2 term of equation
%   b -- Coefficient of x term of equation
%   c -- Constant term of equation
%   discriminant -- Discriminant of the equation
%   x1 -- First solution of equation
%   x2 -- Second solution of equation

% Prompt the user for the coefficients of the equation
disp ('This program solves for the roots of a quadratic ');
disp ('equation of the form A*X^2 + B*X + C = 0. ');
a = input ('Enter the coefficient A: ');
b = input ('Enter the coefficient B: ');
c = input ('Enter the coefficient C: '); 

% Calculate discriminant
discriminant = b^2 - 4 * a * c; 

% Solve for the roots
x1 = ( -b + sqrt(discriminant) ) / ( 2 * a );
x2 = ( -b - sqrt(discriminant) ) / ( 2 * a ); 

% Display results
disp ('The roots of this equation are:');
fprintf ('x1 = (%f) +i (%f)\n', real(x1), imag(x1));
fprintf ('x2 = (%f) +i (%f)\n', real(x2), imag(x2));
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5. Test the program.
Next, we must test the program using real input data. We will test cases in
which the discriminant is greater than, less than, or equal to 0 to be cer-
tain that the program is working properly under all circumstances. From
Equation (3-1), it is possible to verify the solutions to the equations that
follow:

and

When the preceding coefficients are fed into the program, the results are

» calc_roots2
This program solves for the roots of a quadratic
equation of the form A*X^2 + B*X + C = 0.
Enter the coefficient A: 1
Enter the coefficient B: 5
Enter the coefficient C: 6
The roots of this equation are:
x1 = (-2.000000) +i (0.000000)
x2 = (-3.000000) +i (0.000000)

» calc_roots2
This program solves for the roots of a quadratic
equation of the form A*X^2 + B*X + C = 0.
Enter the coefficient A: 1
Enter the coefficient B: 4
Enter the coefficient C: 4
The roots of this equation are:
x1 = (-2.000000) +i (0.000000)
x2 = (-2.000000) +i (0.000000)

» calc_roots2
This program solves for the roots of a quadratic
equation of the form A*X^2 + B*X + C = 0.
Enter the coefficient A: 1
Enter the coefficient B: 2
Enter the coefficient C: 5
The roots of this equation are:
x1 = (-1.000000) +i (2.000000)
x1 = (-1.000000) +i (-2.000000)

The program gives the correct answers for our test data in all three possible
cases. Note how much simpler this program is compared to the quadratic root
solver found in Example 3.1. The complex data type has greatly simplified
our program.

�

x 5 21 6 2ix2 1 2x 1 5 5 0
x 5 22x2 1 4x 1 4 5 0

x 5 23x 5 22,x2 1 5x 1 6 5 0
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6.1.4 Plotting Complex Data

Complex data has both real and imaginary components, and plotting complex
data with MATLAB is a bit different from plotting real data. For example, con-
sider the function

(6-11)

If this function is plotted with the conventional plot command, only the real
data will be plotted—the imaginary part will be ignored. The following state-
ments produce the plot shown in Figure 6.3, together with a warning message that
the imaginary part of the data is being ignored.

t = 0:pi/20:4*pi;
y = exp(-0.2*t).*(cos(t)+i*sin(t));
plot(t,y,'LineWidth',2);
title('\bfPlot of Complex Function vs Time');
xlabel('\bf\itt');
ylabel('\bf\ity(t)');

If both the real and imaginary parts of the function are of interest, then the
user has several choices. Both parts can be plotted as a function of time on the
same axes using the statements that follow (see Figure 6.4).

t = 0:pi/20:4*pi;
y = exp(-0.2*t).*(cos(t)+i*sin(t));
plot(t,real(y),'b-','LineWidth',2);
hold on;

ystd 5 e20.2tscos t 1 i sin td
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Figure 6.3 Plot of using the command plot(t,y).ystd 5 e20.2tscos t 1 i sin td



plot(t,imag(y),'r--','LineWidth',2);
title('\bfPlot of Complex Function vs Time');
xlabel('\bf\itt');
ylabel('\bf\ity(t)');
legend ('real','imaginary');
hold off;

Alternatively, the real part of the function can be plotted versus the imaginary
part. If a single complex argument is supplied to the plot function, it automati-
cally generates a plot of the real part versus the imaginary part. The statements to
generate this plot are shown in the following, and the result is shown in Figure 6.5.

t = 0:pi/20:4*pi;
y = exp(-0.2*t).*(cos(t)+i*sin(t));
plot(y,'b-','LineWidth',2);
title('\bfPlot of Complex Function');
xlabel('\bfReal Part');
ylabel('\bfImaginary Part');

Finally, the function can be plotted as a polar plot showing magnitude versus
angle. The statements to generate this plot are shown in the following, and the
result is shown in Figure 6.6.

t = 0:pi/20:4*pi;
y = exp(-0.2*t).*(cos(t)+i*sin(t));
polar(angle(y),abs(y));
title('\bfPlot of Complex Function');
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Figure 6.4 Plot of real and imaginary parts of versus time.ystd
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Figure 6.5 Plot of real versus imaginary parts of . ystd

Figure 6.6 Polar plot of magnitude of versus angle.ystd



6.2 String Functions

A MATLAB string is an array of type char. Each character is stored in two bytes
of memory. A character variable is automatically created when a string is assigned
to it. For example, the statement

str = 'This is a test';

creates a 14-element character array. The output of whos for this array is

» whos str
Name Size Bytes Class Attributes
str 1x14 28 char

A special function ischar can be used to check for character arrays. If a given
variable is of type character, then ischar returns a true (1) value. If it is not,
ischar returns a false (0) value.

The following subsections describe MATLAB functions useful for manipu-
lating character strings.

6.2.1 String Conversion Functions

Variables may be converted from the char data type to the double data type
using the double function. Thus the statement double(str) yields the
following result:

» x = double(str)
x =
Columns 1 through 12
84 104 105 115 32 105 115 32 97 32 116 101
Columns 13 through 14
115 116

Variables can also be converted from the double data type to the char data
type using the char function. If x is the 14-element array created previously,
then the statement char(x) yields the following result:

» z = char(x)
z =
This is a test

6.2.2 Creating Two-Dimensional Character Arrays

It is possible to create two-dimensional character arrays, but each row of such an
array must have exactly the same length. If one of the rows is shorter than the
other rows, the character array is invalid and will produce an error. For example,
the following statements are illegal because the two rows have different lengths.

name = ['Stephen J. Chapman';'Senior Engineer'];
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The easiest way to produce two-dimensional character arrays is with the char
function. This function will automatically pad all strings to the length of the
largest input string.

» name = char('Stephen J. Chapman','Senior Engineer')
name =
Stephen J. Chapman
Senior Engineer

Two-dimensional character arrays can also be created with function strvcat,
which is described subsequently.

✷ Good Programming Practice:

Use the char function to create two-dimensional character arrays without
worrying about padding each row to the same length.

It is possible to remove any extra trailing blanks from a string when it is extracted
from an array using the deblank function. For example, the following state-
ments remove the second line from array name and compare the results with and
without blank trimming.

» line2 = name(2,:)
line2 =
Senior Engineer
» line2_trim = deblank(name(2,:))
line2_trim =
Senior Engineer
» size(line2)
ans =

1 18
» size(line2_trim)
ans =

1 15

6.2.3 Concatenating Strings

Function strcat concatenates two or more strings horizontally, ignoring any
trailing blanks but preserving blanks within the strings. This function produces
the result shown here.

» result = strcat('String 1 ','String 2')
result =
String 1String 2

The result is 'String 1String 2'. Note that the trailing blanks in the first
string were ignored.
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Function strvcat concatenates two or more strings vertically, automatically
padding the strings to make a valid two-dimensional array. This function produces
the result shown here.

» result = strvcat('Long String 1 ','String 2')
result =
Long String 1
String 2

6.2.4 Comparing Strings

Strings and substrings can be compared in several ways:

� Two strings, or parts of two strings, can be compared for equality.
� Two individual characters can be compared for equality.
� Strings can be examined to determine whether each character is a letter or

whitespace. 

Comparing Strings for Equality
You can use four MATLAB functions to compare two strings as a whole for
equality. They are

� strcmp determines whether two strings are identical.
� strcmpi determines whether two strings are identical, ignoring case.
� strncmp determines whether the first n characters of two strings are

identical.
� strncmpi determines whether the first n characters of two strings are

identical, ignoring case.

Function strcmp compares two strings, including any leading and trailing
blanks, and returns a true (1) if the strings are identical1. Otherwise, it returns a
false (0). Function strcmpi is the same as strcmp, except that it ignores the
case of letters (that is, it treats 'a' as equal to 'A'.)

Function strncmp compares the first n characters of two strings, including
any leading blanks, and returns a true (1) if the characters are identical.
Otherwise, it returns a false (0). Function strncmpi is the same as strncmp,
except that it ignores the case of letters.

To understand these functions, consider the following two strings:

str1 = 'hello';
str2 = 'Hello';
str3 = 'help';

Strings str1 and str2 are not identical, but they differ only in the case of one
letter. Therefore, strcmp returns false (0), while strcmpi returns true (1).
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1Caution: The behavior of this function is different from that of the strcmp in C. C programmers
can be tripped up by this difference.



» c = strcmp(str1,str2)
c =

0
» c = strcmpi(str1,str2)
c =

1

Strings str1 and str3 are also not identical, and both strcmp and strcmpi
will return a false (0). However, the first three characters of str1 and str3 are
identical, so invoking strncmp with any value up to 3 returns a true (1):

» c = strncmp(str1,str3,2)
c =
1

Comparing Individual Characters for Equality and Inequality
You can use MATLAB relational operators on character arrays to test for equality
one character at a time, as long as the arrays you are comparing have equal
dimensions, or one is a scalar. For example, you can use the equality operator
(==) to determine which characters in two strings match:

» a = 'fate';
» b = 'cake';
» result = a == b
result =
0 1 0 1

All of the relational operators (>, >=, <, <=, ==, ~=) compare the ASCII values of
corresponding characters.

Unlike C, MATLAB does not have an intrinsic function to define a “greater
than” or “less than” relationship between two strings taken as a whole. We will
create such a function in an example at the end of this section. 

Categorizing Characters within a String
There are three functions for categorizing characters on a character-by-character
basis inside a string:

� isletter determines whether a character is a letter.
� isspace determines whether a character is whitespace (blank, tab, or

new line).
� isstrprop('str','category') is a more general function. It deter-

mines whether a character falls into a user-specified category, such as alpha-
betic, alphanumeric, uppercase, lowercase, numeric, control, and so forth.

To understand these functions, let’s create a string named mystring:

mystring = 'Room 23a';

We will use this string to test the categorizing functions.
Function isletter examines each character in the string, producing a

logical output vector of the same length as mystring that contains a true
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(1) in each location corresponding to a character and a false (0) in the other loca-
tions. For example,

» a = isletter(mystring)
a =
1 1 1 1 0 0 0 1

The first four and the last elements in a are true (1) because the corresponding
characters of mystring are letters.

Function isspace also examines each character in the string, producing a
logical output vector of the same length as mystring that contains a true (1) in
each location corresponding to whitespace and a false (0) in the other locations.
“Whitespace” is any character that separates tokens in MATLAB: a space, a tab, a
linefeed, carriage return, and so forth. For example,

» a = isspace(mystring)
a =
0 0 0 0 1 0 0 0

The fifth element in a is true (1) because the corresponding character of mys-
tring is a space.

Function isstrprop is new in MATLAB 7. It is a more flexible replace-
ment for isletter, isspace, and several other functions. This function has
two arguments: 'str' and 'category'. The first argument is the string to
characterize, and the second argument is the type of category to check for. Some
possible categories are given in Table 6.2.

This function examines each character in the string, producing alogical out-
put vector of the same length as the input string that contains a true (1) in each loca-
tion that matches the category and a false (0) in the other locations. For example, the
following function checks to see which characters in mystring are numbers:

» a = isstrprop(mystring,'digit')
a =
0 0 0 0 0 1 1 0

Also, the following function checks to see which characters in mystring are
lower case letters:

» a = isstrprop(mystring,'lower')
a =
0 1 1 1 0 0 0 1

✷ Good Programming Practice:

Use function isstrprop to determine the characteristics of each character in
a string array. This function replaces the older functions isletter and
isspace, which may be deleted in a future version of MATLAB.
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6.2.5 Searching or Replacing Characters within a String

MATLAB provides several functions for searching and replacing characters within
a string. Consider a string named test:

test = 'This is a test!';

Function findstr returns the starting position of all occurrences of the
shorter of two strings within a longer string. For example, the following statement
can be used to find all occurrences of the string 'is' inside string test:

» position = findstr(test,'is')
position =

3 6

The string 'is' occurs twice within test, starting at positions 3 and 6.
Function strmatch is another matching function. This one looks at the

beginning characters of the rows of a two-dimensional character array and returns
a list of those rows that start with the specified character sequence. The form of
this function is

result = strmatch(str,array);

For example, suppose that we create a two-dimensional character array with the
function strvcat:

array = strvcat('maxarray','min value','max value');
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Table 6.2 Selected Categories for Function isstrprop

Category Description

'alpha' Return true (1) for each character of the string that is alphabetic, and false
(0) otherwise.

'alphanum' Return true (1) for each character of the string that is alphanumeric, and
false (0) otherwise.

(Note: This category replaces function isletter.)

'cntrl' Return true (1) for each character of the string is that is a control character,
and false (0) otherwise.

'digit' Return true (1) for each character of the string that is a number, and false
(0) otherwise.

'lower' Return true (1) for each character of the string that is a lower case letter,
and false (0) otherwise.

'wspace' Return true (1) for each character of the string that is whitespace, and false
(0) otherwise.

(Note: This category replaces function isspace.)

'upper' Return true (1) for each character of the string that is an upper case letter,
and false (0) otherwise.

'xdigit' Return true (1) for each character of the string that is a hexadecimal digit,
and false (0) otherwise.



Then the following statement will return the row numbers of all rows beginning
with the letters 'max':

» result = strmatch('max',array)
result =

1
3

Function strrep performs the standard search-and-replace operation. It
finds all occurrences of one string within another one and replaces them by a
third string. The form of this function is

result = strrep(str,srch,repl)

where str is the string being checked, srch is the character string to search for,
and repl is the replacement character string. For example,

» test = 'This is a test!'
» result = strrep(test,'test','pest')
result =
This is a pest!

The strtok function returns the characters before the first occurrence of a
delimiting character in an input string. The default delimiting characters are the
set of whitespace characters. The form of strtok is

[token,remainder] = strtok(string,delim)

where string is the input character string, delim is the (optional) set of delim-
iting characters, token is the first set of characters delimited by a character in
delim, and remainder is the rest of the line. For example,

» [token,remainder] = strtok('This is a test!')
token =
This
remainder =
is a test!

You can use the strtok function to parse a sentence into words; for example,

function all_words = words(input_string)
remainder = input_string;
all_words = '';
while (any(remainder))

[chopped,remainder] = strtok(remainder);
all_words = strvcat(all_words,chopped);

end
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6.2.6 Uppercase and Lowercase Conversion

Functions upper and lower convert all of the alphabetic characters within a
string to uppercase and lowercase, respectively. For example,

» result = upper('This is test 1!')
result =
THIS IS TEST 1!
» result = lower('This is test 2!')
result =
this is test 2!

Note that the alphabetic characters were converted to the proper case, while the
numbers and punctuation were unaffected.

6.2.7 Trimming Whitespace from Strings

There are two functions that trim leading and/or trailing whitespace from a string.
Whitespace characters consists of spaces, newlines, carriage returns, tabs, vertical
tabs, and formfeeds.

Function deblank removes any extra trailing whitespace from a string,
and function strtrim removes any extra leading and trailing whitespace from
a string.

For example, the following statements create a 21-character string with leading
and trailing whitespace. Function deblank trims the trailing whitespace characters
in the string only, while function strtrim trims both the leading and the trailing
whitespace characters.

» test_string = '   This is a test.   '
test_string =

This is a test.
» length(test_string)
ans =

21
» test_string_trim1= deblank(test_string)
test_string_trim1 =

This is a test.
» length(test_string_trim1)
ans =

18
» test_string_trim2 = strtrim(test_string)
test_string_trim2 =
This is a test.
» length(test_string_trim2)
ans =

15
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6.2.8 Numeric-to-String Conversions

MATLAB contains several functions to convert numeric values into character
strings. We have already seen two such functions: num2str and int2str.
Consider a scalar x:

x = 5317;

By default, MATLAB stores the number x as a 1 � 1 double array containing
the value 5317. The int2str (integer to string) function converts this scalar into
a 1-by-4 char array containing the string '5317':

» x = 5317;
» y = int2str(x);
» whos
Name Size Bytes Class Attributes 
x 1x1 8 double
y 1x4 8 char

Function num2str converts a double value into a string, even if it does
not contain an integer. It provides more control of the output string format than
int2str. An optional second argument sets the number of digits in the output
string or specifies an actual format to use. The format specifications in the second
argument are similar to those used by fprintf. For example,

» p = num2str(pi)
p =
3.1416
» p = num2str(pi,7)
p =
3.141593
» p = num2str(pi,'%10.5e')
p =
3.14159e+000

Both int2str and num2str are handy for labeling plots. For example,
the following lines use num2str to prepare automated labels for the x-axis of
a plot:

function plotlabel(x,y)
plot(x,y)
str1 = num2str(min(x));
str2 = num2str(max(x));
out = ['Value of f from ' str1 ' to ' str2];
xlabel(out);

There are also conversion functions designed to change numeric values into strings
representing a decimal value in another base, such as a binary or hexadecimal
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representation. For example, the dec2hex function converts a decimal value into
the corresponding hexadecimal string:

dec_num = 4035;
hex_num = dec2hex(dec_num)
hex_num =
FC3

Other functions of this type include hex2num, hex2dec, bin2dec,
dec2bin, base2dec, and dec2base. MATLAB includes on-line help for
all of these functions.

MATLAB function mat2str converts an array to a string that MATLAB
can evaluate. This string is useful input for a function such as eval, which eval-
uates input strings just as if they were typed at the MATLAB command line. For
example, if we define array a as

» a = [1 2 3; 4 5 6]
a =

1     2    3
4     5    6

then the function mat2str will return a string containing the result

» b = mat2str(a)
b =
[1 2 3; 4 5 6]

Finally, MATLAB includes a special function sprintf that is identical to
function fprintf, except that the output goes into a character string instead of
the Command Window. This function provides complete control over the formatting
of the character string. For example,

» str = sprintf('The value of pi = %8.6f.',pi)
str =
The value of pi = 3.141593.

This function is extremely useful in creating complex titles and labels for
plots.

6.2.9 String-to-Numeric Conversions

MATLAB also contains several functions to change character strings into numer-
ic values. The most important of these function are eval, str2double, and
sscanf.

Function eval evaluates a string containing a MATLAB expression and
returns the result. The expression can contain any combination of MATLAB
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functions, variables, constants, and operations. For example, the string a contain-
ing the characters '2 * 3.141592' can be converted to numeric form by the
following statements:

» a = '2 * 3.141592';
» b = eval(a)
b =

6.2832
» whos
Name Size Bytes Class Attributes 

a 1x12 24 char
b 1x1 8 double

Function str2double converts character strings into an equivalent dou-
ble value2. For example, the string a containing the characters '3.141592'
can be converted to numeric form by the following statements:

» a = '3.141592';
» b = str2double(a)
b =

3.1416

Strings can also be converted to numeric form using the function sscanf.
This function converts a string into a number according to a format-conversion
character. The simplest form of this function is

value = sscanf(string,format)

where string is the string to scan and format specifies the type of conversion
to occur. The two most common conversion specifiers for sscanf are '%d' for
decimals and '%g' for floating-point numbers. The following examples illustrate
the use of sscanf:

» a = '3.141592';
» value1 = sscanf(a,'%g')
value1 =

3.1416
» value2 = sscanf(a,'%d')
value2 =

3
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2MATLAB also contains a function str2num that can convert a string into a number. For various rea-
sons mentioned in the MATLAB documentation, function str2double is better than function
str2num. You should recognize function str2num when you see it, but always use function
str2double in any new code that you write.



6.2.10 Summary

The common MATLAB string functions are summarized in Table 6.3.
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Table 6.3 Common MATLAB String Functions

Category Function Description

General char (1) Convert numbers to the corresponding character values. 
(2) Create a two-dimensional character array from a series of strings.

double Convert characters to the corresponding numeric codes.
blanks Create a string of blanks.
deblank Remove trailing whitespace from a string.
strtrim Remove leading and trailing whitespace from a string.

String tests ischar Returns true (1) for a character array.
isletter Returns true (1) for letters of the alphabet.
isspace Returns true (1) for whitespace.
isstrprop Returns true (1) for characters matching the specified property.

String operations strcat Concatenate strings.
strvcat Concatenate strings vertically.
strcmp Returns true (1) if two strings are identical.
strcmpi Returns true (1) if two strings are identical, ignoring case.
strncmp Returns true (1) if the first n characters of two strings are identical.
strncmpi Returns true (1) if the first n characters of two strings are identical, ignoring case.
findstr Find one string within another one.
strjust Justify string.
strmatch Find matches for string.
strrep Replace one string with another. 
strtok Find token in string.
upper Convert string to uppercase.
lower Convert string to lowercase.

Number-to-string int2str Convert integer to string.
conversion num2str Convert number to string.

mat2str Convert matrix to string.
sprintf Write formatted data to string.

String-to-number eval Evaluate the result of a MATLAB expression.
conversion str2double Convert string to a double value.

str2num Convert string to number.
sscanf Read formatted data from string.

Base number hex2num Convert IEEE hexadecimal string to double.
conversion hex2dec Convert hexadecimal string to decimal integer.

dec2hex Convert decimal to hexadecimal string.
bin2dec Convert binary string to decimal integer.
dec2bin Convert decimal integer to binary string.
base2dec Convert base B string to decimal integer.
dec2base Convert decimal integer to base B string.



�

Example 6.2—String Comparison Function

In C, function strmcp compares two strings according to the order of their char-
acters in the ASCII table (called the lexicographic order of the characters), and
returns a �1 if the first string is lexicographically less than the second string, a 0
if the strings are equal, and a �1 if the first string is lexicographically greater
than the second string. This function is extremely useful for such purposes as
sorting strings in alphabetic order.

Create a new MATLAB function c_strcmp that compares two strings in a
similar fashion to the C function and returns similar results. The function should
ignore trailing blanks in doing its comparisons. Note that the function must be
able to handle the situation where the two strings are of different lengths.

SOLUTION

1. State the problem.
Write a function that will compare two strings str1 and str2 and return
the following results:

� �1 if str1 is lexicographically less than str2.
� 0 if str1 is lexicographically less than str2.
� �1 if str1 is lexicographically greater than str2.

The function must work properly if str1 and str2 do not have the same
length, and the function should ignore trailing blanks.

2. Define the inputs and outputs.
The inputs required by this function are two strings: str1 and str2. The
output from the function will be a �1, 0, or 1, as appropriate.

3. Describe the algorithm.
This task can be broken down into four major sections:

Verify input strings
Pad strings to be equal length
Compare characters from beginning to end, looking

for the first difference
Return a value based on the first difference

We will now break each of the foregoing major sections into smaller,
more detailed pieces. First, we must verify that the data passed to the
function is correct. The function must have exactly two arguments, and
the arguments must both be characters. The pseudocode for this step is

% Check for a legal number of input arguments.
msg = nargchk(2,2,nargin)
error(msg)
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% Check to see if the arguments are strings
if either argument is not a string

error('str1 and str2 must both be strings')
else

(add code here) 

end

Next, we must pad the strings to equal lengths. The easiest way to do
this is to combine both strings into a two-dimensional array using strv-
cat. Note that this step effectively results in the function’s ignoring trail-
ing blanks, because both strings are padded out to the same length. The
pseudocode for this step is

% Pad strings
strings = strvcat(str1,str2)

Now we must compare each character until we find a difference, and
return a value based on that difference. One way to do this is to use rela-
tional operators to compare the two strings, creating an array of 0s and 1s.
We can then look for the first 1 in the array, which will correspond to the
first difference between the two strings. The pseudocode for this step is

% Compare strings
diff = strings(1,:) ~= strings(2,:)
if sum(diff) == 0

% Strings match
result = 0

else
% Find first difference
ival = find(diff)
if strings(1,ival) > strings(2,ival)

result = 1
else

result = -1
end

end

4. Turn the algorithm into MATLAB statements.
The final MATLAB code is shown as follows:

function result = c_strcmp(str1,str2)
%C_STRCMP Compare strings like C function “strcmp”
% Function C_STRCMP compares two strings, and returns
% a -1 if str1 < str2, a 0 if str1 == str2, and a
% +1 if str1 > str2.
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% Define variables:
% diff -- Logical array of string differences
% msg -- Error message
% result -- Result of function
% str1 -- First string to compare
% str2 -- Second string to compare
% strings -- Padded array of strings 

% Record of revisions:
% Date Programmer Description of change
% ==== ========== ====================
% 02/25/07 S. J. Chapman Original code 

% Check for a legal number of input arguments.
msg = nargchk(2,2,nargin);
error(msg);

% Check to see if the arguments are strings
if ~(isstr(str1) & isstr(str2))

error('Both str1 and str2 must both be strings!')
else

% Pad strings
strings = strvcat(str1,str2);

% Compare strings
diff = strings(1,:) ~= strings(2,:);
if sum(diff) == 0 

% Strings match, so return a zero!
result = 0;

else
% Find first difference between strings
ival = find(diff);
if strings(1,ival(1)) > strings(2,ival(1))

result = 1;
else

result = -1;
end

end
end

5. Test the program.
Next, we must test the function using various strings.

» result = c_strcmp('String 1','String 1')
result =

0
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» result = c_strcmp('String 1','String 1  ')
result =

0
» result = c_strcmp('String 1','String 2')
result =

-1
» result = c_strcmp('String 1','String 0')
result =

1
» result = c_strcmp('String','str')
result =

-1

The first test returns a 0, because the two strings are identical. The second
test also returns a 0, because the two strings are identical except for trail-
ing blanks, and trailing blanks are ignored. The third test returns a �1,
because the two strings first differ in position 8, and '1' < '2' at that
position. The fourth test returns a 1, because the two strings first differ in
position 8, and '1' > '0' at that position. The fifth test returns a �1,
because the two strings first differ in position 1, and 'S' < 's' in the
ASCII collating sequence.

This function appears to be working properly.
�

Quiz 6.1

This quiz provides a quick check to see if you have understood the
concepts introduced in Sections 6.1 through 6.2. If you have trouble
with the quiz, reread the section, ask your instructor, or discuss
the material with a fellow student. The answers to this quiz are found
in the back of the book.

1. What is the value of result in the following statements?

(a) x = 12 + i*5;
y = 5 – i*13;
result = x > y;

(b) x = 12 + i*5;
y = 5 – i*13;
result = abs(x) > abs(y);

(c) x = 12 + i*5;
y = 5 – i*13;
result = real(x) – imag(y);

2. If array is a complex array, what does the function
plot(array) do?
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3. How can you convert a vector of the char data type into a vector
of the double data type?

For questions 4 through 11, determine whether these statements are cor-
rect. If they are, what is produced by each set of statements?

4. str1 = 'This is a test! ';
str2 = 'This line, too.';
res = strcat(str1,str2);

5. str1 = 'Line 1';
str2 = 'line 2';
res = strcati(str1,str2);

6. str1 = 'This is another test!';
str2 = 'This line, too.';
res = [str1; str2];

7. str1 = 'This is another test!';
str2 = 'This line, too.';
res = strvcat(str1,str2);

8. str1 = 'This is a test! ';
str2 = 'This line, too.';
res = strncmp(str1,str2,5);

9. str1 = 'This is a test! ';
res = findstr(str1,'s');

10. str1 = 'This is a test! ';
str1(isspace(str1)) = 'x';

11. str1 = 'aBcD 1234 !?';
res = isstrprop(str1,'alphanum');

12. str1 = 'This is a test! ';
str1(4:7) = upper(str1(4:7));

13. str1 = ' 456  '; % Note: Three blanks before & after
str2 = ' abc  '; % Note: Three blanks before & after
str3 = [str1 str2];
str4 = [strtrim(str1) strtrim(str2)];
str5 = [deblank(str1) deblank(str2)];
l1 = length(str1);
l2 = length(str2);
l3 = length(str3);
l4 = length(str4);
l5 = length(str4);
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14. str1 = 'This way to the egress.';
str2 = 'This way to the egret.'
res = strncmp(str1,str2);

6.3 Multidimensional Arrays

MATLAB also supports arrays with more than two dimensions. These multidi-
mensional arrays are very useful for displaying data that intrinsically has more
than two dimensions, or for displaying multiple versions of two-dimensional data
sets. For example, measurements of pressure and velocity throughout a three-
dimensional volume are very important in such studies as aerodynamics and fluid
dynamics. These sorts of areas naturally use multidimensional arrays.

Multidimensional arrays are a natural extension of two-dimensional arrays.
Each additional dimension is represented by one additional subscript used to
address the data.

It is very easy to create a multidimensional array. They can be created either by
assigning values directly in assignment statements or by using the same functions
that are used to create one- and two-dimensional arrays. For example, suppose that
you have a two-dimensional array created by the assignment statement

» a = [ 1 2 3 4; 5 6 7 8]
a =

1 2 3 4
5 6 7 8

This is a 2 � 4 array, with each element addressed by two subscripts. The array can
be extended to be a three-dimensional 2 � 4 � 3 array with the following assign-
ment statements:

» a(:,:,2) = [ 9 10 11 12; 13 14 15 16];
» a(:,:,3) = [ 17 18 19 20; 21 22 23 24]
a(:,:,1) =

1 2 3 4
5 6 7 8

a(:,:,2) =
9 10 11 12
13 14 15 16

a(:,:,3) =
17 18 19 20
21 22 23 24

Individual elements in this multidimensional array can be addressed by the array
name followed by three subscripts, and subsets of the data can be created using
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the colon operators. For example, the value of a(2,2,2) is

» a(2,2,2)
ans =

14

and the vector a(1,1,:) is

» a(1,1,:)
ans(:,:,1) =

1
ans(:,:,2) =

9
ans(:,:,3) =

17

Multidimensional arrays can also be created using the same functions as
other arrays, for example,

» b = ones(4,4,2)
b(:,:,1) =

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

b(:,:,2) =
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

» c = randn(2,2,3)
c(:,:,1) =

-0.4326 0.1253
-1.6656 0.2877

c(:,:,2) =
-1.1465 1.1892
1.1909 -0.0376

c(:,:,3) =
0.3273 -0.1867
0.1746 0.7258

The number of dimensions in a multidimensional array can be found using the
ndims function, and the size of the array can be found using the size function.

» ndims(c)
ans =

3
» size(c)
ans =

2 2 3
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If you are writing applications that need multidimensional arrays, see the
MATLAB Users Guide for more details on the behavior of various MATLAB
functions with multidimensional arrays.

✷ Good Programming Practice:

Use multidimensional arrays to solve problems that are naturally multivariate in
nature, such as aerodynamics and fluid flows.

Also, recall from Chapter 4 that the MATLAB just-in-time compiler cannot
compile loops containing arrays with three or more dimensions. If you are work-
ing with such arrays, be sure to vectorize your code to increase its speed. Do not
rely on the JIT compiler to do the job—it won’t.

✷ Good Programming Practice:

If you are working with multidimensional arrays, be sure to vectorize your code
by hand. The MATLAB JIT compiler cannot handle loops containing multidi-
mensional arrays.

6.4 Additional Two-Dimensional Plots

In previous chapters, we have learned to create linear, log-log, semilog, and polar
plots. MATLAB supports many additional types of plots that you can use to display
your data. This section introduces some of these additional plotting options.

6.4.1 Additional Types of Two-Dimensional Plots

In addition to the two-dimensional plots that we have already seen, MATLAB
supports many other more specialized plots. In fact, the MATLAB help desk lists
more than 20 types of two-dimensional plots! Examples include stem plots, stair
plots, bar plots, pie plots, and compass plots. A stem plot is a plot in which each
data value is represented by a marker and a line connecting the marker vertically
to the x axis. A stair plot is a plot in which each data point is represented by a hor-
izontal line and successive points are connected by vertical lines, producing a
stair-step effect. A bar plot is a plot in which each point is represented by a ver-
tical bar or horizontal bar. A pie plot is a plot represented by “pie slices” of vari-
ous sizes. Finally, a compass plot is a type of polar plot in which each value is
represented by an arrow whose length is proportional to its value. These types of
plots are summarized in Table 6.4, and examples of all of the plots are shown in
Figure 6.7.
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Table 6.4 Additional Two-Dimensional Plotting Functions

Function Description

bar(x,y) This function creates a vertical bar plot, with the values in x
used to label each bar, and the values in y used to determine
the height of the bar.

barh(x,y) This function creates a horizontal bar plot, with the values in x
used to label each bar, and the values in y used to determine
the horizontal length of the bar.

compass(x,y) This function creates a polar plot, with an arrow drawn from
the origin to the location of each (x, y) point. Note that the
locations of the points to plot are specified in Cartesian coordi-
nates, not polar coordinates.

pie(x) This function creates a pie plot. This function determines the
pie(x,explode) percentage of the total pie corresponding to each value of x

and plots pie slices of that size. The optional array explode
controls whether or not individual pie slices are separated from
the remainder of the pie.

stairs(x,y) This function creates a stair plot, with each stair step centered
on an (x, y) point.

stem(x,y) This function creates a stem plot, with a marker at each (x, y)
point and a stem drawn vertically from that point to the x axis.

Stair, stem, vertical bar, horizontal bar, and compass plots are all similar to
plot, and they are used in the same manner. For example, the following code
produces the stem plot shown in Figure 6.7a:

x = [ 1 2 3 4 5 6];
y = [ 2 6 8 7 8 5];
stem(x,y);
title('\bfExample of a Stem Plot');
xlabel('\bf\itx');
ylabel('\bf\ity');
axis([0 7 0 10]);

Stair, bar, and compass plots can be created by substituting stairs, bar, barh,
or compass for stem in the preceding code. The details of all of these plots,
including any optional parameters, can be found in the MATLAB on-line help
system.

Function pie behaves differently from the other plots previously described.
To create a pie plot, a programmer passes an array x containing the data to be
plotted, and function pie determines the percentage of the total pie that each
element of x represents. For example, if the array x is [1 2 3 4], then pie
will calculate that the first element x(1) is 1/10 or 10% of the pie, the second
element x(2) is 2/10 or 20% of the pie, and so forth. The function then plots
those percentages as pie slices.
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(a)

(b)

Figure 6.7 Additional types of two-dimensional plots: (a) stem plot; (b) stair plot.
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Figure 6.7 (continued) (c) vertical bar plot; (d) horizontal bar plot.

(c)

(d)
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Figure 6.7 (continued) (e) pie plot; ( f ) compass plot.

(e)

( f )



Function pie also supports an optional parameter, explode. If present,
explode is a logical array of 1s and 0s, with an element for each element in
array x. If a value in explode is 1, then the corresponding pie slice is drawn
slightly separated from the pie. For example, the code that follows produces the
pie plot in Figure 6.7e. Note that the second slice of the pie is “exploded.”

data = [10 37 5 6 6];
explode = [0 1 0 0 0];
pie(data,explode);
title('\bfExample of a Pie Plot');
legend('One','Two','Three','Four','Five');

6.4.2 Plotting Functions

In all previous plots, we have created arrays of data, and passed those arrays to
the plotting function. MATLAB also includes two functions that will plot a function
directly, without the necessity of creating intermediate data arrays. These functions
are ezplot and fplot.

Function ezplot takes one of the following forms:

ezplot(fun);
ezplot(fun, [xmin xmax]);
ezplot(fun, [xmin xmax], figure);

In each case, fun is a character string containing the functional expression to be
evaluated. The optional parameter [xmin xmax] specifies the range of the func-
tion to plot. If it is absent, the function will be plotted between �2p and 2p. The
optional parameter figure specifies the figure number to plot the function on.

For example, the following statements plot the function 
between –4p and 4p. The output of these statements is shown in Figure 6.8.

ezplot('sin(x)/x',[-4*pi 4*pi]);
title('Plot of sin x / x');
grid on;

Function fplot is similar to but more sophisticated than ezplot. The first
two arguments are the same for both functions, but fplot has the following
advantages:

1. Function fplot is adaptive, meaning that it calculates and displays more
data points in the regions where the function being plotted is changing
most rapidly. The resulting plot is more accurate at locations where a
function’s behavior changes suddenly.

2. Function fplot supports the use of TEX commands in titles and axis
labels, while function ezplot does not.

In general, you should use fplot in preference to ezplot whenever you plot
functions.

f sxd 5 sin x/x
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Functions ezplot and fplot are examples of the “function functions”
described in Chapter 5.

✷ Good Programming Practice:

Use function fplot to plot functions directly without having to create interme-
diate data arrays.

6.4.3 Histograms

A histogram is a plot showing the distribution of values within a data set. To create
a histogram, the range of values within the data set is divided into evenly spaced
bins, and the number of data values falling into each bin is determined. The
resulting count can then be plotted as a function of bin number.

The standard MATLAB histogram function is hist. The forms of this func-
tion are shown here.

hist(y)
hist(y,nbins)
hist(y,x);
[n,xout] = hist(y,...)

The first form of the function creates and plots a histogram with 10 equally
spaced bins, and the second form creates and plots a histogram with nbins
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Figure 6.8 The function sin x/x, plotted with function ezplot.



equally spaced bins. The third form of the function allows the user to specify the bin
centers to use in an array x; the function creates a bin centered around each element
in the array. In all three of these cases, the function both creates and plots the his-
togram. The last form of the function creates a histogram and returns the bin centers
in array xout and the count in each bin in array n, without actually creating a plot.

For example, the following statements create a data set containing 10,000
Gaussian random values and generate a histogram of the data using 15 evenly
spaced bins. The resulting histogram is shown in Figure 6.9.

y = randn(10000,1);
hist(y,15);

MATLAB also includes a function rose to create and plot a histogram on
radial axes. It is especially useful for distributions of angular data. You will be
asked to use this function in an end-of-chapter exercise.

6.5 Three-Dimensional Plots

MATLAB also includes a rich variety of three-dimensional plots that can be useful
for displaying certain types of data. In general, three-dimensional plots are useful
for displaying two types of data:

1. Two variables that are functions of the same independent variable, when
you wish emphasize the importance of the independent variable.

2. A single variable that is a function of two independent variables.
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6.5.1 Three-Dimensional Line Plots

A three-dimensional line plot can be created with the plot3 function. This function
is exactly like the two-dimensional plot function, except that each point is rep-
resented by x, y, and z values instead just of x and y values. The simplest form of
this function is

plot(x,y,z);

where x, y, and z are arrays of equal size containing the locations of data points
to plot. Function plot3 supports all the same line size, line style, and color
options as plot, and you can use it immediately using the knowledge acquired
in previous chapters.

As an example of a three-dimensional line plot, consider the following functions:

(6-11)

These functions might represent the decaying oscillations of a mechanical system
in two dimensions, so x and y together represent the location of the system at any
given time. Note that x and y are both functions of the same independent variable t.

We could create a series of (x, y) points and plot them using the two-dimen-
sional function plot (see Figure 6.10a), but if we do so, the importance of time
to the behavior of the system will not be obvious in the graph. The following
statements create the two-dimensional plot of the location of the object shown in
Figure 6.10a. It is not possible from this plot to tell how rapidly the oscillations
are dying out.

t = 0:0.1:10;
x = exp(-0.2*t) .* cos(2*t);
y = exp(-0.2*t) .* sin(2*t);
plot(x,y);
title('\bfTwo-Dimensional Line Plot');
xlabel('\bfx');
ylabel('\bfy');
grid on;

Instead, we could plot the variables with plot3 to preserve the time informa-
tion as well as the two-dimensional position of the object. The following statements
will create a three-dimensional plot of Equations (6-11).

t = 0:0.1:10;
x = exp(-0.2*t) .* cos(2*t);
y = exp(-0.2*t) .* sin(2*t);
plot3(x,y,t);
title('\bfThree-Dimensional Line Plot');
xlabel('\bfx');

ystd 5 e20.2t sin 2t

xstd 5 e20.2t cos 2t
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Figure 6.10 (a) A two-dimensional line plot showing the motion in (x, y) space of a mechanical
system. This plot reveals nothing about the time behavior of the system. (b) A three-
dimensional line plot showing the motion in (x, y) space versus time for the mechanical
system. This plot clearly shows the time behavior of the system.

(a)

(b)



ylabel('\bfy');
zlabel('\bftime');
grid on;

The resulting plot is shown in Figure 6.10b. Note how this plot emphasizes time-
dependence of the two variables x and y.

6.5.2 Three-Dimensional Surface, Mesh, and Contour Plots

Surface, mesh, and contour plots are convenient ways to represent data that is a
function of two independent variables. For example, the temperature at a point is
a function of both the East-West location (x) and the North-South (y) location of
the point. Any value that is a function of two independent variables can be dis-
played on a three-dimensional surface, mesh, or contour plot. The more common
types of plots are summarized in Table 6.5, and examples of each plot are shown
in Figure 6.113.

To plot data using one of these functions, a user must create three arrays of
equal size. The three arrays must contain the x, y, and z values of every point to
be plotted. As a simple example, suppose that we wanted to plot the four points
(�1, �1, 1), (1, �1, 2), (�1, 1, 1), and (1, 1, 0). To plot these four points, we must

create the arrays , , and . Array 

x contains the x values associated with every point to plot, array y contains the
y values associated with every point to plot, and array z contains the z values
associated with every point to plot. These arrays are then passed to the plotting
function.

z 5 c1 2

1 0
dy 5 c21 21

1 1
dx 5 c21 1

21 1
d

6.5 Three-Dimensional Plots | 301

3There are many variations on these basic plot types. Consult the MATLAB Help Browser documen-
tation for a complete description of these variations.

Table 6.5 Selected Mesh, Surface, and Contour Plot Functions

Function Description

mesh(x,y,z) This function creates a mesh or wireframe plot, where x is a
two-dimensional array containing the x values of every point to 
display, y is a two-dimensional array containing the y values of
every point to display, and z is a two-dimensional array con-
taining the z values of every point to display.

surf(x,y,z) This function creates a surface plot. Arrays x, y, and z have the
same meaning as for a mesh plot.

contour(x,y,z) This function creates a contour plot. Arrays x, y, and z have the
same meaning as for a mesh plot.



(a)

(b)

Figure 6.11 (a) A mesh plot of the function . (b) A surface plot of the same
function.

zsx, yd 5 e20.5[x210.5sx2yd2]
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(c)

Figure 6.11 (continued) (c) A contour plot of the same function.

The MATLAB function meshgrid makes it easy to create the x and y
arrays required for these plots. The form of this function is

[x,y] = meshgrid( xstart:xinc:xend, ystart:yinc:yend);

where xstart:xinc:xend specifies the x values to include in the grid and
ystart:yinc:yend specifies the y values to be included in the grid.

To create a plot, we use meshgrid to create the arrays of x and y values and
then evaluate the function to plot at each of those (x,y) locations. Finally, we call
function mesh, surf, or contour to create the plot.

For example, suppose that we wish to create a mesh plot of the function

(6-12)

over the interval and . The following statements will
create the plot, which is shown in Figure 6.11a.

[x,y] = meshgrid(-4:0.2:4);
z = exp(-0.5*(x.^2+y.^2));
mesh(x,y,z);

24 # y # 424 # x # 4

zsx, yd 5 e20.5[x210.5sx2yd2]



xlabel('\bfx');
ylabel('\bfy');
zlabel('\bfz');

Surface and contour plots may be created by substituting the appropriate function
for the mesh function.

6.6 Summary

MATLAB supports complex numbers as an extension of the double data type.
They can be defined using the i or j, both of which are predefined as to be 
Using complex numbers is straightforward, except that the relational operators >,
>=, <, and <= compare only the real parts of complex numbers, not their magni-
tudes. They must be used with caution when working with complex values.

String functions are functions designed to work with strings, which are arrays
of type char. These functions allow a user to manipulate strings in a variety of
useful ways, including concatenation, comparison, replacement, case conversion,
and numeric-to-string and string-to-numeric conversions.

Multidimensional arrays are arrays with more than two dimensions. They
may be created and used in a fashion similar to one- and two-dimensional arrays.
Multidimensional arrays appear naturally in certain classes of physical problems.

MATLAB includes a rich variety of two- and three-dimensional plots. In this
chapter, we introduced stem, stair, bar, compass, mesh, surface, and contour plots.

6.6.1 Summary of Good Programming Practice

The following guidelines should be adhered to:

1. Use the char function to create two-dimensional character arrays with-
out worrying about padding each row to the same length.

2. Use function isstrprop to determine the characteristics of each character
in a string array. This function supersedes the older functions isletter
and isspace, which may be deleted in a future version of MATLAB.

3. Use multidimensional arrays to solve problems that are naturally multi-
variate in nature, such as aerodynamics and fluid flows.

4. If you are working with multidimensional arrays, be sure to vectorize your
code by hand. The MATLAB just-in-time compiler cannot handle loops
containing multidimensional arrays.

5. Use function fplot to plot functions directly without having to create
intermediate data arrays.

6.6.2 MATLAB Summary

The following summary lists all of the MATLAB commands and functions
described in this chapter, along with a brief description of each one. 

!21.
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Commands and Functions

abs Returns absolute value (magnitude) of a number.

angle Returns the angle of a complex number, in radians.

bar(x,y) Create a vertical bar plot.

barh(x,y) Create a horizontal bar plot.

base2dec Convert base B string to decimal integer.

bin2dec Convert binary string to decimal integer.

blanks Create a string of blanks.

char (1) Convert numbers to the corresponding character values. (2) Create a two-dimensional
character array from a series of strings.

compass(x,y) Create a compass plot.

conj Compute complex conjugate of a number.

contour Create a contour plot.

deblank Remove trailing whitespace from a string.

dec2base Convert decimal integer to base B string.

dec2bin Convert decimal integer to binary string.

double Convert characters to the corresponding numeric codes.

find Find indices and values of nonzero elements in a matrix.

findstr Find one string within another one.

hex2num Convert IEEE hexadecimal string to double.

hex2dec Convert hexadecimal string to decimal integer.

hist Create a histogram of a data set.

full Convert a sparse matrix into a full matrix.

imag Returns the imaginary portion of the complex number.

int2str Convert integer to string.

ischar Returns true (1) for a character array.

isletter Returns true (1) for letters of the alphabet.

isreal Returns true (1) if no element of array has an imaginary component.

isstrprop Returns true (1) a character has the specified property.

isspace Returns true (1) for whitespace.

lower Convert string to lowercase.

mat2str Convert matrix to string.

mesh Create a mesh plot.

meshgrid Create the (x, y) grid required for mesh, surface, and contour plots.

nnz Number of nonzero matrix elements.
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nonzeros Return a column vector containing the nonzero elements in a matrix.

num2str Convert number to string.

nzmax Amount of storage allocated for nonzero matrix elements.

pie(x) Create a pie plot.

plot(c) Plots the real versus the imaginary part of a complex array.

real Returns the real portion of the complex number.

rose Create a radial histogram of a data set.

sscanf Read formatted data from string.

stairs(x,y) Create a stair plot.

stem(x,y) Create a stem plot.

str2double Convert string to double value.

str2num Convert string to number.

strcat Concatenate strings.

strcmp Returns true (1) if two strings are identical.

strcmpi Returns true (1) if two strings are identical ignoring case.

strjust Justify string.

strncmp Returns true (1) if first n characters of two strings are identical.

strncmpi Returns true (1) if first n characters of two strings are identical ignoring case.

strmatch Find matches for string.

strtrim Remove leading and trailing whitespace from a string.

strrep Replace one string with another.

strtok Find token in string.

struct Pre-define a structure array.

strvcat Concatenate strings vertically.

surf Create a surface plot.

upper Convert string to uppercase.

6.7 Exercises

6.1 In a sinusoidal steady-state AC circuit, the voltage across a passive element
is given by Ohm’s Law:

(6-13)

where V is the voltage across the element, I is the current though the element,
and Z is the impedance of the element. Note that all three of these values
are complex and that these complex numbers are usually specified in the

V 5 IZ
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form of a magnitude at a specific phase angle expressed in degrees. For
example, the voltage might be .

Write a program that reads the voltage across an element and the imped-
ance of the element, and calculates the resulting current flow. The input
values should be given as magnitudes and angles expressed in degrees, and
the resulting answer should be in the same form. Use the function to_com-
plex from Exercise 6.3 to convert the numbers to rectangular for the actual
computation of the current, and the function to_polar from Exercise 6.2
to convert the answer into polar form for display.

6.2 Figure 6.13 shows a series RLC circuit driven by a sinusoidal ac voltage
source whose value is  volts. The impedance of the inductor in this
circuit is ZL � j2pfL, where j is , f is the frequency of the voltage
source in hertz, and L is the inductance in henrys. The impedance of the

capacitor in this circuit is , where C is the capacitance in  farads.

Assume that  mH, and C � 0.25 nF.R 5 100 	, L 5 0.1

ZC 5 2j
1

2pƒC

!21
120/0 8

V 5 120/308 V
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Figure 6.12 The voltage and current relationship on a passive ac circuit element.

Figure 6.13 A series RLC circuit driven by a sinusoidal ac voltage source.



The current I flowing in this circuit is given by Kirchhoff’s Voltage Law
to be

(6-14)

(a) Calculate and
plot the magnitude of this current as a function of frequency as the
frequency changes from 100 kHz to 10 MHz. Plot this information on
both a linear and a log-linear scale. Be sure to include a title and axis
labels.

(b) Calculate and plot the phase angle in degrees of this current as a
function of frequency as the frequency changes from 100 kHz to 10
MHz. Plot this information on both a linear and a log-linear scale.
Be sure to include a title and axis labels.

(c) Plot both the magnitude and phase angle of the current as a function
of frequency on two sub-plots of a single figure. Use log-linear
scales.

6.3 Write a function to_polar that accepts a complex number c and returns
two output arguments containing the magnitude mag and angle theta of
the complex number. The output angle should be in degrees.

6.4 Write a function to_complex that accepts two input arguments contain-
ing the magnitude mag and angle theta of the complex number in
degrees and returns the complex number c.

6.5 Write a function that will accept a complex number c and plot that point on
a Cartesian coordinate system with a circular marker. The plot should
include both the x and y axes, plus a vector drawn from the origin to the
location of c.

6.6 Plot the function for using the function
plot(t,v). What is displayed on the plot?

6.7 Plot the function for using the function
plot(v). What is displayed on the plot this time?

6.8 Create a polar plot of the function for .
6.9 Create a plot of the function for using

function plot3, where the three dimensions to plot are the real part of
the function, the imaginary part of the function, and time.

6.10 Euler’s Equation Euler’s equation defines e raised to an imaginary power
in terms of sinusoidal functions as follows:

eiu � cos u � j sin u (6-15)

Create a two-dimensional plot of this function as varies from 0 to 2p.
Create a three-dimensional line plot using function plot3 as varies from
0 to 2p (the three dimensions are the real part of the expression, the imag-
inary part of the expression, and ).u

u

u

0 # t # 10vstd 5 10es20.21jpdt
0 # t # 10vstd 5 10es20.21jpdt

0 # t # 10vstd 5 10es20.21jpdt

0 # t # 10vstd 5 10es20.21jpdt

I 5
120/0 8 V

R 1 j2pƒL 2 j 
1

2pƒC
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6.11 Create a mesh, surface plot, and contour plot of the function for
the interval �1 � x � 1 and �2p � y � 2p. In each case, plot the real
part of z versus x and y.

6.12 Write a program that accepts an input string from the user, and determines
how many times a user-specified character appears within the string. (Hint:
Look up the 's' option of the input function using the MATLAB Help
Browser.)

6.13 Modify the previous program so that it determines how many times a user-
specified character appears within the string without regard to the case of
the character.

6.14 Write a program that accepts a string from a user with the input function,
chops that string into a series of tokens, sorts the tokens into ascending
order, and prints them out.

6.15 Write a program that accepts a series of strings from a user with the input
function, sorts the strings into ascending order, and prints them out.

6.16 Write a program that accepts a series of strings from a user with the input
function, sorts the strings into ascending order disregarding case, and prints
them out.

6.17 MATLAB includes functions upper and lower, which shift a string to
upper case and lower case respectively. Create a new function called caps,
which capitalizes the first letter in each word, and forces all other letters to
be lower case. (Hint: Take advantage of functions upper, lower, and
strtok.)

6.18 Write a function that accepts a character string and returns a logical
array with true values corresponding to each printable character that is not
alphanumeric or whitespace (for example, $, %, #, etc.) and false values
everywhere else.

6.19 Write a function that accepts a character string and returns a logical
array with true values corresponding to each vowel and false values every-
where else. Be sure that the function works properly for both lowercase and
uppercase characters.

6.20 Plot the function for x between 0 and 2 in steps of 0.1. Create
the following plot types: (a) stem plot; (b) stair plot; (c) bar plot; (d) com-
pass plot. Be sure to include titles and axis labels on all plots.

6.21 Suppose that George, Sam, Betty, Charlie, and Suzie contributed $15, $5, $10,
$5, and $15 respectively to a colleague’s going-away present. Create a pie
chart of their contributions. What percentage of the cost was paid by Sam?

6.22 Plot the function over the range using func-
tion fplot. Be sure to label your plot properly.

0.1 # x # 10.0f sxd 5 1/!x

y 5 e2x sin x

z 5 ex1iy
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C H A P T E R 7
Cell Arrays,
Structures, and
Handle Graphics

This chapter deals with three very useful features of MATLAB: cell arrays, struc-
tures, and handle graphics.

Cell arrays are a very flexible type of array that can hold any sort of data.
Each element of a cell array can hold any type of MATLAB data, and different ele-
ments within the same array can hold different types of data. They are used
extensively in MATLAB graphical user interface (GUI) functions.

Structures are a special type of array with named subcomponents. Each
structure can have any number of subcomponents, each with its own name and
data type. Structures are the basis of MATLAB objects.

Handle graphics is the name of a set of low-level graphics functions that
control the characteristics of graphics objects generated by MATLAB. These
functions are normally hidden inside M-files, but they are very important to the
programmer, since they allow him or her to have fine control over the appear-
ance of the plots and graphs created by an executing program from within the
program.

7.1 Cell Arrays

A cell array is a special MATLAB array whose elements are cells, containers that
can hold other MATLAB arrays. For example, one cell of a cell array might con-
tain an array of real numbers, another an array of strings, and yet another a vector
of complex numbers (see Figure 7.1 on page 312).
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In programming terms, each element of a cell array is a pointer to another data
structure, and those data structures can be of different types. Figure 7.2 illustrates
this concept. Cell arrays are great ways to collect information about a problem,
since all of the information can be kept together and accessed by a single name.

Cell arrays use braces {} instead of parentheses () for selecting and display-
ing the contents of cells. This difference is due to the fact that cell arrays contain
data structures instead of data. Suppose that the cell array a is defined as shown
in Figure 7.2. Then the contents of element a(1,1) is a data structure contain-
ing a 3 � 3 array of numeric data, and a reference to a(1,1) displays the con-
tents of the cell, which is the data structure.

» a(1,1)
ans =

[3x3 double]

By contrast, a reference to a{1,1} displays the contents of the data item con-
tained in the cell.

» a{1,1}
ans =

1     3    -7
2     0     6
0     5     1
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cell 1,1 cell 1,2

cell 2,1 cell 2,2

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
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602

731
string.'a text isThis'

⎥
⎦

⎤
⎢
⎣

⎡
−−
−+

4310

543

ii

i [ ]

Figure 7.1 The individual elements of a cell array may point to real arrays, complex arrays, string,
other cell arrays, or even empty arrays.

In summary, the notation a(1,1) refers to the contents of cell a(1,1)
(which is a data structure), whereas the notation a{1,1} refers to the con-
tents of the data structure within the cell.



�Programming Pitfalls:

Be careful not to confuse () with {} when addressing cell arrays. They are very
different operations!

7.1.1 Creating Cell Arrays

Cell arrays can be created in two ways:

� By using assignment statements
� By preallocating a cell array using the cell function
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Figure 7.2 Each element of a cell array holds a pointer to another data structure, and different cells
in the same cell array can point to different types of data structures.  
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The simplest way to create a cell array is to directly assign data to individual
cells, one cell at a time. However, preallocating cell arrays is more efficient, so
you should preallocate really large cell arrays.

Allocating Cell Arrays Using Assignment Statements
You can assign values to cell arrays one cell at a time using assignment state-
ments. There are two ways to assign data to cells: content indexing and cell
indexing.

Content indexing involves placing braces “{}” around the cell subscripts,
together with cell contents in ordinary notation. For example, the following state-
ment create the 2 � 2 cell array in Figure 7.2:

a{1,1} = [1 3 –7; 2 0 6; 0 5 1];
a{1,2} = 'This is a text string.';
a{2,1} = [3+4*i –5; -10*i 3 – 4*i];
a{2,2} = [];

This type of indexing defines the contents of the data structure contained in a cell.
Cell indexing involves placing braces “{}” around the data to be stored in a

cell, together with cell subscripts in ordinary subscript notation. For example, the
following statements create the 2 � 2 cell array in Figure 7.2:

a(1,1) = {[1 3 –7; 2 0 6; 0 5 1]};
a(1,2) = {'This is a text string.'};
a(2,1) = {[3+4*i –5; -10*i 3 – 4*i]};
a(2,2) = {[]};

This type of indexing creates a data structure containing the specified data and
then assigns that data structure to a cell.

These two forms of indexing are completely equivalent, and they may be
freely mixed in any program.

�Programming Pitfalls:

Do not attempt to create a cell array with the same name as an existing numeric
array. If you do this, MATLAB will assume that you are trying to assign cell
contents to an ordinary array, and it will generate an error message. Be sure to
clear the numeric array before trying to create a cell array with the same name.

Preallocating Cell Arrays with the cell Function
The cell function allows you to preallocate empty cell arrays of the specified
size. For example, the following statement creates an empty 2 � 2 cell array:

a = cell(2,2);
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Once a cell array is created, you can use assignment statements to fill values in
the cells.

7.1.2 Using Braces {} as Cell Constructors

It is possible to define many cells at once by placing all of the cell contents
between a single set of braces. Individual cells on a row are separated by commas,
and rows are separated by semicolons. For example, the following statement cre-
ates a 2 � 3 cell array:

b = {[1 2], 17, [2;4]; 3-4*i, 'Hello', eye(3)}

7.1.3 Viewing the Contents of Cell Arrays

MATLAB displays the data structures in each element of a cell array in a con-
densed form that limits each data structure to a single line. If the entire data struc-
ture can be displayed on the single line, it is. Otherwise, a summary is displayed.
For example, cell arrays a and b would be displayed as

» a
a =

[3x3 double] [1x22 char]
[2x2 double] []

» b
b =

[1x2 double] [   17] [2x1 double]
[3.0000- 4.0000i] 'Hello' [3x3 double]

Note that MATLAB is displaying the data structures, complete with brackets or
apostrophes, not the entire contents of the data structures.

If you would like to see the full contents of a cell array, use the celldisp
function. This function displays the contents of the data structures in each cell.

» celldisp(a)
a{1,1} =

1   3   -7
2   0    6
0   5    1

a{2,1} =
3.0000 + 4.0000i  -5.0000

0 -10.0000i   3.0000 - 4.0000i
a{1,2} =
This is a text string.
a{2,2} =

[]

For a high-level graphical display of the structure of a cell array, use function
cellplot. For example, the function cellplot(b) produces the plot shown
in Figure 7.3 on page 316.
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7.1.4 Extending Cell Arrays

If a value is assigned to a cell array element that does not currently exist, the ele-
ment will be automatically created, and any additional cells necessary to preserve
the shape of the array will be automatically created. For example, suppose that
array a has been defined to be a 2 � 2 cell array as shown in Figure 7.1. If the
following statement is executed

a{3,3} = 5

the cell array will be automatically extended to 3 � 3, as shown in Figure 7.4.
Preallocating cell arrays with the cell function is much more efficient than

extending the arrays one element at a time using assignment statements. When a
new element is added to an existing array as we did previously, MATLAB must
create a new array large enough to include this new element, copy the old data
into the new array, add the new value to the array, and then delete the old array.
This is a very time-consuming process. Instead, you should always allocate the
cell array to be the largest size that you intend and then add values to it an ele-
ment at a time. If you do that, only the new element needs to be added—the rest
of the array can remain undisturbed.

The program that follows illustrates the advantages of preallocation. It cre-
ates a cell array containing 50,000 strings added one at a time, with and without
preallocation.
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Figure 7.3 The structure of cell array b is displayed as a nested series of boxes by function cellplot.



%  Script file: test_preallocate.m
%
%  Purpose:
%    This program tests the creation of cell arrays with and
%    without preallocation.
%
%  Record of revisions:
%      Date       Programmer          Description of change
%      ====       ==========          =====================
%    03/04/07    S. J. Chapman       Original code
%
% Define variables:
%   a -- Cell array
%   maxvals -- Maximum values in cell array
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Figure 7.4 The result of assigning a value to a{3,3}. Note that four other empty cells were created
to preserve the shape of the cell array. 
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% Create array without preallocation
clear all
maxvals = 50000;
tic
for ii = 1:maxvals

a{ii} = ['Element ' int2str(ii)];
end
disp( ['Elapsed time without preallocation = ' num2str(toc)] );

% Create array with preallocation
clear all
maxvals = 50000;
tic
a = cell(1,maxvals);
for ii = 1:maxvals

a{ii} = ['Element ' int2str(ii)];
end
disp( ['Elapsed time with preallocation    = ' num2str(toc)] );

When this program is executed using MATLAB 7.4 on a 1.8 GHz Pentium Core
2 Duo computer, the results are as shown. The advantages of preallocation are
obvious.

» test_preallocate
Elapsed time without preallocation = 7.6484
Elapsed time with preallocation   = 2.6934

✷ Good Programming Practice:

Always preallocate all cell arrays before assigning values to the elements of the
array. This practice greatly increases the execution speed of a program.

7.1.5 Deleting Cells in Arrays

To delete an entire cell array, use the clear command. Subsets of cells may
be deleted by assigning an empty array to them. For example, assume that a is the
3 � 3 cell array defined previously.

» a
a =

[3x3 double] [1x22 char] []
[2x2 double] [] []

[] [] [5]
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It is possible to delete the entire third row with the statement

» a(3,:) = []
a =

[3x3 double] [1x22 char] []
[2x2 double] [] []

7.1.6 Using Data in Cell Arrays

The data stored inside the data structures within a cell array may be used at any
time, with either content indexing or cell indexing. For example, suppose that a
cell array c is defined as

c = {[1 2;3 4], 'dogs'; 'cats', i}

The contents of the array stored in cell c(1,1) can be accessed as follows:

» c{1,1}
ans =

1 2
3 4

and the contents of the array in cell c(2,1) can be accessed as follows:

» c{2,1}
ans =
cats

Subsets of a cell’s contents can be obtained by concatenating the two sets of
subscripts. For example, suppose that we would like to get the element (1,2) from
the array stored in cell c(1,1) of cell array c. To do this, we would use the
expression c{1,1}(1,2), which says: select element (1,2) from the contents of
the data structure contained in cell c(1,1).

» c{1,1}(1,2)
ans =

2

7.1.7 Cell Arrays of Strings

It is often convenient to store groups of strings in a cell array instead of storing
them in rows of a standard character array, because each string in a cell array can
have a different length, while every row of a standard character array must have
an identical length. This fact means that strings in cell arrays do not have to be
padded with blanks.

Cell arrays of strings can be created in one of two ways. Either the individual
strings can be inserted into the array with brackets, or else function cellstr can
be used to convert a two-dimensional string array into a cell array of strings.
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The following example creates a cell array of strings by inserting the strings
into the cell array one at a time and displays the resulting cell array. Note that the
individual strings can be of different lengths.

» cellstring{1} = 'Stephen J. Chapman';
» cellstring{2} = 'Male';
» cellstring{3} = 'SSN 999-99-9999';
» cellstring

'Stephen J. Chapman'   'Male'   'SSN 999-99-9999'

Function cellstr creates a cell array of strings from a two-dimensional
string array. Consider the character array

» data = ['Line 1         ';'Additional Line']
data =
Line 1
Additional Line

This 2 � 15 character array can be converted into an cell array of strings with the
function cellstr as follows:

» c = cellstr(data)
c =

'Line 1'
'Additional Line'

and it can be converted back to a standard character array using function char

» newdata = char(c)
newdata =
Line 1
Additional Line

7.1.8 The Significance of Cell Arrays

Cell arrays are extremely flexible, since any amount of any type of data can be
stored in each cell. As a result, cell arrays are used in many internal MATLAB
data structures. We must understand them in order to use many features of handle
graphics and the graphical user interfaces1.

In addition, the flexibility of cell arrays makes them regular features of func-
tions with variable numbers of input arguments and output arguments. A special
input argument, varargin, is available within user-defined MATLAB func-
tions to support variable numbers of input arguments. This argument appears as
the last item in an input argument list, and it returns a cell array, so a single
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dummy input argument can support any number of actual arguments. Each actual
argument becomes one element of the cell array returned by varargin. If it is
used, varargin must be the last input argument in a function, following all of
the required input arguments.

For example, suppose that we are writing a function that may have any num-
ber of input arguments. This function could be implemented as

function test1(varargin)
disp(['There are ' int2str(nargin) ' arguments.']);
disp('The input arguments are:');
disp(varargin);

When this function is executed with varying numbers of arguments, the results are

» test1
There are 0 arguments.
The input arguments are:
» test1(6)
There are 1 arguments.
The input arguments are:

[6]
» test1(1,'test 1',[1 2;3 4])
There are 3 arguments.
The input arguments are:

[1]    'test 1'    [2x2 double]

As you can see, the arguments become a cell array within the function.
A sample function making use of variable numbers of arguments is shown

at the end of this paragraph. Function plotline accepts an arbitrary number of
1 � 2 row vectors, with each vector containing the (x, y) position of one point to
plot. The function plots a line connecting all of the (x, y) values together. Note
that this function also accepts an optional line specification string and passes that
specification on to the plot function.

function plotline(varargin)
%PLOTLINE Plot points specified by [x,y] pairs.
% Function PLOTLINE accepts an arbitrary number of
% [x,y] points and plots a line connecting them.
% In addition, it can accept a line specification
% string, and pass that string on to function plot.

% Define variables:
%  ii -- Index variable
%  jj -- Index variable
%  linespec -- String defining plot characteristics
%  msg -- Error message
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% varargin -- Cell array containing input arguments
% x -- x values to plot
% y -- y values to plot

%  Record of revisions:
%    Date      Programmer      Description of change
%    ====      ==========      =====================
% 03/18/07 S. J. Chapman  Original code

% Check for a legal number of input arguments.
% We need at least 2 points to plot a line...
msg = nargchk(2,Inf,nargin);
error(msg);

% Initialize values
jj = 0;
linespec = '';

% Get the x and y values, making sure to save the line
% specification string, if one exists.
for ii = 1:nargin

% Is this argument an [x,y] pair or the line
% specification?
if ischar(varargin{ii})

% Save line specification
linespec = varargin{ii};

else

% This is an [x,y] pair.  Recover the values.
jj = jj + 1;
x(jj) = varargin{ii}(1);
y(jj) = varargin{ii}(2);

end
end

% Plot function.
if isempty(linespec)

plot(x,y);
else

plot(x,y,linespec);
end

When this function is called with the arguments that follow, the resulting plot
is shown in Figure 7.5. Try the function with different numbers of arguments and
see for yourself how it behaves.

plotline([0 0],[1 1],[2 4],[3 9],'k--');
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There is also a special output argument, varargout, to support variable
numbers of output arguments. This argument appears as the last item in an output
argument list, and it returns a cell array, so a single dummy output argument can
support any number of actual arguments. Each actual argument becomes one ele-
ment of the cell array stored in varargout.

If it is used, varargout must be the last output argument in a function, fol-
lowing all of the required input arguments. The number of values to be stored in
varargout can be determined from function nargout, which specifies the
number of actual output arguments for any given function call.

A sample function test2 is shown at ther end of this paragraph. This func-
tion detects the number of output arguments expected by the calling program,
using the function nargout. It returns the number of random values in the first
output argument and then fills the remaining output arguments with random num-
bers taken from a Gaussian distribution. Note that the function uses varargout
to hold the random numbers so that there can be an arbitrary number of output
values.

function [nvals,varargout] = test2(mult)
% nvals is the number of random values returned
% varargout contains the random values returned
nvals = nargout – 1;
for ii = 1:nargout-1
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Figure 7.5 The plot produced by function plotline.



varargout{ii} = randn * mult;
end

When this function is executed, the results are as follows:

» test2(4)
ans =

-1
» [a b c d] = test2(4)
a =

3
b =

-1.7303
c =

-6.6623
d =

0.5013

✷ Good Programming Practice:

Use cell array arguments varargin and varargout to create functions that
support varying numbers of input and output arguments.

7.1.9 Summary of cell Functions

The common MATLAB cell functions are summarized in Table 7.1.
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Table 7.1 Common MATLAB Cell Functions

Function Description

cell Predefine a cell array structure.

celldisp Display contents of a cell array.

cellplot Plot structure of a cell array.

cellstr Convert a two-dimensional character array to a cell
array of strings.

char Convert a cell array of strings into a two-dimensional
character array.



7.2 Structure Arrays

An array is a data type in which there is a name for the whole data structure, but
individual elements within the array are only known by number. Thus the fifth
element in the array named arr would be accessed as arr(5). All of the indi-
vidual elements in an array must be of the same type.

A cell array is a data type in which there is a name for the whole data struc-
ture, but individual elements within the array are known only by number.
However, the individual elements in the cell array may be of different types.

In contrast, a structure is a data type in which each individual element has a
name. The individual elements of a structure are known as fields, and each field in
a structure may have a different type. The individual fields are addressed by com-
bining the name of the structure with the name of the field, separated by a period.

Figure 7.6 (on page 326) shows a sample structure named student. This
structure has five fields, called name, addr1, city, state, and zip. The
field called “name” would be addressed as student.name.

A structure array is an array of structures. Each structure in the array will
have identically the same fields, but the data stored in each field can differ. For
example, a class could be described by an array of the structure student. The
first student’s name would be addressed as student(1).name, the second stu-
dent’s city would be addressed as student(2).city, and so forth.

7.2.1 Creating Structure Arrays

Structure arrays can be created in two ways:

� A field at a time using assignment statements
� All at once using the struct function

Building a Structure with Assignment Statements
You can build a structure a field at a time using assignment statements. Each time
data is assigned to a field, that field is automatically created. For example, the
structure shown in Figure 7.6 can be created with the following statements:

» student.name = 'John Doe';
» student.addr1 = '123 Main Street';
» student.city = 'Anytown';
» student.state = 'LA';
» student.zip = '71211'
student =

name: 'John Doe'
addr1: '123 Main Street'
city: 'Anytown'
state: 'LA'
zip: '71211'
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A second student can be added to the structure by adding a subscript to the
structure name (before the period).

» student(2).name = 'Jane Q. Public'
student =
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Figure 7.6 A sample structure. Each element within the structure is called a field, and each field is
addressed by name.
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1x2 struct array with fields:
name
addr1
city
state
zip

student is now a 1 � 2 array. Note that when a structure array has more than
one element, only the field names are listed, not their contents. The contents of
each element can be listed by typing the element separately in the Command
Window, as shown here:

» student(1)
ans =

name: 'John Doe'
addr1: '123 Main Street'
city: 'Anytown'
state: 'LA'

zip: '71211'
» student(2)
ans =

name: 'Jane Q. Public'
addr1: []
city: []
state: []
zip: []

Note that all of the fields of a structure are created for each array element when-
ever that element is defined, even if they are not initialized. The uninitialized
fields will contain empty arrays, which can be initialized with assignment state-
ments at a later time.

The field names used in a structure can be recovered at any time using the
fieldnames function. This function returns a list of the field names in a cell array
of strings and is very useful for working with structure arrays within a program.

Creating Structures with the struct Function
The struct function allows you to preallocate a structure or an array of struc-
tures. The basic form of this function is

str_array = struct('field1',val1,'field2',val2, ...)

where the arguments are field names and their initial values. With this syntax,
function struct initializes every field to the specified value.

To preallocate an entire array with the struct function, simply assign the
output of the struct function to the last value in the array. All of the values
before that will be automatically created at the same time. For example, the state-
ments that follow create an array containing 1000 structures of type student.
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student(1000) = struct('name',[],'addr1',[], ...
'city',[],'state',[],'zip',[])

student =
1x1000 struct array with fields:

name
addr1
city
state
zip

All of the elements of the structure are preallocated, which will speed up any pro-
gram using the structure.

There is another version of the struct function that will preallocate an
array and at the same time assign initial values to all of its fields. You will be
asked to do this in an end-of-chapter exercise.

7.2.2 Adding Fields to Structures

If a new field name is defined for any element in a structure array, the field is
automatically added to all of the elements in the array. For example, suppose that
we add some exam scores to Jane Public’s record:

» student(2).exams = [90 82 88]
student =
1x2 struct array with fields:

name
addr1
city
state
zip
exams

There is now a field called exams in every record of the array, as shown subse-
quently. This field will be initialized for student(2) and will be an empty
array for all other students until appropriate assignment statements are issued.

» student(1)
ans =

name: 'John Doe'
addr1: '123 Main Street'
city: 'Anytown'
state: 'LA'
zip: '71211'

exams: []
» student(2)
ans =

name: 'Jane Q. Public'
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addr1: []
city: []
state: []
zip: []

exams: [90 82 88]

7.2.3 Removing Fields from Structures

A field may be removed from a structure array using the rmfield function. The
form of this function is

struct2 = rmfield(str_array,'field')

where str_array is a structure array, 'field' is the field to remove, and
struct2 is the name of a new structure with that field removed. For example,
we can remove the field 'zip' from structure array student with the follow-
ing statement:

» stu2 = rmfield(student,'zip')
stu2 =
1x2 struct array with fields:

name
addr1
city
state
exams

7.2.4 Using Data in Structure Arrays

Now let’s assume that structure array student has been extended to include three
students, and all data has been filled in as shown in Figure 7.7 (on page 330). How
do we use the data in this structure array?

To access the information in any field of any array element, just name the
array element followed by a period and the field name, as shown here:

» student(2).addr1
ans =
P. O. Box 17
» student(3).exams
ans =

65 84 81

To access an individual item within a field, add a subscript after the field name.
For example, the second exam of the third student is

» student(3).exams(2)
ans =

84
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The fields in a structure array can be used as arguments in any function that
supports that type of data. For example, to calculate student(2)’s exam aver-
age, we could use the function

» mean(student(2).exams)
ans =

86.6667

To extract the values from a given field across multiple array elements, sim-
ply place the structure and field name inside a set of brackets. For example, we
can get access to an array of zip codes with the expression [student.zip]:

» [student.zip]
ans =

71211       68888       10018
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Figure 7.7 The student array with three elements and all fields filled in.
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Similarly, we can get the average of all exams from all students with the function
mean([student.exams]).

» mean([student.exams])
ans =

83.2222
71211       68888       10018

7.2.5 The getfield and setfield Functions

Two MATLAB functions are available to make structure arrays easier to use in pro-
grams. Function getfield gets the current value stored in a field, and function
setfield inserts a new value into a field. The structure of function getfield is

f = getfield(array,{array_index},'field',{field_index})

where the field_index is optional, and array_index is optional for a 1-by-1
structure array. The function call corresponds to the statement

f = array(array_index).field(field_index);

but it can be used even if the programmer doesn’t know the names of the fields
in the structure array at the time the program is written.

For example, suppose that we needed to write a function to read and manipu-
late the data in an unknown structure array. This function could determine the field
names in the structure using a call to fieldnames and then could read the data
using function getfield. To read the zip code of the second student, the function
would be

» zip = getfield(student,{2},'zip')
zip =

68888

Similarly, a program could modify values in the structure using function
setfield. The structure of function setfield is

f = setfield(array,{array_index},'field',{field_index},value)

where f is the output structure array, the field_index is optional, and
array_index is optional for a 1-by-1 structure array. The function call corre-
sponds to the statement

array(array_index).field(field_index) = value;

7.2.6 Dynamic Field Names

Beginning with MATLAB 7.0, there is an alternative way to access the elements
of a structure: dynamic field names. A dynamic field name is a string enclosed
in parentheses at a location where a field name is expected. For example, the
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name of student 1 can be retrieved with either static or dynamic field names, as
shown in the following:

» student(1).name % Static field name
ans =
John Doe
» student(1).('name') % Dynamic field name
ans =
John Doe

Dynamic field names perform the same function as static field names,
but dynamic field names can be changed during program execution. This
allows a user to access different information in the same function within a
program.

For example, the following function accepts a structure array and a field.
name and calculates the average of the values in the specified field for all ele-
ments in the structure array. It returns that average (and optionally the number of
values averaged) to the calling program.

function [ave, nvals] = calc_average(structure,field).
%CALC_AVERAGE Calculate the average of values in a field.
% Function CALC_AVERAGE calculates the average value
% of the elements in a particular field of a structure
% array.  It returns the average value and (optionally)
% the number of items averaged.

% Define variables:
% arr -- Array of values to average
%   ave -- Average of arr
%   ii -- Index variable
%
%  Record of revisions:
%     Date     Programmer        Description of change
%     ====     ==========        =====================
%   03/04/07  S. J. Chapman     Original code
%
% Check for a legal number of input arguments.
msg = nargchk(2,2,nargin);
error(msg);

% Create an array of values from the field
arr = [];
for ii = 1:length(structure)

arr = [arr structure(ii).(field)];
end
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% Calculate average
ave = mean(arr);

% Return number of values averaged
if nargout == 2

nvals = length(arr);
end

A program can average the values in different fields by simply calling this
function multiple times with different structure names and different field names.
For example, we can calculate the average values in fields exams and zip as fol-
lows:

» [ave,nvals] = calc_average(student,'exams')
ave =

83.2222
nvals =

9
» ave = calc_average(student,'zip')
ave =

50039

7.2.7 Using the size Function with Structure Arrays

When the size function is used with a structure array, it returns the size of the
structure array itself. When the size function is used with a field from a partic-
ular element in a structure array, it returns the size of that field instead of the size
of the whole array. For example,

» size(student)
ans =

1     3
» size(student(1).name)
ans =

1     8

7.2.8 Nesting Structure Arrays

Each field of a structure array can be of any data type, including a cell array or a
structure array. For example, the following statements define a new structure
array as a field under array student to carry information about each class that
the student is enrolled in.

student(1).class(1).name = 'COSC 2021'
student(1).class(2).name = 'PHYS 1001'
student(1).class(1).instructor = 'Mr. Jones'
student(1).class(2).instructor = 'Mrs. Smith'
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After these statements are issued, student(1) contains the following data.
Note the technique used to access the data in the nested structures.

» student(1)
ans =

name: 'John Doe'
addr1: '123 Main Street'
city: 'Anytown'
state: 'LA'
zip: '71211'

exams: [80 95 84]
class: [1x2 struct]

» student(1).class
ans =
1x2 struct array with fields:

name
instructor

» student(1).class(1)
ans =

name: 'COSC 2021'
instructor: 'Mr. Jones'

» student(1).class(2)
ans =

name: 'PHYS 1001'
instructor: 'Mrs. Smith'

» student(1).class(2).name
ans =
PHYS 1001

7.2.9 Summary of structure Functions

The common MATLAB structure functions are summarized in Table 7.2.

334 | Chapter 7 Cell Arrays, Structures, and Handle Graphics

Table 7.2 Common MATLAB Structure Functions

fieldnames Return a list of field names in a cell
array of strings.

getfield Get current value from a field.

rmfield Remove a field from a structure array.

setfield Set new value into a field.

struct Predefine a structure array.



Quiz 7.1

This quiz provides a quick check to see if you have understood the con-
cepts introduced in Sections 7.1 through 7.2. If you have trouble with the
quiz, reread the section, ask your instructor, or discuss the material with a
fellow student. The answers to this quiz are found in the back of the book.

1. What is a cell array? How does it differ from an ordinary array?

2. What is the difference between content indexing and cell indexing?

3. What is a structure? How does it differ from ordinary arrays and cell
arrays?

4. What is the purpose of varargin? How does it work?

5. Given the definition of array a that follows, what will be produced by
each of the following sets of statements? (Note: some of these state-
ments may be illegal. If a statement is illegal, explain why.)

a{1,1} = [1 2 3; 4 5 6; 7 8 9];
a(1,2) = {'Comment line'};
a{2,1} = j;
a{2,2} = a{1,1} – a{1,1}(2,2);

(a) a(1,1)
(b) a{1,1}
(c) 2*a(1,1)
(d) 2*a{1,1}
(e) a{2,2}
(f ) a(2,3) = {[-17; 17]}
(g) a{2,2}(2,2)

6. Given the definition of structure array b that follows, what will be
produced by each of the following sets of statements? (Note: some of
these statements may be illegal. If a statement is illegal, explain why.)

b(1).a = -2*eye(3);
b(1).b = 'Element 1';
b(1).c = [1 2 3];
b(2).a = [b(1).c' [-1; -2; -3] b(1).c'];
b(2).b = 'Element 2';
b(2).c = [1 0 –1];

(a) b(1).a – b(2).a
(b) strncmp(b(1).b,b(2).b,6)
(c) mean(b(1).c)
(d) mean(b.c)
(e) b
(f ) b(1).('b')
(g) b(1)
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7.3 Handle Graphics

Handle graphics is the name of a set of low-level graphics functions that control
the characteristics of graphics objects generated by MATLAB. These functions
are normally hidden inside M-files, but they are very important to the program-
mer, since they allow him or her to have fine control of the appearance of the plots
and graphs that they generate. For example, it is possible to use handle graphics
to turn on a grid on the x-axis only, or to choose a line color such as orange, which
is not supported by the standard LineSpec option of the plot command.

This section introduces the structure of the MATLAB graphics system and
explains how to control the properties of graphical objects to create a desired
display.

7.3.1 The MATLAB Graphics System

The MATLAB graphics system is based on a hierarchical system of graphics
objects, each of which is known by a unique number called a handle. Each graph-
ics object has special data called properties associated with it, and modifying those
properties will modify the behavior of the object. For example, a line is one type
of graphics object. The properties associated with a line object include: x-data,
y-data, color, line style, line width, marker type, and so forth. Modifying any of
these properties will change the way that the line is displayed in a Figure Window.

Every component of a MATLAB graph is a graphical object. For example,
each line, axes, and text string is a separate object with its own unique identify-
ing number (handle) and characteristics. All graphical objects are arranged in a
hierarchy with parent objects and child objects, as shown in Figure 7.8. When
a child object is created, it inherits many of its properties from its parent.

The highest-level graphics object in MATLAB is the root, which can be
thought of as the entire computer screen. The handle of the root object is always
0. It is created automatically when MATLAB starts up, and it is always present
until the program is shut down. The properties associated with the root object are
the defaults that apply to all MATLAB windows.

Under the root there can be one or more Figure Windows, or just figures.
Each figure is a separate window on the computer screen that can display
graphical data, and each figure has its own properties. The properties associated
with a figure include color, color map, paper size, paper orientation, pointer
type, among other things.

Each figure can contain seven types of objects: uimenus, uicon-
textmenus, uicontrols, uitoolbars, uipanels, uibuttongroups,
and axes. Uimenus, uicontextmenus, uicontrols, uitoolbars,
uipanels, and uibuttongroups are special graphics objects used to create
graphical user interfaces—they are not discussed in this book. Axes are regions
within a figure where data is actually plotted. There can be more than one set of
axes in a single figure.

Each set of axes can contain as many lines, text strings, patches, and
so forth as necessary to create the plot of interest.
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7.3.2 Object Handles

Each graphics object has a unique name called a handle. The handle is a unique
integer or real number that is used by MATLAB to identify the object. A handle
is automatically returned by any function that creates a graphics object. For exam-
ple, the function call

» hndl = figure;

creates a new figure and returns the handle of that figure in variable hndl.
Another example is the plot function. The statement

» hndl = plot(x,y);

plots a line on the current axes (first creating a figure and axes, if one does not
exist), and returns the handle of the line in variable hndl.

The handle of the root object is always 0, and the handle of each figure is
normally a small positive integer, such as 1, 2, 3, . . . . The handles of all other
graphics objects are arbitrary floating-point numbers.

There are MATLAB functions available to get the handles of figures, axes,
and other objects. For example, the function gcf returns the handle of the cur-
rently selected figure, gca returns the handle of the currently selected axes with-
in the currently selected figure, and gco returns the handle of the currently
selected object. These functions are discussed in more detail subsequently.

By convention, handles are usually stored in variables that begin with the let-
ter h. This practice helps us to recognize handles in MATLAB programs.
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7.3.3 Examining and Changing Object Properties

Object properties are special values associated with an object that control some
aspect of how that object behaves. Each property has a property name and an
associated value. The property names are strings that are typically displayed in
mixed case with the first letter of each word capitalized, but MATLAB recognizes
a property name regardless of the case in which it is written.

When an object is created, all of its properties are automatically initialized
to default values. These default values can be overridden at creation time by includ-
ing 'PropertyName', value pairs in the object creation function2. For exam-
ple, we saw in Chapter 2 that the width of a line could be modified in the plot
command as follows:

plot(x,y,'LineWidth',2);

This function overrides the default LineWidth property with the value 2 at the
time that the line object is created.

The properties of any object can be examined at any time using the get
function, and can be modified using the set function. These functions are espe-
cially useful for programmers, because they can be directly inserted into MAT-
LAB programs to modify a figure based on a user’s input.

The most common forms of get function are

value = get(handle,'PropertyName');
value = get(handle);

where value is the value contained in the specified property of the object whose
handle is supplied. If only the handle is included in the function call, then the
function returns a structure array in which the field names are all of the proper-
ties of the object, and the field values are the property values.

The most common form of the set function is

set(handle,'PropertyName1',value1,...);

where there can be any number of 'PropertyName',value pairs in a single
function.

For example, suppose that we plotted the function from 0 to 2 with
the following statements:

x = 0:0.1:2;
y = x.^2;
hndl = plot(x,y);

The resulting plot is shown in Figure 7.9a. The handle of the plotted line is stored
in hndl, and we can use it to examine or modify the properties of the line. The

ysxd 5 x2
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Figure 7.9 (a) Plot of the function using the default linewidth. (b) Plot of the function after
modifying the LineWidth and LineStyle properties.
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function get(hndl)will return all of the properties of this line in a structure,
with each property name being an element of the structure.

» result = get(hndl)
result =

Color: [0 0 1]
EraseMode: 'normal'
LineStyle: '-'
LineWidth: 0.5000

Marker: 'none'
MarkerSize: 6

MarkerEdgeColor: 'auto'
MarkerFaceColor: 'none'

XData: [1x21 double]
YData: [1x21 double]
ZData: [1x0 double]

BeingDeleted: 'off'
ButtonDownFcn: []

Children: [0x1 double]
Clipping: 'on'
CreateFcn: []
DeleteFcn: []
BusyAction: 'queue'

HandleVisibility: 'on'
HitTest: 'on'

Interruptible: 'on'
Selected: 'off'

SelectionHighlight: 'on'
Tag: ''
Type: 'line'

UIContextMenu: []
UserData: []
Visible: 'on'
Parent: 303.0004

DisplayName: ''
XDataMode: 'manual'

XDataSource: ''
YDataSource: ''
ZDataSource: ''

Note that the current line width is 0.5 pixels and the current line style is a solid
line. We can change the line width and the line style with the commands

» set(hndl,'LineWidth',4,'LineStyle','--')

The plot after this command is issued is shown in Figure 7.9b.
For the end user, however, it is often easier to change the properties of a

MATLAB object interactively. The Property Editor is a GUI-based tool designed for
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this purpose. The Property Editor is started by first selecting the Edit Button ( )
on the Figure Toolbar and then clicking on the object that you want to modify using
the mouse. Alternately, the Property Editor can be started from the command line.

propedit(HandleList);
propedit;

For example, the following statements will create a plot containing the line
over the range 0 to 2, and open the Property Editor to allow the user to

interactively change the properties of the line.

figure(2);
x = 0:0.1:2;
y = x.^2;
hndl = plot(x,y);
propedit(hndl);

The Property Editor invoked by these statements is shown in Figure 7.10. The
Property Editor contains a series of panes that vary depending on the type of
object being modified.

y 5 x2
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Figure 7.10 The Property Editor when editing a line object. Changes in style are immediately
displayed on the figure as the object is edited. 



�

Example 7.1—Using Low-Level Graphics Commands

The function sinc(x) is defined by the equation

(7-1)

Plot this function from x � �3p to x � 3p. Use handle graphics functions to
customize the plot as follows:

1. Make the figure background pink.
2. Use y-axis grid lines only (no x-axis grid lines).
3. Plot the function as a 2-point-wide solid orange line.

SOLUTION To create this graph, we need to plot the function sinc x from x � �3p
to x � 3p using the plot function. The plot function will return a handle for the
line that we can save and use later.

After plotting the line, we need to modify the color of the figure object, the
grid status of the axes object, and the color and width of the line object. These
modifications require us to have access to the handles of the figure, axes, and
line objects. The handle of the figure object is returned by the gcf function,
the handle of the axes object is returned by the gca function, and the handle
of the line object is returned by the plot function that created it.

The low-level graphics properties that need to be modified can be found by
referring to the on-line MATLAB Help Browser documentation, under the topic
“Handle Graphics.” They are the 'Color' property of the current figure, the
'YGrid' property of the current axes, and the 'LineWidth' and 'Color'
properties of the line.

1. State the problem.
Plot the function sinc x from x � �3p to x � 3p using a figure with a
pink background, y-axis grid lines only, and a 2-point-wide solid orange line.

2. Define the inputs and outputs.
There are no inputs to this program, and the only output is the specified
figure.

3. Describe the algorithm.
This program can be broken down into three major steps:

Calculate sinc(x)
Plot sinc(x)
Modify the required graphics object properties

The first major step is to calculate sinc x from x � �3p to x � 3p. This
can be done with vectorized statements, but the vectorized statements will

sinc x 5 •
sin x

x
x 2 0

1 x 5 0
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produce a NaN at x = 0, since the division of 0/0 is undefined. We must
replace the NaN with a 1.0 before plotting the function. The detailed
pseudocode for this step is

% Calculate sinc(x)
x = -3*pi:pi/10:3*pi
y = sin(x) ./ x

% Find the zero value and fix it up. The zero is
% located in the middle of the x array.
index = fix(length(y)/2) + 1
y(index) = 1

Next, we must plot the function, saving the handle of the resulting line for
further modifications. The detailed pseudocode for this step is

hndl = plot(x,y);

Now we must use handle graphics commands to modify the figure back-
ground, y-axis grid, and line width and color. Remember that the figure
handle can be recovered with the function gcf, and the axis handle can
be recovered with the function gca. The color pink can be created with
the RGB vector [1 0.8 0.8], and the color orange can be created with
the RGB vector [1 0.5 0]. The detailed pseudocode for this step is

set(gcf,'Color',[1 0.8 0.8])
set(gca,'YGrid','on')
set(hndl,'Color',[1 0.5 0],'LineWidth',2)

4. Turn the algorithm into MATLAB statements.
The final MATLAB program is as follows:

% Script file: plotsinc.m
%
% Purpose:
% This program illustrates the use of handle graphics
% commands by creating a plot of sinc(x) from -3*pi to
% 3*pi, and modifying the characteristics of the figure,
% axes, and line using the ''set'' function.
%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 04/02/07 S. J. Chapman Original code
%
% Define variables:
% hndl -- Handle of line
% x -- Independent variable
%   y -- sinc(x)
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% Calculate sinc(x)
x = -3*pi:pi/10:3*pi;
y = sin(x) ./ x;

% Find the zero value and fix it up.  The zero is
% located in the middle of the x array.
index = fix(length(y)/2) + 1;
y(index) = 1;

% Plot the function.
hndl = plot(x,y);

% Now modify the figure to create a pink background,
% modify the axis to torn on y-axis grid lines, and
% modify the line to be a 2-point wide orange line.
set(gcf,'Color',[1 0.8 0.8]);
set(gca,'YGrid','on');
set(hndl,'Color',[1 0.5 0],'LineWidth',2);

5. Test the program.
Testing this program is very simple—we just execute it and examine the
resulting plot. The plot created is shown in Figure 7.11, and it does have
the characteristics that we wanted.

�
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7.3.4. Using set to List Possible Property Values

The set function can be used to provide lists of possible property values. If a
set function call contains a property name but not a corresponding value, set
returns a list of all of the legal choices for that property. For example, the com-
mand set(hndl,'LineStyle') will return a list of all legal line styles with
the default choice in brackets.

» set(hndl,'LineStyle')
ans =

'-'
'--'
':'
'-.'
'none'

This function shows that the legal line styles are '-', '--', ':', '-.', and
'none', with the first choice as the default.

If the property does not have a fixed set of values, MATLAB returns an
empty cell array.

» set(hndl,'LineWidth')
ans =

{}

The function set(hndl) will return all of the possible choices for all of the
properties of an object.

» xxx = set(hndl)
xxx =

Color: {}
EraseMode: {4x1 cell}
LineStyle: {5x1 cell}
LineWidth: {}

Marker: {14x1 cell}
MarkerSize: {}

MarkerEdgeColor: {2x1 cell}
MarkerFaceColor: {2x1 cell}

XData: {}
YData: {}
ZData: {}

ButtonDownFcn: {}
Children: {}
Clipping: {2x1 cell}
CreateFcn: {}
DeleteFcn: {}
BusyAction: {2x1 cell}

HandleVisibility: {3x1 cell}
HitTest: {2x1 cell}

Interruptible: {2x1 cell}
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Selected: {2x1 cell}
SelectionHighlight: {2x1 cell}

Tag: {}
UIContextMenu: {}

UserData: {}
Visible: {2x1 cell}
Parent: {}

DisplayName: {}
XDataMode: {2x1 cell}

XDataSource: {}
YDataSource: {}
ZDataSource: {}

Any of the items in this list can be expanded to see the available list of options.

» xxx.EraseMode
ans =

'normal'
'background'
'xor'
'none'

7.3.5. Finding Objects

Each new graphics object that is created has its own handle, and that handle is
returned by the creating function. If you intend to modify the properties of an
object that you create, then it is a good idea to save the handle for later use with
get and set.

✷ Good Programming Practice:

If you intend to modify the properties of an object that you create, save the han-
dle of that object for later use with get and set.

However, sometimes we might not have access to the handle. Suppose that
we lost a handle for some reason. How can we examine and modify the graphics
objects?

MATLAB provides four special functions to help find the handles of objects:

� gcf—Returns the handle of the current figure.
� gca—Returns the handle of the current axes in the current figure.
� gco—Returns the handle of the current object.
� findobj—Finds a graphics object with a specified property value.

The function gcf returns the handle of the current figure. If no figure exists,
gcf will create one and return its handle. The function gca returns the handle of
the current axes within the current figure. If no figure exists or if the current
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figure exists but contains no axes, gca will create a set of axes and return its han-
dle. The function gco has the form

h_obj = gco;
h_obj = gco(h_fig);

where h_obj is the handle of the object and h_fig is the handle of a figure.
The first form of this function returns the handle of the current object in the cur-
rent figure, and the second form of the function returns the handle of the current
object in a specified figure.

The current object is defined as the last object clicked on with the
mouse. This object can be any graphics object except the root. There will not be
a current object in a figure until a mouse click has occurred within that figure.
Before the first mouse click, function gco will return an empty array []. Unlike
gcf and gca, gco does not create an object if it does not exist.

Once the handle of an object is known, we can determine the type of the
object by examining its 'Type' property. The 'Type' property will be a char-
acter string, such as 'figure', 'line', 'text', or something similar.

h_obj = gco;
type = get(h_obj,'Type')

The easiest way to find an arbitrary MATLAB object is with the findobj
function. The basic form of this function is

hndls = findobj('PropertyName1',value1,...)

This command starts at the root object and searches the entire tree for all objects
that have the specified values for the specified properties. Note that multiple
property/value pairs may be specified, and findobj will return only the handles
of objects that match all of them.

For example, suppose that we have created Figures 1 and 3. Then the func-
tion findobj('Type','figure') will return the results

» h_fig = findobj('Type','figure')
h_fig =

3
1

This form of the findobj function is very useful, but it can be slow, since
it must search through the entire object tree to locate any matches. If you must
use an object multiple times, make only one call to findobj and save the han-
dle for reuse.

Restricting the number of objects that must be searched can increase the execu-
tion speed of this function. This can be done with the following form of the function:

hndls = findobj(Srchhndls,'PropertyName1',value1,...)

Here, only the handles listed in array Srchhndls and their children will be
searched to find the object. For example, suppose that you wanted to find all of
the dashed lines in Figure 1. The command to do this would be

hndls = findobj(1,'Type','line','LineStyle','--');
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✷ Good Programming Practice:

If possible, restrict the scope of your searches with findobj to make them
faster.

7.3.6 Selecting Objects with the Mouse

Function gco returns the handle of the current object, which is the last object
clicked on by the mouse. Each object has a selection region associated with it,
and any mouse click within that selection region is assumed to be a click on that
object. This is very important for thin objects like lines or points—the selection
region allows the user to be slightly sloppy in mouse position and still select the
line. The width of and shape of the selection region varies for different types of
objects. For instance, the selection region for a line is 5 pixels on either side of
the line, while the selection region for a surface, patch, or text object is the small-
est rectangle that can contain the object.

The selection region for an axes object is the area of the axes plus the area
of the titles and labels. However, lines or other objects inside the axes have a higher
priority, so to select the axes you must click on a point within the axes that is not
near lines or text. Clicking on a figure outside of the axes region will select the
figure itself.

What happens if a user clicks on a point that has two or more objects, such
as the intersection of two lines? The answer depends on the stacking order of the
objects. The stacking order is the order in which MATLAB selects objects. This
order is specified by the order of the handles listed in the 'Children' property
of a figure. If a click is in the selection region of two or more objects, the one with
the highest position in the 'Children' list will be selected.

MATLAB includes a function called waitforbuttonpress that is
sometimes used when selecting graphics objects. The form of this function is

k = waitforbuttonpress

When this function is executed, it halts the program until either a key is pressed
or a mouse button is clicked. The function returns 0 if it detects a mouse button
click or 1 if it detects a key press.

The function can be used to pause a program until a mouse click occurs.
After the mouse click occurs, the program can recover the handle of the selected
object using the gco function.

�

Example 7.2—Selecting Graphics Objects

The program that follows explores the properties of graphics objects and inci-
dentally shows how to select objects using waitforbuttonpress and gco.
The program allows objects to be selected repeatedly until a key press occurs.
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% Script file: select_object.m
%
% Purpose:
% This program illustrates the use of waitforbuttonpress
% and gco to select graphics objects. It creates a plot
% of sin(x) and cos(x), and then allows a user to select
% any object and examine its properties. The program
% terminates when a key press occurs.
%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 04/02/07 S. J. Chapman Original code
%
% Define variables:
% details -- Object details
% h1 -- handle of sine line
%   h2 -- handle of cosine line
%   handle -- handle of current object
%   k -- Result of waitforbuttonpress
%   type -- Object type
%   x -- Independent variable
%   y1 -- sin(x)
%   y2 -- cos(x)
%   yn -- Yes/No

% Calculate sin(x) and cos(x)
x = -3*pi:pi/10:3*pi;
y1 = sin(x);
y2 = cos(x);

% Plot the functions.
h1 = plot(x,y1);
set(h1,'LineWidth',2);
hold on;
h2 = plot(x,y2);
set(h2,'LineWidth',2,'LineStyle',':','Color','r;);
title('\bfPlot of sin \itx \rm\bf and cos \itx');
xlabel('\bf\itx');
ylabel('\bfsin \itx \rm\bf and cos \itx');
legend('sine','cosine');
hold off;

% Now set up a loop and wait for a mouse click.
k = waitforbuttonpress;
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while k == 0

% Get the handle of the object
handle = gco;

% Get the type of this object.
type = get(handle,'Type');

% Display object type
disp (['Object type = ' type '.']);

% Do we display the details?
yn = input('Do you want to display details? (y/n) ','s');

if yn == 'y'
details = get(handle);
disp(details);

end

% Check for another mouse click
k = waitforbuttonpress;

end

When this program is executed, it produces the plot shown in Figure 7.12.
Experiment by clicking on various objects on the plot and seeing the resulting
characteristics.

�
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7.4 Position and Units

Many MATLAB objects have a 'position' property, which specifies the size
and position of the object on the computer screen. This property differs slightly
for different kinds of objects, as described in the following subsections.

7.4.1 Positions of figure Objects

The 'position' property for a figure specifies the location of that figure on
the computer screen using a 4-element row vector. The values in this vector are
[left bottom width height], where left is the leftmost edge of the
figure, bottom is the bottom edge of the figure, width is the width of the fig-
ure, and height is the height of the figure. These position values are in the units
specified in the 'Units' property for the object. For example, the position and
units associated with a the current figure can be found as follows:

» get(gcf,'Position')
ans =

176   204   672   504
» get(gcf,'Units')
ans =
pixels

This information specifies that the lower-left corner of the current figure window
is 176 pixels to the right and 204 pixels above the lower-left corner of the screen,
and the figure is 672 pixels wide by 504 pixels high. This is the drawable region
of the figure, excluding borders, scrollbars, menus, and the figure title area.

The 'units' property of a figure defaults to pixels, but it can be inches,
centimeters, points, characters, or normalized coordinates. Pixels are screen pix-
els, which are the smallest rectangular shape that can be drawn on a computer
screen. Typical computer screens are at least 640 pixels wide � 480 pixels high,
and screens can have more than 1000 pixels in each direction. Since the number
of pixels varies from computer screen to computer screen, the size of an object
specified in pixels will also vary.

Normalized coordinates are coordinates in the range 0 to 1, where the lower-
left corner of the screen is at (0,0) and the upper-right corner of the screen is at
(1,1). If an object position is specified in normalized coordinates, it will appear
in the same relative position on the screen regardless of screen resolution. For
example, the following statements create a figure and place it into the upper-left
quadrant of the screen on any computer, regardless of screen size.3

h1 = figure(1)
set(h1,'units','normalized','position',[0 .5 .5 .45])
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✷ Good Programming Practice:

If you would like to place a window in a specific location, it is easier to place
the window at the desired location using normalized coordinates, and the results
will be the same regardless of the computer’s screen resolution.

7.4.2 Positions of axes Objects

The position of axes objects is also specified by a 4-element vector, but the object
position is specified relative to the lower-left corner of the figure instead of the posi-
tion of the screen. In general, the 'Position' property of a child object is
relative to the position of its parent.

By default, the positions of axes objects are specified in normalized units
within a figure, with (0,0) representing the lower-left corner of the figure, and
(1,1) representing the upper-right corner of the figure.

7.4.3 Positions of text Objects

Unlike other objects, text objects have a position property containing only two
or three elements. These elements correspond to the x, y, and z values of the text
object within an axes object. Note that these values are in the units being dis-
played on the axes themselves.

The position of the text object with respect to the specified point is controlled
by the object’s HorizontalAlignment and VerticalAlignment prop-
erties. The HorizontalAlignment can be {Left}, Center, or Right,
and the VerticalAlignment can be Top, Cap, {Middle}, Baseline, or
Bottom.

The size of text objects is determined by the font size and the number of
characters being displayed, so there are no height and width values associated
with them.

�

Example 7.3—Positioning Objects within a Figure

As we mentioned previously, axes positions are defined relative to the lower-left
corner of the frame they are contained in, while text object positions are defined
within axes in the data units being displayed on the axes.

To illustrate the positioning of graphics objects within a figure, we will write
a program that creates two overlapping sets of axes within a single figure. The
first set of axes will display sin x versus x and have a text comment attached to
the display line. The second set of axes will display cos x versus x and have a text
comment in the lower-left corner.

352 | Chapter 7 Cell Arrays, Structures, and Handle Graphics



A program to create the figure is shown subsequently. Note that we are using
the figure function to create an empty figure and then two axes functions to
create the two sets of axes within the figure. The position of the axes functions
is specified in normalized units within the figure, so the first set of axes, which
starts at (0.05,0.05), is in the lower-left corner of the figure, and the second set of
axes, which starts at (0.45,0.45), is in the upper-right corner of the figure. Each
set of axes has the appropriate function plotted on it.

The first text object is attached to the first set of axes at position (–p, 0),
which is a point on the curve. The 'HorizontalAlignment','right'
property is selected, so the attachment point (–p, 0) is on the right-hand side of
the text string. As a result, the text appears to the left of the of the attachment
point in the final figure. (This can be confusing for new programmers!)

The second text object is attached to the second set of axes at position
(–7.5, –0.9), which is near the lower left hand corner of the axes. This string uses
the default horizontal alignment, which is 'left', so the attachment point
(–7.5, –0.9) is on the left-hand side of the text string. As a result, the text appears
to the right of the attachment point in the final figure.

% Script file: position_object.m
%
% Purpose:
% This program illustrates the positioning of graphics
% graphics objects.  It creates a figure, and then places
% two overlapping sets of axes on the figure. The first
% set of axes is placed in the lower left hand corner of
% the figure, and contains a plot of sin(x). The second
% set of axes is placed in the upper right hand corner of
% the figure, and contains a plot of cos(x). Then two
% text strings are added to the axes, illustrating the
% positioning of text within axes.
%
% Record of revisions:
% Date Programmer Description of change
% ====       ========== =====================
% 04/02/07 S. J. Chapman Original code
%
% Define variables:
%   h1 -- Handle of sine line
%   h2 -- Handle of cosine line
%   ha1 -- Handle of first axes
%   ha2 -- Handle of second axes
%   x -- Independent variable
%   y1 -- sin(x)
%   y2 -- cos(x)
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% Calculate sin(x) and cos(x)
x = -2*pi:pi/10:2*pi;
y1 = sin(x);
y2 = cos(x);

% Create a new figure
figure;

% Create the first set of axes and plot sin(x).
% Note that the position of the axes is expressed
% in normalized units.
ha1 = axes('Position',[.05 .05 .5 .5]);
h1 = plot(x,y1);
set(h1,'LineWidth',2);
title('\bfPlot of sin \itx');
xlabel('\bf\itx');
ylabel('\bfsin \itx');
axis([-8 8 -1 1]);

% Create the second set of axes and plot cos(x).
% Note that the position of the axes is expressed
% in normalized units.
ha2 = axes('Position',[.45 .45 .5 .5]);
h2 = plot(x,y1);
set(h2,'LineWidth',2,'Color','r','LineStyle','--');
title('\bfPlot of cos \itx');
xlabel('\bf\itx');
ylabel('\bfsin \itx');
axis([-8 8 -1 1]);

% Create a text string attached to the line on the first
% set of axes.
axes(ha1);
text(-pi,0.0,'sin(x)\rightarrow','HorizontalAlignment','right');

% Create a text string in the lower left hand corner
% of the second set of axes.
axes(ha2);
text(-7.5,-0.9,'Test string 2');

When this program is executed, it produces the plot shown in Figure 7.13.
You should execute this program again on your computer, changing the size
and/or location of the objects being plotted and observing the results.
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7.5 Printer Positions

The 'Position' and 'Units' properties specify the location of a figure on
the computer screen. There are also five other properties that specify the location
of a figure on a sheet of paper when it is printed. These properties are summa-
rized in Table 7.3.
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Figure 7.13 The output of program position_object.

Table 7.3 Printing-Related Figure Properties

Option Description

PaperUnits Units for paper measurements:

[ {inches} | centimeters | normalized | points ]

PaperOrientation [ {portrait} | landscape ]

PaperPosition A position vector of the form [left, bottom, width, height] where all units
are as specified in PaperUnits

PaperSize A 2-element vector containing the power size—for example [8.5 11]

PaperType Sets paper type. Note that setting this property automatically updates the PaperSize
property. 

[ {usletter} | uslegal | A0 | A1 | A2 | A3 | A4 | A5 | B0 |
B1 | B2 | B3 | B4 | B5 | arch-A | arch-B | arch-C | arch-D |
arch-E | A | B | C | D | E | tabloid | <custom> ]



For example, to set a plot to print out in landscape mode, on A4 paper, in nor-
malized units, we could set the following properties:

set(hndl,'PaperType','A4')
set(hndl,'PaperOrientation','landscape')
set(hndl,'PaperUnits','normalized');

7.6 Default and Factory Properties

MATLAB assigns default properties to each object when it is created. If those
properties are not what you want, then you must use set to select the desired val-
ues. If you wanted to change a property in every object that you create, this
process could become very tedious. For those cases, MATLAB allows you to
modify the default property itself, so that all objects will inherit the correct value
of the property when they are created.

When a graphics object is created, MATLAB looks for a default value for
each property by examining the object’s parent. If the parent sets a default value,
that value is used. If not, MATLAB examines the parent’s parent to see if that
object sets a default value, and so on back to the root object. MATLAB uses the
first default value that it encounters when working back up the tree.

Default properties may be set at any point in the graphics object hierarchy
that is higher than level at which the object is created. For example, a default
figure color would be set in the root object, and then all figures created after
that time would have the new default color. On the other hand, a default axes
color could be set in either the root object or the figure object. If the default
axes color is set in the root object, it will apply to all new axes in all figures.
If the default axes color is set in the figure object, it will apply to all new axes
in the current figure only.

Default values are set using a string consisting of 'Default' followed by
the object type and the property name. Thus the default figure color would be set
with the property 'DefaultFigureColor' and the default axes color would
be set with the property 'DefaultAxesColor'. Some examples of setting
default values are shown in the following table.

set(0,'DefaultFigureColor','y') Yellow figure background—all new figures

set(0,'DefaultAxesColor','r') Red axes background—all new axes in all figures

set(gcf,'DefaultAxesColor','r') Red axes background—all new axes in current 
figure only

set(gca,'DefaultLineLineStyle',':') Set default line style to dashed, in current axes only.

If you are working with existing objects, it is always a good idea to restore
them to their existing condition after they have been used. If you change the
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default properties of an object in a function, save the original values and restore
them before exiting the function. For example, suppose that we wish to create a
series of figures in normalized units. We could save and restore the original units
as follows:

saveunits = get(0,'DefaultFigureUnits');
set(0,'DefaultFigureUnits','normalized');
...
<MATLAB statements>
...
set(0,'DefaultFigureUnits',saveunits);

If you want to customize MATLAB to use different default values at all times,
then you should set the defaults in the root object every time MATLAB starts up.
The easiest way to do this is to place the default values into the startup.m file,
which is automatically executed every time MATLAB starts. For example, sup-
pose you always use A4 paper and you always want a grid displayed on your plots.
Then you could set the following lines into startup.m:

set(0,'DefaultFigurePaperType','A4');
set(0,'DefaultFigurePaperUnits','centimeters');
set(0,'DefaultAxesXGrid','on');
set(0,'DefaultAxesYGrid','on');
set(0,'DefaultAxesZGrid','on');

There are three special value strings that are used with handle graphics:
'remove', 'factory', and 'default'. If you have set a default value for
a property, the 'remove' value will remove the default that you set. For exam-
ple, suppose that you set the default figure color to yellow:

set(0,'DefaultFigureColor','y');

The following function call will cancel this default setting and restore the previ-
ous default setting:

set(0,'DefaultFigureColor','remove');

The string 'factory' allows a user to temporarily override a default value
and use the original MATLAB default value instead. For example, the following
figure is created with the factory default color despite a default color of yellow
having been previously defined.

set(0,'DefaultFigureColor','y');
figure('Color','factory')

The string 'default' forces MATLAB to search up the object hierarchy
until it finds a default value for the desired property. It uses the first default value
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that it finds. If it fails to find a default value, then it uses the factory default value
for that property. This use is illustrated in the following:

% Set default values
set(0,'DefaultLineColor','k');   % root default = black
set(gcf,'DefaultLineColor','g'); % figure default = green

% Create a line on the current axes.  This line is green.
hndl = plot(randn(1,10));
set(hndl,'Color','default');
pause(2);

% Now clear the figure's default and set the line color to the new
% default.  The line is now black.
set(gcf,'DefaultLineColor','remove');
set(hndl,'Color','default');

7.7 Graphics Object Properties

There are hundreds of different graphic object properties, far too many to discuss
in detail here. The best place to find a complete list of graphics object properties
is in the Help Browser distributed with MATLAB.

We have mentioned a few of the most important properties for each type of
graphic object as we have needed them ('LineStyle', 'Color', etc.). A
complete set of properties is given in the MATLAB Help Browser documentation
under the descriptions of each type of object.

7.8 Summary

Cell arrays are arrays whose elements are cells, containers that can hold other
MATLAB arrays. Any sort of data may be stored in a cell, including structure
arrays and other cell arrays. They are a very flexible way to store data and are
used in many internal MATLAB graphical user interface functions.

Structure arrays are a data type in which each individual element is given a
name. The individual elements of a structure are known as fields, and each field
in a structure may have a different type. The individual fields are addressed by
combining the name of the structure with the name of the field, separated by a
period. Structure arrays are useful for grouping together all of the data related to
a particular person or thing into a single location.

Every element of a MATLAB plot is a graphics object. Each object is iden-
tified by a unique handle, and each object has many properties associated with it
which affect the way the object is displayed.
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MATLAB objects are arranged in a hierarchy based on parent objects and
child objects. When a child object is created, it inherits many of its properties
from its parent.

The highest-level graphics object in MATLAB is the root, which can be
thought of as the entire computer screen. Under the root there can be one or more
Figure Windows. Each figure is a separate window on the computer screen that
can display graphical data, and each figure has its own properties.

A figure can contain one or more sets of axes. Each set of axes can contain
as many lines, text strings, patches, and so forth as necessary to create the
plot of interest.

The handles of the current figure, current axes, and current object may be
recovered with the gcf, gca, and gco functions, respectively. The properties of
any object may be examined and modified using the get and set functions.

There are literally hundreds of properties associated with MATLAB graph-
ics functions, and the best place to find the details of these of these functions is
the MATLAB on-line documentation.

7.8.1 Summary of Good Programming Practice

The following guidelines should be adhered to:

1. Always preallocate all cell arrays before assigning values to the elements
of the array. This practice greatly increases the execution speed of a
program.

2. Use cell array arguments varargin and varargout to create func-
tions that support varying numbers of input and output arguments.

3. If you intend to modify the properties of an object that you create, save
the handle of that object for later use with get and set.

4. If possible, restrict the scope of your searches with findobj to make
them faster.

5. If you would like to place a window in a specific location, it is easier to
place the window at the desired location using normalized coordinates, and
the results will be the same regardless of the computer’s screen resolution.

7.8.2 MATLAB Summary

The following summary lists all of the MATLAB commands and functions
described in this chapter, along with a brief description of each one.

Commands and Functions

axes Creates a new axes/makes axes current.

cell Predefine a cell array structure.

celldisp Display contents of a cell array.

cellplot Plot structure of a cell array.
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Commands and Functions (Continued)

cellstr Convert a two-dimensional character array to a cell
array of strings.

fieldnames Return a list of field names in a cell array of strings.

figure Creates a new figure or makes figure current.

findobj Finds an object based on one or more property values.

gca Get handle of current axes.

gcf Get handle of current figure.

gco Get handle of current object.

get Gets object properties.

getfield Get current value from a field.

rmfield Remove a field from a structure array.

set Sets object properties.

setfield Set new value into a field.

waitforbuttonpress Pauses program, waiting for a mouse click or keyboard
input.

7.9 Exercises

7.1 Write a MATLAB function that will accept a cell array of strings and sort
them into ascending order according to the lexicographic order of the
ASCII character set. (You may use function c_strcmp from Chapter 6
for the comparisons if you wish.)

7.2 Write a MATLAB function that will accept a cell array of strings and sort
them into ascending order according to alphabetical order. (This implies
that you must treat ‘A’ and ‘a’ as the same letter.)

7.3 Create a function that accepts any number of numeric input arguments and
sums up all of individual elements in the arguments. Test your function by 

passing it the four arguments , , , 

and .
7.4 Modify the function of the previous exercise so that it can accept either

ordinary numeric arrays or cell arrays containing numeric values. Test
your function by passing it the two arguments a and b, where

, , and .b526 5 B1 22

2 1
Rb516 5 [1 5 2]a 5 B 1 4

22 3
R

d 5 [1 5 22]

c 5 C 1 0 3

25 1 2

1 2 0

Sb 5 C 4

22

2

Sa 5 10
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7.5 Create a structure array containing all of the information needed to plot a
data set. At a minimum, the structure array should have the following
fields:

� x_data x-data (one or more data sets in separate cells)
� y_data y-data (one or more data sets in separate cells)
� type linear, semilogx, and so forth
� plot_title plot title
� x_label x-axis label
� y_label y-axis label
� x_range x-axis range to plot
� y_range y-axis range to plot

You may add additional fields that would enhance your control of the final
plot.

After this structure array is created, create a MATLAB function
that accepts an array of this structure and produces one plot for each
structure in the array. The function should apply intelligent defaults if
some data fields are missing. For example, if the plot_title field
is an empty matrix, then the function should not place a title on the
graph. Think carefully about the proper defaults before starting to write
your function!

To test your function, create a structure array containing the data for
three plots of three different types and pass that structure array to your
function. The function should correctly plot all three data sets in three dif-
ferent figure windows.

7.6 Define a structure point containing two fields x and y. The x field will
contain the x-position of the point and the y field will contain the y-position
of the point. Then write a function dist3 that accepts two points and
returns the distance between the two points on the Cartesian plane. Be sure
to check the number of input arguments in your function.

7.7 Write a function that will accept a structure as an argument and return two
cell arrays containing the names of the fields of that structure as well as
the data types of each field. Be sure to check that the input argument is a
structure and will generate an error message if it is not.

7.8 Write a function that will accept a structure array of student as defined
in this chapter and calculate the final average of each one, assuming that
all exams have equal weighting. Add a new field to each array to contain
the final average for that student and return the updated structure to the
calling program. Also, calculate and return the final class average.

7.9 Write a function that will accept two arguments, the first a structure array
and the second a field name stored in a string. Check to make sure that
these input arguments are valid. If they are not valid, print out an error
message. If they are valid and the designated field is a string, concatenate
all of the strings in the specified field of each element in the array and
return the resulting string to the calling program.
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7.10 Calculating Directory Sizes Function dir returns the contents of a
specified directory. The dir command returns a structure array with four
fields, as follows:

» d = dir('chap7')
d =
36x1 struct array with fields:

name
date
bytes
isdir

The field name contains the names of each file, date contains the last
modification date for the file, bytes contains the size of the file in bytes,
and isdir is 0 for conventional files and 1 for directories. Write a func-
tion that accepts a directory name and path and returns the total size of all
files in the directory, in bytes.

7.11 Recursion A function is said to be recursive if the function calls itself.
Modify the function created in Problem 7.11 so that it calls itself when it
finds a subdirectory, and sums up the size of all files in the current direc-
tory along with all subdirectories.

7.12 What is meant by the term “handle graphics”?
7.13 Use the MATLAB Help Browser to learn about the Name and

NumberTitle properties of a figure object. Create a figure contain-
ing a plot of the function for Change the proper-
ties mentioned previously to suppress the figure number and to add the
title “Plot Window” to the figure.

7.14 Write a program that modifies the default figure color to orange and the
default line width to 3.0 points. Then create a figure plotting the ellipse
defined by the equations

(7-2)

from t = 0 to t = 2p. What color and width was the resulting line?
7.15 Use the MATLAB Help Browser to learn about the CurrentPoint

property of an axes object. Use this property to create a program that cre-
ates an axes object and plots a line connecting the locations of successive
mouse clicks within the axes. Use the function waitforbuttonpress
to wait for mouse clicks and update the plot after each click. Terminate the
plot when a keyboard press occurs.

7.16 Use the MATLAB Help Browser to learn about the CurrentCharacter
property of a figure object. Modify the program created in Problem 7.15
by testing the CurrentCharacter property when a keyboard press
occurs. If the character typed on the keyboard is a “c” or “C,” change the
color of the line being displayed. If the character typed on the keyboard is

ystd 5 6 sin t

xstd 5 10 cost

22 # x # 2.ysxd 5 ex
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an “s” or “S,” change the line style of the line being displayed. If the char-
acter typed on the keyboard is a “w” or “W,” change the width of the line
being displayed. If the character typed on the keyboard is an “x” or “X,”
terminate the plot. (Ignore all other input characters.)

7.17 Create a MATLAB program that plots the functions

(7-3)

for the range The program should then wait for mouse
clicks, and if the mouse has clicked on one of the two lines, the program
should change the line’s color randomly from a choice of red, green, blue,
yellow, cyan, magenta, or black. Use the function waitforbuttonpress
to wait for mouse clicks, and update the plot after each click. Use the func-
tion gco to determine the object clicked on, and use the Type property of
the object to determine whether the click was on a line.

7.18 The plot function plots a line and returns a handle to that line. This han-
dle can be used to get or set the line’s properties after it has been created.
Two of a line’s properties are XData and YData, which contain the 
x- and y-values currently plotted. Write a program that plots the function

(7-4)

between the limits and saves the handle of the resulting
line. The angle u is initially 0 radians. Then, re-plot the line over and over
with rad, rad, rad, and so forth up to

rad. To re-plot the line, use a for loop to calculate the new val-
ues of x and t, and update the line’s XData and YData properties with
set commands. Pause 0.5 seconds between each update, using
MATLAB’s pause command.

u 5 2p
u 5 3p/10u 5 2p/10u 5 p/10

21.0 # t # 1.0,

xstd 5 coss2pt 2 ud

22 # t # 2.

xstd 5 2 sin 
t

2p

xstd 5 cos 
t

p
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A P P E N D I X A
ASCII
Character Set

MATLAB strings use the ASCII character set, which consists of the 127 charac-
ters shown in the table that follows. The results of MATLAB string comparison
operations depend on the relative lexicographic positions of the characters being
compared. For example, the character “a” in the ASCII character set is a position
97 in the table, while the character “A” is at position 65. Therefore, the relational
operator 'a' > 'A' will return a 1 (true), since 97 ! 65.

Each MATLAB character is stored in a 16-bit field, which means that in the
future MATLAB can support the entire Unicode character set.

The table that follows shows the ASCII character set, with the first two digits
of the character number defined by the row and the third digit defined by the col-
umn. Thus, the letter 'R' is on row 8 and column 2, so it is character 82 in the
ASCII character set.
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0 1 2 3 4 5 6 7 8 9

0 nul soh stx etx eot enq ack bel bs ht
1 nl vt ff cr so si dle dc1 dc2 dc3
2 dc4 nak syn etb can em sub esc fs gs
3 rs us sp ! " # $ % & '
4 ( ) * + , - . / 0 1
5 2 3 4 5 6 7 8 9 : ;
6 < = > ? @ A B C D E
7 F G H I J K L M N O
8 P Q R S T U V W X Y
9 Z [ \ ] ^ _ ` a b c

10 d e f g h I j k l m
11 n o p q r s t u v w
12 x y z { | } ~ del
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A P P E N D I X B
MATLAB
Input/Output
Functions

In Chapter 2, we learned how to load and save MATLAB data using the load
and save commands, and how to write out formatted data using the fprintf
function.This appendix includes additional details about MATLAB’s input/output
capabilities.

B.1 The textread Function

The textread function reads ASCII files that are formatted into columns of
data, where each column can be of a different type, and stores the contents of each
column in a separate output array. This function is very useful for importing tables
of data printed out by other applications.

The form of the textread function is

[a,b,c,...] = textread(filename,format,n)

where filename is the name of the file to open, format is a string containing
a description of the type of data in each column, and n is the number of lines to
read. (If n is missing, the function reads to the end of the file.) The format string
contains the same types of format descriptors as function fprintf. Note that
the number of output arguments must match the number of columns that you are
reading.

For example, suppose that file test_input.dat contains the following
data:

James   Jones  O+   3.51   22   Yes
Sally   Smith  A+   3.28   23  No
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This data could be read into a series of arrays with the following function:

[first,last,blood,gpa,age,answer] = ...
textread('test_input.dat','%s %s %s %f %d %s')

When this command is executed, the results are

» [first,last,blood,gpa,age,answer] = ...
textread('test_input.dat','%s %s %s %f %d %s')

first =
'James'
'Sally'

last =
'Jones'
'Smith'

blood =
'O+'
'A+'

gpa =
3.5100
3.2800

age =
42
28

answer =
'Yes'
'No'

This function can also skip selected columns by adding an asterisk to the
corresponding format descriptor (e.g., %*s). The following statement reads only
the first name, last name, and gpa from the file:

» [first,last,gpa] = ...
textread('test_input.dat','%s %s %*s %f %*d %*s')

first =
'James'
'Sally'

last =
'Jones'
'Smith'

gpa =
3.5100
3.2800

Function textread is much more useful and flexible than the load com-
mand. The load command assumes that all of the data in the input file is of a
single type—it cannot support different types of data in different columns. In

368 | Appendix B MATLAB Input/Output Functions



B.2 MATLAB File Processing | 369

addition, the load command stores all of the data into a single array. In contrast,
the textread function allows each column to go into a separate variable, which
is much more convenient when working with columns of mixed data.

Function textread has a number of additional options that increase its flex-
ibility. Consult the MATLAB on-line documentation for details of these options.

B.2 MATLAB File Processing

To use files within a MATLAB program, we need some way to select the desired
file and to read from or write to it. MATLAB has a series of C-like functions to
read and write files, whether they are on disk, magnetic tape, or some other
device attached to the computer. These functions open, read, write, and close files
using a file id (sometimes known as fid). The file id is a number assigned to a
file when it is opened, and used for all reading, writing, and control operations on
that file. The file id is a positive integer. Two file id’s are always open—file id 1
is the standard output device (stdout) and file id 2 is the standard error
(stderr) device for the computer on which MATLAB is executing. Additional
file id’s are assigned as files are opened, and released as files are closed.

Several MATLAB functions can be used to control disk file input and out-
put. The file I/O functions are summarized in Table B.1. The file opening, clos-
ing, reading, and writing functions are described in the following text. For details
of the positioning and status functions, see the MATLAB documentation.

Table B.1 MATLAB Input/Output Functions

Category Function Description

File Opening and Closing fopen Open file.

fclose Close file.

Binary I/O fread Read binary data from file.

fwrite Write binary data to file.

Formatted I/O fscanf Read formatted data from file.

fprintf Write formatted data to file.

fgetl Read line from file, discard newline character.

fgets Read line from file, keep newline character.

File Positioning, Status, and Miscellaneous delete Delete file.

exist Check for the existence of a file.

ferror Inquire file I/O error status.

feof Test for end-of-file.

fseek Set file position.

ftell Check file position.

frewind Rewind file.

Temporary Files tempdir Get temporary directory name.

tempname Get temporary file name.



File id’s are assigned to disk files or devices using the fopen statement and
are detached from them using the fclose statement. Once a file is attached to
a file id using the fopen statement, we can read and write to that file using
MATLAB file input and output statements. When we are through with the file,
the fclose statement closes the file and makes the file id invalid. The
frewind and fseek statements may be used to change the current reading or
writing position in a file while it is open.

Data can be written to and read from files in two possible ways: as binary
data or as formatted character data. Binary data consists of the actual bit patterns
that are used to store the data in computer memory. Reading and writing binary
data is very efficient, but a user cannot read the data stored in the file. Data in
formatted files is translated into characters that can be read directly by a user.
However, formatted I/O operations are slower and less efficient than binary I/O
operations. We will discuss both types of I/O operations later in this appendix.

B.3 File Opening and Closing

The file opening and closing functions, fopen and fclose, are described in the
following subsections.

B.3.1 The fopen Function

The fopen function opens a file and returns a file id number for use with the
file. The basic forms of this statement are

fid = fopen(filename,permission)
[fid, message] = fopen(filename,permission)
[fid, message] = fopen(filename,permission,format)

where filename is a string specifying the name of the file to open, permis-
sion is a character string specifying the mode in which the file is opened, and
format is an optional string specifying the numeric format of the data in the
file. If the open is successful, fid will contain a positive integer after this state-
ment is executed, and message will be an empty string. If the open fails, fid
will contain a –1 after this statement is executed, and message will be a string
explaining the error. If a file is opened for reading and it is not in the current
directory, MATLAB will search for it along the MATLAB search path.

The possible permission strings are shown in Table B.2.
On some platforms such as PCs, it is important to distinguish between text

files and binary files. If a file is to be opened in text mode, then a t should be
added to the permissions string (e.g., 'rt' or 'rt+'). If a file is to be opened
in binary mode, a b may be added to the permissions string (e.g., 'rb'), but this
is not actually required, since files are opened in binary mode by default. This dis-
tinction between text and binary files does not exist on Unix or Linux computers,
so the t or b is never needed on those systems.
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The format string in the fopen function specifies the numeric format of
the data stored in the file. This string is needed only when transferring files
between computers with incompatible numeric data formats, so it is rarely used.
A few of the possible numeric formats are shown in Table B.3; see the MATLAB
Language Reference Manual for a complete list of possible numeric formats.

There are also two forms of this function that provide information rather than
open files. The function

fids = fopen('all')

returns a row vector containing a list of all file id’s for currently open files (except
for stdout and stderr). The number of elements in this vector is equal to the
number of open files. The function

[filename, permission, format] = fopen(fid)

returns the file name, permission string, and numeric format for an open file
specified by file id.

Some examples of correct fopen functions are shown in the following text.
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Table B.3 fopen Format Strings

File Permission Meaning

'native' or 'n' Numeric format for the machine MATLAB is executing on (default)

'ieee-le' or 'l' IEEE floating point with little-endian byte ordering

'ieee-be' or 'b' IEEE floating point with big-endian byte ordering

'ieee-le.l64' or 'a' IEEE floating point with little-endian byte ordering and 64-bit long data type

'ieee-le.b64' or 's' IEEE floating point with big-endian byte ordering and 64-bit long data type

Table B.2 fopen File Permissions

File Permission Meaning

'r' Open an existing file for reading only (default).

'r+' Open an existing file for reading and writing.

'w' Delete the contents of an existing file (or create a new file) and open it for
writing only.

'w+' Delete the contents of an existing file (or create a new file) and open it for
reading and writing.

'a' Open an existing file (or create a new file) and open it for writing only,
appending to the end of the file.

'a+' Open an existing file (or create a new file) and open it for reading and writing,
appending to the end of the file.

'W' Write without automatic flushing (special command for tape drives).

'A' Append without automatic flushing (special command for tape drives).



Case 1: Opening a Binary File for Input
The following function opens a file named example.dat for binary input only:

fid = fopen('example.dat','r')

The permission string is 'r', indicating that the file is to be opened for reading
only. The string could have been 'rb', but this is not required, because binary
access is the default case.

Case 2: Opening a File for Text Output
The following functions open a file named outdat for text output only:

fid = fopen('outdat','wt')

or

fid = fopen('outdat','at')

The 'wt' permissions string specifies that the file is a new text file; if it already
exists, then the old file will be deleted and a new empty file will be opened for
writing. This is the proper form of the fopen function for an output file if we
want replace preexisting data.

The 'at' permissions string specifies that we want to append to an existing
text file. If it already exists, then it will be opened and new data will be appended
to the currently existing information. This is the proper form of the fopen func-
tion for an output file if we don’t want to replace preexisting data.

Case 3: Opening a Binary File for Read/Write Access
The following function opens a file named junk for binary input and output:

fid = fopen('junk','r+')

The function that follows also opens the file for binary input and output.

fid = fopen('junk','w+')

The difference between the first and the second statements is that the first state-
ment required the file to exist before it is opened, while the second statement will
delete any preexisting file.

B.3.2 The fclose Function

The fclose function closes a file. Its form is

status = fclose(fid)
status = fclose('all')

where fid is a file id and status is the result of the operation. If the operation
is successful, status will be 0, and if it is unsuccessful, status will be –1.
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The form status = fclose('all') closes all open files except for
stdout (fid = 1) and stderr (fid = 2). It returns a status of 0 if all files
close successfully, and –1 otherwise.

B.4 Binary I/O Functions

The binary I/O functions, fwrite and fread, are described in the following
subsections.

B.4.1 The fwrite Function

The fwrite function writes binary data in a user-specified format to a file. Its
form is

count = fwrite(fid,array,precision)
count = fwrite(fid,array,precision,skip)

where fid is the file id of a file opened with the fopen function, array is the
array of values to write out, and count is the number of values written to the file.

MATLAB writes out data in column order, which means that the entire first col-
umn is written out, followed by the entire second column, and so forth. For example,

if array = , then the data will be written out in the order 1, 3, 5, 2, 4, 6.

The optional precision string specifies the format in which the data will
be output. MATLAB supports both platform-independent precision strings,
which are the same for all computers that MATLAB runs on, and platform-
dependent precision strings, which vary among different types of computers. You
should use only the platform-independent strings, and those are the only forms
presented in this book.

For convenience, MATLAB accepts some C and Fortran data type equiva-
lents for the MATLAB precision strings. If you are a C or Fortran programmer,
you may find it more convenient to use the names of the data types in the lan-
guage that you are most familiar with.

The possible platform-independent precisions are presented in Table B.4. All
of these precisions work in units of bytes, except for 'bitN' or 'ubitN',
which work in units of bits.

The optional argument skip specifies the number bytes to skip in the out-
put file before each write. This option is useful for placing values at certain points
in fixed-length records. Note that if precision is a bit format like 'bitN' or
'ubitN', skip is specified in bits instead of bytes.

£
1 2

3 4

5 6

§
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B.4.2 The fread Function

The fread function reads binary data in a user-specified format from a file and
returns the data in a (possibly different) user-specified format. Its form is

[array,count] = fread(fid,size,precision)
[array,count] = fread(fid,size,precision,skip)

where fid is the file id of a file opened with the fopen function, size is the
number of values to read, array is the array to contain the data, and count is
the number of values read from the file.

The optional argument size specifies the amount of data to be read from
the file. There are three versions of this argument:

� n—Read exactly n values. After this statement, array will be a column
vector containing n values read from the file.

� Inf—Read until the end of the file. After this statement, array will be
a column vector containing all of the data until the end of the file.

� [n m]—Read exactly n � m values, and format the data as an n � m
array.

If fread reaches the end of the file and the input stream does not contain
enough bits to write out a complete array element of the specified precision,
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Table B.4 Selected MATLAB Precision Strings

MATLAB
Precision C/Fortran
String Equivalent Meaning

'char' 'char*1' 8-bit characters

'schar' 'signed char' 8-bit signed character

'uchar' 'unsigned char' 8-bit unsigned character

'int8' 'integer*1' 8-bit integer

'int16' 'integer*2' 16-bit integer

'int32' 'integer*4' 32-bit integer

'int64' 'integer*8' 64-bit integer

'uint8' 'integer*1' 8-bit unsigned integer

'uint16' 'integer*2' 16-bit unsigned integer

'uint32' 'integer*4' 32-bit unsigned integer

'uint64' 'integer*8' 64-bit unsigned integer

'float32' 'real*4' 32-bit floating point

'float64' 'real*8' 64-bit floating point

'bitN' N-bit signed integer, 1 � N � 64

'ubitN' N-bit unsigned integer, 1 � N � 64



fread pads the last byte or element with zero bits until the full value is obtained.
If an error occurs, reading is done up to the last full value.

The precision argument specifies both the format of the data on the disk
and the format of the data array to be returned to the calling program. The general
form of the precision string is

'disk_precision => array_precision'

where disk_precision and array_precision are both one of the preci-
sion strings found in Table B.4. The array_precision value can be defaulted.
If it is missing, then the data is returned in a double array. There is also a short-
cut form of this expression if the disk precision and the array precision are the
same: '*disk_precision'.

A few examples of precision strings are shown as follows:

'single' Read data in single precision format from disk and
return it in a double array.

'single=>single' Read data in single precision format from disk and
return it in a single array.

'*single' Read data in single precision format from disk and
return it in a single array (a shorthand version of
the previous string).

'double=>real*4' Read data in double precision format from disk and
return it in a single array.

�

Example B. 1—Writing and Reading Binary Data

The example script file that follows creates an array containing 10,000 random val-
ues, opens a user-specified file for writing only, writes the array to disk in 64-bit
floating-point format, and closes the file. It then opens the file for reading and reads
the data back into a 100 � 100 array. It illustrates the use of binary I/O operations.

% Script file: binary_io.m
%
% Purpose:
% To illustrate the use of binary i/o functions.
%
% Record of revisions:
%   Date Programmer Description of change
%   ==== ========== =====================
% 01/21/07 S. J. Chapman Original code
%
% Define variables:
%   count    -- Number of values read / written
%   fid      -- File id
%   filename -- File name
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%   in_array -- Input array
%   msg     -- Open error message
%   out_array -- Output array
%   status   -- Operation status

% Prompt for file name
filename = input('Enter file name:  ','s');

% Generate the data array
out_array = randn(1,10000);

% Open the output file for writing.
[fid,msg] = fopen(filename,'w');

% Was the open successful?
if fid > 0

% Write the output data.
count = fwrite(fid,out_array,'float64');

% Tell user
disp([int2str(count) ' values written...']);

% Close the file
status = fclose(fid);

else

% Output file open failed.  Display message.
disp(msg);

end

% Now try to recover the data.  Open the
% file for reading.
[fid,msg] = fopen(filename,'r');

% Was the open successful?
if fid > 0

% Write the output data.
[in_array, count] = fread(fid,[100 100],'float64');

% Tell user
disp([int2str(count) ' values read...']);

% Close the file
status = fclose(fid);

else

% Input file open failed.  Display message.
disp(msg);

end
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When this program is executed, the result are

» binary_io
Enter file name: testfile
10000 values written...
10000 values read...

An 80,000-byte file named testfile was created in the current directory. This
file is 80,000 bytes long because it contains 10,000 64-bit values, and each value
occupies 8 bytes. 

�

B.5 Formatted I/O Functions

The formatted I/O functions are described in the following subsections.

B.5.1 The fprintf Function

The fprintf function writes formatted data in a user-specified format to a file.
Its form is

count = fprintf(fid,format,val1,val2,...)
fprint(format,val1,val2,...)

where fid is the file id of a file to which the data will be written and format
is the format string controlling the appearance of the data. If fid is missing, the
data is written to the standard output device (the Command Window). This is
the form of fprintf that we have been using since Chapter 2.

The format string specifies the alignment, significant digits, field width, and
other aspects of output format. It can contain ordinary alphanumeric characters
along with special sequences of characters that specify the exact format in which
the output data will be displayed. The structure of a typical format is shown in
Figure B.1. A single % character always marks the beginning of a format; if an
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Figure B.1 The structure of a typical format specifier.
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Table B.5 Format Conversion Specifiers for fprintf

Specifier Description

%c Single character

%d Decimal notation (signed)

%e Exponential notation (using a lowercase e as in 3.1416e+00)

%E Exponential notation (using an uppercase E as in 3.1416E+00)

%f Fixed-point notation

%g The more compact of %e or %f. Insignificant zeros do not print.

%G Same as %g, but using an uppercase E

%o Octal notation (unsigned)

%s String of characters

%u Decimal notation (unsigned)

%x Hexadecimal notation (using lowercase letters a–f)

%X Hexadecimal notation (using uppercase letters A–F)

Table B.6 Format Flags

Flag Description

Minus sign (-) Left-justifies the converted argument in its field (e.g, %-5.2d). If
this flag is not present, the argument is right-justified.

+ Always print a + or - sign(e.g, %+5.2d).

0 Pad argument with leading zeros instead of blanks (e.g, %05.2d).

ordinary % sign is to be printed out, then it must appear in the format string as
%%. After the % character, the format can have a flag, a field width and precision
specifier, and a conversion specifier. The % character and the conversion specifier
are always required in any format, whereas the field and field width and precision
specifier are optional.

The possible conversion specifiers are listed in Table B.5, and the possible
flags are listed in Table B.6. If a field width and precision are specified in a for-
mat, then the number before the decimal point is the field width, which is the
number of characters used to display the number. The number after the decimal
point is the precision, which is the minimum number of significant digits to dis-
play after the decimal point.

In addition to ordinary characters and formats, certain special escape characters
can be used in a format string. These special characters are listed in Table B.7.

B.5.2 Understanding Format Conversion Specifiers

The best way to understand the wide variety of format conversion specifiers is by
example, so we will now present several examples along with their results.



Case 1: Displaying Decimal Data
Decimal (integer) data is displayed with the %d format conversion specifier. The
d may be preceded by a flag and a field width and precision specifier, if desired.
If used, the precision specifier sets a minimum number of digits to display. If
there are not enough digits, leading zeros will be added to the number.
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Table B.7 Escape Characters in Format Strings

Escape Sequences Description

\n New line

\t Horizontal tab

\b Backspace

\r Carriage return

\f Formfeed

\\ Print an ordinary backslash (\) symbol

\'' or '' Print an apostrophe or single quote

%% Print an ordinary percent (%) symbol

Function Result Comment

fprintf('%d\n',123) ----|----| Display the number using as many
123 characters as required. For the number 123,

three characters are required.

fprintf('%6d\n',123) ----|----| Display the number in a 6-character-wide
123 field. By default, the number is right-

justified in the field.

fprintf('%6.4d\n',123) ----|----| Display the number in a 6-character-wide
0123 field using a minimum of 4 characters.

By default, the number is right-justified
in the field.

fprintf('%-6.4d\n',123) ----|----| Display the number in a 6-character-wide
0123 field using a minimum of 4 characters.

The number is left-justified in the field.

fprintf('%+6.4d\n',123) ----|----| Display the number in a 6-character-wide
+0123 field using a minimum of 4 characters plus

a sign character. By default, the number is
right-justified in the field.

If a nondecimal number is displayed with the %d conversion specifier, the
specifier will be ignored and the number will be displayed in exponential format.
For example,

fprintf('%6d\n',123.4)

produces the result 1.234000e+002.



Case 2: Displaying Floating-Point Data
Floating-point data can be displayed with the %e, %f, or %g format conversion
specifiers. They may be preceded by a flag and a field width and precision spec-
ifier, if desired. If the specified field with is too small to display the number, it is
ignored. Otherwise, the specified field width is used.
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Function Result Comment

fprintf('%f\n',123.4) ----|----| Display the number using as many 
123.400000 characters as required. The default case

for %f is to display 6 digits after the
decimal place.

fprintf('%8.2f\n',123.4) ----|----| Display the number in an 8-character-wide
123.40 field, with two places after the decimal

point. The number is right-justified in the
field.

fprintf('%4.2f\n',123.4) ----|----| Display the number in a 6-character-wide
123.40 field. The width specification was ignored

because it was too small to display the
number.

fprintf('%10.2e\n',123.4) ----|----| Display the number in exponential format
1.23e+002 in a 10-character-wide field using 

2 decimal places. By default, the number
is right-justified in the field.

fprintf('%10.2E\n',123.4) ----|----| The same, but with a capital E for the
1.23E+002 exponent.

Function Result Comment

fprintf('%c\n','s') ----|----| Displays a single character.
s

fprintf('%s\n','string') ----|----| Display the character string.
string

fprintf('%8s\n','string') ----|----| Display the character string in an
string 8-character-wide field. By default, the

string is right-justified in the field.

fprintf('%-8s\n','string') ----|----| Display the character string in an
string 8-character-wide field. The string is left-

justified in the field.

Case 3: Displaying Character Data
Character data may be displayed with the %c or %s format conversion specifiers.
They may be preceded by a field-width specifier, if desired. If the specified field
with is too small to display the number, it is ignored. Otherwise, the specified
field width is used.



B.5.3 The fscanf Function

The fscanf function reads formatted data in a user-specified format from a file.
Its form is

array = fscanf(fid,format)
[array, count] = fscanf(fid,format,size)

where fid is the file id of a file from which the data will be read, format is the
format string controlling how the data is read, and array is the array that
receives the data. The output argument count returns the number of values read
from the file.

The optional argument size specifies the amount of data to be read from
the file. There are three versions of this argument:

� n—Read exactly n values. After this statement, array will be a column
vector containing n values read from the file.

� Inf—Read until the end of the file. After this statement, array will be
a column vector containing all of the data until the end of the file.

� [n m]—Read exactly n � m values and format the data as an n � m
array.

The format string specifies the format of the data to be read. It can contain
ordinary characters along with format conversion specifiers. The fscanf func-
tion compares the data in the file with the format conversion specifiers in the
format string. As long as the two match, fscanf converts the value and stores it
in the output array. This process continues until the end of the file or until the
amount of data in size has been read, whichever comes first.

If the data in the file does not match the format conversion specifiers, the
operation of fscanf stops immediately.

The format conversion specifiers for fscanf are basically the same as those
for fprintf. The most common specifiers are shown in Table B.8.
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Table B.8 Format Conversion Specifiers for fscanf

Specifier Description

%c Read a single character. This specifier reads any character
including blanks, new lines, etc.

%Nc Read N characters.

%d Read a decimal number (ignores blanks).

%e %f %g Read a floating-point number (ignores blanks).

%i Read a signed integer (ignores blanks).

%s Read a string of characters. The string is terminated by blanks or
other special characters such as new lines.



To illustrate the use of fscanf, we will attempt to read a file called x.dat
containing the following values on two lines:

10.00   20.00
30.00   40.00

1. If the file is read with the statement

[z, count] = fscanf(fid,'%f');

variable z will be the column vector  and count will be 4.

2. If the file is read with the statement

[z, count] = fscanf(fid,'%f',[2 2]);

variable z will be the array  and count will be 4.

3. Next, let’s try to read this file as decimal values. If the file is read with the
statement

[z, count] = fscanf(fid,'%d',Inf);

variable z will be the single value 10 and count will be 1. This happens
because the decimal point in the 10.00 does not match the format conver-
sion specifier, and fscanf stops at the first mismatch.

4. If the file is read with the statement

[z, count] = fscanf(fid,'%d.%d',[1 Inf]);

variable z will be the row vector 
and count will be 8. This happens because the decimal point is now
matched in the format conversion specifier and the numbers on either side
of the decimal point are interpreted as separate integers!

5. Now let’s try to read the file as individual characters. If the file is read
with the statement

[z, count] = fscanf(fid,'%c');

variable z will be a row vector containing every character in the file,
including all spaces and newline characters! Variable count will be
equal to the number of characters in the file.

6. Finally, let’s try to read the file as a character string. If the file is read with
the statement

[z, count] = fscanf(fid,'%s');

[10 0 20 0 30 0 40 0]

c10 30

20 40
d

≥
10

20

30

40

¥
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variable z will be a row vector containing the 20 characters
10.0020.0030.0040.00, and count will be 4. This happens
because the string specifier ignores white space, and the function found
four separate strings in the file.

B.5.4 The fgetl Function

The fgetl function reads the next line excluding the end-of-line characters from
a file as a character string. It form is

line = fgetl(fid)

where fid is the file id of a file from which the data will be read and line is
the character array that receives the data. If fgetl encounters the end of a file,
the value of line is set to –1.

B.5.5 The fgets Function

The fgets function reads the next line including the end-of-line characters from
a file as a character string. It form is

line = fgets(fid)

where fid is the file id of a file from which the data will be read and line is
the character array that receives the data. If fgets encounters the end of a file,
the value of line is set to –1.

B.6 The textscan Function

The textscan function reads ASCII files that are formatted into columns of
data, where each column can be of a different type, and stores the contents into
the columns of a cell array. This function is very useful for importing tables of
data printed out by other applications. It is new in MATLAB 7.0. It is basically
similar to textread, except that it is faster and more flexible.

The form of the textscan function is

a = textscan(fid, 'format')
a = textscan(fid, 'format', N)
a = textscan(fid, 'format', param, value, ...)
a = textscan(fid, 'format', N, param, value, ...)

where fid is the file id of a file that has already been opened with fopen,
format is a string containing a description of the type of data in each column,
and n is the number of times to use the format specifier. (If n is –1 or is missing,
the function reads to the end of the file.) The format string contains the same
types of format descriptors as function fprintf. Note that there is only one out-
put argument, with all of the values returned in a cell array. The cell array will
contain a number of elements equal to the number of format descriptors to read.
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For example, suppose that file test_input1.dat contains the following
data:

James   Jones   O+   3.51   22    Yes
Sally   Smith   A+   3.28   23    No
Hans    Carter  B-   2.84   19    Yes
Sam     Spade   A+   3.12   21    Yes

This data could be read into a cell array with the following function:

fid = fopen('test_input1.dat','rt');
a = textscan(fid,'%s %s %s %f %d %s',-1);
fclose(fid);

When this command is executed, the results are

» fid = fopen('test_input1.dat','rt');
» a = textscan(fid,'%s %s %s %f %d %s',-1)
a =
{4x1 cell} {4x1 cell} {4x1 cell} [4x1 double]

[4x1 int32] {4x1 cell}
» a{1}
ans =

'James'
'Sally'
'Hans'
'Sam'

» a{2}
ans =

'Jones'
'Smith'
'Carter'
'Spade'

» a{3}
ans =

'O+'
'A+'
'B-'
'A+'

» a{4}
ans =

3.5100
3.2800
2.8400
3.1200

» fclose(fid);
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This function can also skip selected columns by adding an asterisk to the cor-
responding format descriptor (e.g., %*s). For example, the following statements
read only the first name, last name, and gpa from the file:

fid = fopen('test_input1.dat','rt');
a = textscan(fid,'%s %s %*s %f %*d %*s',-1);
fclose(fid);

Function textscan is similar to function textread, but it is more flexi-
ble and faster. The advantages of textscan include:

1. The textscan function offers better performance than textread,
making it a better choice when reading large files.

2. With textscan, you can start reading at any point in the file. When the
file is opened with fopen, you can move to any position in the file with
fseek and begin the textscan at that point. The textread function
requires that you start reading from the beginning of the file.

3. Subsequent textscan operations start reading the file at a point where
the last textscan left off. The textread function always begins at the
start of the file, regardless of any prior textread operations.

4. Function textscan returns a single cell array regardless of how many
fields you read. With textscan, you don’t need to match the number of
output arguments with the number of fields being read, as you would with
textread.

5. Function textscan offers more choices in how the data being read is
converted.

Function textscan has a number of additional options that increase its
flexibility. Consult the MATLAB on-line documentation for details of these
options.

B.7 Function uiimport

Function uiimport is a GUI-based way to import data from a file or from the
clipboard. This command takes the forms

uiimport
structure = uiimport;

In the first case, the imported data is inserted directly into the current MATLAB
workspace. In the second case, the data is converted into a structure and saved in
variable structure.

When the command uiimport is typed, the Import Wizard is displayed in
a window (see Figure B.2 for the PC version of this window). The user can then
select the file that he or she would like to import from along with the specific data
within that file. Many different formats are supported; a partial list is given in
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Figure B.2 Using uiimport: (a) The Import Wizard after it is started. (b) After a data file has been
selected, one or more data arrays are created, and their contents can be examined.
(c) Next, the user can select which of the data arrays will be imported into MATLAB.

(a)

(b)

(c)
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Table B.9. In addition, data can be imported from almost any application by sav-
ing the data on the clipboard. This flexibility can be very useful when you are try-
ing to get data into MATLAB for analysis.
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Table B.9 Selected File Formats Supported by uiimport

File Extents Meaning

*.gif Image files

*.jpg

*.jpeg

*.ico

*.png

*.pcx

*.tif

*.tiff

*.bmp

*.cur Cursor format

*.hdf Hierarchical data format file

*.au Sound files

*.snd

*.wav

*.avi Movie file

*.csv Spreadsheet files

*.xls

*.wk1

*.txt Text files

*.dat

*.dlm

*.tab
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A P P E N D I X C
Answers to
Quizzes

This appendix contains the answers to all of the quizzes in the book.

Quiz 1.1, page 18

1. The MATLAB Command Window is the window where a user enters
commands. A user can enter interactive commands at the command
prompt (») in the Command Window, and they will be executed on
the spot. The Command Window is also used to start M-files execut-
ing. The Edit/Debug Window is an editor used to create, modify, and
debug M-files. The Figure Window is used to display MATLAB
graphical output.

2. You can get help in MATLAB by
� Typing help <command_name> in the Command Window. This

command will display information about a command or function
in the Command Window.

� Typing lookfor <keyword> in the Command Window. This
command will display in the Command Window a list of all com-
mands or functions containing the keyword in their first comment
line.

� Starting the Help Browser by typing helpwin or helpdesk in
the Command Window, by selecting “Help” from the Start menu,
or by clicking on the question mark icon ( ) on the desktop. The
Help Browser contains an extensive hypertext-based description of
all of the features in MATLAB along with a complete copy of all
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manuals on-line in HTML and Adobe PDF formats. It is the most
comprehensive source of help in MATLAB.

3. A workspace is the collection of all the variables and arrays that can
be used by MATLAB when a particular command, M-file, or func-
tion is executing. All commands executed in the Command Window
(and all script files executed from the Command Window) share a
common workspace, so they can all share variables. The contents of
the workspace can be examined with the whos command, or graphi-
cally with the Workspace Browser.

4. To clear the contents of a workspace, type clear or clear vari-
ables in the Command Window.

5. The commands to perform this calculation are

» t = 5;
» x0 = 10;
» v0 = 15;
» a = -9.81;
» x = x0 + v0 * t + 1/2 * a * t^2
x =

-37.6250

6. The commands to perform this calculation are

» x = 3;
» y = 4;
» res = x^2 * y^3 / (x - y)^2
res =

576

Questions 7 and 8 are intended to get you to explore the features of
MATLAB. There is no single “right” answer for them.

Quiz 2.1, page 30

1. An array is a collection of data values organized into rows and
columns and known by a single name. Individual data values within
an array are accessed by including the name of the array followed by
subscripts in parentheses that identify the row and column of the par-
ticular value. The term “vector” is usually used to describe an array
with only one dimension, while the term “matrix” is usually used to
describe an array with two or more dimensions.

2. (a) This is a 3 � 4 array; (b) c(2,3) � �0.6; (c) The array elements
whose value is 0.6 are c(1,4), c(2,1), and c(3,2).

3. (a) 1 � 3; (b) 3 � 1; (c) 3 � 3; (d ) 3 � 2; (e) 3 � 3; (f ) 4 � 3;
(g) 4 � 1.
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4. w(2,1) � 2

5. x(2,1) � �20i

6. y(2,1) � 0

7. v(3) � 3

Quiz 2.2, page 39

1. (a) c(2,:) =

(b) c(:,end) =

(c) c(1:2,2:end) =

(d) c(6) = 0.6

(e) c(4,end) =

(f ) c(1:2,2:end) =

(g) c([1 3],2) =

(h) c([2 2],[3 3]) =

2. (a) a = (b) a � (c) a �

3. (a) a � (b) a � (c) a �

Quiz 2.3, page 46

1. The required command is “format long e”.

2. (a) These statements get the radius of a circle from the user, and
calculate and display the area of the circle. (b) These statements dis-
play the value of p as an integer, so they display the string: “The
value is 3!”.

£
1 0 0

0 1 0

9 7 8

§£
1 0 4

0 1 5

0 0 6

§£
1 0 0

1 2 3

0 0 1

§

c4 5 6

4 5 6
d£

4 5 6

4 5 6

4 5 6

§£
7 8 9

4 5 6

1 2 3

§

c 20.6 20.6

20.6 20.6
d

c23.2

0.6
d

c23.2 3.4 0.6

1.1 20.6 3.1
d

[23.2 1.1 0.6 3.4 20.6 5.5 0.6 3.1 0.0]

c23.2 3.4 0.6

1.1 20.6 3.1
d

£
0.6

3.1

0.0

§

[0.6 1.1 20.6 3.1]
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3. The first statement outputs the value 12345.67 in exponential format;
the second statement outputs the value in floating point format; the
third statement outputs the value in general format; and the fourth
statement outputs the value in floating point format in a field 12 char-
acters wide, with four places after the decimal point. The results of
these statements are as follows:

value = 1.234567e+004
value = 12345.670000
value = 12345.7
value = 12345.6700

Quiz 2.4, page 53

1. (a) This operation is illegal. Array multiplication must be between
arrays of the same shape or between an array and a scalar. (b) Legal

matrix multiplication: result = (c) Legal array multiplication:

result = (d) This operation is illegal. The matrix multiplica-

tion b * c yields a 1 � 2 array, and a is a 2 � 2 array, so the addition is
illegal. (e) This operation is illegal. The array multiplication b .* c is
between two arrays of different sizes, so the multiplication is illegal.

2. This result can be found from the operation x = A\B: x =

Quiz 3.1, page 103

Expression Result Comment

1. a > b 1

(logical true)

2. b > d 0

(logical false)

3. a > b && c > d 0

(logical false)

4. a == b 0

(logical false)

5. a & b > c 0

(logical false)

£
20.5

1.0

20.5

§

c 2 1

22 4
d

c4 4

3 3
d
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6. ~~b 1

(logical true)

7. ~(a > b)

(logical array)

8. a > c && b > c Illegal The && and || operators
work only between
scalar operands.

9. c <= d Illegal The <= operator must be
between arrays of the
same size, or between an
array and a scalar.

10. logical(d)

(logical array)

11. a * b > c The expression a * b
is evaluated first, pro-

(logical array) ducing the double

array and the

logical operation is
evaluated second, pro-
ducing the final answer.

12. a * (b > c) The expression b > c
produced the logical

(double array)
array , and multi-

plying that logical
array by 2 converted
the results back into a
double array.

13. a*b^2 > a*c 0

(logical false)

14. d || b > a 1

(logical true)

15. (d | b) > a 0

(logical false)

c1 0
0 1 d

c2 0

0 2
d

c2 24

0 20
d ,

c1 0

0 1
d

c1 1 1

0 1 0
d

c0 0

0 1
d
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Expression Result Comment

16. isinf(a/b) 0

(logical false)

17. isinf(a/c) 1

(logical true)

18. a > b && 1
ischar(d) (logical true)

19. isempty(c) 0

(logical false)

20. (~a) & b 0

(logical false)

21. (~a) + b �2 ~a is a logical 0. When
(double value) added to b, the result is

converted back to a
double value. 

Quiz 3.2, page 118

1. if x >= 0 
sqrt_x = sqrt(x);

else
disp('ERROR: x < 0');
sqrt_x = 0;

end
2. if abs(denominator) < 1.0E-300 

disp('Divide by 0 error.');
else

fun = numerator / denominator;
disp(fun)

end

3. if distance <= 100
cost = 0.50 * distance;

elseif distance <= 300
cost = 50 + 0.30 * (distance – 100);

else
cost = 110 + 0.20 * (distance – 300);

end

4. These statement are incorrect. For this structure to work, the second
if statement would need to be an elseif statement.
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5. These statement are legal. They will display the message "Prepare
to stop."

6. These statement will execute, but they will not do what the program-
mer intended. If the temperature is 150, these statements will
print out "Human body temperature exceeded." instead
of "Boiling point of water exceeded.", because the
if structure executes the first true condition and skips the rest. To
get proper behavior, the order of these tests should be reversed.

Quiz 3.3, page 136

1. x = 0:pi/10:2*pi;
x1 = cos(2*x);
y1 = sin(x);
plot(x1,y1,'-ro','LineWidth',2.0,'MarkerSize',6,...

'MarkerEdgeColor','b','MarkerFaceColor','b')

3. '\itf\rm(\itx\rm) = sin \theta cos 2\phi'

4. '\bfPlot of \Sigma \itx\rm\bf^{2} versus \itx'

5. This string creates the characters  .

6. This string creates the characters .

7. The backslash character is displayed using a double backslash ('\\').

Quiz 4.1, page 175

1. 4 times

2. 0 times

3. 1 time

4. 2 times

5. 2 times

6. ires � 10

7. ires � 55

8. ires � 25;

9. ires � 49;

10. With loops and branches:
for ii = -6*pi:pi/10:6*pi

if sin(ii) > 0
res(ii) = sin(ii);

else
res(ii) = 0;

end
end

x1
2 1 x2

2 sunits: m2d
tm
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With vectorized code:
arr1 = sin(-6*pi:pi/10:6*pi);
res = zeros(size(arr1));
res(arr1>0) = arr1(arr1>0);

Quiz 5.1, page 226

1. Script files are collections of MATLAB statements that are stored in
a file. Script files share the Command Window’s workspace, so any
variables that were defined before the script file starts are visible to
the script file, and any variables created by the script file remain in
the workspace after the script file finishes executing. A script file
has no input arguments and returns no results, but script files can
communicate with other script files through the data left behind
in the workspace. In contrast, each MATLAB function runs in its
own independent workspace. It receives input data through an input
argument list, and returns results to the caller through an output
argument list.

2. The help command displays all of the comment lines in a function
until either the first blank line or the first executable statement is
reached.

3. The H1 comment line is the first comment line in the file. This line
is searched by and displayed by the lookfor command. It should
always contain a one-line summary of the purpose of a function.

4. In the pass-by-value scheme, a copy of each input argument is passed
from a caller to a function, instead of the original argument itself.
This practice contributes to good program design because the input
arguments may be freely modified in the function without causing
unintended side effects in the caller.

5. A MATLAB function can have any number of arguments, and not all
arguments need to be present each time the function is called.
Function nargin is used to determine the number of input argu-
ments actually present when a function is called, and function nar-
gout is used to determine the number of output arguments actually
present when a function is called.

6. This function call is incorrect. Function test1 must be called with
two input arguments. In this case, variable y will be undefined in
function test1, and the function will abort.

7. This function call is correct. The function can be called with either
one or two arguments.
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Quiz 6.1, page 287

1. (a) result = 1 (true), because the comparison is made between
the real parts of the numbers. (b) result = 0 (false), because the
absolute values of the two numbers are identical (c) result = 25.

2. The function plot(array) plots the imaginary part of the array
versus the real part of the array, with the real part on the x axis and
the imaginary part on the y axis.

3. The vector can be converted using the double function.

4. These statements concatenate the two lines together, and variable
res contains the string 'This is a test!This line,
too.'.

5. These statements are illegal—there is no function strcati.

6. These statements are illegal—the two strings must have the same
number of columns, and these strings are of different lengths.

7. These statements are legal, producing the result res =

Note that each line is now 21

characters long, with the line 2 padded out to that length.

8. These statements are legal, and the result res = 1, since the two
strings are identical in their first five characters.

9. These statements are legal, and the result is res = [4 7 13],
since the letter “s” is at those locations in the string.

10. These statements are legal. Each space in the original string
is replaced by an 'x', and the final string is
'Thisxisxaxtest!xx'.

11. These statements are legal. The function isstrprop returns a
1 (true) for alphanumeric characters and a 0 (false) for other
characters. The result is

res = 

1 1 1 1 0 1 1 1 1 0 0 0

12. These statements are legal, with the result res = 'ThiS IS a
test!'.

13. These statements are legal. The results are l1 = 9, l2 = 9, l3 = 18,
l4 = 6, and l5 = 12.

14. These statements are illegal—you must specify the number of char-
acters to compare in the two strings when using function strncmp.

cThis is another test!
This line, too.

d .
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Quiz 7.1, page 335

1. A cell array is an array of “pointers,” each element of which can point
to any type of MATLAB data. It differs from an ordinary array in that
each element of a cell array can point to a different type of data, such
as a numeric array, a string, another cell array, or a structure. Also,
cell arrays use braces {} instead of parentheses () for selecting and
displaying the contents of cells.

2. Content indexing involves placing braces {} around the cell sub-
scripts, together with cell contents in ordinary notation. This type of
indexing defines the contents of the data structure contained in a cell.
Cell indexing involves placing braces {} around the data to be stored
in a cell, together with cell subscripts in ordinary subscript notation.
This type of indexing creates a data structure containing the specified
data and then assigns that data structure to a cell.

3. A structure is a data type in which each individual element is given a
name. The individual elements of a structure are known as fields, and
each field in a structure may have a different type. The individual
fields are addressed by combining the name of the structure with the
name of the field, separated by a period. Structures differ from ordi-
nary arrays and cell arrays in that ordinary arrays and cell array ele-
ments are addressed by subscript, while structure elements are
addressed by name.

4. Function varargin appears as the last item in an input argument
list, and it returns a cell array containing all of the actual arguments
specified when the function is called, each in an individual element
of a cell array. This function allows a MATLAB function to support
any number of input arguments.

5. (a) a(1,1) = [3x3 double]. The contents of cell array element
a(1,1) is a 3 � 3 double array, and this data structure is displayed.

(b) a{1,1} = . This statement displays the value of

the data structure stored in element a(1,1).

(c) These statements are illegal, because you cannot multiply a data
structure by a value.

(d) These statements are legal, because you can multiply the contents 

of the data structure by a value. The result is .£
2 4 6

8 10 12

14 16 18

§

£
1 2 3

4 5 6

7 8 9

§
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(e) a{2,2} = .

(f ) This statement is legal. It initializes cell array element a(2,3)

to be a 2 � 1 double array containing the values .

(g) a{2,2}(2,2) = 0.

6. (a) b(1).a - b(2).a = .

(b) strncmp(b(1).b,b(2).b,6) = 1, because the two struc-
ture elements contain character strings that are identical in their
first six characters.

(c) mean(b(1).c) = 2
(d ) This statement is illegal, because you cannot treat individual

elements of a structure array as though it were an array itself.
(e) b = 1x2 struct array with fields:

a
b
c

( f ) b(1).('b') = 'Element 1'
(g) b(1) = 

a: [3x3 double]
b: 'Element 1'
c: [1 2 3]

£
23 1 21

22 0 22

23 3 5

§

c217

17
d

£
24 23 22

21 0 1

2 3 4

§
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~, logical NOT operator, 100, 174
!, operating system operator, 6
%, conversion characters, 43, 378
& and &&, logical AND operators, 98–99
*, multiplication operator, 17, 47
–, subtraction operator, 17, 47
', transpose operator, 25
/, division operator, 17, 47
:, array series (colon operator), 25
;, variable initialization, 25–27
[ ], array construction, 26
\, escape characters, 43, 126, 379
^, exponentiation operator, 17
_, variable names (underscore), 23
{ } cell array content braces, 312–315
| and ||, logical OR operators, 99–100
~=, not equal to relational operator, 94, 97, 264
+, addition operator, 17, 47
<, less than relational operator, 94, 264
<=, less than equal to relational operator,

94, 264
=, assignment operator, 25, 47
==, equal to relational operator, 94–97,

264, 275
>, greater than relational operator, 94, 264
>=, greater than or equal to relational operator,

94, 264
←, variable values, 93
..., continuation character (ellipses), 6
., structure array fields (period), 325–326

A
abort command, 15
abs ( ) function, 265
addpath function, 16

Algorithms, 90, 93, 107–112, 114, 150–153,
179–193, 216–221, 228–240, 242–244,
266–268, 284–289

constructs, 93
design, 90
evaluating function, 110–112
function function, 242–244
linear regression, 179–185
multiple elseif clauses, using, 114
nested if clauses, using, 114
plotting trajectory, 185–193
pseudocode, 90, 93
quadratic equation, 107–110, 

266–268
random number generator, 228–234
running averages, 235–240
selection sort, 216–221 
statistical analysis, 150–153
string comparison, 284–289
structured programs, 93

Alpha release, 92
'alpha' string function, 277
'alphanum' string function, 277
AND logical operators (&, &&), 98–99
angle ( ) function, 265
ans function, 38
Argument lists, 204–210, 222–226

actual, 205–206
dummy, 205
input lists, 204, 205, 222
optional, 222–226
output lists, 204, 205, 222

Arithmetic operators, 47–53
Arrays, 4, 21–37, 47–53, 164–163, 173–174,

272–273, 311–335

401

Index

Note: Boldface numbers indicate special illustrations or tables.
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arithmetic operators, 47–53
cell, 311–324
colon operator (:), 28
empty, 26
for loops and, 163–165
hierarchy of operations, 51–53
if/else constructs and, 174
initializing, 28–31
logical, 173–174
MATLAB use of, 4
matrices as, 21, 29–30
matrix operations, 48–50
multidimensional, 31–35, 289–291
preallocating, 163–164
row order, 26
scalar operations, 47–51
size of, 21–22
square brackets [ ], 26
string functions for, 272–273
structure, 325–335
subarrays, 35–37
two-dimensional character, 272–273
variables and, 22–28
vectorization, 164–165, 173–174
vectors as, 21

ASCII character set, 365
Assignment statements, 25–28, 36–37, 47, 314,

325–327
cell arrays allocated using, 314
initializing variables, 25–28
operator (=), 25, 47
semi-colon (;) for, 25
structure arrays built with, 325–327
subarrays and, 36–37

axes object position, 352–355
axes regions, 336–337
axis command, 119–122, 193–194

B
Bar plots, 291–292, 294
Beta release, 92
Binary files, 372–377
fopen functions, 372
fread functions, 374–375

fwrite functions, 373–374
opening for input, 372
precision strings, 373–374, 375
read/write access, 372

Branching statements, 87, 104–119, 175
code blocks, 104
else clauses, 105–106
elseif clauses, 105–106, 114
end function, 104–105, 113, 116
if construct, 104–115
if/else constructs, 174
indentation, 106
nested if, 113–115
otherwise code blocks, 115–116
switch construct, 115–116
try/catch construct, 116–117

break statements, 169–171, 172
Breakpoints, 138
Bugs, see Debugging
Built-in functions, 29–30, 54–56

initialization using, 29–30
mathematical, 55
rounding, 55–56
scalar input and output, 54–55
string conversion, 56

C
Cell arrays, 311–324

allocating, 314
assignment statements used for, 314
braces { } for, 312–315
contents, 311–313
creating, 313–315
data used in, 319
deleting, 318–319
displaying contents of, 315–316
extending, 316–318
MATLAB common functions for, 324
pointers, 312–313
preallocating, 314–315
significance of, 320–324
strings in, 319–320

cell function, 313–314, 316
Cell indexing, 314
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celldispt function, 315
cellplot function, 315–316
cellstr command, 319–320
char variable, 15, 165, 272–273, 280, 320
Character data, displayed, 380, 382–383
Characters, 272–278, 284–287

categorized in strings, 275–276
equality comparisons, 275
lexicographic order of, 284–287
replacing using strings, 277–278
searching for using strings, 277–278
two-dimensional arrays, 272–273

clc command, 15
clear command, 11, 15, 318–319
clf command, 15
clock function, 38
'cntrl' string function, 277
Code blocks, 104
Colon operator (:), 28
Command-function duality, 120
Command History Window, 7
Command Window, 5–6, 14–15, 40–42
Compass plots, 291–292, 295
Compiler, MATLAB use of, 3. See also

Just-in-time (JIT) compiler
Complex data, 261–271

coordinates, 261–263
functions, 265
numbers, 261–263, 264
plotting, 269–271
relational operators with, 264
variables, 263–264

Concatenating strings, 273–274
Conditional breakpoints, 138–139
conj ( ) function, 265
Constructs, 93
Content indexing, 314
continue statements, 169–171, 172
Contour plots, 301–303
Control-c command, 15
Conversion specifiers, 43–44, 377–383

character data displayed using, 380, 382–383
conversion characters (%), 43, 378–381
decimal data displayed using, 379, 382

escape characters (\), 43, 126, 379
floating-point data displayed using, 380
format flags, 378
fprintf function, 43–44, 377–378
fscanf function, 381–383

Coordinates, 261–263, 351

D
Data dictionary, 23
Data, 21–37, 40–46, 93–104, 227–240,

261–313, 319, 325, 329–331, 377–380
arrays, 21–37, 47–53, 289–297
cell array contents, 311–313, 319
conversion specifiers for, 43–44, 377–383
complex, 261–271
files, 44–46
format command, 40–42
formatting, 27, 40–46
global memory, sharing using, 227–235
good programming practice, 304
load command, 45–46
logical, 93–104
MATLAB commands and functions

for, 305–306
multidimensional arrays for, 289–291
numerical used with logical operators,

100–101
output display formats, 46
persistent memory, preserving between

calls, 235–240
plotting, 269–271, 291–304
save command, 44–45
scalar operations, 47–53
string functions for, 272–289
structure array field contents, 329–331
structures, 325
user-defined functions for, 227–240

date function, 38
deblank function, 273, 279
Debugging, 8, 72–74, 138–141

breakpoints, 138
conditional breakpoints, 138–139
Edit Window for, 8, 138–141
logical error, 73–74
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run-time error, 72
syntax error, 72
typographical error, 73–74

Decimal data, diplayed, 379, 382
Decomposition, 90
Default format, 40–42
'default' string properties, 356–358
delim function, 278
demo command, 14
dex2hex function, 281
diary command, 15
'digit' strings, 277
disp function, 42, 44
dist2 function, 206–209
double variable, 15, 165, 265, 272, 280, 282
Dynamic field names, 331–333

E
Edit button, 134–135
Edit Window, 8–9, 138–139
editpath function, 16
Ellipsis (...), use of for continuation, 6
else clauses, 105–106
elseif clauses, 105–106, 114
end function, 35–36
end statements, 104–105, 113, 116, 149,

156, 206
branching statements, 104–105, 113, 116
loop statements, 149, 156 
terminating functions using, 206

eps function, 38
error function, 222–223
Errors, see Debugging
Escape characters (\), 43, 126, 379
eval function, 241, 281–282
Exclamation mark (!), use of for operating

system, 6
Exclusive OR logical operator (xor), 100
explode function, 296
Exporting plots as a graphical image, 59–60
ezplot function, 241, 296–297

F
'factory' properties, 357
fclose function, 369–370, 372–373

feval function, 241
fgetl function, 383
fgets function, 383
Fields, 325–326, 328–333

adding to structure arrays, 328–329
dynamic field names, 331–333
getfield function, 331
period (.) used for, 325–326
removing from structure arrays, 329
setfield function, 331
structure elements as, 325–326

figure command, 123
Figure Windows, 10, 123, 336
figure, objects in, 336–337
File id (fid), 369–373
Files, 6, 44–46, 367–387

data, 44–46
binary, 372–377
fclose function, 369–370, 372–373
filename string function, 367, 370
fopen function, 367–369
fopen functions, 369–372
format conversion specifiers, 

378–381
formatted, 377–383
frewind function, 369–370
fseek function, 369–370
input/output (I/O) functions, 367–387
opening and closing, 370–373
processing, 369–370
script, 6
textread function, 367–369
textscan function, 383–385
uiimport function, 385–387

findobj function, 346–348
Flags, 378
Floating-point data, displayed, 380
fminbnd function, 241
fndstr function, 277
fopen functions, 369–372

binary file input, 372
format strings, 370–371
permission strings, 370–371
read/write access, 372
text output, 372
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for loops, 155–165, 169–171, 174
break statements, 169–172
continue statements, 169–172
if/else constructs, 174
indentation of, 163
just-in-time (JIT) compiler, 165–169
logical arrays and, 173–174
loop index, 155–156, 163
nesting, 171–173
preallocating arrays, 163–164
vectorizing arrays, 164–165

format command, 40–42, 367, 370–371
Formatting data, 40–44, 370–371, 377–383

conversion characters (%), 43, 378
conversion specifiers, 377–383
default format changes, 40–42
disp function, 42, 44
echoing variables, 27
escape characters (\), 43, 379
flags, 378
format command, 40–42
fprintf function, 43–44, 377–378
fscanf function, 381–383
fgetl function, 383
fgets function, 383
Input/output (I/O) functions, 377–383
strings, 370–371

fplot function, 241, 296–297
fprintf function, 43–44, 169, 161, 367,

377–378
fread functions, 374–375
frewind function, 369–370
fscanf function, 381–383
fseek function, 369–370
Function functions, 240–244
function statement, 205
Functions, 29–30, 54–56, 120, 203–260, 265,

272–289, 367–387
argument lists, 204–210
built-in, 29–30, 54–56
cell arrays, 324
complex, 265
conversion, 56, 272, 279–283
data hiding, 204
duality of with commands, 120

end statement to terminate, 206
function, 240–244
function statement identification, 205
H1 comment line, 206
help command, 206
input/output (I/O), 367–387
lookfor command, 206
MATLAB use of, 2, 29
order of evaluation, 247
primary, 245
private, 246–247
return statement, 206
reusable code, 204
scope of, 244–245
string, 272–289
subfunctions, 245–246
unit testing, 203
user-defined, 203–260

fwrite functions, 373–374
fzero function, 240, 241

G
gca function, 337, 346–347
gcf function, 337, 346
gco function, 337, 346–348
get function, 338, 346
get (hndl) function, 340
getfield function, 331
Global memory, 227–235
global statements, 227
Graphical user interface (GUI), 3, 134–136,

340–341. See also Handle graphics
plot editing tools, 134–137
MATLAB use of, 3
Property editor, 340–341

Greek symbols, 127
grid command, 57–58

H
H1 comment line, 206
Handle graphics, 336–350
axes regions, 336–337
'default' properties, 356–358
'factory' properties, 357
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figure, objects in, 336–337
finding objects, 346–348
listing property values, 345–346
MATLAB objects in, 336–337, 358
object handles, 336, 337
object properties, 336, 338–344, 

351–355, 358
plotting using, 338–344
'position' property, 351–355
printer positions, 355–356
'remove' property, 357
root objects, 336–337
selecting objects with a mouse, 

348–350
set function, 338, 345–346
'units' property, 351, 355–356

Help Browser, 13
help commands, 13–14, 206
Hierarchy, 51–53, 74, 101, 337

arithmetic operations, 51–53
handle graphics objects, 336–337
logic operators, 101
MATLAB operations, 74
relational operators, 96

hist function, 232, 297
Histograms, 232–234, 297–298
hndl function, 33–338, 34
hold command, 122, 132, 181, 185, 188–189

I
i, j function, 38
Identity matrices, 29–30
if statements, 104–115
else clauses, 105–106
elseif clauses, 105–106, 114
for loops and, 172
nested, 113–115

if/else constructs, 174
imag ( ) function, 265
Indentation of code, 106, 163
index loop variable, 155–156
Inf function, 38
Initialization, 25–31

arrays, 28–31
assignment statements, 25–28

built-in functions, 29–30
colon operator (:), 28
data arrays, 26
keyboard input, 29–30
square brackets [ ], 26
transpose operator ('), 28–29
variables, 25–30

input function, 29–30, 180
Input/output (I/O) functions, 367–387

binary, 372–377
file id (FID), 369–373
file opening and closing, 370–373
file processing, 369–370
format conversion specifiers, 378–381
formatted, 377–383
fscanf function, 381–383
MATLAB use of, 369–367
textread function, 367–369
textscan function, 383–385
uiimport function, 385–387

inputname function, 222–223
int2str function, 280
isletter function, 275–276
isreal ( ) function, 265
isspace function, 275–276
isstrprop function, 275–276

J
Just-in-time compiler, 165–169

L
label function, 57–58
legend command, 61–63
length function, 30
Lexicographic character order, 284–287
Lines, 61–62, 125–126

color and styles, 61–62
enhanced properties, 125–126

linewidth function, 125, 185
load command, 45–46, 368–369
Logarithmic scale plots, 64
Logic operators, 98–102

AND (&, &&), 98–99
Exclusive OR (xor), 98, 100
NOT (~), 98, 100
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numerical data used with, 100–101
OR (|, ||), 99–100

Logical arrays, 173–174
Logical data types, 93–104

hierarchy of operations, 96, 101
logic operators, 98–102
logical functions, 102–103
logical variable assignment, 94–95
relational operators, 94–97
roundoff errors, 97
true and false values, 94–97, 

102–103
truth tables, 98–99

Logical error, 73–74
logical output vector, 275–276
loglog function, 127–128
lookfor command, 14, 206, 214
Loops, 149–202
break statements, 169–171, 172
continue statements, 169–171, 172
end statements, 149, 156
if/else constructs, 174
for, 155–165, 169–171, 174
just-in-time compiler and, 165–169
logical arrays and, 173–174
MATLAB commands and functions for, 195
MATLAB examples of, 179–194
nested, 171–173
profiler for execution time, 176–178
while, 149–155, 169–171

'lower' string functions, 277
Lowercase conversion, 279

M
M-files (.m), 6, 8, 15–17, 205, 246–247

creating, 8
finding, 15–16
MATLAB function files, 205
MATLAB search path for, 15–17
private functions and, 246–247
script files as, 6

Marker color and styles, 61
mat2str function, 281
Mathematical symbols, 127
Mathematical built-in functions, 55

Matrices, arrays as, 21
Matrix Laboratory (MATLAB), 1–86, 165–169,

176–178, 205–221, 240–244, 336–337,
311–363, 367–387

advantages of, 1–3
argument lists, 205–210
arrays, 4, 21–37, 47–51
built-in functions, 2, 29–30, 54, 55–56
cell arrays, 311–324
Command History Window, 7
Command Window, 5–6, 14–15, 40–41
common commands and functions, 55–56,

76–78, 241, 359–360
data, 40–46
data dictionary, 23
debugging, 8, 72–74
default format, 40–41
desktop, 4–11
disadvantages of, 3
docking and undocking windows, 10–11
Edit Window, 8–9
Figure Windows, 10, 336
format command, 40–42
function functions, 240–244
good programming guidelines, 75, 359
graphics objects, 336–337
handle graphics, 336–350
Help Browser, 13
help commands, 13–14
hierarchy of operations, 74
input/output (I/O) functions, 367–387
introduction to, 1–20
just-in-time compiler, 165–169
language of, 24–25
lookfor commands, 14
M-files (.m), 6, 8, 15–17, 50, 205
matrix operations, 47–51
operation hierarchy, 51–53, 74
pass-by value scheme, 211–221
plots, 2–3, 56–64
predefined special values, 38–39
problem solving examples, 64–72
profiler for execution time, 176–178
scalar operations, 47–51
scratch pad, use as a, 17
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search paths, 15–17
special symbols, 19, 43, 76
Start Button, 7–8
structure arrays, 325–335
user-defined functions, 205–221, 240–244
variables, 11, 22–30
workspace, 11–13, 208–210
Workspace Browser, 12–13

Matrix operations, 48–50
max function, 222
mean function, 155, 235
Memory, 33–34, 227–240

global, 227–235
multidimensional arrays stored in, 33–34
persistent, 235–240
user-defined functions and, 227–240

Mesh plots, 301–304
Multidimensional arrays, 31–35, 289–291

accessing in one dimension, 33–35
column major order, 33
data display using, 289–291
memory, storing in, 33–34
two-dimensional, 31–33

Multiple plots, 59–60, 122

N
Naming variables, 23–25
NaN function, 38
nargchk function, 222–223
nargin function, 222
nargout function, 222, 226, 323
Nesting, 113–115, 171–173, 333–334
for loops, 171–173
if statements, 113–115
structure arrays, 333–334

NOT logical operator (~), 100, 174
num2str function, 280
Numerical data, see Scalar operations
Numeric-to-string conversions, 280–281

O
Objects, 336–344, 346–348, 351–355, 358
axes position, 352–355
child, 336

coordinates of, 351
figure, 336–337
finding, 346–348
handles, 336, 337
MATLAB handle graphics for, 336–337, 358
parent, 336
properties, 336, 338–344, 351–355, 358
'position' property, 351–355
root, 336–337
selecting objects with a mouse, 348–350
selection region, 348
stacking order, 348
text position, 352–355

ones function, 29–30
Operation hierarchy, 51–53, 74
Operators, 28–29, 47–48

initialization using, 28–29
scalar operations using, 47–48

Optional arguments, 222–226
OR logical operators (|, ||), 99–100
otherwise code blocks, 115–116

P
parent directory, 246
Pass-by value scheme, 211–221
path function, 16
Path Tool, 16–17
path2rc function, 16
permission string functions, 370–371
persistent statement, 235
Persistent memory, 235–240
pi function, 38
Pie plots, 291–292, 295–296
Plot Browser button, 134–135
plot command, 56–57, 61, 122, 125, 269–270,

299, 337–338
plotline function, 321–323
Plots, 2–3, 56–64, 119–137, 232–234, 269–271,

291–304, 338–344
axis command, 119–122
bar, 291–292, 294
colors, 61–62
compass, 291–292, 295
complex data, 269–271
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contour, 301–303
controlling axis limits, 119–122
editing tools, 134–137
enhancement controls, 125–127
exporting as a graphical image, 59–60
ezplot function, 241, 296–297
Figure Windows, 123 
fplot function, 241, 296–297
graphical user interface (GUI) tools, 134–136
handle graphics used for, 338–344
histograms, 232–234, 297–298
hold command, 122
legends, 61–63
linear, 56–63, 299–301
lines, 61–62, 125–126
logarithmic scales, 64
marker styles, 61–62
MATLAB use of, 2–3, 56–79
mesh, 301–304
multiple, 59–60, 122
pie, 291–292, 295–296
polar, 127–134
position parameters, 61–63
printing, 58–59
saving, 136
stair, 291–293
stem, 291–293
stream modifiers, 126
subplots, 123–125
surface, 301–302
text strings for, 126–127
three-dimensional, 298–304
two-dimensional, 291–297
xy, 57–58

Pointers, 312–313
polar function, 127–128, 270
pos function parameters, 61–63
Position of plot elements, 61–63
'position' string property, 351–355
Preallocating arrays, 163–164
precision string functions, 373–374
Predefined functions, see Built-in functions
Primary functions, 245
print command, 58–59

Printing plots, 58–59
private directory, 246
Program design, 87–148, 149–202, 203–204

algorithms, 93
branching statements, 87, 104–119
debugging, 138–141
good programming practice, 142–143
indentation, 106, 163
just-in-time (JIT) compiler, 165–169
logical data types, 93–104, 174–176
loops, 149–202
maintenance, 204
MATLAB commands and functions for, 

143, 195
plotting, 119–137
profiler for execution time, 176–178
pseudocode, 93
top-down techniques, 87–93, 203–204

Property editor, 340–341
Property names, 338
Pseudocode, 93

Q
quad function, 241

R
rand function, 234–235
randn function, 234–235
random functions, 230–233
real ( ) function, 265
real function, 94
Relational operators, 94–97, 264, 275

character equality comparison using, 275
complex numbers used with, 264
program design using, 94–97
true and false values, 94–97

'remove' string property, 357
repl function, 278
return statements, 206
rmpath function, 16
root objects, 336–337
rose function, 298
round function, 230–231
Rounding built-in functions, 55–56
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Roundoff errors, 97
Run-time error, 72

S
save command, 44–45
Scalar operations, 37, 47–51, 54–55

arithmetic operators, 47
array operations, 47–50
assigned to subarrays, 37
assignment statements, 47
expressions, 47
MATLAB functions for, 54–55
matrix operations, 48–50

Scope of functions, 244–245
Script files, 6, 205
seed function, 230–233
Selection region, 348
Selection sort algorithm, 216–221
Semi-colon operator (;), 25–27
semilogx function, 127–128
set function, 338, 345–346
set (hndl) function, 345–346
setfield function, 331
size function, 29–30, 290, 333
sort function, 217
sprntf function, 281
srch function, 278
sscanf function, 281–282
Stacking order, 348
Stair plots, 291–293
Start button, 7–8
std function, 155, 235, 369
Stem plots, 291–293
Stepwise refinement, 90
str function, 278
str2double function, 281–282
strcat function, 273
strcmp function, 274–275
strcmpi function, 274–275
Stream modifiers, 126
string command, 11
String-to-numeric conversions, 281–282
Strings, 56, 126–127, 272–289, 319–320,

331–333
cell arrays of, 319–320

characters categorized in, 275–277
concatenating, 273–274
conversion functions, 56, 272, 279–283
dynamic field names, 331–333
equality comparisons of, 274–275
functions, 272–289
lexicographic character order of, 284–287
numeric-to-string conversions, 280–281
replacing characters using, 277–278
searching for characters using, 277–278
stream modifiers, 126
string-to-numeric conversions, 281–282
substrings and, 274–277
text enhancement, 126–127
trimming whitespace from, 279
two-dimensional character arrays, 

272–273
uppercase and lowercase conversion, 279

strmatch function, 277
strncmp function, 274–275
strncmpi function, 274
strrep function, 278
strtok function, 278
strtrim function, 278
struct function, 327–328
Structure arrays, 325–335

adding fields to, 328–329
assignment statements used for, 325–327
building, 325–327
creating, 325–327
data used in, 329–331
dynamic field names, 331–333
field, 325–326
getfield function used for, 331
MATLAB common functions for, 334
nesting, 333–334
period (.) used for, 325–326
removing fields from, 329
setfield function used for, 331
size function used for, 331

Structures, 325
strvcat function, 274, 277
Subarrays, 35–37

assignment statements and, 36–37
end function, 35–36
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scalars assigned to, 37
variable shape and, 36–38

Subfunctions, 245–246
subplot command, 123–125
Substrings, 274–277

character equality comparisons, 275
characters categorized in, 275–276
isstrprop functions for, 276–277
string equality comparisons, 274–275

Surface plots, 301–302
switch statements, 115–116
Syntax error, 72

T
test command, 72
text object position, 352–355
Text strings, plot enhancement using, 

126–127
textread function, 367–369
textscan function, 383–385
theta function, 127–128
Three-dimensional plots, 298–304
tic function, 166
title function, 57–58
toc function, 166
token function, 278
Top-down design, 87–93, 203–204

alpha and beta release, 92
argument lists, 204
data hiding, 204
functions and, 203–204
program process, 87–93
reusable code, 204
unit testing, 91–92, 203

Transpose operator ('), 28–29
true and false values, 94–97, 

102–103, 149
logical variable assignment, 94–95
MATLAB functions for, 102–103
relational operation assignment, 

95–97
while loop conditions, 149

Truth tables, 98–99
try/catch statements, 116–117
Two-dimensional character arrays, 272–273

Two-dimensional plots, 291–297
Typographical error, 73–74

U
uiimport function, 385–387
Underscore character (_), 23
Unit testing, 91–92
'units' string property, 351, 355–356
'upper' string functions, 277
Uppercase conversion, 279
User-defined functions, 203–260

argument lists, 204–210, 222–226
data hiding, 204
function functions, 240–244
global memory, 227–235
good programming practice, 248
H1 comment line, 206
M-files and, 205
MATLAB commands and functions 

for, 249
order of evaluation, 247
pass-by value scheme, 211–221
persistent memory, 235–240
preserving data between calls, 235–240
private functions, 246–247
reusable code, 204
scope of, 244–245
subfunctions, 245–246
top-down design and, 203–204
unit testing, 203
workspace behavior and, 208–210

V
varargin function, 320–324
varargout function, 323–324
Variables, 11, 22–30, 36–37, 227–228, 

263–264
arrays and, 22–25
assignment statements, 25–28
char, 15
character values, 24
complex, 263–264
data arrays, 26
double, 15
echoing values, 27
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global, 227–228
initializing, 25–30
MATLAB creation of, 11, 25
names, 23–25
numerical values, 24
subarrays and shape of, 36–37

Vectorization, 164–165, 173–174
for loops and, 164–165
logical arrays and, 173–174

Vectors, arrays as, 21

W
warning function, 222–223
which command, 16
while loops, 149–155, 169–171
Whitespace trimmed from strings, 279
whos command, 11

Windows, docking and undocking, 10–11
Workspace, 11–13, 208–210

computer memory and, 11
GUI tool for, 12–13
user-defined functions and, 208–210

Workspace Browser, 12–13
'wspace' string functions, 277

X
x- and y-axis limits, 119–122
'xdigit' string functions, 277
xor, logical exclusive OR operator, 100
xy plots, 57–58

Z
zeros function, 29–30
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