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Lost Discoveries, Dick Teresi’s innovative history of science,
explores the unheralded scientific breakthroughs
from peoples of the ancient world— Babylonians,
Egyptians, Indians, Africans, New World and Oceanic
tribes, among others—and the non-European medieval
world. They left an enormous heritage in the fields of
mathematics, astronomy, cosmology, physics, geology,
chemistry, and technology.

The mathematical foundation of Western science is
a gift from the Indians, Chinese, Arabs, Babylonians,
and Maya. The ancient Egyptians developed the
concept of the lowest common denominator, and they
developed a fraction table that modern scholars estimate
required 28,000 calculations to compile. The Babylonians
developed the first written math and used a place-value
number system. Our numerals, 0 through 9, were
invented in ancient India; the Indians also boasted
geometry, trigonometry, and a kind of calculus.

Planetary astronomy as well may have begun with
the ancient Indians, who correctly identified the relative
distances of the known planets from the sun, and knew
the moon was nearer to the earth than the sun was. The
Chinese observed, reported, dated, recorded, and inter-
preted eclipses between 1400 and 1200 B.c. Most of
the names of our stars and constellations are Arabic.
Arabs built the first observatories.

Five thousand years ago, the Sumerians said the
earth was circular. In the sixth century, a Hindu
astronomer taught that the daily rotation of the earth
on its axis provided the rising and setting of the sun.
Chinese and Arab scholars were the first to use fossils
scientifically to trace earth’s history.

Chinese alchemists realized that most physical sub-
stances were merely combinations of other substances,
which could be mixed in different proportions. Islamic
scholars are legendary for translating scientific texts of
many languages into Arabic, a tradition that began
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with alchemical books. In the eleventh century, Avi-
cenna of Persia divined that outward qualities of merals
were of little value in classification, and he stressed
internal structure, a notion anticipating Mendeleyev’s
periodic chart of elements.

[ron suspension bridges came from Kashmir, printing
from India; papermaking was from China, Tibert,
India, and Baghdad; movable type was invented by Pi
Sheng in about 1041; the Quechuan Indians of Peru
were the first to vulcanize rubber; Andean farmers were
the first to freeze-dry potatoes. European explorers
depended heavily on Indian and Filipino shipbuilders,
and collected maps and sea charts from Javanese and
Arab merchants.

The first comprehensive, authoritative, popularly
written, multicultural history of science, Lost Discoveries
fills a crucial gap in the history of science.
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“If you think, as I did, that science lowered in ancient Greece—the way Athena
sprang fully formed from the brow of Zeus—then read Dick Teresi’s Lost Discov-
eries and revel in the glnl);ﬂ expression of early genius, from Sumerian
mathemarics and ancient Indian particle physics to the sky maps of the Skidi

Pawnee and the rubber ‘factories’ of the Aztecs.”

—Dava Sobel, author of Galileos Daughterand Longitude

“Wow, Teresi's Lost Discoveries is a romp lhrtmgh the history of mathematics,
astronomy, cosmology, physics, geology, chemistry, and technology. Teresi must
have pored through tons of ancient manuscripts and scholarly compendia to
unearth a rich mine of historical achievements of'|‘lrgc|_\' non-Western civilizations
that preceded and enabled the Golden Age of Greece. For science buffs who are
curious about ‘How do we know?” and "How did we learn?’ this is a spectacular
canvas, and it illuminates the power of cultural diversity. Yes, there were peaks in
the progress of science, but today science is the only universal culture, the same in
the West, East, North, and South. Teresi’s important book helps to explain why.”

—Leon Lederman, winner of the Nobel Prize in Physics and coauthor of The God Particle
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A HISTORY OF SCIENCE
Recliscoverecl

HE most important scientific achievement in Western history is

commonly ascribed to Nicolaus Copernicus, who on his death-

bed published Concerning the Revolutions of the Heavenly Spheres.
Science historian Thomas Kuhn called the Polish-born astronomer’s
accomplishment the “Copernican Revolution.” It represented a final
break with the Middle Ages,a movement from religion to science, from
dogma to enlightened secularism. What had Copernicus done to be-
come the most important scientist of all time?

In school we learned that in the sixteenth century, Copernicus re-
formed the solar system, placing the sun, rather than the earth, at its cen-
ter, correcting the work of the second-century Greek astronomer
Ptolemy. By constructing his heliocentric system, Copernicus put up a
fire wall between the West and East, between a scientific culture and
those of magic and superstition.

Copernicus did more than switch the center of the solar system
from the earth to the sun. The switch itself is important, but mathemat-
ically trivial. Other cultures had suggested it. Two hundred years before
Pythagoras, philosophers in northern India had understood that gravi-
tation held the solar system together, and that therefore the sun, the
most massive object, had to be at its center. The ancient Greek as-
tronomer Aristarchus of Samos had put forth a heliocentric system in
the third century B.c.' The Maya had posited a heliocentric solar system
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by A.D. 1000. Copernicus’s task was greater. He had to repair the flawed
mathematics of the Ptolemaic system.

Ptolemy had problems far beyond the fact that he chose the wrong
body as the pivot point. On that, he was adhering to Aristotelian beliefs.
A workable theory of universal gravitation had yet to be discovered.
Thus hampered, Ptolemy attempted to explain mathematically what he
saw from his vantage in Alexandria: various heavenly bodies moving
around the earth. This presented problems.

Mars, for instance, while traveling across our sky, has the habit, like
other planets, of sometimes reversing its direction. What’s happening
is simple: the earth outspeeds Mars as both planets orbit the sun, like
one automobile passing another. How does one explain this in a geo-
centric universe? Ptolemy came up with the concept of epicycles, cir-
cles on top of circles. Visualize a Ferris wheel revolving around a hub.
The passenger-carrying cars are also free to rotate around axles con-
nected to the outer perimeter of the wheel. Imagine the cars constantly
rotating 360 degrees as the Ferris wheel also revolves. Viewed from the
hub, a point on the car would appear to move backward on occasion
while also moving forward with the motion of the wheel.

Ptolemy set the upper planets in a series of spheres, the most impor-
tant of which was the “deferent” sphere, which carried the epicycle.
This sphere was not concentric with the center of the earth. It moved at
a uniform speed, but that speed was not measured around its own cen-
ter, nor around the center of the earth, but around a point that Ptolemy
called the “center of the equalizer of motion,” later to be called the
“equant.”’? This point was the same distance from the center of the def-
erent as the distance of the deferent’s center from the earth, but in the
opposite direction. The result was a sphere that moved uniformly
around an axis that passed not through its own center but, rather,
through the equant.

The theory is confusing. No number of readings or constructions
will help, because Ptolemy’s scheme is physically impossible. The flaw is
called the equant problem, and it apparently eluded the Greeks. The
equant problem didn’t fool the Arabs, and during the late Middle Ages
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Islamic astronomers created a number of theorems that corrected
Ptolemy’s flaws.

Copernicus confronted the same equant problem. The birth of
Isaac Newton was a century away, so Copernicus, like Ptolemy and the
Arabs before him, had no gravitation to help him make sense of the sit-
uation. Thus, he did not immediately switch the solar system from geo-
centricity to heliocentricity. Instead, he first improved the Ptolemaic
system, putting the view of the heavens from earth on a more solid
mathematical basis. Only then did Copernicus transport the entire sys-
tem from its earth-centered base to the sun. This was a simple opera-
tion, requiring Copernicus only to reverse the direction of the last
vector connecting the earth to the sun. The rest of the math remained
the same.

It was assumed that Copernicus was able to put together this new
planetary system using available math, that the Copernican Revolution
depended on a creative new application of classical Greek works such as
Euclid’s Elements and Ptolemy’s Almagest. This belief began breaking
down in the late 1950s when several scholars, including Otto Neuge-
bauer, of Brown University; Edward Kennedy, of the American Univer-
sity of Beirut; Noel Swerdlow, of the University of Chicago; and
George Saliba, of Columbia University, reexamined Copernicus’s
mathematics.

They found that to revolutionize astronomy Copernicus needed
two theorems not developed by the ancient Greeks. Neugebauer pon-
dered this problem: did Copernicus construct these theorems himself or
did he borrow them from some non-Greek culture? Meanwhile, Ken-
nedy, working in Beirut, discovered astronomical papers written in Ara-
bic and dated before A.p. 1350. The documents contained unfamiliar
geometry. While visiting the United States, he showed them to Neuge-
bauer.

Neugebauer recognized the documents’ significance immediately.
They contained geometry identical to Copernicus’s model for lunar
motion. Kennedy’s text was written by the Damascene astronomer Ibn
al-Shatir, who died in 1375. His work contained, among other things, a
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theorem employed by Copernicus that was originally devised by an-
other Islamic astronomer, Nasir al-Din al-Tusi, who lived some three
hundred years before Copernicus.

The Tusi couple, as the theorem is now called, solves a centuries-old
problem that plagued Ptolemy and the other ancient Greek astrono-
mers: how circular motion can generate linear motion. Picture a large
sphere with a sphere half its size inside it, the smaller sphere contacting
the larger at just one point. If the large sphere rotates and the small
sphere revolves in the opposite direction at twice that speed, the Tusi
couple dictates that the original point of tangency will oscillate back
and forth along the diameter of the larger sphere. By setting the celestial
spheres properly, this theorem explained how the epicycle could move
uniformly around the equant of the deferent, and still oscillate back and
forth toward the center of the deferent. All this could now be done by
positing spheres moving uniformly around axes that passed through
their centers, thus avoiding the pitfalls of Ptolemy’s configurations. A
rough analogy is a steam-engine piston, which moves back and forth as
the wheel is turning.

A second theorem found in the Copernican system is the Urdi
lemma, after the scientist Mu’ayyad al-Din al-’Urdi, who proposed it
sometime before 1250. It simply states that if two lines of equal length
emerge from a straight line at the same angles, either internally or exter-
nally, and are connected up top with another straight line, the two hor-
izontal lines will be parallel. When the equal angles are external, all four
lines form a parallelogram. Copernicus did not include a proof of the
Urdi lemma in his work, most likely because the proof had already been
published by Mu’ayyad al-Din al-’Urdi. Columbia’s George Saliba
speculates that Copernicus didn’t credit him because Muslims were not
popular in sixteenth-century Europe.

Both the Urdi lemma and the Tusi couple are, in the words of Sa-
liba, “organically embedded within [Copernican] astronomy, so much
so that it would be inconceivable to extract them and still leave the
mathematical edifice of Copernican astronomy intact.”

Saliba emphasizes that plagiarism is not the issue here. Those who
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have been involved in a plagiarism case are probably familiar with the
standard defense: independent execution.” This is an especially powerful
defense in the sciences, in which there are “right” and “wrong” solu-
tions. If Copernicus’s theorem looks like al-Tusi’s, perhaps that’s because
it’s the one correct answer to the problem.

Map publishers sometimes insert fictitious islands or other features
into their maps to trap plagiarists. Did Copernicus borrow al-Tusi’s
theorem without credit? There’s no smoking gun, but it is suspicious
that Copernicus’s math contains arbitrary details that are identical to
al-Tusi’s. Any geometric theorem has the various points labeled with
letters or numbers, at the discretion of the originator. The order and
choice of symbols is arbitrary. The German science historian Willy
Hartner noted that the geometric points used by Copernicus were
identical to al-Tusi’s original notation. That is, the point labeled with
the symbol for alif by al-Tusi was marked A by Copernicus. The Arabic
ba was marked B, and so on, each Copernican label the phonetic equiv-
alent of the Arabic. Not just some of the labels were the same—almost all
were identical.

There was one exception. The point designating the center of the
smaller circle was marked as f by Copernicus. It was a z in Tusi’s dia-
gram. In Arabic script, however, a z in that hand could be easily mis-
taken for an f.

Johannes Kepler, who stretched Copernicus’s circular planetary or-
bits into ellipses later in the century, wondered why Copernicus had not
included a proof for his second “new” theorem, which was in fact the
Urdi lemma. The obvious answer has eluded most historians because it
is too damaging to our Western pride to accept: the new math in the
Copernican Revolution arose first in Islamic, not European minds.
From a scientific point of view, it’s not important whether Copernicus
was a plagiarist. The evidence is circumstantial, and certainly he could
have invented the theorems on his own. There is no doubt, however,
that two Arab astronomers beat him to the punch.

Western science is our finest accomplishment. Does any other cul-
ture, past or present, boast a scientific edifice equal to that built by
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Galileo, Newton, Leibniz, Lavoisier, Dalton, Faraday, Planck, Ruther-
ford, Einstein, Heisenberg, Pauli, Watson, and Crick? Is there anything
in the non-Western past to compare to present-day molecular biology,
particle physics, chemistry, geology, or technology? There’ little debate.
The only question is where this science came from. Who contributed
to it? The consensus is that science is almost entirely Western in origin.
By Western we mean ancient and Hellenistic Greece, and Europe from
the Renaissance to the present. Greece is traditionally considered Euro-
pean, as opposed to being part of Mediterranean culture, which would
include its neighbors in Africa. For the purposes of this book, Western
means Europe, Greece, and post-Columbian North America. Non-
Western means, generally, everywhere else, including the Americas of the
Amerindians before Columbus. Non-Western thus takes in considerable
area, and the prevailing opinion is that modern science owes little to the
peoples of these lands.

The short form of the hypothesis is this: science was born in ancient
Greece around 600 B.c. and flourished for a few hundred years, until
about 146 B.c., when the Greeks gave way to the Romans. At this time
science stopped dead in its tracks, and it remained dormant until resur-
rected during the Renaissance in Europe around 1500. This is what’s
known as the “Greek miracle.” The hypothesis assumes that the people
who occupied India, Egypt, Mesopotamia, sub-Saharan Africa, China,
the Americas, and elsewhere prior to 600 B.c. conducted no science.
They discovered fire, then called it quits, waiting for Thales of Miletus,
Pythagoras, Democritus, and Aristotle to invent science in the Aegean.

As amazing as the Greek miracle is the notion that for over fifteen
hundred years, from the end of the Greek period to the time of Coper-
nicus, no science was conducted. The same people who stood idly by
while the Greeks invented science supposedly demonstrated no interest
or skill in continuing the work of Archimedes, Euclid, or Apollonius.

The hypothesis that science sprang ab ovo on Greek soil, then dis-
appeared until the Renaissance seems ridiculous when written out suc-
cinctly. It’s a relatively new theory, first fashioned in Germany about 150
years ago, and has become subtly embedded in our educational con-
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sciousness. The only concession made to non-European cultures is to
Islam. The story goes that the Arabs kept Greek culture, and its science,
alive through the Middle Ages. They acted as scribes, translators, and
caretakers, with, apparently, no thought of creating their own science.

In fact, Islamic scholars admired and preserved Greek math and sci-
ence, and served as the conduit for the science of many non-Western
cultures, in addition to constructing their own impressive edifice. West-
ern science is what it is because it successfully built upon the best ideas,
data, and even equipment from other cultures. The Babylonians, for ex-
ample, developed the Pythagorean theorem (the sum of the squares of
the two perpendicular sides of a right triangle is equal to the square of
the hypotenuse) at least fifteen hundred years before Pythagoras was
born. The Chinese mathematician Liu Hui calculated a value for pi
(3.1416) in 200 A.D. that remained the most accurate estimation for a
thousand years. Our numerals O through 9 were invented in ancient
India, the Gwalior numerals of A.D. 500 being almost indistinguishable
from modern Western numerals. Algebra is an Arab word, meaning
“compulsion,” as in compelling the unknown x to assume a numerical
value. (One traditional translation, that algebra means “bone setting,” is
colorful but incorrect.)*

The Chinese were observing, reporting, and dating eclipses be-
tween 1400 and 1200 B.c. The Venus Tablets of Ammizaduga record
the positions of Venus in 1800 B.c. during the reign of the Babylonian
king. Al-Mamum, an Arabian caliph, built an observatory so his as-
tronomers could double-check most of the Greek astronomical param-
eters, thus giving us more accurate values for precession, inclination of
the ecliptic, and the like. In 829 his quadrants and sextants were larger
than those built by Tycho Brahe in Europe more than seven centuries
later.

Twenty-four centuries before Isaac Newton, the Hindu Rig-Veda
asserted that gravitation held the universe together, though the Hindu
hypothesis was far less rigorous than Newton’s. The Sanskrit-speaking
Aryans subscribed to the idea of a spherical earth in an era when the
Greeks believed in a flat one. The Indians of the fifth century A.D.
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somehow calculated the age of the earth as 4.3 billion years; scientists in
nineteenth-century England were convinced it was 100 million years.
(The modern estimate is 4.6 billion years.) Chinese scholars in the
fourth century A.p.—like Arabs in the thirteenth century and the
Papuans of New Guinea later on—routinely used fossils to study the his-
tory of the planet; yet at Oxford University in the seventeenth century
some faculty members continued to teach that fossils were “false clues
sown by the devil” to deceive man. Quantitative chemical analyses set
down in the K’ao kung chi, an eleventh-century B.c. Chinese text, are
never more than 5 percent off when compared to modern figures.

Mohist (Chinese) physicists in the third century B.c. stated, “The
cessation of motion is due to the opposing force. . . . If there is no op-
posing force . . . the motion will never stop. This is as true as that an ox
is not a horse.” It would be two thousand years before Newton would
set down his first law of motion in more prosaic terms. The Shu-Ching
(circa 2200 B.c.) stated that matter was composed of distinct separate
elements seventeen centuries before Empedocles made the same obser-
vation, and hypothesized that sunbeams were made of particles long
before Albert Einstein and Max Planck posited the ideas of photons
and quanta. Big bang? The creation myths of Egypt, India, Meso-
potamia, China, and Central America all begin with a “great cosmic
copulation”—not quite the same as a big bang, but more poetic.

As for practical matters, Francis Bacon said that three inventions—
gunpowder, the magnetic compass, and paper and printing—marked
the beginning of the modern world. All three inventions came from
China. The Incas of the Andes were the first to vulcanize rubber, and
they discovered that quinine was an antidote for the malaria that spread
among them. The Chinese made antibiotics from soybean curd twenty-
five hundred years ago.

THE TEACHING OF multicultural science in the 1980s had hardly begun
when it was met by a powerful backlash, much of it justified. I was part
of the backlash, having accepted in the early 1990s an assignment to
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write an article about faulty multicultural science being taught in
schools. While there was plenty to expose, the most egregious program
was called the Portland African-American Baseline Essays, developed
by the Multnomah County, Oregon, school board.

The scientific portion of the curriculum was a disaster. It cited “ev-
idence of the use of gliders in ancient Egypt from 2500 B.c. to 1500
B.C.,” adding that the Egyptians used their early planes for “travel, expe-
ditions, and recreation.” The Portland essays speculated that these
gliders were made from papyrus and glue. The evidence cited for this
ancient Egyptian air force was the discovery in 1898 of a birdlike object
made of sycamore wood. It sat in a box of other birdlike objects in the
Cairo Museum’s basement until 1969, when an archaeologist and his
flight-engineer brother concluded that the object was a model glider
with a distinctive resemblance to an American Hercules transport air-
craft because of its “reverse dihedral wing.” The Portland essays insisted
that this fourteen-centimeter-long object was a scale model of full-sized
gliders that once filled the skies over the Great Pyramids, which, one
can therefore assume, served as platforms for ancient air-traffic con-
trollers.’

The Portland essays also claimed that the ancient Egyptians and
Mesopotamians knew how to make batteries. Clay pots found in 1962
in Baghdad contained five-inch-long cylindrical sheet-copper cores
with a lead-tin alloy at the bottom. Inside the copper tube was an iron
or bronze rod thought to have been surrounded by a solution of sulfate,
vinegar, acetic acid, or citric acid. A General Electric laboratory demon-
strated that ten such batteries connected in series could produce up to
two volts. Were these really batteries? It’s possible, though the Portland
essays do not explain how it was known that acid was used in the pots.
Nor do we know to what use the batteries were put.

The Portland essays also touted the Egyptians as masters of psi:
precognition, psychokinesis, and remote viewing. The essays make a
distinction between magic, which they disregard, and psi, or psychoen-
ergetics, which they describe as being “science.” We will not take time
here to discuss the Egyptians’ alleged accomplishments in psychoener-
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getics.® One can only wonder why this ancient civilization, with air-
planes and telekinesis at its disposal, bothered with swords and spears to
fight its battles.

Some multiculturists claimed that eleventh-century Chinese war-
riors were armed with machine guns, and that the Incas frolicked above
the Nasca plains in hot-air balloons. Certain Afrocentric scholars have
made some dubious claims: that the Greek mathematician Euclid was
black, for example, and that the Olmec heads, huge sculpted heads with
Negroid features found in Mexico, are proof that Nubians visited the
Americas.

In its issue of April 18,1999, the New York Times Magazine chose the
best inventions, stories, and ideas of the previous one thousand years.
Richard Powers wrote that the most important scientific event of the
last millennium occurred at its very beginning, around A.p. 1000, when
the Arab scientist Alhazen solved a centuries-old problem: how does vi-
sion work? Alhazen, who was born as Abu Ali al-Hasan ibn al-Haytham
in Basra, in what is now Iraq, dispatched the “ray theory,” which had
been around since ancient Greece. This theory, espoused by Euclid,
Ptolemy, and others, held that the eye sent out a ray to the object in
order to “see” it. The ray theory seems ridiculous today because we
know the speed of light and how far away the stars are. If our eyes had to
send out rays, we'd be waiting years before we could see even the near-
est stars. _

In 1000, the ray theory seemed reasonable. Alhazen conducted a
simple experiment: he and others looked into the sun;it hurt. Clearly, if
there were rays, they were coming into the eye, not going out of it. He
developed a comprehensive theory of vision that dominated optics in
Europe until 1610, when Kepler improved upon it. Alhazen may not
have been smarter than Euclid and Ptolemy, but he worked quite differ-
ently. The latter two followed a classic Greek method of announcing a
set of axioms, then reasoning from them. Alhazen began with his obser-
vations of and experiments with light, then reasoned toward a theory.’
Ptolemy and Euclid also collected measurements and made observa-
tions, but the Greek ideal made the data subservient to the precept.

10
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Powers was reaching, perhaps, when he stated that Alhazen’s challenge
of the old optical theory “has led to the certainties of electron mi-
croscopy, retinal surgery, and robotic vision,” but he was correct in stat-
ing that the
rejection of concept in favor of evidence” began not in Europe but in

3

‘vesting of authority in experiment” and the “skeptical

the Islamic world.?

For some, the failure to acknowledge the successes of non-Western
cultures derives not just from ignorance but from a conspiracy. Martin
Bernal, a professor of government studies at Cornell University, is the
author of Black Athena, a series of books that challenges our Greek-
rooted view of history. Bernal believes that the roots of Greek civiliza-
tion are to be found in Egypt and, to a lesser extent, in the Levant—the
Near East of the Phoenicians and the Canaanites. Using linguistic
analysis, he determined that 20 to 25 percent of the Greek vocabulary
derived from the Egyptian. The roots of European civilization are Afro-
Asiatic. The Greeks knew this and wrote about it, telling of Egyptian
colonies in Greece during the Bronze and even the Iron Ages. The great
Greek wise men, including Pythagoras, Democritus, and even Plato,
traveled to Egypt and brought back Egyptian ideas and knowledge. (We
have Democritus’s own writings to acknowledge that his math skills
were honed in the shadow of the pyramids.) The Greeks acknowledged
their debt to Egypt. This “ancient model” held that the Greek culture
had arisen as the result of colonization, in around 1500 B.c., by Egyp-
tians and Phoenicians, and that the Greeks continued to borrow heavily
from Near Eastern cultures. It was the conventional wisdom among
Greeks in the classical and Hellenistic ages. This ancient model, writes
Bernal, was also embraced by Europeans from the R enaissance through
the nineteenth century. The Europeans, says Bernal, were enamored of
Egypt.

For several centuries, Europe believed that Egypt was the cradle of
civilization. This began to change in the eighteenth century when
Christian apologists worried about Egyptian pantheism, and ideas of
racial purity began taking hold among Locke, Hume, and other English
thinkers. This led to the “Aryan model” in the first half of the nine-
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teenth century. This view denied the existence of Egyptian settlements.
Later, as anti-Semitism grew during the late nineteenth century, propo-
nents of the Aryan model also denied Phoenician cultural influences.

The Aryan model was refined throughout the years to establish
ancient Greece as distinctly European. Accordingly, there had been an
invasion from the north—unreported in ancient tradition—that had
overwhelmed the local Aegean or pre-Hellenic culture. Thus, Greek
civilization was now seen as the result of the mixture of the Indo-
European-speaking Hellenes and their indigenous subjects. It is this
Aryan model that most of us were taught during the twentieth century.
Bernal advocates a return to a modified ancient model, which is sup-
ported by the historian Herodotus and other ancient Greeks.

IN 115 JANUARY 14, 2000, issue, on the occasion of the beginning of the
third millennium, Science magazine, in conjunction with the American
Association for the Advancement of Science (AAAS), published a time
line, called “Pathways of Discovery,” that detailed ninety-six of the most
important scientific achievements in recorded history. The Science time
line included some sophisticated choices that many educators would
have missed: William Ferrel’s 1856 work on ocean winds and currents,
the 1838-39 cell theory of Matthias Schleiden and Theodor Schwann,
and William Gilbert’s 1600 theory that the earth behaves like a huge
magnet.

Of those ninety-six achievements, only two were attributed to non-
white, non-Western scientists: the invention of zero in India in the early
centuries of the common era and the astronomical observations of
Maya and Hindus in A.p. 1000. Even these two accomplishments were
muted by the editors of Science. The Indians were given credit only for
creating the “symbol for zero,” rather than the concept itself. The
Mayan and Hindu “skywatchers” (the word astronomer was not used)
made their observations, according to the journal, for “agricultural and
religious purposes” only.

Most interesting is the first entry in the time line: “Prior to 600 B.C.,
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Prescientific Era.” Science proclaimed that during this time, before the
sixth-century B.C. pre-Socratic philosophers, “Phenomena [were] ex-
plained within contexts of magic, religion, and experience.” Science thus
ignored more than two millennia of history, during which time the
Babylonians invented the abacus and algebra, the Sumerians recorded
the phases of Venus, the Indians proposed an atomic theory, the Chinese
invented quantitative chemical analysis, and the Egyptians built pyra-
mids. In addition, Scienice gave Johannes Gutenberg credit for the print-
ing press in 1454, though it was invented at least two centuries earlier by
the Chinese and Koreans. An essential precursor to the printing press is
paper, which was invented in China and did not reach Europe until the
1300s.° Science cited Francis Bacon’s work as one of its ninety-six
achievements, yet ignored his opinion that inventions from China cre-
ated the modern world.

Pre-Columbian achievements in the New World have long eluded
traditionalists. The Maya invented zero about the same time as the Indi-
ans, and practiced a math and astronomy far beyond that of medieval
Europe. Native Americans built pyramids and other structures in the
American Midwest larger than anything then in Europe.

MaNy TRADITIONAL Western historians believe that little original sci-
ence was conducted after the collapse of the Greek civilization; that the
Arabs copied the work of Euclid, Ptolemy, Apollonius, et al.; and that
eventually Europe recouped its scientific heritage from the Islamic
world. During the Middle Ages, Arab scholars sought out Greek manu-
scripts and set up centers of learning and translation at Jund-i-Shapur in
Persia and Baghdad in Iraq. Western historians don’t often like to admit
that these same scholars also sought manuscripts from China and India,
and created their own science.

Scholarship moved to Cairo and then to Cérdoba and Toledo in
Spain as the Muslim empire expanded into Europe. When the Christians
recaptured Toledo in the twelfth century, European scholars descended
upon the documents.” They were interested in all Arabic documents—
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translations of Greek works but also original Arabic writings and Arabic
translations of other cultures’ manuscripts. Much of the scientific knowl-
edge of the ancient world—Greece as well as Babylonia, Egypt, India,
and China—was funneled to the West through Spain. George Saliba has
found that there was an intense traffic in Arabic manuscripts between
Damascus and Padua during the early 1500s, and more and more scien-
tific documents, written in Arabic, are being rediscovered in European
libraries. Saliba has documented that many European scholars in the Re-
naissance were literate in Arabic. They read the Islamic papers and shared
the information with their less literate colleagues."

One example is Copernicus, who studied at Padua. Saliba points
out that if Copernicus did borrow from Islamic astronomers—and the
jury is still out—nhe had good reason not to acknowledge his intellectual
debt. It would have been impolitic, says Saliba, to mention Islamic sci-
ence when the Ottoman Empire was at the door of Europe. Another
European scholar who studied at Padua was William Harvey, who es-
tablished the geometry of the human circulatory system in 1629, an-
other landmark in science according to the AAAS’s Science time line. A
1241 Arab document, notes Saliba, lays out the same geometry, includ-
ing the crucial assertion that the blood must first travel through the
lungs before passing through the heart, contrary to the opinion of the
ancient Greek physician Galen and past medical scholarship.

Historian Glen Bowersock of the Institute for Advanced Study
writes that “the classical antecedents of western civilization have long
served to justify the study of ancient Greece and Rome,” but he admits
that “the porousness of Greek culture and the parallels to its achieve-
ments in other cultures have never been a secret. . . . The Greeks did
not emerge, like Athena from the head of Zeus, fully equipped with
their arsenal of culture. . . . An expression like ‘the Greek miracle’ was a
catchy phrase for great drama, heroic statues and the Parthenon, but all
this had its historical context. For the Greeks themselves, the context
was Phoenicia and Egypt.”’ "

The AAAS and Science magazine, in their “Pathways of Discovery”
time line, acknowledge that from the ninth to the fifteenth centuries,
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“The flow of science and technology is mostly into Europe from Islam
and China” (italics theirs). Yet Science reports that the contributions of
Islam and China are among those events that “represent the countless
twists, turns, ironies, contradictions, tragedies, and other unkempt his-
torical details that have synthesized into the far more complex and mul-
titextured reality of the scientific adventure.” Other such events they list
are Isaac Newton’s practice of alchemy, the false discovery of “N-rays,”
and the failure of geologists to accept the theory of continental drift.

This shall be a book of “unkempt historical details”—a tale of the
non-Western roots of science. I began to write with the purpose of
showing that the pursuit of evidence of nonwhite science is a fruitless
endeavor. I felt that it was only responsible, however, to attempt to find
what meager legitimate non-European science might exist. Six years
later, I was still finding examples of ancient and medieval non-Western
science that equaled and often surpassed ancient Greek learning.

My embarrassment at having undertaken an assignment with the
assumption that non-Europeans contributed little to science has been
overtaken by the pleasure of discovering mountains of unappreciated
human industry, four thousand years of scientific discoveries by peoples
I had been taught to disregard.

There is no good definition of science. The AAAS, for example,
does not have one. After many trials, the American Physical Society (for
physicists) finally decided upon a definition. The APS found that if the
definition was too broad, pseudosciences like astrology could sneak in;
too tight, and things such as string theory, evolutionary biology, and
even astronomy could be excluded.

For the purposes of this book, science is a logical and systematic
study of nature and the physical world. It usually involves both experi-
ment and theory. Those theories normally arise from or are verified by
experiment. That’s a bit squishy, but most definitions of science are. I put
“usually” in italics because if we absolutely require experiment, we
might have to exclude astronomy, the oldest science, since one cannot
re-create new stars or galaxies in the laboratory or reenact the forma-
tion of the solar system. Yet the observations in astronomy are often as
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good as experiment. Halley’s comet returns with stunning regularity;
the sun comes up each morning.

The philosopher Karl Popper introduced the requisite of “falsifica-
tion.” Science is falsifiable; religion is not. A scientific theory or law can
never be proved absolutely, but it should be able to be falsified. For ex-
ample, Newton said that force equals mass times acceleration (F = ma).
We cannot prove that every object in every galaxy obeys this law or that
all objects will always obey this law. We can prove it wrong, however, in
an experiment. (And some of Newton’s concepts have been proved
wrong, by Albert Einstein and by quantum physicists.) So scientists
must come up only with theories that can be falsified, as Popper put it.
They must be testable. There is no such requirement for religion.

All this said, there remain problems with such a definition. Astrol-
ogy, for instance, is falsifiable. If your astrologer says you will meet a
handsome stranger on Tuesday, you can test this. On the other hand, su-
perstring theory, posited by some physicists as “the theory of every-
thing,” would require a particle accelerator ten light-years in diameter
to falsify it. Most of evolutionary biology cannot be verified experi-
mentally either. One cannot reenact the evolution of a new species or
re-create the dinosaurs beginning with a one-celled animal. If we fol-
low the falsification rule too closely, we have to include astrology and
exclude evolutionary biology, string theory, and maybe even astronomy.

So let’s not take falsification too seriously. Otherwise we might have
to exclude all science practiced by the ancient Greeks. The Greeks not
only avoided experiments, they abhored them, trusting reason over em-
pirical evidence.

We will confine ourselves to the hardest sciences here: physics,
astronomy, cosmology, geology, chemistry, and technology. We shall
include math also, as it is indispensable to science and inextricably en-
twined with it. We will leave the softer disciplines—anthropology,
agronomy, psychology, medicine, and the like—for another time.

One thing we won’t consider is the pragmatism of the science or
the motivation of the scientist. These have often been used to discredit
non-Western science: yes, it’s good work, but it wasn’t “pure”; or, con-
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versely, it wasn’t practical. As for motivation, many scientific discoveries
were driven by religion: Arab mathematicians improved algebra, in part,
to help facilitate Islamic inheritance laws, and Vedic Indians solved
square roots to build sacrificial altars of the proper size. This was science
in the service of religion, but science nonetheless.

Stigler’s law of eponymy, formulated by statistician Stephen Stigler,
states that no scientific discovery is named after its original discoverer.
Journalist Jim Holt points out that Stigler’s law itself is self-confirming,
given that Stigler admits that it was discovered by someone else: Robert
K. Merton, a sociologist of science."

The most famous Stiglerism is the Pythagorean theorem, which
holds that the sum of the squares of the perpendicular sides of a right
triangle equals the square of the hypotenuse. Or, in math parlance,
a’ + b2 = ¢?, where a and b are the sides and c is the hypotenuse. Jacob
Bronowski writes:

To this day, the theorem of Pythagoras remains the most impor-
tant single theorem in the whole of mathematics. That seems a
bold and extraordinary thing to say, yet it is not extravagant; be-
cause what Pythagoras established is a fundamental characteri-
sation of the space in which we move,and it is the first time that
it is translated into numbers. And the exact fit of the numbers
describes the exact laws that bind the universe. In fact, the num-
bers that compose right-angled triangles have been proposed as
messages which we might send out to planets in other star sys-
tems as a test for the existence of rational life there.

The only problem is that Pythagoras is not the first mathematician
to come up with the theorem. By Bronowski’s own admission, the Indi-
ans, Egyptians, and Babylonians used “Pythagorean triplets” in order to
determine right angles when constructing buildings. A Pythagorean
triplet is a set of three numbers that describes the sides of a right trian-
gle. The most common tripletis3:4:5(3%>+ 4= 5%o0r9 + 16 = 25).
Others you probably learned in high school include 5 : 12: 13,12 : 16 : 20,
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and 8 : 15 : 17. Pythagoras invented his theorem around 550 B.c. The
Babylonians, Bronowski concedes, had cataloged perhaps hundreds of
triplets by 2000 B.c., long before Pythagoras. One of the triplets the
Babylonians found is the enormous 3,367 : 3,456 : 4,825.

Nevertheless, Bronowski dismisses Babylonian triplets (as well as
Egyptian and Indian triplets) as being merely “empirical.” That is, he
believes that they somehow arrived at triplets (or triples) such as
3,367 : 3,456 : 4,825 by trial and error. Yet there is considerable evi-
dence that the Babylonians used various algebraic techniques derived
from a? + b? = ¢? to generate Pythagorean triplets. “There’s no way
even God could come up with all Pythagorean triples by trial and
error,” says mathematician Robert Kaplan.

What Pythagoras arguably did that impressed Bronowski and
others—and justifiably so—was to construct a geometric proof of the
theorem. The concept of the proof as more important than the theo-
rem itself was promulgated two centuries later by Euclid. Thus, non-
Western mathematics has been viewed as second-rate because it is
empirically based rather than proof based. Both methods are useful. The
Euclidian geometry most of us learned is axiomatic. It begins with an
axiom, a law assumed to be true, and deduces theorems by reasoning
downward. It is deductive and assumptive. Centuries later, Alhazen in
the East and, notably, Galileo in the West helped popularize an induc-
tive, empirical method for science, much as the Babylonians, Egyptians,
and Indians had used. One begins not with assumptions but with data
and measurements, and then reasons upward to overarching truths."
Most of what we call science today is empirical. When Isaac Newton
collected data on the passage of comets, on the moons of Jupiter and
Saturn,and on the tides in the estuary of the Thames River to construct
his great syntheses in Principia, he was being empirical and inductive.

Math is slightly different, but many mathematicians see a need to in-
clude both proof based and empirically based work. A case in point
in the present century is the great Indian mathematician Srinivasa
Ramanujan, whose notebooks contain the germs of superstring theory
and whose work has been used to evaluate pi to millions of digits past
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the decimal point. According to his wife, Ramanujan did his calcula-
tions on a handheld slate, then transferred the final results to his note-
books, erasing the slate; thus, we have few clues as to how he arrived at
these equations, yet no one doubts that they are true.”

According to one historical account, Pythagoras brought back his
eponymous theorem from his travels to the East and founded the tradi-
tion of proof because his less numerate countrymen refused to accept
the theorem. Consider, too, the naming of Fermat’s last theorem, the
work of the Frenchman Pierre de Fermat in the seventeenth century.
The last theorem is a remote derivation from the Pythagorean theorem,
but Fermat neglected to leave us a proof—at least not one we could
find. Yet for more than three hundred years, Fermat’s last theorem has
worked. A few years ago, Andrew Wile, of Princeton University, finally
devised a proof. Still, we have yet to hear an outcry to change the name
of Fermat’s last theorem to Wile’s first theorem. (It is an in-joke among
mathematicians that the correct name is Fermat’s last conjecture, a con-
jecture being an unproved theorem.)

In 1915, about the time, according to Otto Neugebauer, that the
Germans were rewriting their encyclopedias to edit out the Phoeni-
cians from Greek history, the English science historian G. R. Kaye ad-
monished “western investigators in the history of knowledge” to look
for “traces of Greek influence” because the “achievements of the
Greeks” form “the most wonderful chapters in the history of civilisa-
tion.” "7 Our pop science historians—Bronowski, Daniel Boorstin, Carl
Sagan, et al.—have certainly been faithful to that directive. Western his-
torians have also criticized past non-Western scientists, such as the Maya
and Egyptians, for their strange religious beliefs, implying that acute re-
ligiosity disqualifies the work of a scientist. Then again, when Pythago-
ras finally proved “his” theorem, he offered a hundred oxen to the
Muses in thanks."

Science is science. It can be practical or impractical. The Danish
physicist Niels Bohr owned a cabin retreat, to which he invited his sci-
entist friends for long intense discussions about the meaning of quan-
tum physics. Over the door of the cabin was hung a horseshoe on a nail.
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His guests often viewed this with a roll of the eyes. Finally, one screwed
up the courage to say, “Come on now, Niels. You don’t believe in this
nonsense, do you?”

According to legend, Bohr replied, “That’s the beauty of it. It works
whether I believe in it or not.” For our purposes, science embraces those
facts about the physical world that work . . . whether we believe in
them or not.
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MATHEMATICS
The Language ofScience

HE Mark’s Meadow School is a public elementary school in

Amberst, Massachusetts, in the western region of the state.

Located across North Pleasant Street from the University of
Massachusetts (UMass), it has served as a laboratory for the university’s
school of education. Education majors can sit in a darkened, elevated
corridor and secretly observe the students through two-way mirrors in
the ceiling while eavesdropping through the use of a hidden sound sys-
tem. In the future, they may want to listen more carefully during math
lessons.

Recently I took a group of Mark’s Meadow fourth graders to the
local mall, where we stopped to eat at a Taco Bell. The kids read the
menu and started laughing. The joke was this: there were three sizes of
drinks—small, medium, and large; twelve ounces, sixteen ounces, and
twenty ounces—and three prices, $1.19, $1.49, and $1.79. The kids
were laughing at the sign beneath the prices: UNLIMITED REFILLS!

Then a group of college students wearing UMass sweatshirts joined
the line. They studied the sign. “Hey, let’s get the large drinks,” said one.

“Yeah,” said another. “Then we’ll really clean up on the unlimited
refills.”

What the fourth graders understood that the college kids did not is
the concept known as “infinite sets.” In the above case, one infinite set is
equal to another. Take a ruler and cut it into infinitesimally small seg-
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ments from the 1-inch line to the 2-inch line. There would be an
infinite number of slices. Do the same with the ruler from the 2-inch
line to the 12-inch line. Will there be ten times as many slices? No. If
we’re dealing with rational numbers, infinity is infinity. The same prin-
ciple operates with our soft drinks: twelve, sixteen, and twenty times in-
finity all equal infinity. (In other cases, however, infinite sets are not
equal.)’

The concept of infinite sets of rational numbers was grasped by
Jaina (Indian) thinkers in the sixth century B.c. and by Alhazen in the
tenth century A.D. It entered Europe nearly a thousand years later, when
the nineteenth-century German mathematician Georg Cantor refined
and categorized infinite sets. Here in the twenty-first century, the idea
has crossed the Atlantic to the Mark’s Meadow School. It has yet to
make the giant leap across North Pleasant Street to the University of
Massachusetts.

UMass students shouldn’t feel too bad; Galileo was stumped by the
problem in the 1600s. He envisioned a row of all integers, starting at 1
and going off to infinity. Then he envisioned the squares of those same
integers, starting at 1? and going off to infinity. He realized that if he
placed the squares side by side with the set of all integers (1% next to 1,
2% next to 2, 32 next to 3, and so on), he would have enough squares to
pair with all the numbers in the integers column. How is this possible?
Galileo decided to put the problem aside and return to something
easier—astronomy.

IMAGINE YOURSELF as a German merchant living in the fifteenth cen-
tury. You want your son to learn enough math for a career in com-
merce. A professor you know suggests a good German university where
your son will be taught addition and subtraction. But, you ask, what
about multiplication and division? The professor explains that study of
such “advanced” mathematics is not available locally; your son must
travel to Italy, the only European country in which such operations can
be learned.
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“Reckoning schools,” in which arithmetical operations using Indo-
Arabic numerals were taught, had begun to spring up in Italy.? However,
what your son would most likely find at his Italian university would be
a sort of multiplication that hardly resembles what we call multiplica-
tion today. In medieval Europe, multiplication was simply a succession
of doublings. For example, we multiply 9 times 11 in a simple operation,
like so:

11
X 9

99

But in Italy in the Middle Ages,a mathematician would commonly en-
vision the multiplication of a number by 9 as eight doublings and a sin-
gle. Let’s multiply 11 by 9, medieval style:

11 times 1 equals 11 (1x) <
11 doubled equals 22 (2%)
22 doubled equals 44 (4x)
44 doubled equals 88 8x) «<

The medieval scholar looks at the numbers in the right-hand column to
find a combination of myltiples that add up to the desired multiplier, in
this case 1X and 8X to equal 9. Then the mathematician adds the two
products, 11 and 88, to get the answer, 99.

Now try something a bit more complicated, 46 X 13. Today we do
it like this:

46
X 13

138
46

598
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The medieval European mathematician might do it like this:

46 times 1 equals 46 (1x) =<
46 doubled equals 92 (2X) <
92 doubled equals 184 (4x)

184 doubled equals 368 (8x) <

Again, he finds the combination of doublings that add up to 13, the ones
indicated above, 1X, 4X, and 8X. Then he adds up the three resultant
sums to solve the problem: 46 + 184 + 368 = 598. Remember, all this
must be done with roman numerals. (Keep the above technique in
mind. We will encounter it again.) Similarly, division was a tedious
process of “halving” the divisor until one arrived at the divider, or close
to it.’

Meanwhile, in India about a thousand years earlier, mathematicians
were doing multiplication and division the “modern” way, as well as al-
gebra and even a crude form of calculus.

Now, imagine yourself again in fifteenth-century Italy. You are, let’s
say, a bookseller. You need to keep track of sales and inventory. You need
to pay your suppliers, total your sales, calculate your overhead, deter-
mine your profit or loss. How would you do this? Certainly not with
roman numerals; even the simplest arithmetic using roman (or Greek)
numerals was beyond all but advanced scholars. Furthermore, there is no
roman numeral for zero; in fact, there is no concept of zero, of nothing-
ness, in European math of this era. How do you get your accounts to
balance?

Like other merchants, you keep a secret set of books, in the gobar, or
Gwalior, numerals, the so-called Hindu-Arabic numerals, which date
from approximately first- to eighth-century A.p. India. They look
something like this: 0, 1,2, 3,4,5,6,7,8,9. You would keep these books
secret because in 1348 the ecclesiastical authorities of the University of
Padua prohibited the use of “ciphers” in the price lists of books, ruling
that prices must be stated in “plain” letters. A century earlier, a Floren-
tine edict had forbidden bankers to use the “infidel” symbols.*
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Numbers were dangerous; at least these Indian numbers were. They
were contraband. The zero was the most unholy: a symbol for nothing-
ness, 2 Hindu concept, influenced by Buddhism and transplanted to
Christian Europe. It became a secret sign, a signal between fellow trav-
elers. Sunyata was a well-established Buddhist practice of emptying the
mind of all impressions, dating as far back as about 300 B.c.* The San-
skrit term for zero was sunya, meaning “empty” or “blank.” Flashing a
zero to another merchant let him know that you were a user of Hindu-
Arabic numerals. In many principalities, Arabic numerals were banned
from official documents; in others, the numbers were prohibited alto-
gether. Math was sometimes exported to the West by “bootleggers” in
Hindu-Arabic numerals. There is plentiful evidence of such illicit num-
ber use in thirteenth-century archives in Italy, where merchants used
Gwalior numbers as a secret code.®

Imagine yourself an out-of-work mathematician in Italy in the late
Middle Ages. How could you support yourself? Assuming you could do
multiplication and long division, there was an obvious answer: you
could become an itinerant math performer. Traveling from town to
town, you would set up in the village square and perform “magic” tricks
for the public. Multiplying 27 by 14 was considered as entertaining in
that era as sword swallowing or juggling, and fewer people could do it.
The public would toss coins in your cup. You would count your take at
the end of each performance—secretly using Hindu-Arabic numerals,
of course.” Or you could find employment in one of Italy’s new reck-
oning schools.

THere 15 NO good definition of mathematics. We will not improve
upon that situation here. As laymen, we know that math involves num-
bers, symbols, and logic and includes things such as arithmetic, algebra,
geometry, trigonometry, and calculus. Professionals don’t do much bet-
ter in defining it.

University of Manchester (England) mathematician George Ghe-
verghese Joseph calls math “a worldwide language with a particular
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kind of logical structure.” He goes on to say that it “contains a body of
knowledge relating to number and space, and prescribes a set of meth-
ods for reaching conclusions about the physical world.”® Physicists
might take issue with the last statement, arguing that journals of theo-
retical physics are filled with lovely math that says little about the phys-
ical world.

Harvard University’s Barry Mazur, despite being a mathematician
for more than forty years, declined to give a definition. Mathematician
Robert Kaplan calls math “an activity about activity” Pressed further,
Kaplan came up with a tantalizing morsel. “Math,” he said, “describes
what generalizes.” For example, the commandment “Thou shalt not
kill” is not a generalization. It allows killing in self-defense or during
wartime. Math deals with generalizations, universal truths such as the
Pythagorean theorem.

People sometimes try to fool us. Economists and psychologists, for
example, fill their papers with curves, numbers, and equations. It looks
like math, but it usually isn’t. For example, economists use an equation
called “the utility function” to explain why people buy home insurance
even though the insurance companies are virtually guaranteed to profit.
The function is expressed in curves and numbers. It doesn’t always
work; it predicts, for example, that people won’t gamble or play lotter-
ies.” Economists blame the breakdown of the utility function on peo-
ple’s foolishness. Math describes what can be generalized, not human
behavior.

The ancient Egyptians had no word for mathematics. Our primary
source for Egyptian math is a school textbook called the Ahmes (or
Rhind) Papyrus. (Non-Western scholars prefer to call the papyrus
Ahmes, after the scribe who composed it; Western scholars prefer
Rhind, after the British collector who acquired it.)* Its title is The Right
Method for Entering into Things, for Knowing Everything That Is, Every Ob-
scurity . . . Every Secret. It’s as good a definition as any.

Math describes the fall of rocks and the orbits of planets, and it is a
common conceit among scientists to say that “math is the language of
nature.” This is unlikely. “I don’t think nature speaks,” says Mazur. “We
speak.”
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The greatest of all the English experimenters, the nineteenth-
century physicist Michael Faraday, spoke no math. Faraday learned sci-
ence as a bookbinder by reading the books he bound, and despite being
a high school dropout, he went on to invent the dynamo (electrical
generator), which led to the electrification of the industrial world. Fara-
day wrote out all the results of his experiments in plain English. Yet he
never claimed that “nature speaks English.”

Though math may not be the language of nature, it is certainly the
language of science. It’s what most scientists speak. James Clerk
Maxwell, of Maxwell’s equations fame, made his mark by translating
Faraday’s work into math, a far more useful language for physicists. This
is why we begin with math.

There are modern sciences that don’t lend themselves to math. Bi-
ology, for example, deals with large systems of interactive cells that defy
a numerical approach. Evolutionary biologist Paul Ewald, of Amherst
College, says that numbers, while useful, ultimately cannot be used to
explain evolution. There are no biological equivalents of Maxwell’s
equations that explain the platypus or the giraffe.

Let us accept for our purposes that mathematics is an essential foun-
dation for science. We are forced to accept this idea because it is a long-
cherished Western notion. If we are to say that non-European cultures
had science long before the Europeans exported it to them, we must
prove they had math. Even in America, sciences whose principles can-
not be reduced to mathematical formulas have often been dismissed as
“soft sciences.” These include anthropology, medical science, certainly
psychology, and, until this century, biology and chemistry. Chemistry
first made the “hard” club in the 1920s, when the useful but mysterious
order of the periodic chart of the elements was finally explained by
quantum physics and the Pauli exclusion principle; biology became rig-
orous (or “hard”) with the deciphering of the DNA molecule and the
advent of molecular biology and its rigorous mathematical codes.

We might expect to find non-Western cultures to be mathemati-
cally weak throughout history. Yet nowhere is non-Western science
stronger than in math. The mathematical foundation of Western science
is an intellectual gift from the Indians, Egyptians, Chinese, Arabs, Baby-
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lonians, and others. The Maya, too, developed powerful mathematics,
their priests judged as much for their ability to calculate as to pray. In
their civilization, numeracy was next to godliness.

George Gheverghese Joseph, who was born in India but teaches in
the United Kingdom, cites this line from the Vedanga Jyotisa, the oldest
(500 B.c.) extant Indian astronomical text: “Like the crest of a peacock,
like the gem on the head of a snake, so is mathematics at the head of all
knowledge.” Few modern Western scientists would disagree with that
sentiment.

The traditional Western story is that math was created by the an-
cient Greeks around 600 B.c. and elaborated by Greco-Roman culture
until A.D. 400, at which time the discipline fell dormant for a thousand
years, only to be revived in post-Renaissance Europe. There is ample
evidence, however, that nonwhite, non-Western cultures made signifi-
cant contributions to European mathematics—or, at the very least, de-
veloped mathematical techniques that predated Western discoveries.
For example:

e The Indians developed the use of zero and negative numbers per-
haps a thousand years before these concepts were accepted in Europe.
The Maya invented their own zero—in fact, a whole slew of them—at
about the same time as the Indians.

* Clay tablets dated a thousand years" before the Greek civilization
reveal traces of a sophisticated algebra among the Sumerians. Papyri of
the eighteenth century B.c. and earlier show that the Egyptians used
simple equations to deal with problems in distribution of food and
other supplies.”

¢ In the third millennium B.c. the Babylonians developed a place-
value system.” (In our base 10 system, 348, for example, stands for 8
ones, 4 tens, and 3 hundreds.) The Babylonian sexagesimal (base 60)
number system may at first appear cumbersome, but Copernicus used
sexagesimal fractions to construct his model of the solar system, and we
still use the system for keeping time and measuring angles (60 minutes
per hour, each minute divided into 60 seconds).
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* The priestly scribes of Egypt knew the formula for calculating
the volume of a cylinder—and thus recognized the existence of the
mysterious factor 7 (pi) long before the Greeks—in fact, long before
there were literate Greeks." The Egyptians also developed the concept
of the lowest common denominator, as well as a fraction table that mod-
ern scholars estimate required twenty-eight thousand tedious calcula-
tions to compile.'

¢ In 2000 B.C., the priestly astronomers of Mesopotamia, in the area
now known as Iraq, kept extensive tables of squares. We know this from
the clay tablets of cuneiform script found in temple libraries."* Remem-
ber that Europeans in the fourteenth century did not even keep times
tables.

» Gottfried Leibniz, the coinventor of the calculus, claimed to have
discovered the secret of deciphering the diagrams of the ancient Chi-
nese sage Fu Hsi. Leibniz maintained that Fu Hsi’s diagrams corre-
sponded to his own modern binary mode of arithmetic."”

* The Indians invented a nascent form of calculus centuries before
Leibniz invented calculus in Europe.™

* The Arabs coined the term algebra and invented decimal frac-
tions: .25 for 4, etc.”

* Aristotle credited the Egyptians with developing math before his
countrymen, in a somewhat backhanded manner: “The mathematical
sciences originated in the neighborhood of Egypt because there the

priestly class was allowed leisure.”*

Despite this, America’s most prominent modern historian of math-
ematics, Morris Kline, wrote, “Compared with the achievements of
their immediate successors, the Greeks, the mathematics of the Egyp-
tians and Babylonians is the scrawling of children just learning how to
write as opposed to great literature.”*' In his classic work Mathematics: A
Cultural Approach, Kline acknowledges that the Babylonians and Egyp-
tians pioneered mathematics long before the Greeks, but he dismisses
them as pragmatists.”> “The Egyptians and Babylonians did reach the
stage of working with pure numbers dissociated from physical objects.
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But like young children of our civilization, they hardly recognized that
they were dealing with abstract entities.” The Greeks, he said, were the
first to recognize numbers as “ideas” and emphasized that this is how
they must be regarded.”

The rules keep changing. When we discuss ancient Indian physics,
in chapter 5, Western physicists will insist that it is meaningless because
it was abstract, with no empirical backup. In the case of math, Kline
seems to be saying the opposite, that the Babylonians and Egyptians
were unsophisticated because they used their math. Because these civi-
lizations saw math as “merely a tool in commerce, agriculture, engi-
neering,” says Kline, hardly any progress was made in the subject in a
period of more than four thousand years.” As for the math required to
build the pyramids, Kline writes, “A cabinetmaker need not be a math-
ematician.”?

Another common charge is that non-Western mathematicians did
not employ the ancient Greek custom of constructing proofs for their
work. For example, Pythagoras gets credit for the Pythagorean theorem,
say Western scholars, even though the Babylonians had the concept
centuries earlier. This is because he, or his followers, constructed the
first proof for this overarching principle, while the Babylonians did
not. Critics find the Greek-style proof so important that its nonexis-
tence in non-European cultures, they contest, discredits thousands of
years of mathematics. The controversy over proof is a thorny one. Some
mathematicians claim that non-Western peoples did have proofs, while
others doubt that one can really “prove” any concept for eternity and
throughout the entire universe. For a brief debate on the topic, see
note.”

Skepticism is appropriate to all research, but the researcher in non-
Western mathematics must often face a high hurdle. Ayele Bekerie, of
Cornell University, who has studied ancient Ethiopian number systems,
describes how Western scholars once refused to accept that this Afri-
can civilization had developed its own numerals. Ethiopian numbers re-
semble, not surprisingly, the more ancient Egyptian numbers and, to a

lesser extent, ancient Greek numbers—again not surprisingly, because
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of Ethiopia’s geographical proximity to Egypt, and because Egypt influ-
enced Greek mathematics. The controversy involves letters written by
Ethiopians to Greeks. These letters contain both Ethiopian and Greek
numbers. One explanation is that the letters were written in both lan-
guages so the Greeks could understand. Western skeptics maintained
that Africans were not capable of such sophistication, that these letters
had actually been written by Greeks, who thus introduced the Ethiopi-
ans to a crude alphabet and number system that they now claim as their
own. Of course, this makes little sense, since the letters were found in
Greece. If the Greeks had written to the Ethiopians, the letters should
have been found in Ethiopia. The dispute, according to Bekerie, was fi-
nally solved by chemists. The ink on the pre—Christian era parchment in
question was of an unusual hue. Chemical analysis showed that the ink
had been made from berries indigenous to Ethiopia.”

Our Western mathematical heritage and pride are critically depen-
dent on the triumphs of ancient Greece. These accomplishments have
been so greatly exaggerated that it often becomes difficult to sort out
how much of modern math is derived from the Greeks and how much
is from the Babylonians, Egyptians, Indians, Chinese, Arabs, and so on.
The math of the Greeks was wonderfully imaginative, and a great debt
is owed to them. But if our math today were based entirely on Pythago-
ras, Euclid, Democritus, Archimedes, et al., it would be a highly defi-
cient discipline.

Berore wWE GET into the mathematical history of ancient non-Western
peoples, let us first briefly discuss how the math we study arrived in
Western classrooms of the twentieth century. The different paths de-
scribed by scholars are often in violent disagreement. We shall pass no
judgment here on the correct solution.

The “traditional” Western view—and I put “traditional” in quotes
here because this tradition is hardly a century old—is best summed up
by two respected mathematical historians, Rouse Ball and Morris
Kline. In 1908 Ball wrote, “The history of mathemmatics cannot with
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certainty be traced back to any school or period before that of the Io-
nian Greeks.”? In 1952, Kline wrote, “[Mathematics] finally secured a
new grip on life in the highly congenial soil of Greece and waxed
strongly for a short period. . . . With the decline of Greek civilization
the plant remained dormant for a thousand years . . . [until] the plant
was transported to Europe proper and once more embedded in fertile
soil.”? Fleshed out, this is often interpreted to mean that there have
been three stages in the history of mathematics:

1. Circa 600 B.c. the ancient Greeks invent math, which thrives for
a thousand years until approximately 400 A.p., at which time it
disappears from the face of the earth.

2. A dark age of mathematics ensues, lasting over a thousand years.
Some scholars concede that the Arabs kept Greek math alive
during the Middle Ages.

3. Greek math is rediscovered in sixteenth-century Europe, and
mathematics flowers again from then until the present.

This view is controversial. Our modern numerals—0 though 9—
were developed in India during stage 2, the so-called dark age of math-
ematics. Mathematics existed long before the Greeks constructed their
first right angle. We can perhaps excuse R ouse Ball, writing in 1908, for
being unaware of the Greeks’ mathematical predecessors. On the other
hand, George Gheverghese Joseph points out that Ball should have been
aware of the early Indian mathematics contained in the Sulbasutras (The
Ruules of the Cord). Written somewhere between 800 and 500 B.cC., the
Sulbasutras demonstrate, among other things, that the Indians of this pe-
riod had their own version of the Pythagorean theorem as well as a pro-
cedure for obtaining the square root of 2 correct to five decimal places.
The Sulbasutras reveal a rich geometric knowledge that preceded the
Greeks.”

Kline’s statement, says Joseph, is more problematic, ignoring a rich
body of non-European mathematics that had been unearthed by the
mid—twentieth century, including math from Mesopotamia, Egypt,
China, India, the Arab world, and pre-Columbian America.* There is
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The classic math trajectory gives no credit to non-Western civilizations
for the development of mathematics. (As per Joseph.)
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Recently, a modified Eurocentric trajectory has been taught. It ac-
knowledges non-Western mathematics, but paints it as subservient to
European math. It also is oversimplified. (As per Joseph.)

the problem, too, that the Greeks themselves—Democritus, Aristotle,
Herodotus—Ilavished praise upon the Egyptians, crediting them as their
mathematical gurus (though not in those words). The fact is that many
people were counting before the Greeks.

It 15 1MPOSSIBLE to think of a culture that didn’t have some form of
counting, that is,a method of matching a collection of objects with a set
of numbers, markers, or other tallying symbols, whether written or in
the form of beads, knots, or notches on wood, stone, or bone, Counting
is math, and not everyone can do it, but every culture has contained at
least some individuals who could.
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This is a safe assumption, given that the mathematician Tobias
Dantzig demonstrates that animals possess a “number sense” even if they
cannot technically be called “counters” (they don’t have numbers or
tally sticks). Dantzig cites the case of the “counting crow” in his 1930
book Number: The Language of Science.

A squire, writes Dantzig, wanted to shoot a crow that had made its
nest inside his watchtower. When he entered the tower and approached
the crow, the bird knew what was coming and left the nest. It would
watch from a distant tree until the man had left the tower, and only then
return to its nest. So the squire used a trick. He and a friend would enter
the tower, where they would be hidden from the crow, but only one
would exit, the idea being that the crow would be fooled and return to
the nest, to be shot by the remaining hunter. The bird would have noth-
ing of'it, remaining in the tree. So the squire repeated the experiment on
successive days, using two, three, then four men, all without success. Fi-
nally, five men entered the tower, and four exited while one remained.
“Here the crow lost count,” writes Dantzig. “Unable to distinguish be-
tween four and five, it promptly returned to the nest.”

On the surface, this famous tale would seem to indicate that crows
can “count” only to four. We cannot question the crow to find out what
prompted it to return to the nest prematurely, but it would seem obvi-
ous that a crow’s number sense is inferior to that of humans.

Dantzig points out that it is very difficult to test a human’s number
sense because our species has relied for so long on counting that it has
become “an integral part of our mental equipment.”** Humans are al-
ways consciously or unconsciously aiding their innate number sense
with artifices such as counting, mental grouping, and symmetric pattern
reading. Psychologists have, with great difficulty, devised tests that elim-
inate such artifices. They have come to the conclusion that our direct
visual number sense is . . . four. We do no better than the crow.

The magician Harry Houdini knew this about humans, at least in-
tuitively. One of his tricks was called “Walking Through Walls.” Hou-
dini explains to the audience that he will walk through a brick wall. He
says there is no trapdoor in the stage, and to demonstrate that, he unrolls
a wide carpet from the rear of the stage to the front. This will block any
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trapdoor. To safeguard the stage further, a long, heavy steel beam is
placed atop the carpet, again from the rear to the front, pointing toward
the audience. Bricklayers appear, and they build a brick wall on the
beam. The audience is facing the end of the wall. Houdini announces
that he will walk through the wall, left to right. Curtained screens are
placed on either side of the wall. Houdini disappears behind the left
curtain and, at a signal, magically rematerializes on the right side, exiting
through the right curtain to the applause of the audience. Clearly, he
didn’t go over or under the wall. The trick: he walked around the wall,
in full view of the audience.

The trick works because the many bricklayers, ten or more, all wear
identical overalls as they scurry about the stage. When Houdini disap-
pears behind the first screen, he dons one of the outfits hidden there,
making him look like a bricklayer. Houdini simply walks around the
wall in plain sight and joins those bricklayers who are moving the sec-
ond screen into place. He goes behind the screen, strips back to his orig-
inal clothes, and walks through the curtain. No one notices the extra
bricklayer.

Houdini realized the limitations of the human number sense. He
could fool the audience with ten people. If an audience member had
bothered to count the bricklayers, the trick would have failed. But
who’s counting? He needed more than double the human number of
four, however, because of what Dantzig calls “symmetric pattern recog-
nition.” If there were only eight bricklayers, for example, with at some
point four on a side, the asymmetry of five and four could be noticed
when Houdini joined the workers.

The Great Houdini inadvertently made a significant contribution
to science, proving that humans don’t have any greater innate sense of
numbers than crows do. Numbers, tally sticks, and other artifices are
required. Let me add that some interesting research conducted since
Dantzig’s era has shown that some animals may be sophisticated count-
ers as well. We’ll get to that shortly.

The German mathematician Karl Menninger had a liberal defini-
tion of counting. He points to the Wedda, a tribe living on the island of
Ceylon. If a Wedda wishes to count coconuts, he assembles a pile of
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sticks and matches up the sticks with the coconuts. The Wedda have no
words for numbers. “Does that mean he is unable to count?” asks Men-
ninger. “Not at all. He translates the pile of coconuts he has laid out into
the auxiliary quantity of sticks.” He can tell if anyone has stolen one of
the coconuts by arranging the nuts and sticks in a one-to-one order. But
how can he describe the total number of coconuts? He points to the
pile of sticks, explains Menninger, and says, “That many!”*

In any case, counting—whether with numbers, sticks, or some
other device—extends innate number sense far beyond its modest lim-
its, propelling humans above other species. Other scholars believe we
may not be the only species that counts. The Clark’s nutcracker, for in-
stance, a large bird that lives high in the mountains where food is sparse
during the winter, hides thousands of seeds in good weather, digging
them up months later. In a lab at Northern Arizona University, the birds
retrieved seeds from a large sandbox with an accuracy rate of 90 per-
cent. Experts in animal intelligence believe the nutcracker uses a kind of
nearest-neighbor system, choosing a focal point for the first cache, then
hiding successive seeds in a geometric pattern that it somehow memo-
rizes.” If a Clark’s nutcracker is comparing set one (the seeds) to set two
(the pattern), one could consider the bird to be counting.

THERE 1 SOME debate over whether counting, or even calculating, qual-
ifies as math, but George Joseph says that mathematics arose initially
from a need to count and record numbers: “As far as we know, there has
never been a society without some form of counting or tallying, i.e.
matching a collection of objects with some easily handled set of mark-
ers, whether it be stones, knots, or inscriptions such as notches on wood
or bone.”*

The Ishango Bone is evidence—controversial evidence—of one of
the first counting societies, about twenty thousand years ago. Ishango is
an area around Lake Edward, in the mountains of central equatorial
Africa on the border between Uganda and Zaire. Ishango is sparsely

populated today, but twenty thousand years ago a small community
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fished the lake and gathered food and farmed by its shores. The Ishango
society lasted only a few hundred years before being buried by a vol-
canic eruption.

The Ishango Bone itself is a dark brown object, like a bone tool
handle. It features a sharp piece of quartz at one end, which may have
been used for engraving, tattooing, or perhaps writing. More interesting
are three columns of notches. They are asymmetrically grouped, which
makes Joseph and others believe that they are functional rather than
decorative. The groups of notches line up like this:

Row 1: 9, 19,21, 11
Row 2: 19,1713, 11
Row 3: 7,5,5,10,8,4,6,3

Tally sticks predate the Ishango Bone. Notches on sticks or bones
(or knots on strings or cuts on stones) have been found worldwide.
These are records of counts, perhaps kills by hunters. A thirty-seven-
thousand-year-old baboon fibula with twenty-nine notches was found
in Swaziland. A thirty-two thousand-year-old wolf shinbone, marked
with fifty-seven notches—the first fifty-five grouped in fives—was
found in Czechoslovakia. These tally sticks are similar to calendar sticks
still used today in Namibia to record time. The grouping—the R omans
did something similar—may have been the first step toward construct-
ing a numbering system.

J. de Heinzelin, the archaeologist who unearthed the bone, specu-
lated that the Ishango not only had a number system but that this sys-
tem, through the transmission of harpoon heads and other tools, spread
north to Egypt and led to Egyptian mathematics. Joseph comments, “A
single bone may well collapse under the heavy weight of conjectures
piled upon it.” One has to accept the skepticism of Joseph and others,
given the ambiguity of the evidence, though Joseph points out that the
builders of Stonehenge have been credited by scholars with monumen-
tal mathematical skills on the basis of a few large rocks.”

There are other examples of unwritten mathematics, such as Incan
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quipus, knotted strings used for recording numbers in a decimal base
system, and the cowrie shells of the Yoruba of southwestern Nigeria.
But let us go directly to the first culture to make strides in written
mathematics.

Egypt

Like the civilization itself, the history of Egyptian math is a long one,
beginning somewhere around 3200 B.c., when a system of writing was
invented, and stretching to 332 B.c., when Alexander the Great con-
quered and Hellenized Egypt. Our sources are meager, since papyrus
deteriorates under humid conditions. The only readable documents
have been found in cemeteries and temples in the desert fringe along
the Nile valley. Few papyri have been recovered from major towns or
cities in fertile areas around the Nile or in the delta. Most date from the
Middle Kingdom period, between 2000 and 1700 B.c. In total, there are
but five papyri, a pair of wooden exercise tablets, and a stone flake.” Yet
we find a rich mathematical tradition. Who knows what was being
done with numbers in the major cities?

The Egyptians used three different number systems: the hiero-
glyphic and hieratic systems early in the civilization’s history, and the
demotic toward the end, during the Greek and R oman periods. The hi-
eroglyphic numbers were, obviously, pictorial, each character readily
recognizable as a common object, from ropes to man to the sun. All
numbers could be stated using combinations of only eight figures, rep-
resenting powers of ten from 1 to 107

1 10 10 100 10 10° 10° 10’
n 9P 77N % o
The first three symbols, for 1, 10, and 10?, were variations of rope: a
short length of rope, rope in a U shape, and a coil of rope, respectively.

Perhaps the rope imagery was inspired by the harpedonaptai, the “rope
stretchers,” or surveyors, who regularly surveyed the lands of the Nile
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River valley. One thousand (10°) looked like a lotus; 10,000 (109, a
crooked finger; 100,000 (10°), a tadpole; 1,000,000 (10°) a man with
upraised arms; 10,000,000 (107), a sun, perhaps Ra, the sun god.

The Egyptians wrote any number they pleased by grouping the
above symbols together. For example, 1,321 would be written:

1+2(1O)+3(102)+1(103)=| n n 9 9 9 r

As the Egyptians had no zero or placeholder, the hieroglyphs could be
arranged in any sequence. Separate symbols for each power of ten made
any system of place notation redundant. Generally, the hieroglyphs were
placed left to right in ascending order of magnitude, as above—in other
words, opposite to the way we write numbers today. Addition was the
process of adding up the various symbols, then replacing those symbols
of which there were more than ten with the next largest symbol. For
example, 547 + 624 = 1,171 would be written as:

NN 9299 ..,
nn 99

NN 999
999

| 0009999@9mw
rwww 99999

N \)

N NNN
NNN 9 F (reduced)
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Which in turn would be reorganized to:

ANNN
" aan 9§

Subtraction is the reverse process, but in this case, a large hieroglyph
must often be replaced with ten smaller ones wherever necessary. Take
32 —5:

N NN e

I ©

m n (also 32)

(5)

|| NN
1

To explain multiplication in the ancient Egyptian world requires us

(27)

to do some actual math. It’s not as hard as it looks, and we won’t spend
much time on it. I think you’ll be pleased with yourself if you give it a
try, perhaps even feel a kinship with the ancient world.

First of all, the Egyptians had no times tables. We memorize the ta-
bles in third grade and we’re set for life. Multiplication in the ancient
Egyptian world was similar to a method used in the late Middle Ages in
Europe, where multiplication was simply a series of doublings, as
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demonstrated at the beginning of the chapter. Let’s take the same prob-
lem, 13 X 46, which the Egyptian mathematician would break down
into a series of integral powers of 2, or doublings.

46 times 1 equals 46 (1X) «<

46 doubled equals 92 (2%)

92 doubled equals 184 a4x) =<
184 doubled equals 368 (8 %) -«

Again, he finds the combination of doublings that add up to 13, the ones
checked above, 1X, 4X, and 8X. Then he adds up the three resultant
sums to solve the problem: 46 + 184 + 368 = 598. Of course, it’s a bit
more difficult here as he’s working with hieroglyphics rather than our
Indian numerals. The Egyptian would double like so (note: the 0 power
of any number is 1, and the 1st power of any number is the number it-
self,s0 2°=1and 2' = 2):

46 X 1 (2°) would be written:

NEARA
i NN
46 X 2 (2') would be:

LT NN
i NNn
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46 X 4 (2%) would be:

|l ﬂﬂﬂﬂc)(m)
I NNNN

And so on. You get the idea. It was relatively easy to do the doublings.
Each step simply required writing two sets of the hieroglyphs from the
step above. Admittedly, this is a cumbersome process as the numbers get
larger and one has to constantly reduce the hieroglyphic terms. The
Egyptian method of multiplication works because of a basic principle of
mathematics: every integer can be expressed as the sum of selected inte-
gral powers of 2. No matter what number the multiplier, one can as-
semble it by picking and choosing from a list of powers of 2.

Trust me on this. Or try it, but set aside plenty of time. The above
rule is well known today. The question is, Were the ancient Egyptians
aware of the rule? It’s at the heart of their math, but Western mathe-
maticians are skeptical that non-Europeans living five thousand years
ago came to this conclusion. The integral-powers rule also lies at the
heart of the multiplication method below, a relatively modern variation
of the Egyptian method. Let’s do an easy problem, 180 X 20 (which
obviously equals 3,600), to show how it works. One puts the 180 in
the left column, the 20 in the right. Then one successively doubles the
right column, while halving the left. (When halving a figure into a
noninteger—say 11 into 5.5—one rounds off to the lower number, in
this case 5.) Like so:

HALVE DOUBLE
180 X 20
90 40
> 45 80
22 160
> 11 320
> 5 640
2 1,280
> 1 2,560
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Today, we can do the above problem in our heads: 180 X 20 =
3,600. Ancient Egyptians and medieval Europeans couldn’t, so the
above represents a shortcut from the classic Egyptian method. After
doubling the right column above, and halving the left, go down the left
column and choose all the odd numbers, then add together the corre-
sponding sums on the right. Thus 180 X 20 = 80 + 320 + 640 +
2,560 = 3,600. Why does this work? The odd numbers on the left cor-
respond to those powers of 2 that the multiplicand (180) comprises.
Note:

2° 180 X 20

2! 90 40

22 > 45 80 (22=4)
20 22 160

2¢ > 1 320 (2= 16
2° > 5 640 (2° = 32)
26 2 1,280

2’ > 1 2,560 (27 = 128)

The powers of 2 equal 180:4 + 16 + 32 + 128 = 180. I've taken an
easy problem here, 180 X 20, so that you could do it, using modern
methods, in your head. The technique works for any multiplication
problem. Try some.

George Gheverghese Joseph says the above modern variation of the
original Egyptian method is still popular among rural communities in
Russia, Ethiopia, and the Near East, where multiplication tables have yet
to catch on. It is sometimes referred to as the “Russian peasant
method.” When I first came across the technique, it hit me the way the
the madeleine hit Proust.

My father, a high school dropout, used to teach me odd methods of
arithmetic, including the Russian peasant method, though he never
called it that. A first-generation American, he had picked up a variety of
exotic calculating techniques from his father, who had been a farmer in
Sicily. My father was a fruit peddler, delivering produce to small stores
and restaurants. He refused to use an adding machine. His bills con-
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tained strange numerical scribbles, not unlike the calculations above.
His accountant feared the day that an IRS auditor would glower over
such nonsense, despite the fact that the totals were always correct.

How did a fruit peddler working in a small Minnesota town in the
twentieth century come to be using mathematical techniques pio-
neered by ancient Egyptians? A possibility—and I just throw this out—
concerns the Greek mathematician Pythagoras, who was educated in
numbers in Egypt and emigrated in the sixth century B.c. to Italy, where
he founded the Pythagorean school of math. Could he have spread an-
cient Egyptian techniques throughout Italy and Sicily, where it was
passed down by peasants for millennia? It doesn’t matter, really. What’s
interesting is that here in the twenty-first century, people around the
world still count like an Egyptian.

WE cAN’T BEGIN to enumerate all the mathematical accomplishments
of the ancient Egyptians. We’ll examine just one more for the time
being. The Ahmes Papyrus,a leather manuscript discovered in 1927, re-
vealed that the Egyptians were the first culture to master fractions.” In
1927, Egyptologists, waiting with great expectations for the first transla-
tions of the papyrus, were disappointed when they learned that the
manuscript contained only twenty-six rudimentary mathematical iden-
tities, such as o + Jio = . The first translator quipped that if the Ahmes
had any value it would be in providing insight into leather-making
techniques of the era. In the West in the twentieth century, fractions are
taken for granted. The Ahmes Papyrus, however, reveals that the Egyp-
tians were the only ancient culture to operate with unit fractions. The
Egyptians did not use money. They bartered, and fractions helped them
exchange goods, divide food and land, and calculate the percentages of
foods in recipes.

The Egyptians loved tables (the lack of a times table remains curi-
ous) and kept copious numbers of them to speed up calculations. The
papyrus presents several problems, one of which challenges the reader
to divide 9 loaves of bread among 10 men. (Beer and bread were com-
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mon standards of exchange.) Our modern approach is straightfor-
ward—each man gets % of a loaf—but gives us no satisfactory method
for actually dividing the physical loaves. Today we would cut a tenth off
each loaf. Nine men would get a %oth loaf. The tenth man would get
nine heels. Mathematically fair, but hardly equitable unless one is partial
to crust.

The ancient Egyptian would instead go to a unit fraction table and
find that % = % + % + Y. He would then cut the nine loaves into vari-
ous segments representing thirds, fifths, and thirtieths.

2/3 13 2/3 1/3
23 13 2/3 13
2/3 13 . 2/3 1/3
1/5 1/5 1/5 1/5 1/5 23
15 15 15 15 15 1/30

Bread cutting, Egyptian style: the Ahmes Papyrus explains how to
divide 9 loaves among 10 men so that nobody gets stuck with all heels.
(After Joseph)

Seven men would each receive three pieces of bread: a %, %, and % seg-
ment of a loaf. The other three men would get four pieces: two %s, a %,
and a %. The Egyptian method requires a lot of cutting but divides the
bread according to form as well as substance.

Let us stop breaking bread for the moment and press on to examine
the influence of the Egyptians, the first known culture to promulgate a
full-blown written mathematics.
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THE MAIN COMPLAINT against the Egyptians is that their contributions
were trivial. What did the Egyptians do wrong? According to Morris
Kline, the math popularizer Lancelot Hogben, and others, the Egyptians
and Babylonians depended on empirical evidence, on experimenting
with numbers and forms. The Greeks found their answers through
logic.®

Where does one begin to dissect this argument? Kline’s attack on
empiricism—that is, relying on evidence rather than logic—is an an-
cient Greek point of view. Around 400 B.C. the great mathematician
Democritus of Abdera set forth the proposition that the mind is supe-
rior to the senses. Through logic we tap into “trueborn” knowledge,
said Democritus, whereas empirical evidence is “bastard” knowledge,
colored by the unreliable senses.* What tastes sweet to A may taste sour
to B. A homely child appears beautiful to his mother. How can we trust
information gleaned via taste, sight, hearing, touch, and smell?

It was a point of view that was being abandoned, even in the West,
by the time of the Renaissance. When Galileo dropped two unequal
weights from the Leaning Tower of Pisa in 1589, he was demonstrating
not only that acceleration is independent of mass (the heavier object hit
the ground a bit earlier but not significantly so), but that it is necessary
to experiment to ascertain the truth. The “trueborn” knowledge that
heavier objects fall faster, as Aristotle insisted, must defer to the “bas-
tard” knowledge that they do not. We shall see in a later chapter that
even Democritus would succumb to bastard knowledge, his greatest
achievement the result of smell, not logic.

The Greek historian Herodotus refers to geometry as the “gift of
the Nile.” Because the annual overflow of the Nile River wiped out the
boundaries of farmers’ lands, the Egyptians developed geometry to re-
determine plot lines. (It is a colorful reference, but only partially valid;
the Egyptians were practicing geometry long before the 1400 B.c. date
cited by Herodotus.) The logic of Herodotus and Kline is somewhat
flawed. Because there is a use for an invention doesn’t necessarily imply
a causal relationship.

Kline, denigrating the Egyptians for their pragmatism, credits them

46



Mathematics: The Language of Science

for applying math to astronomy, calendar reckoning, and navigation.
Motions of heavenly bodies, he says, give us our fundamental standard
of time, and their positions at given times enable ships to determine
their locations and caravans to find their bearings in deserts. The Egyp-
tians needed to predict the flooding of the Nile so that farmers could
move their belongings and cattle. The Egyptian calendar was eventually
adapted by the Romans, and passed on to Europe (our present calendar
is essentially the Julian calendar, commissioned by Julius Caesar).

Mesopotamia

Math in Egypt and Mesopotamia spans roughly the same time period.
The various Mesopotamian civilizations stretched from 3500 s.c.,
when the Sumerians established the first city-states, to 539 B.c., when
the area was conquered by the Persians.

A string of different peoples populated the land between the Tigris
and the Euphrates. The Sumerians were first, building Ur, perhaps the
best-known city of antiquity, on the banks of the Euphrates. Biblical ref-
erences to Sumer abound. The Epic of Gilgamesh was written here, and
ziggurats were erected. The Sumerians gave way to the Akkadians, from
the surrounding desert, who in turn were squelched by the First Baby-
lonian Empire in around 1900 B.c., which was then overrun by the
Assyrians in 885 B.C., who were conquered by the Chaldeans, thus ini-.
tiating the Second Babylonian Empire in 612 B.c., which gave way to
the Persian invasion in 539 B.c. Interspersed were Hittites and Hurrians
and other interlopers. For convenience, when speaking of mathematics,
the period is known generically as the Babylonian era. When it can be
pinpointed to the earliest period, we use the term Sumerian.

Fortunately, our records of Babylonia are indelible. The Babylonians
wrote on tablets formed from clay from the banks of the Tigris or the
Euphrates. Scribes made wedgelike impressions with a reed. These tab-
lets, dried in the sun or baked in kilns, are still readable, unlike many of
the Egyptian papyri.*” There are plenty of errors. The scribes had to
write fast, before the clay dried. Half a million tablets have been found,
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but fewer than five hundred contain math. Though the cuneiform
script of the Sumerians was decoded about 150 years ago, the math
tablets have been studied only since the 1930s.

The tablets that have been deciphered tell an interesting tale. In one
sense, the Sumerian/Babylonians developed a more sophisticated math-
ematics than the Egyptians. On the other hand, it was an imperfect
sophistication, leading to ambiguity, as opposed to the clarity of the
Egyptian system.

The triumph of the Babylonians is their place-value notation sys-
tem, in which the position of a numeral determines its value (our
number 111, for example, stands for 1 hundred, 1 ten, 1 one). The Baby-
lonian notation system was not unlike our own but differed in a number
of ways. First, the Sumerians had two base systems operating within
each other. They counted by both 10s and 60s. This may seem odd until
one recalls that we have a sexigesimal system at play also: our 60-minute
hour, our 60-second minute, the 360 (6 X 60) degrees of the compass.
Copernicus also made use of sexagesimal fractions in the sixteenth
century.

The Sumerian system was incomplete. They used positional nota-
tion in base 60 only and did not have a positional system for all powers
of 60. Here’s what they did have:

1 10 600 3600

60
D o D ©) O

Around 2000 B.c., the Babylonians devised a simpler system, using a
place-value system with only two symbols, a pin shape for 1 and a wing-
like figure for 10. Here is how they’d write three numbers under 60:

CCTTTT

<
\ , ar77

((TTTT

59:
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From 2500 B.c. on, the Babylonians figured out that they could give
multiple values to their two symbols depending on their relative posi-
tions. This put them ahead of the Egyptians, who, each time they
wanted to go up a power of ten, had to invent a new hieroglyph. Like us,
the Babylonians wrote left to right, and wrote 95 thus:

95 = 60(1) +35: | 2( TTTTT

The first “pin” is worth 60, the 3 “wings” are worth 30, and the final 5
“pins” are worth 5, for a total of 95. They made fractions similarly, with
the denominator off to the right. How could you tell fractions from
larger numbers? You couldn’t with any certainty. The Babylonians had
no symbol for zero at this time and no decimal point to distinguish be-
tween the integer and fractional parts of a number. Joseph points out
that in this system, for example, 160, 7,240, 2%, and % are all written the
same way.

In the Babylonian system, a symbol written slightly larger would
have a different value than its smaller brethren.®” The Babylonians didn’t
have zero to designate “empty columns” in their numbers (as we differ-
entiate 202 from 22 with the zero in the middle). So they left extra space
to account for the “empty columns.” These subtleties may evade the
modern eye. Slight unintentional variations in scribing numbers with a
reed, or later with a three-sided stylus,* or misinterpretations of size or
spacing by the reader could lead to mistakes. At least that’s our present
perspective, and that perspective must be somewhat accurate because
the Babylonians kept improving their system, eventually removing the
ambiguity. Somewhere between 700 and 300 B.c.* they started using a
placeholder consisting of two little triangles or wedges inserted in the
empty columns: *

> >
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These triangles (often written in other forms) meant “nothing in this
column.” It was a limited kind of zero. So one could now write the
number 7,240 like so:

s €C
TTA((

Without the zero points, the number would be 160; that is, 2 pin shapes
(2 X 60) for 120 plus 4 “wings” (4 X 10) for 40 more. But the wedges
fill the 60s column, so the pin shapes get promoted a power of ten, from
60 to 602 (or 3,600). One has two pin shapes for 7,200 (3,600 X 2) plus
4 wings for 40 more. Result: 7,240.

The Babylonians never turned their wedges into a real zero, a real
number, as they used them only in the middle of numbers, never at the
end. They had a flexible but ambiguous system.

The pioneer scholar of Babylonian math in the 1930s, Otto Neuge-
bauer, added commas, zeros, and semicolons to the Mesopotamian
number system in order to study Babylonian mathematical operations.
Modernized (actually, “Indianized,” as our modern system comes from
ancient India), Babylonian operations differ little from addition, sub-
traction, multiplication, and division done today.”

Of course, the Egyptians could do all this, and with greater clarity.
What one could do with the Babylonian number system, though, is al-
gebra. Even during the First Babylonian period, mathematicians were
solving equations. The Babylonians had a kind of “x,” which they called
sidi, for side (as in the side of a square to be found), and they used mehr
(“square”) for x*. They were able to do linear and quadratic equations.
A typical problem from the First Babylonian period asks: “Multiply
two-thirds of [your share of barley] by two-thirds [of mine] plus a hun-
dred qa of barley to get my total share. What is [my] share?” The tech-
nique used to solve the problem is identical to the one we now use.*

Babylonians kept multiplication tables as well as tables for recipro-
cals, squares, cubes, and square and cube roots.* They even kept tables
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for the values of n* + n? for the integers from 1 to 20 and for 30,40, and
50. These values help solve quickly a type of equation called a mixed
cubic equation. Such equations can be used, for example, to calculate
how long it would take for an amount of money to double, given vari-
ous interest rates.>

Unlike the Greeks, who abhorred them, the Babylonians dealt rou-
tinely and comfortably with irrational numbers. Formally, rational num-
bers are those that can be expressed as the ratio of whole numbers;
irrational numbers are those that cannot. Rational numbers are everyday
numbers like 3 (which can be expressed as %), .25 (%4w), and 4. Perhaps
the best way to describe irrational numbers is to say that when expressed
as decimals, they have no repeating pattern of digits past the decimal
point. The rational %, for example, comes out 1.33333333 . . . ; it goes
on forever, but there’s a pattern. The first discovered irrational number,
the square root of 2, on the other hand, is 1.41421356237309 . . .,
with no repeating pattern.® Another famous irrational is pi, or
3.14159265358979 . .. .®> One Old Babylonian tablet contains the
number 1.41421297, the square root of 2 accurate to five places.” (Not
all mathematicians agree that the Babylonians truly understood irra-
tionals. For an opposing view, see note.)*

The Babylonians were poor geometers, certainly compared to the
Egyptians and, later, the Greeks. To calculate the area of a circle, for
example, they at first used 3 as the value of pi. Not very close. Later
they improved it to 3.125. What they did have was the “Pythagorean
theorem”—about 1200 to 1500 years before Pythagoras was born.*

In the Plimpton collection at Columbia University is a Babylonian
tablet dated to 1700 B.c. The tablet is filled with columns of numbers
and marred by a deep chip on the right side. It appears there was more
to the tablet, that it was broken when excavated. Still, there’s plenty left
to think about: fifteen sets of three numbers each. Some scholars insist
that the numbers are Pythagorean triplets. That is, the numbers that de-
scribe the lengths of the sides and hypotenuses of various right triangles,
conforming to the Pythagorean theorem that the sum of the squares of
the two perpendicular sides must equal the square of the hypotenuse.
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We know some of these Pythagorean triplets from high school ge-
ometry:3:4:5;5:12:13,8:15:17,and so on. Critics of Babylonian math
insist that the existence of fifteen Pythagorean triplets on a tablet does
not indicate that the inscribers had the concept of a> + b*> = ¢? vis-a-vis
right triangles in 1700 B.cC., 1200 years before the birth of Pythagoras.

Yet it’s a bit of a coincidence: fifteen Pythagorean triplets unbroken
by other numbers. Some point out that the triplets are not organized the
way we now would organize them, numerically, beginning with the
lowest numbers. Does this necessarily discredit the Babylonians’ under-
standing of the theorem?

Other mathematicians see a more subtle pattern. The triplet num-
bers themselves are contained in columns 2, 3, and 5. Column 4 con-
tains the number of the row (1 through 15). The numbers in column 1
remain mysterious. One explanation, put forward by George Joseph, is
that the numbers in column 1 have something to do with the derivation
of Pythagorean triplets used in the construction of right-angled trian-
gles with rational sides. He feels that it is unlikely that the triplets were
reached via trial and error because they are far too complicated (row 15,
for example, is 56 : 90 : 106). Joseph has demonstrated how the numbers
in column 1 can generate triplets, and he finds it similar to the method
used by the Greek mathematician Diophantus in A.D.250. He notes that
Diophantus is known for introducing Babylonian algebraic techniques
into Greek mathematics.*

There is a more intriguing possibility. Harvard’s Mazur points out
that the numbers in that first column may be related to trigonometric
functions. The numbers in the first column are close to the squares of
the secants of the triangles in question. The secant is a trigonometric
function,; it is the ratio of the length of the hypotenuse to the length of
one of the other sides of a right triangle, and obviously is dependent on
the angles involved. Thus, it appears that the fifteen triplets are arranged
by the angles of incidence. The first number in the first column is close
to the square of the secant of a 45-degree angle. The last number in the
column is close to the square of the secant of a 31-degree angle. The
thirteen numbers in between correspond to angles from 44 degrees to
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32 degrees. That is, the angles descend from 45 to 31 one degree at a
time.”’

Perhaps this is coincidence. If it is a kind of “trig table,” says Mazur,
“then they [the Babylonians] had to have a lot of theoretical frame-

work.”

Ler’s Take a brieflook at what we have all been taught is the pinnacle of
achievement in the ancient world: Greek mathematics. As we shall see,
Democritus, Pythagoras, and others viewed the Egyptians as their
mathematical masters. One of the problems of Greek mathematics arises
from the numbers themselves. The Greeks, like the R omans after them,
used cumbersome numerals such as this notation, from the fifth century
B.C.,for 318:

™

Here 7, the twenty-first letter of the ancient Greek alphabet, stood for
300; the tenth letter, v, stood for 10; and the eighth letter, m, stood for 8.
A line was drawn over the whole affair to distinguish i, the number
318, from the Greek word Tun, or “why”* Number theorist Tobias
Dantzig wrote that neither the Greeks nor the R.omans were capable of
“creating an arithmetic which could be used by a man of average intel-
ligence.” The rules for operating within Greek and Roman systems
were so complex that any man skilled in the art was regarded as “en-
dowed with almost supernatural powers.” In a sense, Greek mathematics
was a mystical endeavor. The Greeks, writes Dantzig, “never completely
freed themselves from this mysticism of number and form.”*

Dantzig confirms the Greeks’ contempt for applied science. Some
Greeks may also have regarded math as not terribly important, leaving
their slaves to teach their children the discipline.® Despite the accom-
plishments in geometry by Euclid and others, the Greeks never devel-
oped even a rudimentary algebra.” The Egyptians had already made
breakthroughs in this area.
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Mathematical geniuses reigned throughout the Greek civilization.
Yet, as Dantzig points out, Greek mathematics “stopped short of an al-
gebra in spite of Diophantus, stopped short of an analytic geometry in
spite of an Apollonius, stopped short of an infinitesimal analysis in spite
of an Archimedes.”® Greek mathematics came up short in many re-
spects, in part, says Dantzig, because of the lack of a notational symbol-
ism. Unlike the Sumerians and, later, the Babylonians, the Greeks had
no positional notation system (ones, tens, hundreds, and so on) to sim-
plify their numbering. Neither did the Romans.

Mathematician D. H. Fowler points out that while the ancient
Greeks had numbers and a labeling system for the positive number line,
their math was “completely non-arithmetised.”® That is, they really
couldn’t do significant operations, as they had no mathematical lan-
guage, no conceptual machinery, for the mathematician to work with.
In other words, the mathematician had to use natural language to con-
front his problem. Today we state the Pythagorean theorem as: In a right
triangle the square of the hypotenuse is equal to the sum of the squares of the
other two sides. Note, by contrast, Euclid (Elements 147): “In right angled
triangles the square on the side subtending the right angle is equal to
the squares on the sides containing the right angle” To Euclid the
Pythagorean theorem of right triangles meant literally that the square
can be cut into two and manipulated into two other squares. When Eu-
clid used the expression “square of the hypotenuse,” he meant a literal
square. The big square made from the hypotenuse is equal to the two
smaller squares made from the sides.

Today, the above theorem is usually interpreted as:

p’+q*=r? or a’*t+b?=c?

We must explain what the p’s, @’s, and r’s represent (the lengths of sides
of a right triangle) and how they can be multiplied and added. This
seems natural to us today. We translate triangles into numbers and then
manipulate those numbers in a variety of ways. We’ve turned those tri-
angles into useful abstractions. All the evidence points to the conclusion
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that Greek mathematicians did not contemplate such thoughts. Rather,
instead of imagining p squared (p?), they actually visualized squares.

Proof of this to Fowler is the inability to find fractions in Greek
mathematics. “Note that fractions,” he wrote, “being ‘numerical quan-
tities, belong to what I have called the arithmetised style of mathemat-
ics, and the non-arithmetised approach may often be signalled by the
use of the alternative terminology of ratios.” The Greeks of the classical
period spoke of ratios, not fractions. They couldn’t manipulate sides of a
right triangle with, say, fractions like p/q X r/s = pr/gs, as we do today,
or as the Egyptians could do. It seems odd, yet true, to say that the
Greeks may have been skilled mathematicians but, according to Fowler,
not much good at arithmetic.

Take exponents, which we manipulate with ease today. The Greeks
understood 22 and 2%, 2 squared and 2 cubed. They saw 2 squared as an
actual square, a line 2 units long, squared. Two cubed was an actual cube,
which could be formed in three dimensions, measuring 2 units in each
direction. Such numbers, however, as 2*,2°, or 2'* had no meaning to the
Greeks, as there are no counterparts in a three-dimensional world for
exponents of 4 and higher. Multiplying 2 X 2 X 2 X 2 to get 16, or 2%,
seems commonplace today, but it requires taking a concept, 27, that
originally represented a physical shape, and abstracting it so that it can
be manipulated arithmetically.

In Plato’s school (he died in 347 B.c.), teachers of geometry repudi-
ated its roots as a practical discipline for solving real-world problems,
made it an end in itself, and in effect banished measurement from math-
ematics.”* The obsession with purity kept the Greeks from embracing
irrational numbers. They discovered that the square root of 2, for exam-
ple, is neither a whole number nor a fraction. The square root of 2 is
somewhere between 1.41 and 1.42 but cannot be pinpointed, no mat-
ter how many decimal places we employ. The Greeks were appalled that
there is a large collection of such numbers—the square root of any
number not a perfect square, the cube root of any number that is not a
perfect cube, and so on. Pj, the ratio of the circumference of a circle to
its diameter, is also an irrational number. The term “irrational” in math-
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ematics today is applied to numbers that cannot be expressed as a ratio
of whole numbers. In Pythagoras’s times the term meant “unmention-
able and unknowable.” Legend has it that the Pythagoreans threw over-
board the person who discovered irrational numbers to keep the
loathsome discovery secret. (In fact, points out mathematician Robert
Kaplan, these ancient Greeks may not have been that far off. Irrationals
are apparently “unknowable” in the sense that we can’t “know” them to
the degree we know rational numbers.)®

The Greeks never developed an arithmetic of irrational numbers,
nor did other Western mathematicians until the Renaissance.® The
Egyptians and Babylonians, familiar with irrational numbers long be-
fore the Greeks, remained unruffled by them, employing approxima-
tions, such as 1.4 for the square root of 2, or 3 for pi. This allowed them
to do calculations never attempted by the Greeks.*

The Greeks were important mathematicians. Diophantus (third
century A.D.), an early number theorist, finally developed a form of al-
gebra for the Greeks. Long before René Descartes, he was using letters
in equations. Euclid’s Elements, a work on plane and solid geometry
written about 300 B.cC., is a “best of” book containing the best results
produced from 600 to 300 B.c. by dozens of great mathematicians—the
Pythagoreans, Hippias, Hippocrates, Eudoxus, members of Plato’s acad-
emy, and others—and its concepts are still taught in junior high and
high schools today.

If the Greeks borrowed heavily from the Egyptians and others, then
an innumerate Greek civilization would not speak well for its forebears.
What can be said is that the Greek penchant for exactness in thinking
was satisfied, perhaps too much so, by geometry rather than algebra.
Kline praises the Greeks for converting the scattered geometric facts of
the Egyptians and Babylonians into a “vast, systematic, and thoroughly
deductive structure.”® They built a system of theorems and deductive
reasoning. In geometry, one can draw pictures to represent what one is
thinking about. The Greeks saw matter as formless; to mold matter into
the shape of a triangle gave it significance.

Kline admits that the Greeks’ penchant for using geometrical meth-
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ods for performing what are naturally algebraic processes was a step
backward, that Greek geometry was so complete, so admirable, that later
mathematicians continued to see it as the pinnacle of math, and this de-
layed the development of algebra. Dantzig takes a slightly different—
perhaps even contrasting—view, saying that Greek thought was too
concrete to be algebraic. Algebra deals with symbols, objects stripped of
their physical content. Dantzig contends that the Greeks were too in-
tensely interested in the objects themselves; hence their fixation on ge-
ometry. The Greeks didn’t get on the algebraic track until Diophantus,
around 250 A.D., who was the first Greek to recognize fractions as num-
bers, and the first to handle equations in a systematic way.”

In the West, geometry remained the mathematics of choice. For
utilitarian reasons, our textbooks are often written as if Europeans used
algebra long before they did. A prime example is that of Galileo’s work
in the early seventeenth century with falling and moving objects. He
showed how objects accelerate by rolling a ball down an inclined plane
fitted with lute strings. The ball made a click as it passed over each
string, and Galileo, a musician with excellent timing, kept rearranging
the strings until the clicks came at equal intervals. He sang a marching
tune to help him get the timing right. Then, when all the clicks were
equally spaced in time, he measured the distances between the strings,
and found that acceleration increased geometrically. That is, if the first
interval is 1 inch, the second will be 4 inches, then 9, then 16. In mod-
ern notation, this progression would be stated as squares: 12, 2%, 32, 42,
and so on.

Thus Galileo is often credited with the following equation:

s = At?,

where s is the distance a falling body falls, t* is the time taken to cover
the distance, squared, and A is a number that changes depending on the
angle of inclination of the plane.” Galileo never wrote s = At’. He was
considered a great mathematician, but he didn’t speak algebra. What he
wrote was: “If a movable descends from rest in uniformly accelerated
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motion, the spaces run through in any times whatever are to each other
as the duplicate ratio of their times; that is, they are as the squares of
those times.” ™

Peter Machamer, a professor of the history of science at the Univer-
sity of Pittsburgh, writes, “For Galileo, mathematics meant geometry.”
To translate Galileo’s proofs and theorems into algebra, says Machamer,
destroys “the mind set, the schema” with which seventeenth-century
mathematicians were working. Galileo stated in Il Saggiatore, “[ The uni-
verse] is written in the language of mathematics, and its characters are
triangles, circles, and other geometrical figures.”

Galileo rarely tried to find out the real speed or weight of anything.
He was concerned with ratios, with measuring one thing by showing its
relationship to another.”” Also rarely did he concern himself with ab-
solute numbers, as the Egyptians had. He was a product of the ancient
Greeks, many centuries removed.

Science would move toward the concrete, toward experiment, in
the eighteenth century and onward. A modern scientist, measuring
lengths in angstrom units and time in femtoseconds, might find himself
more comfortable in third-millennium B.c. Egypt than in third-century
B.C. Greece or even seventeenth-century A.D. Italy. The Greeks may
have taken math down the wrong road with their rarified approach to
geometry. There is little disputing, however (though many have tried),
that the mathematics they did construct they did so with verve, beauty,
and intellectual rigor.

Who were their mathematical benefactors? The logical answer has
always been the Egyptians, around the bend of the Mediterranean Sea.
Three of the earliest Greek mathematicians reportedly studied in Egypt
and beyond. Thales of Miletus (c. 600 B.c.) was the first to suggest, ac-
cording to Aristotle, that all the widely varied matter in the universe had
a common constituent. He said the common denominator was water,
and he was wrong, but the basic concept of reductionism still rules
physics today. Thales, according to most Western scholars, developed a
taste for, and his knowledge of, geometry from traveling in Egypt.”

Pythagoras, who founded his school in the Greek-speaking section
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of southern Italy in the sixth century B.cC., is a more mysterious figure.
He left no writings and swore all of his students to secrecy. Yet histori~
ans have concluded that, like Thales, Pythagoras traveled to Egypt, and
also to Iran and the East—possibly to India. One Greek philosopher,
Iamblichus, wrote in the fourth century A.D. that Pythagoras spent
twenty-two years in Egypt.”* In any event, he returned to Greece with
newfound knowledge of mathematics.

Democritus (c. 430-370 B.c.) was also a prodigious traveler. Ac-
cording to Western historians, Democritus studied with the Chaldean
Magi in Babylon, the priests of Egypt, and the Naked Sages of India,
among others.” That the early Greek mathematicians imported much
of their discipline from Egypt has rarely been disputed.

India

The earliest recorded Indian mathematics was found along the banks of
the Indus. In the early 1920s, archaeologists uncovered an urban center
at Harappa, in northern India, dating back to 3000 B.c. The precise
mathematical expertise of the Harappan culture, which lasted from
3000 to 1500 B.c., is difficult to pinpoint, as Harappan script has never
been deciphered. There are physical clues, though.

The Harappan civilization was primarily agrarian—the people
grew wheat and barley and raised livestock—and measurement appears
to have been important. Archaeologists have uncovered several scales,
instruments, and other measuring devices. The Harappans employed a
variety of plumb bobs that reveal a system of weights based on a decimal
scale. For example, a basic Harappan plumb bob weighs 27.584 grams. If
we assign that a value of 1, other weights scale in at .05, .1,.2,.5,2,5, 10,
20, 50, 100, 200, and 500. These weights have been found in sites that
span a five-hundred-year period, with little change in size.

Archaeologists also found a “ruler” made of shell lines drawn 6.7
millimeters apart with a high degree of accuracy. Two of the lines are
distinguished by circles and are separated by 33.5 millimeters, or 1.32
inches. This distance is the so-called Indus inch. Some speculation: a

59



LOST DISCOVERIES

Sumerian shushi equals half an Indus inch, exactly,and adds to the long-
held suspicion that there was a link between the Sumerian and Indian
cultures.”

The ruins of Harappa contributed to a hundred-mile railway line
between Multan and Lahore in the nineteenth century. The British dug
up Harappa for its bricks, which they used as ballast on the railbed. The
bricks speak a story greater than ballast. The Harappans learned to ex-
ploit the annual flooding of their farmland to grow crops without need
for plowing, fertilization, or irrigation. To do so they had to control the
flooding with flood walls, so they developed kiln-fired bricks, less per-
meable to rain and floodwater than mud bricks. Harappan bricks con-
tain no straw or binding material and are still in usable shape after five
thousand years. Most interesting are their dimensions: while found in
fifteen different sizes, their length, width, and thickness are always in the
ratioof 4:2:1.7

Bricks and religion are at the root of the Vedic period of Indian
mathematics. Vedic literature, one of the largest and oldest literary col-
lections—from 1000 to 500 B.c.—encompasses works of hymns and
prayers, songs, magic formulas and spells, and, most important to us
here, sacrificial formulas. One collection of Vedic literature, called the
Brahmanas, spells out the rules for conducting sacrifices. Another collec-
tion, known as the Sulbasutras, meaning “the rules of the cord,” dictates
the shapes and areas of altars (vedi) and the location of the sacred fires.
Square and circular altars were okay for simple household rituals, but
rectangles, triangles, and trapezoids were required for public occasions.

These altars sometimes took extravagant forms, such as the falcon
altar, made from four different shapes of bricks: (a) parallelograms, (b)
trapeziums, (c) rectangles, and (d) triangles.

Making a sacrifice on such an altar allowed the supplicant a swift
ride to heaven on the back of a falcon. The sulbasutras were written be-
tween 800 and 500 B.C., making them at least as old as the earliest Greek
mathematics.”® According to George Joseph, researchers in the nine-
teenth century made a point of emphasizing the religious nature of the
sulbasutras—and certainly they are religious—but ignored their mathe-
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This first layer of a Vedic sacrificial altar in the shape of a falcon com-
bines the ritual and religious features of altar construction in the Sulba-
sutras with brick technology and geometry: 196 bricks in four different
shapes (a,b,c,d) are used. (After Joseph and Thibaut.)

matical content. Joseph sees in the sulbasutras a link between the Harap-
pan culture and the highly literate Vedic culture, by means of the
Harappan brick technology, which was put to geometrical and religious
uses in Vedic sacrifices. To ignore the mathematical component of
Vedic rituals is akin to characterizing the Gregorian calendar as a reli-
gious exercise rather than a mathematical and astronomical accomplish-
ment.

The earliest sulbasutras were composed by the priest-craftsman
Baudhayana somewhere between 800 and 600 B.c. and include a gen-
eral statement of the Pythagorean theorem and a procedure for ob-
taining the square root of 2 to five decimal places.” Baudhayana’s
motivations were religious and practical; he needed a mathematics that
would help scale altars to the proper size depending on the sacrifice. His
version of the Pythagorean theorem is: “The rope that is stretched
across the diagonal of a square produces an area double the size of the
original square.” Another sulbasutra states: “The rope (stretched along
the length) of the diagonal of a rectangle makes an (area) that the verti-
cal and horizontal sides make together.”®

The sulbasutras contain instructions for the building of a smasana, a
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cemetery altar on which soma, an intoxicating drink, was offered as a
sacrifice to the gods. (You may recall that Aldous Huxley borrowed
“soma” for his dystopian novel Brave New World. 1t was the narcotic
drink given to the proletariat to keep them happily distracted.) The
smasana’s base was a complicated shape called an isosceles trapezium,
which comprised, among other figures, six right triangles of different
sizes. It’s obvious that the Indians of this era knew the Pythagorean rule.

The most basic right triangle, with sides of 3, 4, and 5 units in
length, might be stumbled upon by chance. Using a rope marked off
with knots at 3, 4, and 5 units would allow builders to ascertain the
squareness of corners, and the Egyptians, for example, did just that.
Mathematicians have pointed out to me that ancient nonwhite people
might by accident come up with a triangle with sides of 3,4, and 5 and
note that it always formed a right angle.

However, the instructions given for a smasana in the Sulbasutras dic-
tate that six right triangles be used in the construction, consisting of
sides of 5:12:13,8:15:17,12:16: 20 (a multiple of 3:4:5),12:35:37,
15 : 20 : 25 (another multiple of 3 : 4 : 5),and 15 : 36 : 39.* That’s alot
of luck. In addition, the Sulbasutras employed right triangles with sides of
fractional and even irrational lengths.

The Vedic sacrificers figured out a method of evaluating square
roots. Joseph suspects the technique evolved from a need to double the
size of a square altar. Say you wish to double the area of an altar with
sides 1 unit long. Obviously, doubling the lengths of the sides would re-
sult in an altar four times the size. It becomes clear that one needs a
square whose sides are the square root of 2, and thus one needs a tech-
nique for calculating square roots. The Sulbasutra square root of 2 is
1.414215 . .. ; the modern value is 1.414213 . ... No one is certain
how the Indians arrived at their method, but it probably involved posit-
ing two equal squares with 1-unit sides, then cutting the second square
into various strips and adding those strips to the first square to make a
square with twice the area, then converting the strips to fractions to
construct a numerical formula.® This may have been the first recorded
method of evaluating square roots.
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Early Indian geometry is filled with fantastic and phantasmagorical
dynamic constructions, such as the sriyantra, or “great object,” which
belongs to the tantric tradition. In it nine basic isosceles triangles form
forty-three others, encircled by an eight-petaled lotus, a sixteen-petaled
lotus, and three circles, which in turn are surrounded by a square with
four doors. The meditator concentrates on the dot, called a bindu, in the
center, and moves outward, mentally embracing more and more shapes,
until he reaches the boundary. Or the meditation can be done in re-
verse.

The sriyantra is typical of Indian geometry, with its religious origi-
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The sriyantra. To meditate, concentrate on dot (bindu) in center, then
take in smallest triangle, then move outward through larger triangles
and other shapes. (After Joseph and Kulaichev.)
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nality, mysticism, and even playfulness, qualities we rarely see in Greek
geometry, which remains “uncontaminated” by religion. Various special
“numbers” are integrated into the sriyantra, such as pi and another irra-
tional number, the golden ratio, or approximately 1.61803. The golden
ratio is found in the pyramids at Giza and in the later construction of the
Parthenon and other classical Greek buildings.*

Is 1.61803 a better number when found in later secular Greek ar-
chitecture than in earlier Indian religious patterns? Interestingly, as
Vedic sacrifices declined around 500 B.c., so, too, did the practice of
mathematics among Indians.*

THE ANCIENT INDIANS practiced a very sophisticated form of mathe-
matics. They had the usual arithmetic operations—addition, subtrac-
tion, multiplication, division—but also algebra, indices, logarithms,
trigonometry, and a nascent form of calculus. In fact, Joseph claims that
India and Japan are the only countries outside of Europe that ever de-
veloped calculus.

The most obvious contribution of Indian mathematics is the gift of
our Western numbers. Indian numerals went through a lengthy evolu-
tion, from the roman-numeral-like Kharosthi numbers dating back to
the fourth century B.c., to Brahmi numerals, a mixed bag of lines and
squiggles circa A.p. 100, and finally to the Gwalior system. Note the
similarity to our own numerals.

1 2 3 4 5 6 7 8 9 10

X IX X HIX XX 7
=Y h ¢ ? 4o
Gwahorj?sdl{cg\qjo

Kuarosthi ||| ||

Brahmi

The three Indian ancestors of our modern numbers, in chronological
order. There is no Kharosthi numeral shown for 9. It is unknown.
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Found in the town of Gwalior, India, these numerals date back to at
least A.D. 876.% These ten numerals, including a zero, in a decimal place-
value system, are capable of expressing any number, no matter how
large. Our so-called Arabic numerals clearly came from India.

The richest era of Indian math is the classical period, from A.p. 500
through the Middle Ages. Doubts about Indian accomplishments dur-
ing this period remain, however. The critical document is the Bakhshali
manuscript.

In 1881, in the village of Bakhshali in northwest India, a farmer was
digging in a ruined stone enclosure when he unearthed seventy leaves
of birch bark. They made up a manuscript written in an old form of
Sanskrit, the now famous Bakhshali manuscript. Much of the manu-
script fell apart when examined, but enough remained to tell an amaz-
ing tale of Indian math in the early centuries A.D., a precursor to the
math of the classical period.

The manuscript, whose author or authors are unknown, covers
such topics as fractions, square roots, and even profit and loss and inter-
est, as well as simultaneous equations, quadratic equations, and arith-
metic and geometric progressions. A key section covers the critical area
of notation. Curiously, negative numbers are noted with a plus (+), a
point that becomes important later. Division is noted by putting a nu-
merator over the denominator, as in present-day fractions, except that in
the Bakhshali system, there is no horizontal line between them. Multi-
plication is denoted by placing numbers side by side.

The Bakhshali manuscript now sits in a library at Oxford Univer-
sity, England. Its importance was diminished considerably by the En-
glish scholar G. R.. Kaye, who completed the first full translation in the
1930s.% Unfortunately, Kaye’s knowledge of Sanskrit was flawed, and, as
stated earlier, his agenda was to trace achievements in mathematics to
the Greeks whenever possible. Kaye’s biggest error was to date the
Bakhshali manuscript to the twelfth century A.p. This conflicts sharply
with estimates before and after his pronouncement. The first English
translator, Rudoph Hoernle, judged the manuscript to be a copy. In
essence, Kaye was dating the copy of a document rather than the docu-
ment itself. Joseph believes the Bakhshali manuscript dates to 400 A.D.
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or earlier,” in part because of the use of plus signs for negative numbers
(abandoned after 500 A.D.), and in part because its naiveté about certain
types of equations, developed later, would indicate an early origin.®
Takao Hayashi, a respected contemporary Japanese expert, dates the
manuscript to no later than the early seventh century.*’

Most important is that the Bakhshali manuscript is the first docu-
ment depicting a form of Indian mathematics devoid of religious asso-
ciations.” We cannot leave the Bakhshali manuscript without noting a
peculiar form found therein. It is a heavy black dot. It is often used in
operations to denote the unknown value we are seeking, much as we
use the letter x today. The dot was called sunya, the Sanskrit word for
“empty” or “void.” It would become, perhaps, the most important
number ever invented.

China

In the movie Infinity, based on the life of the physicist Richard Feyn-
man, the actor Matthew Broderick, in the lead role, belittles a Chinese
merchant doing math on an abacus. “He knows everything about
beads,” says Broderick/Feynman, “but nothing about numbers.”

Chinese math, even ancient Chinese math, is not as weak as the
movie character insists. (The real-life Feynman may not have been quite
so arrogant, though reporters had a habit of covering up for him, mak-
ing this mythic figure seem cuddlier than perhaps he was.)

Still, it is difficult to assess Chinese mathematics. We are considering
it out of order here. Chronologically, we can trace its beginnings back to
the third millenium B.c.—before the Indians—and extend it to the
Ming dynasty, A.D. 1260 to 1644.°' Yet we’re not sure what to make of
Chinese math. It doesn’t attain the sophistication of Indian or even
Mayan math, in some respects.

The ancient Chinese did devise a sophisticated number system
somewhere between 1500 and 1200 B.c. Some nineteenth-century
farmers tilling a field found the Shang oracle bones, a collection of tor-
toise shells and animal bones—they were first thought to be the bones
of a dragon—with numerals representing 1 through 10 (no zero) in-
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scribed on them. Presumably, Shang nobles recorded prophesies gleaned
from the spirts of their ancestors regarding the best times for traveling,
harvesting, and the like. With these ten numerals and a few other sym-
bols in a decimal system, the Chinese of that era could represent any
number. It was the most advanced number system of its time save for
one—that of the Babylonians.*”

However, ancient Chinese math seems less interesting because it ap-
pears to be devoted to practical matters: teaching minor bureaucrats
how to make calculations. There appears to be little interest in the un~
derlying logic of procedures, not “pure” math as we perceive it today.
The most influential text is the Jiuzhang suanshu, from the Han dynasty
(206 B.C. to A.D. 220). It contains 246 problems and their solutions, ad-
dressing all the problems with which reckoning clerks in the bureau-
cracy might be confronted. The text was used for more than a thousand
years and inspired great commentaries.” It was evidently followed
blindly, with little interest in the underlying principles.* It fits into the
Feynman “bead characterization.” Then again, perhaps there is a deeper
level that eludes our gaze from twenty centuries distant.

Underlying their many practical workbooks was considerable theo-
retical foundation. Claims that the Chinese had discovered the
Pythagorean theorem in 1000 B.cC., five hundred years before Pythago-
ras, are now fading. There is evidence, though, that the Chinese had the
concept somewhere between 700 and 400 B.cC., either a couple of cen-
turies before or no later than a century after, the Greek mathematician.
In the Chou pei suan ching, a text of the period, Duke Chou Kung and a
person named Shang Kao discuss the properties of right triangles, in-
cluding the Pythagorean theorem. In a dialogue, they demonstrate how
it works geometrically.”

The Chinese are known for the abacus, though it came late to
them. The Babylonians had it earlier; other cultures used the device as
well. China’s greater accomplishment was the counting board, of which
the abacus was a kind of simpler, laptop version. The counting board
looked like a smallish chessboard on which rods were placed to repre-
sent the numbers. Color was important. Red rods represented positive
(cheng) numbers; black rods, negative ( fu).”® We, of course, reverse that
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system today in our bookkeeping notation; red ink means negative
numbers, or losses.

Placing the rods in different positions—vertically, horizontally, adja-
cent, and so on—on the counting board, the Chinese could represent
any number. They did not have an official circular zero until Chin Chiu
Shao’s work in 1247,% but for many centuries Chinese mathematicians
simply left a square blank on the board instead of a zero. It may have de-
noted zero or, as Kaplan suspects, simply meant “no number here.”*®

Counting rods evolved beyond calculating devices, ultimately being
used for algebraic operations. They could be arranged on a counting
board to represent a system of equations. For example, the following

board, from the first century A.D.,

[y 1 i

represents (reading vertically):

2x — 3y + 8z = 32
—-6x — 2y — z = 62
3x + 21y - 3z = 0

On the counting board, the equations read down the columns, and the
coefficients of each unknown read across the first three rows, the last
row showing the right side of the equations. The light rods above are
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red, signifying positive numbers; the dark rods are black, signifying neg-
ative numbers. Some speculate that this counting-board method was an
early precursor of matrices,” a mathematical technique developed in
the West in the nineteenth century and used most notably by Werner
Heisenberg in his theory of quantum mechanics. Matrices remain one
of the most widely used tools in mathematics today—in economics, ge-
ography, demography, and sociology.'®

We have not done the ancient Chinese justice here, and their math
remains mysterious and perhaps more profound than we can appreciate.
Certainly that is the feeling of the great seventeenth- and eighteenth-
century mathematician Gottfried Leibniz.

Leibniz, born in Leipzig in 1646, invented the calculus almost si-
multaneously with and independently of Isaac Newton. He was a poly-
math and a seer. He saw what shape mathematical logic would take, and
he imagined a universal computing machine. Some biographers find in
his work premonitions of quantum mechanics and DNA grammar.™*

Leibniz was fascinated with the Chinese culture and shared the Je-
suits’ view that introducing European science into China would help
convert the Chinese to Christianity. Leibniz was working with a binary
arithmetic (the only numbers are 0 and 1), which today makes comput-
ers possible. In 1716, in a letter to Peter the Great of Russia, Leibniz
claimed to have deciphered the diagrams of the ancient sage Fu Hsi and
to have discovered correspondences between his binary code of arith-
metic and Fu Hsi’s diagrams.

The Jesuits of his day believed, incorrectly, that it was Fu Hsi who
had constructed the famous “Prior to Heaven” diagram of sixty-four
figures, each with six hexagrams, derived from the I ching (The Book of
Changes), the venerable Confucius-era sixth-century B.c. work. (The
diagram, according to more recent scholarship, has now been attributed
to a later neo-Confucianist, not Fu Hsi.)

Leibniz came to believe that his binary system of double geometri-
cal progression corresponded to the system of Fu Hsi, that Fu Hsi had
derived a binary arithmetic from a sixth-century B.c. religious and mys-
tical work, and that he himself had reinvented the arithmetic centuries
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later. Do computers owe an ancient debt to the I ching? Probably not. But
the great mathematician liked thinking about it. Leibniz came to believe
that the universe was binary, that God created the world out of units of

37 102

0 (nothing) and 1 (God). He called the process “the secret of creation.

The Arab World

Religion as a driving force behind science is evident in the Arab world
during the golden age of Islamic civilization. From A.p. 750 onward,
after the proliferation and then consolidation of Muslim rule to cover
half of the Old World, the sciences flourished in a largely peaceful Is-
lamic culture. The Muslims dominated from North Africa north to
France, spanned Persia and the central Asian plains to the borders of
China, and extended their rule down to northern India.!* In one of the
great syntheses of mathematics, statistics, and linguistics, the Arabs in-
vented cryptanalysis, the craft of unscrambling decoded messages.

The impetus was the revelations of Muhammad, who more than
a century earlier had dictated messages he had received from the
archangel Gabriel. These revelations were assembled into a single text,
the Koran, but not necessarily in the order in which Muhammad
had received them. To determine the proper chronology, theologians
counted the frequencies of words in each revelation. Since some words
were more recently coined than others, those passages with a higher fre-
quency of these words must have been written later.

Al-Kindji, a ninth-century Arab philosopher and scientist, devised a
similar technique, called “frequency analysis,” for breaking codes. In A
Manuscript on Deciphering Cryptographic Messages, al-Kindi said that one
simply counts the occurrences of each letter in a language’s alphabet in
common usuage, ranking each: most common, second most common,
and so on. Then one ranks the letters in the encrypted message. In En-
glish, for example, the most common letter is e; the second most com-
mon is £. So if the most common letter in the code message is x and the
second most common is p, then x probably corresponds to e and p to ¢.
Al-Kindi’s is not a foolproof method, as it’s based only on averages. The
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most common letter in an encrypted English message may not be e (for
example, “Sink the Bismarck™).'*

British physicist and science popularizer Simon Singh, author of
The Code Book, writes, “While al-Kindi was describing the invention of
cryptanalysis, Europeans were still struggling with the basics of cryptog-
raphy. The only European institutions to encourage the study of secret
writing were the monasteries, where monks would study the Bible in
search of hidden meanings, a fascination that has persisted to modern
times.” '

It isn’t necessary to explain Arab mathematics in great detail. The
math practiced by medieval Arab mathematicians differs little from
what the average American encounters from grade school through high
school, and perhaps a bit into college. Arithmetic, geometry, algebra,
trigonometry,and some higher mathematics—math as most nonscience
majors know it—was being used on a regular basis in the Arab world in
the Middle Ages. The medieval Arab would breeze through most mod-
ern U.S. secondary schools, perhaps even attempting a bit of calculus.
He’d use the same numerals, O through 9.

That Islamic mathematicians and scientists during the Middle Ages
were far more advanced than their European counterparts has never
been a matter for debate. Their precise role, however, has been passion-
ately argued. The word favored by Western scholars, and reviled by
non-Westerners, is “custodial.” They were considered Islamic Xerox
machines whose sole function in life was to preserve the Greek culture,
to translate it, and to keep it well oiled and maintained, until Europe
could rouse itself from its medieval slumber and reclaim its intellectual
heritage.

This hypothesis, though well disseminated in American, European,
and other schools, can’t possibly be true, on at least three levels. First,
how did the Arabs preserve Greek algebra and trigonometry when the
ancient Greeks had no such disciplines? Second, the hypothesis ignores
the fact that Arab math was based primarily on Indian numbers, 0
through 9, not Greek or Roman numerals.'” Finally, more than mere
scribes, the Arabs developed a mathematics of their own.
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The Arabs were, in fact, wonderful preservers and, yes, custodians, of
other cultures’ intellectual accomplishments. The golden age of Islam
provided a stable society in which scholarship thrived. Islam demands
justice, and justice requires knowledge, so Muslims set about translating
Babylonian, Egyptian, Indian, Greek, Chinese, Farsi, Syrian, Armenian,
and Roman texts into Arabic. A series of caliphs from 762 to 833 turned
Baghdad into a Muslim version of Alexandria, building an observatory
and a library. In 815, the Bait al-Hikmah, or House of Wisdom, was
built as a center for translation and research; it would remain the intel-
lectual epicenter of the Arab world for two hundred years.”

ONE oF THE early directors of the House of Wisdom was al-Khwarizmi,
who was likely from Khwarizm, east of the Caspian Sea.'® Our word al-
gorithm, for any special method of solving a problem, is derived from his
name.'” Al-Khwarizmi introduced Hindu-Arabic numerals—essen-
tially a modernized version of the Gwalior numerals—to the Arabic
world around A.p. 830. The ten numerals, including zero, were not an
overnight success. The Arabs resisted the Indian numbers almost as
much as the Europeans would during the R enaissance, though not for
so long. Arabs continued using the sexagesimal system invented by the
Sumerians for astronomical calculations. Even in algebra, Islamic math-
ematicians used words rather than numbers (“three squares and four is
equal to seven things” rather than 3x*> + 4 = 7x). The Hindu numbers
eventually gained acceptance when large numbers were required, the
zero showing its dexterity in these matters.'’

Among those mathematicians preferring “prose algebra” was
al-Khwarizmi himself. It was he who named this branch of mathemat-
ics in his book Hisab al-jabr w’al-mugabala (Calculation by Restoration
and Reduction)."! Al-jabr is the word he used for the operation of solv-
ing equations. The traditional explanation is that jabr shares a common
root with the Arabic word for “the setting of a broken bone.” (Alge-
brafista is Spanish for bone setting.) As mentioned in chapter 1, Colum-
bia’s George Saliba says the connection to bone setting is incorrect, that

72



Mathematics: The Language of Science

algebra is an Arab word meaning “compulsion,” as in compelling the
unknown “x” to assume a numerical value.'”?

By “restoration” (in the title of his book) Al-Khwarizmi is referring
to the transfer of negative terms from one side of an equation to the
other. By “reduction” he means the reduction of many terms into a sin-
gle one,' as is commonly done in algebra. Al-Khwarizmi introduced
the 0 though 9 in another book and was careful to credit the Indians,
but various translations deleted this point, which is why today these
numbers are called “Arabic numerals.”"* Al-Khwarizmi also intro-
duced to the Arab world the decimal positional system developed by
the Indians."®

Al-Khwarizmi assigned the latitude and longitude of twelve hun-
dred important places on the globe and corrected Ptolemy’s overesti-
mate of the length of the Mediterranean.'® Al-Khwarizmi is still
required reading in some Arab states because he applied algebra to Is-
lamic inheritance laws, which can be arcanely complicated.'”” For ex-
ample, one-fourth of a woman’s estate goes to her husband, and the rest
is divided among the children, except that sons must receive twice as
much as daughters. If a share is left to a stranger, he may not receive
more than one-third of the estate without the permission of the natural
heirs, and if so, those who approved the legacy must compensate the
nonapprovers for the amount exceeding one-third."® Muslim estate
lawyers obviously had to know algebra.

Another Arab algebraist, born two centuries later, was the poet
Omar Khayyam. Born in Khurasan, now part of Iran, Omar most likely
came from a line of tent makers. We know him primarily as the author
of The Rubaiyat of Omar Khayyam, but he also wrote a book on algebra
in 1070, classifying equations according to their degree and providing

" (the Babylonians were

techniques for solving quadratic equations
solving quadratics two thousand years earlier).” He did a number of
other flashy things, devising, for example, a calendar in which eight out
of every thirty-three years was a leap year. This provides a more accurate
approximation of a solar year than does the Gregorian calendar devised

centuries later.”” (The Gregorian employs a forgettable system of leap
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years every four years, excluding century years, yet including century
years divisible by 400. This last rule was ignored by some computer pro-
grammers in A.D. 2000, resulting in a missing February 29 in many
computers for that year.)

A more important contribution of Omar Khayyam was his reinter-
pretation of Greek geometry. Euclid and other Greeks did not consider
certain ratios capable of being expressed as arithmetic numbers: for ex-
ample, the ratio of a circle’s circumference to its diameter (pi) or the
ratio of a diagonal of a square to its length (the square root of 2). Omar
extended the concept of number to include positive irrational numbers,
an idea explored later in Europe by René Descartes in the seventeenth
century and Georg Cantor in the nineteenth. Omar’s seminal contribu-
tion was his geometric solution to cubic equations.'*

THE MEDIEVAL ARABS approached mathematics with the rigor of the
ancient Greeks combined with the playfulness of the Indians. They
were fascinated, for example, with perfect numbers. A number is perfect
if it is equal to the sum of its own divisors. The first perfect number is
6 (the sum of 1, 2, and 3). In the ancient world, only four perfect num-
bers were known: 6, 28, 496, and 8,128. By the thirteenth century, the
Arabs had added three more—not a trivial feat given that these per-
fect numbers contain eight, ten, and twelve digits, the third one being
137,438,691,328.'> The practical purposes of perfect numbers? No one
has thought of any yet. Arab work in this area is thus evidence of an in-
terest in pure mathematics.

Western scholars can point to the respect the Arabs showed their
Greek predecessors. One of Islam’s prominent mathematicians was Abul
Hassan al-Uglidisi, in the tenth century. His name was evidence of his
reverence for the Greeks. He copied the works of Euclid, hence the
name al-Uglidisi. One of his legacies is paper-and-pen mathematics.
It was common in India and the Islamic world to do calculations in
the sand or dust, wiping out intermediate steps as one proceeded.
Al-Uqlidisi recommended paper and pen instead. His motivation was
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not intellectual; he simply wanted to separate himself from street as-
trologers and others who did their calculations in the street.” Written
arithmetic preserves the process by which one arrives at a solution, an
important issue to the Greeks.

The Arabs were also reluctant to abandon the limited Western con-
cept of number, which to the Greeks was always a positive integer or a
fraction composed of integers. The Arabs clung to this antiquated idea
for centuries. Despite introducing the zero to half the civilized world, it
appears that the medieval Arabs never qilite accepted it as a rank-and-
file number since it isn’t a positive integer (and the Greeks never had
it)."® This attitude began breaking down, however, with the Arab math-

ematician-astronomers, who needed more numbers than the meager
 assortment provided by Euclid et al.

George Gheverghese Joseph points out that the Arabs broke the
“straitjacket of Greek mathematical tradition.”'* They brought to-
gether the geometry of the Greeks with the algebra, trigonometry, and
numeration of the rest of the world.

Mesoamerlca

A painting on a classic Mayan vase depicts a pair of deities. One god has
the facial features of a monkey and carries a codex. The second god rests
a hand on the back of the first, with a scroll containing bar and dot nu-
merals streaming from his armpit. The god with the codex represents
writing. The god with numbers flowing from his armpit represents
math. The implication is that the Maya were not mere counters and
reckoners but recognized mathematics as a separate discipline, on a par

27 The significance of numbers emanating from the

with writing.
armpit,a common image in Mayan art, remains unclear.

We have limited knowledge of the great Mayan civilization that
once occupied an area that includes present-day central and south-
ern Mexico, Belize, Gautemala, El Salvador, and parts of Honduras.
Sixteenth-century Spanish conquerors destroyed most of their writings.

Fortunately, a few codices escaped, as well as cave paintings, cave writ-
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ings, and hieroglyphic inscriptions over the stelae, upright stone monu-
ments that were erected every twenty years and contained the date of

their construction.'®

These meager clues are enough to tell us that the
Mayan culture, whose golden age spanned A.p. 200 to 1000, embraced
mathematics with a passion.

As the stelae confide, 20 was an important number to the Maya.
They utilized a base 20, or vigesimal, number system with nineteen nu-
merals and a zero. The basic numerals were composed of two symbols, a
dot for 1 and a vertical bar for 5. These were used in various combina-
tions to form the numbers 1 through 19. A zero consisting of an ellipti-
cal form resembling a snail’s shell also stood in for 20. It was not a
straightforward system like ours. Adding zero to a number did not nec-

essarily multiply it by 20.

) : ) )
3 @ . 9 ol - 8 @ . 20 <
® o ®

The Maya clearly loved numbers, and they had several forms of
them besides the stick, ball, and snail variety. There were the “head vari-
ant” numbers, for example, in which 1 through 20 took the form of the
typical Mayan “comic book” style of caricatures.

Mayan math, so far as we know, was based on integers. The Maya
appear to have taken great pains to avoid using fractions.”” In keeping
track of time, Maya scribes used a positional notation that was written
vertically, with the smallest units, k’ins, or days, at the bottom.™ It ap-
pears that positional notation is very ancient in the New World, predat-
ing even the Maya, having been found on monuments in Mesoamerica
dating back to 36 B.c.™ It is a profound and important concept, says
Marjorie Senechal, a professor of mathematics at Smith College. “Posi-
tional notation is to a mathematician,” she says, “what laboratory equip-
ment is to an experimental scientist.” *?

The Maya were obsessed with counting because they were obsessed
with time—obsessed with the notion that they might run out of the lat-
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The Mayan “head variant” numbers, from 1 to 19 and 0, based on
deities. These numbers were often used on calendars. (After Joseph

and Closs.)
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ter, and the universe would end."® They had at least six calendars, in-
cluding a 584-day Venerean calendar, based on Venus years. The Maya
offset their three primary calendars—the 260-day tzolkin, or “sacred
year,” the haab, or “civil year,” and the tun, or “long count”—to avoid
cosmological disaster. They feared that when a calendar came to its end,
so might the universe, but with calendars of different lengths running si-
multaneously, they felt safer.

If the tzolkin year was ending, well, the tun might still have time
left. On those rare days when the end of one calendar coincided with
another—as the haab and the tzolkin did every fifty-two years—the
Maya offered up blood sacrifices to fend off annihilation. The haab cal-
endar employed another trick. Each of its twenty-day months began
with 0.* When one hits the zero day, is one at the beginning or the
end? With death and rebirth occurring simultaneously, the end is
smeared.

George Joseph comments, “Isn’t it interesting that the two mathe-
matical cultures that had the most developed positional number system
with a zero were both obsessed with time, but in very different ways?
The Indians saw time as never-ending, and so measured eras in vast pe-
riods of time (mahayugas), and the Maya were fearful of running out of
time, so they had to undertake sacrifices to the gods to try to avoid this
calamity.”

Did the Maya practice geometry? The surviving codices contain no
clues. Much has been made, however, of the fact that the sites of three
major temples at Tikal form an isosceles right triangle.”* Perhaps so, but
let’s hope these clever people, if they did practice geometry, did so in a
manner more efficient than building three temples every time they
needed a triangle.

Once again, religion presents itself. A holy class of scribes was in
charge of mathematics in the Mayan civilization. Not all scribes, how-
ever, could do the math. Those who could manipulate numbers enjoyed
the greatest prestige.”” In our scientific culture, we say that the physicists
defer only to the mathematicians, and the mathematicians defer only to
God. (Though some would argue that few mathematicians are that
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modest.) Among the Maya, the route to the gods was through the
scribes, and the route taken by the scribes was through mathematics and
astronomy.

Zero

Let us turn to a major concept that can be traced through many differ-
ent peoples: zero.

It is a troublesome number even today. A few years ago, I wrote an
article about the fact that the years in our Gregorian calendar are mis-
numbered. When the the Scythian monk Dionysius Exiguus instituted
the anno Domini (a.D.) system in the sixth century, he began with A.p.
1, the year in which, according to his calculations, Jesus was born. No
problem there—1 is a good number to start with. Two centuries later,
however, the Venerable Bede, a Northumbrian Anglo-Saxon monk,
picked up Dionysius’s system and popularized it in his classic work the
Ecclesiastical History of the English People, completed in A.p. 731."*® To
preserve history before Jesus, Bede extended the system backward, cre-
ating the B.C. years.

There was a major hitch. Bede had only Roman numerals to work
with, which means that he had no zero. Therefore, he constructed a cal-
endar that went directly from A.D. 1 to 1 B.C., with no zero in between.
I wrote that the lack of a year zero causes immense problems. For exam-
ple, if one reckons the number of years from A.D. 5 to 15, the answer is
ten. Reckon from 5 B.C. to A.D. 5, however, and you get . . . nine! Skip-
ping the year zero creates a messy situation for mathematicians, as-
tronomers, calendarists, and others. In fact, because it is so confusing to
date ancient eclipses and comets with the Gregorian calendar, as-
tronomers devised their own, one with a year 0. In 1740, the French as-
tronomer Jacques Cassini replaced B.C. and A.D. with a — and + system,
in which 0 replaces 1 B.c., 2 B.c. becoming —1, 3 B.c. becoming —2,
and so on. Zero is a leap year."

For years after the article was published, I received passionate letters
from educated people who insisted that there was no need for a year 0.
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Zero equals nothing, they wrote, and one can thus skip over zero, as one
is skipping over nothing. A group of teachers said I'd struck a blow
against math literacy by treating nothing as something.

In fact, zero is more than nothing, but even today it remains a diffi-
cult concept for many of us. I had earlier called the math department at
the Massachusetts Institute of Technology, asking if a mathematician
could confirm that zero is a valid counting number. A department
spokesman declined to comment, suggesting that I needed a number
theorist, and that I should call Harvard University. Harvard confirmed
that zero was indeed a number, and could not be skipped with impunity
any more than one could skip 3 or 8 or 412 when counting. A number
theorist there, however, cautioned that “zero is a very modern con-
cept” ' and people still have trouble with it.

To understand why zero is not synonymous with nothing, take this
classic example: grade point average (GPA). In a four-point system, an A
equals 4, B equals 3, and so on, down to E which equals 0. If a student
takes four courses and gets A’s in two but fails the other two, he receives
a GPA of 2.0, or a C average. The two zeros drag down the two A’s. If
zero were nothing, the student could claim that the grades for the
courses he failed did not exist, and demand a 4.0 average. His dean
would laugh at such logic.

The concept of zero was less alien to the ancient non-Western
world than it is to us today. “In the history of culture,” wrote Dantzig in
1930, “the discovery of zero will always stand out as one of the greatest
single achievements of the human race.” Zero, he said, marked a “turn-

14 in math, science, and industry. He also noted that the zero

ing point
was invented not in the West but by the Indians in the early centuries
after Christ. Negative numbers followed soon thereafter.'” The Maya
invented zero in the New World at approximately the same time.'*® Eu-
rope, says Dantzig, did not accept zero as a number until the twelfth or
thirteenth century.'*

There are many “biographies of zero,” and Dantzig’s concise and
spirited account of the birth of a number is adequate for most of us. He

sees zero’s invention appearing on an Indian’s counting board in, say, the
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first or second century A.D. The Indian counting board had columns for
the ones, tens, hundreds, thousands, and so on. To “write” 302, for in-
stance, a mathematician would put a 2 in the first (right) column and a
3 in the third, leaving the second column empty. On one fateful day, as
Dantzig sees it, an unknown Indian drew an oval in the second column.
He called it sunya, for “empty” or “blank.” Sunyata, an important con-
cept in Buddhism, is often translated as “emptiness” or “void.” '**

The Arabs turned sunya into sifr (“empty” in Arabic), which became
zephirum in Italy, and eventually zero. In Germany and elsewhere, sifr be-
came cifra, and then, in English, cipher."** In other words, it took over a
thousand years for Western civilization to accept a number for “noth-
ing.” Dantzig blames the Greeks. “The concrete mind of the ancient
Greeks could not conceive the void as a number, let alone endow the
void with a symbol.” ¥

That’s the short version, and not a bad one. You don’t want to hear
the long version, so let’s suffice with a medium-sized tale.

Zero lay rustling in the weeds for many centuries before that Indian
drew it on a counting board. It was an unnamed, unwritten force. It
took many more centuries after the Indians and the Maya dared speak
its name before zero was promoted to a full-fledged number.

The U.S. Library of Congress defends our calendar and its missing
zero. “There has never been a system of recording reigns, dynasties, or
eras,” the library states, “that did not designate its first year as the year
1.7'* In fact, Pol Pot began the Khmer R ouge calendar with the year 0.
The Maya had both years 0 and days 0.

The Babylonians had no zero, but they knew something was wrong.
If they numbered the first year of each king’s reign as year 1, then added
up the number of years of each separate reign, they’d end up with too
many years unless each king died just before midnight on New Year’s
Eve and his successor took the throne after midnight. Thus, the Babylo-
nians called a king’s first year the accession year. The following year was
year 1.'” The accession year was a kind of year 0. The Babylonians, so far
as we know, never articulated zero, but seemed aware that there was a
missing number in their system.

31



LOST DISCOVERIES

The contemporary mathematician who has conducted the most
rigorous research on nothing is R obert Kaplan, the author of The Noth-
ing That Is:A Natural History of Zero. Zero turns up throughout history in
different cultures as a series of dots and circles, and Kaplan writes of fol-
lowing “the swarm of dots we find in writings from a host of languages,
across great spans of time, and on topics mathematical and otherwise.” **

Kaplan traces the roots of zero to Sumer and Babylonia. The Su-
merians counted by tens and sixties, a system adopted by the Babylo-
nians, who eclipsed them in Mesopotamia. The Babylonians, far ahead
of the Romans and Greeks to come, imposed a positional notation on
the old Sumerian sexigesimal system. Writing their numbers on clay,
the Babylonians needed a symbol to put in the “empty” columns, just as
we today use zero to differentiate between 302 and 32.

Somewhere between the sixth and third centuries B.c., the Babylo-
nians began using two slanted tacklike symbols to insert in the empty
columns. They borrowed the slanty tacks from their language, where
they were used as periods, among other things.” However, the Babylo-
nians used their “zero” only in the middle of numbers, never at the
end.” Clearly, this was not a full-fledged zero.

Kaplan argues that when Alexander invaded the Babylonian empire
in 331 B.c., he hauled off zero along with the women and the gold.
Shortly thereafter we find the symbol O for zero in the papyri of Greek
astronomers,'” but the mathematicians never pursued the concept.
Why not? Kaplan, Hogben, and others mention the old reason: the an-
cient Greeks had little respect for counting, leaving such micromanage-
ment to tradesmen.”* Kaplan also has another theory: that the Greeks
kept zero to themselves, a secret they were loath to put into writing." It
is not such a far-fetched idea. The zero continued to have a bad reputa-
tion among Westerners. In A.D. 967, the monk Gerbert, who would be-
come Pope Sylvester II, fashioned a zero sign for one of the counters on
his counting board. For dabbling in nothingness, Gerbert was accused of
having intercourse with evil spirits."

The Greeks often placed stones on their counting boards and then
sprinkled the boards with dust or sand, presumably to make a temporary
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record of the numbers when the stones were removed. Kaplan specu-
lates that the 0 symbol was the impression left when the stone was ex-
tracted. Further, he finds zero in an A.p. 270 Indian work called The
Horoscopy of the Greeks. The Indian author was translating into verse an
earlier Indian work from A.D. 150, which in turn was probably a transla-
tion of a Greek original.

Kaplan’s hypothesis is that the ancient Greeks invented zero, de-
clined to use it themselves, and then inadvertently donated it to the In-
dians. He hastens to add that he is bridging a chasm “on the slenderest
threads of evidence.”'”” We're in a generous mood here. Why not give
the Greeks credit for inventing one of the most important concepts in
math . . . and then for their generosity in giving it away, virtually un-
used? It reminds one of the man who throws his great-aunt’s old bureau
out on the sidewalk; a passing shopkeeper picks it up, scrapes it down,
and discovers a priceless heirloom under all the dust.

This is what the Indians found in the Greeks’ discarded zero. Zero’s
journey from a circle in the dust to a full-fledged number was a long
one, and Kaplan feels that zero never achieved full citizenship until
seventeenth-century Europe.® During the first millennium A.p., math-
ematicians referred to the nine Indian numerals and zero, as if it were
separate. Even the European mathematician Fibonacci, who grew up in
North Africa and was tutored by Arabs, wrote in the thirteenth century
about the “nine [Indian numerals] with the sign 0.

Was this distinction between “number” and ‘“sign” meaningful?
Probably, but it didn’t stop the Indians (or the Maya) from operating
with zero—using it in arithmetic operations, though division was a
quandary.'® Clearly, the Indians started realizing that zero was more
than a sign. In A.p. 600 Brahmagupta set down the rules for addition
and subtraction with zero, including operations with negative num-
bers." The Indians figured out that the square root of zero is zero, and
that 02 is also 0, but they couldn’t figure out how to divide with zero.
(One cannot divide by zero.)

Hogben gives the Indians credit for inventing negative numbers,
though in a backhanded way. “Perhaps because the Hindus were in debt
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more often than not,” he writes, “it occurred to them that it would also
be useful to have numbers which represent the amount of money one
owes.” > Perhaps we can excuse the ancient Greeks for not inventing
zero or negative numbers because they were too fiscally responsible to
conceive of being broke or in debt.

I’ve relied heavily on the version by Kaplan, a traditional Western
scholar, for this brief history of zero in the Old World. Other scholars
tell a slightly different story. For a brief alternative history, from George
Joseph, a mathematician more sympathetic to Eastern philosophy and

history, see note.'*

COMBINED WITH positional notation, zero becomes quite a bit more
than nothing. By adding zeros to the end of a sum, the Indians and Maya
were suddenly capable of describing monstrous quantities. One cannot
take this for granted.

Consider the plight of Archimedes, around 250 B.c., writing to
Gelon, King of Syracuse. In his letter, Archimedes proposed to count
the number of grains of sand required to fill the entire universe. Greek
mathematicians had no zero with which to construct large numbers.
What Archimedes had was the myriad, which is 10,000 in our system.
So he thought of a myriad myriads, then created multiple orders of a
myriad myriads, to get to his estimate of the number of grains of sand
in the universe. His answer, in our notation, was a 1 with fifty-one zeros,
or 101

He was impressed with himself for being able to think of such a
large number, and today we would respond with a resounding “So
what?” When we want a big number, we just pile on some zeros, or,
faster still, use scientific notation (10%,10%, and so on). The ancient In-
dians may not have understood all the mathematical ramifications of
their new toy, but they knew that zero could be enlisted in the con-
struction of big numbers. For example, the Indians quickly dated (we’re
not sure how) the earth at 4,300,000,000 years old, very close to current
estimates. The Maya were more extreme. As part of their effort to con-
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vince themselves that there was plenty of time, the Maya reckoned the
age of their universe at 2 X 10% years.'® (Modern cosmologists date our
big bang universe at a mere 1.5 X 10" years old. The Maya universe
beats ours by seventeen zeroes.) Ancient Indians were also fascinated by
huge numbers and had names for numbers with increasing powers of 10
up to 17 as early as 500 B.c.'*

This gives one added respect for Archimedes. Thinking of big
numbers was no mean feat. Without zero, Archimedes had to build his
numbers with much smaller bricks. “Once zero appears,” says Robert
Kaplan, “the calculation gets easier, but it kills the imagination.” ' Bu-
reaucrats and cosmologists like to toss around numbers and statistics that
are too large for the mind to grasp. The difference between 10* and
10** is huge, but do we discern it? Chemists complain that Avogadro’s
number, 6.022 X 10%,a constant used to calculate the number of mol-
ecules in a chemical, is too large. That is, if one makes a mistake and
multiplies by 10% or 10* instead of 107, it’s a huge error but one not
noticeable to humans. If zero has been considered the work of the devil,
perhaps the fear is justified. Our brains are no more evolved than
Archimedes’. Zero is relatively new software. Perhaps our hardware isn’t
up to it.

To those who fear the mix of religion and science, zero holds even
greater horrors. With the Maya, zero reached the proportions of a cult
religion, and a bloodthirsty one. Not content with one simple symbol,
like O, for the number, the Maya needed many. There was the basic snail
shape,'® a flower,' a tattooed man with his head thrown back,"” and
many others. Barbara Fash, of Harvard University’s Peabody Museum,
says the flower’s center point is a “bed of creation,” the zero signifying
both the beginning and the completion of a cycle. The zero was an af-
firmation of life.

There was a dark side. When the end point of the sacred calendar
coincided with the end point of the civil calendar, the Maya felt the
need to fend off the death of the universe by killing Death himself. So
they played a ball game, a kind of deadly Super Bowl, in which one op-
ponent was the Hero and the other was the God of Zero, or Death. The
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game was staged, but the players were real people, and the injury and
death they suffered were real also. The “ball” was an important hostage,
such as a captured king, who had been saved for the event. He was
trussed up into a ball, and the Hero and the God of Zero kicked him
back and forth, eventually killing the “ball,” sometimes by rolling him
down a long flight of stairs. The fix was always in, and the Hero always
won. The God of Zero would then be sacrificed by having his lower jaw
torn off.

From wHAT WE have seen, the standard trajectory of mathematics, can’t
possibly be true. That is, that math was invented by the Greeks, who
gave it to the Arabs for more than a thousand years of custodial care,
after which it was turned over to the Europeans during the Renais-
sance. Clearly, the Arabs served as a conduit, but the math laid on the
doorstep of Renaissance Europe cannot be attributed solely to ancient
Greece. It incorporates the accomplishments of ancient Sumer, Babylo-
nia, Egypt, India, China, and the far reaches of the medieval Islamic
world.

The “path of zero” is in the past and is virtually unknowable, but it
provides clues as to how mathematical knowledge in general moved
through the ancient world. Zero was perhaps conceived in Sumer, ges-
tated in Babylonia and Greece, born in India, and reared through the
medieval Arab world and R enaissance Europe. We are being extra kind
to ancient Greece here—we can see zero there if we squint hard—and
perhaps ungrateful to Egypt, which may have provided a hidden assist.
In short, there may be no trajectory in a strict sense. The various cul-
tures may have acted as particles in a field, with concepts bouncing
freely back and forth among them.

The Mayan zero is a challenge to any notions of white superiority.
Separated from the Old World by an ocean, the Maya are unlikely to
have stolen the concept. The zero was first used in the Mayan civiliza-
tion somewhere between A.D. 292 and 357, as revealed by the chrono-
logical monuments called stelae. The oldest stela without a zero is Stela
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29 at Tikal, dedicated in 292, but Stelae 18 and 19 at Uaxactun, dated at
357, contain a zero sign. Somewhere in between, the Maya invented
their own zero, free of Greek or other Old World influence. How do we
rationalize that these people, acting on their own, had supple enough
brains to conceive of what Dantzig calls “one of the greatest single

achievements of the human race”?'"

Morris KLINE, the best-known modern historian of mathematics, has
characterized Babylonian and Egyptian math as the “scrawling of chil-
dren.” He called the Indian mathematicians “fools.” Are students being
adequately informed of the contributions of non-Western cultures?

Harvard’s Barry Mazur says that math is very difficult to learn and
very difficult to teach. It is hard enough finding talented math teachers,
let alone requiring that those teachers know a spectrum of Western and
non-Western forms of math. “Taking a broad serious view of math,” he
says, “would require learning several languages. You'd have to spend
your life on this stuff to understand it. No modern mathematician has
done it”” Then he paused. “But we have to do it better than Morris
Kline.”'”
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ASTRONOMY
Sl(y Watchers and More

HROUGHOUT human existence we have looked to the sky. Were
there perhaps moments involving a monolithic slab and a summer
solstice sunrise as in Kubrick’s Ape Prelude in 2001: A Space
Odyssey? Why not? Astronomical observations predate writing. The human
integration of events in the night sky into a larger view of human order
seems to verify a hard wiring of the brain to confer upon celestial goings-on
a pattern and organization. The movements of heavenly bodies have been
recorded, noted, or remarked upon in an endless variety of ways, but the
continuum of astronomical observation across cultures has been consistent.
Here in the present we have better equipment. In the opening of his
book Frozen Star, the astronomer George Greenstein writes, “Out for a
stroll one starry night, it struck me how rarely we astronomers ever look
at the sky”” Data from satellites are piped down, in digital form, to com-
puter screens in windowless offices bathed in fluorescent light. There
are more data, but there is certainly less romance. Greenstein noted that
ancient astronomers, with cruder equipment, may have had a greater
appreciation of the sky as whole. When Carl Sagan gazed upward, in the
TV series Cosmos, and rhapsodized about billions and billions of stars,
comedians mocked him. He was, however, validly pointing out how any
human, even those without telescopes, can begin to understand the
world by looking at the sky. (Sagan later claimed he had never used the
phrase “billions and billions.”)
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Stargazing isn’t what it used to be. The stars are just as bright as they
were during Sumerian times, but light pollution from terrestrial sources
obscures their brilliance. For many, real sky watching has been replaced
by enhanced images of stars in the media. We have become accustomed
to “photographs” of galaxies, which appear as large, fluffy, bulging
wheels of stars lathered with some sort of creamy galactic frosting. They
look good enough to eat. In reality, galaxies are wispy things, barely
visibile to the naked eye. The photographs you’re familiar with are
taken using long time exposures—to make the galaxies look beefier—
through a powerful telescope.! These are cartoon galaxies, bearing no
resemblance to reality, which promote our modern view of the universe
as one dense with stars.

All galaxies, including the one we live in, the Milky Way, are pri-
marily empty space with a sparse smattering of stars and interstellar
matter. If two galaxies met head-on, they could pass through each other
with few collisions.? If you shot a rocket randomly through the Milky
Way, the chances of it hitting a star would be one in one billion trillion.?
In fact, in the early 1970s, NASA did shoot unmanned ships Pioneer 10
and Pioneer 11 out of the solar system. The spacecraft carried drawings
of humans and other messages supposedly for aliens, but this was an ex-
ercise only, since NASA knew the rockets had little chance of contact-
ing a star, let alone a planet.* Still, the misguided thought the messages
were meant for alien eyes and ears.

Only modern earthlings believe in jelly-doughnut galaxies, a uni-
verse so congested with matter we can send messages to our extraterres-
trial friends. In fact, the night sky reveals more space than stars.

ANCIENT CULTURES were often more realistic in their relationship with
the heavens. In recent decades we have come to recognize the astro-
nomical sophistication of ancient non-Western cultures. Otto Neuge-
bauer’s 1957 Exact Sciences in Antiquity became a foundation text and
spurred the beginning of a new multidisciplinary field, archaeoastron-
omy. Anthony Aveni, a professor of astronomy and anthropology at
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Colgate University, defines archaeoastronomy as the study of the prac-
tice and use of astronomy among the ancient cultures of the world, tak-
ing into account all forms of evidence, written and unwritten.® Though
archaeoastronomy has only been around since the early 1970s, it already
has had considerable success as a tool for interpreting astronomical
accomplishments of pre-Renaissance cultures. Revivified by Harvard-
Smithsonian astronomer Gerald Hawkins’s interpretations of the align-
ments of Stonehenge—after some early work by Sir Norman Lockyer
around the turn of the twentieth century—the field has expanded to
include cultures everywhere.

In most ancient cultures in which sky observations were important,
astronomers served also as priests. Although the carefully oriented tem-
ples and ball courts of the Maya and Aztecs doubled as astronomical ob-
servatories, they were also temples and structures for the observance of
civic and religious rituals. Using the observatory-temple, the ancient
peoples of Mexico and the Andes linked the stars to their lives through
omen and prophecy. Although this marriage of astrology and astronomy
common to most ancient non-Western cultures has discredited their ef-
forts in the eyes of some scholars, their accomplishments remain.

Astrology was held in high esteem in the West for many years. Jo-
hannes Kepler, the founder of planetary astronomy, simultaneously sup-
ported himself in part by casting horoscopes, as did his mentor, the
Danish nobleman Tycho Brahe, sometimes called Europe’s first great as-
tronomical observer.

It was an eclipse of the sun predicted for August 21, 1560, that first
interested the fourteen-year-old Tycho Brahe in astronomy and astrol-
ogy. He was struck by the fact that men could understand the motions
of the stars and planets so finely that they could foretell their positions
years in advance. Like other astronomers, Tycho was fascinated with the
regularity of the universe. If we can predict that Halley’s comet will tra-
verse our sky every seventy-five years, is it so far-fetched that Tycho,
Kepler, and Galileo considered the possibility that the lives of men
could also be charted with similar regularity? In fact, until the sixteenth
century, astrology was the correct term for the science of studying plan-
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ets and stars. Astronomy was the practice of naming and identifying stars
and constellations, a minor associated science of classification, much as
taxonomy is to biology. (The suffix -nomy means “to arrange.”)

A cAVEAT. Aveni brings to our attention the fact that when they looked
at the sky, the ancients may have had different things in mind than we
do. “All people,” he says, “Western and non-Western, before the En-
lightenment, tended to approach the sky differently” He conducted a
study of Aztec eclipses, and found that the eclipses the Aztecs chose to
record for history were those that occurred at the “right times”—that
is, those that occurred at fifty-two-year cycles, that dovetailed with their
calendar. These were not necessarily the most spectacular eclipses,
which attract our modern eye. “We wouldn’t think of connecting a
volcanic eruption with the death of a president, but they would,” says
Aveni.

What were ancient peoples looking for? Aveni says, “I think they
were looking for events that validated their belief systems, or sometimes
caused their belief systems to be altered.” If the astronomers were
among the ruling elite, as they were in Babylon and in the ancient Maya
and Aztec worlds, they would be looking for signs in the cosmos to val-
idate their actions: making war, conducting a battle, having a marriage
alliance or a merger of states, and so on. “We usually interpret this in a
simplistic way, and say, Oh well, they were like some kind of Hitler who
would just dupe the masses. We have to understand that this was a
deeply held belief, that you look to the cosmos for signs from the gods
to indicate how you should behave, which way you should turn, in
much the same way a president looks to his or her cabinet.”’

Ancient and medieval non-Western astronomy is pretelescope,
naked-eye astronomy. Even without scopes, however, the ancient Indi-
ans, long before Copernicus, knew that the earth revolved around the
sun and, a thousand years before Kepler, knew that the orbits of the
planets were elliptical; the Arabs invented the observatory and named
most of our popular stars; the Chinese mapped the sky; and the
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Amerindians noted important astronomical events with daggers of light
or optical snakes that thrill us to this day.

We shall start our survey in the New World. Most New World cul-
tures lacked a written language (exceptions being the Maya, the Aztecs,
and possibly the Inca), but they left a rich astronomical heritage.

Tl‘le New W()l'ld

It is easy to assess the impact of Old World astronomy on the Western
Hemisphere: there wasn’t any. Mesoamerican and other New World
cultures were “hermetically sealed,” as Aveni puts it, from the rest of
their sky-watching peers by the Pacific and Atlantic Oceans. While
most of Europe languished, Mesoamerican cultures, influencing only
one another, synthesized an astronomy package that was sophisticated,
complex, precise, and solely their own.

Mesoamerican astronomical interests were inseparable from reli-
gious and sociopolitical ones. (Mesoamerica stretches from northwest
Mexico through central Guatemala and El Salvador.) As in ancient
Mesopotamia, China, India, Greece, and Italy, astronomical gods form
the core of the pre-Columbian pantheon. Mesoamerican societies saw
the heavenly bodies as gods who influenced their fate and controlled
what happened on earth.® They also thought if they tried really really
hard, they could influence these divinities.

Although hundreds of distinct ethnic groups existed, the presence
of shared calendars and a body of astronomical knowledge suggests
communication between these groups reaching back further than two
thousand years.” Some of the later written Maya astronomical accounts
are tied to earlier cultures—Epi-Olmec, Mixtec, Zapotec-derived phe-
nomena two thousand years old. As early as the twelfth century B.c., the
Olmecs, the progenitors of the Maya, Aztecs, and other peoples of
Mesoamerica, were building ceremonial pyramids one hundred feet
high, probably for better viewing the celestial events, as well as for ritual
purposes.

Shortly before the Christian era, a mysterious civilization began
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building the city of Teotihuacin in a valley thirty miles from today’s
Mexico City. Teotihuacan’s Pyramid of the Sun stands 210 feet high
and 700 feet wide at the base." This culture’s preoccupation with sky
observation would serve as a template for Mesoamerican civilizations to
follow.

The solar zenith plays a central role in all Mesoamerica. On the day
(usually June 21) the sun arrives at its summer solstice point—that is,
when it crosses the overhead point, or zenith—something special hap-
pens at a latitude of 23.5 degrees north. Unlike in more temperate lati-
tudes, in the tropics the sun reaches a true overhead position at noon
two times a year. Since most Mesoamerican cities were located south of
this latitude, their citizens could observe the sun directly overhead dur-
ing the time it traveled over their latitude. Zenith passage observations
are possible only in the tropics (that is, between 23.5 degrees north and
south latitudes) and were unknown to the Spanish conquistadors who
descended upon the Yucatin in the sixteenth century." Early Meso-
americans were certainly aware that the zenith varied subtly as they
traveled north and south. Early architectural complexes showed orien-
tations keyed to the local horizon position of the sun on the zenith
date."

For all Mesoamerican societies the sun was the ruler of time and
space. Pre-Columbian peoples fashioned their architecture to integrate
time and space. Astronomers used fixed locations in temples and pyra-
mids to track the rising and setting of the sun and other celestial bodies.
They marked solar events by placing sets of crossed sticks along lines of
sight on buildings’ terraces and ramparts. The precise direction of the
sun at sunrise was a prime orientation.

A common system of Mesoamerican knowledge included not only
prediction of expected solar and lunar eclipses, but also intense observa-
tion of the seasonal rising and setting of Venus and, possibly, Jupiter,
Mars, and Saturn, as well as the marking of the dates of significant
conjunction of planets, the moon, and bright stars and constellations.
These events were recorded on monuments from as early as the first
century A.D.”
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Of all the ancient timekeepers, the Mesoamericans (especially the
Maya) developed the most complex and intricate calendrical systems.
The oldest Mesoamerican calendar inscriptions date from 600 B.c.
They devised a 260-day calendar called the sacred count, used for div-
ination, astrology, and religious record keeping. This calendar gave each
day a name, much like contemporary days of the week. There were
twenty day names, each represented by a unique symbol. The days were
numbered from one to thirteen. With twenty day names, after the count
of thirteen was reached, the next day was numbered one again. The
260-day sacred-count calendar was in use throughout Mesoamerica for
centuries, probably before the beginning of writing. No other cultural
groups in the world have used a 260-day calendar. No one knows just
when, how, or why the Mesoamericans decided upon a period of 260
days. Their shared geographical location and weather patterns and the
agricultural cycles of the northern tropics probably influenced its devel-
opment. Its design may tie together several astronomical events, such as
the configurations of Mars, appearances of Venus, or eclipse seasons.
Contemporary Mesoamericans, who still use the 260-day calendar for
ritual events, have suggested that the 260-day count is based on the
length of the human gestation period.

The planet Venus plays a central role in Mesoamerican culture, es-
pecially in the timing of warfare. The Venus warfare cult, recognized at
many Mesoamerican sites by the images of a goggle-eyed deity known
as Tlaloc, apparently originated in Teotihuacan, and can be traced at
least as far back there as the sixth century a.p."

In the centuries between A.p. 200 and 900, the period of the
so-called Classic Maya, astronomical, calendrical, and timekeeping
powers reached an apex. The Maya took all these elements and pushed
them to a level of originality and brilliance. The Maya were probably
the most sophisticated astronomers and mathematicians of their era.

If you visit the ruined plazas of the Classic Maya cities, you will still
see carved stelae inscribed with effigies and the exploits of kings and
queens. You will read of their royal descents from the gods. All of this is
offered side by side with complex calendrical dates fixing the time of
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year of the event and its position in the ubiquitous 260-day ritual calen-
dar. The royal doings are also accompanied by the correct phase of the
moon, its position in the zodiac, the count of the days since the time of
Maya creation and even since mythic times predating creation—a num-
ber of days running into millions. All were precisely cued to each royal
personage or occurrence.”

During their Classic Period, the Maya developed a Venus calendar
accurate to one day in five hundred years, as well as an eclipse-warning
table that still functions in the twenty-first century. They created their
own zodiac as well as tables to follow Mars, the moon, Venus, and possi-
bly Jupiter and Mercury. To make all this work congruently, they de-
vised a sophisticated mathematics to facilitate the computations. They
projected their astronomical tales hundreds of years forward and back-
ward, even to eras preceding the creation of their contemporary version
of the universe. Maya astronomy reached a level comparable to that
achieved by the Babylonians and surpassing in some ways the Egyp-
tians’.’* Almost as remarkable as the precision and scope of Mayan as-
tronomy was their drive to elaborate upon it, a preoccupation with
celestial accounting that developed into an unparalleled obsession."”

Of the thousands of texts in which the Maya recorded their find-
ings, only four survived the Spanish book burnings. It is as if, observed
Mayanologist Michael Coe, the only things the future knew of us were
based on three prayer books and Pilgrim’s Progress.'

The Dresden Codex (the names of the codices indicate where they
were or are kept, thus the European names) is the most beautiful of the
Maya folding-screen texts. It is eight inches high and, when folded out
from its accordion-like form, eleven feet long. Written on a long strip of
bark paper coated with fine stucco or gesso, it is primarily concerned
with the 260-day ritual counts divided up in several ways, the divisions
being associated with specific gods."

The Madrid and Paris Codices are less perfect in execution. The
Paris Codex is very fragmentary but suggests specific timetables for
prognostications of astronomical events. The Grolier Codex (named
after the Grolier Club in New York City, where it was exhibited in
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1971) 1s also in bad condition but comprises one-half of a twenty-page
table concerning the Venus cycle. The radiocarbon date of A.p. 1230 is
now considered accurate, thus making it the earliest of the manuscripts
by about twenty years.

Venus is the planet of primal religious significance for the Maya,
who made extensive calculations of its multiple apparitions. Unlike the
Greeks of the Homeric age, however, the Maya knew that the evening
and morning stars were the same object. To chart Venus’s synodical pe-
riod (the time it takes for the planet to return to the same position rela-
tive to the earth’s orbit around the sun) the Maya used the figure of 584
days (the actual figure is 583.92, nearly too close to call). They divided
this number into four periods of varying length; Venus as the morning
star was one. The second was Venus’s disappearance at superior con-
junction—the point when the planet is invisible as it passes behind the
sun. The third was its reappearance as the evening star; the fourth, its
disappearance again at inferior conjunction—when it is obscured by
its passage in front of the sun. Venus’s first and last visibilities were of
great concern, with the first being especially important in the Dresden
Codex.

In 1982 Yale University linguist Floyd Lounsbury brought to light
how strongly the Maya linked Venus with warfare, demonstrating that
war imagery is associated with the first visibility of Venus in the morn-
ing and evening sky. The timing indicates that the highly important war
events of the Maya clustered in the dry season, the preferred time for
waging battle. Scholars have concluded that war was avoided during
times when Venus was invisible in superior conjunction.” The visibility
of Venus as the evening star on December 3,735, for instance, set off an
attack on the southern Peten site of Seibal, in present-day Guatemala,
leading to the capture of its ruler the next day. This unfortunate, says
Coe, was kept alive for twelve years, finally being sacrificed at a ritual
ball game timed for an inferior conjunction of Venus.

The stationary point (at the end of retrograde period) of Jupiter ap-
parently signaled accession to the throne, or inaugural rituals at
Palenque. Ball games and associated bloodletting events seem linked
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with Jupiter’s retrograde period. The accession at age forty-nine and
apotheosis twenty-one years later of the great Palenque ruler Kan
Balam was set by Jupiter’s second stage.”

Stars were the “eyes of the night” to the Maya. The Pleiades, as they
were named in the Old World, were important calendar stars. As-
tronomers used a window in the Caracol at Chichén Itz3, in Mexico, to
view the Pleiades as they set at dusk in late April, and again before the
onset of the rains at the time of the first solar zenith in late May. The
Maya visualized Scorpius as a scorpion, and temples were oriented to-
ward the setting points of its stars. There was a long-standing association
between the period of Orion’s conjunction and maize planting.*

Aveni and his colleagues determined that the Maya used buildings
and doorways for astronomical sightings, especially of Venus. At Uxmal,
the tenth-century capital of an ancient city-state in western Yucatan, all
the buildings are aligned in the same direction, except the Governor’s
Palace. There Aveni discovered that a perpendicular measurement taken
from the central doorway reaches a solitary mound 3.5 miles away.
Venus would have risen precisely above this mound when the planet
reached its southerly extreme in A.D. 750.

In 1975, Aveni determined that the building’s orientation and sight
lines might approximate this southernmost rise of Venus, an event that
takes place only every eight years. In the mid-1990s, David R osenthal,
an explorer, photographer, and Mayan enthusiast, spent months at-
tempting to photograph Venus’s southernmost rise at the palace, which
is richly adorned with Venus gylphs. After much trial with fog and
clouds, Rosenthal finally saw the event one morning in January 1997.
And he described something more than the astronomical detail:

Accounts also indicate the Yucatan climate hasn’t changed sig-
nificantly in the last 1,000 years or so, and this is particularly
true in sites as far away from urban areas as Uxmal. Chances are
the ancient Maya might have been subject to the same problem
I'd experienced.

But was it really a problem? The mist-enshrouded early-
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morning horizon seen from a promontory like the Palace of the
Governor appears as the shoreline of an endless ocean. This
view is very similar to a Mayan cosmological construct where
the edge of the world meets an infinite sea, which in turn con-
stitutes the surface of Xibalba, the Underworld. Like other ris-
ing celestial objects, Venus emerges from this mysterious realm
to sail across the sky. Could it be that my perspective of this bril-
liant traveler surging free from shadowy darkness was the very
one sought and shared by priest-astronomers more than a mil-
lennium before?*

With his collaborator Sharon Gibbs, Aveni showed that at around
A.D. 1000 the entire Caracol, a round tower with windows at Chichén
Itza, was aligned with the northerly extremes of Venus. Another diago-
nal sight line through the windows matched the planet’s setting position
when it attained its maximum southerly position.* The Classic Period
Castillo at Chichén Itzd dramatically expressed the Maya sun-
monument-ritual relationship in its orientations and its four staircases of
ninety-one steps per side (which when added to the temple platform as
the final step totals 365 steps). At sunset at the equinoxes, shadows
formed by the nine levels, or stages, of the pyramid create a great slith-
ering snake design all along the serpent balustrade on the north side of
the Castillo. Today, thousands of people come to witness this event.

The habit of incorporating the year’s beginning at the winter
solstice within the architecture plan of a ceremonial center was the
first phase in Mesoamerica of astronomically aligning the city as a
whole. Built before the birth of Christ and already abandoned for sev-
eral centuries during the European Dark Ages, Teotihuacan was care-
fully planned. The fifty-square-mile ceremonial center was laid out in
an east-west axis and grid—approximately 15.5 degrees to the east of
north and the west of south.

Further, if you could travel back two thousand years and stand by a
marker on the Street of the Dead and look over a petroglyph on the
western horizon at the right time of year, you'd see the setting of the
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Pleiades star cluster. When the Pleiades reappeared in the east after hav-
ing been invisible in the light of the sun for forty days, they did so on the
precise day of the sun’s zenith. Here, says Aveni, was a highly visible,
convenient timing mechanism to signal the start of the new year. Tying
the sun to stars was different from beginning the solar calendar by mark-
ing the sun’s northern- or southernmost passage. “The Pleiades, being
both prominent and in the right place at the right time, became the new
celestial timer of choice” to the astronomers of Teotihaucan.”

The Aztecs believed they were the children of the Teotihuacanos,
whom they considered gods. When the Aztecs built their capitol,
Tenochtitlan, around A.D. 1325, it was with Teotihuacan in mind. The
great Templo Mayor in Tenochtitlin was positioned so that the rays of
the dawning sun on the spring equinox (usually March 21) would fall in
the notch between the twin temples, the shrines of Tlaloc and
Huitzilopochtli, on top of the flat pyramid. Measuring the temple ruins,
Aveni found that it is skewed nearly 7 degrees south of true east to
match the sun’s path over the elevated twin temples on equinox day.”

Lixe THE MESOAMERICANS, the Incas in ancient Peru (a.p. 1200 to 1532)
created an astronomical system extraordinary in its vast organizational
structure. The Incas encoded their calendar in architecture, as did the
Maya, but they also built a unique system based on the topography of
the city, the empire, and the Andean landscape itself.

This astronomy evolved from the Inca ceque system, an organiza-
tional device for the recording of time.” The ceque (which means “ray”)
system grew out of the Inca capitol. Cuzco lies in latitude 13.5 south, at
the confluence of two rivers in a 10,500-foot-high mountain valley.
The Incas may have called it Tahuantinsuyu, or “the Four Quarters of
the Universe.” Cuzco was ground zero of the ceque system, which Aveni
describes as a giant cosmogram, “a mnemonic map built into Cuzco’s
natural and manmade topography.” A semiabstract, conceptual system, it
consisted of a number of imaginary radial lines, the ceques, grouped like
spokes on a wheel, radiating out from Cuzco and extending to the ends
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of the empire. The wheel’s hub, the system’s epicenter, was the Corican-
cha, Cuzco’s sacred temple of ancestor worship.” The ceque system uni-
fied Inca ideas about religion, social organization, calendar, astronomy,
and hydrology.”

There were a total of forty-one ceque lines. Each was traceable by the
line of small shrines or sacred natural spots, called huacas, leading out-
ward from the Coricancha across the landscape. There were 328 in all.
Each ceque had a kin or social group designated responsible for main-
taining the huacas, which were located at intervals along each line.”
Stone pillars or other landmarks along the visible horizon marked the
positions of important celestial objects. By direct sighting of celestial
rises and settings over particular huacas, the Incan astronomers kept ac-
curate records of important dates of the seasonal year without needing
to write them down.*? The land itself served as codices.

The stone pillars marked the sun’s passage at the middle of August,
which signaled the beginning of the planting season. But the timing of
the planting season occurred at slightly different times at higher or
lower mountain elevations. The Incas placed the huacas at different ele-
vations to record the sunrise at different times, so that planting would
begin on the optimal date for that altitude.”

According to anthropologist R. Tom Zuidema, who conducted ex-
tensive fieldwork on Andean astronomy, the ceque mapping system was
not only a directional scheme incorporating astronomical events hap-
pening at the horizon; it was also a seasonal calendar, with each huaca
representing a day in the year, and a cluster of huacas representing a lunar
month.** Zuidema and others saw the ceque system as a macrocosmic
version of the quipu, the all-purpose Incan accounting device. The
quipu was a set of colored strings attached to a main cord. Knots on
each string represented the numerical equivalent of the items being
counted. Zuidema and others perceived the ceque system as a giant
quipu overlying Cuzco; the ceque lines were the cords; the huacas, the
knots.*

Although the Incas rose to empire in less than a century, before they
were destroyed by the Spanish invasion, there are precursors to the ceque
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system in the artifacts of previous cultures. Investigating the famous
Nasca lines on the desert coast of Peru, Aveni detected the ancient
traces of the ceque system. Built by the Nasca people in the first centuries
A.D., the lines consist of some geometrical figures and animals, but pri-
marily of straight lines etched on the desert. There are approximately
eight hundred of them, some several miles long, emanating from sixty-
two focal points. The whole organized pattern resembles an assemblage
of ceque systems tied together in a network spread across one hundred
square miles. Aveni’s research strongly suggests that these were path-
ways, probably walked over by participants in a rain ritual, a kind of rain
dance. Most begin and end at water sources. Sun watching may have
played a role, too. A significant number of the lines point to the place
where the sun rises during the season of the year when water begins to
run in rivers and underground canals.*

Zuidema theorized that the Incas relied on a series of stone-pillar
celestial markers, but for many years there was no evidence to back this
up. Throughout the 1980s, however, University of Chicago archaeolo-
gist Brian Bauer and Lawrence Livermore Laboratory astrophysicist
David Dearborn and their colleagues searched around Cuzco for the
pillars described by sixteenth-century Spanish chroniclers who wrote
that the structures were large enough to be seen against the setting sun
at a distance of nine miles. One such group of pillars marked where the
sun sets at the June solstice, which is the northernmost point at which
the sun crosses the horizon. A combination of postconquest looting and
recent urban growth in the Cuzco valley has destroyed the area where
the Cuzco pillars once stood. According to Bauer, many scholars of
Latin American antiquity believe that the Incas built the large pillars to
record the sun’s horizon location at the June and December solstices,
but archaeologists had not yet found physical evidence of the pillars and
there had been no detailed investigation into the organization of the
solstice rituals, though this is the thrust of Zuidema’s current research.”

During a survey of pre-Hispanic sites on the Island of the Sun, in
Lake Titicaca (on the Peru-Bolivia border), Bauer, Dearborn, and oth-
ers discovered the remains of two stone pillars. They also found a large
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platform area just outside the walls of a sanctuary on the island. The
team’s archaeological and astronomical research, which they presented
in a 1998 issue of Latin American Antiquity, suggests that the Incas used
the site to support the ruling elites’ claim to power through elaborate
solar rituals. In the early fifteenth century the Inca empire expanded
into the Lake Titicaca region and usurped the Island of the Sun from
local control. The island and a sacred rock, which locals believed was the
birthplace of the sun, had been the focus of worship for centuries.
Under the Incas it became one of the most important pilgrimage cen-
ters in South America.

The team’s research indicates that on the June solstice, the Incan
king and the high priests of the empire assembled in a small plaza beside
the sacred rock to witness the setting of the sun between the stone pil-
lars. Their findings also indicate that, as the elites paid homage to the
sun from within the sanctuary, pilgrims observed the event from a sec-
ond platform outside the sanctuary wall. From the perspective of the
pilgrims, the sun set between the stone pillars and directly over the rul-
ing elite, who called themselves the children of the sun. “While both
groups participated in solar worship, the non-elites simultaneously of-
fered respect to the sun and the children of that deity. This physical seg-
regation emphasized that the Inca alone had direct access to the powers
of the sun,” Bauer wrote.®

David Dearborn’s study of the Incas began in the early 1980s, at
Machu Picchu, in Peru. He and his colleagues found archaeological and
ethnohistorical evidence to support the use of certain structures at
Machu Picchu and other monuments as working observatories where
the Incas monitored the sun’s motion. In one of Machu Picchu’s most
exquisitely masoned buildings, often called the Torreén, Dearborn dis-
covered that one window centered on the June solstice sunrise. At an-
other of the Torre6n’s windows, to the southeast, when you sit on the
floor with your back to the room’s altar, you can see the stars in the tail
of Scorpius—a constellation in the Andes sometimes known as Collca,
the storehouse—rising through the window. In the Incan era these stars
would have been rising when the June solstice sun set. Anthropologist
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Gary Urton noted that the name of Collca was also given to the Pleiades.
In Incan times, beginning about a month before the June solstice, these
two groups of stars were on opposite sides of the sky. The Pleiades ap-
peared in the morning sky, rising in the winter solstice window.”

Less oBvious than the astronomy of the Mesoamericas and the Incas is
the sky-watching skill of the North American peoples. Yet clearly they
developed a body of knowledge about the nighttime skies. One striking
phenomenon is the “sun dagger.” Its interpretation is dubious, accord-
ing to some researchers, but we would be remiss in not mentioning it.
On June 29, 1977, Anna Sofaer, an artist studying ancient Anasazi
rock art, was dangling on the side of Fajada Butte, 405 feet above the
floor of Chaco Canyon, New Mexico. (The Anasazi were cliff-dwelling
Native Americans of the Southwest.) She had climbed to this precari-
ous spot to have a look at a pair of spiral petroglyphs known to be shel-
tered behind three slabs of sandstone, propped upright against a
decorated wall. Near noon, Sofaer saw the shade beneath the slabs
pierced by what she called a “dagger” of sunlight. It nearly bisected the
larger, footwide spiral, taking almost twelve minutes to pass through it.
Knowing the summer solstice had just passed, Sofaer thought the loca-
tion might have been designed to mark it. She returned to the same
high perch at monthly intervals, as well as at the equinoxes and solstices.
With other experts, Sofaer became convinced the Fajada petro-
glyphs were an accurate and precise calendar marker. She and other re-
searchers observed that on the next summer solstice, sunlight first
slipped between the middle and the right slabs about an hour before
noon. A spot of light glowed at the upper rim of the larger spiral, grew
into a thin dagger, and sliced down through the carved turns, splitting
them through the center. Eighteen minutes after the first appearance,
the light vanished. Throughout the year, a spot of sunlight appeared
near the small spiral and also turned into a dagger. At the winter solstice
two light daggers framed the large spiral for forty-nine minutes at
noontime, when sunlight entered between the three uprights.

104



Astronomy: Sky Watchers and More

We cannot know with certainty if the entire structure was con-
structed intentionally for astronomical purposes or whether the rock
formations simply had fallen there and been used serendipitously. As-
tronomers believe that this is an early form of Anasazi sun clock (dating
to around A.D. 1000) that functioned as an approximate solstice marker.
Whether the the sun daggers were intended to function precisely is
open to question, as is a more recent theory that the spirals designated
the limits of the shadow cast by the 18.6-year oscillation of the rising
full moon and were used as part of a scheme for predicting eclipses.*

There are similar examples of the Anasazi technique for marking
solstices in the Four Corners region of the Southwest. At Colorado’s
Hovenweep National Monument, the ancient lost people occupied
many hidden canyons. In one canyon, in what is called the Holly House
group, below something called the “sun room,” an inner wall of rock
corridor is decorated with many petroglyphs, including a set of concen-
tric circles and two spirals. On mornings near the summer solstice, sun-
light penetrates the crack between the overhang and a block of stone
that forms the opposite corridor wall. At that point, two daggers of light
appear on the decorated panel. Both extend horizontally across the
south wall, and the left dagger cuts through the spirals. The right dagger
bisects the rings. As the morning progresses, the dagger points meet in a
symphony of light playing across the rock.*

In the early 1950s British astronomer Fred Hoyle suggested that
records of the great 1054 supernova, a bright exploding star, could ap-
pear concurrent with a crescent moon in the rock art of the U.S. South-
west.” Soon thereafter Mount Wilson astronomer William C. Miller
found possible supernova depictions. One Chaco Canyon petroglyph in
particular has become renowned as a record of the 1054 supernova. In
1975, astronomers John Brandt of the University of New Mexico at
Albuquerque and Ray Williamson of George Washington University
made calculations that place this extraordinarily bright starry event next
to a crescent moon on the morning of July 5, 1054, more or less the way
it is portrayed on the petroglyph. Some critics say that simpler explana-
tions exist. It is far more likely, they say, that the petroglyph represents
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the crescent moon sliding by Venus as the morning or evening star.*
The controversy continues.

After Sofaer’s rediscovery of the sun daggers at Fajada Butte, interest
in Anasazi astronomy burgeoned until, according to astronomer Von
Del Chamberlain of the Hansen Planetarium in Salt Lake City, Utah,
“A host of people were ready to leave no piece of rock art untouched
by sunlight, moonlight, starlight, infrared light, or the absence of any of
these. The quest for light and shadow casting on rock art seems close to
being a religion with devotees scrambling over the rocks at solstice,
equinox, and more recently cross-quarter dates to watch in awe as
photons beam or shadows touch the enchanting figures left by ancient
peoples.”*

It would be a mistake to discount the Native Americans’ quests for
astronomical knowledge merely because there was little written trans-
mission, and because the Europeans who did write about it were biased.
Indigenous peoples tended to integrate their knowledge in different
epistemological sets than did the Europeans, who dismissed valid infor-
mation as native superstition. Renaming a sacred spot “Devil’s Tower,”
notes archaeoastronomer Paula Giese, is all too common across the con-
tinent. In fact, she adds, if you see such religiously pejorative names at-
tached to geological features, you can be fairly certain the site was once
sacred to some indigenous peoples.*

THE PREHISTORIC PEOPLES of eastern North America often built earth-
works, constructing thousands of mounds and pyramids, probably in the
service of astronomy as well as politics and religion. One of the greatest
remaining is the so-called Monk’s Mound (named after a nearby nine-
teenth-century Trappist monastery) found near what is now Cahokia,
linois, eight miles east of downtown St. Louis. The mound is located
by the confluence of two of the continent’s mightiest rivers, the Missis-
sippi and Missouri. Archaeologists posit that to build it, the Cahokians
hauled fifty-five-pound loads of dirt on their backs from nearby pits.
They must have done this 14.7 million times over three centuries to
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construct one rectangular platform on top of another until the twenty-
two-million-cubic-foot mound was finished, in around A.p. 1000.

Somewhat more speculative is “Woodhenge,” a reconstructed circle
of forty-eight wooden posts west of Monk’s Mound. It’s called Wood-
henge because of its general functional similarity (“verrry general,” says
Aveni) to Britain’s Stonehenge, the circle of large stones, erected around
1500 to 2000 B.c. on the Salisbury Plain, that some think was used for
astronomical purposes. Woodhenge’s circle may have served a calendri-
cal purpose, since a pole at the center, when aligned with the circle’s
eastermost post at the front of Monk’s Mound, marks the equinoxes.*

To the Cahokians, the sun, rather than the moon, was of primary
importance. By following the sun’s annual path along the horizon, the
rulers of this vast economic hub could regulate the seasonal flow of
goods and services and plan ceremonies and holidays to take place in
front of the mound.? It is now protected as Cahokia Mound State His-
toric Site.

In other places this same “Mississippian” culture would manifest
these characteristic astronomically organized earthen designs, often
truncated pyramid mounds having possible calendrical functions. The
Miississippians lived into the sixteenth century and vanished in the wake
of Hernando de Soto’s epidemic-spreading advance. Most of their
monumental geometric forms followed them into oblivion. (Epidemi-
ologists are not sure what disease de Soto spread except that it was prob-
ably carried by the herd of pigs the Spaniards took with them for
food.)*

We know less about the early dwellers of the Great Plains than
about their contemporaries to the south and their relatives in
Mesoamerica. “I am surprised we know anything about them at all con-
sidering how few there were and over what a great area they ranged,”
comments John A. Eddy.” Eddy, a solar astronomer at the High Altitude
Observatory of the National Center for Atmospheric Research in
Boulder, discovered a possible reason why the Plains hunter-gatherers
built monuments of stone circles or medicine wheels, about fifty of
which are known to exist today on the Great Plains, the east ridges of
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the Rockies, and the grassy plains of Canada. Eddy’s analysis lends cred-
ibility to the astronomical sophistication of the Great Plains Indians. His
interpretation is widely disputed, by Aveni and others.* I would be re-
miss in ignoring Eddy’s findings, but I present them as controversial.

In the 1970s Eddy began his astronomical analysis of the wheels, fo-
cusing on the Big Horn Medicine Wheel, located in Wyoming at 9,642
feet elevation on a windswept flank of Medicine Mountain. The wheel
is a collection of small cairns (conical piles of rocks) and spokes, with a
central cairn two feet in diameter and two feet high. The ring itself is no
higher than the scattered rocks that define it, but its largest diameter is
eighty-seven feet—only slightly smaller than the large circle of Stone-
henge in Britain.*

Radiating from the central cairn to the rim are twenty-eight spokes
made of piles of boulders. The spokes terminate with cairns. Eddy dis-
covered that the view from one cairn at the end of a spoke, across the
center cairn, and on to a low ridge to the northeast aligned with the
summer-solstice sunrise. He hypothesized that other spoke-cairn rela-
tionships would reveal a consistent set of alignments, including three
whose lines oriented on the rising points of four stars: Aldebaran, Rigel,
Fomalhaut, and Sirius. In centuries past, these stars rose heliacally, just
flashing as they came up within a day or two of the summer solstice
from A.D. 1600 to 1800. (Precession has shifted the stars now, with re-
spect to the solstices.) Today experts do not agree on whether the
Bighorn Medicine Wheel was designed to give precise determination
of information about the summer solstice* or if the wheel served only
as a ceremonial place—or both. Some even call the medicine wheels
early solar-star analog computers.” The spot, revered as sacred by many
Indian peoples, is designated as Medicine Wheel National Historic
Landmark within Bighorn National Forest and is visited by as many as
seventy thousand tourists during the summer months, when the site is
accessible.

The existence of the medicine wheels is evidence that the nomadic
peoples of the Great Plains had a deep interest in the night sky of blaz-
ing stars. They also must have had a need for navigational tools provided
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by the celestial bodies to guide them on journeys through the often fea-
tureless expanses of the plains.** In 1977, Eddy verified that another
ruin, 425 miles north of Bighorn in Saskatchewan’s Moose Mountain
Park, had the same basic plan as the Wyoming wheel. The alignments
were the same. The oldest parts of the Moose Mountain wheels may be
two thousand years old, part of a millenniums-old shamanic tradition.*
The similarity of the wheels’ patterns and proposed use, says Eddy, sug-
gests that a Plains people may have used a sky calendar for at least a
thousand years, and that the summer-solstice dawn stars were an impor-
tant part of an abiding lore.*® “The problem is,” says Aveni, “that there
are dozens of these wheels. Eddy only picked two!”*

Perhaps the most extensive record of constellations in North Amer-
ica comes from the Pawnee of central Kansas and Nebraska. A star map
painted on buckskin, now on display at Chicago’s Field Museum, con-
tains hundreds of star symbols. The map, possibly more than three hun-
dred years old, depicts stars of various magnitudes by simple crosses of
different sizes. A band of stars denotes the Milky Way, with the winter
constellations shown at the left and the summer heavens at the right.
Constellations include Lyra, Ursa Major and Minor, Coma Berenices,
and Andromeda, all indicated much as we see them today.*

The Dipper bowls and handles and Cassiopeia are recognizable.
Corona Borealis (called “Chiefs in Council” by the Pawnee) seems es-
pecially prominent and exaggerated. Painted on the opposite side of the
Milky Way are the Pleiades. Farther off center is Orion’s belt. The only
surviving artifact of its kind, the star map was clearly a sacred text of
enormous power, as well as a mnemonic device for remembering the
many stories that go with the appearances of various constellations.*

Although there may have been European influences in the making
of the star map, the Pawnee were keenly interested in celestial configu-
rations. They arranged their permanent villages in a prescribed order,
with four subvillages formed around a central group placed as if at the
corners of a great square. At the west end of an imaginary line through
the center of the square was the fifth village, with a shrine derived from
the positions of the star of the west, or the evening star. At the opposite
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end was a village with the shrine of the star of the east, or morning star.
Around this basic grouping they put seven other villages so that the
arrangement on the Nebraska landscape mirrored the pattern formed
by the patron stars in the sky.

The star cult was also reflected in the plan and construction of the
Skidi Pawnee earth lodge, the usual type of habitation at permanent vil-
lages. The circular floor, from twenty to fifty feet in diameter, symbol-
ized the earth; its domed roof-wall superstructure was a microcosm of
the sky. Around the central fire pit—which held a small bit of the sun,
the fire—the superstructure was supported by four large posts set more
or less in the semicardinal directions (northwest, southwest, southeast,
northeast). The Pawnee sometimes painted these posts in colors coded
to the directions. The lodge’s tunnel-like doorway opened toward the
east, so that the rising sun could shine upon the household altar.®

Von Del Chamberlain, of the Hansen Planetarium, who has ana-
lyzed the structure of the Pawnee lodge, sees it as a functioning calen-
dar. The path of the shaft of noonday sunlight entering the lodge’s
smoke hole would change with the year’s course, extending only part-
way down the wall at the winter solstice and all the way to the floor by
mid-February. By the time the Pawnees abandoned the lodges for their
summer tipis, the solar image would have migrated to a position close to
the center of the lodge.

An observer could have briefly glimpsed the star groups the Pawnee
recognized if he had sat against the wall along the lodge’s axis of sym-
metry just before sunrise in late July, then again just after sunset around
the time of the winter solstice. The Corona Borealis (the Pawnee
“Chiefs in Council”) would enter the smoke hole directly opposite in
time to the Pleiades. This may explain their opposed location in space
on the Pawnee buckskin star map. Pawnee star charts served as a kind of
calendar, and the stars were positioned so as to express their relation-
ships over a year’s time, rather than being a snapshot of the heavens at
any one moment. The spatial positioning of Pleiades and Corona B. was
actually temporal, vaguely like the face of a clock. Chamberlain thinks
that rather than being solely astronomical observatories or calendrical
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time slots, the lodge and its apertures were living astronomical school-
rooms, through which visually dramatic star and sun scenes could en-
hance stories and moral tales.*'

Oceania

Aside from the Vikings, the Oceanic peoples were arguably the most
accomplished mariners in the world before advanced instrumentation
made long-distance navigation a relatively sure thing. Long before
Columbus, two-way voyaging was common throughout the many scat-
tered islands and across the great expanse of the Pacific Triangle,
bounded by the Easter Islands, the Hawaiian Islands, and New Zealand.
For Oceanic peoples such as the Polynesians and Micronesians, celestial
bodies served as accurate navigational instruments.*

The ability of the Pacific peoples to reach out over many atolls and
make voyages over vast stretches of open ocean using minimal refer-
ences required an expert knowledge of navigation and astronomy. In the
Gilbert Islands of Micronesia, there was no word for astronomer; if you
wanted an expert in the stars you asked for a tiaborau, a navigator.”
There may have been no one more esteemed in a local society.*

Polynesia’s location facilitated its people’s remarkable celestial ob-
servations and seafaring acumen. Like the astronomical civilizations of
Central America, the Polynesians lived close to the equator. Near-
equatorial latitudes offer a much more symmetrically partitioned sky
than latitudes farther away from the equator. In the tropics, an observer
sees the motion of heavenly objects as heading straight up in the east
and straight down in the west. The observer seems to be at the center of
things, with the north and south hemispheres behaving identically.®
Consequently, using celestial objects as navigational agents was much
easier for equatorial sea voyagers, and they developed highly efficient
star compasses. Theirs is a more orderly sky than the one seen by people
who live farther north or south, where the stars appear to move westerly
on a slant either to the south or north, depending on whether the
viewer is in the northern or southern hemisphere.
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The Gilbert Islands, at a latitude 3 degrees south, lie almost on top
of the equator. So these islanders, like most Polynesians, observed the
east-to-west-moving stars rising and setting in almost vertical east-to-
west directions, and divided the sky into symmetrical boxes according
to the cardinal directions. This gave them a method for describing the
location of a star or constellation in terms of its position within one of
these imaginary boxes.*

The transmission of knowledge about the star charts was a crucial
part of Oceanic culture. Instruction started young. The following jour-
nal entry from the missionary vessel Southern Cross, traveling in the late
1800s, describes three boys from the southwest Pacific Santa Cruz Is-
lands. The oldest boy was

teaching the names of various stars to his younger companions,
and [I] was surprised at the number [of stars] he knew by name.
Moreover, at any time of night or day, in whatsoever direction
we might happen to be steering, these boys, even the youngest
of the three, a lad of ten or twelve, would be able to point to
where his home lay; this I have found them able to do many
hundreds of miles to the south of the Santa Cruz group.”

Even today on some islands there remain fixed stone structures,
sometimes called stone canoes, aligned with the constellations. These
stone canoes served as navigational trainers, like flight simulators. Each
pair of stones on the canoe was aligned with the place where certain
stars would appear or disappear on the sea horizon at different times
during the night. In August on one island, for instance, the bright star
Regulus lined up with one stone pair at sunset, while at midnight Arc-
turus gave the same bearing. A student would sit between the stones,
face in one of the cardinal directions, and memorize the constellations
he saw and the bearings they indicated.

Europeans sailing the Pacific were impressed with the orientation
ability of Pacific navigators, although explorers such as Captain James
Cook, in the late eighteenth century, never realized the extent to which
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Polynesians used celestial navigation. His crew recorded an encounter
with Tupaia, a Tahitian navigator who accurately demonstrated the po-
sition of numerous island chains from the Marquesas to Fiji totally by
memory, an area greater than the span of the Atlantic Ocean and con-
taining multitudes of islands. Tupaia led Cook to many islands unknown
to Europeans.®

The Polynesians used the fixed rising and setting points of stars
to establish north, south, east, west, and every direction in between.*
Navigators used zenith stars, bright stars they recognized as passing the
direct overhead position, or zenith, from specific islands. The declina-
tion—the angular distance north or south of the equator—of the zenith
star was equal to the latitude with which it was associated. So navigators
could associate every island with one or more of its own zenithal guide
stars. For example, Sirius is the zenithal guide star for the Fiji Islands, at
latitude 17 degrees south; Rigel, the zenith star of the Solomons, at lati-
tude 7 degrees south; Altair, for the Carolines, at 9 degrees north.” If a
navigator knew the zenith stars of different latitudes, he could tell what
latitude he was on by observing which star passed directly overhead at
night.

The islanders also used pairs of stars that rise or set at the same time
as clues to latitude. Star pairs rise and set together only at specific lati-
tudes. For example, when Sirius and Pollux set together, the observer is
at the latitude of Tahiti, 17 degrees south. As the observer moves north
or south of that latitude, one star will begin to rise or set before or after
the other star. This strategy was easier to use with setting, rather than ris-
ing, star pairs because the navigator could watch the pair as it sank to-
ward the horizon instead of trying to anticipate its appearance.”

Traversing the larger Pacific Ocean did not seem insurmountable to
the Polynesians. They connected Asia to the Pacific Islands at the very
least. Those who were sent on land-discovering missions had to master
the navigational skills to find their way home. To many contemporary
people of the mid-Pacific, their ancestors were true “Vikings of the
Sunrise,” a name coined by a Maori ethnologist, Te Rangi Hiroa (also
called Sir Peter Buck, 1880—-1951). Polynesians, he thought, developed
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“highways” on the ocean that were charted in the heavens above. And
lacking the fear of falling off the edge of a “flat” earth, they were further
encouraged in their desire to sail far off into the horizon, to the Amer-
icas.

Te Rangi Hiroa surmised that Polynesian navigators had already
sailed to the Americas—as recorded in oral history, chants, songs, and
traditional lore—centuries before Columbus. The fact that the Polyne-
sians had settled every inhabitable island from Hawaii to New Zealand
to Easter Island centuries before Europeans arrived is evidence enough
of their ability to accomplish the voyages. Most hard evidence for Poly-
nesian-American contacts has vanished, however, except one, in the
form of a tuber: the sweet potato (Ipomoea batatas).

Botanists have determined that this staple food crop, common to all
of the Polynesian islands, is native to South America. Either Polynesians
made round-trip sailings and returned with sweet potatoes or American
Indians brought them to the Pacific. Somehow the sweet potato was
transferred from South America to Polynesia between A.p. 400 and
700. (Experts say birds could not have transported it.) Linguistic evi-
dence has established the Peruvian and Ecuadorian kumar as the root
word for kumara, kumala, and ’uala, varieties of names for the sweet po-
tato in Polynesia.”? There may, of course, be other explanations. We cite
this evidence cautiously.

The Old World

It is tempting to say that Old World ancient astronomy was more
advanced than that in the New World because it introduced instrumen-
tation to the science of star watching. There were no telescopes, of
course—that innovation belongs to the West—but Chinese and Islamic
astronomers did develop elaborate metal sighting devices to chart the
heavens. There is more to astronomy than hardware, however. First of
all, as we’ve seen, New World astronomers used architecture, huacas,
windows and doorways, pillars, houses, mountains, sun daggers, and
other natural structures to delineate the movements of celestial phe-
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nomena; in some ways, such methods are more creative than quadrants
and the like.

Beyond instrumentation, the ancient Old World astronomers’ big-
gest contribution was applying mathematics to the skies, setting up a
rigorous basis for astronomy based on nothing more than the naked eye
and a grasp of logic. »

Mesopotamia

Mesopotamian astronomy constitutes one of the earliest systematic, sci-
entific treatments of the physical world. Ancient astronomers, seeking
to forecast the future by means of the heavens, had developed a complex
system of arithmetic progressions and methods of approximation by the
fourth century B.c. Since they could not see what lay ahead in human
life, they became adept at predicting celestial events. The mass of obser-
vations they collected and their mathematical methods were crucial
contributions to the later flowering of astronomy among the Indians
and Muslims as well as the Greeks.

For more than two thousand years, the efforts of Mesopotamian as-
tronomers lay forgotten under the ruins of palaces and ziggurats in what
is now mainly Iraq. All that was known of the subject came from a few
passages in the Bible and reports of Greek and Roman writers. But the
reports were tantalizing. The Roman scholar Pliny the Elder, for in-
stance, wrote that the Babylonians inscribed observations of the stars on
baked-clay tablets for 720,000 years,a number doubled several centuries
later by a Greek philosopher, Simplicius, to the astounding figure of
1,440,000 years.”

In the mid—nineteenth century, archaeologists began to unearth
thousands of these tablets inscribed with cuneiform writing in Meso-
potamia. One hundred years later, an estimated half million tablets were
in museums around the world. During the brief cease-fires during the
conflicts with Iran, international teams of archaeologists ran to the Iragi
fields and dug at an unprecedented rate to find more. At the site of the
ancient city of Sippar, just southwest of Baghdad, for example, excava-

115



LOST DISCOVERIES

tors discovered a library from the late Babylonian empire containing a
huge cache of astronomical records and mathematical exercises. But
when Iraq invaded Kuwait, all archaeological activity ceased, and the
tablets were supposedly shelved in Baghdad somewhere, to join all but a
few of the hundred or so tablets that have been translated to date.”
‘What we know about ancient Near Eastern astronomy may constitute
just the beginning of the story.

The fraction of translated texts reveals the presence of an astronomy
in Mesopotamia that goes back at least as far as the eighteenth century
B.C. The Sumerians, who invented the cuneiform writing system
shortly before 3000 B.c., were the first to catalog the brightest stars, out-
line a rudimentary set of zodiacal constellations, note the movements of
the five visible planets (Mercury, Venus, Mars, Jupiter, and Saturn), and
chart the motions of the sun and moon against the background of the
constellations. They gave names to the constellations, appellations still
familiar in some cases—Scorpio, Taurus, Leo. The zodiac with these
names was in use throughout the rises and collapses of Mesopotamian
empires, down to the last days of Babylonian astronomy at the begin-
ning of the Christian era.”

The Sumerians may have been the world’s first people to develop a
calendar based entirely on the recurrence of the complete, or synodic,
phases of the moon and to use the moon’s synodic periods as the basis of
a twelve-month, 360-day year. To keep the lunar-year calendar in step
with the solar year, they intercalated an extra month every now and
then, probably when the royal astrologers realized the calendar had
fallen severely out of step with the seasons. The official decision to in-
tercalate a month was taken by King Hammurabi of Babylon (1792—
1750 B.c.). The later Babylonians knew that the 360-day year did not
match the lunisolar year, and may not have used the solar year much.™

Throughout the long history of Mesopotamia, timekeeping cen-
tered on one primary problem—knowing when the new moon cres-
cent would first be visible at rising time each period. Predicting the
positions of the moon phase, or period, and these periods’ correspon-
dence to the periods of the planets, evolved into the later Babylo-
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nians’ celestial obsession. Their solutions to these problems would in
turn evolve into a science and a method of scientific thinking we use
today.

But first they needed a moon-based calendar. Around 1000 B.c., the
Assyrians spelled out the rules of this calendar, called MUL.APIN (the
Plow), the first compendium of its kind. Each month began precisely at
sunset with the first visible crescent of the new moon.” MUL.APIN
had its roots in a calendrical scheme developed even earlier, during the
Ur I period, around the twenty-first century B.c.—and perhaps even
earlier than that, around 2900 B.c. Thus its design—which we use in
part today—could have been in place at the earliest moments of civi-
lization. The calendar specifies twelve months to a year, thirty days to a
month, and 360 days to a year and is the ancestor of our division of the
circumference of a circle into 360 degrees.

Around 500 B.c., the Babylonians set in place their final zodiacal
system of twelve signs in 30-degree intervals. It was a reference system
for the position of the moon and planets and the fundamental system
for Babylonian mathematical astronomy to come.” The earliest extant
Babylonian texts were written in astrological format during the reign
of King Ammizaduga (1702-1682 B.c.). The great Enuma Anu Enlil
(“When the gods Anu and Enlil . . .”), a Babylonian equivalent of the
Mayan Dresden Codex and other codices, may have roots in the lunar-
eclipse omens from the dynasty of Akkad and Ur, late in the third mil-
lennium B.c.”

Centuries’ worth of Venus observations were incorporated in
Enuma Anu Enlil, particularly in the so-called Venus Tablet 63, more
popularly known as the Venus Tablet of King Ammizaduga.® In each
written statement, Venus (Ishtar) was said to disappear on a particular
day of a given month and return on another. Today’s investigators, using
computer software packages, have zeroed in on 1581 B.c. as the most
likely choice for the start of the Venus synodic run. One of the Enuma
Anu Enlil’s primary ephemerides, or databases, made it possible to fore-
cast lunar eclipses and record the intervals between successive eclipses.®'
In all astronomy-centric cultures, eclipses were the first celestial phe-
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nomena from which predictions were derived. And understandably so,
for the eclipses were stressful events, terrifyingly inexplicable as long
as the conditions for their occurrences were not understood. In the
violent world of Mesopotamia—with its continuous wars—where
there was a need to make predictions and hedge against upheavals, both
natural and man-made, prognostications must have seemed somewhat
more crucial than even the need for stock market analysts’ forecasting
today.

As in other schools of early astronomy, divination was a driving
force in the development of Mesopotamian celestial science—although
there is debate among experts about how much the early diviners bifur-
cated into the separate disciplines of astrology and astronomy, especially
during the ascendancy of Babylonian mathematical astronomy. Divina-
tion established considerable motivation for the development of a pre-
dictive astronomy, but the content of the mathematical astronomy that
emerged may not be justified solely on the basis of the needs of omens.*
Even if the motivation for mathematical astronomy had been astrologi-
cal, the level of sophistication that emerged, in terms of its predictive
range and conceptual grasp of the celestial phenomena, far exceeded
anything reflected in the omen literature.®

The observations upon which the Enuma Anu Enlil was built hint
at the mathematical astronomy to come, especially in the rising and set-
ting phenomena of the moon and planets. Present in the Enuma is al-
ready a mathematical function describing the amount of time the moon
is visible over the course of a month, as well as another elaborating a
variation of this function over a year’s time. Both functions give values
in time-degrees (1 time-degree = J4o of a day = 4 minutes), reflecting
the use of this unit in the seventeenth century B.c. Both computational
devices use proper sexagesimal place-value notation to express these
values.®

The usefulness of the Babylonian sexagesimal numerical system
prevails even today. Although the use of base 60 is its most conspicuous
feature, it was not essential for the success of the system. The real advan-
tage of the Babylonian number system in astronomy and elsewhere is
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this place-value notation. Its invention, Otto Neugebauer says, can be
compared to the invention of the alphabet.® Place-value notation al-
lowed for the development of an algebraic arithmetic mode.

From the outset, the Babylonians would treat elementary geometri-
cal problems in algebraic form. They chose to account for celestial mo-
tions in a primarily temporal mode, as opposed to the Greek spatial, or
geometric, one. Thus Babylonian algebraic and place-value notations
became the foundation of a theoretical astronomy of mathematical
character. This astronomy reduced empirical data to the minimum. It
took celestial phenomena of a rather complicated character and found
simple mathematical functions whose combination described the phe-
nomena cleverly and elegantly.*

From the eighth century B.c. on, the Babylonian compulsion to pile
up records of astronomical observations went full steam. The origins of
computation began in these copious records of the motions of moon,
planets, and sun. Ptolemy remarked that the earliest observations avail-
able to him came from the reign of King Nabonassar (747-734 B.c.),and
he used eclipse records from that reign in his own computations. Around
that time Babylonian astronomers starting keeping daily, monthly,
and annual “diaries” of observations (fragments of which survive in the
British Museum). The diaries typically contain, for each month: time in-
tervals for the setting and rising of the sun and the moon in the middle of
the month; descriptions of lunar and solar eclipses; and dates on which
the moon approached the so-called Normal Stars. These were a group of
thirty-one stars in the zodiac belt the Babylonians used as reference
points for the movement of the moon and planets.”

The goal of Babylonian astronomy was to be able to compute, start-
ing from a few empirical elements, the positions of the celestial bodies
for any given moment. Over centuries of observation and recordings,
patterns began to reveal themselves. The huge mass of collected data
provided the astronomers with fairly accurate average values for the
times of movements for the moon, eclipses, and planetary events. Once
they had such averages, they could make short-term predictions by cal-
culation methods we today would term linear extrapolation. This fore-
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casting method, according to Anthony Aveni,* was based on a simple
sequence:

PLACE + SPATIAL INTERVAL = FUTURE SPACE
or
TIME + TEMPORAL INTERVAL = FUTURE TIME

The first formula charts the future place in the sky where an event
ought to be observed; the second, the future time when a phenomenon
should take place. Aveni demonstrates how the Babylonians might, for
example, use their tables to compute where the moon would be next
month in Aries. The first place in the constellation of Aries they’d mark
as 2 degrees 02’ 06" 20" " (the ' ", which stands for % of a second, is
no longer used in our geometry). To that line the astronomer would
add the interval: 28 degrees 50’ 39” 18" ". The sum would be 30 degrees
52' 45" 38’ ", the distance into Aries where the conjunction would
occur.”

By the fifth century B.c., Babylonian astronomers had begun exper-
imenting with these radically new techniques for predicting celestial
phenomena. Purely mathematical in nature and rational in approach,
they entailed separating data into components describable by mathe-
matical functions and combined to predict the events in question.” By
this time, the astronomers had realized that they must account for the
fact that the apparent motions of the sun and moon from west to east
around the zodiac do not have constant speeds. These objects appear to
move with increasing speed for half of each revolution to a definite
maximum, and then decrease in speed to the former minimum. The as-
tronomers worked to represent this cycle arithmetically—by giving the
moon, for example, a fixed speed for its motion during the first half of
its cycle and a different fixed speed for the other half. The mathematical
tables that resulted from this effort represent Babylon’s principal contri-
butions to the science of astronomy.

Some historians of science think that early mathematical methods
were developed to a certain level by a single, unidentified man. He con-
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ceived a new idea that rapidly led to a systematic method of long-range
prediction. This idea, now familiar to every scientist, consists of consid-
ering a complicated periodic event as the result of a number of smaller
periodic effects, each of a character simpler than the actual phenome-
non. “The whole method probably originated in the theory of the
moon, where we find it at its highest perfection,” writes Neugebauer.

The Babylonians could easily calculate the movements of new
moons if the sun and moon each moved with constant velocity. Perhaps
they assumed this to be the case and used average values for this ideal
movement: that gave them average positions for the new moons. The
actual movement deviates from this average but oscillates around it pe-
riodically. Some treated these deviations as new periodic phenomena
and, for the sake of easier mathematical treatment, considered them as
linearly increasing and decreasing.”

The astronomer refined the mathematical method by representing
the speed of the moon as a factor that increases linearly from the mini-
mum to the maximum during half of its revolution, then decreases from
maximum back to the minimum at the end of the cycle. Using contem-
porary graphic descriptions of this model, one would approximate the
moon’s speed plotted against the sequence of months as a zigzag func-
tion made up of alternating sets of sloping straight lines. The ancient as-
tronomer did it with numbers.*

This unnamed astronomer also realized that one could treat addi-
tional deviations in orbits using a similar method. Thus, starting with
average positions, he applied the corrections required by the object’s pe-
riodic tables that led to a close description of the actual facts. What we
have here, says Neugebauer, is “the nucleus, the idea of ‘perturbations,
which is so fundamental to all phases of the development of celestial
mechanics, whence it spread into every branch of exact science.”* It’s
not clear when and by whom this idea was first employed, but the con-
sistency and uniformity of its application in some lunar texts point to
an invention by a single person. A few of these tablets, which originated
in the cities of Babylon and Uruk, on the Euphrates River, bear the
names of Naburiannu, who lived in about 491 B.c., and Kidinnu (about
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379 B.c.), astrologers who may have invented these systems of calcula-
tion.**

The lunar computational theories are known by scholars today as
System A and System B. Each consists of a set of arithmetic functions,
including the so-called zigzag function, tabulated in columns in lunar
ephemerides (tables showing the daily position of the moon) and in
auxiliary tables by which are calculated the times, dates, and magnitude
of eclipses. The powerful theory of System A was exceeded, six hundred
years later, only by the Almagest, Ptolemy’s second-century A.p. thir-
teen-volume work detailing the classic mathematical and astronomical
accomplishments of the Greeks. These mathematical constructs of
Babylonian astronomy invite the question of whether their invention
was not a transforming event in the creation of science as we know it.”

In System A, one admiring expert, John Britton, says, remarkable
accuracy pervades the theory, including an evident mastery of all aspects
of the properties and behavior of linear zigzag functions, an affinity for
algebraic formulation, and a disciplined sense of rigor governing all as-
pects of its construction. Beyond these, there is an aesthetic sensibility in
the structure of the theory, expressed in an evident preference for sym-
metry and simplicity. In general, System A favors simple numbers, but
with apparent care that this does not compromise its fundamental accu-
racy. Finally, Britton says, there is an air of privacy in it, where one senses
that the subtleties of its structure are not intended to be seen, hidden as
they are under the cloak of several additional sexagesimal places. “It’s a
pity we lack its author’s name,” Britton adds.”

Babylonian mathematical theory was not quite so ambitious in
planetary as in lunar astronomy. It was not developed to the same degree
of refinement, and probably could not have been without better instru-
ments. Nevertheless, planetary positions were calculated, with both
their eastward and retrograde motions represented, visibilities and dis-
appearances computable. Planetary theory may have been intended as
an approximation to phenomena too complex and irregular to compute
with absolute precision. The theory may have been based upon a num-
ber of deliberate approximations for the purpose of computation.”

122



Astronomy: Sky Watchers and More

Astronomers lingered on in Babylon’s temple of Bel into the first
century A.D. By then a substantial part of their tradition had passed
to Greek and probably Indian astronomers. Babylonian influence on
Greek astronomy, as reflected in the Almagest, included the names of
many constellations; the zodiacal reference system; the degree as the
basic unit of angular measure; observations, especially of eclipses, going
back to the beginning of the reign of King Nabonassar in 747 B.cC.; and
fundamental parameters including the value for the mean synodic
month.*

The destruction of the Mesopotamian tradition would have been
complete in medieval Europe had not Babylonian astronomy, via Greek
distribution, found a new and interesting development among Indian
astronomers. Then, when the Arab conquest reached India, this ancient
science saw a triumphant revival everywhere in the Muslim world, and
prepared the staging grounds for astronomy in the Renaissance.”

Egypt

The Ancient Egyptians were not noted for their astronomy, but they
were highly practical people, and possibly it was their realistic approach
to sky watching and timekeeping that has given us two big contribu-
tions: the 365-day year and the division of a day and night into a cycle of
twenty-four units.

Perhaps no calendar-keeping institution has continued longer than
theirs. After its uninterrupted run during all of Egyptian history, the
Greek astronomers adopted the Egyptian calendar for their calculations.
Ptolemy based certain tables in the Almagest on Egyptian years. Even
Copernicus in 1543, in De revolutionibus orbium coelestium, used it, ex-
plaining simply that astronomers are practical people, and because the
main requisite for every time-measuring unit is constancy, the Egyptian
calendar is an ideal tool."” The calendar consisted of twelve months of
thirty days each, with five additional days at the end and no intercala-
tions at all. It is no wonder, remarks Neugebauer, that Hellenistic as-
tronomers preferred this system to the Babylonian lunar calendar with
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its irregularly changing months combined with a complicated cyclic
intercalation, not to mention the “chaos of the Greek and Roman
calendars.” "

Why did the Egyptian astronomers impose upon the citizenry a cal-
endar with no respect for sun and moon? Was it the sheer primitiveness
of their observations? Probably there was a more important cycle in
their lives. To the early Nile people, the annual flooding of the great
river, “the Inundation,” seemed to occur fairly predictably around the
time of Sirius (Sothis). The brightest star in their firmament, Sirius
reappeared in the east after disappearing in conjunction. Then it would
appear for a few minutes before the light of the day, having been ob-
scured for seventy days by the sun. This familiar heliacal rising occurred
close to the summer solstice (early June in around 4500 B.c.). Thus the
revered event Peret Sepdet (The Going Forth of Sothis) was a cross-
reference, a double time check, to reset the year clock and restart the
count of the months.'” The calendar was an agricultural as much as or
even more than an astronomical one. Neugebauer showed that a simple
recording of the variable dates of the Nile’s inundations led to an aver-
age interval of 365 days. Only after two or three hundred years could
this “Nile calendar” no longer be considered correct.'”

At the same time, the Egyptians did observe the real lunar cycle,
which had a well-defined religious significance. The two calendars—
the lunar and the thirty-day-month civil calendar—coexisted, as dual
calendars did in much of Mesopotamian history. As Neugebauer points
out, the behavior of the moon is so complicated that it was not until the
last centuries of Babylonian history, around 500 B.C., that astronomers
figured out a satisfactory and sufficiently accurate program to predict
the length of the lunar month for any appreciable time. That is, only a
highly developed celestial mechanics could make it worthwhile to run
an empire on moon time. Organized societies, furthermore, need to be
able to determine future dates, regardless of the moon’s phase. A simpli-
fied calendar is equally practical for keeping track of the past, because it
eliminates the need for keeping exact records of the actual length of
each month. A thirty-day month met the requirements for running
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a country as big as Egypt, even as in Babylon the simplified calendar
versions served the needs of rent collectors and merchants dealing in
accounts receivable. The thirty-day month was not an attempt to ap-
proximate reality but constituted a way of expressing time in round
numbers.'*

The beginnings of the system of night-day divisions probably
started with the decans (called thus by the Greeks—groups of stars
that denoted ten-day periods). The Egyptians, creating a twelve-unit di-
vision of the period of total darkness, developed the decans for time
measurement at night.'® This method may have originated when the
Egyptians, always on the lookout for Sirius, had trouble distinguishing
one bright predawn star from another on similar horizon points. If one
bright star was part of three or four other fainter ones that formed a dis-
tinctive pattern, rising a few minutes before Sirius, then the astronomers
could forewarn of the superstar’s rising. So they identified the fainter
stars as attendants, the brighter Sirius as gatekeeper, and the place of the
star’s appearance as the gate. As each succeeding star group dominated
the horizon gate, the rising group would be associated with specific
myths, characterizing the order of the sequence. Later, when the Egyp-
tians wrote these sequences down, they organized them as twelve star
groups emerging from the underworld, an underworld with twelve
gates.'®

The decans made their appearance in drawings and tables on the in-
sides of pharaonic coffin lids in the Ninth through Twelfth Dynasties.
The coffin artists painted decanal “star clocks”—covering a year at 10-
day intervals—on the sarcophagi lids to aid the dead one’s journey
through the underworld and up into the sky to join the immortal stars.
By 1100 B.c., the Egyptians had drawn up a list of decanal stars and
denoted the night hours by combining only those stars that resembled
Sirius.'”

For one week, the star clocks marked off twelve hours of the night
by the rising of a specific star or set of stars. The next week, the stars
changed position by sliding over one hour; that is, those stars that rose to
mark the first hour of the first week would then mark the second hour
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of the second week, and so on. Each decan passed out of the clock at the
end of 120 days, or one-third of a year."® Thus, given the star table and
the appearance of the night sky at any moment, one could tell the time
by noting the tabular position of a specific star for a specific date. The
star clocks did not account for the fact that 365 days do not return the
sun to the same star, so every four years, the tables would be one day in
error. After 120 years, they’d be off by a whole month. The Egyptians
evidently tried to solve this problem by shifting the stars’ names by the
appropriate amounts to reset the clock with the civil calendar. But they
had abandoned this procedure by the time of the New Kingdom
(1550-1070 B.C.).*

The decanal hours were neither constant nor sixty minutes. But
each decan had to serve for ten days as the indicator of its hour, and
these hours could not be a part of twilight. Again, this is a simple
twelve-unit scheme that worked for all seasons of the year. And a sym-
metry of night and day, of upper and nether worlds, suggested a similar
twelve-unit division for the day. But it was not until the Hellenistic pe-
riod that Babylonian time reckoning, with its sexagesimal division,
combined with this Egyptian norm of two phases of twelve hours and
led to twenty-four “equinoctial hours” of sixty minutes each."®

During the New Kingdom, astronomy was characterized by pic-
tures of priests seated before star grids in the tombs of Ramses VI, VII,
and IX. They represent the final stage of telling time with stars. Rather
than noting rising stars, the new procedure involved any stars transiting
the meridian (highest point) and several adjacent latitudinal lines. These
astronomers may have been using water clocks to chart the transiting
stars. The first direct evidence of water-clock usage in Egypt comes
from an inscription of a prince, Amenembhet, around 1520 B.c. The
water clock looked like a vase, having a scale on the inside marking
hours and a hole into which fit a finely bored plug; the diameter of the
bore was no larger than that of a hypodermic needle. The clock was
filled with water, which escaped through this small-bore outlet.

Above all in the world, the Egyptians manifested their celestial
awareness in their pyramids. The Old Kingdom (2613-2125 B.C.) is
sometimes called the Age of Pyramids, with the Fourth Dynasty pyra-
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mids at Giza reflecting the religio-astronomical zeal of Old Kingdom
pharaohs. The Egyptians were inspired to shape the pyramids by imitat-
ing the way clouds and dust scattered sunlight into broad swaths that
formed stairways to heaven. Indeed, they considered the pyramids to be
stone pathways to the immortals—the northern circumpolar stars. The
Egyptians called these stars ikhemu-sek, “the ones not knowing destruc-
tion,” since these stars never set on the Egyptians’ world.

The entrances to the pyramids all face north, and their corridors
slope downward at such an angle that the north circumpolar stars could
be seen from them. The three Giza pyramids are oriented diagonally
and offset with respect to each other so that their north faces did not
block each other’s view of these circumpolar stars, especially Alpha Dra-
conis (Thuban), the pole star of those times. The Giza orientation was
also governed by the fact that the Egyptians believed the entrance to the
underworld lay due west, a point on the horizon where the sun set into
the mouth of the sky goddess, Nut, on the spring equinox. The pharaoh
was expected to pass safely through the underworld before joining im-
mortal gods.'”

The Great Pyramid at Giza has inspired various astronomical inter-
pretations involving alignments of interior corridors and shadows cast
by its profile. Whatever else may be said about it, there is no doubt
the pyramid is aligned fairly precisely and that the four sides of its huge
base (covering more than thirteen acres) run north, south, east, and
west. The worst agreement of any side with exact cardinal orientation is
on the east, and even there the misalignment from true north-south is
only 5.5 arc minutes. Preserving this accuracy on the immense scale of
the pyramid means not “twisting” the sides at higher levels. The Egyp-
tians’ success emphasizes the concerns they had for the four cardinal di-
rections.'”

How the Egyptians aligned the Giza pyramids so nicely despite
their less than sophisticated astronomy has been a puzzle. Recently, a
British Egyptologist announced that she has solved it. The best estimate
of the age of the royal tombs, roughly forty-five thousand years old, is
based on chronologies of the period and the reign of kings, and is accu-
rate only to within one hundred years.
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Reporting in Nature in November 2000, Kate Spence, of the Uni-
versity of Cambridge, estimated that the building of the pyramids began
between 2485 and 2375 B.c. and that two stars helped the engineers
align them to true north. The Egyptians were trying to find true north,
but they did not have a star marking the pole. So they used two stars,
Kochab in the Little Dipper and Mizar in the Big Dipper, to find the
pole. “It is on a line between those two stars,” Spence said. “You mea-
sure when the two stars are basically on top of one another and if you
line them up with a plumb line that will give you true north.” Accord-
ing to astronomical data, 2467 B.c. is the year in which the line that goes
between the two stars passes exactly through the trajectory of the pole.
“If they had started building on that date we would have a pyramid
which is absolutely aligned to north,” Spence added. “But they seemed
to have started work about 11 years before that, which means it is still a
few minutes off north.”'"* Aveni says the jury is still out on this theory,
and notes that the Egyptians were “pretty good engineers” and that the
alignment problem may not be so difficult.'”®

Sun (Ra) worship reached its zenith during the Fifth Dynasty (ca.
2750-2400 B.c.) when six kings built immense temples to honor him.
Ra temples had special designs making it easier to measure night hours
for predicting sunrise. King Userkaf’s temple, the first of the six, was as-
sociated with a series of stars containing Denab as its brightest, the star
from which Ra was “born.” Astronomers, or “Overseers of the House,”
could have stood on the roof to monitor the axial crossing of stars used
as hour markers. They employed an instrument called the bay, a palm rib
with a notch cut into one end. This was also used with the merkhet, to
ascertain the orientation of the building itself and the axial line on
the roof. Similar tools were probably used to determine the orientation
of the pyramids and to maintain that orientation as construction pro-
gressed.'

Over fifteen hundred years later, the Royal Tombs of the New
Kingdom were cut into the cliffs in the Valley of Kings at Luxor. There,
numerous representations of the “Northern Group,” a figurative por-
trayal of circumpolar constellations, were painted on corridor ceilings in
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the tomb of Ramses VI, a Twentieth Dynasty pharaoh. The finest ver-
sion of this theme appears overhead in the burial chamber of the tomb
of Seti I, of the Nineteenth Dynasty, who ruled to about 1292 B.c. It en-
compasses most of the northern heavens."” After the rise of the Ptole-
mys (323 B.c. through 30 B.c.), Greek and Babylonian influences were
visible in temple construction and astronomy, and there is nothing
purely Egyptian to be found—except for the enduring 365-day-year
and twenty-four-hour-day calendars.

Inclia

According to David Pingree, a Brown University historian of mathe-
matics who has carried out an extensive survey of the literature on In-
dian astronomy, there exist “at present in India and outside of it some

million manuscripts'®

on the various aspects of jyotihshastra—texts on
astronomy, mathematics, astrology, and divination. These vast numbers
of manuscripts have been neither cataloged nor translated and consti-

tute a territory that remains remarkably unexplored.” "

Yet Indian as-
tronomy, perhaps more than any other, has served as the crossroads and
catalyst between the past and future of the science.

Many fundamental ideas of Indian astronomy were introduced from
other cultures, and Indian astronomy is part of broad currents of knowl-
edge, theory, and practice that crisscrossed the major civilizations of
Eurasia between the late second millennium B.c. and the nineteenth
century in the West. The headwaters of this great multicultural stream
was Mesopotamia, but within India the tradition was reconfigured,
later by sophisticated mathematics, to fit Indian social and intellectual
patterns.'” Indian mathematical innovations had a profound effect on
neighboring cultures. Trigonometry and analemma (a system of ways to
reduce problems in three dimensions to a plane), for instance, greatly in-
fluenced Islamic astronomy and its heirs in western Europe.In serving as
a conduit for incoming ideas and a catalyst for influencing others, India
played a pivotal role in the development of astronomical sciences. '

The first references to astronomy in India are to be found in the
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Rig-Veda, an oral religious, moral, and speculative epic written down
around 2000 B.c. Vedic Aryans deified the sun (Surya), stars,and comets.
As was common across so many cultures, astronomy in India was inter-
woven with astrology and divination. Indians integrated the sun, moon,
and planets into the determination of human fortunes.

The Vedas recognized the sun as the source of light and warmth, the
source of life, the center of creation, and the center of the spheres. This
perception may have planted a seed, leading Indians thinkers to enter-
tain the idea of heliocentricity long before some Greeks thought of it.
An ancient Sanskrit couplet also contemplates the idea of multiple suns:
“Sarva Dishanaam, Suryaham Suryaha, Surya.” Roughly translated this
means, “There are suns in all directions, the night sky being full of
them,” suggesting that early sky watchers may have realized that the vis-
ible stars are similar in kind to the sun." A hymn of the Rig-Veda, the
Taittriya Brahmana, extols nakshatravidya (nakshatra means stars; vidya,
knowledge).'?

As in so much of Indian astronomy, even the details of this old ritual
knowledge are a blend of native and exotic knowledge. Some of the
hymns of the Rig-Veda are clearly related to the content of MUL.APIN,
the eleventh-century B.c. Mesopotamian text. MUL.APIN gives the
dates of the heliacal rising of the constellations in terms of an “ideal cal-
endar” of twelve thirty-day months and a 360-day year. A late Rig-Veda
hymn refers to the same calendar. MUL.APIN describes the oscillation
of the rising point of the sun along the eastern horizon at the solstices.
The same oscillation is described in a Vedic hymn, the Areyabrahmana.'*

In the fifth century B.C. in the Indus Valley, Indians developed a
water clock for calendrical purposes. The clock’s operation was gov-
erned by a mathematical linear zigzag function, with the ratio of the
longest to the shortest day of the year being 3 to 2. This, too, is 2 Baby-
lonian import. The Mesopotamian omen texts of the Enuma Anu Enlil
were also imported about 400 B.c. Embedded in them are theories of
planetary motion for use in making rough predictions of the dates of the
occurrences of the ominous planetary happenings, such things as first

The Mesopotamians’ first attempts at constructing math models are
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here too, such as dividing the ecliptic for each planet into various arcs,
wherein each arc has a given velocity and employs standard intervals of
time. A more advanced form of Babylonian planetary theory, fully de-
veloped around 300 B.c., is reflected in later Indian texts. This material
first passed through Greek intermediaries in the form of astrological
and astronomical treatises, sometime between the second and the fourth

centuries A.D.'?

AMONG THE EARLY Indian texts are the siddhantas, treatises on astronomy
and math, which were written in hymnal poetic form, probably both as
a mnemonic device and because art and science, as in much of the non-
Western world, were never considered to exist on the opposite side of
a conceptual ravine but to enhance the spirit of each other. Of the eigh-
teen early siddhantas, only five survive as extracts, including the major
early textbook on Hindu astronomy, the Surya-Siddhanta, written
around 400 A.p. The Surya-Siddhanta contains many things, including a
method for finding the times of planetary ascension of arc of the eclip-
tic, a fundamental problem of ancient Mesopotamian trigonometry.'*
Yet the Surya-Siddhanta contains ancient Indian doctrines, too, such as
the conception of the strings of air that push and pull the planets in their
irregular motion,'” which is an early intimation, albeit vague, of the
force of gravitation. The Sanskrit word for gravitation is gurutvakarshan.
Akarshan means to be attracted. From early times, the language itself re-
flected the idea that the character of this force was attraction.

Some scholars argue that these early texts show that early Indian as-
tronomers flirted with, at least, heliocentrism and a theory of gravita-
tion one thousand years earlier than these concepts were articulated by
Copernicus, Galileo, and Newton. For example: “He [the sun] is de-
nominated by the golden wombed, the blessed; as being the generator.”
The sun is also referred to as “the supreme source of light upon the bor-
der of darkness—he revolves, brings beings into being; the creator of
creatures.” The Surya-Siddhanta, furthermore, credits the Vedas with es-
tablishing the sun “within the egg as grandfather of all worlds; he him-
self then revolves causing existence.”'*® Well, it’s a stretch. There is no
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inverse-square law here, as Newton articulated. George Saliba, of Co-
lumbia University, calls Indian gravitation an anachronism. Aveni says it
doesn’t spell gravitation to him either.

Around 425 A.p. the Paitamahasiddhanta expressed geometric mod-
els of terrestrial and celestial spheres and mechanics to account for plan-
etary motions. The text takes the basic flat-earth model and converts it
into a spherical universe. Here two epicycles (rather than the Ptolemaic
single one) exert pulls on each planet that dislodge it from its mean lon-
gitude, causing the resulting motion to be discontinuous rather than
uniform.'”

The epicycle, the construct that so dominated pre-Copernican as-
tronomy, is a Greek geometric device that was universalized for hun-
dreds of years by Ptolemy. One way of explaining an epicycle is to see it
as a circle in which a planet moves and which has a center that is itself
carried around on the circumference of a larger circle. That is, variations
in the distance of a planet from the earth could be explained by assum-
ing a planet moved in a circle, the epicycle, whose center traveled
around another circle, the deferent, centered on the earth.

Hipparchus proposed an amended concept, suggesting that the
planets moved in eccentric circles around the earth, with their orbital
centers situated some distance from the earth’s center. Hipparchus ex-
plained the apparent motions of the sun in terms of a fixed circular orbit
eccentric to the earth, using epicycles to describe the orbits of the plan-
ets. Ptolemy appropriated both epicycles and eccentric orbits in creat-
ing his celestial model. By Ptolemy’s time it took around forty-one
circles to account for all the goings on in the heavens.™ So it was in this
light, centuries later, that Indian astronomers manipulated the epicycle
with great success (erroneously, of course), inventing various new algo-
rithms to compute these complex processes within processes in order to
explain how the planets revolve on their axes as they revolve around the
earth.”

A school of Paitamaha called Brahmapaksa had a wide influence
outside India, beginning with the adaptation of at least some of its
mathematics by astronomer-mathematicians in Iran in about 450.
Around this time, individual astronomers began to enter the stage of In-
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dian history. The Brahmapaksa school was influential not only in Iran
but on the young Indian astronomer Aryabhata, born in today’s state of
Kerala. In 499 he presented a treatise on mathematics and astronomy,
the Aryabhatiya. The Aryabhatiya is a summary of Hindu mathematics
up to his time, including astronomy, spherical trigonometry, arithmetic,
algebra, and plane trigonometry. In it one of Aryabhata’s main goals
was to simplify the ever more complex computational mathematics of
Indian astronomy. He had a practical purpose for this: to fix the Hindu
calendar for easier forecasting of eclipses and movements of celestial
bodies.

In the process, the Aryabhatiya presented a new treatment of the po-
sition of the planets in space. It proposed that the apparent rotation of
the heavens was due to the axial rotation of the earth, a view of the solar
system that future commentators could not bring themselves to follow.
In fact, most later editors changed the text to save Aryabhata from what
they thought were gross errors.

A revolutionary thinker in many areas, Aryabhata gave the radius of
the planetary orbits in terms of the radius of the earth-sun orbit—that
is, their orbits as basically their periods of rotation around the sun. He
explained that the glow of the moon and planets was the result of re-
flected sunlight. And with incredible astuteness, he conceptualized the
orbits of the planets as ellipses, a thousand years before Kepler reluc-
tantly (he originally preferred circles) came to the same conclusion.
Aryabhata wrote that the cause of lunar eclipses was the shadow of the
earth, despite the prevailing belief that eclipses were caused by a demon
called Rahu. His value for the length of the year at 365 days, six hours,
twelve minutes, and thirty seconds, however, is a slight overestimate; the
true value is fewer than 365 days and 6 hours. Another astronomer,
Bhaskara [, writing a commentary on the Aryabhatiya about a hundred
years later, had this to say:

Aryabhata is the master who, after reaching the furthest shores
and plumbing the inmost depths of the sea of ultimate knowl-
edge of mathematics, kinematics and spherics, handed over the
three sciences to the learned world."
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The Aryabhatiya was translated into Latin in the thirteenth century.
Through this translation European mathematicians eventually learned
methods for calculating the squares of triangles and the volumes of
spheres, as well as square and cube roots. Explanations about the cause of
eclipses and the sun being the source of moonlight may not have caused
much excitement in Europe when astronomers there finally read the
treatise, since by then they had learned of these things through the in-
vestigations of Copernicus and Galileo. But Aryabhata had conceptual-
ized these ideas a thousand years before the Europeans.™

Fifty years after the Aryabhatiya, the philosopher, astronomer, and
mathematician Varahamihira wrote the Pancasiddhantika (“Five Trea-
tises”), a compendium of Greek, Egyptian, Roman, and Indian astron-
omy. Varahamihira’s knowledge of Western astronomy was thorough. In
these five sections, his huge work progresses through Indian astronomy
and culminates in two analyses of Western astronomy, showing calcula-
tions based on Greek and Alexandrian reckoning and even giving com-
plete Ptolemaic mathematical charts and tables.

Included in it is the Indian transformation of the Hellenistic
astronomer Hipparchus’s tables of sines into a table of chords, and
the first application of periodic theorems to problems in spherical
trigonometry—a field, says Pingree, “in which Indian astronomers were
brilliantly innovative.” ** Varahamihira, like Aryabhata before him, con-
templated the idea that the earth was spherical in shape. He believed that
there could be an attractive force keeping bodies stuck to the earth. If
Varahamihiri believed in gravity, it is safe to assume that he posited also a

1% (Gravitation is the general force between

general gravitational force.
masses; gravity is the effect of the gravitation on the surface of a planet.)
In 628, Brahmagupta, the last and arguably the most accomplished
of the ancient Indian astronomers, set forth his astronomical system in
characteristic siddhanta verse form in the Brahmasphutasiddhanta (The
Opening of the Universe).”” Brahmagupta became the head of the as-
tronomical observatory at Ujjain, the foremost mathematical center of
ancient India, where great mathematicians such as Varahamihira had

worked and built up a strong school of mathematical astronomy.
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The Brahmasphutasiddhanta contains twenty-five chapters, the first
ten of which are arranged by topics such as true longitudes of the plan-
ets, lunar eclipses, solar eclipses, risings and settings, the moon’s cres-
cent, the moon’s shadow, conjunctions of the planets with each other,
and conjunctions of the planets with the fixed stars. The other fifteen
chapters seem to form a second work—a major addendum to the orig-
inal treatise, including reworkings of the previous treatises on astronomy
and mathematics and additional works on algebra, on the gnomon (a
sundial-like object), on meters, on the sphere, on instruments and versi-
fied tables."® A large part of the Brahmasphutasiddhanta was translated
into Arabic in the early 770s and became the basis of various studies by
the astronomer Ya‘qub ibn Tariq. In 1126 it was translated into Latin.
This translation, along with other associated texts translated from Ara-
bic, provided the basis for the Indo-Arab stage of Western astronomy.'”

The culmination of southern Indian astronomy was the tradition
begun by Madhava in Kerala right before 1400. Madhava was renowned
for his derivation of the infinite series for pi and the power series for
trigonometric functions. His pupil Paramesvara attempted to correct
solar and lunar parameters by conducting a long series of eclipse obser-
vations between 1393 and 1432. In these observations he used an astro-
labe, an instrument devised to measure the positions of heavenly bodies,
to determine the angle of altitude of the eclipsed body and, possibly, the
time of the phases of the eclipses. This is remarkable, says Pingree, since
the astrolabe had been introduced in a translation or adaptation of a Per-
sian text only in 1370, and far away in northern India.'*

Observation played a minor role in Indian astronomy until observa-
tional instruments were introduced from Islamic and Ptolemaic tradi-
tions in the late fourteenth century. This new Indo-Muslim coalition of
empirical astronomy culminated in the immense masonry observatories
erected by Jayasimha in 1730, when they were already obsolete. Gener-
ally, Indian astronomers took both theoretical models and equations
from outside sources and adapted them to their traditions and needs.
Those needs were the computation of their complex calendars, time-
keeping, the casting of horoscopes, prediction of solar and lunar eclipses,
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and conjunctions of planets with fixed stars or with each other. To these
ends, they employed a sophisticated mathematics of approximation and
developed elaborate arrangements of tables.

The Indians advanced astronomy by mathematics rather than by
deductions elicited from nature. Some of these mathematical innova-
tions had a profound effect on neighboring cultures—as for instance,
trigonometry and analemma on Islamic astronomy—and in medieval
western Europe. In its reception of external ideas and its influences on
others, India played a pivotal role in the development of astronomical
sciences in the rest of the world.'!

Islam

Soon after the prophet Muhammad’s death in 632, Muslims had estab-
lished a commonwealth stretching from Spain to Central Asia. With
conquest they brought an Arab folk astronomy that mixed with local
knowledge, especially the mathematical traditions of Indian, Persian,
and Greek astronomy, which they mastered and adapted to their needs.
Early Islamic astronomy was a potpourri, but by the tenth century it had
acquired distinctive characteristics of its own.'* From then through the
fifteenth century Muslim scholars were unequaled in astronomy. Astrol-
ogy, too, was part of the package, and remained so; even the greatest Is-
lamic astronomers, such as al-Biruni, practiced the occult art.’® In the
deep background was the legacy of ancient Mesopotamia, partly intact
over the thousands of years.'*

The earliest astronomical documents in Arabic may have been
written in Sind in Afghanistan (now in Pakistan) an area conquered
by Muslims by the seventh century. They consisted of text and tables
called zij, after a Pahlavi (old scholarly Persian) word meaning “cord” or
“thread” and, by extension, “‘the warp of a fabric.”** Around 771, an In-
dian political mission arrived from Sind to the court of al-Mansur, the
caliph of Baghdad. The group included a scholar versed in astronomy
who brought along the famous Brahwmasphutasiddhanta. The caliph or-
dered it translated into Arabic, and the resulting Zij al-Sindhind al-kabir

136



Astronomy: Sky Watchers and More

was the springboard for a series of zijs by great Islamic astronomers
writing through the tenth century. The Sindhi tradition flourished all
the way to Andalusia, Spain, and as a result, the influence of Indian and
Islamic astronomy spread from Morocco to England in the late Middle
Ages.'*

In their later form, the zijs consisted of several hundred pages of text
and tables. Aspects of mathematical astronomy one could find in a typi-
cal zij included trigonometry; spherical astronomy; solar, lunar, and
planetary equations; lunar and planetary latitudes; planetary stations;
parallax; solar and planetary visibility; mathematical geography (lists of
cities with geographical coordinates) determining the direction of
Mecca; uranometry (tables of fixed stars with coordinates); and, not
least, mathematical astrology.'” In one zij, the famous Egyptian as-
tronomer Ibn Yunus describes forty planetary conjunctions and thirty
lunar eclipses. Using modern knowledge of the positions of the planets,

we find that Yunus is exactly right.'*

ALTHOUGH RELIGION was not the entire driving force spurring the
growth of astronomy in Islam—a tolerant, multiracial, highly literate so-
ciety, with a predominant language, Arabic, also fostered it—sacred mat-
ters played a big part. Islam needed a way to figure out how to orient all
sacred structures, as well as daily worshipers, precisely toward Mecca.
Celestial mapping sprang from this requirement for establishing the
holy coordinates and the right direction, or gibla, toward the Kaaba, the
shrine of Mecca toward which all Muslims face five times a day in
prayer.

But which way is Mecca? In early times, religious authorities prob-
ably determined the gibla through sighting by celestial bodies, such as
the star of Bethlehem, that lay in the general direction taken by pilgrims
walking to Mecca. The Kaaba itself is aligned to specific directions; its
major (south) axis is positioned toward the rising of the star Canopus; its
minor axis, or east and west facades, aligns to sunrise at the summer sol-
stice and sunset at the winter solstice."” An expert at a distant shrine had
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to devise schemes to face the segment of the Kaaba corresponding to his
location, as if he were actually in front of that segment of the Kaaba
perimeter."

By the ninth century, astronomers were using trigonometric and
other computational devices to determine the gibla from geographical
coordinates. The puzzle was easily turned into a problem of spherical
astronomy by considering the zeniths of the localities involved. In the
astronomer al-Biruni’s treatise on mathematical geography, for example,
the goal was determining the gibla at Ghazni, in Afghanistan.

In the ninth century, a great patron of science, the Abbasid Caliph
al-Ma’mun, gathered astronomers in Baghdad to create the House of
Wisdom (Bait al-Hikmah). There the astronomers conducted observa-
tions of the sun and moon, directed toward determining the local lati-
tude and longitude in order to establish the gibla. They collected some
of the best results into a zij called “Tested” (al-Mumtahan). Not until the
eighteenth century and the invention of the marine chronometer, was it
possible to measure longitudinal differences correctly. By then it be-
came obvious that most medieval coordinates were incorrect. Even gi-
blas derived by correct mathematical procedures but based on these
coordinates were off by a few degrees. Nonetheless, determining the
qibla was one of the most advanced problems faced by Muslim astron-
omers, and the solutions they found were of great sophistication."™

Along with sacred direction came sacred time. Like the ancient
Babylonians, the Islamic calendar begins with the first sighting of the
crescent following the new moon in the west. The precise determina-
tion of the beginning and end of months has been especially important
for setting the time for Ramadan, the sacred month of fasting. As-
tronomers devised a wide variety of ways to find Ramadan’s start.
Al-Khwarizmi, for instance, compiled a table of the minimum ecliptic
elongations of the sun and moon for each zodiacal sign, computed for
the latitude of Baghdad. (Today there is often even more confusion than
in medieval times about the start of Ramadan, since the crescent moon
may be seen in some locations around the world at one time and not in
others.)"?
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There was also a pressing need to know what time it was in order to
fix the five prayer times each day. Again, the astronomical and mathe-
matical disciplines were called into service; this application has virtually
no parallel in the science of Greece or medieval Europe. It was an unri-
valed and increasingly sophisticated effort, as an enormous body of
recorded observations and calculations testifies.'*

Until the ninth century experts determined prayer times by shad-
ows and lunar mansions. After that, they used tables to calculate the
times, correlating shadow lengths and height of the sun to indicate
the lengths of the intervals between prayers. Such tables enabled the
muwaqqit, the official timekeepers employed by the mosques, to inform
muezzins of the time for each of the five prayers so they could summon
the faithful.” The tables proliferated throughout Islam and began to
evolve into increasingly accurate and comprehensive data sources as
naked-eye observations and calculation were replaced with more so-
phisticated sundials, quadrants, astrolabes, and compasses. '

It was convenient to have the tables displaying prayer times for each
day of the year. By the mid—tenth century Islamic astronomers had
compiled two tables displaying time of day as a function of solar merid-
ian altitude computed for Baghdad. These Islamic timekeeping devices
became an obsession of artisans in the thirteenth and fourteenth cen-
turies. A table for Damascus shows twelve functions relating to time-
keeping tabulated for each day of the year. Another table had over
400,000 entries. (Today the tables Muslims use to regulate prayers are
published in newspapers, pocket diaries, calendars, and on the Internet.
The muezzins’ calls are recorded and amplified by loudspeakers.)'*

The analysis of time and timekeeping inspired Muslim investigators
into more complicated zones of abstraction, such as analyses of shadows.
In the eleventh century al-Biruni wrote a work on shade and shadows,
strange phenomena involving shadows, gnomonics, the history of the
tangent and secant functions, applications of the shadow functions to
the astrolabe and to other instruments, shadow observations for the so-
lution of various astronomical problems, and the shadow-determined
times of Muslim prayers."”’
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Al-Biruni introduced techniques to measure the earth and distances
on it using triangulation. He found the radius of the earth to be 6,339.6
kilometers (3,930.6 miles), a value not obtained in the West until the
sixteenth century. One of his zijs contains a table giving the coordinates
of six hundred places, almost all of which he had direct knowledge of.
Not all, however, were measured by al-Biruni himself, some being taken
from a similar table given by al-Khwarizmi. (Al-Biruni seems to have
realized that for places given by both al-Khwarizmi and Ptolemy, the
value obtained by al-Khwarizmi was the more accurate.) Al-Biruni also
wrote treatises on the astrolabe and devised a mechanical calendar. He
made observations on the speed of light, stating that its velocity is im-
mense compared with that of sound.”®

THE AraBIC FASCINATION with mechanical devices led to the develop-
ment of the first serious collection of astronomical instruments de-
signed to acquire precise data about time and the motion and position
of celestial objects. The instruments devised in the Arab world during
the medieval period were far more complex and more ornate and pro-
vided far more precise information than any predecessors.'”

The astrolabe was a particular favorite of Islamic astronomers.
Meaning “star taker,” it was a source of precise data gathering for collec-
tions of tables across the southern Mediterranean world from the tenth
through fifteenth centuries.'® Invented by the Greeks in the second
century B.C., it was enhanced or, some say, perfected by Muslims. The
compact, often small, device functioned like a sophisticated engineer’s
slide rule. With its replaceable plates it could be calibrated for use in dif-
ferent geographical locations, and manipulated to provide many types of
year-round celestial and timekeeping data, terrestrial measurements, and
astrological information. It combined the sighting properties of the tel-
escope and the figuring capacity of a little analog computer.'*

The viewer looked through a pair of sighting holes at opposite ends
of a rod mounted on a circular plate. The astrolabe’s face was outfitted
with a series of star-map plates that could be removed and substituted
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like CDs, one for each latitude. The disks consisted of a flat stereo-
graphic projection of the sky onto the celestial equator (the extension
of the earth’s geographic equator onto the sky). The central hole
marked the position on the celestial sphere approximated by the pole-
star. On top of this another plate gave basic coordinates in horizon,
equatorial, and ecliptic systems.'®?

Once the astronomer sighted the target object through the peep-
holes, he read its positions off a rotatable ruler. Another circle on the flip
side of the star clock served to fix the hour of night, day of the month,
and position of the object sighted on the zodiac. Craftsmen fashioned
the instrument’s pointers in the form of dragon’s teeth, serpent’s
tongues, or other animal parts. Made of brass and filigree, the astrolabe
presents a relationship between science, art, and nature possible among
the world’s cultures then but scarcely today.'

Muslims developed other instruments, including the spherical as-
trolabe. Treatises on it were written from the tenth through sixteenth
centuries. Al-Khwarizmi and other astronomers introduced features
such as shadow squares and trigonometric grids on the instrument’s
back, azimuth curves on plates for different latitudes, and a universal
plate of horizons. One spherical astrolabe, dated 1329, represents the
culmination of Islamic astrolabe making and has no equal in sophistica-
tion among instruments from the European R enaissance. Whereas stan-
dard astrolabes require a different plate for each latitude, this one, of Ibn
al-Sarraj, has plates that serve all latitudes. Its various components can be
used to solve all the problems of spherical astronomy for any latitude.'*

The Muslims developed the armillary sphere, named for the many
concentric armillae, or “bracelets,” that compose it. Armillary spheres
create a physical representation of features of the celestial sphere, such as
the circles of the equator, the horizon, the meridian, and tropical and
polar circles.'®®

Another set of instruments taken to new precision were quadrants.
The astrolabic quadrant was a simplified astrolabe, shaped like a 90-
degree pie segment, that could be used to solve all standard problems of

spherical astronomy, especially those involved in mapping features of
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the celestial sphere. Developed by Muslims in Egypt in the eleventh
through twelfth centuries, it had by the sixteenth century replaced the
astrolabe everywhere in the world except Persia and India."® The quad-
rant, sextant, and octant, for measuring altitude, along with the early
form of the surveyor’s transit, or theodolite, are tools highway crews use
for surveying today. Keep in mind that the medieval sextant and other
tools were not as sophisticated as today’s sextant, which has a built-in
telescope and a precision scale for ticking off degrees.

THE DEMAND for precise data in preparing calendric prayer tables
gave rise to observatories. Another force behind their construction was
the ever present thirst for astrologic forecasting. Observatories were
usually established or sponsored by caliphs and other rulers to serve
their interest in astrology.’” As part of his “House of Wisdom” projects,
al-Ma’mun, the Abbasid caliph (813—-833) had observatories built at
Baghdad and Damascus.® These centers attracted eminent scholars and
celebrity astronomers, who served as magnets to pull in ever brighter
students from all Muslim regions. The great mathematician-astronomer
al-Khwarizmi, for instance, took part in the celebrated Houses of Wis-
dom at Baghdad and Cairo during the reign of al-Ma’mun. Thabit ibn
Qurrah observed at al-Ma’mun’s establishment at Baghdad. In the
eleventh century, Ibn Yunus led an observatory team at Cairo. At a court
observatory at Ghazni in Afghanistan, al-Biruni provided data that
formed the basis for the most significant zijs of Islamic astronomy.'®

In 1259 the mathematician Nasir al-Din al-Tusi founded an obser-
vatory with a large professional staff at Maragha in Persia, where ob-
servers had the use of three sorts of astrolabes: planispheric, linear, and
spherical. These were substantially the same as the instruments used
later by European astronomers until the invention of the telescope.'”
The observatory of Ulugh Beg at Samarkand, in what is now Uzbek-
istan, was built between 1420 and 1437. Ulugh Beg equipped this three-
story observatory with the best and most accurate instruments available,
including a sextant made of marble. He also procured a quadrant so
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large that part of the ground was removed to allow it to fit inside the ob-
servatory.'”" Beg was assassinated in 1449, leading to a catastrophic ne-
glect of the observatory, which lost its position as a leading center of
astronomy. There is little doubt that the organization of this observatory
and the instruments employed there influenced Tycho Brahe’s famous
sixteenth-century observatories at Uraniborg and Stjerneborg.'”

Tycho Brahe has always been held up to students in the West as the
master of pretelescope instrumentation. In reality, al-Ma’mum built a
lavish observatory in 829 and furnished it with a fifty-six-foot-radius
stone sextant and a twenty-foot-radius quadrant, a quadrant larger than
Tycho’s famous instrument built seven centuries later. Beg’s sextants
ranged up to 180 feet in radius, and the margin of error of his instru-
ments was reportedly as good as, if not better than, that of Tycho’s more
than a century later. The Arabs’ theoretical work was also superior. Be-
cause a cannonball fired east did not go farther than one fired west,
Tycho decided that the earth did not rotate, thus pushing astronomy
backward by several centuries.'” He also developed an erroneous model
of the solar system that stalled, at least for a while, the acceptance of the
Copernican view.'*

At all these observatories, astronomers recomputed and refined
Ptolemy’s coordinates for the stars and, eventually, revised Ptolemy’s
second-century A.D. catalog of stars. This catalog, which gave the posi-
tions of 1,022 stars, classified, as they are today, by magnitude, or bright-
ness, was heavily corrected, notably by the tenth-century astronomer
Abd al-Rahman al-Sufi (Azophi), whose Book of the Fixed Stars is the
earliest illustrated astronomical manuscript known. It is still considered
an important work for the study of proper motions and long period
variables of stars. Al-Sufi was the first astronomer to describe the “neb-
ulosity” of the nebula in Andromeda in his atlas of stars. (The copy in
the Bodleian Library, the work of the author’s son, is dated 1009, and the
author expressly states that he traced the drawings from a celestial
globe.) " These observatories mapped the skies in unprecedented de-
tail, thereby providing an invaluable framework for observations carried
out by later generations in both Islam and the West."”®
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It has been claimed that the observatory—as an organized and spe-
cialized institution—was born in Islam, and was passed on in a rather
highly developed state to Europe. Muslim observatories, perhaps, are
the first to meet the essential conditions for observatory qua observa-
tory: large precision instruments, fixed and specialized locations, royal
patronage, and a number of specialized scientists and astronomers work-

ing in collaboration."”

For centuries the main theoretical work Muslim astronomers did at
an observatory centered on simplifying the Ptolemaic model and bring-
ing it into line with the Aristotelian model, which postulated uniform
circular orbits for the planets. The Almagest was translated into Arabic at
least five times in the eighth and ninth centuries, and these texts were all
available in the twelfth century, when they were used by Ibn al-Salah for
his critique of Ptolemy’s star catalog. Muslim astronomers’ versions of
the Almagest not only contained reformulations and paraphrases but also
corrected and criticized it. Within their general allegiance to Ptolemy’s
cosmos, however, Muslim astronomers began to express their growing
awareness about the divide between the Greek’s model of the universe
and their observed reality. The translations gave rise to a series of discus-
sions on whole texts or parts, many of them critical. One by al-Haytham
(circa 1025) was actually entitled “Doubts about Ptolemy.” '

Earlier Greek and Indian astronomers had struggled to make sense
of phenomena such as precession of the equinoxes and planets’ retro-
grade motion. Ptolemy had refined the epicycle-deferent mechanism
by adding the device of an equant, an eccentric, or off-center, point
around which orbits the large circle, or deferent, on which is centered
the epicycle indicating the planet’s path. This equant was supposed to
make sense of the apparent approach, recession, and backing up of a
planet. It represented the most sophisticated attempt to square what the
eye could observe with the way the theory stated a planet must move.'”

Muslim astronomers eventually came to object in particular to the
way Ptolemy’s epicyclic motions violated the principle of uniformity of

144



Astronomy: Sky Watchers and More

motion, a principle central to Greek and Indian concepts of all heavenly
bodies, as well as a cornerstone of Ptolemy’s system. This objection ulti-
mately brought about a reform of planetary astronomy, making modifi-
cations to Ptolemy’s planetary models. One school of dissent reached its
fullest expression in the thirteenth century, notably with the Persian
al-Tusi and his colleagues.

In his major treatise, Memoir on Astronomy (Al-Tadhkira fi’ilm
al’hay’a), al-Tusi devised a new model of lunar motion, essentially dif-
ferent from Ptolemy’s, abolishing the eccentric, among other things. In
his model, al-Tusi further invented a theorem that occurred again 250
years later in Copernicus’s De revolutionibus. This was the famous Tusi
couple, devised to overcome objections to the notion of an equant. The
Tusi couple resolved linear motion into the sum of two circular mo-
tions, with the aim of removing all parts of Ptolemy’s system that were
not based on the principle of uniform circular motion. (See chapter 1.)
It presented a hypothetical model of epicyclic motion involving a com-
bination of motions, each of which was uniform with respect to its own
center.'®

A century later, in Damascus, Ibn al-Shatir, who served as muwaqqit
at the Great Mosque, developed a model based on the Tusi couple. But
it wasn’t until the 1950s, when this work was rediscovered, that scholar
Edward S. Kennedy noticed that the solar, lunar, and planetary models
al-Shatir proposed in his book The Final Quest Concerning the Rectifica-
tion of Principles (Nahayat al-su) were quite different from those of
Ptolemy. Al-Shatir had, in fact, put forth the details of what he thought
was a true theoretical formulation of a set of planetary models describ-
ing planetary motions; and he’'d intended them as alternatives to the
Ptolemaic models. Indeed, they were mathematically identical to those
of Copernicus, writing some 150 years later.”®'

Europeans learned of Islamic astronomy by way of Spain, but
because of political turmoil and communication problems, the most
current writings were not always available. This is why Europeans dis-
covered two major works of the Muslim astronomers al-Khwarizmi and
al-Battani at a time when these works were no longer widely used in
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Islam. And it explains why so few works ever reached Europe at all. On
the other hand, some early eastern Islamic research, later forgotten in
the East, was transmitted to Spain and westward. These contributions
have been taken as European developments because evidence to the
contrary was not obvious. For example, the horary quadrant, with a
movable cursor, which was invented in ninth-century Baghdad and for-

gotten soon after, became a favorite in medieval Europe.'

C}\ina

Chinese astronomy resembles most other premodern sky technologies
in that it was driven by divination. Yet Chinese astronomy differed from
all others. It was run solely by a government bureaucracy and based on
a worldview that said the ruler was “emperor under all heaven”—a di-
vine appointment. Yet the connection between celestial events and
human fate was perhaps even more profound. The link was not just be-
tween heavenly deities and the emperor;the earth, the emperor, and the
entire cosmos were bound together in one gigantic entity, a superorgan-
ism in which the five elements, or “phases”—fire, air, wood, earth, and
water—were in constant interaction as they sought their affinities with
one another.'®

Yet in China as elsewhere, portent astrology called for careful and
regular observations of celestial events. The cosmic importance of every
omen in the sky demanded that its results be noted down in detail. As a
consequence, the Chinese possess the longest unbroken run of astro-
nomical records in the world, observations of considerable importance
to modern astronomers, whose research requires data about long-term
celestial events.'

China developed astronomy very early in its history. Evidence goes
back five thousand years. The ancients wrote stars-laden texts in many
forms—on wine jugs, tortoise shells, and silk. The earliest records from
archaeological sites in Qinghai Province consist of ceramic fragments
on which are painted images of rayed sun disks and moon crescents.”® A
piece of bone found to be thirty-five hundred years old contains writ-
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ing showing that the Chinese already knew the length of the year to
be 365% days. There is evidence of star observation from before the
twenty-first century B.C.'*

The first recorded astronomical inscriptions date from the sixteenth
to nineteenth centuries B.C. in the Shang kingdom of Henan Province.
These artifacts are examples of an astronomical-divination system, tech-
nically called scapulimancy, a technique going back to Neolithic times.
Selecting an ox or deer shoulder blade (scapula) or a tortoise shell, the
diviners then dried, polished, and drilled the material with holes. They
inserted a hot metal brand into one hole and examined the pattern of
resulting cracks in the bone or shell. The diviner noted both the prog-
nostication and later results on the cracked material.*’

The oracle bones’ existence was lost to the modern world until
1899, when a scholar from Peking became 1ill and sent his valet to a
drugshop for medicines. One ingredient in the potion the pharma-
cist sent him was labeled “dragon’s bones.” The scholar realized it was
bone chips with words inscribed on them in ancient Chinese—oracle
bones. '

During the following decades the bones were traced to a field near
An-yang, around three hundred miles southwest of Beijing. During the
1920s and *30s, some twenty-five thousand oracle bones were excavated
there, from what may have been a palace archive. At least 135,000 more
pieces have been excavated since, forming a treasury of information
going back to Shang times. This vast library recorded on the bone texts
has enabled modern historians of astronomy to backtrack regularly oc-
curring celestial events with computers to match sky phenomena in-
scribed millennia ago.'*®

Recently, NASA astronomers used fourteenth-century B.c. oracle
bones to help determine how much the earth’s rotation is slowing
down. Based on analysis of the tortoiseshell inscriptions, Kevin Pang
and his colleagues at the Jet Propulsion Laboratory at Pasadena reported
they had fixed the exact date and path of a solar eclipse seen in China in
1302 B.C. That, in turn,led them to calculate that the length of each day

was {00 of a second shorter in 1302 B.c. than it is today."®
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A cache of five thousand pieces of oracle bones excavated in
An-yang in 1972 yielded a series of divinations of sky events. The Chi-
nese astronomical historian Zhang Peiyu found that six dates recorded
in the inscriptions matched perfectly with a series of solar eclipses visi-
ble from the Henan area in the twelfth century B.c., half a millennium
earlier than records of such events obtained from Babylonia or Egypt."
Other Shang bones yielded inscriptions of lunar eclipses.

A reconstruction of another bone recording from around the same
time revealed the observation of a supernova. The supernova inscrip-
tion, perhaps the most ancient extant record of a nova sighting, says, in
part, “On the seventh day of the month . . . a great new star appeared in
company with Antares.” The Chinese called these supernovas “guest
stars.”"”' Thus the Chinese knew well what they were observing when,
in June 1054 (a.D.), a star in the constellation Taurus blew. Chinese sky
watchers reported it to be as bright as Venus, apparent during daylight,
and visible for twenty-three days. The remnant of this explosion can be
seen today and is called the Crab Nebula. (The Greeks have no record of
the supernova.) Experts today have compiled detailed descriptions of
supernova explosions that coincide with contemporary X-ray and radio
sources.'”

In the Greek-influenced West, the sun and heavens were supposed
to be immaculate. But Chinese astronomers saw spots on the sun. The
earliest surviving record of a sunspot observation is by the astronomer
Kan Te in the fourth century B.c. Kan Te assumed that these spots were
eclipses that began at the center of the sun and spread outward. Al-
though he was wrong, he recognized the spots for what they were—
solar phenomena.

The next documentation of sunspots was in 165 B.C., when it was
reported the Chinese character wang appeared in the sun—shaped like a
cross with a bar across the top and bottom. It is accepted as the world’s
earliest precisely dated sunspot. The West’s earliest reference to sunspots
is Einhard’s Life of Charlemagne, around A.p. 807." Joseph Needham
found 112 instances of sunspots recorded in Chinese histories between
28 B.C. and A.D. 1638. In other Chinese books he found hundreds more
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notices, “but no one has had time or stamina to collect them into a
body,” comments sinologist Robert Temple. Nonetheless, the sunspot
records constitute the oldest continuous series of such observations.
And again, these are of great use to modern astronomers. Sunspot cy-
cles, for instance, affect the earth’s ionosphere and weather (magnetic
storms are related to sunspots). Analyzing available records, Japanese as-
tronomer Shigeru Kanda reports he has detected a 975-year sunspot
cycle. If so, it may have significant implications for weather cycles."*

The Chinese were also careful observers of comets. They computed
the approximate orbits of about forty comet trajectories with such pre-
cision that many of their trajectories could be drawn on star charts sim-
ply from reading ancient texts. They were interested in the precise
position and direction of the tail of each comet.

In the year 240 B.c., astronomers officially documented the appear-
ance of a comet today known as Halley’s. Another comet recorded in
467 B.C. is also thought to be Halley’. In the 600s A.D., they observed
that comets shine by reflected light like the moon. They noted that
comet tails always pointed away from the sun, suggesting this phenom-
enon was the result of a solar “energy” Today it’s known that this
cometic tail direction is caused by the force of “solar wind,” the sun’s
radiation. It wasn’t much of a stretch, says Temple, for the Chinese to
formulate the idea of solar wind. It is congenial with their cosmological
assumptions, Chinese literature being filled with references to the ch’i of
the sun’s radiation. Ch’i, translated as something like the “emanative or
radiative force,” comes from the sun. To Chinese astronomers it would
have been obvious that the sun’s ch’i was strong enough to blow the tails
of comets as if in a strong wind. The Chinese conceived of space as
being full of strong forces.'”

As a consequence of the emperor’s divine connection with the cos-
mos, it became traditional after important changes of rulership, and al-
ways after a switch to a new dynasty, for a fresh calendar to be drawn up.
This custom was well established by Han times (206 B.c. to A.D. 220)
and led to some forty new calendars made up between early Han and
the beginning of the Ming dynasty in 1368."*
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According to the theory of monarchy, the ruling dynasty remained
fit to rule because of the accord the emperor maintained with the heav-
enly order. His special status in the order of nature allowed him to main-
tain a parallel order in the political realm, for the state was a microcosm.
If the emperor lacked virtue or was careless in his duties, disorderly phe-
nomena would appear in the sky as a warning of potential political
disaster. Thus astronomers had to incorporate as many phenomena as
possible in a “correct” calendar. The calendar, issued in the emperor’s
name, became part of the trappings of power that demonstrated his
dynasty’s right to rule, a function, writes sinologist Nathan Sivin, “not
entirely different from that of economic indicators in a modern na-
tion.” '’

The importance of astronomical observing in this world of extreme
politics, then, made secrecy absolutely necessary. Because the data could
be easily manipulated, it could be dangerous in the hands of someone
trying to undermine the current dynasty. It was therefore state policy
that the proper place to do astronomy was the imperial court. In certain
periods it was illegal to do it elsewhere."”® With this information virtu-
ally classified as top secret, the astronomer became a high-level adminis-
trative functionary in a country that developed the most elaborate
bureaucracy in the ancient world. The databases resided in a state obser-

vatory deep within the bowels of the palace.'”

Ir NOT THE GREATEST astronomical mathematicians, the Chinese were
the greatest star charters before the R enaissance. Their earliest star chart
goes back to at least 2000 B.C., to a carving on a cliff at Jiangjunya in
Jiangsu Province. The carving contains many stars, as well as human and
animal heads. There are disks indicating the sun in seasonal positions
and where a number of bright stars and the moon appear over the sea-
sons. This bright region is recognizable as the Milky Way by its position
and appearance; the Milky Way displays gaps and divisions that are de-
picted on the carving.*”

China, being in the Northern Hemisphere, fixed itself on the
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northern circumpolar stars, both for orientation and to express its con-
cept of divine rulership. The circumpolar stars in the higher latitudes are
raised quite high in the sky as they rotate about the pole, so the fixity of
the polar axis became an apt metaphor for the divine right of emperors.
The pivot point about which this rotation occurs is known as the north
celestial pole. The emperors were clever to adopt the stars of the north,
such as Cassiopeia and Cepheus. These stars are located near the celes-
tial pole, so that in the temperate latitudes of most of China they are vis-
ible eternally in the sky, never hidden by the horizon.*

The first catalogs of star positions appear to have been drawn up by
Shi Shen, Gan De, and Wu Xian, the earliest notable astronomer in
China, who worked between 370 and 270 B.c., two centuries before
Hipparchus. Together their lists enumerated 1,464 stars grouped into
284 constellations. (The West made bigger groups, with only 88 constel-
lations.) In A.p. 310, during the Western Chin dynasty (aA.p. 265-317),
this early work was collated by the astronomer royal Qian Luozhi, who
cast a bronze celestial globe with the stars on it colored in red, black, and
white to distinguish the listings of the three astronomers. As early as the
Han dynasty, astronomers prepared star charts. Carvings and reliefs show
individual constellations or asterisms depicted as dots or small circles
connected by lines to delineate the constellation itself. This ball-and-
link convention did not appear in the West until the late nineteenth
century.*”

Star maps need a means of specifying positions of heavenly bodies
with reference to one another. The science of mapmaking took a leap
forward in the second century B.c. when Chang Heng invented what’s
now called quantitative cartography. Chang, the inventor of the seismo-
graph and a leading scientist, applied a grid system to maps so that posi-
tions, distances, and itineraries could be calculated and analyzed. Chang
Heng’s own works are lost, although an official history of the Han dy-
nasty stated, “He cast a network of coordinates about heaven and earth,
and reckoned on the basis of it.”** Copies of these maps were never
made, since the information on them was too dangerous to risk its
falling into the wrong hands. Meanwhile, in Europe, mapmaking had
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degenerated under the influence of religion, says Robert Temple, “to a
point scarcely credible.”**

Drawing actual charts of the sky means finding a way to depict po-
sitions as if one is drawing a map. Preparing maps also involves the prob-
lem of mapping the curved surface of the celestial sphere on a flat
surface, just as mapping the near-spherical surface of the earth requires
the use of map projection. This is made more difficult if the sky is seen
as a dome curving above one’s head. In both China and the West, pro-
jection goes back a long way for mapping the earth. But for mapping
the stars, Chang Heng was first, drawing up in Han times a chart that
was a “Mercator” projection.

Mercator projection was “invented” in Europe by the Flemish
mathematician and geographer Gerhard Kremer, a.k.a. Gerardus Mer-
cator, and first published in 1568. But this projection system had been
used by the Chinese centuries before Mercator. The projection works
by means of a cylinder. If one inserts a transparent globe of the earth (or
other celestial sphere) in the center of a hollow cylinder and turns on a
light inside the globe, the features of the sphere’s surface will be thrown,
or projected, onto this cylinder, and will reflect a certain distortion. The
higher up and lower down from the sphere’s center, or equator, the
more the features are distorted. Virtually useless for land travel, this pro-
jection has the odd property that a navigational course drawn on it will
come out as a straight line, whereas with other maps such courses are
arcs.*”

The oldest surviving projection chart depicting the whole of the
visible sky is painted on paper and now resides in the British Library.
Dating from about A.p. 940, it comes from Dunhuang in Gansu
Province and gives a flat representation of Qian Luozhi’s (the as-
tronomer royal’s) tricolored chart, working from his celestial globe. It
presents the celestial globe as projected onto a surface by the cylindrical
projection technique, displaying over 1,350 stars in thirteen sections.
One section is a planisphere—that is,1n a kind of Mercator projection it
depicts the circle of the sphere on a flat map centered on the north pole.
The remaining twelve are flat maps centered on the celestial equator.*®
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A century later, in 1094, Su Sung published further Mercator-style
map projections in his book New Design for a Mechanized Armillary
Sphere and Celestial Globe. One map had a straight line running across
the middle as the equator and an arc above it, the ecliptic. The rectan-
gular boxes of the lunar mansions are clearly seen, with the stars near the
equator being more tightly packed together and those near the poles
spread farther apart.””

The evolution of Chinese instrumentation parallels that of the
West. Notched jade disks and cylindrical sighting tubes date back to the
fifth century B.c.,and probably functioned as means of computing rudi-
mentary celestial cycles. The Chinese used the gnomon as far back as
1500 B.cC. Just as the Chinese had begun to standardize weights, mea-
sures, and other practical details in the sixth century B.c., and more ex-
tensively in the next three centuries, they standardized the gnomon. In
addition to timekeeping, they used the gnomon to determine the ter-
restrial distance corresponding to an arc of the meridian. Such a deter-
mination of this north-south line was vital for precise calendar making,
because precision calendars required measuring the latitude of those
stations where the relevant observations were made. The gnomon was
also significant in mapmaking and in the Chinese fascination with de-
termining the size of the earth—nearly a millennium before Eratos-
thenes!**®

Between A.D. 721 and 725, under the auspices of the Buddhist as-
tronomer and mathematician Yi Xing and the Chinese astronomer
royal Nangong Yue, Chinese scholars set out to do this. To measure the
size of the earth, they selected nine locations covering the prodigious
distance of more than 3,500 kilometers (2,175 miles) on a nearly north-
south axis. They made simultaneous measurements of shadows at the
summer and winter solstices at all nine stations. The main outcome of
this feat: they determined that the distance on earth corresponding to 1
degree latitude was 155 kilometers (97 miles). This is larger than today’s
value of 111 kilometers (69 miles), but far more accurate than previous
attempts. Indeed, they found that the variation on shadow length with
changed latitude was four times the value previously thought. There
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was no piece of research like it carried out anywhere else during the
Middle Ages. In making his tabulations, Yi Xing used “tangent tables.”
This was thought to have been a Muslim invention of the ninth century,
but it turns out that the Chinese discovered the use of tangents and tab-
ulated them at least one hundred years earlier.””

The Muslim big-observatory concept came to China in the thir-
teenth century,and during the Mongol dynasty,in 1276, the astronomer
Guo Shoujing built a giant gnomon called Tower of the Winds. It was
an all-purpose observatory with the tower itself serving as a gnomon. A
horizontal rod in an aperture at roof level—about forty feet above the
ground—cast a shadow on the long low wall extending northward
below. A chamber at the top was designed for watching stars, while the
inner rooms of the tower housed a water-driven clock and an armillary
sphere.”"

Modern astronomical observatories derive not from the European
tradition but from the Chinese. Modern telescopes are oriented and
mounted in the equatorial system, which in China goes back at least to
2400 B.c. Equatorial mounting takes the equator as the horizontal cir-
cle around the side of the instrument, and the pole as the top point. Eu-
ropeans originally followed the Greek-Indian-Muslim tradition in
which the two circles that were important were the horizontal and the
ecliptic, the circle described by the sun’s motion in the sky that is in the
same plane as the earth’s orbit around the sun. This tradition more or
less ignored the equator. China, meanwhile, largely ignored the horizon
and the ecliptic. In the seventeenth century, European astronomers
came to realize that the Chinese equatorial system was more convenient
and showed greater promise. It was adopted by Tycho Brahe and his
successors and remains the basis of astronomy today.*"

The Chinese, furthermore, had the skills to build the precision ob-
servational instruments to display this system. Having invented cast iron,
they built large astronomical instruments of bronze and iron that took
the form of armillary spheres—huge metal rings precisely graduated
with the degrees of a circle.

Different rings representing different sky circles were joined to-
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gether at the two points where they crossed each other. Always with an
emphasis on the meridians, one ring would represent the equator, an-
other the sky-circle meridian passing directly overhead and through the
celestial pole. These devices had sighting tubes through which as-
tronomers could observe specific stars. The astronomer could move the
sighting tube along the equator ring until he found a star. Then he
counted the number of degrees marked on that ring back to the merid-
ian ring, which stood up from it at 90 degrees. As soon as he counted
the degrees, he could detect the exact position of the star along the
equator and tell which sky segment it was in. These instruments aided
astronomers in drawing star maps with great precision.*?

The earliest known instrument of this type was built in 104 B.c.,and
the instrumentation became increasingly complex until the thirteenth
century. Ken Shou-Ch’ang introduced the first permanently mounted
equatorial armillary ring in 52 B.c. and in A.D. 84 Fu An and Chia
Kmuei added a second ring to show the ecliptic. Chang Heng, the map-
maker, added a ring for the meridian in A.p. 125, as well as one for the
horizon. But Chang Heng was not yet satisfied. He made an armillary
sphere that rotated by water pressure in about A.D. 132. He used a wheel
powered by a constant pressure head of water in a water clock to rotate
the instrument slowly. This instrument was a tremendous tool for
demonstrating and computing the movements of heavenly bodies.*"

An advanced version of the armillary sphere is the torquetum, first
invented by Arabs sometime between A.p. 1000 and 1200. (Some credit
al-Tusi for the invention.) Here all the various rings are no longer nested
together in a single sphere but are mounted at various different parts of a
set of struts in a way more efficient than that allowed by the constraints of
a single sphere. In 1270 Kuo Shou-Ching made a metal torquetum
called the “simplified instrument.” It was purely equatorial, with all the
Arab ecliptic components left out. It survives today at the Purple Moun-
tain Observatory in Nanking. It was moved there from its home site at
Linfen in Shanxi during the Ming dynasty when government officials
no longer understood that the difference of 3% degrees in latitude caused
by the move would render it useless.”* Needham called this “simplified
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instrument” the precursor of all equatorial-mounted telescopes. Need-
ham believed that some knowledge of it eventually reached Tycho Brahe
in Denmark three centuries later and led to Brahe’s taking up equatorial
astronomy for his instruments. Actually, an equatorial mounting of the
kind devised by Guo Shoujing wasn’t constructed in the West until
1791, when it was used for a telescope made in England, and thus its de-
sign became known as the “English mounting.”**®

AstrONOMY was the first real science practiced by the world’s ancient
cultures. It was primarily observational (rather than experimental), but
it meets most criteria for what a science should be. Next we will con-
tinue on to an associated discipline, cosmology. I write “discipline”
rather than “science” because, as you shall see, it’s not clear what cos-
mology is. Cosmology is dependent on astronomy, extrapolating its data
to a worldview. Which is not to say that astronomers always agree with
the tales spun by their cosmology colleagues.
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COSMOLOGY
That Old-Time Religion

saAC Asimov was prolific, having written more than three hundred

books, on topics from biochemistry and physics to Shakespeare and

the Bible. His best work came early. In 1941, he published “Night-
fall,” a story about a doomed civilization on the planet Lagash, which
doesn’t revolve around a single sun, as the earth does, but is held in the
gravitational field of six separate suns. (Asimov does not work out the
orbit of the planet—a seven-body problem!—but let’s not fault him for
that.) The result is that the inhabitants of Lagash are bathed in constant
sunlight. Unaware of the night sky, its astronomers extrapolate that their
universe comprises only a few dozen stars. These are mysterious lights
barely visible against the light of the six suns. Those who see the stars as
important are considered cultists. Still, there is an uneasy feeling on La-
gash. Archaeologists have found the remains of nine previous cultures,
each of which had reached a technological sophistication equal to the
present culture and had then vanished. The geological strata indicate
that each civilization had lasted about two thousand years.

At the end of the story, we find out the terrible truth: every 2,049
years all six suns set, and night falls. The Lagashians are terrified of the
dark and the cold. They start fires, and the culture perishes. Anthony
Peratt, who has served as a physicist at Los Alamos National Laboratory
and the Department of Energy, points out that the Lagashians are de-
stroyed by more than fire. The appearance of the night sky and countless
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stars destroys their cosmology; it shakes their faith and the philosophical
basis of their society, which then crumbles.

Cosmology is the study of the universe as a whole, its history and
origin. It is usually (but not always) based on astronomy, along with re-
ligious and social beliefs. George P. Murdock, an anthropologist, listed
sixty-eight civilizations that have fashioned cosmologies. Some had lit-
tle science and scant astronomy. As soon as we humans identify a hand-
ful of stars, we construct a picture of the whole universe. Barbara C.
Sproul, director of the program in religion at Hunter College, City
University of New York, takes issue with Murdock’s figure of sixty-
eight civilizations: “All civilizations have cosmologies of some sort that
say how reality is structured. By ‘reality’ they mean their universe, which
might only be the neighborhood, but it is as far as they can see”” As we
shall see, our present universe may not be much larger.

If one demands that I justify cosmology as a science, I will find my-
self struggling to answer. The root of cosmos refers to a word that en-
compasses everything. How can you have a science that depends on
knowing everything? We don’t even know the size of the universe. Yet
here we are. I can say this: cosmology is interesting; cosmology is impor-
tant. Because it is so intertwined with general societal beliefs and atti-
tudes, cosmology is a clue to the collective psychology of a civilization.
There is usually some science in there, too.

Many cultures, I suspect, would react as the Lagashians did when
their cosmology collapsed. Our psyches crumbles when our cosmolo-
gies crack. As we shall see, even in the modern age (perhaps especially in
the modern age), we panic when our favorite model, the big bang,
comes under fire.

In 1966, when the cosmologist Edward Harrison accepted a teach-
ing post at the University of Massachusetts, he was handed the red book,
a manual for faculty members. It explained what a university was, and
what it wasn’t, citing two courses that it said one wouldn’t find in a cur-
riculum of higher education: witchcraft and cosmology.

Decades later, Harrison tells this as a funny story, but at the time he
was not amused, and he demanded that the university remove the asper-
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sion toward cosmology from the red book. Still, he concedes that cos-
mology may not be a science,” and he is one of the few in his field who
has spelled out carefully what cosmology is and what it isn’t. In the first
sentence of Masks of the Universe, Harrison writes: “The universe in
which we live, or think we live, is mostly a world of our own making.”
An ancient Greek agrees. About the universe, Socrates said, “I know
nothing except the fact of my ignorance.”?

Harrison says that the real Universe (capital U) is unknown,; it is
everything, and we will never know what it is in its own right, indepen-
dent of our changing opinions. There are, however, universes (lower-
case), which are our models of the Universe, and cosmology is a study of
these universes. “A universe is a mask fitted on the face of the unknown
Universe,” says Harrison.*

Cosmologists have always struggled with ambitious goals and too
little data. The medieval European Christian universe was a comforting
and static one: humans at the center; heavens populated by spirits; a
sphere of fixed stars; beyond it, the primum mobile, a sphere maintained
in constant motion by divine will; and, finally, the empyrean, a realm of
pure fire where God lives. Western medieval cosmologists provided
their followers with purpose and place in the Christian universe. It
was primarily an Aristotelian model. The Arabs supplied the primum
mobile.

Today we have exiled angels and fixed stars from our universe. Our
leading cosmological model is the big bang (or, as cosmologists write it,
Big Bang). With its fiery explosions, wormholes, white dwarfs, red gi-
ants, and black holes, the big bang universe satisfies our Lucasfilm sensi-
bilities. It also features an abrupt beginning to match our creation myths
and is constantly expanding. The big bang is the biggest-budget uni-
verse ever, with mind-boggling numbers to dazzle us—a technique pi-
oneered by fifth-century A.p. Indian cosmologists, the first to estimate
the age of the earth at more than 4 billion years. We are not at the phys-
ical center of the big bang universe, and there is no God, yet it is an an-
thropocentric model. The huge numbers—the comparative strengths
of the four forces, the surplus of matter over antimatter, and soon—are
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balanced delicately to result in the evolution of intelligent life. That
is, the known forces—electromagnetism, the strong and weak nuclear
forces, and gravitation—are in such proportion to one another as to
allow us (humans) to evolve and exist. The tiny imbalance of matter
over antimatter—for every 100 million quark-antiquark pairs at the big
bang there was one extra quark—makes possible a universe with matter
(us included). Had there been equal amounts of matter and antimatter,
they would have annihilated each other, leaving a universe of pure radi-
ation.?

A human-constructed universe ends up with humans, at least math-
ematically, at its center. This is not to mock the big bang but to empha-
size that it encompasses modern interests and beliefs as much as it does
astronomy, and in that sense varies little from past models of the uni-
verse.

Harrison and I discussed the work of two physicists, Fred Adams
and Greg Laughlin, who wrote a book in which they accept the big
bang’s precepts so thoroughly that they predict the course of the uni-
verse for the next googol years. (A googol is 10'®, or a 1 with a hundred

zeroes after it.) Such extravagant extrapolations assume a rock-hard
' confidence in one’s cosmology, that we have accurately charted all the
stars and the forces that move them.

“The notion that we have lifted all the veils,” said Harrison, “can’t
be true. We would leave no new universes for our descendants to dis-
cover.”® Today we believe that past cultures were mistaken in their cos-
mologies; we ignore in doing so that those people believed in their
universes just as firmly as we believe in our big bang universe.

“In the Babylonian universe,” Harrison writes, “the flowers danced
and fluttered in the breeze, the sun rose and set, the moon waxed and
waned, the jeweled lights in the night sky traveled the heavens, and a
rock was a rock, and a tree a tree. But the nature of these things and their
meaning was other than what we now think. The lifestyles and modes
of thought of the Babylonians, so unlike our own, were in harmony
with the Babylonian universe.”’

We don’t know what the Babylonians thought about members of
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their society who disagreed with the consensus cosmology. Were they
tolerated? Tortured? We know in our own time that scientists who do
not endorse the big bang are committing professional suicide. Past uni-
verses are dismissed as religion. Harrison notes, “Our universe is the
only rational universe. Ones that came before us are mythologies. Con-
temporaries who disagree with our cosmology are crackpots.” He calls
cosmology “that new-time religion.”

That said, the big bang universe is a fine theory, and it seems supe-
rior to the alternatives. Let’s take a brief look at the hypothesis to give us
a standard for comparison as we travel back in time to the Sumerians,
ancient Amerindians, and others.

DuriNG THE FIRST thirty years of the twentieth century, there were two
schools of thought concerning the cosmos. Some astronomers felt that
the universe was small and static. They believed the Milky Way, in
which our solar system is located, was the entire universe, and that the
faint pinwheel clouds called nebulae that they saw through their tele-
scopes in the far distance were insubstantial gaseous bodies. This “one
big galaxy” theory was challenged by those who subscribed to a com-
peting “island universes” theory, a term coined by the German philoso-
pher Immanuel Kant. This hypothesis held that the Milky Way was but
one small spiral in a great ocean of similar island universes.®

The champion of the “one big galaxy” cosmos was an astronomer
from Missouri, Harlow Shapley, who debated all comers on the topic.In
the winter of 1921, Shapley was at the eyepiece of the one-hundred-
inch Mount Wilson telescope in California. He had been taking photo-
graphs of the Andromeda Nebula, which, if he was correct, was
composed of nothing but gases. His night assistant at the time was Mil-
ton Humason.” Humason had dropped out of school at fourteen to
become a bellhop, then a mule driver,and had then landed a job as a jan-
itor at the Mount Wilson Observatory. He became adept at making
astrographic plates of the heavens and was eventually promoted to assis-
tant astronomer. '
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On the night in question, Humason was “blinking the plates” of
Andromeda on the stereocomparator, which compares two different
plates taken at different times to reveal new features. What he saw was
startling. The plates contained images of Cepheid variables, stars used
as reference points, from beyond the Milky Way. This was evidence
that the nebulae were galaxies of stars. Confronted with the evidence,
Shapley patiently explained to Humason how the universe comprises
but one galaxy, took out his handkerchief, and wiped the plates clean."
Humason was acting like an astronomer. Shapley was acting in the role
of the cosmologist.

Fast-forward a year and a half to the fall of 1923. Shapley has left for
Harvard, and another Missouri-born astronomer, Edwin Hubble, is at
the eyepiece of the Wilson hundred-incher. Hubble and Shapley didn’t
care for each other. In fact, few people cared for Hubble. Still, he was a
great astronomer. On the night of October 5, he locked onto a spiral
arm of Andromeda and exposed a plate that, upon later examination, re-
vealed a Cepheid variable. Cepheids pulsate, and their periods of pulsa-
tion are related to their absolute brightness—their “wattage.” Detect a
Cepheid, measure its period, you know how bright it really is. This gives
you a measure of its distance. Shapley’s putative universe was about
300,000 light-years in diameter. Hubble measured the Cepheid as being
a million light-years away. The Andromeda Nebula was actually a galaxy
full of millions of stars. Hubble had expanded the size of the universe a
hundredfold.*

In 1929, Hubble struck again, this time with an even greater discov-
ery. He measured the red shifts of the nebulae. (By now, we knew they
were galaxies, but Hubble preferred the old term, nebulae.) Light
stretches out or scrunches up as it moves through space; if the light
source is moving toward the observer, the spectral lines are shifted to-
ward the blue, or “blueshifted”; if moving away, they are “redshifted.”
This is analogous to a train whistle changing its pitch as it approaches
and then departs from the listener. This Doppler shift can reveal the ve-
locity and direction of a light source.

‘What Hubble found was startling. It changed our worldview, even
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that of Albert Einstein, who had believed in a static universe. No matter
where Hubble pointed the Mount Wilson telescope, he found the neb-
ulae were all running away from him—and fast! They moved at a signif-
icant fraction of the speed of light. The almost universal conclusion was
that the universe is blowing up as we speak. Hubble’s law, or the law of
redshifts, holds that the farther away a nebula, the faster it is moving:
double the distance and the speed doubles; triple the distance and the
speed triples, and soon. Think of yourself as a student in a desk in a lec-
ture hall, said Arthur Eddington. The student a foot away from you must
move only one foot to double the distance. The student twenty feet
away must move twenty feet in the same time period. Something simi-
lar is happening to the universe.

Hubble’s work exposed two critical facts: 1) The universe is bigger
than anyone had thought; and 2) It’s getting bigger all the time. His dis-
coveries fueled cosmology for the rest of the century. The Russian math-
ematician Alexander Friedmann and the Belgian physicist Georges
Lemaitre had devised expanding-universe theories in the 1920s, and
Hubble’s data gave them credibility. The ultimate extrapolations of
Hubble’s work today are the various big bang theories by the Russian-
American physicist George Gamow and others.

Deriving a big bang creation from Hubble’s redshift work is
straightforward. Say you had a movie of the life of the universe. At this
point in time, the galaxies are rushing away from one another. So if you
ran the projector backward, as it were, the most distant galaxies, moving
faster, would close in on the nearer ones, and finally the universe would
rush together into a very small volume. That was the beginning. All of
the universe was packed into a tiny space and exploded;® we're still
exploding. We can’t go back to the big bang—now estimated at about
twelve to fifteen billion years ago—but the scenario is certainly logical.

Only consider this: the big bang hypothesis may never have been
stronger than just after Hubble’s redshift discovery. In those early days,
the big bang expanding universe was simple, elegant, and easy to under-
stand. This was before astronomers sought additional evidence for the
theory, sometimes with unfortunate results. During the next several de-
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cades, multiple holes were bored in the model. Newspapers and maga-
zines are continually celebrating “triumphs” of the big bang. In reality,
most such triumphs have been devices to patch the gaps in the evi-
dence. What was once an aesthetic paradigm now looks like a Rube
Goldberg device. Let’s examine a few big bang problems and their puta-
tive solutions.

One major glitch is isotropy, the fact that no matter where in the sky
you point a telescope, you see similar patterns of stars, galaxies, and dust.
Using the COBE (cosmic background explorer) satellite, astrophysicists
find that the universe is the same temperature no matter what part of
the sky they measure. (The temperature can be extrapolated by measur-
ing the wavelengths of radiation.) These temperatures match with a
precision of .01 percent. Scientists don’t think this is a coincidence.
They think that all parts of the sky must have been in contact with one
another."

Imagine yourself inside a giant popover. In every direction, you see
yellowish pastry, billowy stalactites of baked dough jutting from the
sides—and all at 350 degrees E You figure all the dough had been in
contact before baking and expanding, and you would be right. Same
deal with the universe. Except that astrophysicists, running the film
backward, as it were, found that the various parts of the sky couldn’t
have ever been in contact. Let’s say our popover has been baking for an
hour, and the sides are five inches apart, but we know that the dough ex-
pands at only two inches per hour. If we go backward in time, each side
would shrink two inches inward—so they could never have been to-
gether. We have the same problem with our universe. Even if the uni-
verse had expanded at the speed of light, the numbers don’t work out.
The skies, rushing toward one another in the backward film, never
come together.” (Another popular pastry metaphor is raisin-bread
dough, with the raisins representing galaxies.)

Alan Guth, a particle physicist at MIT, saved the universe. In 1980
he proposed the theory of inflation, or the inflationary universe, which
solves the isotropy problem, and more! Guth found a loophole in Ein-
stein’s theory of relativity, which normally holds that nothing can go
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faster than the speed of light. Guth figured that space itself, not being an
object, would be immune from the cosmic speed limit and therefore
could expand at superluminal speeds. This, he said, happened a tiny
fraction of a second after the big bang. The specklike universe, about
the size of a proton, was filled with a bizarre explosive force, expand-
ing to the size of a golf ball. Not big, but all this happened in 107
(.000000000000000000000000000000001) seconds. This solves isot-
ropy. The universe expanded faster than we thought. Different parts of
the sky, like the crust of the popover, were once combined.

This magical inflation solved other problems, too. The flatness of the
big bang universe has always troubled scientists. The universe had three
choices: closed, open, or flat. If there were lots of mass, the universe
would have curved inward and imploded quickly, because the mass
would make for a hefty gravitational pull. The big crunch, and hence
closed universe. With sparse matter, we’d get an open universe, or per-
sistent runaway expansion. The universe would have burned itself out
by now. What we have is a Goldilocks universe—flat, just right. It ex-
pands but doesn’t burn out. This is the most unlikely of all universes.
The universe’s flatness at the age of one second has to be almost per-
fect.'® Scientists don’t like such coincidences. It smacks of an intelligent
plan. It smacks of God.

Inflation solves this theoretical and theological crisis. A closed uni-
verse is curved inward, like the surface of a sphere. An open universe is
curved outward, like the surface of a saddle. A flat universe is flat. With
inflation, it can curve either way because inflation takes a segment of
any curve, inward or outward, and makes it appear flat by stretching it
humongously. In short, inflation makes any universe flat.””

Then there’s the lumpiness problem. A big bang should have pro-
duced a homogeneous, smooth universe. Yet we have galaxies, lumps.
Gravitation alone is not strong enough to cause these. Again, inflation to
the rescue. Spooky quantum fluctuations can lead to the lumps. Infla-
tion enlarges them so they can become galaxies.

If you read the above very quickly, it all makes sense. Very little of
the phenomena described, however, has been seen through a telescope
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or replicated in the laboratory. There is sparse evidence for inflation ex-
cept for the fact that, without it, we have to walk away from our com-
fortable big bang cosmology.

Besides the many pieces of evidence that point away from the cre-
ation of our universe by a spontaneous, unaided big bang, something
even more suspicious troubles scientists. Our present universe is un-
likely. The big bang, if it happened, could have randomly resulted in any
number of universes. The world we now live in was a long shot.

Of course, most events are unlikely. As the statistician’s koan goes:
“Everything is impossible, yet something happens.” Billion-in-one
events happen constantly. A golf ball hit over a course containing a bil-
lion blades of grass must land on one of them. In the case of our uni-
verse, however, it was a hole in one into the wind. We live in the
unlikeliest of universes, in which the flatness of mass, the relationship of
the electromagnetic force to gravitation, the weak nuclear force and the
strong nuclear force, along with the unlikely presence of carbon and
other bizarre coincidences, make our world, in the words of George
Greenstein, “amazingly hospitable to life.” Greenstein, a physicist and
professor of astronomy at Amherst College, cites the presence of car-
bon, the atom of biological life, as puzzling. Given a big bang, a universe
composed entirely of lighter elements, hydrogen and helium, is far more
likely."

Greenstein has compiled a list of unlikely coincidences that have
occurred to ensure life (as we know it): the vast distances between stars,
without which they would be in frequent collision (even near collisions
would hurl planets out of orbit); the peculiar conditions in the cores of
red-giant stars (like our sun) that stimulate the creation of heavy ele-
ments; the exact equal but opposite electrical charges on the electron
and proton that allow matter to form; the slight excess in weight of the
neutron over the proton, which allows stars to shine for a long time; the
smoothness and uniform temperature of the big bang."”

A solution of sorts is offered by the British philosopher John Leslie.
Suppose, he says, you are sentenced to stand before a firing squad com-
posed of twelve crack marksmen. They fire. But you find yourself un-
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scathed. Do you say, “Hmmm. Curious,” and walk away? No, something
awesome has happened. There had to be a plan.*® Our universe is like
that firing squad. This analogy has led many people, including the
British theoretical physicist John Polkinghorne, to posit a simple solu-
tion: God.”

Hope for the atheists also occurs to Leslie. Suppose, he says, that
there were millions of firing squads executing people continuously
worldwide. Now it seems almost inevitable that at least one squad will
miss the mark. This is the interpretation that most big bangers apply to
the universe. It is called the many worlds hypothesis. If you live in a zil-
lion-to-one universe and there are a zillion other universes with a ran-
dom distribution of qualities, then it’s not so odd that one is just right.

So where are these extra universes? Doesn’t science require better
evidence than statistical logic? Cosmologists say these universes are cut
off from our own in space and time and are unobservable.? Proof of
their existence is the very fact that we can’t find them! How do you
argue with that? The many worlds hypothesis has been promulgated by
cosmologists for a couple of decades, though it is hardly original to
them and Leslie. In 1779, for instance, the British philosopher David
Hume pondered whether the present universe is the final product after
a series of mistakes. Numerous universes, wrote Hume, “might have
been botched and bungled throughout an eternity ere this system was
struck out.”?

The firing-squad analogy can thus lead one either to believe in a
Grand Designer or in many worlds, depending on one’s predilection. Of
course, there is no physical evidence for either. Rocky Kolb, one of the
country’s most respected cosmologists and the director of the astro-
physics group at the Fermi National Accelerator Laboratory (Fermilab),
in Batavia, Illinois, sees a hard distinction between the cosmologies of
the past, such as those of India and Islam, and modern cosmology: “The
western view of the universe has been grounded,” he writes, “in science
rather than religion or philosophy”? This isn'’t entirely true, as we shall
see. The big bang universe embodies the philosophy of the scientific
community as much as the medieval Christian universe embodied the
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Church’s, or Amerindian cosmologies Native American social con-
structs.

NoT ALL MODERN scientists subscribe to the big bang. There are at least
two other major cosmologies with intelligent disciples today, the steady
state universe and the plasma universe.

Steady state. Cosmologists Fred Hoyle, Thomas Gold, and Her-
mann Bondi have no argument with the concept that the universe is ex-
panding, but they don’t subscribe to the idea that everything emerged
from a primordial singularity. Instead, they argue, as the galaxies move
farther apart, new galaxies form in the empty space left behind at a rate
that makes the universe seem unchanged. Because there are so many
stars and galaxies, you would still find roughly the same number of them
ten billion years ago as you do now, despite the new ones. Unlike the big
bang, the steady state universe is not evolving. It violates the law of ther-
modynamics, which states that the total amount of energy in a closed
system never changes. On the other hand, so does the big bang, which
produces an entire universe out of nothing.

Plasma cosmology. This theory explains the universe in terms of
its plasma, an ionized gas of electrons and positive ions. Most of the uni-
verse is, in fact, plasma. The beauty of plasma cosmology is that it relies
on electromagnetism to explain the structure of the universe, and elec-
tromagnetism is 10* times stronger than gravitation, the force used to
explain the structure of the big bang universe. The plasma approach gets
rid of lumpiness problems, because there’s plenty of electromagnetic
energy to do anything you want. The weird thing is that plasma cos-
mology does not explain the solar system nearly so well as a gravitation-
based theory, as big bangers are quick to point out. Locally (in the solar
system) gravitation more than adequately explains large masses (the
planets) revolving around an even greater mass (the sun). In the universe
as a whole, in which charged plasma rules, electromagnetism takes on a
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greater role, explaining the lumpy structure of the universe more obvi-
ously than gravitation can. Each theory has its strengths and its Achilles’
heel.

Edwin Hubble never swallowed the big bang hypothesis, even
though his redshift discovery started the whole thing. According to his
protégé Allan Sandage, Hubble wasn’t interested in theory, or in “worlds
that could be” He took “what the universe gives you.”* Hubble found
the big bang theory pointless and never accepted that his discovery was
necessarily proof of an expanding universe.” Ever the scientist, he said
he was measuring redshifts. There are explanations for redshifts other
than a big bang.

CreatiON sTories fall fairly into categories: the primal earth or water
mother who spontaneously creates the universe from her body; the sole
male progenitor, like the Judeo-Christian God, who creates the uni-
verse from thought or word; the “world parents,” whose procreative
union gives birth to the cosmos; the world egg and world tree; the cos-
mic serpent.” All these refer to cosmological theories of creation out of
nothing (e.g., the big bang), creation out of chaos (plasma cosmology), a
universe without beginning or end (steady state), or cycles of cosmic
birth and destruction (alternating universes).

Let us examine cosmologies of four pre-Western cultures: Meso-
potamia, Mayan Mesoamerica, Oceania, and India. Mesopotamia has
long since become dust; Mayan civilization has severely diminished, but
remnants of it exist (more than 2 million Yucatecans call themselves
Mayan, speaking twenty-nine dialects); there are also remnants of the
original Oceanic cultures; and Indian Hindu culture still thrives in
modern form. Mesoamerican, Mesopotamian, and Indian societies rep-
resent complex, literate civilizations, while the oral traditions of Ocea-
nia are dismissed by some with the negative buzzword primitive. Yet all
four cosmologies have similarities: an initial separation of primal ele-
ments, a cosmos made of successive levels, and a divine lineage that in-
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evitably leads back to human genealogy. Most cosmologies, including
our own, contain inconsistencies and contradictions. The Moscow-
born physicist Andrei Linde says Americans are too fixated on consis-
tency. “In Russia,” he told a meeting of cosmologists, “when we dig a
tunnel, we put a team of workers on each side of the mountain. If they
meet in the middle, we have a beautiful tunnel. If they don’t meet—two
beautiful tunnels.”

The table gives a simplified preview of some upcoming cosmolo-

gies.
CULTURE TYPE OF UNIVERSE CREATION MYTH
Mesopotamia: Sumer plasma universe split from primal waters of
mother goddess
Mesopotamia: Babylonia  plasma and big bang universe formed from corpse of
mother goddess, killed by grandson
India: Hindu alternating universes universes dreamed in (and out) of
existence
big bang; plasma universe hatched from golden egg
India: Jainist steady state universe always existed
Oceania: Maiana big bang, inflationary universe bursts from swelling on
god's head
Oceania: Tahiti plasma universe formed from shells
Oceania: Mangaia big bang, inflationary universe grows from coconut root
Mayan Mesoamerica alternating universes; gods take four tries to create the
many worlds hypothesis  universe
Mesopotamla

Mesopotamian cosmologies, which reflect the civilizations of Sumer,
Babylonia, and Assyria, have come down to us in many forms. The most
complete is the Babylonian Enuma elish, which sets down how the
universe was created. This account of the story comes from Barbara
C. Sproul, whose extensive study of creation myths is chronicled in her
book Primal Myths: Creating the World, and Hebrew University Assyriol-
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ogist Wayne Horowitz, whose decade of research and translation is set
forth in his book Mesopotamian Cosmic Geography. The text of the
Enuma elish was probably composed either around 2000 B.c., directly
after the fall of the earlier Sumerian civilization and the rise of Baby-
lonian power, or seven hundred years later during an upsurge of Baby-
lonian nationalism under Nebuchadnezzar 1.%#

The male progenitor Apsu (manifested as “sweet” underground
drinking water) and the primal mother Tiamat (manifested as brackish
or salt water) are found lying side by side in the primal murk. Out of
their union comes slime and silt, Lahmu and Lahamu, who then beget
the horizons, who beget the sky god, Anu, and the god of water and
earth, Ea. Ea then begets the beautiful, manly god of the sun and creator,
Marduk, whose mission is to annihilate Tiamat. Tiamat’s temper has
suddenly gone bad, and she becomes a chaos monster® armed with “the
Worm, the Dragon, . . . the Mad Dog, the Man Scorpion, the Howling
Storm.”*

Marduk mounts a chariot and dispatches Tiamat using winds,
storms, and floods, then sets about rebuilding the universe with the pre-
cision of a good carpenter: “Then [Marduk] relaxed examining her
corpse. . . . / He split her in half like a dried fish. / Then he set half of
her up and made the Heavens as a roof. / He stretched out her skin and
assigned a guard. / He ordered them not to let her waters escape.”*

After measuring Apsu’s underground ocean of drinking water,
Marduk walks the heavens (i.e., Tiamat’s upper half) and declares it sim-
ilar in dimension and nature to Apsu—that is, watery. Marduk divides
cosmic space further into the earth’s surface and an area where winds
and storms occur, corresponding to the atmosphere. The highest heav-
ens are set aside for the House of Anu, Marduk’s sky-god uncle.
Marduk’s great-great-grandfather, Apsu, is demoted from godhood to
become merely the watery location of the House of Ea, Marduk’s fa-
ther. The middle heavens are given to Enlil, an air god still in favor from
ancient Sumer.”

After properly housing his family, Marduk “set up the constella-
tions. / He fixed the year, drew the boundary-lines. / Set up three stars
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for each of the 12 months.” These stars/constellations (the “Plough
Star,” Piscis Austrinus, and a third unnamed body) are made in the re-
spective images of Enlil, Ea, and Anu, and follow three east-west divi-
sions of the heavens. They and the sun and moon, all created from
Tiamat’s belly, are set in “the Heights,” somewhat below the House of
Anu.® Marduk’s star—Jupiter*—guides all the stars of the sky through
their orbits with help from Enlil’s and Ea’s stars.*

Marduk then makes the earth out of Tiamat’s head, forms the Tigris
and Euphrates from her eyes, and plugs up her nostrils. Finally he creates
the bonds that hold earth and heaven together out of Tiamat’s tail and
crotch.* Looking through a contemporary lens, one could speculate
that this is an acknowledgment of how female procreative power holds
the bonds of human life together.

Marduk thus emerges as the shining hero of Babylon, the power of
the Tigris-Euphrates river valley. On earth, Marduk replaces the brack-
ish sea or salt water of Tiamat, from which nothing could grow, with
Apsu’s “sweet water” of underground springs, upon which Mesopo-
tamian agriculture depended. In the heavens, he sets up a correspon-
dence between Babylon and the highest region, the House of Anu, a
direct tie between the human and divine powers. It should not be sur-
prising that the Enuma elish was written, according to Barbara Sproul,
“to praise Marduk, the main god of Babylon; to explain his rise from a
. . . local deity to the head of the whole pantheon; and to honor Baby-
lon itself as the most preeminent city.”* Anthony Aveni adds, “That this
all takes place at the shore of the Persian Gulf where the Trigris and
Euphrates (sweet water) intersect makes the tale highly geographically
relevant”

Going back in time to Sumer, we find a different creation story. The
male Apsu is absent. Creation begins with the goddess Nammu, mother
of the gods, who creates the heaven and earth all by herself. Enlil, the air
god, is born from heaven and earth. She splits earth from heaven using a
pickax. According to E. O. James, a professor of religion at the Univer-
sity of London, “It appears that the cosmos was conceived as a product
of the union of . . . water, air and earth, which Nammu brought forth.”
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The story does not deal with the mechanics, but it has a beguiling sim-
plicity that is lacking in the later Babylonian version,” which more
closely resembles current big bang theory, with its inflation clauses and
other hedges.

In Sumerian texts, Nammu is also the cosmic eternal sea out of
which all matter emerges in order. To Ewa Wasilewska, a University of
Utah anthropologist and archaeologist who has done extensive field-
work in the Middle East, this order is inherent in the primal water and
permits a limited but evolutionary progression of creation. Nammu’s
Sumerian sign is the same as one used for absu, which in Sumerian
times meant both “sweet water sea” and “the watery deep.” Hence
Nammu is the historical source of both the pure water of Apsu or Ea
and the salt water of Tiamat.

Nammu’s importance is reflected in the Sumerian division of the
heavens. As they charted the east-west paths of the stars like the Babylo-
nians,* the Sumerians also divided the sky into three north-south re-
gions corresponding to different city states: Nippur was north and
center, associated with Enlil; Uruk to the west and Elam to the east were
both centrally sited and under the influence of Anu. But Eridu, Sumer’s
oldest city-state, occupied the southeast and was associated with
Nammu. Hence the worship of Nammu reflects the most long-standing
cosmology and the oldest political entity in Mesopotamia.*

Yet as Sumer waned and Babylon ascended, Nammu descended
from being the Sumerian goddess of creation and order to a Babylonian
chaos monster. She lost the fertile, life-sustaining quality of “sweet
water” to Apsu, and was left with the undrinkable salt or “bitter” (prob-
ably alkaline) waters.*” According to Wasilewska, Marduk became the
top god only by murdering the “female principle, Tiamat, the mother
of all, personification of the salt waters.”*

The Sumerian and Babylonian tales exhibit contradictions and re-
flect with candor the cultural contexts of the time. But certain parallels
can be drawn between modern big bang cosmology and the ancients.
Totally apart from the constant revisions, there are the separations of
primal matter into polarities. In the Sumerian version, the primal water
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splits spontaneously into heaven and earth first,and then later anthropo-
morphically, when Enlil, the air god, separates earth from heaven with a
pickax. Hence, creation comes into being from nothing, without cause.

In(lia

In Cosmos, Carl Sagan describes several ancient creation myths, which
are, he writes, “a tribute to human audacity.” While calling the big bang
“our modern scientific myth,” he points to a critical difference in that
“science is self-questioning, and that we can perform experiments and
observations to test our ideas.” *

Yet clearly Sagan is drawn to the Indian cyclic cosmology, where
Brahma, the great creator god, dreams the universe into being. Accord-
ing to the religious scholar Mircea Eliade, during each Brahma day, 4.32
billion years to be exact, the universe putters along. But at the onset of
the Brahma evening, the god tires of it all, yawns, and falls into a deep
sleep. The universe vanishes, dissolving the three material realms of the
earth, the sun, and the heavens, which contain the moon, the planets,
and the North Star. (Four higher realms are not destroyed in this cycle.)
The night slips by; then Brahma starts to dream again, and another uni-
verse shakes into being.*

The cycle of creation and destruction continues forever, manifested
in the Hindu deity Shiva, Lord of the Dance, who holds the drum that
sounds the universe’s creation in his right hand and the flame that, bil-
lions of years later, will destroy the universe in his left. Meanwhile,
Brahma is but one of untold numbers of other gods dreaming their own
universes.*

The 8.64 billion years that mark a full day-and-night cycle in
Brahma’s life is about half the modern estimate for the age of the uni-
verse. The ancient Hindus believed that each Brahma day and each
Brahma night lasted a kalpa, 4.32 billion years, with 72,000 kalpas
equaling a Brahma century,” 311,040 billion years in all. That the Hin-
dus could conceive of the universe in terms of billions (rather than in
terms of the thousands of years prevalent in early Western culture and
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religious doctrine) was, according to Sagan, “no doubt by accident.”*

Yes, it’s possible that they were just lucky.

But the similarities between Indian and modern cosmology do not
seem accidental. Perhaps ideas of creation from nothing, or alternating
cycles of creation and destruction are hardwired in the human psyche.
Certainly Shiva’s percussive drumbeat suggests the sudden energetic
impulse that could have propelled the big bang. And if, as some theorists
have proposed, the big bang is merely the prelude to the big crunch, and
the universe is caught in an infinite cycle of expansion and contraction,
then ancient Indian cosmology is clearly cutting edge compared to the
one-directional vision of the big bang. The infinite number of Hindu
universes is currently called the many worlds hypothesis, which is no
less undocumentable nor unthinkable.

That’s the simple part. If one delves deeper into ancient Indian cos-
mology, the complexities multiply. For one, Brahma is merely the active
male manifestation of Brahman, the undifferentiated world-soul,”
which exists whether or not there is a universe to exist in. Brahma, ac-
cording to Eliade, is himself subject to the wheels of time and dies at the
end of a Brahma century. All seven levels of the universe then dissolve
into a feminine primal nothingness—the “rootless root of the uni-
verse.”® Depending on the tradition, only Vishnu, the sustainer god,
and/or Shiva, the destroyer, survive. Some stories show the male Shiva
and the female primal nothingness reunited in the “bliss of brahman,” a
“nonprocreative” state.”” When the bliss is over, Brahma reemerges
(sometimes from Vishnu’s navel) like an unwanted baby.*

Then there is Prajapati, a god who hails from the second millen-
nium B.C., who fashions the universe from his own body in a sacrificial
act of both creation and destruction.” In the thirteenth-century B.c.
Rig-Veda, Prajapati is the divine life force, born from the infinite waters
as a golden embryo, and yet one who also fathers himself.** Later, in the
Brahmanas sacred literature of 1000 to 700 B.C., a golden egg floats on
the primal waters, waiting for something to happen. Then Prajapati
emerges and becomes the universe and all its forces, the maker of gods,
and the “Lord of Brahman,” a sort of first force to give the self-created
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Brahman a nudge. After forming the watery chaos, the stars, sun, earth,
and finally man and the animals,® Prajapati dismembers himself and
uses his bodily parts to complete the creation,* saying “I will reproduce
myself, [ will become many.”*’

Contradictory? Yes,but there’s a repeating theme here: out of Noth-
ing comes Being, out of Being comes a dizzying multiplicity of forms, all
faces of the same One: the egg makes the chicken and the chicken makes
the egg. Metaphorically, the egg is the infant universe, which suddenly
hatches to give birth to all forms of the universe. The big bang.

Another eighth-century B.c. myth from the Chandogya Upanishad
leaves the gods out for the most part: “In the beginning this world was
merely non-being. It was existent. It developed. It turned into an egg. It
lay for the period of a year. It was split asunder. One of the two eggshell-
parts became silver, one gold.” From the silver, the earth formed, from
the gold, the sky. Like the cosmic plasma that split into matter and en-
ergy, all successive forms of existence arise from this basic split between
silver and gold, earth and sky.*®

But in the spirit of modern scientific self-questioning, the myth’s
author is not content with this theory. It violates some internal logic, so
he revises it in the next passage: “How,” he asks, “from Non-being could
Being be produced?” Unable to answer this any better than modern big
bang cosmologists can, the ancient cosmologist proposes a theory: “On
the contrary, my dear, in the beginning this world was just Being.” From
being comes heat, from heat comes water, from water (rain) comes food.
And so the universe wills itself into being with no god and no begin-
ning at all.*’

A later variant on the Prajapati-egg myths ties together Hindu time
cycles, Brahman, and Brahma in a sort of a grand unified field theory. In
addition to the multibillion-year kalpa cycle, smaller cycles described
world ages. Many Indian texts divide the kalpas into four ages, but a
cycle described in the second-century B.c. Laws of Manu gives four-
teen ages in a kalpa, each governed by Manu, a forefather of humanity.
Here Brahman, by thought alone, creates both the primal waters and the
egg that eventually gives birth to himself. In the egg, Brahman (now
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split into Brahma, First Man, and the offspring of primal waters)* di-
vides the egg in half, again using only thought, and forms the sky and
earth, a realm between them, the cardinal directions, and the oceans.®
Like the big bang, each revision adds another layer of complexity to the
origin of the universe.

A discussion of Indian cosmology would be incomplete without
looking at the social contexts. Now let us add Brahmin to Brahma and
Brahman. All stem from the root brh, meaning “to be strong.”® But
whereas Brahma and Brahman both refer to divinities, Brahmin refers to
human beings. The Indian Brahmins were the high priests of the Vedic
Aryans who conquered the darker-skinned Dravidians starting in 2500
B.C. According to a study by Albert Schweitzer, Brahman also meant “sa-
cred power,” and the Brahmins validated their position in society
through a connection to this divine power.** Vedic literature of 800 B.c.
first mentions Brahma, who seems to arise “as a process of apotheosiza-
tion of the brahma priest,” according to another Indian scholar. Mirror-
ing Brahma’s watch over the universe until 72,000 kalpas have
completed their cycle and the universe is destroyed in fire, the Brahmins
watched over sacrificial rites that ensured the continuation of society
until its decreed destruction.*

Jainism, a competing sect in India with origins from the fifth cen-
tury B.C., did not buy into the Brahma(n) story, despite its attraction to
the upper classes. (Perhaps Jainists had tired of neighbors who consid-
ered themselves just slightly beneath the gods.) In any case, nowhere is
the assertion of a steady state universe as explicitly stated as in Jainist
texts. The objections to Hindu cosmology written by Jinasena, a ninth-
century A.D. teacher, echo the objections heard today about the big
bang (substitute “big bang” for “Creator” or “God”):

Some foolish men decla‘r_ev‘that Creator made the world. . . .
If God created the world, where was he before creation?

If you say he was transcendent then, and needed no support,
where is he now?
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No single being had the skill to make this world—

For how can an immaterial god create that which is material?

How could God have made the world without any raw
material?

If you say he made this first, and then the world, you are faced
with an endless regression.

If you declare that this raw material arose naturally you fall
into another fallacy.

For the whole universe might thus have been its own creator,
and have arisen equally naturally.

Jinasena goes along in this vein for some length and finishes by saying,
“Know that the world is uncreated, as time itself is, without beginning
and end. . . . / Uncreated and indestructible, it endures under the com-

pulsion of its own nature.”®

Oceania

Here’s another big bang story, this time coming from Maiana Island, in
the South Pacific Gilbert Islands:

Na Arean . . . sat alone in space as “a cloud that floats in noth-
ingness.” He slept not, for there was no sleep; he hungered not,
for as yet there was no hunger. So he remained for a great while,
until a thought came into his mind. He said to himself. “I will
make a thing.” So he made water in his left hand, and dabbled it
with his right until it was muddy; then he rolled the mud flat
and sat upon it. As he sat, a great swelling grew in his forehead,
until on the third day it burst, and a little man sprang forth.*

Na Arean makes the initial separation of the universe into its funda-
mental dualities (matter/energy or land/water) before inflation swells
like an inflated ego to create its crowning glory, mankind.

178



Cosmology: That Old-Time Religion

The cosmologies of Oceanic peoples are as various as the islands
they inhabit. Barbara Sproul relates sixteen different stories that come
from twelve different island cultures.” Yet there are many commonali-
ties: the initial separation of the universe into two parts, for example, or
the cosmos emerging from a common taproot.

The late London School of Economics anthropologist Alfred Gell’s
study on Polynesian cosmology and ritual identifies a unifying theme in
which the universe begins in an amorphous state that is neither exis-
tence nor nonexistence, from which the creator god separates out the
two fundamental dualities that propel the unfolding universe. In Polyne-
sia this was the split between po, darkness, night, the ocean depths, death,
and the world of the gods, and ao, light, day, life, and the world of hu-
mans. This split, basic to many world cosmologies, is then embroidered
by the different islands to produce some complicated cosmologies.*

In Tahiti, the creator god is called Ta’aroa, meaning “the sever-er.”
After splitting po from ao, Ta’aroa creates the rest of the universe from a
series of shells that cover him like an egg. The first shell he turns over to
form the sky; the second he pulls off himself like a molting crab to make
the earth; then, like Tiamat in Sumer and Prajapati in India, he dismem-
bers himself (i.e., destroys the original homogeneity) to create moun-
tain ranges from his backbone, clouds from his internal organs, the
“fatness” of the earth from his flesh, shelled creatures from his finger-
and toenails, and red sky and rainbows from his blood.” As the ethnog-
rapher Teuira Henry set down the myth in 1928:

As Ta’aroa has crusts, shells, so has everything a shell. The sky is a
shell . . . endless space in which the gods placed the sun, the
moon, the Sporades, and the constellations. . . . The earth is a
shell to the stones, the water,and plants. . . . Man’s shell is woman
because it is by her that he comes into the world and woman’s
shell is woman because she is born of woman. One cannot enu-
merate the shells of all the things that this world produces.”

The notion of heavenly realms rising in shell-like levels is found
in many Oceanic cultures. In nearby Hawaii, nine levels ascended from
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the earth, with the three highest containing the sun, moon, and stars
and being solid. The intervening levels were collectively “the space in
which things hang or swing,” and included the realm of clouds.”

The Tahitian story above also reflects a common ancient belief of
“As is above, so is below”: what rules the gods and the heavens manifests
itself on the level of everyday human life, and all things are connected to
the divine. What works on the scale of the cosmos should also work
down to the smallest particle of matter. We believe this today, but we
have yet to formulate a theory of quantum gravity, combining our rules
for particles with gravitation.

Otbher cultures from Fiji to Hawaii used roots as metaphors for both
cosmological and human origins. To island cultures surrounded by
ocean, to be rooted must have been seen as the same as survival; in
numerous Polynesian islands, life and land were conceived as evolv-
ing from the ocean depths below,” just as roots come up from below
to support plants. The Fiji islanders had a serpent creator, Ndengei,
who was king of the “root-gods,” so called because “they were there
first . . . rooted in Fiji before there was any Polynesian or European in-
fluence.”” When Ndengei slept he created night; when he tossed and
turned in his sleep, he caused earthquakes; when he woke he created the
day” He is kind of an animate root, snakelike in motion, rootlike in
shape.

On Mangaia Islands, part of the Cook Islands, you find another ver-
sion of this cosmology. According to a myth recorded by mythologist
Charles Long, the Mangaian universe is a hollow coconut that narrows
down through a long tap root to a point representing the origin of all
things, “the-root-of-all-existence.” Inside, at the narrow end of the
shell, is a woman (a.k.a. Great Parent, Great Mother),” called “The-
very-beginning.” According to Long, “such is the narrowness of her
territory that her knees and chin touch, no other position being possi-
ble.”” In modern terms, here is the infant universe squished down to
the size of a point before it suddenly inflates outward—that is, expands
from tapered root to spherical coconut.

From the Great Mother comes children. Each child lives at a differ-
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ent level in the coconut’s interior, representing both temporal stages of
Mangaian ancestry and spatial worlds at different stages of geologic
evolution—for instance, “deep ocean” or “the hollow gray rocks.” “The
thin land” directly under the coconut’s top is home to the immediate
mythological ancestors of the Mangaians, the First Parents.”” Above
the coconut, ten heavens ascend in a series of domes and cause the
movement of the sun, moon, and stars. To the Mangaians, the sun and
moon occupy the first dome, rising through a hole in the coconut to the
east and setting through an opposing hole in the west.

The First Parents also climbed out onto the coconut’s surface
through the hole used by the sun and moon.” But if the universe is a co-
conut, what came before the root? In this Mangaian myth, we are not
told, but many Oceanian myths go back to a void and/or primal chaos.
A Maori chant relates three stages to the creation. First comes a disem-
bodied thought, then night, then light:

From the nothing the begetting

From the nothing the increase

... The power of increasing

The living breath;

It dwelt with the empty space,

And produced the atmosphere which is above us
. . . The great firmament above us dwelt with the early dawn
And the moon sprung forth;

The atmosphere above us dwelt with the heat,
And thence proceeded the sun

... Then the Heavens became light.*

The Maori universe is propelled by physical forces, apparently di-
vested of divine influence and emerging out of nothing. Like modern
Western cosmology, however, the exact moment of creation hinges on a
contradiction.

A much longer chant from the Tuamotu Islands (originally called
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Havaiki) starts with Kiho, “the source of sources,” sitting in a void,
which nonetheless has spatial qualities:

Beneath the foundations of Havaiki which was called the
Black-gleamless-realm-of Havaiki,

Dwelling there below Kiho had no parents . . . there was none
but him; he was not the root, he was the stability.

In fact, like land solidifying after a volcanic eruption, this state
of nonexistence grows increasingly solid, described as eleven kinds
of “foundation,” the “columnar-support-of-land,” “the Upholding-
house-of-the-heavenly-regions.” Then, following many world cos-
mologies, Kiho thinks the universe into being: “May I be eloquent of
my indwelling occult knowledge; may I be expressive of my outpouring
eloquence . . . that all assembled beings shall give ear!”®

His thoughts stir up “the inner-urge” of water and land, the two
primal components. After a long list of land features that are currently
nonexistent (the stratification, the viscosity, the multiplicity), Kiho fi-
nally bursts into action with earthquakes and flaming eyes. He is, in fact,
a volcano, rearranging the water and land to his liking. Each movement
of his body, now floating on the ocean surface, gives rise to eight sky
realms and eight land realms, paired along connected planes of exis-
tence.*

From the standpoint of the big bang, the Oceanian amorphousness
that precedes the universe seems closer to modern ideas of cosmic
plasma than to a creation out of nothing.*” The latter idea is really out-
side of Polynesian thinking, according to Gell, who sees creator gods as
forces of separation. Speaking specifically of the Tahitian cosmology, he
says, “What the god does is to articulate, or differentiate the world into
its distinct components and qualities, but the substance of the newly-
articulated cosmos remains what it always was, nothing other than the
god himself.”

Nonetheless, the Western concept of a universe exploding out of
“nothing,” as opposed to Oceanian ideas of a primal chaos that is nei-
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ther “nothing” nor “something,” seems to boil down to interesting
semantics rather than a fundamental difference in outlook. In the be-
ginning everything was gooey, murky, and unknown.

Mayan Mesoamerica

Isolated from Old World cultures, the Mayan civilization in what is cur-
rently southern Mexico and Guatemala emerged around the birth of
Christ, flourished, and abruptly and mysteriously disappeared. Other
than stone pyramids and steles carved with elaborate glyphs, their story
is preserved in a few codices, including the Quiché Mayan book of cre-
ation, the Popol Vuh. Mayan cosmology bears many resemblances to
other cultures nonetheless: to India in the intermeshing cycles of de-
struction and creation and the huge time frames in which these cycles
are set; to ancient Mesopotamia in the meticulous tracking of heavenly
bodies that are manifestations of the gods; to modern cosmology in the
gods’ careful experimentation and revision, and in the equally ruthless
condemnation of outmoded theories.

Before humankind, the Mayan universe unfolds fairly seamlessly.
Like many cosmologies, it starts with a primal sea. The Popol Vuh be-
gins: “Now it still ripples, now it still murmurs . . . itstill sighs . . . and it
is empty under the sky.” Translator Dennis Tedlock calls the scene a kind
of “white noise”—the sound preceding sound. Only the gods of the sea
and earth, collectively called Heart of Lake and Heart of Sea, are present:
Maker, Modeler, Bearer, Begetter, and Sovereign Plumed Serpent.®
Joining them are Heart of Sky and the primal sky gods, called Hurri-
cane, Newborn Thunderbolt, and Sudden Thunderbolt. After confer-
ring, the water and sky gods agree to create land and life in a sequence
that resembles twentieth-century biology’s “primordial soup”: an earth
covered by ocean and subject to violent lightning, which helps produce
the first amino acids. Thus the cosmic separations occur, the first be-
ing the preexistent separation of the water and sky gods, the second being
the gods’active separation of earth from water, and sky from earth.*

Next the sun, moon, and stars are sown. The ancient Mayans con-
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ceived of this as “sowing” and also “dawning,” because they connected
the planting of seeds, which push up from underground to grow, with
the dawning of the celestial bodies, which they believed traveled
through the underworld before rising in the east.”

Ancient Mayan art pictured a two-headed serpent as the sky, with
symbols of Venus—which rises just before dawn—on one end and the
sun on the other. Mayan cosmogony depicts an earth whose base is a
reptilian earth monster and a sky supported by crocodile and jaguar pil-
lars. Each evening, the sun is consumed by the earth monster and moves
backward underground, to rise each morning in the east.

Hence, Venus and the sun (cast in the Popol Vuh as twin boys)
emerge each dawn one after the other, just as human twins do at birth.
According to Anthony Aveni, “The sinuous image of a two-headed sky
serpent offers a graphic depiction of the way the imaginary line con-
necting Venus above the horizon with the sun below can be followed
through time.”® Venus rises as the “front end of the cosmic monster
emerging from the underworld.”* As the day progresses, the two bod-
ies move across the sky, to set one after the other at dusk. The Popol Vuh
chronicles this celestial orbit with the twins’ battle with Zipacna,a croc-
odile earthquake monster, and with their descent into the underworld,
the realm of One Death and Seven Deaths. After a series of contests, the
twins emerge to be reborn at day.”

Taken all together, we have a reptilian monster underneath the
earth, a sky serpent overarching the heavens, and crocodile pillars con-
necting the two. As a total conjecture, perhaps as food passes through
the body of a giant serpent (making a large bulge as it does), so the
Mayans saw the sun and stars passing through the great serpentine orbits
above and below the earthly plane.

However, complications and trouble seem to begin with man, and
give rise to the Mayan version of the many worlds hypothesis. Accord-
ing to the Popol Vuh, the gods first create birds, deer, jaguars, and snakes
to watch over the forest and to bring offerings to their creators. But the
animals cannot praise the gods; they cannot speak at all, and when the
gods realize this, they decree that animals are only good for one thing: to
be eaten.”
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So the gods try again. This time they fashion a human being out of
clay. But the clay is soft and won'’t hold together. “It won'’t last,” the
mason and sculptor gods say then. “It seems to be dwindling away. So let
it just dwindle. It can’t walk and it can’t multiply, so let it be merely a
thought.” And the gods abandon their creation.”

In the third creation, the gods decide they need something more
solid. So they make creatures of wood, who are, well, wooden. These
prototypes look like people, talk like people, and reproduce like people,
but they don’t have feelings, don’t think, and, worst of all, fail to remem-
ber their creators. (They don’t pray to their gods.) The wooden men are
busy populating the earth when the gods destroy them by flood; by the
Gouger of Faces; by Sudden Bloodletter, who cuts their heads off; by
Crunching Jaguar, who eats them; and by their own grinding stones,
which pulverize them. Like a plasma cosmologist caught at a big bang
conference, there’s not much left after this. And so ends the third cre-
ation.”

But the gods are empiricists, and they learn by experimentation,
collaboration, and trial and error, what Aveni calls a “successive approx-
imation process of universe building.” In the fourth and final creation
and after much conferring, they choose corn for flesh, water for blood,
grease for fat. The result is the first true humans, who talk and praise
their creators. There is one flaw: the humans are too smart. As the Popol
Vuh relates, “Perfectly they saw, perfectly they knew everything under
the sky, whenever they looked. . . . As they looked, their knowledge be-
came intense.” No one likes competition, so the gods clouded human
knowledge such that people “were blinded as the face of a mirror is
breathed upon. . . . And such was the loss of . . . understanding, along
with the means of knowing everything.”*

Three tries at the creation fail before a universe emerges that will
sustain human life. (The botched attempts are reminiscent of the eigh-
teenth-century cosmology of David Hume, cited earlier.) And so the
current world emerges, though it, too, will be destroyed at the end of its
era. The Mayans, like the Indians, conceived of great intermeshing time
cycles that spawned creations and destructions as easily as a tree unfurls
leaves and later drops them.
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Opbry, the dates of the fourth and last Mayan creation mesh rather
nicely with those of the fourth and last Indian cycle: August 13, 3114
B.C., and February 5, 3112 B.c., for the Mayan, according to Linda
Schele, and February 17-18, 3102 B.c., for the Indian, according to
Aveni.” In India, these dates lined up with a planetary conjunction in
Aries. In Mayan mythology, the two dates represent two acts by the gods
to create the universe. On August 13, 3114, they laid the cosmic hearth
by wheeling the three stars of Orion’s belt to the center of the sky; two
years later, on Feburary 5, they lifted up the cosmic tree, which is the
Milky Way. As in India, both days corresponded to astronomical events.
Schele, an epigraphist and professor of art history at the University of
Texas, who sees Mayan myths as “star maps,” states that on August 13,
3114 B.c., the three stars in Orion occupied the center of the dawn sky.
The Great Nebula (M42), unknown to Europeans until 1610, can be
seen between these stars, and was called by the Mayans the smoke of
cosmic cooking.” A year later, the gods planted the cosmic tree, mani-
fested as the Milky Way, which connected the thirteen layers of heaven
to the seven layers of the underworld. According to Schele, “In 3112
B.C. . . . in the morning of February 5, the entire Milky Way rose out of
the eastern horizon, until at dawn it stretched north to south across the
sky”” Aveni agrees with the first interpretation, but is dubious about
the February 5 Milky Way assertions.

In the minds of Mayan priests, these heavenly events marked the
dawn of a new age, which was tracked using the “long count,” a linear
record of days beginning with the Maya fourth creation in 3114 s.c.
and predicting the end of the current universe on December 23, 2012
A.D.”® Within the universe’s five-thousand-year life span, many smaller
time cycles marked the durations of intermeshing astronomical, natural,
and political rhythms.

Tedlock, in translating the Popol Vuh, worked extensively with An-
dres Xiloj Peruch, a modern Mayan spiritual leader, to interpret the an-
cient text according to still-existent Mayan beliefs. Present-day Mayan
fireplaces include three hearthstones set in a triangle, a representation of
a modern Quiché Mayan hearthstone constellation formed by three
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stars in Orion—Alnitak, Saiph, and Rigel.” During the destruction of
the third creation, the Popol Vuh states, “The . . . hearthstones were
shooting out, coming right out of the fire, going for [the men’s]
heads.” '™ This, according to Xiloj Peruch, is an image of a volcano and
an oblique reference to the cosmic hearth. Further evidence comes
from ancient Mayan scribes at Palenque and Quirigu, who wrote that at
the end of the previous age, three hearthstones ushered in a new age."”
(Schele and Tedlock disagree over whether the August 3114 date and
the ascension of the stars in Orion represent the end of the old age or
the beginning of the new age,'” but it’s clear that the hearthstones rep-
resent a major turning point.)

Another creation story from the Yucatin Maya reinforces the mesh-
ing of cosmic and political cycles. According to Aveni, when Shield
Pacal, king of Palenque, died in the mid—eighth century A.p., he had
successfully consolidated the power of his city-state against challenges
by neighboring cities. Chan Bahlum, Pascal’s son, needed a celestial sign
to cement his political legitimacy by tying his ancestry to the progeni-
tors of the Palenque royal family, three gods born four thousand years
earlier. The divine lineage, carved on a temple, depicts the second-born
god as the sun and the firstborn as Venus. The identity of the third god
is unknown.'”

In any case, in A.D. 690, early in Chan Bahlum’s reign, a planetary
conjunction lined up Saturn, Jupiter, Mars, and the moon, which moved
together across the sky to set directly over the old king’s temple. Thus
Chan Bahlum’s royal mandate and divine lineage was affirmed by a clear
sign from the gods. That this event involved neither Venus nor the
sun was not something that likely troubled the ancient Mayas. Aveni
points out that Mayan cosmology does not demand a one-to-one cor-
respondence—only any connection between the astral plane and the

human one.'™

ALL OUR COSMOLOGIES, from the Sumerian and Mayan to those of
modern leather-chaired professors at Caltech and Cambridge, are lim-

187



LOST DISCOVERIES

ited by a fatal lack of vision. Timothy Ferris starts off his book Coming of
Age in the Milky Way with this remark: “When the ancient Sumerian,
Chinese, and Korean astronomers trudged up the steps of their squat
stone ziggurats to study the stars, they had reason to assume that they
obtained a better view that way . . . because they had got themselves
appreciably closer to the stars.” '

Of what use is climbing a few hundred feet when we know today
that the nearest star is six light-years distant? In human terms, we have
significantly improved our viewing power with enormous land-based
telescopes and more so with the orbiting Hubble telescope, which ele-
vates us beyond the obfuscation of the atmosphere. In cosmic terms,
however, a satellite at 675 kilometers brings us barely closer to the most
distant skies, several billion light-years away, than standing on ziggurats
did. Especially if the other galaxies are zooming away from us every sec-
ond. As mentioned, the size of our universe is unknown.'® The visible
universe may be only a small part of the unabridged universe, and it’s
possible that some light may never reach us. We live in what is called the
sub-Hubble sphere; it’s possible that the unseen part of the universe is a
squillion times bigger, in which case what we observe through our tele-
scopes are the random and esoteric motions of local galaxies, not the
true flow of space itself.'”

Bic BaNG cosmologists say we can bypass these observational problems
by studying the early universe in particle accelerators, “atom smashers.”
Fermilab’s Rocky Kolb says that one thing that separates our cosmology
from those of the ancients is that we can replicate ours. He relates a Chi-
nese creation myth from the third century A.D.:

The world was never finished until P’an Ku died. Only his
death could perfect the universe. From his skull was shaped the
dome of the sky. . . . His right eye became the moon, his left
eye the Sun. From his saliva or sweat came rain. And from the

vermin that covered his body came forth mankind."®
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Kolb notes that the above is not so different in degree from the big
bang, but it is a myth because “no one can reproduce the death and
decay of P’an Ku.” Kolb says, however, that we can reproduce the big
bang.

Kolb notes that the mathematical machinery of the big bang model
can predict the temperature of the universe at any time during its ex-
pansion. This is an audacious statement, given that there’s no empirical
evidence for these temperatures, but, for the sake of argument, let’s as-
sume Kolb is correct. (The average temperature of the universe today is
about 3 degrees Kelvin, or 3 degrees above absolute zero, and as we
go back in time it gets hotter and hotter.)'” “We study the very early
universe by making a little piece of it in the laboratory,” says Kolb."°
By which he means that at Fermilab, protons are circulated in a
four-mile-around tube and collide with antiprotons speeding in the op-
posite direction. The resultant collisions can achieve temperatures of
3,000,000,000,000,000 (3 X 10*) degrees Celsius, the temperature of
the universe approximately 0.000000000004 (about 107*?) seconds (a
millionth of a millionth of a second) after the big bang."' Because of
this, Kolb claims that we can now re-create for a brief instant “the condi-
tions that have not existed in the universe for fourteen billion years.”
(Italics mine.) It is in vogue today for cosmologists to say that these
high-energy particle collisions verify their theories, that these little col-
lisions inside the beryllium tubes of accelerators are eensy-weensy big
bangs. “That we struggle so hard to try to show that we are superior to
all our predecessors,” says Anthony Aveni, “may tell us something about
ourselves.” 12

Kolb works at Fermilab, but he admits that, while there’s an acceler-
ator within walking distance of his office, he’s never conducted an ex-
periment there, has never produced one of these little universes he
writes about. Kolb is candid: “I never look at the [particle] events them-
selves. I don’t look at pictures from telescopes, either.”

Henry Frisch, a University of Chicago physicist, has conducted
many experiments at Fermilab. He calls the particle-collision evidence
for the big bang a “pile of baloney.” There are a number of problems.
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Frisch says that, first of all, cosmologists don’t understand how few
“events” (as they call them) attain the energy levels cited because they
don’t understand the physics involved. The protons in the beam at
Fermilab do have enough energy to duplicate the temperature of the
10 ~"*-second-old universe, but such events are rare. The proton is not an
elementary particle but a conglomerate (a “garbage can,” in the words
of physicist Leon Lederman) of quarks and gluons. One gets optimum
energies only in those unlikely events in which a quark collides directly
with another quark. In the year 2000, Frisch says, this happened no
more than six hundred times—or one event every 500 billion colli-
sions—at Fermilab."” Hardly enough to establish what the universe was
like at T = 10 " seconds; and, in any case, no one was looking at the col-
lisions for that purpose.'

More important, these particle events do not re-create the conditions
(plural) of the early universe, as cosmologists insist. They replicate only
one condition: temperature. Let’s say you want to vacation in Akumal,
on the Yucatan peninsula, where it’s 85 degrees F in January. You live on
Baffin Island, where it’s -20 degrees. So you turn up your thermostat to
85 degrees. Now in your den you have “re-created the conditions of
Akumal.” Something’s missing, though, no? Even if you wear a bikini
and drink a pifia colada with one of those little paper umbrellas, it’s not
the same as vacationing in Mexico.

It’s the same deal with particle collisions and the early universe; the
only commonality is temperature. Frisch says that the “densities of par-
ticles and fields” are entirely different. In other words, the big bang had
more stuff in it, or we wouldn’t be here today. All the matter you see
around you—your MG, the bacon grease in the jar under the sink, var-
ious galaxies—was compressed into about the same space as an acceler-
ator particle collision. In the accelerator, however, there are only two
quarks in that volume. You won'’t get much of a universe from that. Also,
while such collisions are very hot, the volume of heat is umimpressive:
equal to a burning match. Again, not much of a bang.

Beyond such obvious details, Frisch says he is uncomfortable with
the particle-cosmos connection, because “I am descended from a long

190



Cosmology: That Old-Time Religion

line of rabbis.” We cannot re-create the initial conditions of the uni-
verse, and therefore we can never recreate T = 0. “I’m not comfortable
with discussing T equals zero,” Frish says. “And if I don’t know T equals
zero, I'm not comfortable with T equals ten to the minus twelve.”

CosMoLOGY REMAINS an interesting discipline, grounded in astronomy
and physics. We need to imagine our world, even if that vision is inac-
curate or incomplete. The ancient Indians, Babylonians, and Maya com-
bined science with religion and social constructs to complete the
picture. That we have done any differently is a delusion. If our cosmol-
ogy appears free of religion, it’s because we’ve made it into its own sec-
ular religion."® Unlike physicists or chemists, who welcome threats to
their paradigms, modern cosmologists are Lagashians, defending their
chosen model against all evidence. As the Russian physicist Lev Landau
said, “Cosmologists are often in error, but never in doubt.” "¢

The world of orthodox big bang cosmology does not suffer dissi-
dents gladly. The Harvard- and Caltech-educated Halton Arp, a protégé
of Edwin Hubble’s,'” never relinquished the intellectual rigor of his
mentor, holding that redshifts are not necessarily evidence of an ex-
panding universe. A skilled astronomer, Arp found objects in the sky
that made national headlines and challenged big bang orthodoxy. He
photographed highly redshifted quasars in the same area as low-redshift
galaxies, with some evidence, albeit sketchy, that the quasars and galax-
ies are linked by hydrogen gas. If redshifts mean what big bangers think,
then a high-redshift object cannot be in the same part of the sky as a
low-redshift object. How did Arp’s employers at the Carnegie Observa-
tories respond to his discoveries? They pulled him off their two-
hundred-inch Mount Palomar telescope. He was forced to work “in
exile,” as the journal Science put it, at the Max Planck Institute for Astro-
physics in Germany.'® Carnegie (now part of Caltech) acted in the
time-honored tradition of Harlow Shapley, wiping the plates clean.

Even orthodox scientists can’t resist invoking the name of God.
One of the recent saviors of the big bang is astrophysicist George
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Smoot, who in 1992 showed that the early universe, three hundred
thousand years after the big bang, was “wrinkled.” That is, using the
COBE satellite, he found tiny temperature fluctuations in the ancient
sky. The differences were only a few millionths of a degree, but the less
hot areas were deemed to be the “seeds” for galaxy formation. These
“colder” areas were denser, showing that the early universe was not ho-
mogeneous but just lumpy enough to result eventually in galaxies, stars,
and us. As we have seen, it was more likely that a big bang would result
in a cloud of gas, with an “unrelenting black” sky, as Smoot put it. And,
as he continued, “We would not be here to observe it.” ' He probably
should have left it at that, but there were reporters around, so finally he
said, “If you'’re religious, it’s like seeing God.”'® A few weeks later, a re-
porter traveled to the Lawrence Berkeley Laboratory to interview
Smoot, and in the hallway found an interesting graffito: “If you’re God,
it’s like seeing George Smoot.”

The so-called wrinkles in the universe have been cited by many
cosmologists as “proof” of Guth’s inflation. Kolb prefers the phrase
“supportive of inflation.” What if I believed in unicorns, I asked Kolb,
and I found manure in the woods. Is that supportive of unicorns, since
they probably defecate? He replied, “Well, if you found a honking big
pile of manure, you could at least say that it’s not a rabbit.” Which is not
to say that inflation theory is a honking big pile of anything.
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PHYSICS
Particles, Voicls. and Fielcls

HE largest particle accelerator in the United States cuts a four-

mile-around circle in the northern Illinois prairie, outside the

town of Batavia. At Fermilab (Fermi National Accelerator Lab-
oratory), beams of protons and antiprotons circulate in the long stainless
steel tube and are squeezed together at two points, inside detectors, so
that the particles and antiparticles collide, producing tremendous ener-
gies. Physicists examine the aftermaths of these collisions, as new parti-
cles—some not seen in this universe since a fraction of a second after
the putative big bang—coalesce out of the bursts of energy.

When the accelerator is down for maintenance, Fermilab guides
lead tours through the brightly painted accelerator tunnel. The tours
start out in the atrium of Wilson Hall, the administration building, and
then cross the road to the accelerator. Wilson Hall’s atrium also contains
the lab cafeteria.

A guide told me that one day she noticed an older man in her tour
group who looked familiar. He was fascinated with the accelerator, rub-
bernecking to see every feature she pointed out. Back at Wilson Hall, he
thanked her for the tour, saying he was amazed at what he had seen that
day. She said, “You look familiar. Have we met before?”” He said yes and
gave his name. The man had been employed at Fermilab for more than
a decade. He was a theorist, working in the lab’s theoretical department
in Wilson Hall—as opposed to the experimenters, who work in the de-
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tector control rooms over at the accelerator itself. The theorist again
profusely thanked the guide, admitting that it was the first time he had
actually seen the accelerator. His visit was an accident, of course. The
man had thought he was in the lunch line.

This story exemplifies the disconnect between theory and experi-
ment in modern physics. The chairman of Fermilab’s theoretical de-
partment nodded when I told him the story. “We don’t require our
theorists to actually visit the accelerator,” he said. “But we insist that
they all know there’s one out there on the grounds somewhere.” (This
separation of theorists and experimenters is a recent phenomenon.)'

Western physics isn’t supposed to be this way. Galileo is usually cited
as the first real physicist, the one who decided that the laws of nature
could not be ascertained through pure reason. And, despite being a
mathematician, Galileo made math secondary to experiment. Mathe-
matics was an apt language for describing the results of an experiment,
but you had to do the experiment. He dropped objects from a tall,
slanted building, and rolled them down inclined planes. He measured
and compared their rates of acceleration, and thus destroyed an impor-
tant piece of Aristotelian theory. This combination of experiment and
theory, of action and mathematics, is the key to Western physics. In re-
cent years, the press has fixated on theory alone, but experiment remains
the foundation of modern physics.

Physics is often called the queen of the sciences. Ernest Rutherford,
the experimenter who discovered the atom’s nucleus, said, “All science
is either physics or stamp collecting.”? That’s a bit harsh, but what dis-
tinguishes physics from the other disciplines is its search for simplicity,
for overarching principles. Through the millennia, physicists have asked
basic questions. What is matter? What is energy? What is light? (They
are also in pursuit of more mundane things, of course, points out
Williams College physicist David Park, such as “a high-temperature su-
perconductor with good mechanical properties.”)*

The quest of fundamental physics is to reduce the laws of nature to a
final, simple theory that explains everything. Nobel Prize-winning
physicist Steven Weinberg notes that fundamental rules are the most sat-
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isfying (at least to him). Isaac Newton’s basic laws predicting the behav-
ior of the planets are more satisfying than, say, an almanac showing each
planet’s position at every point in time. Weinberg cautions that physics
can’t explain everything, and that it cannot explain events except in
terms of other events and rules. For example, the orbits of the planets are
the results of rules, but the distances of the planets from the sun are acci-
dents, not a consequence of a fundamental law. Of course, he adds, our
laws, too, might be accidents. Weinberg says that physicists are more in-
terested in rules than events, in things that are timeless—the mass of the
electron, for instance, as opposed to a tornado near Tulsa.

He set down these thoughts recently in a lecture entitled “Can Sci-
ence Explain Everything? Can Science Explain Anything?” Weinberg
demonstrated that there are limits to physics. He was still befuddled
about the foreign advances on his recent book Dreans of a Final Theory.
Why, he pondered, should France pay only 10 percent of what Italy
pays? Physicists will never explain the French; the planets are easier to
contemplate. Still, Weinberg feels there will be a final theory. “We are
moving toward an explanation of the world,” he said. “That picture will
be a satisfying worldview.” And to be satisfying, he added, any final ex-
planation “must be rich enough to include us.” Of course, such a final
theory won’t answer all questions, explains Park: “For example, we have
known all the fundamental physics of the water molecule for sixty years,
but there is still nobody who can explain why water boils at 212 degrees
Farhenheit. Why can’t we? We'’re too dumb. I would guess that we will
still be too dumb when what Weinberg calls the explanation of the
world is in hand.”*

Physicists’ current explanation of the substructure of matter is called
“the standard model.” It includes the twelve elementary particles and
three forces that, when mixed and matched, can build everything in the
universe, from soup to galaxies, and can explain all actions. The particles
include the six famous quarks (up, down, strange, charm, bottom, top—
we don’t think there are any more) and six leptons (the electron and its
two heavier cousins, the muon and the tau, and their three associated
neutrions). The three forces are electromagnetism, the strong nuclear
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force (which holds quarks together), and the weak nuclear force (re-
sponsible for radioactivity). There’s a fourth force—gravitation. It’s im-
portant, but nobody knows how it fits into the standard model. All the
particles and forces in the model are quantized; that is, they follow the
rules of quantum theory. There is yet no theory of quantum gravitation.

The standard model is less than satisfying. Scientists think that be-
sides being incomplete, it’s too complicated. There must be a simpler
plan. Nobel Prize—winning physicist Leon Lederman says that a good
final theory should be concise enough to fit on the front of a T-shirt.
The present model requires two people walking side by side, one with
the particles, the other with the force picture.

Another problem is mass. All the particles have different masses, and
no one knows where these come from. There’s no formula, for instance,
that says the strange quark should weigh twice (or whatever) as much as
the up quark, or that the electron should have /50 (or whatever) the mass
of the muon. The masses are all over the board; they have to be “put in
by hand,” as the expression goes—each measured individually by exper-
iment. Why, in fact, should the particles have any mass at all? Where
does it come from?

To solve this problem, many particle physicists today believe in
something called the Higgs field. This is a mysterious, invisible, etherlike
field that pervades all of space. It makes matter seem heavy, like a man
running in invisible oil. If we could find this field or, rather, the particle
that is the manifestation of the field—called the Higgs boson—we
would go a long way toward understanding the universe. It was the
Higgs boson that the Superconducting Super Collider (SSC), the fifty-
four-mile-around accelerator proposed to be built in Texas, was sup-
posed to find. Congress voted down funds for the SSC back in 1993.

As we shall see, the Higgs field showed up many centuries ago in
ancient India, under the name maya, which describes a veil of illusion
that gives weight to objects in the material world.

THERE HAVE BEEN two great shifts in Western physics. The first came
with Galileo and Newton, who moved science away from ancient
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Greek ideals of pure reason, making it hard-core and dependent on ex-
perimental data and causation—rejecting notions, for example, that
light is a “quality” and attempting to quantify things such as light, force,
and matter. Weinberg still sees Newton as the most important scientist:
“He transformed the intellectual world put in place by Aristotle.” In
terms of methodology and worldview, Weinberg says we still live in
Isaac’s world. (Contemporary physicists treat Aristotle with some con-
tempt. Alternate views exist.)’

Despite this, another great shift came in the twentieth century with
the advent of quantum theory. Galileo, Newton, Michael Faraday, the
nineteenth-century English experimenter, and his theorist counterpart
James Clerk Maxwell, among others, had put in place the magnificent
edifice of classical physics. We knew how things moved mechanically,
how light bounced off objects, how electromagnetic radiation propa-
gated through the universe—a host of knowledge about the physical
world. Newton’s second law, F = ma (force equals mass times accelera-
tion), for instance, is one of the mantras of classical physics. Then quan-
tum physicists went down into the atom and discovered a new world.

Well, actually, not a new world. It is often said that Newtonian and
Maxwellian laws rule the macroworld, and that quantum theory holds
in the microworld. This implies that there are two universes with their
own separate laws. Not true. This is just a convenient, if sloppy, way of
describing the situation. There is only one world, and the real world is
the quantum world. However, our classical laws are good enough to work
in the bigger macroworld.

Newton and others thought of particles as hard little balls, following
classical laws. In reality, twentieth-century European physicists—Max
Planck, Rutherford, Niels Bohr, Werner Heisenberg, Max Born, Erwin
Schrédinger, Paul Dirac, Wolfgang Pauli, and many others—discovered
that subatomic particles such as electrons are really squishy, indecisive
things. We cannot predict precisely where they are at any moment in
time. We can only determine percentages—there is a 70 percent chance
the electron will be here, a 30 percent chance that it will be there. And it
gets worse. Sometimes light behaves like radiation (it’s continuous, a
wave) and sometimes like matter (it’s a particle—in this case, the pho-
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ton). Conversely, matter particles can act like waves. It’s an uncertain
world down there.

The reason that it seems like a whole other world up here on the
surface is that all this uncertainty averages out when you gather squil-
lions of particles together. Newtonian laws such as F = ma are good av-
erages, sort of like insurance company actuarial tables. A baseball is
chock full of particles, all of which are allowed the luxury of chance and
uncertainty. But lumped together, the uncertainty tends to wash out.
Your insurance company doesn’t know when you’re going to die. But it
knows how a couple of million people just like you are going to behave,
and how many of you will die in any particular year. R oger Maris knew
how much force it would take to power a baseball over the right field
fence. A few quarks or electrons might rebel; as a group, though, they
obey Newton.

Many ANCIENT cULTURES had inklings of quantum theory. Where did
this come from? Rutherford had a radioactive source of alpha particles
to probe the nucleus. J.J. Thomson had cathode-ray tubes for discover-
ing the electron. The ancients had no such equipment. Where did the
concept of field come from, so new to us and yet prevalent in past cul-
tures? Michael Faraday had to build a dynamo (electrical generator) to
fabricate his field theory.

Democritus of Abdera, the fifth-century B.c. Greek philosopher
known as the “laughing philosopher” because he was amused by the
foibles of men, is sometimes also called the father of particle physics. He
had some prescient ideas. At one point in his life, he sank into a deep de-
pression, determined to kill himself by starvation. His sisters tricked
him. Preparing food to celebrate the feast of Demeter, they baked bread.
The smell wafted up to his room, where he was revived—not only
physically but intellectually. He asked himself, How does the essence of
bread travel from his kitchen below to his bedroom above? His solution
was the atom, literally “that which cannot be cut.” He figured that the
loaves of bread sloughed off atoms that traveled to his nose. Democritus
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proposed that all matter is composed of finite, invisible, and indivisible
particles that combine in various ways to produce all the objects we see
around us.

Today we use the word atom to refer to the individual chunks of el-
ements in the periodic table: hydrogen, oxygen, lead, uranium, and so
on. Those are hardly a-toms (uncuttable) in the Democritan sense.
They are complicated and eminently cuttable into smaller parts. Our
quarks and leptons are Democritus’s atoms. (Though there is always the
possibility that quarks might turn out to be cuttable.)

Despite the fact that we call Democritus the first particle physicist,
his was not a new idea. Steven Weinberg says that Indian “metaphysi-
cists” came upon the idea of atoms centuries before Democritus,® who
came up with many ideas embraced today by physicists. Democritus’s
statement “Everything is the fruit of chance or necessity” could be the
defining statement of quantum theory. That is, randomness and causal-
ity work hand in hand. We cannot predict, say, when any particular pion
will decay, but we can predict when half of a large group of them will
decay (hence the term half-life). Democritus also believed in the void, in
the vacuum, in nothingness. Once he had thought of atoms, he needed
someplace to put them. “Nothing exists except atoms and empty
space,” he wrote. “Everything else is opinion.”’

We see these ideas in non-Western cultures as well. Where we don’t
see them is in ancient Greece or in Europe, until very recent centuries.
Democritus was a Greek, and some of his ideas were shared by other
pre-Socratic philosophers. In general, though, his scientific theories
were rejected by later mainstream Greeks—Aristotle and Plato, to name
two. In fact, Plato wanted to burn all of Democritus’s books.* Leucip-
pus, Democritus, and the other pre-Socratic Greek philosophers sought
quantitative rather than qualitative explanations for the world and asked
the question “how?” rather than “why?” in distinction to the more ab-
stract, teleological approach of the later Greeks.

The one concept of Democritus’s that was embraced by his fellow
Greeks, and that endured into the Renaissance, was his concept of the
eidolon. It was not one of his better ideas. Light fascinated all ancient
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and medieval cultures, and much of their physics was focused on it. Two
concepts hatched in ancient Greece that entranced the West for cen-
turies were those of the ray and the eidolon.

In the fifth century B.c., Empedocles (best known for positing that
all matter is constructed from earth, air, fire, and water) suggested that
vision occurs because a visual ray reaches out of the eye and feels what
is in front of it.” The eye is an active participant in vision, sending out
rays as probes to gather visual information. A few decades later, Dem-
ocritus came up with the eidolon. Just as objects slough off atoms, he
said, they also slough off a thin visual layer of themselves, perhaps one
atom deep. This is the eidolon, a physical shell of the object, floating
through space to the eye of the beholder." We know now that rays do
not emanate from the eyes. Arab scientists dismissed these ideas.

No ancient or medieval culture practiced physics at the level we’ve
witnessed in the West during the past four hundred years. What has
marked Western physics is the intertwining of experiment and theory.
Some of the cultures we are about to examine were strong in theory but
weak in experiment, or vice versa. We will start with a civilization that
valued data over hypothesis.

China

Ancient and medieval Chinese physicists did not envision aspects of
quantum theory. They did, however, conduct experiments; their knowl-
edge was empirical rather than intuitive. Perhaps because of this, Chi-
nese physics of days gone by mirror the classical physics of the West
from the era of Galileo to the beginning of the twentieth century—
before the quantum age began. Experimental techniques of the ancient
and medieval world would, quite naturally, yield classical results. Let us
hasten to add that the Chinese, says David Park, never put together an
all-encompassing dynamic theory as Isaac Newton did."

AccorpiNG TO BriTisH sinologist Joseph Needham, the ancient Chi-
nese, like Aristotle,”” viewed the universe as a continuity, rather than
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as a collection of atoms. The yin-yang duality dominating nature was
viewed as a rising and falling, as a wave crests and troughs, and loosely
connected with the tides. A first-century A.p. Chinese writer says, “The
Yang having reached its climax retreats in favour of Yin; the Yin having
reached its climax retreats in favour of Yang.” " As basic forces oscillate,
individual objects also oscillate in a web of “mutual influences,” reflect-
ing the Chinese belief in the inherent rhythms in all matter. Ch’i, the
Chinese concept of energy, soul, ether, was not made up of particles but
acted on objects and connected them. Needham says these influences
worked over large distances, vibrating according to the specific thythms
of tangible matter and with the cosmic oscillation of the yin-yang
cycle.*

A phrase translated as “bright window dust”—referring to the dust
notes caught by sunlight—was used by Chinese alchemists in the sec-
ond century A.D. as a metaphor for potable gold, and also reflected their
view of light as emanation. (Some believed that gold was a solid form of
sunlight.) In the twelfth century A.p., Wu Tsheng commented, “If the
elixir [of life] succeeds it will appear as an impalpable powder like bright
window dust. If such an elixir (so full of motion, energy, and vitality) is
ingested, it will irrigate . ..the body of man (with a life-giving
water.)” *® Needham writes:

The idea of a solid substance so finely comminuted as to be-
come an impalpable dust able to penetrate everywhere, even
through apparently impenetrable solids, caught [the Chinese]
imagination strongly. Hence the expression “bright window
dust.” . . . It was perhaps rather characteristically Chinese that
these observations did not arouse . . . any ideas of an atomist
nature. On the contrary, the poets laid their emphasis on per-
meation, penetration, and rest as opposed to the ceaseless mo-
tion. They felt that the elixirs, if made correctly ... must
consist of such subtle matter, able to pass like incense smoke.
.. . Here we touch upon something very deep-seated in Chi-
nese medieval natural philosophy . . . the assimilation of matter,
almost infinitely divided, to chii, pneuma, vapour or emanation.'
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Luminescent emanations caught the Chinese imagination. The an-
cient and medieval Chinese described static electricity, phosphorescent
organisms, marsh lights, and fluorspar (which glowed when under fric-
tion). Needham suggests that artificial phosphors were manufactured by
the Sung Chinese. An eleventh-century manuscript describes a painting
of an ox “which during the day appeared to be eating grass outside a
pen, but at night seemed to be lying down inside it.” The Sung al-
chemist Lu Tsan-Ning explained that secretions from a certain oyster
could be mixed with paint to create colors that only appeared in dark-
ness. This story would seem fantastic except that in 1768 John Canton
described producing a calcium sulfide phosphor from oyster shells
(“Canton’s phosphorus”). When mixed with other chemicals, the phos-
phor could create luminance of different colors."”

Marsh lights (ignes fatuis), the glowing lights seen over swamps and
decayed matter, were associated by the Chinese with blood and death.
(Perhaps the notion of Ch’i as the life emanation in human blood and
also as vapor informed this association. The Aztecs and Indians had a
similar connection of blood with energy.) The second-century A.p. Po
Wu Chih (Record of the Investigation of Things) describes marsh lights
and suggests a connection with electricity:

These lights stick to the ground and to shrubs and trees like
dew . .. wayfarers come into contact with them sometimes;
then they cling to their bodies and become luminous. When
wiped away with the hand, they divide into innumerable other
lights, giving out a soft crackling noise, as of peas being
roasted. . . .

Nowadays it happens that when people are combing their
hair, or when dressing and undressing, such lights follow the
comb, or appear at the buttons when they are done up or un-
done, accompanied likewise by a crackling sound."

Ideas around sound were also based in wave concepts. During the
first and second centuries A.D., Wang Chong, in Discourses Weighed in the
Balance, compared the propagation of sound to water waves:
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A fish one chi [24 centimeters] in length moving in water will
cause the water on either side to vibrate. The central area of vi-
bration would be only a few chi in diameter. . . . The extent of
the vibration would reach no farther than a hundred steps, and
at a distance of one i [1,800 chi] all would be quiet . . . because
the distance is too great. A man producing sound by manipulat-
ing air is like a fish, the change of air is like that of water.”

Wang Chong does not specifically state above that sound is a wave. That
can be inferred or not, depending on the reader.

Much later, Ming dynasty (1368—1644) scholar Song Yingxing as-
serted: “Air has substance. . . . When an arrow flies through it, sound is
produced by striking it; when the string of a musical instrument is
plucked, sound is produced by vibration. . . . When one throws a stone
into water . . . where the stone drops is no larger than a fist, but waves
will spread outwards circularly. The vibration of air is the same.”*

Chinese application and understanding of acoustics is also associ-
ated with vibration and wave motion. A set of sixty-four bronze bells
from the fifth century B.c. illustrates Chinese technology related to
acoustics.”’ From a physics standpoint, most interesting is that each bell
had two “strike points” voicing two notes, which required an asymmet-
rical mass. According to historian Cheng-Yih Chen:

The use of asymmetry in mass distribution to obtain an extra
mode of vibration . . . requires rather advanced acoustic analy-
sis so that each mode can be individually excited without ap-
preciable interference. . . . Only when the nodal lines of one of
the vibrational patterns fall along the antinodal lines of the
other can the two modes of vibration . . . be individually ex-
cited to produce their corresponding resonance frequencies
without interference.”

Thus the “front strike point” is situated exactly where the lower vibra-
tional antinode meets the higher vibrational mode, while the side notes

are the reverse.?
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Theoretical explorations came later. (Perhaps listening to the beats
caused by notes not exactly in tune led to the concept of vibration.) In
any case, the Chinese recognized that slow beats of vibration were re-
lated to low notes and fast beats to higher notes.* Resonance is de-
scribed as early as the fourth or third century B.c., when musicians
noted how if one string of a zither was struck, other strings of the same
notes would also vibrate. In the Tang dynasty (618—907) Nianzu related
a story of a monk whose chime hanging in his room sounded without
any perceptible cause. The monk became ill from this; a visiting friend,
noting that the chime sounded when the central monastery bell rang,
cured him by filing down part of the chime. The friend’s reasoning?
The monastery bell was the cause of the chime’s sounding, and by filing
off part of the chime, the bell and chime no longer sounded at the same
frequency.”

In contrast to light and sound, Chinese advances in both optics and
mechanics were largely based on logic and deduction, rather than on
harmonic theory. Mo Zi (circa 450 B.c.) is credited with founding the
Mohist school, a logical and philosophical system with communities in
ancient China from the fourth through the second centuries B.c.”* The
Mohists compiled the Mo Jing, a work of canons and explanations,
which covered topics from mechanics and optics to logic.”

Mo Zi, or the people who followed him, experimented on light and
concluded that it traveled in straight lines. The Mobhists created a pin-
hole upside-down image using a wall with a small hole in it. The inte-
rior room was dark; the outside was in sunlight, with the hole in line
with the sun. The Mohists found that a person standing between the
hole and the sun cast an inverted shadow on the back wall of the inte-
rior room, thus predating by sixteen hundred years the camera obscura
(“dark room”) of thirteenth-century Europe. Mohists analyzed the
phenomenon this way: because the person’s head blocked sunlight
coming from above, the shadow of the head appeared below, and be-
cause the foot blocked sun coming from a low angle, the foot’s shadow
appeared above.?

Mohists also observed the shadow of flying birds and applied the
idea of straight lines to this. In any instant, the bird’s shadow is not mov-
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ing, because the bird’s body blocks the rays of light. Therefore the
“moving shadow” was really a succession of still shadows.” In a precur-
sor to understanding diffuse and direct sunlight, they suggested that
shadows resulted from the “absence of light.” Partial shade resulted from
several sources of light, where light from one source strikes an object
and is blocked, while light from another source passes the object and
partially illuminates the shade.*

The Mohists explored how shadows change in size, how images are
formed on a flat mirror, and how a concave mirror creates both inverted
and upright images, while a convex mirror creates only an upright
image. Using spherical mirrors, they discovered that an object placed at
the center of the sphere will merge with its image. They thus under-
stood the difference between a mirror’s center and its focal point (called
“central fire”).” Fifteen hundred years later, Jin Dynasty writer Zhang
Hua used a piece of spherical ice to focus sunlight and set fire to dried
leaves.” The Mohist canon vanished in the fourth century A.p. and was
not in wide circulation again until the eighteenth century.®

The Sung dynasty scientist Shen Gua (a.p. 1033—1097) studied im-
ages in relation to concave mirrors. Whether he knew of the earlier
Mohist work is not clear. “The burning mirror,” he wrote, “reflects light
so as to form inverted images. This is due to a focal point being between
the object and the mirror. . . . It is analogous to rowing where an oar
moves against the oarlock.”* Later Shen Gua noted, “The oarlock con-
stitutes a kind of ‘pivot point’ (. . . literally ‘waist’). Such opposite mo-
tion can also be observed as follows: when one’s hand moves upward,
the pinhole image moves downward and vice versa.” *

In the thirteenth century, the Taoist Zhao Youqin pursued the pin-
hole experiments. His experiment was done in a room with two circu-
lar wells, one four feet deep by four feet in diameter, the other eight feet
deep by four feet in diameter. A four-foot-high table was placed in the
deeper well, bringing the well’s effective bottom to 4 feet.

A thousand candles were placed on each surface and the top of each
well was covered, except for a single centered hole. Suspended from the
room’s ceiling was a movable screen, on which the light from the can-
dles was projected. The separate wells allowed a number of variables to
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be studied—such as the distance between the light and the screen, or
between the light and the object—while the stability of the candles in
the well and the source of egress remained steady. Different sized tables
could be placed in the wells to vary the distance from the cover.*

Zhao discovered that a small pinhole resulted in an inverse image
shaped like the light source, regardless of the pinhole’s actual shape,
while a sufficiently large hole produced an image that was not inverse
and also followed the shape of the hole. He also found that the bright-
ness of the projected candles on the screen decreased as the size of the
hole decreased; the brightness also decreased as the distance between
the candles and the screen increased.”

A twentieth-century scholar, Jing-Guang Wang, wrote that Zhao’s
“basic idea was: 1) there exists a light spot on the screen corresponding
to a single candle; 2) if one thousand candles are burning there should
exist one thousand images. These images may overlap. The whole image
changes as the spacing of the candles change. It is evident that Zhao un-
derstood the principle of the rectilinear propagation and superposition
of light””*

AncienT CHINESE technology used the concept of the center of gravity,
as reflected in the Chin dynasty (221-207 B.c.). Water pots were weighted
to stand upright when full of water but to fall over when empty.

Force is suggested as a concept in the Mo Jing, coming from people’s
experience with work, though the sinologist A. C. Graham claims the
Mohists thought only in terms of “weights and pulls,” not in forces.”
The Mo Jing ties mechanical force in with human strength, calling
the body xing, or “shape,” while action done by the body, such as lifting,
is called fen, or “exertion.” “Force,” according to the Mo Jing, “is that
which causes the ‘shape’to ‘exert” ”*

The Chinese saw physics in terms of balance. What Dai Nianzu, a
modern scholar of Chinese technology, calls the “moment of force” is
also discussed in relation to weights on a balance beam. As in optics, the
Mohists seem interested in the central point, where an object would be
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in balance with a weight. Hundreds of years before Archimedes, they re-
alized that the distances between the fulcrum and both the object and
the weight were critical in maintaining balance. They called the dis-
tance between the fulcrum and the object ben, and the distance be-
tween the fulcrum and the sliding weight biao, corresponding to current
concepts of the arm of load and the arm of effort.*

“If the mass is heavier than the sliding weight yet the level is hori-
zontally balanced, this is because ben is shorter than biao. If now at both
points of suspension the same weight is added, the biao side must go
down.”** When one side went down, it was because of both the weight
and the ch’uan, a term roughly correlating with the “power, leverage,
[and] positional advantage of a [human] ruler.”

The Mo Jing makes tentative analyses into stress and deformation of
materials. Mohists noted that a wooden beam that did not bend under a
load was strong enough to bear its load, and compared that to a hori-
zontal rope bending under its own weight: “Ropes in that position are
very poor . . . in withstanding a perpendicular load,” they concluded.
Mohists explored the reasons behind this in analyzing hair. How easily
a hair breaks depends, says Nianzu, “on whether the cohesive substance
in a hair is homogeneously distributed along the whole length, and
whether the load is evenly born . . . without a weak link when the hair
is taut.”’* Graham says that the bending of a horizontal object depends
both on weight and on its ch’i, here meaning the “full extension of the
weight-bearer.”

According to Mohist thought, a vertical object is supported either
by suspension or by resting on something below: “Pillaring, supporting
from below, is explained by the principle . . . that all weight tends verti-
cally downward. ‘Pillaring’ in statics is the counterpart of ch’ieh ‘pulling
up, suspending, just as the counterpart in dynamics is shou ‘receiving
from below, ” says Graham.* The canon illustrates this with:

Let a square stone be one foot from the ground, put stones un-

derneath it, hang a thread above it. . . . That the square stone
does not fall is because it is supported from below. Attach the
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thread, get rid of the stones: that it does not fall is because it is
suspended from above. When the thread snaps it is because of
the pull of the square stone. Without any alteration except the

substitution of a name, it is a case of “receiving from below.” ¥

Modern physicists also think in such terms. For example, contem-
porary physicists have asked the question, If gravity pulls us toward the
center of the earth, what keeps us from going there? The answer is elec-
tromagnetism, the primary force that holds matter together and resists
gravitation. In fact, physicists have calculated how high mountains can
be on a planet with the earth’s gravity. (The not too surprising answer:
about as high as the Himalayas, the highest range on earth.)*®

Early concepts of floating predate Archimedes. The Mohists state,
“When a very large body floats on water with only a very small part of
it submerged, that means the constant equilibrium between the sub-
merged part and the whole body has already been established.” They do
not take this idea further to the displacement of water, however,” a re-
lated concept developed by Archimedes (Archimedes’ principle, third
century B.C.), supposedly while he was immersed in a bath, and leading
to his running naked through the streets of ancient Greece screaming,
“Eureka!”

More than two thousand years before Newton, the Mohists tackled
the laws of motion. They noticed that “when a cart is moving forward
drawn by a horse but the horse is suddenly halted, there is a tendency for
the cart itself to keep moving forward.”* They took this further: “The
cessation of motion is due to the opposing force. . . . If there is no op-
posing force . . . the motion will never stop. This is as true as that an ox
is not a horse.”* Today, Newton’s first law of motion is generally stated,
“Every body continues in its state of rest, or of uniform motion in a
straight line, unless it is compelled to change that state by forces im-
pressed upon it.”*

The difference in Newton’s statement is that he begins with a “state
of rest” as a default before going on to motion. In a sense, we can infer
that the Mohists are a bit more modern, beginning with motion as a de-
fault. Particle physicists today see the universe as roiling in motion, not
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static. In any case, it is not obvious to the earthbound observer that a
object in motion will remain in motion unless acted upon. It is not
our experience with oxcarts or automobiles, in which one must keep
whipping the animals or pressing down on the accelerator to maintain
speed. The Mohists had to imagine the universe unobfuscated by air re-
sistance and mechanical friction, as Galileo, Newton, and Descartes did.
How they envisioned this from their earthbound experiments is not
recorded. (As Park points out, however, neither the Mohists nor Galileo
nor Descartes came up with Newton’s second law of motion: force
equals mass times acceleration, or F = ma.)®

The Mohists also bent their minds toward analyzing time and space.
Without much elaboration, the Mo Jing sets down theories of space,
infinity, motion, time, duration, and relativity. Here are some short
excerpts:

Canon: Space includes all the different places.
ExposiTioN: East, west, south, and north are all enclosed in
space. . . .

Canon: Outside bounded space no line can be included.
ExposITION: A plane area cannot include every line since it has
a limit. But there is no line that could not be included if the area
were unbounded. . . .

Canon: Finiteness is possible for a limited area within an un-
bounded area of space.

ExposiTioN: Finiteness signifies that the motion of the body is
restricted to a limited area of space. . . .

Canon: The boundaries of space . . . are constantly shifting.
The reason for this refers to extension-like concepts, such as
length and duration that are measurable.

ExposiTiON: Extension: the body in motion that goes through
definite length, occupies a position in the spatial universe. . . .
Space: length: that the south is opposite the north is equivalent
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to the opposition between east and west. The motion of any
body, in spite of the sun may still be measured in space (length)

and time. . . .

CaNoON: Spatial positions are names for that which is already
past. The reason for this refers to reality.

ExposiTioN: Knowing that “this” is no longer “this,” and that
“this” is no longer “here,” we still call it north and south. That is,
what is already past is regarded as if it were still present. . . .

CanNon: Duration includes all particular (different) times.
ExposiTION: Former times, the present time, the morning, and

the evening are combined together to form duration. . . .**

Mohist scholar Zhang Yinzhi seems to connect with Newton’s state-
ment that “absolute, true and mathematical time . . . of itself, and from
its own nature flows equably without regard to anything external”*

India

The Indians came closest to modern ideas of atomism, quantum
physics, and other current theories. India developed very early, enduring
atomist theories of matter. Possibly Greek atomistic thought was influ-
enced by India, via the Persian civilizations.*® The Indians lacked, how-
ever, the experimental sophistication of the ancient Chinese, medieval
Arabs, or Europeans since the Enlightenment. The Rig-Veda, dating
somewhere between 2000 and 1500 B.c., is the first Indian literature
to set down ideas resembling universal natural laws.”” Cosmic law is
connected with cosmic light, with gods, and, later, specifically with
Brahman.

Around the time of Buddha (500 B.c.), the Upanishads, written over
a period of several centuries, mentioned the concept of svabhava, de-
fined as “the inherent nature of the respective material objects,”—that
is, their unique causal efficacy, such as burning in the case of fire and
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flowing downward in the case of water.*® The Jainist thinker Bunaratna
says, “Everything that exists comes into being because of the operation
of suabhava. Thus . . . earth is transformed into a pot and not into cloth.
.. . From the threads is produced the cloth and not the pot.”

In contrast, the concept of yadrccha, or chance, had also existed from
very ancient times, although it was not widely accepted. Yadrccha im-
plied the lack of order and the randomness of causality.*” Both concepts
add up to the assertion of the Greek Democritus, uttered half a century
later: “Everything in the universe is the fruit of chance and necessity.”*

The example Democritus gave—similar to the threads of the
cloth—was the poppy. Whether the poppy seed takes root or dies is a
matter of chance, depending on whether it lands on fertile soil or a bar-
ren rock. But that it grows into a poppy and not into an olive tree is a
matter of causality. The importance of chance, or yadrccha, was rejected
by Aristotle and other ancient Greeks who came after Democritus.

The traditional Western argument is that Democritus was writing
about physics and what the Upanishads describe is metaphysics, though
the words are similar. Park sums up: “The Upanishads refer to an imagi-
nary symbolic cosmos. Democritus was talking about the way things re-
ally are or (better) might be. These are different worlds of discourse.
They cannot be compared.”’® On the other hand, neither the ancient
Indians nor Democritus derived their ideas from experiments, and in
that sense, we could dismiss both as philosophy rather than science. Or
we could be more catholic and accept that two different ancient cul-
tures came to similar conclusions about the world. Both the ancient In-
dians and the pre-Socratic Greeks came to their belief in atoms through
logic, though using different logical pathways. Democritus simply as-
sumed that there had to be atoms—uncuttable pieces of matter. Imag-
ine, he said, a magic knife, with which one can cut a wedge of cheese
into smaller and smaller bits. Can you cut forever? No, he concluded.
Eventually you come to the atom. But this is just an assumption, a good
guess. Why not cut forever? The Indians came to the same conclusion
via a different route. Take a mountain and a molehill, they said. Which
has more particles? The mountain, obViously. That means you cannot
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cut férever, that there is a finite, uncuttable particle. If the particles were
infinitesimal, the mountain and molehill would have equal numbers of
particles, and they would lose any real meaning—again, an assumption
but, in a way, more hard-minded than Democritus’s guess. And the In-
dians, unlike Democritus, displayed a rudimentary understanding of in-
finite sets.

Out of the Brahman’s unifying law and light, the Upanishads of the
seventh century B.c. developed the first early classifications of matter:
“Brahman, desiring to be many, created tejas (fire), ap (water) and ksiti
(earth), and entered into these three,” states the Chandogya Upanishad.
Later, this evolved into five elements, adding air and akasa (roughly
translatable as “space,” “ether,” or another pervasive nonmaterial entity)
to the original three.”” This predates the Greek Empedocles and his four
elements: earth, air, fire, and water (circa 460 B.C.).

The Samkhya philosophical system (sixth to fifth centuries B.C.) re-
lated each of these elements to the five senses and the qualities perceiv-
able by these senses: touch, sight, sound, taste, and odor. In this way, the
intangible and eternal universe seen through its laws became tangible in
“gross” matter. Different materials were formed by different configura-
tions of the five elements. Very modern and Western in its approach, the
Samkhya asserted that matter could not come out of nonbeing but re-
sulted from what was “potentially present,” that is “the unmanifest be-
comes manifest.” Thus it posited a perpetual transformation of matter

from potential matter:®

the material universe emanates out of prakrti
. . . the ‘rootless root of the universe. ”* As Park quips, “Sounds quite
Aristotelian.”

Samkhya philosophers saw both the external world and the internal
phenomena of the self—the source of all experience—as belonging to
“the sphere of mutation or change,” that is, the world of reality. Yet they
also developed the concept of “nonbeing,” what the Buddhists called
maya: llusion. According to S. N. Dasgupta, an Indian natural scientist
and philosopher, “Only the inmost sheath of the self as the ‘supremely
2365

blissful’ began to be held as the one unchanging reality:
The maya, under Buddhist philosophy, gives illusory weight to the
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universe. In this and other ways, the maya is similar to the Higgs field,an
all-pervasive, invisible field that fills the universe like an ether, or so
some contemporary particle physicists propose. They are confused by
the various weights of particles in the standard model. There seems to
be no formula that generates these masses. In fact, why should mass exist
atall? A possible solution is the Higgs field, which imparts more weight
to some particles than others, making them appear heavy. The particle
responsible for this field, the Higgs boson, is still being sought in accel-
erator laboratories today.

THe INDIANS EXPLAINED the visible universe in terms of atoms, the
smallest unit of matter that could not be created or destroyed. Three
fundamental philosophical systems are important in Indian atomism:
the Nyaya-Vaisesika, the Jainist, and the Buddhist schools. Although In-
dian atomism (developed around 600 B.c.) seems to have evolved about
the same time as Greek atomism (roughly 430 B.c.), Indian atomism
endured as an accepted concept straight through the Middle Ages.
Whether Indian culture influenced Greek or vice versa, or whether
both evolved independently is a matter of dispute.®

The orthodox Nyaya-Vaisesika school developed India’s most en-
during and established atomic theory. In (600 B.c.) Kanada founded the
Vaisesika school; he was one of the (or perhaps the) earliest exponents of
atomism. (His name, which means “one who eats grain,” is apparently a
reference to his atomic theory.) The earliest actual text appears in the
first century A.D., called the Vaisesika-sutra of Kanada.® It describes a
universe in continual change and posits a theory of causation that asserts
that cause and effect are different, yet connected. A connection is made
between the whole and its parts: on one hand the Nyaya-Vaisesika
school said that the whole has an existence of its own and does not exist
as separate parts—almost a force or wave concept of matter—and on
the other hand it said that when the whole disintegrates, the parts con-
tinue with their own discrete existence.® This reasoning is counterintu~
itive, but then so is much of quantum theory today.
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The ancient Indians reasoned that moving atoms had the potential
to combine with other atoms of the same class, forming a dyad, also be-
lieved to be sizeless. Yet the concept of “two” itself gave the dyad a mag-
nitude, albeit an invisible one. To be perceptible, a triad had to form,
composed of three dyads.” There are vague parallels here to quark the-
ory, in which three quarks combine to form protons, neutrons, and
other hadrons.

The Jainist system reflects some modern atomistic thinking. (Jain-
ism is an offshoot of Hinduism resembling Buddhism.) Jainist sutras
from 100 to 200 B.c. discuss the nature of matter and how it combines.
(Much of what the English chemist John Dalton stated in his atomic
theory in 1803 is a reiteration of basic Jainist ideas.)”

Jainist thinkers rejected the notion of a whole-part duality and as-
serted that the atom is both the cause and the effect of matter, rather
than being the effect, as believed by the Nyaya-Vaisesika school. To Jain-
ists, the universe had no beginning or end,” and substances were eternal
and unchanging.”” The Tattvarthadhigama Sutra (c. 150 B.c.—a.D. 100),
describes substances that undergo modifications “while maintaining
their primary nature. An ingot of gold can be made into a ring or neck-
lace without losing its goldness. . . . The possession of attributes [un-
changeable] and modifications [changeable] is characteristic for being
called a substance.”””

Formless substances include dharma (medium of motion, as opposed
to the more modern definition of “righteousness”), adharm (medium of
rest), akasa (space), kala (time), and jiva (soul). But substances with form,
pudgala, dealt with the world of matter and energy and included anu
(atom) and skandha (molecule).” Substances with form took up space
and, as in other Indian philosophies, had the attributes of “taste, color,
touch, and smell.” According to Jain, “the touch can be experienced by
hardness, density, temperature, and crystalline or electrical characters.”””

The Jainist atom, the smallest indivisible unit of matter, is discrete
and porous, thus having a capacity of extension and condensation.”’
(Dalton later claimed that the atom was “hard and indivisible.”)” The
atom was a point in space (or “field”) and ephemeral in relation to
time;” or, as Mrinal Kanti Gangopadhya, professor of Sanskrit at Cal-
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cutta University, puts it, each atom occupied one point (pradesa) of
space.” This theory appears inconsistent. How can something be both a
“point” and “porous?” Where do you put the holes in a point?

Nevertheless, there are similarities between Jainist atoms and today’s
elementary particles, which are pointlike particles, with zero radius, that
create fields. “Points with a pull” is another way of thinking of quarks,
electrons, and the like. In this way, the Jainist atomists were echoed by
Roger Joseph Boscovich. Boscovich, a Dalmatian geometer, put forth
the proposition in 1760 that particles had no size; they are geometrical
“points of force” that in turn create fields of force. This got rid of the old
European concept of “spooky action at a distance” that allowed one
particle to affect another.® Boscovich was pretty much ignored. In the
nineteenth century, the English experimenter Michael Faraday, building
on Boscovich, elaborated on the whole concept of “field,” an idea that
pervades modern physics.

The 1dea of particles being geometrical points with no dimension is
very Indian, and is still counterintuitive to us today. How can you have a
building block of matter that has no radius? How can something be
nothing? The proof is in the experiments. You can’t measure a zero ra-
dius and actually get it down to zero, but as equipment has improved,
the measurement of the electron has shrunk and shrunk. In 1990, the
electron was measured at less than .000000000000000001 inches. That’s
as good a zero as physics can supply. Despite this, the electron has mass,
electric charge, something called spin. The physicist Leon Lederman
compares the electron to the Cheshire Cat. Slowly it disappears until all
that’s left is its smile: spin, charge, and mass.®

Indian theorists posited that atoms combine to form aggregates,
which then make up all manifestations of physical matter.”” The Jainist
atom came in two opposing kinds—"snighda, positive or soft, and ruk-
sha, negative or rough”—which combined, an idea foreshadowing the
modern idea of ionic bonding.*

Molecules are defined as “aggregates of atoms capable of existing in
gross form and undergoing the process of association and dissociation.”
As the Jainist atoms vibrated, different kinds of molecules took up the
vibration in differing intensities.* The concept of vibration is modern
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as well. From each molecule emanates one or more distinctive wave-
lengths of radiation, forms of vibration. Spectroscopy can be used today
to identify chemicals by these vibrations.

There were various classes of molecules in ancient India, the sim-
plest carrying the quaint description “finest molecule formed of two
anus.” The molecules formed of two anus were the Jainist concept of the
simplest chemical bonding of two atoms, and reflect how atoms of oxy-
gen, nitrogen, and many other elements combine in pairs.*

Or 1HE FOoUR Buddhist philosophies, only two, the Vaibhasika and
Sautrantika schools, embraced the reality of the external world. (The
later Yoga and Madhyamika schools, collectively called Mahayana,
taught that all reality is illusion.) Vaibhasika and Sautrantika both de-
fined an atom as the smallest unit perceptible to the senses. The Bud-
dhists described atoms as “indivisible, unanalyzable, invisible, inaudible,
untestable, and intangible.” The one word inconsistent with modern
scientific thought is “untestable.” As Park comments, “This word gives
the whole show away. It is all talk, no experience.” On the other hand,
today we consider superstring theory, a so-called Theory of Everything
promoted by some theoretical physicists, to be scientific despite the fact
it is presently untestable.” (String theory would require a particle accel-
erator ten light-years in diameter to verify it.)

However, and perhaps more relevant to modern physics, the Bud-
dhist atom was seen as transitory, continually going through phase
changes.® Says science historian D. M. Bose, the Buddhist atom was
more of a force or energy present in all matter—that is, an “earthly
atom-force of repulsion.” This tied in with Buddhist beliefs that all ex-
istence is momentary, and stable matter an illusion (I quote here a mod-
ern source, B. V. Subbarayappa, not an ancient source):

What is ultimately real is instantaneous being. As things have

momentary existence, i.e., they disappear as soon as they appear,
the Buddhists do not consider motion with reference to matter
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at all. But as Santiraksita says, “The essence of reality is motion.
Reality is indeed kinetic . . . the interdependence of the mo-
ments following one another, evokes the illusion of stability of
duration, but they are forces . . . flashing into existence without

any real enduring substance.”*

The Mahayana doctrine of sunyata (emptiness) also tied in with this,
conceiving of a true void as the foundation of all existence. (Mahayana
is one of the two great schools of Buddhism, the other being Hinayana.
The Buddhist sage Nagarjuna suggested that the void lies at the end and
beginning of all physical matter, which arises from emptiness and re-
turns to it.* The Madhyamika compared reality to a swatch of cloth,
which from a distance appears solid but on close inspection reveals only
a loose assemblage of threads. In the twentieth century Western physi-
cists discovered quantum reality. The “solid” table that supports our din-
ner plates is not solid at all, atoms being composed mostly of empty
space, the interaction of particles in constant violent motion providing

the illusion of stability and solidity.

IN CONTRAST to atomic theory, the Indians conceived of an etheric field
permeating the known universe. John Maxson Stillman, a scholar of In-
dian alchemy, describes it as “infinite in extent, continuous, and eternal.
It cannot be apprehended by the senses. . . . It is also described by cer-
tain authorities as . . . occupying the same space that is occupied by the
various forms of matter.”* To make the physics of their eras to work out
properly, Newton and James Clerk Maxwell also posited a mysterious,
invisible ether that pervaded all of space. It turned out not to exist.

In 600 B.c. Kanada applied his logic to light and concluded that light
and heat are two forms of the same substance: “Light is coloured, and il-
lumines other substances; and to the feel is hot: which is its distinguish-
ing quality. It is defined as a substance hot to the feel.” Like other
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substances, light existed both in an actual and a potential state, proved to
Kanada by its associated sensory qualities. He made observations such as
this: “The heat of hot water is felt but not seen; moonshine is seen, but
not felt.”*

Kanada also asserted that light had both a holistic and a particulate
nature: “[Light] is eternal, as atoms; not so, as aggregates.” This statement
reflected the whole-part duality of the Nyaya-Vaisesika school: that in
atomic “subtle” form, light would be sizeless and eternal, whereas in
molecular “gross” form, it would be temporary.” He went on to say,
“The mote, which is seen in a sunbeam, is the smallest perceptible quan-
tity. Being a substance and an effect, it must be composed of what is less
than itself; and this likewise is a substance and an effect; for the compo-
nent part of a substance that has magnitude must be an effect. This again
must be composed of what is smaller; and that smaller thing is an atom.”
Today, of course, we refer routinely to the wave-particle duality of light.
It behaves both “holistically,” continuously, as radiation (waves) and in
quantized form, as photons.

The Mlddle East: Persia

The traditions of ancient Zoroastrianism and, later, Manichaeanism
provide an important link between concepts of light and order from
India on one side and those of ancient Egypt and Greece on the other.
According to the historian Jacques Duchesne-Guillemin, writing in
the 1960s, early Zoroastrianism was rooted in the philosophy of the
sixteenth-century B.C. Aryans, who at various times occupied modern-
day Iran, Pakistan, and Turkestan and who swept into India as the Vedic
Aryans. More recent scholars think this connection is unclear but do
not dispute that both cultures arose from Indo-Europeans originating
in central Asia. Zoroastrianism became the official religion of Persia in
the third century A.D.” Manichaeanism arose from the teachings of
Manes, a Persian in third-century Baghdad, at a time when Christianity
was on the rise.

Zoroastrianism focused on the duality of light and dark, pitching
Ahura Mazda (Mithra), the source of light, truth, and goodness, against
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his twin, Angra Mainyu (Ahriman), the source of darkness and evil.
Both were accompanied by a pantheon of deities and angelic forces.

At first, Ahura Mazda was a creator god incorporating both duali-
ties. All powers of order and creation, and of chaos and destruction, em-
anated from him. In this way, he was the basic physical forces of the
universe personified. One very ancient manifestation of Ahura Mazda is
Asha (Arta), a word derived from the Indian rta, or cosmic order. In
Zoroastrianism, Asha is both truth and natural order.” Yet just as the In-
dian rfa was manifested by light, so Zoroastrian texts state that “Asha
filled the space with lights.”** Asha was also associated with fire.

Later, Ahura Mazda was associated solely with the powers of light.
Inscriptions carved in rock during the time of the Persian king Darius
(522486 B.C.) show Ahura Mazda arising from the Egyptian winged
solar disk, along with symbols for the moon. The Egyptian influence
apparently came via the nearby Hittite and Assyrian civilizations. Hence
the solar and lunar Eye of Horus influenced Zoroastrian theology.”

In Zoroastrianism’s offshoot Manichaeanism, light was a transcen-
dental quality, a concept echoing the ideas of Plato and the Neoplaton-
ists. Plotinus in Egypt (third century A.D.) believed that goodness was
like a field, suffusing all of the universe from the supreme deity in “a sort
of radiation like the sun’s,” says David Park, author of The Fire Within the
Eye, a definitive history of light.* Plato’s “good,” in The Republic, is
more than just goodness. It is the Idea that actualizes all the other Ideas.
Manes (A.p. 215-275) probably read Plotinus (there were plenty of
Neoplatonists around),” and his theology was similar. God was good-
ness. God was light, literally, just as the Devil was darkness. Personified
deities and physical forces seemed to fuse in Manes’s thinking. Frankly,
God’s force had no effect on the Devil’s because his powers were “con-
templative” (thought, intelligence, etc.), whereas the Devil’s were ener-
getic (fire, wind, etc.). But God made agents to carry out his work:
Buddha, Zoroaster, Jesus, to name a few. Jesus was made of light except
for a small bit of earth that allowed him to suffer,” thus linking light to
matter.

The essential struggle between Ahura Mazda and his evil twin,
Angra Mainyu, as well as Manes’s spin on this story, suggests a theory of
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matter and energy. Ahura Mazda first made the world to be pure light;
later a second world came into being that was material in nature. The
material world was conquered by Angra Mainyu, which caused the
pure light of existence to be mixed with darkness. Thus, according to
Ambherst College physicist Arthur Zajonc, “All physical existence be-
came a mixture of good and evil, light and darkness.”” For example,
wood was composed of light and dark, since one could release the light
from its physical bonds by burning.'® In addition, rubbing two sticks to-
gether would yield a spark.'”

Matter was composed following classic schemes of Chinese, Indian,
and Greek thinking, including fire, earth, water,'”” and metal (power).'®
But of these, fire was paramount. Zoroastrian priests made offerings of
fuel, incense, and fat to their holy fires.'” The fires represented purifying
agents, by which matter could return to its spiritual (light) form, as ani-
mal fat is rendered pure by melting.'”

An interesting aspect of Manichaeanism is that it is diametrically
opposed to Aristotelian ideas of light and matter. Light has more of a
corpuscular nature in Manichaeanism and is more interchangeable with
matter. For example, in Manichaeanism, all matter once again belonged
to the “Earth of Darkness.” Matter also contained tiny bits of divine
light because First Man, made of pure light, was overcome by the Devil,
thereby losing most of his light to physical matter. Manes’s light seems
more atomized, and less of a field concept. To ensure that light remained
trapped on earth, the Devil created Adam and Eve, each with their bit of
holy light. When they procreated, holy light was dispersed in the cor-
rupted matter of their offspring. According to Park, in trying to recover
this light, God created the current world:

containing the sun and moon as well as the Earth of Darkness
with its small quantity of stolen light. Matter craves soul to
make it alive. . . . This soul is not like First Man, since its ele-
ments are corrupted by their connection with matter, and the
bonding of light into matter makes its recovery and purification
more difficult.'®
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The sun and moon were bits of pure light; next came the stars, made
of partially corrupted light; the rest of First Man’s light was completely
imprisoned in earthly matter.'” Mani taught that priests could free this
light by their actions. The light in food they ate could be released into
their bodies, which they then returned to heaven after death. Specifi-
cally, the priests’ spirits carried the stored light to the moon, which
gradually grew larger until, when full, it beamed all the saved light back
to the sun.'® Okay, the astronomy here is all wrong, but the concept of
transferring matter to energy in the body was right on.

This was an elaborate scheme, but in the thirteenth century, Robert
Grosseteste wrote in De luce, “Light . . . was the first form of corporeity,
and from it all else followed. Multiplying itself from a single point infi-
nitely and equally . . . light formed a sphere and together with this ac-
tion arose matter.”'” Light, to Grosseteste, was matter condensed, and
light could multiply.

Park feels that one shouldn’t compare Manichaeanism and Aris-
totelian concepts of light because the first was meant to be allegorical
and the latter was meant to be taken literally.""* We have seen similar de-
velopments in modern physics. The contemporary theorist Murray
Gell-Mann posited the concept of the quark to make sense of all the
hadrons (protonlike particles) that had been discovered in the 1950s.
Gell-Mann figured out that they could all be built up from basic parti-
cles which he called quarks. He did not think these quarks were real,
however, but rather bookkeeping devices. Quarks were soon found in
accelerator experiments, and few doubt their existence today, despite

their having been conceived as incorporeal mathematical concepts.

Islam

In A.D. 786, Haroun al-Rashid, the caliph of Baghdad, set the stage for
Arabic transmission of classical works. Highly educated, he scoured the
known world for Greek and Syriac texts to translate into Arabic, at a
time, says David Park, when “Charlemagne and his peers were trying to
learn to write their names.” "' In a sense, the Arabs’ fascination with the
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Greeks may have been their undoing, for they partially absorbed and
transmitted ideas that were to be abandoned by Europeans during the
Enlightenment. (Which is not to say that the Europeans didn’t first ab-
sorb ancient Greek ideas before moving on.)'"

In Baghdad, Yaqub ibn Ishaq al-Kindi (a.p. 801-866), perhaps
Islam’s first philosopher, benefited from al-Rashid’s efforts. In On First
Philosophy, al-Kindi drew on both Plato and Aristotle to address cause
and effect, matter, motion, and time. According to Alfred L. Ivry,'" who
has compared the philosophies of al-Kindi and Aristotle, al-Kindi be-
lieved that the qualities of “unity” and “plurality” existed in all matter,
though unity was not essential but “accidental,” that is, was subject
to chance and unpredictability. He therefore posited a “Unique True
One” who caused all matter and the earth to be created out of nothing
through a process of emanation. Ivry says the concept of emanation was
rooted in Plato, while the “True One” was rooted in Aristotle’s “true
principles, though clearly also connected with Allah””"* In fact, both
concepts were associated more with Plotinus.'*

Al-Kindi was fascinated with emanation, from which he developed
a theory of rays. Borrowing Aristotle’s belief that all movement is gen-
erated by the motion of the heavenly spheres, he suggested that the
force behind the spheres came from rays. He explored both light and
“visual” rays, an explanation 