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Preface

When in the spring of 2005 I started planning the present book, I had two aims
in mind. First, I wanted to unify the efforts of many philosophers who were
making contributions to a philosophy of mathematics informed by a desire to
account for many central aspects of mathematical practice that, by and large,
had been ignored by previous philosophers and logicians. Second, I wished to
produce a book that would be useful to a large segment of the community,
from interested undergraduates to specialists. I like to think that both goals
have been met.

Concerning the first aim, I consider the book to provide a representative
sample of the best work that is being produced in this area. The eight
topics selected for inclusion encompass much of contemporary philosophical
reflection on key aspects of mathematical practice. An overview of the topics
is given in my introduction to the volume.

The second goal dictated the organization of the book and my general
introduction to it. Each topic is discussed in an introductory chapter and in
a research article in the very same area. The rationale for this division is that
I conceive the book both as a pedagogical tool and as a first-rate research
contribution. Thus, the aim of the introductory chapters is to provide a general
and accessible overview of an area of research. I hope that, in addition to the
experts, these will be useful to undergraduates as well as to non-specialists. The
research papers obviously have the aim of pushing the field forwards.

As for the introduction to the book, my aim was to provide the context
out of which, and sometimes against which, most of the contributions to the
volume have originated. Once again, the idea was to give a fair account of the
landscape that could be useful also, but not only, to the non-initiated. Each
author has been in charge of writing both the introduction and the research
paper to the area that was commissioned from him. The only exception is the
subject area of ‘purity of methods’ where two specialists on the topic teamed
up, Mic Detlefsen and Michael Hallett. In addition, Johannes Hafner has been
brought in as co-author of the research paper on explanation jointly written
with me.

I would like to thank all the contributors for their splendid work. Not only
did they believe in the project from the very start and accept enthusiastically
my invitation to participate in it, but they also performed double duties
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(introduction and research paper). That a project of this size could be brought
to completion within two years from its inception is a testimony to their
energy, enthusiasm, and commitment.

I am also very grateful to Peter Momtchiloff, editor at Oxford University
Press, for having believed in the project from the very beginning, for having
encouraged me to submit it to OUP, and for having followed its progress all
along.

The production of the manuscript was the work of Fabrizio Cariani, a
graduate student in the Group in Logic and the Methodology of Science at
U.C. Berkeley. With great patience and expertise he turned a set of separate
essays (some with lots of diagrams) in different formats into a beautiful and
uniform LaTex document. I thank him for his invaluable help. His work was
supported by a Faculty Research Grant at U.C. Berkeley.

Other individual acknowledgements will be given after the individual
contributions. But I would like to take advantage of my position as editor
of the volume to thank my wife, Elena Russo, for her loving patience and
support throughout the project.

Berkeley, 17 May 2007
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Introduction

The essays contained in this volume have the ambitious aim of bringing
some fresh air to the philosophy of mathematics. Contemporary philosophy of
mathematics offers us an embarrassment of riches. Anyone even partially familiar
with it is certainly aware of the recent work on neo-logicism, nominalism,
indispensability arguments, structuralism, and so on. Much of this work can be
seen as an attempt to address a set of epistemological and ontological problems
that were raised with great lucidity in two classic articles by Paul Benacerraf.
Benacerraf’s articles have been rightly quite influential, but their influence has
also had the unwelcome consequence of crowding other important topics off
the table. In particular, the agenda set by Benacerraf’s writings for philosophy
of mathematics was that of explaining how, if there are abstract objects, we
could have access to them. And this, by and large, has been the problem
that philosophers of mathematics have been pursuing for the last fifty years.
Another consequence of the way in which the discussion has been framed is
that no particular attention to mathematical practice seemed to be required
to be an epistemologist of mathematics. After all, the issue of abstract objects
confronts us already at the most elementary levels of arithmetic, geometry,
and set theory. It would seem that paying attention to other branches of
mathematics is irrelevant for solving the key problems of the discipline. This
engendered an extremely narrow view of mathematical epistemology within
mainstream philosophy of mathematics, due partly to the over-emphasis on
ontological questions.

The authors in this collection believe that the single-minded focus on the
problem of ‘access’ has reduced the epistemology of mathematics to a torso.
They believe that the epistemology of mathematics needs to be extended
well beyond its present confines to address epistemological issues having to
do with fruitfulness, evidence, visualization, diagrammatic reasoning, under-
standing, explanation, and other aspects of mathematical epistemology which
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are orthogonal to the problem of access to ‘abstract objects’. Conversely,
the ontology of mathematics could also benefit from a closer look at how
interesting ontological issues emerge both in connection to some of the epis-
temological problems mentioned above (for instance, issues concerning the
existence of ‘natural kinds’ in mathematics) and from mathematical prac-
tice itself (issues of individuation of objects and structuralism in category
theory).

The contributions presented in this book are thus joined by the shared
belief that attention to mathematical practice is a necessary condition for a
renewal of the philosophy of mathematics. We are not simply proposing
new topics for investigation but are also making the claim that these topics
cannot be effectively addressed without extending the range of mathematical
practice one needs to look at when engaged in this kind of philosophical
work. Certain philosophical problems become salient only when the appro-
priate area of mathematics is taken into consideration. For instance, geometry,
knot theory, and algebraic topology are bound to awaken interest in (and
philosophical puzzlement about) the issue of diagrammatic reasoning and
visualization, whereas other areas of mathematics, say elementary number
theory, might have much less to offer in this direction. In addition, for
theorizing about structures in philosophy of mathematics it seems wise to
go beyond elementary algebra and take a good look at what is happen-
ing in advanced areas, such as cohomology, where ‘structural’ reasoning is
pervasive. Finally, certain areas of mathematics can actually provide the phil-
osophy of mathematics with useful tools for addressing important philosophical
problems.

There is an interesting analogy to be drawn here with the philosophy of the
natural sciences, which has flourished under the combined influence of both
general methodology and classical metaphysical questions (realism vs. anti-
realism, space, time, causation, etc.) interacting with detailed case studies in the
special sciences (physics, biology, chemistry, etc.). Revealing case studies have
been both historical (studies of Einstein’s relativity, Maxwell’s electromagnetic
theory, statistical mechanics, etc.) and contemporary (examinations of the
frontiers of quantum field theory, etc.). By contrast, with few exceptions,
philosophy of mathematics has developed without the corresponding detailed
case studies.

In calling for renewed attention to mathematical practice, we are the
inheritors of several traditions of work in philosophy of mathematics. In the
rest of this introduction, I will describe those traditions and the extent to which
we differ from them.
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1 Two traditions

Many of the philosophical directions of work mentioned at the outset (neo-
logicism, nominalism, structuralism, and so on) were elaborated in close
connection to the classical foundational programs in mathematics, in particular
logicism, Hilbert’s program, and intuitionism. It would not be possible to
make sense of the neo-logicism of Hale and Wright unless seen as a proposal
for overcoming the impasse into which the original Fregean logicist program
fell as a consequence of Russell’s discovery of the paradoxes. It would be even
harder to understand Dummett’s anti-realism without appropriate knowledge
of intuitionism as a foundational position. Obviously, it would take more
space than I have to trace here the sort of genealogy I have in mind; but in
a way it would also be useless. For it cannot be disputed that already in the
1960s, first with Lakatos and later through a group of ‘maverick’ philosophers
of mathematics (Kitcher, Tymoczko, and others),¹ a strong reaction set in
against philosophy of mathematics conceived as foundation of mathematics.
In addition to Lakatos’ work, the philosophical opposition took shape in
three books: Kitcher’s The Nature of Mathematical Knowledge (1984), Aspray and
Kitcher’s History and Philosophy of Modern Mathematics (1988) and Tymoczko’s
New Directions in the Philosophy of Mathematics (Tymoczko, 1985) (but see also
Davis and Hersh (1980) and Kline (1980) for similar perspectives coming
from mathematicians and historians). What these philosophers called for was an
analysis of mathematics that was more faithful to its historical development. The
questions that interested them were, among others: How does mathematics
grow? How are informal arguments related to formal arguments? How does the
heuristics of mathematics work and is there a sharp boundary between method
of discovery and method of justification? Evaluating the analytic philosophy
of mathematics that had emerged from the foundational programs, Aspray and
Kitcher (1988) put it this way:

Philosophy of mathematics appears to become a microcosm for the most gen-
eral and central issues in philosophy—issues in epistemology, metaphysics, and
philosophy of language—and the study of those parts of mathematics to which
philosophers of mathematics most often attend (logic, set theory, arithmetic) seems
designed to test the merits of large philosophical views about the existence of
abstract entities or the tenability of a certain picture of human knowledge. There
is surely nothing wrong with the pursuit of such investigations, irrelevant though
they may be to the concerns of mathematicians and historians of mathematics.

¹ I borrow the term ‘maverick’ from the ‘opinionated introduction’ by Aspray and Kitcher (1988).



4 paolo mancosu

Yet it is pertinent to ask whether there are not also other tasks for the philosophy
of mathematics, tasks that arise either from the current practice of mathematics or
from the history of the subject. A small number of philosophers (including one of
us) believe that the answer is yes. Despite large disagreements among the members
of this group, proponents of the minority tradition share the view that philosophy
of mathematics ought to concern itself with the kinds of issues that occupy those
who study the other branches of human knowledge (most obviously the natural
sciences). Philosophers should pose such questions as: How does mathematical
knowledge grow? What is mathematical progress? What makes some mathematical
ideas (or theories) better than others? What is mathematical explanation? (p. 17)

They concluded the introduction by claiming that the current state of the
philosophy of mathematics reveals two general programs, one centered on
the foundations of mathematics and the other centered on articulating the
methodology of mathematics.

Kitcher (1984) had already put forward an account of the growth of
mathematical knowledge that is one of the earliest, and still one of the most
impressive, studies in the methodology of mathematics in the analytic literature.
Starting from the notion of a mathematical practice,² Kitcher’s aim was to
account for the rationality of the growth of mathematics in terms of transitions
between mathematical practices. Among the patterns of mathematical change,
Kitcher discussed generalization, rigorization, and systematization.

One of the features of the ‘maverick’ tradition was the polemic against
the ambitions of mathematical logic as a canon for philosophy of mathemat-
ics. Mathematical logic, which had been essential in the development of the
foundationalist programs, was seen as ineffective in dealing with the questions
concerning the dynamics of mathematical discovery and the historical devel-
opment of mathematics itself. Of course, this did not mean that philosophy
of mathematics in this new approach was reduced to the pure description of
mathematical theories and their growth. It is enough to think that Lakatos’
Proofs and Refutations rests on the interplay between the ‘rational reconstruction’
given in the main text and the ‘historical development’ provided in the notes.
The relation between these two aspects is very problematic and remains one
of the central issues for Lakatos scholars and for the formulation of a dialect-
ical philosophy of mathematics (see Larvor (1998)). Moreover, in addition to
providing an empiricist philosophy of mathematics, Kitcher proposed a theory
of mathematical change that was based on a rather idealized model (see Kitcher
1984, Chapters 7–10).

² A quintuple consisting of five components: ‘a language, a set of accepted statements, a set of
accepted reasonings, a set of questions selected as important, and a set of metamathematical views’
(Kitcher, 1984).
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A characterization in broad strokes of the main features of the ‘maverick’
tradition could be given as follows:

a. anti-foundationalism, i.e. there is no certain foundation for mathematics;
mathematics is a fallible activity;

b. anti-logicism, i.e. mathematical logic cannot provide the tools for an
adequate analysis of mathematics and its development;

c. attention to mathematical practice: only detailed analysis and reconstruc-
tion of large and significant parts of mathematical practice can provide a
philosophy of mathematics worth its name.

Quine’s dissolution of the boundary between analytic and synthetic also
helped in this direction, for setting mathematics and natural science on a par
led first to the possibility of a theoretical analysis of mathematics in line with
natural science and this, in turn, led philosophers to apply tools of analysis to
mathematics which had meanwhile become quite fashionable in the history and
philosophy of the natural sciences (through Kuhn, for instance). This prompted
questions by analogy with the natural sciences: Is mathematics revisable? What
is the nature of mathematical growth? Is there progress in mathematics? Are
there revolutions in mathematics?

There is no question that the ‘mavericks’ have managed to extend the
boundaries of philosophy of mathematics. In addition to the works already
mentioned I should refer the reader to Gillies (1992), Grosholz and Breger
(2000), van Kerkhove and van Bengedem (2002, 2007), Cellucci (2002),
Krieger (2003), Corfield (2003), Cellucci and Gillies (2005), and Ferreiros and
Gray (2006) as contributions in this direction, without of course implying that
the contributors to these books and collections are in total agreement with
either Lakatos or Kitcher. One should moreover add the several monographs
published on Lakatos’ philosophy of mathematics, which are often sympathetic
to his aims and push them further even when they criticize Lakatos on
minor or major points (Larvor (1998), Koetsier (1991); see also Bressoud
(1999)).

However, the ‘maverick tradition’ has not managed to substantially redir-
ect the course of philosophy of mathematics. If anything, the predominance
of traditional ontological and epistemological approaches to the philosophy
of mathematics in the last twenty years proves that the maverick camp did
not manage to bring about a major reorientation of the field. This is not
per se a criticism. Bringing to light important new problems is a worthy
contribution in itself. However, the iconoclastic attitude of the ‘maver-
icks’ vis-à-vis what had been done in foundations of mathematics had as
a consequence a reduction of their sphere of influence. Logically trained
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philosophers of mathematics and traditional epistemologists and ontologists of
mathematics felt that the ‘mavericks’ were throwing away the baby with the
bathwater.

Within the traditional background of analytic philosophy of mathematics,
and abstracting from Kitcher’s case, the most important direction in connection
to mathematical practice is that represented by Maddy’s naturalism. Roughly,
one could see in Quine’s critique of the analytic/synthetic distinction a
decisive step for considering mathematics methodologically on a par with
natural science. This is especially clear in a letter to Woodger, written in
1942, where Quine comments on the consequences brought about by his (and
Tarski’s) refusal to accept the Carnapian distinction between the analytic and
the synthetic. Quine wrote:

Last year logic throve. Carnap, Tarski and I had many vigorous sessions together,
joined also, in the first semester, by Russell. Mostly it was a matter of Tarski and
me against Carnap, to this effect. (a) C[arnap]’s professedly fundamental cleavage
between the analytic and the synthetic is an empty phrase (cf. my ‘‘Truth by
convention’’), and (b) consequently the concepts of logic and mathematics are as
deserving of an empiricist or positivistic critique as are those of physics. (quoted
in Mancosu (2005); my emphasis)

The spin Quine gave to the empiricist critique of logic and mathematics
in the early 1940s was that of probing how far one could push a nominalistic
conception of mathematics. But Quine was also conscious of the limits of
nominalism and was led, reluctantly, to accept a form of Platonism based on
the indispensability, in the natural sciences, of quantifying over some of the
abstract entities of mathematics (see Mancosu (Forthcoming) for an account of
Quine’s nominalistic engagement).

However, Quine’s attention to mathematics was always directed at its
logical structure and he showed no particular interest in other aspects of
mathematical practice. Still, there were other ways to pursue the possibilities
that Quine’s teachings had opened. In Section 3 of this introduction I will
discuss the consequences Maddy has drawn from the Quinean position. Let
me mention as an aside that the analogy between mathematics and physics was
also something that emerged from thinkers who were completely opposed to
logical empiricism or Quinean empiricism, most notably Gödel. We will see
how Maddy combines both the influence of Quine and Gödel. Her case is of
interest, for her work (unlike that of the ‘mavericks’) originates from an active
engagement with the foundationalist tradition in set theory.

The general spirit of the tradition originating from Lakatos as well as
Maddy’s naturalism requires extensive attention to mathematical practice. This
is not to say that classical foundational programs were removed from such
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concerns. On the contrary, nothing is further from the truth. Developing a
formal language, such as Frege did, which aimed at capturing formally all
valid forms of reasoning occurring in mathematics, required a keen under-
standing of the reasoning patterns to be found in mathematical practice.³
Central to Hilbert’s program was, among other things, the distinction between
real and ideal elements that also originates in mathematical practice. Delicate
attention to certain aspects of mathematical practice informs contemporary
proof theory and, in particular, programs such as reverse mathematics. Final-
ly, Brouwer’s intuitionism takes its origin from the distinction between
constructive vs. non-constructive procedures, once again a prominent dis-
tinction in, just to name one area, the debates in algebraic number theory
in the late 19th century (Kronecker vs. Dedekind). Moreover, the analyt-
ical developments in philosophy of mathematics are also, to various extents,
concerned with certain aspects of mathematical practice. For instance, nom-
inalistic programs force those engaged in reconstructing parts of mathematics
and natural science to pay special attention to those branches of math-
ematics in order to understand whether a nominalistic reconstruction can be
obtained.

This will not be challenged by those working in the Lakatos tradition or
by Maddy or by the authors in this collection. But in each case the appeal
to mathematical practice is different from that made by the foundationalist
tradition as well as by most traditional analytic philosophers of mathematics in
that the latter were limited to a central, but ultimately narrow, aspect of the
variety of activities in which mathematicians engage. This will be addressed in
the following sections.

My strategy for the rest of the introduction will be to discuss in broad outline
the contributions of Corfield and Maddy, taken as representative philosophers
of mathematics deeply engaged with mathematical practice, yet who come
from different sides of the foundational/maverick divide. I will begin with
Corfield, who follows in the Lakatos lineage, and then move to Maddy, taken
as an exemplar of certain developments in analytic philosophy. It is within
this background, and by contrast with it, that I will present, in Section 4, the
contributions contained in this volume and articulate, in Section 5, how they
differ from, and relate to, the traditions being currently described. Regretfully,
I will have to refrain from treating many other contributions that would
deserve extensive discussion, most notably Kitcher (1984), but completeness is
not what I am aiming at here.

³ For a reading of Frege which stresses the connection to mathematical practice, see Tappenden
(2008).
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2 Corfield’s Towards a Philosophy of Real Mathematics
(2003)

A good starting point is Corfield’s recent book Towards a Philosophy of Real
Mathematics (2003). Corfield’s work fits perfectly within the frame of the
debate between foundationalists and ‘maverick’ philosophers of mathematics I
described at the outset. Corfield attributes his desire to move into philosophy
of mathematics to the discovery of Lakatos’ Proofs and Refutations (1976)
and he takes as the motto for his introduction Lakatos’ famous paraphrasing
of Kant:

The history of mathematics, lacking the guidance of philosophy, has become
blind, while the philosophy of mathematics, turning its back on the most
intriguing phenomena in the history of mathematics, has become empty. (Lakatos,
1976, p. 2)

Corfield’s proposal for moving out of the impasse is to follow in Lakatos’
footsteps, and he proposes a philosophy of ‘real’ mathematics. A succinct
description of what this is supposed to encompass is given in the introduction:

What then is a philosophy of real mathematics? The intention of this term is to
draw a line between work informed by the concerns of mathematicians past and
present and that done on the basis of at best token contact with its history or
practice. (Corfield, 2003, p. 3)

Thus, according to Corfield, neo-logicism is not a philosophy of real
mathematics, as its practitioners ignore most of ‘real’ 20th century mathematics
and most historical developments in mathematics with the exception of the
foundational debates. In addition, the issues raised by such philosophers are
not of concern to mathematicians. For Corfield, contemporary philosophy
of mathematics is guilty of not availing itself of the rich trove of the history
of the subject, simply dismissed as ‘history’ (you have to say that with the
right disdainful tone!) in the analytic literature, not to mention a first-hand
knowledge of its actual practice. Moreover,

By far the larger part of activity in what goes by the name philosophy of mathematics
is dead to what mathematicians think and have thought, aside from an unbalanced
interest in the ‘foundational’ ideas of the 1880–1930 period, yielding too often a
distorted picture of that time. (Corfield, 2003, p. 5)

It is this ‘foundationalist filter’, as Corfield calls it, which he claims is
responsible for the poverty of contemporary philosophy of mathematics.
There are two major parts to Corfield’s enterprise. The first, the pars destruens,
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consists in trying to dismantle the foundationalist filter. The second, the pars
construens, provides philosophical analyses of a few case studies from mainstream
mathematics of the last seventy years. His major case studies come from the
interplay between mathematics and computer science and from n-dimensional
algebras and algebraic topology.

The pars destruens shares with Lakatos and some of his followers a strong
anti-logical and anti-foundational polemic. This has unfortunately damaged
the reception of Corfield’s book and has drawn attention away from the good
things contained in it. It is not my intention here to address the significance
of what Corfield calls the ‘foundationalist filter’ or to rebut the arguments
given by Corfield to dismantle it (on this see Bays (2004) and Paseau (2005)).
Let me just mention that a very heated debate on this topic took place in
October 2003 on the FOM (Foundations of Mathematics) email list. The pars
destruens in Corfield’s book is limited to some arguments in the introduction.
Most of the book is devoted to showing by example, as it were, what a
philosophy of mathematics could do and how it could expand the range of
topics to be investigated. This new philosophy of mathematics, a philosophy
of ‘real mathematics’ aims at the following goals:

Continuing Lakatos’ approach, researchers here believe that a philosophy of
mathematics should concern itself with what leading mathematicians of their
day have achieved, how their styles of reasoning evolve, how they justify the
course along which they steer their programmes, what constitute obstacles to
their programmes, how they come to view a domain as worthy of study and
how their ideas shape and are shaped by the concerns of physicists and other
scientists. (p. 10)

This opens up a large program which pursues, among other things, the
dialectical nature of mathematical developments, the logic of discovery in
mathematics, the applicability of mathematics to the natural sciences, the
nature of mathematical modeling, and what accounts for the fruitfulness of
certain concepts in mathematics.

More precisely, here is a list of topics that motivate large chunks of Corfield’s
book:

1) Why are some mathematical entities important, natural, and fruitful while
others are not?

2) What accounts for the connectivity of mathematics? How is it that
concepts developed in one part of mathematics suddenly turn out to be
connected to apparently unrelated concepts in other areas?

3) Why are computer proofs unable to provide the sort of understanding at
which mathematicians aim?
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4) What is the role of analogy and other types of inductive reasoning in
mathematics? Can Bayesianism be applied to mathematics?

5) What is the relationship between diagrammatic thinking and formal
reasoning? How to account for the fruitfulness of diagrammatic reasoning
in algebraic topology?

Of course, several of these issues had already been discussed in the literature
before Corfield, but his book was the first to bring them together. Thus,
Corfield’s proposed philosophy of mathematics displays the three features
of the mavericks’ approach mentioned at the outset. In comparison with
previous contributions in that tradition, he expands the set of topics that can
be fruitfully investigated and seems to be less concerned than Lakatos and
Kitcher with providing a grand theory of mathematical change. His emphasis
is on more localized case studies. The foundationalist and the analytic tradition
in philosophy of mathematics are dismissed as irrelevant in addressing the
most pressing problems for a ‘real’ philosophy of mathematics. In Section 5, I
will comment on how Corfield’s program relates to the contributions in this
volume.

3 Maddy on mathematical practice

Faithfulness to mathematical practice is for Maddy a criterion of adequacy for a
satisfactory philosophy of mathematics (Maddy, 1990, p. 23 and p. 28). In her
1990 book, Realism in Mathematics, she took her start from Quine’s naturalized
epistemology (there is no first philosophy, natural science is the court of
arbitration even for its own methodology) and forms of the indispensability
argument. Her realism originated from a combination of Quine’s Platonism
with that of Gödel. But Maddy is also critical of certain aspects of Quine’s and
Gödel’s Platonisms, for she claims that both fail to capture certain aspects of the
mathematical experience. In particular, she finds objectionable that unapplied
mathematics is not granted right of citizenship in Quine’s account (see Quine,
1984, p. 788) and, contra Quine, she emphasizes the autonomy of mathematics
from physics. By contrast, the Gödelian brand of Platonism respects the
autonomy of mathematics but its weakness consists in the postulation of a
faculty of intuition in analogy with perception in the natural sciences. Gödel
appealed to such a faculty of intuition to account for those parts of mathematics
which can be given an ‘intrinsic’ justification. However, there are parts of
mathematics for which such ‘intrinsic’, intuitive, justifications cannot be given
and for those one appeals to ‘extrinsic’ justifications; that is, a justification in
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terms of their consequences. Realism in Mathematics aims at providing both a
naturalistic epistemology that replaces Gödel’s intuition as well as a detailed
study of the practice of extrinsic justification. It is this latter aspect of the
project that leads Maddy, in Chapter 4, to quite interesting methodological
studies which involve, among other things, the study of the following notions
and aspects of mathematical methodology: verifiable consequence; powerful
new methods for solving pre-existing problems; simplifying and systematizing
theories; implying previous conjectures; implying ‘natural’ results; strong
intertheoretic connections; and providing new insights into old theorem (see
Maddy, 1990, pp. 145–6). These are all aspects of great importance for a
philosophy of mathematics that wants to account for mathematical practice.
Maddy’s study in Chapter 4 focuses on justifying new axioms for set theory
(V = L or SC [there exists a supercompact cardinal]). In the end, her analysis
of the contemporary situation leads to a request for a more profound analysis
of ‘theory formation and confirmation’:

What’s needed is not just a description of non-demonstrative arguments, but
an account of why and when they are reliable, an account that should help set
theorists make a rational choice between competing axiom candidates. (Maddy,
1990, p. 148)

And this is described as an open problem not just for the ‘compromise
platonist’ but for a wide spectrum of positions. Indeed, on p. 180, she
recommends engagement with such problems of rationality ‘even to those
philosophers blissfully uninvolved in the debate over Platonism’ (p. 180).

In Naturalism in Mathematics (1997), the realism defended in Realism in
Mathematics is abandoned. But certain features of how mathematical practice
should be accounted for are retained. Indeed, what seemed a self-standing
methodological problem in the first book becomes for Maddy the key problem
of the new book and a problem that leads to the abandonment of realism
in favor of naturalism. This takes place in two stages. First, she criticizes the
cogency of indispensability arguments. Second, she positively addresses the
kinds of considerations that set-theorists bring to bear when considering new
axioms, the status of statements independent of ZFC, or when debating new
methods, and tries to abstract from them more general methodological maxims.

Her stand on the relation between philosophy and mathematics is clear and
it constitutes the heart of her naturalism:

If our philosophical account of mathematics comes into conflict with successful
mathematical practice, it is the philosophy that must give. This is not, in itself,
a philosophy of mathematics; rather, it is a position on the proper relations
between the philosophy of mathematics and the practice of mathematics. Similar
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sentiments appear in the writings of many philosophers of mathematics who hold
that the goal of philosophy of mathematics is to account for mathematics as it is
practiced, not to recommend reform. (Maddy, 1997, p.161)

Naturalism, in the Maddian sense, recognizes the autonomy of mathematics
from natural science. Maddy applies her naturalism to a methodological study of
the considerations leading the mathematical community to the acceptance or
rejection of various (set-theoretical) axioms. She envisages the formulation
of ‘a naturalized model of practice’ (p. 193) that will provide ‘an accurate
picture of the actual justificatory practice of contemporary set theory and
that this justificatory structure is fully rational’ (pp. 193–4). The method will
proceed by identifying the goals of a certain practice and by evaluating the
methodology employed in that branch of mathematics (set theory, in Maddy’s
case) in relation to those goals (p. 194). The naturalized model of practice
is both purified and amplified. It is purified in that it eliminates seemingly
irrelevant (i.e. philosophical) considerations in the dynamics of justification;
and it is amplified in that the relevant factors are subjected to more precise
analysis than what is given in the practice itself and they are also applied to
further situations:

Our naturalist then claims that this model accurately reflects the underlying
justificatory structure of the practice, that is, that the material excised is truly
irrelevant, that the goals identified are among the actual goals of the practice (and
that the various goals interact as portrayed), and that the means-ends reasoning
employed is sound. If these claims are true, then the practice, in so far as it
approximates the naturalist’s model, is rational. (Maddy, 1997, p. 197)

Thus, using the example of the continuum hypothesis and other independent
questions in descriptive set theory, she goes on to explain how the goal of
providing ‘a complete theory of sets of real numbers’ gives rational support to
the investigation of CH (and other questions in descriptive set theory). The
tools for such investigations will be mathematical and not philosophical. While
a rational case for or against CH cannot be built out of the methodology that
Maddy distils from the practice, she provides a case against V = L (an axiom
that Quine supported).

We need not delve into the details of Maddy’s analysis of her case studies and
the identification of several methodological principles, such as maximize and
unify, that in her final analysis direct the practice of set theorists and constitute
the core of her case against V = L. Rather, let us take stock.

Comparing Maddy’s approach to that of the ‘maverick’ tradition, we can
remark that just as in the ‘maverick’ tradition, there is a shift in what
problems Maddy sets out to investigate. While not denying that ontological
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and epistemological problems are worthy of investigation she has decided to
focus on an aspect of the methodology of mathematics completely ignored
in previous analytic philosophy of mathematics. This is a large subject area
concerning the sort of arguments that are brought to bear in the decision in
favor or against certain new axioms in set theory. Previous analytic philosophy
of mathematics would have relegated this to the ‘context of discovery’ and as
such not worthy or suitable for rigorous investigation. Maddy counters that
these decisions are rational and can be accounted for by a naturalistic model
that spells out the principles and maxims directing the practice. Maddy’s project
can be seen as a contribution to the general problem of how evidence and
justification functions in mathematics. This can be seen as related to a study of
‘heuristics’, although this has to be taken in the appropriate sense as her case
studies cannot be confused with, or reduced to, traditional studies on ‘problem
solving’. Another feature of Maddy’s work that ties her approach to that of
the mavericks is the appeal to the history of logic and mathematics as a central
component in her naturalized account. This is not surprising: mathematical
practice is embodied in the concrete work of mathematicians and that work has
taken place in history. Although Maddy, unlike Kitcher 1984, is not proposing
an encompassing account of the rationality in the changes in mathematical
practice, or a theory of mathematical growth, the case studies she investigated
have led her to consider portions of the history of analysis and of set theory.
The history of set theory (up to its present state) is the ‘laboratory’ for the
distillation of the naturalistic model of the practice. Finally, a major difference
in attitude between Maddy and the ‘mavericks’ is the lack on Maddy’s part
of any polemic against logic and foundations. Rather, her ambition is one of
making sense of the inner rationality of foundational work in set theory.

4 This collection

The rather stark contrast used to present different directions of philosophical
work on mathematical practice in Sections 2 and 3 would not be appro-
priate to characterize some of the most recent contributions in this area, in
which a variety of approaches often coexist together. This is especially true
of the volumes ‘Perspectives on Mathematical Practices’ (van Kerkhove and
van Bengedem 2002 and 2007) which contain a variety of contributions,
some of which find their inspiration in the maverick tradition and others in
Maddy’s work, while others yet point the way to independent developments.
Similar considerations apply to Mancosu et al. (2005), although in contrast
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to the two former collections, this book does not trace its inspiration back
to Lakatos. It contains a wide range of contributions on visualization, explan-
ation and reasoning styles in mathematics carried out both by philosophers
and historians of mathematics. The above-mentioned volumes contain con-
tributions that overlap in topic and/or inspiration with those of the present
collection. However, this collection is more systematic and more focused in
its aims.

The eight topics studied here are:

1) Visualization
2) Diagrammatic reasoning
3) Explanation
4) Purity of methods
5) Concepts and definitions
6) Philosophical aspects of uses of computer science in mathematics
7) Category theory
8) Mathematical physics

Taken all together, they represent a broad spectrum of contemporary
philosophical reflection on different aspects of mathematical practice. Each
author (with one exception to be mentioned below) has written a general
introduction to the subject area and a research paper in that area. I will not
here summarize the single contributions but rather point out why each subject
area is topical.

The first section is on Visualization. Processes of visualization (e.g. by
means of mental imagery) are central to our mathematical activity and recently
this has become once again a central topic of concern due to the influence of
computer imagery in differential geometry and chaos theory and to the call for
visual approaches to geometry, topology, and complex analysis. But in what
sense can mental imagery provide us with mathematical knowledge? Shouldn’t
visualization be relegated to heuristics? Marcus Giaquinto (University College
London) argues in his introduction that mathematical visualization can play an
epistemic role. Then, in his research paper, he proceeds to examine the role of
visual resources in cognitive grasp of structures.

The second section is entitled Diagrammatic reasoning. In the last twenty
years there has been an explosion of interest in this topic due also to the
importance of such diagrammatic systems for artificial intelligence and their
extended use in certain branches of contemporary mathematics (knot theory,
algebraic topology, etc.). Kenneth Manders (University of Pittsburgh) focuses
in his introduction on some central philosophical issues emerging from dia-
grammatic reasoning in geometry and in his research paper—an underground
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classic that finally sees publication—he addresses the problem of the stability
of diagrammatic reasoning in Euclidean geometry.

If mathematicians cared only about the truth of certain results, it would be
hard to understand why after discovering a certain mathematical truth they
often go ahead to prove the result in several different ways. This happens
because different proofs or different presentations of entire mathematical areas
(complex analysis etc.) have different epistemic virtues. Explanation is among
the most important virtues that mathematicians seek. Very often the proof of
a mathematical result convinces us that the result is true but does not tell us
why it is true. Alternative proofs, or alternative formulations of entire theories,
are often given with this explanatory aim in mind. In the introduction, Paolo
Mancosu (U.C. Berkeley) shows that the topic of mathematical explanation
has far-reaching philosophical implications and then he proceeds, in the joint
paper with Johannes Hafner (North Carolina State), to test Kitcher’s model
of mathematical explanation in terms of unification by means of a case study
from real algebraic geometry.

Related to the topic of epistemic virtues of different mathematical proofs
is the ideal of Purity of methods in mathematics. The notion of purity has
played an important role in the history of mathematics—consider, for instance,
the elimination of geometrical intuition from the development of analysis in
the 19th century—and in a way it underlies all the investigations concerning
issues of conservativity in contemporary proof theory. That purity is often
cherished in mathematical practice is made obvious by the fact that Erdös and
Selberg were awarded the Fields Medal for the elementary proof of the prime
number theorem (already demonstrated with analytical tools in the late 19th
century. But why do mathematicians cherish purity? What is epistemologically
to be gained by proofs that exclude appeal to ‘ideal’ elements? Proof theory
has given us a rich analysis of when ideal elements can be eliminated in
principle (conservativity results), but what proof theory leaves open is the
philosophical question of why and whether we should seek either the use
or the elimination of such ideal elements. Michael Detlefsen (University of
Notre Dame) provides a general historical and conceptual introduction to
the topic. This is followed by a study of purity in Hilbert’s work on the
foundations of geometry written by Michael Hallett (McGill University). In
addition to emphasizing the epistemic role of purity, he also shows that in
mathematical practice the dialectic between purity and impurity is often very
subtle indeed.

Mathematicians seem to have a very good sense of when a particular
mathematical concept or theory is fruitful or ‘natural’. A certain concept might
provide the ‘natural’ setting for an entire development and reveal this by its
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fruitfulness in unifying a wide group of results or by opening unexpected
new vistas. But when mathematicians appeal to such virtues of concepts
(fruitfulness, naturalness, etc.) are they simply displaying subjective tastes or
are there objective features, which can be subjected to philosophical analysis,
which can account for the rationality and objectivity of such judgments? This is
the topic of the introductory chapter on Concepts and Definitions written
by Jamie Tappenden (University of Michigan) who has already published on
these topics in relation to geometry and complex analysis in the 19th century.
His research paper ties the topic to discussions on naturalness in contemporary
metaphysics and then discusses Riemann’s conceptual approach to analysis as
an example from mathematical practice in which the natural definitions give
rise to fruitful results.

The influence of Computer Science on contemporary mathematics has
already been mentioned in connection with visualization. But uses of the
computer are now pervasive in contemporary mathematics, and some of the
aspects of this influence, such as the computer proof of the four-color theorem,
have been sensationally popularized. Computers provide an aid to mathematical
discovery; they provide experimental, inductive confirmation of mathematical
hypotheses; they carry out calculations that are needed in proofs; and they
enable one to obtain formal verification of proofs. In the introduction to this
section, Jeremy Avigad (Carnegie Mellon University) addresses the challenges
that philosophy will have to meet when addressing these new developments.
In particular, he calls for an extension of ordinary epistemology of mathematics
that will address issues that the use of computers in mathematics make urgent,
such as the problem of characterizing mathematical evidence and mathematical
understanding. In his research paper he then goes on to focus on mathematical
understanding and here, in an interesting reversal of perspective, he shows
how formal verification can assist us in developing an account of mathematical
understanding, thereby showing that the epistemology of mathematics can
inform and be informed by research in computer science.

Some of the most spectacular conceptual achievements in 20th century
mathematics are related to the developments of Category Theory and its
role in areas such as algebraic geometry, algebraic topology, and homological
algebra. Category theory has interest for the philosopher of mathematics both
on account of the claim made on its behalf as an alternative foundational
framework for all of mathematics (alternative to Zermelo–Fraenkel set theory)
as well as for its power of unification and its fruitfulness revealed in the above-
mentioned areas. Colin McLarty (Case Western Reserve University) devotes
his introduction to spelling out how the structuralism involved in much
contemporary mathematical practice threatens certain reductionist projects
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influenced by set-theoretic foundations and then proceeds to argue that only
detailed attention to the structuralism embodied in the practice (unlike other
philosophical structuralisms) can account for certain aspects of contemporary
mathematics, such as the ‘unifying spirit’ that pervades it. In his research paper
he looks at schemes as a tool for pursuing Weil’s conjectures in number theory as
a case study for seeing how ‘structuralism’ works in practice. In the process he
draws an impressive fresco of how structuralist and categorial ideas developed
from Noether through Eilenberg and Mac Lane to Grothendieck.

Finally, the last chapter is on the philosophical problems posed by some
recent developments in Mathematical Physics and how they impact pure
mathematics. In the third quarter of the 20th century what seemed like an
inevitable divorce between physics and pure mathematics turned into an
exciting renewal of vows. Developments in pure mathematics turned out to be
incredibly fruitful in mathematical physics and, vice versa, highly speculative
developments in mathematical physics turned out to bear extremely fruitful
results in mathematics (for instance in low-dimensional topology). However,
the standards of acceptability between the two disciplines are very different.
Alasdair Urquhart (University of Toronto) describes in his introduction some
of the main features of this renewed interaction and the philosophical problems
posed by a variety of physical arguments which, despite their fruitfulness, turn
out to be less than rigorous. This is pursued in his research paper where several
examples of ‘non-rigorous’ proofs in mathematics and physics are discussed
with the suggestion that logicians and mathematicians should not dismiss
these developments but rather try to make sense of these unruly parts of the
mathematical universe and to bring the physicists’ insights into the realm of
rigorous argument.

5 A comparison with previous developments

The time has come to articulate how this collection differs from previous
traditions of work in philosophy of mathematical practice. Let us begin with
the Lakatos tradition.

There are certainly a remarkable number of differences. First of all, Lakatos
and many of the Lakatosians (for instance, Lakatos (1976), Kitcher (1984))
were quite concerned with metaphilosophical issues such as: How do history
and philosophy of mathematics fit together? How does mathematics grow? Is
the process of growth rational? The aim of the authors in the collection is
much more restricted. While not dismissing these questions, we think a good
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amount of humility is needed to avoid the risk of theorizing without keeping
our feet on the ground. It is interesting to note that also a recent volume
written by historians and philosophers of mathematics (Ferreiros and Gray 2006)
displays the same modesty with respect to these metaphilosophical issues. At
the same time, the number of topics we touch upon is immeasurably vaster
than the ones addressed by the Lakatos tradition. Visualization, diagrammatic
reasoning, purity of methods, category theory, mathematical physics, and many
other topics we investigate here are remarkably absent from a tradition which
has made attention to mathematical practice its call to arms. One exception
here is Corfield (2003), which does indeed touch upon many of the topics we
study. However, and this is another important point, we differ from Corfield
in two essential points. First of all, the authors of this collection do not engage
in polemic with the foundationalist tradition and, as a matter of fact, many of
them work, or have worked, also as mathematical logicians (of course, there
are differences of attitude, vis-à-vis foundations, among the contributors). We
are, by and large, calling for an extension to a philosophy of mathematics that
will be able to address topics that the foundationalist tradition has ignored. But
that does not mean that we think that the achievements of this tradition should
be discarded or ignored as being irrelevant to philosophy of mathematics.
Second, unlike Corfield, we do not dismiss the analytic tradition in philosophy
of mathematics but rather seek to extend its tools to a variety of areas that have
been, by and large, ignored. For instance, to give one example among many,
the chapter on explanation shows how the topic of mathematical explanation is
connected to two major areas of analytic philosophy: indispensability arguments
and models of scientific explanation. But this conciliatory note should not hide
the force of our message: we think that the aspects of mathematical practice
we investigate are absolutely vital to an understanding of mathematics and
that having ignored them has drastically impoverished analytic philosophy of
mathematics.

In the Lakatos tradition, it was Kitcher in particular who attempted to build
a bridge with analytic philosophy. For instance, when engaged in his work
on explanation in philosophy of science he also made sure that mathematical
explanation was also taken into account. We are less ambitious than Kitcher, in
that we do not propose a unified epistemology and ontology of mathematics
and a theory of how mathematical knowledge grows rationally. But we are
much more ambitious in another respect, in that we cover a broad spectrum
of case studies arising from mathematical practice which we subject to analytic
investigation. Thus, in addition to the case of explanation already mentioned,
Giaquinto investigates whether synthetic a priori knowledge can be obtained
by appealing to experiences of visualization; Tappenden engages recent work
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in metaphyics when discussing fruitfulness and naturalness of concepts; and
MacLarty shows how structuralism in mathematical practice can help us
evaluate structuralist philosophies of mathematics. Indeed, the whole book is
an attempt to expand the boundaries of epistemology of mathematics well
beyond the problem of how we can have access to abstract entities.

But coming now to the analytic developments related to Maddy’s work,
I should point out that whereas Maddy has limited her investigations to set
theory we take a much wider perspective on mathematical practice, drawing
our case studies from geometry, complex analysis, real algebraic geometry,
category theory, computer science, and mathematical physics. Once again, we
believe that while set theory is a very important subject of methodological
investigation, there are central phenomena that will be missed unless we
cast our net more broadly and extend our investigations to other areas of
mathematics. Moreover, while Maddy’s study of set-theoretic methodology
has some points of contact with our investigations (evidence, fruitfulness,
theory-choice) we look at a much broader set of issues that never come
up for discussion in her work (visualization, purity of methods, explanation,
rigor in mathematical physics). The closest point of contact between her
investigations and this book is probably the discussion of evidence in Avigad’s
introduction. There is also no explicit commitment in our contributions to
the form of mathematical naturalism advocated by Maddy; actually, the spirit
of many of our contributions seems to go against the grain of her philosophical
position.

Let me conclude by coming back to the comparison with the situation in
philosophy of science. I mentioned at the beginning that recent philosophy
of science has thrived under the interaction of traditional problems (realism
vs. instrumentalism, causality, etc.) with more localized studies in the philoso-
phies of the special sciences. In general, philosophers of science are happy with
claiming that both areas are vital for the discipline. Corfield takes as the model
for his approach to the philosophy of mathematics the localized studies in the
philosophy of physics, but decrees that classical philosophy of mathematics
is a useless pursuit (see Pincock (2005)). As for Maddy, she gets away from
traditional ontological and epistemological issues (realism, nominalism, etc.)
by means of her naturalism. What is distinctive in this volume is that we
integrate local studies with general philosophy of mathematics, contra Corfield,
and we also keep traditional ontological and epistemological topics in play,
contra Maddy.

Hopefully, the reader will realize that my aim has not been to make any
invidious comparisons but only to provide a fair account of what the previous
traditions have achieved and why we think we have achieved something worth
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proposing to the reader. We are only too aware that we are making the first
steps in a very difficult area and we hope that our efforts might stimulate others
to do better.

Acknowledgements. I would like to thank Jeremy Avigad, Paddy Blanchette,
Marcus Giaquinto, Chris Pincock, Thomas Ryckman, José Sagüillo, and Jamie
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Visualizing in Mathematics
MARCUS GIAQUINTO

Visual thinking in mathematics is widespread; it also has diverse kinds and
uses. Which of these uses is legitimate? What epistemic roles, if any, can
visualization play in mathematics? These are the central philosophical ques-
tions in this area. In this introduction I aim to show that visual thinking
does have epistemically significant uses. The discussion focuses mainly on
visual thinking in proof and discovery and touches lightly on its role in
understanding.

1.1 The context

‘Mathematics can achieve nothing by concepts alone but hastens at once to
intuition’ wrote Kant (1781/9, A715/B743), before describing the geometrical
construction in Euclid’s proof of the angle sum theorem (Euclid, Book 1,
proposition 32). The Kantian view that visuo-spatial thinking is essential to
mathematical knowledge and yet consistent with its a priori status probably
appealed to mathematicians of the late 18th century. By the late 19th century
a different view had emerged: Dedekind, for example, wrote of an over-
powering feeling of dissatisfaction with appeal to geometric intuitions in basic
infinitesimal analysis (Dedekind, 1872, Introduction). The grounds were felt to
be uncertain, the concepts employed vague and unclear. When such concepts
were replaced by precisely defined alternatives that did not rely on our sense of
space, time, and motion, our intuitive expectations turned out to be unreliable:
an often cited example is the belief that a continuous function on an interval
of real numbers is everywhere differentiable except at isolated points. Even in
geometry the use of figures came to be regarded as unreliable: ‘the theorem is
only truly demonstrated if the proof is completely independent of the figure’
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Pasch said, and he was echoed by Hilbert and Russell (Pasch, 1882; Hilbert,
1894; Russell, 1901).

In some quarters this turn led to a general disdain for visual thinking in
mathematics: ‘In the best books’ Russell pronounced ‘there are no figures at
all.’ (Russell, 1901). Although this attitude was opposed by some prominent
mathematicians, others took it to heart. Landau, for example, wrote a calculus
textbook without a single diagram (Landau, 1934). But the predominant view
was not so extreme: thinking in terms of figures was valued as a means of
facilitating grasp of formulae and linguistic text, but only reasoning expressed
by means of formulae and text could bear any epistemological weight.

By the late 20th century the mood had swung back in favour of visualization:
Mancosu (2005) provides an excellent survey. We find books that advertise
their defiance of anti-visual puritanism in their titles, such as Visual Geometry
and Topology (Fomenko, 1994) and Visual Complex Analysis (Needham, 1997);
mathematics educators turn their attention to pedagogical uses of visualiza-
tion (Zimmermann and Cunningham, 1991); the use of computer-generated
imagery begins to bear fruit at research level (Hoffman, 1987; Palais, 1999);
and diagrams find their way into research papers in abstract fields: see for
example the papers on higher dimensional category theory by Joyal et al.
(1996), Leinster (2004), and Lauda (2005). But attitudes to the epistemology
of visual thinking remain mixed. The discussion is almost entirely confined to
the role of diagrams in proofs. In some cases, it is claimed, a picture alone is
a proof (Brown, 1999, Ch. 3). But that view is rare. Even the editor of Proofs
without Words: Exercises in Visual Thinking, writes ‘Of course, ‘‘proofs without
words’’ are not really proofs’ (Nelsen, 1993, p. vi). At the other extreme is the
stolid attitude of Tennant (1986, p. 304):

[the diagram] has no proper place in the proof as such. For the proof is a syntactic
object consisting only of sentences arranged in a finite and inspectable array.

Between the extremes, others hold that, even if no picture alone is a proof,
visual images can have a non-superfluous role in reasoning that constitutes a
proof (Barwise and Etchemendy, 1996a; Norman, 2006). Visual representations,
such as geometric diagrams, graphs, and maps, all carry information. Taking
valid deductive reasoning to be the reliable extraction of information from
information already obtained, Barwise and Etchemendy (1996a) pose the
following question: Why cannot the representations composing a proof be
visual as well as linguistic? The sole reason for denying this role to visual
representations is the thought that, with the possible exception of very
restricted cases, visual thinking is unreliable, hence cannot contribute to proof.
In the next section I probe this matter by considering visualization in proving,
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where that excludes what is involved in the constructive phase, such as getting
the main ideas for a proof, but covers thinking through the steps in a proof,
either for the first time or following a given proof, in such a way that the
soundness of the argument is apparent to the thinker.

1.2 Proving

We should distinguish between a proof and a presentation of a proof. A proof
can be presented in different ways. How different can distinct presentations
be and yet be presentations of the same proof? There is no context-invariant
answer to this, and even within a context there may be some indeterminacy.
Usually mathematicians are happy to regard two presentations as presenting
the same proof if the central idea is the same in both cases. But if one’s main
concern is with what is involved in thinking through a proof, its central idea
is not enough to individuate it: the overall structure, the sequence of steps
and perhaps other factors affecting the cognitive processes involved will be
relevant. Even so, not every cognitive difference in the processes of following
a proof will entail distinctness of proofs: in some cases, presumably, the same
bits of information in the same order can be given in ink and in Braille.

Once individuation of proofs has been settled, we can distinguish between
replaceable thinking and superfluous thinking. In the process of thinking
through a proof, a given part of the thinking is replaceable if thinking of some
other kind could stand in place of the given part in a process that would count
as thinking through the same proof. A given part of the thinking is superfluous
if its excision without replacement would be a process of thinking through the
same proof. Let us agree that there can be superfluous diagrammatic thinking
in thinking through a proof, thinking which serves merely to facilitate or
reinforce understanding of the text. This leaves several possibilities.

(a) All thinking that involves a diagram in thinking through a proof is
superfluous.

(b) Not all thinking that involves a diagram in thinking through a proof
is superfluous; but if not superfluous it will be replaceable by non-
diagrammatic thinking.

(c) Some thinking that involves a diagram in thinking through a proof is
neither superfluous nor replaceable by non-diagrammatic thinking.

The negative view stated earlier that diagrams can have no role in proof
entails claim (a). The idea behind (a) is that, because visual reasoning is
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unreliable, if a process of thinking through an argument contains some non-
superfluous visual thinking, that process lacks the epistemic security to be
a case of thinking through a proof. This view, claim (a) in particular, is
threatened by cases in which the reliability of visual thinking is demonstrated
non-visually. The clearest kind of example would be provided by a formal
system which has diagrams in place of formulas among its syntactic objects, and
types of inter-diagram transition for inference rules. Suppose you take in such
a formal system and an interpretation of it, and then think through a proof of
the system’s soundness with respect to that interpretation; suppose you then
inspect a sequence of diagrams, checking along the way that it constitutes a
derivation in the system; suppose finally that you recover the interpretation
to reach a conclusion. That entire process would constitute thinking through
a proof of the conclusion; and the visual thinking involved would not be
superfluous. Such a case has in fact been realized. A formal diagrammatic
system of Euclidean geometry called ‘FG’ has been set out and shown to be
sound by Nathaniel Miller (2001). Figure 1.1 presents Miller’s derivation in FG
of Euclid’s first theorem that on any given finite line segment an equilateral
triangle can be constructed.

Fig. 1.1.
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Miller himself has surely gone through exactly the kind of process described
above. Of course the actual event would have been split up in time, and Miller
would have already known the conclusion to be true; still, the whole thing
would have been a case of thinking through a proof, a highly untypical case of
course, in which visual thinking occurred in a non-superfluous way.

This is enough to refute claim (a), the claim that all diagrammatic thinking
in thinking through a proof is superfluous. What about Tennant’s claim that a
proof is ‘a syntactic object consisting only of sentences’ as opposed to diagrams?
A proof is never a syntactic object. A formal derivation on its own is a syntactic
object but not a proof. Without an interpretation of the language of the
formal system the end-formula of the derivation says nothing; and so nothing
is proved. Without a demonstration of the system’s soundness with respect
to the interpretation, one lacks reason to believe that derived conclusions are
true. A formal derivation plus an interpretation and soundness proof can be a
proof of the derived conclusion. But one and the same soundness proof can
be given in syntactically different ways, so the whole proof, i.e. derivation
+ interpretation + soundness proof, is not a syntactic object. Moreover, the
part of the proof which really is a syntactic object, the formal derivation,
need not consist solely of sentences; it can consist of diagrams, as Miller’s
example shows.

The visual thinking in this example consists in going through a sequence of
diagrams and at each step seeing that the next diagram results from a permitted
alteration of the previous diagram. It is a non-superfluous part of the process
of thinking through a proof that on any straight line segment an equilateral
triangle is constructible. It is clear too that in a process that counts as thinking
through this proof, the visual thinking is not replaceable by non-diagrammatic
thinking. That knocks out (b), leaving only (c): some thinking that involves a
diagram in thinking through a proof is neither superfluous nor replaceable by
non-diagrammatic thinking.

This is not an isolated example. In the 1990s Barwise led a programme
aimed at the development of formal systems of reasoning using diagrams and
establishing their soundness. There was renewed interested in Peirce’s graphical
systems for propositional and quantifier logic, and systems employing Euler
diagrams and Venn diagrams were developed and investigated, culminating in
the work of Sun-Joo Shin (1994). Barwise was interested in systems which bet-
ter model how we reason than these, and to this end he turned his attention to
heterogeneous systems, systems deploying both formulas and diagrams: he and
Etchemendy developed such a system for teaching logic, Hyperproof, and began
to investigate its metalogical properties (Barwise and Etchemendy, 1996b). This
was part of a surge of research interest in the use of diagrams, encompassing
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computer science, artificial intelligence, formal logic, and philosophy. For a
representative sample see the papers in Blackwell (2001).¹

All that is for the record. Mathematical practice almost never proceeds by
way of formal systems. For most purposes there is no need to master a formal
system and work through a derivation in the system. In fact there is reason to
avoid going formal: in a formalized version of a proof, the original intuitive
line of thought is liable to be obscured by a multitude of minute steps. While
formal systems may eventually prove useful for modelling actual reasoning with
diagrams in mathematics, much more investigation of actual practice is needed
before we can develop formal systems that come close to real mathematical
reasoning. This prior investigation has two branches: a close look at practices
in the history of mathematics, such as Manders’s work on the use of diagrams
in Euclid’s Elements (see his contributions in this volume), and cognitive study
of individual thinking using diagrams in mathematics. Cognitive scientists have
not yet paid much attention to this; but there is a large literature now on visual
perception and visual imagery that epistemologists of mathematics can draw
on. A very useful short discussion of both the Barwise programme and the
relevance of cognitive sudies (plus bibliography) can be found in (Mancosu,
2005).² So let us set aside proofs by means of formal systems and restrict
attention to normal cases.

Outside the context of formal diagrammatic systems, the use of diagrams is
widely felt to be unreliable. There are two major sorts of error:

1. relevant mismatch between diagrams and captions;
2. unwarranted generalization from diagrams.

In errors of sort (1), a diagram is unfaithful to the described construction:
it represents something with a property that is ruled out by the description,
or without a property that is entailed by the description. This is exemplified
by diagrams in the famous argument for the proposition that all triangles
are isosceles: the meeting point of an angle bisector and the perpendicular
bisector of the opposite side is represented as falling inside the triangle,
when it has to be outside—see Rouse Ball (1939). Errors of sort (1) are
comparatively rare, usually avoidable with a modicum of care, and not
inherent in the nature of diagrams; so they do not warrant a general charge of
unreliability.

¹ The most philosophically interesting questions concern the essential differences between sentential
and diagrammatic representation and the properties of diagrams that explain their special utility and
pitfalls. Especially illuminating in this regard is the work of Atsushi Shimojima: see the slides for his
conference presentation, of which Shimojima (2004) is the abstract, on his web page.

² Two other pertinent references are Pylyshyn (2003) and Grialou et al. (2005).
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Typically diagrams (and other non-verbal visual representations) do not
represent their objects as having a property that is actually ruled out by the
intention or specification of the object to be represented. But diagrams very
frequently do represent their objects as having properties that, though not
ruled out by the specification, are not demanded by it. In fact this is often
unavoidable. Verbal descriptions can be discrete, in that they supply no more
information than is needed.³ But visual representations are typically indiscrete,
because for many properties or kinds F, a visual representation cannot represent
something as being F without representing it as being F in a particular way.
Any diagram of a triangle, for instance, must represent it as having three acute
angles or as having just two acute angles, even if neither property is required
by the specification, as would be the case if the specification were ‘Let ABC
be a triangle’. As a result there is a danger that in using a diagram (or other
visual representation) to reason about an arbitrary instance of class K, we will
unwittingly rely on a feature represented in the diagram that is not common
to all instances of the class K. Thus the risk of errors of sort (2), unwarranted
generalization, is a danger inherent in the use of diagrams.

The indiscretion of diagrams is not confined to geometrical figures. The
dot diagrams of ancient mathematics used to convince one of elementary
truths of number theory necessarily display particular numbers of dots, though
the truths are general. Figure 1.2 is an example, used to justify the for-
mula for the nth triangular number, i.e. the sum of the first n positive
integers.

Some people hold that the figure alone constitutes a proof (Brown, 1999);
others would say that some accompanying text is required, to indicate how
the image is to be interpreted and used. If there is no text, some background
of conventions of interpretation must be assumed. But often more than one
set of conventions is available. In fact Grosholz (2005) shows how the multiple
interpretability of diagrams has sometimes been put to good use in mathematical

n

n+1

Fig. 1.2.

³ This happy use of ‘discrete’ and its cognates is due to Norman, 2006.
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thinking, a topic I will have to leave aside. In the following discussion I will
assume that appropriate text is present.

The conclusion drawn is that the sum of integers from 1 to n is [n×
(n+ 1)]/2 for any positive integer n, but the diagram presents the case only for
n = 6. We can perhaps avoid representing a particular number of dots when
we merely imagine a display of the relevant kind; or if a particular number is
represented, our experience may not make us aware of the number—just as,
when one imagines the sky on a starry night, for no particular number k are
we aware that exactly k stars are represented. Even so, there is likely to be
some extra specificity. For example, in imagining an array of dots of the form
just illustrated, one is unlikely to imagine just two columns of three dots, the
rectangular array for n = 2. Typically the subject will be aware of imagining
an array with more than two columns. This entails that an image is likely to
have unintended exclusions. In this case it would exclude the three-by-two
array. An image of a triangle representing all angles as acute would exclude
triangles with an obtuse angle or a right angle. The danger is that the visual
reasoning will not be valid for the cases that are unintentionally excluded by
the visual representation, with the result that the step to the conclusion is an
unwarranted generalization.

What should we make of this? First, let us note that in a few cases the image
or diagram will not be over-specific. When in geometry all instances of the
relevant class are similar to one another, for instance all circles or all squares,
the image or diagram will not be over-specific for a generalization about that
class; so there will be no unintended exclusions and no danger of unwarranted
generalization. Here then are possibilities for non-superfluous visual thinking
in proving.

To get clear about the other cases, where there is a danger of overgener-
alization, it helps to look at generalization in ordinary non-visual reasoning.
Schematically put, in reasoning about things of kind K, once we have shown
that from certain premisses it follows that such-and-such a condition is true of
arbitrary instance c, we can validly infer from those same premisses that that
condition is true of all Ks, with the proviso that neither the condition nor
any premiss mentions c. (If a premiss or the condition does mention c, the
reasoning may depend on a property of c that is not shared by all other Ks,
and so the generalization would be unsafe.) A question we face is whether in
following an argument involving generalization on an arbitrary instance,⁴ the
thinking must include a conscious, explicit check that the proviso⁵ is met. It is

⁴ Other terms for this are ‘universal generalization’ and ‘universal quantifier introduction’.
⁵ The proviso is that neither the condition nor any premiss mentions c.
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clearly not enough that the proviso is in fact met. For in that case it might just
be the thinker’s good luck that the proviso is met; hence the thinker would not
know that the generalization is valid and so would not have genuinely thought
through the proof at that step. This leaves two options. The strict option is
that without a conscious, explicit check one has not really thought through
the proof. The relaxed option is that one can properly think through the proof
without checking that the proviso is met, but only if one is sensitive to the
potential error and would detect it in otherwise similar arguments. For then
one is not just lucky that the proviso is met. Being sensitive in this context
consists in being alert to dependence on features of the arbitrary instance not
shared by all members of the class of generalization, a state produced by a
combination of past experience and current vigilance. Without a compelling
reason to prefer one of these options, decisions on what is to count as proving
must be conditional.

How does all this apply to generalizing from visual thinking about an
arbitrary instance? Take the example of the visual route to the formula for
triangular numbers just indicated. The image used reveals that the formula
holds for the 6th triangular number. The generalization to all triangular
numbers is justified only if the visuo-spatial method used is applicable to the
nth triangular number for all positive integers n, that is, provided that the
method used does not depend on a property not shared by all positive integers.
A conscious, explicit check that this proviso is met requires making explicit
the method exemplified for 6 and proving that the method is applicable
for all positive integers in place of 6. For a similar idea in the context of
automating visual arguments, see Jamnik (2001). This is not done in practice
when thinking visually, so if we accept the strict option for thinking through a
proof involving generalization, we would have to accept that the visual route
to the formula for triangular numbers does not amount to thinking through
a proof of it; and the same would apply to the familiar visual routes to other
general positive integer formulas, such as that n2 = the sum of the first n odd
numbers.

But what if the strict option for proving by generalization on an arbitrary
instance is too strict, and the relaxed option is right? When arriving at the
formula in the visual way indicated, one does not pay attention to the fact that
the visual display represents the situation for the 6th triangular number; it is as
if the mind had somehow extracted a general schema of visual reasoning from
exposure to the particular case, and had then proceeded to reason schematically,
converting a schematic result into a universal proposition. What is required,
on the relaxed option, is sensitivity to the possibility that the schema is not
applicable to all positive integers; one must be so alert to ways a schema of the
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given kind can fall short of universal applicability that if one had been presented
with a schema that did fall short, one would have detected the failure.

In the example at hand, the schema of visual reasoning involves at the start
taking a number k to be represented by a column of k dots, thence taking the
triangular array of n columns to represent the sum of the first n positive integers,
thence taking that array combined with an inverted copy to make a rectangular
array of n columns of n+ 1 dots. For a schema starting this way to be universally
applicable, it must be possible, given any positive integer n, for the sum of the
first n positive integers to be represented in the form of a triangular array, so that
combined with an inverted copy one gets a rectangular array. This actually fails
at the extreme case: n = 1. The formula [n× (n+ 1)]/2 holds for this case; but
that is something we know by substituting ‘1’ for the variable in the formula,
not by the visual method indicated. That method cannot be applied to n = 1,
because a single dot does not form a triangular array, and combined with a
copy it does not form a rectangular array. The fact that this is frequently missed
by commentators suggests that the required sensitivity is often absent. This and
similar ‘dot’ arguments are discussed in more detail in Giaquinto (1993b).

Missing an untypical case is a common hazard in attempts at visual proving.
A well-known example is the proof of Euler’s formula V − E + F = 2
for polyhedra by ‘removing triangles’ of a triangulated planar projection
of a polyhedron. One is easily convinced by the thinking, but only because
the polyhedra we normally think of are convex, while the exceptions are not
convex. But it is also easy to miss a case which is not untypical or extreme
when thinking visually. An example is Cauchy’s attempted proof (Cauchy,
1813) of the claim that if a convex polygon is transformed into another polygon
keeping all but one of the sides constant, then if some or all of the internal
angles at the vertices increase, the remaining side increases, while if some or
all of the internal angles at the vertices decrease, the remaining side decreases.
The argument proceeds by considering what happens when one transforms a
polygon by increasing (or decreasing) angles, angle by angle. But in a trapezoid,
changing a single angle can turn a convex polygon into a concave polygon,
and this invalidates the argument (Lyusternik, 1963).

The frequency of such mistakes indicates that visual arguments often lack the
transparency required for proof; even when a visual argument is in fact sound,
its soundness may not be clear, in which case the argument is better thought
of as a way of discovering rather than proving the truth of the conclusion. But
this is consistent with the claim that visual thinking can be and often is a way of
proving something. That is, visual thinking can form a non-superfluous part of
a process of thinking through a proof that is not replaceable by some non-visual
thinking (without changing the proof.) Euclid’s proof of the proposition that
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the internal angles of a triangle sum to two right angles provides an example.
Norman (2006) makes a strong case that following this proof requires visual
thinking, and that the visual thinking is not replaceable by non-visual thinking.
Returning to our visual route to the formula for triangular numbers, we can
check that the method works for all positive integers after the first, using
visual reasoning to assure ourselves that it works for 2 and that if the method
works for k it works for k+ 1. Together with this reflective thinking, the
visual thinking sketched earlier constitutes following a proof of the formula
for the nth triangular number for all integers n > 1, at least if the relaxed view
of thinking through a proof is correct. In some cases, then, the danger of
unwarranted generalization in visual reasoning can be overcome.

1.3 Discovering

Though philosophical discussion of visual thinking in mathematics has con-
centrated on its role in proof, visual thinking more often shows its worth in
discovery than in proof. By ‘discovering’ a truth I will mean coming to believe
it by one’s own lights (as opposed to reading it or being told) in way that is
reliable and involves no violation of epistemic rationality (given one’s epistemic
state). Priority is not the point: discovering something, in this sense, entails
seeing it for oneself rather than seeing it before anyone else. The difference
between merely discovering a truth and proving it is a matter of transparency:
for proving or following a proof the subject must be aware of both the way
in which the conclusion is reached and the soundness of that way; this is not
required for discovery.

The oldest and best known discussion of visual discovery is to be found in
Plato’s Meno (82b–86b). Using the diagram of Fig. 1.3, it appears quite easy to

Fig. 1.3.
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discover the general truth of Euclidean geometry that a square on a diagonal
of a given square has twice the area of the given square. The many visual ways
of reaching Pythagoras’s Theorem provide similar examples.

While it is easy to reach the theorem Plato presents by means of the
visual image, it is very difficult to show that the mode of belief-acquisition is
reliable, because much of the process is fast, unconscious, and sub-personal.
While the way of reaching the belief that there are twice as many small
triangles in the square on the diagonal as in the square with the horizontal
base is clear and open, the way of reaching the belief that the small triangles
are congruent is hidden. For an initial speculative account of the process,
see Giaquinto (2005). (The relevant passage in the Meno is examined in
Giaquinto (1993a) and a similar example is discussed at length in Giaquinto
(1992).)

My hypothesis is that the hidden process involves the activation of dis-
positions that come with possession of certain geometrical concepts (e.g. for
square, diagonal, congruent). What triggers the activation of these dispositions
is conscious, indeed attentive, visual experience; but the presence and oper-
ation of these dispositions is hidden from the subject. Because the process is fast
and hidden, the resulting belief seems to the subject immediate and obvious.
The feeling of obviousness occurs even in some more complicated cases. As
we occasionally turn out to be fooled by these feelings, and because (at least
part of) the process of belief-acquisition in visual discovery is hidden, we need
in addition some transparent means of reaching the discovered proposition as
a check: this is proof.

But in other cases there is nothing hidden. One makes a discovery by means
of explicit visual thinking using background knowledge. Figure 1.4 illustrates
an open way of discovering that the geometric mean of two numbers is less
than or equal to their arithmetic mean (Eddy, 1985).

a

b

(a+b)/2

ab

(a–b)/2

Fig. 1.4.
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Pythagoras’s theorem is used to infer that the base of the right-angled triangle
has length

√
ab, where a and b are the diameters of the larger and smaller of the

osculating circles respectively; then visualizing what happens to the triangle
when the diameter of the smaller circle varies between 0 and the diameter of
the larger circle, one infers that

√
ab � (a+ b)/2 and that

√
ab = (a+ b)/2 just

when a = b. Reflecting on this way of reaching the inequality one can retrieve
the premisses and the steps, and by expressing them in sentences construct a
sound non-visual argument. This is quite different from the visual genesis of
our belief that the triangles of a square either side of a diagonal are congruent.
In that case reflection on our thinking does not provide us with any argument,
and we are reduced to saying ‘It’s obvious!’

In some cases visual thinking inclines one to believe something but only
on the basis of assumptions suggested by the visual representation that remain
to be justified given the subject’s current knowledge. In such cases there is
always the danger that the subject takes the visual representation to show the
correctness of the assumptions and ends up with an unwarranted belief. In
such a case, even if the belief is true, the subject has not discovered the truth,
as the means of belief-acquisition is not reliable and demands of rationality
have been transgressed. This can be illustrated by means of an example taken
from Nelsen’s Proof Without Words (Montuchi and Page, 1988) presented in
Fig. 1.5.

Reflection on this can incline one to think that when the positive real
number values of x and y are constrained to satisfy the equation x.y = k (where
k is a constant), the positive real number values of x and y for which x+ y is
minimal are x = √k = y. (Let ‘#’ denote this claim.) Suppose that a person
knows the conventions for representing functions by graphs in a Cartesian
coordinate system, and knows also that the diagonal represents the function
y = x, and that a line segment with gradient −1 from (0, b) to (b, 0) represents

(0, j)

(0, 2 k)

(j, 0)

xy = k

k)k,(

k, 0)(2

Fig. 1.5.
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the function x+ y = b. Then looking at the diagram may incline the subject
to think that for no positive value of x does the value of y in the function
x.y = k fall below the value of y in x+ y = 2

√
k, and that these functions

coincide just at the diagonal. From these beliefs the subject may (correctly)
infer the conclusion #. But mere attention to the diagram (or a visual image of
it) cannot warrant believing that the y-value of x.y = k never falls below that
of x+ y = 2

√
k and that the functions coincide just at the diagonal; for the

conventions of representation do not rule out that the curve of x.y = k meets
the curve of x+ y = 2

√
k at two points extremely close to the diagonal, and

that the former curve falls below the latter in between those two points. So
the visual thinking is not in this case a means of discovering proposition #.
But it is useful because it leads the subject to propositions which, once she has
established their truth,⁶ would provide her with what is needed to transform
an inclination to believe into knowledge.

We can say about the case just discussed that visual thinking is a heuristic aid
rather than a means of discovery. When it comes to analysis mathematicians
of the 19th and 20th centuries were right to hold that visual thinking rarely
delivers knowledge. Visualizing cannot reveal what happens in the tail of an
infinite process. So visual thinking is unreliable for situations in which limits
are involved, and so it is not a means of discovery in those situations, let alone
a means of proof. A more optimistic view is presented in Brown (1999), where
it is proposed that reflection on a single diagram (Fig. 1.6) suffices to prove the
Intermediate Zero Theorem.

The idea is that reflection on the diagram warrants the conviction that a
perceptually continuous graphical line with endpoints above and below the
horizontal axis must cross the axis, and that in turn justifies the theorem: if a

a b

f(b)

f(a)

Fig. 1.6.

⁶ This is easy enough. (i) For each equation it is trivial that if x = y, their common value is
√

k.
So the functions expressed by those equations meet at the diagonal. (ii) To show that the y-values
of x.y = k never fall below the y-values of x+ y = 2

√
k, we need only show that for positive

x, 2
√

k− x � k/x. As a geometric mean is less than or equal to the corresponding arithmetic mean,√
[x.(k/x)] � [x+ (k/x)]/2. So 2

√
k � x+ (k/x). So 2

√
k− x � k/x.
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function f (in the real numbers) is ε − δ continuous on an interval [a, b] and
f (a) < 0 < f (b), f must take the value 0 at some point between a and b. A
central point of contention is whether the perceptual concept of graphical line
continuity is so related to the analytical (ε − δ) concept of function continuity
that the perceptual conviction justifies the analytical conclusion. One reason
for doubt is that not every ε − δ continuous function has a visualizable curve,
e.g. Weierstrass’s continuous but nowhere differentiable function,⁷ or f defined
on [0, 1] thus:

f (x) = x. sin(1/x) if 0 < x � 1; f (0) = 0

So the visual thinking does not provide us with a form of reasoning that is
applicable to all ε − δ continuous functions. The matter is discussed further in
Giaquinto (1994).

1.4 Other uses of visual thinking

Even if visual thinking in analysis cannot be a means of proof or discovery
(in the sense in which I am using that term), it is extremely useful in other
ways. One way in which it is useful is in augmenting understanding. This has
two dimensions. First, there is understanding in the sense of one’s grasp of a
definition, a formula, an algorithm, a valid inference-type, and so on. Then
there is the understanding involved in not only grasping the correctness of a
claim, method or proof, but also appreciating why it is correct. Understanding
of this kind falls within the ambit of Mancosu’s research programme on
mathematical explanation (Mancosu, 2000, 2001, and this volume).⁸ The
following discussion is confined to understanding in the first sense.

Students of calculus and analysis will be aware that visual representations
can help one grasp analytically defined concepts; of course the danger of
hasty generalization lurks, but one can also have visual representations of

⁷ This claim is contentious. Mancosu (2005) discusses the question in historical context. My view
in brief is this. We do have a visual way of reducing the puzzling character of a continuous nowhere
differentiable function: we visualize first a curve with sharp peaks and sharp valleys; then we imagine
zooming in on an apparently smooth part between a peak and a valley, only to find that this part itself
contains sharp peaks and valleys; and we suppose that this is repeatable without end. But at every stage
the curve visualized appears to have smooth parts and so is the image of a function that is differentiable
over small intervals. The curve of a continuous function which is non-differentiable at a point makes
a sharp turn at that point, and a curve consisting of sharp turns at every point, without any smooth
segments between sharp points, is unvisualizable.

⁸ See also Tappenden (2005) for a nuanced, informative and illuminating discussion of understanding
and visualization in mathematics.
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exceptional cases. When a function f (x) does have a visualizable curve,
visualization can help us grasp symbolically given operations on the function,
e.g. f (x)+ k, f (x+ k), |f (x)|, f (|x|), f −1(x) (Eisenberg, 1991), and operations
on functions that cannot be grasped pointwise, such as:

I(x) =
∫ x

0
f (t)d(t)

Visual representations can also help explain the rationale of a definition. For
an example consider Euler’s formula:

eiθ = cos θ + i sin θ

This is often introduced as a definition for extending the exponential
function to complex numbers.⁹ We can help to make sense of this definition
visually, in terms of its geometric significance. Consider the point on the unit
circle at angle θ anticlockwise from the unit vector on the x-axis (Fig. 1.7
left). That point has coordinates 〈cos θ, sin θ〉. So it represents the complex
number cos θ + i sin θ . Thinking of this as the vector from the origin to the
point 〈cos θ, sin θ〉, Euler’s formula tells us that eiθ is that vector.

If we expand (or contract) the x and y coordinates of that vector by real
magnitude r to r cos θ and r sin θ , it is clear that the corresponding vector must
also expand or contract by a factor of r. This gives an immediate geometrical
significance to the following trivial consequence of Euler’s formula:

reiθ = r cos θ + ri sin θ

It tells us that reiθ is the vector with length r at angle θ (Fig. 1.7 right). Thus
we have a notation for vectors that makes explicit its determining geometric
properties, its length r and its angle θ , properties hidden by the pairs-of-reals
notation. This is what explains the aptness of Euler’s formula. For confirmation,

eiq

reiq

q

qsinq

cosq
r cosq

r sinq

Fig. 1.7.

⁹ Given the law for multiplying by adding exponents, Euler’s formula is trivially equivalent to the
equation ex+iθ = ex(cos θ + i sin θ). Sometimes this equation is given as the definition.
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recall the puzzlement one feels when first introduced to vector multiplication
in terms of pairs-of-reals. Given that i2 = −1, it is clear that

(x+ iy)(u+ iv) = (xu− yv)+ i(xv + yu)

But why does the term on the right denote the vector whose length is the
product of the lengths of the multiplied vectors and whose angle is the sum of
the angles of the multiplied vectors? Given the law for multiplication by adding
exponents, the answer is immediate using the Euler notation for vectors:

reiθ seiη = rsei(θ+η)

For further light on Euler’s formula I recommend Needham (1997), 10–14.
Another way in which visualization can be useful is as an aid to discovery
or proof. We have already seen an example in the use of the diagram in
Fig. 1.5 in getting to the theorem that, if x.y = k, the values of x and y for
which x+ y is smallest are x = √k = y. The visual thinking does not get us
all the way to the theorem, but it reduced the problem to simple algebraic
manipulations. Often a visual representation will seem to show properties that
might be useful in solving a problem, a maximum here or a symmetry there;
thus the investigators are supplied with plausible hypotheses which they can
then attempt to prove. An excellent example is the successful attempt to show
that the Costa minimal surface (Fig. 1.8) is embeddable¹⁰ by David Hoffman,
William Meeks and James Hoffman.

Fig. 1.8.

¹⁰ A surface is embeddable if and only if it can be placed in R3 without self-intersections. More
generally, a surface is n-embeddable if and only if it can be placed in Rn without self-intersecting, but
for all m < n cannot be placed in Rm without self-intersecting.
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David Hoffman’s own report (Hoffman, 1987) is worth quoting:

... Jim Hoffman and I could see after one long night of staring at orthogonal
projections of the surface from a variety of viewpoints that it was free of
self-intersections. Also, it was highly symmetric. This turned out to be the
key to getting a proof of embeddedness. Within a week, the way to prove
embeddedness was worked out. During that time we used computer graphics as a
guide to ‘‘verify’’ certain conjectures about the geometry of the surface. We were
able to go back and forth between the equations and the images. The pictures
were extremely useful as a guide to the analysis.

In discussing such uses of visual representations it is sometimes said that they
are ‘merely heuristic’. This use of ‘merely’ is a symptom of our preoccupation
with proof and our tendency to undervalue heuristic devices of all sorts.
Heuristic devices vary in value, and they can be used in good or bad ways. The
evaluation of heuristic aspects of inquiry is a subject of epistemic importance
that we epistemologists have so far failed to investigate. The heuristic use of
visual representations is clearly significant, indeed vital, in mathematics, and
deserves greater attention in future studies of mathematical thinking.

Finally, visual thinking is useful in calculation. What I have in mind is the
rearrangement of symbol arrays in imagination or on paper. This is a topic I
do not have space to go into here. But its importance should be clear: even
the algorithms we are taught at junior school for basic multidigit calculation
are visuo-spatial in nature.¹¹ So it is not that surprising to find that people with
certain visuo-spatial deficits (Williams syndrome and Turner syndrome) or
agraphia (Gerstmann syndrome) also have calculation difficulties, though the
nature of the connection between the deficits, if they are connected, is unclear.
Symbol manipulation also plays a significant role in thinking in algebra, though
contrary to popular belief there is more to algebra than that. Matrix algebra
provides a significant example of visual operations on symbol displays, and the
importance of matrices in applications again attests to the utility of symbol
manipulation in calculation.

1.5 Conclusion

Visual thinking can occur as a non-superfluous part of thinking through a
proof and it can at the same time be irreplaceable, in the sense that one could
not think through the same proof by a process of thought in which the visual

¹¹ See Sawyer (1964) for the potential of visual means at elementary level.
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thinking is replaced by some thinking of a different kind. Often, however,
when visual thinking is a non-superfluous and irreplaceable part of thinking
through an argument, the soundness of the process and sometimes even the
process itself are not apparent to the thinker; in that case the thinking does
not constitute proving. But it may be sound and the thinker may believe the
conclusion without any violation of epistemic rationality. That is discovery
(‘seeing for oneself’ rather than ‘finding first’), as I have been using that term.
So visual thinking can have an epistemically significant role in proving and,
as it often does in practice, in discovering. Visual thinking more frequently
plays other roles in practice. It may lead one to plausible hypotheses which, if
proved, lead to the solution of a problem under investigation. This is its role as
a heuristic aid, a role no less important than its role in proving and discovering.
Visual thinking also augments understanding and enables calculation.

That is a summary of what I hope to have made plausible in this introduction.
What is unavoidably missing is a sense of the richness of visual thinking
in mathematics, the diversity of types of visual representation and visual
transformations of them, and the ways they are used. This is extensive and
still largely unexplored terrain, potentially fruitful for the cognitive science and
epistemology of mathematics.
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Cognition of Structure
MARCUS GIAQUINTO

2.1 Introduction

What is the nature of our cognitive grasp of mathematical structures? A structured
set is a set considered under one or more relations, functions, distinguished
elements (constants) or some combination of these. Examples are the ring of
integers, the group of isometries of the Euclidean plane, the lattice of subsets of
natural numbers, and the Banach space of continuous functions on the closed
unit interval I with norm ||f || = sup{f (x) : x ∈ I}. The structure of a structured
set, as I will be using the word, is that property it shares with all and only those
structured sets isomorphic to it, in other words its isomorphism type.¹

By ‘cognitive grasp’ I mean the kind of knowledge that has a non-
propositional complement, such as one’s knowledge of the taste of cinnamon,
the Cyrillic alphabet or Fauré’s requiem.² With this kind of knowledge in
mind, Russell (1912) drew attention to a distinction between knowledge
by description and knowledge by acquaintance: you may know Rome by
acquaintance but Carthage only by description. As structures are highly
abstract, it seems clear that we cannot know them by acquaintance. If we
know them at all, we must know them by description; and in many cases this
is just how it seems to be. If we know that all the models of a mathematical
theory are isomorphic, we can know a structure as the structure common to
all models of the theory, e.g. the structure of all models of the second-order
axioms for Dedekind–Peano arithmetic. This is knowledge by description,
and it seems to be the only kind of knowledge of structure available to us.
Nonetheless, I will try to show that, on the contrary, this is not the only way

¹ Mathematicians sometimes use the word ‘structure’ this way; but they sometimes use it to refer to
what I am calling a structured set, and sometimes to a common structural kind, as in ‘group structure’.

² There is no English word for just this kind of knowing. I sometimes use the frankly metaphorical
‘grasp’, but also sometimes ‘discern’ or even ‘cognize’, when the object is a structure.
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of knowing structures; in some cases we can know structures in more intimate
ways, by means of our visual capacities.

We can say, broadly, that our ability to discern the structure of simple
structured sets is a power of abstraction; but we do not at present have an
adequate account of the operative faculties or processes. That we have an
ability to discern structure is made evident by our manifest ability to spot a
structural analogy. A striking case is provided by the history of biology. The
pattern of gene distribution in dihybrid reproduction postulated by Mendelian
theory can be found in the behaviour of chromosomes in meiosis (division of cells
into four daughter cells, each with half the number of chromosomes of the
parent) and subsequent fusion of pairs of daughter cells from different parents.
The hypothesis that chromosomes are agents of inherited characteristics issued
from this observation, and was later confirmed.³

Somehow biologists spotted the common pattern. But how? For an answer
one might look to the large cognitive science literature on analogy. This
subject is still at an early stage, with lots of speculation and many theories.
Among the most promising are those based on the structure-mapping idea of
Dedre Gentner.⁴ This, however, is no good for present purposes, because it
takes cognition of structure as given, and cognition of structure is precisely
what we want to understand.

I will proceed by suggesting some possibilities consistent with what I know
of current cognitive science, in particular the science of vision and visual
imagination. I will restrict consideration to just a few structures, mostly very
simple finite structures. But I will also say something about our grasp of infinite
structures.

2.2 Visual grasp of simple finite structures

Here is a simpler biological example of a structured set. Consider the set
consisting of a certain cell and two generations of cells formed from that initial
cell by mitosis, division of cells into two daughter cells, under the relation ‘x
is a parent of y’. In this structured set there is a unique initial cell (initial, in
that no cell in the set is a parent of it), a first generation of two daughters and a
second generation of four grand-daughters, which are terminal (as they are not
parents of any cell in the set). How can we have knowledge of the structure of
this structured set?

³ Priority is attributed to W. Sutton (1902). Others were hard on his heels. ⁴ Gentner (1983).
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2.2.1 Visual templates

One possibility, highlighted by Michael Resnik (1997, Ch. 11 §2), is that we
use a perceptible template. This might be a particular configuration of marks
on a page, an instance of a diagram, which itself can be construed as a structured
set, one that has the very same structure as the cell set. Let Fig. 2.1 be our
diagram.

The structured set here is the set of square nodes of Fig. 2.1 under the
relation ‘there is an arrow from x to y’. (One has to be careful here. We get
a different structured set if the chosen relation is ‘there is an arrow or chain of
arrows from x to y’.) Now we let the top square node represent the initial cell,
the square nodes at the tips of arrows from the top represent the daughter cells,
and the four terminal nodes represent the grand-daughter cells, with no two
nodes representing the same cell. We can tell that these conventions provide
an isomorphism: cell c is a parent of cell d if and only if there is an arrow
from the node representing c to the node representing d. In this case we are
using a particular visible structured set to represent another structured set. In the
same way we can use the visible structured set to represent all structured sets
that share its structure. This representative can thus serve as a visual template
for the structure. We can see the visual template, and we can see it as a
structured set. Seeing it as a structured set requires a non-visual factor, to
determine what is the relevant set (e.g. square nodes or arrows) and what is
the relevant relation (e.g. ‘there is an arrow from x to y’ or ‘there is chain
of one or more arrows from x to y’). But the result is still a kind of visual
cognition.

Suppose now we are interested in some other structured set (like the cells
under the ‘parent-of ’ relation). By giving names to its elements and labelling
the nodes of the visual template with these names, we can establish that the
given structured set is isomorphic to the visual template. The labelled config-
uration is something we see, and checking that the labelling gives a one–one

Fig. 2.1.
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order-preserving correlation (an isomorphism) is a mechanical-perceptual task.
In this way we have epistemic access to a structure.

Here I have been supposing that a visual template is one particular config-
uration of actual physical marks, e.g. those in Fig. 2.1 in the copy of the book
you are now reading! Just as you can recognize different physical inscriptions as
instances of an upper-case letter A, so you can recognize different configurations
of physical marks as instances of the same type. You would have no difficulty
in recognizing, as an instance of that type, the instance of Fig. 2.1 in another
copy of the book. Moreover, you could recognize as instances of that type
other configurations that are geometrically similar but differing in size and
orientation.

To account for this recognitional capacity it is thought that the visual system
stores representations of types of visible configurations. A representation of a
visual type is not itself a visual image; but

(i) a visual stimulus can activate a representation of a type. This is required
for recognition as opposed to mere perception.

(ii) Also, we can activate a type representation to produce an image of an
instance of the type by voluntary visual imagining.

In this situation it seems reasonable to take the configuration type to have the
structure-fixing role that we had been assigning to a particular physical instance
of the type. This is still within the ambit of the template idea. In place of a
single physical template, however, we allow as templates any configuration of
marks that we can recognize as instances of the type.

2.2.2 Beyond visual templates

We can have an awareness of structure that is more direct than the visual tem-
plate mode, at least in such very simple cases as this, two generations of binary
splitting. The awareness I have in mind is not tied to a particular configuration
type. Although a particular configuration of marks, viewed as a set of elements
visibly related in a particular way, may serve a person as an initial instance of
a structure, one may later think of the structure without thinking of it as the
structure of configurations of just that visual type. Once one has perceived a
configuration of marks as a structured set, one can acquire the ability to perceive
configurations of other visual types as structured in the same way. For example,
one has no difficulty in seeing the configurations of Fig. 2.2 as structured in
the same way, even though they appear geometrically quite dissimilar.

It is not clear how we do this. In these cases there is a visualizable spatio-
temporal transformation of one configuration into another that preserves
number of members and relevant relations between them. (Relevant relations
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Fig. 2.2.

are those picked out in conceiving the configurations as structured sets.) So,
seeing two dissimilar configurations, conceived as structured sets, as instances of
the same structure may involve visualizing an appropriate spatial transformation.

But I doubt that it is necessary to visualize a spatial transformation. We
may instead be able to see, quite directly, diverse configurations as instances
of the same structure. How is this possible? We can directly recognize objects
of different shapes, sizes, colours, surface textures, etc. as members of a single
class, such as the category of hand. We sometimes think of all hands, or at least
all left hands, as having the same shape. But the actual shape of a hand varies
with degree of openness and positions of the fingers, as well as their relative
thickness. What we actually mean by ‘the shape’ of a hand is something more
abstract, a spatial property that is preserved not only under shape-preserving
transformations, but also under transformations involved in normal changes of
palm shape and finger positions. Yet we can visually recognize something as a
hand directly, regardless of palm shape and finger positions. We certainly do
not deduce that something we see is a hand from other perceptible properties;
rather, the visual system has acquired a category representation for hand;
and when visual inputs from seeing a hand strongly activate this category
representation, one visually recognizes what one is seeing as a hand. In the
same way, the visual system can acquire a representation for a category of visual
configurations of marks that provide instances of a common structure. Let us
call these representations category specifications.⁵ My suggestion is that a visual
category specification gives us a visual means of grasping structure that is more
flexible than a visual template.

⁵ This is what is called a ‘category pattern’ in Kosslyn (1994).
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A category specification is a nexus of related feature specifications that cannot
be ‘read off ’ the subjectively accessible features of the visual experience of an
instance of the category. Just as with face recognition, the subject may have
no way of knowing precisely which congregations of features and relations
leads to recognition of the category when presented with an instance. A visual
category specification is a kind of representation in the visual system, but it is
very unlike a visual image or percept. An image or percept is a transient item of
experience of specific phenomenological type, whereas a category specification
is a relatively enduring representation that is not an item of experience, though
its activation affects experience.

We can recognize a perceived configuration of marks as an instance of
a certain structure, by activation of an appropriate visual category specifi-
cation. Thus, I suggest, we can have a kind of visual grasp of structure
that does not depend on the particular configuration we first used as a
template for the structure. We may well have forgotten that configuration
altogether. Once we have stored a visual category specification for a struc-
ture, we have no need to remember any particular configuration as a means
of fixing the structure in mind. We can know it without thinking of it
as ‘the structure of this or that configuration’. There is no need to make
an association. So this is more direct than grasp of structure by a visual
template.

What about identifying the structure of a non-visual structured set given
by verbal description? Recall the method mentioned earlier using a visual
template: (1) we first name the members of the set, (2) then label elements
of the template with those names, and (3) then check that the labelling
provides an isomorphism. Though this can happen, we often do not need
any naming and labelling. Consider the following structured set: {Mozart, his
parents, his grandparents} under the relation ‘x is a child of y’. Surely one
can tell without naming and labelling that it is isomorphic to the structured
sets given earlier. We know this for any set consisting of a person, her parents
and grandparents under the ‘child-of ’ relation (assuming no incest). It is as
if our grasp of these sets as structured sets already involves activation of a
visual category specification for two generations of binary splitting. Exactly the
same applies to the set obtained from the first two stages in the construction
of the Cantor set by excluding open middle thirds, starting from the closed
unit interval, under set inclusion. Naming and labelling are not needed to
recognize this as a case of two generations of binary splitting. I offer as a
tentative hypothesis that we can recognize the structure in this case as a result
of activation of a visual category specification for two generations of binary
splitting.
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2.3 Extending the approach

2.3.1 More complicated structures

The structured sets considered so far have all been very small finite sets under
a single binary relation. You may reasonably harbour the suspicion that sets
structured by a plurality of relations or operations lie beyond any visual means
of cognizing structure. I will now try to allay that suspicion. Figure 2.3 is a
labelled visual template for the structure of the power set of a three-membered
set {a, b, c} under inclusion.

As before, this is a very small set structured by one binary relation. The
configuration of Fig. 2.3 provides a template, namely, the set H of nodes under
the relation ‘n = m, or, there is an upward path from m to n’, which we can
shorten to ‘n � m’. This structured set is easily seen to be isomorphic to the
power set of S under inclusion by means of the labelling in the figure. In
symbols,

〈H; �〉 ∼= 〈P(S);⊆〉
However, there is another way in which the set of nodes of Fig. 2.3 is
structured. In place of the binary relation � there are operations and constants
defined as follows:

(∧) x ∧ y = the highest node n such that n � x and n � y.
(∨) x ∨ y = the lowest node n such that x � n and y � n.

{a,b} {a,c} {b,c}

{c}{b}{a}

S

∅

Fig. 2.3.
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We name the bottom and top nodes, our constants, Min and Max respectively.

(−) −x = the node n such that x ∧ n is Min and x ∨ n is Max.

The set of nodes structured by ∧, ∨, −, Max and Min is isomorphic to
the power set algebra of S, which is the power set of S under the operations
of intersection, union, and relative complement, and the constants S and the
empty set. In symbols,

〈H;∧,∨,−, Max, Min〉 ∼= 〈P(S);∩,∪,∼, S, ∅〉
The isomorphism can be checked visually. A structured set of this kind is
known as a three-atom Boolean algebra. Thus we have a visual template for the
structure of a three-atom Boolean algebra, and this is a structure involving
three operations, known as meet (∧), join (∨), and complement (−), and two
constants.

With a small amount of practice it is easy to acquire the visual ability to
see the meet, join, and complement of nodes in Fig. 2.3 right away. The
least straightforward is complement, but here is how it is done. Viewing the
configuration as a cube, we see that every node is at one end of a unique
diagonal of the cube; the complement of a node is the node at the other end
the diagonal. So, although it is an exaggeration to say that we can simply see
the configuration of Fig. 2.3 as the structured set 〈H;∧,∨,−, Max, Min〉, it
is strictly correct to say that we can have a perceptual grasp of that structured
set. But how do we grasp its structure, the structure of a three-atom Boolean
algebra? First, given an instance of this structure we can map it isomorphically
onto a configuration like the one shown here, construed as a structured set in
the way described. This is the visual template method. But practice may take
us beyond it. We may eventually acquire an ability to tell, given an instance,
that it can be mapped isomorphically onto the configuration without actually
having carried out the mapping, even in thought. Provided that this ability is
discriminating, in that it would not also lead us to think, of a non-instance, that
it too can be mapped isomorphically onto the configuration, our grasp of the
structure may consist in our having this ability, or, if that is too behaviourist,
in our having the cognitive basis of the ability.

2.3.2 Structural kinds

The cognitive abilities involved in discerning the structures of the last example
can also be used to discern kinds of structure. Representing a structure by a
spatial pattern can be useful when the structure is very small or very simple,
but moderate size and complexity usually nullifies any gain. Try drawing a
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Fig. 2.4.

diagram of the power set algebra of a four-element set: it can be done, but
the result will not be easy to take in and memorize. Moreover, there seems
to be no iterative procedure for obtaining a diagram or spatial model for the
power set algebra of an n+ 1-element set from a diagram for the power set
algebra of an n-element set. If that is right the structures of the power set
algebras of finite sets do not constitute a kind that we can grasp by means of
visual configurations. Some kinds of structure, however, are sufficiently simple
that visual representations together with rules for extending them can provide
awareness of the structural kind. For discrete linear orderings with endpoints
the representations might be horizontal configurations of stars and lines, giving
a structured set of stars under the relation ‘x is left of y’. The first few of these
we can see or visualize, as illustrated in Fig. 2.4.

We have a uniform rule for obtaining, from any given diagram, the diagram
representing the next discrete linear ordering with endpoints: add to the
star at the right end a horizontal line segment with a star at its right end.
This is a visualizable operation that together with the diagrams of the initial
cases provides a grasp of a species of visual templates for finite discrete linear
orderings with endpoints. Through awareness of this kind of template we have
knowledge of the kind of structure which they are templates for. Binary trees,
and more generally n-ary trees for finite n, comprise a more interesting kind of
structure. We have already seen configurations that can be used to represent
a binary tree in earlier figures. Taking elements to be indicated by points at
which a line splits into two and by terminal points, the three binary trees after
the first (which is just a ‘v’) can be visualized as in Fig. 2.5.

As mentioned before, a configuration represents a structured set only given
some rules governing the representation of relations, functions, and constants.
Binary trees are sets ordered by a single transitive relation R with one

Fig. 2.5.
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initial element and for every non-terminal element exactly two immediate
R-successors.⁶ I am restricting attention to binary trees such that, for some
positive finite number k, all and only kth generation elements are terminal.⁷
The rule is this:

x bears relation R to y if and only if there is an upward path from the node
(branching point) representing x to the node representing y.

This convention clearly respects the transitivity of the relation. The largest
tree that we can easily visualize has very few generations. But we have a
uniform rule for obtaining the next tree from any given n-generation tree by
a visualizable operation:

Add to each of the 2n terminal points an appropriately sized ‘v’.

This visualizable operation, together with the diagrams or images of the first
few trees, provides us with a visual awareness of a kind of template for
finite binary trees. But however we proportion the ‘v’s of each succeeding
generation to their predecessors, for some n which is not very large the parts
of a tree diagram from the nth generation onwards will be beyond the scope
or resolution of a visual percept or image in which the initial part of the tree
is clearly represented. Yet we have a visual way of thinking of a binary tree
too large for its spatial representation to be completely visible at one scale.
We can visualize first the result of scanning a tree diagram along any one of
its branches; we can then visualize the result of zooming in on ‘v’s only just
within visual resolution, and we can iterate this process. This constitutes a kind
of visual grasp of tree diagrams beyond those we perceive entirely and at once.
This visual awareness, arising from the combination of our visual experience
of the first few tree diagrams and our knowledge of the visualizable operation
for extending them, gives us a grasp of the structural kind comprising the finite
binary trees.

The same considerations apply with regard to ternary and perhaps even
quaternary trees. But trees whose nodes split into as many as seven branches
defy visualization beyond the first generation, and we cannot visualize even
the first generation of a tree with 29 branches from each node, except perhaps
in a way in which it is indistinguishable from trees with 30-fold branching. In

⁶ So the ordered sets represented earlier with the ‘parent-of ’ and ‘child-of ’ ordering relations are
not binary trees as neither of these is transitive. But those same sets ordered by ‘forbear-of ’ and
‘descendant-of ’ respectively are binary trees.

⁷ The initial element is zeroth generation, its two successors are first generation, and so on.
Accordingly, a tree whose terminal elements are first generation is a 1-generation tree, and in general a
tree whose terminal elements are nth generation is an n-generation tree.
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these cases we operate by description and where possible by analogy with the
trees we can visualize, just as we sometimes use three-dimensional objects as
analogues of objects in higher dimensions. However, the sort of acquaintance
we can have with the binary tree kind we can also have with many other
kinds of structure, if we can give a recursive specification of the kind. What is
required is just that templates of the smallest two or three structures are easy
to visualize and we have a rule for obtaining a template of the ‘next’ structure
from a template of a given structure by a visualizable process. A structural kind
of this sort comprises an infinite sequence of structures that are often nested,
in the sense that every structure in the sequence is a substructure of all later
structures. The union of such a sequence is an infinite structure. What kind of
visual grasp of infinite structures is possible, if any at all? That is our next topic.

2.4 Knowledge of infinite structures

If there can be visual cognition of any infinite structure, the simple and
familiar structure of the natural numbers will be the prime example. Here I am
talking about the structure of the finite cardinals under their natural ‘less than’
ordering. There is significant evidence that people with a standard education
mentally represent positive integers as aligned in space. This is an active topic
of cognitive research that goes under the title of ‘mental number lines’.⁸ In
our culture the standard mental number line is a horizontal alignment with a
left-to-right ordering. Details may vary. One possibility is a set of evenly spaced
vertical marks on a horizontal line, with a single leftmost mark, continuing
endlessly to the right such that every mark, however far to the right, is reachable
by constant rate scanning from the leftmost mark (Fig. 2.6). One mark is taken
to precede another if it is to the left of it; with respect to this ordering the
leftmost mark is the only initial mark and there is no terminal mark.⁹

An obvious problem with the idea that a mental number line provides a
grasp of the natural number structure is that we cannot see or visualize more
than a finite part of any such line. When it comes to actual images (or percepts),
something like Fig. 2.6 will be the best we can do. So the idea that we have a

Fig. 2.6.

⁸ This is the subject of Chapter 6 of Giaquinto (2007).
⁹ An initial element is one that has no immediate predecessor; a terminal element is one that has no

immediate successor.
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visual representation of the whole of such a line appears to be plain wrong. But
it may not be wrong if visual representations include not only visual images
but also visual category specifications. Recall the distinction: a visual image is a
transient item of visual experience of specific phenomenological type, whereas
a visual category specification is a stored representation, consisting of an ensemble
of feature descriptions.¹⁰ What is impossible is an infinitely extended visual
image. But it is possible that a category specification specifies a line with no
right end, one that continues rightward endlessly. To explain this I need to
say more about the relation of category specification to image, which I will do
with reference to Kosslyn’s view of the functional architecture of the human
visual system, a part of which is represented in Fig. 2.7. This figure is adapted
from Kosslyn (1994).¹¹

Category specifications are representations in the category specification
activation subsystem and images are identified with patterns of activity in
the visual buffer. When attention shifts to an image part, the corresponding
activity (now in the attention window) is augmented. An internal ‘instruction’
to visualize something is input to the category specification activation system;
the eventual output is a pattern of activity in the visual buffer that constitutes
an image. More than one image can be generated from a given category
specification; in fact, a continuously¹² changing image can be generated over
an interval of time from one category specification. When the category

¹⁰ Here ‘image’ is used broadly to include percepts. Where ‘image’ is used strictly for products of
visual imagination, the representation results from activation of a category specification by ‘top-down’
processing, as opposed to ‘bottom-up’ processing originating with retinal stimulation.

¹¹ I have omitted all arrows representing bottom-up processing; only a few parts of the system are
represented. See the figure on p. 383 of Kosslyn (1994). The subsystem I call ‘category specification
activation’ Kosslyn calls ‘category pattern activation’; what I call ‘image generating function’ he calls
‘spatiotopic mapping’.

¹² Here I use ‘continuously’ in the ordinary non-mathematical sense.
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specification is activated, the resulting image depends also on a number of
parameter values corresponding to (i) viewpoint, (ii) distance, (iii) orientation,
and others. These values can be continuously changed, and when that occurs
the result will be continuously changing visual imagery. Imagine an ordinary
cup upside down on an eye-level shelf with its handle to your right. Now
imagine the cup as you take it down and bring it to a position and orientation
that allows you to look into it from above. In that case, continuously changing
parameters for location and orientation act on the category specification for a
cup, continuously changing the output image.

Among the image-transforming operations that can result from continuous
changes of parameter values are operations misleadingly called scanning, zooming
in, zooming out, and rotating. Our present concern is with scanning. Imagistic
scanning is not inspecting in sequence the parts of a fixed image, but continu-
ously changing the image in a way that is subjectively like perceptual scanning.
A momentary image generated by activation of that category specification will
represent only a finite portion of the line; but the specification that the line
has no right end ensures that rightward imagistic scanning will never produce
an image of a right-ended line. In this way the category specification is a visual
representation for a line that extends infinitely in one direction.

My suggestion is that our grasp of this structured set, the well-ordered set
of evenly spaced marks on an endless horizontal line, issues (or can issue) from
a stored visual category specification. But this is not achieved by ‘reading off ’
the descriptions of the category specification, since we have no direct access to
those descriptions. Rather, as a result of having the category specification, we
have a number of dispositions which, taken together, give some indication of
the kind of structured set it represents. These are dispositions to answer certain
questions one way rather than another. For example:

Given any two marks, must one precede the other? Yes.
Do the intermark spaces vary in length? No.
Is the precedence of marks transitive? Yes.
Can any (non-initial) mark be reached from the initial mark by scanning
to the right at a constant speed? Yes.

But some questions will have no answer:

Is the intermark length more than a centimetre?

These answers tell us something about the nature of the mental number
line as determined by the features specified in the category specification. The
answers entail that no mark has infinitely many predecessors; as the marks form
a strict linear ordering, this entails that they form a well-ordering. So we can
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say that the structure of the mental number line is that of a well-ordered set
with a single initial element and no terminal element. I will call this structure
N. My proposal is twofold. First, in becoming aware in the indirect way just
described of the representational content of a visual category specification for
the mental number line, we have a grasp of a type of structured set, namely, a
set of number marks on a line endless to the right taken in their left-to-right
order of precedence. Secondly, we can have knowledge of the structure N as
the structure of a ‘number line’ of this type.

Mathematical logicians are understandably preoccupied by the fact that
the set of first-order Dedekind–Peano axioms for number theory has non-
isomorphic models. So those axioms taken together fail to determine a
unique structure as the structure of the natural numbers¹³ (under successor,
addition, multiplication, and 0). This raises the question of how we determine
that structure, how the mind succeeds in picking out models of just one
isomorphism type (which we call ‘the standard model’ when identifying in
thought isomorphic models.) One response is that our concept of the system
of natural numbers is essentially second-order; if we replace the first-order
induction axiom by the second-order induction axiom of Dedekind’s original
presentation, the result is an axiom set whose models are all isomorphic, as
Dedekind showed. The worry about this response is that in order to understand
the second-order induction axiom we would already need a cognitive grasp of
the totality of sets of natural numbers; thus, if this response were adequate, our
grasp of the set of natural numbers would depend on a prior grasp of its power
set—hardly a plausible position.

I am inclined to think that there are two mutually reinforcing sources
of comprehension of the natural number structure. One comes from our
understanding of the natural numbers as the denotations of the number-word
expressions in our natural language, and (later) as the denotations of our written
numerals. We pick up algorithms for generating the number-words/numerals,
and we think of a number as what such an expression stands for. The number
system thus has the structure of the number-word system and the numeral
system. So we can grasp the structure of the set of natural numbers under their
natural ‘less-than’ ordering as the structure of the set of number-words (or
numerals) under their order of precedence. The second comes from the visual
category specification described earlier. This in turn depends on representations
of space, time, and motion that cannot incorporate infinite bounded lengths,

¹³ Models of these axioms are sets with functions for successor, plus, times and constant zero; a
‘less-than’ relation can be defined in terms of these. The models of the first-order axioms vary with
respect to the induced ‘less-than’ relation: many, but not all, have infinite receding subsets.
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infinite completed durations, or infinite speeds. Finiteness is in this sense ‘built-
in’. Under these background constraints the category specification determines
that the number marks are well-ordered by their relation of precedence. This
suffices to determine a unique structure. So we can grasp the structure of the
natural number system as the structure of the set of number marks of the
mental number line under their order of precedence.

Knowing the natural number structure in this way is much less direct than
the kind of knowledge of finite structures discussed earlier. In this case we
cannot experience an entire instance of the structure. So this knowledge of
structure does not consist in the cognitive basis of an ability to recognize
instances and to distinguish them from non-instances. We have to gather the
nature of a number line from our inclinations to answer certain questions about
it; although visual experience plays some role in this process, our answers are
not simply reports of experience. In becoming aware in this indirect way of the
content of a visual category specification for a mental number line, we acquire
a grasp of a type of structured set, and we can then know the structure N as the
structure of structured sets of this type. While this kind of knowledge is quite
different from the experiential knowledge of small structures discussed earlier,
it does have an experiential element that distinguishes it from knowledge by
a description of the form the structure of models of such-&-such axioms, which of
course requires knowing that the axiom set is categorical. To help appreciate
how significant this difference is, it is worth examining a contrasting case.

2.4.1 An infinite structure beyond visual grasp

A contrasting case is the structure of the set of real numbers in the closed unit
interval [0, 1], under the ‘less than’ relation. I will call this structure U for
‘unit’. We do have visual ways of representing U, but I claim that they do not
give us knowledge of it. I will now try to substantiate this claim.

An obvious thought is that we can think of U as the structure of the set
of points on a straight line segment with left and right endpoints, when each
point corresponds to a unique distance from one end, and the order of points is
determined by the corresponding distance. We can certainly visualize a finite
horizontal line segment, taking its points to be the locations of intersection of
the horizontal line segment with (potential) vertical line segments; and we can
visually grasp what it is for one such location to lie to the left of another. Why
does not this give us a visual grasp of the structure U?

One reason concerns points. If the points on a line constitute a set with
structure U they must be not merely too small to be seen by us, but absolutely
invisible, having zero extension. Neither vision nor visualization gives us any
acquaintance with even a single point of this kind, let alone uncountably many
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of them. In addition to a geometrical concept of extensionless points we have a
perceptual concept of points as tiny dots. Perceptual points do have extension;
some parts of a perceptual point on the line would be nearer the beginning
of the line than others, so a perceptual point does not lie at exactly one
distance from the beginning. For this reason no line of juxtaposed perceptual
points could have the structure of [0, 1] under the ‘less than’ ordering. So we
must make do with geometrical points. But thinking of a line as composed
of geometrical points leads to numerous paradoxes. For instance, the parts of
a line either side of a given point would have to be both separated (as the
given point lies between them) and touching (as there is no distance between
the two parts, the given point being extensionless). A related puzzle is that
a line segment must have positive extension; but as all its components have
zero extension, the line segment must also have zero extension. Yet another
puzzle: the unit interval has symmetric left and right halves of equal length;
but symmetry is contradicted by the fact that just one of the two parts has
two endpoints—either the left part has a right endpoint or the right part has
a left endpoint, but not both, otherwise there would be two points with none
intervening. These puzzles show that the visuo-spatial idea of a continuous
line cannot be coherently combined with the analytical idea of a line as a
geometrical-point set of a certain kind.¹⁴

Setting aside these puzzles, thinking of an interval of real numbers as a set
of points composing a line segment cannot reveal a crucial structural feature,
Dedekind-continuity (completeness): for every set of real numbers, if it is
bounded above it has a least upper bound, and if it is bounded below it has
a greatest lower bound. So this visual way of thinking of an interval of real
numbers is unrevealing about that feature which distinguishes it structurally
from an interval of rational numbers. Hence we cannot know the structure U
by thinking of it visually in terms of the points in a line segment.

Perhaps there are other visual ways of thinking of the closed unit interval.
But none that I can think of fares any better. One possibility is the set of all
branches of the infinite binary tree under the following relation of precedence:

x precedes y if and only if, when the branches x and y first diverge, x goes to the
left and y goes to the right.

We can identify branches with infinite sequences of 0s and 1s. The left
successor of each node is assigned 0, the right successor is assigned 1; nothing
is assigned to the initial node. The branch up to a given node is identified

¹⁴ This is not to deny that we can usefully flip back and forth between the two conceptions in
practice.
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with the sequence of 0s and 1s assigned to nodes on that branch up to and
including the given node; so, for example, the branch up to the leftmost fourth
generation node (after the initial node) is 〈0, 0, 0, 0〉. A single infinite path up
the tree, a branch, represents the infinite sequence of 0s and 1s assigned to its
nodes. Each infinite sequence of 0s and 1s is the binary expansion of a real
number in the closed unit interval. So we can use branches to represent real
numbers in the unit interval. This correlation of sequences with real numbers
is not injective: some pairs of sequences represent the same real number. But
we can easily rectify the matter by cutting out redundant branches.¹⁵ Call the
resulting set of branches S. Then there is a one–one correlation of S with
[0, 1]: a branch is correlated with the real number of which it is the binary
expansion. S ordered by ‘<’, the relation of precedence among branches, is
isomorphic to [0, 1] under ‘less than’; in other words it has the structure U.

Why does that not give us a visual grasp of the structure U? Why is it wrong
to think of S as standing to the two-generation binary tree as the infinite
mental number line stands to a finite line segment marked like a ruler? And
if the mental number line provides us with a grasp of N, why does a mental
representation of S fail to provide a grasp of U? The reason, in brief, is that
the two-generation binary tree, as we were conceiving of it earlier, is not a
substructure of S. The elements of the two-generation binary tree, as we were
conceiving of it, are its nodes; the elements of S are its infinite branches. Since
we can see or visualize only a finite portion of an infinite binary tree, not even
one element of S is represented in any visual image of it. We see or visualize
at most finite initial segments of branches, and each finite initial segment is
common to infinitely many different branches. It is true that there are some
branches for which we can have a visual category specification: for instance
the leftmost branch for unending zeros. But we can have only finitely many
category specifications, and that leaves most branches unrepresented.¹⁶

One might reply that we have a visual appreciation of how the infinite
binary tree continues from one generation of nodes to the next, thus giving
us a grasp of the structure U similar to our grasp of N. But that is mistaken.
The category specification for the infinite binary tree provides the basis for an

¹⁵ Two binary expansions are correlated with the same real number if and only if they are identical
up to and including their nth components but the remainder of one of them is 0 followed by 1 recurring
while the remainder of the other is 1 followed by 0 recurring. In terms of the binary tree, two branches
represent the same real number if and only if, when they first diverge, the one that goes left will go
right ever after and the one that goes right will go left ever after. We take the result of cutting out that
branch in every such pair that first diverges left.

¹⁶ Logicians will add that in any language properly so called there is at most a countable infinity of
category specifications (as each of these is finite), whereas there is an uncountable infinity of branches
in S.
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awareness of the structure of the set of nodes under the relation ‘there is a path
up from x to y’. That is very different from the structure of the set of branches
in S under the relation of precedence ‘<’ given earlier, and only the latter is
the structure U.

Perhaps reflection on the visual representations used when we think of S
ordered by ‘<’ visually reveals that the ordering is linear and dense; but it is not
clear to me how they would reveal that the ordering is Dedekind-continuous.
If it cannot, that is another reason why thinking visually of an infinite binary
tree does not give us the capacities that would warrant a claim to knowledge
of the structure. I suspect that a stumbling block to any visually anchored grasp
of U is continuity. If this is right, our knowledge of its structure is wholly
theoretical rather than experiential. This constitutes a clear contrast between
the kind of knowledge we have of the structure U and the kind of knowledge
we have of the structure N.¹⁷

2.4.2 Visual grasp of structures beyond N

I have argued that we can have a grasp of the structure N that is anchored to
a visuo-spatial representation, and that this gives us a kind of awareness of the
nature of N that is unavailable for U. Is the kind of awareness that we have of N
available for other infinite structures? Or is our grasp of N an isolated case? In a
passage discussing the reach of what Hilbert called finitary mathematics, Gödel
suggests by implication that there are other infinite structures knowable with
the same kind of immediacy as our knowledge of N. Gödel begins as follows:

Due to the lack of a precise definition of either concrete or abstract evidence there
exists, today, no rigorous proof for the insufficiency (even for the consistency
proof of number theory) of finitary mathematics. However, this surprising fact
has been made abundantly clear through the examination of induction up to ε0

used in Gentzen’s consistency proof of number theory.

He continues:

The situation may be roughly described as follows: Recursion for ε0 could be
proved finitarily if the consistency of number theory could. On the other hand
the validity of this recursion can certainly not be made immediately evident, as is
possible, for example in the case of ω2. That is to say, one cannot grasp at one
glance the various structural possibilities which exist for decreasing sequences,
and there exists, therefore, no immediate concrete knowledge of the termination
of every such sequence. But furthermore such concrete knowledge (in Hilbert’s
sense) cannot be realized either by a stepwise transition from smaller to larger

¹⁷ S shorn of its leftmost and rightmost branches is isomorphic to the real numbers under their
standard ordering. As these remarks apply to S thus shorn, they also apply to the real line.
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ordinal numbers, because the concretely evident steps, such as α → α2, are so
small that they would have to be repeated ε0 times in order to reach ε0.¹⁸

The significant implications of this passage for present concerns are that the step
from ω to ω2 is ‘concretely evident’; that, as one can ‘grasp at one glance’ the
structural possibilities for decreasing sequences in ω2, one can have ‘immediate
concrete knowledge’ that all such sequences terminate; hence that the validity
of recursion (induction) for ω2 can be made ‘immediately evident’, whereas
the same is not true for ε0 in place of ω2. Is ω2 really knowable in the implied
way? Let us first step back. The ordinal ω under the membership relation has
the structure N; in fact this is normally what set theory uses to represent the
set of natural numbers under ‘<’. So we can represent it in the same way, by a
horizontal string of evenly spaced marks, with a leftmost mark, running off to
the right endlessly. I will call such strings ‘ω-strings’.

How do we make the step from the structure N, exemplified by a single
ω-string, to the structure of ω2? Consider a vertical sequence of horizontal
ω-strings, starting from the top, left-aligned and evenly spaced, proceeding
downward endlessly, so that if, visualizing, we were to scan this sequence
downward, new ω-strings would come into view, still evenly spaced, however
far we continued; and if we were to scan upward from any ω-string, at
constant pace from each ω-string to its predecessor, we would arrive back
at the topmost ω-string. This constitutes imagining a two-dimensional array
of marks that has a top edge (the first ω string) and a left edge (the column
of first elements of ω strings) but is infinite rightward and downward. I will
call such an array an ‘ω-square’, though it is not a square, as the array has no
right or lower edge. The ordering is taken to be as for western script: for any
two elements, if they are on the same line the leftmost element precedes, and
if on different lines the element on the uppermost line precedes. Of course,
we can have no image of more than a finite part of an ω-square; our sole
visual representation of it is, as of an ω-string, a category specification. Thus
we can have the kind of grasp of the structure of ω2 that we have of the
structure N.

What about Gödel’s further claims about knowledge of ω2? These are that,
as one can grasp at a glance the various structural possibilities for decreasing
sequences, one can have immediate concrete knowledge of the termination

¹⁸ Gödel (1972). The italics are Gödel’s own. ω is the least infinite ordinal. ω2 is the first ordinal
after ω × n for every finite n, and ω × n is the ordinal consisting of a sequence of n ω-sequences. Let α

be any ordinal and define α ↑ n thus: α ↑ 0 is α; α ↑ n+ 1 is α(α↑n). Then ε0 is the first ordinal after
every ω ↑ n for finite n. By ‘recursion for ε0’ Gödel meant induction up to ε0: If for every α < ε0, φ

is true of α if φ is true of every β < α, then φ is true of every α < ε0.



62 marcus giaquinto

of every such sequence; hence that the validity of induction up to ω2 can be
made immediately evident.

What I think Gödel had in mind here is that, using the ω-square represen-
tation, there is a visuo-spatial way of telling that every decreasing sequence
of members of ω2 terminates. From this fact the validity of induction up
to ω2 quickly follows, a fact which Gödel presumably took as background
knowledge for his readers. But how can we tell that every decreasing sequence
of members of ω2 terminates? Thinking of ω2 in terms of an ω-square as
described earlier, it is obvious that for any decreasing sequence, among rows
containing members of that sequence, there will be an uppermost row; and
that, of the members of the sequence in that row there will be a leftmost
member—call it α. Then, recalling the ordering of ω2, it is clear that α is
the least member of the sequence: so the decreasing sequence terminates. This
way of acquiring the knowledge is relatively immediate, and is concrete in the
sense that it has an experiential element. This may have been what Gödel had
in mind, but we do not know. Either way, it does substantiate all but one of
his claims. It does not support Gödel’s implied claim that one can grasp at one
glance all the structural possibilities for decreasing sequences in ω2, for there
are decreasing sequences with elements that occur arbitrarily far to the right in
an ω-square.¹⁹ But Gödel’s other claims are untouched by this.

It is credible that we can have the same kind of grasp of the structure of ω2

as we can have of N, and that this plays a role in actual mathematical thinking.
Investigation is needed to determine how much further into the transfinite we
may go before this kind of cognition of ordinal structure becomes impossible.
At present I do not see how to extend the kind of account I have suggested
for ω2 to ωω. But I think that we can form a visual category specification for
ω-many layers of ω-squares, an ω-cube, thus forming a representation of ω3.
There would be a top ω-square, and beneath each ω-square another one. The
ordering within ω-squares is unchanged; for elements α and β in different
ω-squares, α precedes β if and only if α’s ω-square is above β’s ω-square.

This uses our natural representation of space as extending infinitely in each of
three dimensions. As our natural represention of space lacks a fourth dimension,
it is clear that we cannot get to ω4 from ω3 in the same way as we got to ω3

from ω2. What we can do is to take each element of an ω-cube to represent
an ω-string, an ω-square or an ω-cube, thus getting a way of thinking of ω4,
ω5 or ω6. But this way of using a visual category specification for ω-cubes
is not a way of extending it to get another visual category specification. Can
we imagine putting an ω-cube in each position in an ω-cube, as opposed

¹⁹ Robert Black pointed this out in discussion.
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to merely using each position in an ω-cube to represent an ω-cube?²⁰ Not if
this is visuo-spatial imagination, as opposed to supposition. This is because
a representation of an ω-cube is a representation of something with infinite
spatial extension, while each element of an ω-cube is represented as finitely
extended. If, however, ‘imagine’ is understood broadly to include fictional
supposition, we can imagine each element of an ω-cube to be a benign black
hole into which we can dive; and once in there, we find ourselves in a new
infinite three-dimensional space containing another ω-cube (and of course one
could iterate the story). Although this does not amount to forming a visual
category specification for an ω-cube of ω-cubes, it does give us a semi-visual
way of thinking of higher powers of ω. But even this semi-visual thinking runs
out before ε0.²¹

There may be other kinds of infinite structures, non-ordinal structures,
that are knowable with the kind of visual awareness that we have for the
structure of ω and ω2 under their standard ordering. That is a matter for further
research. N, the structure of ω, is the cognitively simplest infinite structure.
We have usable visual representations of instances of it that provide some
awareness of the nature of the structure. But these representations are category
specifications, not images. The fact that we can never have a visual experience
encompassing the whole of an instance of this structure marks a qualitative
difference between our grasp of this simplest infinite structure and our grasp
of the finite structures discussed earlier, such as the two-generation binary tree
or the power set algebra of a three-element set.

2.5 Conclusion

We can have cognitive grasp of some structures by means of visual represen-
tations. For small simple finite structures we can know them through sensory
experience of instances of them, somewhat as we can know the butterfly shape
from seeing butterflies. This is a kind of knowledge by acquaintance. Though
we cannot have knowledge by acquaintance of any infinite structure, some
simple infinite structures can be known by visual means, and not merely as the
structure of models of this or that theory. The crucial representations in these

²⁰ This question was put to me by Stewart Shapiro.
²¹ Apparently Georg Kreisel used to say that ordinals less than ε0 are visualizable (Paolo Mancosu,

personal communication), but it is not clear why he was confident that visualizability did not stop well
before. There is an interesting earlier discussion of the matter by Oskar Becker in a letter to Weyl in
1926 and in Becker (1927) in his attempt to provide phenomenological foundations for the transfinite
ordinals reported in Mancosu and Ryckman (2002).
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cases are category specifications, which are not items of conscious experience.
Nonetheless, through the images they give rise to they can give us a grasp of
structure that is sometimes operative in practice. How useful this resource can
be and how it links up with propositional knowledge represented in words or
formulas is a matter for future investigation.
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Diagram-Based Geometric
Practice
KENNETH MANDERS

Demonstrations in Euclid’s Elements, from Proposition I.1 on, use their diagram
essentially to introduce items such as that notorious intersection point of the
two circles, for which Euclidean demonstration has no alternative justificational
resources.

In the 19th century this style of reasoning received critical attention from
mathematicians needing to articulate various alternative geometries and their
interrelationships. Twentieth century philosophers of mathematics have tended
to dismiss it altogether as a means of justification, often citing modern logic as
setting not only a more appropriate standard for mathematical justification, but
the only acceptable one. The article in this volume by Giaquinto cites some
sources on these matters.

One student, apparently the beneficiary of enthusiastic instruction in the
virtues of the modern logical account, recently compared the study of Euclidean
demonstration as mathematical justifications to the study of the Flat Earth.
While myself not in a position to judge the contributions of the flat earth
tradition to modern plate tectonics, I believe this expresses at least two com-
plaints that many professional philosophers of mathematics would endorse: that
diagram-based reasoning in Euclid is unreliable and justificationally inadequate,
and that the study of a tradition of argument so obsolete cannot benefit the
philosophy of mathematics. Let me take these in turn.

Assessments based on diagrams are held to be unreliable on several grounds.
Drawn diagrams are imperfect in that, say, lines are not perfectly straight;
regardless, human assessments of straightness or equality of line segments
would be imperfect. Moreover, geometrical figures are individual, or at least
atypical compared to the generality of geometrical conclusions. Next, there are
different forms of geometry, which differ in their conclusions, and so a single
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diagram-based form of reasoning cannot serve them all; indeed there are forms
(such as plane coordinate geometry restricted to rational coordinates) in which
the two circles would not have an intersection point. Finally, there are geo-
metricals such as space-filling curves which utterly defeat diagram-based
reasoning. All these observations are correct.

The existence of different forms of geometry is, of course, fatal to the
claim that Euclidean geometry is unique as a conception of space. Once
this is abandoned, however, it becomes clear (a) that the mere existence of
diagrammatically intractable geometricals, such as space-filling curves or general
Riemannian geometries, fails to count against the justificational adequacy of
traditional diagram-based reasoning that does not purport to deal with them;
and (b) that the mere existence of different forms of geometrical reasoning
does not impugn the justificational adequacy of any one of them.

In particular, it is no less reliably the case that the circles intersect in
the real-number coordinate plane because they do not intersect in rational
coordinates. Indeed, because diagrams appear not to provide resources for
judging whether the coordinates of the intersection points they show would be
number-theoretically special in this or that way, the stable policy is to attribute
the intersection points the diagrams show; and all traditional diagram-based
geometries do so, including the famous non-Euclidean alternatives.

Imperfection and atypicality objections have force only to the extent
that these characteristics of diagram assessments have the power to affect
conclusions of Euclidean-style argument. On this point, I detect ignorance
and empty (arrogant, even panicked) dismissiveness on the part of the critics
of diagram-based demonstration. Logical investigation would instead be the
appropriate response, as routinely pursued in other reasoning contexts of
serious philosophical interest (modal logic, or demonstratives, for example). It
is hard to escape the impression that philosophers of mathematics have had
something at stake in dismissing properly geometrical reasoning methods out
of hand.

Our main paper below, The Euclidean Diagram (ED), starts to lay out logical
theory for Euclidean diagram-based reasoning. Already the simplest observation
on what the texts do infer from diagrams and what they do not suffices to show
the intersection of the two circles is completely safe, and severely limits the
scope of the imperfection objection. The plot does thicken, more remains to
be done, and the atypicality objection may point to new phenomena in logical
theory. But that brings me to our student’s other thought: that Euclidean-style
geometrical reasoning is hopelessly obsolete.

Whether this is so as a practical way of gaining new geometrical knowlege
in the 21st century, I will not contest. That someone might, out of purely
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historical interest, characterize an ancient reasoning practice warts and all, the
student would not contest. But there are many reasons for a philosopher today
to analyze diagram-based geometrical reasoning, starting with the challenge of
explaining its epistemic success in the face of so many apparent challenges.

Though some philosophers haughtily deny there could be mathematics,
properly speaking, before modern logic, mathematicians generally, including
ones at the forefront of radical 20th-century reconceptualizations of geometry,
recognize Euclid as rigorous mathematical reasoning to nontrivial correct
conclusions (witness recent books of Hartshorne (2000) and Artmann (1999)).
Maybe they just like having a long history?

No, modern mathematics subsumes Euclid’s geometrical conclusions in real
analytic geometry, real analysis, and functional analysis. In research profile, only
a corner of modern geometry; but in terms of the footprint of mathematics in
the modern world, that is most of modern mathematics.

Euclid (see Vitrac (2004)), and Apollonius and Archimedes, are virtually
without error: their every result has a counterpart in modern mathematics,
even if subsumed in patterns of claims and proofs recognized much later. But
there was ample scope for error: some claims even of the early books of Euclid
are subtle, and especially the many equality claims are versatile in indefinitely
extendable combinations of great power. Think of the equalities of angles,
sum-of-angles, and Pythagorean theorems in Book I, and in Book III the
equality of angles on a chord from the points on a circle and the equality of
rectangles (products) of secants through a point to a circle.

Moreover, Euclid’s Elements already sets patterns that are extrapolated by
more abstract 20th-century mathematics. The Pythagorean theorem lives on in
Euclidean and even Riemannian metric spaces; even Euclidean results ‘every
dog knows’ set the framework of more abstract modern mathematical thought,
as with the triangle equality I.20 in the definition of metric spaces.

Surely one of the most basic intellectual responsibilities of justification-
centered philosophy of mathematics is to account for the justificatory success
of diagram-based geometry. Nor should we fool ourselves that modern logical
reconstructions by Hilbert (1899/1902) and Tarski (1959), however great
their interest in other respects, give such an account: ancient geometers
achieved their lasting, subtle and powerful results precisely by the means
that philosophers dismiss so high-handedly today, without the benefit of
modern logic and Hilbert’s refined control of coordinate domains. (Mumma
(2006) gives a logical reconstruction that is more sensitive to diagram use in
demonstration.)

Still, our student might protest, even if it discharges a pressing intellec-
tual responsibility, giving an account of the success of ancient mathematical
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demonstration might be mere grunt-work and not teach us anything new
philosophically. Here too he would be wrong.

Euclidean diagram use forces us to confront mathematical demonstrative
practice, in a much richer form than is implicit in the notions of mathematical
theory and formal proof on which so much recent work in philosophy of
mathematics is based; and to confront rigorous demonstrative use of non-pro-
positional representation. The philosophical opportunities are extrordinary.

In the remainder of this introductory chapter, we outline a theory of diagram-
based inference in Euclidean plane geometry based on the exact/co-exact
distinction; and then survey further issues about diagram use in geometrical
demonstration: how particular diagrams justify general conclusions, and the
role of our theory in understanding diagram use in geometry beyond Euclidean
plane geometry. For a view of what can be understood about diagram use from
careful analysis of ancient texts, see Netz (1999).

Our topic parallels that of Giaquinto in this volume; but the two contri-
butions address very different issues. Justificatory diagram use requires strongly
shared standards of inference; Giaquinto looks at the benefits of visualization
where such agreement is unavailable. The difference is stark. Geometrical
demonstration got the ‘famously agonistic Greeks’ (Lloyd, 1996, pp. 21–23),
and the later Arabic, Latin, and modern worlds, to agree on a body of detailed
mathematical claims and arguments. In contrast, every time a mathematically
informed audience responds to a repertoire of mathematical picture-proofs,
they disagree on what the pictures show; even though all agree that the pictures
show something important.

3.1 Basic rules of Euclidean diagram-based plane
geometry

We give only the briefest sketch, anticipating ‘The Euclidean Diagram’.
1. Demonstration step. Euclidean demonstrations read as discrete sequences

of claims, each licensed by prior claims and the ‘current’ diagram. Beyond
traditional text–text licensing, demonstration steps may draw from the diagram
(diagram-based premises), and they may take responsability for additional
diagram elements (diagram-based conclusions). The current diagram consists
of those items previously so introduced, together with the regions, segments,
and distinguished points arising by their interaction.

When in I.1, for example, we have said ‘let AB be the given straight
segment’, we have not thereby admitted further features or diagram elements
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such as a circle with center A and radius AB; only a later demonstration
step admits it. That a diagram for the entire demonstration may already
be present detracts from this no more than that subsequent claims of the
demonstration text are already on the page detracts from the fact that at a
given step in the proof, only claims up to that point are available as premises.
The linear structure of text allows one to track how far the process of
taking responsibility has progressed; including how much of the diagram is
current.

The general form of a single demonstration step license is thus:

claims in prior text, attributions to current diagram

new claims in text, new elements in diagram

Not all elements need be present.
2. Diagram-based attribution: exact vs. co-exact claims.
Recent critics of traditional geometrical demonstration see potential for

error, precluding justification, when we claim based solely on what is in the
diagram, as with the intersection point of circles in I.1; the logical tradition
then claims a gap in a traditional proof. This, however, ignores how the ancient
texts limit diagram-based attribution.

The only claims based on diagram appearance in a demonstration recognize
conditions that are insensitive to the effects of a range of variation in diagram
entries: lines and circles that are not perfectly straight or circular, and cannot be
taken to be without thickness. As we distort the ‘circles’ in I.1, their intersection
point C may shift but it does not disappear. Such conditions I call co-exact.
They include: part–whole relations of regions, segments bounding regions,
and lower-dimensional counterparts. Call the totality of these conditions in
the current diagram its appearance.

In contrast, many (most?) conditions considered in Euclidean geometry
would fail immediately upon almost any diagram variation: notably, equalities
of non-identicals and proportionalities. Such conditions I call exact; they are
never claimed based on what the diagram looks like. (Some naive diagram-
unreliability criticisms presuppose that they are.)

3. Diagram entries in elementary geometry are line segments and circles, by
Postulates I.1–3 directly or via prior constructions. Whenever a diagram entry
is made, the text records the exact character (straight, circular) of the element
entered. There is thus no need to later judge this from the diagram.

Diagram entries must be adequate both with respect to their co-exact and
exact character. They are (at a minimum) continuous non–self-intersecting
curves, a line segment connecting its endpoints, a circle closed. Participants
can apply these co-exact criteria immediately and decisively (diagram size
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permitting, see ‘sensitivity avoidance’ below). Egregiously un-straight or un-
circular entries can be immediately rejected; but on these exact criteria, entries
do not appear to admit of immediate decisive acceptance. What matters here
is whether inaccuracies can cause spurious co-exact diagram consequences;
accounts of demonstrative justification could invoke sensitivity avoidance
options, but also deferred rejection in the form of challenges to subsequent
co-exact attribution (a logical novelty).

It is striking that diagram-entries, here typically one-dimensional, control
zero-, and two-dimensional diagram entries (distinguished points, regions).
This mutual relatedness of diagram elements appears to underlie the facility
for shifts in emphasis and groupings of diagram elements that Macbeth (2007)
thematizes in diagrammatic reasoning.

4. Case-branching. How additional entries in the diagram change its
appearance (attributable co-exact character) may depend on previously non-
attributable (metric) features. Example: every triangle, taken by itself, has the
same appearance; but whether a perpendicular dropped from the vertex point
to the base falls within the base or outside it (co-exact) depends on the shape of
the triangle. Thus the same construction, applied to same-appearance diagrams
(in our technical sense) may give different-appearance results.

A demonstration may attribute a feature to its diagram (say, that the
perpendicular from the vertex falls within the base) that would not arise had
we made the prescribed entries in a different initial diagram for the proposition.
Generality then requires case-branching: separate diagram and continuation of
demonstration for each combination of attributions that could so arise from
an instance of the initial configuration (see below). How Euclidean practice
ensures this is thus critical to its ability to justify general claims.

There are two theories on how a demonstration is to determine, given
the inaccuracy of drawn diagrams, which diagram appearances may actually
arise when it adds an entry: enumeration/exclusion or diagram control. Miller’s
(2001, 2007) work exemplifies enumeration/exclusion theory: for any diagram
entry, he enumerates all conceivable topological arrangements; the demon-
stration must explicitly argue to exclude unrealizable arrangements before it
demonstrates its conclusion for the remaining ones. This gives vastly more
cases than we encounter in the texts, limiting its utility as an explication of
ancient geometrical method. Mumma’s version (2006) implements a stricter
conceivability, giving significantly fewer cases.

Diagram control theory (see Manders (2007)) invokes our ability, using
geometrical constructions, to produce reasonably accurate physical diagrams,
and so limit the diagram appearance outcomes to be considered by phys-
ical diagram production rather than discursive argument. Conversations with
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specialists suggest this is the basic tool of ancient practice, with reductio argu-
ment for the exclusion of putative alternatives as backup. Harari (2003) discusses
the 20th-century alternative view that constructions serve as existence proofs.

Some treatments (Miller (2001); Manders (2007), arguably) take each
different-appearance diagram after an additional entry to require separate
case treatment. Using Euclid I.2 as example, Mumma (2006) shows that limit-
ing case branching to when a different-appearance feature is actually attributed,
while sufficient for generality, vastly reduces the number of separate cases to
about what we find in Euclid and Proclus.

5. Sensitivity of co-exact conditions.
As long as the ‘circles’ in I.1 are continuous closed curves, no amount

of distortion can eliminate intersection points. Most co-exact conditions,
however, will be affected by sufficiently large distortions violating exact
conditions: a ‘straight’ line segment, say, that loops out far enough, will
spuriously intersect any other line in the diagram. Normal drawing practices
obviously avoid such egregious spurious co-exact conditions; nonetheless,
this raises a challenge to the justificatory ability of diagram-based attribution:
might we not encounter ‘sensitive’ diagram situations, where normal drawing
practices would not suffice to avoid a spurious co-exact occurrence, which a
demonstration would then be entitled to attribute?

Traditional practice aims to avoid such sensitive situations. There seem to
be two mechanisms.

(a) By breaking up a development into a sequence of separate propositions,
Euclid keeps each diagram simple: omitting construction lines from prior
lemmas avoids point- and region-forming interactions with those absent lines.

(b) No matter how simple a diagram, if it is too small we cannot draw
it accurately enough to rely on its looks. Even a good-sized diagram might
have too much going on in too tight a corner—in a seminar paper, Matthew
Weiner trenchantly called this a ‘smudge’. I propose that a diagram in a
demonstration is required to provide a clear case for its co-exact attributions,
on pain of rejection. For example, to show what happens when an exact
condition fails (say in I.6, in a reductio proof of the exact condition), one must
use a diagram in which it fails in an exaggerated way. In actual geometrical
reasoning, providing demonstrative grounds for a given co-exact attribution
might require re-drawing the diagram. We will, however, need to consider the
consequences of this proposal for the epistemology of generality in geometrical
demonstration.

In the face of such complications, keep in mind that ancient diagram-based
reasoning did work! The complications are only in our understanding of why
it works.
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3.2 Geometric generality

A traditional quandary about geometrical demonstration, famously discussed
by Locke, Berkeley, and Kant, is how one particular drawn diagram can justify
a general claim.

1. Some 20th century commentaries on geometrical generality may miss
the mark because our ‘strict-universal’ standards for universal quantification,
by including singular (in the mathematical sense) instances, disagree with
traditional mathematical usage.

A traditional geometrical demonstration only claims to establish its propos-
ition for non-trivial instances of its initial diagram, in which items such as angles
and triangles contain proper regions (respecting the co-exact component of
these notions, explained above). The demonstration of I.1, for example, does
not purport to construct an equilateral triangle on a ‘side’ consisting of a single
point. Individuating claims in this way is rational: as the example suggests,
direct argument for (analogs of) claims in such limiting cases tends to be much
easier than the demonstration at hand.

Perhaps because later algebraic and calculus methods establish (most) limit-
ing cases automatically, non-triviality understandings on primitive geometric
notions eventually vanished. From this later point of view, singular situations
became ‘exceptions’; traditional general claims and arguments have the force of
‘admitting’ exceptions, i.e. not applying to certain singular instances.

Strict-universal usage is surprisingly recent: ‘The subject treated ... illustrates
well one of the most striking tendencies of modern algebraic and analytic
work, namely, the tendency not to be satisfied with results that are merely
true ‘‘in general’’, i.e. with more or less numerous exceptions, but to strive
for theorems which are always true.’ ‘The great importance of this tendency
will be apparent if we remember that when we apply a theorem, it is usually
to a special case. If we merely know that it is true ‘‘in general’’, we must
first consider whether the special case ... is not one of the exceptional cases in
which the theorem fails.’ (Bôcher (1901)) For the phenomenon of theorems
‘with exception’, see also Sorensen (2005).

2. Whether particular drawn diagrams suffice to justify general geometrical
claims (in the sense just recovered) depends on how demonstrations use
diagrams. Particularity is not an incurable infectious agent.

Beth (1956) suggested, and Hintikka developed, the idea that the setting-out
of the diagram in ancient demonstration be understood by analogy to the
setting-aside of letters in universal generalization (UG) rules in modern logic,
say as opening a scope for UG in a natural deduction system. But does analogy



diagram-based geometric practice 73

ensure that general claims are justified? The key point is how proceedings
in UG scopes are un-responsive, at the level of inference rules, to distinctive
features of instances.

3. Modern logic employs what one might call representation-enforced (for
short, representational) unresponsiveness: the UG letter, placeholder for an
instance, lacks features on which differential responses to non-shared features of
instances might be based. This ensures that formal inferences cannot depend on
such distinctive features, and hence apply to all instances uniformly. Algebraic
methods in geometry since Descartes also exploit representational unrespon-
siveness: a letter, originally standing for a Euclidean line segment, lacks features
to preclude it holding the place of a negative or even complex quantity, allow-
ing one to display uniformities lacking uniform traditional geometric proof.

Drawn geometric diagrams, however, are not mere placeholders; they
display endless distinctive features to which geometrically pertinent responses
might be made. It is therefore sometimes suggested, assimilating Euclidean
reasoning generality to the representational unresponsiveness model, that
proper Euclidean proof requires generic diagrams, ones only displaying features
that the demonstration indeed attributes.

Such a conception does not allow uniform treatment of diagrams: those
with, for example, irrelevant right angles or equalities of sides could not be
used in demonstrations. But if there are generic diagrams, this objection would
not undercut the ability of demonstrations using them to justify their claims
also for instances with exceptional (but non-singular) diagrams that do have
all features the demonstration attributes; even if they have further features as
well. (That Locke somehow lacks this flexibility would threaten to render his
idea-of-a-triangle paradoxally equilateral.)

Nonetheless, among further objections to generic-diagram conceptions of
demonstration (medieval manuscripts notoriously use non-generic diagrams,
which may or may not reflect earlier practice; how generic must a generic
diagram be?), the emergence of multiple non-exceptional cases seems fatal:
because each case demonstration requires attributions that are false in the other
cases, such proofs have no generic diagram spanning their UG scope.

4. Representation-enforced unresponsiveness to distinctive features of in-
stances, however, is not the only appropriate way to justify general conclusions!
Even if the (placeholder for the) instance has distinctive features to which
humans might respond with claims of the very sort being justified, standards
of reasoning may sucessfully prohibit such differential response.

This is fundamental to the generality- and understanding-generating quality
of a great range of reasoning (including the use of examples in ethics). Even
some formal systems of quantifier logic enforce uniformity across instances
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in this way: prohibiting UG-letter-containing premises from outside the
UG scope.

Euclidean demonstration, I propose, attains uniformity of reasoning for
its instances by licensing attribution based on what the diagram looks like
only for co-exact conditions clearly displayed. The scope of generality in a
geometrical demonstration, i.e. the range of instances for which the claim is
to be justified, is precisely conceptualized in advance (contra Norman (2006))
by the setting-out statement (ekthesis) in the demonstration text that opens
its UG scope, say, ‘let AB be the given finite straight line’ (hence, any line
segment, I.1) or ‘let ABC be a triangle having the angle ABC equal to the
angle ACB ’ (I.6).

This respects Kant’s conception (cf. Shabell (2003), Goodwin (2003)) that
intuitions (diagrams) are particular, and connected to general claims via schema-
tization (conceptualization via the diagram construction conditions). That
diagram-based (co-exact) claims are stable under diagram distortion, hence
independent of any particular empirical realization, might then motivate the
necessity or apriority of geometrical intuition

5. A demonstration considering one particular diagram justifies its general
conclusion just to the extent that each diagram-based attribution it makes
would be appropriate to any instance, i.e. initial configuration satisfying the
setting-out statement, were the constructions in the demonstration carried out
on it. Precisely when this constraint is violated, case branching, i.e. suitably
exhaustive separate case treatment, becomes necessary (but also sufficient).
Given Proclus’ emphasis on case distinctions, they should not have gone
unnoticed; but historically, the generality debate largely ignored them, perhaps
because it focused on examples such as I.1 and I.32 that require none.

Because an ongoing demonstration displays only the diagram it is developing,
it remains to be fully clarified what resources ancient geometric practice had
to locate diagram cases requiring alternative demonstration, or to establish that
a demonstration has covered all such cases. Taken in conjunction with the
aspect of diagram sensitivity unresolved above, that unlimitedly diverse cases
might be hiding in tiny corners of one’s diagram, this might seem particularly
threatening to cogency of demonstration.

Tarski’s (1959) mutually inverse interpretations between his Elementary
Geometry and the theory of Real-closed Fields, however, endow the totality
of (ideal) diagrams for demonstration of a particular claim with the topology
of definable sets over real-closed fields. The finite cell decompositions of such
sets imply both that the number of relevant cases is always finite (hence,
keeping diagrams simple gets a grip on the problem) and that these cases may
be found by systematically exploring the ‘boundaries’ of the region in which
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one’s diagram lies. Mumma (2007) is currently expanding his analysis of case
distinctions in Euclidean geometry by developing this.

6. Lest relaxing the currently favored representation-enforced-unrespon-
siveness means to generality, by giving a role to response prohibition, seem
radical: contrast both with a third mathematically crucial strategy (though not in
traditional geometry) for justifying a general claim: reduction to a special case.

A striking geometrical example is Poncelet’s use of ‘maximally-Euclidean’
configurations to prove projectively invariant claims. Faced with an ellipse and
some lines, he specializes to the case of a circle with some parallel lines; allowing
him to efficiently exploit various kinds of equalities and congruent triangles to
get the desired result, in the form it takes in this special situation (Poncelet,
1822) [Figs. 57–67]. This argument is supplemented by the reduction: an
analysis that identifies the projectively invariant form of the claim, together
with a demonstration that any instance of its projectively invariant hypothesis
may be connected by projections to the special configuration considered.

Reduction to a special case is distinctive in that its treatment of the special
case expressly relies on special features not shared with typical instances of the
general claim under consideration (otherwise why bother with reduction), and
fails for precisely for this reason to justify it. Instead, further argument, the
reduction, justifies the general claim based on the special case. In their relaxing
of representational unresponsiveness, such generality strategies are thus more
radical than what we find in Euclid.

3.3 Tasks for the future

The analysis of diagram use in ED is specific to plane geometry in the style of
Euclid I, III. Focus on one definite, cogent reasoning practice is its strength:
it leads to substantive, sustained inquiry that invites us to go beyond our
ingrained ideas. The philosopher’s task is to articulate, using such a special
case, notions, or principles of general interest, a distinctive usage for discussing
rigorous diagram-based reasoning practices.

This conceptual framework then puts us in a position to articulate differences
that matter between the base case and the role of diagrams in any other
comparable area of geometry. Doing so would also test the broader import of
our theoretical notions: what range of related practices do they allow us to
understand?

1. Natural candidates include: roles of diagrams in Euclid Book II, or in
Apollonius’ De ratione sectionis, or Euclid’s solid geometry; in ancient work
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on conics (Apollonius), spherical geometry (Menelaos), and mathematical
astronomy. Attractive targets also include later non-analytic work in geometry
(Steiner!) and its foundations (Leibniz, Legendre); and early projective authors
who aim to clarify Euclidean geometry rather than play a different game
(Desargues, Poncelet). Diagrams in early modern physics (Galileo, Huygens,
Newton) provide the additional ability to study the geometry of tangency to
as yet unknown curves, hence to tackle problems now handled by first-order
differential equations. What non-diagrammatic means (sign conventions) make
it possible for Lagrange’s Méchanique Analytique to dispense with diagrams
altogether in theoretical mechanics?

I myself have used ED to contrast with Descartes’ analytic geometry and
later versions. One striking difference: analytic geometries have expressive
resources allowing certain cogent inferences based solely on exact geometric
information (using polynomial equations) separately from co-exact information
(polynomial inequalities); Euclidean diagram-based reasoning requires both in
tandem. These expressive means include invariants of a determinate geometric
problem, the coefficients of its (irreducible) polynomial equation, which, up to
selection from a finite set using inequalities, suffice for its solution. Moreover,
algebraic manipulation, perhaps together with initial geometric constructions,
suffices to derive the equation of a problem.

2. A special challenge is the role of diagram use in investigations of the parallel
postulate (PP). It licenses inferences that would be based on the behavior of the
diagram ‘infinitely far’ out, or, as is easily seen equivalent by Book I arguments
not using PP, in the ‘infinitely small’: precisely circumstances under which our
ability to control or attribute features in physical diagrams must give out.

Neither the mere consistency of alternatives to PP (hyperbolic geometry)
with the remaining tenets of Euclidean geometry, nor even the ‘Euclidean
models’ of such alternatives (hyperbolic geometry as the restriction of the
Euclidean plane to the interior of an ellipse) fully settle the original question:
whether Euclidean diagram-use has resources to obtain the results for which our
Euclid texts invoke PP. For at least in their modern forms, consistency results
are based only on propositionally articulated aspects of Euclidean practice, and
the ‘Euclidean models’ explicitly modify the way diagram elements (even line
segments) are handled. Both are obvious distortions of ancient practice.

The methods of ED in contrast, may be applied to earlier, still diagram-
based investigations of PP (Saccheri, Lambert). Notably, Saccheri (1733) tries
to exclude alternatives to PP by reductio analysis; but he clearly treats even
line segments differently from what one would encounter in a non-reductio
Euclidean demonstration. Is his treatment within the limits for a proper
Euclidean reductio? Such questions will force us to refine our conception of



diagram-based geometric practice 77

ancient diagram-handling practice, eventually perhaps to the point where we
can settle the original question about PP.

3. The role of diagram use in ancient geometric analysis is highly non-trivial,
and 20th-century discussions have shed little light on this. Compared to what
we find in the Elements, ancient analytic practice (Pappus’ Collectio IV, VII)
seems much less affected by case distinctions; probably due to matters of logical
order (Behboud (1994)) as well as to the structuring of analytic reasoning
by the collections of case-free what-determines-what lemmas such as Euclid’s
Data. Indeed, one as yet undescribed factor in geometrical analysis is the
sense of what-determines-what that one only obtains by actually constructing
diagrams. (Study of geometrical analysis must include the rich Islamic tradition,
cf. Bergren and van Brummelen (2000).)

4. The nature of geometricality. Descartes’ method in geometry is guided by
algebraic form rather than by a geometrical diagram, and its algebraic manipu-
lations are not intelligibly related to the original problem diagram—perhaps
because a problem has the same equation as infinitely many others, whose dia-
grams need not be at all similar to the one intended. This strikes many authors,
notably Leibniz, as a lack of geometricality; motivating two centuries of ulti-
mately fruitful work to provide an ‘analysis situs’, some complementary theory
of spatial arrangements that would respect geometrical form independent of
the merely metric properties to which Descartes’ method reduces geometry.

For example, Poncelet (1822) aims to regain diagrammatic intelligibility of
geometrical reasoning while selectively maintaining uniform treatment of vari-
ant diagrams achieved by algebraic methods. Via a system of reinterpretations
guided by algebra and continuous variation of diagrams, invoking complex
(‘imaginary’) and ideal objects (‘at infinity’), he grounds a novel diagram reading
practice and an accompanying algebra of generalized line segments that to-
gether eliminate case-branching even more than Descartes. (This is a clear case
of enhanced uniformity of conception and argument that exploits standards of
reasoning rather than choice of representation to suppress differential response
to certain different-looking diagrams.) At the same time, Poncelet’s diagram
maintains his grasp on a similarity class of Euclidean-individuated diagrams
much narrower than those sharing a common Cartesian problem equation.

ED and most other recent discussions cited address, in the spirit of logical
foundations, primarily justificational roles of the geometrical diagram. But
diagrams in Poncelet have lost some cogency roles that ED attributes them
in Euclidean argument. Because of this, further contrasting Descartes’ un-
geometrical geometry with Poncelet’s (and Steiner’s) diagram use may help
bring out diagram contributions to geometricality that we have so far missed
in looking at Euclid.
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The Euclidean Diagram Due to its already somewhat wide distribution,
and its role in guiding subsequent work, I have chosen to give the text in its
original 1995 form that was distributed.
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Proclus (anc.), A Commentary on the First Book of Euclid’s Elements, G. R. Morrow

(trans.), 1970, (Princeton: Princeton University Press).
Saccheri, Gerolamo (1733), Eublides Ab Omni Naevo Vidicatus..., George Bruce Halsted

(ed. and trans.), 1920, (London: Open Court). Chelsea Reprint, 1986.
Shabell, Lisa (2003), Mathematics in Kant’s Critical Philosophy, Studies in Philosophy:

Outstanding Dissertations Series, Robert Nozick (ed.) (London: Routledge).
Sorensen, Henrik Kragh (2005), ‘Exception and Counterexamples: Understanding

Abel’s Comment on Cauchy’s Theorem’, Historia Mathematica, 32, 453–480.
Tarski, Alfred (1959), ‘What is Elementary Geometry?’, in L. Henkin, P. Suppes, and

A. Tarski (eds.), The Axiomatic Method, 16–29 (Amsterdam: North-Holland).
Vitrac, Bernard (2004), ‘A Propos des Démonstrations Alternatives et Autres Sub-
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The Euclidean Diagram (1995)
KENNETH MANDERS

[Geometrical] figures must also be regarded as characters, for the circle described
on paper is not a true circle and need not be; it is enough that we take it for a
circle.

(Loemker, Leibniz: Philosophical Papers and Letters, p. 84.)

In Euclidean geometry, a diagram has standing to license inference, just as do
relationships recognized in the text. It is now commonly held that this is a defect
of rigor. But the extraordinary career of Euclidean practice justifies a fuller
consideration. It was a stable and fruitful tool of investigation across diverse
cultural contexts for over two thousand years. During that time, it generally
struck thoughtful and knowledgeable people as the most rigorous of human
ways of knowing, even in the face of centuries of internal criticism in antiquity.

We here undertake to reconstruct the role of diagrams in the inferential
standards of Euclidean practice, seeking a more accurate view of the strengths
and weaknesses of traditional geometrical argument. It is interesting to reclaim
our philosophical grip on traditional geometrical reasoning especially because
such reasoning coordinates two means of expression with very different
characteristics: diagrams and ordinary text-based argument. Philosophers of our
age seem to have ignored such representational contrasts, which nonetheless
appear to be of great interest.

If it is to give a non-trivial grip on life, in its particular way, an intellectual
practice must give us—all too finite and human beings—a game we can play;
and play well, together, and to our profit. To succeed in this, intellectual
practices harness our abilities to engage their artifacts, as I will call it: to
produce, preserve, and respond to artifacts in controlled ways—to play games,

Research supported by NSF Grants DIR-90-23955 and SBER-94-12895, and a Howard Foundation
Fellowship for 1994/95.
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I suppose. Indeed, they must harness our abilities to do so in controlled
ways responsively to our living, and to live in controlled but decisive ways
responsively to our artifact games—so these games are for real, I suppose. Be
they spoken dialogue, judicial argument, or geometrical diagrams, the detour
through artifacts is the trick.

From the scant evidence of early Greek geometrical practice, I suppose that,
to a much greater extent than since Euclid’s time, ‘seeing in the diagram’ must
have been the primary form of geometrical thought and reasoning. Whether
or not this is so, we can seek out at every step not only the familiar pressures
which promote the ultimate propositionally explicit foundation of geometry
in the late 19th century, and the less familiar ones relieved by Descartes’
geometry and by projective geometries, but also the pressures on a more
fully diagram-based practice which would be relieved by the distribution of
labor between diagram and text sequence we find in Euclid and beyond. As
we become aware of this, the coordinated use of these two artifact types in
Euclidean geometrical argument allows us a glimpse of what makes the detour
through artifacts tick.

There is a long tradition of commentary on Euclid. Such works are animated
by the authors’ normative visions on geometric reasoning. For it is in the light
of such normative visions that this gap appears; that that alternative proof seems
superior for avoiding superposition; that the development of such a chapter
seems roundabout; that the position of so a result seems puzzling. Only with
a normative vision on geometric argument do the chains of argument become
animated, more than just the chains of argument they are.

We here try, just so, to bring Euclidean geometry as a whole to life,
as a practice among other geometrical practices historical or imagined, by
confronting it with a normative vision on what a mathematical practice can
be. This will sometimes allow us to see that it is reasonable that the practice be
arranged as it is.

While we feel that there is an intuitively recognizable unity to ‘traditional
diagram-based geometry’ from Plato’s time to Hilbert’s, a unity which our
account of Euclidean reasoning tries to capture, it is of course plain, and
confrontation with our account should make it plainer, that the tradition is
anything but monolithic. We do not assume that geometers ever held the
kind of view of their activities proposed here, or would have to do so to do
geometry properly.

The conception of the role of diagrams in traditional geometrical thought
given here should be understood as incomplete, probably on philosophically
central points. While I go beyond inferential reconstruction in tradition-
al logical terms, the roles to which we in the 20th century are sensitive
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and know to articulate are broadly but constrainedly ‘inferential’. It is plain
that we are missing a lot. Present philosophical resources for understanding
the understanding seem insufficient to explain why intercourse with diagrams
remains essential to geometrical thought. While their role is much less clear-cut
in 20th-century geometrical theories, one look at the diagrams Hilbert enters
next to his axioms of order should convince us of this—what are they doing
there, and throughout the rest of his Foundations of Geometry?

4.1 Euclidean diagrams: artifacts of control
or semantics?

At its most basic, a mathematical practice is a structure for cooperative effort
in control of self and life. In geometry, this takes many forms, starting with
the acceptance of postulates, and the unqualified assent to stipulations—and
as it appears, for now, to conclusions—required of participants. Successes of
control may be seen in the way we can expect the world to behave according to
the geometer’s conclusions; the way one geometer centuries later can pick up
where another left off; the way geometers can afford not to accept contradiction.
When the process fails to meet the expectations of control to which the practice
gives rise, I speak of disarray, or occasionally, impotence. Such occurrences are
disruptive of mathematical practices; they tend to reduce the benefits to
participants and to deter participation. At best, they motivate adjusting artifact
use, modifying the practice to give similar benefits with less risk of disarray.

The notion that the intellectual might be seen as some kind of game has
recently been at the center of contention. Can’t games just be made up?
Kids make up games all the time; grown-ups get elected and paid to do it. If
intellectual practices are games, what about the image of rigorous hard-working
Science giving us a solid grip on Reality?

Theoretical geometry, which after all can be practiced in many forms and
for many purposes, is hardly a context in which to address many such concerns,
and facing any head-on would anyhow detract from our investigation. The
impression, however, that making up a game involves excessive freedom,
reflects a lack of grasp how hard it is to get a good game going, how hard
it is to satisfy the varied and stringent constraints on an effective intellectual
practice, especially one that must handle a fairly subtle and informative theory
(such as Euclidean geometry) with minimal risk of disarray. Along the way,
we shall become acquainted with such constraints and the forces shaping the
practice to which they give rise.
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4.1.1 Diagram and control

As does control itself, diagnosis and remedy of failures of control in geometry
can take many forms. The grip on living a practice can give arises in a delicate
interplay between the way its artifacts lie in the game, and the endowments
and limitations humans bring to it. Two examples (a–b) of control through
attaining uniformity, in quite different guises, may illustrate this.

(a) We take participants to be responsible for attaining uniformity of response
in reading off features in diagrams. But the production and reading of diagrams
cannot humanly be controlled so as to obtain a uniform response to diagrams
directly on questions such as equality of lines. If a practice licenses a type of
response to artifacts, then in order to attain uniformity of response, it must
provide means by which participants can resolve their differences in responses to
those physical artifacts they might reasonably produce. In traditional geometry,
the division of responsibility between diagram and text, in which the text tracks
equality information, is a way to meet this challenge. Subsequent geometrical
representations provide alternatives.

If participants are to be able to respond in a stable and stably shared fashion,
a practice must limit the repertoire of basic responsive roles which it requires.
Geometers need to recognize a triangle in a diagram; and about thirty other
such items. This repertoire of responses is drastically less diverse than are the
physical objects which would qualify as diagrams (even more so, if we allow
diagram imaginings).

(b) Under the banner of ‘generality’, practices exploit repertoire restriction
also in artifact production. Why make distinct artifacts to secure the same
response, after all? Why not support uniformity of response through uniformity
of artifact? Geometrical diagrams are drastically less diverse than are the
circumstances in life with which geometrical practice may let us cope; in that
its generality (in Aristotle’s sense?) consists. And in any particular geometrical
demonstration, the diagrams displayed are drastically less diverse than are
the circumstances in life with which that argument can help us cope; in
that its generality (in Frege’s sense) consists. We want to get the control or
coping ability we need, through argument or otherwise, with the scantest
artifact-and-response repertoire that will do.

The advances with respect to Euclidean geometry in Descartes’ geometry,
and later in projective geometries, are practice modifications to exploit more
uniform artifact strategies, which implausibly somehow retain argumentative
grip. The uniformity is achieved by suitably reducing the diversity either of
artifacts or of responses to them. On the other hand, unsuitable limitation
on the diversity of artifact-and-response repertoire leaves a practice blind and
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irrelevant, unable to provide its participants a non-trivial grip on life: whatever
participants have to go on in the game must support distinctions where different
actions are required.

If the only response ever required to p1 and p2 is q, we could disregard
the difference between p1 and p2, always write p1, or always write p. But
participants typically can’t assess ‘only response ever required’, nor—here our
schematic p1, p2 notation breaks down—can they typically assess what range
of alternatives might ultimately be relevant. In its diagram use, Euclidean
geometry ‘writes p1’ until it becomes clear some ‘p′’ could require a different
response. A diagram adequate at one stage of a proof may upon development
be ‘un-representative’; this forces a case distinction in which multiple diagrams
are considered separately. The peculiar success of various later geometries rests
not only on their surprising reduction of diversity in artifact and response, but
also on the way the correlative collapse of ranges of alternatives, quite as a
by-product, often eliminates imponderables that participants in diagram-based
geometry cannot count on being able to assess.

The way its artifacts lie in the game is not innocent to the control its players
can achieve.

4.1.2 Diagrams and semantic role

Artifacts in a practice that gives us a grip on life are sometimes thought of in
semantic terms—say, as representing something in life. There is, of course, an
age-old debate on how geometrical diagrams are to be treated in this regard.

Long-standing philosophical difficulties, on the nature of geometric objects
and our knowledge of them, arise from the assumption that the geometrical
text is in an ordinary sense true of the diagram or a ‘perfect counterpart’. These
difficulties aside, a genuinely semantic relationship between the geometrical
diagram and text is incompatible with the successful use of diagrams in proof by
contradiction: reductio contexts serve precisely to assemble a body of assertions
which patently could not together be true; hence no genuine geometrical
situation could in a serious sense be pictured in which they were.¹ This
simple-minded objection has nothing to do specifically with geometry: proofs
by contradiction never admit of semantics in which each entry in the proof
sequence is true (in any sense which entails their joint compatibility).

To help be a bit more precise: I take it that among logical formalisms, natural
deduction systems reconstruct most directly the actual patterns of occurrence

¹ David Sherry has directed this argument at Berkeley’s conception of the role of diagrams, and
draws a similar conclusion (Sherry, 1993, p. 214). But Sherry makes only incidental proposals on how
diagrams support inferences (p. 217) and expects to invoke Pasch-style axioms (n. 5).
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of sentences in rigorous informal argument. Notably, they model restricted
reasoning contexts—hypothetical, reductio, and quantificational contexts—by
assigning distinct roles to sentences depending on their position in those
contexts. These distinct roles have the effect of keeping straight the hypotheses
under which an assertion is made, and conversely, what prior entries are in
force at any given stage of an argument. (This in contrast to systems such as
Frege’s and Hilbert’s, which treat all entries in the inferential sequence equally
as assertions to which the reasoner is committed, differentiated as to inferential
role only by their displayed structure and their order of occurrence. This
requires some re-casting, perfectly straightforward, of patterns of occurrence
in informal reasoning, such as Frege’s explicit carrying along all hypotheses in
force as antecedents of each sentence.) Although we do not take all inferences
in the geometrical text to be purely logical, modeling patterns of sentence
occurrence in restricted reasoning contexts seems the most illuminating formal
approach to geometric argument.

With reference to this understanding, explicated in natural deduction sys-
tems, of being in force in a context, the claim becomes: proofs by contradiction
never admit of semantics in which each claim in force in the reductio context is
true (in any sense which entails their joint compatibility). In particular, neither
an imperfect diagram nor a perfect counterpart can picture or represent, in
any sense which entails their joint compatibility, all claims in force within a
reductio context.²

It does not follow that there could not be a picturing-like relationship
between the diagram and some claims in force within a reductio context.
Rather, these facts put a different pressure on semantic conceptions of the
relationship between diagram and text than the usual notice of imperfections
(judged by the inferences licensed in the text) in the diagram, or (as in Leibniz)
our ability to live with those imperfections. If diagram imperfections only were
in play, one might well hold that the function of diagrams could fruitfully
be approached by first elaborating a notion of perfect geometricals of which

² Juxtaposition of Euclidean diagram usage with natural deduction formalism suggests another
remarkable conclusion. Euclid, by and large, lives by ‘one proof, one diagram’. But reductio context
or not, any broadly semantic conception of the relation between diagram and claims in force within
a context would suggest instead: ‘one reasoning context, one diagram’. Here, however, the upshot is
not a restriction on the sense in which the relation between text and diagram could be a semantic
one. Rather, the appropriate conclusion seems to be the narrowly logical one that Euclidean argument
prefers ‘one proof, one genuinely geometric reasoning context’: except for purely logical unpacking of
propositions (which in standard natural deduction formalism would require multiple nested contexts)
there is preferably only one reasoning context per demonstration in which a diagram plays a special
role. We have to allow disjunctive case analysis with distinct diagrams (see later), but that too appears
not preferred.
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the text is literally true, then treating diagrams actually drawn in geometrical
demonstrations as approximations to perfect ones; finally deriving from all this
an understanding of the bearing of the imperfect diagram on inferences in the
text. But no detour through ontology and semantics which treats of truth in a
diagram in a sense which entails joint compatibility of all claims in force in
the reductio context can speak to the difficulty with the role of diagrams in
reductio arguments, which are pervasive in Euclid.³

Thus one is forced back to a direct attack on the way diagrams are used
in reductio argument; the problem of the relationship between diagram and
geometric inference here turns out to be one of standards of inference not
reducible in a straightforward way to an interplay of ontology, truth, and
approximate representation. But once this is admitted, there seems to be no
reason why direct inferential analysis of diagram-based geometrical reasoning
should not be the approach of choice to characterizing geometrical reasoning
overall, with or without reductio. If this order of analysis proves fruitful,
ontological and semantic considerations will seem decidedly less central to the
philosophical project of appreciating geometry as a means of understanding. For
in their then remaining role of making the standards of geometrical reasoning
seem appropriate, ontological-and-semantic pictures will have to compete
with other types of considerations which we will find have potential to shape
a reasoning practice. The failure, since Plato’s time, of diagram ontology
strategies to sponsor a convincing account of Greek inferential practice with
diagrams, perhaps does not bode well for their prospects.

I therefore take it that traditional geometric demonstration has a verbal
part, which for contrast I will call the discursive text; and a graphical part, the
diagram. The discursive text consists of a reason-giving ordered progression of
assertions, each with the surface form of an ascription of a feature to the diagram
(attributions). A lettering scheme facilitates cross-references to the diagram. A
step in this progression is licensed by attributions either already in force in the
discursive text or made directly based on the diagram as part of the step, or

³ Jerry Seligman has suggested that one might avoid the argument via some kind of ‘compositional
semantics’ of diagrams. To avoid the argument, however, geometrically incompatible sets of sentences
would have to be ‘compositionally true’ in the same diagram. That is to say (and the point has
nothing to do with diagrams or even geometry), a ‘semantics’ that fills the bill here thereby lacks
minimal soundness, the minimum requirement for notions of (weak) truth, that a set of sentences all
‘true’ in the same situation, cannot trivially entail a contradiction. Because of its failure of mininal
soundness, such a ‘semantical’ conception of diagrams could not account for a role of diagrams in
geometric inference (the original point of the detour); and it would deprive ontology of its traditional
philosophical point, taking truth really seriously. A corollary: the problem of reductio argument forces
semantics/truth considerations apart from semantics/meaning considerations, which might indeed
effectively be approached by compositional semantics, presenting separate situations in which the
components of a contradiction are true.
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both. A step consists in an attribution in the discursive text, or a construction
in the diagram, or both. For example, the application of Postulate 3 in the
argument of Euclid I.1: ‘With center A and distance AB let the circle BCD
be described’ (Euclid) consists in the entry of a certain curve in the diagram,
the establishment of anaphoric ties between discursive text and diagram, and
the stipulative attribution in the discursive text that the curve is a circle with
given center.

4.2 Diagram-based attribution

Diagram-based attributions—conclusions licensed in part by what is seen in
the diagram rather than already in force in the discursive text—are of special
interest, given that our official model of reasoning is motivated by linguistic
rather than diagrammatic representation.

Work in the program of locating ‘implicit assumptions’ has amply shown
that genuinely diagram-based moves occur throughout traditional geometrical
argument (Mueller, 1981, p. 5, and throughout). With obvious exceptions,
almost every step in traditional geometrical argument finds its license partly in
the arrangement of the diagram. From a modern foundational point of view
(Hilbert (1899/1902), Tarski (1959)), it is clear that continuity considerations
enforced by the diagram, in close conjunction with exact relations, contribute
much of the existential import to geometry. Moreover, the very objects of
traditional geometry arise in the diagram: we enter a diagonal in a rectangle,
and presto, two new triangles pop up. Though it has proved remarkably
difficult to explain why this is so important, without diagram-based inferences,
organized rather as they are through the actual use of diagrams, spatial thought
is handicapped beyond recognition. Even as far as proofs are concerned,
the Euclidean discursive text, unlike 20th-century formal logic, generally
lacks alternate resources for obtaining the diagram-based conclusions which
the Euclidean diagram provides. Judging from the historical record of the
reputation of geometrical reasoning as a model of rigor, it does so without
causing undue disarray.

Nonetheless, it has been commonplace for at least the last century to
castigate traditional geometry for ‘gaps in arguments’ and ‘implicit premises’
due to ‘reading off from the figure.’ By the end of the 19th century, the
view had taken root that drawing conclusions from the diagram was a defect
of traditional geometrical practice. The additional axioms introduced in this
period (Pasch, Hilbert), notably concerning betweenness and continuity, aimed
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to remedy this by strengthening the discursive text. Felix Klein comments: ‘The
significance of these axioms of betweenness must not be underestimated ... if
we wish to develop geometry as a really logical science, which, after the axioms
are selected, no longer needs to have recourse to intuition and to figures for the
deduction of its conclusions... Euclid, who did not have these axioms, always
had to consider different cases with the aid of figures. Since he placed so little
importance on correct geometric drawing, there is real danger that a pupil of
Euclid may, because of a falsely drawn figure, come to a false conclusion.’⁴

Twentieth-century philosophers have tended to follow mathematicians in
their assessments of traditional geometry. Ayer, for example: ‘diagrams ...
provide us with a particular application of the geometry, and so assist us to
perceive the more general truth that the axioms of the geometry involve
certain consequences.... most of us need the help of an example ... [T]he appeal
to intuition ... is also a source of danger to the geometer. He is tempted to
make assumptions which are accidentally true of the particular figure he is
taking as an illustration.... It has, indeed, been shown that Euclid himself was
guilty of this, and consequently that the presence of the figure is essential to
some of his proofs.’⁵

Thus, the first task of an account of geometrical reasoning in which diagrams
are treated as genuinely inferentially engaged ‘textual’ elements is to augment
the well-established logical construal of the discursive text by a reconstruction
of the standards for reading and producing diagrams.⁶

Extant ancient texts give little explicit discussion of these standards, on
which we anyhow cannot expect full unanimity over the centuries of Greek
mathematical practice. Some light is shed on them by occasional records
of dispute on geometrical propriety, and by records of proposed cases or
objections.⁷

The key to reconstructing standards for producing and reading diagrams
is the realization that diagram and text contribute differently, so as to make
up for each other’s weaknesses. Some things may be read off directly from

⁴ Klein (1939, p. 201); quoted from Mueller (1981, p. 5).
⁵ (Ayer, 1936, p. 83). (My emphasis. I thank Ali Behboud for pointing out this passage to me.)

Philosophers’ concern about diagram use in geometry go back at least as far as Plato’s Cratylus:
‘... geometric diagrams, which often have a slight and invisible flaw in the first part of the process, and
are consistently mistaken in the long deductions that follow’ ( Jowett transl., at 436D).

⁶ Wilbur Knorr has pointed out to me that the standards for diagrams in solid geometry, and in its
applications in mathematical astronomy, must be quite different indeed from those in force in plane
geometry. Only plane geometry is considered here.

⁷ The most informative remaining source is Proclus’ Commentary on the First Book of Euclid. For
discussion, see especially Heath (Euclid, vol. 1) and Mueller (1981). There may be some bias in focussing
on the foundationally oriented commentary tradition represented by Proclus; see the comments on
mathematical impact of the Alexandrian foundational school, in Knorr (1980, esp. pp. 174–177).
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a diagram, some may be inferred only from prior entries in the discursive
text. More careful consideration reveals that the inferential contribution of
the diagram depends also on standards of diagram production, in perhaps not
entirely expected ways.

Directly attributable features are ones with (a) certain explicit perceptual
cues that are (b) fairly stable across a range of variation of diagram (‘co-exact’
rather than ‘exact’) and (c) not readily eliminable by diagram discipline, proper
exercise of skill in producing (still imperfect) diagrams required by the practice.

For later reference, we define the appearance or topology of a diagram to
comprise the inclusions and contiguities of regions, segments, and points in
the diagram (strictly speaking, only in so far as not eliminable by diagram
discipline). These will turn out to determine its attributable features.

Already in antiquity, diagram-based moves were open to challenges, as we
see from objections recorded by Proclus and others, discussed below; but the
moves were defended and retained their license. By the middle and late 19th
century, one does indeed want to consider alternative geometries such as those
with restricted coordinate domains characterized by algebraic conditions; one
does indeed want to consider the properties of ‘curves’ such as space-filling
or continuous nowhere-differentiable ones. Traditional diagram usage does
indeed provide inadequate representational support for the reasoning required
in these cases.⁸ But such challenges did not arise within traditional geometry;
and the unquestionable need to shift to other representational means to meet
them should not (as it has for most of this century) cloud the question of how
traditional geometry met its challenges in such exemplarily stable fashion.

4.2.1 Explicit perceptual cues

Greek geometry requires us to respond to diagrams as made up primarily of
regions, not the curves which bound them. Euclid defines, ‘A figure is that
which is contained by any boundary or boundaries.’ The Greek word for
figure here, schema, refers to a shaped region; in contrast, we usually attend to
the delimiting curve and treat as incidental such regions as appear. In analytic
geometry, a circle is a curve satisfying an equation; in Euclid, it is ‘a plane
figure contained by one line such that ...’⁹

⁸ This, and not the outright invalidity of diagram-based reasoning (‘spatial intuition’) would be the
proper conclusion from similar considerations adduced by Hans Hahn (1980).

⁹ Euclid I definitions 14–15; see further Heath Euclid I, 182–3. Proclus brings out this sense of
schema very clearly: ‘the circle and the ellipse ... are not only lines, but also productive of figures. ... if
they are thought of as producing the sorts of figures mentioned, ...’ (103). He attributes to Posidonius
a contrary view: ‘it seems he is looking at the outer enclosing boundary, while Euclid is looking at the
whole of the object.’ (143.14)



90 kenneth manders

Fig. 4.1.

Traditional geometric practice is surprisingly literal in what it recognizes
in the diagram beyond items and relationships attributed stipulatively in the
discursive text. Proclus points out that ‘... the triangle as such never has an
exterior angle’ (In Euclidem, 305). One must explicitly say, ‘if one of the sides is
produced’, and so indicate in the diagram, before referring to an exterior angle
in a demonstration. Even so, Proclus counts a proof (Euclid I.32) as inferior,
with ‘the middle term used here only a sign,’ instead of a ‘demonstration based
on the cause,’ because it involves extending one of the sides to form an exterior
angle (206.16–207.3).

Another example: Proclus accepts a four-sided triangle (!) (Fig. 4.1), because
it ‘... was the practice of Greek geometers not to recognize as an ‘‘angle’’ any
angle not less than two right angles’ (Morrow).

Evidently, the outer angle does not count here; presumably because angles
are regions delimited in a certain way, and two lines at two right angles or
more do not do so.¹⁰

The primary recognitions sanctioned by traditional practice include suitably
bounded regions or extended objects (line segments, triangles, angles), associated
containment relationships (part-whole, point-in-region, line-in-region), and
intersections of two (but not more) curves. For example, when, as in the proof
of Euclid I.6, we draw a line from one vertex of a triangle to (the interior of)
the opposing side, we are to recognize that the triangle has been partitioned
into two triangles, parts of the original, sharing a common side; that the angle
at the vertex in question is divided into a sum of two angles, and that the line
forms a pair of angles where it meets the opposing side.

Standards for treatment of equality and inequality (greater and less) help
further bring out the explicitness requirement in diagram-based attribution.
Many things are said to be equal in geometry; and this is a key to the power
of geometrical inference. But judgements of equality, if to be made from a

¹⁰ Morrow, fn. to Proclus 329.7; see also Heath Euclid I p. 264. At 301–302, Proclus introduces
a three-grade distinction which can plausibly be aligned with explicitness: between the familiar (i)
knowledge about already existing things (that the base angles of the isoceles are equal), and (iii) making
something (bisecting an angle), he suggests (ii) a ‘finding of things’, ‘to bring what is sought into view
and exhibit it before the eyes’ (to find the center of a given circle, or the greatest common measure
between two given commensurable magnitudes).
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diagram, rather than inferred from prior entries in the text, require not just
equality but instead its most explicit possible form: coincidence that arises in
an extremely direct way from the constraints under which the (imperfect)
diagram is produced; such as the common side in the triangles which arise
in the proof of I.6. This restriction on diagram-based attribution is not so
surprising, as equality among less directly related diagram elements cannot
be controlled by the standards under which diagrams are produced; but the
restriction applies just so to inequality (which appears to pass our ‘co-exactness’
stability test below).

A striking example is Euclid I.20, ‘any two sides of the triangle taken
together are greater than the third.’ The sometimes maligned requirement
that this diagrammatically evident fact be proved no doubt reflects a relatively
advanced theoretical foundational development in Greek geometry; but it is
that tradition so developed which we are to characterize. Geometrical reasoning
frequently obtains inequalities directly from the diagram, but (corresponding to
the restriction for equality) only when an object in the diagram is a proper part
of another, rather than from any kind of indirect comparison. Equalities and
inequalities (greater, less) among objects distributed throughout the diagram
are of great importance, and inference principles for both are available within
the discursive text. In order to allow these notions to function also in diagram-
based geometrical argument, the Elements makes it its first order of business
to secure their transfer around the diagram so that direct comparisons may be
made (notably, I.2, I.3, I.4): both (i) so that inequalities already available in
the discursive text may be realized as proper inclusions in the diagram (I.6),
and (ii) so that inequalities in the diagram may be related to explicit inclusions
there which then may be read off (I.16).

4.2.2 Exact and co-exact attribution

Geometric attribution standards may be understood further by distinguishing
what will be called exact and co-exact attributes. Typical alleged ‘fallacies of
diagram use’ rest on taking it for granted that an—to the eye apparently
realized but false—exact condition would be read off from a diagram; but
the practice never allows an exact condition to be read off from the diagram.
Typical ‘gaps in Euclid’ involve reading off some explicit co-exact feature from
a diagram; and this is permissable. It will not be hard to discover a rationale
for this: the distinction of exact/co-exact attributes is directly related to what
resources the practice has to control the production of diagrams and provide for
resolution of disagreement among judgements based on their appearances. The
practice has resources to limit the risk of disagreement on (explicit) co-exact
attributions from a diagram; but it lacks such resources for exact attributions,
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and therefore could not allow them without dissolving into a disarray of
irresolvably conflicting judgements.

The distinction, stated loosely, is this. Consider all (imperfect) diagrams
which might reasonably be drawn from given specifications; some of which
may be regarded as related by deformation or variation. Co-exact attributes
are those conditions which are unaffected by some range of every continuous
variation of a specified diagram; paradigmatically, that one region includes
another (which is unaffected no matter how the boundaries are to some
extent shifted and deformed), or the existence of intersection points such as
those required in Euclid I.1 (which is unaffected no matter how the circles
are to some extent deformed). Exact attributes are those which, for at least
some continuous variation of the diagram, obtain only in isolated cases;
paradigmatically, straightness of lines or equality of angles (neither of which
survive any except exceptional types of deformation, no matter how small).
The distinction is perfectly apparent to anyone who has made enough diagrams
to sense what one can and cannot control in a reasonably simple diagram.¹¹

Many attributions have both co-exact and exact components. A triangle,
for example, is a non-empty region bounded by three visible curves (all that is
co-exact) which are in fact straight line segments (exact). Once realized, this
does not give any difficulty.

Exact attributes can, at least since since Descartes’ time, be expressed by
algebraic equations. In traditional geometry, many were expressed or defined
by equalities or proportionalities. Prominent examples include equality of
lines (segments), angles, or other magnitudes, congruence of triangles or other
figures, proportionality of lines; that an angle is right (not that it is an angle), that
four points are con-cyclic (lie on a common circle); the geometric character
of lines or curves, or the regions they delimit: a circle, an ellipse; that lines are
straight (derivatively also, rectilinear angles, triangles, and so on) or parallel;
that three lines or curves, while not initially stipulated to do so, intersect in
a common point (rather than pairwise in three distinct points); that a line is
tangent to a curve (rather than intersecting it in two or more distinct points
close together).¹²

¹¹ It is a matter of mere patience to provide an explicit modern topological account of diagrams, (in
terms of smooth embeddings of linkages of lines and circles into the Real plane) and their variation (in
terms of homotopic families of such embeddings), which does not suppose them made with perfect
accuracy (because a smooth embedding of a straight line need not be straight).

¹² ‘Expressing’ here carries no philosophical weight, as their equational expressability is not what
makes attributes exact. But it is perhaps prudent to note that this ‘expressing’ involves considerable
complications. Notably, the notion of straight line in the Euclidean diagram sense is presupposed: it
is an unexplained primitive in Descartes’ geometry, and must be independently available in order to
relate coordinate geometry to Euclidean diagrams. The algebraic properties of the coordinate equation
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Exact attributes (indeed, by definition) are unstable under perturbation of a
diagram. This renders them well beyond our control in drawing diagrams and
judging them by sight. Thus, diagramming practice by itself provides inadequate
facilities to resolve discrepancies among responses by participants as they draw
and judge diagrams. It is therefore unsurprising that exact attribution is licensed
only by prior entries in the discursive text; and may never be ‘read off ’ from
the diagram. We observe this throughout ancient geometrical texts. That the
curves introduced in the diagram in the course of the proof of Euclid I.1
are circles, for example, is licensed by Postulate 3 in the discursive text, and is
recorded in the discursive text to license subsequent exact attributions, such as
equality of radii (by Definition 15, again in the discursive text).

Exact attributions license a variety of extremely powerful inferences, which
are central and pervasive in traditional geometrical discourse. Besides substitu-
tion inferences

a � b, 	(b) ⇒ 	(a)

which notably include transitivity inferences, we find equalities licensed by
definitions (circle has equal radii), and congruence attributions, and licens-
ing congruence attributions. We frequently find proportionality attributions
licensed by the various rules for manipulating proportionalities, similarity of
figures, and 4-point con-cyclicity (by Euclid III 35–37). Without such infer-
ences (whether in this or some other form), spatial reasoning is handicapped
beyond recognition.¹³

Co-exact attributes express recognition of regions (and their lower-dimensional
counterparts, segments, and points) and their inclusions and contiguities in the
diagram. We might say they express the topology of the diagram. Prominent
examples include ascription of non-empty delimited planar regions: triangles,
squares, ... (but not that sides are straight); circles (but not that they are circular
rather than elliptical or just irregular); angles (must be less than two right
angles, to delimit a region). In lower dimension, non-empty segments (but not
the character of the curve of which they are segments); points as two-place
(but not three-place or tangent) intersections of curves; non-parallel lines; non-
tangencies. Further, contiguity and inclusion relations among these: point lies
within region or segment; side opposed to vertex; line divides region into two
parts; one segment, angle, or triangle is part of another; alternate angles, a point
lying between two others, and so on.

of the straight line no doubt does constrain its own applications; but the equation still captures only a
certain inference potential of the Euclidean diagram notion of straight line, not that notion itself.

¹³ As in Fuzzy Logic, compare Hjelmslev (1923).



94 kenneth manders

Co-exact attributions either arise by suitable entries in the discursive text
(the setting-out of a claim, the application of a prior result or a postulate, such
as that licensing entry of a circle in the proof of I.1); or are licensed directly by
the diagram; for example, an intersection point of the two circles in Euclid I.1.
This poses no immediate threat of disarray, because co-exact attributes (again,
by definition) are ‘locally invariant’ under variation of the diagram: they are
shared by a range of perturbed diagrams.

The allowable range of variation, not specified by our definition of co-
exact attributes, differs from diagram to diagram. Some features, such as an
intersection point in I.1 or in Pasch’s axiom (a line crossing into a triangle
must, if suitably extended, cross exactly one other side or a vertex), arise
from fundamental topological properties of the Real plane and are extremely
stable. On the other hand, in complicated configurations the topology of the
diagram and the ordering of salient points on a line can be quite sensitive to
perturbation of the diagram. Such sensitivity poses a genuine threat of disarray.
We will return to this. In many cases, this challenge may be met in traditional
geometry by simplifying the diagram, by splitting off a preliminary result.

In so far as exact attributes are expressable by equalities and co-exact ones
by strict inequalities, one would expect that a diagram inappropriate with
regards to co-exact feature could not lead to an inappropriate exact conclusion:
strict inequalities don’t imply non-trivial equalities. Both are unfortunately
false. Certain equational relationships are co-exact, and appropriately read off
from topological relationships in the diagram: inclusions in a diagram license
the assertion that the whole (region, angle, line) equals the sum of its dis-
joint parts.

Notably, when a line segment is seen to coincide with its parts put
end to end, it may be written as the sum of those parts; say (in Fig. 4.2),
AB = AP + BP. (In traditional geometry, until the 19th century, line segments
are non-directed; one writes BP and PB indifferently.) This is co-exact if P is
constrained by stipulation to lie within AB: no matter where P lies in AB,
there will be a range of variation of P within AB (by stipulation, its only degree
of freedom), and AB = AP + BP will of course continue to hold throughout
this range.

4.2.3 Diagram-based attribution tested: are all triangles isoceles?

The preceding theory readily eliminates those ‘fallacies’ of diagram-based
geometry that depend on reading an exact condition off from the diagram.
Much more serious challenges, however, arise from co-exact equational
conditions: the equality of the whole and the sum of its parts. Because the
resulting attributions are equational, they can lead to very strong conclusions;
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Fig. 4.2.

because they are (properly) based on diagram appearance, there is a premium
on controlling this.

An example is the striking argument that all triangles are isoceles, popular
in discussions of ‘geometrical fallacies’ (Maxwell (1961), Dubnov (1963)). Let
the given triangle be 
ABC (Fig. 4.3). Let the bisector of angle (BAC) and
the perpendicular bisector (at D) of the side BC intersect at O. Draw the
perpendiculars OQ and OR to the remaining sides AC and AB; connect OB
and OC. We obtain the following three congruences: (a) 
ODB � 
ODC,
by side-angle-side; hence OB = OC. (b) 
AOR congruent to 
AOQ, by
(bisected) angle-(common) side-(complemetary) angle; hence OR = OQ. But
then (c) 
BOR congruent to 
BOQ, because they are right triangles with
equal side and hypotenuse; hence RB = QC. So far, so good.

It is, however, possible to draw a diagram with AO not quite bisecting
the angle, and DO not quite bisecting the side (Fig. 4.4), so as to display
R and Q either (i) both on AB respectively AC, or (ii) both beyond AB

A

B

R

O

C

QD

Fig. 4.3.
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Fig. 4.4.

respectively AC. Either display is explicit and co-exact. Then one threatens to
conclude (i) AB = AR + RB = AQ+QC = AC or (ii) AB = AR − RB =
AQ−QC = AC, so the triangle is isoceles!

The resources of traditional geometry to deal with arguments of this
nature consist in control of the diagram; backed up by probing of diagram
behavior. For triangles that are not close-to-isoceles, all but the initially given
appearance would be eliminable by refinement of the diagram subject to
‘diagram discipline’ discussed below; so that one could block attribution of
the other appearances that lead to the undesired conclusion. But the ability of
geometric argument to exploit this is restricted by the unlimited sensitivity, for
close-to-isoceles triangles, of the appearance of the diagram constructed.

4.3 Controlling diagram appearance

Diagram appearance, then, in the technical sense—the inclusions and conti-
guities of regions, segments, and points—plays a decisive role in geometrical
demonstration. The basic general resource of traditional geometrical practice
in controlling the appearance of the diagram is diagram discipline, standards for
the proper production and refinement of diagrams.

These standards are implemented by exploiting the considerable (though
nonetheless limited) practical determinateness of geometrical constructions,
and our (also nonetheless limited) ability to detect certain types of defects in
candidate diagrams. The control that may be obtained in this way is further
limited by the (sometimes extreme) sensitivity of diagram appearance to metric
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relationships, and the occurrence of multiple cases. Traditional geometrical
practice is on guard against failures of diagram appearance control, by a process
of probing diagram behavior.

4.3.1 Diagram discipline

Diagram-based attribution requires a third element, that the feature attributed
appear in appropriately produced diagrams, and indeed, is not readily eliminable
from them upon refinement. We appear to lack ancient prescriptions for the
proper production of geometric diagrams. Nor should we be too ready to
suppose that those found in contemporary or 19th century teaching materials
reflect ancient practice.¹⁴ Older texts, and diagrams in a few surviving though
less ancient sources, do make clear that at least the use of letters to indicate
points or lines is ancient.¹⁵

The following basic and incomplete proposals may nonetheless be made.
Because of its reliance on diagram-based attribution, traditional geometric
reasoning is essentially bound up with physical skills of diagram production,
for which there are standards of practice but not explicit and complete rules.
Diagrams are constructed line by line (this includes curves), with points taken
and lines drawn as stipulated in the discursive text. In the Elements these
constructions are those enumerated in the postulates, but elsewhere further
means of construction (neuses, for example) are available.

We discuss exact and co-exact attributes separately. In entering a dia-
gram element according to a construction postulate, one readily produces an
unequivocally readable presentation of its stipulated connectivity (‘let CA ... be
joined’); and on this type of co-exact attribute I take the practice to require
success. One might, however, worry whether this always holds of the initial

¹⁴ (a) I don’t know of any use before the 19th century of the familiar ‘hash marks’ to indicate
equality of lines or angles. This practice seems too effective to have been readily lost once established;
and is thus presumably a recent innovation. (b) Jones remarks of the extant manuscripts of Pappus’
Collectio: ‘The most apparent, and paradoxical, convention is a pronounced preference for symmetry and
regularization in diagrams, introducing equalities where quantities are not required to be equal in the
proposition, parallel lines that are not required, right angles for arbitrary angles, and so forth. Modern
practice discourages the introduction of this kind of atypicality in geometrical figures.’ (N. Jones,
Pappus of Alexandria, Collectio VII, vol. 1, p. 76.) It is not clear to me whether this tendency towards
recognizably atypical diagrams reflects geometrical practice in Pappus’ (let alone Euclid’s or Plato’s)
time, or later scribal practice detached from doing geometry; but we will anyhow find the modern
‘atypicality discouragement’ standard inadequate.

¹⁵ Texts: Older sources, viz. Hippocrates (as reported by Eudemus) and Aristotle write expressions
such as ‘that [point] at which κ [stands]’, where Euclid would write simply ‘the [point] κ ’. (See Tropfke
(1923) vol. 4 pp. 14–15.) Ancient examples: letters are visible in the diagrams for I.9 in a papyrus from
Herculaneum (P. Herc. 1061) the text of which is dated about 100bc, and of I.39 in an Egyptian papyrus
(P. Fay. 9) of the second century ad. (See Fowler (1987) Plates 1, 3 esp. pp. 208–209, pp. 212–213,
and references given there.)
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diagram of a proposition; for arbitrarily complex patterns of connectivity might
be required; and certain patterns of connectivity would be incompatible with
exact attributes such as that the lines be straight. Only certain co-exact require-
ments, moreover, can be directly controlled: only lines can be drawn directly;
planar regions (as well as certain distinguished points and segments on them)
just pop up as a result of this.

Whether a region is, for example, three- or four-sided, may depend on the
initial data of the construction in a manner sufficiently inscrutable to thwart
control. One purpose of Euclid’s treating numerous construction problems
in Book I may therefore be to underwrite the availablity of diagrams which
propositions might require us to consider. It is probably prudent to regard the
availability of diagrams satisfying complicated co-exact conditions as potentially
a sore point in traditional practice; and potentially contributing to the pressure
to get inferential weight away from such diagrams. Such pressure, however, is
only exerted to the extent that one has the expressive means, and intellectual
priorities, to bring complex diagram specifications in play in the first place;
one should not simply extrapolate the urgency of such problems back from the
19th century to ancient mathematics.

On the other hand, exact stipulations concerning diagram elements, such
as that lines be straight or circles perfect, cannot be fully attained even for
the simplest of configurations. The needs of Euclidean practice are higher
here than one might imagine; rather than unequivocal readability of exact
attributes (which is superfluous in so far as the discursive text records the
stipulations), what will turn out to be needed is metric accuracy sufficient
to render unequivocally readable co-exact properties associated with further
constructions which might need be applied to the diagram: both the co-exact
pre-conditions of applicability of those constructions, and the appearance of
the diagram resulting by their application.

I take it that presentation of exact stipulations in the diagram is therefore
subject to quality control: defects are recognizable, and when they appear severe,
or pertinent to co-exact attributions made from the diagram, complaints are
in order. In some situations a diagram must be re-drawn, or rejected as
inadequate. (i) If a line said to be straight is so crooked in your diagram that
I can noticeably improve it, and it looks like switching to the improved line
might affect the topology of regions, you are required to re-draw; (ii) equally
so if I can point to outrageous features of the circle or circle segment in your
diagram, or (iii) clear failures of alleged equalities or (iv) of parallelism, which
appear of some moment for what you are doing.

These quality control standards for exact attributes concern diagram elements
individually (straight lines), or in pairs (equalities, parallelism of lines) and



the euclidean diagram (1995) 99

perhaps occasionally threes and fours (proportionalities, con-cyclicity). In each
case, quality control operations (both the detection of defects which require
questioning the suitability of the diagram and corrective control when defects
arise) involve relationships between diagram elements specifically identified in
the given stipulation.

When diagram discipline is in force with respect to an exact claim (we
will see that in reductio arguments this does not always take place), we say
that ‘the diagram is subject to’ the exact attribution; say, that a line AB is
straight. The term ‘subject to’ marks off that although the diagram under
these circumstances need not (and in general will not) satisfy the condition in
unequivocally readable fashion, it is to be held to certain standards in relation to
its function in argument, standards which might require diagram replacement
at any point. The explicit focus of the standards is indicated by the attribution
in the ‘to’ position of ‘subject to’. Any explicit co-exact condition which
is properly attributable in a diagram, i.e. not eliminable by refinement with
respect to the exact conditions to which the diagram is subject, will be said
to be indicated in that diagram. On the other hand, at least the justificational
burdens which moderns think to target by quality control standards on the
diagram as a whole or on unspecified subsets of diagram elements, notably
requiring the diagram to avoid special properties (atypicality), would have been
carried by other features of ancient practice:

(i) Because exact attributions may anyhow not be read off from the diagram,
it has no inferential import if some special relations of that type might seem
(spuriously) realized in a diagram. This is just as well, as there are no limits
to the equalities which might be judged to emerge in the construction of
a complex diagram; and except in the very simplest diagrams it is therefore
implausible that participants could effectively control their work so as to satisfy
such an atypicality requirement, or agree whether they had succeeded in
doing so.

(ii) Diagrams may be atypical, relative to what is called for, in their co-exact
properties as well. If such atypical properties are explicit in the diagram (see
above), traditional practice cannot afford to simply block us from reading
them off, as the discursive text has inadequate resources to acquire by other
means the co-exact attributions it needs. Something else is therefore required
to control the effects of atypicality at the global diagram topology level; this
function is fulfilled by practices of case and objection proposal (see below).
Here too, the modern idea of atypicality avoidance would not work: it has the
wrong structure. For the atypicality avoidance standard presumes that there is
such a thing as a ‘generic’ diagram, and as long as you re-draw until you have
one, you will then be OK. This is fine for genericity with respect to exact
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attributes (as we can learn from the ubiquity of the notion of generic point in
algebraic geometry earlier in this century). With respect to co-exact attributes,
however, no single diagram need be generic. For non-trivial configurations,
the effect naively envisaged as atypicality avoidance must instead be achieved
through redrawing practice together with disjunctive case examination.¹⁶

4.3.2 Constructions and diagram control

Constructions contribute to diagram appearance control by their determinate-
ness: they allow us to form a particular one of the many diagrams with curves
with the desired connectivity.

Recent commentators have extensively debated whether Euclid’s construc-
tion postulates and propositions have existential import, but virtually without
mention of their uniqueness import or determinateness. Mueller (1981) denies
that Euclid shows ‘any concern with the question whether a constructed object
is unique’—in connection with I.30 (p. 19), and a straight line connecting
two points (p. 32); not, though, because Euclid would doubt uniqueness, but
because it is clear what uniqueness results from the basic constructions, and
this need not be explicitly addressed.¹⁷

It seems plain that geometric constructions purport to give unique outcomes,
or outcomes unique up to finitely many variants in any given case. For example,
the line connecting two given points is plainly understood to be unique (see
also Proclus on an objection to I.4). The equilateral triangle construction
of I.1 is plainly understood to give two possible triangles, congruent but
perhaps differently located with respect to the data, if (as Proclus 225.16
appears to regard as relevant) space allows. Occasional Euclidean propositions,
such as I.7, could, moreover, be read as addressing uniqueness questions for
constructions. We propose that traditional practice had, in principle if to
varying extent depending on the case at hand, access to two quite distinct
resources in regards uniqueness of the outcome of constructions subject to
diagram discipline.

¹⁶ There are other levels of function of diagrams in traditional geometry, on which we have not
touched. Besides providing ‘inferential’ licenses, diagrams serve to organize and motivate geometrical
inquiry. These considerations have not yet found their proper philosophical casting; and it goes beyond
our present purpose to attempt that task here. In the context of such non-justificational functions,
diagrams license a wider range of ‘attribution’, including what we have called exact conditions. There
is a corresponding need for stricter diagram discipline, as well as different criteria for case distinctions in
atypicality control. In particular, diagram discipline in this sense can be expected to extend to suitably
selected inequalities.

¹⁷ The index to Knorr (1986), for example, contains a series of headings under ‘existence’; notably,
‘problems as existence proof ’ gives 10 entries, but there is nothing on ‘uniqueness’. Mueller mentions
no work on the topic since Heath.
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The primary resource is a non-propositional acquaintance with control in
executing constructions in a given diagram. The practice requires one to grasp
that the attempt to connect two points by a straight line, for example, has no
legitimately competing alternate outcomes. In this attenuated and inarticulate
sense, uniqueness is a part of what must be undertaken and subscribed to in
Postulate 1. Little does it matter that Euclid might have asserted uniqueness,
making it a propositional content of Postulate 1, by using some appropriate
verbal form such as a definite article (as Mueller objects, p. 32), but did not
do so. Just so, one is required to grasp that the control one exercises in
attempting to make the circles in the construction of I.1 is such that we should
take precisely two intersection points to arise as seen from the diagrams we
produce. At this level, there is no need of I.7 or III.10 (as Heath envisages,
p. 261) to establish the uniqueness of the triangle in I.1. Such a requirement
of non-propositional grasp is of course compatible with the lack of explicitly
articulated concern with uniqueness which Mueller observes in Euclid.¹⁸

In spite of this non-propositional grasp, challenges arise to what ‘just
happens’ in making diagrams. Perhaps the realm of non-propositional grasp
is a fool’s paradise? As constructions pile up, adequate grasp of what control
may be exerted through proper diagram discipline may be unattainable for
participants. For example, the two possibilities in I.1 could each lead to multiple
and dissimilar possibilities in further constructions. What possibilities arise in
this way will typically depend on the initial data. It helps that, as one can now
establish by metatheoretical means, a determinate construction has at most
finitely many outcomes; each corresponding to an in principle independently
intelligible geometrical condition on initial data.

But also, the conditions on initial data under which various possibilities arise
need not be open to grasp in carrying out the construction in a particular
diagram: in the all-triangles-are-isoceles argument, what clearly happens for
clearly non-isoceles triangles might inscrutably cease to occur for certain
close-to-isoceles triangles; perhaps with some unimagined threshold. We
may therefore need to survey the possible outcomes at each stage. Under
such circumstances, a secondary resource in the practice comes to the fore:
propositionally explicit claims and demonstrations concerning the outcome of

¹⁸ The expectation of control in constructions is illustrated, for example, by a remark of Newton:
he compares the traditional geometrical neusis construction of the conchoid with a regulation Cartesian
construction of solutions to its cubic locus equation (pointwise by intersecting a varying circle and
fixed hyperbola), and comments ‘... this [Cartesian] Solution is too compounded to serve for any
particular Uses. It is a bare Speculation, and geometrical Speculations have just as much Elegancy
as Simplicity, and deserve just so much praise as they can promise Use.’ (Universal Arithmetic 1728
pp. 229–230.)
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constructions. Examples would be uniqueness results such as I.7, or arguments
using circumcircle and Simson-line to determine the appearance of the all-
triangles-are-isoceles diagram (Dubnov or Maxwell, pp. 24–25). Arguments of
this sort shift part of the burden of grasp of construction outcomes, from what
‘just happens’ in making diagrams with proper discipline (purely diagram-based)
to a mixture of diagram- and discursive text-based moves.

Of course, geometrical constructions are in general only quasi-determinate:
adding elements to a diagram by a prescribed construction may yield finitely
many diagrams from any given initial diagram, rather than just one; as in
the two circle intersections in I.1. Instead of proving uniqueness, the task
in settling a theoretical question (such as whether all triangles are isoceles)
becomes to determine all diagrams that have standing as the result of the
constructions indicated; and verify that they have the properties claimed of
the construction. Moreover, it is understood that metrically different initial
diagrams with the same appearance may lead, via the same construction, to
different finite collections of result-diagrams. (We will return to this.)

In the example at hand, however, the question involves properties of the
initial diagram only: whether the given triangle is isoceles. It is then intolerable,
whether or not the auxiliary constructions are unique in the ordinary sense,
as they are here, that after their application to one and the same initial diagram,
one result-diagram leads to a proof of the claim and another to its disproof.
Because the claim considered involves attributions to the initial diagram only,
conflicting conclusions (that the triangle is both isoceles and non-isoceles) from
distinct outcomes of the constructions indicated, applied to the same initial
diagram, would—except in a reductio context—put singular pressure indeed
on any sense that geometric property attribution behaves like a truth predicate
(or assertability): holds indifferently of the wider context of the objects of
the claim.

Until somehow relieved, such a situation would constitute an extreme
form of disarray; quite distinct from that which one would encounter if
unable to resolve which of two diagrams would be the outcome of one
way of carrying out the construction, and the two potential outcomes led to
conflicting conclusions on the main claim: then one would just not have a
proof of either conclusion, perhaps a disconcerting situation but a thoroughly
familiar one. Indeed, if what looked to us all along as properties of a diagram
were instead implicitly relational qualities with respect to the wider context
of the objects of the claim, this would undercut one of the key contributions
of the discursive text in geometrical practice: it mediates application relations
between geometrical arguments, indifferent both to how the configuration
to which the lemma applies is embedded in a diagram in the application,
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and to how the configuration to which the lemma applies is embedded
in a diagram enriched by constructions in the course of demonstration of
the lemma.

In view of the long record of entrenchment of the sense that geometric
property attribution behaves like truth, as well as the central role of context-free
application relationships among the chain of propositions, it does not seem that
this particular type of deep conflict has been widely felt to be in force for any
notable interval in the documented history of the practice. This may motivate
what seems to be the standard of traditional geometrical practice for dealing
with the possibility of multiple outcomes of specified constructions on one
given initial diagram: it suffices to treat one outcome (provided its standing as
such is not in question), leaving it to the process of probing (see later) whether
something funny comes up when a different outcome diagram is considered.
Perhaps this is best seen as a gamble, which serves to reduce quasi-uniqueness
to effective uniqueness; together with an implicit acceptance of vulnerability
to the underlying risk.

The determinateness import of constructions is plainly not exhausted by
their (quasi-) uniqueness (and existence) properties: the information that a
certain construction, if properly carried out, will give a unique result need
not help in establishing what the metric properties or even appearance of the
result-diagram will be. Although extreme-sensitivity cases such as arbitrarily
close-to-isoceles triangles may press constructional determinateness past its
limits, most diagram appearance issues are adequately dealt with by employing
constructions, subject to diagram discipline.

4.3.3 Stipulative diagram control

A practice can resolve a limited number of artifact control problems by
stipulation. Perhaps the Parallel Postulate should be understood to arise in that
way. As we vary the angle between two intersecting lines, we get a transition
of behavior across the range of angles in which the intersection lies too far
away to draw. The intersection now lies to one side, ever farther out; but
if we approach the same range of angles (for which the intersection lies too
far away to draw) from the other side, the intersection lies to the other side,
ever farther out. Because of this transition of behavior, something must be
said about the appearance of diagrams in this range; but precisely when the
intersection lies too far away to draw, we have lost our diagramming artifact
support: appearance control by diagram has been lost.

With the benefit of hindsight, we can list some stipulations which could
be made in this situation, compatibly with enough of traditional geometrical
practice to render the proposals competitors: (i) there is a single intersectionless,
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equal-angles position (Euclidean parallel postulate); (ii) there is a tiny interval
of intersectionless positions, symmetric around the equal-angles intermediate
position (hyperbolic geometry); (iii) at the equal-angles position, there is
an intersection in each direction, as there is in any other position (elliptic
geometry); and (iv) as in every position, there is a unique intersection in
the intermediate position, and it lies simultaneously in both directions (Real
projective geometry). The history of the subject, however, brings out well
that such stipulative resolutions raise questions: does the practice control the
appearance independently of the stipulation, in some as yet unseen way, so as
to render the stipulation either superfluous or incompatible?

4.4 Case distinctions

Traditional geometrical reasoning distinguishes many cases. Poncelet describes
the situation perceptively, if with discontent:

The diagram is drawn, and never lost from view. One always reasons about
real magnitudes; every conclusion must be pictured ... One stops as soon as [in
varying the diagram] objects cease to have definite, absolute, physical existence.
Rigor is even taken to the point of not accepting conclusions of reasoning on
one general arrangement of a diagram, for another equally general and perfectly
analogous arrangement. This restrained geometry forces one to go through the
whole sequence of elementary reasoning all over, as soon as a line or a point has
passed from the right to the left of another, etc. (Poncelet, 1822, pp. xii–xiii)

For example, De Sectione Ratione of Apollonius Apollonius concerns the
problem:

Given two lines, a point on each (Q, Q′), and a point P not on either line: to
locate a line through P that (with the given points) cuts off from the given lines
segments QR, Q′R′ in a given ratio.

Starting with the major division as to whether the two given lines intersect,
Apollonius treats some eighty-seven (!) cases, with occasional further sub-
divisions. Although such complete treatments appear to be rare (Euclid, for
example, tends to leave many cases to the reader), Apollonius’ careful treatment
appears to reflect the highest standard of geometrical reasoning as far as rigor
(disarray avoidance) is concerned. The standards of traditional diagram-based
geometrical reasoning force case distinctions: ‘diagrams individuate claims and
proofs’! This we must see. We recognize a ‘case distinction’ when capacity
for uniform proceeding (in artifact and response) in one aspect or stage within
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a practice falls short of such capacity elsewhere, in a finite-to-one fashion: as
when a geometrical assertion or argument admits of finitely many cases.

The capacity for uniformity in diagram-based reasoning is limited by
the dependence of geometrical demonstration on what we have called its
appearance or topology—inclusions and contiguities of regions, segments, and
points in the diagram. A geometrical proof typically responds to the appearance
of its diagram. If, in varying a diagram, ‘a line or a point has passed from the right
to the left of another’, as Poncelet puts it, we would need to reconsider whether
some region or inclusion invoked in the proof might have disappeared. The
all-triangles-are-isoceles argument shows that such considerations as whether
a point lies on one or the other side of a given line are crucial; if differential
responsiveness to such conditions were allowed to relax, disarray is a virtual
certainty.

Geometric text is typically more flexible, giving the appearance of greater
uniformity of presentation than can be attained in a diagram-based demon-
stration. In the case of Apollonius, the resources of geometric text allow
uniformity of formulation ultimately 87-fold beyond what geometric argument
requires.

As one would expect from a practice which engages its artifacts in that
way, topologically distinct diagrams are treated in separate argument; where-
as—maximizing uniformity in artifact use—separate argument is inappropriate
for diagrams with the same appearance, however otherwise dissimilar. We will
refer to this as the ‘one appearance–one diagram’ principle. In this way, the
artifact strategy of the practice, combining diagram and discursive text, attains
a ‘local optimum’ in making more manageable the diversity of spatial forms:
by reducing it while retaining an important inferential grip.

Euclidean geometry often prefers to avoid making case distinctions at the
outset of a proof: the resources of geometric text allow one instead to substitute
a formulation in which the appearance of diagrams is more fully described.
Thus, a claim (p → q), where diagrammatically, p is one of p1 or p2, would
tend to be replaced by separate discursive claims (p1 → q) and (p2 → q).
Indeed, under some circumstances, separate claims are required: construction
problems often have preconditions of possibility (diorismoi), which must be
stated as assumptions of a claim; these preconditions are often different for
different diagram topologies. The claim must then be made separately for such
different diagram types.

In other circumstances, case distinctions arise only within geometrical demon-
stration and so are not readily avoidable. Arguments by reductio often require a
case distinction because of trichotomy: when two quantities can be compared,
the first is either greater, equal, or less than the second. If, for reductio,
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one of these possibilities is denied, the other two must be considered, which
typically requires a case distinction. (Reductio argument is considered more
fully below.)

Far greater difficulties arise because—quite aside from ambiguities as to the
appearance of the diagram formed under proper discipline—there is another
reason that the appearance of a diagram at one stage in its construction does not
determine its appearance after further constructions are applied in the course
of an argument, even if those further constructions are fully constrained. The
topological data of initial appearance simply does not determine what topology
arises from construction of additional elements. Only more detailed metrical
data—such as might now be given by algebraic inequalities—can determine
this. For example, whether a point in the diagram will lie inside a newly entered
circle or not would depend on whether its distance from the center exceeds
the radius. Such metric data is unavailable (not attributable) in a Euclidean
diagram.

As a consequence, topologically similar initial diagrams may become dissimi-
lar through constructions in the course of a proof. When this occurs, a proof
must, from that point on, deal separately with the dissimilar diagrams which
have arisen. We might call this case branching. It occurs, here as elsewhere,
because capacity for uniform proceeding after the construction falls short (in
a finite way) of such capacity before it. (It seems a merely expository quirk
that written proof typically gives variant diagrams from the outset; the format
makes it inconvenient to display the stages in which a diagram is built up and
case distinctions arise.)

If the practice is to avoid disarray in applying propositions, proofs must be
applicable to any diagram which satisfies the conditions stated in the text of
a proposition. In light of ‘one appearance–one diagram’, this requires that
precisely those appearances which might possibly arise in an argument be
presented in the argument, one diagram each.¹⁹

Any diagram arises from arbitrarily chosen, approximately metrically deter-
minate, initial data (say, the ratios of distances of the vertices of a triangle)
by constructions—be it the initial diagram of a proposition, or a subsequent
elaboration by auxiliary constructions. We have encountered the limitations of
diagram control in obtaining the appearance of a single diagram, constructed
using a single system of arbitrary choices. Here, an additional and independent
limitation on case branching control comes to the fore: even if there were

¹⁹ This is perhaps too strong: once it is clear how an argument will go, one could in principle
dispense with differences in appearance that were plainly immaterial to it. Authors anyhow seem to
differ in the completeness of their case enumerations.
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never ambiguity as to the appearance of the diagram formed under proper
discipline from given data, adequacy of case distinction still requires control
over complete families of diagrams.

But how are participants to see whether a given selection of variant
diagrams (after a construction complicates the diagram, or even at the outset of
argument) is exhaustive of the possibilities which require separate argument? If
it is not exhaustive, how to locate further alternatives? Traditional practice lacks
procedure either to certify completeness of case distinctions, or to generate
variants. Except in special situations (negation of equalities) there are no
discursive arguments to this effect; and while one would expect to look to
the diagram for suggestions in locating variant appearances, there is no hint of
clear-cut diagram-based procedures to do so.

Traditional geometrical practice largely lacks artifact support that would
allow participants to survey diagram appearances once and for all, or even
to recognize when they had done so. First, the possibilities for free choices,
whether at the beginning or along the way in building up a diagram, are
unsurveyable. Second, (even without ambiguity as to the appearance of
diagrams properly constructed from given data) the relationship between those
free metric choices and ultimate diagram appearance is unsurveyable. Diagrams
come one at a time; having made one set of choices, we may hope to tell the
consequences; but we thereby usually gain little grasp of the range of possible
alternative outcomes from other choices.

These limitations of artifact support in traditional geometry may be brought
out by contrast with a quite limited but historically significant exception: locus
descriptions of curves. A good case is the well known result (extending III.21
and converse) that the locus of points O that make a fixed given angle POQ
with two given points P and Q is a circle through P and Q. In a weak
sense, this gives a survey of all possible ways, given P, Q, and the angle, of
locating O to satisfy the condition. It allows us to read off a little about (say)
how triangles OPQ of this type would interact and form regions with further
diagram elements. We can tell what the possibilities are for O to lie with
respect to other regions in the same diagram, by seeing which such regions
contain points of the diagram; we can find all such triangles OPQ with side
parallel to a given line by intersecting the circle with the lines through P
or Q parallel to the given one... But we still can’t read off all such triangles
OPQ; we can draw them one at a time, but if we draw more than one or
two, the diagram becomes too cluttered to be of any use (we lose appearance
control).

The relationship between case distinctions and discrepancies in capacity
for uniform proceeding is, however, quite general. One may also come to
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recognize ‘cases’ in traditional geometry when variant geometrical practices
reconstrue traditional geometrical claims, but can proceed more uniformly with
them. The traditional geometrical text often allows more uniform formulation
of claims than do diagrams; but here the scope for uniform proceeding
is limited by the need for diagram-based inferences. On the other hand,
Cartesian geometrical representation by equations, and others inspired by it,
such as Poncelet’s, allow for such uniform treatment of results treated separately
in traditional geometry that we regard them as analogous or as cases of ‘the
same problem’. Often, ancient texts already show, at least by their expository
arrangement, that analogies are sensed among such distinctly treated questions;
often, they do not. Notably, whereas traditional geometry handles limiting or
degenerate cases such as tangencies or coincidences separately (Heath Euclid II
p. 75), algebraic representation usually includes them in the treatment of the
generic case; the importance of continuity in this sense was stressed by Leibniz
and Poncelet.

For example, when two lines through a point O meet a circle, say, one in
A and B and the other in C and D, then the rectangles (products) OA by
OB and OC by OD are equal (cf. Euclid III 35–37, and Heath’s summary
of related subcases and claims, (Euclid, vol. 2, pp. 71–77)). Of the various
distinct diagrams which can arise, Euclid III.35 concerns specifically the one
where O lies inside the circle, and III.36 the case in which O is outside but
one given line is tangent to the circle. This requires separate statement as a
proposition because the traditional discursive text cannot be read to include
the square on a single segment OP under the product OA by OB. Ultimately,
this restriction on discursive representation seems again forced by topological
distinction behavior in reading diagrams, given the need for a workable
cross-reference system between discursive text and diagram: OP cannot at all
be visually located in a diagram showing distinct non-tangent OA and OB,
and in the opposite case one would at least have to allow double-labeling
(Fig. 4.5).
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Fig. 4.5.
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Thus, practice with diagrams, and not the geometrical text, controls the
individuation of claim and proof in traditional geometry; in contrast with Carte-
sian and projective geometrical practices, which exploit different representation
in order to individuate geometrical claims and proofs less finely.

4.5 Diagrams in reductio proof: torturing
the diagram?

Although traditional diagram-based geometrical practice has built-in quality-
control standards, both on the production/reading of diagrams and through
the case/objection proposal mechanism (discussed below), it lacks an external
vantage point from which to impose a standard (truth?) by which diagram-
based reasoning can, in a unified and independent way, be evaluated for
stepwise cogency. The verdict of a diagram can be objected to; and if so,
localized responses can be made; but by and large, these in turn must accept
the verdict of diagrams.

It is therefore strange to encounter arguments (in Euclid) in which the
diagram is simply impossible, or clearly violates some condition invoked in the
argument; for it is unclear what force the verdict of such diagrams could have.²⁰
The matter is worth careful examination, for after all, Euclidean practice shows
no signs of having broken down in disarray; and we can hardly dismiss its use
of such diagrams. We find them also used to refute objections; that will require
separate analysis.

4.5.1 Example: Euclid I.6

In the Elements, we first encounter reductio in I.6. Given a triangle ABC with
the angle ABC equal to the angle ACB, it is to be shown that the sides AB and
AC are equal. For reductio, we deny this conclusion in the presence of the
premises. If AB and AC were not equal, one would exceed the other, say AB
exceeds AC (by symmetry, one case alone suffices). The inequality is converted
into the combination of (i) an equality between AC and BD constructed on
AB (the equality is registered in the discursive text, perhaps manifestly violated
in the diagram) and (ii) the topologically explicit diagrammatic presentation
of the inclusion of BD in AB. Draw the diagram, starting from an isosceles
triangle.

²⁰ I thank David Israel for pressing me on this point.
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Let’s spell out the conditions. We write ‘LineSeg(ADB)’ to indicate a line
segment (in the antiquated sense of line found in Euclid, which does not entail
that the ‘line’ is straight, rather than, say, a circle, ellipse, or other simple
non-self-intersecting curve), with endpoints A and B, and an intermediate
point D. When the dust has settled on the assumption for reductio, we have
the co-exact conditions indicated in the diagram:

(d-i) LineSeg(ADB), (d-ii) LineSeg(AC), (d-iii) LineSeg(BC),
(d-iv) LineSeg(DC) ,(d-v) NonNull(AD);

and the exact conditions indicated in the discursive text:

(t-i) Straight(ADB), (t-ii) Straight(AC), (t-iii) Straight(BC),
(t-iv) Straight(DC), (t-v) angle(ABC) = angle(ACB), (t-vi) DB = AC.

Of these exact conditions, the diagram we find in Euclid is subject to
(t-i)–(t-v), but, reflecting the unsatisfiability of the assumptions in force
for reductio, not (t-vi). Any other diagram, however, indicating precisely
(d-i)–(d-v) subject to (t-i)–(t-iv)—that is, with straight segments ADB, BC,
DC, AC—would be topologically equivalent; any such diagram would do
just as well to display all geometrical objects and their inclusions required for
the proof. The exact conditions here do contribute to the topology, to some
extent: if AC were curved, say, it might intersect CD. Of all the constraints on
the diagram, at most (d-v) and the straight-line combinations (of (d-i)–(d-iv)
and (t-i)–(t-iv) respectively) are relevant to the conclusions which the argument
reads off from the diagram as it proceeds:

(d-vi) Region(DBC), with precisely three angles: Angle(BCD), Angle
(CDB), Angle(DBC)–hence, because the sides are straight, Triangle(DBC);
(d-vii) region(DBC) IsPartOf region(ABC)—hence, because they are
triangles, triangle(DBC) IsPartOf triangle(ABC) = triangle(ACB).

From (d-vi) and (t-i)–(t-vi), the text applies the side-angle-side congruence
criterion I.4, giving:

(t-vii) triangle(DBC) = triangle(ACB),

which is incompatible with (d-vii)—parts are proper parts.
That the diagram is not subject to (t-vi) is thus not terribly significant. The

equalities (t-v)–(t-vii) are irrelevant to the inferential use of the diagram here:
they would in any case directly license moves only because they are indicated
in the discursive text. Indeed, the diagram for the reductio proof of Euclid I.7
appears subject to neither segment equality in question there, nor to either
angle equality obtained in the course of the proof.
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A proof is unaffected by any diagrammatic incompatibility between the
premises and the denial of the conclusion (diagrammatic incompatibility: no
diagram indicates all the co-exact conditions and is subject to all exact ones)
in so far as responsability for move licensing is divided between diagram and
discursive text so as to leave it indifferent whether the diagram is subjected
to all exact conditions in force. This allows one to use a perfectly ordinary
Euclidean diagram, in co-exact conditions if not in every respect metrically
appropriate to the discursive text.

Whether or not the diagram was subjected to specific equalities indicated
in the discursive text—indeed, any metric property of the diagram—could
affect which topological conclusions it would indicate; notably, if the proof
employed constructions more metrically sensitive than our straight-line joining
of DC in I.6. In so far as a diagram is not subject to all exact conditions
in the discursive text, there would seem to be no general assurance for the
standing of co-exact conclusions which emerge after constructions; although
the case/objection proposal mechanism would in any case provide means for
criticism of such conclusions.

Because the exact conditions to which the diagram is subjected are a subset
of those indicated in the discursive text, it is easier than one would expect
from those conditions taken together (rather than harder because of their
ultimate incompatibility) to produce variant diagrams subjected to the same
exact conditions but indicating different co-exact ones. One would then seek
contradiction for those cases in turn, employing all exact conditions available
in the discursive text together with such co-exact conditions as might be
indicated by the diagram. (To keep variants from proliferating in this process,
one would subject the diagram to as many at a time as appears possible of the
exact conditions indicated in the discursive text.)

There is thus no special reason to doubt the cogency of diagram-based
reasoning in reductio proof: it does not presuppose that everything asserted in
the discursive text be ‘true’ of the diagram, not even in the attenuated sense
provided by the notion of diagram discipline.

4.5.2 The hypothesis for reductio

So far, we have taken something else for granted: for straightforward proceeding
according to the account given above, the data of a reductio context must form
a (conjunctive) system of conditions (unsuccessfully) put forward concerning a
single diagram. It would of course also be possible to consider several variant
diagrams disjunctively, though this does not seem to have been the preference.
In any case, we can give sufficient conditions for this success in launching a
reductio argument.
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Suppose the statement to be shown set out in a diagram. Logically, this
involves considering an instance; as we hereafter suppose done, in order to
avoid quantifiers. Let the statement have the form (C1& ... &Cn)→ D. We
assume that the Cs and Ds are what we call diagram conditions: either exact
conditions that would be asserted in the discursive text, or explicit co-exact
conditions, that could be indicated in or read off from a diagram. The class
of diagram conditions is not closed under negation: there is no condition
equivalent to non-circularity, for example.

To proceed by reductio, we must consider C1& ... &Cn&¬D. It remains to
convert ¬D into a diagram condition. Typically, D asserts an equality, or is
straightforwardly interderivable with one; thus, its negation can be converted
by trichotomy into a disjunction of two strict inequalities (x is greater than y).
With luck, as in I.6 (but not I.25), symmetry considerations allow this to be
reduced to one. A strict inequality, in turn, may be reduced to a proper-part
relationship in the diagram by using an auxiliary equality:

x is greater than y ⇔ for some proper part z of x, z = y.

In principle, one could hope to deal with claims of the form, for any m
and n,

(C1& ... &Cn)→ (D1 ∨ ... ∨Dm).

When denied as hypothesis for reductio and set out in a diagram, these give
the form

C1& ... &Cn&¬D1& ... &¬Dm.

In general, though, each of the ¬Dj reduces to a disjunction of diagram
conditions, and for increasing m putting this as a disjunction of conjunctions
gives an exponential explosion of interacting case distinctions. It is therefore
unlikely that we would encounter, in a single proposition established by
reductio, m greater than one.

I.7 shows a special case, where in effect m = 0; the statement is then
equivalent to ¬(C1& ... &Cn). Such assertions are infrequent; perhaps because
recognizably negative claims are frowned upon, perhaps because negations
of diagram conditions often cannot be converted into diagram conditions,
and hence the resulting proposition could only be applied in further reductio
arguments. The hypothesis for reductio is then C1& ... &Cn, which is imme-
diately of the form to put forward of a diagram. III.13, that two circles do
not have two distinct tangents, and Proclus’ corollary from I.17, that there is
only one perpendicular on one side of a line at a given point (313), are also of
this type.
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What would not work well is a reductio argument starting with an
inarticulate denial of a diagram: ‘Things are not like this’; in logical terms, a
diagram-based reductio proof of (D1& ... &Dm), starting with¬(D1& ... &Dm).
(Of course, there might be such a reductio argument entirely within the
resources of the discursive text.) In diagram-based reasoning, reductio gets its
grip only when it leads determinately to a diagram.

4.5.3 Further constraints on the diagram for reductio: I.27

Our text of Euclid does not fully conform to the account given so far. I.27
considers the straight line EF falling on two straight lines AB, CD such that
the alternate angles AEF, EFD are equal (Fig. 4.6); and then assumes for
reductio, and without loss of generality, that AB and CD produced meet in
the direction of B, D, at G. The diagram in the text would be read as subjected
to the equality of alternate angles with EF, which of course precludes straight
lines from meeting a short distance away at G. Thus, the diagram gives up on
subjecting AB and CD produced to being straight, in order to indicate their
intersection at G. (So far, so good.)

We moderns might indicate this intersection by producing either or both
AB and CD free-form monotonically curved toward their intersection G. This
would allow one to attribute the triangle GEF referred to later in Euclid’s
argument (the requisite straightness of GE and GF is indicated in the text even
though the diagram is not subjected to it). Admittedly, ancient practice does
not appear to have utilized free-form curves; but instead apparently sought to
satisfy the requirements of argument by a diagram somehow made up from
the ordinary types of diagram elements. This desideratum can be satisfied
for any of the proposals just made, however, by substituting a circular arc
for free-form curves. In his diagram for an objection to I.4 (239), Proclus
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subjects the diagram to a circular arc where the discursive text puts forward a
straight line.

Another approach would smoothly curve the segment EF so that AB and
CD produced intersect at G even though the alternate angles are subject to
equality and the lines are produced subject to being straight (Fig. 4.7); yet
another would have EF, EG, and FG straight but give up on equality of the
alternate angles in the diagram. Proclus (313) in effect does this in a related
application of I.17.

Our text of Euclid does none of these. Instead, the line segments AB, CD,
and EF are all subjected to straightness, and to equality of alternate angles
with EF. An intersection at G is indicated by inserting straight segments
BG and DG at an angle to segments AB, CD respectively. Evidently, as
a result, we would say that the diagram puts forward angles EBG and
FDC. This example suggests several lessons, which appear confirmed in other
instances.

(1) It appears preferred to treat equivalently in the diagram items which
play equivalent roles in the discursive text; even when the diagram cannot be
subjected to all conditions in the discursive text. Thus, for example, both EG
and FG are broken, even though the intersection could be indicated with only
one broken and one straight (Fig. 4.8).

(2) Given that a choice must be made among exact conditions, the procedure
here suggests a priority to subject the diagram to those indicated first in the
discursive text. Similarly, the diagram for I.6 is subject to all exact conditions in
force except for the one (AC = DB) arising from the hypothesis for reductio,
and the subsequently drawn conclusion that the triangles DBC and ACB are
congruent. The examples do not allow us to discriminate whether the priority
arises simply from the sequence of the discursive text, or whether it accords
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equal priority to all conditions in force from before the scope of the reductio
argument, over those which arise within that scope.

Again, consider Proclus’ diagram for the converse of I.15, that if, upon a
straight line AB, we assume two straight lines CD and CE on opposite sides [at
the same point C] and making the vertical angles ACD and BCE equal, these
lines lie on a straight line DCE with each other (299–300). The diagram is
subjected to all these straightnesses (including that of the intended conclusion)
and the angle equality. For reductio, Proclus assumes DCE not straight, and
enters CF at an angle to DE while stipulating in the discursive text that DCF
is straight (Fig. 4.9).

This may strike us as strange, for it would come to us more naturally to
make DCF straight in the diagram, enter CE off at an angle, and hash-mark
as equal the (visibly unequal) vertical angles ACD and BCE. But Proclus
first gives a diagram in which the data are set out, subjected to the given
exact relations; this forces DCE to be straight (as we are out to show).
Only then is the hypothesis for reductio entered, properly unpacked. These
priorities for subjecting the diagram to certain exact conditions rather than
others thus become understandable if we assume that the diagram must be
suitable for sequential display as the demonstration proceeds. For then we
must set out the claim first, before we announce and diagram the reductio
strategy.

4.5.4 A complication in I.27: attribution blocking?

According to our account so far, one is licensed to attribute angles EBG and
FDC to the diagram of I.27, but the Elements refrains from doing so. Indeed,
that attribution would preclude treating EFG as a triangle. That would block
the Euclidean argument: it rests on an application to EBGDF of I.16, which
holds for triangles but fails for quadrangles (squares, for example) and beyond.
For the argument to proceed unimpeded, something must be in force here,
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not just to sanction refraining from attributing the spurious angles, but indeed,
to block (or disarm) the obvious objection: ‘But EBGDF is a pentangle, not a
triangle!’

This goes to the heart of reductio demonstration. For according to our
account, reductio employs an altogether ordinary Euclidean diagram, in an
only slightly unusual way: one refrains from subjecting the diagram to one
or more exact conditions in force in the discursive text. In the case at hand,
diagram discipline is clearly suspended with respect to keeping EG and FG
straight. But according to our account, the diagram functions in the ordinary
fashion; in particular, we must endorse such licenses to attribute co-exact
conditions based on the appearance of the diagram as allow the argument to
proceed to contradiction. The mere incompatibility of some such condition
with some attribution in force in the discursive text cannot suffice to block it,
or diagram-based contributions to reductio arguments would essentially all be
blocked.

In our initial example I.6, the Elements makes the diagram-based attribution
(d-vi) that DBC is a triangle, and applies the side-angle-side criterion I.4 to
conclude that DBC equals ACB. Only then does it conclude from the diagram
that DBC is a (proper) part of ACB; if this attribution were blocked, no
contradiction would be available.

There are several resources available here to deal with this issue. First, one
could accept the pentangle objection to this particular diagramming strategy;
as an alternative would seem available. Even accepting the decision to subject
the diagram to all exact conditions except that EG and FG be straight, we can
connect BG and DG by producing EB and FD by circle segments tangent at
B and D respectively. Then no spurious angles can be attributed. Similarly for
the ‘line’ DCF in Proclus’ converse of I.15 (above).

On the other hand, one can imagine that a suitably selective rule on defeas-
ibility of attribution licenses would allow the present argument to go for-
ward without undercutting the very possibility of diagram-based attribution in
reductio argument; a natural candidate emerges. Genuinely diagram-utilizing
arguments by reductio require a diagram; hence (if need be, after disjunctive
case analysis) some construal of the hypothesis for reductio as a conjunctive
collection of exact and co-exact conditions D1& ... &Dm. According to obser-
vation (2) just above, there is a lower priority for subjecting the diagram to
exact conditions among these, compared to exact conditions coming into force
at an earlier stage. It would thus be natural to single out—as having their
attribution licenses undercut—co-exact conditions which taken by themselves
directly contradict exact conditions from among the Ds to which the diagram
is not being subjected.



the euclidean diagram (1995) 117

We here touch upon a general problem inherent in any use of (quasi-)
semantic methods for reductio along the lines suggested, not just diagrams, but
also most other forms of ‘semantic representation’ and ‘models’. Suppose the
artifact d (here, a diagram) is not subjected to a constraint e (here, exact). On
the one hand, if e fails in any d satisfying the appropriate constraints, then it
would be appropriate to consider this to conclude the reductio, in that our
commitment to e (in the text) is incompatible with the failure of e in any
d satisfying the constraints we impose on it. On the other hand, it is part
of what we expect from (quasi-)semantic artifact use that e may fail in one
artifact satisfying the constraints we impose but not in another; that is, that
our production and reading of d-type artifacts proceeds less uniformly that our
setting up of conditions (e-type artifacts).

In view of the former possibility, we would want to be able to read off ¬e
from d to conclude the reductio; but in view of the latter possibility, we cannot
afford to do so on pain of disarray: our text inferences would then proceed
more uniformly than corresponds (via production and reading procedure) to
d-type artifacts. What is a practice to do in such a bind?

In the example of I.6, reading off of ¬e is simply blocked, in that it is an
inequality, and hence not explicit in our technical sense. Most negations of exact
conditions are in fact not diagram conditions, and this blocks their attribution;
evidently, geometrical reductio typically just has to do without the ability to
close off by attributing ¬e even if a d-type object satisfying the constraints
we impose on it cannot be subjected to e. Undercutting attribution licenses
should not cause worry of unfounded conclusions or disarray in diagram-based
reductio argument: it only weakens the argumentative resources at hand.

This, however, has nothing to do with the source of the problem with
quasi-semantic artifact use in reductio proof, which we already identified:
‘quasi-semantic’ artifact use provides less support for uniform proceeding than
ordinary text. The appropriate solution then, as always when capacity for
uniform proceeding in one aspect or stage within a practice falls short of
such capacity elsewhere, in a finite-to-one or otherwise surveyable fashion,
is case distinction. In reductio, then, we should not aim to simply block the
attribution ¬e outright. Rather, if there are different diagrams with potential to
affect the argument, we should consider them as cases, and if we fail to do so,
an objection is in order, presenting some diagram of a type not yet considered.
There is nothing special about reductio, or geometry, in this.

If this general policy is in force, however, then the present difficulty cannot
be avoided simply by diagramming the lines smoothly to avoid ascribing a
pentangle; for the pentangle diagram could still be brought as an objection.
There must, therefore, be a way of dealing with that diagram, either by
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disqualifying the diagram outright (pace Euclid) or by blocking its pentagram
problem.

Choosing the first direction, we might insist that broken lines count as made
up of separate segments, and hence here violate the requirement that co-exact
conditions assumed for reductio must be be indicated in the diagram. In
support of this, we might note that the diagram attributions that the pentangle
objection exploits, which are evidently co-exact, are precisely that the region
has five distinct sides. We might, then, interpret what we see in Euclid as a
refusal to read the diagram in regards the separateness of the sides, not via an
additional mechanism for blocking attributions in reductio proof, but simply
in order to disregard a point in which the diagram is known to be defective.
In all, this reading is now seen as neutral on the choices we just envisioned.

This leaves the question why one would not make a correct diagram,
with lines curved, in the first place. There might be several reasons for this.
When the diagram cannot be subjected to a straightness condition indicated
in the discursive text for the production of a line, there appears to be a
preference to produce the line at an angle (but straight). Perhaps there is a
general preference for straightness when straight lines are put forward in the
text, perhaps because straightness discipline gives the most powerful control,
perhaps because straight-line completion is least likely to produce potentially
spurious regions and hence give rise to atypicality in the diagram which would
provoke a case analysis. We are not in a position to pursue these questions at
this stage.

4.5.5 Summary: principal standards for diagrams in Euclidean reductio proof

1. The relationship of the diagram to conditions in force upon entering the
reductio context is unaffected.

2. The diagram indicates all co-exact conditions from the hypothesis for
reductio.

3. The diagram may be subject to some exact conditions from the hypothesis
for reductio—but not all.

4.6 Roles in geometrical practice: cases, objection,
probing

Current philosophical conceptions of mathematics are predominantly agentless:
geometry too is cast as a mathematical theory, a body of statements articulated
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by starting-points and proofs. Of course, geometry is done by humans, and
their practice contains a variety of distinguishable roles—author, teacher,
student. But these seem beside the philosophical point: they have to do
solely with the interface between mathematical theory and social institutions,
or even humans in the flesh; as such they are of no greater philosophical
pertinence to mathematics proper than the role of college president, or
of mother.

At a minimum, though, bringing out the distinctive character of mathematics
would seem to require that we say something about the kinds of stands that
mathematical practice requires agents to take in order to qualify as properly
mathematical; what we, with some oversimplification, above called ‘unqualified
assent’. We miss something about number theory, for example, if we think that
after I assert that n is prime and you doubt or even deny it, we can properly just
move on happily; in the way that we properly can and perhaps should, when
I admire the Water Lilies in the museum but you respond with indifference.
The body of requirements on properly mathematical agents which one might
analyze out from various such contrast cases are (part of) what in agentless
terms is usually captured by traditional conceptions of mathematical certainty
or mathematical truth. Such conceptions license, it seems, but a single stance
or role within traditional geometry (except perhaps for differences in stance
corresponding to different stages of the science, such as before and after a
fundamental theorem has been established). The ideally competent geometer
grasps the content of geometrical practice up to his time and takes responsibility
for it personally: being able and willing to affirm geometrical claims and present
geometrical constructions on his own responsibility, and respond to challenge
and question by appropriate performances, including recognizably geometric
research.

Traditional geometry so conceived in effect recognizes only one role,
which we might call that of protagonist; and except possibly for the advance
of the science, no differences among protagonists have any standing. Our
usual agentless conception of mathematical theory is, while philosophically
less informative, nonetheless neatly compatible with such a conception of
geometrical roles. According to this theoretical conception of mathematics,
any discordant response to the protagonist is out of order, or expresses
incompetence. That the student is not ready to shoulder responsibility for
Pythagoras’ theorem after seeing it for the first time just shows he is no geometer
yet. One who questions the straightness of a side of a square in the sand has
simply missed the point of the practice. Proclus, however, acknowledges
standing for roles beyond that of the protagonist, of an arguably theoretical
nature. Admitting these additional roles perhaps modifies the character of the
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protagonist’s role so as to render it incompatible both with contemporary
agentless conceptions of mathematics, and with our initial suggestion that
geometrical practice requires ‘unqualified assent’.

4.6.1 Proposing a case or an objection

According to Proclus, ‘the proposer of a case ... has to show that the proposition
is true of it...’ (212). The proposer of a case exercises standing to respond to
the protagonist: ‘you have not dealt with a diagram like this .... Here is how it
goes ...’ A ‘case’ shows how a claim made by the protagonist applies to a variant
diagram topologically inequivalent to those considered by the protagonist, be
it the initial diagram of a claim or one arising from a construction (all illustrated
in Proclus’ case analysis of I.3, pp. 228–232): ‘a case proves the same thing
in another [diagram] (alloos)’ (289). It is perhaps preferable that the proposed
proof be analogous to the proof being responded to: Proclus praises Euclid
for a construction which can be modified to fit a great variety of cases (222).
There may be some room for debate as to whether a proposed case meeting
these standards is to the point.

It may be unclear why the role of proposer of a case merits serious
philosophical consideration. Case arguments are often either similar to the
ones given, or concern degenerate situations in which a simpler argument
is available. Shouldn’t their treatment be governed by strictly expository or
pedagogical considerations? To write out every case would be boring and
unnecessarily long; better to let students exercise by working out the variants.
So it’s sensible to leave the burden of proof on the proposer of a case.

It would be wrong to dismiss case-proposing in that way. As we argued,
traditional geometrical practice has inadequate facilities for case-branching
control; so that case distinction management remains in principle open-ended.
The critical attitude toward the protagonist’s diagram choices required in trad-
itional practice is not supported by any clear-cut or complete procedure, and
therefore leaves geometric inference open-ended in a way which we moderns,
spoiled by complete systems of iron-clad inference licenses, hardly expect.

In the 20th century, Tarski (refining Pasch and Hilbert) was able to
deploy complete first-order inferential machinery with which one can, if not
locate cases, at least conclusively establish that given enumerations of cases
are complete. But Tarski uses representational (artifact) resources that Greek
geometric practice lacked: formal quantifier-predicate logic with complete
proof systems and associated foundational methodology.

In a geometrical practice without such means at its disposal, the critical
attitude toward the protagonist’s diagram choices displayed by the proposer of
a case has an intrinsically theoretical, even inferential, function; it is an element
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of the intellectual strategy by which the practice, in the long run, achieves
unanimity on ‘general’ claims from the manipulation of a small number of
physical diagrams. The generality so attained is neither full uniformity of
treatment (distinct cases are argued with varying degrees of analogy), nor
universality in the modern model-theoretic sense with respect to specified
collections of ‘individuals’; it is that acceptable diagram variants not covered
by the argument don’t come up any more.

Case-proposing criticism works in traditional geometry because the open-
endedness of case-branching control is in fact modest; for the scope of
case-criticism is nontrivially constrained. In a way that is not less real for being
difficult to formalize, the diagram of an argument gives access to a ‘space’ to
be probed for variants; for variants may generally be located by distortion of
metric features of a diagram. The tradition thanks its stability in part to the quite
limited repertoire of variants requiring separate treatment that come up in this
way. In today’s Real Algebraic Geometry, this might now be made precise. It
follows from this work that, even by traditional geometrical standards, only a
finite repertoire of alternative diagrams need be considered for any argument
in ‘elementary’ geometry. As we will see later, moreover, traditional geometry
had resources to keep diagrams relatively simple; and in this way to control
the numbers of cases, so they were, by and large, manageable rather than
merely finite.

According to Proclus, ‘... an ‘‘objection’’ (enstasis) prevents an argument
from proceeding on its way by opposing either the construction or the
demonstration’ (212). Proclus speaks so often of objection that the Teubner
edition does not undertake to index all occurrences. Among objections that he
records: the triangle constructed in I.1 need not be equilateral if two distinct
lines can coincide in a segment and then branch apart; the diagram of I.7
(triangles with the same base, and the same sides upstanding at the same ends
of the base, have the same vertex) admits a variant not covered in Euclid.

Proclus takes making objection to be a responsive role distinct from propos-
ing a case: ‘A case and an objection are not identical; the case proves the same
thing in another [context], but an objection is adduced to show an absurd-
ity (eis atopian epagei to enistamenon) in the proof objected to.’ (289) He
lays responsibility for dealing with case and objection on different shoulders:
‘... unlike the proposer of a case, who has to show that the proposition is true
of it, he who makes an objection does not need to prove anything; rather it
is necessary [for his opponent] to refute the objection and show that he who
uses it is in error ...’ (212).

It is puzzling, though, that the distinction should go very deep in this
way. For if a case is viable, in the sense that its initial diagram satisfies all
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stipulations in force, but no proof of the claim is readily available, it surely
becomes material for an objection. Moreover, an omitted but treatable case
in a reductio argument would look to Proclus as an objection; this happens,
for example, in I.7 (262–263). Unsurprisingly, then, Proclus continues after
setting out the distinction, ‘By not discriminating between these, commenta-
tors have introduced them all together and have not made it clear whether
they are asking us to diagram (graphein) cases or objections’ (289). It was
evidently not a commonplace for two roles to be distinguished at all. Per-
haps participants have standing indifferently to propose cases or objections
which they discern. An uncovered case too is potentially a defect of argu-
ment. That responsibility for a straightforward case, once recognized, remain
with the proposer, could be justified by pedagogy alone: often enough, gen-
eration and treatment of variant diagrams is just routine. Thus, whatever
other serious reasons there might be to distinguish case and objection, differ-
ences in allocation of the task of responding need not have any theoretical
significance.

Our evidence on cases as well as objections is skewed because of the way in
which ancient geometrical texts come to us through a long process of revision
and recasting.²¹ Even in the commentary literature, a successful case-proposing
would tend to be recorded only if there was some special interest in the
variant diagram or proof. An objection which in fact succeeded in blocking an
argument might result in the deletion or modification of the argument objected
to. Notably, if a variant diagram were discovered in which a construction could
not be carried out, the result would most likely be revision of the text to
exclude the variant by an additional hypothesis in the construction theorem.
Proclus (330) regards the condition of I.22, that the two sides taken together
exceed the third, as having such an objection-refuting role. On the other hand,
successful response to an objection might be incorporated into the text as a
subsidiary argument. As the order of propositions, though evidently not all
details of their formulation, appears to have been fixed in Euclid’s time, that
particular mode of inquiry must predate him.

4.6.2 Probing

In addition to the role of protagonist, we propose to recognize one single role as
theoretically central in traditional geometric practice, that of providing critical
scrutiny, or as we will call it, probing. Participants may, of course, recognize
various distinctive styles of critical scrutiny, including those of proposing case

²¹ cf. W. Knorr (1989).
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and making objection, and may make distinctive arrangements for carrying
them on, such as the division of labor that Proclus records; but we see no
overriding significance to the intellectual function of the practice in such
divisions. In particular, we just saw how case and objection are easy to confuse,
sometimes indistinguishable, sometimes distinguished only by whether the
outcome is comfortable to the protagonist; and in any case tend both to be
submerged in revision of the text.

Proclus records ample instances of critical scrutiny of The Elements. Many
point to the need to state a proposition just right. The ‘Euclidean’ text, which
Proclus often praises for its precise formulation, is probably the product of
centuries of refinement of formulation after Euclid as well as before.

For example, consider the statement of I.14: If, with any straight line AB,
and at a point B on it, two straight lines BC and BD not lying on the same
side of AB make the adjacent angles ABC and ABD taken together equal to
two right angles, the two straight lines will be in a straight line with another
(Fig. 4.10). (Adapted from Heath, Euclid I, p. 276.)

Proclus (297–298) gives a counterexample of Porphyry to show that the
condition ‘not lying on the same side’ cannot be omitted: if we do so, an
initial diagram with different appearance will satisfy the remaining conditions,
but not the conclusion.

To our sensitivity, this makes absolutely clear that the added condition
is needed. It replaces otherwise implicit contributions of the diagram to the
statement of a proposition, by a fuller verbal description of the diagram. But
why must one do so? Although this is not the way Euclid’s text works, we
can imagine treating the initial diagram as part of the statement text of a
proposition. One could then strip the discursive statement of I.14 down to:
Let three line segments as in the diagram have two adjacent angles taken together
equal to two right angles. Then the two straight lines making the two angles with
the third will be in a straight line with another. This too seems to work. If the
diagram is treated as part of the statement, we seem to have the same effect
as from the verbally more complete Euclidean version. Even in Proclus, a
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case is occasionally described in part: ‘as in the diagram’. Both the diagram
and the discursive text appear to have the resources to record such co-exact
contents.

It is in fact not immediately clear what decisive virtue favors fully discursive
formulation. Proclus’ commentary is a teaching text; and it is no doubt useful
to sensitize the student to the relationship beween diagram and text. But
beyond the pedagogical role of attending to such refinements, one can still ask
whether continued pursuit of explicit verbal statement beyond the level attained
in Euclid’s time is a genuine contribution to the effectiveness of geometrical
practice; or just the product of a scholastic philosophical commentary tradition,
out of touch with what matters in geometry, and in single-minded pursuit of
discursively complete argument.

We shall return to explain why a diagram does not function well as part
of the statement of a proposition. But on the surface, leaving unambiguously
readable contiguity specifications implicit in the initial diagram of a proposition
would seem not to pose undue risk of disarray. For an initial diagram can be
designed to show a ‘clear case’, avoiding diagram sensitivities that might cause
an appearance control problem to limit our ability to read off its contiguities
in the diagram. On the other hand, traditional practice is plainly limited in its
artifact support of what we have called appearance control (limited by our lack
of metric control of diagrams individually) and case branching control (limited
instead by our lack of intellectual grip on the totality of diagrams satisfying
conditions laid down in the text, quite independently of limitations of metric
control). Because traditional diagram-based geometrical reasoning is somewhat
open-ended in both these ways, it requires a sustained critical exploration of
diagram use.

We probe case branching control in an argument by feeling around for
diagram variants which satisfy the conditions laid out in the text. Attempting
a more principled distinction between case and objection than that given
by Proclus, we might propose to call a variant recognized as arising from
probing case branching control a case; and one recognized as arising from
probing appearance control, an objection. The variants, for example, in the
all-triangles-are-isoceles argument arise from probing appearance control, not
case branching control. For they purport to depart from the same initial metric
choices by fully determinate construction; any inability on our part to tell
which is appropriate is a breakdown of appearance control.

By this standard, Dubnov mischaracterizes his response to the challenge:
what is called for is not that we ‘consider all cases’ (p. 24) but that we, given
one of the diagrams, probe so as to come up with an account of its appropriate
appearance. This might, however, take the form of surveying the variants viable
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by some metrically relaxed standard, and then providing further reductio ad
absurdam arguments showing which variants are not viable as outcomes of the
determinate constructions (Dubnov, p. 24). But it might also take the form of
a direct argument showing that a particular variant is the appropriate diagram
(Maxwell, pp. 24–25).

Again, however, we seem to have gained little by our sharper distinction
between case and objection.

While probing is directly evident in the commentary tradition, it is of great
interest to consider what in Euclid might best be understood as already a
response to probing, even if only conjecturally. III.2 is a striking case. III.2
argues that a chord of a circle lies inside it, a matter read off from the diagram
in the proof of III.1. From a logical point of view, this order of presentation
is puzzling. Mueller (p. 179) notes that the theory of circles in Book III makes
many ‘implicit assumptions’, ‘facts of spatial intuition’, sometimes taking them
for granted and sometimes, as in III.2, arguing for them. Though this still
offends logical sensitivity, its status as a refutation of an objection to III.1 could
account for its following rather than preceding that result.

In view of other unprobed diagram-based steps in Book III, it is perhaps
somewhat puzzling why this point of appearance control would be probed.
Unless we worry about situations in which the end-points of the chord on
the circle lie so close together that the separation of chord midpoint and circle
becomes questionable, there seems no particular metric sensitivity or risk of
disarray addressed by demonstrating III.2—but the same may be said for many
propositions in Book III, which might readily be read off directly from the
diagram.

Alternatively, III.2 might be a probing of a matter needed in the demon-
stration of its only application III.13, that two circles cannot have two distinct
points of outer tangency. The diagram in our text shows two circles inter-
secting twice, in accord with the theory of diagrams for reductio given here:
the diagram is subjected to all but the tangency conditions, which are exact
conditions from the hypothesis for reductio. From this diagram, one could
read off directly that there are common interior points, contradicting external
tangency without invoking III.2. Given the opposite curvatures of the circles,
the diagram presents no particular appearance control sensitivity unless the two
points of tangency are particularly close together, so it is not completely clear
why this observation would be an urgent candidate for probing. The diagram
could, however, be made differently, still in accord with our expectations
for diagrams for reductio: with either or both circles distorted to keep them
disjoint with two points of tangency. In that case, an argument would be
needed; and not only the statement of III.2 but a reductio argument with



126 kenneth manders

precisely the diagram we find there would be about what was called for. This
could help explain why III.2 is argued by reductio rather than directly, as a
Book I style fact about lines in triangles as proposed by De Morgan (Heath
Euclid II 9–10). Even if part of Book III derives from an earlier work on
circles composed without the benefit of a well-developed theory of triangles,
recognizing III.2 as a probing of diagram behavior for the benefit of III.13
would help make its diagram and argument seem appropriate.

This example should suffice to show how the notion of probing developed
here can provide an additional resource in interpretation and historical recon-
struction of Euclid. As a further sample, consider I.7: triangles with the same
base, and the same sides upstanding at the same ends of the base, have the
same vertex. Imagine constructing a triangle with sides of given lengths on a
given base by circling the side lengths around the ends of the base, just as in
I.1; the vertex lies where the circles intersect. But this could be subject to a
diagram control challenge: maybe the circles intersect in many nearby points
rather than in just one point. This would be similar to Protagoras’ challenge,
that a circle and its tangent intersect in a segment rather than a point. I.7 could
be read as responding to this challenge: if there were more than one triangle in
this way, we are led to a contradiction. It is especially effective in that it does
so without using any properties of the circle, which are after all in question.

The greatest sensitivity of the two-circle construction is when the two circles
are nearly tangent. This occurs as the vertex angle of the triangle approaches
0 or 180◦. In the first situation, multiple intersections of the circles would lead
to multiple triangles related as in the diagram of I.7; in the second, to multiple
triangles as in Proclus’ variant diagram, in which the one triangle completely
contains the other (262–63). Taking the curvature of the circles into account,
the threat of misreading whether there are one or more intersection points is
greater for small vertex angles (where the circles curve together, in the same
direction) than for large vertex angles (where the circles curve apart, in the
opposite direction).

While there is no direct evidence that I.7 was originally motivated by this
particular challenge, that would explain why Euclid deals with one diagram
appearance variant rather than the other added in Proclus: Euclid’s diagram
draws the consequence from the reading of the two-compass diagram that
most compellingly competes with the standard one. By Proclus’ time, the
original motivation would have been lost. The statement of I.7 would then be
seen as including the second variant diagram, as writers at least since Proclus
have done.

I.7 shows another way in which distinguishing types of probing has limited
value: whether a given variant diagram probes appearance control or case
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branching control is a relational matter. Given the statement of I.7, Proclus’
alternative is a different-appearance diagram arising from different metric
choices (but not limitations on control in making the diagram from those
metric choices) satisfying the verbal statement of hypothesis for reductio.
Hence it is a case arising in the course of the argument, by our test of different
degrees of uniformity in text and diagram. On the other hand, both diagrams
in I.7 can be regarded as arising from appearance control probing; not in I.7
but in earlier constructions such as that of I.1.

4.6.3 Probing and knowledge

Traditional geometrical practice has no access, except through diagramming
and proof, to ulterior standards of geometrical truth, by which it might back up
its standards for handling text and diagram in demonstration. Not far under the
surface of Proclus’ frequent praise of the subtlety of Euclid’s formulations lie
buried hosts of objections based on variant readings and earlier texts, objections
which are only avoided through what must long have seemed open-ended
refinement of expressive means and exploration of diagrammatic possibilities.
Using diagrams is a much more effective strategy in gaining an intellectual
grip on space than we have been able to show here; but it does come at the
price of a certain open-endedness in geometrical reasoning: although ‘exact’
conclusions are not read off from the diagram, diagram use also remains in
need of probing, due to the limitations of diagram control.

Because of this, the long-range stability of traditional geometry—across
centuries, participants, and the extended body of accumulated geometrical
argument—cannot be understood without taking into account the constructive
critical attitude towards geometrical argument expressed through probing. In
our philosophical account of geometrical knowledge, probing must therefore
share center stage with reasons.

But if probing is conceptually central to traditional geometric practice, we
can no longer treat that practice as requiring unqualified assent to geometric
claims. Instead, geometrical practice must cultivate dissent in order to avoid
disarray! This dissent takes the form of vigorous critical scrutiny of geometrical
argument. The normative structure of this dissent, however, differs from that
of dissent in other practices, in which dissenting parties may stay clear of
each other while they seek power (dissent in the body politic) or in which
they may sometimes agree to disagree (dissent in the body philosophic). The
geometer’s obligation is to assert (the protagonist), to probe, and to seek a
resolution of differences; suited to stand up in that very process continued by
other participants bound only by that same obligation. Taken all together, this
is a structure of unqualified responsibility, with the widest possible scope, for
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geometrical claims. This, rather than unqualified assent, is to be shared across
space, time, and participants. Probing is an integral part of that responsibility,
its element of criticism.

The normative structure of this dissent, with its insistence on uniformly
acceptable resolution of differences, explains how the practice is compatible
with an agentless conception of mathematics even though dissent implies more
than one epistemic role. For, given that the practice was reasonably successful
over the long term in providing artifact support for uniform responses, the
distinct roles we recognized do not give rise to sustained distinct-commitment
stances of the sort which would force us to admit multiple epistemic agents in
our long-term perspective. We were able to construe I.7, each of its cases in
fact, as a response to probing the outcome of certain compass constructions
in extremes of sensitivity; where a uniqueness question arises gratifyingly
similar to Protagoras’ challenge on the intersection of circle and tangent. We
might notice, however, that such appearance control probing tends to be
urgent primarily in extremes, in atypical diagrams. Our discussion of III.2
confirmed this: sensitivity problems in telling whether the interior of a chord
lies inside the circle arise only in extreme situations. In particular, neither
natural target of probing from which III.2 might arise, in the arguments for
III.1 and III.13, involves points near the end of a chord. Thus, only extremely
short and hence atypical chords raise an appearance control concern in those
arguments.

We must therefore cast around for what drives the practice to develop
explicit proofs for the many propositions that conclude some explicit co-exact
condition that could be read off from all but quite atypical diagrams. A practice
might conceivably hold disarray at bay by simply not considering such atypical
diagrams.²² Or rather than not considering such diagrams, one might hope to
assess them in light of ‘neighboring’ diagrams—ones related by continuous
variation of the diagram which encounters no recognizable change of diagram
appearance—which are clear; leaving the assimilations to be probed. For
example, one could presume that very short chords of circles give the same
appearance as longer ones, just as one presumes that diagrams too large to draw
give the same appearance as smaller ones; all the while accepting the obligation
to probe whether some boundary is crossed on the way to some extreme case,
at which the appearance would change; and to probe for appearance-changing
degeneracy of extreme cases themselves.

²² An analogous attempt was made by the Italian School in algebraic geometry at the turn of the
century; which made tremendous progress by limiting its attention mainly to ‘generic cases’; and while
this is now discredited, a similar strategy underlies the focus on ‘stable’ singularities in current singularity
theory (Arnold (1992) Ch. 8.).
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Either way, such a strategy might nonetheless lead to disarray in some
unforeseen way; say, due to disagreements as to what diagrams are legitimate,
or due to extreme-sensitivity diagrams arising in the course of argument by
construction from otherwise apparently typical diagrams, in such a way that
their occurrence is unpredictable or their appearance inscrutable.

Evidently, such was not the response of Greek geometry to sensitivity
extremes. Perhaps this was due to disproportionate emphasis on generality
and perfection to verbal standards in a strand of (Eleatic?) Greek thought
seminal to geometry? Or perhaps it was found that disarray was not to be
avoided in such a way. For example, the parallel postulate resolves the nature
of an appearance transition; there is no saying that the appearance ‘persists to
the limit’.

At this point, however, it should strike us as puzzling that so much in geom-
etry should be driven by extreme cases not explicitly referred to. The proof of
III.2 plainly addresses the behavior of ordinary chords in circles, not extremely
short ones (for which its use of the diagram would remain obscure). Neither
sensitivity extreme of two-circle intersection construction—nor for that mat-
ter, any putative instance of non-uniqueness of such intersections—supposedly
addressed by the full generality of I.7 would in fact, if diagrammed, be adequate
to support the proof of I.7. For that argument has the same sensitivities: two
triangles on the same base with vertex angles so close that one might be tempted
to regard them as on the common intersection segment of two circles would
not clearly show the regions and intersections which a satisfactory diagram of
I.7 must provide. Evidently, both the force of the argument of I.7 near its
sensitivity extremes, and the force of its contribution to appearance and case
branching control with respect to the two-circle intersection construction,
remain based on some policy on sensitivity extremes such as we tentatively
rejected just above.

It should strike us that I.7 forcefully addresses the two-circle intersection
construction primarily away from its sensitivity extremes; where it is already just
as clear what happens in the two-circle intersection diagram. The paradigmatic
example of clarity before proof is I.20: two sides of a triangle taken together
exceed the third, as ‘every dog knows’. Evidently, proof of diagrammatically
clear propositions, including explicit co-exact results which could be read off,
is typical in diagram-based geometry.

We came to this impasse by focussing on how proofs, eventually supple-
mented by probing, serve justificatory purposes in ancient geometry. We
followed out threats that the practice might come out with some im-
proper assertion, or fail to resolve disputes among participants. Knowing from
history that disarray in geometry somehow never stayed far out of control,
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we sought to attribute rules to the practice which would account for this.
Having recognized several rings of defense against error and indecisiveness,
we find that remaining threats to geometry fail to motivate further discernable
measures; indeed, fail to motivate the major actions of the practice.

This embarrassment results from too severe a restriction of philosophical
focus, by which we have deprived ourselves of an explanatory perspective on
geometrical diagram and proof. We have looked at inferential roles, demon-
stration, and probing alike, exclusively as defense against error, unreliability, or
disagreement. This leaves us scarcely able to motivate why Euclid proves what
his diagram shows!

Drawing on our broader perspective on intellectual practices as means of
control, however, we can overcome this restriction of focus. For justification
by no means exhausts the control intellectual practices aspire to. To admit that
something just happens when we construct a chord in a circle, for example,
that a particular region just pops up inside another one, is to admit defeat along
a broad front. In their disdain for ‘empirical geometry’ or ‘mechanical curves’,
participants in the geometrical tradition express revulsion for such impotence.
This sensation that confronts us when something ‘just happens’ in a diagram
may be contrasted with (a) the diverse measures that if taken may enhance
our control; (b) the diverse questions, to which the ability to answer is part of
being in control; and also (c) the diverse virtues we recognize when we are
more in control.

Starting with measures: guided by the diagram, we can (as in III.2 as a
response to the chord location inside a circle) probe variant diagrams by way
of case and objection, and seek claims and arguments to clarify the original
diagram.

For another example, we might have gone on our way to I.20, starting
from circling two segments around the two endpoints of another segment
and noticing a triangle pop up when we draw lines from the intersection to
the two endpoints. This brute occurrence could then be probed by trying to
get it to fail. If we stretch the base segment but not the others, we can see
what happens to the intersection point; this could lead to the diorism of I.20.
We could, however, apply the challenge to the construction of a triangle in
this way in the demonstration of I.1, reported by Proclus: the straight lines
from the circle intersection to the ends of the base might have a common
segment, and so not give a triangle with the given segments we circled around
as upstanding sides. Or we might give the diagram of I.7 and object to the
implicit assumption of diagram control in the uniqueness of the outcome of the
construction. Plainly, the brute diagram occurrence we started with does not
call forth a unique challenge; and although the initial diagram (and, perhaps,
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grasp of its construction) provides some control over what is an appropriate
challenge, this control is singularly inarticulate.

The claims and arguments which might be appropriate to the situation
probed may be felt to address a variety of questions, which might or might not
have appeared inarticulately bound up in the original sensation of impotence:
when the diagram showed what it did, (i) could that have been a breakdown of
appearance control? (ii) What might have been relevant about the free metric
choices: can we identify features or ranges of these choices that demonstrably
lead to the outcome appearance? (iii) What other appearances might arise from
different metric choices? (iv) What is the range of control possibilities and
outcomes?

When we have achieved a favorable resolution, acquired a measure of
enhanced intellectual control over the original diagram occurrence, we may
choose to characterize the enhancement as the acquisition of one or more of
several broad virtues: we may say we have justified a claim about the outcome,
or that we have explained why the construction gave the outcome, or that we
have articulated claims, conditions, reasons, arguments...

The responsibility for geometrical claims that comes with being a geometer
is thus much broader than a concern for reliability. Probing, too, should now be
seen as far more than an element of criticism in an overall justificational strategy.
Probing is the form of action within geometrical practice through which
participants undertake their responsibility to improve its overall intellectual
standing. Presumably, such a conception is not special to geometry, but instead
common to a range of intellectual practices.

We tend to fail to recognize probing at work, fail to apply the concept—as
it were, miss its unity—in two distinct ways. We can be distracted by
the diverseness or special character of probing actions in particular situations;
as when we are tempted to distinguish case and objection by who can
conveniently respond. Or we can be distracted by the diverseness or special
character of evaluations that drive probing or praise its accomplishments in
particular situations; as when we take formal proofs in Tarski’s system to
settle justificational issues while asserting that they, taken by themselves, are
geometrically unintelligible.

We can learn much, perhaps, by making such discriminations among action
types and among evaluation types, in contexts where those distinctions are
viable. It is important, however, to insist on the unity of probing over
these two multiplicities because they are incompatible: varieties of probing
actions do not match up with varieties of intellectual virtues that arise from
them. Case proposal does not go with justification while objection goes with
explanation, or vice versa. Probing the two-circle intersection construction by
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articulating the properties of the resulting linear configuration is as an action
not usefully separable into parts addressing justificational and non-justificational
concerns. It furthers overall intellectual control, and only as such is it properly
understood. If we restrict our perspective on what virtues probing serves, we
get into blind alleys in which the role of probing in the practice becomes
unintelligible.

Acknowledgments. I would like to thank Fabrizio Cariani for converting my
text into LaTex and producing the diagrams.
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(1989) Textual Studies in Ancient and Medieval Geometry (Boston: Birkhäuser).
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Mathematical Explanation: Why
it Matters
PAOLO MANCOSU

The topic of mathematical explanation has recently been the subject of much
interest. Although I will point out below that attention to mathematical
explanation goes back to the Greeks, the recent revival in the analytic literature
is a welcome addition to the philosophy of mathematics. In this introduction
I have set myself two goals. The first is that of giving a survey of the
literature on mathematical explanation and how the different contributions in
this area are connected. Secondly, I would like to show that mathematical
explanation is a topic that has far-reaching ramifications for many areas of
philosophy, including, in addition to philosophy of mathematics, epistemology,
metaphysics, and philosophy of science.

Let us begin by clarifying two possible meanings of mathematical explanation.
In the first sense ‘mathematical explanation’ refers to explanations in the nat-
ural or social sciences where various mathematical facts play an essential role
in the explanation provided. The second sense is that of explanation within
mathematics itself.

5.1 Mathematical explanations of scientific facts

The first sense is well illustrated by the following example taken from a recent
article by Peter Lipton:

There also appear to be physical explanations that are non-causal. Suppose that
a bunch of sticks are thrown into the air with a lot of spin so that they twirl
and tumble as they fall. We freeze the scene as the sticks are in free fall and
find that appreciably more of them are near the horizontal than near the vertical
orientation. Why is this? The reason is that there are more ways for a stick to be
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near the horizontal than near the vertical. To see this, consider a single stick with
a fixed midpoint position. There are many ways this stick could be horizontal
(spin it around in the horizontal plane), but only two ways it could be vertical
(up or down). This asymmetry remains for positions near horizontal and vertical,
as you can see if you think about the full shell traced out by the stick as it takes all
possible orientations. This is a beautiful explanation for the physical distribution
of the sticks, but what is doing the explaining are broadly geometrical facts that
cannot be causes. (Lipton, 2004, pp. 9–10)

In this sense mathematical explanation is explanation in natural science
carried out by essential appeal to mathematical facts. It is immediate from the
quotation that one of the major philosophical challenges posed by mathematical
explanations of physical phenomena is that they seem to be counterexamples to
the causal theory of explanation. The existence of mathematical explanations
of natural phenomena is widely recognized in the literature (Nerlich, 1979;
Batterman, 2001; Colyvan, 2001). However, until recently very little attention
has been devoted to them. Accounting for such explanations is not an
easy task as it requires an account of how the geometrical facts ‘represent’ or
‘model’ the physical situation discussed. In short, articulating how mathematical
explanations work in the sciences requires an account of how mathematics
hooks on to reality, e.g. an account of the applicability of mathematics to
reality (see Shapiro (2000), p. 35; cf. p. 217). And this opens the Pandora’s box
of models, idealization, etc.

In the analytic literature, a first attempt at giving an account of mathematical
explanation of empirical phenomena was made by Steiner (1978b). Steiner’s
theory of mathematical explanations in the sciences relied on his theory of
explanation in mathematics (see below) and was not supported by a detailed
set of case studies. The central idea of Steiner’s account is that a mathematical
explanation of a physical fact is one in which when we remove the physics
what we are left with is a mathematical explanation of a mathematical
fact. He discussed one single example, the result according to which ‘the
displacement of a rigid body about a fixed point can always be achieved by
rotating the body a certain angle about a fixed axis.’ Steiner’s discussion was a
contribution to the larger worry of whether one could use the existence of such
explanations to infer the existence of the entities mentioned in the mathematical
component of the explanation. His reply was negative based on the claim that
what needed explanation could not even be described without use of the
mathematical language. Thus, the existence of mathematical explanations of
empirical phenomena could not be used to infer the existence of mathematical
entities, for this very existence was presupposed in the description of the fact
to be explained. Indeed, he endorsed a line of argument originating from
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Quine and Goodman according to which ‘we cannot say what the world
would be like without numbers, because describing any thinkable experience
(except for utter emptiness) presupposes their existence’. (1978b, p. 20) Such
reasoning, however, can be blocked by arguing that the true statement ‘there
are two cows in the field’ does not commit the speaker to the existence of the
number two, for the apparent reference to the number two can be explained
away using a standard elimination of the number term by using existential
quantifications. Of course, this does not mean that in more complicated
physical statements the situation does not agree with the characterization given
by Quine and Goodman.

Whether one agrees or not with Steiner on the many issues raised by his
position, it is important to point out that his account had the merit of addressing
the problem of when the mathematics plays an ‘essentially’ explanatory role
in the explanation of a natural phenomenon and when it does not. The
issue has resurfaced in Baker (2005), where Steiner (1978b) is however not
mentioned. Baker proposes a new line on the indispensability argument in
which mathematical explanations play a central role. There are several versions
of the indispensability argument, but the general strategy runs as follows.
Mathematics is indispensable for our best science. We ought to believe our
best scientific theories and therefore we ought to accept the kind of entities
our best theories quantify over. There are several ways to question the cogency
of this line of argument but the key feature related to Baker’s discussion is
the following. Many versions of the argument rely on a holistic conception of
scientific theories according to which ontological commitment is determined
using all the existentially quantified sentences entailed by the theory. No
particular attention is given to an analysis of how different components of the
theory might be responsible for different posits and to the roles that different
posits might play. Baker proposes a version of the indispensability argument
which does not depend on holism. His contribution takes its start from a debate
between Colyvan (2001, 2002) and Melia (2000, 2002) which saw both authors
agreeing that the prospects for a successful platonist use of the indispensability
argument rests on examples from scientific practice in which the postulation
of mathematical objects results in an increase of those theoretical virtues which
are provided by the postulation of theoretical entities. Both authors agree that
among such theoretical virtues is explanatory power. Baker believes that such
explanations exist but also argues that the cases presented by Colyvan (2001)
fail to be genuine cases of mathematical explanations of physical phenomena.
Most of his article is devoted to a specific case study from evolutionary biology
and concerns the life-cycle of the so-called ‘periodical’ cicada. It turns out that
three species of such cicadas ‘share the same unusual life-cycle. In each species
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the nymphal stage remains in the soil for a lengthy period, then the adult
cicada emerges after 13 years or 17 years depending on the geographical area.
Even more strikingly, this emergence is synchronized among the members of
a cicada species in any given area. The adults all emerge within the same few
days, they mate, die a few weeks later and then the cycle repeats itself.’ (2005,
p. 229) Biologists have raised several questions concerning this life-cycle but
one of them in particular concerns the question of why the life-cycle periods
are prime. Baker proceeds then to a reconstruction of the explanation of such
fact to conclude that:

The explanation makes use of specific ecological facts, general biological laws, and
number theoretic result. My claim is that the purely mathematical component
[prime periods minimize intersection (compared to non-prime periods)] is both
essential to the overall explanation and genuinely explanatory on its own right.
In particular it explains why prime periods are evolutionary advantageous in this
case. (Baker, 2005, p. 233)

It is of course not possible in this brief introduction to even summarize the
reconstructed explanation and the additional arguments brought in support
of the claim that this is a genuinely mathematical explanation. Let us rather
summarize how such explanations give a new twist to the indispensability
argument. The argument now runs as follows:

(a) There are genuinely mathematical explanations of empirical phenomena;
(b) We ought to be committed to the theoretical posits postulated by such

explanations; thus,
(c) We ought to be committed to the entities postulated by the mathematics

in question.

The argument has not gone unchallenged. Indeed, Leng (2005) tries to
resist the conclusion by blocking premise (b). She accepts (a) but questions the
claim that the role of mathematics in such explanations commits us to the real
existence (as opposed to a fictional one) of the posits. This, she argues, will be
granted when one realizes that both Colyvan and Baker infer illegitimately from
the existence of the mathematical explanation that the statements grounding
the explanation are true. She counters that mathematical explanations need not
have true explanans and consequently the objects posited by such explanations
need not exist.

Mathematical explanations of empirical facts have not been sufficiently
studied. We badly need detailed case studies in order to understand better the
variety of explanatory uses that mathematics can play in empirical contexts.
The philosophical pay-offs might come from at least three different directions.
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First, in the direction of a better understanding of the applicability of math-
ematics to the world. Indeed, understanding the ‘unreasonable effectiveness’ of
mathematics in discovering and accounting for the laws of the physical world
(Wigner, Steiner) can only be resolved if we understand how mathematics
helps in scientific explanation. Second, the study of mathematical explanations
of scientific facts will serve as a test for theories of scientific explanation,
in particular those which assume that explanation is causal explanation. A
promising start has been made by Batterman through an examination of what
he calls asymptotic explanation (Batterman, 2001, Ch. 4). Such explanations
‘illuminate structurally stable aspects of a phenomenon and its governing
equations’, (p. 59) using highly sophisticated mathematical manipulations.
Third, philosophical benefits might also emerge in the metaphysical arena
by improved exploitation of various forms of the indispensability argument.
Whether any such argument is going to be successful remains to be seen
but the discussion will yield philosophical benefits in forcing for instance the
nominalist to take a stand on how he can account for the explanatoriness of
mathematics in the empirical sciences.

5.2 From mathematical explanations of scientific facts
to mathematical explanations of mathematical facts

Since we have been discussing indispensability arguments I will take my start
from there. In an interesting note to her paper Leng says:

Given the form of Baker and Colyvan’s argument, one might wonder why
it is mathematical explanations of physical phenomena that get priority. For if
there are, as we have suggested, some genuine mathematical explanations [of
mathematical facts] then these explanations must also have true explanans. The
reason that this argument can’t be used is that, in the context of an argument for
realism about mathematics, it is question begging. For we also assume here that
genuine explanations must have a true explanandum, and when the explanandum
is mathematical, its truth will also be in question. (2005, p. 174)

This comment reflects the general use to which indispensability arguments
have been put. The main goal is to provide an argument for platonism in
mathematics but no attention is truly given to the different kind of mathematical
entities we are postulating. From this point of view the existence of the natural
numbers is on a par with the existence of a Mahlo cardinal or of a differentiable
manifold. It is, however, reasonable to ask whether mathematical explanations
can be used not as arguments for realism in mathematics tout court but rather
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as specific arguments for realism about certain mathematical entities.¹ I am
interested in articulating a possible parallel between uses of the indispensability
of mathematics in science as described by Baker and Colyvan and the case of
mathematics. Perhaps the best argument one can get here is one foreshadowed
in Feferman (1964). Discussing Gödel’s claim that the postulation of the
Cantorian sets was just as justified as that of physical bodies in order to
obtain a satisfactory theory of sense perceptions, Feferman claimed that the
development of mathematics strongly supported the following interpretation
of the argument:

Abstraction and generalization are constantly pursued as the means to reach
really satisfactory explanations which account for scattered individual results. In
particular, extensive developments in algebra and analysis seem necessary to give
real insight into the behavior of the natural numbers. Thus we are able to realize
certain results, whose instances can be finitistically checked, only by a detour
via objects (such as ideals, analytic functions) which are much more ‘abstract’
than those with which we are finally concerned. The argument is less forceful
when it is read as justifying some particular conceptions and assumptions, namely
those of impredicative set theory, as formally necessary to infer the arithmetical
data of mathematics. It is well known that a number of algebraic and analytic
arguments can be systematically recast into a form which can be subsumed under
(elementary) first order number theory. (Feferman, 1964, p. 3)²

Feferman seems to think that a persuasive form of the Gödelian argument goes
as follows:

1. There are scattered results in one branch of mathematics (the data,
this might be finitistically verifiable propositions concerning the natural
numbers) which call for an explanation.

2. Such an explanation is obtained by appealing to more abstract entities
(say ideals and analytic functions).

3. We thus have good reason to postulate such abstract entities and to
believe in their existence.

¹ This is different from, although related to, the issue of objectivity discussed in Leng (2005),
pp. 172–173. She discusses, following Waismann and Steiner, an example concerning how the
explanation of a known fact about the real numbers can be used to ‘to support the non-arbitrariness
of our extension of the number system to complex numbers’ (p. 172) or of our ‘representations of
complex numbers’ (p. 173). But the issue here is not that of realism about the mathematical objects.

² Feferman’s work showed that predicative analysis could not be formally sufficient to obtain all the
arithmetical consequences of impredicative mathematics. However, he also claimed until recently that
predicative mathematics was sufficient to prove all of the arithmetical consequences of mathematical
interest. He now agrees that certain arithmetical results (such as the modified form of finite Kruskal’s
theorem (FKT∗); see Feferman (2004) and Hellman (2004))) which cannot be proved predicatively are
of mathematical interest.
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If this is correct, we have something in the vicinity of an indispensability
argument. In ‘Platonism’ Dummett rejects a similar argument on account
of the fact that ‘real numbers and ordinals do not act on each other or
on anything else; so there is nothing which is left unaccounted for if we
suppose them not to be there’ (Dummett, 1978, p. 204). But it is evident that
such rejection is based on the questionable assumption that all explanations
must be causal. The argument presented above would of course leave a
committed predicativist unimpressed (for the explanation in question would
be a derivation which uses tools not available to the predicativist). However,
just as standard indispensability arguments address those who are realists about
theoretical entities in science, so here the intended audience for the argument
would consist of those who are realists about a certain realm of mathematical
entities (say, the natural numbers) and in addition are not already committed
to a foundational position (such as predicativism) which forbids entertaining
the entities being postulated by the explanation. Reconstructed as such the
argument is useful in providing rational grounds for the acceptance of the
mathematical entities appealed to in the explanation. Its strength becomes
evident when one considers that the argument goes through even if it turns
out that the entities in question are in principle eliminable on account of the
fact that the explained result is derivable within a narrower framework (as in
the case where you have a theory T′ which is a conservative extension of
T). However, if this derivation results in a loss of explanatory power then we
still have good reasons to believe in the entities in question. This of course
leaves us with the question of when a derivation is explanatory. And this
parallels the situation we discussed in the case of mathematical explanations of
physical phenomena. I should point out, however, that I am not endorsing the
indispensability argument for mathematics I have been considering but that I
do find it of interest.

The original form of the indispensability argument relied on a form of
confirmational holism. This left the argument open to the objection, raised
forcefully by Maddy, that scientific practice proceeds otherwise or to the
objection that other accounts of confirmation block the conclusion (Sober,
1993). In response, advocates like Colyvan and Baker have argued that
explanatory considerations lead to platonism even if we drop confirmational
holism. But, as I pointed out, nobody really has an account of mathematical
explanations of scientific phenomena.

In addition to being of independent interest, the move to mathematical
explanations of mathematical facts is justified also by the following two
considerations. First, it is conceivable that whatever account we will end
up giving of mathematical explanations of scientific phenomena, it won’t be
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completely independent of mathematical explanation of mathematical facts
(indeed for Steiner the former is explicated in terms of the latter). Secondly,
the vicissitudes with holism recounted above have their analog in the recent
developments in the philosophy of mathematics. Quine originally used the
indispensability argument to argue that we should believe in sets because
they do the best job in tracking all our commitments to abstract objects. For
Quine the appeal to empirical science was essential. Maddy’s realism drops the
connection to empirical science and tries to obtain the same conclusion just
by focusing on pure mathematics. In Chapter 4 of Maddy (1990) we find a
lengthy discussion of theoretical virtues, including explanatory ones, that play
a role in ‘extrinsic’ justifications for axiom choice in set theory. However, the
problem of mathematical explanation was not singled out but rather dealt with
at the same level of other theoretical virtues (verifiable consequences, powerful
methods of solution, simplification and systematization, strong intertheoretic
connections, etc.). And although Maddy herself gave up the attempt in favor
of ‘naturalism’ (see Maddy (1997)), mathematical explanation can still play
an important role in this debate. For those who believe that her realism
can be revived perhaps the detour through indispensability arguments that
appeal to mathematical explanations might provide a more persuasive type
of argument than the other varieties of ‘extrinsic’ justifications mentioned
in 1990. Moreover, those who are persuaded by the ‘naturalist’ approach of
her latest book will as a matter of fact have to welcome investigations into
mathematical explanation as they are part and parcel of the kind of work the
methodologist in this area ought to carry out. So both these options call for an
account of mathematical explanations of mathematical facts.

5.3 Mathematical explanations of mathematical facts

The history of the philosophy of mathematics shows that a major conceptual
role has been played by the opposition between proofs that convince but do not
explain and proofs that in addition to providing the required conviction that the
result is true also show why it is true. Philosophically this tradition begins with
Aristotle’s distinction between to oti and to dioti proofs and has a rich history
passing through, among others, the Logic of Port Royal written by Arnauld and
Nicole, Bolzano, and Cournot (see Harari (2008), Kitcher (1975) and Mancosu
(1996, 1999, 2000, 2001)). This philosophical opposition between types of proof
also influenced mathematical practice and led many of its supporters often to
criticize existing mathematical practice for its epistemological inadequacy (see
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for instance Guldin’s program in the 17th century (Mancosu, 1996, 2000) and
Bolzano’s work in geometry and analysis (Kitcher, 1975)). Steiner’s model of
explanation, to be discussed below, although not relying on the Aristotelian
opposition, aims at characterizing the distinction between explanatory and
non-explanatory proofs.

The opposition between explanatory and non-explanatory proofs is not
only a product of philosophical reflection but it confronts us as a datum from
mathematical practice. A mathematician (or a community of mathematicians)
might find a proof of a certain result absolutely convincing, but nonetheless
he (they) might be unsatisfied with it for it does not provide an explanation of
the fact in question. The great mathematician Mordell, to choose one example
among many, mentions the phenomenon in the following passage:

Even when a proof has been mastered, there may be a feeling of dissatisfaction
with it, though it may be strictly logical and convincing; such as, for example, the
proof of a proposition in Euclid. The reader may feel that something is missing.
The argument may have been presented in such a way as to throw no light on
the why and wherefore of the procedure or on the origin of the proof or why it
succeeds. (Mordell, 1959, p. 11)

This sense of dissatisfaction will often lead to a search for a more satisfactory
proof. Mathematicians appeal to this phenomenon often enough (see Hafner
and Mancosu (2005) for extended quotations from mathematical sources;
and of course, their joint paper in this volume) as to make the project of
philosophically explicating this notion an important one for a philosophical
account of mathematical practice. But explanations in mathematics do not
only come in the form of proofs. In some cases explanations are sought in a
major conceptual recasting of an entire discipline. In such situations the major
conceptual recasting will also produce new proofs but the explanatoriness of
the new proofs is derivative on the conceptual recasting. This leads to a more
global (or holistic) picture of explanation than the one based on the opposition
between explanatory and explanatory proofs (in Mancosu (2001) I describe
in detail such a global case of explanatory activity from complex analysis;
see also Kitcher (1984) and Tappenden (2005) for additional case studies).
The point is that in the latter case explanatoriness is primarily a property
of proofs, whereas in the former it is a property of the whole theory or
framework and the proofs are judged explanatory on account of their being
part of the framework. This captures well the difference between the two
major accounts of mathematical explanation available at the moment, those of
Steiner and Kitcher. Before discussing them, I hasten to add that other models
of scientific explanation can be thought to extend to mathematical explanation.



mathematical explanation: why it matters 143

For instance, Sandborg (1997, 1998) tests van Fraassen’s account of explanation
as answers to why-questions by using cases of mathematical explanation.

Steiner proposed his model of mathematical explanation in 1978. In devel-
oping his own account of explanatory proof in mathematics he discusses—and
rejects—a number of initially plausible criteria for explanation, i.e. the (greater
degree of) abstractness or generality of a proof, its visualizability, and its genetic
aspect which would give rise to the discovery of the result. In contrast, Steiner
takes up the idea ‘that to explain the behaviour of an entity, one deduces the
behaviour from the essence or nature of the entity’ (Steiner, 1978a, p. 143). In
order to avoid the notorious difficulties in defining the concepts of essence and
essential (or necessary) property, which, moreover, do not seem to be useful
in mathematical contexts anyway since all mathematical truths are regarded
as necessary, Steiner introduces the concept of characterizing property. By
this he means ‘a property unique to a given entity or structure within a
family or domain of such entities or structures’, where the notion of family
is taken as undefined. Hence what distinguishes an explanatory proof from
a non-explanatory one is that only the former involves such a characteriz-
ing property. In Steiner’s words: ‘an explanatory proof makes reference to a
characterizing property of an entity or structure mentioned in the theorem,
such that from the proof it is evident that the result depends on the property’.
Furthermore, an explanatory proof is generalizable in the following sense.
Varying the relevant feature (and hence a certain characterizing property) in
such a proof gives rise to an array of corresponding theorems, which are
proved—and explained—by an array of ‘deformations’ of the original proof.
Thus Steiner arrives at two criteria for explanatory proofs, i.e. dependence on
a characterizing property and generalizability through varying of that property
(Steiner, 1978a, pp. 144, 147).

Steiner’s model was criticized by Resnik and Kushner (1987) who questioned
the absolute distinction between explanatory and non-explanatory proofs and
argued that such a distinction can only be context-dependent. They also
provided counterexamples to the criteria defended by Steiner. In Hafner and
Mancosu (2005) it is argued that Resnik and Kushner’s criticisms are insufficient
as a challenge to Steiner for they rely on ascribing explanatoriness to specific
proofs based not on evaluations given by practicing mathematicians but rather
relying on the intuitions of the authors. By contrast, Hafner and Mancosu
build their case against Steiner using a case of explanation from real analysis,
recognized as such in mathematical practice, which concerns the proof of Kummer’s
criterion for convergency. They argue that the explanatoriness of the proof of
the result in question cannot be accounted for in Steiner’s model and, more
importantly, this is instrumental in giving a careful and detailed scrutiny of
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various conceptual components of the model. In addition, further discussion
of Steiner’s account, aimed at improving the account, is provided in Weber
and Verhoeven (2002).

Kitcher’s model will be described at length in the research paper fol-
lowing this introduction. Criticisms of unification theories of explanation as
insufficient for mathematical explanation have also been raised forcefully in
Tappenden (2005). In the next section, I would like to point out some aspects
of Kitcher’s position that bring us back to the issue of generalization and
abstraction. This will also be instrumental in introducing aspects of Kitcher’s
thought relevant to the research paper to follow.

5.4 Kitcher on explanation and generalization

I will start with a striking quote concerning generalization and its relation to
explanation within mathematics. It is taken from Cournot:

Generalizations which are fruitful because they reveal in a single general principle
the rationale of a great many particular truths, the connection and common
origins of which had not previously been seen, are found in all the sciences, and
particularly in mathematics. Such generalizations are the most important of all, and
their discovery is the work of genius. There are also sterile generalizations which
consist in extending to unimportant cases what inventive persons were satisfied to
establish for important cases, leaving the rest to the easily discernible indications
of analogy. In such cases, further steps toward abstraction and generalization do
not mean an improvement in the explanation of the order of mathematical truths
and their relations, for this is not the way the mind proceeds from a subordinate
fact to one which goes beyond it and explains it. (Cournot, 1851, sect. 16, Engl.
trans. 1956, p. 24, my emphasis)

The central opposition in this text is that between fruitful generalizations vs.
sterile generalizations. What distinguishes the two of them is that the former
are explanatory while the latter are not. Genius consists, according to Cournot,
not in generalization tout court but in those generalizations that are able to reveal
the explanatory order according to which mathematical truths are structured.
A remarkably similar statement is found in an article by the mathematician
S. Mandelbrojt who claims that ‘La généralité est belle lorsqu’elle posséde
un caractére explicatif ’ and ‘l’abstraction est belle et grande lorsqu’elle est
explicative’ (Mandelbrojt, 1952, pp. 427–428). Also Mandelbrojt pointed out
that generalization can be cheap and boring. The generalization is informative
when it is explanatory. Such explanatory generalizations can be obtained by
the right degree of abstraction and should show the object being studied in its
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‘natural setting’. Finally, note that both Cournot and Mandelbrojt take it as
a matter of course that mathematical explanations exist. Of course, the above
quotes can only be the beginning of the job. What is then the relationship
between explanation and generalization in mathematics? Such a major question
cannot be answered in this introduction but it is important to raise it since
this web of relations between explanation, generality, and abstraction is a
recurring one in all attempts to talk about explanation. Here I propose to
indicate how the problem recurs in Kitcher’s writings. Kitcher is well known
as a defender of the theory of explanation as unification. Kitcher’s first article
where generalization and explanation are thematized is an article on Bolzano’s
philosophy of mathematics from 1975. As part of his analysis of Bolzano,
Kitcher argued against the thesis that ‘a deductive argument is explanatory if
and only if its premises are at least as general as its conclusion.’ Against the
thesis he raised the following objection:

In any case, the generality criterion is ill-adapted to the case of mathematics.
There is a very special difficulty with derivations in arithmetic, namely that
many proofs use the method of mathematical induction. Suppose that I prove a
theorem by induction, showing that all positive integers have property F. This is
accomplished by showing

a) 1 has F
b) if all numbers less than n have F then n has F

(Of course there are other versions of the method of induction). It would seem
hard to deny that this is a genuine proof. [ ... ] Further, this type of proof
does not controvert Bolzano’s claim that genuine proofs are explanatory; we
feel that the structure of the positive integers is exhibited by showing how
1 has the property F and how F is inherited by successive positive integers;
and, in uncovering this structure, the proof explains the theorem. But proofs
by induction do violate the generality criterion[ ... ] Whatever account Bolzano
gives and whatever generality it achieves for arithmetic, Bolzano would surely be
hard put to avoid the consequence that the proposition expressed by ‘1 has F’ is
less general than that expressed by ‘Every number has F’. (Kitcher, 1975, p. 266)

I believe that this argument is too quick and that it suffers from an
unfruitful attempt to use the complexity of the logical formulas as a measure of
generality. The first problem is that it is easy to reformulate the two premises
of induction as a single universal sentence, thereby eliminating ‘1 has F’ as an
independent premise. Secondly, not everybody agrees that proofs by induction
are explanatory (see Mancosu (2001, note 11)). Thus, I find Kitcher’s argument
to be neither here nor there.

A related context in which Kitcher addresses the issue of generalization
is in his book The Nature of Mathematical Knowledge from 1984. This is a
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complex book and I will not attempt to give a general overview of its contents.
However, one of the main questions Kitcher raises is: How does mathematics
grow? What are the patterns of change which are typical of mathematics? Is
the process of growth a rational one? In Chapter 9 of his book he sets the goal
as follows:

Here I shall be concerned to isolate those constituent patterns of change and
to illustrate them with brief examples. I shall attempt to explain how the
activities of question-answering, question-generation, generalization, rigorization
and systematization yield rational interpractice transitions. When these activities
occur in a sequence, the mathematical practice may be dramatically changed
through a series of rational steps. (Kitcher, 1984, p. 194)

Let us then consider generalization:

One of the most readily discernible patterns of mathematical change, one which
I have so far not explicitly discussed, is the extension of mathematical language
by generalization. (Kitcher, 1984, p. 207)

As examples Kitcher mentioned Riemann’s redefinition of the definite
integral, Hamilton’s search for hypercomplex numbers, and Cantor’s general-
ization of finite arithmetic. Kitcher’s goal is ‘to try to understand the process
of generalization which figures in these episodes and to see how the search
for generalization may be rational’ (Kitcher, 1984, p. 207). However, not all
generalizations are significant. In fact it is easy to concoct trivial generalizations.
What distinguishes the trivial generalizations from the significant ones? This is
where explanation comes in again:

significant generalizations are explanatory. They explain by showing us exactly
how, by modifying certain rules which are constitutive of the use of some
expressions of the language, we would obtain a language and a theory within
which results analogous to those we have already accepted would be forthcoming.
From the perspective of the new generalization, we see our old theory as a special
case, one member of a family of related theories. (Kitcher, 1984, pp. 208–209)

Building upon such considerations, Kitcher tries to distinguish between the
rationally acceptable generalizations and those that are not so:

Those ‘generalizing’ stipulations which fail to illuminate those areas of mathemat-
ics which have already been developed are not rationally acceptable. (1984, p. 209)

In other words, to account for the rationality of processes of generalization
in mathematics we need an account of mathematical explanation. Moreover,
one of Kitcher’s envisaged benefits of his analysis in terms of explanatory
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power is that through it one might be able to provide an account for certain
value judgements given by mathematicians when they rave about the aesthetic
quality of a piece of mathematics or about its ‘interest’ (see p. 232).

Thus, it should be obvious how the need for a theory of mathematical
explanation emerges out of these considerations on generalization. Only
significant generalizations can account for rational change in mathematics
and those are the explanatory ones. It would however be a mistake to
think that generalization is the only pattern of mathematical change that
can give us explanations. In addition to generalization, Kitcher discusses
rigorization and systematization as sources of understanding and explan-
ation (p. 227). In his later work, such as (Kitcher, 1989), he uses uni-
fication as the overarching model for explanation both in science and
mathematics:

The fact that the unification approach provides an account of explanation, and
explanatory asymmetries, in mathematics stands to its credit. (Kitcher 1989, p. 437)

Let me just refer here to the article ‘Explanatory Unification and the Causal
Structure of the World’ for a few final quotes. At one point of the discussion,
Kitcher is engaged in showing the limitations of a theory of explanation which
takes causality as the central concept for the account. He objects that in
formal syntax and mathematics one has explanations which are not causal. He
mentions Bolzano’s proof of the intermediate value theorem as an explanatory
proof of a theorem whose previous proofs were not explanatory and a case
dependent on alternative axiomatizations of group theory. After the discussion
he concludes:

Moreover, in this case [axiomatizations of group theory] and in that discussed
in A [Bolzano’s proof ], it is not hard to see a reason for the distinguishing
of the derivations: the preferred derivation can be generalized to achieve more
wide-ranging results. (Kitcher 1989, p. 425)

In both instances, the explanatory derivation is similar to derivations we could
provide for a more general result; the nonexplanatory derivation cannot be
generalized, it applies only to the local case. (Kitcher 1989, p. 425)

This brief mention of passages in Kitcher concerning generality and explanation
is only meant to recall the importance of generality in this context. Lack of
space does not allow me to discuss how the issue of generality plays a role
in Steiner’s model. While Steiner rejects the thesis that explanatoriness can be
accounted for in terms of generality he also incorporates appeal to generality in
his theory of explanation by requiring that explanatory proofs be generalizable
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(‘It is not, then, the general proof which explains; it is the generalizable
proof.’ Steiner (1978a); see Hafner and Mancosu (2005) for an extended
discussion)).

5.5 Conclusion

The topic of mathematical explanation offers a vast and virgin territory to
exploration. Most of the work remains to be done. We need to discuss and
analyze mathematical explanations in the sciences and mathematical explan-
ations within pure mathematics. These case studies have then to be used to
test a variety of theories of scientific explanation and theories of mathematical
explanation. That in turn will be instrumental in the attempt of giving
broader and more encompassing theories of scientific explanation (or perhaps
in showing that no such thing is to be had). Finally, all this work will have
a major impact on broader philosophical problems such as, among others,
accounting for mathematical applications and indispensability arguments in
ontology, and in providing a richer epistemology for mathematics.
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6

Beyond Unification
JOHANNES HAFNER AND PAOLO MANCOSU

As pointed out in the introduction there are at the moment two theories
of mathematical explanation on offer. The first is due to Steiner (1978) and
has been extensively discussed in Resnik and Kushner (1987), Weber and
Verhoeven (2002), and Hafner and Mancosu (2005). The second theory is due
to Philip Kitcher, who is a well-known defender of an account of scientific
explanation as theoretical unification. Kitcher sees as one of the virtues of his
account that it can also be applied to explanation in mathematics, unlike other
theories of scientific explanation whose central concepts, say, causality or laws
of nature, do not seem relevant to mathematics. In this paper we are going to
discuss Kitcher’s account of explanation in the context of a test case from real
algebraic geometry.

6.1 Kitcher’s theory of explanation

Kitcher has not devoted any single article exclusively to mathematical expla-
nation and thus his position can only be gathered from what he says about
mathematics in his major articles on scientific explanation. In his later work,
such as Kitcher (1989), he uses unification as the overarching model for
explanation both in science and mathematics:

The fact that the unification approach provides an account of explanation, and
explanatory asymmetries, in mathematics stands to its credit. (Kitcher, 1989,
p. 437)

Unlike Steiner’s model of mathematical explanation, Kitcher’s account
of mathematical explanation has not been extensively discussed. A general
discussion is found in Tappenden (2005) but not a detailed analysis. Our aim
here is threefold. We will present in outline Kitcher’s theory of explanation as



152 johannes hafner and paolo mancosu

unification. Then we will look at a particular case of mathematical explanation
coming from real algebraic geometry. Finally, we will check Kitcher’s account
of explanation against our case study. By doing this we will heed Kitcher’s
advice in his paper ‘Explanatory unification’:

Quite evidently, I have only sketched an account of explanation. To provide precise
analyses of the notions I have introduced, the basic approach to explanation offered
here must be refined against concrete examples of scientific practice. What needs
to be done is to look closely at the argument patterns favored by scientists and
attempt to understand what characteristics they share. (Kitcher, 1981, p. 530)

6.1.1 Kitcher’s account of explanation as unification

We will follow here the account of explanation given by Kitcher in his paper
‘Explanatory unification and the causal structure of the world’ (1989). Kitcher
claims that behind the account of explanation given by Hempel’s covering
law model—the official model of explanation for logical positivism—there
was an unofficial model which saw explanation as unification. What should
one expect from an account of explanation? Kitcher in 1981 points out two
things. First, a theory of explanation should account for how science advances
our understanding of the world. Secondly, it should help us in evaluating or
arbitrating disputes in science. He claims that the covering law model fails on
both counts and he proposes that his unification account fares much better.

The basic intuition. Kitcher found inspiration in Friedman’s article of 1974,
‘Explanation and scientific understanding’ where Friedman put forward the
idea that understanding of the world is achieved by science by reducing the
number of facts we take as brute:

this is the essence of scientific explanation—science increases our understanding
of the world by reducing the total number of independent phenomena that we
have to accept as ultimate or given. A world with fewer independent phenomena
is, other things equal, more comprehensible than one with more. (Friedman,
1974, p. 15)

Already Friedman had tried to make this intuition more precise by sub-
stituting for the notions of phenomena and laws linguistic descriptions
of such. Kitcher disagrees with the specific details of Friedman’s pro-
posal but thinks that the general intuition is correct. He modifies Friedman’s
proposal by emphasizing that what lies behind unification is the reduction of
the number of argument patterns used in providing explanations while being
as comprehensive as possible in the number of phenomena explained:

Understanding the phenomena is not simply a matter of reducing the ‘fundamen-
tal incomprehensibilities’ but of seeing connections, common patterns, in what
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initially appeared to be different situations. Here the switch in conception
from premise–conclusion pairs to derivations proves vital. Science advances our
understanding of nature by showing us how to derive descriptions of many
phenomena, using the same patterns of derivation again and again, and, in
demonstrating this, it teaches us how to reduce the number of types of facts that
we have to accept as ultimate (or brute). So the criterion of unification I shall try to
articulate will be based on the idea that E(K) is a set of derivations that makes the
best tradeoff between minimizing the number of patterns of derivation employed
and maximizing the number of conclusions generated. (Kitcher, 1989, p. 432)

We will come back to the distinction between arguments and derivations
and to a clarification of what E(K) is below.

Local vs. global notions of explanation. In many accounts of explanation,
including the Hempelian one, explanations are arguments. Arguments are
identified with pairs of premises and conclusions and can be assessed individually
with respect to explanatoriness. Following Friedman, we would like to say
that whether an argument is an explanation is a local property, i.e. it does not
depend on more global constraints. Kitcher rejects both the identification of
explanations as arguments conceived as above and the local characterization
of explanation. The informal idea is that explanations qualify as such because
they belong to the best systematization of our beliefs. Moreover, explanations
are not pairs of premises–conclusions, as in Hempel, but rather derivations:

On the systematization account, an argument is considered as a derivation, as a
sequence of statements whose status (as a premise or as following from previous
members in accordance with some specified rule) is clearly specified. An ideal
explanation does not simply list the premises but shows how the premises yield
the conclusion. (Kitcher, 1989, p. 431)

6.1.2 The formal details of the model

Let us make this more formal. Let us start with a set K of beliefs assumed
consistent and deductively closed (informally one can think of this as a set of
statements endorsed by an ideal scientific community at a specific moment in
time (Kitcher, 1989, p. 431)). A systematization of K is any set of arguments
which derive some sentences in K from other sentences in K. The explanatory
store over K, E(K), is the best systematization of K (Kitcher here makes
an idealization by claiming that E(K) is unique). Corresponding to different
systematizations we have different degrees of unification. The highest degree
of unification is that given by E(K). But according to what criteria can a
systematization be judged to be the best?

Kitcher’s criteria for systematizations. Kitcher lists three criteria for judging the
quality of a systematization �, although as it turns out only two of them
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will be relevant to our discussion. In order to introduce them we need to
clarify three notions: argument pattern, generating set for �, and conclusion
set for �.

Argument pattern: Kitcher derives this notion from specific examples taken
from the natural sciences, e.g. Newtonian mechanics and Darwin’s theory of
evolution. We will illustrate it after giving the definitions with an example
from mathematics. Let us begin with the notion of schematic sentence. This is an
expression obtained by replacing some or all of the non-logical expressions in
a sentence by dummy letters.

A set of filling instructions tells us how the dummy letters in a schematic
sentence are to be replaced.

A schematic argument is a sequence of schematic sentences.
A classification for a schematic argument is a set of sentences which tells

us exactly what role each sentence in a schematic argument is playing, e.g.
whether it is a premise, which sentences are inferred from which and according
to what rules, etc.

A general argument pattern 〈s, f , c〉 is a triple consisting of a schematic argument
s, a set f of sets of filling instructions, and a classification c for s.

An example from mathematics
Consider the problem of determining the equation of the line tangent to the
parabola y = 2x2 + 3x+ 1 at point (1,6). We can solve the problem using
derivatives as follows.

1. [2x2 + 3x+ 1]′ = 4x+ 3
2. [4x+ 3]x=1 = 7
3. Thus the tangent line to 2x2 + 3x+ 1 at (1, 6) is (x− 1)7 = (y− 6).

A schematic argument for determining the tangent line to a differentiable curve
f (x) at a point (x0, y0) can be obtained from the above as follows.

1S. [f (x)]′ = g(x)

2S. [g(x)]x=x0 = c
3S. Thus the tangent line to f (x) at (x0, y0) is (x− x0)c = (y− y0).

Filling instructions:

Replace f (x) by a description of the function under consideration.
Replace g(x) by a description of the derivative of f (x).
Replace c by the value of g(x) at x0.

Classification:

1S and 2S are premises. 3S follows from 1S and 2S by calculus.
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This example was fashioned in exact analogy to the one Kitcher gives
from Newtonian mechanics. Kitcher remarks on the difference with respect to
purely logical patterns:

Whereas logicians are concerned to display all the schematic premises which are
employed and to specify exactly which rules of inference are used, our example
allows for the use of premises (mathematical assumptions) which do not occur as
terms of the schematic argument, and it does not give a complete description of
the way in which the route from [1 and 2 to 3] is to go. (Kitcher, 1981, p. 517f )

Having defined the notion of general argument pattern we now need
to capture formally the notion of explanatory store over K, E(K), which
informally will turn out to be ‘the set of derivations that makes the best
tradeoff between minimizing the number of patterns of derivation employed
and maximizing the number of conclusions generated’ (Kitcher, 1989, p. 432).

A set of derivations is acceptable relative to K just in case every step in the
derivations is deductively valid and each premise of each derivation belongs
to K.

A generating set for a set of derivations � is a set of argument patterns 
 such
that each derivation in the set � instantiates some pattern in the generating
set 
.

A generating set 
 for � is complete with respect to K if and only if every
derivation which is acceptable relative to K and which instantiates a pattern in

 belongs to �.
Informally, the determination of E(K) will proceed through the following steps:

(1) Select among all possible systematizations of K only the acceptable
systematizations of K, i.e. those sets of derivations that are acceptable
relative to K.

(2) To each acceptable systematization selected in (1) associate the collection
of the generating sets for that systematization that are complete with
respect to K.

(3) For each acceptable systematization select now a basis, where a basis
is an element of the collection of the generating sets for that sys-
tematization which ranks best according to the criterion of paucity of
patterns.¹

(4) Finally, rank all bases of the acceptable systematizations according to
their unifying power.

¹ Here we leave out the criterion of stringency of patterns, since Kitcher does not provide a sufficiently
worked out account of how the criterion is supposed to figure in determining the unifying power of a
systematization. Thus it is not at all clear how to apply it in our context. We will discuss this problem
in more detail below.
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The quality of a generating set is inversely proportional to the number of
patterns it contains.

Thus, with paucity we have the criterion needed to proceed through step
3. In order to rank the bases in step 4 we need one more thing. Define the
conclusion set of a set of arguments �, C(�), to be the set of sentences which
occur as conclusions of some argument in �. Kitcher concludes by giving a
qualitative assessment of the unifying power of a systematization �. Assuming
that we can even give precise numerical values to the number of patterns in the
basis and the size of C(�) then the degree of unification of a systematization
is directly proportional to the size of C(�) and inversely proportional to the
number of patterns.

Exemplification. In order to connect these definitions to our example, let
K be the set of true sentences of calculus. Among such truths are ‘the
tangent line passing through the parabola 2x2 + 3x+ 1 at point (1, 6) is
(x− 1)7 = (y− 6)’ and ‘the tangent line passing through the curve x3 at
point (1, 1) is (x− 1)3 = (y− 1)’. Obviously we have an infinitude of such
truths which can be unified by the argument pattern we have given. Each
instance of the argument pattern gives rise to a derivation that is acceptable
relative to K. Let � be the entire set of derivations in the calculus which
have as conclusions all the truths mentioned above (C(�)). Then 
, i.e. the
singleton set containing our general argument pattern is a generating set for �.
Moreover, 
 is complete with respect to K.

6.2 How does Kitcher’s model fit concrete cases?

In order to discuss the application of Kitcher’s model to concrete cases it is
important to gain an insight into the sort of examples that Kitcher thinks his
model can handle. The most extended discussion of such examples is given by
Kitcher in his book The Nature of Mathematical Knowledge (1984). In Chapter 9,
‘Patterns of mathematical change’, one of the patterns discussed is ‘systemat-
ization’. This discussion is important for our goals as it is presented by Kitcher as
an exemplification of the claims contained in ‘Explanatory unification’ (1981).
Kitcher divides ‘systematizations’ into two major groups: systematizations
by axiomatization and systematizations by conceptualization. In the case of
systematization by conceptualization he mentions the improvement obtained
by Viete’s algebra by treating systematically classes of equations of the same
degree, say, degree 3, in contrast to the case by case analysis typical of
Cardan’s Ars Magna. Similarly, Lagrange—through his analysis of resolvent
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equations and permutation of equations—represents a huge step forward in
our understanding of why the solution of certain equations can be reduced to
the solution of equations of lower degree:

In both these cases, one adopts new language which allows for the replacement
of a disparate set of questions and accepted solutions with a single form of
question and a single pattern of reasoning, which subsume the prior questions and
solutions. Generally, systematization by conceptualization consists in modifying
the language to enable statements, questions, and reasonings which were formerly
treated separately to be brought together under a common formulation. The new
language enables us to perceive the common thread which runs through our
old problem solutions, thereby encreasing our insight into why those solutions
worked. This is especially apparent in the case of Lagrange, where, antecedently,
there seems to be neither rhyme nor reason to the choice of substitutions and
thus a genuine explanatory problem. (Kitcher, 1984, p. 221)

In ‘Explanatory unification and the causal structure of the world’ (1989), we
are also presented with several examples. While many of the examples there
are only meant to bring home the point that there are non-causal explanations,
some of them are relevant to our discussion. Let us mention in particular,
Kitcher’s mention of Galois theory which shows ‘why equations in these
classes [2, 3, and 4] permit expressions of the roots as rational function of the
coefficients’ (Kitcher, 1989, p. 425).

We have spent so much time reviewing these examples given by Kitcher
because they allow us to say something more precise about his formal models
of unification. Recall that Kitcher starts from a consistent class of statements
K closed under logical consequence. Then E(K) is the best systematization of
K. But here immediately a problem arises. For while this approach might fit
some simple cases of axiomatization it does not, as it stands, apply to all cases
of axiomatization and, we claim, to most cases of systematization by concep-
tualization. The problem is this. Let us envisage first a case in which Kitcher’s
approach would apply well. Suppose we have an alternative axiomatization
to Euclid, given by Euclid∗, which systematizes exactly the same body K of
sentences and uses different axioms (already in K). Then we could compare
the two axiomatizations with the tools given by Kitcher. We skip here over
a number of other problems such as the fact that it is not clear what role
the argument patterns are playing here as both systematizations will require
argument patterns of arbitrary complexity, unless we reduce the notion of
argument pattern to that of being a logical argument that only makes use of
the axioms of either Euclid’s axiomatization or of Euclid∗’s axiomatization.

Be that as it may, any axiomatization that needs axioms formulated in a richer
language than those of the class K of sentences being systematized will end
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up being incomparable to an axiomatization that only uses sentences coming
from K. This is because Kitcher’s model only deals with systematizations of
K and the arguments in K must have as premises and conclusions statements
from K. The problem we would like to point out can be explained as follows.
Kitcher is very explicit about the fact that the new unification provided by
Lagrange (or Galois) in the theory of equations must use a richer language, new
concepts, and new properties of these concepts. But where earlier on we had
to account for a set K of sentences formulated in language L(K) now we have
a set K∗ of sentences formulated in language L(K∗). We would still like to
say that we have a better explanation of K offered by the new systematization.
But Kitcher’s model seems to force us to compare only systematizations of K
among each other and such a systematization has to appeal to sentences from
K only. Thus, in order to make Kitcher’s system more adequate to the actual
situation we face when making evaluative judgements of explanatoriness we
modify his model in such a way that a systematization of K can appeal to a class
of sentences larger than K. Indeed, such a move also received textual support
from Kitcher himself, who seems to have recognized such need in his 1989
article in Section 4.4 (p. 435).

The new definition would thus require the following modifications:
A systematization of K is any set of arguments which derive some sentences

in K from other sentences of K∗, where K∗ is a consistent superset of K
(possibly identical to K) and where K∗ can be rationally accepted by those
who accept K.

A set of derivations is acceptable relative to K just in case the conclusion of
each derivation belongs to K and every step in each derivation is deductively
valid and each premise of each derivation belongs to K∗, where K∗ is a
consistent superset of K (possibly identical to K) and where K∗ can be
rationally accepted by those who accept K.

The advantage of this modification, to reiterate the point, is that it allows
us to exploit Kitcher’s machinery in a variety of situations which are very
common in mathematics and in science.

6.3 A test case from real algebraic geometry

In his monograph on partially ordered rings and semi-algebraic geometry
Gregory W. Brumfiel contrasts different methods for proving theorems about
real closed fields. One of them relies on a decision procedure for a particular
axiomatization of the theory of real closed fields. By this method one can find
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elementary proofs of sentences formulated in the language of that theory—at
least in principle, since, as Brumfiel remarks, ‘[i]t certainly might be very
tedious, if not physically impossible, to work out this elementary proof ’
(Brumfiel, 1979, p. 166).

Another proof method consists in using a so-called transfer principle which
allows to infer the truth of a sentence for all real closed fields from its being
true in one real closed field, like the real numbers. Despite the fact that the
transfer principle is a very useful proof method, Brumfiel does not make any
use of it, and he is very clear about this.

In this book we absolutely and unequivocally refuse to give proofs of this second
type. Every result is proved uniformly for all real closed ground fields. Our
philosophical objection to transcendental proofs is that they may logically prove
a result but they do not explain it, except for the special case of real numbers.
(Brumfiel, 1979, p. 166)

Brumfiel prefers a third proof method which aims at giving non-transcend-
ental proofs of purely algebraic results. This does not mean that he restricts
himself to just elementary methods; he does use stronger tools, but it is crucial
that they apply uniformly to all real closed fields. It is also clear from the
context that Brumfiel does not consider proofs obtained from applying the
decision procedure for RCF as explanatory.² And in fact they are almost
never carried out in practice because their length makes them unwieldy and
unilluminating.

To illustrate Brumfiel’s point and subsequently confront Kitcher’s theory of
explanation with it, we would like to give a short exposition of a theorem,
which is also mentioned by Brumfiel himself (p. 207), and various (sketches
of) proof types corresponding to the classification above.

6.3.1 Some concepts from semi-algebraic geometry

Let’s start with the definition of ‘real closed field’: a field which admits a
unique ordering, such that every positive element has a square root and every

² The (elementary) proofs one can construct on the basis of the decision procedure prove their
conclusion uniformly for all real closed fields because the decision procedure is carried out independently
of the ground field. Despite their uniformity, however, Brumfiel does not take this kind of proof
as the optimal model which should guide mathematical research—on the contrary. First, as already
mentioned these proofs are not always feasible; due to their size it may in certain cases not even be
physically possible to construct them. Second, Brumfiel as a rule prefers different uniform (in general
non-elementary) proof techniques not only for studying the rich non-elementary theory of real closed
fields but also for dealing with elementary sentences (i.e. first-order sentences in the language of ordered
fields), even in cases where one could, in principle, find an elementary proof, i.e. ‘even if a statement
turns out to be equivalent to an elementary statement, it may be unnatural to dwell on this fact, and
even worse to be forced to depend upon it’ (Brumfiel, 1979, p. 166).
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polynomial of odd degree has a root. More formally, a real closed field is
defined by the following axioms (the complete list can be found in the
Appendix to this chapter).

(i) Axioms for fields
(ii) Order axioms
(iii) ∀x∃y(x = y2 ∨ −x = y2)

(iv) For each natural number n, the axiom
∀x0∀x1 ... ∀x2n∃y(x0 + x1 · y+ x2 · y2 + ...+ x2n · y2n + y2n+1 = 0)

The theory of real closed fields, RCF, is the deductive closure of the above
axioms. A (first-order) sentence formulated in the language of RCF is called an
‘elementary sentence’. An important result about RCF is that there is a decision
procedure due to Tarski and Seidenberg (Tarski, 1951; Seidenberg, 1954), i.e.
given any elemantary sentence ϕ the algorithm outputs 1, if RCF proves ϕ

and 0, if RCF proves ¬ϕ. Also, this decision procedure works uniformly for
every sentence ϕ in the language of RCF.

Examples of real closed fields include the set of real numbers R and the
set of real algebraic numbers Ralg, i.e. the set of all roots of the nonzero
polynomials with rational coefficients. The latter field is not complete, i.e.
not every Cauchy sequence converges. The set C of complex numbers
is not a real closed field as it does not admit of an ordering. There is
an abundance of real closed fields even just within R. Artin and Schreier
showed that there are uncountably many pairwise non-isomorphic real closed
subfields of R whose algebraic closure is isomorphic to C (cf. Brumfiel 1979,
p. 131).

For a real closed field R we denote the ring of polynomials in n variables
with coefficients from R by R[X1, ... Xn].

A subset of Rn, the affine n-space over R, is called semi-algebraic if it belongs
to the smallest family of subsets of Rn containing all sets of the form

{x ∈ Rn | f (x) > 0}, f (x) ∈ R[X1, ... Xn]

and which is closed under taking finite intersections, finite unions, and
complements.

Semi-algebraic subsets of R (i.e. one-dimensional) are exactly the finite
unions of points and open intervals (bounded or unbounded).

Let A ⊂ Rm and B ⊂ Rn be two semi-algebraic sets. A mapping f : A → B
is semi-algebraic if its graph is semi-algebraic in Rm+n. It is clear that polynomials
(on semi-algebraic domains) are semi-algebraic mappings.

Rn can be endowed with the Euclidean topology coming from the ordering
on R. Let x = (x1, ... , xn) ∈ Rn, r ∈ R, r > 0. We set
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||x|| = √
x2

1 + · · · + x2
n

Bn(x, r) = {y ∈ Rn | ||y− x|| < r} (open ball)

The Euclidean topology on Rn is the topology for which open balls form a
basis of open subsets. Complements of open sets are closed. Polynomials are
continuous with respect to the Euclidean topology.

6.3.2 A simple theorem and a variety of proofs (and systematizations)

Now we are in a position to state a simple theorem and compare different
possible approaches to its proof or to ways of systematizing its instances.

Theorem. A polynomial f (x1, ... , xn) assumes a maximum value on any bounded
closed semi-algebraic set S ⊂ Rn.

(I) Within RCF the result cannot be proved as stated for we cannot quantify
over polynomials and semi-algebraic sets. The best we could do is to prove
its instances. For instance, RCF proves that x3 has a maximum on [0, 2].
We could, in principle, arrive at this proof by running the Tarski–Seidenberg
decision procedure and getting 1 as output. From there it would be a mechanical
task to provide the explicit proof in RCF. And every single instance of the
theorem could be obtained in this way. In other words, if we let P ⊂ RCF
be the set containing all the instances of the theorem in RCF, then we
could thus arrive at a systematization of the whole set P on the basis of the
Tarski–Seidenberg decision procedure.

(II) The following proof strategy draws on transcendental methods. This
approach is based not just on the Tarski–Seidenberg decision procedure but
rather on one of its consequences, namely that RCF is a complete theory. This
gives rise to the following transfer principle. If a sentence ϕ in the language
of RCF can be shown to hold in one particular real closed field, say, the real
numbers R, then it must be true for any real closed field because of the
completeness of RCF.

Now, the theorem can of course be established for R relying on, among
other things, the Bolzano–Weierstrass theorem (every bounded sequence has
a convergent subsequence) and the least upper bound principle.³ These basic
properties of R don’t hold in general for real closed fields. For instance,
they both fail for Ralg. However, once the theorem has been proved for
R, by whatever means, we can conclude by appeal to the transfer principle
that all its instances, i.e. all sentences in P, hold for real closed fields in
general.

³ Cf. Courant, 1971, vol. I p. 60f, vol. II p. 86.



162 johannes hafner and paolo mancosu

(III) Another way of establishing the theorem relies on purely algebraic
means exploiting the fact that if A ⊂ Rn is a closed and bounded semi-algebraic
set and g : A → Rp a continuous semi-algebraic mapping, then g(A) is a closed
and bounded semi-algebraic set.⁴

Since a polynomial f (x1, ... , xn) is a continuous semi-algebraic mapping
and we assume a closed and bounded semi-algebraic set S ⊂ Rn to be given,
it follows that f (S) is a closed and bounded semi-algebraic set. But since
f (S) ⊂ R, it is a finite union of points and of closed and bounded intervals.
And so f (S) has a maximum.

6.4 Assessment of Kitcher’s model

The previous section exemplified different approaches to systematizing knowl-
edge about real closed fields. More precisely, in the following we will be
concerned with systematizations of the theory RCF, which, to recall, is the
consistent and deductively closed, in fact complete, set of elementary sentences
true in any real closed field (or, equivalently, following from the axioms
of RCF).

Before entering into the discussion of how Kitcher’s account would rank
different systematizations of RCF according to their unifying power let’s pause
for a moment to address a worry one might have, at the very outset, concerning
the choice of RCF as the body of statements to be systematized. To be sure,
mathematicians working in semi-algebraic geometry are as a rule not only
interested in (systematizing) elementary sentences but also sentences that go
beyond RCF by, for instance, quantifying over functions and sets, or sentences
coming from a wider framework in which RCF is embedded like real analysis
or category theory (we’ll return to this below). The question might thus be
raised how faithful to mathematical practice our focus on RCF indeed is.⁵
However, this worry can easily be dispelled.

First of all, the choice of some non-elementary context for the study
of real closed fields—be it a more expressive language or certain more
encompassing mathematical theories, etc.—doesn’t make the elementary part
of semi-algebraic geometry disappear or irrelevant. Whatever the context,
RCF still forms a (precisely definable) subset of K, the totality of accepted
sentences in the respective context. Hence any systematization of K has to

⁴ Cf. Brumfiel, 1979, p. 207; or Bochnak et al., 1998, p. 40f.
⁵ This point has been urged particularly by Jeremy Avigad.
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cover also the sentences in RCF. Moreover, the elementary (sub)theory is by
no means rendered peripheral. Indeed, the very notion of semi-algebraic set,
which is fundamental to semi-algebraic geometry, is characterized in terms
of first-order formulas. It is a salient fact, an immediate consequence of the
Tarski–Seidenberg theorem, that the semi-algebraic sets coincide with the sets
which are definable by formulas in the language of RCF. In other words, any
construction out of semi-algebraic sets that can be expressed in terms of an
elementary sentence yields again a semi-algebraic set. This fact is of major
importance in the light of its ‘consequences which are hard to obtain if one
uses the definition of a semialgebraic set directly’ (Andradas et al., 1996, p. 9).
Even G. W. Brumfiel, who decidedly rejects the Tarski–Seidenberg transfer
principle as a proof method, agrees that this application of the Tarski–Seidenberg
theorem is ‘a very efficient tool’ (Brumfiel, 1979, p. 165) and he uses it himself
occasionally in later parts of his book.⁶

It is clear that elementary formulas demand special attention of anybody
who relies on the Tarski–Seidenberg transfer principle as an essential tool
in the study of semi-algebraic geometry (cf. Bochnak et al., 1998; Andradas
et al., 1996). Yet, they are not just ‘interesting’ for the purely methodological
reason that the transfer principle is applicable only to elementary formulas.
Even Brumfiel, who is not in any way restricted by such methodological
considerations, is well aware of the fact that many of the theorems he proves
(by his preferred methods) can be expressed by elementary sentences.⁷ In short,
the theory RCF is anything but trifling.

Let us now return to the task of ranking different systematizations of
RCF and the assessment of how Kitcher’s model fares in this respect. Our
starting point, the set to be systematized, is the theory RCF. To be in line
with Kitcher’s terminology let us call this set K. As was pointed out above,
systematizations of a (consistent and deductively closed) set of sentences S may
have to go beyond S and draw on premises from S∗, a consistent superset of
S. That’s what necessitated a slight modification of Kitcher’s original model

⁶ Concerning the use of the Tarski–Seidenberg theorem to show that a set defined in terms of
semi-algebraic sets by an elementary sentence is semi-algebraic Brumfiel emphasizes the following.
‘[T]his type of application actually provides a proof that the asserted set is semi-algebraic, simultaneously
for all real closed fields, in fact an elementary proof. The reason is, any single elementary sentence is
just a special case of the theorem’ (Brumfiel, 1979, p. 165). In contrast, proofs based on the transfer
principle lack precisely this kind of uniformity. However, as pointed out above already Brumfiel is not an
advocate of developing real algebraic geometry exclusively by elementary methods let alone by relying
on the Tarski–Seidenberg decision procedure.

⁷ ‘We admit that many of our proofs are long and could be replaced by the single phrase
‘‘Tarski–Seidenberg and true for real numbers’’. However, we feel the effort is worthwhile’ (Brumfiel,
1979, p. 166).
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and the different systematizations connected with (I), (II), and (III) are cases
in point.

Systematization (I) uses some metatheoretical machinery in addition to K
(= RCF ). The decision algorithm for sentences in K is not itself a theorem of
that theory but a statement in its metatheory. Let K∗

I be K together with some
metatheory of K. We leave it open to some extent how much metatheory
K∗

I has to contain—certainly at least the decision algorithm but perhaps more,
like induction, to actually establish the main properties of the algorithm. In (I)
we indicated how the set P, i.e. the set of all instances in K of the theorem,
could be construed as the conclusion set of a certain systematization based on
the Tarski–Seidenberg decision algorithm. This approach can be generalized
to apply to all of K, since the decision algorithm works for all elementary
sentences. Somewhat streamlined we thus have the following systematization
of K relative to K∗

I which is given by a simple argument pattern:

(1) F(ϕ) = x
(2) ψ

Here ‘ϕ’, ‘x’, and ‘ψ ’ are dummy letters, whereas F denotes (some fixed
specification of) a decision algorithm for K.

Filling instructions:

Replace ‘ϕ’ by a sentence s in the language of RCF.
Replace ‘x’ by the value, 0 or 1, of F at s.
Replace ‘ψ ’ by s, if F(s) = 1 and replace ‘ψ ’ by ¬s, if F(s) = 0

Classification:

The sentence (1) is a premise.
The sentence (2) follows from (1) by metatheory, i.e. by using facts about
the functioning of F.

The proof of the theorem along the lines of (II) employs transcendental
methods, like the use of completeness and compactness, which hold for R
but not for real closed fields in general. Beyond that the transfer principle
is used to argue that the instances of the theorem hold in every real closed
field. Hence in this case the superset K∗

II includes some part of the theory of
the classical real numbers and a formulation of the Tarski–Seidenberg transfer
principle. Because this requires the use of model-theoretic concepts and meth-
ods in addition to syntactical ones in order to talk about truth in certain real
closed fields, notably the real numbers, the metatheoretic part of K∗

II is more
encompassing than the one of K∗

I . Again, however, we don’t need to specify
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the necessary metatheory precisely but can leave its concrete delimitation
somewhat open.

The proof in (III) belongs to a systematization of K relative to a wider
framework, K∗

III, of real algebraic geometry. Brumfiel stresses that K∗
III is not

confined to elementary methods. ‘In fact, we use Dedekind cuts, total orders,
and signed places⁸ repeatedly. The point is, in the form we use these concepts
they apply uniformly to all real closed fields. One advantage to developing such
techniques is precisely that one is not tied down to ‘‘elementary sentences’’ ’
(Brumfiel, 1979, p. 166).

Now we can ask what the best systematization of K is. If we can find a
systematization that makes use of only one argument pattern to generate all
of K, then any other systematization which uses a greater number of patterns
is inferior. It turns out, then, that the best systematization of K is the one
provided by the Tarski–Seidenberg decision procedure for RCF, i.e. the one
exemplified by (I). The uniformity of the procedure shows that we have
in principle a single argument pattern which we can use to generate all of
K. Comparing this situation with those in which we try to prove arbitrary
elementary sentences of K by means of proofs such as those given in (II) and
(III) makes it obvious that we can’t get by with just one pattern of argument.
Consider proofs of type (III). The specific argument used to determine the
validity of the proposition asserting that a polynomial assumes a maximum
on any arbitrary closed and bounded semi-algebraic set would be useless for
deriving, say, the algebraic form of Brouwer’s Fixed Point Theorem.⁹

Similarly in the case of proofs of type (II). For in this case we need to
determine the truth of ϕ under consideration in R, or some other real closed
field. And only after this task has been accomplished can we appeal to the
completeness of RCF. But the first task, the determination of the truth value
of ϕ in some real closed field, is not a uniform process; rather we need, as
pointed out with respect to case (III), different argument patterns for different
classes of ϕ. In short, whereas with respect to the specific problem concerning
maxima of polynomials all three systematizations exhibit a certain uniformity in
the treatment of sentences that are instances of this problem, only the strategy
that relies on the Tarski–Seidenberg decision procedure can be extended to

⁸ Cf. Brumfiel, 1979, p. 144f: Let 
 be a totally ordered field. We adjoin symbols ∞ and −∞ to 


and extend the operations of addition, subtraction, multiplication, and division between ∞,−∞ and
elements a ∈ 
 (e.g. ∞+∞ =∞, a

∞ = 0, etc. Some expressions, like 0 · ∞, remain undefined). If
K is a field by a signed place, with values in 
, we mean a function f : K → 
 ∪ {∞,−∞}, such that
f (x+ y) = f (x)+ f (y), f (xy) = f (x)f (y), and f (1) = 1, whenever the terms are defined.

⁹ Let S be a closed, bounded, convex, semi-algebraic set in Rn, for some real closed field R. Then
every continuous rational function mapping S to itself has a fixed point in S.
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all of K in such a way that a single argument pattern suffices for the generation
of all of K. Hence Kitcher’s model of explanation would declare the set of
all instantiations of this single argument pattern as the explanatory store over
K, i.e. the set of—explanatory—arguments which best unifies K. This result
clearly conflicts with mathematical practice since Kitcher’s model ends up
positing as the best systematization one which in practice does not enjoy the
properties of explanatoriness that Kitcher’s model would seem to bestow upon
it. Even worse, not only do arguments in this ‘explanatory store’ in general
fail to be considered as paradigm explanations, they are hardly ever used at all
by working mathematicians because of the limited feasibility of the decision
algorithm.

It remains to compare the systematizations of K relative to K∗
II and K∗

III. As
we have seen, Brumfiel emphatically rejects as nonexplanatory proofs obtained
along the lines of (II) and strongly urges proofs of type (III) as the ones
which not only prove a result but also explain it. It is interesting to note that
according to Brumfiel one of the salient virtues of systematizations within K∗

III
in contrast to those within K∗

II is that the argument patterns apply uniformly to
all real closed fields. This notion of uniformity can also be seen as a type of
unification. Hence Kitcher’s theory appears particularly promising and suitable
for adjudicating, or making pertinent contributions to the assessment of, this
dispute (and related ones¹⁰) over the choice of proof methods. So let’s see how
Kitcher fares.

The first thing to observe is that both systematizations of K, the one relative
to K∗

II as well as the one relative to K∗
III seem to require an infinite number of

argument patterns. Because the patterns required in each theory for proving
respectively, say, Brouwer’s Fixed Point Theorem, the solution to Euler’s
problem,¹¹ or that x3 has a maximum on [0, 2] cannot be reduced to a single
pattern, unless we take the notion of argument pattern in a theory so broadly as
to identify it with any derivation from the axioms of that theory. But such an
identification would not square with either one of the systematizations under

¹⁰ Similar methodological issues have previously been raised in algebraic geometry. Seidenberg
quotes A. Weil’s critical remark concerning ‘the taboo against ‘‘nonalgebraic’’, i.e., topological and
function-theoretic methods’ (Seidenberg, 1958, p. 686). On the other hand, Brumfiel points out that
‘there is already a respectable tradition in this century of finding non-transcendental proofs of purely
algebraic results concerning algebraically closed fields. We think real closed fields deserve (at least) equal
time and effort’ (Brumfiel, 1979, p. 166).

Interestingly, Seidenberg’s comments on Weil and Lefschetz also involve a decision method,
again due to Tarski, and a corresponding transfer principle for algebraically closed fields (of a given
characteristic p).

¹¹ How many points at a distance at least r from one another can there be on the surface of a sphere
of radius r, twelve or thirteen?
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consideration. If the number of patterns in both accounts is infinite, and given
that both accounts generate the set K, i.e. the respective conclusion sets are
identical, we have to conclude that Kitcher’s model is unable to differentiate
between the two accounts. In particular, Kitcher’s model cannot even start to
explain or reflect in any way Brumfiel’s rather pronounced methodological
position vis-à-vis the use of transcendental methods in real algebraic geometry.

However, at this point it might be objected that we jumped to the conclusion
and the negative diagnosis is incorrect. And one might point out, on behalf
of Kitcher, the fact that even in the case of infinite sets of argument patterns
Kitcher’s model can still make a decision, provided that one set turns out to
be a subset of the other—being smaller in terms of the subset relation means
to be more explanatory. Kitcher explicitly states this possibility of ranking
systematizations �, �′ of K as one of two important corollaries to his account.¹²

If the conclusion sets C(�) and C(�′) coincide yet the basis of �′ is a proper
subset of the basis of � then � �= E(K). (cf. Kitcher, 1981, p. 522)

And the defence of Kitcher could go on: upon closer examination it might
well turn out that EIII(K), the best systematization of K relative to K∗

III, is
(or can be construed as) a subset of EII(K), the best systematization of K
relative to K∗

II, and the same holds with respect to their bases. In this case
EIII(K) would be ranked higher than EII(K), which would nicely account for
Brumfiel’s position after all. Of course, in order to substantiate this beyond
mere speculation EII(K) and EIII(K) and, more importantly, their respective
bases BII and BIII would have to be precisely specified. Yet, in any case,
nothing can rule out in principle that Kitcher’s model thus succeeds in ranking
the systematizations under consideration after all.

How good a defence of Kitcher is this? It is certainly true that in the
particular situations which are covered by the mentioned corollaries Kitcher’s
model can also compare infinite sets of argument patterns and/or infinite
conclusion sets. However, as it will turn out this is of no help in our case. In
order to rank EII(K) and EIII(K) according to the corollary either BII ⊂ BIII

or BIII ⊂ BII has to obtain. But neither one can hold as we shall see below.
(And this can even be established a priori, regardless of how BII and BIII are
composed in detail.) We shall consider the two cases in turn.¹³

¹² Kitcher does not state these corollaries explicitly in terms of infinite sets but they are certainly also
applicable in cases where infinite sets of argument patterns and/or infinite conclusion sets are involved.

¹³ In the following we skip over some further complications. In particular, a comparison of BII and
BIII (and of the corresponding systematizations) has to take place in a broader framework K∗ which
encompasses both K∗

II and K∗
III. On the other hand one still needs to be able to distinguish within K∗

between systematizations of K with respect to K∗
II and systematizations of K with respect to K∗

III. It
shouldn’t be very difficult, if tedious, to work out the details.
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First consider the case BII ⊂ BIII. Argument patterns in BII incorporate,
in general, transcendental methods for R and the Tarski–Seidenberg transfer
principle. Both of them are completely absent from patterns in BIII since,
to recall, Brumfiel ‘absolutely and unequivocally’ refuses to use them in his
proofs.¹⁴ Hence BII cannot form a subset of BIII (even though BII and BIII need
not be disjoint as some argument patterns in BII might be purely algebraic). In
other words, we have to exclude this case of relating BII and BIII as a possibility.

However, it is instructive to explore this a little further and consider relaxing
the subset relation in favor of some kind of ‘embedding’, thus generalizing
Kitcher’s corollary. Because a defender of Kitcher’s model might suggest that
in cases where no subset relation between two bases B, B′ for systematizations
�, �′ (respectively) obtains, a ranking of � and �′ could still be achieved
if, say, the argument patterns in B′ could be brought into a ‘correspondence’
with the argument patterns in a proper subset S ⊂ B such that each argument
pattern in B′ has a corresponding, in a certain sense equivalent, analog in S
under some ‘translation’. Such an embedding of B′ into B would provide
grounds for ranking �′ higher than �.

Let’s take up this suggestion and assess its contribution to the ranking
problem. While it is very difficult to give general precise definitions of the
notions of ‘embedding’, ‘translation’, ‘equivalent’, etc., which are involved
here, an obvious minimal constraint on the embedding relation certainly is
that conclusion sets have to be preserved. That is, if B′ is embedded into B
such that all the ‘translations’ of argument patterns from B′ form a set S ⊂ B,
then B′ and S must give rise to the same conclusion set. Preserving conclusion
sets is a necessary adequacy condition on an embedding; apart from that it
can be left open which other features of (sets of) argument patterns have
to be preserved by an embedding (and in what way). For our purposes we
can thus leave the notion of ‘embedding’ for the most part at an informal,
intuitive level; it will turn out that even without more detailed specification
of the conditions on embeddings we’ll have a workable account. Now we can
generalize Kitcher’s corollary.¹⁵

Given two systematizations �, �′ of K . If C(�) = C(�′) and the basis of �′
can be embedded into a proper subset of the basis of � then � �= E(K).

¹⁴ It is worth noting that Brumfiel categorically rejects all uses of transcendental methods pertaining
to the real numbers not just when they are employed in connection with the transfer principle. ‘[O]ne
of our central themes is that the real numbers are totally irrelevant in algebraic topology, so it would
not do to rely on them at some point in our chain of reasoning’ (Brumfiel, 1979, p. 166).

¹⁵ The corollary in its original formulation results then from requiring that all features of argument
patterns have to be preserved by the translation of patterns, i.e. by taking ‘translation’ as the identity
function and ‘embedding’ thus as the subset relation.
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Now, can there be an embedding of BII into BIII? Without further infor-
mation on the argument patterns in the two bases we are in no position to
devise any specific translation or embedding. Yet, that certainly doesn’t rule
out the existence of such an embedding. Above, in (II) and (III) we sketched
two different types of proof of the statement that some given polynomial
assumes a maximum on a given closed and bounded semi-algebraic set. The
respective argument patterns of which these proofs are instantiations might
be seen as correlated by the kind of translation we are looking for. And if
this kind of correlation could be extended to supply for each pattern in BII a
corresponding one in BIII (such that—at least—conclusion sets are preserved),
then this would indeed yield an embedding of BII into BIII. However, it
is crucial to notice that while at this abstract level an embedding might in
principle be possible along the indicated lines, an embedding of BII into a
proper subset of BIII is definitely excluded. The reason is this. Assume that
BII embeds into a proper subset S ⊂ BIII. Let �S be the set of all instan-
tiations of the argument patterns in S. (�S is a subset of EIII(K).) Since
BII is the basis for EII(K) and the embedding preserves conclusion sets, we
have C(EIII(K)) = K = C(�S). Hence all of K is systematized by �S and,
moreover, �S is generated by a proper subset, S, of BIII. This contradicts the
fact that EIII(K) is the best systematization of K (relative to K∗

III), i.e. the
systematization whose basis ranks best with respect to the criterion of paucity
of patterns.¹⁶ There must be redundancies in BIII if the same conclusion set
can be gotten from a proper subset of it. In other words, BIII must be inflated
and hence could not have the greatest unifying power among all bases and,
in turn, EIII(K) would not be the set of arguments which best unifies K
(relative to K∗

III).
Turning now to the case BIII ⊂ BII the reasoning is very similar. In principle,

no methodological constraint precludes the possibility that BIII can be embed-
ded into BII (or even, in this case, that BIII is a subset of BII). As Brumfiel
himself indicates one can indeed find a certain correspondence between his
own, algebraic, approach and the approach that uses transcendental methods.
‘We admit that many of our proofs are long and could be replaced by by
the single phrase ‘‘Tarski–Seidenberg [transfer principle] and true for the real
numbers’’ ’ (Brumfiel, 1979, p. 166). This might be taken, in our context, as
a hint towards the possibility of constructing a correlation between patterns

¹⁶ In case S is not only a generating set for �S but also the basis for it, then the assumption that
S is a proper subset of BIII leads directly to a contradiction by applying Kitcher’s corollary (in its
original formulation). Because in this case we have two systematizations, EIII(K), �S, of K such that
C(EIII(K)) = C(�S) and the basis for �S is a proper subset of the basis for EIII(K). Hence we have
EIII(K) �= EIII(K).
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in BIII and patterns in BII. But even so, by the same token as before BIII

cannot, on pain of contradiction, be embedded into a proper subset of BII

(nor can it actually be a proper subset of BII). Because this would contradict
the status of EII(K) as the best systematization of K (relative to K∗

II). The
argument is exactly the same as the one in the preceding paragraph (mutatis
mutandis).

The upshot, then, is this. The two rival systematizations EII(K) and EIII(K)

turn out to be incomparable within Kitcher’s framework. Neither his corollary
nor our generalization of it can discriminate between them, i.e. rank them
according to their unifying or explanatory power. Faced with a genuine issue
that arose within mathematical practice Kitcher’s model remains silent. It fails
to account for and possibly even confirm Brumfiel’s position. Yet, on the other
hand, it doesn’t succeed either in revealing, as the case might be, Brumfiel’s
underlying intuitions as wrongheaded by ranking the other systematization
as in fact more explanatory after all. If we had a well-established theory of
mathematical explanation it would also possess critical or corrective potential
vis-à-vis mathematical practice. Unfortunately, at this point Kitcher’s model
is far from well-confirmed and uncontroversial. Moreover, it doesn’t even
reach a decision concerning the given issue. There is a certain irony in this
since Brumfiel champions a kind of unification of real algebraic geometry by
insisting on proofs that exhibit a ‘natural’ explanatory uniformity. Yet, despite
its focus on unification Kitcher’s account of explanation apparently does not
have the resources to provide insight into the controversy over the ‘right’ proof
methods or at least enhance our understanding of Brumfiel’s motivations. One
of the reasons for Kitcher’s failure may lie in the fact that his account, although
much more sophisticated than Friedman’s model, still shares the latter’s basic
intuition, namely that unifying and explanatory power can be accounted for
on the basis of quantitative comparisons alone.¹⁷ However, in the controversy
over the use of transcendental methods in real algebraic geometry the point
at issue concerns qualitative differences in the proof methods. The features of
Brumfiel’s unification which he regards as explanatory escape Kitcher’s model.
So we have to conclude that even under the assumption that an account of
explanation as unification is, in principle, on the right track, Kitcher’s model
doesn’t tell the whole story yet. In general there is more to explanation than

¹⁷ At some point Kitcher does consider a modification of his account which goes beyond mere
quantitative comparisons, ‘so that, instead of merely counting the number of different patterns in a basis,
we pay attention to similarities among them’ (Kitcher, 1981, p. 521). And he mentions the existence
of a common core pattern as another criterion that determines the best systematization. However, he
makes no attempt to precisely specify this criterion nor the ways in which it is to be balanced against
the other criteria. So it is not clear at all how it should be implemented.
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unification in Kitcher’s sense, a more fine-grained analysis of different types of
unification seems to be needed.

6.5 Stringency and spurious unification

Let’s now return to EI(K), the systematization of K whose basis contains only a
single argument pattern and which is thus ranked best by Kitcher’s model. We
want to discuss (and dispel) a worry one might have concerning this ranking
and the resulting criticism of Kitcher’s model. In fact, this kind of worry or
objection which invokes the notion of stringency has been voiced on several
occasions when this paper was presented.

So far in our exposition and discussion of Kitcher’s theory the stringency
criterion has played no role. What does it consist in? Kitcher proposes ‘that
scientists are interested in stringent patterns of argument, patterns which contain
some non-logical expressions and which are fairly similar in terms of logical
structure’ (Kitcher, 1981, p. 518). The stringency of an argument pattern is
determined by two different constraints concerning two respects in which
argument patterns may be similar.

Derivations may be similar either in terms of their logical structure or in terms
of the nonlogical vocabulary they employ at corresponding places. The notion
of a general argument pattern allows us to express the idea that derivations
similar in either of these ways have a common pattern. [...] To capture the
notion that one pair of arguments is more similar than another pair, we need
to recognize the fact that general argument patterns can demand more or less
of their instantiations. If a pattern sets conditions on instantiations that are more
difficult to satisfy than those set by another pattern, then I shall say that the former
pattern is more stringent than the latter. The stringency of an argument pattern is
determined in part by the classification, which identifies a logical structure that
instantiations must exhibit, and in part by the nature of the schematic sentences
and the filling instructions, which jointly demand that instantiations should have
common nonlogical vocabulary at certain places. (Kitcher, 1989, p. 433)

Apart from these rather general remarks Kitcher does not give us much to
go on. He just sketches the main idea ‘without trying to provide an exact
analysis of the notion of stringency’ (Kitcher, 1981, p. 518; cf. also Kitcher,
1989, p. 433). In spite of this vagueness stringency is supposed to be one of
the factors which determine the unifying power of a basis, since that unifying
power is supposed to vary directly with the stringency of the patterns in
the basis (cf. Kitcher, 1981, p. 520; Kitcher, 1989, p. 435). However, in the
absence of an exact definition of stringency and a precise, workable account of
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how stringency should be weighted against the other criteria, size of conclusion
set and size of the basis, it is impossible to incorporate the stringency criterion
into the determination of the best systematization of a given K. At one point
Kitcher even suggests that the notion of stringency could be clarified through
the notions of explanation and unification (cf. Kitcher, 1981, p. 519), thus
courting circularity. Due to all of these difficulties the stringency criterion
could not be employed in our discussion so far.

The only context in which Kitcher actually puts to use the concept
of stringency and formulates a workable requirement in terms of it is his
discussion of ‘spurious unifications’ which threaten to trivialize his account.
The problem is posed by trivial yet maximally encompassing systematizations
of our beliefs on the basis of single patterns like ‘from α&B infer α’ or,
even more simple, ‘from α infer α’, where ‘α’ is to be replaced by any
sentence we accept. In order to exclude such patterns Kitcher invokes the
criterion of stringency. As he points out, the mentioned systematizations are
indeed highly successful according to the criteria of generating a large number
of beliefs on the basis of a small number of patterns but they fail badly
in terms of stringency. That is, ‘both of the above argument patterns are
very lax in allowing any vocabulary whatever to appear in the place of α’
(Kitcher, 1981, p. 527). Hence they are (intuitively) non-stringent and should
be excluded.

Now, on the face of it, it might seem that a very similar case could be made
out against our systematization EI(K). To recall, EI(K) unifies the set K by
using the following single argument pattern, ‘TSP’ for short, which relies on
the Tarski–Seidenberg decision algorithm.

(1) F(ϕ) = x
(2) ψ

Here ‘ϕ’, ‘x’, and ‘ψ ’ are dummy letters, whereas F denotes (some fixed
specification of) a decision algorithm for K.

Filling instructions:

Replace ‘ϕ’ by a sentence s in the language of RCF.
Replace ‘x’ by the value, 0 or 1, of F at s.
Replace ‘ψ ’ by s, if F(s) = 1 and replace ‘ψ ’ by ¬s, if F(s) = 0

Classification:

The sentence (1) is a premise.
The sentence (2) follows from (1) by metatheory, i.e. by using facts about
the functioning of F.
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EI(K) comes out as the best systematization of K on Kitcher’s model, as
pointed out above, contrary to how it is considered from the perspective of
actual mathematical practice. This reveals a serious defect of Kitcher’s model.

Against this result one may object as follows. The account of Kitcher’s
model on which our ranking of EI(K) is based leaves out completely the
stringency criterion. Yet, the argument pattern TSP has exactly the same flaw
as the trivial argument patterns considered—and rejected—above. It allows
any vocabulary whatever (from the language of ordered fields) to appear in
the place of ‘ϕ’ and ‘ψ ’. Hence it, too, should be rejected as non-stringent.
In other words, taking into account the stringency criterion not only blocks
EI(K) from being ranked higher than EII(K) and EIII(K) but it even excludes
EI(K) altogether from the ‘competition’ as an inadmissible, spurious unification.
Hence it poses no threat to Kitcher’s model after all.

To see how much weight this objection indeed carries we have to evaluate
it not at the level of our intuitive concept of stringency but in light of the
explicit requirement Kitcher formulates to screen out spurious unifications.

If the filling instructions associated with a pattern P could be replaced by different
filling instructions, allowing for the substitution of a class of expressions of the
same syntactic category, to yield a pattern P′ and if P′ would allow the derivation
of any sentence, then the unification achieved by P is spurious. (Kitcher, 1981,
p. 527f )

This requirement in fact identifies as spurious the previously considered
trivial argument patterns since the filling instruction ‘α’ is to be replaced
by any sentence we accept’ can be generalized to ‘α’ is to be replaced by
any sentence’ thus allowing the derivation of any sentence. Kitcher further
illustrates and motivates his new requirement with respect to the following
argument pattern which might be used by ‘a group of religious fanatics’ to
explain and unify their beliefs about the world (cf. Kitcher, 1981, p. 528).

(1) God wants it to be the case that α.
(2) What God wants to be the case is the case.
(3) α

Filling instruction: ‘α’ is to be replaced by any sentence describing the
physical world.

This pattern is also identified by the new requirement as spurious since it
can be trivialized by changing the filling instruction to ‘α’ is to be replaced by
any sentence’. And Kitcher continues:

Why should patterns whose filling instructions can be modified to accommodate
any sentence be suspect? The answer is that, in such patterns, the nonlogical
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vocabulary which remains is idling. The presence of that nonlogical vocabulary
imposes no constraints on the expressions we can substitute for the dummy
symbols. (Kitcher, 1981, p. 528)

Now, is the pattern TSP in the same ball park as the other spurious
unifications we discussed? Does it, for instance, parallel in all the relevant
respects the pattern of the religious fanatics? Apparently TSP can in fact be
ruled out on the basis of the new requirement by a move which is analogous
to the ones previously considered. If we change the filling instruction

Replace ‘ψ ’ by s, if F(s) = 1 and replace ‘ψ ’ by ¬s, if F(s) = 0.
to

Replace ‘ψ ’ by any sentence (in the language of ordered fields).

we obtain a pattern which, apparently, allows the derivation of any old sentence
(in the given language). The problem with such a quick dismissal of TSP as
achieving merely a spurious unification is that this argument pattern imposes
more constraints on ‘ψ ’ over and above what is expressed by the filling
instruction concerning this dummy letter. Hence the simple modification
of the filling instruction above is not sufficient to license the derivation of
any old sentence. Even if the filling instruction concerning ‘ψ ’ is relaxed
completely, the part of the classification of the argument pattern is still in place
which specifies that sentence (2), i.e. ψ , follows from (1) by metatheory. And this
requirement is certainly not fulfilled just by any arbitrary sentence ψ . By
definition, the classification identifies the logical structure that instantiations
of a pattern must exhibit, which, to recall, is one of the two constraints that
determine the stringency of a pattern. Hence, in short, TSP is too stringent to
be ruled out by the new requirement.¹⁸ A valid complaint one might have
about TSP, however, is that it is too compressed, its classification somewhat
opaque, leaving in a perhaps misleading way certain elucidations to the filling
instructions. This can be remedied to some extent by bringing out more
clearly the structure and functioning of the argument pattern in the following
reformulation TSP′.

(1) F is some fixed specification of a decision algorithm for RCF.
(2) F(ϕ) = x

¹⁸ If—on a mistaken interpretation of the workings of filling instructions—one allowed the
possibility that the modified filling instruction overrides the classification in any given conflict between
them, such that indeed any sentence ψ could be derived, then this would yield in effect an incoherent
argument pattern or, rather, one wouldn’t be left with an argument pattern any more (in the original
sense of the word). If, on the other hand, the (modified) filling instruction does not interfere with the
classification—as it should be—then the modification has no effect on the functioning of the pattern.
In particular, this modification cannot render the pattern spurious.
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(3) F(ϕ) = 0 → ¬ϕ

(4) F(ϕ) = 1 → ϕ

(5) ψ

Here ‘ϕ’, ‘ψ ’ , and ‘x’ are dummy letters.

Filling instructions:

Replace ‘ϕ’ by a sentence in the language of RCF.
Replace ‘ψ ’ by a sentence in the language of RCF.
Replace ‘x’ by ‘0’ or ‘1’.

Classification:

Sentence (1) is a premise.
Sentence (2) follows from (1) by metatheory, i.e. by using facts about the
functioning of F.
Sentences (3) and (4) also follow from (1) using facts about the functioning
of F.
Sentence (5) follows from (2) together with either (3) or (4) by Modus
Ponens.

In this reformulation the filling instructions only specify the syntactic categories
of the expressions to be substituted for the dummy letters without making any
reference to semantic, logical, or epistemic features of these expressions. There
has to be a rigorous separation between, on the one hand, filling instructions
qua purely syntactical constraints on substitutions for dummy letters and the
classification, on the other hand, which specifies inferential characteristics
of the schematic argument, i.e. puts in effect further constraints on those
substitutions based on (deductive or inductive) logical relationships between
sentences in the argument and/or theories in the background. Maintaining
this separation sets TSP′ apart from argument patterns which achieve only
spurious unifications. The filling instructions of, e.g. the pattern of self-
derivation (‘from α infer α’) or the theological pattern involve the notion
of the acceptance of sentences. Thus all (or almost all) of the work is done
by these kind of filling instructions, which ensure that a particular type of
conclusion (for instance, accepted sentences describing the physical world) is
generated by such patterns. Neither the structure of the schematic argument
nor the classification really contribute anything to this ‘unification’. As Kitcher
put it, the remaining nonlogical vocabulary in such patterns is idling. The
real work of unifying beliefs is only mimicked by the filling instructions, i.e.
by appropriate restrictions on the sentences to be substituted for the dummy
letters (cf. Kitcher, 1981, p. 527). And that’s precisely why such patterns can
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be trivialized by varying (i.e. generalizing) their filling instructions. In sharp
contrast, the nonlogical vocabulary in TSP′, the name ‘F’ of the decision
algorithm for RCF , is not idling, the presence of it does pose constraints on the
(combination of) the expressions we can substitute for ‘ϕ’, ‘ψ ’, and ‘x’. Hence
TSP′ cannot be turned into a pattern that yields any sentence whatsoever by
modifying the filling instructions. Its classification does not allow that. In fact,
the filling instructions, due to their purely syntactic character, are already stated
in the utmost generality and cannot be generalized any further (as could easily
be done in case of the spurious unifications).

To sum up, in Kitcher’s framework EI(K) cannot be dismissed as spuri-
ous because of non-stringency; it clearly passes the test based on the new
requirement. The problem posed by this systematization for Kitcher’s model
of mathematical explanation won’t thus go away.
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Appendix

Axioms for real closed fields

(i) Axioms for fields
∀x∀y∀z(x+ (y+ z) = (x+ y)+ z)

∀x∀y(x+ y = y+ x)

∀x(x+ 0 = x)

∀x∃y(x+ y = 0)

∀x∀y∀z(x · (y · z) = (x · y) · z)

∀x∀y(x · y = y · x)

∀x(x · 1 = x)

∀x∀y∀z(x · (y+ z) = (x · y)+ (x · z)

∀x(x �= 0 → ∃y(x · y = 1)

0 �= 1

(ii) Order axioms
∀x∀y∀z(x ≤ y&y ≤ z → x ≤ z)

∀x∀y(x ≤ y&y ≤ x → x = y)
∀x(x ≤ x)

∀x∀y(x ≤ y ∨ y ≤ x)

∀x∀y∀z(x ≤ y → x+ z ≤ y+ z)

∀x∀y∀z(x ≤ y&0 ≤ z → x · z ≤ y · z)

(iii) ∀x∃y(x = y2 ∨ −x = y2)

(iv) For each natural number n, the axiom
∀x0∀x1 ... ∀x2n∃y(x0 + x1 · y+ x2 · y2 + ...+ x2n · y2n + y2n+1 = 0)
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7

Purity as an Ideal of Proof
MICHAEL DETLEFSEN

7.1 The Aristotelian ideal of purity

The topic of this chapter—‘purity’ of proof—received its classical treatment
in the writings of Aristotle. It was part of his theory of demonstration, which
was set out in the Posterior Analytics.

Aristotle presented purity as an ideal. Proofs lacking it were not necessarily
worthless, but they did not provide highest or best knowledge of their
conclusions. It was thus a quality of highest or best proof.

Aristotle presented the ideal in the form of a prohibition against what he
termed metabasis ex allo genos, or crossing from one genus to another in the
course of a proof.

To sum up, then: demonstrative knowledge must be knowledge of a necessary
nexus, and therefore must clearly be obtained through a necessary middle term;
otherwise its possessor will know neither the cause nor the fact that his conclusion
is a necessary connexion. ...

It follows that we cannot in demonstrating pass from one genus to another. We
cannot, for instance, prove geometrical truths by arithmetic.¹

Aristotle (anc1), 75a29–75b12

The prohibition against crossing from one genus to another in the course
of an argument had various motives. Among them were Aristotle’s opposition
to (i) the Pythagoreans’ reduction of all things to number (cf. Aristotle (anc3),
1036b8–21), (ii) the related view that all things ultimately have but a single
basic Form (loc. cit.), and (iii) Plato’s conception of dialectic as a kind of ‘master
science’ (cf. Plato (anc2), 55d–59d; Plato (anc3), 533b, c; Aristotle (anc1),

¹ In a later passage (cf. Aristotle (anc1), 76a22–25), Aristotle sanctioned the use of metabasis between
a science and its subordinates. Thus, geometrical argument could be used in mechanics and optics, and
arithmetical arguments in harmonics.
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76a37–40, 77a26–35, 78a10–13). Perhaps most fundamental, though, was
Aristotle’s view of the preconditions required for the extension of knowledge
through argumentation.

All instruction given or received by way of argument proceeds from pre-existent
knowledge. ... The mathematical sciences and all other speculative disciplines are
acquired in this way ...

The pre-existent knowledge required is of two kinds. In some cases admission of
the fact must be assumed, in others comprehension of the meaning of the term
used, and sometimes both assumptions are essential.

Aristotle (anc1), 71a1–4; 12–14

For Aristotle, then, the development of mathematical knowledge was in
large part development by reasoning and such development depended on prior
knowledge of its topic or subject. Specifically, it demanded knowledge of the
‘what’ of its topic.

Conservation of topic was thus built into Aristotle’s conception of how
knowledge develops through inference and was itself an important aspect of
purity. There was in addition, however, another basis for purity, namely, the
need for a necessary connection between the subject and predicate of a theorem.

We ... possess unqualified scientific knowledge of a thing ... when we ... know
the cause (aitia) on which the fact depends as the cause of the fact and of no
other, and, further, that the fact could not be other than it is.

Aristotle (anc1), 71b9–12

To secure such a connection, mathematical demonstrations had ultimately
to be based on knowledge of their subjects’ essences.

The ‘why’ is referred ultimately ... in mathematics ... to the ‘what’, to the defin-
ition [horos] of straight line or commensurable or the like ...

Aristotle (anc4), 198a16–18²

In Aristotle’s view, then, purity increased epistemic quality. A pure proof
provided knowledge that the predicate of its conclusion (the minor term of the
proof ) held of its subject (the major term) solely because of what the subject
in itself was. It showed the very whatness (i.e. the essence) of the subject of a
theorem to be the ‘cause’ of its having the property expressed by its predicate.

² See also Aristotle (anc2), 90a31–33, where it is stated that:

... to know what a thing is [ti estin] is the same as to know why it is [dia ti estin] ... and this is
equally true of things in so far as they are said without qualification to be as opposed to being
possessed of some attribute, and in so far as they are said to be possessed of some attribute such
as equal to right angles, or greater or less.
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There are wider indications of concern to avoid metabasis in the writings
of ancient mathematicians. Perhaps most notable in this connection are the
cautions sounded repeatedly by Archimedes in his Method.³ There he states that
though his mechanical arguments are useful for discovering truths and their
proofs, they themselves are not proofs.

I thought fit ... to explain ... a certain method, by which it will be possible ... to
investigate ... problems in mathematics by means of mechanics. This procedure
is ... no less useful even for the proof of the theorems themselves; for certain
things became clear to me by a mechanical method, although they had to be
demonstrated by geometry afterwards because their investigation by the said
method did not furnish an actual demonstration.

Archimedes (anc), 13

Archimedes thus appears to have accepted mechanical methods as useful
instruments of discovery in geometry—discovery both of their truth and of
their proper geometric proofs. He was therefore in substantial agreement with
Aristotle as regards the place and significance of purity as a condition on
demonstration.⁴

7.2 Neo-Aristotelian ideals of purity

Aristotle’s ‘causal’ conception of proof was influential for a long time, and
among both mathematicians and philosophers. A prime example is Leibniz,
who echoed Aristotle in distinguishing two types of reasons or grounds, one a
ground of belief, the other a ground of truth.

A reason is a known truth whose connection with some less well-known truth
leads us to give our assent to the latter. But it is called a ‘reason’, especially and
par excellence, if it is the cause not only of our judgment but also of the truth
itself—which makes it what is known as an ‘a priori reason’. A cause in the realm
of things corresponds to a reason in the realm of truths, which is why causes
themselves—and especially final ones—are often called ‘reasons’.

Leibniz (1764), 476 (Bk. IV, ch. xvii, §3)

³ Pappus’ classification of geometrical problems into linear, planar, and solid should also be mentioned
here since it reflected a similar (and earlier) concern for purity among mathematicians.

It appears to be no small error for geometers when a plane problem is solved by conics or other
curved lines, and in general when any problem is solved by an inappropriate kind, as in the
problem concerning the parabola in the fifth book of the Conics of Apollonius.

Pappus (anc), 351

⁴ For further discussion see Livesey (1982, Ch. 2).
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The objective grounding relationship induced an objective (partial) ordering
of truths, and it was this ordering that Leibniz was interested in.

... we are not concerned here with the sequence of our discoveries, which differs
from one man to another, but with the connection and natural order of truths,
which is always the same.

Leibniz (1764), 412 (Bk. IV, ch. vii, §9)

Such an ordering of truths suggests a parallel conception of purity: pure
proof is proof which recapitulates a segment of the natural, objective ordering
of truths concerning a given subject.

In the early years of the 19th century, Bolzano also articulated such
an idea and applied it to the reformation of mathematics generally, and
particularly to analysis.⁵ It comprised, indeed, a prime motive of his early
attempts to ‘arithmetize’ analysis. This arithmetization, or, perhaps better,
this de-geometrization, was wanted in order to combat what Bolzano saw as
a pervasive type of circularity in proofs in analysis—a circularity borne of
impurity.⁶

The impurity represented by the importation of geometrical considerations
into the proofs of genuinely algebraic or analytic theorems had serious con-
sequences. In particular, it inverted the objective ordering of truths. In so
doing, it introduced circularities of reasoning into analysis.⁷ More particularly,
a geometrical proof presented a theorem of analysis θ1 as depending on a
geometrical theorem θ2 when, in fact, the opposite is true.

⁵ Bolzano also vigorously pursued reform in geometry, including, perhaps especially, elementary
geometry. In his view, not even a proper theory of triangles and parallels had been given. This was
because a proper theory—that is, a properly pure theory—would be based solely on a theory of the
straight line. Yet all past attempts had presupposed axioms of the plane, axioms the proper founding of
which would itself require a theory of triangles. Bolzano was thus convinced that

... the first theorems of geometry have been proved only per petitionem principii; and even if this
were not so, the probatio per aliena et remota [proof by alien and remote elements, MD] ... must
not be allowed.

Bolzano (1804, 174)

Bolzano’s thinking here is reminiscent of the ancient division of geometrical problems into linear,
planar, and solid that Pappus emphasized. Bolzano also opposed the long standing common practice
of appealing to motion in the proof of ‘purely geometrical truths’ (op. cit., 173). See Mancosu (1996,
Ch. 1) for a useful discussion of the early modern controversy concerning such appeals.

⁶ At approximately the same time, Lagrange pursued a different purification program, one which
urged the liberation of analysis from the kind of dependency on motion encouraged by Newton’s
conception of fluxions. He claimed that to introduce motion into a calculus that had only algebraic
quantities as its objects was to introduce an alien or extraneous idea (une idée étrangère). Cf. Lagrange
(1797, 4).

⁷ Not every ‘departure from’ an ordering need be an ‘inversion of’ certain of its elements. Bolzano’s
argument seems, however, to require this latter, narrower conception of ‘departing’ from an ordering.
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Analysis, or the general theory of quantity, was more basic than geometry,
the science of spatial quantities. In many instances, then, a proper (i.e. a
properly pure) proof of a geometrical theorem θ2 would derive from a more
basic, general theorem of quantity θ1. In such cases, an impure proof of the
more general θ1 from the more particular θ2 would, in effect, amount to a
circular grounding of θ2 on itself.

Bolzano was thus convinced that, in analysis, ‘geometrical proof is, ... in
most cases, really circular’ (Bolzano, 1817a, 228). He therefore set out to
purge analysis of its geometrical contaminations. His best known work in this
connection is his purely analytic proof (rein analytischer Beweis) of the intermediate
value theorem—the theorem that for a real function f continuous on a closed
bounded interval [a, b], for every µ, f (a) < µ < f (b), there is a ν, a < ν < b,
such that f (ν) = µ. There are other important examples as well.⁸

Bolzano termed ‘purely analytic’ those methods by which one function is
derived from others by means of rules that are completely independent of
the particular natures of the quantities involved (cf. Bolzano (1817b), English
translation in Ewald (1996), vol. I, 225, fn. a). Pure proof, he maintained, is
proof in which the generality of the methods used fits the generality of the
theorem proved. The intermediate value theorem expresses a general truth
concerning quantities, not one that holds merely for spatial or geometrical
quantities. A proper proof of it ought not, therefore, appeal to truths peculiar
to the latter.

The usual proofs of the theorem did just that, however. In particular, they
made use of the following ‘truth borrowed from geometry’ (Bolzano, 1817a,
228): every continuous line of simple curvature of which some ordinate values are positive
and some negative must intersect the x-axis at a point between the positive and negative
ordinate values.

Bolzano acknowledged that this was an evident truth of geometry. Indeed,
he described it as ‘extremely evident’ (cf. Bolzano, 1817a, 228). This notwith-
standing, he believed that it had no place in a proof of the intermediate value
theorem. It was, he maintained,

... an intolerable offense against correct method to derive truths of pure (or
general) mathematics (i.e. arithmetic, algebra, analysis) from considerations which
belong to a merely applied (or special) part, namely, geometry. Indeed, have we
not felt and recognized for a long time the incongruity of such metabasis eis allo
genos? Have we not already avoided this whenever possible in hundreds of other

⁸ Cf. op. cit., §13, where Bolzano proves a version of the Bolzano–Weierstrass theorem which,
in its contemporary analytic formulation, says that every bounded infinite sequence has a convergent
subsequence.
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cases, and regarded this avoidance a merit? ... if one considers that the proofs
of the science should not merely be confirmations (Gewissmachungen), but rather
justifications (Begründungen), i.e. presentation of the objective reason for the truth
concerned, then it is self-evident that the strictly scientific proof, or the objective
reason, of a truth which holds equally for all quantities, whether in space or not,
cannot possibly lie in a truth which holds merely for quantities which are in space.

Bolzano (1817a, 228)

By eliminating such appeals to geometric truths, Bolzano’s proof was, as he
saw it, more than ‘a mere confirmation (blosse Gewissmachung)’ (Bolzano, 1810,
233) of the intermediate value theorem. It not only made that theorem certain,
it gave its ‘objective justification’ (objektive Begründung) (loc. cit.). In so doing, it
achieved the ideal of ‘genuinely scientific’ (echt wissenschaftlich) (loc. cit.) proof.

Bolzano’s determination to free analysis of impure geometrical influences
recalls similar earlier themes of Descartes and Wallis. Wallis, for example,
defended his use of algebraic methods in geometry on grounds of superior
objectivity. This objectivity was, he believed, borne of the fact that some of
the properties of geometrical figures (specifically, in Wallis’ view, properties
concerning their rectification, quadrature, and cubature) reflect properties that
the figures have in themselves, so to say, and independently of how they might
be constructed (cf. Wallis, 1685, 291, 292–293, 298–299). In Wallis’ view,
then, objectivity in geometry actually required the use of algebraic methods.

Bolzano held an in some ways similar view, arguing that the persistent
misuse of geometrical reasoning in analysis was due to a lingering confusion
between theoretical and practical mathematics and the associated mistake of
taking a mathematical object to be real (wirklich) only to the extent that it was
constructible by certain means (cf. Bolzano, 1810, 218). In this respect, then,
he was more neo-Platonist than neo-Aristotelian.

Bolzano also pointed out (cf. Bolzano, 1817a, 227, 232) similar misgivings
in Gauss, misgivings which Gauss directed at the use of geometrical reasoning
in his first (1799) proof of the fundamental theorem of algebra.⁹ Gauss later
expressed similar concerns regarding his geometrical interpretation of the
complex numbers.

The representation (Darstellung) of the imaginary quantities as relations of points
in the plane is not so much their essence (Wesen) itself, which must be grasped
in a higher and more general way, as it is for us humans the purest or perhaps a
uniquely and completely pure example of their application.

Gauss (1870–1927, vol. X, 106)¹⁰

⁹ Gauss (1799). ¹⁰ Letter to Moritz Drobisch, 14 August 1834.
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Later still, and in terms strongly reminiscent of Bolzano’s earlier assessment of
the usual proofs of the intermediate value theorem, Gauss further observed that

... the real content (eigentliche Inhalt) of the entire argumentation belongs to a
higher realm of the general, abstract theory of quantity (abstracten Grössenlehre),
independent of the spatial. The object of this domain, which tracks the continuity
of related combinations of quantities, is a domain about which little, to date, has
been established and in which one cannot maneuver much without leaning on a
language of spatial pictures (räumlichen Bildern).

Gauss (1870–1927, vol. III, 79)¹¹

Like Bolzano, then, Gauss too was concerned for purity in analysis. Less
clear is whether he shared Bolzano’s views concerning the historical reasons
for impurity and the circularities of reasoning he took it to represent.¹²

In truth, though, avoidance of circularity was not Bolzano’s only reason for
advocating purity. Indeed, it was not his principal reason. More fundamental
was his acceptance of the traditional distinction between two types of reasoning
in mathematics and in science generally. These were (i) confirmatory reasoning,
or reasoning which convinces that (what Bolzano termed Gewissmachung),
and (ii) reasoning which reveals the objective reasons for truth (objektive
Begründung).¹³ The former, he observed, falls short of the latter: ‘the obviousness
(Evidenz) of a proposition does not absolve me of the obligation to look for a
proof of it’ (Bolzano, 1804, 172).

Bolzano pointed to the earliest instances of proof as his inspiration. Thales,
he said, did not settle for knowledge that the angles at the base of an isosceles tri-
angle are equal, though this was doubtlessly evident to him. Rather, he pressed
on to understand why. In so doing, he was rewarded by an extension of his
knowledge. Specifically, he obtained knowledge of those truths that implicitly
underlay common-sense belief in the theorem. Since these were ‘new truths
which were not clear to common sense’ (op. cit., 173), his knowledge was
thereby extended.

In addition, it promoted the further extension of his knowledge, both by
increasing its reach and by improving its efficiency. It increased its reach
because ‘if ... first ideas are clearly and correctly grasped then much more can

¹¹ This is from the Jubiläumschrift of 1849, where Gauss was commenting on the use of geometrical
methods to prove the existence of roots of equations.

¹² Also problematic is how to harmonize Gauss’ view of the impurity caused by the use of geometrical
reasoning in analysis with the contrast he drew between the created character of number and the objective
character of space (cf. 1817 letter to Olbers, Gauss (1976), 651–652; 1829 letter to Bessel, Gauss
(1870–1927), vol. VIII, 200; Gauss (1832), 313, fn.1).

¹³ See Cicero (anc., 459–460); Ramus (1574, 17, 71, 93–94); Viéte (1983, 28–29); Arnauld (1662,
302); Wallis (1685, 3, 290, 305–306), among others, for earlier statements of this distinction.
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be deduced from them than if they remain confused’ (Bolzano (1804), 172).
It improved efficiency because learning is easier when concepts are ‘clear,
correct, and connected in the most perfect order’ (loc. cit.). We must therefore

... regard the endeavour of unfolding all truths of mathematics down to their
ultimate grounds, and thereby providing all concepts of this science with the
greatest possible clarity, correctness, and order, as an endeavour which will not
only promote the thoroughness of education but also make it easier.

Bolzano (1804, 172)

The discipline of purity thus promised to increase the extent of our
knowledge while at the same time increasing our capacity to extend it further.
We are thus to imitate Thales. That is, we are to look ‘inside’ theses, to analyze
their concepts into constituent concepts and to excavate the basic truths that
concern these sub-concepts. We are not to make use of conceptual resources
outside those of the given thesis. Bolzano’s basic recommendation was thus
that we should not rest content with a proof

... if it is not ... derived from concepts which the thesis to be proved contains, but
rather makes use of some fortuitous alien, instrumental concept (Mittelbegriff)¹⁴,
which is always an erroneous metabasis eis allo genos.

Bolzano (1804, 173)

All in all, then, Bolzano saw purity as serving a variety of epistemic ends. First,
by forcing us to look behind the ‘obvious’, it revealed hitherto unnoticed truths,
the revelation of which increased the extent of our knowledge. Secondly, it
promised to improve efficiency through the clarification of the concepts that
appear in a thesis. Concepts are easier to grasp (and therefore easier to develop)
the clearer they and their connections with other concepts are. Thirdly, purity
protected against the circularities, and the attendant epistemic futility, that
marked so many of the proofs of 18th and 19th century analysis and traditional
elementary geometry.

Later 19th century mathematicians also acknowledged the need, or at least
the virtue of purity. They acknowledged, in particular, the importance of
purging geometrical reasoning from analysis. Moreover, their reasons were,
if anything, even more pressing than Bolzano’s. For while Bolzano accepted
the reliability of ordinary geometrical reasoning (at least in his early writings),
later thinkers did not, or at least not generally. Weierstrass’ example of an
everywhere continuous but nowhere differentiable function cast doubt on

¹⁴ The translation in the Ewald volume by Stephen Russ renders ‘Mittelbegriff’ as ‘intermediate
concept’. I think it is more in keeping with Bolzano’s ideas to take ‘Mittel’ in the sense of a ‘means’ or
‘instrument’.
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even the reliability of geometrical thinking as regards continuity phenomena.¹⁵
Analysts of the latter half of the 19th century thus had, if anything, even
stronger reasons to try to rid analysis of geometrical thinking.

An important example is Dedekind, who expressed his commitment to
purity this way:

In discussing the notion of the approach of a variable magnitude to a fixed limiting
value ... I had recourse to geometric evidences. Even now such resort to geometric
intuition ... I regard as exceedingly useful, from the didactic standpoint ... . But
that this form of introduction into the differential calculus can make no claim to
being scientific, no one will deny. For myself this feeling of dissatisfaction was so
overpowering that I made the fixed resolve to ... find a purely arithmetical and
perfectly rigorous foundation for the principles of infinitesimal analysis.

Dedekind (1872, 1–2)

Elsewhere Dedekind stated as the first procedural demand on his theory of
algebraic integers that ‘arithmetic remain free from intermingling with foreign
elements (mélange d’éléments étrangers)’ (Dedekind, 1877, 269). This meant for
him that ‘the definition ... of irrational number ought to be based on phenom-
ena one can already define clearly in the domain R of rational numbers’ (loc. cit.).

Dedekind’s fellow logicist, Frege, also accepted purity as an ideal. Indeed,
he described it as a principal motive for his logicist program, one which set it
apart from the misbegotten attempt by Gauss to found complex arithmetic on
geometry.¹⁶

The overcoming of this reluctance [to accept complex numbers, MD] was
facilitated by geometrical interpretations; but with these, something foreign was
introduced into arithmetic. Inevitably there arose the desire of ... extruding these
geometrical aspects. It appeared contrary to all reason that purely arithmetical
theorems should rest on geometrical axioms; and it was inevitable that proofs
which apparently established such a dependence should seem to obscure the true
state of affairs. The task of deriving what was arithmetical by purely arithmetical
means, i.e. purely logically, could not be put off.

Frege (1885, 116–117)¹⁷

¹⁵ Bolzano himself discovered a function of this type in 1834. The work in which this was done
(namely, Bolzano, 1834, §75), however, was not published until 1930.

¹⁶ As noted above, Gauss himself conceded the impurity of his geometrical interpretation in his
later writings. In his 1831 essay, however, he credited it with providing a sensible representation of
the complexes ‘that leaves nothing to be desired’ (Gauss, 1832, 311). ‘[O]ne needs’, he said, ‘nothing
further to bring this quantity [i.e.

√−1, MD] into the domain of the objects of arithmetic’ (Gauss,
1832, 313). It should perhaps also be noted here that, towards the end of his life, Frege returned to the
idea of a geometrical foundation for arithmetic.

¹⁷ See Frege (1884, §§103–104) for similar statements.
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Purity was thus widely accepted as an ideal of proof in 19th century
mathematics. This notwithstanding, it was not without its detractors. These
included such eminences as Hilbert and Klein. Hilbert viewed purity as a
‘subjective’ ideal (cf. Hilbert, 1899, 106–107).¹⁸ The important thing, he said,
is that we learn as much as we can about the different means by which a given
theorem or body of theorems can be proved. Pure proofs—that is, proofs
that concern themselves only with the concepts contained in the theorems
proved—are therefore part of what we want to know. They are, however,
only part and are not inherently more interesting or valuable than proofs that
draw upon other conceptual resources.

Klein believed that much of mathematics, including much of analysis,
ought in many instances to be confirmed by geometrical intuition. In addi-
tion, he believed that without ‘constant use’ of geometrical intuition the
proof of some of the most interesting and important analytic results concern-
ing continuity would be impossible, at least practically speaking (cf. Klein,
1894, 45).

He also challenged purity in the other direction. That is, he proposed a
system of axioms for geometry that made use of analytic ideas and methods,
and, generally speaking, he recommended this system for its efficiency. At the
same time, he decried the resistance of geometers to this simple approach, a
resistance he also attributed to traditional ideas of purity, in this case those
embodied in the retrograde refusal to use numbers in geometry (cf. Klein,
1925, 160).

Promoting efficiency as a more compelling ideal than purity was hardly a new
attitude, however. It was, indeed, at the core of 17th, 18th, and 19th century
debates concerning the use of algebra in geometry (cf. Wallis, 1685, 117–118,
305–306; MacLaurin, 1742, 37–50) and, relatedly, the division of mathematical
reasoning into methods of discovery and methods of demonstration.

7.3 Purity as a contemporary ideal

Purity has thus come into conflict with other ideals of mathematical reasoning,
conflicts which, at best, have been only partially resolved. This unresolved

¹⁸ The subdivision of axioms in Hilbert’s Grundlagen bespeaks a moderate concern for purity, and
one that’s reflected in the larger organization of the book. Thus, for example, Ch. I, §4 is entitled
‘Consequences of the axioms of incidence and order’ and Ch. I, §6 ‘Consequences of the axioms of
congruence’. His intention, he said, was to deduce the most important theorems in such a way as to
bring to light ‘the meaning of the various groups of axioms, as well as the significance of the conclusions
that can be drawn from the individual axioms’ (Hilbert, 1899, 2).
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conflict has not, however, driven purity into exile. Indeed, it remains a
common ideal of proof today. Somewhat more accurately, there are different
ideals of (and, not coincidentally, motives for) purity today, and these are
reflected in actual mathematical practice. I’ll now briefly survey the more
important of these.

7.3.1 Topical purity

A natural point of departure is the prime number theorem¹⁹ and the well-
known search for its ‘elementary’ proof, a search which culminated in the
more or less independently developed proofs of Selberg and Erdös in 1948
(see Selberg (1949) and Erdös (1949)). The theorem was, of course, proved
a half century earlier (1896) by non-elementary means, again independently,
by Hadamard and de la Vallée Poussin. Both their proofs relied heavily on
methods from complex analysis.

The proofs of Selberg and Erdös avoided such methods, and it was this
avoidance which, at least in Selberg’s view (Selberg, 1949, 305), qualified them
as elementary.

Gian-Carlo Rota gave a useful digest of the developments leading up to
Selberg’s and Erdös’ proofs in Rota (1997b). Among other things, he pointed
out that it should be seen as a natural continuation of earlier work of Norbert
Wiener’s, work which suggested that there might be a ‘conceptual underpinning
to the distribution of the primes’ (Rota, 1997b, 115, emphasis added). This,
he said, was the primary motivation for looking for an elementary proof
since it encouraged the idea that the prime number theorem might have
a proof that proceeds from the analysis of the concept of prime number
itself.

Rota thus proposed the following understanding of the notion of elementary
proof in the setting of the prime number theorem.

What does it mean to say that a proof is ‘elementary?’ In the case of the prime
number theorem, it means that an argument is given that shows the ‘analytic
inevitability’ (in the Kantian sense of the expression) of the prime number

¹⁹ The prime number theorem is the theorem that for any real number x, the number of primes
not exceeding x (commonly expressed by the so-called ‘prime counting’ function and written ‘π(x)’)
is asymptotic to x

ln x .
The reader should recall that for all x, y, ln x = y iff ey = x, where e = limn→∞

(
1+ 1

n

)n
. To say

that π(x) is asymptotic to x
ln x is to say that the ratio of π(x) to x

ln x approaches 1 as x approaches
infinity. As Selberg pointed out in his paper, it is possible to eliminate all references to limits in the
proof he gave. That done, he also noted, the appeal to limits in the statement of the theorem would
also have to change.
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theorem on the basis of an analysis of the concept of prime without appealing to
extraneous techniques.

Rota (1997b, 115)

Parallels to the Aristotelian and neo-Aristotelian conceptions of purity could
hardly be more striking, and they suggest that purity of a broadly Aristotelian
type continues to function as an ideal among contemporary mathematicians.
This is also suggested by the notice that was taken of Selberg’s and Erdös’ proofs,
notice which resulted in Selberg’s being awarded the Fields Medal in 1950. The
theorem itself was old.²⁰ What was new was the elementary proof, where ‘ele-
mentary’, in this case, meant something like what we mean by ‘topically pure’.

The proof took what had been a mystery (the relationship of the density
of the primes to the Riemann zeta function, as presented in the proofs of
Hadamard and de la Vallée Poussin) into something rooted in the concept of
a prime number itself.²¹ The result was thought to be remarkable.

Such views of the significance of the elementary proof of the prime number
theorem have been voiced by mathematicians other than Rota. Thus, in a
review of Selberg’s and Erdös’ work, A. E. Ingham described their proofs as
‘not depending on ... ideas remote from the problem itself’ (Ingham, 1949,
595). Indeed, well before their work he challenged the use of analytic methods
in proving such theorems on the grounds that they ‘introduce ideas very
remote from the original problem’ (Ingham, 1932, 5). In a similar spirit,
H. G. Diamond praised the use of elementary methods in solving problems
concerning the distribution of the primes more generally because ‘they do
not require the introduction of ideas so remote from the arithmetic questions
under consideration’ (Diamond, 1982, 556).

The elementary proof of the prime number theorem is thus a potent
illustration of the continuing concern for broadly Aristotelian purity among
mathematicians. It is, however, by no means unique. In fact, purity seems
to be a common concern among combinatorists generally. A good example
is a recent paper by Stanton and Zeilberger in which they motivate their
project by observing that ‘[t]o a true combinatorialist, a combinatorial result
is not properly proved until it receives a direct combinatorial proof’ (Stanton and
Zeilberger, 1989, 39). They also offer an interesting suggestion concerning the
benefit of such proof—namely, the added ‘insight’ it gives to the combinatorist.

The idea seems to be that (i) a specialist is most likely to do something
significant with any solution to a problem in her specialty, that (ii) this

²⁰ As Rota put it, it ‘had been cooked in several sauces’ (Rota, 1997b, 114).
²¹ Or this concept plus, perhaps, certain related concepts necessary in order to see it as a genuinely

combinatory problem.
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advantage is enhanced if a solution is given in terms of concepts most familiar
to her, and that (iii) the purer the proof the more it conforms to this type of
solution. Viewed this way, purity is a pragmatic virtue, albeit one which serves
epistemic ends (namely, the effective utilization of knowledge to produce more
knowledge). It does not itself constitute an epistemic virtue; a pure proof is
not, sheerly by dint of its purity, a better justification of the theorem it proves.
It is, however, a more effective instrument for gaining further knowledge.
We see here, then, a suggestion of the idea that purity generally increases the
effectiveness of divisions of epistemic labor based on specialization.²²

Purity is thus a common concern among combinatorialists. It is not, however,
unique to them. Indeed, it extends across a wide range of mathematical fields,
and has been of concern both to researchers and educators throughout the
20th century.

A simple illustration is the search for a pure proof of the Erdös–Mordell
theorem. (Let ABC be a triangle and P be a point in its interior. Construct
perpendiculars from P to each of the sides, letting the points of intersection
be A′, B′, C′, respectively. The Erdös–Mordell theorem says that PA+ PB+
PC ≥ 2(PA′ + PB′ + PC′).) Finding an elementary proof of this theorem was
a going concern in the middle decades of the 20th century, one that ended in
success in the late 1950s (cf. Kazarinoff, 1957; Bankoff, 1958).

Still other examples include Formanek (1973), Edmonds (1986), Gilmer and
Mott (1971), and Woo (1971). The first gives a proof of a theorem of algebra
(the Eakin–Nagata theorem) the virtue of which is said to be that it uses only
definitions of terms contained in the theorem.²³ The second presents a purely
topological proof of a topological theorem and, like the case of Stanton and
Zeilberger mentioned above, it expresses the hope that such a proof will make
the theorem more ‘accessible’ to specialists.

The third concerns a theorem first proved by Abraham Robinson using
model-theoretic methods. This theorem, though algebraic in character, was said
by Robinson not to have an accessible purely mathematical proof independent
of his model-theoretic approach. The authors challenge this by providing a
purely algebraic proof.²⁴

I mention this because it points to a larger concern regarding purity,
namely, whether pure proofs always exist. This question, in turn, points to

²² Recall here the remark of Bolzano’s (from Bolzano, 1804, 172) quoted in Section 2 concerning
the advantages of purity not only for purposes of making education more thorough but of making it
easier and more efficient.

²³ The theorem states that if T is a commutative Noetherian ring finitely generated as a module
over a subring R, then R is also Noetherian.

²⁴ See Friberg (1973, 421) for a different example concerning algebraic purity.
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another basic question—namely, how the notion of topic ought rightly to be
conceived.

One facet of this question concerns how to judge what it is that a problem is
about. Suppose, for instance, that a problem is formulated as a problem concern-
ing the real roots of a certain type of polynomial equation. Suppose, in addition,
that these roots can only be found by methods that make ineliminable use of
complex numbers.²⁵ What should we then say our problem is about? Since all
the roots we’re interested in are reals, this suggests that the problem is about real
numbers. That is, it is about those things to which the terms appearing in it refer.

On the other hand, we might rather take our problem to be about those
things and concepts we seemingly must bring into our reasoning in order to
solve it.²⁶

The fourth paper mentioned above (i.e. Woo 1971) gives a proof of a
theorem from measure theory (the Lebesgue Decomposition Theorem) and
claims that this proof is purer than previous proofs in that it makes no appeal
to measure theory beyond the definitions needed to state the theorem. Here
again, though, it’s not entirely clear what the motive is. Specifically, it’s not
clear whether purity is being assumed to provide an epistemically superior
justification for the theorem proved, or a more effective instrument for
furthering certain larger epistemic (including, perhaps, pedagogic) projects.²⁷

In all these cases we see a concern for purity of a broadly topical type. The
motives are not always the same, though they seem generally to be directed
towards epistemic concerns—concerns, particularly, for the quality of solutions
offered to problems and the efficacy of such solutions as a foundation for the
further development of our mathematical knowledge.

7.4 Conclusion

The ideal of purity that seems to figure most significantly in modern
mathematical practice is what I’ve referred to here as topical purity. This

²⁵ I’m obviously thinking of the casus irreducibilis or irreducible case of the general cubic here.
²⁶ There are, of course, questions to be asked concerning the meaning of ‘must’ and ‘solve’. That

this is so, though, doesn’t make the question any less relevant, only more intricate.
²⁷ As regards pedagogic projects, the idea seems roughly to be that proofs ought to be conducted

with as little overhead as possible. Aristotelian purity would seem to constitute a minimum here. Surely
it would make no sense to try to prove a theorem if not enough defining had been done to make the
content of the theorem intelligible. On the other hand, once such a point has been reached, a proof
built upon exactly that learning would represent a remarkable pedagogical efficiency. For examples
linking purity with such motives see, Mullin (1964), Luh (1965), Spitznagel (1970), and Jenkins (1982).
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is purity which, practically speaking, enforces a certain symmetry between
the conceptual resources used to prove a theorem and those needed for the
clarification of its content. The basic idea is that the resources of proof ought
ideally to be restricted to those which determine its content.

There are two main views concerning the significance of such symmetry.
For Aristotelians, neo-Aristotelians (e.g. Leibniz and, to some extent, Bolzano)
and some neo-Platonists (e.g. Wallis and, to some extent, Bolzano), including
many working mathematicians (those mentioned plus, for example, Rota
and Ingham), it represents (or has represented) an epistemic ideal, a view
concerning the qualitative type of knowledge that proof ought, or at least might
ideally provide. According to this view, proof is at its best when it provides
knowledge of the most basic reasons why the proposition proved is true.

For others, including many working mathematicians, it has been more a
strategic or pragmatic ideal, albeit one serving epistemic ends. By this I mean
that it has not so much been prized for the knowledge it itself constitutes, as for
the knowledge it in some broadly pragmatic sense provides for.

In this latter connection, it has been characterized as ‘good discipline for
the mind’ (cf. Dieudonné, 1969, 12), a mental training that increases the
prover’s potential for future epistemic development. It has also been said
to improve efficiency in classroom learning by decreasing the time and the
conceptual distance that separates the definition of terms needed to understand
a proposition from the demonstration of that proposition (cf. fns. 22, 27, and
the quote from Bolzano (1804, 172) on p. 186). Finally, it has been thought to
improve the epistemic efficiency of a community by making better use of the
way(s) in which it divides labor. Pure proofs put theorems at the disposal of
those who, in terms of their training and expertise, are in the best position to
use them to develop further knowledge of the concepts involved.

Even for those who take a basically pragmatic view of the value of purity,
it is therefore generally true that they see it as serving epistemic ends, whether
of increased extent or of improved efficiency.
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Reflections on the Purity of
Method in Hilbert’s Grundlagen
der Geometrie
MICHAEL HALLETT

8.1 Introduction: The ‘Purity of Method’ in the
Grundlagen

The publication of Hilbert’s monograph Grundlagen der Geometrie in 1899
marks the beginning of the modern study of the foundations of mathematics.
In the Schlusswort to the book, Hilbert explicitly mentions the ‘purity of
method’ question. He states first that his book was guided by ‘the basic
principle’ of elucidating given problems in such a way as to decide whether
they can be answered in a ‘prescribed way with certain restricted methods’, or not so
answered, and then designates this as a general principle governing the search
for mathematical knowledge:

This basic principle seems to me to contain a general and natural prescription. In
fact, whenever in our mathematical work we encounter a problem or conjecture
a theorem, our drive for knowledge [Erkenntnistrieb] is only then satisfied when
we have succeeded in giving the complete solution of the problem and the
rigorous proof of the theorem, or when we recognise clearly the grounds for the

This paper is a much expanded version of talks given to the Logic Group of the Department of
Philosophy at Stanford in April 2004, and to the Annual Meeting of the Association of Symbolic
Logic in Pittsburgh in May 2004. An abbreviated talk based on it was given at the HOPOS Biennial
Conference in Paris in June 2006. I am grateful to the various participants for discussion and
comments, especially Yvon Gauthier, and to Bill Demopoulos and Dirk Schlimm, who suggested
helpful modifications to an earlier written version. I am also grateful to my fellow General Editors of
Hilbert’s unpublished lectures on foundational subjects, William Ewald, Ulrich Majer, and Wilfried
Sieg, for discussions on these and other issues over many years. The generous financial support of the
Social Sciences and Humanities Research Council of Canada is gratefully acknowledged.
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impossibility of success and thereby the necessity of the failure. (Hilbert (1899,
p. 89), p. 525 of Hallett and Majer (2004))

Hilbert goes on to stress the importance of impossibility proofs:

Hence, in recent mathematics the question as to the impossibility of certain
solutions or problems plays a very prominent role, and striving to answer a
question of this kind was often the stimulus for the discovery of new and
fruitful domains of research. By way of example, we recall Abel’s proof for the
impossibility of solving the equation of the fifth degree by taking roots, further
the establishment of the unprovability of the Parallel Axiom, and Hermite’s and
Lindemann’s proofs of the impossibility of constructing the numbers e and π in
an algebraic way. (Loc. cit., p. 89, p. 526 of Hallett and Majer (2004))

Hilbert now associates the basic principle explicitly with the idea of the ‘purity
of method’:

This basic principle, according to which one ought to elucidate the possibility of
proofs, is very closely connected with the demand for the ‘purity of method’ of
proof methods stressed by many modern mathematicians. At root, this demand
is nothing other than a subjective interpretation of the basic principle followed
here. (Loc. cit., pp. 89–90; p. 526 of Hallett and Majer (2004))

Hilbert does not say what he means by the search for ‘purity of method’, nor
who the ‘many modern mathematicians’ are, nor why he thinks the search for
‘purity’ is subjectively coloured. However, part of what he means by questions
of purity is this: one can enquire of a given proof or of a given mathematical
development whether or not the means it uses are ‘appropriate’ to the subject
matter, whether one way of doing things is ‘right’, whereas another, equivalent
way is ‘improper’. Is it ‘appropriate’ to use complex function theory in proofs
in number theory, as had become common following the work of Riemann
and Dirichlet, or transfinite numbers in proofs in analysis or point-set theory?¹
Is it ‘right’ or ‘better’ to pursue geometry synthetically rather than analytically?
Hilbert’s reaction to this question would be to say that neither way is ‘right’,
that each is the right way to do things if certain purposes are kept in mind,
and the ‘right’ approach is to embrace both developments. What is genuinely
explanatory for one mathematician might be simply opaque for another, and
to insist on one method would be regarded as unjustifiably idiosyncratic, or
(as he says here) ‘subjective’. No one kind of mathematical knowledge is, in
general, superior to another. Again, the ‘appropriateness’ of proof methods
might easily be taken as a matter of personal taste. More importantly, to put

¹ For analysis of the use of transfinite numbers in the original proof of the Heine–Borel Theorem,
see Hallett (1979a, b).
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all these questions on an objective footing requires gathering certain kinds of
information. For example, we require answers to questions of the following
sort: Can two different ways of developing a theory match each other in
the kinds of theorem they can prove? Can a certain theorem only be proved
by using the extended theoretical means? Are the connections so established
accidental, or can one find a deeper theoretical reason for them?² To answer
such questions as these, as Hilbert suggests, is just to pursue the ‘basic principle’
set out in the Grundlagen der Geometrie. Certainly this is what Hilbert does
say with respect to the principle’s application in the case of his work on
geometry:

In fact, the geometric investigation carried out here seeks in general to cast light
on the question of which axioms, assumptions or auxilliary means are necessary in
the proof of a given elementary geometrical truth, and it is left up to discretionary
judgement [Ermessen] in each individual case which method of proof is to be
preferred, depending on the standpoint adopted. (Loc. cit., pp. 89–90, p. 526 in
Hallett and Majer (2004))

In other words, in geometry, no general decision is to be made as to what is
to be preferred and what not. The purpose of the foundational investigation,
neutrally stated as it is in the Grundlagen der Geometrie, is therefore to assess
what we might call the ‘logical weight’ of the axioms and central theorems.
This, in any case, is what there is in abundance in Hilbert’s work on geometry.
We will come to some examples in due course.

The Grundlagen itself was immediately preceded by a long series of lec-
tures held in 1898/1899, which Hilbert entitled ‘Elemente der Euklidischen
Geometrie’. These lectures contain most of what is novel in the Grundlagen,
but they contain also many more philosophical and informal remarks, and are
very differently arranged from the presentation in the Grundlagen der Geometrie.
The notes for the lectures exist in two different forms: 110 pages of Hilbert’s
own notes, and then a beautifully executed protocol of the lectures following
the notes very carefully (in German, an ‘Ausarbeitung’), which Hilbert had
commissioned from his first doctoral student at Göttingen, Hans von Schaper,
whose own field of research was analytic number theory, specifically the Prime
Number Theorem.³ Towards the end of these notes, there are several passages
which are clearly the origin of the citations from the Grundlagen given above.

² Recall the emphasis in Hilbert’s paper of 1918 on the ‘Tieferlegung der Fundamente’. See Hilbert
(1918).

³ For a more detailed description of the relationship between the 1898/1899 lectures and the
Grundlagen of 1899, as well as that between the notes and the Ausarbeitung, see my Introduction to
Chapter 4 in Hallett and Majer (2004).
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At the end of the main part of the Ausarbeitung, there is the following statement
about unprovability results:

An essential part of our investigation consisted in proofs of the unprovability of
certain propositions; in conclusion, we recall that proofs of this kind play a large
role in modern mathematics, and have shown themselves to be fruitful. One only
has to think of the squaring of the circle, of the solution of equations of the fifth
degree by extracting roots, Poincaré’s theorem that there are no unique integrals
except for the known ones, etc. (Hilbert (∗1899, p. 169), p. 392 of Hallett and
Majer (2004))⁴

In his own notes for these lectures, Hilbert writes:

The subjects we deal with here are old, originating with Euclid: the principle
of the proof of unprovability is modern and arises first with two problems, the
squaring of the circle and the Parallel Axiom. <[Interlineated addition:] Thus,
solution of a problem impossible or impossible with certain means. With this
is connected the demand for the purity of method.> However, we wish to
set this as a modern principle: One should not stand aside when something in
mathematics does not succeed; one should only be satisfied when we have gained
insight into its unprovability. Most fruitful and deepest principle in mathematics.
(Hilbert (∗1898/1899, p. 106), p. 284 in Hallett and Majer (2004))

Moreover, earlier in his notes Hilbert had written the following (the
particular example concerned will be discussed in Section 8.4.1; for the
moment the details do not matter):

Thus here for the first time we subject the means of carrying out a proof to a critical
analysis. It is modern everywhere to guarantee the purity of method. Indeed, this
is quite in order. In many cases our understanding is not satisfied when, in a proof
of a proposition of arithmetic, we appeal to geometry, or in proving a geometrical
truth we draw on function theory.⁵

But Hilbert immediately goes on to say this:

Nevertheless, drawing on differently constituted means has frequently a deeper
and justified ground, and this has uncovered beautiful and fruitful relations; e.g.
the prime number problem and the ζ(x) function, potential theory and analytic
functions, etc. In any case, one should never leave such an occurrence of the
mutual interaction of different domains unattended. (Hilbert (∗1898/1899, p. 30),
p. 237 of Hallett and Majer (2004))

Thus, even while he acknowledges the epistemological disquiet behind
many purity questions, Hilbert admits that ‘impure’ mixtures might point

⁴ Bibliographical items with the date preceded by an asterisk were unpublished by Hilbert.
⁵ This remark has a special interest in view of one of the examples I will present later, namely that

concerning the analysis of the proof of the elementary Isoceles Triangle Theorem.
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to something important and deep. Thus, the first lesson which might be drawn
is that a standard ‘purity’ question (‘Is this means necessary to this end?’) is often
an occasion for a foundational investigation, and this is not carried out to show
that a certain kind of preferred knowledge is or is not sufficient, but rather
for reasons of mathematical productivity and logical clarity, and that answering
such possibility and impossibility questions was frequently the occasion for
opening up ‘new and fruitful domains of research’, as happened, say, with
Abel’s investigation.

The heuristic value of unsolved problems was stressed in a powerful way
by Hilbert in his famous lecture on mathematical problems (Hilbert, 1900c)
held a little over a year later. Hilbert stresses that the lack of a solution to a
problem might well raise the suspicion that it is indeed insoluble as stated, or
with the expected means, and that one might then seek a demonstration of
the relevant unprovability. Such a demonstration for Hilbert counts as ‘a fully
satisfactory and rigorous solution’ of the problem at hand (for example, the
problems concerning whether we can prove the Parallel Axiom or square the
circle), ‘although in a different sense from that originally intended’; see Hilbert
(1900c, p. 261), English translation, p. 1102. Settling such problems in this way
is, as Hilbert says, in no large part responsible for the legendary mathematical
optimism he displays, i.e. for his ‘conviction’ of the solvability of every
mathematical problem. Hilbert says of the achievement of impossibility proofs:

It is probably this remarkable fact alongside other, philosophical, reasons which
gives rise in us to the conviction (shared by every mathematician, but which, at
least hitherto, no one has supported by a proof) that every definite mathematical
problem must necessarily be susceptible of exact settlement, be it in the form
of an answer to the question as first posed, or be it in the form of a proof of
the impossibility of its solution, whereby it will be shown that all attempts must
necessarily fail. ...

This conviction of the solvability of every mathematical problem is a powerful
spur in our work. We hear within us the perpetual call: There is the problem; seek
its solution. You can find it by pure thought, for in mathematics there is no ignorabimus!
(Hilbert, 1900c, pp. 261–262)

This is not merely a peculiarity characteristic of mathematical thought alone,
but rather what he calls a ‘general law’ (or an ‘axiom’) inherent in the nature
of the mind, that all questions ‘which it [the mind] asks must be answerable’.
This is an important remark, and I will return to it. For the moment, suffice it
to say that this is why Hilbert seeks ‘projection onto the conceptual level’, a
term we will elucidate in Section 8.3.1 (see especially p. 217).

These remarks suggest why Hilbert says that seeking insight into appar-
ent cases of unprovability is the ‘most fruitful and deepest principle in
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mathematics’, and partly explain therefore his interest in purity questions.
But it would be misleading to suggest that Hilbert regards ‘purity’ questions
as merely heuristic in this way, at least judging by his foundational work on
geometry, which Hilbert took to be the paradigm of foundational analysis.
Purity of method investigations, in so far as they concern not just open
problems but also the analysis of the sources of mathematical knowledge,
was fundamentally important to Hilbert. But to understand exactly how, it
is necessary to recognize the novelty of Hilbert’s approach to foundational
issues, and to see the considerable effect this had on the type of mathemat-
ical knowledge obtained through a purity investigation. There is a sense in
which mixture of mathematical domains is intrinsic to Hilbert’s investiga-
tions; on the one hand, higher-level mathematics is essential to foundational
investigation of theories, even relatively low-level ones, and this higher level
also instructs the fundamental source of geometrical knowledge. On the
other hand, the examples given in Sections 8.4.1–8.4.3 make it clear that,
while ‘purity’ results do throw light on on the question of the appropriate
sources of knowledge for geometry, parallel to this are abstract mathemat-
ical/logical results at what Hilbert calls the ‘conceptual level’. Not only does
this level largely emancipate mathematics from the epistemological constraints
of the ‘appropriate’, but it is an essential part of what is attained by a
‘purity’ result. But there is a twist, which we will consider at the end in
Section 8.5.

8.2 The foundational project

Before we go further, it is worth pointing out a number of things about
Hilbert’s approach to geometry.

In the first place, Hilbert’s axiomatic presentation as it appeared in the
Grundlagen of 1899 (and, to some extent, the preceding lectures) builds on the
tradition of synthetic geometry, a tradition which saw a strong revival through
the work of Monge and von Staudt in the middle of the 19th century. In
particular, Hilbert attempted to avoid where possible the direct intrusion of
numerical elements. Underlying this, at least in part, was a view that geometry
is of empirical and intuitive origin, and concerns ‘the properties of things in
space’.⁶ This is concisely summarized in Hilbert’s introduction to his 1891
lectures on projective geometry:

⁶ This view is what underlies the Vorlesungen of Pasch from 1882. It is, of course, of much older
provenance.
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I require intuition and experimentation, just as with the founding of physical laws,
where also the subject matter [Materie] is given through the senses.

In fact, therefore, the oldest geometry arises from contemplation of things in space,
as they are given in daily life, and like all science at the beginning had posed
problems of practical importance. It also rests on the simplest kind of experimentation that
one can perform, namely on drawing. (Hilbert (∗1891, Introduction, p. 7), p. 23
in Hallett and Majer (2004))

But he goes on to say that Euclidean geometry had ‘ ... an essential defect: it
had no general method, without which a fruitful further development of the science
is impossible’ (ibid., p. 8). This defect was rectified through the invention
of analytic (Cartesian) geometry, which indeed provided a powerful, unified
method. Nevertheless, this brought its own disadvantages:

As important as this step forward was, and as wonderful as the successes were,
nevertheless geometry as such in the end suffered under the one-sided development
of this method. One calculated exclusively, without having any intuition of what
was calculated. One lost the sense for the geometrical figure, and for the geometrical
construction. (Hibert (∗1891, p. 10), p. 24 in Hallett and Majer (2004))

In what follows, Hilbert makes it clear that he sees the movement in the 19th
century to promote synthetic geometry as at least in part a reaction to this.
This movement concentrated on projective geometry (what was often called
‘Geometrie der Lage’), but Hilbert’s aim was to reformulate and restructure full
Euclidean geometry itself as far as possible in an essentially synthetic way. In
doing so, he develops geometry in a modern axiom system building up from the
simplest possible projective framework (an incidence and order geometry), and
arriving at full Euclidean geometry with, for example, the standard results from
a Euclidean theory of congruence, of proportions, area (or surface measure),
and parallels, all of which is sometimes called by Hilbert ‘school geometry’,
and developed (where possible) before continuity is broached. This synthetic
restructuring is much clearer in the 1898/1899 lectures which preceded the
Grundlagen than it is in the Grundlagen itself.

The tone of the remarks from 1891 leaves the impression that, according
to Hilbert, Euclidean geometry represents knowledge of a certain kind, an
impression which is strengthened by Hilbert’s repeated declaration that an
axiomatisation in any area of science always begins with a certain domain of
‘facts [Tatsachen]’. By this, Hilbert does not mean just facts in the sense of
empirical facts or even established truths, though such things might be included,
but simply what over time has come to be accepted, for example, from an
accumulation of proofs or observations. Geometry, of course, is the central
example: there are empirical investigations, over 2,000 years of mathematical
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development, including 300 years’ experience with analytic geometry, and
the 19th-century growth of this into function-theoretic investigations, the
discovery of various ‘impossibilities’, and above all the independence of
Euclid’s Axiom of Parallels. Within this domain, certain ‘basic facts’ are isolated
(different sets of ‘basic facts’ could be chosen, depending on the purpose), and an
axiomatization based on these is designed, central assumptions being identified
and grouped.

This grouping, fundamental to Hilbert’s mature presentation of geometry,
is based on a natural conceptual division (e.g. all the congruence assumptions
are grouped together), but this conceptual division also in its turn corresponds
to different levels of empirical/intuitive justification. For instance, in his short
holiday lecture course from 1898, Hilbert says, when presenting Euclidean
geometry:

4.) 5.) do not have the same empirical, constructible character as 1.) 2.) 3.), these
being established through a finite number of experiments [Versuchen]. (Hilbert
(∗1898, p. 18), p. 171 in Hallet and Majer (2004))

Axiom groups 1.)–3.) here are the incidence, order, and congruence axioms,
while 4.) and 5.) are the Parallel and Archimedean axioms respectively. In the
1898/1899 lecture notes, he writes:

A general remark on the character of our axioms I–V might be pertinent here.
The axioms I–III [incidence, order, congruence] state very simple, one could
even say, original facts; their validity in nature can easily be demonstrated
through experiment. Against this, however, the validity of IV and V [parallels
and continuity in the form of the Archimedean Axiom] is not so immediate-
ly clear. The experimental confirmation of these demands a greater number
of experiments. (Hilbert (∗1899, pp. 145–146), p. 380 in Hallett and Majer
(2004))

For Hilbert, central independence results concerning the axioms underline the
conceptual division, for they show that different levels of empirical/intuitive
support are essential. For example, Hilbert regarded the Archimedean Axiom,
interpreted as about actual space, as something like an empirical principle
(or ‘highly intuitive’), since it encapsulates the assumption that all dis-
tances, the cosmic and the sub-atomic, can be measured along the same
scale. But its independence shows that it has to be supported on grounds
separate from the arguments for the more elementary axioms, e.g. congru-
ence, since it is not a logical consequence of them, and ‘logic does not
demand it’.⁷

⁷ See Hilbert (∗1917/1918, 18; 1918, 408–409; 1919, 14–15, book p. 11) and also Hilbert (∗1905,
97–98).
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Similar points hold about the Parallel Axiom. In his 1891 lectures on
projective geometry, Hilbert remarks in a note that:

This Parallel Axiom is furnished by intuition. Whether this latter is innate or nurtured,
whether the axiom corresponds to the truth, whether it must be confirmed by experience,
or whether this is not necessary, none of this concerns us here. We treat of intuition,
and this demands the axiom. (Hilbert (∗1891, p. 18), p. 27 in Hallett and Majer
(2004). See also the 1894 lectures, pp. 88–89, pp. 120–121 of (Hallett and Majer,
2004).

In the Ausarbeitung of the 1898/1899 lecture notes, Hilbert is somewhat
more circumspect:

... the question as to whether our intuition of space has an a priori or empirical
origin remains unelucidated. (Hilbert, ∗1899, p. 2) p. 303 in Hallett and Majer
(2004).

But the proof of the independence of the Axiom shows again that a distinct
justification has to be given:

Even the philosophical value of the investigation should not be underestimated. If
we wish to apply geometry to reality [Wirklichkeit], then intuition and observation
must first be called on. It emerges as advantageous to take certain small bodies
as points, very long things with a small cross-section, like for instance taught
threads etc., as straight lines, and so on. Then one makes the observation that a
straight line is determined by two points, and in this way one observes [as correct]
the other facts expressed in the Axioms I–III of the schema of concepts. Non-
Euclidean geometry, i.e. the axiomatic investigation of the Parallel Proposition,
states then that to know that the angle sum in a triangle is 2 right angles a new
observation is necessary, that this is no way follows from the earlier observations
(respectively from their idealised and more precise contents). (Hilbert (∗1905,
pp. 97–98))

For Hilbert, this shows that Euclid’s instincts had been quite right, that the
axiom is required as a new assumption to prove certain central, intuitively
correct ‘facts’ such as the angle-sum theorem or the existence of a rectangle:

Even if Euclid did not state these axioms [incidence, order, and congruence]
completely explicitly, nevertheless they correspond to what was intended by him
and his successors down to recent times. However, when Euclid wanted to prove
further propositions immediately furnished by intuition, propositions such as the
presence of a quadrilateral with four right-angles, so he recognised that these
axioms do not suffice, and therefore erected his famous Parallel Axiom. ... The
brilliance it demanded to adopt this proposition as an axiom can best be seen in
the short historical sketch: Stäckel–Engel Parallellinien, Teubner, 1895 (Stäckel
and Engel, 1895. (Hilbert’s lecture notes for 1898/1899, p. 70; p. 261 in Hallett
and Majer (2004))
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Two pages later, Hilbert remarks:

One can indeed say that Gauss was the first one in about 2100 years who first
understood and completely grasped why Euclid adopted the Axiom of Parallels as one
of the axioms. (Ibid., p. 74; p. 263 in Hallett and Majer (2004))⁸

The empirical/intuitive admixture and the conceptual division and its corres-
ponding demands for different levels of empirical justification is a large part of
what lies behind the statement in the published Grundlagen (p. 4) that each of
the Axiom Groups represents ‘certain connected facts of our intuition’ (Hallett
and Majer, 2004, p. 437).

Just as important as the acknowledgement of the empirical/intuitive roots
of geometry is a precise assessment of the relation of Hilbert’s work to
Euclid’s. An important component of Euclid’s work in the opening books of
the Elements was the desire to show that certain central propositions can be
established using only ‘restricted methods’, and thus embodies a certain ‘purity
of method’ concern. By this is not merely meant that Euclid’s system was an
axiomatization; it is illustrated rather by the way in which Euclid withholds
deployment of the Parallel Postulate until rather late on in Book I, and by the
way he restricts use of congruence arguments using the translation and flipping
of figures in the plane, even when proofs would be easier when these techniques
are employed. Some of Hilbert’s work in geometry is a direct continuation of
this kind of investigation. For one thing, Hilbert’s lectures of 1898/1899 which
immediately precede the Grundlagen, are on Euclidean geometry, concentrating
on, and analyzing, the theoretical results in the early part of the Elements, in
particular on congruence, proportion and area, the involvement (or exclusion)
of the Archimedean Axiom, and the Parallel Axiom itself. Hilbert shows, for
example, that we can dispense with what is initially adopted in his lectures
as Axiom 9, added to the Euclidean system by many of Hilbert’s predecessors
in the 19th century, stating the assumption that all ‘straight angles’ (angles
on a straight-line) are congruent. More significantly, Hilbert also shows that
a Euclidean theory of linear proportion and of surface content (roughly,
polygonal area) can be developed without the implicit assumption that the
content measures or the ‘lengths’ are themselves magnitudes, an assumption
he directly criticizes Euclid for.⁹ Connected to this is Hilbert’s proof of what

⁸ The examination of the Parallel Axiom is an excellent example of what Hilbert calls ‘analyzing
intuition’: independence confirms Euclid’s ‘intuition’ to use the axiom. We will comment on ‘analyzing
intuition’ below; see the remarks on p. 292.

⁹ Hilbert’s student Dehn showed that the same does not hold for tetrahedral/polyhedral volume; the
Archimedean Axiom is required. Hilbert posed the problem in the late 1890s; see the 1898 Ferienkurs
(p. 26), and the notes for the 1898/1899 lectures (pp. 106 and 169 respectively), all in Hallett and Majer
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he calls the Pascal Theorem (usually called Pappus’s Theorem) using just the
plane part of the elementary axioms together with congruence, but without
any involvement of continuity, a result new to Hilbert. More generally, the
whole of ‘school geometry’ can be developed without continuity assumptions,
showing that Euclid was right not to include explicit continuity principles
among his axioms.

Of course, there are ways in which Hilbert’s treatment is not ‘purely’
or historically Euclidean, for example in developing the core of projective
geometry on the basis of the order and incidence axioms alone (i.e. before
the Congruence and Parallel Axioms have been introduced), and in its further
concentration on the Desargues and Pascal theorems. An underlying concern
here is the relationship between Euclidean geometry and the coordinate
structure of analytic geometry, for part of what Hilbert investigates are the
hidden field properties in segment structure showing that the basic magnitude
principles (represented by the core of the ordered field axioms) are true of
linear segments once addition and multiplication operations have been defined
for them in a reasonable way. Part of the point is surely to defend Euclid, in
that Hilbert shows that the ‘theory of magnitudes’ arises intrinsically, and does
not have to be imposed from without by some extra assumptions, but another
motive is clearly to show that the central guiding assumption of analytic
geometry, coordinatization by real numbers, is not ad hoc, a central concern of
Hilbert’s since at least the 1893/1894 lectures. The guiding insight is clearly that,
since analytic geometry was, at the time Hilbert was writing, the pre-eminent
way to pursue Euclidean geometry, careful analysis of any suitable synthetic
replacement should reveal some central conceptual parallels with analytic
structures.¹⁰ Indeed, despite the desire to keep synthetic Euclidean geometry as
far as possible independent of analytic geometry, Hilbert did impose a strong
adequacy condition, namely ‘completeness’ with respect to analytic geometry,
i.e. the demand that a satisfactory synthetic axiomatization should be able to
prove all the geometrical results that analytic geometry could.¹¹

Nevertheless, despite these modern flourishes, it is clear (above all from
the 1898/1899 lectures) that Hilbert’s own investigations were profoundly
influenced by Euclid’s. In the Introduction to his 1891 lectures on projective
geometry, Hilbert gives a short but highly illustrative survey of geometry. He

(2004, pp. 177, 284, 392 respectively). The problem reappears as Problem 3 in Hilbert’s famous list of
mathematical problems set out in 1900; see Hilbert (1900c, 266–267).

¹⁰ Desargues’s Theorem is essential to this: see Section 8.4.1.
¹¹ For a discussion of what Hilbert meant by completeness in 1899 when calling for a ‘complete’

axiomatization of geometry, see Section 5 of my Introduction to Chapter 5 in Hallett and Majer (2004,
426–435).
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divides geometry into three domains: (1) intuitive geometry, which includes
‘school geometry’, projective geometry, and what he calls ‘analysis situs’; (2)
axiomatic geometry; and (3) analytic geometry. Axiomatic geometry, according
to Hilbert, ‘investigates which axioms are used in the garnering of the facts in
intuitive geometry, and sets up systematically for comparison those geometries
in which various of these axioms are omitted’, and its main importance is ‘epis-
temological’.¹² The description of axiomatic geometry is a reasonably good,
rough description of much of what Hilbert actually carries out systematically in
the period from 1898 to 1903. He does indeed investigate the ‘facts’ obtained
from intuition; in the Grundlagen (p. 3) he actually describes his project as
being fundamentally a ‘logical analysis of our spatial intuition’ (Hallett and
Majer, 2004, p. 436), a description which also appears in the Ausarbeitung of the
1898/1899 lecture notes (p. 2), where he says ‘we can outline our task as consti-
tuting a logical analysis of our faculty of intuition [Anschauungsvermögens]’, and where
‘the question of whether spatial intuition has an apriori or empirical character
is not hereby elucidated’ (see Hallett and Majer 2004, p. 303). Hilbert does
consider the geometries one obtains when various axioms are ‘set aside’, non-
Euclidean geometry, non-Archimedean geometry, non-Pythagorean geom-
etry, etc., and we will see some examples later on. Such investigations
necessarily embrace questions of what can be, and cannot be, proved on the
basis of certain central propositions, either axioms or central theorems. That
the main benefit of doing this is said by Hilbert to be ‘epistemological’ is also
understandable. If empirical investigation and geometrical intuition are the
first sources of geometrical knowledge, then Hilbert’s dissection of Euclidean
geometry is indeed an ‘analysis’ of this source, revealing the propositions
responsible for various central parts of our intuitive geometrical knowledge.

In short, surely some of Hilbert’s work can be seen as stemming from
a rather straighforward epistemological concern with the purity of method,
namely showing that P (or some theoretical development T ) can be deduced
solely using some specified axioms � (or more generally � − �), and this is
designed at least to explore the epistemological underpinnings of the axioms.¹³
This kind of investigation fits with the traditional conception of axiomatic

¹² See Hilbert (∗1891, 3–5), pp. 21–22 in Hallett and Majer (2004).
¹³ Another geometrical example outside the framework of Euclidean geometry might be Hilbert’s

analysis of Lie’s work, where Lie is criticized for the way he uses the full theory of differentiable
functions to analyze the concept of motion. Hilbert showed that much weaker assumptions than Lie’s
(assumptions approximating more to the ‘ancient Euclid’, as he puts it) will suffice, Lie’s assumptions
being ‘foreign to the subject matter, and because of this superfluous’. For further details, see Hallett
and Majer (2004, 9).
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investigation, and might be used to describe, say, Pasch’s work on projective
geometry in his (Pasch, 1882), an important influence on Hilbert’s work, and
also Frege’s work on arithmetic, for Frege attempted to show that natural
number arithmetic can be derived from purely logical principles alone, with
the help only of appropriate definitions. Both Frege’s and Pasch’s projects
attempt to show that, when properly reduced or reconstructed, the respective
mathematical theories represent knowledge of a certain, definite kind, logical
and empirical respectively. The projects thus have conscious epistemological
aims, and are very broadly ‘Euclidean’ in the general sense that they attempt
to demonstrate that certain bodies of knowledge can be deduced from a stock
of principles circumscribed in advance, a demonstration which can only be
effected by the actual construction of the deductions.

While these are very important elements in Hilbert’s treatment of Euclidean
geometry, they are by no means exhaustive.

For one thing, the description of Hilbert’s geometrical work as an extension
of the Euclidean project does nothing to explain its entirely novel contribution
to foundational study. The novelty comes in treating the converse of the
Euclidean foundational investigation, asking in addition the question: Can we
show that a given proposition P (or some theoretical development T ) cannot be
deduced (carried out) solely using the precisely specified ‘restricted methods’
�?¹⁴ In other words, as Hilbert puts it in the Grundlagen (pp. 89–90), we
seek to ‘cast light on the question of which axioms, assumptions or auxilliary
means are necessary in the proof of certain elementary geometrical truths’. It
is important to see that Hilbert’s investigations are not just complementary to
the Euclidean ones; indeed, to describe them so would be to underemphasize
their novelty. The very pursuit of this new line of investigation involved
Hilbert in a radical transformation of the axiomatic pursuit of mathematics. As
Hilbert expressed it in some lectures from 1921/1922 (Hilbert, ∗1921/1922,
pp. 1–3):

The further development of the exact sciences brought with it an essential
transformation of the axiomatic method. On the one hand, one found that the
propositions laid down as axioms in no sense could be held sublimely free from
doubt, where no difference of opinion is possible. In particular, in geometry the

¹⁴ There are two important variations to this:

1. Show that P (or some theoretical development T ) can be deduced (carried out) using �, but not
using �− (slight weakening)

2. Show that P (or some theoretical development T ) cannot be deduced (carried out) using �, but
can with �+ (slight strengthening).
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evidence in favour of the Parallel Axiom was called into question. ... In this way,
there developed the view that the essential thing in the axiomatic method does not
consist in the securing of absolute certainty, which is transmitted to the theorems
by means of logic, but in this, that the investigation of the logical interconnections
is separated off from the question of the actual truth of the axioms.¹⁵

This Hilbert emphasized as being the ‘main service’ of the axiomatic method.
The interest is therefore much more logical than epistemological.

The remark of Hilbert’s just quoted leads to a second sense in which
Hilbert’s work is new, and which has not yet become clear: part of the point of
Hilbert’s investigation is to effect an emancipation from the sources of knowledge
provided by the ‘facts’ or by intuition. As I hope will be shown, this plays a
significant part in understanding the role of purity of method investigations in
Hilbert’s investigation of geometry.

The radicalness of Hilbert’s approach has three important features, to be
dealt with briefly in the next section.

8.3 Independence and metamathematical
investigation

8.3.1 Interpretation

It is clear that in his study of geometry, Hilbert’s focus is less on questions of
provability from a circumscribed stock of principles than on unprovability, in
other words, on independence. The basic technique which Hilbert adopted
for this investigation is that of modelling, more strictly, of translating the
theory to be investigated into another mathematical theory. For this, it is
essential (and Hilbert is very clear about this) that the primitive concepts
employed are not tied to their usual fixed meanings; they must be free for
reinterpretation. Indeed, in his 1898/1899 lectures Hilbert stresses that the most
difficult part in carrying out the investigation will be separating the basic terms
from their usual, intuitive associations.¹⁶ It follows that the axioms cease to
have fixed meaning, and thus cease to be, for someone like Frege, genuine
axioms at all.

This was not just a matter of expediency for Hilbert, done for the sake of the
independence proofs; along with it goes a new picture of mature mathematics,

¹⁵ See also Bernays (1922, 95). Bernays’s remarks are very reminiscent of the long passage from
Hilbert (∗1921/1922) just quoted. Bernays was the Ausarbeiter for the lecture notes.

¹⁶ See p. 7 of the 1898/1899 lectures (Hallett and Majer, 2004, 223).
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intrinsic to which is the view that in general no one interpretation of an
axiom system is privileged above others, despite what might seem like the
overwhelming weight of the interpretation underlying the ‘facts’ as originally
given: thus in the case of geometry the weight of the ‘intuitive’ or ‘empirical’
origins. Thus, we see a radical departure from the kind of enterprise Frege and
Pasch (and even Euclid) were engaged in, enterprises part of whose very point
was to explain (and thereby delimit) the primitives. Hilbert’s axiomatic method
abandons the direct concern with the kind of knowledge the individual
propositions represent because they are about the primitives they are, and
concentrates instead on what he calls ‘the logical relationships’ between the
propositions in a theory.

Hilbert’s fundamental supposition of foundational investigation, going back
to 1894 and stated repeatedly thereafter, is that a theory is only ‘a schema of
concepts’ which can be variously ‘filled with material’. He says:

In general one must say: Our theory furnishes only the schema of concepts, which
are connected to one another through the unalterable laws of logic. It is left to
the human understanding how it applies this to appearances, how it fills it with
material [Stoff ]. This can happen in a great many ways. (Hilbert (∗1893/1894,
p. 60), or Hallett and Majer (2004, p. 104))

In the 1921/1922 lectures already referred to, Hilbert calls axiomatization of
this kind a ‘projection into the conceptual sphere’:

According to this point of view, the method of the axiomatic construction of a
theory presents itself as the procedure of the mapping [Abbildung] of a domain of
knowledge onto a framework of concepts, which is carried out in such a way that
to the objects of the domain of knowledge there now correspond the concepts,
and to statements about the objects there correspond the logical relations between
the concepts.

Through this mapping, the investigation is completely severed from concrete
reality [Wirklichkeit]. The theory has now absolutely nothing more to do with
the real subject matter or with the intuitive content of knowledge; it is a pure
Gedankengebilde [construct of thought] about which one cannot say that it is true
or it is false. (Hilbert (∗1921/1922, p. 3), forthcoming in Ewald and Sieg (2008))

It is not that a mathematical theory in this sense has nothing to do with reality;
indeed it may have more to do with it, for the connections might be established
‘in a great many ways’, to use Hilbert’s phrase from 1894.

It is important to see how this view fits with the insistence in the 1890s,
outlined above, that the root of geometry is empirical, and that geometry is,
as Hilbert frequently put it, the ‘most perfect natural science’. For Hilbert,
geometry is a natural science primarily because it can be applied to nature
to furnish a more or less accurate description of it. The term ‘description’
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is important. In the Vorrede to his lectures on mechanics published in 1877
(Kirchhoff, 1877), Kirchhoff insists that physics should only set itself the
restricted aim of describing the phenomena, and not that of trying to get
at the underlying ‘causes’, since these frequently suffer from deep-seated
‘conceptual unclarity’. In his 1894 lectures on the foundations of geometry,
Hilbert refers directly to Kirchhoff ’s aim of ‘describing’ only, and states that
correspondingly the aim of geometry is to ‘describe’ the ‘geometrical facts’.
See Hilbert (∗1893/1894, p. 7) or Hallett and Majer (2004, p. 72). And the
basis of application in this sense is interpretation (or, as Hilbert says, ‘Deutung’),
and this is essentially inexact. In these 1894 lectures, Hilbert says:

With the axioms given hitherto, the existence [incidence] and position [order]
axioms, we can already describe a large collection of geometrical facts and
phenomena. We require only to take bodies for points, straight lines and planes,
for the relation of passing through, touching, for being definite, immovable or
fixed (perhaps, in the unrefined sense, when nudged by the hand). The bodies we
should think of as finite in number, and such that the axioms are satisfied under
this interpretation [Deutung] (for which, as one recognises, it will be necessary
to have for the bodies taken in place of points, straight lines, planes, something
like grains, rods or stretched threads or wire, cardboard) and indeed precisely.
Then we know that all the propositions set up so far are also satisfied, and indeed
precisely satisfied.

The direct continuation of this passage also makes it clear that applications
only hold approximately, and this is stated in one breath with the claim that
theories are only schemata of concepts, represented here by the ellipsis:

If one finds that, with an application, the propositions are not satisfied (or not
precisely satisfied), this arises because an inappropriate application has been taken,
i.e. the bodies, movement, touching do not agree with our scheme of axioms. In
this case it will be necessary to replace the things: bodies, movable, touching, by
others, perhaps by smaller grains, blots [Klexe (sic)], tips, thinner wires, thinner
cardboard, touching with firmer contact, movability [of the bodies] even when
we blow on them [Anpusten], in such a way that the axioms are satisfied. Then we
know that the propositions also hold (precisely). ... But always when the axioms
are satisfied, the propositions also hold. The easier and more far reaching the
application, then so much better∗) the theory.

∗) All systems of units and axioms which describe the phenomena are equally
justified. Show nevertheless that the system given here is in a certain respect
the uniquely possible one. (Hilbert (∗1893/1894, pp. 60–60A), pp. 104–105 in
Hallett and Majer (2004))

Hilbert repeatedly stresses the inexactness of application, for example on p. 92
of the 1893/1894 lectures (Hallett and Majer, 2004, p. 122), or p. 106 of the
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1898/1899 lectures (Hallett and Majer, 2004, p. 283). And he even states the
approximate nature of the physical interpretations of geometry as a reason why
we require the logical development of geometry separately:

In physics and nature generally, and even in practical geometry, the axioms all hold
only approximately (perhaps even the Archimedean Axiom). One must however
take the axioms precisely, and then draw the precise logical consequences, because
otherwise one would obtain absolutely no logical overview. Necessarily finite
number of axioms, because of the finitude of our thought. (Note on the front
cover of Hilbert’s copy of the Ausarbeitung. Date unknown, but after 1899, and
very probably before 1902; see Appendix to Chapter 4 in Hallett and Majer
(2004, p. 401), remark [15].)

Two things are immediately clear from these passages. (1) Many interpret-
ations are possible, and even desirable, even where we are concerned apparently
with only one general area of application (the application of the same theory to
the same spatial world). (2) There is an implicit assumption that the (unspecified)
logical apparatus is sound, i.e. if the axioms hold under an interpretation, then
so do the theorems. (See also Hilbert’s letter to Frege of 29.xii.1899.) Most
importantly, this latter means that the internal (logical) workings of the
theory, in short (‘pure’ or ‘free’) mathematics, can proceed independently of
any particular application, and this is the case even when one might firmly
believe that application is the primary purpose. This is stressed by Hilbert
in the continuation of the passage from the 1921/1922 lectures quoted on
page 296:

Nevertheless this framework of concepts has a meaning for knowledge of the
actual world, because it represents a ‘possible form in which things are actually
connected’. It is the task of mathematics to develop such conceptual frameworks
in a logical way, be it that one is led to them by experience or by systematic
speculation. (Hilbert (∗1921/1922, p. 3) in Ewald and Sieg (2008))

In short, interpretation (quite possibly manifold interpretations) can establish
various connections to the world, and the more the better.¹⁷ Thus, the
mathematical theory is not determined by Wirklichkeit, it does not necessarily
extend our knowledge of it (it might or might not), and is in the end
not responsible to it. Mathematics can learn from intuition, observation, and
empirical investigation more generally, but is not to be their slave, even
when they have played a major part in the establishment of the domain of
‘facts’, and therefore in the axiomatization itself. A prime example is the

¹⁷ See again Hilbert’s letter to Frege of 29.xii.1899. In his own letter of 27.xii.1899, to which
Hilbert’s is a reply, Frege had objected to the very idea of considering different interpretations for
geometry.
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formulation of the congruence axioms. Linear congruence in geometry, both
the idea of congruence, and the central propositions governing it, was originally
motivated by simple observations about movement of rigid bodies in space,
but Hilbert’s axioms are no longer to do with movement itself, though the
connection between them and the movement of rigid bodies is not hard to
discern. Rather, Hilbert’s view (see Hilbert, ∗1899, pp. 59–60) is that a proper
mathematical analysis of spatial movement requires an independently established
and neutral notion of congruence. Thus the abstract notions are to be applied
in the analysis of movement, but geometry with Hilbert’s congruence axioms
is not dependent upon the purely empirical matter of whether or not there
are in fact rigid bodies, and thus whether bodies can indeed ever be congruent
in the intuitive sense. In pursuing mathematical investigations of geometry,
one is investigating ‘possible forms of connection’ and not necessarily ‘actual
connections’, an emancipation which reflects the ascent to what Hilbert calls
the conceptual.

It follows from this account that even if the underlying notion of intuition
were strong enough to guarantee the ‘apodeictic certainty’ of the axioms, it
would still be possible to drop axioms, or modify them, or replace them, and it
would still be part of the task of mathematics to investigate the consequences
of so doing. In other words, a strong notion of intuition would not restrain
Hilbert’s axiomatic programme.

There is another important consequence of this, namely that theories
cannot be straightforwardly true or false through correctly representing some
fixed subject matter, or failing to represent it. This is stated clearly in the
1922/1923 lectures, but it is already clear in the 1898/1899 lectures and the
1899 correspondence with Frege. Theories, variously interpretable, are either
‘possible’ or not, and what shows their ‘possibility’ is a demonstration of
consistency, in which case the mathematical theory ‘exists’. Thus, for Hilbert,
the correct account of truth and falsity with respect to mathematical theories
is that of consistency/inconsistency. Derivatively a mathematical object exists
(relative to the theory) if an appropriate existence statement can be derived
within the consistent theory. As Hilbert puts it in his 1919 lectures:

What however is meant here by existence? If one looks more closely, one finds
that when one speaks of existence, it is always meant with respect to a definite
system taken as given, and indeed this system is different, according to the theory
which we are dealing with. (Hilbert, 1919, p. 147, book p. 90).

Hilbert sums this up in his 1902 lectures on the foundations of geometry:

We must now show the freedom from contradiction of these axioms taken together; ... .

In order to facilitate the understanding of this, we begin with a remark:
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The things with which mathematics is concerned are defined through axioms,
brought into life.

The axioms can be taken quite arbitrarily. However, if these axioms contradict
each other, then no logical consequences can be drawn from them; the system
defined then does not exist for the mathematician. (Hilbert (∗1902, p. 47) or
Hallett and Majer (2004, p. 563))

This complex of views is a very important foundation for Hilbert’s theory of
what he calls ‘ideal objects’, where the concepts, freed from the constraints of
the actual, are ‘completed’. In his 1898/1899 lectures, Hilbert notes that while
the Archimedean Axiom as sole continuity axiom shows that to every point,
there corresponds a real number, the converse will not generally hold:

That to every real number there corresponds a point of the straight line does
not follow from our axioms. We can achieve this, however, by the introduction
of ideal (irrational) points (Cantor’s Axiom). It can be shown that these ideal points
satisfy all the axioms I–V; it is therefore a matter of indifference whether we
introduce them first here or at an earlier place. The question whether these ideal
points actually ‘exist’ is for the reason specified completely idle [völlig müssig]. As
far as our knowledge of the spatial properties of things based on experience is
concerned the irrational points are not necessary. Their use is purely a matter of
method: first with their help is it possible to develop analytic geometry to its fullest extent.
(Hilbert (∗1899, pp. 166–167); Hallett and Majer (2004, p. 391))

Thus, while one might start from the idea that the points in geometry
correspond to points whose existence in actual space can be shown, perhaps
through construction, this idea is left behind; as Hilbert says, it is ‘idle’ to
consider the question of whether the new points ‘actually exist’.¹⁸ It is precisely
in this context that Hilbert first introduces his new notion of mathematical
existence; thus, full Euclidean geometry ‘exists’ because we can furnish a
model for the theory by using analysis. Put more abstractly, the procedure
is this. We begin with a Euclidean geometrical system without continuity
axioms, and where ‘real’ points are instantiated by geometrical constructions.
These constructions correspond to various algebraic fields over the rationals
(depending on what is permissible in construction). These number fields are
seen to have a maximal extension in the reals; therefore, we postulate that there
are points corresponding to all real numbers. These new objects are then ‘ideal’
with respect to the original, real points. The geometrical system corresponding

¹⁸ This view, that we can decide to extend the field of objects without being constrained by what
‘really exists’, is very much in evidence in Dedekind’s 1872 memoir on continuity and irrational
numbers; see Dedekind (1872, 11). The most notable difference compared with Hilbert is in the
idea that objects are ‘created’ to fill the ‘gaps’; Hilbert’s reliance on consistency avoids this notion of
‘creation’.
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to the completion is axiomatized; this new system is consistent, since it has a
model in the reals. As Hilbert says:

Euclidean geometry exists, so long as we take over from arithmetic the proposition that the
laws of the ordinary real numbers lead to no contradiction. With this we have shown the
existence of all those other geometries which we have considered in the course
of this investigation. (Hilbert (∗1899, p. 167); Hallett and Majer (2004, p. 391).
See also Hilbert’s own lecture notes, p. 104; in Hallett and Majer (2004, p. 280).)

From the point of view of this theory, any dispute then over the ‘real’ existence
of some points as opposed to others is ‘idle’; the theory exists, and it has the
existence of all these points as consequences; the real/ideal distinction was
always only ever relative to the original domain. As Hilbert puts it later:

The terminology of ideal elements thus properly speaking only has its justification
from the point of view of the system we start out from. In the new system we do
not at all distinguish between actual and ideal elements. (Hilbert, 1919, p. 149,
book p. 91)¹⁹

Furthermore, the core system of elementary geometry possesses many different
and incompatible ‘ideal extensions’, some of them giving rise to the ‘other
geometries’ Hilbert mentions. All ‘exist’ in so far as they are consistent.

In short, advanced ‘pure’ mathematical knowledge is now knowledge about
various conceptual schemes, and a significant part of this is logical knowledge,
in the first instance, knowledge of the existence or non-existence of derivations
from certain starting points. It is the abandonment of the idea of fixed content
and the shift to the ‘conceptual sphere’ which allows Hilbert to introduce a
sophisticated, and relative, conception of the ‘real/ideal’ distinction, one which
is of great importance for his later foundational work.

The arrival at this ‘pure thought form’ is, I think, the key to the correct
explanation for the progression from intuition to concept to ideal stated
at the beginning of Hilbert’s Grundlagen in an epigram from Kant’s Kritik
der reinen Verknunft.²⁰ And it is as a ‘pure thought form’, thus through the
projection into the ‘conceptual sphere’, that mathematics falls under the
‘general law’ on the nature of the mind which Hilbert stated in his lecture
on mathematical problems, namely that all questions ‘which it [the mind] asks
must be answerable’.

Important in all this is the relationship between mathematical theories. For
one thing, the approximate (not to say coarse) nature of interpretation in

¹⁹ See also p. 153 of the 1919 lecture notes (Hilbert, 1919, book p. 94).
²⁰ The epigram is the following passage: ‘So fängt denn alle menschliche Erkenntnis mit Anschau-

ungen an, geht von da zu Begriffen, und endigt mit Ideen.’ (See Kritik der reinen Vernunft, A702/B730.
A very similar remark is also to be found at A298/B355.)
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the observable world means that these interpretations are less than ideal as
ways of demonstrating ‘possibility’, and the same holds for investigations of
independence. Secondly, the process of ideal extension as described above
appears to rely heavily on the notion of embedding one mathematical theory
in another, and indeed Hilbert himself describes the procedure in just this way
in his 1919 lectures:

Precisely stated, the method [of ideal elements] consists in this. One takes a system
which behaves in a complicated way with respect to certain questions which we
want to answer, and one transforms to a new system in which these problems
take on a simpler form, and which in addition has the property that it contains
a sub-system isomorphic to the original system. ... The theorems concerning the
objects of the original system are now special cases of theorems of the new system,
in so far as one takes account of the conditions which characterise the sub-system
in question. And the advantage of this is that the execution of the proofs takes
place in the new system where everything becomes much clearer and easier to
take in [übersichtlich]. (Hilbert, 1919, pp. 148–149, pp. 90–91 of the book)

This procedure can be brought out, too, by looking more closely at the
general form of argument in the independence and relative consistency proofs,
a form first articulated by Poincaré in one of his explanations of the proof of
the independence of the Parallel Postulate.²¹ The general procedure is this.
Proving the independence of Q from P1, P2, ... , Pn with respect to a given
conceptual scheme T1, that is, showing that there cannot be a derivation of
Q from P1, P2, ... , Pn, involves showing that, if there were, there would then
also be a derivation of τ(Q) from τ(P1), τ (P2), ... , τ (Pn) with respect to
another conceptual scheme T2, where: (a) we know that each of the τ(Pi) are
theorems of T2; (b) we know that the conceptual scheme T2 can already derive
¬τ(Q); (c) we assume (or know) that the scheme T2 is not in fact inconsistent.
Here, crucially, τ(P) is some map from formulas to formulas which preserves
logical structure. (This point was first articulated in Frege (1906).) An obvious
variant of this procedure can be used to prove the relative consistency of theory
T1 with respect to T2. Hilbert puts it this way: After specifying a minimal
Pythagorean (countable) field � of real numbers which determines an analytic
model of the axioms for Euclidean geometry, he continues:

We conclude from this that any contradiction in the consequences drawn from
our axioms would also have to be recognizable in the domain �. (Hilbert (1899,
p. 21); p. 455 in Hallett and Majer (2004))

Thus, crucial to the investigation are what we might call base theories, those
through which the propositions of the ‘home theory’ are interpreted.

²¹ See Poincaré (1891).



purity of method in hilbert’s grundlagen 219

8.3.2 Non-elementary metamathematics

The second very important thing to recognize about Hilbert’s foundational
enterprise as developed in his study of geometry follows on from this. When
looking for base theories, the natural thing is to choose those over which one
has a fine degree of control, perhaps because they have only countably many
elements which can be individually described.

I mentioned above that Hilbert tried to separate synthetic geometry from
analytic geometry, but the separation is only at the mathematical level; at
the metamathematical level, the link is retained. For one thing, as we have
remarked, analytic geometry is taken as the measure of synthetic geometry (for
example, via the demand for completeness). But more importantly here, real
and complex analysis in its broadest sense is taken as the fundamental tool in
the logical analysis of synthetic geometry. Since synthetic geometry has as one
of its goals the aim of matching analytic geometry, then it should be clear that
ordinary analytic geometry based on the complete ordered field of the real
numbers provides a model for (disinterpreted) synthetic geometry. It is not a
large leap from this to expect that one can find (or fabricate) substructures of
the reals (or wider analysis) which will correspond to the variations of axioms
and central propositions of synthetic geometry, not least because analytic
geometry gives point-by-point and line-by-line control over the geometrical
structure. For instance, in the standard arrangement, lines are given by simple
linear functions of the number pairs giving the coordinates of points. But in
principle, a vast range of other functions could be chosen, showing one kind of
behaviour within a certain region, and a quite different behaviours outside that
region. Indeed, this is the lesson taught by the various models of non-Euclidean
geometry. A fundamental presupposition of Hilbert’s investigation, therefore,
is the presence of the full panoply of analytic techniques. Thus, while Hilbert’s
axiomatization of geometry distances itself from the analytic developments of
the 19th century, the full range of analytic geometry is made available, not
to prove results in the theory itself, but to prove results about the theory, and
in particular to throw light upon the underlying source of knowledge. I will
attempt to draw out the points made here in the examples given in Section 8.4.

8.3.3 Foundations

There is another sense in which Hilbert’s project is radically different from other
foundational projects at the time, projects with a Euclidean flavour, and this is
that Hilbert does not automatically seek a more primitive conceptual level. Of
course, this might be done for specific reasons in certain circumstances, and
of course important mathematical information might be gained from doing
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so, whether one succeeds or fails. The point is that it is not the central goal
of foundational investigation. This means that, to a large extent, Frege-style
definitions can be dispensed with. They appear now rather as assignments for
the purpose of modelling the principles being investigated. The prime example
is perhaps Hilbert’s use of the theory of real numbers (or rather a minimal
Pythagorean field drawn from them) to model the axioms of elementary
geometry by giving ‘temporary’ definitions of point, straight line, congruence,
and so on; this is in place of the standard procedure behind analytic geometry,
which effects a reduction of geometry to analysis by making these assignments as
Frege-style definitions. Similarly, one could use the Dedekind-cut construction
or the Cauchy-sequence construction to model the axioms for the theory of
real numbers, rather than to define them, and likewise with the ‘definitions’ of
the integers as equivalence classes of ordered pairs of natural numbers, complex
numbers as ordered pairs of reals, and so on.²²

There is a further important point to be made. Even if we seek a conceptual
reduction, it is important to have available ‘local’ axioms, for instance for the
natural numbers or for the reals. To take an example, in seeking to show in
his 1898/1899 lectures (and later the Grundlagen) that line segments themselves
exhibit a field structure like that of the real numbers, it was necessary for Hilbert
to have a detailed axiomatization of field structure, in order to say that the fields
are alike in certain respects but differ in others. This is the origin of Hilbert’s
axiomatisation of the real numbers in the lecture notes, published as axioms for
what Hilbert calls ‘complex number systems’ in the Grundlagen of 1899, and
then completed in (Hilbert, 1900a). The point is simple: to show that a concep-
tual ‘reduction’ (like Frege’s) has worked, one has to be able to derive theorems
which say that the defined objects (e.g. the numbers) have the right properties.²³
Thus, one has to have in effect an axiom system, and this is overriding.

Frege sought a reduction to fewer and fewer principles, as in a sense did
Euclid; Hilbert’s work on the other hand shows that, in some key cases if

²² Hilbert’s later paper ‘Axiomatisches Denken’ makes the parallel point that the uncovering of ever
‘deeper’ primitives is a constant theme in the development of mathematics and physics. The paper
even seems to suggest that the use of the Axiomatic Method incorporates such a search; he uses the
phrase ‘Tieferlegung der Fundamente’. The point to stress, though, is that there is never thought to be an
ultimate conceptual layer, and the ‘foundations’ for a theory might be given, and productively so, in
different, even incompatible, ways. As Boolos observes with respect to the Frege analysis of number
and the attempt to reduce arithmetic to logic:

Neither Frege nor Dedekind showed arithmetic to be part of logic. Nor did Russell. Nor did
Zermelo or von Neumann. Nor did the author of Tractatus 6.02 or his follower Church. They
merely shed light on it. (Boolos, 1990, 216–218).

²³ Frege seeks to establish just this in his (1884, §§78–83).
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we have more axioms, then our logical analysis can be more refined. A nice
example is provided by the maintenance of the Archimedean Axiom as an
independent axiom while seeking an additional axiom which leads to point-
completeness. A natural axiom would have been some version of the limit
axiom which Hilbert had used in earlier axiomatizations (e.g. in his 1893/1894
lectures, in Hilbert (1895), and in his 1898 Ferienkurs), and which is even
presented as a possibility in the 1898/1899 lectures. But this axiom would
‘hide’ the Archimedean Axiom because it would imply it. Instead, Hilbert
retains the Archimedean Axiom and seeks an axiom which will complement
it and boost its power to full completeness. The axiom he chooses is his own
‘Vollständigkeitsaxiom’.²⁴ Many of Hilbert’s metamathematical investigations
concern the precise role of the Archimedean Axiom in the proofs of central
theorems, typically whether, when used, its use is necessary or not. One
example is given by Dehn’s work on the Legendre Theorems and the Angle-
Sum Theorem (Dehn, 1900), another concerns the involvement of the axiom
in the theories of plane area and three-dimensional volume. The axiom and
the requisite analyses are also clearly important in the development of non-
Archimedean geometries; and its presence without the Completeness Axiom
is very important in the search for countable models. Yet another example
is provided by Hilbert’s own work on the Isoceles Triangle Theorem to be
considered below in Section 8.4.2.

The point about the definitions, and this point about not reducing the
conceptual level, are, of course, closely related. The creative purpose behind
defining, as Frege recognized, is that with properly chosen definitions, unprov-
able propositions become provable, and therefore there is no need to take
them (and attendant propositions) as axioms. Examples abound, but a striking
one is furnished, of course, by Frege’s own work. With the Frege definition
of number, we can prove what is now known as Hume’s Principle (HP),²⁵ the
principle in effect from which Frege arithmetic is derived. Without such a
proof, we would have to take the principle as a primitive axiom, and the terms
‘NxFx’ (i.e. the numbers) as primitive terms, contrary to Frege’s intention.
However, it might be argued that the really revealing thing about Frege’s
work is not that, with the Frege definition, HP is provable, but rather that
the central arithmetic principles can be proved from HP alone, given Frege’s
other definitions.

²⁴ See my Introduction to Chapter 5 of Hallett and Majer (2004, §5, 426–435).
²⁵ That is, the second-order proposition: ‘∀F, G[NxF = NxG ↔ F ≈ G]’, where ‘F’, ‘G’ are

variables for concepts, ‘NxF’ is a singular term standing for ‘the number of things falling under the
concept F’, and where ‘≈’ stands for the (definable) relation of equinumerosity between concepts. See
Frege (1884, §63).
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So, to sum up the points in these last two sub-sections: for Hilbert, we
do not generally seek ‘more primitive’ conceptual levels from which a theory
can be finally deduced; moreover, often conceptually ‘higher’ mathematics
is intrinsically necessary for the investigation of conceptual schemes, even
elementary ones.

8.4 The ‘purity of method’ reconsidered

Let us now return to the way that ‘purity of method’ is dealt with in Hilbert’s
geometrical work. I will consider three examples, concerning respectively
Desargues’s Theorem, the Isoceles Triangle Theorem and the Three Chord
Theorem, all of them extremely elementary geometrical results, and all three
of which touch centrally on the intuitive ‘facts’ behind geometry. This is no
accident. We have seen that for Hilbert the main source of knowledge behind
traditional geometry is a mixture of intuition and empirical investigation
(experiment), a mixture ultimately behind the successful axiomatization. But,
starting with informal ‘purity’ questions, Hilbert’s metamathematical analysis
of the ‘facts’ uses higher mathematics, which in turn informs elementary
geometrical knowledge. None of the examples treated is fully represented in
the original 1899 version of the Grundlagen. The central result on Desargues’s
Theorem (Section 8.4.1) is in the Grundlagen, but what leads up to this result,
namely, the philosophical reflection and analysis undertaken in the 1898/1899
notes, is suppressed; the analysis of the Three Chord Theorem (Section 8.4.3) is
an important part of the 1898/1899 lectures, but only the abstract mathematical
result, and not the analysis itself, appears in the Grundlagen; and the analysis
of the Isoceles Triangle Theorem (Section 8.4.2) makes no appearance, being
first dealt with in the 1902 lectures.

8.4.1 Desargues’s Theorem

The first example I want to consider where purity of method and the analysis of
intuition play a significant role is in Hilbert’s treatment of Desargues’s Theorem
in elementary projective geometry. Suppose given two triangles 
ABC and

A′B′C′, not in the same plane, which are so arranged that the lines AA′, BB′,
CC′ meet at a point. Desargues’s Theorem then says that the three points of
intersection generated by the three pairs of straight lines AB and A′B′, BC and
B′C′, AC and A′C′ themselves lie on a straight line. Intuition might be said to
play a role from the beginning, since it is very easy to ‘see’ the correctness of
the theorem; the intersection points must all lie in the planes of both triangles,
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and these planes intersect in a straight line. Cast in Hilbert’s system, it is easily
proved using just the full (i.e. planar and spatial) incidence and order axioms
(Groups I and II). However, the theorem has a restricted version, where
the triangles in question both lie in the same plane.²⁶ This version is not so
easily visualizable, neither is it especially easy to prove. More importantly, the
standard proof goes via the unrestricted version, using a point outside the plane
of the triangles to reconstruct a three-dimensional Desargues’s arrangement
whereby the three-dimensional version of the theorem can be applied. In
short, this proof, too, calls on all the axioms of I and II, even though the
theorem itself appears to involve only planar concepts, i.e. is concerned only
with the intersection of lines in the same plane. An indication of the standard
way of proving the planar version of Desargues’s Theorem is given by Fig. 8.1.
Intuition might seem to play a role here, too, since it relies on projection of
the original triangles up from the plane they lie in; in short, one can ‘see’
that planar Desarguesian configurations are reflected in spatial Desarguesian
configurations and conversely.

This situation is remarked upon by Hilbert in his 1898/1899 lectures as
raising a purity problem. Hilbert writes:

I have said that the content of Desargues’s Theorem is important. For now however
what’s important is its proof, since we want to connect to this a very important
consideration, or rather line of enquiry. The theorem is one of plane geometry; the
proof nevertheless makes use of space. The question arises whether there is a
proof which uses just the linear and planar axioms, thus I 1–2, II 1–5. Thus here

C
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C ′
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Fig. 8.1. Diagram for the usual proof of the Planar Desargues’s Theorem, taken from:
Hilbert and Cohn-Vossen (1932), p.108, Fig. 134. 
ABC and 
A′B′C′ are the two
triangles in the same plane, and S is an auxilliary point chosen outside this plane.

²⁶ Both versions have fully equivalent converses, where it is assumed that the three points of
intersection lie on a line, and it is then shown that the lines AA′, BB′, CC′ meet in a point.
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for the first time we subject the means of carrying out a proof to a critical analysis.
(Hilbert (∗1898/1899, p. 30), p. 236 in Hallett and Majer (2004))

Then follow the general remarks about ‘purity of method’ which were quoted
earlier (see p. 282). What this passage raises is the question of the appropriateness
of a given proof, a ‘purity’ question par excellence, for here we have to do with
a theorem, the Planar Desargues’s Theorem, which is proved by means which
at first sight might be thought inappropriate, owing to the proof’s appeal to
spatial axioms.

What we are faced with first is an independence question, and Hilbert sets
out to show that the proof of the Planar Desargues’s Theorem is not possible
without appeal to spatial incidence axioms. As he puts it:

We will rather show that Desargues’s Theorem is unprovable by means of I 1–2,
II 1–5. One will thus be spared the trouble of looking for a proof in the plane.
For us, this is the first, simplest example for the proof of unprovability. Indeed: To
satisfy us, it is necessary either to find a proof which operates just in the plane, or to
show that there is no such proof. Prove so, that we specify a system of things = points
and things = planes for which axioms I 1–2, II 1–5 hold, but the Desargues
Theorem does not, i.e., that a plane geometry with the axioms I, II is possible
without the Desargues Theorem. (Hilbert (∗1898/1899, p. 30), pp. 236–237 in
Hallett and Majer (2004))

To show this, Hilbert constructs an analytic plane of real numbers, with the
closed interval [0,+∞] removed. The key thing is that some of the new
straight lines are gerrymandered compositions: below the x-axis, the line is an
ordinary straight (half-)line; above the x-axis, the line is in fact an arc of a circle
uniquely determined by the conditions (a) that it goes ‘through’ the origin,
O (it is open-ended here, since O is not itself in the model), and (b) that the
given straight line below the x-axis is a tangent to it. Hilbert’s figure (Fig. 8.2)
illustrates the essentials of the model.²⁷

The first thing to note about this is that we are here operating at one remove
from the intuition ordinarily thought to underlie projective geometry. For one
thing, the model produces highly unintuitive ‘straight lines’, even though they
are pieced together using intuitable objects. The gerrymandered ‘straight lines’
are again ‘intuitable’ in the sense that one can easily visualize them (witness
Fig. 8.2). Moreover, there is a sense in which lines made up of two distinct
pieces are extremely familiar to us; think of a straight stick (a line segment) half
immersed in still, clear water and then viewed from above looking down into
the water. (Indeed, if it is viewed when the water is not still, then at any instant

²⁷ For full details, see Hilbert (∗1898/1899, 31), or the Ausarbeitung, p. 28; these are pp. 237 and 316
respectively in Hallett and Majer (2004).
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O

Fig. 8.2. Model for the failure of Desargues’s Theorem; diagram taken from p.31 of
Hilbert’s 1898/1899 lecture notes on the foundations of Euclidean geometry.

the upper part will appear as an ordinary straight line, while the lower part
will be a non-straight curved line. It might be said that what Hilbert has done
here is to take a simple example like this and to choose a particularly simple
curve.) However, while the direct perception (‘intuition’) of such objects is
perhaps familiar, the analytic treatment is essential, and not merely a convenient
way of proceeding. For one thing, the use of the algebraic manipulation is
indispensable; it has to be shown that the model satisfies the plane axioms of I
and II, and this is by no means trivial. For instance, in considering Axiom I1,
it has to be shown that any two points determine a straight line in the new
sense, including the case where one point lies above the x-axis (has positive
y-coordinate), and one point lies below the x-axis (has negative y-coordinate);
in other words, it has to be shown that there is always a circle passing through
0 and the upper point and which cuts the interval [−∞, 0) in a point below
0 such that the tangent to the circle at that point is a straight line which passes
through the given point in the lower half-plane. This, however, is correct, as
careful calculation shows.²⁸ It is hard to see how this could be accomplished
without the use of calculation. The point is that the use of the analytic plane
and the accompanying algebra gives Hilbert extremely fine control over the
pieces and how to glue them together in the right way, even though the
result (when transferred back to the intuitive level) is fairly easily understood
visually.

Hilbert’s model specifies the first example of a non-Desarguesian geometry.
Hilbert’s treatment of the Desargues’s Theorem in the 1898/1899 notes is

²⁸ Hilbert does not explicitly adddress this case, and I am grateful to Helmut Karzel for bringing it
to my attention. It is more fully explained in my n. 46 to the text of Hilbert (∗1898/1899) in Hallett
and Majer (2004, 237).
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Fig. 8.3. Model for the failure of Desargues’s Theorem used in the Grundlagen der
Geometrie; diagram adapted from p.53.

fully projective, and takes place before the congruence axioms are even stated.
In the Grundlagen, all the axioms are set out before there is any significant
development. The statement of Desargues’s Theorem given there involves
parallels, and the proof from the full spatial axioms (and the Parallel Axiom) is
called upon, though not given (p. 49). Hilbert then remarks that one can give
a simple planar proof provided a central result from the theory of proportions
is used. Since congruence is involved, this means in effect that congruence can
replace the spatial assumptions involved in the usual proof. Hilbert then gives
another planar model (see Fig. 8.3), thus creating a non-Desarguean affine
geometry, in which Desargues’s Theorem and the appropriate congruence
assumption (the Triangle Congruence Axiom, IV 6 of the Grundlagen, III 6
of the lectures) both fail. The investigation is thus different, and certainly
adds important information to that of the lectures.²⁹ But the same points as
were made above hold. Hilbert again takes an ordinary analytic plane, but this
time one with a certain ‘distorting’ ellipse around the origin. Here, straight
lines which would normally pass through the origin are ‘distorted’ by the

²⁹ As against this, though, note that the whole fascinating discussion of the import of Desargues’s
Theorem, of ‘Reinheit der Methode’, etc. is quite lacking in the first and subsequent editions of the
Grundlagen.
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elliptical ‘lens’ such that in the interior of the ellipse they describe arcs of
circles, and the new ‘straight lines’ are these straight line/circle arc/straight line
composites. (See Fig. 8.3 and then Hilbert’s Grundlagen, pp. 52–54, in Hallett
and Majer (2004, pp. 488–491).) Once again the idea has connections with
perceptual experience; once more, we see a case where the result issues from
interplay between geometrical intuition and abstract, non-intuitive calculation.
But again note that it is this calculation which shows that the model works,
for once again, precision is the key. We also have a case which is similar
to the Isoceles Triangle Theorem result in Section 8.4.2, for what is shown
here is that spatial assumptions can be avoided if (here) we adopt the full set
of axioms governing plane congruence. It is also worth bearing in mind that
highly refined mathematical/numerical models like these are what show for
Hilbert that certain ‘intuitive’ geometries ‘exist’.

One of the results of Hilbert’s investigation is that one need not look any
further for a purely plane proof (from I 1–2, II) of the Planar Desargues’s
Theorem; one can, as Hilbert puts it, ‘sich die Mühe sparen’. But this is by
no means the end of the matter. As Hilbert states, our ‘drive’ for mathematical
knowledge is only satisfied when one can establish why matters cannot go
in the initially expected way. (See the passage from the Grundlagen cited on
p. 201.) Since Desargues’s Theorem can be proved from the axiom groups I
and II, which among other things put conditions on the ‘orderly’ incidence of
lines and planes, one might say that the theorem is a necesssary condition for
such incidence. Hilbert now conjectures the following:

Is the Desargues Theorem also a sufficient condition for this? i.e. can a system of
things (planes) be added in such a way that all Axioms I, II are satisfied, and the
system before can be interpreted as a sub-system of the whole system? Then the
Desargues Theorem would be the very condition which guarantees that the plane
itself is distinguished in space, and we could say that everything which is provable
in space is already provable in the plane from Desargues. (Hilbert (∗1898/1899,
p. 33), p. 240 in Hallett and Majer (2004))

Hilbert shows that this conjecture is indeed corrrect, and the result is achieved
by profound investigations of the relationship between the geometrical situation
and the analytic one, the overall result being a re-education of our geometrical
intuition, for what it reveals is that the Planar Desargues’s Theorem in effect
actually has spatial content. This provides an explanation of why it is (in the
absence of congruence and the Parallel Axiom) that the Planar Desargues’s
Theorem cannot be proved without the use of spatial assumptions, and it
provides a beautiful example of Hilbert establishing in the fullest way possible
why ‘impure’ elements are required in the proof of Desargues’s Theorem,
the grounds for the ‘impossibility of success’ in trying to prove Desargues’s
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Theorem in the plane. When Hilbert first articulated the conjecture in the
passage just quoted, he clearly had no proof of it, the same being true at the
time the corresponding place in the Ausarbeitung was composed.³⁰ However,
towards the very end of the Ausarbeitung (pp. 159–160; Hallett and Majer (2004,
p. 387)), Hilbert presents a proof showing the conjecture to be correct.³¹ The
situation is a little complicated, but worth sketching.

(i) Hilbert’s first step is to set up a segment calculus using the full axioms
I–II together with IV (i.e. the axioms of incidence, order, and parallels,
following the enumeration of the lectures; in the Grundlagen, these axioms
are I–III). Segments are in effect to be treated as magnitudes, though the
relevant properties are not assumed, but have to be demonstrated: addition and
multiplication are defined for segments, the basis being an arbitrarily chosen
system of axes; the zero and unit segments are defined; negative segments and
fractional segments are then also defined, as well as an ordering relation. The
Planar Desargues’s Theorem is then called on in a fairly natural way to show
that these operations satisfy all the axioms for a non-commutative ordered
field. Hilbert also shows that the usual equation for a straight line holds, where
segment ‘magnitudes’ are taken as what the variables vary over.

(ii) The Planar Desargues’s Theorem is available because of the presence of
the spatial incidence axioms in I. Not only are these the only spatial assumptions,
their sole purpose here is to guarantee the presence of the Planar Desargues’s
Theorem. If we drop these axioms, but adopt the Planar Desargues’s Theorem
instead, in effect as a new axiom, then we have apparently just planar axioms,
but importantly the results about the segment field still go through.

(iii) Hilbert’s third step is to point out that the segment magnitudes can be
used in pairs to coordinatize the plane; this is done in a very natural way, given
the axes which lie at the base of the definitions of addition and multiplication.
Hilbert argues now that we can use triples of these magnitudes as the basis
of a coordinatization of space. The space thus determined will satisfy all the
original axioms I–II, IV (I–III in the enumeration of the Grundlagen), and
will be such that the original plane (now characterized by coordinate pairs)
will be a plane in the new space; moreover, the fact that the right incidence

³⁰ In the Ausarbeitung of the lectures notes, Hilbert introduces the conjecture with the words ‘The
question is ... ’. He then writes:

This question is probably to be answered in the affirmative; one could then say in this case: The
Desargues Theorem is the resultant of the elimination of the spatial axioms from I and II. (p. 32;
Hallett and Majer, 2004, 318)

³¹ For the evidence that Hilbert did not have the proof until late on in the course, see Hallett and
Majer (2004, 189–190).
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axioms hold for planes means that this plane will be ‘properly’ embedded in
the space.

What this shows is that that the Planar Desargues’s Theorem is a sufficient
condition for the orderly incidence of lines and planes, in the sense that it can
be used to generate a space. We thus have an explanation for why the Planar
Desargues’s Theorem cannot be proved from planar axioms alone: the Planar
Desargues’s Theorem appears to have spatial content. Moreover, as is clear in
Hilbert’s statement of his conjecture and from his construction, Desargues’s
Theorem could now be taken as an axiom to act in place of the spatial incidence
axioms. The use of the theorem as an alternative axiom is quite standard in
modern treatments of projective geometry, especially in treatments of affine
planes; see, for example, Coxeter (1974) or Samuel (1988).

In this example, the investigation begins with a straightforward ‘purity’
question, which involves the analysis of an easy result underwritten, if not
generated by, intuition; the analysis itself consists of an interplay between
intuitive geometrical configurations and analytic geometry, though the precise
results are obtained via the analytic models. The final analysis produces results
which inform or educate (perhaps even challenge) our intuition.

8.4.2 The Isoceles Triangle Theorem

The Isoceles Triangle Theorem (ITT ) of elementary geometry says that the
base angles in an isoceles triangle are equal or, equivalently, that in a triangle
whose base angles are equal, the sides opposite the equal angles are equal. The
theorem figures early in Book I of Euclid’s Elements as Proposition 5. Euclid’s
proof relies on the congruence of certain triangles using the side-angle-side
criterion, the justification for this criterion being given in I, 4. The proof of
I, 4 relies on a superposition argument, something which after this point Euclid
seems keen to avoid. In Hilbert’s axiomatization, the theorem is proved from
incidence, order, and congruence axioms, the latter being designed to avoid
physico-spatial assumptions, such as those involving rigid body movement
or superposition. Hilbert’s Triangle Congruence Axiom, bringing together
assumptions about linear congruence and angle congruence, itself directly
legitimizes the side-angle-side criterion for triangle congruence; the other
usual criteria for triangle congruence are then given in the subsequent triangle
congruence theorems, all of which rest ultimately on the Triangle Congruence
Axiom. Hilbert’s proof of the ITT , as given in his 1898/1899 lectures (the
theorem is not mentioned in the Grundlagen) rests on a simple observation,
namely that in the isoceles triangle 
ABC (where AB and BC are taken to
be the sides which are equal) we can describe the triangle in two distinct
ways, namely as 
ABC and 
ACB, and the triangles so described must be
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congruent by the side-angle-side criterion; consequently, the base angles must
be the same. The proof appears to be, thus, little more than trivial.

Hilbert’s proof can be traced to Pappus; Euclid’s is different and a bit more
involved. In his edition of the Elements, Heath notes of Pappus’s proof:

This will no doubt be recognised as the foundation of the alternative proof
frequently given by modern editors [of the Elements], though they do not refer to
Pappus. But they state the proof in a different form, the common method being
to suppose the triangle to be taken up, turned over, and placed again upon itself,
after which the same considerations of congruence as those used by Euclid in I, 4
are used over again. (Heath (1925, Volume 1, p. 254))

But Heath points out that Pappus himself avoids the assumptions about ‘lifting’
and ‘turning’, simply describing the same triangle in two ways. Hilbert thus
follows Pappus, not those ‘modern editors’ Heath mentions.

Heath notes, though, that even Pappus’s proof depends indirectly on a
superposition argument, since it rests on Euclid’s I, 4. Hilbert’s proof does
not, simply because the side-angle-side congruence criterion depends on the
Triangle Congruence Axiom, not on any special proof method. It seems that
matters have been shifted to the ‘conceptual sphere’, and no longer directly
concern intuitions of space and movement in space.

Nevertheless, a ‘purity of method’ question can still be posed at the intuitive
level: is ‘flipping’ and turning of the triangles, and thus a spatial dimension,
essential to the argument for ITT? In some work first presented in his 1902
lecture course on the foundations of geometry, and then more fully in a paper
published later in that year, Hilbert transposed this question at the intuitive
level to a correlative question at the level of his axiomatization.³² At the centre
of concern is the Triangle Congruence Axiom. In its usual form, this involves
no reference to what intuitively might be called the ‘orientation’ of the
triangles involved; two triangles with matching side-angle-side combinations
will be determined as congruent regardless of whether their orientation is
the same or not. To mix idioms, accepting the quasi-physical interpretation
of the concepts and axioms, and with the notion of congruence formulated

³² The lecture notes are Hilbert (∗1902), in Chapter 6 of Hallett and Majer (2004); Hilbert’s paper
is Hilbert (1902/1903). This paper was reprinted as Anhang II to the editions of the Grundlagen der
Geometrie from the Second on. An Appendix (mentioned below) was made to the first reprinting in
Hilbert (1903), and then a note (also mentioned below) was added to the Sixth Edition published
in 1923, i.e. Hilbert (1923). The Appendix was radically revised by Arnold Schmidt for the Seventh
Edition (Hilbert 1930) of the Grundlagen, as Hilbert makes clear in the Preface, this being the last
edition of the monograph to be published in Hilbert’s lifetime. We will actually concentrate here on
Hilbert’s presentation in his 1905 lectures on the ‘Logische Principien der Mathematik’, since of all the
versions, this is the one where Hilbert is most philosophically expansive about the results and what
they show. These lectures will appear in Ewald, Hallett and Sieg (Forthcoming).
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with physical manipulation and superposition in view, triangles of different
orientation can only be shown congruent by superposition after lifting and
turning them in space. Thus, under such a physical interpretation, Hilbert’s
axiom licenses ‘flipping’ as a kind of displacement, and not just ‘sliding’ within
the same plane. Seen in this way, the proofs of the ITT all exploit such flipping,
either directly or indirectly, even, it might be said, Hilbert’s in his ‘neutral’
system. The original ‘purity of method’ question, namely, ‘Is flipping essential
to the proof?’, now has a direct correlate with respect to Hilbert’s system:
Is the Triangle Congruence Axiom (which can be seen to license ‘flipping’)
essential to the proof of ITT in the axiomatic system, divorced as it is from the
intuitive/empirical perspective? In order to pose the question more precisely,
Hilbert considers a weakened version of the Triangle Congruence Axiom, one
which insists in effect that, before the side-angle-side criterion can be used
to license triangle congruence, the triangles be of the same orientation in the
plane. This weakened axiom no longer underwrites the usual proofs of the
ITT , as a quick look at the Pappus/Hilbert argument indicates; can the ITT
nevertheless be proved? As Hilbert puts it in his presentation of the work in
his 1905 lectures, the original ‘purity of method’ question is now transformed
into a question primarily about logical relations:

There now arises the question of whether or not the [original] broader version of
the [Triangle Congruence] Axiom contains a superfluous part, whether or not it
can be replaced by the restricted version, i.e. whether it is a logical consequence
of the restricted version. This investigation comes to the same thing as showing
whether or not the equality of the base angles in an isoceles triangle is provable on the
basis of the restricted version of the congruence axiom. The question has a close
connection with that of the validity of the theorem that the sum of two sides of
a triangle is always greater than the third. (Hilbert, ∗1905, pp. 86–87)

This question is the beginning of Hilbert’s investigations, and the consequences
are fascinating, both for the abstract mathematical structure, for what the inves-
tigations tell us about ‘geometrical intuition’, and because of the connection
Hilbert draws with the property of triangles he states, which we will refer to
here as the Euclidean Triangle Property.

Hilbert first shows that the restricted congruence axiom together with the
ITT itself implies the normal Triangle Congruence Axiom (see Hilbert, ∗1902,
p. 32).³³ The key question, in effect first raised in Hilbert (∗1902), is then

³³ In a note added to Appendix in the Sixth Edition of the Grundlagen, Hilbert points out that this is
in fact only the case if one adds a further congruence axiom guaranteeing the commutativity of angle
addition. See Hilbert (1923, 259–262); a suitable further axiom due to Zabel is stated on p. 259. This
note does not appear in subsequent editions, but Schmidt’s revised version of Appendix II adopts a
similar additional congruence axiom, a weaker one attributed to Bernays. See Hilbert (1930, 134).
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this: What has to be added to the usual system, with both the Parallel Axiom
and the Archimedean Axiom, but only the restricted Triangle Congruence
Axiom, to enable the Isoceles Triangle Theorem (or indeed the usual Triangle
Congruence Axiom) to be proved?

Hilbert’s first answer to this question is given in the 1902 lectures, and then
in the 1902/1903 paper, namely: one can prove the ITT if one adopts alongside
the Archimedean Axiom a second continuity axiom which Hilbert calls the
Axiom der Nachbarschaft. This latter axiom (see Hilbert, ∗1902, p. 84) states
that, given any segment AB, there exists a triangle (‘oder Quadrat etc.’) in
whose interior there is no segment congruent to AB. Hilbert later gave other
answers, focusing, in place of Nachbarschaft, on an axiom he calls the Axiom der
Einlagerung (Axiom of Embedding), which says that if one polygon is embedded
in another (i.e. its boundary contains interior but no exterior points of the
first), then it is not possible to split the two polygons into the same number of
pairwise congruent triangles. (Bernays later gave an essential simplification.)³⁴

The bulk of Hilbert’s ‘purity’ investigation is now devoted to showing
that this axiom (or respectively Einlagerung) and the Archimedean Axiom are
both essential if the ITT (respectively the broader version of the Triangle
Congruence Axiom) is to be proved in this way. What Hilbert shows is that
geometries can be constructed in which all the plane axioms hold (with the
weaker version of triangle congruence), and where Nachbarschaft (respectively
Einlagerung) holds, but where the Archimedean Axiom and the ITT both fail,
or similarly where the Archimedean Axiom holds, but where Nachbarschaft
(respectively Einlagerung) and the ITT fail.

In his 1902 lectures, Hilbert is very careful to set out some of the important
things which can be reconstructed on the basis of the weaker congruence
axiom³⁵, and among them is Hilbert’s equivalent of Euclid’s theory of linear
proportion. On the other hand, Hilbert’s full theory of triangular area (‘surface
content’), a conscious reconstruction of Euclid’s, does not apparently go
through. Euclid’s fundamental theorem concerning this (Elements, I, 39) is
that triangles on the same base and with the same area must have the same
height. In establishing his version of this theorem (that two triangles which are
inhaltsgleich and on the same base have the same height), Hilbert defines the

³⁴ This new ‘very intuitive’ requirement was first introduced by Hilbert in a section added to the
first reprinting of his paper in the Second Edition of the Grundlagen, i.e. Hilbert (1903, 88–107).
Schmidt’s revision of Appendix II for the Seventh Edition (1930) omitted the consideration of the
Einlagerungsaxiom. It was revived by Bernays in Supplements to later editions, where he points out the
simplification.

³⁵ See §A of the 1902 lectures, which occupies pp. 26–32 of Hilbert (∗1902), to be found in Hallett
and Majer (2004, 553–556).
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notion of the surface measure, or Flächenmass, of a triangle as the product of
half the base and the height.³⁶ But in order for this definition to be a good
one, it has to be shown that this quantity is independent of the choice of
which side is to be the base. However, this apparently simple fact depends on
the recognition that two right-angled triangles constructed within the given
triangle are similar, and thus it depends on the theory of triangle congruence.
But the triangles in question are not in the same orientation, and consequently
it seems that the restricted version of the Triangle Congruence Axiom is not
sufficiently strong for the purpose at hand, and that the demonstration required
must ultimately depend on the unrestricted Triangle Congruence Axiom.

The construction of the models showing the various independence results
is not so clear in the 1902 notes, but is given much more explicitly in
the 1902/1903 paper, which was already clearly in preparation while the
1902 lectures were being held, and then in the 1905 lectures. We will also
concentrate on the first part of Hilbert’s independence investigation, where
the Archimedean Axiom fails, but Nachbarschaft holds, for this is very revealing
of Hilbert’s approach to foundational questions.

To show the necessity of the Archimedean Axiom, Hilbert constructs a
model in which all the axioms up to the Congruence Axioms (with, of course,
the restricted Triangle Congruence Axiom), hold, Nachbarshaft holds, but the
Archimedean Axom fails. In this model: (i) the Isoceles Triangle Theorem
fails; (ii) the Euclidean triangle property fails; and (iii) the theory of triangle
area fails to go through. The basis of this model is a non-Archimedean field,
which he calls T , using as elements the power series expansions

a0tn + a1tn+1 + · · ·
around a certain fixed parameter t, with real number coefficients, a0 non-zero,
and n (which can be zero) a rational number; arithmetic calculation using these
expansions takes place in the standard way. The ordering on the elements of
T is defined as follows: for any elements α, β in the field, α > 0 if a0 > 0, a0

being the first coefficient of the expansion of α, and < 0 if a0 < 0; α > β if
α − β > 0. These stipulations are enough to show that t is infinitesimal, since
1− mt > 0 whatever natural number m is; any α whose expansion begins
with t or indeed any tn is infinitesimal. If α = a0tn + a1tn+1 + · · · is such an
infinitesimal element, then eα itself will be in the field, and will be representable
by a power series expansion whose first element is 1 · t0.

³⁶ See the 1899 Grundlagen, p. 43, or the Ausarbeitung of the 1898/1899 lectures, p. 131, or
pp. 372–373 and 478–479 respectively in Hallett and Majer (2004).
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Suppose now that α and β are in the field; we can then consider the complex
number α + iβ, and these elements give rise to the complex extension of the
field. In fact, such an element will be represented by an appropriate power
series built on t where the coefficients are imaginaries. If α + iβ is in the
complex extension, then so will eα+iβ be.

Hilbert now defines an analytic geometry as follows. Points are defined
by pairs of coordinates (x, y), where x and y are elements of T . Straight
lines will be given by linear equations in the usual way, and so the usual
incidence and order axioms will then hold, as well as the Parallel Axiom;
the Archimedean Axiom, of course, will not hold. This leaves just the
congruence axioms to consider, and, as one might expect, this is where the
art comes. First, two segments are said to be congruent if parallel transport
can shift the line segments so that they start at the coordinate origin, and
then (keeping one of the segments fixed) one of them can be rotated into
the other by a positive rotation through some angle θ . The two ‘movements’,
parallel transport and rotation, are of course, properly speaking, transform-
ations of the plane onto itself. What will be congruent to what will then
depend on the definition of the transformation functions; parallel transport
is trivial, so the key matter is the transformation function corresponding to
rotation.

This function is based on the following trick. The coordinate (x, y) can
be coded as a single complex number α = x+ iy in the complex extension
of T . The function eα can then be used to form another complex number,
which can then be decoded to form a new coordinate (x′, y′). Suppose (x, y) is
the coordinate of one end of a segment whose other end-point (perhaps after
parallel transport) is at (0, 0). Suppose the segment is positively rotated through
an angle θ + τ , where θ is real (and could be 0) and τ is infinitesimal. Then
the new coordinates are given by the formula

x′ + iy′ = eiθ+(1+i)τ · (x+ iy)

Clearly (0, 0) transforms into the coordinate (0, 0).³⁷
Segments can be assigned length acccording to the following procedure. A

segment on the x-axis is said to have length l when one of its end-points lies
at the origin and the other has x-coordinate ±l. Any other segment has length
l if one end can be shifted to the origin by parallel transport and the other end
can be rotated into (±l, 0) by the rotation function or where (±l, 0) can be

³⁷ As Hilbert makes clear, it can be shown that given any line segment and any point in the plane, a
rotation can be found so that the rotated line passes through that point.
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rotated into it. Parallel transport does not alter length, but crucially rotation
sometimes does.³⁸

Hilbert now considers the point (1, 0) on the x-axis, and rotates this
positively through the infinitesimal angle t. This will give a segment OA,
where O is the origin and A has coordinates (x′, y′) determined by

x′ + iy′ = e(1+i)t · (x+ iy) = e(1+i)t · x = e(1+i)t

since y = 0 and x = 1. This is then:

et+it = et · eit = et · (cos t + i sin t) = et cos t + iet sin t

giving the coordinates

x′ = et cos t, y′ = et sin t

According to the method of determining length, segment OA necessarily has
length 1.

Now we construct the reflection of A in the x-axis, giving A′ with
coordinates (x′,−y′), and A and A′ are then connected by a line perpendicular
to the x-axis; denote by B the point where this line cuts the axis (Fig. 8.4).

A′ (x′, −y′)

Bt
O

(1,0)

(e2t, 0)

q

q

A (x′,y′)

Fig. 8.4. The triangle showing the failure of the Isoceles Triangle Theorem.

³⁸ A key part of the proof is showing, of course, that the Congruence Axioms hold. Hilbert’s work
is not explicit about this. In his new version of Appendix II to the Seventh Edition of the Grundlagen,
Schmidt uses one ‘congruence mapping’ in place of the distinct notions of parallel transport and
rotation. This is essentially the rotation function described above, with ‘transport’ parameters added,
i.e. x′ + iy′ = eiθ+(1+i)τ · (x+ iy)+ λ+ iµ, where λ,µ are taken to be elements of T . Schmidt then
proceeds to give careful verifications of the Congruence Axioms.
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Clearly, AB = BA′ and OB = OB; both angles � OBA and � OBA′ are π
2 . The

question is now to compare OA and OA′. What Hilbert does is to rotate OA′
positively through the angle t. This results in new coordinates (x′′, y′′) for the
end-point, where

x′′ + iy′′ = e(1+i)t · (et cos t − iet sin t)

= e(1+i)t · et(cos t − i sin t)

= e(1+i)t+t · (cos t − i sin t)

= e(1+i)t+t−it

= e2t

Therefore, x′′ = e2t, and y′′ = 0. (See Fig. 8.4.) Thus, the rotation takes the
point A′ to the x-axis, namely to the point (e2t, 0). But this point cannot
coincide with (1, 0), since e2t > 1. (This is because the power series expansion
of e2t is 1.t0 + 2t + 4t2

2! + · · ·; since the expansion of 1 is 1.t0 + 0+ 0+ · · ·,
the series for e2t − 1 is 2t + 4t2

2! + · · ·. The first coefficient of this is 2, hence
e2t − 1 > 0, and so e2t > 1.) The length of OA′ is therefore greater than 1, and
so different from that of OA. The base angles in the extended triangle 
OAA′
are the same; the Angle-Sum Theorem holds, since the Parallel Axiom does.
In consequence, we have an example of a triangle for which the base angles
are equal, but in which the sides opposite these angles are not, violating the
ITT (in its converse version).

Simple calculation in Hilbert’s model also shows that OB+ BA′ < OA′,
violating the Euclidean Triangle Property. As for the theory of triangle area,
Hilbert shows that the Pythagorean Theorem for right-angled triangles holds
in the form ‘The sum of the square surface areas over the two legs of the
right angle equals the square over the hypothenuse’, since this depends only
on the weaker Triangle Congruence Axiom. But the squares over BA′ and BA
are the same; since the square over OB equals itself, those over OA and OA′
must be the same, too. But OA < OA′; hence the usual analytic conclusion
from the Pythagorean Theorem (‘The length of the hypothenuse is the square
root of the sum of the squares of the lengths on the other two sides’) fails,
because we will have here sums which are the same, but squared hypothenuse
lengths which are different.³⁹ For this reason, the geometry constructed is

³⁹ As Hilbert says in Hilbert (∗1902, 125a): ‘ ... one can no longer conclude that the sides are equal from
the fact that the squares are’. See Hallett and Majer (2004, 597).
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called by Hilbert non-Pythagorean geometry. Moreover, since OA < OA′, the
square over OA will fit inside the square over OA′ with a non-zero area left
over, so we have a square which is of equal area-content to a proper part of
itself, violating one of the central pillars of the Euclidean/Hilbertian theory of
triangle area-content.⁴⁰

It is important to see that these are not just technical results, for they
give us a great deal of information about what axioms are necessary for the
reconstruction of classical Euclidean geometry. Hilbert sums it up in his 1905
lectures as follows:

The result is particularly interesting again because of the way continuity is
involved. In short:

1.) The theorem about the isoceles triangle and with it the Congruence Axiom
in the broader sense is not provable from the Congruence Axiom in the narrower
sense when taken with the other plane axioms I–IV [thus excluding continuity
assumptions].

2.) Nevertheless, it becomes provable when one adds continuity assumptions,
in particular the Archimedean Axiom.

From this we see therefore that in the Euclidean system properly construed, and
which allows us to dispense with continuity assumptions, the broader Congruence
Axiom is a necessary component. The investigations which I have here set in
train throw new light on the connections between the theorem on the isoceles
triangle and many other propositions of elementary geometry, and give rise to
many interesting observations [Bemerkungen]. Only the axiomatic method could
lead to such things. (Hilbert, ∗1905, pp. 86–87)

This last remark is amplified by Hilbert in the direct continuation of this passage,
which also ties the nature of the investigation directly to the view of geometry
which we have seen emerging, namely emancipation from interpretation and
intuition without losing contact with what underlies the axioms:

When one enquires as to the status within the whole system of an old familiar
theorem like that of the equality of the base angles in a triangle, then naturally one
must liberate oneself completely from intuition and the origin of the theorem,
and apply only logically arrived at conclusions from the axioms being assumed.
In order to be certain of this, the proposal has often been made to avoid the
usual names for things, because they can lead one astray through the numerous
associations with the facts of intuition. Thus, it was proposed to introduce into
the axiom system new names for point, straight line and plane etc., names which
will recall only what has been set down in the axioms. It has even been proposed

⁴⁰ Hilbert states the conclusion as follows: ‘The theory of surface content depends essentially on the theorem
concerning the base angles of an isoceles triangle; it is thus not a consequence of the theory of proportions on its own’
(Hilbert (∗1902, 125a), or Hallett and Majer (2004, 597)).
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that words like equal, greater, smaller be replaced by arbitrary word formations,
like a-ish, b-ish, a-ing, b-ing. That is indeed a good pedagogical means for
showing that an axiom system only concerns itself with the properties laid down
in the axioms and with nothing else. However, from a practical point of view
this procedure is not advantageous, and also not even really justified. In fact, one
should always be guided by intuition when laying things down axiomatically, and
one always has intuition before oneself as a goal [Zielpunkt]. Therefore, it is no
defect if the names always recall, and even make it easier to recall, the content of
the axioms, the more so as one can avoid very easily any involvement of intuition
in the logical investigations, at least with some care and practice. (Hilbert, ∗1905,
pp. 87–88)

The emancipation from intuition and the ‘origin’ of the theorem concerned
is clearly indicated in this passage, but Hilbert’s remark that ‘one always
has intuition before oneself as a goal’ is also very important. Although the
achievement of the results necessarily requires the deliberate suspension of
intuition, crucially they yield important information about intuition. One thing
which Hilbert stresses in the passage quoted on p. 237 is that adopting the full
Triangle Congruence Axiom allows us to avoid any continuity assumption in
demonstrating the ITT . That is certainly correct, and this fact belongs alongside
others concerning congruence and continuity, a prime example being Hilbert’s
reconstruction of the Euclidean theories of proportion and surface area without
invoking continuity. But there are other subtle conclusions to be drawn. For
example, as explained above, the (apparently planar) full Triangle Congruence
Axiom appears to contain some hidden spatial assumption, since it licenses
‘flipping’ arguments. But now Hilbert’s independence results seem to show that
we can get the result without the spatial assumption, and thus with genuinely
planar congruence axioms, if we accept some modest continuity assumptions
about the plane. So one has a choice between spatial assumptions in the planar
part of geometry, or continuity assumptions. However, what makes this a rather
more complicated matter is that the main continuity assumption involved, the
Archimedean Axiom, is quasi-numerical, something one might think should
be avoided as far as possible in a purely ‘geometrical’ axiomatization.

But whatever the right conclusion to be drawn about our geometric
intuitions, two very important things seem to follow from Hilbert’s analysis. On
the one hand, the results seem to strengthen Hilbert’s holism about geometry,
at least in the sense that the axioms are very intricately involved with each
other, and that there might be more than one way to achieve many important
results. Secondly, the adumbration of the intuitive picture here, and perhaps
its correction or adjustment, follows from the high-level logico-mathematico
investigation which Hilbert engages in. The information is obtained only
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by using very sophisticated mathematical analysis: complex analysis over a
non-Archimedean field. In other words, the higher mathematical/logical
analysis based on complex numerical structures instructs and informs lower-
level geometrical intuition. This, note, is just such a case where ‘function
theory’ is used to show something about elementary geometry. (See the
quotation from Hilbert on p. 201 above.)

In short, this example illustrates Hilbert’s view that one is guided by
geometrical intuition, one asks questions suggested by intuition, but in the end
it is higher mathematics which instructs intuition, not the other way around.
Thus, while Hilbert does carry out a kind of ‘purity of method’ investigation,
it is much more focused, as he puts it, on the ‘analysis of intuition’. One of
the reasons why Hilbert thinks that intuition requires analysis is that it is not,
for him, a certain source of geometrical knowledge, and certainly not a final
source. Thus the analysis, which is designed to throw light on the question:
what is one committed to exactly when one adopts certain principles, among
them principles suggested by intuition?

8.4.3 The Three Chord Theorem

The third example considered here concerns another fairly elementary geo-
metrical theorem, which says that the three chords generated by three mutually
intersecting circles (lying in the same plane) always meet at a common point.
Call this the Three Chord Theorem (TCT ). (See Fig. 8.5.)

The theorem is not an ancient one, but was apparently first discovered by
Monge in the middle of the 19th century. It has an interesting generalization,
much studied by 19th century geometers, concerning the lines of equal power

Fig. 8.5. Diagram of the Three Chord Theorem, adapted from the Ausarbeitung of
Hilbert’s 1898/1899 lectures, p.61, (Hallet and Majer (2004, 335)).
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between two circles. The power of a point O with respect to a circle C in the
same plane can be defined thus: Consider any straight line OPQ through O
which cuts C in the two (not necessarily distinct) points P and Q. The power
of O with respect to C is now the product OP ·OQ. This is a constant for O
and C, since this ratio is the same wherever P (respectively Q) happens to lie
on the circle. (See Euclid’s Elements, Book III, Proposition 35.) If O is inside
the circle, the power is negative; if it is outside, and P and Q coincide, then
OPQ is a tangent, and the power is OP2. Given two circles, we can consider
the points which have the same power with respect to both circles; these lie on
a straight line perpendicular to the line joining the centres of the circles, a line
which is called the radical axis or the line of equal power (in German, a ‘Chordal’)
between the two circles. (See Coolidge, 1916, Theorem 167.) What was often
called the Hauptsatz of the theory of these lines is: Given three circles in a
plane, intersecting or not, the three lines of equal power that the three pairs of
circles generate must intersect at a single point. (Ibid., Theorem 168.) Clearly,
the TCT is just the case where each pair of circles intersect each other. There is
another interesting special case. Consider a triangle, and consider three circles
in the plane of the triangle centred respectively on the three vertices. As the
radii of the three circles tend to zero, the three lines of equal power will tend
to the perpendicular bisectors of the three bases. It follows that these three
bisectors have a common point of intersection.

Hilbert gives a direct proof of the TCT in his 1898/1899 notes. The proof,
which is clearer in the Ausarbeitung, pp. 61–64 (Hallett and Majer, 2004,
pp. 335–337), assumes that the three circles in question, all in the plane α, are
the equators of three spheres which have just two points P and Q of mutual
intersection; it is then shown fairly easily (loc. cit., p. 61) that the three chords
of the circles, which lie, like those circles, in α, must all intersect the line PQ.
But since neither P nor Q lies in α, PQ has only one point in common with α,
and this point is therefore common to all three chords. Thus the simple proof
depends on the assumption that three mutually intersecting spheres intersect
in exactly two points, in other words, that these points exist. Hilbert’s focus is
then on this assumption, no longer on the TCT itself.

Hilbert’s next step is to connect this with the theorem that a triangle
can be constructed from any three line segments which are such that any
two of the segments taken together are greater than the third. Call this the
Triangle Inequality Property. In Euclid, this is proved in I, 22 (see Heath,
1925, Volume 1, pp. 292–293); call this the Triangle Inequality Theorem. The
question Hilbert asks is: On what assumption is the proof of this proposition
based? In his lecture notes (p. 64), Hilbert states this triangle property in the
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same breath with another, namely that, given a straight line and a circle in
the same plane, if the line has both a point in the interior of the circle and
a point outside it, then it must intersect it, and in exactly two points.⁴¹ Call
this the line-circle property. Similar to this is what can be called the circle-circle
property, namely a circle with points both inside and outside another circle has
exactly two points of intersection with it.⁴² The connection to the Triangle
Inequality Theorem is not surprising, for the circle-circle property is precisely
what Euclid implicitly relies on in the proof of I, 22.

It is important to see Hilbert’s question as one concerning ‘purity of method’.
It is well known that similar questions arise with the very first proposition of
Euclid’s Elements (I, 1) which shows how to construct an equilateral triangle
on a given base AB. Euclid’s construction takes the two circles whose centres
are the endpoints of the base and whose radii are equal to the base; either of
the two points of intersection of the circles can be taken as the third apex, C.
But do the circles actually intersect? A standard objection is that there is no
guarantee of this. Heath notes:

It is a commonplace that Euclid has no right to assume, without premissing some
postulate, that the two circles will meet in a point C. To supply what is wanted
we must invoke the Principle of Continuity. (Heath, 1925, Volume 1, p. 242)

And by a ‘Principle of Continuity’, Heath means something like Dedekind
continuity (op. cit., pp. 237–238). Heath also cites one of Hilbert’s contempor-
aries, Killing, as invoking continuity to show the line-circle property (Killing,
1898, p. 43). And many commentators on Euclid (for example, Simson in the
1700s) raised this point with respect to the proof of the Triangle Inequality
Property, while at the same time stating that it is ‘obvious’ that the circles
intersect, and that Euclid was right not to make any explicit assumption. What
Hilbert investigates is what formal property of space corresponds to the implicit
underlying existence/construction assumption.

Hilbert constructs a model of his geometry (i.e. Axiom Groups I–III)
in which the existence assumption fails, and where the Triangle Inequality
Theorem (Euclid’s I, 22) also fails. Thus, the necessary conditions for Hilbert’s
proof of the Three Chord Theorem are not present in a geometry based solely
on I–III. Moreover, since the Euclidean proof of I, 22 is based on a simple
straightedge and compass construction, Hilbert’s result is tantamount to saying
that his axiom system does not have enough existential ‘weight’ to match this
particular construction. This result is interesting, because, beginning with an

⁴¹ Note that this has to be assumed for the power of point to be defined for all points and all circles.
⁴² For similar properties, see pp. 62, 65 of Hilbert’s lecture notes, and pp. 63–64 of the Ausarbeitung,

i.e. Hallett and Majer (2004, 335–337).
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intuitively inspired ‘purity of method’ question, it issues in a result on the
abstract, conceptual level; not just this, but the result also shows why the
assumption behind Euclid’s I, 1 is justified in an elementary way.

Hilbert begins to consider this metamathematical problem on p. 65 of his
lecture notes, pp. 64ff. of the Ausarbeitung. He constructs in effect the smallest
Pythagorean sub-field of the reals which contains 1 and π , which yields a
countable model of the axioms I–III (indeed of I–V, the whole system of
the 1898/1899 lectures and the first edition of the Grundlagen) when the usual
analytic geometry is constructed from pairs of its elements taken as coordinates.
However, the number

√
1− (π/4)2 does not exist in this field.⁴³ Since 1, 1,

and π
2 are in the field, the model will possess three lines which satisfy the

triangle inequality, but from which no triangle can be constructed. This is well
illustrated by the diagrams in the Ausarbeitung, pp. 66 and 68, here Figs. 8.6
and 8.7.

One can see from Fig. 8.7 that the upper apex of the triangle depicted in
Fig. 8.6 ought to have coordinates (π/4,

√
1− (π/4)2); but this is not a point

in the model. The same example shows that there can be a line partially within
and partially without a circle but which intersects the circle nowhere: take the
vertical line x = π

4 in the diagrams; this ought to meet the circle x2 + y2 = 1 at
points with y-coordinates ±√

1− (π/4)2, but again these points are missing.

π
2

1 1

Fig. 8.6. Model of the Failure of the Triangle Inequality Property.

⁴³ Hilbert’s quick sketch of the argument is as follows. Suppose
√

1− (π/4)2 were in the Pythagorean
field constructed, then, since this field is minimal, it would be represented by an expression formed
from π and 1 by the five operations allowed; Hilbert denotes this expresssion by A(1, π). But then,
as he points out, A(1, t) must represent the corresponding element

√
1− (t/4)2 of the corresponding

minimal field constructed from 1 and the real number t, whatever t is. However, while A(1, t) is always
real, it is obvious that

√
1− (t/4)2 will be imaginary for t sufficiently large t. Hence, A(1, t) will not

always represent it.
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Fig. 8.7. Model of the Failure of the Triangle Inequality Property, continued.

In his review of Hilbert’s Grundlagen, Sommer remarks that one cannot prove
the line-circle property in Hilbert’s system (Sommer, 1899/1900, p. 291). What
Sommer observes already follows from what Hilbert shows in his lectures, and
what he says there explicitly (e.g. pp. 64–65). Sommer, of course, certainly
knew that Hilbert had shown this. For one thing, this is the same Julius
Sommer, the ‘friend’, who, along with Minkowski, is thanked by Hilbert at
the end of the first edition of the Grundlagen for help with proofreading. For
another, Sommer refers to Hilbert’s lectures course for 1898/1899 directly,
in a different context (loc. cit., p. 292). Furthermore, the mathematical core
of the result is in fact present in the Grundlagen, if only implicitly and in a
more abstract form. Let us turn to this now, and then return to Sommer’s
remark.

The model described above really presents a result about the abstract
conceptual structures which mature axiom systems represent, for what Hilbert
has in effect shown, in modern algebraic terms, is that not every Pythagorean
field is Euclidean. An ordered field is said to be Pythagorean when the
Pythagorean operation holds, that is, when

√
x2 + y2 is in the field whenever

x and y are. (Note that, for each real r, there is a minimal, and countable,
Pythagorean sub-field of the reals containing the rationals and r, a fact which
Hilbert frequently employs in his independence proofs.) An ordered field K
is said to be Euclidean when for any non-negative element x ∈ K, we also
have

√
x ∈ K. It is obvious that every ordered Euclidean field is Pythagorean,

but Hilbert shows here that the converse fails, for his model is formed
from a field which is Pythagorean; π

4 is an element, given that π is, and
so are (π

4 )2 and 1− (π
4 )2; but, as we have seen,

√
1− (π/4)2 is not, and

so the field cannot be Euclidean.⁴⁴ The key point is summed up in the
following result: In an analytic geometry whose coordinates are given by an

⁴⁴ That Hilbert had in fact shown this was first pointed out to me by Helmut Karzel.
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ordered Pythagorean field, one can always construct a triangle from three
sides satisfying the triangle inequality if and only if the underlying coordinate
field is also Euclidean. Indeed, for an analytic geometry based on an ordered
field, the Euclidean field property is equivalent to the line-circle property,
and this is in turn equivalent to the circle-circle property, the property
directly relevant to Hilbert’s proof of the Three Chord Theorem (Hartshorne,
2000, pp. 144–146). Given this, the connection between the Euclidean field
property and the formation of a triangle from any three lines satisfying the
triangle inequality is obvious.

To repeat, the result is a thoroughly abstract one, a result about fields. The
inspiration is again intuitive, but this time the major fruit is a new theorem in
abstract mathematics. (The result can be found in the Grundlagen der Geometrie,
though the background work concerns solely the algebraic equivalents to
elementary constructions.)

This algebraic result is strongly hinted at in the Ferienkurs Hilbert gave in
1898. (See Hallett and Majer, 2004, Chapter 4; see pp. 22–23 of Hilbert’s
course.) Hilbert poses the question of whether, given a segment product c · d,
there is a segment x such that x2 = c · d, i.e. a square root for c · d. His
comment suggests that he thinks this is not always the case, and this is precisely
what the counterexample outlined above confirms. For example, in the second
diagram given, consider the horizontal and vertical products formed by the four
segments arising from the intersection of the horizontal and vertical chords.
The horizontal segment product (our c · d) is (1+ π/4) · (1− π/4), which
equals the vertical segment product

√
(1− (π/4)2) ·√(1− (π/4)2); thus, the

x sought is
√

(1− (π/4)2), which does not exist in the model, as we have
seen. Thus, a question from the 1898 Ferienkurs is answered.

Hilbert notes that the problem exhibited here does not just arise because of
the involvement of the transcendental number π ; he gives an example of an
elementary number which will be in any Euclidean field over the rationals, but
which is not in the minimal Pythagorean field, namely

√
1+√2. (See Hilbert’s

own lecture notes, p. 67, and also p. 67 of the Ausarbeitung. Hartshorne (2000,
p. 147) gives further details of the counterexample.) Another example is given
in the Grundlagen itself, to which we will come in a moment.

What is now interesting is how this abstract result is used to yield more
information at the intuitive level, at the level of synthetic, Euclidean geometry
rooted in elementary constructions. In the 1898/1899 lectures, Hilbert himself
seems to suggest that the problem might have to do with a continuity
assumption. On p. 64 of the Ausarbeitung, he says when assuming either the
line-circle or circle-circle properties, one is actually assuming that ‘the circle
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is a closed figure’.⁴⁵ Moreover, it is precisely in the context of the failure
of continuity in Hilbert’s system that Sommer makes his remark about the
line-circle property, adding that ‘it remains undecided whether or not the
circle is a closed figure’ (Sommer, 1899/1900, p. 291), thus adopting Hilbert’s
terminology from the lectures.

But continuity is not necessary to close this particular gap; just assuming the
Euclideanness of the underlying field will do, and results in Hilbert’s Grundlagen
make this quite clear. In his lectures, having pointed out the problem with
constructing the triangle described above, Hilbert says:

We will return to these considerations later, after we have built up geometry
completely, and when we investigate the means which can serve in construction.
We will then become acquainted with the fine distinction which arises when
one is allowed to use a pair of compasses [der Zirkel] in an unrestricted way, or
whether it can only be used for measuring off segments and angles (the right-angle
suffices). (Hilbert (∗1898/1899, p. 67), p. 260 in Hallett and Majer (2004))⁴⁶

Hilbert does not return to these matters in his own lecture notes, although
there is a section in the Ausarbeitung, pp. 170–173 which takes up directly
the question of which geometrical constructions are performable in his axiom
system.⁴⁷ This discussion is generalized in Chapter VII of the first edition of
the Grundlagen (Hallett and Majer, 2004, Chapter 5), and it is this which
we will consider here, although none of the discussion is motivated, as it
is in the preceding lecture notes, by the original consideration of the TCT .
Hilbert proves two results: (1) Any constructions carried out and justified on
the basis of Axioms I–V are necessarily constructions using just a straightedge
and a what he calls a ‘segment mover [Streckenübertrager]’ (for which a pair of
dividers would serve), the first for drawing straight lines, and the second for
measuring off segments. (2) The algebraic equivalent to these constructions
is the Pythagorean field. The use of the ‘Streckenübertrager’ corresponds to the
restricted use of the pair of compasses in constructions, i.e. marking off given

⁴⁵ A related remark is made in the original lecture notes, p. 64, and here Hilbert adds that Euclid
has ‘a similar sounding axiom’. There is, however, no such assumption in the Elements, either in the
Postulates or under the Common Notions. Hilbert may have been referring indirectly to the Euclidean
Definitions. For Euclid, a circle is a certain kind of figure, and a figure is ‘that which is contained by any
boundary or boundaries’ (Definition 14); see Heath (1925, Volume 1, p. 153). Perhaps the somewhat
vague ‘contained by’ and ‘boundary’ suggest ‘closed’, and perhaps that the circle has no ‘gaps’.

⁴⁶ On p. 68 of the Ausarbeitung of these notes (Hallett and Majer, 2004, 339–340), Hilbert writes:

We will discover among other things that it makes an essential difference, whether one is allowed
the unrestricted use of a pair of compasses or only allowed to use it for the measuring off of
segments and angles.

⁴⁷ See also Hilbert’s 1898 Ferienkurs, pp. 12–14; (Hallett and Majer, 2004, Chapter 3).
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radii using the compass as, say, a pair of dividers. What this means is that
the constructions licensed by Hilbert’s geometrical system of the 1890s can be
carried out (i.e. the existence of the points constructed justified) in any analytic
geometry whose coordinates form a Pythagorean field, even the minimal
Pythagorean field built over the rationals. (These are Theorems 40 and 41 of
the first edition of the Grundlagen, pp. 79–81.)⁴⁸ Hilbert then remarks that:

From this Theorem [41], we can see immediately that not every problem solvable
by use of a pair of compasses can be solved by means of a ruler and segment
mover [Streckenübertrager] only. (Hilbert, Grundlagen, p. 81, i.e. p. 516 in Hallett
and Majer (2004))

In other words, the unrestricted use of the pair of compasses in constructions is
not justified in his system.

To show this, Hilbert first gives an example of a real number which cannot be
in the minimal Pythagorean field built over the rationals, namely

√
2|√2| − 2,

despite the fact 1 and |√2| − 1 are both in the field. (The example is thus
slightly different from that given in the lectures.) It follows that we cannot
construct by means of ‘Lineal und Streckenübertrager’ a right-angled triangle
with sides of length 1 (hypothenuse), |√2| − 1 and

√
2|√2| − 2, since the

latter length cannot correspond to an element in the minimal Pythagorean
field; hence the construction problem is not soluble in Hilbert’s geometry.
But, as Hilbert remarks (Grundlagen, p. 82), the problem is immediately soluble
by a compass construction; the number Hilbert specifies (

√
2|√2| − 2) is, of

course, in any Euclidean ordered field built over the rationals.
The central point is now this: If K is the set of all real numbers obtained

from the rationals by the operations of addition, multiplication, subtraction, and
division, and such that K contains square roots for all of its positive elements,
then K is Euclidean and is the smallest field over which straightedge and
compass constructions can be carried out. (See Hartshorne, 2000, p. 147.) The
salient point is even clearer in Hilbert’s Theorem 44 (p. 86), which deals with
the problem of characterizing which straightedge and compass constructions
can be carried out in his geometry (i.e. reduced to constructions by straightedge
and Streckenübertrager). In the statement of the condition (see Grundlagen,
Theorem 44, p. 86), Hilbert quite clearly expresses the fact that the algebraic
condition corresponding to the compass construction is that each number in

⁴⁸ Kürschák showed that the Streckenübertrager can be dispensed with in favour of an Eichmaß, i.e. a
device which measures off a single fixed segment. (See Kürschák 1902.) Hilbert makes a corresponding
adjustment, with acknowledgement to Kürschák’s work, in the Second Edition of the Grundlagen
(Hilbert, 1903, 74, 77).
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the field of coordinates has a square root in the field, i.e. is Euclidean.⁴⁹ Thus,
the problem is not to do with a failure of continuity, as Sommer suggests, very
possibly leaning on Hilbert’s original remark, but rather with the failure of a
very much weaker field property, and it seems that Hilbert would certainly
have been fully aware of this, by the time of the composition of the Grundlagen
if not earlier. However, having said this, it is not entirely clear what principle
should be added to the axiom system to guarantee Euclideanness; adding the
circle-circle property itself as an axiom might appear somewhat ad hoc.

Finally, to come back to the constructions involved in Euclid’s proofs of
I, 1 and I, 22, although both apparently involve ruler and circle constructions,
an adequate construction for the first case can be given using Pythagorean
operations alone, thus, uses the compass only in the ‘restricted’ sense. An
equilateral triangle can be constructed by Pythagorean operations just in
case

√
3 is in the underlying coordinate field. But

√
3 =

√
1+ (

√
2)2, and√

2 = √1+ 12. Hilbert shows this: see the Ausarbeitung, p. 173. Hence, the
equilateral triangle can be constructed in Hilbert’s axiom system. (The actual
construction is given in the 1898 Ferienkurs, p. 15: see Hallett and Majer
(2004, p. 169).) Thus, Euclid’s construction here does not in the least assume
continuity, or even ‘Euclideanness’.

In sum, what we have here is another investigation which begins with a
‘purity of method’ question, which then employs higher mathematics in its
pursuit, achieves an abstract result, and also uses the knowledge gained to
inform us and instruct us about elementary geometry, the geometry closest to
intuition.

8.5 Conclusion

Let us draw some general conclusions from these examples.
The concern with ‘purity of method’ usually focuses on some general

consideration of ‘appropriateness’; this at least is the way that Hilbert casts

⁴⁹ In the 1902 lectures, for the purposes of showing the independence of the Vollständigkeitsaxiom,
Hilbert contructs a (countable) model based on a minimal Pythagorean field. He adds that this geometry
(i.e. model) is particularly interesting, for

... it contains only points and lines which can be found solely by measuring off segments and
angles.

As we have shown in our Grundlagen, page 81ff., not every segment can be constructed by
means of measuring off segments alone. Take as an example the segment

√
2
√

2− 2. (Hilbert
(∗1902, 89–90); Hallett and Majer (2004, 581)).
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it in the passages quoted in the Introduction. And at some level, this was a
concern of Hilbert’s. There are many examples in Hilbert’s 1898/1899 lectures
on Euclidean geometry where Hilbert is concerned to show that some implicit
assumption made by Euclid or his successors is in fact dispensable; some of
these were cited in Section 8.2. But the examples we have concentrated on in
Section 8.4 show that the focus on eliminating ‘inappropriate’ assumptions was
only one facet of Hilbert’s work on geometry; the cases examined are all ones
where the appropriateness of an assumption is initially questioned, but where
it is shown that it is indeed required. Among other things, this forces a revision
of what is taken to be ‘appropriate’. It is part of the lesson taught by the
examples that in general this cannot be left to intuitive or informal assessment,
for instance, the intuitive assessment of the complexity of the concepts used in
the assumption in question.

Furthermore, full investigation of geometry requires its axiomatization,
and proper examination of this requires that it be cut loose from its natural
epistemological roots, or, at the very least, no longer immovably tied to
them. According to Hilbert’s new conception of mathematics, an important
part of geometrical knowledge is knowledge which is quite independent of
interpretation, knowledge of the logical relationships between the various parts
of the theory, the way the axioms combine to prove theorems, the reverse
relationships between the theorems and the axioms, and so on, all components
we have seen in the examples. And in garnering this sort of geometrical
knowledge, there is not the restriction to the ‘appropriate’ which we see in
the ‘Euclidean’ part of Hilbert’s concerns. What is invoked in pursuing this
knowledge might be some highly elaborate theory, as it is in the analysis of
the Isoceles Triangle Theorem, a theory far removed from the ‘appropriate’
intuitive roots of geometry. Even in the cases of the fairly simple models of the
analytic plane used to demonstrate the failure of Desargues’s Planar Theorem,
the models though visualizable are far from straightforwardly ‘intuitive’.

One might be tempted to say that the knowledge so achieved is not
geometrical knowledge, but rather purely formal logical knowledge or (as
it would be usually put now) meta-geometrical knowledge. But although
this designation is convenient in some respects, it is undoubtedly misleading.
As we have seen, the ‘meta’-geometrical results have a direct bearing on
what is taken to be geometrical knowledge of the most basic intuitive
kind; in particular it can reveal a great deal about the content of intui-
tive geometrical knowledge. In short, it effects an alteration in geometrical
knowledge, and must therefore be considered to be a source of geomet-
rical knowledge. To repeat: for Hilbert, meta-mathematical investigation of
a theory is as much a part of the study of a theory as is working out
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its consequences, or examining its foundations in the way that Frege, for
instance, does.

Thus, for Hilbert’s investigations in geometry, ‘purity of method’ analysis in
the standard sense is elaborated into the ‘analysis of intuition’. This resolves into
two separate investigations, one at the intuitive level, and one at the abstract
level, levels which frequently interact and instruct each other. Furthermore,
extracting this information often itself involves a detour into the abstract. One
example is given by the investigation of Desargues’s Planar Theorem, where
the use of the structure of segment fields requires first an abstract axiomatization
of ordered fields. In particular, as the examples treated here make abundantly
clear, higher mathematics is used to instruct or adumbrate intuition, or at the
very least to instruct us about it and what it entails.

The second conclusion concerns the notion of the ‘elementary’ or ‘primitive’
with respect to a domain of knowledge. The examples we have considered
show that often we have to adopt a non-elementary point of view in order to
achieve results about apparently elementary theorems. Hilbert often stressed,
just as Klein did, that elementary mathematics must be studied from an advanced
standpoint. Certainly as far as Hilbert’s work is concerned, this is much more
than a pedagogical point, although Hilbert often stressed this, too.⁵⁰ For one
thing, the examples considered show that genuine knowledge concerning the
elementary domain can flow from such investigations, and they also show that
apparently elementary propositions contain within themselves non-elementary
consequences, often in a coded form.⁵¹ Furthermore, consideration of the
intuitive and elementary is used to generate results at the abstract level; one
example of this was the result about the abstract theory of fields sketched in
Section 8.4.3.

But there is a further question about appropriateness. Investigation of
independence inevitably involves mathematics as broadly construed as possible,
since it involves the construction of models, indeed, requires the precise
description which is only afforded by mathematical models. Given this, one
might ask whether there is an appropriate limit on the mathematics which can
be used for the analysis of the intuitive. There is an obvious practical limitation:
in constructing models, one naturally uses those branches of mathematics which
are most familiar, and which will afford the finest control over the models
we construct. In Hilbert’s case, resort to higher analysis is especially natural,
given the extensive theoretical development of analytic geometry in the 19th

⁵⁰ See e.g. the introductory remarks in Hilbert’s Ferienkurs for 1896 (Hilbert, ∗1896), in Hallett and
Majer (2004, Chapter 3).

⁵¹ There is surely here more than an analogy with the ‘hidden higher-order content’ stressed by
Isaacson in connection with the Gödel incompleteness phenomena for arithmetic. See Isaacson (1987).
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century, which among other things produced the intricate analytic descriptions
of non-Euclidean geometry (models), and also involved the treatment and
extension of intuitively based geometrical ideas by highly unintuitive means.
It is also worth noting that the reason behind the very development of analytic
geometry was to be able to solve problems posed by synthetic geometry in an
analytic way, and to construe the solutions synthetically. There is a clear sense
that this is also what much of Hilbert’s work with analytic models does.

But there is a philosophical reason which goes along with this. Part of the
point of Hilbert’s axiomatization of geometry is to remove it to an abstract
sphere ‘at the conceptual level’ where it is indeed divorced from its ‘natural’
interpretation in the imperfectly understood structure of space, becoming in
the process a self-standing theory. The ideal for Hilbert in this respect was the
theory of numbers, and, by extension, analysis. The important philosophical
point about the theory of numbers is that for Hilbert it was entirely ‘a
product of the mind’; it is not in origin an empirical, or empirically inspired,
theory like geometry, and can be considered in some sense as already on the
‘conceptual level’. Thus, Hilbert shared Gauss’ view of the difference in status
of geometry and number theory. In short, these geometrical investigations and
the consequent extension of geometrical knowledge presuppose arithmetic at
some level.

That elementary arithmetic is explicitly presupposed is made clear at the
beginning of Hilbert’s 1898/1899 lectures:

It is of importance to fix precisely the starting point of our investigation: We
consider as given the laws of pure logic and full arithmetic. (On the relationship between
logic and arithmetic, cf. Dedekind, ‘Was sind und was sollen die Zahlen?’ [i.e.
Dedekind (1888)].) Our question will then be: What propositions must we ‘adjoin’
to the domain defined in order to obtain Euclidean geometry? (Ausarbeitung, p. 2, p. 303
in Hallett and Majer (2004).)⁵²

This use of number theory and analysis reflects two important philosophical
positions which Hilbert held at that time concerning arithmetic and analysis.
First, just prior to this (e.g. circa 1896; see the Ferienkurs mentioned in n.50),
he seems to have held a version of the ‘Dirichlet thesis’ that all of higher
analysis will in some sense ‘reduce’ to the theory of natural numbers, a
thesis which is stated without challenge in the Vorwort to Dedekind’s 1888
monograph. Secondly, there is clear indication that he thought of arithmetic
as conceptually prior to geometry. This is illustrated in his 1905 lectures.

⁵² There is no corresponding passage in Hilbert’s own lecture notes, suggesting perhaps that Hilbert
became aware a little later that something ought to be said about the foundation for the mathematics
presupposed in the investigation of geometry.
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Hilbert remarks that there are in principle three different ways in which
one might provide the basis of the theory of number: ‘genetically’ as was
common in the 19th century; through axiomatization, Hilbert’s preferred
method whenever possible; or geometrically. With respect to the latter, after
sketching how such a reduction might in principle proceed, Hilbert says the
following:

The objectionable and troublesome [mißliche] thing in this can be seen imme-
diately: it consists in the essential use of geometrical intuitions and geometrical
propositions, while geometry and its foundation are nevertheless less simple than
arithmetic and its foundations. One must also note that to lay out a foundation for
geometry, we already frequently use the numbers. Thus, here the simpler would
be reduced to the more complicated, or in any case to more than is necessary for
the foundation. (Hilbert, ∗1905, p. 9)

But while the foundational investigation of geometry presupposes arithmetic
(and analysis), there was at this time no similar foundational investigation of
arithmetic, and no investigation of the conceptual connection between more
elementary parts of arithmetic and higher arithmetic and analysis.⁵³ In particular,
this complex of theory was not subject to axiomatic analysis and indeed not
even axiomatized. In the course of Hilbert’s work on geometry, he does
axiomatize an important part of it, namely the theory of ordered fields, mainly
for the purpose of revealing certain analytic structure in the geometry of
segments in the analysis of Desargues’s Theorem, giving rise to the system
of complete, ordered fields published in Hilbert (1900a). Nevertheless, the
theory of natural numbers was not treated axiomatically by Hilbert until
very much later. And the important extensions of Archimedean and non-
Archimedean analysis involving (say) complex function theory were never
treated by Hilbert as axiomatic theories. Of course, what is in question in
the work examined here are certain aspects of the foundations of geometry.
Nevertheless, Hilbert was well aware that the results garnered are in a certain
strong sense relative, and that the foundational investigation of geometry must
be part of a wider foundational programme. Indeed, Hilbert’s famous lecture
on mathematical problems from 1900 sets out (as Problem 2) precisely the
problem of investigating the axiom system for the real numbers, in particular
showing the mathematical existence of the real numbers, where there is no
recourse to a natural theoretical companion such as is possessed by synthetic
geometry. Thus, a limited foundational investigation gives birth to another
more general one.

⁵³ In the 1920s, Hilbert stated decisively his rejection of the Dirichlet thesis, though it is not clear
when he abandoned it.
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Niedersächsische Staats- und Universitätsbiblithek, Göttingen. First published in
Hallett and Majer (2004, 72–144).
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Verlag). Lecture notes for a course held in the Wintersemester of 1921/1922 at
the Georg-August Universität, Göttingen, and prepared by Paul Bernays. Library of
the Mathematisches Institut. First published in 1992 in an edition edited by David
Rowe.

(∗1921/1922), ‘Grundlagen der Mathematik’, Lecture notes for a course held in
the Wintersemester of 1921/1922 at the Georg-August Universität, Göttingen, and
prepared by Paul Bernays. Library of the Mathematisches Institut. First published in
Ewald and Sieg (2008).



purity of method in hilbert’s grundlagen 255

(1923), Grundlagen der Geometrie. Sechste Auflage (Leipzig and Berlin: B. G.
Teubner). Revised edn, with extra notes.

(1930), Grundlagen der Geometrie. Siebente umgearbeitete und vermehrte Auflage
(Leipzig and Berlin: B. G. Teubner). New edn, extensively revised by Arnold
Schmidt.

(1935), Gesammelte Abhandlungen, Band 3 (Berlin: Julius Springer).
Hilbert, David and Cohn-Vossen, Stefan (1932), Anschauliche Geometrie (Berlin: Julius

Springer). 2nd edn published by Springer-Verlag in 1996. English trans. Geometry
and the Imagination by P. Nemenyi (Chelsea Publishing Company, 1952).

Isaacson, Daniel (1987), ‘Arithmetical Truth and Hidden Higher-order Concepts’,
in Logic Colloquium ’85 (Amsterdam: North-Holland Publishing Co.). Reprinted in
Hart (1996, 203–224).
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Mathematical Concepts
and Definitions
JAMIE TAPPENDEN

These are some of the rules of classification and definition. But although nothing
is more important in science than classifying and defining well, we need say no
more about it here, because it depends much more on our knowledge of the
subject matter being discussed than on the rules of logic.

(Arnauld and Nicole, 1683, p. 128)

9.1 Definition and mathematical practice

The basic observation structuring this survey is that mathematicians often set
finding the ‘right’/‘proper’/‘correct’/‘natural’ definition as a research objective,
and success—finding ‘the proper’ definition—can be counted as a significant
advance in knowledge. Remarks like these from a retrospective on 20th
century algebraic geometry are common:

... the thesis presented here [is that] the progress of algebraic geometry is reflected
as much in its definitions as in its theorems (Harris, 1992, p. 99)

I am indebted to many people. Thanks to Paolo Mancosu both for comments on an unwieldy first draft
and for bringing together the volume. Colin McClarty and Ian Proops gave detailed and illuminating
comments. Colin also alerted me to a classic treatment by Emmy Noether (1921, pp. 25–29) of the
multiple meanings of ‘prime’. An exciting conversation with Steven Menn about quadratic reciprocity
set me on a path that led to some of the core examples in this paper. Early versions of this material
were presented at Wayne State University and Berkeley. I’m grateful to both audiences, especially
Eric Hiddleston, Susan Vineberg, and Robert Bruner. Thanks to the members of my philosophy
of mathematics seminar for discussing this material, especially Lina Jansson and Michael Docherty
for conversation about the ‘bad company’ objection. As usual, I would have been lost without
friendly and patient guidance of the U. of M. mathematicians, especially (on this topic) Jim Milne
(and his class notes on class field theory, algebraic number theory, and Galois theory, posted at
http://www.jmilne.org/math/) and Brian Conrad.

http://www.jmilne.org/math/
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Similarly, from a popular advanced undergraduate textbook:

Stokes’ theorem shares three important attributes with many fully evolved major
theorems:

a) It is trivial
b) It is trivial because the terms appearing in it have been properly defined
c) It has significant consequences (Spivak, 1965, p. 104)

Harris is speaking of the stipulative introduction of a new expression. Spivak’s
words are most naturally interpreted as speaking of an improved definition of
an established expression. I will address both stipulative introduction and later
refinement here, as similar issues matter to both.

What interest should epistemology take in the role of definition in math-
ematics? Taking the question broadly, of course, since the discovery of a
proper definition is rightly regarded in practice as a significant contribu-
tion to mathematical knowledge, our epistemology should incorporate and
address this fact, since epistemology is the (ahem) theory of (ahem) knowledge.
A perfectly good question and answer, I think, but to persuade a general
philosophical audience of the importance and interest of mathematical def-
initions it will be more effective, and an instructive intellectual exercise, to
take ‘epistemology’ and ‘metaphysics’ to be fixed by presently salient issues:
what connection can research on mathematical definition have to current
debates?

9.2 Mathematical definition and natural properties

Both stipulative definitions of new expressions and redefinitions of established
ones are sometimes described as ‘natural’. This way of talking suggests a
connection to metaphysical debates on distinctions between natural and arti-
ficial properties or kinds. Questions relevant to ‘naturalness’ of mathematical
functions and classifications overlap with the corresponding questions about
properties generally in paradigm cases. We unreflectively distinguish ‘grue’
from ‘green’ on the grounds that one is artificial and the other isn’t, and we
distinguish ‘is divisible by 2’ from ‘is π or a Riemann surface of genus 7 or the
Stone-Čech compactification of ω’ on the same ground.¹

¹ For those unfamiliar with the philosophical background, ‘grue’ is an intentionally artificial predicate
coined by Nelson Goodman. ‘x is grue if x is observed before t and found to be green or x is observed
after t and found to be blue.’ See the collection Stalker (1994) for discussion and an extensive annotated
bibliography.
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A particularly influential presentation of the issues appears in the writings
of David Lewis.² It is useful here less for the positive account (on which
Lewis is noncommittal) than for its catalogue of the work the natural/non-
natural distinction does. Most entries on his list (underwriting the intuitive
natural/nonnatural distinction in clear cases, founding judgements of similar-
ity and simplicity, supporting assignments of content, singling out ‘intended’
interpretations in cases of underdeterminacy...) are not different for mathemat-
ical properties and others.³ In at least one case (the ‘Kripkenstein’ problem)
naturalness will not help unless some mathematical functions are counted as
natural. In another—the distinction between laws of nature and accidentally
true generalizations—it is hard to imagine how an account of natural prop-
erties could help unless at least some mathematical properties, functions, and
relations are included. The criteria in practice for lawlikeness and simplicity of
laws often pertain to mathematical form: can the relation be formulated as a
partial differential equation? Is it first or second order? Is it linear? The role
of natural properties in inductive reasoning may mark a disanalogy, but as I
indicate below this is not so clear. Of course, the use of ‘natural’ properties to
support analyses of causal relations is one point at which mathematics seems out
of place, though again as we’ll see the issue is complicated. In short, an account
of the natural/nonnatural distinction is incomplete without a treatment of
mathematical properties.

Obviously the prospects of a smooth fit between the background account
of mathematical naturalness and the treatment of physical properties will
depend on the broader metaphysical picture. If it takes as basic the shape
of our classifying activity, as in Taylor (1993), or considerations of reflective
equilibrium, as in Elgin (1999) there is no reason to expect a deep disanalogy.
Accounts positing objective, causally active universals could present greater
challenges to any effort to harmonize the mathematical and non-mathematical
cases. However, though the issues are complicated, they principally boil
down to two questions: first, what difference, if any, devolves from the
fact that properties in the physical world interact through contingent causal
relations and mathematical properties don’t? Second: to what extent is it
plausible to set aside the distinctions between natural and nonnatural that

² See for example Lewis (1986, especially pp. 59–69). A helpful critical overview of Lewis’ articles
on natural properties is Taylor (1993); Taylor proposes what he calls a ‘vegetarian’ conception based
on principles of classification rather than objective properties.

³ Sometimes less grand distinctions than ‘natural–nonnatural’ are at issue. In Lewis’ treatment of
intrinsic properties the only work the natural–nonnatural distinction seems to do is secure a distinction
between disjunctive and non-disjunctive properties. Someone might regard the latter distinction as
viable while rejecting the former. If so, the Legendre symbol example of §3 illustrates the intricacy of
even the more modest distinction.
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arise in mathematical practice as somehow ‘merely pragmatic’ questions of
‘mathematical convenience’?⁴ Here too we can’t evaluate the importance of
mathematical practice for the metaphysical questions unless we get a better
sense of just what theoretical choices are involved. To make progress we need
illustrations with enough meat on them to make clear how rich and intricate
judgements of naturalness can be in practice. The next two sections sketch two
examples.

9.3 Fruitfulness and stipulative definition:
the Legendre symbol

Spivak’s remark suggests that one of the criteria identifying ‘properly defined’
terms is that they are fruitful, in that they support ‘trivial’ results with ‘significant
consequences’. It is an important part of the picture that the consequences
are ‘significant’. (Any theorem will have infinitely many consequences, from
trivial inferences like A � A&A.) So what makes a consequence ‘significant’?
I won’t consider everything here, but one will be especially relevant in the
sequel: a consequence is held in practice to be significant if it contributes
to addressing salient ‘why?’ questions. Evaluations of the explanatoriness of
arguments (theories, principles, etc.) and evaluations of the fruitfulness of
definitions (theories, principles, etc.) interact in ways that make them hard to
surgically separate. I’m not suggesting that considerations about explanation
exhaust the considerations relevant to assessing whether or not a consequence
is significant or a concept fruitful because it has significant consequences. I’m
just making the mild observation that explanation is easier to nail down and
better explored than other contributors to assessments of significance, so it
is helpful as a benchmark. As a contrast, it is also common for proofs and
principles to be preferred because they are viewed as more natural.⁵ However,

⁴ This is a pivotal argumentative support in Sider (1996) to cite just one example. Discussion of the
arguments would go beyond this survey, so I’ll leave it for the companion article.

⁵ For example, many number theorists count the cyclotomic proof as particularly natural. (Frölich
and Taylor, 1991, p. 204) opine that this proof is ‘most natural’ (or rather: ‘ ‘‘most natural’’ ’). Similarly,
in the expository account of Artin’s life by Lenstra and Stevenhagen (2000, p. 48) we read: ‘Artin’s
reciprocity law over Q generalizes the quadratic reciprocity law and it may be thought that its
mysteries lie deeper. Quite the opposite is true: the added generality is the first step on the way
to a natural proof. It depends on the study of cyclotomic extensions.’ (p. 48). Gauss, on the other
hand, though one of his proofs exploits cyclotomy, preferred a more direct argument using what
is now called ‘Gauss’s lemma’. Of other proofs he wrote: ‘Although these proofs leave nothing to
be desired as regards rigor, they are derived from sources much too remote... I do not hesitate to
say that until now a natural proof has not been produced.’ (Gauss, 1808, p. 1). Gauss might have
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the relevant idea of ‘natural proof ’ is uncharted and poorly understood; it
would hardly clarify ‘mathematically natural property’ to analyze it in terms
of ‘mathematically natural proof ’. On the other hand, though the study of
mathematical explanation is still in early adolescence, we have learned enough
about it to use it for orientation.

An illustration of the quest for explanation in mathematics is the often
re-proved theorem of quadratic reciprocity:⁶ If p and q are odd primes, then
x2 ≡ p (mod q) is solveable exactly when x2 ≡ q (mod p) is, except when
p ≡ q ≡ 3 (mod 4).⁷ In that case, x2 ≡ p (mod q) is solveable exactly when
x2 ≡ q (mod p) isn’t. Gauss famously found eight proofs and many more have
been devised⁸. One reason that it attracts attention is that it cries out for
explanation, even with several proofs already known. As Harold Edwards
puts it:

The reason that the law of quadratic reciprocity has held such fascination for
so many great mathematicians should be apparent. On the face of it there is
absolutely no relation between the questions ‘is p a square mod λ?’ and ‘is λ

a square mod p?’ yet here is a theorem which shows that they are practically
the same question. Surely the most fascinating theorems in mathematics are
those in which the premises bear the least obvious relation to the conclusions,
and the law of quadratic reciprocity is an example par excellence. ... [Many] great
mathematicians have taken up the challenge presented by this theorem to find
a natural proof or to find a more comprehensive ‘reciprocity’ phenomenon of
which this theorem is a special case. (Edwards, 1977, p. 177)

A similar expression of amazement, and a demand for explanation and
understanding, appears in a review of a book on reciprocity laws:

We typically learn (and teach!) the law of quadratic reciprocity in courses on
Elementary Number Theory. In that context, it seems like something of a miracle.
Why should the question of whether p is a square modulo q have any relation to
the question of whether q is a square modulo p? After all, the modulo p world

revised his opinion were he to have seen subsequent research, given his often expressed view of the
‘fruitfulness’ of the study of cyclotomic extensions. On Gauss on cyclotomy and reciprocity, see Weil
(1974).

⁶ The basic facts are available in many textbooks. A particularly appealing, historically minded one is
Goldman (1998). Cox (1989) is an engagingly written, historically minded essay on a range of topics in
the area. Chapter 1 is a clear presentation of the basic number theory and history accessible to anyone
with one or two university math courses. The presuppositions jump up significantly for Chapter 2
(covering class field theory and Artin reciprocity). Jeremy Avigad is doing penetrating work exploring
philosophical ramifications of algebraic number theory. See Avigad (2006) and elsewhere.

⁷ a ≡ b (mod c) means (∃n) a = nc + b, or as we put it in school arithmetic ‘a divided by c has
remainder b’. When (∃x) x2 ≡ p (mod q) we say p is a quadratic residue mod q.

⁸ 221 proofs using significantly different techniques are listed at http://www.rzuser.uni-heidelberg.
de/hb3/fchrono.html. A hardcopy is in Lemmermeyer (2000, pp. 413–417).

http://www.rzuser.uni-heidelberg.de/hb3/fchrono.html
http://www.rzuser.uni-heidelberg.de/hb3/fchrono.html


mathematical concepts and definitions 261

and the modulo q world seem completely independent of each other ... The
proofs in the elementary textbooks don’t help much. They prove the theorem
all right, but they do not really tell us why the theorem is true. So it all seems
rather mysterious ... and we are left with a feeling that we are missing something.
What we are missing is what Franz Lemmermeyer’s book is about. ... he makes
the point that even the quadratic reciprocity law should be understood in terms
of algebraic number theory, and from then on he leads us on a wild ride through
some very deep mathematics indeed as he surveys the attempts to understand and
to extend the reciprocity law.⁹

The search for more proofs aims at more than just explaining a striking
curiosity. Gauss regarded what he called ‘the fundamental theorem’ as exem-
plifying the fruitfulness of seeking ‘natural’ proofs for known theorems.¹⁰ His
instinct was astonishingly accurate. The pursuit of general reciprocity proved
to be among the richest veins mined in the last two centuries. Nearly one
hundred years after Gauss perceived the richness of quadratic reciprocity,
Hilbert ratified the judgement by setting the ‘proof of the most general law of
reciprocity in any number field’ as ninth on his list of central problems. The
solution (the Artin reciprocity law) is viewed as a major landmark.¹¹

Gauss recognized another key point: the quest for mathematically natural
(or, indeed, any) proofs of higher reciprocity laws forces extensions of the
original domain of numbers.¹² (Once quadratic reciprocity is recognized, it
is natural to explore higher degree equations. Are there cubic reciprocity

⁹ Review of Lemmermeyer (2000) by F. Gouvêa at: <http://www.maa.org/ reviews/brief jun00.
html>.

¹⁰ A typical expression of his attitude is:

It is characteristic of higher arithmetic that many of its most beautiful theorems can be discovered
by induction with the greatest of ease but have proofs that lie anywhere but near at hand and
are often found only after many fruitless investigations with the aid of deep analysis and lucky
combinations. This significant phenomenon arises from the wonderful concatenation of different
teachings of this branch of mathematics, and from this it often happens that many theorems,
whose proof for years was sought in vain, are later proved in many different ways. As a new
result is discovered by induction, one must consider as the first requirement the finding of a
proof by any possible means. But after such good fortune, one must not in higher arithmetic
consider the investigation closed or view the search for other proofs as a superfluous luxury. For
sometimes one does not at first come upon the most beautiful and simplest proof, and then it is
just the insight into the wonderful concatenation of truth in higher arithmetic that is the chief
attraction for study and often leads to the discovery of new truths. For these reasons the finding
of new proofs for known truths is often at least as important as the discovery itself. (Gauss, 1817,
pp. 159–60. Translation by May (1972, p. 299) emphasis in original)

¹¹ See Tate (1976). As Tate notes, the richness of the facts incorporated in quadratic reciprocity has
not run out even after two centuries of intense exploration. A 2002 Fields Medal was awarded for work
on the Langlands program, an even more ambitious generalization.

¹² See Gauss (1828). Weil (1974a, p. 105) observes that for Gauss, even conjecturing the right laws
wasn’t possible without extending the domain.

http://www.maa.org/reviews/brief_jun00.html
http://www.maa.org/reviews/brief_jun00.html
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laws? Seventeen-th?) To crack biquadratic reciprocity, Gauss extended the
integers to the Gaussian integers Z[i] = {a+ bi | a, b ε Z}. Definitions that are
interchangeable in the original context can come apart in the expanded one.
This can prompt an analysis that reshapes our view of the definitions in the
original environment, when we use the extended context to tell us which of
the original definitions was really doing the heavy lifting.¹³ This pressure to
understand the original phenomena generated ‘class field theory’: the study of
(Abelian) extension fields. A central 20th century figure put it this way:

... by its form, [quadratic reciprocity] belongs to the theory of rational numbers ...
however its contents point beyond the domain of rational numbers ... Gauss ...
recognized that Legendre’s reciprocity law represents a special case of a more
general and much more encompassing law. For this reason he and many other
mathematicians have looked again and again for new proofs whose essential ideas
carry over to other number domains in the hope of coming closer to a general
law ... The development of algebraic number theory has now actually shown that
the content of the quadratic reciprocity law only becomes understandable if one
passes to general algebraic numbers and that a proof appropriate to the nature of
the problem can best be carried out with these higher methods.¹⁴ (Hecke, 1981,
p. 52–53)

This provides the background for our central example of a mathematically
natural stipulative definition: the Legendre symbol. The statement of the law
of quadratic reciprocity given above was broken into cases, and it’s good
intellectual hygiene to find a uniform statement. For this purpose we define
the Legendre symbol ( n

p ) (p an odd prime):

(
n
p

)
=def

⎧⎨
⎩

1, if x2 ≡ n (mod p) has a solution and n �≡ 0 (mod p)
−1, if x2 ≡ n (mod p) has no solution and n �≡ 0 (mod p)

0 if n ≡ 0 (mod p)

¹³ For another example, the definition of ‘integer’ requires serious thought. Say we begin with the
normal Z (a ring) in Q (a field). What ring is going to count as ‘the integers’ if we extend the field
to Q[α]? (That is: when we toss in α and close under +, × and inverses.) The obvious answer is
Z[α]; that’s what Gauss and Kummer used as ‘the integers’, and in the specific cases they addressed
it happened to do the job. But in general this won’t work, and it becomes a genuine problem to
identify the natural ring of integers for a general algebraic number field. The question was analyzed and
answered in what remains the accepted way by Dedekind in 1871. The basic details and core references
are in Goldman, 1998, pp. 250–252).

¹⁴ Jim Milne has drawn my attention to a remark of Chevalley, echoing Hecke’s point about ‘higher
methods’ with a puckish parody of Hegel: ‘The object of class field theory is to show how the Abelian
extensions of an algebraic number field K can be determined by objects drawn from our knowledge
of K itself; or, if one wants to present things in dialectical terms, how a field contains within itself the
elements of its own transcending (and this without any internal contradictions!).’ (Chevalley, 1940,
p. 394, my translation)
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The Legendre symbol supports a single-case statement of quadratic reci-
procity:

for odd prime p, q :
(

p
q

) (
q
p

)
= (−1)

(p−1)(q−1)

4

The Legendre symbol doesn’t just give this one-off compression of a statement.
It also streamlines proofs, as in Dirichlet’s (1858) reformulation of Gauss’s first
proof of quadratic reciprocity. Proof 1 used nothing fancier than mathematical
induction. Dirichlet pointed out that economy of machinery was traded for
fragmentation: Gauss proves eight separate cases. Using (a minor generalization
of) the Legendre symbol Dirichlet trims the cases to two.

The value of this kind of unification has been discussed in the philosophical
literature on explanation.¹⁵ On first pass, it might seem that this is a textbook
case of a definition effecting a valuable unification: The new statement of
the theorem is brief and seemingly uniform, and a proof that the definition
supports reduces many cases to just a couple. However, a recognized problem
is that only some unifications are genuine advances. When the unification is
effected by appeal to predicates that are ‘gerrymandered’ the unification may be
unilluminating and spurious.¹⁶ We gain nothing if we produce a ‘unified theory’
of milkshakes and Saturn by rigging concepts like ‘x is a milkshake or Saturn’.

So: Does the Legendre symbol reflect a natural mathematical function or an
artifice? To appreciate the force of the question, note that one’s first impression
is likely to be that the definition is an obvious gerrymander. We apparently
artificially simplify the statement of the theorem by packing all the intricacy and
case distinctions into the multi-case Legendre symbol definition. The question
is especially pressing because discussions of the metaphysics of properties often
view ‘disjunctive’ predicates as prima facie artificial, or unnatural, or ‘gruesome’,
or ‘Cambridge’, or [insert favourite label for ‘metaphysically fishy’].¹⁷ In short,
our problem is to find principled reasons to go beyond this impasse:

Thesis: The Legendre symbol is a useful stipulation that contributes to
mathematical knowledge. It allows for one-line statements of theorems that
had required several clauses, and it supports streamlined proofs by unifying a

¹⁵ For more, see the chapters by Paolo Mancosu in this volume and Tappenden (2005).
¹⁶ Kitcher (1989) recognizes this as a limitation on his account of explanation as unification and

he accordingly considers only patterns based on projectible predicates. I suggest in Tappenden (2005)
that this limits the account to applications where the concept of ‘projectibility’ makes sense, and
mathematics seems to be a place where it doesn’t. But as I note in the research paper, I may have been
too hasty. Perhaps mathematical practices of conjecture and verification afford more of a basis for a
distinction like that between inductively projectible and inductively nonprojectible predicates than I
appreciated.

¹⁷ On ‘disjunctiveness’ of properties see Sanford (1994) and Kim (1992).
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variety of cases into two. This supports the verdict that it is mathematically
natural.

Antithesis: The symbol is paradigmatic as a definition that is valuable only
for limited reasons pertaining to accidental facts of human psychology. That
it is a hack, not a conceptual advance is displayed right in the syntax of its
definition.

The foothold allowing us to progress is that the function corresponding to
the Legendre symbol is itself the object of mathematical investigation.¹⁸ It is
a mathematical question whether the Legendre symbol carves mathematical
reality at the joints and the verdict is unequivocally yes. There is so much
mathematical detail that I don’t have nearly enough space to recount it all.
To convey the point, it will have to suffice here to gesture at some of the
mathematics, with the assurance that there is much more where this came
from and a few references to get curious readers started learning more for
themselves.

The Legendre symbol (restricted to p relatively prime to the argument
on top) is a function from numbers to {1,−1}. For fixed p, the function is
completely multiplicative (for any m and n, (mn

p ) = (m
p ) ( n

p )). It is periodic

mod p ((m
p ) = (

m+p
p )). Under multiplication, {1,−1} and {1, 2, , ... , p−

1} (aka (Z/pZ)∗) are groups, so the function restricted to (Z/pZ)∗ is a
surjective homomorphism. These are all mathematically good things, in that
they are experience-tested indicators that a function is well-behaved. Another
is that multiplication on {1,−1} is commutative. (That is: the group is
Abelian.) This is usually handy; a century of research revealed it be especially
pivotal here.¹⁹ Many more such indicators could be listed, but this list says
enough to clarify some of the simpler criteria for ‘mathematical naturalness’ at
issue.

What of higher-powered considerations? It would require too much tech-
nical background to do more than glance, but some of the flavour of the
mathematics is needed to convey what reasons can be given. To crack
Hilbert’s ninth problem we need to properly generalize in many directions,
and to do this we need to reformulate the question. (In contrast to the picture
one might get from meditating too long on first-order logic, generalizing
is much more than just picking constants and replacing them with variables.
Articulating the right structures, which then can be generalized, is an incredibly

¹⁸ Some years ago, in a early effort to articulate some of these ideas, I called this the ‘self-consciousness’
of mathematical investigation. (See Tappenden, 1995a, b).

¹⁹ Class field theory and the Langlands programme differ precisely on whether the Galois group is
Abelian. The fact that seems trivial for {{1,−1}, x} casts a long shadow.
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involved process and it is hard to get it right.)²⁰ The issue in quadratic reci-
procity for primes p and q can be rethought as the circumstances under which
we can split (i.e. factor into linear factors) an equation in a field extending
Q. This can in turn be seen as a question about the relations between Q and
the field Q[

√
q∗ ] (q∗ = q or − q depending on q). Field extensions K/F are

sorted by the smallest degree of a polynomial from F that splits in K. In the
case of Q[

√
q∗ ]/Q the degree is 2. The basic fact of Galois theory is: If K is

the splitting field of a polynomial θ(x) over a field F, we can associate with
K/F a group Gal(K/F) (the Galois group) encoding key information about K/F
and θ(x).

These statements have been fruitfully generalized in many ways: we can
consider not just degree 2 polynomials but other degrees and their Galois
groups. We can consider not just prime numbers but more general structures
sharing the basic property of primes. Considering other fields besides Q induces
the need to generalize ‘integers (of the field)’. The Galois group is a group
of functions, and we can define other useful functions in terms of those
functions ..., and more. After this and more reformulating and generalizing,
lasting nearly 200 years (if the clock starts with Euler) we arrive at the Artin
reciprocity law. It has quadratic reciprocity, cubic reciprocity, ..., seventeen-ic
reciprocity ... as special cases. The core is a function called the Artin symbol
fixed by several parameters (base and extension field with induced general
integers, given generalized prime, ...). The punch line for us is that when you
plug in the values for quadratic reciprocity, (fields: Q and Q[

√
q∗ ], generalized

integers: the ordinary Z, generalized prime: p ∈ Z, ...) the Legendre symbol
appears!²¹

Now of course given any function in any theorem, we can always jigger
up many more general versions with the given function and theorem as special
cases. Most will be completely uninteresting. The generalizations we’ve been
discussing are mathematically natural, as measured in many ways, some subtle
and some obvious. The core fact is the one Gauss noted: Investigations of
quadratic reciprocity and its generalizations reveal deep connections among
(and support proofs in) an astonishing range of fields that initially seem to
have little in common. (Not just elementary arithmetic, but circle-division,
quadratic forms, general algebra of several kinds, complex analysis, elliptic

²⁰ Wyman (1972) is a superb exposition of a few of the reformulations and re-reformulations needed
to generalize quadratic reciprocity.

²¹ Cox (1989, pp. 97–108) describes how the Legendre symbol falls immediately out of the Artin
symbol as a special case. Samuel (1970, esp. pp. 92–93) conveys with beautiful economy the basic idea
in a less general form with fewer mathematical prerequisites. (Think ‘Artin symbol’ when Samuel refers
to the ‘Frobenius automorphism’.)
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functions ...) The upshot of the general investigation is a collection of general
theories regarded by mathematicians (and hobbyists) of a range of different
backgrounds and subspecialties as explaining the astonishing connection between
arbitrary odd primes. The judgement that the Legendre symbol carves at a
joint interacts with a delicate range of mathematical facts and judgements:
verified conjectures, the practice of seeking explanations and understanding,
efforts to resolve more general versions of known truths (and the evaluations
of ‘proper’ generalizations that support this practice), judgements of similarity
and difference, judgements about what facts would be antecedently expected
(quadratic reciprocity not among them), and more.

The history of quadratic reciprocity also illustrates the importance of
inductive reasoning in mathematics. Euler conjectured the law decades
before Gauss proved it, on the basis of enumerative induction from cas-
es.²² This issue will be revisited in the research article, so I’ll just note
the key point.²³ In many cases, the natural/artificial distinction is linked
to projectibility: Natural properties (‘green’) support correct predictions and
artificial ones (‘grue’) don’t. It is common, as in the influential work of
Sydney Shoemaker (1980a, b), to connect this with a thesis about causality.
Simplifying Shoemaker’s picture drastically: natural properties are those that
enter into causal relations, and it is because of this that only natural prop-
erties support induction properly. Euler and quadratic reciprocity reveal a
limit to this analysis: induction, as a pattern of reasoning, does not depend
for its correctness on physical causation. The properties supporting Euler’s
correct inductive reasoning have the same claim to naturalness deriving from
projectibility that ‘green’ has. This is consistent with the observation that
mathematical properties don’t participate in causation as Shoemaker under-
stands it. Even though there is much more about inductive reasoning in
mathematics that we need to understand better, and we should have due
regard for the differences between mathematical and empirical judgements,
we shouldn’t underestimate the affinities.

Delicate issues of identity and difference of content also arise, as in Dedekind’s
proof of quadratic reciprocity in (Dedekind, 1877/1996). Dedekind describes
himself as presenting ‘essentially the same as the celebrated sixth proof of
Gauss’ (from Gauss, 1817). The derivation recasts the treatment of cyclotomic
extensions in section 356 of (Gauss, 1801). Dedekind is plausibly described
as presenting the same argument in a conceptual form avoiding most of the

²² Edwards (1983), Cox (1989, pp. 9–20), and Weil (1984) are excellent treatments of the inductive
reasoning that led Euler to his conjecture. There is a particularly beginner-friendly discussion at the
online Euler archive <http://www.maa.org/news/howeulerdidit.html>.

²³ For more on plausible reasoning in mathematics see Jeremy Avigad’s first article.

http://www.maa.org/news/howeulerdidit.html
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calculations. The challenge for the analyst of reasoning is to find some way of
characterizing what kind of success it was that Dedekind achieved.

Returning to the main line, we can draw a moral about the division of
mathematical concepts into artificial and non-artificial. Whether or not a
concept is ‘disjunctive’ in a way that gives it a grue-like artificiality is not
something we can just read off the syntax of the definition. This example (or
rather, this example plus the rest of the mathematics whose surface I’ve only
scratched) illustrates how inextricably judgements as to the naturalness and
proper definition of basic concepts are embedded in mathematical method.

Let’s remind ourselves of the orienting question: (i) is the Legendre symbol
artificial or natural and (ii) how can we tell? The answer is (i) natural, and
(ii) that is a mathematical question, to which a substantial answer can be
given. The richness and depth of the mathematical rationale provides the
basic answer to the suggestion that the mathematical naturalness of a property,
function, or relation can be shrugged off as ‘pragmatic/mere mathematical
convenience’. It is hard to see how this assessment of one category as better
than others is different than cognate assessments in the natural sciences or
philosophy. This response won’t work against someone who maintains that
all such distinctions of natural and nonnatural are ‘merely pragmatic’ matters
of ‘philosophical/physical/chemical/biological/etc. convenience’ but that is a
separate topic. Our point is that mathematics is on an equal footing.

9.4 Prime numbers: real and nominal definition
revisited

We’ve observed that a common pattern in mathematics is the discovery of
the proper definition of a word with an already established meaning. The
Legendre symbol can be redefined in light of later knowledge, to reflect
the best explanations of the facts. This may appear to be in tension with
a longstanding philosophical presumption that the definition introducing an
expression is somehow privileged as a matter of meaning. But the unfamiliarity
of the Legendre symbol may make the point seem abstruse. It will be
worthwhile to look at a comfortingly familiar example: ‘prime number’. We
learn the original definition in elementary school: n �= 1 is prime if it is evenly
divided by only 1 and n. Over N the familiar definition is equivalent to:
a �= 1 is prime if, whenever a divides a product bc (written a | bc) then a | b
or a | c. In extended contexts, the equivalence can break down. For example,
in Z[

√
5i] = {a+ b

√
5i | a, b ε Z}, 2 is prime in the original sense, but not in
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the second, since 6 = (1−√5i)(1+√5i); 2 divides 6 but not (1−√5i) or
(1+√5i).

Once the two options are recognized, we need to say which will be canon-
ical. The choice will be context-sensitive, so I’ll take algebraic number theory
as background. The word ‘prime’ is given the second definition.²⁴ (‘Irreducible’ is
used for the first.) The reason for counting the second definition as the proper
one is straightforward: The most significant facts about prime numbers turn
out to depend on it. As with quadratic reciprocity, this is complicated, so I’ll
just observe that ongoing efforts to explain facts about the structure of natural
numbers justify choosing the novel definition of prime.²⁵ Say we describe
the situation this way: investigations into the structure of numbers discovered
what prime numbers really are. The familiar school definition only captures
an accidental property; the essential property is: a | bc → (a | b or a | c). These
descriptions of the situation might seem philosophically off. First, it might be
maintained that it is obviously wrong to say that in Z[

√
5i], 2 is only divisible

by itself and 1, but isn’t a prime number, since that is analytically false, given
what ‘2 is a prime number’ means. Such objections would be unnecessary
distractions, so I’ll reformulate the point in extensional terms. The original
definition of prime number fixes a set {2, 3, 5, 7, ...} with interesting prop-
erties. In the original domain N it can be picked out by either definition.
The new definition is the more important, explanatory property, so it is the
natural one.

The situation is the mathematical analogue of an example in Hilary Putnam’s
classic ‘The analytic and the synthetic’ (Putnam, 1962). In the 19th century, one
could hold ‘Kinetic energy is 1

2mv2’ to be true by definition. With relativity,
the new situation can be described in two ways. We could say ‘Kinetic energy
is 1

2mv2’ is not true by definition and also we have learned kinetic energy is
not 1

2mv2, or that it was true by definition but Einstein changed the definition
of ‘kinetic energy’ for theoretical convenience. Neither of these options aptly
captures what went on. Saying that we have just changed our mind about the
properties of kinetic energy doesn’t respect the definitional character of the
equation, but saying we have embraced a more convenient definition while
retaining the same words fails to do justice to the depth of the reasons for

²⁴ This point is addressed in many places; one is Stewart and Tall (2002, pp. 73–76).
²⁵ There also also deep reasons for excluding 1. Widespread folklore sees the rationale to be a

clean statement of the uniqueness of prime factorization; this makes excluding 1 appear to be a matter
of minor convenience in the statement of theorems. As against this, an algebraic number theorist I
know remarked in correspondence: ‘... with the advent of modern algebra and the recognition of the
different concepts of unit and prime in a general commutative ring it became clear that units are not
to be considered as prime.’ The statement of unique factorization, on the other hand, was seen as ‘not
particularly compelling’.
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the change, and so fails to capture how the new definition was a genuine
advance in knowledge. As with ‘kinetic energy’, so with ‘prime’: it is of
less consequence whether we say that word meaning changed or opinions
about objects changed. What matters is that the change was an advance in
knowledge, and we need a philosophical niche with which to conceptualize
such advances.

The idea that discovering the proper definition can be a significant advance
in knowledge has overtones of a classical distinction between ‘real’ and
‘nominal’ definition. ‘Real definition’ has fallen on hard times in recent
decades. Enriques’ The Historic Development of Logic (Enriques, 1929), addresses
the topic throughout, in a whiggish recounting of the emergence of the
idea that ‘real definition’ is empty and that all definitions are nominal. That
seems to be where things stand now. We might need to rework too many
entrenched presuppositions to revive the distinction in its traditional form, but
it would help to reconstruct a minimal doctrine to support the distinctions we
want to draw and connections we want to make. The core motivation is that
in mathematics (and elsewhere) finding the proper principles of classification
can be an advance in knowledge. We appear to have enough of a grip on
the real/nominal distinction that it might be useful in this connection, and
we don’t have to accept everything that comes bundled in the package. For
instance, one concession to changing attitudes seems sensible. Since we are no
longer sure what to make of defining a thing as opposed to a word let’s stick
with the contemporary view that definitions are stipulations of meaning for
expressions.

One reason for carefully delineating what should be involved with a
prospective concept of real definition is indicated by Richard Robinson in the
classic Definition (Robinson, 1950). The concept has been called on to play too
many different roles: Robinson lists twelve importantly different ones (1950,
pp. 189–90). Robinson’s recommendation is that talk of ‘real definition’ be
dropped, and that each of the components be treated separately. But this might
be an overreaction, giving up the prospect of salvaging valuable insights from
the tradition. The activities did not come to be associated by accident, and even
if no single concept can do everything, we can identify a subset of roles that can
usefully be welded together. From Robinson’s list, these include: ‘Searching
for a key that will explain a mass of facts’, ‘improvement of concepts’, plus
(if these can be construed neutrally) ‘searching for essences’ and ‘searching for
causes’.

Of course, to speak of ‘improvement of concepts’ we’ll need to specify a
criterion for improvement. Putting together a useful, metaphysically uncon-
tentious doctrine of real definition seems promising if we take the relevant
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improvement to partially involve finding ‘a key that will explain a mass of
facts’. That is, a concept is improved is if it is made to fit better into ex-
planations (or into arguments that are good in some other way). The con-
nection between singling out specific definitions as real and the practice of
giving explanations is also indicated in the recent revival of ‘essence’, if we
understand ‘essence’ in terms of real definition and role in argument. Since
‘essence’ is seen as metaphysically charged we’ll take ‘real definition’ to be
basic, and essences, to the extent we want to use that idea, will be what real
definitions define.²⁶

The idea that real definition fits with ‘cause’ draws on the observation that,
for Aristotle, some mathematical facts cause others. This is not how we use
‘cause’ today, so it might be better to appeal to conceptual or metaphysical
dependence. Once more this can be understood in terms of explanatory argu-
ment structure.²⁷ This need not make mathematical explanation fundamentally
different from ordinary explanation. We could opt for an account of ex-
planation and causation as sketched in Kim (1994), taking dependence as basic.
(We’ll need an account of dependence anyway, to spell out what it is for facts
about primes to depend on the second definition, for example.) Causation,
as one kind of dependence, supports explanation, but it is not the only kind
that does.

Our theme has been that theorizing has to be driven by the data, so we should
look to see how the cases we’ve just considered appear in this light. Taking real
definition and essence to be functions of explanation (and other, harder to pin
down properties of argument) promises to give a plausible accounting of why
the algebraic definition of ‘prime’ counts as picking out the essential property
of the class of primes in the context of algebraic number theory. Relative to an
explanation of quadratic reciprocity via Artin reciprocity, the ‘real definition’
of the Legendre symbol becomes its specification as a special case of the Artin
symbol rather than the multicase initial definition. As with ‘prime number’,
the definition with the central role in the central arguments is not the one that

²⁶ This is the approach of Fine (1994), though one would not call the view ‘metaphysically
innocuous’. Our search for a neutral account is not driven by any sense that a meaty view like Fine’s
isn’t right, but only by the goal of avoiding extra debate while charting a framework to explore
mathematical cases in parallel with cases in science and common life.

²⁷ More on this cluster of Aristotelean ideas can be found in Mic Detlefsen’s contribution. The
core idea, that there is a prospectively illuminating, broadly Aristotelean, way of understanding
‘essence’ in terms of explanation has been noted for some time. Unpublished work by my colleague
Boris Kment promises to be illuminating on this point. In talks, Fine (Eastern meetings of the
American Philosophical Association, December 2004) has sketched an account of essence as connected
fundamentally to explanation; he tells me (correspondence, May 2006) that though he has not
yet published anything on the explanation–essence connection, he has explored it in unpublished
work.



mathematical concepts and definitions 271

introduced the symbol. Here too further investigation unearthed and justified
something that it makes sense to call the ‘real definition’.

9.5 Prospective connections

(a) ‘Fruitful concepts’

Frege, in various writings, addressed the issue of valuable concepts and
definitions. Though he does not develop the idea systematically, there are
enough tantalizing hints to spur efforts to reconstruct the doctrines behind
them.²⁸ The importance of ‘fruitfulness’ in theory choice has long been
recognized. Kuhn (1977) lists it among the theoretical values in science,
remarking that despite its importance the idea was little studied. This situation
changed little in subsequent decades, though an essay by Daniel Nolan (1999)
takes the first steps toward analyzing what is virtuous about this theoretical
virtue. A prerequisite for real progress is a more detailed analysis of cases that
have unfolded in practice.

(b) Burge on ‘partial grasp’ of senses; Peacocke on ‘implicit conceptions’

Euler, Gauss, and others had true thoughts about prime numbers before the
concept was properly defined. It seems right to say that Dedekind’s presentation
of Gauss’ third proof of quadratic reciprocity really does present ‘essentially’
what is going on, while omitting the calculations that Gauss himself (for all
we know) may have thought essential. Such cases are examples looking for
a theory (specifically, a theory of partially grasped content and sameness of
content). Burge (1990) has articulated a theory of meaning that builds upon
the idea of ‘partial grasp’. Following Burge, Peacocke (1998a, b) explores
the relation of the 19th century δ − ε definitions to the Newton/Leibniz
presentations of calculus, plausibly suggesting that the later definitions are
implicit in the earlier. As critics made clear, many complications remain to be
sorted out.²⁹ In particular, Rey (1998) notes that Newton and Leibniz may have
had a conception explicitly in mind contradicting the δ − ε treatment. On the
other hand, the commitments of researchers are complex, and could involve
methodology that, when consistently followed out, might undercut other
aspects of the researchers’ view of what they are doing. (Here one remembers
the amusing episodes in the development of the axiom of choice, where

²⁸ See Tappenden (1995a)
²⁹ The volume containing Peacocke’s papers has several more devoted to criticism.
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opponents aggressively rejected the axiom while finding themselves repeatedly
applying it tacitly in proofs.) Peacocke has identified a deep problem that we
have only begun to see clearly. Here too, philosophical analysis and study of
rich cases from practice will have to go hand in hand.

(c) Wright/Hale on the Caesar problem

The insight inspiring neo-logicism is that arithmetic can be derived from an
abstraction principle. This suggests that we revisit Frege’s reservation: How
can we conclude, from this definition, that Julius Caesar is not a number?
One appealing strategy is to spell out and defend the naive reaction: Caesar
isn’t a number because he just isn’t the kind of thing that can be. Pursuing
this line, Hale and Wright (2001) argue that in sortal classification some
categories are inherently disjoint. They concentrate their brief discussion on
abstract reflections on individuation and criteria of identity; my impression is
that most readers have been left wanting more. A good way to go beyond
foot-stomping staredowns where each side just reaffirms favoured intuitions
is to assemble more information about a range of cases. The neo-logicist
programme may need clarification of the structure of natural classification in
mathematics for a further reason: the so-called ‘bad company objection’. Some
abstraction principles have evidently false consequences, but might be exclud-
ed if a viable artificial/natural distinction (‘Cambridge’/‘non-Cambridge’ in
Wright/Hale’s parlance) could be articulated and defended. Not all the
troublesome abstracts are plausibly ruled unnatural, so this is not a cure-
all. But we shouldn’t assume that all problematic abstracts are problematic for
the same reason.

9.6 Summing up: the Port Royal principle

The examples we’ve seen are enough to conclude that mathematical defining is
a more intricate activity, with deeper connections to explanation, fruitfulness of
research, etc. than is sometimes realized. We need a philosophical framework
to help us keep the books while we sort it out, and to guide us as to
what consequences if any this can have for other areas of philosophy. The
philosophical stance implicit in the above has affinities to the position that
Penelope Maddy ((1997) and elsewhere) has called ‘mathematical naturalism’.
Though I differ with Maddy on some details, we agree that rich analysis
of mathematical practice is a sine qua non for judgements in the philosophy
of mathematics. The lines that open this paper, from the Port Royal Logic’s
treatment of real definition, prompt the name ‘Port Royal principle’ for the kind
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of ‘naturalism’ at issue: ‘nothing is more important in science than classifying
and defining well ... [though] it depends much more on our knowledge of the
subject matter being discussed than on the rules of logic.’
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10

Mathematical Concepts:
Fruitfulness and Naturalness
JAMIE TAPPENDEN

[Speaking of a hypothetical mineralogist who rejects color as a basis for classifica-
tion, preferring crystalline structure or chemical composition:] The introduction
of such a concept as a motif for the arrangement of the system is, as it were, a
hypothesis which one puts to the inner nature of the science; only in further
development does the science answer; the greater or lesser effectiveness of a
concept determines its worth or worthlessness. (Dedekind, 1854, p. 429)

10.1 Introduction

The preceding chapter urged the ‘Port Royal Principle’: ‘nothing is more
important in science than classifying and defining well ... [though] it depends
much more on our knowledge of the subject matter being discussed than on
the rules of logic’. This chapter will present, in broad outline, a position on
mathematical ‘classification and definition’ that is true to the principle and that
is interesting both as history and as independently defensible philosophy. An
orienting reference is a seemingly innocent passage from an 1899 textbook on
elliptic functions:

... the peculiarities of Riemann’s treatment lie first in the abundant use of
geometrical presentations, which bring out in a flexible way the essential properties

I’m grateful to Paolo Mancosu for comments and patience. Some of this material, in an early form,
was discussed in a talk at the Kansas State University philosophy department, and I’m grateful to the
participants for helpful discussion. The influence of Hilary Putnam’s paper ‘What is Mathematical
Truth?’ (Putnam, 1975) runs throughout the discussion of evidence for conjectures. Some of this
material was presented to a conference in Princeton in honor of Paul Benacerraf; I’m grateful to
the participants—especially Paul Benacerraf, Steven Wagner, John Collins, John Balfe, and Hilary
Putnam—for comments.
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of the elliptic functions and at the same time immediately throw light on the
fundamental values and the true relations of the functions and integrals which are
also particularly important for applications. Second, in the synthetic treatment of
analytic problems which builds up the expression for the functions and integrals
solely on the basis of their characteristic properties and nearly without computing from the
given element and thereby guarantees a multifaceted view into the nature of the
problem and the variety of its solutions. (Stahl, 1899, p. III; italics mine)

We expect to encounter such seemingly generic motivational writing in the
prefaces of textbooks, and we tend to flip past to get to the meat. But these
words are worth pausing over: through the topic (Riemann’s lectures), the
means of expression (especially the phrases in italics, which were recognized,
red-letter clichés), and the orientation toward ‘essential properties’ gained
through the ‘synthetic presentation’ the author displays his allegiance to a
methodology and tacit metaphysics of concepts that had been percolating
and crystalizing for fifty years, beginning with the revolutionary techniques of
Riemann, and winding through the work of his followers (notably Dedekind).¹
These principles of method were widely enough known that Hilbert needed
no further explication for every mathematician to know what he meant when
he said that in his approach to higher reciprocity laws: ‘I have tried to avoid
Kummer’s elaborate computational machinery so that here too Riemann’s
principle may be realized and the proofs driven not by calculations but by
thought alone.’ (Hilbert, 1998, p. X)

Though the occasional methodological asides are helpful as benchmarks, it
is really in the mathematics itself that the power and scope of the revolution
in method is manifest. The core idea was that the decision about what to
regard as a fundamental property should be seen as part of the problem to
be solved rather than as antecedentently evident. (For example, it might be
held as evident that + and × are fundamental concepts and others should be
reduced to them. (This was basically Weierstrass’ view.) By contrast on the
revolutionary view it is possible, and indeed in many cases was concluded,
that other concepts should be taken to be basic and representations in terms
of + and × treated as relatively accidental.) The evidence that the selection
of basic categories was correct was grounded in the fruitfulness of the relevant
formulations for subsequent research. The theoretical outlook and the resulting

¹ Riemann’s basic point of view was interpreted quite differently by different followers. Inspired by
Riemann, Felix Klein/Sophus Lie, Alfred Clebsch/Ludwig Brill/Max Noether, and Dedekind initiated
distinct traditions of mathematics, with different implicit conceptions of method. I believe that the
features of Riemann’s understanding that I’m describing here are common coin among Riemann’s
followers, but I will restrict attention here to Riemann as Dedekind understood him, postponing some
scholarly subtleties for another time.
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mathematics have had a profound effect on the emergence of the styles of
mathematical reasoning that evolved in the subsequent century.

My goal here is to describe the Riemann–Dedekind approach to ‘‘essential
characteristic properties’’ and indicate some of the mathematics that gives it
substance. Along the way, I’ll spell out why I regard this as a promising and
philosophically profound strategy for arriving at an account of naturalness in
mathematical classification that can coalesce with an account of properties and
definitions in general. To set the stage, I’ll first discuss the current situation in the
general metaphysics of properties as it pertains to the naturalness of mathematical
properties. The point of the context-setting will be to explain why the way
things currently stand—especially the role of metaphysical intuitions, and the
stock of examples used as reference points (plus the potential examples that
are not used)—make it difficult to address mathematical properties in an
illuminating way.

10.2 Analytic metaphysics: the ‘rules of the game’
and the method of intuitions

Even if we acknowledge the Port Royal principle of Chapter 9, and ensure that
our account of mathematical ‘classification and definition’ pays due heed to ‘the
subject matter being discussed’, we should work toward a synoptic treatment of
mathematical and non-mathematical cases. It’s unlikely that mathematical and
non-mathematical reasoning are so disjoint as to exclude interesting points of
overlap. In recent decades there has been a revival of old-fashioned metaphysical
debates about the reality of universals, the artificial/natural distinction, and
cognate topics. It might seem initially promising to draw on these debates
to illuminate the questions appearing in the survey essay. In this section I’ll
illustrate why the methods accepted as defining the ‘rules of the game’ in the
relevant areas of contemporary analytic metaphysics are unlikely to help us as
things currently stand. This will force a different perspective on the problem;
I’ll explore one possibility that centers on inductive practices of conjecture and
verification in the subsequent section.

Consider again the example from the survey essay: In algebraic number
theory, the definition ‘a �= 1 is prime if, whenever a | bc then a | b or a | c’ is,
in an important way, the ‘correct’, or ‘proper’ definition of ‘prime number’,
and the school definition ‘n �= 1 is prime if it is evenly divided by only 1 and
n’. is comparatively accidental. As in the suggested comparison—the change
in the definition of kinetic energy made necessary by relativity theory—we
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need to explain what kind of advance in knowledge it is to replace one
definition with another for reasons of the relevant kind. Similarly, we need to
clarify what we learn when we arrive at a proper choice of basic categories.
Two hundred years of research into number theory reveal that the Legendre
symbol determines a central number-theoretic function, carving the subject at
its joints, despite the disjunctiveness of the definition that introduces it. But
just what is it we are learning when we learn this?

Implicit in the suggestion that finding the right definition or arriving at the
proper choice of basic categories can be an advance in knowledge, is the rider
that the choice of definition (or of primitive concepts to be defined) can be
in some sense ‘objectively’ correct. We are really learning something about the
subject we are studying—not just something about ourselves and our cognitive
peculiarities—when we learn the ‘best’ definition of ‘prime’, or when we
learn that the concept of scheme forms the basis of ‘the language of algebraic
geometry’.² What we are learning may be difficult to spell out with precision,
of course. To spell it out we may need in addition to clarify some of the
other ideas this volume is devoted to (such as mathematical understanding or
explanation or purity of method). But the suggestion is that there is some
tenable idea of objective correctness to be spelled out.

Of course, this sets a stumbling block: to clarify the suggestion of the last
paragraph, we need to flesh out what we mean by ‘objective’. And to be sure,
both in the present narrow context and in general, this is not easy to do. Much
of the discussion of the objectivity of classifications seems to draw more on
some unanalyzed intuitive idea of what ‘objectivity’ must involve, and less on
a clearly worked out doctrine or principled analysis. I am in no position to give
anything like a principled, general account of a useful concept of ‘objectivity’
here, so my goal will be more modest: to come up with some tangible sufficient
conditions for judging a classification to be ‘objectively correct’ in a way that
will allow mathematical and non-mathematical cases to be treated uniformly.

For orientation, we’ll need to look to the ways that the intuitive idea is
unpacked in general metaphysics. The work of David Lewis is useful at this
point because it helps bring out what is at stake. Lewis famously adopted a
striking change in direction in the early 1980s when he argued that we need
to accept a class of properties distinguished as universals.³ Lewis’s mode of
argument is characteristic of his style: he points to the amount of work that
the recognition of distinguished properties does, which would be threatened if

² Here I am echoing a common way of speaking of schemes, as incorporated for example in the title
of the Eisenbud and Harris monograph Schemes: The Language of Modern Algebraic Geometry.

³ See Lewis (1983, 1984).
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they were to be given up. This work includes the entries in this list (of course,
many of these are close relatives):

1. Underwriting the intuitive natural/artificial distinction in clear cases.
2. Founding judgements of simplicity and similarity (which in turn informs

the selection of referents of variables for Ramsey sentences).
3. Evaluations of general truths as lawlike or not.
4. Supporting assignments of content (for example in ‘Kripkenstein’

cases).
5. Underwriting a distinction between intrinsic and non-intrinsic properties.
6. Singling out ‘intended’ interpretations in cases of underdeterminacy

(for example in connection with Löwenheim–Skolem indeterminacy
arguments).

7. Distinguishing correct from incorrect inductive predictions in ‘grue’ type
examples.

As noted in the introductory essay, there don’t appear to be significant
differences in the listed respects between selecting distinguished properties in
mathematics and in areas dealing with contingent properties of contingently
existing things. Two of the cases Lewis treats (Löwenheim–Skolem inde-
terminacy and ‘Kripkenstein’) directly address mathematical examples. The
‘Kripkenstein’ problem is, in a simple form, the problem of explaining how
we come to mean the regular + function when we say ‘plus’, since the
specific computations a speaker has performed in a lifetime will always also
be compatible with infinitely many other bizarre ‘quus’ functions from pairs
of numbers to numbers. Lewis’s suggestion is that an answer can begin with
the simple observation that interpretations tend to pick out natural candidates
rather than wacky ones. The case of inductive prediction might appear to
indicate a disanalogy, but as I noted in the introduction, this isn’t so. We’ll
revisit induction in more detail later in this paper. Causation, of course, is a
potential spoiler, but it’s complicated for reasons indicated in Chapter 9, and
so we’ll set it aside here.

It is worth making a remark about terminology, to avoid the appearance
of prejudging any issues, since ‘natural’ has an unfortunate dual connotation.
A choice of categories can be ‘natural’ if it possesses a certain kind of
appropriateness or correctness (as when one says ‘φ is the natural map’, or
‘this interpretation is the natural way to understand Kant’s remarks on page
17’), or if it pertains to the physical world (as when one speaks of reducing
talk of mental properties to talk of natural properties). Discussion of ‘natural
properties’ in metaphysics seem to me most, well, naturally understood as
drawing on the former meaning in the cases that are relevant here (such
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as when ‘plus’ is counted as more natural than ‘quus’, or ‘grue’ less natural
than ‘green’) and so it would be natural to speak of ‘natural properties’
in mathematics as well. But it might be objected that speaking of ‘natural’
mathematical functions, definitions, domains, proofs, generalizations, etc. gains
rhetorical effect misleadingly from the ‘pertaining to nature’ meanings.⁴ This
is a fair complaint, but here I’ll have to simply note it as something to keep
in mind. It would be difficult to adequately introduce new terminology to
disambiguate until we have a clearer sense of what we want the terminology to
do. So at this early stage, I’ll stick with the common use of the word ‘natural’
and its cognates—ambiguities and all—while keeping alert to the potential for
fallacies of equivocation.

Of course, part of what gives force to the Lewis treatment is the sheer
intuitive umph of some simple common-sense cases. It is hard to deny the
prima facie pull of the suggestion that however we understand ‘objective’ it is
an objective fact that two electrons A and B are more like one another than
either of them is like the moon, or the Eiffel Tower, or a moose. This gives
urgency to the quest to find an account to either underwrite this intuitive
judgement or explain it away. Something like this immediate intuitive force
attends the suggestion that ‘plus’ is somehow objectively natural or simple
in a way that ‘quus’ isn’t. However, such an appeal to the intuitive force of
a judgement can hardly suffice for more than preliminary orientation. This
is true not just because it is inadequate, in general, to rely solely on brute
intuition in philosophical argument, but because the force of some of the
better mathematical examples of prospective natural categories ( like ‘genus’
or ‘scheme’) and definitions (‘prime’) requires training to appreciate. If we
can make sense of the idea that categories can be ‘objectively mathematically
natural’ in a way that relates to ongoing mathematical investigation we’ll need
to make room for the fact that we can discover that a category is in fact natural
even if it seemed to lack intuitive naturalness at the outset. Indeed, in some
cases (like the Legendre symbol) the prima facie impression may be that the
definition is an obvious disjunctive gerrymander.

Some of the presuppositions about mathematical activity that appear to frame
the discussion in the general metaphysics literature present a systematic obstacle
to incorporating the relevant mathematical details. It is difficult to arrive at a
compelling diagnosis with just vague handwaving about nameless authors. For
illustration, I’ll look at one representative treatment by Ted Sider (1996) in

⁴ I’m grateful to conversations with David Hilbert (the Chicago philosopher, not the Göttingen
mathematician) and Hartry Field for helping me see that the ambiguities in the word ‘natural’ could
become a distraction in this context.
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which mathematical examples are taken to support metaphysical conclusions
about the naturalness of properties. Of course, restricting attention to one
article gains concreteness but has the potential to sacrifice scope. However,
it seems fair to take Sider’s paper as a paradigm. Sider is recognized as a
significant researcher in the field, the paper appears in a major journal and is
widely cited, and my impression is that the intuitions it appeals to are on the
whole regarded as acceptable moves by contributors to these debates. I’ll leave
much of the intricacy of Sider’s careful article unmentioned since my concern
here is just to use certain aspects of his arguments to illustrate ways in which the
presuppositions and accepted moves of current analytic metaphysics make it
difficult to address mathematical judgements informatively. In particular, I want
to bring out that a general problem with the method of appealing to intuitions
about the objectivity of judgements and theories—the extreme context-
sensitivity of these intuitions—is especially acute here because of the isolation
of metaphysical speculation about mathematics from ongoing mathematics.

Sider sets out to refine an argument of Armstrong (1986, 1989) and
Forrest (1986) against Lewis. The resulting objection speaks less to the idea
of naturalness and more to a further position (called ‘class nominalism’) Lewis
endorsed: properties, functions, and relations are constructed out of sets. I have
reservations about class nominalism, but for orientation it will be useful to
accept it and follow out Sider’s refinements.⁵

The basic Armstrong–Forrest argument runs as follows: Begin (for the sake
of reductio ad absurdum) with the assumption that some relations are natural,
and choose one natural relation R. The class nominalist reduces relations
to sets of ordered pairs, and ordered pairs to sets. There are different ways
to do this. The reductions considered explicitly are Kuratowski’s definition
<x, y> = {x, {x, y}} and Weiner’s <x, y> = {{x, ∅}, {y}}. If R is natural,
then the collections of sets corresponding to R should be natural. The objection
is: It is arbitrary which reduction of ordered pairs is adopted, which conflicts
with the sought-after objective, non-arbitrary character of the assignment of
naturalness to the set that represents R. The point, as so distilled, needs fleshing
out and strengthening, but the core idea is clear enough. Sider’s paper suggests
a sequence of such fleshings out and strengthenings, followed by his criticisms
of these proposals, before arriving at what he takes to be tenable final results.

Sider considers this reply to Armstrong–Forrest: perhaps one of the reduc-
tions should be counted as the right one. Sider suggests that there couldn’t be a

⁵ Sider suggests that he is not addressing positions that take functions and ordered pairs to be
unreduced, sui generis entities. However, Sider’s argument against the variation suggested by Phillip
Bricker appeals to a premise sufficiently broad as to apply also to any view that takes (unreduced)
functions to be distinguished at least in part because of their centrality for mathematical practice.
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reason for preferring one over the other, which seems plausible in the specific
case of these reductions of ordered pairs. It’s less clear what to say about another
example Sider considers: the well-known ‘multiple reduction problem’ first
broached in Benacerraf ’s ‘What Numbers Could Not Be’ (Benacerraf, 1965).
It is observed that the natural numbers can be reduced to either of two series:
Zermelo’s {∅, {∅}, {{∅}}, ...} where each member of the series is the unit
set of the previous one, or von Neumann’s {∅, {∅}, {∅, {∅}}, ...} where each
member of the series is the set of its predecessors. The suggestion that one
reduction or the other might be correct is rejected on the grounds that a
reason to prefer one over the other is inconceivable: ‘Perhaps one line of our
thought here is that we don’t see what could possibly count as a reason’ (Sider,
1996, p. 289) and ‘The only features that distinguish one method from another
involve mathematical convenience, and so seem irrelevant to the existence of
an ontologically distinguished method’ (Sider, 1996, p. 289).

Sider addresses another variation on the Armstrong–Forrest point. Say that
instead of arguing for a single distinguished method, we accept that there will
be many, and maintain that all of them are equally natural. Sider rejects this
on the (reasonable) ground that some methods are obviously unnatural, and he
produces a grotesquely gerrymandered case to witness the point. Thus we
come to what seems to me the best option (given an antecedent acceptance of
class nominalism): Say that there is a class C containing more than one method,
such that no method is more natural than any member of C, every member of
C is equally natural, and every method as natural as a member of C is in C.
Say also that there is at least one method that is less natural than the members
of C. That is, C is the class of methods such that nothing is any better than a
member of C. Why shouldn’t we just pick an arbitrary member of C and stick
with it, so long as we avoid the less natural methods not in C?⁶ The fact that
there are several winners in equal first place doesn’t take away our ability to
distinguish more and less natural.⁷

Sider’s only grounds to reject this option is to amplify the claim noted
above: ‘While a class of distinguished methods may be less implausible than
the single distinguished method ... it is still implausible. [This] theory seems to

⁶ The situation would be like the one we face when choosing a coordinate scheme for Euclidean
space. Of course, there is no uniquely reasonable choice. Does this mean that every choice is equally
good? Of course not: some assignments of algebraic objects to geometric ones are terrible. Say, for
instance that we have Cartesian coordinates and polar coordinates in alternating octants. Then the
mathematical description of (say) a sphere centered at the origin would be wild indeed despite the
mathematical simplicity of the figure described, and that would be the fault of the choice of unnatural
coordinates. Here it seems right to say that there are a class of distinguished coordinatizations, all more
or less equally acceptable, and all superior to a range of unacceptable ones.

⁷ Sider attributes this alternative to Phillip Bricker.
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mistake a pragmatic distinction (Kuratowski’s method is more mathematically
convenient than method X) for an ontological one. Thus, I continue to reject
the idea that any method of constructing ordered pairs is ontologically more
distinguished from any other’ (Sider, 1996, p. 292). Given that the ‘method X’s
at issue include the obviously gerrymandered case whose intuitive unnaturalness
Sider appealed to, and indeed any reduction however artificial and clumsy,
Sider’s claim will only do the work he needs if it is understood broadly enough
that any distinction between natural and unnatural mathematical reductions, if
made on the basis of an assessment of mathematical naturalness, is counted as
based on merely ‘mathematical convenience’, which is to be counted as merely
‘pragmatic’ and not an objective guide to the way things are.

Two related suggestions underwrite Sider’s stance: the purported inconceiv-
ability of any reason to prefer one reduction (of numbers, and by implication of
ordered pairs), and the claim that any reason that could be adduced could only
be a matter of ‘mathematical convenience’, and consequently a ‘pragmatic’ dis-
tinction rather than an ‘objective’/‘ontological’ one. Many theoretical choices
made in the course of successful mathematical reasoning would be thereby
shrugged onto the ‘merely pragmatic’ scrapheap, so we should pause and take
stock. The plausibility of these claims rests significantly on the examples taken
as paradigmatic. If we restrict ourselves to ordered pairs, it does indeed seem
inconceivable that there could be a substantial, non-pragmatic reason to prefer
Kuratowski over Weiner. But it is a mistake to generalize this impression,
because of the mathematical insignificance of the example. If ‘mathematical
convenience’ means ‘convenience for the practice of mathematics’ then the
reduction of ordered pairs to sets is at best valueless. In mathematical practice,
reduction for the sole purpose of paring down the number of basic entities
is regarded with indifference or even distaste. (Reductions can be valued, of
course, but only if they bring some kind of mathematical benefit, as measured
by, for example, improved understanding or enhanced potential for discover-
ing proofs, or ‘purity of method’ considerations of the sort considered in Mic
Detlefsen’s contribution.) The reduction of ordered pairs to sets has been used
by analytic metaphysicians as a paradigm of mathematics since Quine singled
it out as one of his canonical examples. But it is not a paradigm of mathematics.
In fact, the reduction of ordered pairs to sets has become a stock example in
philosophical discussions because it fits with widely shared and well-entrenched
philosophical assumptions. Quine took it as a paradigm of ontological economy,
and ontological economy was proposed as a core methodological objective.
Through an unnoticed philosophical metamorphosis, ontological economy
came to be counted as a measure of simplicity, with simplicity of the relevant
kind counted as a virtue of scientific theories.
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Of course, even those who hold that some preferences for one representation
over another are based on reasons of more than ‘mere convenience’ will grant
that some such preferences are just based on relatively trivial pragmatic grounds.
Recall that, as noted in Chapter 9, we can cite several reasons for not counting 1
as a prime number. Some of these involve deep facts about the behavior of
units in general fields, others can reasonably be seen as minor improvements in
streamlined bookkeeping, such as the availability of a compact statement of the
prime decomposition theorem. It’s plausible that any reason for preferring the
Weiner reduction over Kuratowski or conversely could only cite bookkeeping
advantages. But the tacit suggestion that this comparison is paradigmatic of
mathematical choices of this type masks just what a range of distinct, subtle
considerations will get shrugged onto the ‘pragmatic’ heap.

The point comes out more pressingly in connection with Sider’s example
of the natural numbers. Though the accepted philosophical folklore holds
otherwise, there are mathematically important differences between the von
Neumann and Zermelo representations. Thanks to these differences, von
Neumann’s series has long been accepted by set theorists as the most natural,
canonical representation of N and Zermelo’s is a forgotten historical curiosity.
It is important to recognize that substantive reasons can be cited for this;
it is not just a contingent historical accident. (The von Neumann ordinals
are not merely VHS to Zermelo’s Betamax.) It would be distracting to
dissect all the reasons (some of them are rather involved), so I’ll concentrate
on just a particularly clear and simple one: The principle generating the
finite von Neumann ordinals generalizes naturally to infinite numbers while
the one generating Zermelo’s ordinals doesn’t. Take ω, the ordinal of the
series {0, 1, 2, 3, ...}. A von Neumann ordinal is the set of its von Neumann
predecessors, so the principle generating the finite ordinals gives us immediately
the representation ω = {∅, {∅}, {∅, {∅}}, ...}. A Zermelo ordinal is the unit set
containing its predecessor, which for ω is ... well, ω has no predecessor. So
there is no Zermelo ω.

We’d need to jigger up something else to regard the Zermelo ordinals as the
finite initial segment of all the ordinals. Of course, it isn’t too hard to come up
with something. For example, we could make every successor ordinal the unit
set of its predecessor, and every limit ordinal the set of all its predecessors. But
this would evidently be an artificial patch job, and a uniform account would
be preferable. Though the von Neumann/Zermelo hybrid might occasionally
be clumsy to work with, the problem with it is not inconvenience but rather
unnaturalness. A proper account of the ordinals should display finite and
infinite ordinal numbers as the same kind of thing, with ordinals in general as a
natural generalization of the finite ordinals. Whether or not finite and infinite
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numbers should be generated by the same or different principles is the sort of
thing that should be regarded as a fundamental question, contributing to an at
least potentially objective case for one representation over the other.

This serves up a striking example of the context-sensitivity of the metaphys-
ical intuitions at work in this debate. If the debate is carried out in isolation
from the ongoing mathematical research that is ostensibly its subject, we should
expect situations like this to arise: The non-existence, and indeed the inconceiv-
ability of a kind of mathematical argument is put forward as a central datum,
when such arguments are not only possible but are widely, if tacitly, acknow-
ledged in practice. In addition, with the reduction of ordered pairs taken as a
mathematical paradigm, the student of mathematical method is put in a difficult
dialectical position: the reduction that is put forward as fulfilling mathematical
desiderata does indeed seem arbitrary and artificial. It is indeed hard to see
how either reduction of ordered pairs could contribute to our view of what
reality really is like. But from the point of view of mathematical method, it is
appropriate to think this: the reductions are mathematically artificial, whatever
their philosophical virtues may be.

One reason that informal mathematical reasoning of this type has stayed off
of philosophy’s radar is hinted at in a remark Sider quotes as sympathetic to his
position:

In awaiting enlightenment on the true identity of 3 we are not awaiting a proof of
some deep theorem. Having gotten as far as we have without settling the identity
of 3, we can go no farther. We do not know what a proof of that could look like.
The notion of ‘correct account’ is breaking loose from its moorings if we admit
of the possible existence of unjustifiable but correct answers to questions such as
this. (Benacerraf, 1965, p. 58)

Certainly proving theorems is the canonical means of obtaining knowledge
of mathematical facts. If we narrow our picture of the cognitive activity
informing mathematical reasoning to include just deductively valid arguments
from indubitable premises, then we won’t have any access to the sorts of
reasons that we are interested in here. The arguments that can be given to
justify counting one definition as ‘correct’ or one reduction as ‘natural’ are
not going to be theorems. (Of course, sometimes central theorems can be
crucial to making a case for the naturalness of one definition or function over
another. This was the case for the Legendre symbol: its claim to the status
of natural rather than artificial was buttressed when the Artin Reciprocity
Theorem was proven, and it turned out to be the special case of a more
general fundamental concept.) But the fact that this reasoning is ‘softer’ than
what we are accustomed to finding in mathematics textbooks doesn’t mean
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it is an insignificant contributor to mathematical knowledge. The principles
provide reasons for mathematical expectations, guide conjectures, and inform
problem-solving strategies. The reasons can be debated, and those debates can
be resolved by further investigation. Why shouldn’t we count this as rational
activity producing objective knowledge?

At its crucial points, Sider’s argument seems to amount to simply appealing
to the perceived plausibility of the suggestion that mathematical judgements
of more or less natural can never be more than judgements of ‘mathematical
convenience’ that cannot be reasonably taken as a guide to the way things are
objectively. Part of what gives initial appeal to this claim is the example of the
reduction of ordered pairs, which I’ve suggested is misleading as a guide to the
judgements informing mathematical practice. A mathematically insignificant
case is taken as paradigmatic, which colors the intuitions about the other cases
it is meant to illustrate. Of course, this observation puts the ball in my court:
I’ll need to lay out other examples which will turn the intuitions around. The
examples developed in the first essay can take some steps in the right direction.
Given the extensiveness, intricacy, and multiplicity of connections exhibited
by the reasoning at issue it doesn’t seem nearly so obvious that we can devalue
as a judgement of ‘mere mathematical convenience’ the claim that the proof of
quadratic reciprocity using cyclotomic extensions is especially natural because
it provides a conceptual stepping stone to more general Artin reciprocity, or
that the Legendre symbol, despite the artificial-seeming initial definition, can
be seen to carve things at the joints when it is recognized as a special case of
the Artin symbol.

Of course, the topic of context-sensitivity is a double-edged sword here. It is
open to the defender of the thesis that judgements of mathematical naturalness
are all (‘merely’) pragmatic to suggest that familiarity with mathematical details
distorts intuitions as well. Immersion in the details of any rich theory with a
range of systematic interconnections can foster a sense that certain facts that
may seem soft from the outside are hard and inescapable. This is true for
systematic theology, chess theory, and the theory of what Harry Potter would
do under hypothetical circumstances consistent with, but not occurring in, the
Harry Potter books. Enough immersion in the Potter books, discussion groups
with other fans, fan fiction groups on the internet, etc. might give a fan the
sense that it is an objective fact that one continuation of the story is natural
and another is artificial, and the fan might be able to provide an extensive and
ingenious rationale. A well developed theory of the Potter stories could provide
explanations of the actions of the characters, and could be assessed for simplicity,
elegance, and Potter-theoretic analogues of ‘purity of method’ considerations,
to mention just a few cognitive virtues. But a skeptic could maintain, quite
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plausibly, that this doesn’t make the naturalness of one storyline versus another
anything but an artifact of the cognitive peculiarities of the enthusiastic fan,
and perhaps of human cognitive particularities generally. Not unreasonably,
the defender of the thesis that judgements of mathematical naturalness are all
pragmatic could point to such analogies, to argue that it is just irrelevant that
Sider considers a trivial example instead of richer cases with complex details.

At bottom, this reply could run, the preference for one mathematical
formulation over another, in principle logically equivalent, one is a pragmatic
matter, however detailed the rationale, however intricately the preferences may be
bound up with attributions of mathematical understanding or explanation or
simplicity or [insert your favorite virtue of theories here], and however subtlely
the preferences may interact with problem-solving potential. The mere fact
that the judgements are deeply embedded in the practice of mathematics
does not change their nature. It may make the pragmatic judgements more
complicated, and they may ‘feel’ differently to people familiar with the subject,
but they remain ultimately pragmatic, just as artistic judgements about musical
works are not changed into something other than aesthetic judgements if they
are complex and involved.

However, as other strands of the Sider article bring out, the context-
sensitivity of intuitions about objectivity is a universal concern. Following out
a different cluster of options, Sider takes up the possibility that the idea of
naturalness might admit of many subgenres, depending on what reduction is
accepted. (So, there could be ‘Kuratowski-natural’ relations, ‘Weiner-natural’
relations, and so on, but no generally definable class of natural relations.)
The sole grounds given for rejecting this option are appeals to intuitions
about complexity and the aesthetics of theories: ‘[This is not] a knockdown
objection, but [it is] a forceful one nonetheless: [The theory] would require an
infinitude of primitive properties, with no hope of subsumption under a single
formula or explanation. If [the theory] requires such an unlovely menagerie
to do its work, we’d do better to look elsewhere for a theory of naturalness’
(1996, p. 293). This objection is redescribed later as an appeal to ‘theoretical
economy’ (1996, p. 295) and later still as an appeal to ‘prohibitive cost in
complication of theory’ (1996, p. 299). The obvious question presents itself:
why are offhand intuitive assessments of simplicity and aesthetic appeal reliable
guides to the way things really are for philosophical theories but pragmatic
matters of ‘mere convenience’ for mathematical discriminations? It is hard to
see any principled basis motivating the distinction in the cases at hand.

This draws us to a deep problem to be sure, but it is a problem for everyone:
why should theoretical virtues serve as a guide to the way things are? How can
we justify an appeal to relative simplicity of one account over another, or the
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fact that one account explains or confers understanding better than another,
or some other cognitive advantage, when there would seem to be no a priori
reason to expect that objective reality must be so considerate as to conform to
the particularities of human cognitive makeup. There is no generally accepted
response to the suggestion that every choice of a theory—in mathematics,
philosophy, or any other field—on the grounds of theoretical virtues like
simplicity or apparent naturalness or ‘loveliness’ is ‘merely pragmatic’. So for
any particular, local appeal to such theoretical reasons, the charge that these
reasons are ‘merely pragmatic’ is available. If we want to maintain that even so,
some apparently pragmatic judgements are guides to the way things objectively
are and others are not, we need a solid basis for distinguishing the cases. The
problem with the method of appealing to intuitions about what is and isn’t
‘pragmatic’ is that these intuitions are simply too context-sensitive to afford
an informative distinction between cases where a preference motivated by
theoretical virtues is ‘objective’ and when it isn’t.

In the end, it is hard to make any progress beyond a wheel-spinning clash of
intuitions without more information about what ‘objective’ means, or some
harder criteria of objectivity. But if our intuitions are too fluid to adjudicate
whether or not some discrimination is objective, what else is there?

10.3 Conjecture and verification: a foothold
on objectivity

As I’ve said, I am in no position to propose a general theory of, or criterion for,
the objectivity of a judgement. Rather, I’ll borrow a practical strategy from
mathematical research: if you can’t solve the general problem, find a tractable
special case and solve that. The foothold will be the interaction between finding
the proper definitions or concepts and the practice of successfully verifying
conjectures. This won’t be the whole story but it can be the beginning of
one. In particular, I’ll concentrate on one orienting mark: it is a prima facie sign
that a judgement is objective if it has consequences that can be confirmed or
refuted and whose truth or falsehood is independent of the original conjecture.
In the simple cases that we know from discussions of the ‘grue’ paradox, these
consequences are successful empirical predictions. As noted in the introductory
essay, such predictions are made in mathematics as well, as witness the inductive
reasoning Euler exploited to arrive at quadratic reciprocity. Euler’s argument
for quadratic reciprocity forms a pleasingly clear-cut analogy to Goodman’s
New Riddle of Induction. In each case we are dealing with simple enumerative
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induction, and the correctness of the prediction depends upon hitting on the
proper category. The fact that one is a prediction about a contingent fact and
the other a necessary truth about prime numbers makes no difference to the
reasoning itself.

One of the reasons that the Goodman’s ‘New Riddle’ is such a compelling
philosophical set-piece is that it links—in a simple and clear way—the
question of whether or not a category is homogeneous with a judgement
whose rightness or wrongness is outside the control of the judger. No amount of
reclassifying or pragmatic revision of conceptual schemes will make the next
emerald examined be (what is called in the current vocabulary) blue. The color
of an emerald is a contingent empirical fact, but as noted the reasoning doesn’t
turn on contingency. Euler’s records of the computations that prompted his
conjecture of the law of quadratic reciprocity display the same pattern.⁸ He
examined cases, made conjectures and then tested them against an expanding
series of examples. As with induction about the physical world, Euler’s analyses
of the data were, of course, not unreflectively mechanical. It took considerable
ingenuity and pattern-spotting before Euler recognized that (what amounted
to) quadratic reciprocity was the pattern to project. After he hit on the proper
way to classify the cases he had examined, he was able to predict the correct
theorem, which was then verified through examination of further specific
values. It is remarkable how well the patterns of computation, and conjecture,
refute conjecture with more computations, refine concepts, and make new
conjecture, ... look like textbook examples of enumerative induction. (Find
some green rocks. Conjecture all rocks are green. Find some non-green rocks,
re-analyze situation, note that the green rocks are emeralds. Conjecture all
emeralds are green ... ) To the extent that the naturalness of a property plays a
role in the correctness of a projection, it has to play a role here, which would
lead us to the conclusion that the properties like ‘x is a quadratic residue’
supporting Euler’s correct inductive reasoning should have the same claim
to ‘naturalness’ deriving from projectibility that ‘green’ has. The elementary
inductive pattern is in no way altered by the fact that the theorem could also
be directly proven, or that the relevant facts about numbers aren’t contingent,
and the pattern is perfectly consistent with the observation that the concept of
causation doesn’t have any obvious application in connection to mathematical
properties. The correctness or otherwise of the categories Euler used was
tested by a hard, objective criterion: will the values still to be computed be the

⁸ There are several excellent treatments of the inductive reasoning that led Euler to his conjecture.
Edwards (1983), Cox (1988), Cox (1989, pp. 9–20), and Weil (1984) are all worth consulting. Sandifer
(2005) is a particularly beginner-friendly discussion at the online Euler archive.
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predicted ones? And further down the road: if the conjecture is resolved by a
proof, will it be proven true or false?

Of course, the Euler case is unusual, in that elementary enumerative induc-
tion of the form ‘a1 is P, a2 is, P, ... , an is P, therefore an+1 will be P’ is as
rare in mathematics as it is in ordinary reasoning about the physical world:
both ordinary and mathematical conjectures are typically more subtle.⁹ In
both empirical and mathematical cases, the simple enumerative induction is an
artificially simplified touchstone that distills certain essential features of more
formless kinds of prediction and conjecture that inform ongoing mathematical
and empirical thinking.

The practice of conjecturing and then striving to ascertain whether or
not the conjecture is correct is ubiquitous in mathematical practice.¹⁰ Even
without the formality of explicitly announcing a conjecture, the practice of
forming expectations about what will turn out to be correct, grounded in prior
discoveries, is an indispensable component of mathematical reasoning. These
expectations guide the choice of directions to search for proofs, for example.
The concepts that are marked out as mathematically natural support further
inductive practice: on the basis of similarities that are evaluated using these
concepts, conjectures are made about what further investigations will discover.
If it is discoved that these conjectures are true, it reinforces the judgement
that the concepts regarded as mathematically natural really are mathematically
natural. In at least some cases the expectations are sufficiently well-grounded in
computations or other quasi-empirical data or plausibility considerations that
it seems right to say that the theorems are known to be true even without a
proof. (This seems to be a reasonable thing to say about Euler’s justified belief
in quadratic reciprocity, for example.)

Inductive reasoning doesn’t just appear in the direct form of conjectures
or specific expectations that are then ideally refuted or verified. Broader
methodological virtues like ‘significance’ and ‘fruitfulness’ have a kind of
quasi-empirical inductive character.¹¹ Singling out a property as central tacitly
makes a prediction that it will reappear in unexpected contexts, and serve as

⁹ Though there are significant examples in which an approach is initially validated through its
ability to make verifiable predictions. Perhaps the most famous is the Schubert calculus for counting
intersections of curves. Long before the system could be rigorously formulated and demonstrated,
Schubert was making astonishing predictions of intersection numbers. See Kleiman and Laksov (1972).

¹⁰ A good recent discussion of conjecture as an aspect of mathematical reasoning is in Mazur (1997).
The classic investigations of inductive reasoning in mathematics are of course Pólya (1968) and Lakatós
(1976). Putnam (1975) is an illuminating reflection on the philosophical angles. Corfield (2003, Chapters
2–6) contains some valuable discussion.

¹¹ ‘Quasi-empirical’ is the expression coined by Hilary Putnam for this sort of mathematical evidential
support in his ‘What is Mathematical Truth?’ (Putnam, 1975).
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support to unanticipated proofs. It need not be obvious at the outset what
shape the proofs will take or what the ‘unexpected contexts’ will be for
this to be a prediction that can succeed or fail. This supports a response to
the suggestion that these evaluations are ‘merely pragmatic’ or ‘subjective’ or
‘merely psychological’ or otherwise lacking objectivity in a way that makes
them uninteresting to epistemology. Just as with more narrowly circumscribed
conjectures, the predictive character of an evaluation of ‘fruitfulness’ brings
a degree of independence from the attitudes of the person making the
judgement. To judge that a program, theorem, or definition is ‘fruitful’ is
to make a prediction that solutions to given problems will in fact be found
by means of the program, theorem, or definition. Such judgements involve
previsions that can be found to be mistaken in light of subsequent investigation.
Not all predictions are as unequivocal and precise as Euler predicting quadratic
reciprocity, but they can still be confirmed or disconfirmed. There is, of
course, a social component to the prediction that some approach will yield
research deemed to be valuable and informative. But a prediction like ‘The
Weil conjectures will be solved using the concept of scheme and not with the
concepts available earlier’, is not just a forecast of social facts. It turns both
on what mathematicians will choose to do and on what proofs are objectively
there to be found.

In stating that inductive and plausible arguments in mathematics can secure
knowledge, I am not echoing the suggestion one occasionally encounters
that the mathematical community ought to relax its emphasis on rigorous
proof. Something can be known without being established to the degree
required for the mathematical community to count it as officially in the bank.
(Analogously, I would not be suggesting that criminal trial procedure should
relax the standard of ‘proof beyond a reasonable doubt’ if I were to point out
that we know certain former defendants to be guilty even though they were
ruled not guilty at their trial.) I am suggesting no revisions at all to regular
practice. I am rather urging that we extend the range of mathematical reasoning
that we take to generate knowledge and to be material for epistemological
study. Forming expectations on the grounds of plausible reasoning and using
these expectations as a guide is an integral part of mathematical practice. My
point has been that if we expand our epistemological horizons to include these
varieties of mathematical knowledge, it brings with it an additional bonus:
A foothold on the study of the naturalness of mathematical concepts and
definitions.

I should also make clear that in urging the importance and quasi-empirical
character of the tacit predictions informing mathematical reasoning, I am not
suggesting that our study of mathematical concepts must be linked to direct
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applications in physical science and common-sense reasoning about the physical
world. (Of course, in some cases there will be close connections, but this isn’t
necessary to the point.)¹² Whether or not the conjectures in question have
any obvious connection to any direct applications makes no difference to our
assessment of the patterns of reasoning informing the making and supporting
of conjectures. It may well be that in an ideal epistemology, the status of
mathematics as knowledge must ultimately appeal to physical applications, or it
may not; we can be neutral on that point here.

10.4 Fruitfulness, conjecture, and Riemannian
mathematics

The Riemann–Dedekind methodology mentioned in the introduction in-
corporates exactly the connection between identification of core properties
and mathematical fecundity discussed in the previous section. In this section I’ll
say a bit more about the Riemann–Dedekind approach. First consider these
Riemannian remarks. They seem innocuous and even dull, but understood in
context they are the first shot in a revolution.

Previous methods of treating [complex] functions always based the definition of
the function on an expression that yields its value for each value of the argument.
Our study shows that, because of the general nature of a function of a complex
variable, a part of the determination through a definition of this kind yields the
rest ... This essentially simplifies the discussion ...

A theory of these functions on the basis provided here would determine the
presentation of a function (i.e. its value for every argument) independently of its
mode of determination by operations on magnitudes, because one would add to
the general concept of a function of a variable complex quantity just the attributes
necessary for the determination of the function, and only then would one go
over to the different expressions the function is fit for. The common character
of a class of functions formed in a similar way by operations on quantities, is
then represented in the form of boundary conditions and discontinuity conditions
imposed on them. (Riemann, 1851, p. 38)

Riemann’s point is simple. We are wondering how to characterize a well-
behaved complex function or a class of them. How should we proceed? One

¹² Though I’m not exploring the point here, a closeness to physical applications was in fact recognized
as a feature of Riemann’s mathematics. (This is touched on in the opening quotation from Stahl.)
For example, Helmholtz found Riemann’s complex analysis congenial, presumably in part because
Riemann’s classification of functions by their singularities fit smoothly with Helmholtz’s approach to
potential flow (cf. Darrigol, 2005, p. 164).
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possibility would be to appeal to a formula that would explicitly display the
relation between every argument and every value in terms of elementary
operations like plus or times. For example, one could write down a polynomial
or power series. But this uses more information than necessary: the function
can be uniquely determined (up to a constant multiple) by just a fragment of
this information (the ‘boundary conditions and discontinuity conditions’).

I’ll illustrate with an example where the conditions are particularly straight-
forward: elliptic functions, the subject of the Stahl textbook quoted in the
introduction.¹³ These are (defined today as) well-behaved (i.e. meromorphic)
functions 	 satisfying the condition that there are complex numbers ω1 and
ω2 such that for any z ∈ C and n, m ∈ Z, 	(z) = 	(z+ nω1 + mω2) (i.e.
	 is doubly periodic.) Given periods ω1 and ω2, how should we single
out specific functions? We could give an explicit rule for computing every
value for every argument, but we have a sparer alternative. Fixing the natural
domain (period lattice) corresponding to the periods ω1 and ω2, given any
two functions f and g on this domain with the same zeros and poles (count-
ed with the same multiplicities) there is a constant c such that for every z,
f (z) = cg(z). That is, the function is essentially fixed by its zeros and poles;
the remaining values need be pulled up only if necessary for some specific
purpose. Though I am restricting attention to a simple case to avoid discussion
of Riemann surfaces, the fact holds more generally: we lose no important
information about a well-behaved function if we just know the zeros and
certain singularities.¹⁴

With such results in hand, Riemann opts to characterize functions by their
singularities. There are too many ramifications of this preference to discuss here.
I’ll restrict attention to the one that is directly relevant to our present topic:
getting the concepts right allows you to see results more easily.¹⁵ For example,
concerning one application of his methods, Riemann deploys the language
that gave rise to the clichés echoed by Stahl: Riemann’s reconceptualizations

¹³ Here I’ll only be able to gesture at some of the relevant information. I explore elliptic functions
in connection with Riemann’s conception of mathematical method in more detail in Tappenden
(forthcoming).

¹⁴ Given any compact Riemann surface R, a meromorphic function defined on R is characterized
up to a constant by its zeros and poles (with multiplicities).

¹⁵ Among the other considerations Riemann cites are purity of method considerations arising from
his sense that it isn’t proper for language-independent properties of objects to be characterized in ways
that essentially involve language:

By one of the theorems quoted above, this property of single-valuedness in a function is
equivalent to that of its developability in a series ... However, it seems inappropriate to express
properties independent of the mode of representation by criteria based on a particular expression
for the function. (Riemann, 1857b)



mathematical concepts: fruitfulness and naturalness 295

make it easy to recognize at a glance what had previously required effort and
laborious computations.

[My method yields] almost immediately from the definition results obtained
earlier, partly by rather tedious computations. (Riemann, 1857b, p. 67)

[My method is one] by means of which all the results found earlier can be
obtained virtually without computation. (Riemann, 1857a, p. 85)

Not only does the reconceptualization allow you to see easily what had
previously been established with difficulty, but also as Dedekind explicitly notes,
the temporal order can be reversed. The formulation ‘based immediately on
fundamental characteristics’ supports the effective anticipation of the results of as
yet unfinished computations. Dedekind sees ‘almost all areas of mathematics’
as requiring the choice between essential (‘internal’) and accidental (‘external’):

It is preferable, as in the modern theory of [complex] functions to seek proofs
based immediately on fundamental characteristics, rather than on calculation, and
indeed to construct the theory in such a way that it is able to predict the results
of calculation ... Such is the goal I shall pursue in the chapters of this memoir that
follow. (Dedekind, 1877, p. 102)

[Gauss remarks in the Disquisitiones Arithmeticae]: ‘‘But neither [Waring nor
Wilson] was able to prove the theorem, and Waring confessed that the demon-
stration was made more difficult by the fact that no notation can be devised
to express a prime number. But in our opinion truths of this kind ought to be
drawn out of notions not out of notations.’’ In these last words lies, if they are
taken in the most general sense, the statement of a great scientific thought: the
decision for the internal in contrast to the external. This contrast also recurs in
mathematics in almost all areas; [For example, complex] function theory, and
Riemann’s definition of functions through internal characteristic properties, from
which the external forms of representation flow with necessity. (Dedekind, 1895,
p. 54–55)

In some cases, such as the zeros and poles of a complex function, the ‘internal
characteristic properties’ at issue are already familiar, so the cognitive success
involved in identifying them is just the recognition of their importance. In
other cases, it requires substantial reformulation and analysis even to be in
a position to notice and define the properties. Thus, for example, Riemann
recognized the importance of the property we now call the genus of a surface
in connection with complex functions. (In the simplest cases, the genus is the
‘number of holes’ in the surface.) Riemann showed how to associate with
each well-behaved complex function a surface (now called a Riemann surface)
serving as the natural domain of definition for the function. The genus is then
defined in terms of the topological properties of this surface. This sets the
context for a core result proven partly by Riemann and partly by his student
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Roch (called, reasonably, the Riemann–Roch theorem) that had incalculable
importance in the mathematics of the 20th century. Here again I can hardly
give more than a vague impression, so I’ll just state the punchline for this
chapter: The result links together the number of linearly independent functions
with given collections of poles defined on a Riemann surface with the genus
of the surface. The subsequent importance of the theorem, and the fact that
it links together the properties that would have been understood as the kinds
of things being seen as ‘inner characteristic properties’ makes it one of the
many examples that give mathematical content and force to Riemann’s and
Dedekind’s methodological asides. The characterization of poles and genus as
essential properties is tacitly a prediction that the Riemann–Roch theorem,
among others, will prove fruitful in solving additional problems and supporting
new conjectures. This is a chancy prediction, since the theorem might have led
nowhere. Had the research jumping off from core theorems about genus and
poles of functions petered out without interesting consequences, this would
have forced a reassessment of the original evaluation of these properties as
‘internal characteristic’ ones.

The most salient example of his own work that Dedekind is alluding to in
the above remarks is the concept of an ideal. Once again there is much more
to discuss than I can address here, so I’ll just stick to the immediately relevant
punchlines.¹⁶ It will suffice to think of an ideal as a kind of generalized number
that secures the possibility of factoring otherwise irreducible numbers. Among
the discoveries that gave impetus to Dedekind’s introduction was an analogy
between fields of numbers and fields of functions unveiled in the classic paper
by Dedekind and Weber (1892).¹⁷ (Riemann’s characterization of functions
by their zeros and poles was a crucial building block.) Among other things,
Dedekind and Weber interpreted Riemann surfaces as algebraic objects and
proved core results such as the Riemann–Roch theorem in this environment.
Speaking informally we might say that Dedekind and Weber revealed that a
family of structures were genuinely, rather than just superficially, similar. The
analogy between fields of numbers and fields of functions is very deep.

It is possible to lay out an extensive rationale for the judgement of similarity.¹⁸
As just one illustration of how layered the judgement of similarity can be,

¹⁶ Fortunately for any readers hungry for more, the relevant details are well covered by historians,
in particular Harold Edwards. See for example Edwards (1980). Recently philosophers have begun to
reflect on the methodology described in Dedekind’s remarks and displayed in his mathematics. See for
example Avigad (2006) and Tappenden (2005).

¹⁷ This analogy, with specific reference to ramification, is explored with a philosophical eye in
Corfield (2003, p. 90–96)

¹⁸ An illustration can be found in a letter of 1940 from André Weil to his sister Simone, containing
a strikingly detailed discussion of the many consequences of this analogy, what matters in the analogy,
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consider the property of ramification for complex functions and generalized
numbers.¹⁹ Among the singularities Riemann recognized to be especially
important are branch points (a.k.a. ramification points). With proper stage setting,
these can be understood as points where the function behaves locally like
z �→ ze, with e > 1. When dealing with number fields, the idea of prime
decomposition can be generalized so that generalized numbers (ideals) can be
written as products of generalized primes �i:

n∏
i=1

�ei
i

The generalized number is said to ramify if ei > 1 for any i. This point of
contact between complex analysis and algebraic number theory was already
pointed out by Dedekind and Weber.

Of course, in one sense this particular connection is laying on the surface of
the algebraic representations. In both cases you have exponents—either greater
than one or equal to one—sitting right there just waiting to be noticed. But if
all we know is that some exponent is greater than one, we have no reason to get
excited, or judge there to be a point of similarity robust enough to warrant the
introduction of new terminology. The point of similarity could be a superficial
accident of the representation, or a mathematically inert coincidence. The
bedrock support for the claim that this is a genuine point of deep similarity
is the fact that powerful general theorems can be proven which exploit the
analogy. Had it turned out that, at a more advanced point of reckoning, no
interesting theorems emerged, the shared terminology would stand like the
word ‘elliptic’ in the phrase ‘elliptic curve’ as a quaint reminder of a connection
that once seemed to matter. As always, the aesthetic judgements, assessments
of the depth of a similarity, judgements about appropriateness of techniques,
evaluations of relative simplicity, etc. are subordinated to the fundamental
bottom-line consideration: does it lead to genuinely interesting new results?
Without the sine qua non of fruitfulness, the other considerations are counted
as ultimately incidental.

Riemann’s envisioned connection between correct definition and fruitful-
ness was revolutionary at the time, but now seems familiar, even banal. Indeed,
it is fair to say that it is the dominant attitude among contemporary math-
ematicians. It is hardly profound or surprizing that mathematicians typically

what is needed for the analogy to be complete, etc. (Weil also spells out connections to quadratic
reciprocity and the Artin reciprocity theorem.) See Weil (1984).

¹⁹ I’m indebted to Brian Conrad for illuminating conversations on this point.
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have a hardheaded, bottom-line orientation that ties the ultimate validity of
softer judgements of ‘naturalness’ or ‘depth’ to the facilitation of far-reaching
general results. This piece of rudimentary empirical sociology is obvious to
anyone after a few department lounge conversations. Of course, for Riemann
and Dedekind, and even more for most contemporary mathematicians, the
attitude is more often displayed in the practice of mathematical research than
articulated as something like a philosophical theory of the natural/artificial
distinction. But there is a tacit theory behind the pronouncement that (say)
genus is a natural property and as philosophers we’d be wise to work it out.

10.5 Summing up

Chapter 9 made a descriptive observation and posed a problem. The descriptive
observation is that mathematical practice is colored and guided by a kind of
normative judgement: it can be counted as an advance in knowledge to identify
a ‘natural’ definition (or ‘deep’ analogy, or ‘proper’ context for investigation,
or ‘correct’ formulation of a question ... ). The problem is to find a way for
epistemology to explore how such acts of recognition can be what mathemat-
ical practice seems to treat them as being. This paper has been an extended
prospectus for a program to address the problem. On a quick pass through
Lewis’ reckoning of the some of the work done by discriminations of natural
and non-natural properties there appeared to be enough affinity between, and
overlap among mathematical and non-mathematical cases to give us hope.
My first task in this paper was to illustrate, with reference to a representative
instance, that appealing to metaphysical intuition (either directly or as coded
into theoretical measures such as ‘simplicity’ or ‘theoretical economy’) to sep-
arate the cases where such choices of preferred ‘natural’ categories are ‘merely
pragmatic’ and the cases where the choices are genuinely ‘objective’ is unlikely
to help us realize that hope, because of the fluidity and context-sensitivity of
the relevant intuitions. We need some rough ground. The second goal was to
point to one domain—the interaction between concept choice and successful
prediction—where some such rough ground might be secured. A key point
is that induction, as a pattern of reasoning under uncertainty, does not depend
for its cogency on the predicted outcomes being contingent. Hence the link
between assessments of the naturalness of properties and the correctness of
predictions exhibited in ‘green’/‘grue’ cases carry over to mathematical cases.
(The model of enumerative induction is just a handy orienting and simplifying
device; the key foothold is the ubiquitous interaction in mathematical practice
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between choices of basic categories and the success of predictions (where the
predictions may be clearly stated conjectures or less specific expectations of
‘fruitfulness’).) Finally, I sketched the Riemann–Dedekind account of ‘inner
characteristic properties’ as a promising example of a method, and a method-
ology, incorporating this insight. This methodology has the additional attrac-
tive feature that in its details it resonates with the Port Royal Principle, since
identifiable mathematical cases drive it and give it substance. Of course, so far
I’ve given only the roughest sketch of the Riemann–Dedekind account and
the mathematics informing it, and I’ve given only unargued hints about its rela-
tionship to contemporary mathematical practice. In part this has been a function
of space, but in part it is a necessity arising from the texts themselves. Riemann
and Dedekind doled their methodological dicta out frugally. As mathematicians
are prone to do, they let their mathematics do most of the talking, which
leaves the philosopher/scribe a lot of detail to spell out. But this shouldn’t be
a surprise: Arnauld and Nicole warned us that this is what to expect.

Bibliography

Armstrong, David M. (1986), ‘In Defence of Structural Universals’, Australasian Journal
of Philosophy, 1, 85–88.

(1989), Universals: An Opinionated Introduction (Boulder: Westview Press).
Avigad, Jeremy (2006), ‘Methodology and Metaphysics in the Development of
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Dedekind, Richard (1854), Über die Einfürung neuer Funktionen in der Mathematik,

Habilitation lecture, Göttingen. Reprinted in Werke, III, pp. 428–438.
(1877), Theory of Algebraic Integers, ed. and trans. John Stillwell (Cambridge Mathe-

matical Library) Translation published 1996; originally published 1877.
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Computers in Mathematical
Inquiry
JEREMY AVIGAD

11.1 Introduction

Computers are playing an increasingly central role in mathematical practice.
What are we to make of the new methods of inquiry?

In Section 11.2, I survey some of the ways in which computers are used
in mathematics. These raise questions that seem to have a generally epis-
temological character, although they do not fall squarely under a traditional
philosophical purview. The goal of this article is to try to articulate some
of these questions more clearly, and assess the philosophical methods that
may be brought to bear. In Section 11.3, I note that most of the issues can
be classified under two headings: some deal with the ability of computers
to deliver appropriate ‘evidence’ for mathematical assertions, a notion that is
explored in Section 11.4, while others deal with the ability of computers to
deliver appropriate mathematical ‘understanding’, a notion that is considered
in Section 11.5. Final thoughts are provided in Section 11.6.

11.2 Uses of computers in mathematics

Computers have had a dramatic influence on almost every arena of scientific
and technological development, and large tracts of mathematics have been
developed to support such applications. But this essay is not about the

I am grateful to Ben Jantzen and Teddy Seidenfeld for discussions of the notion of plausibility in
mathematics; to Ed Dean, Steve Kieffer, and Paolo Mancosu, for comments and corrections; and to
Alasdair Urquhart for pointing me to Kyburg’s comments on Pólya’s essay.
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numerical, symbolic, and statistical methods that make it possible to use the
computer effectively in scientific domains. We will be concerned, rather, with
applications of computers to mathematics, that is, the sense in which computers
can help us acquire mathematical knowledge and understanding.

Two recent books, Mathematics by Experiment: Plausible Reasoning in the
21st Century (Borwein and Bailey, 2004) and Experimentation in Mathematics:
Computational Paths to Discovery (Borwein et al., 2004) provide a fine overview
of the ways that computers have been used in this regard (see also the
associated ‘Experimental Mathematics Website’, which provides additional
links and resources). Mounting awareness of the importance of such methods
led to the launch of a new journal, Experimental Mathematics, in 1992. The
introduction to the first book nicely characterizes the new mode of inquiry:

The new approach to mathematics—the utilization of advanced computing
technology in mathematical research—is often called experimental mathematics.
The computer provides the mathematician with a ‘laboratory’ in which he or
she can perform experiments: analyzing examples, testing out new ideas, or
searching for patterns ... To be precise, by experimental mathematics, we mean
the methodology of doing mathematics that includes the use of computations for:

1. Gaining insight and intuition.
2. Discovering new patterns and relationships.
3. Using graphical displays to suggest underlying mathematical principles.
4. Testing and especially falsifying conjectures.
5. Exploring a possible result to see if it is worth a formal proof.
6. Suggesting approaches for formal proof.
7. Replacing lengthy hand derivations with computer-based derivations.
8. Confirming analytically derived results.

In philosophical discourse it is common to distinguish between discovery and
justification; that is, to distinguish the process of formulating definitions and
conjectures from the process of justifying mathematical claims as true. Both
types of activities are involved in the list above.

On the discovery side, brute calculation can be used to suggest or test
general claims. Around the turn of the 19th century, Gauss conjectured
the prime number theorem after calculating the density of primes among
the first tens of thousands of natural numbers; such number-theoretic and
combinatorial calculations can now be performed quickly and easily. One
can evaluate a real-valued formula to a given precision, and then use an
‘Inverse Symbolic Calculator’ to check the result against extensive databases
to find a simplified expression. Similarly, one can use Neil Sloan’s ‘On-Line
Encyclopedia of Integer Sequences’ to identify a sequence of integers arising
from a particular calculation. These, and more refined methods along these
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lines, are described in Bailey and Borwein (2005). Numerical methods can also
be used to simulate dynamical systems and determine their global properties,
or to calculate approximate solutions to systems of differential equations where
no closed-form solution is available. Graphical representations of data are often
useful in helping us understand such systems.

Computers are also used to justify mathematical claims. Computational
methods had been used to establish Fermat’s last theorem for the first four
million exponents by the time its general truth was settled in 1995. The
Riemann hypothesis has been established for all complex numbers with im-
aginary part less than 2.4 trillion, though the general claim remains unproved.
Appel and Haken’s 1977 proof of the four-color theorem is a well-known
example of a case in which brute force combinatorial enumeration played an
essential role in settling a longstanding open problem. Thomas Hales’ 1998
proof of the Kepler conjecture, which asserts that the optimal density of sphere
packing is achieved by the familiar hexagonal lattice packing, has a similar
character: the proof used computational methods to obtain an exhaustive
database of several thousand ‘tame’ graphs, and then to bound nonlinear and
linear optimization problems associated with these graphs. (This pattern of
reducing a problem to one that can be solved by combinatorial enumeration
and numerical methods is now common in discrete geometry.) Computer
algebra systems like Mathematica or Maple are used, in more mundane ways,
to simplify complex expressions that occur in ordinary mathematical proofs.
Computers are sometimes even used to find justifications that can be checked
by hand; for example, William McCune used a theorem prover named EQP
to show that a certain set of equations serve to axiomatize Boolean algebras
(McCune, 1997), settling a problem first posed by Tarski.

The increasing reliance on extensive computation has been one impetus
in the development of methods of formal verification. It has long been
understood that much of mathematics can be formalized in systems like Zer-
melo–Fraenkel set theory, at least in principle; in recent decades, computerized
‘proof assistants’ have been developed to make it possible to construct formal
mathematical proofs in practice. At present, the efforts required to verify
even elementary mathematical theorems are prohibitive. But the systems are
showing steady improvement, and some notable successes to date suggest that,
in the long run, the enterprise will become commonplace. Theorems that have
been verified, to date, include Gödel’s first incompleteness theorem, the prime
number theorem, the four color theorem, and the Jordan curve theorem (see
Wiedijk, 2006). Hales has launched a project to formally verify his proof of
the Kepler conjecture, and Georges Gonthier has launched a project to verify
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the Feit–Thompson theorem. These are currently among the most ambitious
mathematical verification efforts under way.

Thus far, I have distinguished the use of computers to suggest plausible
mathematical claims from the use of computers to verify such claims. But in
many cases, this distinction is blurred. For example, the Santa Fe Institute
is devoted to the study of complex systems that arise in diverse contexts
ranging from physics and biology to economics and the social sciences.
Computational modeling and numeric simulation are central to the institute’s
methodology, and results of such ‘experiments’ are often held to be important
to understanding the relevant systems, even when they do not yield precise
mathematical hypotheses, let alone rigorous proofs.

Computers can also be used to provide inductive ‘evidence’ for precise
mathematical claims, like the claim that a number is prime. For example, a
probabilistic primality test due to Robert Solovay and Volker Strassen works
as follows.¹ For each natural number n, there is an easily calculable predicate,
Pn(a), such that if n is prime then Pn(a) is always true, and if n is not prime
then at least half the values of a less than n make Pn(a) false. Thus, one
can test the primality of n by choosing test values a0, a1, a2, ... less than n at
random; if Pn(ai) is true for a large number of tests, it is ‘virtually certain’ that
n is prime.²

In sum, the new experimental methodology relies on explicit or implicit
claims as to the utility of computational methods towards obtaining, verifying,
and confirming knowledge; suggesting theorems and making conjectures
plausible; and providing insight and understanding. These claims have a patent
epistemological tinge, and so merit philosophical scrutiny.³ For example, one
can ask:

• In what sense do calculations and simulations provide ‘evidence’ for
mathematical hypotheses? Is it rational to act on such evidence?

• How can computers be used to promote mathematical understanding?
• Does a proof obtained using extensive computation provide mathematical

certainty? Is it really a proof?

¹ A probabilistic test later developed by Michael Rabin, based on a deterministic version by Gary
Miller, has similar properties and is now more commonly used.

² This can be made mathematically precise. For example, suppose a 100-digit number is chosen at
random from a uniform distribution. Number-theoretic results show that there is a non-negligible prior
probability that n is prime. If one then chooses a0, ... , al at random, one can show that the probability
that n is prime given that Pn(ai) holds for every i approaches 1, quickly, as l increases.

³ The list is not exhaustive. For example, uses of computers in storing, organizing, and communi-
cating mathematical knowledge also raise issues that merit philosophical attention.



306 jeremy avigad

• Is knowledge gained from the use of a probabilistic primality test any less
certain or valuable than knowledge gained from a proof? What about
knowledge gained from simulation of a dynamical system?

• Does formal verification yield absolute, or near absolute, certainty? Is it
worth the effort?

As presented, these questions are too vague to support substantive discussion.
The first philosophical challenge, then, is to formulate them in such a way
that it is clear what types of analytic methods can have a bearing on the
answers.

11.3 The epistemology of mathematics

A fundamental goal of the epistemology of mathematics is to determine
the appropriate means of justifying a claim to mathematical knowledge.
The problem has a straightforward and generally accepted solution: the proper
warrant for the truth of a mathematical theorem is a mathematical proof, that is,
a deductive argument, using valid inferences, from axioms that are immediately
seen to be true. Much of the effort in the philosophy of mathematics has gone
towards determining the appropriate inferences and axioms, or explaining why
knowledge obtained in this way is worth having. These issues will not be
addressed here.

There are at least two ways in which one may wish to broaden one’s
epistemological scope, neither of which denies the correctness or importance
of the foregoing characterization. For one thing, one may want to have a
philosophical account of warrants for mathematical knowledge that takes into
consideration the fact that these warrants have to be recognized by physically
and computationally bounded agents. A formal proof is an abstract object,
albeit one that we may take to be reasonably well instantiated by symbolic
tokens on a physical page. But proofs in textbooks and mathematical journals
are somewhat further removed from this idealization: they are written in a
regimented but nonetheless imprecise and open-ended fragment of natural
language; the rules of inference are not spelled out explicitly; inferential steps
are generally much larger than the usual formal idealizations; background
knowledge is presupposed; and so on. Few can claim to have verified any
complex theorem from first principles; when reading a proof, we accept
appeals to theorems we have learned from textbooks, journal articles, and
colleagues. The logician’s claim is that the informal proof serves to indicate the
existence of the formal idealization, but the nature of this ‘indication’ is never
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spelled out precisely. Moreover, we recognize that proofs can be mistaken,
and often express degrees of faith depending on the nature of the theorem,
the complexity of proof, the methods that have been used to prove it, and the
reliability of the author or the authorities that are cited. Just as mathematical
logic and traditional philosophy of mathematics provides us with an idealized
model of a perfect, gapless deduction, we may hope to model the notion of
an ‘ordinary’ proof and ask: when is it rational to accept an ordinary proof as
indicating the existence of an idealized one?⁴

To explore this issue, one need not conflate the attempt to provide an
idealized account of the proper warrants for mathematical knowledge with the
attempt to provide an account of the activities we may rationally pursue in
service of this ideal, given our physical and computational limitations. It is such
a conflation that has led Tymozcko (1979) to characterize mathematics as a
quasi-empirical science, and Fallis (1997, 2002) to wonder why mathematicians
refuse to admit inductive evidence in mathematical proofs. The easy answer
to Fallis’ bemusement is simply that inductive evidence is not the right sort of
thing to provide mathematical knowledge, as it is commonly understood. But
when their remarks are taken in an appropriate context, Tymoczko and Fallis
do raise the reasonable question of how (and whether) we can make sense of
mathematics, more broadly, as an activity carried out by agents with bounded
resources. This question should not be dismissed out of hand.

A second respect in which one may wish to broaden one’s epistemological
ambitions is to extend the analysis to value judgments that go beyond questions
of correctness. On the traditional view, the role of a proof is to warrant the
truth of the resulting theorem, in which case, all that matters is that the proof
is correct. But when it comes to proofs based on extensive computation, a far
more pressing concern is that they do not provide the desired mathematical
insight. Indeed, the fact that proofs provide more than warrants for truth
becomes clear when one considers that new proofs of a theorem are frequently
judged to be important, even when prior proofs have been accepted as correct.
We tend to feel that raw computation is incapable of delivering the type of
insight we are after:

... it is common for people first starting to grapple with computers to make
large-scale computations of things they might have done on a smaller scale by
hand. They might print out a table of the first 10,000 primes, only to find that
their printout isn’t something they really wanted after all. They discover by this
kind of experience that what they really want is usually not some collection of
‘answers’—what they want is understanding. (Thurston, 1994, p. 162)

⁴ For an overview of issues related to the ‘surveyability’ of proofs, see Bassler (2006).
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We often have good intuitions as to the ways that mathematical developments
constitute conceptual advances or further understanding. It is therefore reason-
able to ask for a philosophical theory that can serve to ground such assessments,
and account for the more general epistemological criteria by which such
developments are commonly judged.

In sum, questions about the use of computers in mathematics that seem
reasonable from a pre-theoretic perspective push us to extend the traditional
philosophy of mathematics in two ways: first, to develop theories of mathemat-
ical evidence, and second, to develop theories of mathematical understanding.
In the next two sections, I will consider each of these proposals, in turn.

11.4 Theories of mathematical evidence

We have seen that some issues regarding the use of computers in math-
ematics hinge on assessments of the ‘likelihood’ that a mathematical assertion
is true:

• a probabilistic primality test renders it highly likely that a number is prime;
• numeric simulations can render it plausible that a hypothesis is true;
• formal verification can render it nearly certain that a theorem has a correct

proof.

Since judgments like these serve to guide our actions, it is reasonable to
ask for a foundational framework in which they can be evaluated. Such
a framework may also have bearing on the development of computational
support for mathematics; for example, systems for automated reasoning and
formal verification often attempt to narrow the search space by choosing the
most ‘plausible’ or ‘promising’ paths.

Probabilistic notions of likelihood, evidence, and support have long played
a role in characterizing inductive reasoning in the empirical sciences, and it is
tempting to carry these notions over to the mathematical setting. However,
serious problems arise when one tries to do so. Roughly speaking, this is
because any mathematical assertion is either true, in which case it holds with
probability 1, or false, in which case it holds with probability 0, leaving no
room for values in between.

Put more precisely, classical approaches to probability model ‘events’ as
measurable subsets of a space whose elements are viewed as possible outcomes
of an experiment, or possible states of affairs. The laws of probability dictate
that if an event A entails an event B, in the sense that A ⊆ B, then the
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probability of A is less than or equal to the probability of B. In particular, if a
property holds of all possible outcomes, the set of all possible states of affairs
that satisfy that property has probability 1. So, to assign a probability other than
1 to an assertion like ‘5 is prime’, one needs to characterize the primality of 5
as a property that may or may not hold of particular elements of a space. But
5 is prime, no matter what, and so it is difficult to imagine what type of space
could reasonably model the counterfactual case. I may declare X to be the set
{0, 1}, label 0 the state of affairs in which 5 is not prime, label 1 the state of
affairs in which 5 is prime, and then assign {0} and {1} each a probability 1/2.
But then I have simply modeled a coin flip; the hard part is to design a space
that can convincingly be argued to serve as an appropriate guide to behavior
in the face of uncertainty.

It is tempting to resort to a Bayesian interpretation, and view probabilities
as subjective degrees of belief. I can certainly claim to have a subjective degree
of belief of 1/2 that 5 is not prime; but such claims cannot play a role in a
theory of rationality until they are somehow linked to behavior. For example,
it is common to take the outward signs of a subjectively held probability to
be the willingness to bet on the outcome of an experiment (or the result of
determining the true state of affairs) with corresponding odds. In that case,
F. P. Ramsey and Bruno de Finetti have noted that the dictates of rationality
demand that, at the bare minimum, subjective assignments should conform to
the laws of probability, on pain of having a clever opponent ‘make book’ by
placing a system of bets that guarantees him or her a profit no matter what
transpires. But such coherence criteria still depend, implicitly, on having a
model of a space of possible outcomes, against which the possibility of book
can be judged. So one has simply shifted the problem to that of locating
a notion of coherence on which it is reasonable to have a less-than-perfect
certainty in the fact that 5 is prime; or, at least, to develop a notion of coherence
for which there is anything interesting to say about such beliefs.

The challenge of developing theories of rationality that do not assume logical
omniscience is not limited to modeling mathematical beliefs; it is just that the
difficulties involved in doing so are most salient in mathematical settings.
But the intuitions behind ascriptions of mathematical likelihood are often so
strong that some have been encouraged to overcome these difficulties. For
example, Pólya (1941) discusses a claim, by Euler, that it is nearly certain that
the coefficients of two analytic expressions agree, because the claim can easily
be verified in a number of specific cases. Pólya then suggested that it might
be possible to develop a ‘qualitative’ theory of mathematical plausibility to
account for such claims. (See also the other articles in Pólya 1984, and Kyburg’s
remarks at the end of that volume.) Ian Hacking (1967), I. J. Good (1977), and,
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more recently, Haim Gaifman (2004) have proposed ways of making sense of
probability judgments in mathematical settings. David Corfield (2003) surveys
such attempts, and urges us to take them seriously.

Gaifman’s proposal is essentially a variant of the trivial ‘5 is prime’ example
I described above. Like Hacking, Gaifman takes sentences (rather than events
or propositions) to bear assignments of probability. He then describes ways
of imposing constraints on an agent’s deductive powers, and asks only that
ascriptions of probability be consistent with the entailments the agent can ‘see’
with his or her limited means. If all I am willing to bet on is the event that 5 is
prime and I am unable or unwilling to invest the effort to determine whether
this is the case, then, on Gaifman’s account, any assignment of probability
is ‘locally’ consistent with my beliefs. But Gaifman’s means of incorporating
closure under some deductive entailments allows for limited forms of reasoning
in such circumstances. For example, if I judge it unlikely that all the random
values drawn to conduct a probabilistic primality test are among a relatively
small number of misleading witnesses, and I use these values to perform a
calculation that certifies a particular number as prime, then I am justified in
concluding that it is likely that the number is prime. I may be wrong about the
chosen values and hence the conclusion, but at least, according to Gaifman,
there is a sense in which my beliefs are locally coherent.

But does this proposal really address the problems raised above? Without
a space of possibilities or a global notion of coherent behavior, it is hard to
say what the analysis does for us. Isaac Levi (1991, 2004) clarifies the issue
by distinguishing between theories of commitment and theories of performance.
Deductive logic provides theories of the beliefs a rational agent is ideally
committed to, perhaps on the basis of other beliefs that he or she is committed
to, independent of his or her ability to recognize those commitments. On that
view, it seems unreasonable to say that an agent committed to believing ‘A’ and
‘A implies B’ is not committed to believing ‘B’, or that an agent committed to
accepting the validity of basic arithmetic calculations is not committed to the
consequence of those calculations.

At issue, then, are questions of performance. Given that physically and
computationally bounded agents are not always capable of recognizing their
doxastic commitments, we may seek general procedures that we can follow to
approximate the ideal. For example, given bounds on the resources we are
able to devote to making a certain kind of decision, we may seek procedures
that provide correct judgments most of the time, and minimize errors. Can
one develop such a theory of ‘useful’ procedures? Of course! This is exactly
what theoretical computer science does. Taken at face value, the analysis of a
probabilistic primality test shows that if one draws a number at random from
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a certain distribution, and a probabilistic primality test certifies the number as
prime, then with high probability the conclusion is correct. Gaifman’s theory
tries to go one step further and explain why it is rational to accept the result of
a test in a specific case where it provides a false answer. But it is not clear that this
adds anything to our understanding of rationality, or provides a justification
for using the test that is better than the fact that the procedure is efficient and
usually reliable.

When it comes to empirical events, we have no problem taking spaces of
possibilities to be implicit in informal judgments. Suppose I draw a marble
blindly from an urn containing 500 black marbles and 500 white marbles, clasp
it in my fist, and ask you to calculate the probability that the marble I hold is
black. The question presupposes that I intend for you to view the event as the
result of a draw of a ball from the urn. Without a salient background context,
the question as to the probability that a marble I clasp in my fist is black is close
to meaningless.

In a similar fashion, the best way to understand an ascription of likelihood
to a mathematical assertion may be to interpret it as a judgment as to the
likelihood that a certain manner of proceeding will, in general, yield a correct
result. Returning to Pólya’s example, Euler seems to be making a claim as
to the probability that two types of calculation, arising in a certain way, will
agree in each instance, given that they agree on sufficiently many randomly or
deterministically chosen test cases. If we assign a probability distribution to a
space of such calculations, there is no conceptual difficulty involved in making
sense of the claim. Refined analyses may try to model the types of calculations
one is ‘likely’ to come across in a given domain, and the outcome of such an
analysis may well support our intuitive judgments. The fact that the space in
question may be vague or intractable makes the problem little different from
those that arise in ordinary empirical settings.⁵

⁵ Another nice example is given by Wasserman (2004, Example 11.10), where statistical methods
are used to estimate the value of an integral that is too hard to compute. As the discussion after that
example suggests, the strategy of suppressing intractable information is more congenial to a classical
statistician than to a Bayesian one, who would insist, rather, that all the relevant information should be
reflected in one’s priors. This methodological difference was often emphasized by I. J. Good, though
Wasserman and Good draw opposite conclusions. Wasserman takes the classical statistician’s ability to
selectively ignore information to provide an advantage in certain contexts: ‘To construct procedures
with guaranteed long run performance, ... use frequentist methods.’ In contrast, Good takes the classical
statistician’s need to ignore information to indicate the fragility of those methods; see the references to
the ‘statistician’s stooge’ in Good (1983). I am grateful to Teddy Seidenfeld for bringing these references
to my attention.

I have already noted, above, that Good (1977) favors a Bayesian approach to assigning probabilities to
outcomes that are determined by calculation. But, once again, Levi’s distinction between commitment
and performance is helpful: what Good seems to propose is a theory that is capable of modeling
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Along the same lines, the question as to the probability of the correctness
of a proof that has been obtained or verified with computational means is best
understood as a question as to the reliability of the computational methods
or the nature of the verification. Here, too, the modeling issues are not
unlike those that arise in empirical contexts. Vendors often claim ‘five-nines’
performance for fault-tolerant computing systems, meaning that the systems
can be expected to be up and running 99.999% of the time. Such judgments
are generally based on past performance, rather than on any complex statistical
modeling. That is not to say that there are not good reasons to expect that
past performance is a good predictor, or that understanding the system’s design
can’t bolster our confidence. In a similar manner, formal modeling may,
pragmatically, have little bearing on our confidence in computational methods
of verification.

In sum, there are two questions that arise with respect to theories of
mathematical evidence: first, whether any philosophical theory of mathematical
plausibility can be put to significant use in any of the domains in which the
notions arise; and second, if so, whether a fundamentally different concept
of rationality is needed. It is possible that proposals like Pólya’s, Hacking’s,
and Gaifman’s will prove useful in providing descriptive accounts of human
behavior in mathematical contexts, or in designing computational systems
that serve mathematical inquiry. But this is a case that needs to be made.
Doing so will require, first, a clearer demarcation of the informal data that the
philosophical theories are supposed to explain, and second, a better sense of
what it is that we want the explanations to do.

11.5 Theories of mathematical understanding

In addition to notions of mathematical evidence, we have seen that uses of
computers in mathematics also prompt evaluations that invoke notions of
mathematical understanding. For example:

• results of numeric simulation can help us understand the behavior of a
dynamical system;

• symbolic computation can help shed light on an algebraic structure;
• graphical representations can help us visualize complex objects and thereby

grasp their properties (see Mancosu, 2005).

‘reasonable’ behavior in computationally complex circumstances, without providing a normative
account of what such behavior is supposed to achieve.
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Such notions can also underwrite negative judgments: we may feel that a proof
based on extensive computation does not provide the insight we are after, or
that formal verification does little to promote our understanding of a theorem.
The task is to make sense of these assessments.

But the word ‘understanding’ is used in many ways: we may speak of
understanding a theory, a problem, a solution, a conjecture, an example, a
theorem, or a proof. Theories of mathematical understanding may be taken
to encompass theories of explanation, analogy, visualization, heuristics, con-
cepts, and representations. Such notions are deployed across a wide range of
fields of inquiry, including mathematics, education, history of mathematics,
cognitive science, psychology, and computer science. In short, the subject
is a sprawling wilderness, and most, if not all, of the essays in this collec-
tion can be seen as attempts to tame it. (See also the collection Mancosu
et al., 2005.)

Similar topics have received considerably more attention in the philosophy
of science, but the distinct character of mathematics suggests that different
approaches are called for. Some have expressed skepticism that anything
philosophically interesting can be said about mathematical understanding, and
there is a tradition of addressing the notion only obliquely, with hushed tones
and poetic metaphor. This is unfortunate: I believe it is possible to develop
fairly down-to-earth accounts of key features of mathematical practice, and that
such work can serve as a model for progress where attempts in the philosophy of
science have stalled. In the next essay, I will argue that philosophical theories
of mathematical understanding should be cast in terms of analyses of the types
of mathematical abilities that are implicit in common scientific discourse where
notions of understanding are employed. Here, I will restrict myself to some
brief remarks as to the ways in which recent uses of computers in mathematics
can be used to develop such theories.

The influences between philosophy and computer science should run in
both directions. Specific conceptual problems that arise in computer science
provide effective targets for philosophical analysis, and goals like that of ver-
ifying common mathematical inferences or designing informative graphical
representations provide concrete standards of success, against which the util-
ity of an analytic framework can be evaluated. There is a large community
of researchers working to design systems that can carry out mathematical
reasoning effectively; and there is a smaller, but significant, community try-
ing to automate mathematical discovery and concept formation (see e.g.
Colton et al., 2000). If there is any domain of scientific inquiry for which
one might expect the philosophy of mathematics to play a supporting role,
this is it. The fact that the philosophy of mathematics provides virtually
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no practical guidance in the appropriate use of common epistemic terms
may lead some to wonder what, exactly, philosophers are doing to earn
their keep.

In the other direction, computational methods that are developed towards
attaining specific goals can provide clues as to how one can develop a broader
philosophical theory. The data structures and procedures that are effective
in getting computers to exhibit the desired behavior can serve to direct our
attention to features of mathematics that are important to a philosophical
account.

In Avigad (2006), I addressed one small aspect of mathematical understand-
ing, namely, the process by which we understand the text of an ordinary
mathematical proof. I discussed ways in which efforts in formal verification
can inform and be informed by a philosophical study of this type of under-
standing. In the next essay, I will expand on this proposal, by clarifying the
conception of mathematical understanding that is implicit in the approach,
and discussing aspects of proofs in algebra, analysis, and geometry in light
of computational developments. In focusing on formal verification, I will be
dealing with only one of the many ways in which computers are used in
mathematics. So the effort, if successful, provides just one example of the ways
that a better interaction between philosophical and computational perspectives
can be beneficial to both.

11.6 Final thoughts

I have surveyed two ways in which the philosophy of mathematics may be
extended to address issues that arise with respect to the use of computers
in mathematical inquiry. I may, perhaps, be accused of expressing too much
skepticism with respect to attempts to develop theories of mathematical
evidence, and excessive optimism with respect to attempts to develop theories
of mathematical understanding. Be that as it may, I would like to close here
with some thoughts that are relevant to both enterprises.

First, it is a mistake to view recent uses of computers in mathematics as a
source of philosophical puzzles that can be studied in isolation, or resolved by
appeal to basic intuition. The types of questions raised here are only meaningful
in specific mathematical and scientific contexts, and a philosophical analysis is
only useful in so far as it can further such inquiry. Ask not what the use of
computers in mathematics can do for philosophy; ask what philosophy can do
for the use of computers in mathematics.
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Second, issues regarding the use of computers in mathematics are best
understood in a broader epistemological context. Although some of the topics
explored here have become salient with recent computational developments,
none of the core issues are specific to the use of the computer per se.
Questions having to do with the pragmatic certainty of mathematical results,
the role of computation in mathematics, and the nature of mathematical
understanding have a much longer provenance, and are fundamental to
making sense of mathematical inquiry. What we need now is not a philosophy
of computers in mathematics; what we need is simply a better philosophy of
mathematics.

Bibliography

Avigad, Jeremy (2006), ‘Mathematical method and proof ’, Synthese, 153, 105–159.
Bailey, David and Borwein, Jonathan (2005), ‘Experimental mathematics: examples,

methods and implications’, Notices of the American Mathematical Society, 52, 502–514.
Bassler, O. Bradley (2006), ‘The surveyability of mathematical proof: A historical

perspective’, Synthese, 148, 99–133.
Borwein, Jonathan and Bailey, David (2004), Mathematics by Experiment: Plausible

Reasoning in the 21st Century (Natick, MA: A. K. Peters Ltd).
Borwein, Jonathan, Bailey, David, and Girgensohn, Roland (2004), Experimentation

in Mathematics: Computational Paths to Discovery (Natick, MA: A. K. Peters Ltd).
Colton, Simon, Bundy, Alan, and Walsh, Toby (2000), ‘On the notion of interesting-

ness in automated mathematical discovery’, International Journal of Human–Computer
Studies, 53, 351–365.

Corfield, David (2003), Towards a Philosophy of Real Mathematics (Cambridge: Cam-
bridge University Press).

Fallis, Don (1997), ‘The epistemic status of probabilistic proof ’, Journal of Philosophy,
94, 165–186.

(2002), ‘What do mathematicians want?: probabilistic proofs and the epistemic
goals of mathematicians’, Logique et Analyse, 45, 373–388.

Gaifman, Haim (2004), ‘Reasoning with limited resources and assigning probabilities
to arithmetical statements’, Synthese, 140, 97–119.

Good, I. J. (1977), ‘Dynamic probability, computer chess, and the measurement of
knowledge’, in E. W. Elcock and Donald Michie (eds.), Machine Intelligence 8 (New
York: John Wiley & Sons), pp. 139–150. Reprinted in Good (1983), pp. 106–116.

(1983), Good Thinking: The Foundations of Probability and its Applications (Min-
neapolis: University of Minnesota Press).

Hacking, Ian (1967), ‘A slightly more realistic personal probability’, Philosophy of
Science, 34, 311–325.



316 jeremy avigad

Levi, Isaac (1991), The Fixation of Belief and its Undoing (Cambridge: Cambridge
University Press).

(2004), ‘Gaifman’, Synthese, 140, 121–134.
Mancosu, Paolo (2005), ‘Visualization in logic and mathematics’, in Mancosu et al.

(2005).
Mancosu, Paolo, Jørgensen, Klaus Frovin, and Pedersen, Stig Andur (2005), Visual-

ization, Explanation and Reasoning Styles in Mathematics (Dordrecht: Springer-Verlag).
McCune, William (1997), ‘Solution of the Robbins problem’, Journal of Automated

Reasoning, 19, 263–276.
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Understanding Proofs
JEREMY AVIGAD

‘Now, in calm weather, to swim in the open ocean is as easy to the practised
swimmer as to ride in a spring-carriage ashore. But the awful lonesomeness is
intolerable. The intense concentration of self in the middle of such a heartless
immensity, my God! who can tell it? Mark, how when sailors in a dead calm
bathe in the open sea—mark how closely they hug their ship and only coast
along her sides.’ (Herman Melville, Moby Dick, Chapter 94)

12.1 Introduction

What does it mean to understand mathematics? How does mathematics help
us understand?

These questions are not idle. We look to mathematics for understanding,
we value theoretical developments for improving our understanding, and we
design our pedagogy to convey understanding to students. Our mathematical
practices are routinely evaluated in such terms. It is therefore reasonable to ask
just what understanding amounts to.

The issue can be addressed at different levels of generality. Most broadly,
we need to come to terms with the sort of thing that understanding is,
and the sort of thing that mathematics is, in order to discuss them in an
appropriate manner. We can narrow our focus by noticing that the term
‘understanding’ is used in different ways; we can ask, for example, what it

Early versions of parts of this essay were presented at a conference, La Preuve en Mathématique: Logique,
Philosophie, Histoire, in Lille, May 2005, and at a workshop organized by Ken Manders at the University
of Pittsburgh in July 2005. I am grateful to the participants and many others for comments, including
Andrew Arana, Mic Detlefsen, Jeremy Heis, Jukka Keranen, Paolo Mancosu, Ken Manders, John
Mumma, Marco Panza, and Stewart Shapiro. I am especially grateful for sharp criticism from Clark
Glymour, who still feels that Part I is a fuzzy and unnecessary framing of the otherwise promising
research program surveyed in Part II.



318 jeremy avigad

means to understand a mathematical definition, a theorem, or a proof; or to
understand a theory, a method, an algorithm, a problem, or a solution. We
can, alternatively, focus our task by restricting our attention to particular types
of judgments, such as historical or mathematical evaluations of theoretical
developments, or pedagogical evaluations of teaching practices and lesson
plans. We can be even more specific by considering individual objects of
understanding and particular evaluatory judgments. For example, we can ask
what it means to understand algebraic number theory, the spectral theorem
for bounded linear operators, the method of least squares, or Gauss’s sixth
proof of the law of quadratic reciprocity; or we can try to explain how
the introduction of the group concept in the 19th century advanced our
understanding, or why the ‘new math’ initiative of the 1960s did not deliver
the desired understanding to students. The way we deal with the specific
examples will necessarily presuppose at least some conception of the nature
of mathematical understanding; but, conversely, the things we find to say in
specific cases will help us establish a more general framework.

In this chapter, I will defend the fairly simple claim that ascriptions of
understanding are best understood in terms of the possession of certain abilities,
and that it is an important philosophical task to try to characterize the relevant
abilities in sufficiently restricted contexts in which such ascriptions are made.
I will illustrate this by focusing on one particular type of understanding, in
relation to one particular field of scientific search. Specifically, I will explore
what it means to understand a proof, and discuss specific efforts in formal
verification and automated reasoning that model such understanding.

This chapter is divided in two parts. In Part I, I will argue that the
general characterization of understanding mentioned above provides a coherent
epistemological framework, one that accords well with our intuitions and is
capable of supporting rational inquiry in practical domains where notions of
mathematical understanding arise. In Part II, I will present four brief case
studies in formal verification, indicating areas where philosophical reflection
can inform and be informed by contemporary research in computer science.

Part I. The nature of understanding

12.1 Initial reflections

A central goal of the epistemology of mathematics has been to identify the
appropriate support for a claim to mathematical knowledge. We show that a
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theorem is true by exhibiting a proof; thus, it has been a primary task of the
philosophy of mathematics to clarify the notion of a mathematical proof, and
to explain how such proofs are capable of providing appropriate mathematical
knowledge. Mathematical logic and the theory of formal axiomatic systems
have done a remarkably good job of addressing the first task, providing idealized
accounts of the standards by which a proof is judged to be correct. This, in and
of itself, does not address more difficult questions as to what ultimately justifies
a particular choice of axiomatic framework. But, as far as it goes, the modern
theory of deductive proof accords well with both intuition and mathematical
practice, and has had practical applications in both mathematics and computer
science, to boot.

But in mathematics one finds many types of judgment that extend beyond
evaluations of correctness. For example, we seem to feel that there is a
difference between knowing that a mathematical claim is true, and understanding
why such a claim is true. Similarly, we may be able to convince ourselves that
a proof is correct by checking each inference carefully, and yet still feel as
though we do not fully understand it. The words ‘definition’ and ‘concept’
seem to have different connotations: someone may know the definition of
a group, without having fully understood the group concept. The fact that
there is a gap between knowledge and understanding is made pointedly clear
by the fact that one often finds dozens of published proofs of a theorem
in the literature, all of which are deemed important contributions, even
after the first one has been accepted as correct. Later proofs do not add
to our knowledge that the resulting theorem is correct, but they somehow
augment our understanding. Our task is to make sense of this type of
contribution.

The observation that modern logic fails to account for important classes of
judgments traces back to the early days of modern logic itself. Poincaré wrote
in Science et Méthode (1908):

Does understanding the demonstration of a theorem consist in examining each
of the syllogisms of which it is composed in succession, and being convinced
that it is correct and conforms to the rules of the game? In the same way, does
understanding a definition consist simply in recognizing that the meaning of all
the terms employed is already known, and being convinced that it involves no
contradiction?

... Almost all are more exacting; they want to know not only whether all the
syllogisms of a demonstration are correct, but why they are linked together in
one order rather than in another. As long as they appear to them engendered by
caprice, and not by an intelligence constantly conscious of the end to be attained,
they do not think they have understood. (Book II, Chapter II, p. 118)
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In that respect, logic does not tell us the whole story:

Logic teaches us that on such and such a road we are sure of not meeting an
obstacle; it does not tell us which is the road that leads to the desired end. (Ibid.,
pp. 129–130)

Philosophers of science commonly distinguish between the ‘logic of justifi-
cation’ and the ‘logic of discovery’. Factors that guide the process of discovery
also fall under the general category of ‘understanding’, and, indeed, under-
standing and discovery are often linked. For example, understanding a proof
may involve, in part, seeing how the proof could have been discovered; or, at
least, seeing how the train of inferences could have been anticipated.

It seems to me, then, as I repeat an argument I have learned, that I could have
discovered it. This is often only an illusion; but even then, even if I am not clever
enough to create for myself, I rediscover it myself as I repeat it. (Ibid., Part I,
Chapter III, p. 50)

While knowing the relevant definitions may be enough to determine that a
proof is correct, understanding is needed to find the definitions that make it
possible to discover a proof. Poincaré characterized the process of discovery,
in turn, as follows:

Discovery consists precisely in not constructing useless combinations, but in con-
structing those that are useful, which are an infinitely small minority. Discovery
is discernment, selection. (Ibid., p. 51)

These musings provide us with some helpful metaphors. Mathematics
presents us with a complex network of roads; understanding helps us navigate
them, and find the way to our destination. Mathematics presents us with
a combinatorial explosion of options; understanding helps us sift through
them, and pick out the ones that are worth pursuing. Without understanding,
we are lost in confusion, wandering blindly, unable to cope. When we do
mathematics, we are like Melville’s sailors, swimming in a vast expanse. Just as
the sailors cling to sides of their ship, we rely on our understanding to guide
us and support us.

12.2 Understanding and ability

Let us see if we can work these metaphors into something more definite. One
thing to notice is that there seems to be some sort of reciprocal relationship
between mathematics and understanding. That is, we speak of understanding
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theorems, proofs, problems, solutions, definitions, concepts, and methods; at
the same time, we take all these things to contribute to our understanding.
This duality is reflected in the two questions I posed at the outset.

The way the questions are posed seem to presuppose that understanding is
a relationship between an agent, who understands, and mathematics, which is
the object of that understanding. On the surface, talk of knowledge shares this
feature; it is an agent that knows that a theorem is true. But the role of an agent
is usually eliminated from the epistemological account; once knowledge of a
theorem is analyzed in terms of possession of a proof, proofs become the central
focus of the investigation. To adopt a similar strategy here would amount to
saying that an agent understands X just in case the agent is in possession of Y .
But what sort of thing should Y be?

Suppose I tell you that my friend Paolo understands group theory, and you
ask me to explain what I mean. In response, I may note that Paolo can state
the definition of a group and provide some examples; that he can recognize
the additive group structure of the integers, and characterize all the subgroups;
that he knows Lagrange’s theorem, and can use it to show that the order of
any element of a finite group divides the order of the group; that he knows
what a normal subgroup is, and can form a quotient group and work with it
appropriately; that he can list all the finite groups of order less than 12, up to
isomorphism; that he can solve all the exercises in an elementary textbook;
and so on.

What is salient in this example is that I am clarifying my initial ascription
of understanding by specifying some of the abilities that I take such an
understanding to encompass. On reflection, we see that this example is typical:
when we talk informally about understanding, we are invariably talking about
the ability, or a capacity, to do something. It may be the ability to solve a
problem, or to choose an appropriate strategy; the ability to discover a proof;
the ability to discern a fruitful definition from alternatives; the ability to apply
a concept efficaciously; and so on. When we say that someone understands we
simply mean that they possess the relevant abilities.

Ordinary language is sloppy, and it would be foolish to seek sharp accounts of
notions that are used in vague and imprecise ways. But notions of understanding
also play a role in scientific claims and policy decisions that should be subject
to critical evaluation. In more focused contexts like these, philosophical
clarification can help further inquiry.

What I am proposing here is that in such situations it is often fruitful
to analyze understanding in terms of the possession of abilities. This is a
straightforward extension of the traditional epistemological view: the ability to
determine whether a proof is correct is fundamental to mathematics, and the
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standard theory has a lot to say as to what that ability amounts to. But this way
of framing things enables us to address a much wider range of epistemological
issues; verifying correctness is only a small part of understanding a proof,
and we commonly speak of understanding other sorts of things as well. The
task of answering our two main questions is thereby reduced to the task of
describing and analyzing the interrelated network of abilities which constitute
the practice of mathematics, vis-à-vis fields of inquiry that rely, either implicitly
or explicitly, on models of that practice.

It may be argued that this proposal runs counter to our intuitions. Under-
standing is clearly needed to carry out certain mathematical tasks, but although
understanding can explain the ability to carry out a task successfully, isn’t it a
mistake to conflate the two? Suppose I am working through a difficult proof.
The argument is confusing, and I struggle to make sense of it. All of a sudden,
something clicks, and everything falls into place—now I understand. What has
just happened, and what has it got to do with ability?

We have all shared such ‘Aha!’ moments and the deep sense of satisfaction
that comes with them. But surely the philosophy of mathematics is not
supposed to explain this sense of satisfaction, any more than economics is
supposed to explain the feeling of elation that comes when we find a $20
bill lying on the sidewalk. Economic theories describe agents, preferences,
utilities, and commodities in abstract terms; such theories, when combined
with social, political, psychological, or biological considerations, perfectly well
explain the subjective appeal of cold, hard cash. In a similar way, we should
expect a philosophical theory to provide a characterization of mathematical
understanding that is consistent with, but independent of, our subjective
experience.

Returning to the example above, what lies behind my moment of insight?
Perhaps, all of a sudden, I see how to fill in a gap in the argument that had me
puzzled. I may realize that the third line of the proof appeals to a prior lemma,
which simply has to be instantiated appropriately; or that the claim follows
easily from a general fact about, say, Hilbert spaces. Or perhaps, with Poincaré,
I feel as though I understand how the proof could have been discovered; that
is, I see why, in this situation, it is natural to consider the objects that have been
introduced, or to express a term in the form in which is has been presented.
Perhaps I see why a certain hypothesis in the theorem is necessary, and what
would go wrong if the hypothesis were omitted. Perhaps I have grasped a
general method in the structure of the argument, one that can fruitfully be
applied in other situations. Perhaps I have realized that the argument is just
like one that I am fully familiar with, straightforwardly adapted to the case at
hand. These insights are perfectly well explained in terms of the acquisition
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of abilities to supply missing inferences, draw appropriate analogies, discover
other theorems, and so on. And, in turn, these abilities are just the sort of
thing that should explain our pleasure at having understood: it is simply the
pleasure of having acquired a new skill, or of finding ourselves capable of doing
something we could not do before.

According to this analysis, when we say that someone understands some-
thing—a theorem, a problem, a method, or whatever—what we mean is
that they possess some general ability. Such uses of a particular to stand for
something more general are familiar. Suppose I tell you that Rebecca, a bright
girl in Ms Schwartz’s second grade class, can multiply 34 by 51. What do I
mean by that? Surely I am not just attributing to her the ability to utter ‘1734’
in response to the corresponding query; even the dullest student in the class
can be trained to do that. We are often tempted to say that what we mean is
that Rebecca is able to arrive at the answer ‘1734’ by the right process, but
a metaphysical commitment to ‘processes’ is easily avoidable. What we really
mean is that Rebecca is capable of carrying out a certain type of arithmetical
operation, say, multiplying numbers of moderate size. Phrasing that in terms
of the ability to multiply 34 by 51 is just a convenient manner of speaking.

This way of thinking about understanding is not novel. In the next section, I
will show that the strategy I have outlined here accords well with Wittgenstein’s
views on language, and I will situate the framework I am describing here with
respect to the general viewpoint of the Philosophical Investigations (Wittgenstein,
1953). In the section after that, I will address some of the concerns that typically
attend this sort of approach.

12.3 Mathematics as a practice

An important segment of the Philosophical Investigations explores what it means
to follow a rule, as well as related notions, like obeying a command or using
a formula correctly.¹ The analysis shows that, from a certain philosophical
perspective, it is fruitless to hope for a certain type of explanation of the
‘meaning’ of such judgments. Nor is it necessary: there are philosophical gains

¹ I have in mind, roughly, sections 143 to 242, though the topic is foreshadowed in sections 81
to 88. The literature on these portions of the Investigations is vast, much of it devoted to critiquing
Kripke’s interpretation (1982); see, for example, Goldfarb (1985) and Tait (1986). The present chapter
is essentially devoted to showing that a ‘straightforward’ reading of the Investigations has concrete
consequences for the development of a theory of mathematical understanding. I owe much of my
interpretation of Wittgenstein on rule following, and its use in making sense of a mathematical
‘practice’, to discussions with Ken Manders.
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to be had by exploring the relationships between such fundamental judgments,
and unraveling problems that arise from confused or misguided applications of
the terms.

From the perspective of the Investigations, language is a community practice.
It determines what can meaningfully be said, while the meaning of a word
or sentence is, reciprocally, determined by the way that word or sentence
functions in the practice. On that view, meaning is closely linked with the
possibilities for use. Philosophical difficulties arise, however, when we try to
explain the relationship between the two.

When someone says the word ‘cube’ to me, for example, I know what it means.
But can the whole use of the word come before my mind, when I understand it
in this way?

Well, but on the other hand isn’t the meaning of the word also determined
by this use? And can these ways of determining meaning conflict? Can what
we grasp in a flash accord with a use, fit or fail to fit it? And how can what is
present to us in an instant, what comes before our mind in an instant, fit a use?
(Wittgenstein, 1953, §139)

The problem is that understanding is only made manifest in an infinite array
of uses. The common philosophical tendency is therefore to distinguish the
two, and take understanding to be ‘possession’ of a meaning that somehow
‘determines’ the appropriate usage.

Perhaps you will say here: to have got the system (or again, to understand it) can’t
consist in continuing the series up to this or that number: that is only applying
one’s understanding. The understanding itself is a state which is the source of
correct use. (§146)

But Wittgenstein urges us against this way of thinking.

If one says that knowing the ABC is a state of the mind, one is thinking of a
state of a mental apparatus (perhaps of the brain) by means of which we explain
the manifestations of that knowledge. Such a state is called a disposition. But there
are objections to speaking of a state of mind here, inasmuch as there ought to
be two different criteria for such a state: a knowledge of the construction of the
apparatus, quite apart from what it does ... (§149)

The discussion in the Investigations aims to convince us that this last way of
framing matters is problematic. For example, we may attribute someone’s
ability to continue a sequence of numbers correctly to the fact that he has
grasped the right pattern. But substituting the phrase ‘grasping the correct
pattern’ for ‘understanding’ is little more than word play, unless we say more
about what has been ‘grasped’. The appropriate pattern may, perhaps, be
described by an algebraic formula, and so, at least in some cases, we may
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explain the ability to continue the sequence in terms of knowing the correct
formula. But then we are left with the task of explaining how he is able to
apply the algebraic formula correctly. It is not enough to say that the formula
simply ‘occurs to him’ as he produces the desired behavior; perhaps he will
continue to think of the formula and do something entirely unexpected at
the next step. So we have simply replaced the problem of explaining what
it means to understand how to continue the sequence with the problem of
explaining what it means to understand how to apply a formula correctly. To
make matters worse, there may be other ways in which we can account for
the person’s ability to continue the sequence according to the pattern we have
in mind; or we may find that the person is simply able to do it, without being
able to explain how.

We are trying to get hold of the mental process of understanding which seems to be
hidden behind those coarser and therefore more readily visible accompaniments.
But we do not succeed; or, rather, it does not get as far as a real attempt.
For even supposing I had found something that happened in all those cases of
understanding,—why should it be the understanding? ... (§153)

The solution is, in a sense, just to give up. In other words, we simply need to
resist the temptation to find a suitable ‘source’ for the behavior.

If there has to be anything ‘behind the utterance of the formula’ it is particular
circumstances, which justify me in saying that I can go on—when the formula
occurs to me.

Try not to think of understanding as a ‘mental process’ at all.—For that is the
expression which confuses you. But ask yourself: in what sort of case, in what
kind of circumstances, do we say, ‘Now I know how to go on,’ when, that is,
the formula has occurred to me?—

In the sense in which there are processes (including mental processes) which
are characteristic of understanding, understanding is not a mental process. (§154)

If our goal is to explain what it means to say that someone has understood
a particular word, formula, or command, we simply need to describe the
circumstances under which we are willing to make this assertion. In doing so,
we may find that there is a good deal that we can say that will clarify our
meaning. Giving up the attempt to identify understanding as some sort of thing
doesn’t mean that we cannot be successful, by and large, in explaining what
understanding amounts to.

Thus, from a Wittgensteinian perspective, the philosopher’s task is not to
explain the feeling of having understood, or any underlying mental or physical
processes. The challenge, rather, is to clarify the circumstances under we which
we make our ascriptions.
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... when he suddenly knew how to go on, when he understood the principle,
then possibly he had a special experience ... but for us it is the circumstances under
which he had such an experience that justify him in saying in such a case that he
understands, that he knows how to go on. (§155)

We should not be distressed by the fact that our ascriptions of understanding
are fallible. I may reasonably come to believe that a student understands the
fundamental theorem of calculus, but then subsequently change my mind after
grading his or her exam. This does not in any way preclude the utility of trying
to explain what it means to ‘understand the fundamental theorem of calculus’,
in terms of what we take such an understanding to entail.

The aim of the Investigations is to shape the way we think about language
and thought. Here, I have proposed that this world view is relevant to the
way we think about mathematics. The nature of our more specific goals does,
however, impose some important differences in emphasis. In the excerpts I
have quoted, Wittgenstein is primarily concerned with exploring what it means
to follow a rule, obey a command, or use a word correctly. When it comes
to the philosophy of mathematics, I believe it is also fruitful to explore what
we take to constitute appropriate behavior, even in situations where we take a
goal or a standard of correctness to be fixed and unproblematic. For example,
we may agree, for the moment, to take provability in some formal axiomatic
theory to provide an appropriate standard of correctness, and then ask what
types of abilities are appropriate to finding the proofs we seek. Or we may be
in a situation where we have a clear notion as to what counts as the solution to
a particular problem, and then wonder what type of understanding is needed to
guide a student to a solution. Of course, some goals of the practice, like finding
‘natural’ definitions or ‘fruitful’ generalizations, are harder to characterize. And
the distinction between goals and the methods we use to achieve them blur;
the goals of finding natural definitions and fruitful generalizations can also
be interpreted as means to further goals, like solving problems and proving
theorems. The network of goals is complex, but we need not chart the entire
territory at once; by focusing on particular phenomena of interest we can start
by mapping out small regions. The claim I am making here is simply that the
terrain we are describing is best viewed as a network of abilities, or mechanisms
and capacities for thought.

Indeed, the Investigations is not only concerned with questions of correctness.
The work is, more broadly, concerned with the effective use of language with
respect to our various goals and ends.

Language is an instrument. Its concepts are instruments. Now perhaps one thinks
that it can make no great difference which concepts we employ. As, after all, it is
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possible to do physics in feet and inches as well as in metres and centimetres; the
difference is merely one of convenience. But even this is not true if, for instance,
calculations in some system of measurement demand more time and trouble than
is possible for us to give them. (§569)

Concepts lead us to make investigations; are the expressions of our interest,
and direct our interest. (§570)

One finds similar views on the role of specifically mathematical concepts in
Wittgenstein’s other works. For example, we find the following in the Remarks
on the Foundations of Mathematics:

The mathematical Must is only another expression of the fact that mathematics
forms concepts.

And concepts help us to comprehend things. They correspond to a particular
way of dealing with situations.

Mathematics forms a network of norms. (Wittgenstein, 1956, VI, §67)

This stands in contrast to the traditional view of mathematics as a collection of
definitions and theorems. For Wittgenstein, a proposition is not just an object
of knowledge, but, rather, something that shapes our behavior:

The mathematical proposition says to me: Proceed like this! (§72)

With respect to propositions in general, we find in On Certainty:

204. Giving grounds, however, justifying the evidence, comes to an end;—but
the end is not certain propositions’ striking us immediately as true, i.e. it is not a
kind of seeing on our part, it is our acting, which lies at the bottom of the language
game. (Wittgenstein, 1969)

This way of thinking challenges us to view mathematics in dynamic terms,
not as a body of knowledge, but, rather, as a complex system that guides our
thoughts and actions. We will see in Part II of this essay that this provides a
powerful and fundamentally useful way of thinking about the subject.

12.4 A functionalist epistemology

I have proposed that a theory of mathematical understanding should be a
theory of mathematical abilities. In ordinary circumstances, when we say, for
example, that someone understands a particular proof, we may take them to
possess any of the following:

• the ability to respond to challenges as to the correctness of the proof, and
fill in details and justify inferences at a skeptic’s request;
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• the ability to give a high-level outline, or overview of the proof;
• the ability to cast the proof in different terms, say, eliminating or adding

abstract terminology;
• the ability to indicate ‘key’ or novel points in the argument, and separate

them from the steps that are ‘straightforward’;
• the ability to ‘motivate’ the proof, that is, to explain why certain steps are

natural, or to be expected;
• the ability to give natural examples of the various phenomena described

in the proof;
• the ability to indicate where in the proof certain of the theorem’s

hypotheses are needed, and, perhaps, to provide counterexamples that
show what goes wrong when various hypotheses are omitted;

• the ability to view the proof in terms of a parallel development, for
example, as a generalization or adaptation of a well-known proof of a
simpler theorem;

• the ability to offer generalizations, or to suggest an interesting weakening
of the conclusion that can be obtained with a corresponding weakening
of the hypotheses;

• the ability to calculate a particular quantity, or to provide an explicit
description of an object, whose existence is guaranteed by the theorem;

• the ability to provide a diagram representing some of the data in the
proof, or to relate the proof to a particular diagram;

and so on. The philosophical challenge is to characterize these abilities with
clarity and precision, and fit them into a structured and informative theory.
Thanks to our Wittgensteinian therapy, we will not let the phrase ‘possess an
ability’ fool us into thinking that there is anything mysterious or metaphysically
dubious about this task. We have serious work to do, and worrying about
what sort of thing is being ‘possessed’ is an unnecessary distraction.

And yet we may still be plagued by qualms. Our analysis entails that
understanding only becomes manifest in an agent’s behavior across a range
of contexts, and we seem to have come dangerously close to identifying
understanding with the class of relevant behaviors. Such a ‘dispositional’ or
‘behavioral’ account of understanding has famously been put forth by Gilbert
Ryle (1949) as part of a more general philosophy of mind. Since Ryle’s
approach is commonly viewed as having failed, it is worth reviewing some of
the usual criticisms, to see what bearing they have on the more specific issues
addressed here.²

² These criticisms are enumerated, for example, in Carr (1979).
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Ryle intended his dispositional theory to account for ascriptions of a variety
of mental states, including things like belief, desire, intent, and so on. He
begins his account, however, with a discussion of ascriptions of ‘knowing
how’. He has been criticized, in this respect, for failing to distinguish between
knowing how to perform an action, and the ability to do so. For example, it
seems to reasonable to say that an arthritic piano player knows how to play the
Moonlight Sonata, and that an injured gymnast knows how to perform a back
flip, even if they are temporarily or permanently unable to do so. Here, we
may have similar concerns that there may be situations under which it makes
sense to say that someone understands a proof, but is unable to exhibit the
expected behaviors. But the examples that come to mind are contrived, and
it does not seem unreasonable to declare these outside the scope of a suitably
focused theory of mathematical understanding. If we view at least the outward
signs of mathematical activity as essentially linguistic, it seems reasonable to
take verbal and written communication as reliable correlates of understanding.

A further critique of Ryle’s analysis is a pragmatic one. Ryle imagines, for
example, characterizing mental states, like hunger, in terms of dispositions to
behave in certain ways, like opening the refrigerator door when one is in the
kitchen. But one would not expect an agent to open the refrigerator door if he
or she held the belief that the door was wired to an explosive device, and so
circumstances like that need to be excluded. To start with, it is unsettling that
one may have to characterize such contexts in terms of other mental states,
like the agent’s beliefs, when that is what a dispositional account is designed to
avoid. But even more significantly, it seems unlikely that one can characterize
the rogue circumstances that need to be excluded from the class of contexts in
which we expect to observe the characteristic behavior. To be sure, mitigating
factors like the one I described above are patently irrelevant to hunger, and
one would like to exclude them with a suitable ceteris paribus clause. But this
is exactly the point: it is hard to see how one can gauge relevance prior to
having some kind of understanding of what it means to be hungry.

With respect to the topic at hand, these concerns translate to doubts that
one can adequately characterize the behaviors that warrant attributions of
understanding. But, once again, the problem can be mitigated by limitations
of scope. Our theory need not account for the full range of human behaviors,
as a theory of mind ought to do. We would like our theory to help explain
why certain proofs are preferred in contemporary mathematics, why certain
historical developments are viewed as advances, or why certain expository
practices yield desired results. Moving from a general theory of mind to a
more specific theory of mathematical understanding gives us great latitude in
bracketing issues that we take to fall outside our scope. We should be able
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to screen off extraneous beliefs and desires, and assume nothing about an
agent’s intent beyond the intent to perform mathematically. I am certainly not
claiming that it is obvious that one can provide adequate characterizations of
the circumstances under which we tend to ascribe mathematical understanding;
only that it is not obvious that attempts to do so are doomed to failure.

Perhaps the most compelling criticism of a dispositional account is that even
if we could characterize the behaviors that are correlated with the mental
states under consideration, identifying the mental states with the associated
behaviors simply tells the wrong kind of story. We expect a philosophical
theory to provide some sort of causal explanation that tells us how intelligent
and intentional behavior is brought about; it seems unsatisfying to identify
‘knowing how to play the piano’ with successful performance, when what
one really wants of a theory is an account of the mental activity that makes
such performance possible. In the case at hand, we would like a theory that
explains how a proper understanding enables one to function mathematically.
This insistence has not only an intuitive appeal, but also a pragmatic one. For
example, in so far as our theory is to be relevant to mathematical exposition
and pedagogy, we would expect it not only to characterize the outward signs
of mathematical understanding, but also provide some hints as to how they can
be encouraged and taught. Similarly, I take it that a theory of mathematical
understanding should be of service to computer scientists trying to write
software that exhibits various types of competent mathematical behavior.
Even if we set aside the question as to whether it is appropriate to attribute
‘understanding’ to a computer, we might expect a good philosophical theory
not just to clarify and characterize the desired behaviors, but also to provide
some guidance in bringing them about.

We are therefore tempted to renounce our therapy and try, again, to figure
out just what understanding really is. What saves us, however, is the observation
that our theory of mathematical abilities need not degenerate to a laundry list
of behavioral cues. The abilities we describe will interact in complex ways,
and will not always be cast in terms of behavioral manifestations. Consider our
explanation of what it means for Paolo to understand group theory. Some of
the relevant abilities may be cast in terms of behaviors, for example, the ability
to state a theorem or answer a question appropriately. But others may be cast
in more abstract terms, such as the ability to ‘recognize’ a group structure,
‘determine’ subgroups and cosets, ‘apply’ a lemma, or ‘recall’ a fundamental
fact. In fact, we often take these abstract abilities to provide the ‘mechanisms’
that explain the observable behaviors. We may be relieved to learn that our
Wittgensteinian training does not preclude talk of mechanisms, provided that
we keep in mind that ‘these mechanisms are only hypotheses, models designed
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to explain, to sum up, what you observe’ (Wittgenstein, 1953, §156). What
gives our theoretical terms meaning is the role they play in explaining the
desired or observed behaviors; ‘An ‘‘inner process’’ stands in need of outward
criteria’ (Wittgenstein, 1953, §580). While these outward criteria are necessary,
they are also sufficient to give our terms meaning. So, we can once again set
our metaphysical qualms aside.

What we are left with is essentially a functionalist approach to explaining
various aspects of mathematical understanding. The fundamental philosophical
challenge is to develop a language and conceptual framework that is appropriate
to our goals. If you want an explanation of how a car works, a description of
the subsystems and their components, situated against general understanding as
to how these interact, may be just what you need to keep your car running
smoothly, and to diagnose problems when they arise. A more fine-grained
description is more appropriate if you are studying to be a mechanic or engineer.
What we are seeking here are similar explanations of how mathematical
understanding works. In this case, however, our intuitions as to how to talk
about the relevant subsystems and components is significantly poorer. I have
argued that a theory of mathematical abilities and their relationships should
do the trick, but, at this point, the proposal is vague. The only way to make
progress is to pay closer attention to the data that we are trying to explain, and
to the particular aims that our explanations are to serve.

Part II. Formal verification

12.5 The nature of proof search

In Part I, I described a general way of thinking about mathematical understand-
ing. My goal in Part II is to show that this way of thinking is fruitful in at least
one scientific context where informal notions of understanding are used. In
doing so, I will consider only one small aspect of mathematical understanding,
with respect to one particular scientific practice. While I expect that the general
perspective will be useful in other domains as well, and that the problems that
arise share enough common structure that they can be supported by a unified
conceptual framework, I cannot make this broader case here. So I ask you to
keep in mind that, in what follows, we are considering only one restricted
example.

We have seen that understanding an ordinary textbook proof involves, in
part, being able to spell out details that are left implicit in the presentation.
I have argued elsewhere (Avigad, 2006) that it is hard to make sense of
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this aspect of understanding in terms of traditional logical analyses. Formal
axiomatic deduction provides a model of proof in which every detail is spelled
out precisely, in such a way that correctness boils down to pattern matching
against a manageable list of precisely specified rules. In contrast, ordinary
textbook proofs proceed at a higher level, relying on the reader’s ability to
‘see’ that each successive step is warranted. In order to analyze this capacity,
we need a model of proof on which such ‘seeing’ is a nontrivial affair.

Coming to terms with the ability to understand higher-level proofs is a
central task in the field of formal verification and automated reasoning. Since
early in the 20th century, it has been understood that, at least in principle,
mathematical proof can be modeled by formal axiomatic deduction. In recent
years, a number of computational ‘proof assistants’ have been developed to
make such formalization feasible in practice (see Wiedijk, 2006). In addition
to verifying mathematical assertions, such systems are sometimes developed
with the goal of verifying that (mathematical descriptions of ) hardware and
software systems meet their specifications, or are free from dangerous bugs.
Since, however, such systems and specifications are modeled in mathematical
terms, the two efforts overlap, to a large extent.

A user’s interaction with such a system can be seen as an attempt to provide
the computer with enough information to see that there is a formal axiomatic
proof of the purported theorem. Alternatively, the formal ‘proof scripts’ that
are given to the computer can be viewed (like informal proofs) as providing
instructions as to how to find a formal axiomatic derivation. The task of
the computational proof assistant is to use these scripts to construct such a
derivation. When it has done so, the system indicates that it has ‘understood’
the user’s proof by certifying the theorem as correct. In Avigad (2006), I
consider a range of informal epistemological judgments that are not easily
explicated on the standard logical models, and argue that ‘higher-level’ notions
of proof, akin to the scripts just described, are better equipped to support the
relevant judgments.

Proof assistants like Coq, Isabelle, and HOL-light provide a style of proof
development that allows the user to view the task of theorem proving in a goal-
driven manner. Stating a theorem can be seen as a way of announcing the goal
of proving it. Each step in a proof then serves to reduce the currently open
goals to ones that are (hopefully) simpler. These goals are often represented in
terms of sequents. For example, if A, B, C, and D are formulas, the sequent
A, B, C ⇒ D represents the goal of showing that D follows from A, B, and
C. The most basic steps correspond to logical rules. For example, the ‘and
introduction’ rule reduces the goal A, B, C ⇒ D ∧ E to the pair of goals
A, B, C ⇒ D and A, B, C ⇒ E. This corresponds to the situation where, in
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an ordinary proof, we have assumed or established A, B, and C, and need to
prove an assertion of the form ‘D and E’; we can do this by noting that ‘it
suffices to establish D, and then E, in turn’ and then accomplishing each of
these two tasks. We can also work forwards from hypotheses: for example,
from A ∧ B, C ⇒ D we can conclude A, B, C ⇒ D. In ordinary terms, if we
have established or assumed ‘A and B’, we may use both A and B to derive
our conclusion. A branch of the tree is closed off when the conclusion of
a sequent matches one of the hypotheses, in which case the goal is clearly
satisfied.

Things become more interesting when we try to take larger inferential
steps, where the validity of the inference is not as transparent. Suppose, in
an ordinary proof, we are trying to prove D, having established A, B, and
C. In sequent form, this corresponds to the goal of verifying A, B, C ⇒ D.
We write ‘Clearly, from A and B we have E’, thus reducing our task of
verifying A, B, C, E ⇒ D. But what is clear to us may not be clear to the
computer; the assertion that E follows from A and B corresponds to the sequent
A, B ⇒ E, and we would like the computer to fill in the details automatically.
‘Understanding’ this step of the proof, in this context, means being able to
justify the corresponding inference.

In a sense, verifying such an inference is no different from proving a theorem;
a sequent of the form A, B ⇒ E can express anything from a trivial logical
implication to a major conjecture like the Riemann hypothesis. Sometimes,
brute-force calculation can be used to verify inferences that require a good
deal of human effort. But what is more striking is that there is a large class of
inferences that require very little effort on our part, but are beyond the means
of current verification technology. In fact, most textbook inferences have this
character: it can take hours of painstaking work to get a proof assistant to
verify a short proof that is routinely read and understood by any competent
mathematician.

The flip explanation as to why competent mathematicians succeed where
computers fail is simply that mathematicians understand, while computers
don’t. But we have set ourselves precisely the task of explaining how this
understanding works. Computers can search exhaustively for an axiomatic
derivation of the desired inference, but a blind search does not get very far.
The problem is that even when the inferences we are interested in can be
justified in a few steps, the space of possibilities grows exponentially.

There are a number of ways this can happen. First, excessive case distinctions
can cause problems. Proving a sequent of the form A ∨ B, C, D ⇒ E reduces
to showing that the conclusion follows from each disjunct; this results in two
subgoals, A, C, D ⇒ E and B, C, D ⇒ E. Each successive case distinction
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again doubles the number of subgoals, so that, for example, 10 successive case
splits yield 1024 subgoals.

Second, proving an existential conclusion, or using a universal hypothesis,
can require finding appropriate instances. For example, one can prove a sequent
of the form A, B, C ⇒ ∃x D(x) by proving A, B, C ⇒ D(t) for some term t;
or possibly A, B, C ⇒ D(t1) ∨ ... ∨D(tk) for a sequence of terms t1, ... , tk.
Dually, proving a sequent of the form ∀x A(x), B, C ⇒ D can involve finding
appropriate instances t1, ... , tk for the universal quantifier, and then proving
A(t1), ... , A(tk), B, C ⇒ D. The problem is that there may be infinitely many
terms to consider, and no a priori bound on k. In situations like this, search
strategies tend to defer the need to choose terms as long as possible, using
Skolem functions and a procedure known as ‘unification’ to choose useful
instantiations. But even with such methods, there are choices to be made,
again resulting in combinatorial explosion.

Finally, common mathematical inferences typically require background facts
and theorems that are left implicit. In other words, justifying an inference usu-
ally requires a background theory in addition to purely logical manipulations.
In that case, the challenge is to determine which external facts and theorems
need to be imported to the ‘local’ list of hypotheses. Once again, the range of
options can render the problem intractable.

All three factors—case disjunctions, term instantiation, and the use of a
background theory—are constantly in play. For example, suppose we are
reasoning about the real numbers. The trichotomy law states that for any x and
y, one of the expressions x < y, or x = y, or y < x must hold. At any point, a
particular instantiation of this law may be just the thing needed to verify the
inference at hand. But most of the time, choosing terms blindly and splitting
across the disjunction will be nothing more than an infernal waste of time.

Despite all this, when we read a proof and try to fill in the details, we
are somehow able to go on. We don’t guess terms blindly, or pull facts at
random from our shelves. Instead, we rely on our understanding to guide us.
At a suitable level of abstraction, an account of how this understanding works
should not only explain the efficacy of our own mathematical practices, but
also help us fashion computational systems that share in the success. This last
claim, however, is often a sticking point. One may object that the way that
we, humans, understand proofs is different from the ways in which computers
should search for proofs; determining the former is the task of cognitive
psychologists, determining the latter is the task of computer scientists, and
philosophy has nothing to do with it. Ordinary arithmetic calculation provides
an analogy that seems to support this distinction. Cognitive psychologists can
determine how many digits we can hold in our short term memory, and use
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that to explain why certain procedures for long multiplication are effective.
Computer scientists have developed a clever method called ‘carry save addition’
that makes it possible for a microprocessor to perform operations on binary
representations in parallel, and therefore multiply numbers more efficiently.
Each theory is fruitfully applied in its domain of application; no overarching
philosophy is needed.

But this objection misses the point. Both the experimental psychologist and
the computer scientist presuppose a normative account of what it means to
multiply correctly, and our foundational accounts of arithmetic apply equally
well to humans and machines. In a similar way, a theory of mathematical
understanding should clarify the structural aspects of mathematics that char-
acterize successful performance for agents of both sorts. To be sure, when it
comes to verifying an inference, different sorts of agents will have different
strengths and weaknesses. We humans use diagrams because we are good
at recognizing symmetries and relationships in information so represented.
Machines, in contrast, can keep track of gigabytes of information and carry out
exhaustive computation where we are forced to rely on little tricks. If we are
interested in differentiating good teaching practice from good programming
practice, we have no choice but to relativize our theories of understanding to
the particularities of the relevant class of agents. But this does not preclude
the possibility that there is a substantial theory of mathematical understanding
that can address issues that are common to both types of agent. Lightning fast
calculation provides relatively little help when it comes to verifying common
mathematical inferences; blind search does not work much better for comput-
ers than for humans. Nothing, a priori, rules out that a general philosophical
theory can help explain what makes it possible for either type of agent to
understand a mathematical proof.

In the next four sections, I will consider four types of inference that are
commonly carried out in mathematical proofs, and which, on closer inspection,
are not as straightforward as they seem. In each case, I will indicate some of
the methods that have been developed to verify such inferences automatically,
and explore what these methods tell us about the mechanisms by which such
proofs are understood.

12.6 Understanding inequalities

I will start by considering inferences that are used to establish inequalities in
ordered number domains, like the integers or the real numbers. For centuries,
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mathematics was viewed as the science of magnitude, and judgments as to the
relative magnitude of various types of quantities still play a key role in the
subject. In a sense, methods of deriving equalities are better developed, and
computer algebra systems carry out symbolic calculations quite effectively. This
is not to say that issues regarding equality are trivial; the task of determining
whether two terms are equal, in an axiomatic theory or in an intended
interpretation, is often difficult or even algorithmically undecidable. One
strategy for determining whether an equality holds is to find ways of putting
terms into canonical ‘normal forms’, so that an assertion s = t is then valid if
and only if s and t have the same normal form. There is an elaborate theory of
‘rewrite systems’ for simplifying terms and verifying equalities in this way, but
we will not consider this here.

Let � be a set of equalities and inequalities between, say, real or integer-
valued expressions, involving variables x1, ... , xn. Asking whether an inequality
of the form s < t is a consequence of � is the same as asking whether � together
with the hypothesis t ≤ s is unsatisfiable. Here, too, there is a well-developed
body of research, which provides methods of determining whether such a
system of equations is satisfiable, and finding a solution if it is. This research
falls under the heading ‘constraint programming’, or, more specifically, ‘linear
programming’, ‘nonlinear programming’, ‘integer programming’, and so on.
In automated reasoning, such tasks typically arise in connection to scheduling
and planning problems, and heuristic methods have been developed to deal
with complex systems involving hundreds of constraints.

But the task of verifying the entailments that arise in ordinary mathematical
reasoning has a different character. To start with, the emphasis is on finding
a proof that an entailment is valid, rather than finding a counterexample.
Often the inequality is tight, which means that conservative methods of
approximation will not work; and the structure of the terms is often more
elaborate than those that arise in industrial applications. On the other hand,
the inference may involve only a few hypotheses, in the presence of suitable
background knowledge. So the problems are generally smaller, if structurally
more complex.

Let us consider two examples of proofs involving inequalities. The first comes
from a branch of combinatorics known as Ramsey theory. An (undirected) graph
consists of a set of vertices and a set of edges between them, barring ‘loops’,
i.e. edges from a vertex to itself. The complete graph on n vertices is the graph in
which between any two vertices there is an edge. Imagine coloring every edge
of a complete graph either red or blue. A collection of k points is said to be
homogeneous for the coloring if either all the edges between the points are red,
or all of them are blue. A remarkable result due to F. P. Ramsey is that for any
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value of k, there is an n large enough, so that no matter how one colors the
the complete graph of n vertices edges red and blue, there is a homogeneous
subset of size k.

This raises the difficult problem of determining, for a given value of k, how
large n has to be. To show that, for a given k, a value of n is not large enough
means showing that there is a graph of size n with no homogeneous subset
of size k. Paul Erdös pioneered a method, called the probabilistic method, for
providing such lower bounds: one imagines that a coloring is chosen at random
from among all colorings of the complete graph on n vertices, and then one
shows that with nonzero probability, the graph will have no homogeneous
subset of size k.

Theorem 1. For all k ≥ 2, if n < 2k/2, there is a coloring of the complete graph on n
vertices with no homogeneous subset of size k.

Proof. For k = 2 this is trivial, and for k = 3 this is easily verified by hand. So
we can assume k ≥ 4.

Suppose n < 2k/2, and consider all red–blue colorings, where we color each
edge independently red or blue with probability 1/2. Thus all colorings are
equally likely with probability 2−(

n
2 ). Let A be a set of vertices of size k. The

probability of the event AR that the edges in A are all colored red is then 2−(
k
2 ).

Hence it follows that the probability pR for some k-set to be colored all red is
bounded by

pR = Prob
⋃
|A|=k

AR ≤
∑
|A|=k

Prob(AR) =
(

n
k

)
2−(

k
2 ).

Now for k ≥ 2, we have (
n
k ) = n(n−1)(n−2)···(n−k+1)

k(k−1)···1 ≤ nk

2k−1 . So for n < 2k/2 and
k ≥ 4, we have

(
n
k

)
2−(

k
2 ) ≤ nk

2k−1
2−(

k
2 ) < 2

k2

2 −(
k
2 )−k+1 = 2−

k
2+1 ≤ 1/2.

Since pR < 1/2, and by symmetry pB < 1/2 for the probability of some k vertices
with all edges between them colored blue, we conclude that pR + pB < 1 for

n < 2
k
2 , so there must be a coloring with no red or blue homogeneous subset of

size k. �

The text of this proof has been reproduced with only minor modifications
from Aigner and Ziegler’s Proofs from the Book (2001). (For sharper bounds
and more information see Graham et al., 1994.) To make sense of the proof,
remember that (

n
k ) = n!

k!(n−k)! is the number of ways of choosing a subset of
k elements from a set of n objects. The details of the argument are not so
important; I am specifically interested in the chain of inequalities. You may
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wish to pause here to reflect on what it would take to verify these inferences
axiomatically.

Before discussing that issue, let us consider a second example. The following
fact comes up in a discussion of the � function in Whittaker and Watson
(1996).

Lemma 1. For every complex number z, the series
∑∞

n=1 | log(1+ z
n
)− z

n
| converges.³

Proof. It suffices to show that for some N , the sum
∑∞

n=N+1 | log(1+ z
n )− z

n | is
bounded by a convergent series. But when N is an integer such that |z| ≤ 1

2 N ,
we have, if n > N ,

∣∣∣log
(
1+ z

n

)
− z

n

∣∣∣ =
∣∣∣∣−1

2

z2

n2
+ 1

3

z3

n3
− ...

∣∣∣∣

≤ |z|
2

n2

{
1+ |z

n
| + |z

2

n2
| + ...

}

≤ 1
4

N2

n2

{
1+ 1

2
+ 1

22
+ ...

}

≤ 1
2

N2

n2
.

Since the series
∑∞

n=N+1{N2/(2n2)} converges, we have the desired conclusion.
�

Once again, the text is only slightly modified from that of Whittaker and
Watson (1996), and the chain of inequalities is exactly the same. The equality
involves a Taylor series expansion of the logarithm. The first inequality
follows from properties of the absolute value, such as |xy| = |x| · |y| and
|x+ y| ≤ |x| + |y|, while the second inequality makes use of the assumption
|z| < 1

2N and the fact that n > N .
Inequalities like these arise in all branches of mathematics, and each disci-

pline has its own bag of tricks for bounding the expressions that arise (see,
for example Hardy et al., 1988; Steele, 2004). I have chosen the two examples
above because they invoke only basic arithmetic reasoning, against some gener-
al background knowledge. At present, providing enough detail for a computer
to verify even straightforward inferences like these is a burdensome chore (see
Avigad et al., 2007).

In sufficiently restricted contexts, in fact, decision procedures are often
available. For example, in 1929 Presburger showed that the theory of the

³ Here we are taking the principal value of log(1+ z
n ).
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integers in a language with 0, 1, +, and < is decidable, and in the early
1930s, Tarski showed that the theory of the real numbers in a language with
0, 1, +, ×, and < is decidable (the result was not published, though, until
1948, and was soon reprinted as Tarski, 1951). These decision procedures
work for the full first-order language, not just the quantifier-free fragments,
and have been implemented in a number of systems. But decision procedures
do not tell the whole story. Thanks to Gödel, we know that decidability is
the exception rather than the rule; for example, the theory of the integers
becomes undecidable in the presence of multiplication, and the theory of the
reals becomes undecidable in the presence of, say, the sine function. Even in
restricted settings where problems are decidable, full decision procedures tend
to be inefficient or even infeasible. In fact, for the types of inferences that
arise in practice, short justifications are often possible where general decision
procedures follow a more circuitous route.

There has therefore been a fair amount of interest in ‘heuristic procedures’,
which search for proofs by applying a battery of natural inferences in a
systematic way (for some examples in the case of real arithmetic, see Beeson,
1998; Hunt et al., 2003; Tiwari, 2003). One strategy is simply to work
backwards from the goal inequality. For example, one can prove an inequality
of the form 1/(1+ s) < 1/(1+ t) by proving 1+ s > 1+ t > 0, and one
can do that, in turn, by proving s > t > −1. This amounts to using basic
rules like

x > y, y > 0 ⇒ 1/x < 1/y

to work backwards from the goal, a technique known as ‘backchaining’.
Backchaining has its problems, however. For example, one can also prove

1/x < 1/y by proving that x and y are negative and x > y, or that x is
negative and y is positive. Trying all the possibilities can result in dreaded case
splits. Search procedures can be nondeterministic in more dramatic ways; for
example, one can prove q+ r < s+ t + u, say, by proving q < t and r ≤ s+ u,
or by proving q < s+ t + u and r ≤ 0. Similarly, one can prove s+ t < 5+ u
by proving, say, s < 3 and t ≤ 2+ u.

So, simply working backwards is insufficient on its own. In the proof of
Theorem 1, we used bounds on (

N
k ) and N to bound composite expressions

using these terms, and in the proof of Lemma 1, we used the bounds |z| ≤ N/2
and N < n to bound the terms |zi/ni|. Working forwards in this way to amass
a store of potentially useful inequalities is also a good idea, especially when
the facts may be used more than once. For example, when all the terms in
sight are positive, noting this once and for all can cut down the possibilities
for backwards search dramatically. But, of course, deriving inequalities blindly
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won’t help in general. The choice of facts we derive must somehow be driven
by the context and the goal.

A final observation is that often inferences involving inequalities are verified
by combining methods from more restricted domains in which it is clear how
one should proceed. For example, the additive theory of the reals is well
understood, and the multiplicative fragment is not much more complicated;
more complex inferences are often obtained simply by combining these modes
of reasoning. There is a body of methods stemming from a seminal paper
by Nelson and Oppen (1979) that work by combining such ‘local’ decision
procedures in a principled way.

These three strategies—backward-driven search, forward-driven search, and
combining methods for handling more tractable problems—are fundamental
to automated reasoning. When it comes to real-valued inequalities, an analysis
of the problem in these terms can be found in Avigad and Friedman (2006).
But what we really need is a general theory of how these strategies can be
combined successfully to capture common mathematical inferences. To some
extent, it will be impossible to avoid the objection that the methods we
devise are merely ‘ad hoc and heuristic’; in real life, we use a considerable
amount of mucking around to get by. But in so far as structural features
of the mathematics that we care about make it possible to proceed in
principled and effective ways, we should identify these structural features. In
particular, they are an important part of how we understand proofs involving
inequalities.

12.7 Understanding algebraic reasoning

The second type of inference I would like to consider is that which makes
use of algebraic concepts. The use of such concepts is a hallmark of modern
mathematics, and the following pattern of development is typical. Initially,
systems of objects arising in various mathematical domains of interest are seen
to share a common structure. Abstracting from the particular examples, one
then focuses on this common structure, and determines the properties that
hold of all systems that instantiate it. This infrastructure is then applied in
new situations. First, one ‘recognizes’ an algebraic structure in a domain of
interest, and then one instantiates facts, procedures, and methods that have
been developed in the general setting to the case at hand. Thus algebraic
reasoning involves complementary processes of abstraction and instantiation.
We will consider an early and important example of such reasoning, namely
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the use of the concept of a group to establish a proposition in elementary
number theory.

A group consists of a set, G, an associative binary operation, ·, on G, and
an identity element, 1, satisfying 1 · a = a · 1 = a for every a in G. In a
group, every element a is assumed to have an inverse, a−1, satisfying a · a−1 =
a−1 · a = 1. It is common to use the letter G to refer to both the group
and the underlying set of elements, even though this notation is ambiguous.
We will also write ab instead of a · b. Exponentiation an is defined to be the
the product a · a · · · a of n copies of a, and if S is any finite set, |S| denotes the
number of elements in S.

Proposition 1. Let G be a finite group and let a be any element of G. Then a|G| = 1.

This proposition is an easy consequence of a theorem known as Lagrange’s
theorem, but there is an even shorter and more direct proof when the group is
abelian, that is, when the operation satisfies ab = ba for every a and b.

Proof of Proposition 1 when G is abelian. Given G and a, consider the operation
fa(b) = ab, that is, multiplication by a on the left. This operation is injective, since
ab = ab′ implies b = a−1ab = a−1ab′ = b′, and surjective, since for any b we can
write b = a(a−1b). So fa is a bijection from G to G.

Suppose the elements of G are b1, ... , bn. By the preceding paragraph, multi-
plication by a simply permutes these elements, so ab1, ... , abn also enumerates the
elements of G. The product of these elements is therefore equal to both

(ab1)(ab2) · · · (abn) = an(b1b2 · · · bn),

and b1b2 · · · bn. This implies an = 1, as required. �

To apply Proposition 1 to number theory, we need only find a suitable
group. Write a ≡ b(m), and say that a and b are congruent modulo m, if a
and b leave the same remainder on division by m, that is, if m divides
a− b. The relationship of being congruent modulo m is symmetric, reflexive,
and transitive. It also respects addition and multiplication: if a ≡ a′(m) and
b ≡ b′(m), then (a+ a′) ≡ (b+ b′)(m) and aa′ ≡ bb′(m). Any integer, a, is
congruent to a number between 0 and m− 1 modulo m, namely, its remainder,
or ‘residue’, modulo m. Thus congruence modulo m divides all the integers
into m ‘equivalence classes’, each represented by the corresponding residue.
We can think of addition and multiplication as operations on these equivalence
classes, or, alternatively, as operations on residues, where after each operation
we take the remainder modulo m. (For example, under clock arithmetic, we
only care about the values 0, ... , 11, and we are adding modulo 12 when we
say that ‘5 hours after 9 o’clock, it will be 2 o’clock’.)
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Two integers a and m are said to be relatively prime if they have no factors
in common other than ±1. If two numbers a and b are relatively prime to m,
then so is their product, ab. Also, if a and m are relatively prime, the Euclidean
algorithm tells us that there are integers x and y such that ax+ my = 1. In the
language of congruences, this says that if a and m are relatively prime, there is
an x such that ax ≡ 1(m).

What this means is that the residues that are relatively prime to m form a
group under the operation of multiplication modulo m. For m ≥ 2, Euler’s ϕ

function is defined by setting ϕ(m) equal to the number of these equivalence
classes, that is, the number of integers between 0 and m− 1 that are relatively
prime to m. The following theorem, known as Euler’s theorem, is then an
immediate consequence of Proposition 1.

Theorem 2. For any m ≥ 2 and any number, a, relatively prime to m, aϕ(m) ≡ 1(m).

In particular, if p is prime, then 1, ... , p− 1 are all relatively prime to p, and
ϕ(p) = p− 1. This special case of Euler’s theorem is known as Fermat’s little
theorem:

Corollary 1. If p is prime and does not divide a, then ap−1 ≡ 1(p).

Neither Euler’s theorem nor Fermat’s little theorem has anything to do with
groups per se. Nonetheless, these theorems are usually understood as reflections
of the underlying algebraic structure on residues. In fact, Euler published the
first proof of Fermat’s little theorem in 1736, and a proof of the more general
Theorem 2 in 1760, well before the first axiomatic definition of a group was
given by Cayley in 1854. Chapter III of Dickson’s three-volume History of the
Theory of Numbers (1966) enumerates dozens of proofs of Fermat’s and Euler’s
theorems; see also Wussing (1984) for a discussion of early algebraic proofs.

A comparison of some of the various proofs can be used to illustrate the
advantages of the algebraic method. The most commonly cited advantage is,
of course, generality: a single abstract theorem about groups has consequences
everywhere a group can be identified, and it is more efficient to carry out
a general argument once than to have to repeat it in each specific setting.
But this does not tell the whole story; for example, algebraic methods are
often deemed useful in their initial application, before they are applied in
other settings. Sometimes the benefits are terminological and notational: group
theory gives us convenient methods of calculating and manipulating expressions
where other authors have to resort to cumbersome locutions and manners of
expression. But algebraic abstraction also has a way of focusing our efforts
by suppressing distracting information that is irrelevant to the solution of a
problem. For example, in the last step of the argument above, it suffices to
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know that b1b2 · · · bn has a multiplicative inverse modulo m; in other words,
that there is number c such that cb1b2 · · · bn is equal to 1 modulo m. Recognizing
that fact eliminates the need to clutter the proof with calculations that produce
the particular c. Finally, an important feature of algebraic methodology is that
it enables us to discover notions that are likely to be fruitful elsewhere. It
provides a uniform way of ‘seeing’ analogies in otherwise disparate settings.
Echoing Wittgenstein, algebraic concepts ‘lead us to make investigations; are
the expressions of our interest, and direct our interest’.

From a traditional logical perspective, algebraic reasoning is easily explained.
Proposition 1 makes a universal assertion about groups, giving it the logical
form ∀G (Group(G) → ...). Later, when we have defined a particular object
G and shown that it is a group, applying the proposition requires nothing
more than the logical rules of universal instantiation and modus ponens.

But somehow, when we read a proof, we are not conscious of this continual
specialization. Once we recognize that we are dealing with a group, facts
about groups are suddenly ready to hand. We know how to simplify terms,
and what properties are potentially relevant. We are suddenly able to think
about the objects in terms of subgroups, orbits, and cosets; our group-theoretic
understanding enables us to ‘see’ particular consequences of the abstract theory.
The logical story does not have much to say about how this works. Nor does
it have much to say about how we are able to reason in the abstract setting,
and how this reasoning differs from that of the domain of application.

In contrast, developers of mechanized proof assistants have invested a
good deal of effort in understanding how these inferences work. In formal
verification, the notion of a collection of facts and procedures that are ‘ready to
hand’ is sometimes called a ‘context’. Proof assistants provide various methods
of reasoning within such a context; Isabelle implements the notion of a
‘locale’ (Ballarin, 2006), while Coq supports a system of ‘modules’ (Bertot and
Castéran, 2004). Here is a localic proof of Proposition 1, which is understood
by Isabelle:

lemma (in comm-group) power-order-eq-one:
assumes finite (carrier G) and a:carrier G
shows a (∧) card(carrier G) = one G

proof–
have (

⊗
x:carrier G. x) = (

⊗
x:carrier G. a⊗ x)

by (subst (2) finprod-reindex [symmetric],
auto simp add: Pi-def inj-on-const-mult surj-const-mult prems)

also have ... =(
⊗

x:carrier G. a) ⊗ (
⊗

x: carrier G. x)
by (auto simp add: finprod-multf Pi-def prems)

also have (
⊗

x:carrier G. a) = a (∧) card(carrier G)
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by (auto simp add: finprod-const prems)
finally show ?thesis

by (auto simp add: prems)
qed

The notation (in comm-group) indicates that this is a lemma in the commutative
group locale. The notation (∧) denotes exponentiation, the expression carrier G
denotes the set underlying the group, and the notation

⊗
x:carrier G denotes

the product over the elements of that set. With this lemma in place, here is a
proof of Euler’s theorem:

Theorem euler-theorem:
assumes m > 1 and zgcd(a, m) = 1
shows [a∧phi m = 1] (mod m)

proof–
interpret comm-group [residue-mult-group m]

by (rule residue-group-comm-group)
have (a mod m) {∧}m (phi m) = {1}m

by (auto simp add: phi-def power-order-eq-one prems)
also have (a mod m) {∧}m (phi m) = (a∧phi m) mod m

by (rule res-pow-cong)
finally show ?thesis

by (subst zcong-zmod-eq, insert prems auto simp add: res-one2-eq)
qed

The proof begins by noting that the residues modulo m from an abelian group.
The notation {∧}m then denotes the operation of exponentiation modulo
m on residues, and {1}m denotes the residue 1, viewed as the identity in
the group. The proof then simply appeals to the preceding lemma, noting
that exponentiating in the group is equivalent to applying ordinary integer
exponentiation and then taking the remainder modulo m.

The relative simplicity of these proof scripts belies the work that has gone
into making the locales work effectively. The system has to provide mechanisms
for identifying certain theorems as theorems about groups; for specializing facts
about groups, automatically, to the specific group at hand; and for keeping
track of the calculational rules and basic facts that enable the automated tools
to recognize straightforward inferences and calculations in both the general
and particular settings. Furthermore, one needs mechanisms to manage locales
and combine them effectively. For example, every abelian group is a group;
the multiplicative units of any ring form a group; the collection of subgroups
of a group has a lattice structure; the real numbers as an ordered field provide
instances of an additive group, a multiplicative group, a field, a linear ordering,
and so on. Thus complex bookkeeping is needed to keep track of the facts and
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procedures that are immediately available to us, in ordinary mathematics, when
we recognize one algebraic structure as present in another.

The work that has been done is a start, but proof assistants are still a long
way from being able to support algebraic reasoning as it is carried out in
introductory textbooks. Thus, a good deal more effort is needed to determine
what lies behind even the most straightforward algebraic inferences, and how
we understand simple algebraic proofs.

12.8 Understanding Euclidean geometry

Our third example will take us from modern mathematics to the mathematics
of the ancients. Over the centuries, the style of diagram-based argumentation
of Euclid’s Elements was held to be the paradigm of rigor, and presentations
much like Euclid’s are still used today to introduce students to the notion
of proof. In the 19th century, however, Euclidean reasoning fell from grace.
Diagrammatic reasoning came to be viewed as imperfect, lacking sufficient
mathematical rigor, and relying on a faculty of intuition that has no place in
mathematics. The role of diagrams in licensing inference was gradually reduced,
and then, finally, eliminated from most mathematical texts. Axiomatizations
by Pasch (1882) and Hilbert (1899), for example, were viewed as ‘corrections’
or improvements to the flawed methods of Euclid, filling in gaps that Euclid
overlooked.

As Manders points out in his contributions to this volume, this view of
Euclidean geometry belies the fact that Euclidean reasoning was a remarkably
stable and robust practice for more than two thousand years. Sustained reflection
on the Elements shows that there are implicit rules in play, and norms governing
the use of diagrams that are just as determinate as the norms governing modern
proof. Given the importance of diagrammatic reasoning not just to the history
of mathematics but to geometric thought today, it is important to understand
how such reasoning works.

In order to clarify the types of inferences that are licensed by a diagram,
Manders distinguishes between ‘exact’ conditions, such as the claim that two
segments are congruent, and ‘coexact’ conditions, such as the claim that
two lines intersect, or that a point lies in a given region. Coexact condi-
tions depend only on general topological features of the diagram, and are
stable under perturbations of a diagram, whereas exact conditions are not.
Manders observes that only coexact claims are ever inferred from a diagram
in a Euclidean proof; text assertions are required to support an inference
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that results in an exact claim. Thus, diagrams serve as useful representa-
tions of certain types of coexact data, and these representations are used in
regimented ways.

Observations like these have led Nathaniel Miller (2001) and John Mum-
ma (2006) to develop formal systems for diagram-based reasoning that are
more faithful reflections of Euclidean reasoning than Hilbert’s and Pasch’s
axiomatizations. In both systems, diagrams and formulas together bear the
burden of representing assertions, and precise rules govern the construction
of diagrams and the inferences that can be drawn. In Miller’s system, a
diagram is a more abstract object, namely, a graph representing the topo-
logical data that is relevant to a Euclidean argument. In Mumma’s system,
a diagram consists of labeled geometric elements with coordinates on a grid
of points.

Both systems face the problem of explaining how a diagrammatic proof can
ensure generality. Suppose that to prove a general theorem about triangles,
I begin by drawing a particular triangle, ABC. Aside from being imperfect,
this triangle will have specific properties that play no role in the proof: it
may, for example, be acute or obtuse, or (more or less) a right triangle.
The problem to be addressed is how reasoning about this particular triangle
can warrant conclusions about all triangles, even ones with different coexact
properties.

Let us consider, for example, the second proposition in Book I of the
Elements, which shows that if BC is any segment and A is any point, it is
possible to construct a segment congruent to BC with an endpoint at A. Aside
from the definitions, common notions, and postulates, the proof relies only
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Fig. 12.1.
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on the first proposition of Book I, which shows that it is possible to construct
an equilateral triangle on a given side. The text below is taken from Heath’s
translation of Euclid. The example, and the gist of the subsequent discussion,
are taken from Mumma (2006).

Proposition 2. To place at a given point (as an extremity) a straight line equal to a
given straight line.

Proof. Let A be the given point, and BC the given straight line (Fig. 12.1). Thus
it is required to place at the point A (as an extremity) a straight line equal to the
given straight line BC.

From the point A to the point B, let the straight line AB be joined; and on
it let the equilateral triangle DAB be constructed. Let the straight lines AE, BF
be produced in a straight line with DA, DB; with centre B and distance BC let
the circle CGH be described; and again, with centre D and distance DG let the
circle GKL be described.

Then, since the point B is the centre of the circle CGH, BC is equal to BG.
Again, since the point D is the centre of the circle GKL, DL is equal to DG. And
in these DA is equal to DB; therefore the remainder AL is equal to the remainder
BG. But BC was also proved equal to BG; therefore each of the straight lines
AL, BC is equal to BG. And things that are equal to the same thing are also equal
to one another; therefore AL is also equal to BC.

Therefore at the given point A the straight line AL is placed equal to the given
straight line BC. (Being) what it was required to do. �

The conclusion of the proof is valid. But how does it work? As Mumma
points out, the position of the point A with respect to BC is indeterminate,
and different ways of placing that point would result in diagrams with different
coexact properties. For example, if A were chosen so that AB is longer than
BC, then the point A would lie outside the circle CGH. The diagram is used
to license the conclusion that circle CGH intersects the line DF, and, in fact,
this does hold in general. It is similarly used to license the conclusion that
GKL will intersect the line GE. Moreover, to warrant the conclusion that AL
is equal to BG, one needs to know that the point A lies between D and L, and
that the point B lies between D and G. The question is, how can a particular
diagram warrant these general conclusions?

In Miller’s system, whenever a representational choice can affect the diagram
in a way that may influence the inferences that can be drawn, one simply
carries out a case split. Thus, in Miller’s system, one needs to check the result
against each topological configuration that can arise. But, as Mumma points
out, this can yield a combinatorial explosion of possibilities, and such case splits
are notably absent from the Elements. Euclid is, somehow, able to draw the
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right general consequences from a specific representation, without having to
distinguish irrelevant cases.

Mumma (2006) provides a more subtle explanation of how this works,
by providing rules by which certain features of a diagram can be justified as
general consequences of the construction, irrespective of the choices made.
Note that Mumma is not claiming to describe the procedure by which Euclid
and his peers justified their inferences. All we have, in the Elements, is a
body of text, with no record of the cognitive mechanisms that produced
them. But these texts provide us with a collection of inferences (which,
today, we recognize as being sound for a certain semantics). Understanding
Euclidean proof means, in part, being able to determine which inferences are
allowed. Mumma has explained what this understanding amounts to, both by
characterizing the allowable inferences, and providing a mechanism by which
they can be validated.

What does all this have to do with automated reasoning and formal
verification? Geometric theorem proving has, for the most part, followed
modern mathematics in utilizing algebraic treatments of the subject. In other
words, most modern theorem provers express geometric assertions in alge-
braic terms and use algebraic methods to justify them. In fact, via the
usual embedding of Euclidean geometry in the Cartesian plane, a decision
procedures for real closed fields is a decision procedure for geometry as
well. Moreover, specialized algebraic procedures (Chou et al., 1994; Wu,
1994) have proved to be remarkably effective in verifying ordinary geometric
theorems.

But analyses like Miller’s and Mumma’s may point the way to develop-
ing computational methods for verifying Euclidean inferences on their own
terms. Not only would this be interesting in its own right, but it would
provide important insights into the inner workings of modern methods as
well. For example, in the 16th century, the geometric method of ‘analysis
and synthesis’ foreshadowed Descartes’ algebraic treatment of geometry (Bos,
2000). In fact, this method of naming an object sought and then analyzing
its properties can be seen as a geometric version of the method of Skolem-
ization and unification described in Section 12.5. For another example, note
that we often prove theorems in analysis—say, when dealing with Hilbert
spaces, which are infinite-dimensional generalizations of Euclidean geom-
etry—by drawing a diagram. So, even in light of the attenuated role of
diagrams in modern mathematical proofs, understanding the nature of geo-
metric inference is still an important part of understanding how such modern
proofs work.
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12.9 Understanding numeric substructures

As a fourth and final example, I would like to consider a class of inferences
that involve reasoning about the domains of natural numbers, integers, rational
numbers, real numbers, and complex numbers, with respect to one another.
From a foundational perspective, it is common to take the natural numbers as
basic, or to construct them from even more basic objects, like sets. Integers
can then be viewed as equivalence classes of pairs of natural numbers; rational
numbers can be viewed as equivalence classes of pairs of integers; real numbers
can be viewed, say, as sequences of rational numbers; and complex numbers
can be viewed as pairs of reals. As McLarty points out in the first of his essays
in this collection, however, this puts us in a funny situation. After all, we
think of the natural numbers as a subset of the integers, the integers as a subset
of the rationals, and so on. On the foundational story, this is not quite true;
really, each domain is embedded in the larger ones. Of course, once we have
the complex numbers, we may choose to baptize the complex image of our
original copy of the natural numbers as our new working version. Even if we
do this, however, we still have to keep track of where individual elements
‘live’. For example, we can apply the principle of induction to the complex
copy of the natural numbers, but not to the complex numbers as a whole;
and we can divide one natural number by another, but the result may not
be a natural number. If we think of the natural numbers as embedded in
the complex numbers, we have to use an embedding function to make our
statements literally true; if we think of them as being a subset of the complex
numbers, all of our statements have to be carefully qualified so that we have
specified what types of objects we are dealing with.

The funny thing is that in ordinary mathematical texts, all this happens under
the surface. Textbooks almost never tell us which of these two foundational
options are being followed, because the choice has no effect on the subsequent
arguments. And when we read a theorem that combines the different domains,
we somehow manage to interpret the statements in such a way that everything
makes sense. For example, you probably did not think twice about the fact
that Lemma 1 above involved three sorts of number domain. The fact that the
series is indexed by n means that we have to think of n as a natural number
(or a positive integer). Similarly, there is an implicit indexing of terms by
natural numbers in the use of ‘ ... ’ in the expression for the logarithm. The
proof, in fact, made use of properties of such sums that are typically proved
by induction. In the statement of the theorem, the variable z is explicitly
designated to denote a complex number, so when we divide z by n in the
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expression z/n, we are thinking of n as a complex number as well. But the
absolute value function converts a complex value to a real value, so expressions
like |z/n| denote real numbers, and many of the products and sums in that
proof denote real multiplication and addition. In the proof of the lemma, it is
crucial that we keep track of this last fact: the ≤ ordering only makes sense on
the real numbers, so to invoke properties of the ordering we need to know
that the relevant expressions are real-valued.

The elaborate structure of implicit inferences comes to the fore when we try
to formalize such reasoning. With a formal verification system, these inferences
need to be spelled out in detail, and the result can be painstaking and tedious
(see Avigad et al., 2007). In Isabelle, for example, one has to use a function
real(n) to cast a natural number, n, as a real. Coq has mechanisms that apply such
‘coercions’ automatically, but, in both cases, the appropriate simplifications
and verifications are rarely carried out as automatically as one would like.

The fact that methods of reasoning that we are barely conscious of when we
read a mathematical proof requires so much effort to formalize is one of the
scandals of formal verification, and a clear sign that more thought is needed as
to how we understand such inferences. I suspect that the structural perspective
described in McLarty’s article, combined with the locale mechanisms described
in Section 12.7, holds the germ of a solution. When we prove theorems about
the natural numbers, that is the structure of interest; but when we identify
the natural numbers as a substructure of the reals, we are working in an
expanded locale, where both structures are present and interact. To start with,
everything we know in the context of the natural numbers and the real numbers
individually is imported to the combined locale, and is therefore available to
us. But there are also new facts and procedures that govern the combination
of the two domains. Figuring out how to model such an understanding so that
proof assistants can verify the proof of Lemma 1, as it stands, will go a long
way in explaining how we understand proofs that make use of mixed domains.

12.10 Conclusions

I have described four types of inference that are found in ordinary mathematical
proofs, and considered some of the logical and computational methods that
have been developed to verify them. I have argued that these efforts are not
just pragmatic solutions to problems of engineering; rather, they address core
issues in the epistemology of mathematics, and should be supported by broader
philosophical reflection.
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Mathematics guides our thought in deep and powerful ways, and deserves a
philosophy that recognizes that fact. When we focus on particular features of
mathematical practice, metaphysical concerns often seem petty and irrelevant,
and we find, instead, a rich assortment of issues that have concrete bearing
upon what we do and say about the subject. Our task is to develop a conceptual
framework in which we can fruitfully begin to address these issues, and to
narrow our focus to the point where discernible progress can be made. I hope
the present chapter serves as encouragement.

Added in Proof. After the article had been sent to the publisher, I came across
work by Jody Azzouni which bears directly on many of the issues raised here.
Although, I cannot explore the points of agreement and disagreement now,
the reader may wish to compare my views to those of Azzouni (2005) and
Azzoumi (2006).
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Bertot, Yves and Castéran, Pierre (2004), Interactive Theorem Proving and Program
Development: Coq’art: the Calculus of Inductive Constructions (Berlin: Springer-Verlag).

Bos, Henk J. M. (2000), Redefining Geometrical Exactness: Descartes’ Transformation of the
Early Modern Concept of Construction (New York: Springer-Verlag).



352 jeremy avigad

Carr, David (1979), ‘The logic of knowing how and ability’, Mind, 88, 394–409.
Chou, C. C., Gao, X. S., and Zhang, J. Z. (1994), Machine Proofs in Geometry

(Singapore: World Scientific).
Dickson, Leonard Eugene (1966), History of the Theory of Numbers, vols. I–III (New

York: Chelsea Publishing Co.).
Euclid, The Thirteen Books of Euclid’s Elements Translated from the Text of Heiberg, trans.

with introduction and commentary by Thomas L. Heath, 2nd edn, vols. I–III (New
York: Dover Publications).

Goldfarb, Warren (1985), ‘Kripke on Wittgenstein on rules’, Journal of Philosophy, 82,
471–488.

Graham, Ronald L., Knuth, Donald E., and Patashnik, Oren (1994), Concrete
Mathematics: a Foundation for Computer Science, 2nd edn (Reading, MA: Addison-
Wesley).
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13

What Structuralism
Achieves
COLIN MCLARTY

For some time mathematicians have emphasized that mathematics is concerned
with structures involving mathematical objects and not with the ‘internal’ nature of
the objects themselves. They have recognized that we are not given mathematical
objects in isolation but rather in structures.

(Resnik 1981, p. 529).

Resnik does not say mathematicians could deal with structures rather than
the ‘internal’ nature of objects. He says they do and he is right. The basic
idea goes back to the first extant mathematics textbook, Euclid’s Elements.
The lines and vertices in a Euclidean diagram have specified relations to each
other—and no meaning at all outside that diagram. His ‘definitions’ of points
and lines are famously irrelevant to his proofs, and it is senseless to ask where
the vertex A of a triangle ABC in one diagram is located in space or to
ask whether it is equal to or distinct from vertex A of a square ABCD in
another diagram.¹ Modern mathematics deals much more extensively, and
more explicitly, with structures where ‘the ‘‘elements’’ of the structure have
no properties other than those relating them to other ‘‘elements’’ of the same
structure’ (Benacerraf, 1965, p. 70). While someone might try to stipulate
that the number 2, for example, is the Zermelo–Fraenkel set {{φ}} or the
set {φ, {φ}}, such an identification is irrelevant for the current practice of
mathematics. So Benacerraf asked for a philosophical account that would
define the natural numbers 0, 1, 2, ... structurally, by their arithmetic relations
to one another, without saying what any one of them is.²

¹ If the points were distinct, then by postulate a unique line would join them; but a line between
two diagrams is senseless in Euclid’s practice.

² He did not consider the answers by mathematicians Dedekind (1888) and Lawvere (1964).
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Philosophers have pursued their own versions of structural mathematics
without always specifying which of their ideas aim at purely philosophical
concerns and which are meant to explicate existing practice.³ Yet even the
purely philosophical projects can benefit from seeing how mathematicians
make structure work. The philosophical efforts face problems that were solved
long ago by mathematicians who rely daily on the answers: How can separate
structures relate to one another? Is there a coherent way to define structures
as themselves places in larger structures? Since Emmy Noether, in fact,
mathematicians routinely describe structures entirely by the structural relations
among them. This indeed gives structural definitions such as Benacerraf sought
but that is incidental to the goals of practice. In practice, structural mathematics
achieves the discovery and proof of great theorems.

We might worry that mathematicians are pragmatists, not concerned with
our issues, and so mathematical practice might be a poor guide for philosophers
in general and structuralists in particular:

• Mathematics might lack the conceptual rigor of philosophy.
• Practice might violate some favored ontology or epistemology.
• Mathematics might be structural in principle yet not in practice.

But these concerns underestimate the practical need for rigorous principles.
For example Andrew Wiles proved Fermat’s Last Theorem as a step in the
Langlands Program, the largest project ever posed in mathematics. He cites
scores of theorems so advanced that he cannot assume an audience of experts
knows them or knows offhand where to find them. In mathematics on this
scale it is completely out of the question for one author or even a small number
of authors to give a major proof in full starting from just concepts and theorems
found in graduate textbooks.⁴

So there are feasibility conditions:

• Each theorem must be concise and fully explicit, so as to be easily and
rigorously detachable from its original context. Proofs are often very long,
and for just this reason the statement of each theorem must be brief and
rigorously self-contained.

• Theorems must be stated structurally. If, per impossibile, authors could
be made to choose set theoretic definitions of each structure they use,

³ Chihara seeks ways mathematics could be ‘nominalist’ although it is not in practice (2004, p. 65).
Hellman (1989) and Shapiro (1997) say little relating their ideas of modality, coherence, and structure
to practice. Resnik (1997), Awodey (2004), and Carter (2005) offer explications.

⁴ A book aimed at readers already specialized in number theory takes twenty-two authors and 570
pages not to prove but merely to introduce the results that Wiles uses (Cornell et al., 1997).
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then they could not use each other’s results without also verifying the
equivalence of their chosen definitions. Any major paper uses scores
of structures, each of which has many different set theoretic reductions
(compare homology in Section 13.3.1). Checking so many equivalences is
infeasible. Leaving them implicit would court disaster. A set theoretic
specification may be used in some step of a proof but those details must
be rigorously irrelevant to the statement of the theorem (see discussion of
Theorem 4).

• Methods must handle structures at every level from natural numbers to
functors by comparable means that readily relate any two levels.

These methods are used in practice, by necessity, with deductive rigor, even
if they violate some philosophical theories.⁵ Practice also dispels the idea that
structuralism abstracts away from intuitive content. Structuralist tools give the
most direct known path from ‘pure’ content to rigor.

Section 13.1 extends Resnik’s structuralism by the standard practice of
identifying some structures as parts of others. Certain injections S1�S2 of
one structure S1 into another S2 are taken as identity preserving and thus as
making S1 a part of S2. We use textbook treatments of the real and complex
numbers to argue that such identity is not defined by any logical principles but
by stipulation or tradition. This opens up a philosophical topic of explaining
how particular cases come to be accepted as identity preserving. Section 13.1.2
argues that Shapiro’s distinction of systems and structures does not help to
understand current practice.

Section 13.2 pursues the original point of structuralist methods—defining
structures as themselves places in patterns of structures rather the way that
Resnik describes in his later chapters. It takes polynomials as an example and
discusses foundations. The ontology so far as it goes is far from philosophically
classical: The Leibniz law of identity fails as many individuals lack fully
individuating properties. Nothing here prevents philosophers from going
beyond practice and attributing a more classical ontology to mathematical
objects. We know that mathematics can be re-interpreted in various ways
to give it a classical ontology. But a further task faces anyone who claims
that only classical ontology is conceptually sound: Either show that contrary
to the appearances practice concretely does recognize such ontology; or
explain how conceptually unsound practice can succeed so well. Whatever
position one takes in debates over foundations and ‘structuralism,’ it remains

⁵ See related arguments from practice against Quine’s ontology in Maddy (2005, p. 450). Compare
Krömer (2007, p. xv) on the way category theory became standard mathematics despite some clash
with official ZF foundations.
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that the tools used in textbooks and research are more specific than most
philosophical proposals and are daily tested for rigor in principle and feasibility
in practice.

Section 13.3 gives sample achievements and looks at intuition, purity, and
unification. While some philosophical structuralisms may make any unity of
mathematics unintelligible, structuralist practice makes that unity ever more
productive.

13.1 Beginning structuralism

13.1.1 Separate structures

Following the imagery of Euclid’s Elements, Resnik calls mathematical objects
positions in patterns and says they have no properties except relations to
others in the same pattern. But this ‘threatens to conflict with mathematical
practice’ (MacBride, 2005 p. 568). If, for example, real numbers have only
relations to each other, how do they gain relations to complex numbers? The
answer is given in practice.

Innumerable textbooks say something like:

We suppose you understand the real numbers! The complex numbers are formal
expressions x0 + x1i with x0, x1 real, combined by

(x0 + x1i)+ (y0 + y1i) = (x0 + y0)+ (x1 + y1)i

(x0 + x1i)(y0 + y1i) = (x0y0 − x1y1)+ (x0y1 + x1y0)i

(Conway and Smith, 2003, p. 1)

If Conway and Smith were Zermelo–Fraenkel set theorists this would mean
they do not embed the real numbers R in the complex numbers C. A real
number defined in ZF is not a formal expression made from two real numbers
and a letter i. But Conway and Smith are not set theorists. They freely
equate each real number x with the complex number x+ 0i. Virtually all
mathematicians do. This extends to all uses of the numbers, so real polynomials
are considered a kind of complex polynomial as mentioned in (Carter, 2005,
p. 298). Elementary textbooks typically define complex numbers in some
way which would imply in ZF set theory that none are real numbers, then
add explicitly: ‘we identify R with its image in C’ (Lang, 2005, p. 347).
For some philosophers ‘the notion of ‘‘identity by fiat’’ makes dubious
sense’ (MacBride, 2005, p. 578). But mathematics thrives on violating this
dictum.
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To put it generally, positions in one pattern or structure S1 can be compared
to those in another S2 by way of a function f : S1 → S2.⁶ If f is one-to-one it is
an injection and we say it identifies each position x ∈ S1 with the value f (x) ∈ S2.
This is a three place relation: x is identified with y via f , or as an equation f (x) =
y. The equation lies squarely in S2 as f (x) and y are in S2. Some important injec-
tions, though, are taken as identity preserving. When an element x ∈ S1 is iden-
tified with an element y ∈ S2 via an identity-preserving injection S1�S2 then
mathematicians will equate x with y. They state as a two place relation x = y
and in this way they embed S1 in S2. There is no definition of identity preserving.
Mathematicians stipulate which injections are identity preserving only taking
care never to stipulate two distinct identity-preserving injections between the
same patterns. Nearly everyone takes R�C as identity preserving.

As a contrary example, mathematicians generally do not identify the complex
number x0 + x1i with the quaternion

x0 + x1i+ 0j+ 0k

(Conway and Smith, 2003)

One reason is that we could just as well identify it with

x0 + 0i+ x1j+ 0k or x0 + 0i+ 0j+ x1k

or infinitely many other quaternions. All these injections preserve the usual
structure and are very useful and so no one is taken as identity preserving.
In some contexts the software package Mathematica® does identify x0 + x1i
with x0 + x1i+ 0j+ 0k. So does the subject of crossed modules in group
representation theory (Mac Lane, 2005, pp. 95f.). It is a matter of convention.
Someday mathematicians may generally identify the complex numbers with
some quaternions. It will be decided by the demands of practice and not by
principles of set theory.

Mathematicians do not use the phrase identity preserving, Rather, they say for
example that ‘it is customary to identify’ certain elements of many different
algebras with ‘the integers’ or the rational numbers, real numbers, etc., quite
apart from set theoretic definitions (Lang, 1993, p. 90). Definitions are rarely
given in Zermelo–Fraenkel set theoretic terms and when such terms are given
they usually conflict with this custom. Yet the custom takes priority as with
the complex numbers. This obviates an historical problem MacBride sees for
some structuralists (2005, p. 580). When two mathematicians posit ‘the’ natural

⁶ See discussion on (MacBride, 2005, p. 573), but we do not only use isomorphisms.
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numbers we need no criterion to tell if they posit the same ones. We can take
that as stipulated.

13.1.2 Comparison with Resnik and Shapiro

Resnik tends to reject embeddings like R�C, but he says we might justify this
one by ‘likening the historical development of the complex number system
to the step by step construction of a complicated pattern through adding
positions’ to the real number system (Resnik, 1997, p. 215). He rightly offers
this as simile and not fact and so it is close to our appeal to stipulation. Over
the centuries some mathematicians took the complex numbers as including the
reals, some took them as a different kind of thing, and some considered them
not genuine things.⁷ The history as a whole explains why today’s textbooks
identify R with a part of C. But the history is ambivalent and not widely
known. The textbook stipulations are clear, overt, and authoritative.

The textbook treatment of complex numbers might be analyzed into two steps
based on Shapiro’s distinction of system and structure: First a ZF definition pro-
duces a system C of complex numbers, where each complex number is some spec-
ified ZF set. Then abstraction forms a structure C of complex numbers ‘ignoring
any features of them’ except their algebraic interrelations (Shapiro, 1997, p. 73).⁸
But then which are Lang’s complex numbers, or Conway and Smith’s?

Lang defines a complex number as an ordered pair 〈x0, x1〉 where Conway
and Smith write x0 + x1i (Lang, 2005, p. 346). On the ‘system’ approach using
ZF sets, Lang’s equation 〈x, 0〉 = x is literally false for any real number x.
When Lang says to identify real numbers with the corresponding complex
numbers, is he revising his definition of complex numbers in some unspecified
way? Or does he mean to treat some false equations as true? There are ways
to do both but Lang never gives one. Conway and Smith are even more
ambiguous as there is no standard definition of ‘formal expressions’ in ZF. At
any rate, if complex numbers are sets in a ‘system’ then ‘structures’ do not
appear and at least for this quite typical case we would have to say mathematics
is not structuralist in practice.

We can better understand complex numbers as places in a structure. Then
‘x0 + x1i’ and ‘〈x0, x1〉’ are not names of different sets. They are merely
different notations for the same position in the complex number structure.
This explains why textbook authors routinely feel they can and must specify
that they identify each real number x with the complex x+ 0i. Structural

⁷ See the expert essay (Mazur, 2003) and the detailed exposition (Flament, 2003).
⁸ ZF is the relevant set theory here. In categorical set theory each set is itself both ‘system’ and

‘structure’ as its elements have no individuating features in the first place (McLarty, 1993).
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definitions of real and complex numbers neither imply nor preclude any
identity relation between them until we stipulate one.⁹ But on this view there
are no ‘systems’ in Lang, or in Conway and Smith, or nearly anywhere outside
of textbooks on ZF set theory. It remains to understand structuralist practice
in terms of ‘structures’ themselves.

13.2 Working structuralism

Patterns themselves are positionalized by being identified with positions of another
pattern, which allows us to obtain results about patterns which were not even
previously statable. It is [this] sort of reduction which has significantly changed
the practice of mathematics. (Resnik, 1997, p. 218).

One good example is the structure, specifically a ring R[X], of all real
polynomials. Lang says there are ‘several devices’ for reducing polynomials to
sets and suggests one for undergraduates and another for graduate students.¹⁰
What does not change are the rules for adding, subtracting, and multiplying
polynomials. To collect the real polynomials into one structure Lang turns to
rings and ring morphisms. A commutative ring is a structure with 0,1, addition,
subtraction, and multiplication following the familiar formal rules.¹¹ A ring
morphism f : A → B is a function which preserves 0,1, and the ring operations:

f (0) = 0 f (x− y) = f (x)− f (y) etc.

We will say ‘ring’ to mean commutative ring. Lang characterizes R[X]:

Fact 1. R[X] is a ring with element X ∈ R[X] and a morphism c : R→ R[X] called
the insertion of constants.¹² For each ring morphism f : R → A and element a ∈ A, there
is a unique morphism ua : R[X] → A

c

f A a

X

ua

[X ]

with ua(X) = a and agreeing with f on constants— that is uac = f .

⁹ Shapiro’s notion of offices does not bear on embeddings like this since it only connects isomorphic
structures (Shapiro, 1997, p. 82).

¹⁰ The quote is in both Lang (2005, p. 106) and Lang (1993, p. 97).
¹¹ See Mac Lane (1986, p. 98) or any modern algebra textbook.
¹² Is a real number the same thing as a constant real polynomial? Lang identifies them, although a

ZF reading of either of his definitions of polynomials says no.



what structuralism achieves 361

This says nothing to specify what polynomials are beyond the paradigmatically
uninformative assertion that one of them is called X . It does say R[X] is a ring,
so there are other elements, like X2 = X · X , and 3X2 + X , described by their
algebraic relation to X . Intuitively ua evaluates these at X = a. That is, since
ua is a ring morphism:

ua(X2) = a2 and ua(3X2 + X) = 3a2 + a and so on.

But nothing in Fact 1 specifies the elements of R[X] as sets. It specifies where
R[X] fits in the pattern of rings and morphisms.

Lang states Fact 1 in italics without calling it a definition or theorem or
anything else (Lang, 1993, p. 99). If pressed, he would probably call it a
theorem. Indeed either one of his official definitions of polynomials can be
made rigorous and used to prove the Fact. But Lang does not like using them
in proofs. Fact 1 itself gives a rigorous definition of R[X] up to isomorphism
which he does like to use.

Philosophers usually define an isomorphism of structured sets as a one-to-
one onto function preserving structure in each direction, as in (Bourbaki,
1939). Mathematicians today use a simpler and more general definition, which
however agrees with Bourbaki’s in this case (Lang, 1993, p. 54). For the sake
of generality it speaks of morphisms instead of structure preserving functions: Every
structure S1 has an identity morphism 1S1 : S1 → S1. A morphism f : S1 → S2

is an isomorphism if it has an inverse, that is a morphism g : S2 → S1 which
composes with f to give identities:

f g

1 1

2

1
1

g f

2 2

1

1
2

The need for generality will appear in Section 13.3.1 and the accompanying
case study. For now, note how directly this concept of isomorphism suits Fact 1.

Theorem 3. Suppose a ring R[X] and function c satisfy Fact 1, and so do another
R[X ′] and c′. Then there is a unique ring isomorphism u : R[X] → R[X ′] such that
u(X) = X ′ and uc = c′.

[X ]

[X ′] X ′

Xc

c ′

Proof. By assumption there are unique morphisms u with u(X) = X ′ and uc = c′
and u : R[X ′] → R[X] with v(X ′) = X and vc′ = c. The composite vu is a ring
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morphism with vu(X) = X . But the identity 1R[X] also takes X to X , so
uniqueness implies vu = 1R[X]. Similarly uv = 1R[X ′]. �

Lang deduces everything he needs about R[X] from Fact 1 plus properties
of the real numbers. A ZF set theoretic definition of ‘polynomial’ is rather
beside the point—except that we still need to prove:

Theorem 4. There are rings with the properties given in Fact 1.

Here the foundations matter. This theorem can be proved by specifying a set
R[X] with these properties, or from more general theorems. Either way, on
ZF foundations, it will come down to specifying a set by specifying which sets
are its elements. On ZF foundations to specify R[X] is to specify which sets are
polynomials. Proofs in ZF cannot all be structural because the axioms are not
structural. Proofs in categorical set theory are entirely structural. Categorical
set theory specifies any set, including any candidate for R[X], only up to
isomorphism entirely by the pattern of functions between it and other sets
(McLarty, 2004).

Lang (1993) does not specify a set theory. In particular he nowhere says
what functions are. He only says they take values. He calls them ‘mappings’
and his only account of them reads:

If f : A → B is a mapping of one set into another, we write

x �→ f (x)

to denote the effect of f on an element x of A. (Lang, 1993, p. ix)

ZF set theory formalizes this by taking elementhood as primitive and defining a
function f as a suitable set of ordered pairs, and defining f (x) = y to mean the
ordered pair 〈x, y〉 is an element of the set f . Categorical set theory formalizes
it by taking function composition as primitive and defining elements as suitable
functions, anddefining f (x) = y tomean y is the compositeof f andx. InResnik’s
words this set theory treats functions ‘as positions in the pattern generated by the
composition relation’ (1997, p. 218). Either approach will work for Lang.

The point is that structural practice isolates foundations in a few proofs,
namely existence proofs as for Theorem 4. Definitions, theorems, and the great
majority of proofs proceed rigorously without ever specifying the elements of
any set at all. So it does not matter to them if elements are:

• other sets, as in ZF set theory.
• global elements x : 1 → S as in categorical set theory.
• entities lower in type by 1 than the entity S as in Russell’s type theory.
• etc.
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Even existence proofs usually specify elements only ‘in principle.’ Lang never
actually spells out in ZF detail what a polynomial is.

So far the pattern or category of rings and morphisms is defined by a prior
set theoretic definition of rings and morphisms. But standard tools can also
describe the pattern simply as a pattern ignoring, as Resnik says, the ‘internal’
nature of rings and morphisms.¹³ Then a ring A is just a place in the pattern so
that, depending on the choice of foundations, A either has no elements in a set
theoretic sense or it has them but they are unspecified and irrelevant. Either
way morphisms are not functions defined on set theoretic elements. They are
just morphisms or more pictorially arrows in the pattern. The pattern includes a
place or places identifiable up to isomorphism as the ring Z of integers, and
a place or places identifiable up to isomorphism as the ring Z[X] of integer
polynomials. Fact 1 has an analogue with Z in place of the real numbers R

which says we can define ‘elements’ of any ring A in a pattern theoretic sense
to be the morphisms Z[X] → A. These correspond exactly to the classical set
theoretic elements so that all the classical axioms on elements are verified, and
thus all the classical theorems.

The pattern of rings and ring morphisms, i.e. the category Ring, can be
defined in turn as a position in the pattern of categories and functors i.e. in the
category of categories. Each ring A appears as a functor A : 1→ Ring where
1 is the terminal category. Ring morphisms f appear as functors f : 2→ Ring
where 2 is the arrow category (Lawvere, 1966). Ring elements can still be defined
by morphisms as in the previous paragraph. All the classical theorems on rings,
elements, and morphisms reappear at this level. There is no obstacle to taking
any one of these levels as basic with the others derived from it.

13.3 The unifying spirit

13.3.1 A few uses of patterns

These structural methods have deep roots in practice. As a notable example,
topology by the 1920s relied on a booming but chaotic notion of homology.
There were many versions.¹⁴ Topologists assumed that results proved for one
version would normally hold for all—but they could not say just what was
‘normal’ here. Some versions of homology were later proved exactly equivalent

¹³ Universal algebra defines the category up to isomorphism (Lawvere, 1963). Monads define it not
even up to isomorphism but up to equivalence (Mac Lane, 1998, Ch. 6).

¹⁴ e.g. the Čech, Vietoris, and singular theories of Chapter 8 in Hocking and Young (1961) all
existed before the unifying category theoretic language of Chapter 7.
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to each other. Some were already known in the 1920s to be inequivalent to
each other when applied to some more arcane spaces. Topologists had all too
many nuts and bolts definitions of homology but no structural characterization.
They had no homological ‘Fact 1’.

The Fact, when it was found by Eilenberg and Steenrod (1945), turned out
to characterize homology (up to isomorphism) as a pattern of functors from a
certain category of topological spaces and continuous maps to the category of
Abelian groups. This characterization enabled massive progress in homology.
It also suggested useful variants such as K-theory which began by solving the
classical problem of independent vector fields on an n-dimensional sphere Sn. It
showed how many everywhere different ways there are to ‘comb the hair flat’
on Sn. There is only one way on the circle S1: combing all clockwise is not
different in this sense from combing all counterclockwise. There is no way to
comb it all flat on the sphere S2 or any even-dimensional S2n. The matter is
complicated in higher odd dimensions. Carter (2004) looks at K-theory and
philosophical structuralism.

Noether’s number theory was simplified and extended by similar functors
applied to groups in place of topological spaces. This group cohomology lies behind
the Langlands Program, and so behind Wiles on Fermat’s Last Theorem, and
much more. One earlier classical result was Gerd Faltings’s proof of the
Mordell conjecture, a problem that had drawn top number theorists for over
sixty years: Any algebraic curve above a certain low level of complexity has at
most finitely many rational points (Monastyrsky, 1998, p. 71). For philosophic
discussion of these ideas see Krieger (2003), especially on Robert Langlands and
André Weil.

All these proofs ignore nuts and bolts as far as possible—which is very
far indeed by the conventional, functorial methods. That made the proofs
feasible. Even when the morphisms of a category are structure preserving
functions, these methods abstract away from the ‘internal’ nature of functions
in favor of the patterns they form. The categorical definition of isomorphism
given in Section 13.2 is a textbook example. In other important categories the
morphisms are not functions but the useful pattern-theoretic properties still
hold for them. The accompanying case study gives examples, and see Corfield
(2003, esp. ch. 10).

13.3.2. Intuition and purity

Olga Taussky-Todd joked that she had trouble with Noether’s courses on
number theory because ‘my own training was in ... the kind of number theory
that involves numbers’ (Taussky-Todd, 1981, p. 79). Noether created radical
new methods on the board as she lectured and everyone needed time to
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get the intuition. There is no serious question of whether the methods are
intuitive. They are to people who grasp them. Keep in mind how intuition
functions in mathematics. Italian algebraic geometry into the 1920s was
famously intuitive. Focusing on complicated four-dimensional configurations
in higher-dimensional spaces, it relied on long years of expert experience to
replace explicit proof or calculation. Outsiders were unable to follow it. It rose
to a level which ‘even the Maestri were unable to sustain’ (Reid, 1990, p. 114).
One person’s intuition can be another’s nightmare, and expert intuition by
definition does not come easily.

The more interesting question is: are the new methods number theory and
topology or a foreign import? Coordinate geometry is a paradigm of ‘impure’
mathematics where questions about points and lines are answered using real
numbers and differential calculus. It is an evident change of topic while no
one denies its value. Homology and other categorical methods do not change
the topic.

Compare computer spreadsheets. Some people find them ungainly monsters.
But spreadsheets are merely a format for what has to be done anyway: Data must
be categorized, and some relations between categories must be routinized. The
general theory of homological methods today is thousands of pages long and
growing—and deep new facts are revealed by it. Yet experts who wrote those
pages and use cohomology throughout their work say it should be used easily as
an organizing device. Functorial homology is pure topology, or group theory,
or number theory, or other mathematics, depending on which functors it uses.

The main stake in discussions of purity is that pure proofs are meant to
be desirable for their own sake, as being more intrinsic to their subjects.
One century of great efforts proved the prime number theorem in arithmetic by
using deep complex analysis. Many people still wanted a purely arithmetic
proof and Chapter 7 of this volume shows how another fifty years of great
efforts found one pp. 189–191.¹⁵ All purely arithmetic proofs of it to date are
longer and harder than the analytic proof, but they are valued for their purity
and genuinely new insights. The situation in homology is just the reverse.
Routine methods can eliminate homology from specific number theoretic or
topological theorems. Mathematicians eliminate it in practice only when they
have an easier alternative.

For example, a ‘very utilitarian description of the Galois cohomology needed
in Wiles’s proof ’ defines certain cohomology groups by elementary construc-
tions known well before group cohomology—indeed since Noether in the

¹⁵ In Detlefsen’s terms I claim homology introduces no remote ideas but merely organizes ideas already
directly involved in number theory and topology.
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1930s (Washington, 1997, p. 101). This could eliminate Galois cohomology
from the proof but Washington takes it the other way around as introducing
that cohomology to the reader. The elimination would be routine and would
replace conceptual arguments by opaque calculations. Of course, to short-
cut Wiles’s use of cohomology by genuinely simpler new insights would be
wonderful—like shortening any proof by any simpler new insight.

13.3.3 Languages

Some philosophical theories of structuralism allow ‘no intelligible attempt—of
the kind that Zermelo and Fraenkel undertook—to unify mathematical prac-
tice’ (MacBride, 2005, p. 572). Structural methods in practice, though, stand
out for making the unity of mathematics work more deeply and powerfully
than Zermelo and Fraenkel ever did. Barry Mazur well expressed this in
accepting the 2000 Steele Prize. He names the founders of category theory
Eilenberg, Mac Lane, and Grothendieck, not for category theory but also not
by coincidence. He names them for what they did with the theory:

I came to number theory through the route of algebraic geometry and before
that, topology. The unifying spirit at work in those subjects gave all the new
ideas a resonance and buoyancy which allowed them to instantly echo elsewhere,
inspiring analogies in other branches and inspiring more ideas. One has only to
think of how the work of Eilenberg, Mac Lane, Steenrod, and Thom in topology
and the early work in class field theory as further developed in the hands of
Emil Artin, Tate, and Iwasawa was unified and amplified in the point of view
of algebraic geometry adopted by Grothendieck, a point of view inspired by
the Weil conjectures, which presaged the inextricable bond between topology
and arithmetic. One has only to think of the work of Serre or of Tate.¹⁶
But mathematics is one subject, and surely every part of mathematics has been
enriched by ideas from other parts. (NAMS, 2000, p. 479)

These methods cultivate each branch of mathematics in its own terms, and
highlight how each one precisely in its own terms has bonds to others.

Poincaré defended geometry and specifically his beloved analysis situs now
called topology against those who would reduce all mathematics to differential
analysis. We must not ‘fail to recognize the importance of well constructed
language’:

The problems of analysis situs might not have suggested themselves if the analytic
language alone had been spoken; or, rather, I am mistaken, they would have
occurred surely, since their solution is essential to a crowd of questions in analysis.

¹⁶ See references to Artin, Iwasawa, Tate, and Thom in Monastyrsky (1998). Serre and the Weil
conjectures are central to the accompanying case study.
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But they would have come singly, one after another, and without our being able
to perceive their common bond. (Poincaré, 1908, p. 380)

Each language has its own deep results and must be spoken for its own
sake, but each can also take specific results and general analogies from the
other. Structuralism has aided and not eliminated such languages. Categorical
concepts make an easy format for each one, and give uniform tools for relating
formats, so they facilitate ever new interactions in substance. Before she went
to university Emmy Noether was certified as a language teacher (Tollmien,
1990, p. 155).

Acknowledgments. Thanks to John Mayberry for many conversations on
axiomatics and structure, and to John Cobb, Fraser MacBride, Michael Resnik,
and Jamie Tappenden and students in his seminar especially Michael Docherty,
for comments that have improved this paper.
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Bourbaki, N. (1939), Théorie des Ensembles, Fascicules de résultats (Paris: Hermann).
Carter, Jessica (2004), ‘Ontology and mathematical practice’, Philosophia Mathematica,

12, 244–267.
(2005), ‘Individuation of objects: a problem for structuralism?’, Synthese, 143,

291–307.
Chihara, Charles (2004), A Structural Account of Mathematics (Oxford: Oxford University

Press).
Conway, John and Smith, Derek (2003), On Quaternions and Octonians (Natick, MA:

A. K. Peters).
Corfield, David (2003), Towards a Philosophy of Real Mathematics (Cambridge: Cam-

bridge University Press).
Cornell, Gary, Silverman, Joseph, and Stevens, Glenn (eds.) (1997), Modular Forms

and Fermat’s Last Theorem (New-York: Springer-Verlag).
Dedekind, Richard (1888), Was sind und was sollen die Zahlen? (Braunschweig: Vieweg).

Reprinted in Essays on the Theory of Numbers (New York: Dover Reprints, 1963).
Eilenberg, Samuel and Steenrod, Norman (1945), ‘Axiomatic approach to homology

theory’, Proceedings of the National Academy of Science, 31, 117–120.



368 colin mclarty

Flament, Dominique (2003), Histoire des Nombres Complexes: Entre Algèbre et Géométrie
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‘There is No Ontology Here’:
Visual and Structural Geometry
in Arithmetic
COLIN MCLARTY

In Diophantine geometry one looks for solutions of polynomial equations which
lie either in the integers, or in the rationals, or in their analogues for number
fields. Such polynomial equations {Fi(T1, ... Tn)} define a subscheme of affine
space An over the integers which can have points in an arbitrary commutative
ring R. (Faltings, 2001, p. 449)

Structuralists in philosophy of mathematics can learn from the current heritage
of the ancient arithmetician Diophantus. A list of polynomial equations defines
a kind of geometric space called a scheme. By one definition these schemes
are countable sets built from integers in very much the way that Leopold
Kronecker approached pure arithmetic. In another version every scheme is a
functor as big as the universe of sets. The two versions are often mixed together
because they give precisely the same structural relations between schemes. The
practice was vividly put by André Joyal in conversation: ‘There is no ontology
here’. Mathematicians work rigorously with relations among schemes without
choosing between the definitions. The tools which enable this in principle and
require it in practice grew from topology.

The three great projects for 20th century mathematics were to absorb
Richard Dedekind’s and David Hilbert’s algebra, to absorb Henri Poincaré’s
and Luitzen Brouwer’s topology, and to create functional analysis.¹ Algebra
and topology made explosive advances when Emmy Noether initiated a series
of ever-deeper structural unifications. Her group theory became the method of

¹ Functional analysis also joined the structural unification (Dieudonné, 1981). Leading workers in all
three projects contributed to mathematical logic.
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homology of spaces. When abstract algebra spread from advanced number theory
into basic topology it became a contender for organizing all of mathematics,
as Noether intended. Her protégé Bartel van der Waerden advanced the new
hegemony in his Moderne Algebra (1930). Bourbaki based their encyclopedic
work on van der Waerden’s text (Corry, 1996, pp. 309ff.). This ‘structural’
mathematics was the research norm by the 1950s and the textbook norm by
the 1960s. Homology itself continues expanding and linking Dedekind and
Poincaré to the latest Fields Medals.²

This case study looks at schemes, which arose largely in pursuit of a single
problem, namely the Weil conjectures, a series of elegant conjectures on counting
the solutions to certain arithmetic equations (Weil, 1949).³ Weil sketched a
fascinating strategy for a proof if only the Lefschetz fixed point theorem from
topology would apply in arithmetic. It was a brilliant idea with repercussions
all across mathematics, but only a handful of leading mathematicians thought
it could possibly work.

Philosophical ideas of ‘structuralism’ in and out of mathematics could go
deeper than they have before by absorbing some general features of scheme
theory, the proof of the Weil conjectures, and much other 20th century
mathematics:

• Structuralist tools are the feasible method of highlighting intuitive and
relevant information on each structure as against technical nuts and
bolts.

• Single structures matter less than the maps or morphisms between them.
• Maps and structures are often best understood by placing them in higher

level structures: ‘Patterns themselves are positionalized by being identified
with positions of another pattern’ (Resnik, 1997, p. 218).

• Maps are often richer and more flexible than functions. In set theoretic
terms they are often more complicated than functions while in structural
terms they often form simpler more comprehensible patterns.

Intuition develops as knowledge does. The Chinese remainder theorem is an
accessible example from number theory. Logicians use it in arithmetizing
syntax (Gödel, 1967, p. 611). Georg Kreisel saw its ‘mathematical core in the
combinatorial or constructive aspect of its proof ’ which suits its role in proving
Gödel’s incompleteness theorem but he added:

I realize that there are other points of view. E.g. a purely abstract point of view:
Jean-Pierre Serre once told me that he saw the mathematical core of the Chinese

² See notably Numford and Tate (1978); Lafforgue (2003); Soulé (2003).
³ Chapters 7–11 of Ireland and Rosen (1992) introduce the arithmetic aspect of the conjectures.
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remainder theorem in a certain result of cohomology theory. (Kreisel, 1958,
p. 158)

We will see, though, that cohomology is not ‘abstract.’ It is geometrical.
Section 14.1 sketches Kronecker’s and Noether’s arithmetic. Section 14.2

shows how Noether’s algebra organized Poincaré’s topology and illustrates the
centrality of maps. Poincaré emphasized single spaces. Noether emphasized the
pattern of spaces and maps which was soon captured as the category Top of
topological spaces which in turn became one object in the pattern of categories
and functors, i.e. the category CAT of categories. Homology today uses
patterns where each single position is a functor from one category to another
and the maps are natural transformations (Mac Lane, 1986, p. 390). The rising
levels are sketched in Sections 14.2.2 and 14.2.4 while Section 14.2.3 illustrates
the Lefschetz fixed point theorem. Sections 14.3 and 14.4 introduce schemes
and give the Chinese remainder theorem in classical and cohomological forms.

The final section focuses on three points that philosophy of mathemat-
ics ought to learn from the past century’s practice: first, the rising levels
of structure directly aid intuition; second, practice relies on the generality
of categorical morphisms as against the set theoretic functions favored by
most philosophers of mathematics today; and third, the interplay of levels
raises conceptual questions on identity. In particular, categorists current-
ly debate the importance of equality versus isomorphism, as discussed in
Sections 14.5.3–5.5.

14.1 Diophantine equations

14.1.1 Kronecker’s treatment of irrationals

Diophantus sought positive integer and rational solutions to arithmetic
equations. Sometimes he would explore a problem far enough to show in our
terms that the solution (or its square) is negative. Then he says there is no solu-
tion. When a problem leads towards a positive irrational solution ‘he retraces
his steps and shows how by altering the equation he can get a new one that has
rational roots’ (Kline, 1972, p. 143). Perhaps he rejected irrationals although
they had been studied for centuries before him (Fowler, 1999). Perhaps he
just enjoyed rational arithmetic. Perhaps he was like modern mathematicians
who appreciate the irrational solutions to Xn + Yn = Zn but also worked for
centuries to see if it has nonzero rational ones. His motives are as hard to tell
today as the date of his life, which is only known to lie between 150bc and
350ad (Knorr, 1993).
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His book Arithmetica was cutting edge mathematics in 1650, though, as
Fermat worked from it and sparked a rebirth of Diophantine arithmetic.
Today this uses irrational and complex numbers in two different ways. The
subject called analytic number theory uses complex function theory. Even now it
is mysterious why deep theorems of calculus should reveal so much arithmetic,
although the formal techniques are well understood.⁴ The other use of irrational
and complex numbers, algebraic number theory, was unmysterious by the mid-
19th century. Or, better, it was no more mysterious than arithmetic itself. It
only added algebra.

For an infamously seductive example let ω be a complex cube root of
1 so that 1+ ω + ω2 = 0.⁵ The degree 3 Fermat equation X3 + Y 3 = Z3

factors as:

(X + Y)(X + Yω)(X + Yω2) = Z3

Just multiply out the left-hand side and use the equation on ω. In fact prime
factorization holds for numbers of the form a0 + a1ω with ordinary integers
a0, a1 and this helps to prove that the degree 3 Fermat equation has no non-
trivial solutions. Prime factorization fails for the numbers formed using some
primes p in place of 3 so this reasoning cannot prove Fermat’s Last Theorem.
But the method made great advances on Fermat and many other problems
(Kline, 1972, p. 819f.).

Kronecker would replace ω with the arithmetic of polynomials

P(X) = a0 + a1X + · · · + an−1Xn−1 + anXn

where a0 ... an are ordinary integers; and X is merely a variable. We say
polynomials P(X) and Q(X) are congruent modulo 1+ X + X2, and we write

P(X) ≡ Q(X) (mod 1+ X + X2)

if and only if the difference Q(X)− P(X) is divisible by 1+ X + X2. In
particular

X �≡ 1 (mod 1+ X + X2)

since clearly 1− X is not divisible by 1+ X + X2. And yet

X3 ≡ 1 (mod 1+ X + X2) because 1− X3 = (1− X)(1+ X + X2).

⁴ Mazur conveys the depth of both mystery and knowledge in one famous case (1991).
⁵ Cube roots of 1 are the roots of 1− X3 which factors as (1− X)(1+ X + X2). So 1 is a cube

root of itself, and the two complex cube roots satisfy 1+ ω + ω2 = 0. The quadratic formula shows
the complex roots are ω = (−1±√−3)/2.
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This arithmetic reproduces the algebra of ω only writing X for ω and con-
gruence modulo 1+ X + X2 for =. Of course the complex number ω also
fits into an analytic theory of the whole complex number plane. This analytic
context is lost, as Kronecker intended, when we restrict attention to integer
polynomials.

As another example, the Gaussian integers are complex numbers a0 + a1i
where a0, a1 are ordinary integers. Replace them with polynomials modulo
1+ X2, writing

P(X) ≡ Q(X) (mod 1+ X2)

if and only if Q(X)− P(X) is divisible by 1+ X2. In particular

X2 ≡ −1 (mod 1+ X2)

Other congruence relations give all the number fields mentioned in Faltings’
quote above. Kronecker would even banish negative numbers by replacing
−1 with a variable Y modulo the positive polynomial 1+ Y (Kronecker,
1887a, b).

14.1.2 The theology of numbers

It is worth a moment to put Kronecker’s famous saying in context:

Many will recall his saying, in an address to the 1886 Berliner Naturforscher-
Versammlung, that ‘the whole numbers were made by dear God (der liebe Gott),
the rest is the work of man.’ (Weber, 1893, p. 15)

Kronecker elsewhere reversed this to say we make the whole numbers and not
the rest. He endorsed Gauss in print:

The principal difference between geometry and mechanics on one hand, and the
other mathematical disciplines we comprehend under the name of ‘arithmetic,’
consists according to Gauss in this: the object of the latter, number, is a pure
product of our mind, while space as well as time has reality also outside of our
mind which we cannot fully prescribe a priori. (Kronecker, 1887b, p. 339)

The late Walter Felscher has pointed out that:

‘lieber Gott’ is a colloquial phrase usually used only when speaking to children
or illiterati.⁶ Addressing grown-ups with it contains a taste of being unserious, if
not condescending ... ; no priest, pastor, theologian or philosopher would use it
when expressing himself seriously. There is the well known joke of Helmut Hasse

⁶ The phrase is famous in classical music but searches of WorldCat confirm that ‘lieber Gott’ in 19th
century prose was generally folkloric or aimed at children.
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who, having quoted Kronecker’s dictum on page 1 of his yellow Vorlesungen
über Zahlentheorie (1950), added to the index of names at the book’s end under
the letter L the entry ‘Lieber Gott p. 1.’ (26 May 1999 post to the list Historia
Matematica archived at <http://www.mathforum.org.>)

Kronecker was not serious about the theology of numbers. He was serious about
replacing irrational numbers with the ‘pure’ arithmetic of integer polynomials.

14.1.3 One Diophantine equation

Consider this Diophantine equation:

Y 2 = 3X + 2 (14.1)

Calculation modulo 3 will show it has no integer solutions. Say that integers
a, b are congruent modulo 3, and write

a ≡ b (mod 3)

if and only if the difference a− b is divisible by 3. The key here is that
congruent numbers have congruent sums and products.

Theorem 5. Suppose a ≡ b and c ≡ d (mod 3). Then

(a+ c) ≡ (b+ d) and (a · c) ≡ (b · d) (mod 3)

Proof. Suppose 3 divides both a− b and c − d. The claim follows because

(a+ c)− (b+ d) = (a− b)+ (c − d)

(a · c)− (b · d) = (a− b) · c + b · (c − d) �

If Equation (14.1) had an integer solution X = a, Y = b then the sides
would also be congruent modulo 3

b2 ≡ 3a+ 2 ≡ 2 (mod 3)

But b is congruent to one of {0, 1, 2} modulo 3. By Theorem 5 the square
b2 is congruent to the square of one of these. And none of these squares is 2
modulo 3:

02 ≡ 0 12 ≡ 1 22 ≡ 4 ≡ 1 (mod 3)

So a, b cannot be an integer solution to Equation (14.1).
For future reference notice that Equation (14.1) does have solutions modulo

other integers. For example X = 2, Y = 1 is a solution modulo 7 since

12 ≡ 1 ≡ 8 ≡ 3 · 2+ 2 (mod 7)

http://www.mathforum.org
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And the equation has solutions of other forms. For example, in numbers of the
form a+ b

√
2 with ordinary integers a, b there is a solution X = 0, Y = √2

since
(
√

2)2 = 3 · 0+ 2

14.1.4 Arithmetic via morphisms

This reasoning can be organized in the ring Z/(3), the quotient ring of Z by 3,
which is the set {0, 1, 2} with addition and multiplication by casting out 3s:

+ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

0 1 2

0 0 0 0

1 0 1 2

2 0 2 1

·

Construing Equation (14.1) in Z/(3) makes 3 = 0 and so gives Y 2 = 2. The
multiplication table shows 0,1 are the only squares in Z/(3). So Equation (14.1)
has no solutions in Z/(3). Next, consider the function r : Z → Z/(3) taking
each integer to its remainder on division by 3. So

r(0) = r(3) = 0 r(2) = r(8) = 2 and so on

By Theorem 5, this preserves addition and multiplication. So it would take any
integer solution to any polynomial equation over to a solution for that same
equation in Z(3). Since Equation (14.1) has no solutions in Z(3), it cannot
have any in Z either.

The watershed in ‘modern algebra’ came when Noether reversed the
order of argument. Instead of beginning with arithmetic she would deduce
the arithmetic from purely structural descriptions of structures like Z/(3)

(Noether, 1926). In the case of Z/(3) this meant looking at arbitrary rings
and ring morphisms: A ring R is any set with selected elements 0,1 and
operations of addition, subtraction, and multiplication satisfying the familiar
associative, distributive, and commutative laws.⁷ A ring morphism f : R → R′ is
a function preserving 0,1 addition and multiplication. Noether would rely on
the following:

Fact on Z/(3) The ring morphism r : Z → Z has r(3) = 0 and: For any ring R and
ring morphism f : Z → R with f (3) = 0 there is a unique morphism u : Z/(3)→ R
with ur = f .

⁷ See Mac Lane (1986, pp. 39, 98) or any algebra text. All rings in this paper are commutative.
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r

f

u

/(3)

R

This Fact in no way identifies the elements of Z/(3). It says how Z/(3) fits
into the pattern of rings and ring morphisms. It implies there are exactly three
elements and they have specific algebraic relations to each other. It does not say
what the elements are. Noether’s school specified them in various ways: as the
integers 0,1,2, or else as congruence classes of integers, or else as integers taken
with congruence modulo 3 as a new equality relation. Saunders Mac Lane con-
trasted those last two approaches.⁸ Noether could have defined Z/(3) in some
such way and proved the Fact from the definition; but in practice the Fact was
her working definition. She knew it characterized Z/(3) up to isomorphism:

Theorem 6. Suppose a ring Z/(3) and morphism r satisfy the Fact on Z/(3), as do
another Z/(3)′ and r ′. Then there is a unique ring isomorphism u : Z/(3)→ Z(3)′ such
that ur = r ′.

r

r ′

u

/(3)

/(3)′

Proof. Since r ′(3) = 0, the assumption on Z/(3) and r says there is a unique
morphism u with ur = r ′. Since r(3) = 0, the assumption on Z/(3)′ and r ′
says there is a unique v : Z/(3)′ → Z/(3) with vr ′ = r. The composite vu is a
ring morphism with vur = vr ′ = r. In other words, vur = 1Z/(3)r, so uniqueness
implies vu = 1Z/(3). Similarly uv = 1Z/(3)′ .

She took the Fact as a case of the homomorphism theorem: a theorem or family
of theorems on quotient structures which she was rapidly expanding through
the ten years up to her death.⁹ From the homomorphism theorem she deduced
isomorphism theorems very much the way we deduced Theorem 6. She recast
problems of arithmetic as problems about morphisms, as for example problems
of arithmetic modulo 3 became problems about morphisms between Z/(3)

and related structures.
Equation 14.1 has solutions in other rings such as the quotient Z/(7) or

the ring Z[
√

2] of numbers of the form a+ b
√

2 with a, b ordinary integers.

⁸ See (Noether, 1927, n. 6) and discussion in McLarty (2007b, Section 5).
⁹ She knew she had not yet measured the scope of this theorem (McLarty, 2006, Section 4). We

could call the present paper a case study of Noether’s homomorphism theorem.
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Kronecker’s way of eliminating the irrational
√

2 amounts to treating Z[
√

2]
as a quotient of the ring Z[X] of integer polynomials in one variable X .

r2−X2 : Z[X] → Z[X]/(2− X2) ∼= Z[
√

2]

Noether’s homomorphism and isomorphism theorems describe this and all
quotients up to isomorphism by their places in the pattern of ring morphisms.
That means arbitrary commutative rings as in the epigraph from Faltings.
Restricting attention to ‘the rings that occur in practice’ would be pointless
and unworkable. Just stating the restriction would mean focusing on details
irrelevant to most proofs. Plus, too many rings of too many kinds are already
in use and more are constantly brought in. Important results often refer to
specific rings, notably the integers Z and rationals Q, but no such focus fits
into the basic theorems or definitions.

14.2 The homology of topological spaces

14.2.1 The sphere and the torus

Homology theory began pictorially enough. Compare the sphere S2, i.e. the
surface of a ball, to the torus T , i.e. the surface of a doughnut. A small circle
on either one can bound a patch of it:

Fig. 14.1.

The difference is that every circle on the sphere bounds a region but not all
circles on the torus do. Draw a vertical circle around the small circumference
of the torus, another larger horizontal circle around the top of the torus, and a
diagonal circle that spirals around in both ways:

Fig. 14.2.
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Intuitively the vertical circle on the left is not wrapped around any region
on the surface because it is wrapped around the ‘hole’ that runs through
the interior of the torus. The larger horizontal circle wraps around the hole
through the center of the torus. The spiraling circle wraps around both holes.

A hole is called 1-dimensional if a circle can wrap around it. The hole inside
the sphere is not 1-dimensional since any circle on the sphere can slip off to one
side and (for example) shrink down to the small bounding circle in Figure 14.1.
That hole is 2-dimensional as the sphere surface wraps around it. The holes in
each dimension say a great deal about a topological space (Atiyah, 1976).

To organize this information, Henri Poincaré called a circle C on a surface
homologous to 0 if it bounds a region, and then wrote C ∼ 0 (Sarkaria, 1999).
The two small circles in Figure 14.1 are both homologous to 0, while none
of the three on the torus in Figure 14.2 are. Name those three C1, C2, C3

respectively. Together they do bound a region.¹⁰ Poincaré says their sum is
homologous to 0:

C1 + C2 +C3 ∼ 0

He would use the usual rules of arithmetic to rewrite this as

C3 ∼ −C1 −C2

In fact he would consider all the circles C on the torus.¹¹ He called any formal
sum

ajCj + akCk + · · · + anCn

of circles Ci on the torus with integer coefficients ai a 1-cycle. If those circles
with those multiplicities form the boundary of some sum of regions then the
1-cycle is homologous to 0:

ajCj + akCk + · · · + anCn ∼ 0

A pair of 1-cycles are homologous to each other

aiCi + · · · + akCk ∼ anCn + · · · + apCp

if and only if their formal difference is homologous to 0:

aiCi + · · · + akCk − anCn − · · · − apCp ∼ 0

¹⁰ Cut the torus along the small circle C1 to form a cylinder, and then along the horizontal circle
C2 to get a flat rectangle with the spiral circle C3 as diagonal. Either triangular half of the rectangle is
bounded by one vertical side, one horizontal, and the diagonal.

¹¹ Here a ‘circle’ in any space M is any continuous map C : S1 → M from the isolated circle or
1-sphere S1 to M . It may be quite twisted and run many times around M in many ways.



380 colin mclarty

The key to the homology of the torus is that every 1-cycle on the torus is
homologous to a unique sum of C1 and C2:

ajCj + akCk + · · · + anCn ∼ a1C1 + a2C2

for some unique a1, a2 ∈ Z. The pair {C2, C3} serves as well

ajCj + akCk + · · · + anCn ∼ a2C2 + a3C3

for some unique a2, a3 ∈ Z. The pair {C1, C3} also serves as do infinitely many
others. No single cycle will do. So the first Betti number of the torus is 2. The
first Betti number of the sphere S2 is 0, since all 1-cycles on it are homologous
to 0.

Higher Betti numbers are defined using higher dimensional figures in place
of circles. A good n-dimensional space M has an ith Betti number, counting the
i-dimensional holes in M , for every i from 0 to n. The Betti numbers of a space
say much about its topology but, in fact, Poincaré and all topologists of the
time knew that the numbers alone omit important relations between cycles.

14.2.2 Brouwer to Noether to functors

By 1910 the standard method in topology was algebraic calculation with cycles
(Herreman, 2000). Everyone from Poincaré on knew that the cycles formed
groups. The 1-cycles on the torus add and subtract and they satisfy all the
axioms for an Abelian group, when the relation ∼ is taken as equality. The
same holds for the i-dimensional cycles on any n-dimensional space M , for
each 0 ≤ i ≤ n. Only no one wanted to use group theoretic language in
topology. Brouwer would not even calculate with cycles. But he was a friend
of Noether’s and they shared some students.

As Noether emphasized morphisms in algebra, so Brouwer organized his
topology around maps or continuous functions f : M → N between topo-
logical spaces (van Dalen, 1999). His most famous theorem, the fixed point
theorem, says: Let Dn be the n-dimensional solid disk, that is all points on or
inside the unit sphere in n-dimensional space Rn, then every map f : Dn → Dn

has a fixed point, a point x such that f (x) = x. Many of his theorems are
explicitly about maps, and essentially all of his proofs are based on finding
suitable maps.

Noether’s homomorphism and isomorphism theorems unified her viewpoint
with Brouwer’s. Given any topological space M , she would explicitly form
the group Zi(M) of i-cycles on M , as the formal sums of circles shown above
form the group Z1(T ) of 1-cycles on the torus. Then she would form the
subgroup Bi(M) ⊆ Zi(M) of n-boundaries on M , in other words the i-cycles
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which bound (i+ 1)-dimensional regions in M . She formed the ith homology
group as the quotient:

Hi(M) ∼= Zi(M)/Bi(M)

Intuitively Hi(M) counts the i-cycles on M , but counting a cycle as 0 if it
bounds a region. In effect it counts the cycles that surround holes and thus
counts the i-dimensional holes in M . Her whole approach to algebra led her
to focus on:

Fact on Hn(M). There is a group morphism q : Zi(M)→ Hi(M) which kills
boundaries in the sense that q(β) = 0 for every β ∈ Bi(M) and: For any Abelian group
A and f : Zi(M)→ A which kills boundaries there is a unique u : Hi(M)→ A with
uq = f .

Hi(M )

Zi(M ) u

A

q

f

This defines Hi(M) up to Abelian group isomorphism just as the Fact on Z/(3)

defined Z/(3) up to ring isomorphism in Section 14.1.4.
Crucially, the Fact specifies group morphisms from Hi(M). With some trivial

facts of topology¹² it implies that each map f : M → N induces morphisms

Hi(f ) : Hi(M)→ Hi(N)

It articulates what had been ad hoc and implicit before: While a map f carries
points of M to points of N , the morphism Hi(f ) carries i-dimensional holes
in M to i-dimensional holes in N and preserves intricate relations between
them. This works in every dimension i relevant to the spaces M and N . Paul
Alexandroff, Noether’s student and also Brouwer’s, seized on this.

When Hilbert published his lectures on intuitive geometry he asked Alexan-
droff for a section on topology. The section did not appear in Hilbert and
Cohn-Vossen (1932) but became the brilliant fifty page Alexandroff (1932)
which has never gone out of print. It does topology with thoroughly group
theoretic tools and may be the only mathematics text ever dedicated jointly to
Hilbert and Brouwer. Alexandroff and Hopf (1935) became the standard topol-
ogy textbook for the next twenty years and has also never been out of print.

The explicit correlation of maps to group morphisms immediately proved
new topological theorems. But it also simplified the creation of new homology
theories using new technical definitions of cycle and boundary. So it brought new

¹² Each map f : M → N takes M-cycles to N-cycles, and M-boundaries to N-boundaries.
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complexities and some disorder over the next twenty years until topologists
found a way to organize the subject by bypassing all the nuts and bolts:

In order that these algebraic techniques not remain a special craft, the private
reserve of a few virtuosos, it was necessary to put them in a broad, coherent, and
supple conceptual setting. This was accomplished in the 1940s and 1950s through
the efforts of many mathematicians, notably Samuel Eilenberg at Columbia
University, Saunders Mac Lane of the University of Chicago, the late Norman
Steenrod, and Henri Cartan. (Bass, 1978, p. 505)

They axiomatized homology as a correlation between patterns of continuous
maps and patterns of group morphisms. For each dimension i, the i-dimensional
homology group became a functor Hi. This means:

• Homology preserves domain and codomain.

f : M → N gives Hi(f ) : Hi(M)→ Hi(N)

• Each identity map 1M : M → M (which, intuitively, does not affect the
holes of M) has identity homology.

1M : M → M gives 1Hi(M) : Hi(M)→ Hi(M)

• The homology of a composite g f is the composite of the homologies.

T ′
f g

T T ′′
g f

gives
Hi( f )

Hi(g f )

Hi( g)
Hi(T ′)

Hi(T ) Hi(T ′′)

The axioms require more which we will not go into.¹³
The structuralist point is that all the groups and morphisms are defined only

up to isomorphism. Topologists still use nuts-and-bolts descriptions of cycles
and boundaries but textbooks use the axioms to define homology. The axioms
make it easier to focus on geometry and they show how different nuts and
bolts all yield the same calculations.

14.2.3 The Lefschetz fixed point theorem

The Lefschetz fixed point theorem applies to especially nice spaces M , the
orientable topological manifolds, where each small enough region of M looks like a
continuous piece of some Euclidean coordinate space Rn as for example small

¹³ See Eilenberg and Steenrod (1945), Hocking and Young (1961, Chapter 7).
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regions of a sphere or torus look like pieces of the plane R2. A sphere can turn
on an axis the way the earth does. A torus can turn around a central axis the
way a bicycle tire turns around its axle:

Fig. 14.3.

A rotating sphere has two fixed points, call them the North and South poles.
The rotating torus has none—obviously because the axis passes through a
hole. Of course the matter is more complex with general continuous functions
rather than just rigid rotations. It is more complex yet for manifolds with more
holes or in higher dimensions. In general the theorem relates fixed points of
a map f : M → M to the way f acts on holes in all dimensions, that is to the
morphisms Hi(f ).

On its face the fixed point theorem counts fixed points, which are solutions
to equations of the form f (x) = x. Weil saw that if he could apply it to suitable
arithmetic spaces then he could use this plus Galois theory to count solutions to
his polynomials. There was one crying problem: it was nearly inconceivable that
arithmetic spaces could be defined so as to support such a topological theorem.

14.2.4 Cohomology

The route to scheme theory ran through a variant of homology called cohomology
and the key to schemes is that they admit coverings analogous to the topological
case. For example, the torus can be covered by overlapping cylindrical sleeves,
U1, U2, U3, drawn here in solid outline:

U1

U2

U3

Fig. 14.4.

The route from U1 to U2 to U3 travels around the hole in the center of
the torus. The hole is revealed, very roughly, by the fact that every two
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components of this cover have non-empty intersection

U12 = U1 ∩ U2 U23 = U2 ∩ U3 U31 = U3 ∩ U1

while the triple intersection is empty:

U123 = U1 ∩ U2 ∩ U3 = ∅
There is no point in the center where the components would all overlap. In
the center is a hole. The precise relation between holes and covers is complex.
For example the cover {U1, U2, U3} does not reveal the hole inside the torus,
which is hidden inside each sleeve. Other covers reveal that one. Cohomology
summarizes covers of a space M to produce cohomology groups Hn(M) which
are close kin to the homology groups Hn(M). The standard tool for it is
sheaves.

On one definition, a sheaf on a space M is another space with a map S → M
where S is a union of partially overlapping partial covers of M , which may
(or may not) patch together in many different ways to form many covers.¹⁴
Another definition says a sheaf F on M assigns a set F(U) to each open
subset U ⊆ M , thought of heuristically as a set of ‘patches’ covering U . There
are compatibility conditions among the sets over different open subsets of M
which we will not detail. If the sets F(U) are Abelian groups in a compatible
way then F is an Abelian sheaf.

The cohomology of a space M became an infinite series H1, H2, ... of
functors from the category AbM of Abelian sheaves on M to the cat-
egory Ab of ordinary Abelian groups. Then the entire series H1, H2, ... was
conceived as a single object called a δ-functor, which can be defined (up to
isomorphism) by its place within a category of series of functors AbM → Ab.
Today’s tools were introduced in one of the most cited papers in math-
ematics (Grothendieck, 1957). In topology or complex analysis the functorial
patterns are always invoked although lower-level constructions are often taken
as defining cohomology. Textbooks on cohomological number theory take
the functorial pattern as definition. Of course the theory of derived functors
was developed to get at geometry, arithmetic, etc. and not to call attention
to itself. So for example Washington on Galois cohomology never mentions
derived functors. But each time he writes ‘for proof see ... ’, the reference
uses them.¹⁵

¹⁴ See the light introduction in Mac Lane (1986, pp. 252–256, 351–355).
¹⁵ See Huybrechts (2005) on complex geometry, Hartshorne (1977) and Milne (1980) on number

theory. Compare Washington (1997, pp. 102, 104, 105, 107, 108, 118, 120).
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14.3 Arithmetic schemes

14.3.1 Geometry over the integers

Classical algebraic geometry looked at real and complex number solutions to
lists of polynomials. Around 1940, though, André Weil took up Kronecker’s
vision of arithmetic and called for ‘algebraic geometry over the integers’ which
Grothendieck achieved by the theory of schemes (Weil, 1979, vol. 1, p. 576).
So now, for example, Faltings in the epigraph writes of ‘affine space over the
integers’, written An

Z to make the integers explicit. What is it?
Classical real affine n-space Rn, or An

R, is the space of n-tuples 〈x1, ... xn〉 of
real numbers.¹⁶ But the set Zn of n-tuples of integers captures little arithmetic.
Recalling Section 14.1.3, the equation

Y 2 = 3X + 2 (14.2)

defines the empty subset of Z2 the same as, say,

1 = 0

But Equation (14.2) is not arithmetically trivial while 1 = 0 is. Equation (14.2)
has solutions in many rings including paradigmatically arithmetic examples like
Z/(7) and Z[

√
2] as in Sections 14.1.3–14.1.4. The affine space A2

Z is more
subtle than Z2, so that Equation (14.2) can define a subscheme of it containing
these solutions, while 1 = 0 defines the empty subscheme. There are two basic
approaches.

14.3.2 Schemes as variable sets of solutions

Consider the equation

X2 + Y 2 = 1 (14.3)

It has four integer solutions

X = ±1 while Y = 0; or else X = 0 while Y = ±1

Clearly the equation points towards a circle, but these four solutions do little
to show it. So the idea is to look not only at integer solutions. The equation
has infinitely many rational solutions. Each rational number q gives a rational
solution

¹⁶ This usage contrasts affine spaces to projective spaces, not to vector spaces.
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X = q2 − 1
q2 + 1

Y = 2q
q2 + 1

as straightforward calculation shows. Every real number θ gives a real solu-
tion

X = cos(θ) Y = sin(θ)

The ring Z/(7) of integers modulo 7 has eight solutions, including X = 2,
Y = 5:

22 + 52 = 29 ≡ 1 (mod 7)

So the equation has not one set of solutions, but for each ring R it has a set of
solutions in R which we call VS1(R). Here ‘V ’ recalls the classical geometer’s
term, the variety of points defined by an equation, while the subscript is to
suggest that this is the equation of the circle S1. Ring morphisms preserve
solutions. Given any ring morphism f : R → R′ and any solution a, b ∈ R to
Equation (14.3) then f (a), f (b) ∈ R′ is also a solution since by definition of
morphism

f (a)2 + f (b)2 = f (a2 + b2) = f (1) = 1

So VS1 is a variable set, specifically a functor VS1 : Ring→ Set from the cat-
egory of rings to the category of sets. It takes each ring R to the set VS1(R), and
each ring morphism f : R → R′ to the corresponding function. It preserves
identities:

1R : R → R gives 1VS1 (R) : VS1(R)→ VS1(R)

And it preserves composition:

f g

g f
R

R ′

VS1(R)

VS1( f ) VS1( g )
VS1(R′)

VS1(R′′)
VS1( g f )

R′′

gives

Call VS1 the affine scheme of the Equation (14.3). From this viewpoint the
affine n-space An

Z is the functor corresponding to n variables and the trivial
equation 1 = 1. Any list of equations on n variables defines a similar functor,
a subscheme of An

Z. An equation may have no variables, as for example the
equation 7 = 0 gives subschemes expressing arithmetic modulo 7. An arithmetic
scheme is any functor Ring→ Set which contains suitably overlapping parts,
where each part is isomorphic to the affine scheme of some finite list of integer
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polynomials. In general there are many ways to choose these parts and no one
covering is intrinsic to the scheme.

A scheme map, on this approach, is simply any natural transformation between
the functors. This is the start of many pay-offs as geometrically important
ideas find quite direct functorial expression. It may not even seem plausible
that such an abstract definition of maps could have geometric content until
you have seen it work; as we do not have space to show here. In fact,
though, it gives exactly the same patterns of maps as the more evidently
geometrical definition in the following section. The functorial apparatus
looked heavy to some algebraic geometers but it merely made a central
fact of algebra explicit: Every integer polynomial has a (possibly empty) set
of solutions in every commutative ring, and every ring morphism preserves
solutions. The techniques spread as geometers learned the practical value
of using arbitrary commutative rings to prove theorems on the ring Z of
integers.

Grothendieck and Dieudonné (1971) used this version of schemes in
the introduction. Such a scheme is ‘basically a structured set’ (Mumford,
1988, p. 113) but strictly it is a structured proper class. There are technical
means to avoid proper classes—by specific tricks in specific situations, or
generally by adding Grothendieck universes to set theory (Artin et al., 1972,
pp. 185ff.). But standard textbook presentations use functors on all com-
mutative rings and these are proper classes in either ZF or categorical set
theory.

14.3.3 Schemes as Kroneckerian spaces

The other approach to schemes constructs a space from the data. If the equation

X2 + Y 2 = 1 (14.3)

is to define a space then intuitively a coordinate function on that space should
be given by a polynomial in X and Y , while two polynomials P(X,Y),Q(X,Y)
give the same function if they agree all over the space. To a first approxi-
mation we would say P(X,Y) and Q(X,Y) give the same function on this
space if

P(a, b) = Q(a, b) for all 〈a, b〉 ∈ Z2with a2 + b2 − 1 = 0

But this puts too much stress on integer solutions. In the case of equations with
no integer solutions this poor definition would make every two polynomials
give the same function trivially. So we actually use a stronger condition taken
from the defining polynomial: Polynomials P(X,Y) and Q(X,Y) are called
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congruent modulo X2 + Y 2 − 1, written

P(X, Y) ≡ Q(X, Y) (mod X2 + Y 2 − 1)

if and only if

Q(X, Y)− P(X, Y) is divisible by X2 + Y 2 − 1

A coordinate function on the space is a congruence class of polynomials. For
example X2Y defines a coordinate function on this space, the same function
as Y − Y 3, since light calculation shows

(X2Y)− (Y − Y 3) = Y .(X2 + Y 2 − 1)

Altogether the ring of coordinate functions is the ring of integer polyno-
mials in two variables, Z[X, Y ], modulo X2 + Y 2 − 1, i.e. it is the quotient
ring

Z[X, Y ]/(X2 + Y 2 − 1)

These ‘functions’ are constructed from integer polynomials just as Kronecker
would construct irrationals as in Section 14.1.1.

The next step is to use the functions to define points of this space. The
motivation is that each point p should have a set of functions

p ⊆ Z[X, Y ]/(X2 + Y 2 − 1)

which take value 0 at p. This set should be an ideal, closed under addition and
under multiplication by arbitrary functions. That is, if the functions P1(X, Y)

and P2(X, Y) are both construed as taking value 0 at p then P1(X, Y)+
P2(X, Y) must also be; and so must the product R(X, Y) · P1(X, Y) for any
polynomial R(X, Y). Further, the ideal � should be prime, in the sense that
whenever a product lies in � then at least one factor already lies in it.¹⁷ More
formally:

If P1(X, Y) · P2(X, Y) ∈ � then either P1(X, Y) ∈ � or P2(X, Y) ∈ �.

Scheme theory demands no more than that for a point. It says there is a
point for each prime ideal. Textbooks say the points are the prime ideals. So
our space has a point for each integer solution a, b ∈ Z to Equation (14.3), but
also a point for the mod 7 solution 2, 5 ∈ Z/(7). It has one point combining

¹⁷ This expresses the idea that if a product is 0 then at least one factor must be—which does not hold
in every ring—but this definition makes it hold for function values at points of a scheme.
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the two real algebraic solutions
√

2/2,
√

2/2 ∈ R and −√2/2,−√2/2 ∈ R

and another point combining these two¹⁸

√
2/2,−√2/2 ∈ R and −√2/2,

√
2/2 ∈ R

It has one point for each pair of conjugate complex algebraic solutions such as

2,±√−3 ∈ C

It has no points for real or complex transcendental solutions. This elegant
algebraic definition gives our space points for precisely those solutions to
Equation (14.3) given by roots of integer polynomials (possibly modulo some
prime number) and it distinguishes only those points given by roots of distinct
polynomials.

Intuitively a closed set should be the set of all points where some function is 0,
or where some list of functions are all 0. Formally, an affine scheme has a closed
set for each ideal of coordinate functions on it, and in the case of arithmetic
schemes each ideal is defined by a finite list of polynomial equations:

P1(X, Y) = 0 ... Pk(X, Y) = 0

Then we name the space after its coordinate ring, calling it

Spec(Z[X, Y ]/(X2 + Y 2 − 1))

or the spectrum of the ring Z[X, Y ]/(X2 + Y 2 − 1).
Every commutative ring R has a spectrum Spec(R). The coordinate function

ring on Spec(R) is just the ring R. So again the ‘functions’ are generally not
functions in the set-theoretic sense. They are any elements of any ring. The
points are the prime ideals of R. The spectrum has a topology where closed sets
correspond to ideals. The spectra of rings are the affine schemes. Notably, the
affine n-space An

Z is the spectrum of the integer polynomial ring in n variables
Z[X1, ... Xn] subject to no equation or, if you prefer, the trivially true equation
1 = 1.

An
Z = Spec(Z[X1, ... Xn])

A scheme is patched together from affine schemes. More fully, a scheme is a
topological space X together with a sheaf of rings OX called the structure sheaf

¹⁸ Notice the first two solutions also satisfy 2XY = 1. The second two satisfy 2XY = −1.
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of the scheme. This sheaf assigns a ring OX(U) of ‘coordinate functions’ to
each open subset U ⊆ X , and to each inclusion of open subsets U ⊆ V of X
a ring morphism

rU,V : OX(V )→ OX(U)

The whole must be made of parts isomorphic to the spectra Spec(R) of rings
R with their coordinate functions. A scheme map

f : (X,OX)→ (Y ,OY )

consists of a continuous function f : X → Y in the ordinary sense plus a great
many ring morphisms in the opposite direction: By continuity of f , each open
subset V ⊂ Y has inverse image f −1(V ) open in X , and the scheme map
includes a suitable ring morphism

OY (V )→ OX(f −1(V ))

for each open V ⊂ Y , showing how f −1(V ) maps algebraically into V .
This version of schemes dominates Grothendieck and Dieudonné (1971) and
Hartshorne (1977), though Grothendieck favored the functorial version in his
work.

An arithmetic scheme is a scheme pasted from finitely many parts defined by
finite lists of integer polynomials. Each integer polynomial ring Z[X1, ... Xn]
is countable. Since each of its ideals is generated by a finite list of polynomials
there are only countably many, thus countably many points and closed sets
and functions on them. Altogether the Kroneckerian version of any arithmetic
scheme is countable.

14.3.4 Scheme cohomology

Schemes were born for cohomology. In fact they were born and re-born
for it. Jean-Pierre Serre introduced structure sheaves into algebraic geometry
so as to produce the cohomology theory today called coherent cohomology.
These structure sheaves were ‘the principle of the right definition’ of schemes
(Grothendieck, 1958, p. 106). Then Serre took the first step towards the sought-
after ‘Weil cohomology’. Using ideas from differential geometry he defined
covers and he proved they gave good 1-dimensional Weil cohomology groups
H1(M) for algebraic spaces M . Notably, Serre proved his groups gave the first
non-trivial step in the infinite series of a δ-functor as in our Section 14.2.4.¹⁹

For Grothendieck the functorial pattern was decisive. An idea that gave the
first step had to give every step. He made it work by producing the general

¹⁹ Serre (1958, esp. §1.2 and §3.6).
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theory of schemes and lightly altering Serre’s covers into a frankly astonishing
theory of étale maps. The purely algebraic definition of a finite étale map X → S
between schemes does a brilliant job of saying the space X lies smoothly
stacked over S even when there is no very natural geometric picture of X or
S alone. Working with Serre, Pierre Deligne, and others over several years
Grothendieck proved that these étale covers yield a cohomology theory, called
étale cohomology, satisfying enough classical topological theorems for the Weil
conjectures and much more.

14.4 An example

14.4.1 Integers as coordinate functions

The arithmetic scheme Spec(Z), the affine scheme of the ring of integers
Z, is given by the trivially true equation 1 = 1 in no variables. There is
exactly one ‘solution’ to 1 = 1—and that is to say it is true—and indeed
the equation remains true in any ring R. As a variable set this scheme is the
functor Spec(Z) = V1=1 where for each ring R the set of solutions V1=1(R) is
a singleton which we may think of as:

V1=1(R) = {true} for every ring R

This is perfectly simple and even too simple. It does nothing to reveal the
arithmetic of the integers. But that is because we have looked at this scheme
in isolation. Looking at its maps to and from other schemes we find it is
terminal in the category of schemes: Every scheme has exactly one scheme map
to Spec(Z). This is a very simple specification of the place of Spec(Z) in the
pattern or category of all schemes but it does invoke the pattern or category
of all schemes, and that very large pattern reveals all of the arithmetic of the
integers! The arithmetic of any ring R does not lie inside Spec(R) but in the
pattern of all scheme maps to Spec(R).

On the other hand, look at Spec(Z) as a space. The points are the prime
ideals and these are of two kinds: The singleton 0 is a prime ideal {0} ⊆ Z and
for each prime number p ∈ Z the set of all integer multiples of p is a prime ideal
usually written as (p) ⊆ Z. We may also write {0} = (0) since 0 is indeed the
only multiple of 0. Algebraic geometers often draw these points as a kind of line.

(2) (3) (5) (7) (11) (0)…
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Then the idea is to think of each integer m ∈ Z as a function defined on this
line. For very good reasons, the values of the function over the point (0) are
rational numbers while the values over any point (p) are integers modulo p.
The integer m ∈ Z is a function whose value at the point (0) is m and value at
each point (p) is m modulo p. For example the integer 9 has

9 ≡ 1 (mod 2) 9 ≡ 0 (mod 3)

9 ≡ 4 (mod 5) 9 ≡ 2 (mod 7)

and we can graph 9 as a function this way:

(2) (3) (5) (7) (11) (0)…

…

… …
…1

0

2 2
3
4

1 1
0 0

2

6

1
0

1

9
9

10

0

The spatial structure of Spec(Z) is determined by the ‘coordinate functions’
on it—namely by the integers! But the picture is only suggestive. Rigorous
proofs show schemes have structural relations parallel to those in geometry and
these relations return major new arithmetic theorems. We sketch one simple
example.

14.4.2 The Chinese remainder theorem

Consider congruences modulo 4 and 6:

a ≡ 2 (mod 4) and a ≡ 1 (mod 6)

These two have no solution since the first implies a is even and the second
implies it is odd. On the other hand consider

a ≡ 1 (mod 4) and a ≡ 3 (mod 6)

These agree modulo 2, as both say a is odd, and clearly a = 9 is a solution.
Then too a = 21 is a solution. Adding any multiple of 12 will give another
solution since 12 is the smallest common multiple of 4 and 6. One classical
statement of the Chinese remainder theorem is:

Theorem. Take any integer moduli m1, m2. Then for any integer remainders r1, r2
consider the congruences on an unknown integer a

a ≡ r1 (mod m1) and a ≡ r2 (mod m2)
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There are solutions a if and only if

r1 ≡ r2 (mod GCD(m1, m2))

where GCD(m1, m2) is the greatest common divisor of m1 and m2. And in that case the
solution is unique modulo LCM(m1, m2), the least common multiple of m1 and m2. In a
formula, if a and b are both solutions then

a ≡ b (mod LCM(m1, m2))

Note that 2 = GCD(4, 6) and 12 = LCM(4, 6) in the examples above.
This theorem supports thinking of integers as functions on the scheme

Spec(Z). Compare this familiar fact about the real line R:

Theorem. Take any intervals on the line, say [0, 2] ⊆ R and [1, 3] ⊆ R. Then for
any continuous functions f1 and f2 consider these conditions on an unknown continuous
function a:

a(x) = f1(x) for all x ∈ [0, 2] and a(x) = f2(x) for all x ∈ [1, 3]

There are solutions a if and only if the functions f1 and f2 agree on the intersection of the
intervals:

f1(x) = f2(x) for all x ∈ [1, 2]

And in that case the solution is unique over the union of the intervals: if a and b are both
solutions then

a(x) = b(x) for all x ∈ [0, 3]

In the Chinese remainder theorem the given numbers r1 and r2 and the
sought number a are taken as functions on the line Spec(Z). The equation

a ≡ r1 (mod m1)

says that a must agree with r1 not necessarily over the whole line but at least
at all points (p) of the line corresponding to prime factors p of m1.²⁰ The other
equation

a ≡ r2 (mod m2)

says a must agree with r2 at all points (p) corresponding to prime factors p of
m2. The necessary condition is that r1 and r2 must agree at all points (p) where
p divides both m1 and m2. But p divides both m1 and m2 if and only if it divides
their greatest common divisor so this condition can be expressed in an equation:

r1 ≡ r2 (mod GCD(m1, m2))

²⁰ For each prime power pn that divides m1, the functions a and r1 must agree on the nth order
infinitesimal neighborhood of the point (p), or in other words a ≡ r1 (mod pn).
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The proof shows this condition is also sufficient. And the function a is uniquely
determined at all points (p) where p divides either one of m1 and m2. But those
are the prime factors of LCM(m1, m2) so the unique determinacy says any two
solutions a, b have

a ≡ b (mod LCM(m1, m2)

The Chinese remainder theorem patches part of one function r1 with
part of another r2 to get a single function a on Spec(Z) just as you can
patch parts of continuous functions f1, f2 into a single continuous function
a on the real line R. But the Chinese remainder theorem only deals with
parts given by finite numbers of primes. It follows from a more general
result with a very similar proof: for every ring R you can patch compatible
partial functions on the affine scheme X = Spec(R). In technical terms: every
structure sheaf OX is actually a sheaf, so it agrees with its own 0-dimensional
Čech cohomology.²¹

The point is simple. Many arithmetic problems are easily solved ‘locally’
in some sense, while we want ‘global’ solutions. In the Chinese remainder
theorem the list of congruences is easily solved ‘locally at each prime’ and the
trick is to patch together one solution on the whole line.²² Cohomology is all
about patching.

14.5 The philosophy of structure

14.5.1 Understanding sheaves and schemes

Intuitive ideas available in some way to some experts often become explicit
and publicly available by passing to higher levels of structure, and they often
grow further in the passage. Section 14.2.2 gave homology group morphisms
and homology theories as two examples. For another, there was a serious
problem in the early 1950s of how to understand sheaves and work with them.
Several nuts-and-bolts definitions were known but none were as simple as the
ideas seemed to be. And the specialists seeking a Weil cohomology to prove
the Weil conjectures saw that none of these definitions was vaguely suitable
for that. One thing was clear. People who worked with sheaves would draw
vast commutative diagrams ‘full of arrows covering the whole blackboard’,
dumbfounding the student Grothendieck (1985–87, p. 19). The vertices were
Abelian sheaves and the arrows were sheaf morphisms between them. One

²¹ Compare Hartshorne (1977, Proposition II.2.2) and Tamme (1994, p. 41).
²² Eisenbud (1995, Exercise 2.6) gives a basically homological proof.
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key to getting the diagrams right was to think of them as diagrams of ordinary
Abelian groups and group morphisms. Abelian sheaves were a lot like Abelian
groups.

Grothendieck followed his constant belief that the simplest most unified
account of the intuition would itself provide the needed generality.²³ Rather
than focus on individual sheaves he would describe the ‘vast arsenal’ of sheaves
on a given space:

We consider this ‘set’ or ‘arsenal’ as equipped with its most evident structure, the
way it appears so to speak ‘right in front of your nose’; that is what we call the
structure of a ‘category’. (Grothendieck, 1985–87, p. 38)

The diagrams do not stand for some other information about sheaves. They
are the relevant, categorical information. They are the information used in
practice. So Grothendieck extended ideas from Mac Lane to produce a
short list of axioms. A category satisfying these axioms is called an Abelian
category:

1. The category Ab of Abelian groups is an Abelian category, as is the
category AbM of Abelian sheaves on any space M . So are many categories
used in other cohomology theories apparently quite unlike these. This
was promising for a Weil cohomology and later did work for étale
cohomology.

2. The Abelian category axioms themselves suffice to define cohomology in
terms of derived functors and prove the general theorems on cohomology
(Grothendieck, 1957).

The axioms explicated how Abelian sheaves are like Abelian groups. They
quickly entered textbooks as the easiest way to work with sheaves. And
they opened the way to an even more intuitive understanding as they led
Grothendieck to analogous axioms for the category ShM of all sheaves on M .

He produced new axioms on a category, and called any category which
satisfies them a topos (Artin et al., 1972, pp. 322ff.):

1. The category Set of all sets is a topos, as is the category ShM of all sheaves
on any space M .

2. We can interpret mathematics inside any topos very much the way
we do in sets. The ‘Abelian groups’ in the topos ShM of sheaves on
any space M turn out to be just the Abelian sheaves on M . The
‘Abelian groups’ in other toposes play similar roles in other cohomology
theories.

²³ For more detail see McLarty (2007a).
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In short the objects of any topos are continuously variable sets as for example
the topos ShM contains the sets varying continuously over the space M .²⁴
Mathematics in a topos is like classical mathematics with some differences
reflecting the variation. Specifically mathematics in ShM differs from classical
by reflecting the topology of M . The cohomology of M measures the difference
between classical Abelian groups and Abelian groups varying continuously over
M . This measure also works in other toposes to give other cohomology theories
and it was the key to producing étale cohomology. For one expert view of
how far toposes can be eliminated from étale cohomology, and yet how they
help in understanding it, see Deligne (1977, 1998).

Categorical thinking is also central to understanding schemes. At the basic
level of the spaces to be studied, on either definition of schemes, the geometry
of a scheme is poorly revealed by looking at it as a set of points with geometric
relations among them. It may even be ‘bizarre’ on that level:

[In many schemes] the points ... have no ready to hand geometric sense. ... When
one needs to construct a scheme one generally does not begin by constructing
the set of points. ... [While] the decision to let every commutative ring define
a scheme gives standing to bizarre schemes, allowing it gives a category of schemes
with nice properties. (Deligne, 1998, pp. 12–13)

One generally constructs a scheme from its relations to other schemes. The
relations are geometrically meaningful. The category of schemes captures
those relations and incorporates Noether’s insight that the simplest arithmetic
definitions often relate a desired ring to arbitrary commutative rings as in
Section 14.1.4.

14.5.2 Several reasons morphisms are not functions

Functions are examples of morphisms, but overreliance on this example has
been a major obstacle to understanding category theory (McLarty, 1990, §7).
Indeed schemes typify the failure of Bourbaki’s structure theory based on
structure preserving functions and so they witness the inadequacy of current
philosophical theories of ‘structure’. It is not a problem with set theory. Set
theory handles schemes easily enough. We handle schemes set-theoretically
here. But even on set theoretic foundations scheme maps are not ‘structure-
preserving functions’ in the set theoretic sense—that is in Bourbaki’s sense or
in the closely related sense of the model-theoretic structuralist philosophies of
mathematics.²⁵

²⁴ William Lawvere has made this much more explicit but Grothendieck already found each topos
is ‘like’ the universe of sets (McLarty, 1990, p. 358).

²⁵ Bourbaki (1958); Hellman (1989); Shapiro (1997).



‘there is no ontology here’ 397

In the plainest technical sense neither of our definitions of schemes has
set theoretic functions as maps. On the structure sheaf definition a map from
(X,OX) to (Y ,OY ) consists of a continuous function f : X → Y plus many
ring morphisms in the opposite direction (in general, infinitely many). For the
variable set definition each map is a natural transformation and thus a structure-
preserving proper class of functions. Either way a map is more complex than a
set theoretic function.

Topology gives another kind of morphism more complex than functions.
Continuous functions f , g : S → S′ between topological spaces are called
homotopic if each one can be continuously deformed into the other (Mac Lane,
1986, p. 323). Write f for the homotopy class of f , that is the set of functions
S → S′ homotopic to f . The homotopy category Toph has topological spaces
S as objects, and homotopy classes f : S → S′ as morphisms. The morphisms
of Toph are not functions but equivalence classes of functions. By the global
axiom of choice we can select one representative function from each class.
But there is provably no way to select representatives so that the composite of
every pair of selected representatives is also selected. The categorical structure of
Toph cannot be defined by composition of functions but requires composition
of equivalence classes of functions (Freyd, 1970).

A case study by Leng (2002) includes an example from functional analysis.
C∗-algebras originated in quantum mechanics and the paradigms are algebras
of operators on function spaces. The mathematician George Elliott sought a
theorem characterizing certain ones. The theorem used inductive limits, where
the inductive limit of an infinite sequence of C∗-algebras and morphisms

A1 A2 An… …

is a single C∗-algebra A∞ combining all of the An in a way compatible with
the morphisms. The inductive limit is an actual C∗-algebra. On the way to
the theorem, though, Elliott first treated each infinite sequence of C∗-algebras
as a single new object, and defined morphisms between sequences in just such
a way as to make the sequences act like their own inductive limits.²⁶ As Leng
says: ‘Defining the morphisms between these sequences turned out to require
some ingenuity’ (2002, p. 21). But it worked. Elliott’s formal inductive limits
supported the proofs needed to imply the theorem for the actual C∗-algebra
inductive limits. It would be triply useless to think of the ingeniously defined
morphisms of sequences as ‘structure-preserving functions’ in the logician’s

²⁶ Compare Grothendieck’s ind-objects and pro-objects in (Artin et al., 1972, Exposé I).
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or Bourbaki’s sense. They are technically more complex than functions, the
properties desired of them were categorical rather than set theoretic, and it was
far from clear what structure they should preserve.

Carter (Forthcoming) gives a similar example in geometry, and urges a modal
logic interpretation of it. Examples from analysis and geometry influenced the
founders of category theory (McLarty, 2007b, §2).

Technicalities aside, it is a bad idea to think of scheme maps just one way.
We have two fundamentally different definitions. This is quite different from
cases familiar to philosophers such as the two definitions of real numbers from
the rationals by Cauchy sequences and by Dedekind cuts. Neither one of
those definitions is much used in practice.²⁷ Both definitions of scheme maps
are used. Intuition draws on both and must hang on neither. Each is fitted
to some proofs or calculations and clumsy for others. There is no ontology
here.

Finally, categorical axioms patently ignore ontology. When the leader of
a graduate student session on spectral sequences says ‘Let A be your favorite
Abelian category ... ,’ then all we know of A is what kind of patterns its
morphisms can form. In some useful Abelian categories the morphisms are
structure-preserving functions, in others they are more complex, and in others
the morphisms are finite arrays of numbers (Mac Lane, 1998, p. 11). It cannot
matter which they are since we do not know which example anyone prefers.
When Lang (1993) proves a theorem for all Abelian categories it does not
matter what the morphisms are. And when Lawvere poses axioms for a category
of categories as foundation (1963) or a category of sets as a foundation (1965)
then the morphisms are what the axioms say they are—they are not ‘functions’
defined in any prior set theory.

14.5.3 ‘The’ category of schemes

Section 14.3 gave two definitions of schemes, and so two definitions of the
category of schemes. A structuralist might hope these would be isomorphic
categories but the truth is more interesting. They are equivalent. Rough-
ly speaking, equivalent categories contain the same structures in the sense
that they contain all the same patterns of objects and arrows—but they
may have different numbers of copies of each pattern (Mac Lane, 1998,
§ IV.4).

Let SchemeO be the category of schemes X,OX as point sets with sheaves
of rings and call these ringed space schemes. Let SchemeV be the category of

²⁷ Practice usually defines the real numbers up to isomorphism by their algebra and the least upper
bound property (Rudin, 1953, p. 8).
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schemes as functors, and call these functor schemes. There is a functor

h : SchemeO → SchemeV

with two nice properties (Mumford, 1988, §. II.6).²⁸

1. The scheme maps from any X,OX to any Y ,OY in SchemeO correspond
exactly to the scheme maps h(X)→ h(Y) in SchemeV .

2. Every functor scheme is isomorphic to the image h(X) of at least one
ringed space scheme X,OX .

We say that a functor scheme V corresponds to the ringed space scheme X
if V is isomorphic to h(X). But then V also corresponds to every ringed
space scheme isomorphic to X . The key to working this way is that all
the ringed space schemes corresponding to X are already isomorphic (as
ringed space schemes). For many purposes you need not decide which
category you are in. You can go back and forth by the functor h. As
one germane application this passage preserves cohomology. Cohomology
of schemes can be defined purely in terms of categorical relations between
schemes. Exactly the same relations exist in the category of ringed space
schemes and the category of functor schemes. Many calculations of cohom-
ology, and applications of cohomology, work identically verbatim in the two
categories.

14.5.4 Isomorphism versus equivalence

Like the two definitions of the category of schemes, so the two definitions
in Section 14.2.4 of the category of sheaves on a space M agree only up to
equivalence. Equivalence is isomorphism of categories up to isomorphism in
the categories.

Isomorphism is defined the same way for categories as for any kind of
structure: A functor F : C→ D is an isomorphism if it has an inverse, namely
a functor G : D→ C composing with F to give the identity functors GF = 1C

and FG = 1D. In other words, for all objects C of C, and D of D:

GF(C) = C FG(D) = D

and the same for morphisms. Categories are isomorphic if there is an iso-
morphism between them.

A functor F : C→ D is an equivalence if it has a quasi-inverse, a functor G
with composites isomorphic to identity functors: GF ∼= 1C and FG ∼= 1D. In

²⁸ These imply equivalence as defined in the next section, given a suitable axiom of choice.
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other words for all objects C of C and D of D there are isomorphisms

GF(C) ∼= C FG(D) ∼= D

in a way compatible with morphisms. Categories are equivalent if there is an
equivalence between them. Gelfand and Manin overstate an important insight
when they call isomorphism ‘useless’ compared to equivalence:

Contrary to expectations [isomorphism of categories] appears to be more or less
useless, the main reason being that neither of the requirements GF = 1C and
FG = 1D is realistic. When we apply two natural constructions to an object, the
most we can ask for is to get a new object which is canonically isomorphic to
the old one; it would be too much to hope for the new object to be identical
to the old one. (Gelfand and Manin, 1996, p. 71)

This is actually not true even in Gelfand and Manin’s book. Their central
construction is the derived category D(A) of any Abelian category A. Given
A, they define D(A) up to a unique isomorphism (1996, §III.2). They use
the uniqueness up to isomorphism repeatedly. The notion of isomorphic
categories remains central. Yet for many purposes equivalence is enough.²⁹
The next section returns to it.

14.5.5 Philosophical open problems

We have seen structuralist ideas grow dramatically from Noether through
Eilenberg and Mac Lane to Grothendieck. We have alluded to Lawvere’s
elementary category theory unifying and generalizing the key ideas and to many
advances in functorial geometry and number theory. Most of that is quite pure
mathematics, but there is physics as well. Sir Michael Atiyah has made functorial
tools standard in theoretical particle physics and influential in the search for
a general relativistic quantum theory (Atiyah, 2006). Among Lawvere’s goals
throughout his career has been simpler and yet less idealized continuum
mechanics (Lawvere and Schanuel, 1986; Lawvere, 2002). An obvious project
for philosophers is to apply the agile morphism-based notion of structure in
other fields as, for example, Corfield (2006) looks at cognitive linguistics. That
article also describes how categorical foundations put foundations into a wider
perspective: We now know that very many widely different formalisms are
adequate to interpret mathematics while highlighting many different aspects of
practice.

Let us close with the philosophical question of how mathematical objects
are identified. On one Zermelo–Fraenkel-based story the set of real numbers

²⁹ Krömer (2007, Chapter 5) discusses Gelfand and Manin’s view conceptually but without close
comparison to the mathematics in their book. And see Marquis (Forthcoming).
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R is identified by choosing specific ZF sets for the natural numbers, for
ordered pairs, and so on through, say, Cauchy sequences of rational numbers.
Perhaps

0 = φ, 1 = {φ}, ...

〈x, y〉 = {x, {x, y}}
But mathematicians rarely make such choices and often contradict the choices
they seem to make. Textbooks routinely define a complex number 〈x0, x1〉 ∈ C

as an ordered pair of real numbers x0, x1 ∈ R and yet equate each real number
x with a complex number, x = 〈x, 0〉, which is false on any ZF definition of
ordered pairs I have ever seen in print.³⁰ Few textbooks define ordered pairs
at all.

To be very clear: these facts of practice do not deny the formal adequacy
of ZF to reconstruct much mathematics. They show that ZF reconstructions
differ from practice on the question of how to identify mathematical objects.
The difference is already clear in textbooks while it is greatest in the most
highly structured mathematics with the greatest need for rigor.

In practice most structures are defined only up to isomorphism by their
morphisms to and from similar structures. Section 14.1.4 did this for quotient
rings like Z/(3). Section 14.2.2 sketched how this way of defining homology
groups Hi(M) not only works ‘in principle’ but is precisely adapted to the key
use of homology which is defining homology morphisms Hi(f ) : Hi(M)→
Hi(N) for each topological map f : M → N . The morphism-based methods of
working up to isomorphism are entirely standard today. Less standardized today,
and less thoroughly conceptualized, are the methods of working across many
levels of structures-of-structures with the corresponding levels of isomorphism-
up-to-isomorphism. These occur in practice and rigorous methods are known
but no unified choice of methods is yet standard. The conceptual and
foundational issues around them are still debated.³¹

One view of identity has the provocative slogan that ‘Every interesting
equation is a lie’, or more moderately ‘behind every interesting equation there
lies a richer story of isomorphism or equivalence’ (Corfield, 2005, p. 74). An
equation between numbers is often an isomorphism between sets. As a trivial
example suppose there are as many dogs in a certain sheep pen as there are

³⁰ It is at once easy and pointless to gerrymander a ZF definition with x = 〈x, 0〉 for all x ∈ R. It
would only generate other anomalies in other textbook practices.

³¹ See fibred categories versus indexed categories in Johnstone (2002) and references there. Bénabou
(1985) makes pointed and far-reaching claims for fibred categories.
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rams. The equation expresses an isomorphism of sets

#(dogs in this sheep pen) = #(rams)

{dogs in this sheep pen} ∼= {rams}
and the real interest is the specific correspondence: at this moment my dogs are
facing one ram each and that is all the rams. Corfield gives practically important
examples from combinatorics and topology, as our Sections 14.2.1 and 14.2.2
raised equations of Betti numbers into isomorphisms of homology groups.
Turning every equation into an isomorphism is just the same thing as turning
every isomorphism into an equivalence—an ‘isomorphism up to isomorphism’.
It is not clear how far this can be taken. We have seen that mathematicians
cannot entirely dispense with isomorphism in favor of equivalence and so
cannot entirely dispense with equality in favor of isomorphism. On the
other hand, as Corfield says, philosophers have missed the real importance
of equivalence as a kind of sameness of structure (2005, p. 76). Mathematical
physicist John Baez has taken this viewpoint very far, originally using n-categories
or higher dimensional algebra as a revealing approach to quantum gravity, but also
looking at it conceptually all across mathematics (Baez and Dolan, 2001).

Philosophers are right that structural mathematics raises issues such as: how
are purely structural definitions possible? And what is the role of identity versus
structural isomorphism? But let us take Resnik’s point that ‘mathematicians
have emphasized that mathematics is concerned with structures involving math-
ematical objects and not with the ‘‘internal’’ nature of the objects themselves’
(Resnik, 1981, p. 529). This is already the rigorous practice of mathematics.
That practice offers working answers with powerful and beautiful results.

Acknowledgments. I thank Karine Chemla, José Ferreirós, and Jeremy Gray
for discussions of the topics here, and William Lawvere for extensive critique
of the article.
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Bourbaki, N. (1958), Théorie des Ensembles, 3rd edn (Paris: Hermann).
Carter, Jessica (Forthcoming), ‘Categories for the Working Mathematician: Making

the Impossible Possible’, Synthese.
Corfield, David (2005), ‘Categorification as a Heuristic Device’, in D. Gillies and

C. Cellucci (eds.), Mathematical Reasoning and Heuristics, 71–86 (London: King’s
College Publications).

(2006), ‘Some Implications of the Adoption of Category Theory for Philo-
sophy’, in Giandomenico Sica (ed.), What is Category Theory? (Milan: Polimetrica)
pp. 75–93.

Corry, Leo (1996), Modern Algebra and the Rise of Mathematical Structures (Boston:
Birkhäuser).
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Bois-Marie; SGA 4 1/2 (Berlin: Springer-Verlag). Generally cited as SGA 4 1/2, this
is not strictly a report on the Seminar.

(1998), ‘Quelques idées maı̂tresses de l’œuvre de A. Grothendieck’, in Matériaux
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Shapiro, Stewart (1997), Philosophy of Mathematics: Structure and Ontology (Oxford:

Oxford University Press).
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15

The Boundary Between
Mathematics and Physics
ALASDAIR URQUHART

The traditional or ‘received view’ of scientific explanation widely held in the
1960s and 1970s was that scientific theories are applied axiomatic systems,
with explanations and predictions taking the form of logical derivations from
observational statements. However, this model does not seem to describe
accurately some aspects of scientific practice, for example, the use of mean field
models in condensed matter physics. Such models are more plausibly described
as being mathematical constructs in their own right that may be only loosely
related to the phenomena they are designed to model.

This latter view of models, however, has its own difficulties, rooted in
the fact that the methods of physicists are more often than not lacking in
mathematical rigour. The fruitful tension resulting from this is the main topic
of this chapter, together with the problems arising from the recently renewed
interaction between mathematics and physics.

15.1 Mathematics and physics

In the 1950s, when the logical positivist approach to the philosophy of science
was still a dominating force in North American philosophical circles, a common
view of scientific theories was that they were simply applied logical theories. An
abstract or purely logical theory was held to consist of a set of logical axioms and
rules, in which no fixed interpretation was assigned to the primitive relations
and concepts of the theory. An applied theory was one in which observational
meanings were assigned to certain primitive terms, the observation vocabulary,
while the remaining terms (other than purely logical or mathematical notions),
the theoretical terms, were to be explicitly defined using correspondence rules
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from the observational terms. A description and extended critical discussion
of this picture, known as the ‘Received View on Theories’ can be found
in Suppe (1977). Although only small parts of classical physics were in fact
given an axiomatic form by the philosophers of science of the day, there was
considerable optimism that larger and larger parts of science, or at least the
more formal parts, could be formulated as sets of logical postulates and rules.

This approach to the philosophy of science, one that is associated with the
names of neo-positivist philosophers such as Carnap, Reichenbach, Hempel,
Feigl, and others, is now almost totally out of style. There are good reasons for
this. The actual formulation of non-trivial scientific theories as logical edifices
is a difficult task, demanding very good knowledge of both the scientific
literature and the mathematical concepts needed to make the methods of a
given area precise, and it is not surprising that philosophers and logicians never
accomplished more than a very small fraction of what they had set out to do.

In any case, the relationship between theory and applications is surely
more complicated than the schematic ideas propounded in the philosophical
literature of the immediate post-war period. The ‘theory and interpretation’
view is that the application of a theory can be reduced to the ‘theory and
model’ paradigm beloved of model theorists. So, for example, we can formulate
the abstract theory of groups as a first-order theory with a single operation
representing group composition. An applied version of this theory would be
given by an interpretation in terms of a particular group, say, for example, the
group of rigid motions in Euclidean 3-space.

This view is attractive and elegant. However, it is hard to square with the
actual practice of scientists. The world is so complex that physicists who are
attempting to provide mathematical models of physical reality do not in general
begin by a direct attempt to formulate theories in which the primitive terms
can be given an immediate empirical interpretation. Rather, they very often
construct idealized mathematical models in which the behaviour of certain
variables bears at least a qualitative resemblance to the real world—if the
resemblance can be quantified, so much the better.¹

As an example of such a model, let us look at a well-known model
of ferromagnetism, the so-called Curie–Weiss model, described in most
elementary textbooks of statistical physics (Thompson, 1972, pp. 95–105),
(Yeomans, 1992, pp. 50–54). The empirical phenomenon to be explained is
the spontaneous magnetization of ferromagnetic materials. If we cool a sample
of such a material, while subjecting it to a magnetic field, then there is a sharply

¹ Recent work on the role of models and idealization can be found in the two collections Morgan
and Morrison (1999) and Jones and Cartwright (2005).
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defined critical temperature at which a phase transition takes place. If we turn
the external field off above the critical temperature, the material no longer
exhibits magnetic properties. However, if we turn it off below the critical
temperature, the material retains a residual magnetic field, a phenomenon
called ‘spontaneous magnetization’.

Spontaneous magnetization appears as a collective property of large numbers
of ferromagnetic atoms. Although the physical property presumably arises from
the interaction of individual atoms, Pierre Weiss (1907) proposed the simplified
model of a ‘molecular field’ representing the magnetic force η produced by the
collection of atoms and postulated the self-consistent equation η = tanh(η/T ),
where T is a variable representing the temperature. This simple and primitive
picture, the most elementary example of the class of mean field models, in fact
does exhibit some of the key features of the physical system it is intended to
depict. It shows a phase transition at a critical temperature, and in general its
qualitative features show that we are mathematically on the right track, even
though the numerical values we obtain from it are in fact not in accord with
physical measurements (Yeomans, 1992, Chapter 4). In spite of the well-known
shortcomings of mean field theory, it is the usual starting point for workers in
statistical mechanics investigating a new system (Fischer and Hertz, 1991, p. 19).

A partial explanation of the success of Weiss’s highly simplified model was
provided by a Japanese physicist (Husimi, 1954), who pointed out that Weiss’s
molecular field can be derived as the large N limit of a collection of classical
spin variables σi = +1, −1, interacting through a Hamiltonian in which every
spin acts on every other spin—in the large N limit the interaction strength
is infinitesimal, that is to say, its strength is of order 1/N . The mathematical
details of Husimi’s observation were worked out later in (Kac, 1968)—see also
(Thompson, 1972, §4.5).

Physicists use the phrase ‘mean field model’ to refer to two distinct categories
of model. The first is a model of the Weiss type, in which the collective action
of a large set of microscopic variables is replaced by a macroscopic quantity
representing an average or mean; the second is an interaction model of the
type described by Husimi and Kac, in which microscopic variables (such as
spins) interact with an unbounded number of other microsopic variables. The
two types of model, however, are not completely equivalent mathematically,
even in the paradigmatic case of the Curie–Weiss model.

It is clear in the case of mean field models that we are dealing with
mathematical caricatures of physical systems, that nevertheless exhibit some of
the most important broad features of critical phenomena and phase transitions.
It is tempting to say that these models are simply mathematical objects in their
own right that are related in only a very rough and ready way to the real
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world. However, this point of view brings with it considerable difficulties, that
are the fundamental subject of this chapter.

The basic difficulty is this: if we construe these models simply as mathematical
objects, then we have to face the fact that physicists do not employ normal
mathematical methods in investigating them. Rather, the methods that they
use are frequently so far from normal mathematical practice that it is sometimes
not clear that the objects themselves are even mathematically well defined.

15.2 A renewal of vows

Throughout most of their history, mathematics and physics have been closely
intertwined, as can be seen by looking at the history of ancient astronomy
(Neugebauer, 1975). Furthermore, if we look at work by mathematicians and
physicists from the early 19th century, the standards of mathematical rigour
used by both groups of researchers appear indistinguishable. For example, Carl
Friedrich Gauss has a high reputation among mathematicians for the rigour
of his mathematical reasoning, but a glance at his famous treatise of 1827 on
differential geometry (Gauss, 2005) shows that it makes free and uninhibited
use of the infinitesimal quantities that later mathematicians were to regard with
fear and loathing.

The middle years of the 20th century saw an unprecedented divergence
between the two communities of researchers. As Faddeev (2006) remarks, in the
earlier part of this century, mathematical physics was not distinguished from the-
oretical physics—both Henri Poincaré and Albert Einstein were called math-
ematical physicists. However, with the expansion of theoretical physics in the
1920s and 1930s, a separation between the two areas occurred. Whereas ‘math-
ematical physics’ came to be understood as a somewhat restricted area, confined
to the study of mathematical techniques such as the solution of partial differential
equations and the calculus of variations, the theoretical physicists themselves,
caught up in trying to understand the physics of atoms and elementary particles,
began to move further and further away from the confines of mathematical
rigour. Although there are notable examples of interactions between math-
ematicians and physicists in the middle part of the 20th century, such as the
elucidation of quantum mechanics in terms of linear operators on Hilbert space
and the application of fibre bundles to non-Abelian gauge theory, in general the
concepts and standards of the two fields showed an ever increasing divergence.

The pressure of experimental results, notably the explosion of new ele-
mentary particles discovered during the 1950s and 1960s, forced theoretical
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physicists into a quasi-empirical mode of operation, and also pushed them
in the direction of purely formal calculations. At the same time, the math-
ematicians were attracted by increasing rigour and abstraction. Emblematic
of the period is the inception in the mid-1930s of the series of books
by the Franco–American mathematical collective who published under the
name of Nicolas Bourbaki. In the foundational volume of his encyclo-
pedia, Bourbaki (2004) writes in the preface: ‘This series of volumes, ...
takes up mathematics at the beginning, and gives complete proofs’. Partly
as a result of Bourbaki’s influence, the language employed by mathemat-
icians and physicists continued to diverge. The physicists, brought up in the
older framework of traditional calculus, with its emphasis on formal ma-
nipulations of integrals and infinite series, to a considerable degree no longer
shared a common language with the mathematicians. Freeman Dyson (1972)
remarked sadly:

As a working physicist, I am acutely aware of the fact that the marriage between
mathematics and physics, which was so enormously fruitful in past centuries, has
recently ended in divorce. Discussing this divorce, the physicist Res Jost remarked
the other day, ‘As usual in such affairs, one of the two parties has clearly got
the worst of it.’ During the last twenty years we have seen mathematics rushing
ahead in a golden age of luxuriant growth, while theoretical physics left on its
own has become a little shabby and peevish.

However, in an unexpected and exciting development, the apparently
diverse streams of mathematics and physics are beginning to reconverge. It is
not quite clear what led to these new developments, but there seem to have
been forces acting on both sides of the divide. On the side of physics, the
success in the 1970s of the Standard Model of elementary particles, formulated
in the language of quantum field theory, led to an astonishingly successful
framework in which to fit the unruly zoo of elementary particles that had been
discovered experimentally in the decades following the Second World War.
The scope and success of this triumph of theoretical physics is remarkable.
The SU(3)× SU(2)× U(1) model has been confirmed repeatedly, and is
consistent with virtually all physics down to the scales probed by current
particle accelerators, roughly 10−16 cm. The very success of this model has led
to a change of emphasis. A great deal of current effort is being devoted to string
theory. However, the scale of string theory is roughly 20 orders of magnitude
smaller, of the order of the Planck length, 1.6× 10−33 cm. Consequently,
there appears to be no hope of direct experimental tests of this theory. Instead,
the physicists are guided to an increasing extent by aesthetic criteria more
and more resembling those used by pure mathematicians. On the other side
of the divide, mathematicians seem to have grown tired of the abstraction
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of Bourbaki-style mathematics, and have turned back towards more concrete
problems, often using the powerful machinery developed during the period of
abstraction to solve long standing classical problems, as the recent solution of
the Fermat problem by Andrew Wiles illustrates.

The fresh interactions between mathematicians and physicists have given rise
to numerous volumes of proceedings and tutorials in which the two communi-
ties have attempted to convey the new insights that they developed during the
period of separation. A good example is provided by the series of meetings at
Les Houches bringing together number theorists and mathematically minded
physicists (Luck et al., 1970; Waldschmidt et al., 1992; Cartier et al., 2006).
Another sign of the times is the bulky set of two volumes containing tutorials
on quantum fields and strings especially aimed at mathematicians (Deligne et
al., 1999), whose stated goal is ‘to create and convey an understanding, in terms
congenial to mathematicians, of some fundamental notions of physics, such as
quantum field theory, supersymmetry and string theory’. Interactions between
mathematics and physics are taking place across a broad front, in areas such
as low-dimensional topology, conformal field theory, random matrix theory,
number theory, higher dimensional geometry, and even theoretical computer
science. This is an exciting time!

15.3 Exploring the boundary

Of course, when two partners get together again after a long separation, there
are often difficulties and friction. The reunion of mathematics and physics is no
exception. The extraordinarily fertile language of the physicists, centred around
the Feynman integral, presents enormous difficulties to a purely mathematical
understanding. More generally, physicists pay little attention to mathematical
rigour in their calculations, and often regard the mathematicians’ insistence on
well-defined quantities and objects as useless pedantry, holding up progress on
basic questions.

Kevin Davey (2003) raises the question of whether mathematical rigour is
necessary in physics, and (with appropriate reservations) concludes that it is not.
Basing his analysis on the examples of the Dirac delta function and Feynman’s
path integrals, he points out that physicists are not troubled by the lack of
rigour in their own reasoning, because they restrict the inferences involving
questionable methods. However, this solution cannot satisfy mathematicians
who are interested in adapting ideas from physics in solving their own problems.
The inferential restrictions employed by the physicists usually take the form of
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rules of thumb, and the boundary between secure and questionable inferences
is in general far from clear.

All of this, though, should be regarded as an opportunity for philosophers
who are not afraid of ‘getting their hands dirty’. It is usually held that the
emergence of Greek philosophy in Ionia was no accident, since on the
eastern shore of the Aegean were flourishing mercantile cities where many
cultures met and interacted. In the same way, philosophers of mathematics
have the opportunity to study at first hand renewed interactions between two
previously separate intellectual communities that developed diverse ideas and
even notions of proof during the decades of separation. In his Gibbs lecture,
entitled Missed Opportunities, Freeman Dyson emphasizes the fruitfulness of the
areas in physics where concepts actually clash. After discussing four examples
of missed opportunities of interaction from the past, he remarks:

The past opportunities which I discussed have one important feature in common.
In every case there was an empirical finding that two disparate or incom-
patible mathematical concepts were juxtaposed in the description of a single
situation. ... In each case the opportunity offered to the pure mathematician was
to create a wider conceptual framework within which the pair of disparate ele-
ments would find a harmonious coexistence. I take this to be my methodological
principle in looking for opportunities that are still open. I look for situations in
which the juxtaposition of a pair of incompatible concepts is acknowledged but
unexplained. (Dyson, 1972, p. 645)

The whole passage might be taken as an illustration of the Hegelian dialectic!
Dyson’s observations point in a fruitful direction for philosophers of

mathematics interested in tracing the origins of mathematical concepts in non-
mathematical ideas. In the context of such interactions as Dyson describes, they
can study the process of extracting and refining mathematical concepts from the
raw material of physics. Furthermore, they can observe in detail the process by
which mathematics absorbs recalcitrant and sometimes contradictory material
from outside fields.

At this point, it might be as well to forestall a misunderstanding. There are a
number of recent excellent studies examining the interaction between math-
ematics and physics in detail; for example, Batterman (2002), Morrison (2000),
Steiner (1998), and Wilson (2000). However, these are largely concerned with
the applicability of mathematics to physics. The main theme, both in this
introductory chapter, and in the research article that follows, is the converse
problem—the applicability of physics to mathematics. The article (Fine and
Fine, 1997) is much closer to our current theme; it relates a fascinating story
that begins with the experimental physics of neutral mesons, and ends with
mathematical developments involving the Atiyah–Singer index theorem.
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At least two strategies can be observed in the process of absorbing physical
ideas into the fabric of mathematics. One is to treat the ideas of the physicists
as purely heuristic in nature, and to establish their mathematical conjectures by
conventional means. A second and more radical idea is to attempt to rework
the ideas of the physicists and thereby construct new conceptual schemes that
validate at least some of their calculations. It is this second idea towards which
Dyson points in the quotation above. In the research contribution following
this introductory chapter, I shall discuss a number of relevant cases from the
history of mathematics, as well as mentioning some open areas where this
process of mathematical assimilation is still fragmentary or incomplete.

15.4 Further reading

The topic of the interaction between mathematics and physics is vast, and this
chapter discusses only a single aspect of this interaction. In §15.1, mean field
models were discussed as examples of models in physics that seem to contradict
older received views on scientific explanation. The book by Robert W.
Batterman (2002) contains detailed discussion of many other models of a
similar type. He points out (Batterman, 2002, p. 13) that science often requires
methods that ‘eliminate both detail, and, in some sense, precision’. He describes
such methods as ‘asymptotic methods’, and the type of reasoning involved in
them as ‘asymptotic reasoning’. He draws very interesting and rather heterodox
conclusions from this fact concerning models of scientific explanation and
theory reduction, as well as the notion of emergent properties. (See also
the very interesting review Belot (2005) and the reply by Batterman (2005).)
Similar themes in the context of condensed matter physics are discussed in the
unusually stimulating monograph by Martin H. Krieger (1996).

In the conclusion to a widely cited essay John von Neumann (1947) wrote:

At a great distance from its empirical source, or after much ‘abstract’ inbreeding,
a mathematical subject is in danger of degeneration. At the inception the style is
usually classical; when it shows signs of becoming baroque, then the danger signal
is up. ... Whenever this stage is reached, the only remedy seems to me to be the
rejuvenating return to the source: the reinjection of more or less empirical ideas.
I am convinced that this was a necessary condition to conserve the freshness and
the vitality of the subject and that this will remain equally true in the future.

Mathematics is now in the midst of a period of rapid growth through
the absorption of a multitude of new ideas from physics. This renewed
interaction between the two fields offers, in addition to the problems already
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discussed, material for philosophical thought on issues such as the growth
of mathematical thought, the porous line between method of discovery and
method of demonstration in mathematics and in physics, and issues of concept
formation in the mathematical and the physical sciences. Further philosophical
reflections on the process of growth of mathematical knowledge are to be
found in the collection Grosholz and Breger (2000).

Finally, many thought-provoking ideas on the relationship between math-
ematics and physics are to be found in the writings of Sir Michael Atiyah,
particularly in Volumes 1 and 6 of his Collected Works (Atiyah, 1998–2004).
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Mathematics and Physics:
Strategies of Assimilation
ALASDAIR URQUHART

16.1 Introduction

Philosophers of mathematics and logicians have traditionally shown interest
in the foundational controversies of the early part of the 20th century,
when non-constructive methods were frowned upon by mathematicians like
Brouwer and Weyl. As far as the community of working mathematicians is
concerned, this seems to be a dead issue. The vast majority of mathematicians
use non-constructive methods quite freely, and seldom seem to worry about
their validity. Nevertheless, debates over the methods of proof appropriate in
mathematics are by no means dead.

The irruption of the methods of physicists into the realm of pure mathemat-
ics, such as Edward Witten’s application of topological quantum field theory
to the theory of knot invariants, recently gave rise to a heated controversy in
the pages of the American Mathematical Bulletin. The mathematical physicists
Arthur Jaffe and Frank Quinn pointed to some dangers in the use of speculative
methods in mathematics, which they dub ‘theoretical mathematics’ by analogy
with theoretical physics ( Jaffe and Quinn, 1993). Among the dangers that they
see are: a failure to distinguish between conjecture and mathematical specula-
tion, with a resulting drop in the reliability of the mathematical literature, the
creation of ‘dead areas’ in research when full credit is claimed by vigorous
theorizers, and unfair distribution of rewards when theoreticians are accorded
the lion’s share of credit for results that are only proved in a rigorous fashion
much later.

Jaffe and Quinn’s article gave rise to a vigorous set of responses (Thurston,
1994; Atiyah et al., 1994) from a number of distinguished mathematicians,
including Michael Atiyah, Armand Borel, James Glimm, Morris Hirsch,
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Saunders Mac Lane, Benoit Mandelbrot, Karen Uhlenbeck, René Thom and
William Thurston. The reactions of both mathematicians and physicists to the
intentionally provocative article are remarkably varied, and repay close study.
One of the most interesting rejoinders came from Sir Michael Atiyah, who
remarked:

My fundamental objection is that Jaffe and Quinn present a sanitized view of
mathematics which condemns the subject to an arthritic old age ... if mathematics
is to rejuvenate itself and break exciting new ground it will have to allow for the
exploration of new ideas and techniques which, in their creative phase, are likely
to be as dubious as in some of the great eras of the past. Perhaps we now have
high standards of proof to aim at but, in the early stages of new developments,
we must be prepared to act in more buccaneering style (Atiyah et al., 1994, p. 1)

Saunders Mac Lane made a vigorous reply to these startling comments of
Atiyah, remarking that ‘a buccaneer is a pirate, and a pirate is often engaged
in stealing. There may be such mathematicians now. ... We do not need such
styles in mathematics’ (Mac Lane, 1997, p. 150).

There is a striking article (Cartier, 2000) by the distinguished French
mathematician Pierre Cartier that touches on many of the themes of the debate
following the publication of the Jaffe–Quinn article. In the introduction to his
paper, Cartier writes:

The implicit philosophical belief of the working mathematician is today the
Hilbert–Bourbaki formalism. Ideally, one works within a closed system: the basic
principles are clearly enunciated once for all, including (that is an addition
of twentieth century science) the formal rules of logical reasoning clothed
in mathematical form. The basic principles include precise definitions of all
mathematical objects ... My thesis is: there is another way of doing mathematics,
equally successful, and the two methods should supplement each other and not fight. This
other way bears various names: symbolic method, operational calculus, operator
theory ... Euler was the first to use such methods in his extensive study of infinite
series, convergent as well as divergent. ... But the modern master was R. Feynman
who used his diagrams, his disentangling of operators, his path integrals ... The
method consists in stretching the formulas to their extreme consequences,
resorting to some internal feeling of coherence and harmony. (Cartier, 2000, p. 6)

These remarks of Cartier are all the more startling if we remember that in the
1950s, he was a core member of the Bourbaki group, contributing perhaps 200
pages a year to the collective work.

A superficial interpretation of the words of Atiyah and Cartier would be
that they are advocating a loosening of the standards of mathematical rigour.
However, a careful examination of their articles reveals a more nuanced
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picture. Most of Cartier’s paper is devoted to showing how some of the most
outrageous claims of Leonard Euler and other formally inclined mathematicians
can be given a sensible interpretation, even such crazy-looking assertions as
‘∞! = √2π ’ (Cartier, 2000, p. 64). Similarly, Atiyah and Thurston, though
declaring themselves in opposition to the attitudes of Jaffe and Quinn, which
they see as overly restrictive and authoritarian, do not really disagree with them
on the question of separating rigorously established results from mathematical
speculation. Thus Atiyah remarks: ‘I find myself agreeing with much of the
detail of the Jaffe–Quinn argument, especially the importance of distinguishing
between results based on rigorous proofs and those which have a heuristic
basis’ (Atiyah et al., 1994, p. 1), and Thurston says: ‘I am not advocating any
weakening of our community standard of proof; I am trying to describe how
the process really works. Careful proofs that will stand up to scrutiny are very
important’ (Thurston, 1994, p. 9).

Nevertheless, it is clear that the debate reflects some major changes taking
place in the field of mathematics, changes that are reflected in the concluding
remarks of Cartier in a 1997 interview with Marjorie Senechal:

When I began in mathematics the main task of a mathematician was to bring
order and make a synthesis of existing material, to create what Thomas Kuhn
called normal science. Mathematics, in the forties and fifties, was undergoing what
Kuhn calls a solidification period. In a given science there are times when you
have to take all the existing material and create a unified terminology, unified
standards, and train people in a unified style. The purpose of mathematics, in the
fifties and sixties, was that, to create a new era of normal science. Now we are
again at the beginning of a new revolution. Mathematics is undergoing major
changes. We don’t know exactly where it will go. It is not yet time to make a
synthesis of all these things—maybe in twenty or thirty years it will be time for
a new Bourbaki. I consider myself very fortunate to have had two lives, a life of
normal science and a life of scientific revolution. (Senechal, 1998)

It is clear that mathematics, after a period of inner consolidation and
abstraction, is now open to influences on many sides, and the resulting
opening-up induces anxieties on numerous issues. One of the anxieties relates
to the classification of researchers as mathematicians. Benoit Mandelbrot clearly
considers himself to be a mathematician, but rails against the evil influence
of Bourbaki, and the ‘typical members of the AMS,’ whom he stigmatizes as
‘Charles mathematicians’ (since the AMS headquarters is on Charles Street,
Providence, RI). According to Mandelbrot, Jaffe and Quinn propose to set up
a police state within ‘Charles mathematics’, and a world cop beyond its borders
(Atiyah et al., 1994, p. 16). Charles mathematicians practice a sterile form of
research, and were the bane of great creative figures such as Henri Poincaré
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and Paul Lévy, whom they persecuted because of their lack of rigour. In reply,
Saunders Mac Lane dismisses Mandelbrot as ‘a notorious non-mathematician’
(Mac Lane, 1997, p. 149).

I shall not discuss the problem of demarcation of mathematics from other
areas. It is clear that there is a great deal of activity in areas of science that
do not fall within the restricted boundaries of rigorous mathematics, but are
in some sense mathematical; the work of Mandelbrot certainly falls into this
category, as does the seminal work of Mitchell Feigenbaum in the area of
dynamical systems. Rather, I shall take for granted that there is a more or less
clear distinction to be made between fully rigorous work, and work that is
lacking rigour, even though it may be broadly mathematical in some sense.
Instead, the topic that I shall discuss in the remainder of this essay is the process
whereby the more speculative parts of mathematical work are incorporated
into the body of rigorous research.

16.2 Proof in physics and mathematics

If we define a proof as something that conveys conviction that a given assertion
is true, then it is obvious that proofs do not have to obey the laws of logic or
classical mathematics. In this section, we address the question of what is meant
by a proof, as it appears to mathematicians and physicists. The combinatorialist
X. G. Viennot sets the scene in the following quotation:

Usually, in the physics literature, the distinction between establishing a formula
from computer experiments and giving a mathematical proof is not clearly
stated ... When the number of known elements of the sequence is much bigger
than the number of elements needed to guess the exact formula, the probability
that the formula is wrong is infinitesimal, and thus the formula can be considered
as an experimentally true statement. But mathematically, it is just a conjecture
waiting for a proof, and maybe more: a crystal-clear [bijective] understanding.
(Viennot, 1992, p. 412)

As a result of the evolution of mathematics in the 20th century, the notion
of mathematical proof is quite standardized. In a rigorous mathematical argu-
ment, all objects are to be defined as set-theoretical objects on the basis of
Zermelo–Fraenkel set theory, and their fundamental properties are to be
established on the basis of the usual set-theoretical axioms. The resulting
consensus on the basis of mathematics gives contemporary mathematics con-
siderable unity and cohesion. The fact that from time to time, mathematicians
have advocated alternative foundations such as category theory does not really
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disturb this basic picture, since, although category theory does in fact provide
a more convenient framework than set theory in many cases, there are some
general techniques available for reconciling category-theoretic methods with
those of set theory (Blass, 1984).

One does not have to go far in the literature of physics to discover that no
such consensus on the notion of proof exists in that area. Work in physics runs
the gamut from fully rigorous proofs of theorems (most of the literature in
general relativity falls into this category) to purely formal manipulations backed
up by computer simulations, as in the case of a large part of the literature
in condensed matter physics. The important area of quantum field theory
occupies a kind of intermediate position, where some of the computations
can be made fully rigorous, as a result of the hard work of constructive field
theorists (Glimm and Jaffe, 1987; Johnson and Lapidus, 2000), whereas the
computations that really matter to the physicists, such as those in quantum
electrodynamics and quantum chromodynamics, still seem to languish in a
mathematical limbo, being defined only in terms of ill-defined perturbation
expansions about the theory of the free field.

The number of physicists who write papers that satisfy the usual standards
of mathematical rigour is small, perhaps only a few per cent of the total number
of working physicists. However, their work is among the great achievements of
the physics of the last century. I might mention here the work of Lars Onsager
on the two-dimensional Ising model, and that of Dyson, Lieb, and Thirring
on the stability of matter. These are examples of beautiful mathematics as well
as beautiful physics, and it is purely a historical accident that this work is not
usually considered among the major mathematical accomplishments of the last
century.

It is easy to understand that classically trained mathematicians might regard
with horror this unruly world of purely formal computations, in which it
is hard to lay hold of mathematical bedrock in the maelstrom of ill-defined
infinite series and objects whose nature is far from clear. The mathematician
Yuri Manin conveys this bewilderment very tellingly:

The author, by training a mathematician, once delivered four lectures to students
under the title ‘How a mathematician should study physics’. In the lectures he said
that modern theoretical physics is a luxuriant, totally Rabelaisian, vigorous world
of ideas, and a mathematician can find in it everything to satiate himself except
the order to which he is accustomed. Therefore a good method for attuning
oneself to the active study of physics is to pretend that you are attempting to
induce this very order in it. (Manin, 1981, p. x)

The remainder of this article will be devoted to the topic of just how
mathematicians attempt to induce this order.
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A time-hallowed form of philosophical writing, that continues to be popular
to the present day, is the commentary on a classical text. Typically, the
writer proposes an ‘interpretation’ of this text, and defends it, often with
great polemical vigour, against competing interpretations. The commentator
frequently seems convinced that the interpretation offered is the only correct
one, and all the earlier attempts were completely incorrect and illusory. It
is an odd and quite surprising fact that the same philosophers who teach
their undergraduate students Quine’s sceptical arguments about the notion
of meaning, and describe them as great contributions to modern analyt-
ic philosophy, also write such polemical articles of historical commentary.
The idea that there is a ‘correct’ view as to what a given philosopher
might have meant in a puzzling passage seems taken for granted in such
debates.

The rules of the game in such debates between would-be exegetes are far
from obvious—it is not clear, for example, just what evidence could be counted
as settling the dispute. However, the history of mathematics provides us with
some interesting examples where puzzling, even contradictory, computations
were later given consistent interpretations. In this case, at least, the rules of the
game have greater clarity than in the case of philosophical writings. The criteria
of success are fairly simple—to provide a consistent conceptual framework in
which the puzzling computations make sense.

16.3 Varieties of infinitesimals

Perhaps the most famous example of such a development lies in the area of
calculus. The invention of the calculus is linked indissolubly to that of early
modern physics; it is notorious that the early work was lacking in rigour, as
new results and ideas appeared in a flood. However, in spite of early attempts
at making Newtonian calculus rigorous, such as the work of Colin MacLaurin
(1742), a fully satisfactory foundation for the differential and integral calculus
did not appear until the mid-19th century. Even so, the older tradition of
infinitesimals, even though supposedly banished from rigorous discourse by
the new limit concepts, exerted a seemingly irresistible attraction on practical
mathematicians, and the folk tradition of more or less naive reasoning with
infinitesimals is far from dead even today, as can be seen (for example) from
a set of introductory lectures on celestial mechanics by Nathaniel Grossman
(1996). In the opening remarks of his first chapter, he says: ‘While these objects
are indispensable to applied mathematicians and appliers of mathematics, their
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language has been long banished from the usual calculus books because they
were considered to be ‘‘unrigorous’’ ’ (Grossman, 1996, p. 1).

Philosophers who are interested in the foundations of mathematics know that
in the 1960s, Abraham Robinson created a consistent theory of infinitesimals
that has found significant applications in many areas of mathematics. What
is not so well known is that there are several theories of infinitesimals, so
that competing interpretations of the classical passages involving infinitesimals
can be given divergent interpretations. Of these theories, the most interesting
from the philosophical point of view is the theory of smooth infinitesimal
analysis (Moerdijk and Reyes, 1991; Bell, 1998). In this theory, all functions
are continuous—it follows from this that the logic is of necessity non-classical,
since with the help of the law of excluded middle we can define the ‘blip
function’ that is 1 at the real number 0, and 0 everywhere else.

Abandoning classical logic may seem a high price to pay, but in fact the
resulting theory is very rich. In the ‘smooth world’ not only are all functions
continuous, but in addition, the principle of microlinearity, or microaffineness
(Bell, 1998, p. 23) holds. This principle says that if we examine the infinitesimal
neighbourhood of a point on a curve in the smooth world, then the curve,
restricted to that neighbourhood, is a straight line! In other words, in such a
universe, the idea of early writers on the calculus, such as Isaac Barrow, that
curves are made out of ‘linelets’ is here literally true. Smooth infinitesimal
analysis provides some retrospective justification for the idea of a curve as
a polygon with infinitely many sides that played a central part in the early
Leibnizian calculus (Bos, 1974, p. 15).

What is more, the nature of infinitesimals in this theory enables the basic
techniques of differential calculus to be reduced to simple algebra. In the early
writings on the differential and integral calculus, it was common to neglect
higher order infinitesimals in calculations. That is to say, if ε is an infinitesimal
quantity, then at a certain stage in the calculation, early writers such as Newton
treat ε2 as if it were equal to zero (even though at other stages in the calculation,
ε must be treated as nonzero). This apparent inconsistency was the target of
Berkeley’s stinging criticisms in The Analyst (Berkeley, 1734). Strange to say,
these inconsistencies disappear in the smooth worlds invented by the category
theorists. In this theory, a nilpotent infinitesimal ε is one that satisfies ε2 = 0. It
follows from the microlinearity postulate that in a smooth world, the axiom
¬∀x(x2 = 0 ⇒ x = 0) holds (Bell, 1998, pp. 23–24, 103). Here, the fact that
the logic is non-classical (intuitionistic) saves us from contradiction, because we
cannot infer from this fact that ∃x(x2 = 0 ∧ x �= 0); this last formula results in
an outright contradiction, whereas the theory of smooth analysis is known to be
consistent by means of the models constructed in Moerdijk and Reyes (1991).
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The theory of smooth analysis has a good claim to be a consistent interpret-
ation of the work of the classical analysts, and evidence for this is provided
in both Moerdijk and Reyes (1991) and Bell (1998). Moerdijk and Reyes
give explicit examples from classical synthetic differential geometry, such as the
work of Elie Cartan (Moerdijk and Reyes, 1991, pp. 3–6), where intuitive rea-
soning involving infinitesimal quantities can be interpreted directly in smooth
analysis. Similarly, Bell provides a remarkably diverse range of applications in
calculus, mathematical physics, and synthetic differential geometry (Bell, 1998,
Chapters 3–7) where the informal practice of engineers and physicists can
be made fully rigorous. As another example, the computations of Grossman,
cited above, seem to fit most naturally into the world of smooth infinitesimal
analysis.

An even more striking anticipation of smooth infinitesimal analysis is to be
found in the work of the Dutch theologian, Bernard Nieuwentijt; a detailed
discussion of his research on the foundations of calculus is to be found in
Mancosu (1996, pp. 158–164). In a booklet of 1694, Nieuwentijt attempted to
bring rigour to the Leibnizian calculus by proceeding along lines remarkably
similar to those described above, since one of his basic assumptions is that there
are nonzero quantities ε so that ε2 = 0.

Thus, smooth infinitesimal analysis has a good claim to be a satisfying
interpretation of the older texts, in spite of its denial of classical logic. This fact
should interest philosophers in general, since it affords a significant example
where convincing reasons have been offered for a change in the logical basis of
a theory, in accordance with Quine’s view that no part of science is immune
from revision. Geoffrey Hellman (2006) offers further philosophical reflections
on this intriguing example of mathematical pluralism.

It remains true, however, that smooth infinitesimal analysis cannot account
for all of the classical uses of infinitesimals. Euler, for example, frequently
assumes that his infinitesimals have inverses; these are unbounded quantities
larger than any finite quantity. Such invertible infinitesimals cannot exist in a
smooth world, on pain of contradiction. In fact, Moerdijk and Reyes (1991,
pp. v–vi) point out that in the writings of geometers like Sophus Lie and Elie
Cartan, there are two kinds of infinitesimals, namely, nilpotent infinitesimals
and invertible infinitesimals. Robinson’s Nonstandard Analysis contains the
second kind, but not the first. Hence, there results an interesting bifurcation
of the theory, showing that interpretations of anomalous concepts are by
no means unique, contrary to a frequent assumption of the philosophical
community.

It should be emphasized that if we attempt to make rigorous mathematical
sense of earlier inconsistent practices, then it is inevitable that we cannot
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provide a consistent interpretation of all of the earlier calculations and proofs.
Indeed, this follows from the logic of the situation. Abraham Robinson (1966,
Chapter X) argued strongly that his modern infinitesimal analysis could be
seen as providing a retrospective justification for the procedures of Leibniz and
his followers. Nevertheless, historians of mathematics such as Bos (1974) have
looked askance at this attempt at assimilating Leibnizian methods to modern
techniques. However, some of Bos’s criticisms of Robinson involve absurd
and impossible demands—for example, his first criticism (Bos, 1974, p. 83) is
that Robinson proves the existence of his infinitesimals, whereas Leibniz does
not! The fact remains—no interpretation of dubious and inconsistent practices
inherited from the past can be perfect in every respect. The most we can ask
is that a rigorous interpretation reproduce at least some of the most important
calculations and concepts of the older technique.

16.4 The umbral calculus

The example of infinitesimal calculus is rather intricate. To illustrate some
of the basic methods of assimilation, we shall look at a simpler case, the
umbral or symbolic calculus. This calculus first made its appearance as a
computational device for manipulating sequences of constants (Blissard, 1861);
for the history of the method, see Bell (1938). Later, it was rediscovered
by the number theorist and inventor of mathematical games Lucas (1876).
The self-taught engineer and theorist of electromagnetism, Oliver Heaviside
developed a similar operational calculus in the course of solving the differential
equations arising in the theory of electromagnetism. The famous analyst
Edmund T. Whittaker rated Heaviside’s operational calculus as one of the
three most important mathematical discoveries of the late 19th century.
However, Heaviside’s work was regarded with distrust until Bromwich gave a
rigorous interpretation of Heaviside’s operators as contour integrals.

All of these developments were regarded as somewhat questionable when
they first appeared. To see why, let us use the example of the computation of
the Bernoulli numbers Bn in the umbral calculus. These numbers, of which
the first few are as follows:

B0 = 1, B1 = −1
2
, B2 = 1

6
, B3 = 0, B4 = − 1

30
, B5 = 0, B6 = 1

42
, ... ,

play an important role in number theory and combinatorics. I claim they are
defined by the umbral equation: (B+ 1)n = Bn, for n ≥ 2, together with the
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initial condition B0 = 1. By this is meant: expand the left-hand side by the
binomial theorem, then replace all of the terms Bk by Bk. Then the result is
the usual recursion equation defining the Bernoulli numbers. Blissard’s original
explanation is not fully satisfactory. He writes:

According to this method, quantities are considered as divided into two sorts,
actual and representative. A representative quantity, indicated by the use of a
capital letter without a subindex, as A, B, ... P, Q, ... U, V , ...is such that Un is
conventionally held to be equivalent to, and may be replaced by Un. (Blissard,
1861, p. 280)

Blissard states clearly that he is operating in a two-sorted logic, with two kinds
of variables. Furthermore, the two types of variables are linked by the equation
Un = Un, where U is the representative variable corresponding to the actual
variable U . This transition between terms involving the two types of variable
is known in the literature of the umbral calculus as ‘raising and lowering
of indices’. The remainder of his proposal, however, is somewhat unclear,
because the rules of operation for the representative variables are left tacit,
though some of them may be gleaned from Blissard’s practice. Furthermore,
the nature of the representative quantities was unclear, even when it was
plain that the method produced the right answers, used with appropriate
caution.

All of this was cleared up in a fully satisfactory way, mostly through the efforts
of Gian-Carlo Rota. Rota placed the calculus in the framework of modern
abstract linear algebra, and gave a rigorous foundation for the calculations
(Rota, 1975). The framework is simple and elegant, and can be explained as
follows (Roman, 1984). Let P be the algebra of polynomials in one variable
U over the complex numbers, and consider the vector space of all linear
functionals over P. Any such linear functional L is determined by its values on
the basis polynomials U0, U1, U2, ..., and consequently can be correlated with
the formal power series:

f (U) = L(U0)+ L(U1)U + L(U2)

2
U2 + L(U3)

6
U3 + · · · + L(Uk)

k!
Uk + ... .

If we use the representative term Un as an abbreviation for L(Un), then it is
clear that the computation involving the Bernoulli numbers can be justified,
and the mysterious equation from which we started can be interpreted as saying
L((U + 1)n) = L(Un). Thus, we have found a way of rewriting the original
computations so that every step makes sense. The representative variables are
revealed as shorthand expressions for the coefficients of formal power series,
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and every step in the calculation can be given a clear semantical interpretation
in the world of set-theoretical and category-theoretic constructions.

It would be a mistake, though, to see Rota’s interpretation as simply bestow-
ing legitimacy on a previously dubious mathematical technique. The interpret-
ation bears fruit in other directions. The embedding of combinatorially defined
sequences in the algebra of formal power series is heuristically very fertile, and
enables a systematic treatment of special functions. Furthermore, the interpret-
ation makes contact with a large tract of more recent mathematics, such as cat-
egory theory with its fruitful notion of adjoints. The marriage of 19th-century
formal calculation with modern abstract theory produces a sturdy offspring.

Let us look back over this example to see if we can extract some interesting
general features. In the case of the umbral calculus, as in many of the other cases
we discuss, computations are primary. However, the lack of a clear semantics
for the objects manipulated leads mathematicians to treat the methods with
distrust, no matter how successful the computations.

Rota’s reinterpretation of the umbral calculus has two features that we can
detect elsewhere in the work of assimilation. First, the logic is reinterpreted.
The umbral calculation

(B+ 1)2 = B2 + 2B1 + 1 = B2 + 2B1 + 1

is rewritten as

L((U+1)2) = L(U2 + 2U + 1) = L(U2)+ 2L(U)+ L(1) = B2 + 2B1 + 1.

The introduction of the linear operator L allows the dubious move of raising
and lowering indices to be explained simply as a transition between two
isomorphic domains of calculation. Second, the reinterpretation involves the
introduction of objects of higher type, in this case linear functionals acting on
the space of polynomials in one variable.

This reinterpretation of logic and the introduction of higher type entities to
provide a semantics is also visible in the theory of infinitesimals. Robinson’s
nonstandard universe is composed of equivalence classes of higher type objects,
since the hyperreals are elements of an ultrapower of a standard model (Gold-
blatt, 1988). Equations that involve treating infinitesimals as zero quantities
(the kind of thing to which Berkeley raised objections), such as 2+ ε = 2, are
reinterpreted in Robinson’s framework as 2+ ε ≈ 2, where x ≈ y means that
x and y are infinitely close (and hence have the same standard part). Interest-
ingly, in the framework of smooth analysis, equations such as 2+ ε2 = 2 can
be literally true, where ε is a nilpotent infinitesimal; the price we have to pay
for this literal interpretation of equations is the abandonment of classical logic.
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Why are higher types so useful in the process of assimilation? One idea
that suggests itself is that there are many more objects in higher types than in
lower types. Whereas lower types can always be embedded in higher types,
the reverse is not true. In fact, the progress of physics can also be seen as a
progress towards more and more abstract representations of physical entities.
Whereas the classical notion of a point particle is simply that of a point in
Euclidean space, a particle in quantum theory is already represented by a higher
type object, a probability distribution over a space of lower type. In reply to
Gian-Carlo Rota’s question ‘What are your views on classical physics versus
quantum mechanics?’, Stan Ulam gave the following striking response:

Quantum mechanics uses variables of higher types. Instead of idealized points, or
groups of points or little spheres or atoms or bodies, the primitive notion is a
probability measure. Quite a logical leap from the classical point of view.

Nevertheless you find in quantum mechanics the strange phenomenon that a
theory dealing with variables of higher type has to be imaged on variables of lower
type. It is the complementarity between electron and wave. (Cooper, 1989, p. 308)

It is a surprising fact that in all of the cases that we have discussed,
impossibility theorems are in the end not a great problem. The criticism of
infinitesimal calculus by Berkeley (1734) is clear, concise, and deadly, yet it
is easily evaded by appropriate changes in the logic. Similarly, in the theory
of Feynman integrals, R. H. Cameron in a paper of 1960 showed that in a
certain precise sense there is no ‘Feynman measure’ underlying the Feynman
integral ( Johnson and Lapidus, 2000, pp. 82–84). The impossibility theorems
in question do not rule out making mathematical sense of the problematic
techniques in question, but rather simply rule out certain obvious ways of
interpreting them. This should encourage us to look with optimism at the
prospects of bringing other fruitful but dubious techniques within the fold of
certifiably rigorous mathematics.

16.5 Anomalous objects

The preceding examples both share a common feature—in each case, a
calculation takes place that violates certain traditional or classical assumptions.
In many cases, the calculus in fact is rather efficient, and this leads to the
calculational tradition persisting in communities on the fringe of the (pure)
mathematical community, such as engineers and theoretical physicists.

Engineers and physicists are understandably enamoured of calculational
devices, and if these formal tricks give the right answer as revealed by
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experiment or computer simulation, then they are much less inclined than
the pure mathematicians to examine the pedigree of a successful piece of
machinery for calculation. This appears most flagrantly in the case of quantum
field theory. In this case, we have a calculational device (Feynman diagrams)
that produces answers that agree to nine decimal places with the measured
value of certain physical quantities. As a consequence, the physicists have
complete trust in the technique, even though it appears that it still seems to
elude a full mathematical formulation (Johnson and Lapidus, 2000).

The situation, though, is mathematically unstable, because the physicists
can often compute certain quantities, and ‘prove’ them to their own sat-
isfaction, while employing the powerful but unrigorous methods peculiar
to their own fields. In the introductory chapter, I mentioned two strat-
egies that mathematicians can adopt in dealing with anomalous practices
of reasoning and computation. The first is to prove all of the established
results by conventional means. This is of course a perfectly reasonable idea,
though it still leaves unanswered the question: just why do these outrageous
techniques work?

The entities that appear in these calculations, such as infinitesimals or
representative variables, are logically anomalous objects. Anomalous objects
in my sense are a little like Imre Lakatos’ monsters, but anomalous in an
even stronger sense, namely not just falling outside a standard definition, but
violating fundamental mathematical principles.

An interesting example of an anomalous object is the Dirac delta function.
When it first made its appearance in the physics literature, it was explained as
a function δ defined on the real line so that it was zero everywhere except at
the origin, but the integral of the function was 1:∫

δ(x)dx = 1.

All this is very plausible from the physical point of view. If we think of δ as
representing the mass density function of a point particle of mass 1 situated at
the origin, then the delta function has exactly the right properties. The trouble
is, there is no such function. It’s very easy to show using standard calculus that
there simply is no such function defined on the classical real line.

We are caught in a dilemma. The physicists have postulated an object that,
classically speaking, simply doesn’t exist, a logical contradiction. There are
various attitudes that one can take to this.

The first is simply to dismiss the unruly objects as nonsense, a common
attitude among mathematicians. It is not hard to cite mathematicians who took
just such an attitude to objects like the Dirac delta function. For example,
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in his mathematical autobiography, Laurent Schwartz, who was eventually to
find the generally accepted interpretation of the delta function as a distribution,
remarks:

I believe I heard of the Dirac function for the first time in my second year at
the ENS. I remember taking a course, together with my friend Marrot, which
absolutely disgusted us, but it is true that those formulas were so crazy from the
mathematical point of view that there was simply no question of accepting them.
(Schwartz, 2001, p. 218)

This attitude is logically impeccable, but it fails to account for the success that
the physicists attained with their weird ideas. In other words, it is fruitless and
unhelpful.

There is a second attitude, also of an extreme type, that consists in say-
ing—‘Well, there’s a contradiction, so what? As long as it works, that is all that
matters’. This is close to the physicists’ own attitudes, since physicists are quite
happy to perform purely formal calculations as long as something resembling
the right answer comes out in the end. I would also consider the idea of
paraconsistent logic to be somewhat along the same line. Although the idea of
a true contradiction perhaps makes some kind of sense, the idea on the whole
does not appear to be very fruitful.

The third attitude, which I might call the philosophical, or critical attitude,
consists in a more nuanced approach to these scandalous invasions of the
mathematical universe. The idea here is, on the one hand, to maintain the
view that the physicists’ calculations are largely correct, but that the objects
they think they are talking about are in fact of a different nature.

Out of this third, or critical, attitude, applied to the case of the Dirac delta
function, comes the modern and very fruitful theory of distributions of Laurent
Schwartz. It’s interesting to see what this move consists in. The idea here is that
the Dirac delta function is not a function at all, but a distribution, that is to say,
a linear operator on a certain class of functions (the similarity of the strategy
followed here to that of Rota’s in the case of the umbral calculus is quite
striking). The reason this works is that the delta function, as used by physicists,
only appears in a certain restricted type of computation, and it is possible
to redefine this computation using the operators so that all of the physicists’
calculations become perfectly rigorous. In this way, the mathematicians can
enjoy the best of both worlds.

Incidentally, the introduction of infinitesimals makes possible the explica-
tion of the Dirac delta function in a different and perhaps more intuitive way.
We simply define a Dirac delta function as a function with a unit integral,
all of whose mass is concentrated within an infinitesimal neighbourhood of
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the origin. This definition has the advantage of being closer to the original
definition of the physicists.

Schwartz’s theory of distributions also fits the general pattern that we have
detected in our two previous examples. The common feature of the examples
of the Dirac delta function, infinitesimals, and the umbral calculus is that the
explications given for the anomalous objects and reasoning patterns involving
them is what may be described as pushing down higher order objects. In other
words, we take higher order objects, existing higher up in the type hierarchy,
and promote them to new objects on the bottom level. This general pattern
describes an enormous number of constructions.

The process we have just described is closely related to the method of
adjoining ideal elements familiar from the history of mathematics. This idea is
very clearly described by Martin Davis:

This is a time-honored and significant mathematical idea. One simplifies the
theory of certain mathematical objects by assuming the existence of additional
‘ideal’ objects as well. Examples are the embedding of algebraic integers in ideals,
the construction of the complex number system, and the introduction of points
at infinity in projective geometry. (Davis, 1977, p. 1)

Ken Manders (1989) has given a general account of this method as a strategy for
unifying and simplifying concepts in mathematics. Here we are emphasizing
the role of the method as a means of giving a rigorous interpretation to dubious
calculations.

16.6 Strategies of interpretation

Each of the three examples that I discussed above demonstrate the second
strategy of assimilation that I described in my introductory chapter. The theory
of distributions, nonstandard analysis, and the modern umbral calculus all arose
from the idea of constructing new conceptual schemes to validate anomalous
calculations, and all of them have proved useful and fruitful techniques that
have led to new mathematics.

Sir Michael Atiyah (1995) has given a more complex and nuanced analysis
of mathematical strategies. He lists four (rather than two), strategies that
mathematicians can adopt towards ideas emerging from the physics community.
The first is a version of the first strategy described above, namely that
mathematicians should ‘take the heuristic results ‘‘discovered’’ by physicists and
try to give rigorous proofs by other methods. Here the emphasis is on ignoring
the physics background and only paying attention to mathematical results that
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emerge from physics.’ Atiyah’s second approach is to ‘try to understand the
physics involved and enter into a dialogue with physicists concerned. This has
great potential benefits since we mathematicians can get behind the scenes and
see something of the stage machinery.’ It is the dialogue that emerges from this
second approach that gives rise to the uneasiness of Jaffe and Quinn.

The third approach mentioned by Atiyah is ‘to try to develop the physics
on a rigorous basis so as to give a formal justification to the conclusions.’
This corresponds quite closely to the second approach that I described in
Chapter 15, and of which I gave several examples above. The drawback of
this third approach, according to Atiyah, is that ‘it is sometimes too slow to
keep up with the action. Depending on the maturity of the physical theory
and the technical difficulties involved, the gap between what is mathematically
provable and what is of current interest to physicists can be immense.’ The
fourth and most visionary idea is to ‘try to understand the deeper meanings of
the physics-mathematics connection. Rather than view mathematics as a tool
to establish physical theories, or physics as a way of pointing to mathematical
truths, we can try to dig more deeply into the relation between them.’

Whatever the attitude that one adopts as a mathematician or logician, it is
clear that there is an immense amount of work to be done in this borderline
area. The difficulties, both conceptual and mathematical, are severe, but the
prizes to be gained through new understanding, are potentially immense.

The last section of this chapter is devoted to the description of an area
where the process of assimilation is incomplete, and which consequently poses
difficult problems of interpretation.

16.7 The replica method

In this section, I describe an anomalous object in the raw, so to speak. In
the physics literature it is known as the Sherrington–Kirkpatrick (SK) model
of spin glasses; it belongs to the class of models known generically as mean
field models. It is the exact analogue in the field of disordered systems of the
Curie–Weiss model of ferromagnetism that I described in my introductory
chapter.

The SK model, like the Curie–Weiss model, is a caricature of certain real
physical systems. The key feature of such systems is that they involve large
collections of magnetic spin variables, where the interaction between these
variables is not consistently ferromagnetic (favouring consistent orientation)
but rather randomly ferromagnetic and antiferromagnetic (favouring opposite
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orientation), so that conflict and frustration are inherent elements. A ferromag-
net, in its low-temperature behaviour, exhibits spontaneous magnetization,
that is to say, it exhibits a tendency for all spins to be aligned consistently. By
contrast, a spin glass is expected to show a low-temperature phase in which
spins are randomly frozen in a disordered state.

Such systems are in fact quite easy to prepare. If a dilute solution of a
magnetic transition metal, such as manganese, is formed in a noble metal, such
as copper, then the ferromagnetic atoms, represented by spin variables, are so
far apart in the matrix that the dominant interaction is no longer ferromagnetic.
The principal interaction force is believed to be the RKKY interaction, first
studied in the context of nuclear magnetism by Ruderman and Kittel, and
later applied to spin glasses by Kasuya and Yosida. This force oscillates between
ferromagnetic and antiferromagnetic, depending on the distance.

The first indications that such alloys have unusual properties appeared
in experiments of 1959 and 1960. However, the modern investigation of
these materials really took off in the 1970s. Experiments during that decade
demonstrated that there appears to be a phase transition in such materials,
exactly as for ferromagnets. In the case of spin glasses, the material does not
exhibit spontaneous magnetization, but a sharp phase transition appears when
the magnetic susceptibility is measured. The physicists interpret this as the
transition to a frozen disordered phase of the material. Furthermore, these
materials exhibit other unusual experimental properties. For example, they
display relaxation and ageing effects on very extended time-scales, perhaps
centuries or millenia. In this, they are analogues of ordinary glasses, which
also show relaxation times extending over thousands of years; visitors to the
Egyptian section of a museum are sometimes rewarded by the sight of a piece of
glass that is undergoing crystallization. The terminology of ‘spin glass’ originates
in this analogy. Spin glasses are to magnets as glasses are to crystals, that is
to say, they are disordered magnetic materials. For more on the experimental
history of these unusual materials, the reader can consult chapter 15 of Fischer
and Hertz (1991).

These experimental discoveries led to great excitement in the community of
condensed matter physics, as the theorists began trying to understand the spin
glass phase revealed by the experiments. Part of the excitement was caused by
the fact that the properties revealed by the experiments seemed to be largely
independent of the actual materials investigated. Spin glass states have also been
found in magnetic insulators and amorphous alloys, where the interactions are
of a completely different character (Fischer and Hertz, 1991, p. 2). Thus the
experiments seemed to point to some kind of universal behaviour of disordered
systems.
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The theoretical developments of the 1970s and 1980s were truly remarkable,
and led to the development of a theory, in which the replica method played a
starring role. The key papers, as well as some very useful background material,
are collected in the volume (Mézard et al., 1987).

Before describing what the replica method is, let me give a brief sketch
of the SK model. The model consists of a very large number N of sites,
each of which has a binary (classical) spin variable (taking the values +1
and −1) associated with it. Each of the edges linking the sites is assigned a
random value; for simplicity let’s suppose that we randomly and independently
choose the values +1 and −1 for the edges (in the SK model, the edge
distribution is Gaussian). In addition, let’s say that a positive edge represents
friendship and a negative edge enmity. Our problem then is to assign the
spins into two camps so that we minimize conflicts—an administrator’s
problem. If the administrator can divide the people (spins) into two groups
so that all the people in one camp are friends, and are enemies of all the
people in the other camp, then there is no conflict. But in general, this
is impossible, and we have what the physicists (and administrators!) call
frustration.

How well can the administrator do in general? Suppose that we have 10,000
people. The physicists, by using their mysterious non-rigorous methods, have
computed that on average, the administrator cannot do much better than
a situation in which the average person has thirty-eight fewer enemies than
friends in their camp (Mézard et al., 1987, p. 2). This is not a great improvement
on the situation resulting from the administrator throwing up her hands, and
splitting the population in two by tossing a coin.

We are dealing with what is basically a problem in finite combinatorics,
like the satisfiability problem. The physicists, though, do not proceed via
combinatorics. They translate the problem into the form of a statistical
mechanical model, including a parameter called ‘temperature’, and concentrate
their efforts on measuring a crucial quantity called the free energy, representing
the degree of frustration in the system. Here is where the notorious replica
method makes its appearance.

The physicists make use of a certain expression for the logarithm of a physical
quantity, which involves letting a variable n tend to zero. They use the well
known classical identity

log Z = lim
n→0

Zn − 1
n

,

where Z represents the partition function of the system. This is not puzzling in
itself, but their interpretation is. They interpret n as the number of replicas of
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the system, and then let n (the number of replicas) go to zero. This is already
hard to understand, but things get worse.

The physicists predict that there is a critical temperature Tc at which the
system undergoes a phase transition. Above Tc, the system is in a single pure
state, while below Tc the system undergoes a transition into an infinity of
pure states, and the system undergoes a continuous splitting of states down
to zero temperature. Above Tc, the physicists consider that they are in the
‘replica-symmetric’ regime, while below there is ‘replica symmetry breaking’.
The extent of the gap between the mathematics and physics community can
be gauged by the fact that the latter considers the replica-symmetric regime
trivial, while the former considers it difficult, and the mathematicians have
only succeeded in verifying some of the physicists’ predictions with a great
deal of difficult effort.

It is below the critical temperature that things get really strange. Here the
generally accepted solution is due to the outstanding Italian physicist Giorgio
Parisi. Parisi introduced what he called a ‘replica symmetry breaking matrix’.
This is an n× n matrix that apparently is supposed to correspond to the
distances between pure states. The problem is, since n goes to zero, it is a zero
by zero matrix. Here I can only quote from a famous paper of Parisi from 1980:

We face the rather difficult problem of parametrising an n× n matrix in the
limit n = 0. To work directly in zero-dimensional space is rather difficult ... It
is evident that the number of parametrisations is unbounded and the space of
O⊗O matrices with these definitions is an infinite dimensional space. (Parisi,
1980; Mézard et al., 1987, p. 166)

This appears to be mathematical nonsense. But is it complete nonsense? It
appears not, because in the first place, the physicists’ numbers check out against
numerical simulations, and in the second place, many of the predictions made
by the physicists using the replica method have been borne out by rigorous
proofs. The predictions here are not just numerical predictions, such as the
one I mentioned above as a solution to the administrator’s problem, but also
quite specific and detailed formulas for key quantities such as the free energy.

Even more importantly, the methods developed by the physicists have
been applied in a surprising number of different areas, some of them quite
far removed from the original physical systems that inspired them. Thus the
replica method has been applied in the theory of combinatorial optimization
problems, such as the matching problem, the travelling salesman problem,
and the graph partitioning problem (this is the problem we described as
the administrator’s problem above). Other applications have been found in the
theory of evolution, neural networks, and the theory of memories, where the
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Hopfield model was inspired by ideas from spin glass theory. A large selection
of such applications is described in the latter part of the book (Mézard et al.,
1987). In each case, the physicists were able to draw surprising and apparently
correct conclusions that were not attainable by conventional approaches. Thus,
the evidence so far indicates that the physicists have uncovered a broad domain
of phenomena, all involving disorder of some kind, that can be described using
the nonrigorous tools that they have developed and refined since the 1970s.

So, the evidence is that there is some kind of mathematical sense lurking
behind the replica method, just as there was in the case of the Dirac delta
function. Although the physicists had some initial misgivings about the method,
a quick glance at the literature of the theory of disordered systems shows that
in many cases, it is the first tool for which they reach when investigating a new
system involving disorder and frustration.

Nevertheless, a rigorous foundation for the method has so far eluded
the mathematicians. Remarkable and striking work has been accomplished
by probabilists working within the usual mathematical framework of large
deviations, concentration inequalities, and the like, and Michel Talagrand, in
particular, has made very substantial progress towards verifying the predictions
of the physicists. A survey of his work and an introduction to this important and
intriguing area is to be found in his monograph (Talagrand, 2003b). Recently,
Talagrand, building on the work of Francisco Guerra, achieved a breakthrough
by proving Parisi’s formula for the free energy of the SK model (Talagrand,
2003a, 2006).

In spite of these major successes, and the verification of the physicists’ work,
the replica method itself languishes in mathematical limbo. Talagrand remarks:

At the present time, it is difficult to see in the physicist’s replica method more than
a way to guess the correct formula. Moreover, the search for arguments making
this method legitimate ‘a priori’ does not look to this author as a promising area
of investigation. (Talagrand, 2003b, p. 195)

In spite of these sceptical remarks, the example of the Dirac delta function, the
umbral calculus, and the theory of infinitesimals should encourage us to hope
that the remarkable success of this method is more than a mere mathematical
coincidence. Much remains to be done.

16.8 A plea for nonrigorous mathematics

There are numerous arguments for admitting ‘nonrigorous’ mathematics into
the field of philosophy of mathematics. Even if we identify mathematics
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with theorems deducible from the axioms of set theory, there still remains
the non-formal question of justifying the axioms themselves, including new
axioms.

Going beyond this, it would seem that if we define mathematics in this
narrow way, that we would exclude from the sphere of mathematics most
mathematics from before 1900, surely an unwanted consequence.

I am not arguing for relaxing the standards of rigour in mathematics.
On the contrary, I am urging logicians and philosophers to look beyond the
conventional boundaries of standard mathematics for mathematical work that is
interesting but nonrigorous, with a view to making it rigorous. The examples of
calculus, distribution theory, complex function theory, and Brownian motion
all show that some of the best mathematics can result from this process.
Similarly, philosophers can surely find fruitful areas for their studies in areas
lying beyond the usual set-theoretical pale.

The Czech physicist Jan Klima has presented the activities of mathematicians
in a rather humiliating light:

In the fight for new insights, the breaking brigades are marching in the front
row. The vanguard that does not look to left nor to right, but simply forges
ahead—those are the physicists. And behind them there are following the various
canteen men, all kinds of stretcher bearers, who clear the dead bodies away, or,
simply put, get things in order. Well, those are the mathematicians. (Zeidler,
1995, p. 373)

By way of contrast, here is a quotation from the great Canadian mathematician,
Robert Langlands:

Field theories and especially conformally invariant field theories are becoming
familiar to mathematicians, largely because of their influence on the study of
Lie algebras and above all on topology. Nonetheless, in spite of the progress in
constructive quantum field theory during recent decades, many analytic problems,
especially the existence of the scaling limit, are given short shrift. These problems
are difficult and fascinating and merit more attention. ... It is often overlooked
that the largely mathematical development of Newtonian mechanics in the 18th
century was an essential prerequisite to the enormous physical advances of the
19th and 20th centuries, that attempts to overcome mathematical obstacles may
lead to concepts of physical significance, and that mathematicians, recalling the
names of d’Alembert, Lagrange, Hamilton and others, may aspire to nobler tasks
than those currently allotted to them. (Langlands, 1996)

I hope that these inspiring words of Langlands may lead philosophers to look
beyond the rather restricted range of topics in mathematics that currently
preoccupy them.
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Mézard, Marc, Parisi, Giorgio, and Virasoro, Miguel Angel (1987), Spin Glass
Theory and Beyond (Singapore: World Scientific).

Moerdijk, I. and Reyes, G. E. (1991), Models for Smooth Infinitesimal Analysis (New
York: Springer-Verlag).

Parisi, Giorgio (1980), ‘The order parameter for spin glasses: A function on the interval
0–1’, Journal of Physics A: Mathematical and General, 13, 1101–1112.

Robinson, Abraham (1966), Non-standard Analysis (Amsterdam: North-Holland).
Second revised edition 1974. Reprinted with an introduction by Wilhelmus
A. J. Luxemburg (Princeton University Press, 1996).

Roman, Steven (1984), The Umbral Calculus (New York: Academic Press). Reprinted
by Dover Publications, 2005.

Rota, Gian-Carlo (1975), Finite Operator Calculus (New York: Academic Press).
With the collaboration of P. Doubilet, C. Greene, D. Kahaner, A. Odlyzko, and
R. Stanley.

Schwartz, Laurent (2001), A Mathematician Grappling with his Century (New York:
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