


Numerical Methods in Finance 
and Economics 



STATISTICS IN PRACTICE 

Advisory Editor 

Peter Bloomfield 
North Carolina State University, USA 

Founding Editor 

Vic Barnett 
Nottingham Trent University, UK 

Statistics in Practice is an important international series of texts which provide detailed cov- 
erage of statistical concepts, methods and worked case studies in specific fields of investiga- 
tion and study. 

With sound motivation and many worked practical examples, the books show in down-to- 
earth terms how to select and use an appropriate range of statistical techniques in a particular 
practical field within each title’s special topic area. 

The books provide statistical support for professionals and research workers across a 
range of employment fields and research environments. Subject areas covered include medi- 
cine and pharmaceutics; industry, finance and commerce; public services; the earth and envi- 
ronmental sciences, and so on. 

The books also provide support to students studying statistical courses applied to the 
above areas. The demand for graduates to be equipped for the work environment has led to 
such courses becoming increasingly prevalent at universities and colleges. 

It is our aim to present judiciously chosen and well-written workbooks to meet everyday 
practical needs. Feedback of views from readers will be most valuable to monitor the success 
of this aim. 

A complete list of titles in this series appears at the end of the volume. 



Numerical Methods in Finance 
and Economics 

A MATLAB-Based Introduction 

Second Edition 

Paolo Brandimarte 
Politecnico di Torino 

Torino, Italy 

@XEl ic iENCE 
A JOHN WILEY & SONS, INC., PUBLICATION 



Copyright 0 2006 by John Wiley & Sons, Inc. All rights reserved. 

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. 
Published simultaneously in Canada. 

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form 
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as 
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior 
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to 
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax 
(978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should 
be addressed to the Permissions Department, John Wiley & Sons, Inc., 11 1 River Street, Hoboken, NJ 
07030, (201) 748-601 1, fax (201) 748-6008, or online at http:l/www.wiley.com/go/permission. 

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in 
preparing this book, they make no representations or warranties with respect to the accuracy or 
completeness of the contents of this book and specifically disclaim any implied warranties of 
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales 
representatives or written sales materials. The advice and strategies contained herein may not be 
suitable for your situation. You should consult with a professional where appropriate. Neither the 
publisher nor author shall be liable for any loss of profit or any other commercial damages, including 
but not limited to special, incidental, consequential, or other damages. 

For general information on our other products and services or for technical support, please contact our 
Customer Care Department within the United States at (800) 762-2974, outside the United States at 
(317) 572-3993 or fax (317) 572-4002. 

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may 
not be available in electronic format. For information about Wiley products, visit our web site at 
www.wiley.com. 

Library of Congress Cataloging-in-Publication Data: 

Brandimarte, Paolo. 

Brandimarte.-2nd ed. 
Numerical methods in finance and economics : a MATLAB-based introduction / Paolo 

p. cm. 
Rev. ed. of: Numerical methods in finance. 2002. 
Includes bibliographical references and index. 

ISBN-10: 0-471-74503-0 (cloth) 
1. Finance-Statistical methods. 2. Economics-Statistical methods. I. Brandimarte, Paolo. 

HG176.5.B73 2006 
332.0 1'5 1 d c 2 2  2006045787 

ISBN-13: 978-0-47 1-74503-7 (Cloth) 

Numerical methods in finance. 11. Title. 

Printed in the United States of America. 

10 9 8 7 6 5 4 3 2 1 



This book is  dedicated to Commander  Straker, Lieutenant Ellis, and all 
S H A D 0  operatives. Thirty-five years ago they introduced m e  t o  the art 
of using both computers a n d  gut feelings to  make decisions. 



This Page Intentionally Left Blank



Preface to the Second Edition 

From the Preface to the First Edition 

Part I Background 

Contents 

1 Motivation 
1.1 Need for numerical methods 
1.2 Need for numerical computing environments: 

why MATLAB? 
1.3 Need for theory 

For further reading 
References 

2 Financial Theory 
2.1 Modeling uncertainty 
2.2 Basic financial assets and related issues 

2.2.1 Bonds 
2.2.2 Stocks 

xvii 

xxiii 

3 
4 

9 
13 
20 
21 

23 
25 
30 
30 
31 

V i i  



viii CONTENTS 

2.2.3 Derivatives 
2.2.4 

Fixed-income securities: analysis and portfolio 
immunization 
2.3.1 

2.3.2 
2.3.3 

2.3.4 

2.3.5 Critique 

2.4.1 Utility theory 
2.4.2 Mean-variance portfolio Optimization 
2.4.3 M A T L A B  functions to  deal with mean- 

variance portfolio optimization 
2.4.4 Critical remarks 
2.4.5 Alternative risk measures: Value at Risk 

Modeling the dynamics of asset prices 
2.5.1 
2.5.2 Standard Wiener  process 
2.5.3 Stochastic integrals and stochastic 

2.5.4 Ito’s lemma 
2.5.5 Generalizations 

2.6 Derivatives pricing 
2.6.1 
2.6.2 Black-Scholes model 
2.6.3 Risk-neutral expectation and Feynman- 

KaE formula 
2.6.4 Black-Scholes model in M A T L A B  
2.6.5 A f ew remarks o n  Black-Scholes formula 
2.6.6 Pricing American options 
Introduction to  exotic and path-dependent options 
2.7.1 Barrier options 
2.7.2 Asian options 
2.7.3 Lookback options 

Asset pricing, portfolio optimization, and 
risk management 

2.3 

Basic theory of interest rates: compounding 
and present value 
Basic pricing of fixed-income securities 
Interest rate sensitivity and bond portfolio 
immunization 
M A T L A B  functions to  deal with fixed- 
income securities 

2.4 Stock portfolio optimization 

and quantile- based measures 

From discrete t o  continuous t ime 
2.5 

diflerential equations 

Simple binomial model f o r  option pricing 

2.7 

33 

37 

42 

42 
49 

57 

60 
64 
65 
66 
73 

74 
81 

83 
88 
88 
91 

93 
96 

100 
102 
105 
108 

111 
113 
116 
117 
118 
119 
123 
123 



CONTENTS ix 

2.8 An outlook on interest-rate derivatives 
2.8.1 Modeling interest-rate dynamics 
2.8.2 

For further reading 
References 

Incomplete markets and the market price 
of risk 

Part 11 Numerical Methods 

3 Basics of Numerical Analysis 
3.1 Nature of numerical computation 

3.1.1 Number representation, rounding, and 

3.1.2 Error propagation, conditioning, and 

3.1.3 

Solving systems of linear equations                               145 
3.2.1 Vector and matrix norms                               146
3.2.2 
3.2.3 

3.2.4 Tridiagonal matrices 
3.2.5 

truncation 

instability                                                       141
Order of convergence and computational 
complexity                                                           143 

3.2 

Condition number for a matrix                     149 
Direct methods for solving systems of 
linear equations 

Iterative methods for solving systems of 
linear equations 

3.3.1 Ad hoc approximation 
3.3.2 Elementary polynomial interpolation 
3.3.3 Interpolation by  cubic splines 
3.3.4 

3.3 Function approximation and interpolation 

Theory of function approximation by least 
squares 

3.4 Solving non-linear equations 
3.4.1 Bisection method 
3.4.2 Newton’s method 
3.4.3 Optimization- based solution of non-linear 

equations 
3.4.4 Putting two things together: solving 

a functional equation by  a collocation 
method 

124 
126 

127 
130 
131 

137 
138 

138 

154 
159 

160 
173 
177 

183 
1 79 

188 
191 
192 
195 

198 

204 



x CONTENTS 

3.4.5 Homotopy continuation methods 204 
For further reading 206 
References 207 

4 Numerical Integration: Deterministic and Monte Carlo 
Methods 
4.1 Deterministic quadrature 

4.1.1 Classical interpolatory formulas 
4.1.2 Gaussian quadrature 
4.1.3 Extensions and product rules 
4.1.4 Numerical integration in M A T L A B  

4.2 Monte Carlo integration 
4.3 Generating pseudorandom variates 

4.3.1 Generating pseudorandom numbers 
4.3.2 Inverse transform method 
4.3.3 Acceptance-rejection method 
4.3.4 

Setting the number of replications 

4.5.1 Antithetic sampling 
4.5.2 Common random numbers 
4.5.3 Control variates 
4.5.4 Variance reduction b y  conditioning 
4.5.5 Stratified sampling 
4.5.6 Importance sampling 

4.6 Quasi-Monte Carlo simulation 
4.6.1 Generating Halton low-discrepancy 

sequences 
4.6.2 Generating Sobol low-discrepancy 

sequences 
For further reading 
References 

Generating normal variates by the polar 
approach 

4.4 
4.5 Variance reduction techniques 

5 Finite Diflerence Methods for  Partial Digerential 
Equations 
5.1 Introduction and classification of PDEs 
5.2 Numerical solution by finite diflerence methods 

5.2.1 Bad example of a finite diflerence scheme 295 

209 
21 1 
21 2 
214 
21 9 
220 
221 
225 
226 
230 
233 

235 
24 0 
244 
244 
251 
252 
255 
260 
261 
267 

269 

281 
286 
287 

289 
290 
293 



CONTENTS xi 

5.2.2 
Explicit and implicit methods for the heat 
equation 
5.3.1 

5.3.2 

5.3.3 

5.4 Solving the bidimensional heat equation 
5.5 Convergence, consistency, and stability 

For further reading 
References 

Instability in a finite diflerence scheme 
5.3 

Solving the heat equation by an explicit 
method 
Solving the heat equation by  a fu l ly  
implicit method 
Solving the heat equation by the Crank- 
Nicolson method 

297 

303 

304 

309 

31 3 

320 
314 

324 
324 

6 Convex Optimization 327 
6.1 Classification of optimization problems 328 

6.1.1 Finite- us. infinite-dimensional problems 328 
6.1.2 Unconstrained us. constrained problems 333 
6.1.3 Convex us. non-convex problems 333 
6.1.4 Linear us. non-linear problems 335 
6.1.5 Continuous us. discrete problems 337 
6.1.6 Deterministic us. stochastic problems 337 

6.2.1 Steepest descent method 339 
6.2.2 The subgradient method 34 0 
6.2.3 Newton and the trust region methods 34 1 

method and simplex search 342 

6.3 Methods for constrained optimization 34 6 
6.3.1 Penalty function approach 34 6 

6.3.3 Duality theory 357 

6.2 Numerical methods for unconstrained optimization 338 

6.2.4 No-derivatives algorithms: quasi-Newton 

6.2.5 Unconstrained optimization in MATLAB 343 

6.3.2 Kuhn-Tucker conditions 351 

6.3.4 Kelley 's cutting plane algorithm 363 
6.3.5 Active set method 365 

6.4 Linear programming 366 
6.4.1 Geometric and algebraic features of linear 

programming 368 
6.4.2 Simplex method 370 



xi; CONTENTS 

6.4.3 Duality in linear programming 
6.4.4 Interior point methods 

6.5.1 Linear programming in MATLAB 
6.5.2 A trivial L P  model for bond portfolio 

management 
6.5.3 Using quadratic programming to trace 

evgicient portfolio frontier 
6.5.4 Non-linear programming in MATLAB 

6.5 Constrained optimization in MATLAB 

6.6 Integrating simulation and optimization 
S6.1 Elements of convex analysis 

S6.1.1 Convexity in optimization 
S6.1.2 Convex polyhedra and polytopes 
For further reading 
References 

Part 111 Pricing Equity Options 

7 Option Pricing by  Binomial and Thnomial Lattices 
7.1 Pricing by  binomial lattices 

7.1.1 Calibrating a binomial lattice 
7.1.2 

7.1.3 

Pricing American options by binomial lattices 

Putting two things together: pricing a 
pay-later option 
An improved implementation of binomial 
lattices 

7.2 

372 
375 
377 
378 

380 

383 
385 
387 
389 
389 
393 
396 
397 

4 01 
4 02 
4 03 

410 

411 
414 

7.3 Pricing bidimensional options by  binomial lattices 41 7 
7.4 Pricing by  trinomial lattices 422 
7.5 Summary 425 

For further reading 426 
References 426 

8 Option Pricing by  Monte Carlo Methods 429 
8.1 Path generation 430 

8.1.2 Simulating hedging strategies 435 
8.1.3 Brownian bridge 439 

8.2 Pricing an exchange option 443 

8.1.1 Simulating geometric Brownian motion 431 



CONTENTS xiii 

8.3 Pricing a down-and-out put option 
8.3.1 Crude Monte Carlo 
8.3.2 Conditional Monte Carlo 
8.3.3 Importance sampling 
Pricing an arithmetic average Asian option 
8.4.1 Control variates 
8.4.2 Using Halton sequences 
Estimating Greeks by  Monte Carlo sampling 
For further reading 
References 

8.4 

8.5 

9 Option Pricing by  Finite Diflerence Methods 
9.1 

9.2 

Applying finite diflerence methods to  the Black- 
Scholes equation 
Pricing a vanilla European option by  an explicit 
method 
9.2.1 Financial interpretation of the instability 

of the explicit method                                     481 
Pricing a vanilla European option by  a fully 
implicit method 
Pricing a barrier option by  the Crank-Nicolson 
method 

For further reading 
References 

9.3 

9.4 

9.5 Dealing with American options 

Part I V  Advanced Optimization Models and Methods 

10 Dynamic Programming 
10-1 The shortest path problem 
10.2 Sequential decision processes 

10.2.1 The optimality principle and solving the 
functional equation 

10.3 Solving stochastic decision problems by  dynamic 
programming 

10.4 American option pricing by  Monte Carlo 
simulation 
10.4.1 A M A T L A B  implementation of the least 

squares approach 

44 6 
44 6 
44 7 
450 
4 54 
4 55 
458 
468 
4 72 
4 73 

4 75 

4 75 

4 78 

482 

485 
486 
4 91 
4 91 

4 95 
496 
500 

501 

504 

51 1 

51 7 



xiv CONTENTS 

10.4.2 Some remarks and alternative approaches 
For further reading 
References 

11 Linear Stochastic Programming Models with Recourse 
11.1 Linear stochastic programming models 
11.2 Multistage stochastic programming models for 

portfolio management 
11.2.1 Split-variable model formulation 
11.2.2 Compact model formulation 
11.2.3 Asset and liability management with 

11.3 Scenario generation for multistage stochastic 
programming 
11.3.1 Sampling for scenario tree generation 
11.3.2 Arbitrage free scenario generation 

1 1.4 L-shaped method for two-stage linear stochastic 
programming 

11.5 A comparison with dynamic programming 
For further reading 
References 

transaction costs 

12 Non- Convex Optimization 
12.1 Mixed-integer programming models 

12.1.1 Modeling with logical variables 
12.1.2 Mixed-integer portfolio optimization 

12.2 Fixed-mix model based on global optimization 
12.3 Branch and bound methods for non-convex 

optimization 
12.3.1 LP-based branch and bound for MILP 

models 
12.4 Heuristic methods for non-convex optimization 

For further reading 
References 

models 

51 9 
521 
522 

525 
526 

530 
532 
54 0 

544 

54 6 
54 7 
550 

555 
558 
559 
560 

563 
564 
565 

571 
576 

578 

584 
591 
597 
598 



CONTENTS xv 

Part V Appendices 

Appendix A Introduction to MATLAB Programming 603 
A.l MATLAB environment 603 

A.3 MATLAB programming 61 6 

Appendix B Refresher on Probability Theory and Statistics 623 

A.2 MATLAB graphics 614 

B.l Sample space, events, and probability 
B.2 Random variables, expectation, and variance 

B.2.1 Common continuous random variables 
B.3 Jointly distributed random variables 
B.4 Independence, covariance, and conditional 

expectation 
B.5 Parameter estimation 
B. 6 Linear regression 

For further reading 
References 

Appendix C Introduction to AMPL 
C. 1 Running optimization models in AMPL 
C.2 Mean variance eficient portfolios in AMPL 
C.3 The knapsack model in AMPL 
C.4 Cash pow matching 

For further reading 
References 

Index 

623 
625 
628 
632 

633 
637 
642 
64 5 
64 5 

64 7 
64 8 
64 9 
652 
655 
655 
656 

657 



This Page Intentionally Left Blank



Preface to  the Second 
J 

Edition 

After the publication of the first edition of the book, about five years ago, 
I have received a fair number of messages from readers, both students and 
practitioners, around the world. The recurring keyword, and the most im- 
portant thing to me, was useful. The book had, and has, no ambition of 
being a very advanced research book. The basic motivation behind this sec- 
ond edition is the same behind the first one: providing the newcomer with 
an easy, but solid, entry point to  computational finance, without too much 
sophisticated mathematics and avoiding the burden of difficult C++ code, 
also covering relatively non-standard optimization topics such as stochastic 
and integer programming. See also the excerpt from the preface to  the first 
edition. However, there are a few new things here: 

0 a slightly revised title; 

0 completely revised organization of chapters; 

0 significantly increased number of pages. 

The title mentions both Finance and Economics, rather than just Finance. To 
avoid any misunderstanding, it should be made quite clear that this is essen- 
tially a book for students and practitioners working in Finance. Nevertheless, 
it can be useful to Ph.D. students in Economics as well, as a complement to 
more specific and advanced textbooks. In the last four years, I have been 
giving a course on numerical methods within a Ph.D. program in Economics, 
and I typically use other available excellent textbooks covering advanced al- 
gorithms’ or offering well-thought MATLAB toolboxes2 which can be used 
to solve a wide array of problems in Economics. From the point of view of 
my students in such a course, the present book has many deficiencies: For 
instance, it does not cover ordinary differential equations and it does not 
deal with computing equilibria or rational expectations models; furthermore, 
practically all of the examples deal with option pricing or portfolio manage- 
ment. Nevertheless, given my experience, I believe that they can benefit from 
a more detailed and elementary treatment of the basics, supported by simple 
examples. Moreover, I believe that students in Economics should also get 

lK.L. Judd, Numerical Methods in Economics, MIT Press, 1998. 
2M. J.  Miranda and P.L. Fackler, Applied Computational Economics and Finance, MIT 
Press, 2002. 

xvii 
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at  least acquainted with topics from Operations Research, such as stochastic 
programming and integer programming. Hence, the “and  economic^" part of 
the title suggests potential use of the book as a complement, and by no means 
as a substitute. 

The book has been reorganized in order to ease its use within standard courses 
on numerical methods for financial engineering. In the first edition, optimiza- 
tion applications were dealt with extensively, in chapters preceding those re- 
lated to option pricing. This was a result of my personal background, which 
is mainly Computer Science and Operations Research, but it did not fit very 
well with the common use of a book on computational finance. In the present 
edition, advanced optimization applications are left to  the last chapters, so 
they do not get into the way of most financial engineering students. The book 
consists of twelve chapters and three appendices. 

0 Chapter 1 provides the reader with motivations for the use of numerical 
methods, and for the use of MATLAB as well. 

0 Chapter 2 is an overview of financial theory. It is aimed at students in 
Engineering, Mathematics, or Operations Research, who may be inter- 
ested in the book, but have little or no financial background. 

0 Chapter 3 is devoted to  the basics of classical numerical methods. In 
some sense, this is complementary to chapter 2 and it is aimed at peo- 
ple with a background in Economics, who typically are not exposed to  
numerical analysis. To keep the book to a reasonable size, a few clas- 
sical topics were omitted because of their limited role in the following 
chapters. In particular, I do not cover computation of eigenvalues and 
eigenvectors and ordinary differential equations. 

0 Chapter 4 is devoted to numerical integration, both by quadrature for- 
mulas and Monte Carlo methods. In the first edition, quadrature for- 
mulas were dealt with in the chapter on numerical analysis, and Monte 
Carlo was the subject of a separate chapter. I preferred giving a unified 
treatment of these two approaches, as this helps understanding their re- 
spective strengths and weaknesses, both for option pricing and scenario 
generation in stochastic optimization. Regarding Monte Carlo as a tool 
for integration rather than simulation is also helpful to  properly frame 
the application of low-discrepancy sequences (which is also known un- 
der the more appealing name of quasi-Monte Carlo simulation). There 
is some new material on Gaussian quadrature, an extensive treatment 
of variance reduction methods, and some application to vanilla options 
to illustrate simple but concrete applications immediately, leaving more 
complex cases to  chapter 8. 

0 Chapter 5 deals with basic finite difference schemes for partial differ- 
ential equations. The main theme is solving the heat equation, which 
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is the prototype example of the class of parabolic equations, to which 
Black-Scholes equation belongs. In this simplified framework we may 
understand the difference between explicit and implicit methods, as well 
as the issues related to convergence and numerical stability. With re- 
spect to the first edition, I have added an outline of the Alternating 
Direction Implicit method to solve the two-dimensional heat equation, 
which is useful background for pricing multidimensional options. 

a Chapter 6 deals with finite-dimensional (static) optimization. This 
chapter can be safely skipped by students interested in the option pric- 
ing applications described in chapters 7, 8, and 9. However, it may be 
useful to students in Economics. It is also necessary background for the 
relatively advanced optimization models and methods which are covered 
in chapters 10, 11, and 12. 

0 Chapter 7 is a new chapter which is devoted to binomial and trinomial 
lattices, which were not treated extensively in the first edition. The 
main issues here are proper implementation and memory management. 

a Chapter 8 is naturally linked to chapter 4 and deals with more advanced 
applications of Monte Carlo and low-discrepancy sequences to exotic 
options, such as barrier and Asian options. We also deal briefly with the 
estimation of option sensitivities (the Greeks) by Monte Carlo methods. 
Emphasis is on European-style options; pricing American options by 
Monte Carlo methods is a more advanced topic which must be analyzed 
within an appropriate framework, which is done in chapter 10. 

a Chapter 9 applies the background of chapter 5 to option pricing by finite 
difference methods. 

a Chapter 10 deals with numerical dynamic programming. The main rea- 
son for including this chapter is pricing American options by Monte 
Carlo simulation, which was not covered in the first edition but is gain- 
ing more and more importance. I have decided to deal with this topic 
within an appropriate framework, which is dynamic stochastic optimiza- 
tion. In this chapter we just cover the essentials, which means discrete- 
time and finite-horizon dynamic programs. Nevertheless, we try to offer 
a reasonably firm understanding of these topics, both because of their 
importance in Economics and because understanding dynamic program- 
ming is helpful in understanding stochastic programming with recourse, 
which is the subject of the next chapter. 

a Chapter 11 deals with linear stochastic programming models with re- 
course. This is becoming a standard topic for people in Operations 
Research, whereas people in Economics are much more familiar with 
dynamic programming. There are good reasons for this state of the 
matter, but from a methodological point of view I believe that it is very 
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important to compare this approach with dynamic programming; from 
a practical point of view, stochastic programming has an interesting po- 
tential both for dynamic portfolio management and for option hedging 
in incomplete markets. 

Chapter 12 also deals with the relatively exotic topic of non-convex opti- 
mization. The main aim here is introducing mixed-integer programming, 
which can be used for portfolio management when practically relevant 
constraints call for the introduction of logical decision variables. We also 
deal, very shortly, with global optimization, i.e., continuous non-convex 
optimization, which is important when we leave the comfortable domain 
of easy optimization problems (i.e., minimizing convex cost functions or 
maximizing concave utility functions). We also outline heuristic prin- 
ciples such as local search and genetic algorithms. They are useful to 
integrate simulation and optimization and are often used in computa- 
tional economics. 

Finally, we offer three appendices on MATLAB, probability and statis- 
tics, and AMPL. The appendix on MATLAB should be used by the 
unfamiliar reader to get herself going, but the best way to  learn MAT- 
LAB is by trying and using the online help when needed. The appendix 
on probability and statistics is just a refresher which is offered for the 
sake of convenience. The third appendix on AMPL is new, and it reflects 
the increased role of algebraic languages to  describe complex optimiza- 
tion models. AMPL is a modeling system offering access to a wide array 
of optimization solvers. The choice of AMPL is just based on personal 
taste (and the fact that a demo version is available on the web). In fact, 
GAMS is probably much more common for economic applications, but 
the concepts are actually the same. This appendix is only required for 
chapters 11 and 12. 

Finally, there are many more pages in this second edition: more than 600 
pages, whereas the first edition had about 400. Actually, I had a choice: 
either including many more topics, such as interest-rate derivatives, or offering 
a more extended and improved coverage of what was already included in the 
first edition. While there is indeed some new material, I preferred the second 
option. Actually, the original plan of the book included two more chapters on 
interest-rate derivatives, as many readers complained about this lack in the 
first edition. While writing this increasingly long second edition, I switched 
to plan B, and interest-rate derivatives are just outlined in the second chapter 
to point out their peculiarities with respect to stock options. In fact, when 
planning this new edition, many reviewers warned that there was little hope to  
cover interest-rate derivatives thoroughly in a limited amount of pages. They 
require a deeper understanding of risk-neutral pricing, interest rate modeling, 
and market practice. I do believe that the many readers interested in this 
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topic can use this book to  build a solid basis in numerical methods, which is 
helpful to tackle the more advanced texts on interest-rate derivatives. 

Interest-rate derivatives are not the only significant omission. I could also 
mention implied lattices and financial econometrics. But since there are excel- 
lent books covering those topics and I see this one just as an entry point or a 
complement, I felt that it was more important to give a concrete understand- 
ing of the basics, including some less familiar topics. This is also why I prefer 
using MATLAB, rather than C++ or Visual Basic. While there is no doubt 
that C++ has many merits for developing professional code, both in terms of 
efficiency and object orientation, it is way too complex for newcomers. Fur- 
thermore, the heavy burden it places on the reader tends to  overshadow the 
underlying concepts, which are the real subject of the book. Visual Basic 
would be a very convenient choice: It is widespread, and it does not require 
yet another license, since it is included in software tools that almost everyone 
has available. Such a choice would probably increase my royalties as well. 
Nevertheless, MATLAB code can exploit a wide and reliable library of nu- 
merical functions and it is much more compact. To the very least, it can 
be considered a good language for fast prototyping. These considerations, 
as well as the introduction of new MATLAB toolboxes aimed a t  financial 
applications, are the reasons why I am sticking to my original choice. The 
increasing number of books using MATLAB seems to confirm that it was a 
good one. 

Acknowledgments. I have received much appreciated feedback and encour- 
agement from readers of the first edition of the book. Some pointed out typos, 
errors, and inaccuracies. Offering apologies for possible omissions, I would like 
to thank I-Jung Hsiao, Sandra Hui, Byunggyoo Kim, Scott Lyden, Alexander 
Reisz, Ayumu Satoh, and Aldo Tagliani. 

Supplements. As with the first edition, I plan to keep a web page containing 
the (hopefully short) list of errata and the (hopefully long) list of supplements, 
as well as the MATLAB code described in the book. My current URL is: 

http://staff.polito.it/paolo.brandimarte 

For comments, suggestions, and criticisms, my e-mail address is 

paolo. brandimarteQpolito. it 

One of the many corollaries of Murphy’s law says that my URL is going 
to change shortly after publication of the book. An up-to-date link will be 
maintained both on Wiley Web page: 

ht tp : //www . wile y . com/mat hemat i cs 
and on The Mathworks’ web page: 

http : //www . mathworks. com/support/books/ 

PAOLO BRANDIMARTE 
Turin, March 2006 
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From the Preface to  the 
First Edition 

Crossroads are hardly, if ever, points of arrival; but neither are they points of 
departure. In some sense, crossroads may be disappointing, indeed. You are 
tired of driving, you are not a t  home yet, and by Murphy’s law there is a far- 
from-negligible probability of taking the wrong turn. In this book, different 
paths cross, involving finance, numerical analysis, optimization theory, prob- 
ability theory, Monte Carlo simulation, and partial differential equations. It 
is not a point of departure, because although the prerequisites are fairly low, 
some level of mathematical maturity on the part of the reader is assumed. It 
is not a point of arrival, as many relevant issues have been omitted, such as 
hedging exotic options and interest-rate derivatives. 

The book stems from lectures I give in a Master’s course on numerical 
methods for finance, aimed at graduate students in Economics, and in an 
optimization course aimed at  students in Industrial Engineering. Hence, this 
is not a research monograph; it is a textbook for students. On the one hand, 
students in Economics usually have little background in numerical methods 
and lack the ability to translate algorithmic concepts into a working program; 
on the other hand, students in Engineering do not see the potential application 
of quantitative methods to finance clearly. 

Although there is an increasing literature on high-level mathematics applied 
to financial engineering, and a few books illustrating how cookbook recipes 
may be applied to a wide variety of problems through use of a spreadsheet, I 
believe there is some need for an intermediate-level book, both interesting to  
practitioners and suitable for self-study. I believe that students should: 

Acquire reasonably strong foundations in order to appreciate the issues 
behind the application of numerical methods 

Be able to translate and check ideas quickly in a computational envi- 
ronment 

Gain confidence in their ability to apply methods, even by carrying out 
the apparently pointless task of using relatively sophisticated tools to 
pricing a vanilla European option 

Be encouraged to pursue further study by tackling more advanced sub- 
jects, from both practical and theoretical perspectives 

The material covered in the book has been selected with these aims in mind. 
Of course, personal tastes are admittedly reflected, and this has something to 

mi;; 
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do with my Operations Research background. I am afraid the book will not 
please statisticians, as no econometric model is developed; however, there is 
a wide and excellent literature on those topics, and I tried to come up with a 
complementary text book. 

The text is interspersed with MATLAB snapshots and pieces of code, to 
make the material as lively as possible and of immediate use. MATLAB is a 
flexible high-level computing environment which allows us to implement non- 
trivial algorithms with a few lines of code. It has also been chosen because of 
its increasing potential for specific financial applications. 

It may be argued that the book is more successful at raising questions than 
at giving answers. This is a necessary evil, given the space available to cover 
such a wide array of topics. But if, after reading this book, students will want 
to read others, my job will have been accomplished. This was meant to be a 
crossroads, after all. 

PS1. Despite all of my effort, the book is likely to  contain some errors and 
typos. I will maintain a list of errata, which will be updated, based on reader 
feedback. Any comment or suggestion on the book will also be appreciated. 
My e-mail address is: paolo. brandimarteOpolito. it. 

PS2. The list of errata will be posted on a Web page which will also include 
additional material and MATLAB programs. The current URL is 

http://staff.polito.it/paolo.brandimarte 

An up-to-date link will be maintained on Wiley Web page: 

http://www.wiley.com/mathematics 

PS3. And if (what a shame ...) you are wondering who Commander Straker 
is, take a look at the following Web sites: 

http://www.ufoseries.com 

http://www.isoshado.org 

PAOLO BRANDIMARTE 
Turin, June 2001 
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Mo tiva t io n 

Cornnion wisdom would probably associate the ideas of numerical methods 
aiid number crunching to problems in science and engineering, rather than 
finance. This irit.uit.ive view is contradicted by the relatively large number of 
books and scicritific journals devoted to computational finance; even more so, 
hy thc fact, that, these methods are not confined to academia, but are actually 
usrd i n  real life. As a result, there has been a steady increase in the number 
of academic programs devoted to quantitative finance, both a t  Master’s and 
Pt1.D. level, and they usually include a course on numerical methods. Fur- 
thermore, riiany people with a quantitative or numerical analysis background 
have started working in finance, including engineers, mathematicians, and 
physicists. 

Indeed, as the tern1 financial engineering may suggest, computational fi- 
nance is a field where different cultures meet. Hence, a wide array of students 
and practitioners, with diverse background, will hopefully be interested in a 
book on riurrirrical methods for finance. On t,he one hand, this is good news 
for the author. On the other one, the first difficult task is to get evcryonc 
on coniriion ground as far as financial theory and the basics of numerical 
aiialysis are concerned; if treatment is too brief, there is a significant risk of 
losing a considerable subset of readers along the way; if it is too detailed, 
aiiot,her subset will be considerably bored. The aim of the first three chapters 
is t,o “synchronize” readers with a background in Finance and readers with 
it scient.ific background, including students in Engineering, Mathematics, and 
Physics. In chapter 2, we will give the second subset of readers an overview 
of coiicept,s in finance, with an emphasis on asset pricing and portfolio man- 

3 
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agement. The first subset of readers will find a reasonably self-contained 
treatment on classical topics of numerical analysis in chapter 3. 

In this introductory chapter we want to give a preview of the problems we 
will deal with, along with some motivation. The reader who is unfamiliar with 
some topics just outlined here should not be worried, as they are not taken 
for granted and will be treated thoroughly in the next chapters. We want to 
make three points: 

1.  In financial engineering we need numerical methods (section 1.1). 

2. We need sophisticated and user-friendly numerical computing environ- 
ments, such as MATLAB' (section 1.2),  even if this does not prevent at  
all the use of (relatively) low-level languages such as Fortran or C++ or 
spreadsheets such as Microsoft Excel. 

3. Whatever software tool we select, we need a reasonably strong theoreti- 
cal background, as we must often select among competing methods and 
many things may go wrong with them (section 1.3). 

1.1 NEED FOR NUMERICAL METHODS 

Probably, the best-known result in financial engineering is the Black-Scholes 
formula to price options on stocks.2 Options are a class of derivatives, i.e., 
financial assets whose value depends on another asset, called the underlying. 
The underlying can also be a non-financial asset, such as a commodity, or an 
arbitrary quantity representing a risk factor to someone, such as weather, so 
that setting up a market to transfer risks makes sense. Options are contracts 
with very specific rules for issuing, trading, and accounting. For instance, 
a European-style call option on a stock gives the holder the right, but not 
the obligation, of buying a given stock a t  a given time (maturity, denoted 
by T ) ,  for a prespecified price (the strike price, denoted by K ) .  Similarly, 
a put option gives the right to sell the underlying asset at a predetermined 
strike price. In European-style derivatives, the right specified in the contract 
can only be exercised a t  maturity T ;  in American-style derivatives, one can 
exercise her right at  any time before T ,  which in this case plays the role of the 
expiration date of the option. 

In the case of a European-style call option, if the asset price at  maturity is 
S ( T ) ,  then the payoff is max{S(T) - K ,  0). The rationale here is that, under 
idealized assumptions on financial markets, the option holder could purchase 

'MATLAB is a registered trademark of The Mathworks, Inc. For more information, see 
http://vvv.mathvorks.com. 
2The formula was published by Fisher Black and Myron Scholes in 1973. A similar research 
line had been pursued by Robert Merton, and in fact Scholes and Merton were awarded the 
Nobel prize in Economics in 1997. By that time, unfortunately, Fisher Black was deceased. 
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the underlying asset at  the prevailing price S ( T )  and immediately sell it a t  
price K .  Clearly, the option holder will do so only if this results in a positive 
profit. Actually, market imperfections, such as transaction costs or bid-ask 
spreads, prevent such an idealized trade: even if S ( T )  is the last quoted price, 
there is no guarantee that the option holder can actually buy the stock a t  
that price. In the book we will neglect such issues, which are related to the 
micro-structure of financial markets. 

If we are at  a time instant t < T ,  we would like to assign a value, or a fair 
price, to the option. However, what we know is only the current price S( t )  
of the underlying asset, whereas its price S(T)  at maturity is not known. If 
we build some mathematical model for the dynamics of the price S( t )  as a 
function of time, we may regard S(T)  as a random variable; hence, the payoff 
is random as well, and there seems to be no trivial way to price this contract. 
Let f (S ( t ) ,  t )  be the price of the option at  time t if the current price of the 
underlying asset is S( t ) ;  to ease the notation burden we will usually write it 
as f (S, t ) .  It can be shown that, under suitable assumptions, the value of the 
contract really depends only on t and S,  and it satisfies the following partial 
differential equation (PDE): 

af 1 2 2d2 f  af 
at 2 as2 as - + - - a  S - + r S - - r f  = O ,  

where r is the risk-free interest rate, i.e., the rate of interest one can earn by 
investing her money in a safe account, and -a is a parameter related to the 
volatility of the price of the underlying asset, which is a risky asset. Typically, 
we are interested in the current value f(So,O), where So = S(0).  Equation 
(1.1), with the addition of suitable boundary conditions linked to the type of 
option, may be solved analytically in some cases. For instance, if we denote 
the cumulative distribution function3 for the standard normal distribution by 
N ( z )  = P{Z 5 z } ,  where 2 is a standard normal variable, the price CO for a 
European call option at  time t = 0 is 

CO = S O N ( ~ ~ )  - ~ e - ' ~ ~ ( d 2 ) ,  ( 1 . 2 )  

where 

ln(So/K) + ( r  + -a2/2)T 

ln(So/K) + ( r  - -a2/2)T 

d l  = 
U J T  

mm 

1 

d2 = = d l  --a&. 

This formula is easy to evaluate, but in general we are not so lucky. The com- 
plexity of the PDE or of some additional conditions, which we must impose to 
fully characterize a specific option, may require numerical methods. We will 

3See appendix B for a refresher on Probability and Statistics. 
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cover relatively simple numerical methods for solving PDEs, based on finite 
differences, in chapter 5, and applications to option pricing will be illustrated 
in chapter 9. Using finite differences, in turn, may call for the repeated solu- 
tion of systems of linear equations, which is among the topics of chapter 3 on 
numerical analysis. 

Apart from the obvious computational advantage, analytical formulas are 
of great importance in gaining insights into how different factors affect option 
prices. They also allow quick calculation of price sensitivities with respect to 
such factors, which are relevant for risk management. In the book, we will 
use analytical formulas quite often in order to validate numerical methods, 
by comparing the numerical result with the theoretically correct one. This is 
of no practical value by itself, but it is very instructive. Finally, we will also 
see that when a complex option cannot be priced analytically, knowing an 
analytical pricing formula for a related simpler option can be of great value. 
In option pricing by Monte Carlo simulation (see below), analytical pricing 
formulas may yield control variates useful to  reduce variance in the estimate 
of price. 

Nevertheless, we should note that the distinction between numerical and 
analytical methods is sometimes a bit blurred. It may happen that analytical 
formulas are quite complicated. As an example, let us consider the following 
formula, which we give without much explanation4: 

This is a formula for the price of a European-style call option when price 
jumps are included in the model. The Black-Scholes model assumes contin- 
uous paths for prices, and this formula by Robert Merton generalizes to a 
model in which jumps occur according to a compound Poisson process. Here 
CBLS(S, T,  K ,  u2, r )  is the standard Black-Scholes formula with the usual in- 
put arguments; X is related to  the rate of jumps, i.e., the expected number of 
jumps per unit time; X ,  is a random variable related to the size of jumps, and 
expectation in the formula is with respect to this variable; x is a number which 
is also related to the probability distribution of jump sizes. Even without fully 
understanding this formula, which goes beyond the scope of this introductory 
book, it is clear that evaluating it is not so trivial and calls for some computa- 
tional approximation. Nevertheless, it gives an explicit representation of the 
effect of each factor affecting price, whereas in a purely numerical approach 
this important information is lost. 

Even in the simple case of equation (1.2), some numerical method is actu- 
ally applied, since we have to evaluate the function: 

J' e-y2I2  dy, N ( 2 )  = - 
1 

J23; -ca 

4See [5, page 3201 for details. 



NEED FOR NUMERICAL METHODS 7 

where the integral cannot be solved in closed form. Here, we may evaluate 
the integral by quite efficient ad hoc approximation formulas, rather than by 
general-purpose methods for numerical integration. Sometimes, however, we 
have to compute or approximate integrals in multiple dimensions. In fact, 
thanks to a result known as  Feynman-KaE formula, the solution of a PDE 
such as (1.1) can be expressed as an expected value. This and other pricing 
arguments imply that option prices may be expressed as expected values, 
which boil down to an integral. Unfortunately, when expectation is taken with 
respect to many random variables, standard methods to compute integrals in 
low-dimensional spaces fail. 

In other problem settings, we have to approximate a function defined by 
an integral. For instance, consider a function g ( x ,  y) and define a function of 

b 
x by 

F ( x )  = d X l  Y)fY(Y) dY- 

Such a situation occurs often in stochastic optimization, when x is a decision 
variable influencing the result, which is only partially under our control be- 
cause of the effect of a random “disturbance” Y, whose density is fy(y) over 
the support [a, b] (possibly (-a, +o;))). The function F ( x )  can be consid- 
ered as the expected cost or profit resulting from our decisions. We will see 
concrete examples in chapters 10 and 11. 

Since computing integrals is so important, chapter 4 is entirely devoted to 
this topic. Apart from deterministic integration methods, we will also deal 
extensively with random sampling methods known as Monte Carlo integration 
or Monte Carlo simulation. Monte Carlo simulation has a incredibly wide 
array of applications, including option pricing and risk management. For 
instance, it can be shown that the price of a European call option at time 
t = 0 is given by the following expected value: 

c = EQ [eprT max{ST - K, 0}] , 

where ST is the (random) price of the underlying asset a t  maturity, and the 
expected value is taken under a suitably chosen probability measure (denoted 
by a). In other words, the option value is the expected value of the payoff, 
discounted back to time t = 0, under a certain probability measure. If we are 
able to generate A4 independent random samples Sg), j = 1,. . . , M ,  of the 
asset price, under probability measure Q, then by the law of large numbers 
we could estimate the expected value by the sample mean 

This is the essence of Monte Carlo simulation, and a number of tricks of the 
trade are needed in order to obtain a reliable and computationally efficient es- 
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timate.5 Variance reduction methods and alternative integration approaches 
based on low-discrepancy sequences will be introduced in chapter 4, and ap- 
plications to option pricing are illustrated in chapter 8. 

Another widely applied approach to option pricing is based on binomial 
or trinomial lattices. These can be regarded as a sort of clever discretization 
of the underlying stochastic process. From this point of view, they are a 
deterministic way to generate sample paths, whereas Monte Carlo is based on 
random sample path generation. Another point of view is that certain finite 
difference approaches can be regarded as generalization of trinomial lattices. 
We will see applications of these methods in chapter 7. 

Another major topic of the book is optimization, which is introduced in 
chapter 6. Optimization models and methods play many different roles in 
finance. In the option pricing context, optimization is at the core of pricing 
American-style options. Since American-style options may be exercised at any 
time before expiration, optimal exercise strategies must be accounted for in 
pricing. For instance, in an American-style call option, it would be tempting 
to exercise the option as soon as it gets in-the-money, i.e., when S(t)  > K for 
a call option and you could earn an immediate profit. However, one should 
also wonder if it could be better to  wait for a better opportunity. This is 
not a trivial problem; indeed, it can be shown that it is never optimal to 
exercise an American-style call option on a stock, unless it pays dividends 
before expiration. 

An older type of application of optimization methods is portfolio manage- 
ment. Given a set of assets in which one can invest her wealth, we must 
decide how much should be allocated to each one of them, given some char- 
acterization of the uncertainty in assets return. The best-known portfolio 
optimization model is based on the idea of minimizing the variance of port- 
folio return (a measure of risk), while meeting a constraint on its expected 
value. This leads to mean-variance portfolio theory, a topic pioneered by 
Harry Markowitz in the 1950s. While somewhat idealized, this model had 
an enormous practical and theoretical impact, eventually earning Markowitz 
a Nobel prize in Economics in 1990.6 Since then, many different approaches 
to portfolio optimization have been developed, and they will be illustrated in 
chapters 10, 11, and 12. 

5As we mentioned, option pricing by solving a partial differential equation or by computing 
an expectation are theoretically equivalent approaches, via Feynman-KaE formula. How- 
ever, they can be quite different in computational terms. It is interesting to  note that, 
historically, Black-Scholes formula was first obtained by solving the pricing PDE analyti- 
cally, whereas the recent tendency is to  use expectation based approaches because of their 
generality. 
6Markowitz shared the prize with Merton Miller and William Sharpe. What is probably 
less known is that he was among the developersof SimScript, one of the first programming 
languages for discrete-event simulation. By the way, Robert Merton had a background in 
engineering. This shows how artificial the barriers between Economics and Engineering 
may be. 
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It is also important to note that asset pricing and portfolio optimization are 
not necessarily disjoint topics. Many Financial Economics theories are based 
on portfolio optimization models which in turn lead to asset pricing models. 
We will not cover these topics, however, both because of space limitations and 
because they are not strictly related to numerical methods. 

There are still other kinds of application of optimization methods, which 
may more instrumental, such as parameter fitting or model calibration. In 
complex markets, asset prices may depend on a set of unobservable parame- 
ters, and one would like to introduce and price a new asset, in a way which 
is coherent with observed prices for other traded assets. To do so, a typical 
approach is the following. First we build a theoretical pricing model, depend- 
ing on such parameters. Then we try to find values for these Parameters, 
which are as coherent as possible with observed prices. Let a be the vector 
of unknown parameters; according to the asset pricing model, the theoretical 
price of asset j should be Pj(a), whereas the observed price is P:. We would 
like to get a vector of parameters yielding the best fit. A standard way to do 
so is solving the following optimization model: 

Then, given the optimal set of parameters, we may proceed to price new as- 
sets using the theoretical model. This type of approach is essential in pricing 
interest-rate derivatives. Interest-rate derivatives are considerably more diffi- 
cult to analyze than options on stocks and are outside the scope of this book; 
we will just outline the related issues in section 2.8. 

As expected, some simple optimization models may be solved analytically, 
yielding quite useful insights. However, as a rule, very sophisticated compu- 
tational approaches are needed. 

1.2 NEED FOR NUMERICAL COMPUTING ENVIRONMENTS: WHY 
MATLAB? 

MATLAB is an interactive computing environment, providing both basic and 
sophisticated functions. You may use built-in functions to solve possibly com- 
plex but standard problems, or you may devise your own programs by writing 
them as M-files, i.e., as text files including sequences of instructions written 
in a high-level matrix-oriented language. Moreover, MATLAB has a rich set 
of graphical capabilities, which we will use in a very limited fashion, includ- 
ing the ability of quickly developing graphical user interfaces. The unfamiliar 
reader is referred to appendix A for a quick tour of MATLAB programming. 

Some classical numerical problems are readily solved by MATLAB func- 
tions. They include: 

0 Solving systems of linear equations 
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0 Solving non-linear equations in a single unknown variable (including 
polynomial equations as a special case) 

0 Finding minima and maxima of functions of a single variable 

0 Approximating and interpolating functions 

0 Computing definite integrals (in low-dimensional spaces) 

0 Solving ordinary differential equations, as well as some simple PDEs 

This and much more is included in the basic MATLAB core. More complex 
versions of these problems may be solved by other MATLAB ready-to-use 
functions, but you have to get the appropriate toolbox. A toolbox is simply a 
set of functions written in the MATLAB language, and it is usually provided 
in source form, so that the user may customize or use the code as a starting 
point for further work. For instance, the Optimization toolbox is needed to  
solve complex optimization problems, involving several decision variables and 
possibly complex constrains, as well as to  solve systems of non-linear equa- 
tions. Another relevant toolbox for finance is the Statistics toolbox, which 
includes many more functions than we will use. In particular, it offers func- 
tions to generate pseudorandom numbers that are needed to carry out Monte 
Carlo simulations. Based on the Statistics and Optimization toolboxes, a 
Financial toolbox was first devised a few years ago, which included differ- 
ent groups of functionalities. Some were low-level functions aimed a.t date 
and calendar manipulation or finance-oriented charting, which are building 
blocks for real-life applications; others dealt with simple fixed-income assets, 
portfolio optimization, and derivatives pricing. 

After this first toolbox, others were introduced which are directly related 
to finance: 

0 GARCH toolbox 

0 Financial time series toolbox7 

0 Financial derivatives toolbox 

0 Fixed-income toolbox 

We will not deal with such toolboxes in the book, but information can be ob- 
tained by browsing The Mathworks’ Web site ( h t t p :  //www .mathworks. corn). 
We should also mention that other toolboxes, which were not specifically de- 
veloped for financial applications, could be useful, such as the PDEs toolbox 

’At the time of writing, the functionalities of this toolbox have been included in the Finan- 
cial toolbox. 
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or the genetic and direct search toolbox.8 Other more instrumental tools are 
useful to develop professional applications, such as Excel link, Web server, 
the compiler, or the Datafeed module enabling web connections to different 
financial web sites. 

Now the question is: Why choose MATLAB for this book? Indeed, there 
are different competitors, a t  different levels: 

0 User-friendly spreadsheets, such as Microsoft Excel. In fact, there are 
spreadsheet-based books showing how optimization and simulation meth- 
ods may be applied to financial problems. Spreadsheets are equipped 
with solvers able to cope with small-scale mathematical programming 
problems, and extensions are available to run Monte Carlo simulations 
or optimization by genetic algorithms. 

0 On the opposite side of the spectrum, one could use low-level languages 
such as C++ or Fortran. C++ seem a favorite, if you look a t  the number 
of books on computational finance based on this language, but there 
are people maintaining that the recent versions of Fortran do still have 
some advantages. C++ or Fortran may be used either to implement the 
algorithms directly or to call available scientific computing libraries. 

0 There are also specialized libraries or environments, such as statistical 
or optimization tools. 

How does MATLAB compare against such alternatives? The obvious answer 
is that the choice is largely a matter of taste, and it depends on your aim. 

Sure, when you have to carry out simple computations, there's little point in 
resorting to a full-fledged computing environment, and probably spreadsheets 
are the best choice. However, the extra effort in learning a programming 
language pays off when you have to program a complex numerical method 
which goes beyond what is standard and readily available. Actually, there 
is no way to really learn numerical methods without some knowledge of a 
programming language, and in any case, even if you use a spreadsheet as the 
front end, it is quite likely that you have to write some code in Visual Basic 
or C++. 

Compiled languages such as Fortran and C++ are certainly the most effi- 
cient option, in terms of execution speed.9 If you have to write really lightning- 
fast code, this is the best choice. 

'Genetic algorithms and direct search methods are optimization methods which do not 
require computing derivatives of the objective function. This makes them very flexible for 
some types of optimization models, as we will see in chapters devoted to optimization. 
9A compiled language is based on the translation of source level code to  machine level 
language. You need a compiler t o  do  that;  optimized compilers are able to  obtain extremely 
fast code. An interpreter does not translate t o  machine level code, but to some internal form 
which is then executed. Usually an interpreter has some advantage in terms of debugging 
and flexibility, which is paid in terms of execution speed. 
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MATLAB is an interpreted language, and even if it is quite efficient, there 
is some difference. However, the performance gap is being bridged by increas- 
ingly fast MATLAB versions. Furthermore, executable libraries can be gener- 
ated from MATLAB code by using the MATLAB compiler; these libraries can 
then be linked within the application just as any C++ code. But the most 
important advantage of MATLAB is that it is a very simple, yet powerful, 
programming language. Unlike C++, you may avoid bothering with issues 
such as memory allocation, variable declaration, etc. MATLAB is an excellent 
rapid prototyping tool: You may implement a quite complex algorithm with 
a very limited amount of lines. Simple code means less time to develop and 
less chances for programming bugs. Then, if it is really needed, you may go 
on by translating the prototyped code to, e.g., C++. This is obviously im- 
portant in a practical setting, but it is not really essential in a didactic book 
like the present one. When learning a numerical method, being distracted by 
too many programming details is certainly bad. 

MATLAB can be thought of as a suitable compromise between conflicting 
requirements. The increasing number of toolboxes and books using MATLAB 
is a good proof of that. Needless to say, this does not imply that MATLAB has 
no definite limitations. When one has to deal with large-scale optimization 
problems, it is necessary to resort to specialized packages such as CPLEX,1° 
against which MATLAB is unlikely to be competitive (it should be noted 
that the Optimization toolbox is aimed at  general non-linear programming, 
whereas some optimization packages deal only with linear and quadratic pro- 
gramming). Furthermore, mixed-integer programming problems" cannot be 
solved, at present, by MATLAB.12 Even worse, when you have a large op- 
timization model, loading the data in a form suitable to a numerical library 
function is a difficult and error-prone task without the support of algebraic 
modeling languages such as AMPL.I3 This is one of the reasons why, in the 
chapters on optimization models, we will sometimes solve them using AMPL. 
This should not place any burden on the reader, since a free demo version can 
be downloaded from the AMPL web site. See appendix C for a quick tour of 
AMPL. 

By the same token, if one is interested in statistical computing applied to  
finance, it is quite likely than some of the many econometric packages are 

'OCPLEX is a registered trademark of ILOG. See http: //www. ilog.com. 
' Mixed-integer programming models are optimization models in which some decision vari- 
ables are restricted to  integer, rather than real, values. They are dealt with in chapter 12. 
See also example 1.2 on page 15. 
lZWe should mention that  the latest release of the Optimization Toolbox does include a 
solver for certain pure binary (0/1) linear programming. However, this is not suitable to 
large scale mixed-integer programming. 
13AMPL (A Mathematical Programming Language) was originally developed at Bell Lab- 
oratories. At present it is available in many versions through different sellers, including 
ILOG, under license from the copyright owner. See http: //www. ampl. corn. 
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better suited to the task. The point is that none of these offers the many 
functionalities of MATLAB within a single integrated environment. 

To summarize, we may argue that a product like MATLAB is the best single 
tool to lay down good foundations in numerical methods. Cheap MATLAB 
student editions are available, and its use in finance is spreading. So we believe 
that learning MATLAB is definitely an asset for students and practitioners in 
financial engineering. 

A last choice had to be made in writing the book: To which extent should 
toolboxes be used? On the one hand, using too many toolboxes would place 
some burden on the reader, who may not have access to all of them. On the 
other hand, using only the MATLAB core would probably limit what we can 
do, So, again, a compromise must be reached. Our choice has been to  use 
a very limited subset of functions from the Statistical and Financial toolbox, 
which can be easily replicated. We will sometimes use functions from the 
Optimization toolbox, but the same results can be obtained by the free AMPL 
demo version. We will use neither advanced financial toolboxes nor the Partial 
Differential Equations Toolbox. This choice is somewhat contradictory: Why 
use the Optimization toolbox and not the PDEs one? The point is that there 
is a wide gap between a conceptual statement of optimization methods, and 
a robust working implementation. It is not the aim of this book to bridge 
that gap, so we will avoid a detailed treatment of most optimization methods, 
limiting ourselves to the principles behind them. On the contrary, simple 
finite difference methods are relatively easy to implement, and can be treated 
in detail. Finally, we should also note that typical computational finance 
courses do cover basic finite difference methods for solving PDEs, but not 
sophisticated optimization methods. 

1.3 NEED FOR THEORY 

Now that we established that we are going to use MATLAB in the book, an- 
other question may arise: Why should we bother learning numerical methods, 
when they are already available in professionally crafted, ready-to-use code? 
Can we get rid of theory? Although, in most cases, there is no need for a deep 
knowledge of numerical analysis in order to use MATLAB, there are a t  least 
three reasons to gain a basic understanding of the theoretical background of 
numerical methods. 

1. Without a sound background, you cannot go on developing your own 
solutions when the available methods are not enough. 

2. Without a sound background, you cannot choose the most appropriate 
algorithm when alternatives are given. 

3. Without a sound background, you cannot use methods properly and, 
most important, you cannot understand what is going wrong when re- 
sults are not reasonable or you get weird error messages. 
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In particular, we need some understanding of fundamental issues like “con- 
ditioning of a numerical problem” and “stability of an algorithm.” These 
concepts are briefly discussed in chapter 3. Here we give some simple exam- 
ples of the trouble one can get into without a sound knowledge of the pitfalls 
of numerical computing. 

Example 1.1 Consider the following expression: 

9 .8 .1  + 8.1 

Everyone would agree that this is just a complicated way to write 10 x 8.1 = 
81. Let us try it on a computer, using MATLAB: 

>> 9 * 8.1 + 8.1 
ans = 

81.0000 

Everything seems right. Now, there is a built-in function in MATLAB, fix, 
which can be used to round a number to the integer nearest to zero.14 Note 
that fix does not round to  the nearest integer: 

>> fix(4.1) 

4 
>> fix(4.9) 

4 

ans = 

ans = 

Let us try it on the expression above: 

>> fix(9*8.1 + 8.1) 
ans = 

80 

Now something seems quite wrong. Actually, the point is that the first result 
is not what it looks like. This may be seen by changing the visualization 
format of numbers and trying again: 

>> format long 
>> 9 * 8.1 + 8.1 
ans = 

80.99999999999999 

Actually, there was some warning, since MATLAB printed 81.0000 rather 
than 81, as it happens with 

14The reader is urged to explore the differences between f i x  and the related functions 
f l o o r ,  c e i l ,  and round. 
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>> 10 * 8.1 

81 
ans = 

The problem is that an innocent-looking number like 8.1 is not represented 
exactly on a computer. This is because a computer works with a finite pre- 
cision arithmetic based on a binary representation, which can represent some 
numbers only approximately, even if their representation is finite in another 
system, like the decimal system we are used to. 0 

In this example we see a large effect of a small error. This happens because 
of the non-linear character of the fix operator. The example may look a bit 
artificial, and one could be tempted to think that such difficulties do not arise 
in practice. In the next example we see the relevant effect of similar small 
errors in a concrete setting. 

Example 1.2 Let us consider a trivial model for capital budgeting deci- 
sions. We must allocate a given amount W of money to a set of N potential 
investments. For each investment opportunity, we know 

0 The initial capital outlay Ci, i = 1,. . . , N 

0 The revenue Ri that we will get from the investment (which we assume 
certain) 

We would like to select the subset of investments yielding the largest revenue, 
subject to a budget constraint. This looks like a portfolio optimization model, 
the key difference being that our decision must be ‘Lall-or-nothing.ll For each 
investment opportunity we may decide weather we take it or leave it, but we 
cannot buy a fractional share of it. In typical portfolio optimization models, 
assets are assumed infinitely divisible, which may often be a reasonable ap- 
proximation, e.g., for stocks, but not in this case. It may be helpful to think 
of our investments as projects that can be started or not. 

The decision variables must reflect the logical nature of our decision. This 
is obtained by restricting the decision variables as follows: 

1 if we invest in project i 
{ 0 otherwise. 

xa = 

Now it is easy to build an optimization model: 

N 

i=l 
N 
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This model is grossly simplified, but it is a first example of an integer program- 
ming model. It is also well known as the knapsack problem, as each investment 
may be interpreted as an object of given value Ri and volume Ci, and we want 
to determine the maximum value subset of objects that may fit the knapsack 
capacity W .  A model like this looks deceptively simple. However, it cannot be 
solved by ordinary optimization methods for continuous optimization models. 
One could think of simply enumerating all of the feasible solutions, which are 
a finite set, in order to spot the best one. Unfortunately, this is not feasible 
in general, as the number of feasible solutions may be very large, even though 
finite. To see this, notice that there are N variables which can take two values; 
hence, there are 2N possible variable assignments. Many of them would be 
ruled out by the budget constraints, but we see that the computational effort 
of complete enumeration grows exponentially with the size of the problem. A 
possible solution approach would be ordering the items in decreasing order of 
their return Ri/Ci and selecting them until the budget allows. This would 
work with divisible assets, but it does not guarantee the optimal solution in 
the discrete case. As a counterexample, consider the following problem: 

max loxl + 7~ + 25x3 + 24x4 
s.t. 221 + 1 2 2  + 6x3 + 524 5 7 

xi E (0 , l ) .  

The returns are, respectively, 5.00,7.00,4.17,4.80. Hence, according to this 
logic we would select investment 2 first, then investment 1, and we would 
stop there, with a revenue 17, because no other investment fits the residual 
budget. This is a really bad solution, leaving much budget unused. There are 
two solutions which exploit the whole budget: [I, 0, 0,1], with total revenue 
34, and [0,1,1,0], with total revenue 32. In this trivial case it is easy to 
see that the first one is optimal. Unfortunately, in general, a problem like 
this can only be tackled by non-convex optimization methods, such as branch 
and bound,15 described in chapter 12; in that chapter we will see that logical 
decision variables may be useful in capturing various types of constraints in 
realistic portfolio management models. 

The main limitation of the model above is that uncertainty is not considered 
at  all. Another issue is that in general there might be some interaction among 
different projects. For instance, it could be the case that a given project, say 
project Po, may be started only if projects PI, P2,. . . , PN are started as well. 
This logical constraint is easily modeled using the binary decision variables 
we have just introduced. One possibility is to express the constraint in the 

15This problem may be also solved by some form of dynamic programming; see [7, pp. 
72-74]. In chapter 10 we only consider dynamic programming for certain stochastic op- 
timization problems, but the principle is much more general and powerful and it. can be 
applied to some combinatorial optimization problems as well. 
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following form: 

If we start all the N required activities, the right-hand side of this inequality 
is simply N / N  = 1, so that we may start Po, since the constraint boils down 
to the redundant bound 20 5 1. If some required project is missing, the 
constraint amounts to something like 2 0  5 a < 1, which, together with the 
binary requirement 20 E (0, l}, enforces 20 = 0. In principle, the idea is 
fine, but does it really work on a computer? Well, in many cases it does, but 
consider what happens with N = 3. Project Po will never be selected. In 
fact, in this case, you should read the constraint above as 

1 1 1 

3 3 3 
50 5 - 2 1  + -22 + -23, 

but unfortunately, even if all the xi variables are set to 1, due to the finite 
precision of the computer we have something like 

2 0  5 0.3333333 + 0.3333333 + 0.3333333 = 0.9999999 < 1, 

where the number of decimals depends on the numerical precision of the ma- 
chine and on the software involved. Actually, sophisticated optimization soft- 
ware for integer programming does not incur this trouble, since some integral- 
ity tolerance is introduced, and 0.9999999 is considered just like 1. Similar 
considerations apply to any high-quality numerical software, such as MAT- 
LAB, but the result can be somewhat unpredictable, as the following snapshot 
shows: 

>> fix(l/3 + 1/3 + 1/31 
ans = 

1 

>> fix(l/7 + 1/7 + 1/7 + 1/7 + 1/7 
ans = 

0 

Furthermore, if the optimization problem 

+ 1/7 + 1/71 

is first written to a text file, which 
is then loaded by an optimization solver, it may be the case that the number 
of digits is too small.16 So it is better to avoid the trouble with division in 
the first place, by rewriting the constraint as 

“For instance, if you solve the model within a modeling system like AMPL, calling a solver 
like CPLEX, there is no trouble. But if you write an MPS file and load the file with 
CPLEX, the result will not be correct. MPS files are text files representing optimization 
models according to  standard rules; they are read by many optimization software packages. 



18 MOTIVATION 

or, even better, in the disaggregated form 

20 5 xi, i = 1,. . . , N .  

Why this is the preferred form is counterintuitive: after all, the disaggregated 
form entails more constraints, and one would think that the less constraints 
we have, the easier an optimization model is to solve. This need not be 
true in computational optimization, and it also depends on how mixed-integer 
programming problems are solved by branch and bound methods. More on 
this in chapter 12. 0 

Numerical errors may affect the precision in representing numbers, but this 
issue is not much trouble in itself; after all, a derivative price will not be quoted 
in millionths of a dollar. But how about the propagation of errors within a 
numerical algorithm? If you have a non-linear operator like f i x ,  a small 
error gets immediately amplified. The same may happen when you execute a 
long sequence of operations, such that small errors cumulate, growing without 
bound. The effect may well be a huge negative price for an option, as we will 
see in chapter 9. In the next example we consider a well-known example, 
linked to the solution of a system of linear equations. 

Example 1.3 Let us consider a system of linear equations: 

Hx = b, 

for some right-hand side vector b, where H is a peculiar matrix known as the 
Hilbert mat r ix  

H =  

1 1 
3 n 
1 1 

1 1 

1 ; - .. .  - 

I I - . . .  - 
2 3  4 n+l  

I I - . . .  - 
3 4  5 n+2  

. .  

1 1  1 1 
n n + l  n+2 2n-1 
- - - . . . - 

The Hilbert matrix may look a bit artificial, but it may arise in certain function 
approximation problems (see example 3.20 on page 190). 

MATLAB provides us with a function, hilb, to build a Hilbert matrix 
directly. Now, let us try solving the system for n = 20; we cheat a little here, 
since we assume that the solution is known, and we build the corresponding 
right-hand side b; then we check if that solution is obtained by solving the 
system. Let the solution be 
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where we use ’ to denote vector (or matrix) transposition. Using MATLAB, 
we obtain something like17 

>> H = hilb(20); 

>> b = H+x; 
>> H\b 
Warning: Matrix is close to singular or badly scaled. 

Results may be inaccurate. RCOND = 1.995254e-019 

>> x = (1:20)’; 

ans = 

1.0000 
2.0000 
3.0018 
3.9392 
5.8903 
-1.1035 
41.0915 
-94.0458 
196.5770 

82.1903 
12.1684 
140.5377 

-265.11 17 
309.7053 
-328.9234 
485.5373 
-401.3571 
215.1260 
-17.0274 

-181.1961 

We see that the result doesn’t look quite as it should. 0 

In the last example we see the typical effect of propagation of numerical 
errors, giving rise to numerical instability. In fact, this is detected by MAT- 
LAB, which issues a warning message. However, we need some theoretical 
background in order to get the meaning of this warning. One could think 
that similar difficulties arise whenever a matrix is close to singular. Clearly, if 
you try doing something like x = A-’b in order to solve the system Ax = b, 

17The actual result may depend on the MATLAB version and the hardware you use. This 
is not the case for usual problems, but it does happen when numerical instability issues 
arise. 
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you are likely to be in trouble if A is close to singular. This may be true, but 
it is somewhat misleading: 

1. You may have difficulties even when the matrix is not singular at all 
(see example 3.8 on page 151). We need to study issues such as problem 
conditioning in order to  understand what really happens. 

2. In practice, there is no need to  invert a matrix to solve a system of linear 
equations, as this would be much more work than necessary. Compu- 
tational mathematics may be quite different from “pencil-and-paper” 
mathematics. 

At this point, the reader will hopefully be convinced that some background 
in numerical analysis is needed, if we are to solve problems in real life. 

For further reading 

In the literature 

0 Another MATLAB-based textbook is [6 ] .  It is more aimed at appli- 
cations in Economics, but it offers an interesting Computational Eco- 
nomics toolbox which may be downloaded for free. 

0 Readers interested in details on the development and release of Microsoft 
Windows components for financial applications may have a look at  [4]. 

0 Financial modeling within Microsoft Excel is described, e.g., in [2]. 

0 C++ programmers will find [l] and [3] very useful. 

0 Many journals devoted to quantitative finance publish papers on com- 
putational issues. We should mention at  least 

- Journal of Computational Finance 
http://www.thejournalofcomputationalfinance.com 

- Journal of Derivatives 
http://www.iijod.com 

- Quantitative Finance 
http://www.tandf.co.uk 

On the Web 

0 To consult a full and updated listing of MATLAB toolboxes, see 
http://www.mathworks.com. 

0 For more information on CPLEX and related software, see 
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http://www.ilog.corn. 

0 The web page for AMPL is http : //www . ampl. corn, where you will find 
a list of vendors and compatible solvers and a free student version for 
download. 

0 Two web sites we should also mention are 

http : //www . gams .corn, where an alternative product to  AMPL is de- 
scribed, which has found fairly widespread use among economists, 

and http : //www . nag. corn where a well-known numerical analysis li- 
brary is described, for use with programming languages like Fortran 
and C++. 
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2 
Financial Theory 

This chapter is a reasonably brief introduction to some basic problems in 
finance. It is mostly aimed a t  readers with a scientific or engineering back- 
ground, but with little previous exposure (if any) to the theory of finance. 
The complementary set of readers, i.e., those with a background in finance 
may wish to have a cursory look a t  the material, or maybe to refer back to 
this chapter for a quick refresher when needed. 

The treatment here is purely instrumental to motivating and stating cer- 
tain problems to which we may apply numerical methods. So, it is certainly 
not meant to be a substitute for a good book on finance (see the references at 
the end of the chapter), and it is not aimed at  giving a complete overview of 
financial theory. Furthermore, many concepts such as bond portfolio immu- 
nization, mean-variance efficiency, and Value at  Risk have many well-known 
limitations and have been the subject of quite a bit of controversy. We will 
point out the limitations of each approach, and we do not suggest that they 
should be used as they are stated; we use them just to pave the way for further 
developments. 

Actually, there 
is a third one, information, which is important in advanced models which 
are beyond the scope of this book. Time is important since, under normal 
economic conditions, one dollar now is worth more than one dollar tomorrow. 
Even if we do not consider inflation, it is reasonable to expect that if we have 
one dollar now and we do not need it for immediate consumption, we could go 
to a bank, deposit our dollar, and recover a larger sum later on. If, after one 
year, we get 1 + r dollars, we say that r is the annual interest rate. We may 
see it the other way around: if we borrow one dollar now, in the future we 

23 

The main themes in finance are time and uncertainty. 
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will have to give back some more. In fact, one function of financial markets 
is just to shift consumption over time by borrowing or lending money. In 
practice, the rates for borrowing and lending are not really the same, as there 
is a bid-ask spread,’ but for our instrumental purposes we will mostly neglect 
such issues. 

If we are investing money over a relatively short time period, we could 
assume that we know the interest rate that will be applied for that period. 
This may not be the case for longer periods, as interest rates are subject to  
uncertainty. If the interest rate is periodically reset according to prevailing 
conditions, then the investment is subject to uncertainty which may be con- 
sidered as a reinvestment risk. Even if a given nominal rate is agreed to hold 
for the entire period, the real rate will be subject to inflation. An even larger 
uncertainty is typically associated to  investing in stocks, which are often sub- 
ject to significant price volatility. Our first task is to introduce different ways 
to model uncertainty (section 2.1). There is no “best” way to model uncer- 
tainty, as this may depend on our aim, but there is no doubt that uncertainty 
is pervasive in finance. 

Uncertainty is strongly linked to risk. Any investor has some implicit risk 
tolerance. For instance, common wisdom dictates that older investors should 
invest in relatively safe assets, whereas younger ones may afford the risk of 
investing in stock. Apart from individual investors, there are institutional 
investors, such as pension funds, or even non-financial firms which use financial 
assets to modify their exposure to  some risk factors. In fact, another function 
of financial markets is to transfer risk among market participants, who can 
be grossly classified as speculators or hedgers. Speculators have some view on 
how prices will move in the future, and they perceive risk as an opportunity 
to place bets. Speculation has a somewhat negative connotation, but without 
speculators, markets would not exist in their present form. The other side 
of the coin is the set of hedgers, who use certain types of assets as a sort of 
insurance in order to avoid or reduce uncertainty. In some sense, hedgers sell 
volatility to speculators. 

In modern financial markets, there is huge variety of assets in which we 
may invest our money. The main assets we will deal with may be classified 
as bonds, stocks, and derivatives. We will introduce these assets in section 
2.2. There, we also introduce the three main problems we are concerned with: 
asset pricing, portfolio optimization, and risk management. We will also see 
that these basic problems are strictly related. 

After this general introduction, we deal with simple fixed-income instru- 
ments (bonds) in section 2.3, where we also consider sensitivity measures 
related to interest-rate risk, such as duration and convexity. Section 2.4 is 

‘The bid price how much a dealer bids (is willing to pay) for an  asset; hence, from the  point 
of view of an investor, it  is the  price at which she may sell. The  ask price is t he  price at 
which the investor may buy, i.e., t he  price asked for by a dealer. 
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dedicated to stock portfolio management. The main concepts we illustrate 
there are utility theory for decision making under uncertainty, the theory of 
mean-variance efficient portfolios, and risk measures such as Value a t  Risk. To 
deal with derivative pricing, we need first to lay some foundations in modeling 
by continuous-time stochastic processes: Stochastic integrals and stochastic 
differential equations are introduced in section 2.5, together with the funda- 
mental Ito’s lemma. Then we proceed to illustrate the basics of arbitrage-free 
pricing in section 2.6, where the celebrated Black-Scholes formula for pricing 
European-style vanilla options is presented, along with basic issues in pricing 
American-style options. We expand the treatment of options in section 2.7, 
where we outline a few types of exotic options which will be used in later 
chapters to illustrate different numerical methods for pricing. Finally, in sec- 
tion 2.8 we give a very brief introduction to interest rate derivatives and the 
related problems. 

In the course of the exposition we will use short MATLAB snapshots in 
order to illustrate the material with examples and to make it immediately 
useful. Sometimes, we will use functions from the Financial toolbox. The 
reader without access to this toolbox should not worry: these examples are 
just used for concreteness, but most of the book is just based on the MATLAB 
core. 

A final remark is in order. A large part of modern theory of pricing deriva- 
tives is based on the concept of martingale, i.e., a specific type of stochastic 
process. However, the reader will not find any mention of martingale measures 
and the like in what follows. Given the increasingly large number of excel- 
lent texts covering martingale pricing, we have decided to omit such concepts, 
which are not strictly necessary to introduce numerical methods. The main 
consequence of this choice is the lack of coverage of interest-rate derivatives, 
which cannot be dealt with adequately without solid foundations; but this 
would require much more space than we can afford. 

2.1 MODELING UNCERTAINTY 

Before considering “modeling,” we must understand what “uncertainty” is. 
The familiar tools of probability and statistics are what we need to cope with 
the simplest kind of uncertainty. We assume that a variable, say the price 
of a stock or a commodity, can be modeled as a random variable, whose 
probability distribution is known, possibly inferred from available data; the 
probability distribution encodes the knowledge we have (or think we have) 
about uncertainty. This may already look complicated, but it is often far 
worse in practice. To begin with, we will only consider purely exogenous 
uncertainty. This means that our actions do not influence the distribution of 
the relevant random variables. This is true if we are small investors or the 
asset is very liquid and in large supply. In thin markets, however, buying and 
selling an asset may have a significant impact on its price, and uncertainty 
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Fig. 2.1 A binoniial model for uncertainty. 

is partially endogenous. For instance, a trade executed by a large pension 
fund inay have a significant impact on markets; sometimes, to avoid adverse 
effects, orders are split in different time steps. Another issue is related to 
“subjectiveii rather than “objective” uncertainty. We will implicitly assume 
an objective description of uncertainty, but sometimes an investor has some 
very specific views, leading to a subjective assessment of uncertainty. The 
subjective view niay be updated whenever we get new information. This 
is typical of the Bayesian approach to statistics; which has been applied to  
portfolio management too. Again, given our instrumental point of view, we 
will avoid such issues. I t  is important to understand that if we use statistics to 
identify a probability distribution from past data, and we use that distribution 
for the future, we are implicitly assuming that, in some sense, history will 
repeat itself. 

To lie specific, let us consider possible ways of modeling uncertainty in the 
price of an asset. The simplest model of uncertainty is the binomial model. 
We know the current price S,), a t  time t = 0, and we assume that the price 
S1, at, some future time instant t = 1; can take only two values, S;L and Si‘; 
with probahility p”’ and p d ,  respectively (see figure 2.1). A common choice 
is to represent uncertainty by a multiplicative shock, i.e., S;l = uS0 and 
Sf = dS;, where the letters u and d suggest “up” and LLdown,’’ respectively 
(hence, d < u) .  Apparently, this model is very crude, but it is the building 
block of very useful models. 

A more refined model can be built by allowing for more future states. We 
may consider a sort of tree, like the one depicted in figure 2.2. It is a two-stage 
tree. in  the sense that it represents the world now by the single node on the 
left, of the figure, and possible states of the world at one time instant in the 
fubure; this st,ructiirc is sometimes referred to as a fun, and it may be used 
to define a set, of discrete scenarios. In this case the random variable S1 may 
take values Si“), k = 1, . . . , in, with probabilities ~( ‘1 ) .  An obvious consistency 
condition is 

711 Zp(C = 1. , o < p ( ’ ) ) < l  k = 1 ,  . . . ,  m. 
!i=l 

The hinomial model or the fan of scenarios are discrete-state models, rep- 
resenting uncertainty in a relevant state variable by a discrete probability 
distribution. Tlie state could be the level of an interest rate, or any underly- 
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Fig. 2.2 A two-stiige tree model 

s:"') 
for uncertainty. 

Fig. 2.3 A rnultistage scenario tree 

ing state variable influencing the price of assets.' These models are also the 
siinplest, discrete-time models, as only two time instants are considered. This 
inay bc iritercstirig if wc w e  following a, buy and hold strategy, whcret)y we 
t,ra.tlc some iissets now, and then we just wait for the outcome at sonie time i n  
t,hc f1itur.c. If tlic portfolio will be later rebalanced with some given frequency, 
we might tie interested in a niultiperiod model. 

A discrete-state, discrete-time, multiperiod model can be depicted as the 
scmario t,rw in figure 2.3.  This is sometimes called a bushy t,ree. In a bushy 
tree, the nuriiber of nodes following a parent node is called brunching fuctor. 
The larger the branching factor, the more accurate the representation of un- 
certuiiity. However, with large branching factors, the number of nodes tends 
to grow very quickly. Scenario generation is the art  of building a suitable tree 

'Strictly speaking. a state variable has the property tha t  knowledge of its value a t  a time 
iiistaiit is all we need to  characterize future evolution. We could have situations in which 
the whole history of a variable is needed t o  this purpose. Since this proper use of t he  term 
is only relevalit for a few topics in the  hook, we will use the term in the loose sense. 
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fig. 2.4 A recombining lattice. 

with the minimum number of nodes; note also that there is 110 need that the 
branching fact,or is constant over time, or across nodes. One may use niorc 
branches now, and less branches in the future, if it is more important to rep- 
resent immediate uncertainty. This is important in stochastic programming 
niodels (chapter 11). Another point is that the time step involved in a mul- 
tiperiocl model need not be homogeneous. Usually, in a discrete-time model 
we discretize a time horizon of length T in intervals of length 6 t ,  such that 
T = A 1  . 6t .  When we refer to time instant t = k; what we really mean is 
t = k . 6t .  However, the time step may change; in such a case, the first t,irne 
period is short, and tinie step increases in later periods. 

Sometimes, t,o keep computational effort limited, we prefer using a recorn.- 
baning lattice. A recombining binomial lattice is illustrated in figure 2.4. This 
is obtained if we generalize the binomial model with multiplicative shocks. 
Since udSo = duSo, we see that an up-jump followed by a down-jump is 
the same as a down-jump followed by an up-jump. In the figure, node S;" 
could also be denoted as S$'. In the special case 2~ = l / d ,  we also have, 
e.g.; So = S;d and S;l = S:(ud. The number of nodes grows linearly with the 
niunher of periods: We start with one node at  t = 0, then we have two at  
time t = 1; three at  time t = 2, and T + 1 nodes a t  time T .  In a binary tree 
we have an exponential growth, as we have 2T nodes at  time T .  Note that 
we are assuming that the multiplicative shocks are always the same, which 
makes sense if the process is stationary and time step is constant. Lattices 
may take many different forms, such as trinomial lattices, where each node 
has three successors. Recombining lattices are very convenient from a compu- 
tational point of view (see chapter 7). However, they are not always suitable, 
especially when there are many stochastic factors, calling for larger branching 
factors and making recoinhination more difficult to achieve. 

Sonietiines it is convenient to model Uncertainty using a continuous distri- 
liution, siicli as the normal or lognormal distribution. If we think of prices, 
a continuous distribution is certainly an idealization, since no price is quoted 
with too many decimal digits. In fact, stock prices are quoted in the USA in 
fractions of a point, which may be one-eighth or one-sixteenth of a dollar. For 
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Fig. 2.5 Sample path of a Wiener process. 

instance, the price of a stock could be $20i or $20;, but not $20.19. A similar 
consideration applies to interest rates. Nevertheless, using a continuous-state 
model may be convenient, if i t  results in simple modeling of uncertainty and, 
maybe, in analytical formulas. 

By the same token, we may also resort to continuous-time models, which 
may be thought of as the limit of a discrete-time model when the time step 
tends to zero. In the deterministic case, a standard continuous-time model is 
a differential equation, like 

-- dB(t )  - rB( t )  
d t  

with initial condition B(0) = Bo. The solution of this equation is B ( t )  = 

Boert; in section 2.3.1 we will see that this is the equation of a wealth, ini- 
tially amounting to Bo, invested at  a rate T ,  with continuous-time compound- 
ing of interest. Again, this could be just a convenient approximation. To 
model uncertainty, differential equations must be extended by introducing a 
random element, typically represented by some convenient class of stochastic 
processes. Unlike discrete-time models, we deal in this case with continuous- 
time stochastic processes (see appendix B). The usual building block is the 
Wiener process W ( t ) ,  which is defined later, and is characterized by jagged 
sample paths like the one depicted in figure 2.5. This process may look funda- 
mentally different from a binomial lattice, but it can be shown that the Wiener 
process is the continuous-time limit of a certain random walk described by a 
binomial lattice. By putting Wiener processes and differential equation to- 
gether in some sensible way, we get stochastic differential equations, which are 
a rather thorny object to deal with, but are a fundamental tool in financial 
engineering. We will describe stochastic differential equations in section 2.5. 
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2.2 BASIC FINANCIAL ASSETS AND RELATED ISSUES 

There is a large number of securities in which an investor may be interested. 
Many of them are standardized, publicly quoted, and traded on exchanges. 
Some are engineered for a specific need of an investor, or firm, and are traded 
over the counter (OTC); OTC securities are usually less liquid than standard- 
ized assets. Despite this virtually infinite variety, we may start by classifying 
the fundamental securities as 

bonds 

stocks 

derivatives 

2.2.1 Bonds 

Bonds are one of the instruments that firms and public administrations may 
use to fund their activities; they are debt instruments which, unlike stocks, 
do not imply any ownership of a firm on the part of the buyer. Basically, 
the buyer of a bond lends some money to the issuer, over some time span 
ending at bond maturity. At maturity the issuer will pay the bond owner an 
amount of money corresponding to the face value, also called the par value, 
of the bond. This could be, e.g., an amount like $100 or $1000. In addition, 
periodic payments may be made, called coupons for historical  reason^.^ In 
the simplest bonds, coupons are fixed and expressed as a percentage of face 
value; coupons are usually paid annually or semi-annually. For instance, if the 
bond has $100 face value, and the coupon rate is 6%, then the bond owner 
will receive $6 each year, up to  and including maturity, when she well receive 
$106. If coupons are paid semi-annually, the bond owner will receive $3 every 
six months, up to and including maturity. 

There is another class of bonds, which just promise the payment of face 
value at maturity. They are called zero-coupon bonds, and are typically char- 
acterized by shorter maturities. We will see that zero-coupon bonds are fun- 
damental in bond pricing. Sometimes, long-term zero-coupon bonds are built 
by stripping coupons from a long-term bond and selling them separately. 

The basic type of fixed-coupon bond explains why bonds are usually clas- 
sified as fixed-income securities. Actually, coupons may depend on some un- 
derlying variable, but the term “fixed-income” is used for such securities as 
well. Generally, fixed-income securities are assets whose price depends on the 
level of interest rates. 

It is also important to note that bonds are not necessarily purchased at  a 
price corresponding to face value. This may be the case when bond are first 

3Bonds were physical pieces of paper, and to get the periodic payment the bond owner had 
to detach a coupon from the document. 
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issued, and the coupon rate is chosen in order to reflect current interest rates. 
Since there is a well-developed secondary market for bonds, there is no need 
to buy a bond right when it is issued, nor to keep it until maturity. If a bond 
is traded after issue date, we must be able to determine a fair price. This will 
be the subject of section 2.3.2. Bond prices are quoted as a percentage of the 
face value, so the actual face value is not so relevant. Assume the face value 
is 100. If the bond is traded at price larger than 100, we say that it trades 
above par;  if the price is smaller, it trades below par;  otherwise it trades a t  
par. 

If the 
coupon rate is not fixed, but it depends on some random quantity, analyzing a 
bond may be difficult. Even if the coupon rate is fixed, bond prices may differ 
depending on the probability of default. Default occurs if the bond issuer 
is not able to honor his debt and stops paying coupons, or he repays just a 
fraction of face value. There are different types of default, which represent a 
risk factor for the investor. This factor is called credit risk. Bonds issued by 
some governments may be considered risk-free, but corporate bonds cannot; 
the role of rating agencies is precisely to analyze the financial situation of 
firms in order to assess how risky their bonds are. Bonds affected by credit 
risk must sell at  lower prices, or promise higher coupon rates. It should also 
be noted that bonds may be classified in legal terms which are relevant when 
the firms defaults. We will not consider default issues and credit risk in this 
book. Furthermore, some bonds have embedded options which complicate the 
analysis. For instance, a callable bond may be redeemed by the issuer before 
maturity at  a certain price; again, since the issuer may redeem the bond when 
she finds this advantageous, this must be somehow reflected in the bond price 
and/or the coupon rate. In this case, the investor is exposed to reinvestment 
risk, as it is quite likely that she will be forced to reinvest the proceeds from 
early bond reimbursement in a situation of unfavorable interest rates. 

Actually, there are many complicating factors in bond pricing. 

2.2.2 Stocks 

Unlike bonds, stocks entitle the owner to a share of the issuing firm. This 
raises a potentially troublesome legal issue. If you are a stock owner of a firm, 
and the firm gets involved in a lawsuit, whereby it is liable to pay for some 
significant damage its products have caused, what is your position? Luckily, 
stocks are l imited l iabil i ty assets; in practice, this means that the worst that  
may happen is that the stock price goes to zero and you lose all of your 
investment. 

Another difference between stocks and bonds is that the formers do not 
have a predefined maturity (although the firm can well go out of business). 
They also entitle the owner to  some stream of payments under the form of 
dividends. Unlike fixed bond coupons, dividends are by their very nature 
stochastic. They depend on how well the firm is faring, and on the dividend 
policy which is followed by the firm, which may distribute or reinvest its 
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profit. The dividend policy, and the decisions of financing by equity (issuing 
stocks) or debt (issuing bonds) pertain to a body of knowledge called corporate 
finance. 

If you buy a stock share a t  a price SO, and then you sell it a t  a price S1, 

you may have a loss or a gain. If you also receive a dividend D ,  total return 
is 

Si + D  
s o  

SI + D - SO 
and the rate of return is 

SO 

Strictly speaking, we should also consider the timing of dividend payments in 
order to account for the time value of money, but let us leave this issue aside 
for now by assuming that dividends are paid exactly when you sell the stock. 
Since stocks are limited liability assets, the worst-case rate of return is -1. 
This means that whenever we use a normal distribution to model uncertainty 
in stock returns, we are committing an error; however, the approximation, 
per se, could be an acceptable one if the probability of an unfeasible return is 
negligible.4 

In this book we will not consider pricing issues for stocks. This means that 
stock prices will be modeled by some stochastic process (see section 2.5) or 
by some probability distribution, but we will take these as exogenously given. 
There are “rational” models aimed at suggesting a correct stock value by 
analyzing the fundamentals of a firm, but they are based on rather uncertain 
data, and prices may be quite irrational. Nevertheless, such models are useful 
when trying to assess if some stock is under- or over-priced with respect to  
other assets, and this is certainly relevant in portfolio management. However, 
since this is not a matter necessarily dealt with by sophisticated numerical 
methods, and it calls for integration with qualitative insights, we will leave it  
aside. 

In principle, one would think that an investor buys a stock if she thinks 
that its price will increase. Actually, with certain limitations, an investor can 
exploit a strategy called short-selling if she thinks the stock price will sink. 

Example 2.1 (Short-selling) Suppose a stock is currently selling for $20, 
and you think that in the near future it will sell for a lower price. In such 
a case, you may borrow the stock from someone who owns it, and sell it 
immediately on the market. After a while, you will have to give the stock 
back to the owner, but if you were right and the price went down to $18, you 
might buy the stock for this price and close your position. In this case, your 
return would be (-18 + 20)/20 = 10%. If the stock pays dividend during the 

4Another implicit assumption, when using a normal distribution to model returns, is that  
these are symmetric, which may not really be the case. 



BASIC FINANCIAL ASSETS AND RELATED ISSUES 33 

time period over which the stock is lent, dividends must also be paid to  the 
stock lender. 

Short-selling is not this easy, as there are several rules constraining it to 
avoid excessive speculation. Furthermore, it is restricted to certain types of 
traders; some institutional investors such as pension funds cannot use short- 
selling because of its speculative nature. Short-selling is very risky: If you are 
wrong and the price goes up, you may be forced to give the stock back a t  the 
worst possible time (this is called short-squeezing). 0 

2.2.3 Derivatives 

Derivatives are a broad family of financial contracts, owing their name to  the 
dependency of their payoff on the value of some underlying variable, which 
may be a stock price, a set of stock prices, an interest rate, an index, or a 
generic non-financial asset. Suppose that the value of the underlying asset, 
say a stock which does not pay dividends, is modeled by a stochastic process 
S ( t ) ,  depending on time t .  

The most common derivatives are forward/future contracts and options. 
A forward contract binds two parties to, respectively, buy and sell a certain 
asset, in a certain quantity, at  a certain date T ,  and at a fixed forward price F .  
The party agreeing to buy is said to hold the long position, whereas the seller 
holds the short position. By entering a forward contract you basically lock in a 
fixed price for the underlying asset. You may have two quite different reasons 
for doing that. You might wish to eliminate, or reduce, risk; in fact, by locking 
the price for an asset you have to buy or sell, you eliminate the effect of price 
uncertainty. This does not mean that the final outcome will necessarily be 
more favorable. If you hold the long position in a forward contract specifying 
a price F ,  and the price of the asset when the delivery takes place turns out 
to be S(T)  < F ,  in a sense you have lost an amount F - S(T) ;  if, on the 
contrary, S ( T )  > F ,  you have gained a corresponding amount. The point is 
that if you really need to buy or sell that asset, it may be wise to lock in a 
certain price rather than taking chances. This type of policy is called hedging. 
Hedging may not be this easy, as you may have difficulties in finding a forward 
contract for the underlying asset you are interested in, in which case you could 
settle for a somewhat correlated asset; furthermore, delivery date might differ 
from the one you would like; finally, one could also decide for a partial hedge, 
depending on risk attitude. However, you could also be a speculator with a 
very precise idea of where the price S(T)  is going to be, and you may enter 
a forward contract as a bet. The payoff of a forward contract is depicted in 
figure 2.6(a) for a long position, in which case it is S ( T )  - F (it is F - S(T)  
for the short position). This payoff depends on the random price S ( T ) ,  and 
the forward contract is the simplest example of a derivative. Since the payoff 
is random, we need some way to value a forward contract. We will do this in 
section 2.6. Here we just note that there is no initial payment with forward 
contracts; at  time t = 0 the forward price F is determined in such a way that 
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K 

Fig 2 6 Payoff tliagraiiis f o r  t h c s  long position in it forward c:orit,rac.t (a), h call optiori 
(1)). a i d  n. put optioii (c). 

t,he initial value of the contract is zero to both parties. However, at  a later 
time, the value of the contract will not be zero in general. 

Derivatives may he privat,e contracts issued by two parties for possibly 
very peculiar and specific reasons. Alternatively, they may be traded actively 
on exchanges and quoted on newspapers. In this case, some standardization 
and regulation is needed to  make sure that the derivatives are sufficiently 
liquid to trade. This is not really the case for forwards, where there is some 
possibility of default on the part on the part losing money; for this reason 
future contracts have been devised. A future contract is similar to a forward 
contract; the main difference is that there is an intermediation process such 
that the detailed working is different. Rather than collecting the payoff a t  
maturity, there is a. daily transfer of cash between the two parties, depending 
on the movement of the underlying asset price. This mechanism is a protection 
for traders and makes pricing of futures more difficult than forwards, and we 
refer the reader to references for cletails on this. It can be shown that prices 
for futures and forwards are the saiiie if interest rates are deterministic. From 
a practical point of view, standardized future contracts make trading easier, 
but hedging more difficult. It may be impossible to find t,he exact cont,ract 
you need in terms of time of delivery or underlying asset; in such a case, 
hedging will eliminate only part of the risk. Nevertheless, futures are a very 
liquid tool: and it is also interesting to note that, by taking a position with 
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futures, one may also emulate short-selling on assets for which this would be 
otherwise impossible. 

A common feature of forward and future contracts is that the two parties 
are compelled to buy and sell the asset at  delivery (unless you sell the contract 
to someone else before maturity, as is usually the case with futures). With an 
option, you get the right, but not the obligation, to buy or sell a certain asset 
for a specified price. The two simplest option contracts are the European 
style call and put options. When you buy a call option, you get the right 
to buy the underlying asset for a price K ,  called the exercise price (or strike 
price), at a certain date T ,  called expiration date or maturity. If a t  maturity 
the actual price S(T)  of the underlying asset is larger than the exercise price 
K ,  you would exercise the option and buy the stock, since you may sell the 
stock immediately and gain S(T)  - K .  If the contrary holds, you would not 
exercise the option, which expires worthless. Thus, the payoff of this option 
is 

max{S(T) - K ,  0) 

and is depicted in figure 2.6(b). If a t  time t we have S ( t )  > K ,  we say that 
the call option is in-the-money; this means that we would get an immediate 
profit by exercising the option. If S( t )  < K ,  the call option is said to be 
out-of-the-money. If S ( t )  = K ,  the option is said to be a t - t h e - m ~ n e y . ~  With 
a put option, you have the right to sell the stock. In this case, you would 
exercise the option only if the exercise price is larger than the actual price. 
So the payoff is 

max{K - S(T) ,  O}. 

The payoff diagram for a vanilla European put option is depicted in figure 
2.6. (c). 

With a European option you may exercise your right only a t  maturity; an 
American option may be exercised whenever you wish within a prescribed 
time. European or American call and put options on a single underlying asset 
are called vanilla options, owing their name to their simplicity. A Bermudan 
option is halfway between an American and a European option: I t  may be 
exercised at  a set of prescribed dates within the horizon. Asian  options have 
a payoff depending on the average price of a stock (or some other underlying 
variable); thus they depend on a set of stock prices. Indeed, quite complex 
exotic options are actually designed and traded; we will describe the simplest 
exotic options in section 2.7. 

Observing the payoff diagrams for the vanilla European call and put, we see 
that they cannot be negative, unlike a forward contract. Does this imply that 
you cannot lose money? Well, as you can imagine, the option comes with a 
price. With a forward contract, you pay nothing when you enter the contract, 

5A simplistic consideration would suggest that  an at-the-money option is not worth exercis- 
ing; however, when considering the transaction costs involved in purchasing a stock, we see 
that there are circumstances where exercising an at-the-money option may be interesting. 
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whereas the option has a price depending on several factors including the strike 
price. Hence, figures 2.6(b) and 2.6(c) are not quite correct, as the payoffs 
should be shifted down to account for the option price. Indeed, finding this 
price is the major concern with options, and this is why numerical methods 
are so important. 

Why are options traded? As with futures and forwards, there are two basic 
reasons. On the one hand, they can be used to control risks. If you hold a 
stock in your portfolio and you are worried about the possibility of a large 
drop in its price, you may reduce the risk by buying a protective put. If you 
hold a portfolio consisting of a stock and a put with strike price K ,  then the 
value of the portfolio a t  option maturity is 

S(T) + max{K - S(T) ,  0) = max{K, S(T)}  

from which we see that the downside risk is limited. This insurance comes 
with a price, since the option is not free, but in this way you avoid the risk 
of a large loss. By the same token, you may reduce the interest-rate risk of a 
fixed-income portfolio by buying interest-rate derivatives. On the other hand, 
options may also be used for speculation, as shown in the following example. 

Example 2.2 Suppose that a stock price is $50, and you believe that it will 
rise in the near future. You could then buy the stock anticipating a large 
return. Let’s say that you are right and the price rises to $55. Then your rate 
of return will be 

55 - 50 
____ = 10%. 

50 
But now imagine that a call option is available with a strike price $50, and 
that this option costs $5 (this may or may not be a reasonable price, but let 
us take it as given for the sake of the argument). In this case you will exercise 
the option, and the rate of return will be much larger: 

55 - 50 - = 100%. 
5 

This effect is called leverage or gearing. As you may expect, there is another 
side to the coin. If you are wrong and the stock price drops to $49, then by 
buying the stock you will lose $1, i.e., 2% of the investment; with the call 
option you will lose 100%. You are also exposed to other sources of risk if you 
are interested in selling the option before maturity, as unfavorable movements 
in the factors determining the option value may have an adverse impact on 
the value of your portfolio. 

0 

Pricing options on stocks is a major topic in the book, and we will see 
that, depending on the complexity of the model of the underlying asset price 
dynamics, it may be a rather straightforward task or not. Interest-rate deriva- 
tives are definitely more complex, and we will just have an outlook on them 
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in section 2.8. We should observe that if we consider stochastic interest rates, 
bonds too can be considered as derivatives, as their price is heavily dependent 
on interest rates. 

2.2.4 Asset pricing, portfolio optimization, and risk management 

We have seen that we need some model to price assets such as bonds and 
options. In principle, prices are the result of an equilibrium between demand 
and supply of an asset. Equilibrium pricing models are an attempt to capture 
this equilibrium resulting from the preferences and, possibly, the initial wealth 
of investors. In the next example we try to illustrate the approach by a very 
simple example from Microeconomics. 

Example 2.3 (Equilibrium pricing in a pure exchange economy) Let 
us consider a pure exchange economy. In such an economy, we have a set of 
goods and a set of agents, and production is not considered. Each agent has 
some endowment of each good, and a preference for consumption of each good. 
For instance, let us assume that we have two agents, a and b, and two goods. 
Let the initial endowments for the two agents be, respectively, 

The two agents would probably like to exchange part of the goods they own, 
at some price which we want to determine. Let p l  and p2 be the prices of the 
two goods. To express the preferences of the two agents, we may introduce a 
utility function. For instance, let us assume a so-called Cobb-Douglas utility 
form: 

P 1-0 
ua(Zla, Z 2 a )  = xyaxi,", Ub(Z1bi ZZb) = ZlbZZb 

where x z j  is the consumption of good i = 1 , 2  by agent j = a ,  b, and a ,  ,O E 
( 0 , l )  are parameters specifying the preferences of the two agents. Nota that 
this utility function indeed models preference for consumption bundles con- 
sisting of both goods, thus agents have an incentive to exchange. We have 
an equilibrium if each agent solves his optimal consumption problem and if 
markets "clear," i.e. , consumption equals availability of each good. 

For given prices, agent a will determine optimal consumption by maximiz- 
ing his utility, subject to a budget constraint. Formally, he should solve the 
optimization problem: 

where W, = p l  is his initial wealth, i.e., the value of his (unit) endowment 
of good 1 given price p l .  Strictly speaking, the budget constraint should 
be written as an inequality, but given the form of utility functions we may 
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assume that non-satiation applies: This means that the two agents are always 
happier if they can consume some more. By the same token, we should also 
include non-negativity constraints on consumption ( x i j  2 0), but given the 
form of utility we may assume an interior solution, i.e., a solution in which 
consumption of each good is strictly positive. The optimal solution6 is 

By the same token, agent b solves 

where wb = p z ,  yielding 

However, prices should be compatible with market clearing, i.e., total demand 
for a good is equal to its total availability. Hence, we must have: 

Requiring market clearing for the second good yields the same condition. This 
is reasonable as only the ratio of prices matters: a proportional increase in 
both prices will increase initial wealth without changing the problem. We 
could normalize prices by setting p l  = 1, i.e., by selecting good 1 as a nu- 
me raire. 0 

We see that, in principle, we could find equilibrium prices if we knew the 
preferences of each agent. Clearly, this does not look very practical. Fur- 
thermore, in finance we must also account for time and uncertainty. This 
means that we should know how investors value immediate consumption rela- 
tive to future consumption, as well as their attitude towards risk. The task is 
even more difficult if we take information asymmetries or heterogeneous be- 
liefs into account. Unless very specific hypotheses are made, there is no hope 
to come up with a feasible pricing approach. However, by making suitable 
assumptions, interesting equilibrium pricing models have been devised. For 
stock prices, this leads, e.g., to the Capital Asset Pricing Model (CAPM); 
equilibrium models have been also proposed for interest-rate dynamics. 

61n this specific case, we could simply get rid of one decision variable by eliminating the 
equality constraint and enforcing the first-order condition, i.e., by requiring the first-order 
derivative of the utility function is zero at  optimum. We will give a solution by the method 
of Lagrangian multipliers in chapter 6, page 352. 
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Nevertheless, in financial engineering a much less ambitious attitude is 
usually taken. We take the prices of a set of assets as given (and observable in 
the market), and we try to  find the price of other assets in such a way to avoid 
obvious inconsistencies, like the one illustrated in the following example. 

Example 2.4 (Arbitrage in a binomial model) Consider a binomial 
model of uncertainty, like the one in figure 2.1, and an economy consisting 
of two assets. The first asset is risk-free, in the sense that its price now is 
$1, and it will be $1.1 in both future states. We may think of this risk-free 
asset as a bank account offering a 10% interest rate for the period of time we 
consider. The second asset is risky: its current price is $1 too, and its future 
price could be $2 or $3 with equal probability. 

It is easy to see that these prices are not consistent. If an investor borrows 
$1 from the bank in order to buy the risky asset, she will be sure to have 
a profit: in the worst-case scenario she will gain $(2 - 1.1) = 0.9, and she 
will make even more money if the price of the risky asset turns out to be $3. 
Assuming that unlimited borrowing is allowed, she could make an unbounded 
amount of money, without incurring any risk. This is an example of an ar- 
bitrage opportunity. Loosely speaking, an arbitrage opportunity is a money 
making machine. Such a free lunch is not compatible with economic theory 
or, for that matter, with common sense. 

In general, if we assume a binomial model with multiplicative shocks u and 
d,  and there is a risk-free interest rate denoted by rf, the following inequalities 

Clearly, the assumptions in the example are not quite reasonable, as unlimited 
borrowing is not possible and assets are available in limited supply. However, 
those prices are not reasonable, as they cannot be equilibrium prices, since 
investors taking advantage of arbitrage opportunity will influence prices. In 
practice, limited arbitrage opportunities are sometimes available, and there 
are traders taking advantage of them, but they tend to disappear quickly and 
are only feasible for very special  trader^.^ Hence, typical models for asset 
pricing are based on the assumption that arbitrage is not possible. 

Ruling out arbitrage opportunities leads to arbitrage-free, or relative, pric- 
ing. We price assets in such a way that their prices are consistent with ob- 
served prices for other assets. We will not investigate the relationships be- 
tween equilibrium and lack of arbitrage, but it is intuitive that arbitrage op- 
portunities are not compatible with equilibrium. The advantage of arbitrage 
pricing is that it does not rely on too many critical assumptions about the 
behavior of investors. Their aggregate risk attitude may somehow be taken 
into account by parameters which are inferred by observing market prices; this 
model calibration concept is fundamental to deal with interest-rate derivatives. 

should apply: d < 1 + rf < u. 0 

7Transaction costs may make arbitrage opportunities unprofitable, and so they allow for 
some slight mispricing; large institutional investors may have to pay very small transaction 
costs making arbitrage available to  them. 
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A large part of the book is devoted to  asset pricing under the no-arbitrage 
hypothesis. The second large body of applications is portfolio optimization. 
Actually, asset pricing and portfolio optimization, from a theoretical point 
of view, are not disjoint. After all, allocating wealth to assets in a portfolio 
generates demand for such assets, and demand contributes to determine asset 
prices. In financial economics, equilibrium asset pricing models are based on 
optimization models which are generalizations of the pure exchange economy 
of example 2.3. However, in everyday portfolio management, it is common to 
treat uncertainty as purely exogenous. This means that we need first to model 
uncertainty, and then to select a suitable model for portfolio optimization, 
together with some computationally feasible way of solving it. Actually, there 
is much more to that and portfolio optimization is just one part of portfolio 
management. For instance, risks must be assessed by some sensitivity analysis 
with respect to the assumed model of uncertainty, which must be somehow 
stress-tested. Portfolio optimization is only part of a decision process involving 
different actors with different organizational responsibilities. 

In its basic form, portfolio optimization entails some form of stochastic op- 
timization. By selecting a portfolio, we implicitly select a probability distri- 
bution for its return or, equivalently, for future wealth. How can we compare 
probability distributions corresponding to different portfolio choices? One 
trivial approach would be to  maximize the expected value of return. The fol- 
lowing examples show that this would result in unreasonable portfolio choices. 

Example 2.5 (Putting all of your eggs in one basket) Consider an 
investor who must allocate her wealth to n assets. The return of each asset, 
indexed by i = 1,. . . , n, is a random variable Ri with expected value pi = 
E[Ri]. The asset allocation decision may be modeled by introducing a set of 
decision variables xi representing the fraction of wealth invested in asset i. If 
we rule out short-selling, these decision variables are naturally bounded by 
0 5 xi 5 1. The expected value of return from our portfolio is 

l n  n 

Li=1 J i=l i=l 

Hence, we should solve the following optimization model: 

n 

max '&xi 
i=l 
n 

s.t. c x i  = 1 
i=l 

whose solution is quite trivial: we should simply pick up the asset with max- 
imum expected return, i* = argmaxi=1,..,,,,ui1 and set xi* = 1. It  is easy 
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to see that this portfolio is a very dangerous bet; in practice, portfolios are 
diversified, which means that there must be something else beyond expected 
values. In practice, one would also have some constraints on portfolio compo- 
sition, limiting exposure to certain geographical areas or types of industry, and 
this would make the trivial solution above not feasible. However, if we take 
only expected return into account, the solution is basically shaped by these 
constraints. By the way, if short-selling is allowed, the decision variables are 
unrestricted, and the expected value of future wealth goes to infinity. In fact, 
one would short-sell assets with low expected return, to make money to be 
invested in the most promising asset. This is clearly unreasonable. 0 

Example 2.6 (St. Petersburg paradox) Consider the following proposi- 
tion. You are offered a lottery, whose outcome is determined by flipping a fair 
and memoryless coin. The coin is flipped until it lands tail. Let k be the num- 
ber of times the coin lands head; then, the payoff you get is $ 2 k .  Now, how 
much should you be willing to pay for this lottery? The reader is invited to 
consider this problem as a pricing problem: the lottery is a sort of derivative 
with respect to some random outcome. We could consider the expected value 
of the payoff as the fair price for this rather peculiar asset. The probability 
of winning $2'" is the probability of having k consecutive heads followed by 
one tail, which stops the game, after k + 1 flips of the coin. Given indepen- 
dence of events, the probability of this sequence is 1/2k+1, i.e., the product 
of individual event probabilities. Then, the expected value of the payoff is 

m 0 0 .  

k=O k=O 

This game looks so beautiful that we should be willing to pay any amount of 
money to play it! No one would probably do so. Again, we see that expected 
value does not tell the whole story. 0 

These two examples show that expected values must be complemented by 
some other information, such as variance or quantiles, in order to take sensible 
decisions. More generally, we need a way to model decision making under 
uncertainty, and this calls for a way to model risk aversion. One way to do so 
is to introduce the concept of expected utility, which is done in section 2.4.1. 
Expected utility is an interesting concept, with some theoretical and practical 
pitfalls. In fact, it basically postulates that decision makers are very rational, 
consistent, and very well informed, all of which is often contradicted. But 
even if we believe that decision makers are consistently rational, it is difficult 
to elicit the utility function from any investor. A practical way out is to define 
suitable risk measures, which can be accounted for in formulating portfolio 
optimization models. A typical approach is to constrain the expected return 
of the portfolio, and then to minimize a suitably chosen risk measure. By 
varying expected return, we can trace a set of reasonable portfolios among 
which the decision maker may select the best compromise solution, trading off 
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expected return against risk. If we measure risks by the variance of return, we 
obtain a well-known theory based on mean-variance efficiency (section 2.4.2). 
Recently, different risk measures have been adopted, such as Value at Risk, 
which is described in section 2.4.5. This leads to another important body of 
finance, risk management, which may take advantage from numerical methods 
as well. We should emphasize again that portfolio optimization models are 
only a part of the more general portfolio management process, which also 
includes risk assessment and management. 

We have said that asset pricing is somewhat related to portfolio optimiza- 
tion, which in turn is related to risk management. It is also important to 
understand the link between asset pricing and risk management. On the one 
hand, we need to understand the sensitivity of asset prices to random fluctu- 
ations in underlying factors, so that hypothetical scenarios for the evolution 
of the underlying factors can be mapped to changes in portfolio value. Fur- 
thermore, we would like to devise approaches to design our portfolio in such a 
way that sensitivity to such changes is minimized. For instance, we may want 
to understand how interest rates affect bond prices, and to devise portfolios 
which are at least partially immunized against shocks; this is the subject of 
the next section. 

On the other hand, however, there is a much less obvious link, which will 
be apparent when we treat option pricing in section 2.6. Consider the point 
of view of the option writer, i.e., the guy who sells an option. Options may 
be risky for people buying them, but they are even riskier for the party who 
sells them; in fact the option holder has a right to exercise, but the option 
writer must comply with this right. To get the point, consider the extreme 
case of a call option with strike price K = 20 which is exercised when the 
underlying asset price is ST = 80; this is trouble for the writer if he has to  
buy the underlying stock at  80 to sell it a t  20. Hence, the option writer needs 
a reliable way to hedge against such risks. We will see that, in an idealized 
world, the option price is basically the price of a hedging strategy for the 
option writer. 

2.3 FIXED-INCOME SECURITIES: ANALYSIS AND PORTFOLIO 
I M M U N IZATION 

In this section we deal only with “really fixed” income assets, i.e., fixed-coupon 
and zero-coupon bonds. Even in this simple setting we may introduce several 
useful concepts. 

2.3.1 

In order to understand bond pricing, the first concepts we need are related to 
interest rates and how they are compounded. Assume you have wealth WO 

Basic theory of interest rates: compounding and present value 
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and you invest it in, say, a bank account for one year. After this period, you 
will get an amount of money Wl > WO. Hence, you could measure the rate 
of return of your investment by 

W1- Wo 
Wo . 

r =  

In other words, at  the end of the investment period you collect an amount of 
money which is the sum of the principal, the original amount you owned, plus 
interest: 

W,  = Wo + rW0 = (1 + r)Wo. 

The quantity r is referred to as interest rate over the time period we are 
considering. Now assume that you leave your money in the bank account for 
two years and that the same interest rate r applies for both years. How much 
money will you get? If the simple interest rule applies, you will get twice the 
interest: 

Wz = (1 + 2r)Wo. 

If the period of your investment is n years, the simple interest rule yields 

W,, = (1 + nr)Wo. 

In the general case including fractions of years, one possible rule assumes 
proportionality: 

Wt = (1 + tr)Wo, 

where t is any real number. More often than not, however, you earn interest on 
interest; after the first year, the interest you earned is added to the original 
wealth, and the interest rate for the next year will be applied to the new 
wealth: 

WZ = (1 + r)W1 = (1 + r)2Wo. 

In this case we speak of compound interest, and for n years we have 

W,, = (1 + r)"Wo. 

Note that, in the case of compounding, wealth grows more rapidly, according 
to a geometric progression. 

Compounding can occur a t  any frequency. For instance, let us assume 
that you get interest every six months. Typically, a nominal interest rate r 
is quoted yearly, but it is applied dividing it by the number of periods in the 
year: 

"1 = (1 + r/2)' w,. 
We obtain the effective yearly rate by equating wealth a t  the end of the year: 

(1 + r/2)' ~o = (1 + r,)Wo * re = r + r2 /4  > r. 
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If interest is compounded m times per year, we have 

Wl = ( 1  + r / m ) m  Wo. 

For a given nominal rate, the more frequent the compounding, the faster the 
growth and the higher the effective yearly rate. What happens if, in the 
limit, interest is compounded continuously? By taking the limit as m goes to 
infinity, and using a well-known result from calculus, we get 

Wi = lim (1 + r/m)"Wo = e' Wo. m+m 

Continuous compounding looks a bit artificial, but in this case many things 
turn out to be simpler, including the application of an interest rate to  an 
arbitrary period of time t. We may think of dividing the time interval t in 
small slices of length l / m  years, i.e., t M k/m for some integer k. Using 
discrete-time compounding and then taking the limit we get: 

Again, we may find the effective yearly rate re corresponding to the continu- 
ously compounded rate r:  re = e' - 1. 

Another fundamental concept in the basic theory of interest rates is the 
present value of a stream of cash flows in time. We will see that absence 
of arbitrage implies that the price of a bond must be the present value of a 
cash flow stream. Consider a cash flow stream, i.e., a sequence of periodic 
payments Ct a t  discrete-time instants t = 0,1,  . . . , n. Given an interest rate r 
with discrete compounding, applied over each time period, the present value 
of the cash flow stream is defined a s  

P V = C -  ct 
t=O (1 + r ) t '  

Note that cash flows need not be positive; for instance, in investment analysis 
we typically have Co < 0 ,  corresponding to  an initial cash outlay. We say 
that cash flows are discounted, reflecting the fact that the value of $ 1  in the 
future is something less now; the discount factor by which each cash flow is 
multiplied is smaller for distant periods. When the nominal interest rate is 
quoted yearly but the payments occur more frequently, the formula may be 
easily adapted following the previous treatment. If there are m payments per 
year at  regular time intervals, we have 

P V = C  ck 
(1 + r / m ) k '  

k=O 

where k indexes the time periods and n is the number of periods, i.e., the 
number of years times the number of periods within one year. 
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All of the considerations we have made on compounding apply here. If the 
interest rate is continuously compounded, present value is 

n 

PV = C Cte-Tt. 
t =o 

Continuous compounding is very convenient when cash flows are not regular 
in time. Let us denote by ti ,  i = 1,. . . , n, the time at which cash flow C, is 
received. Then 

n 

i=O 

In the case of discrete compounding, one possible convention is using fraction 
of years. For instance, the present value P of cash flow C occurring in nine 
months could be expressed by 

C 
(1 + r)9/12’ 

P =  

if we assume that all months consist of the same number of days. 
It is important to note that we have assumed that the same interest rate 

r ,  however it is quoted, is applied to  any time interval. This need not be the 
case actually, as we will see later. Furthermore, it is also worth stressing that 
we have not considered inflation. When inflation is taken into account, we 
should distinguish between nominal and real interest rate, but we will always 
disregard inflation in this book. The calculations above, possibly adjusted 
to cope with these issues, are very common and have been implemented in a 
large number of software packages, including MATLAB. Typical functions of 
this kind have been included in the Financial Toolbox. 

Example 2.7 The Financial toolbox includes different functions to  analyze 
cash flow streams, including pvvar, which computes the present value of a 
stream, given an interest rate. Consider for instance the cash flow stream 
corresponding to a bond maturing in five years, with face value 100, and a 
8% coupon rate. This cash flow can be represented by the following vector: 

>> cf=[O 8 8 8 8 1081 
cf = 

0 8 8 8 8 108 

The zero in the first position corresponds to an immediate cash flow, which in 
this case is zero, as the first coupon will be paid in one year (you may think 
that a coupon have just been paid). What is the present value of this stream 
if we discount it by an interest rate corresponding to the coupon rate? Not 
surprisingly, present value is equal to  face value: 

>> pvvar (cf ,O .08) 
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function pv = mypvvar(cf,r) 
% get number of periods 
n = length(cf) ; 
1 get vector of discount factors 
df = l./(l+r).-(O:n-l); 
% compute result 
pv = dot(cf,df); 

Fig. 2.7 Function t o  compute present value with discrete compounding and regular 
cash flows. 

ans = 

100.0000 

If we increase that discount rate, present value is decreased: 

>> pvvar(cf ,0.09) 
ans = 

96.1103 

On the contrary, if the discount rate is decreased, present value is increased: 

>> pvvar(cf ,0 .07)  
ans = 

104.1002 

Indeed, we will see that when interest rates rise, bond prices fall, whereas 
bond prices increase when interest rates drop. A major task in bond portfolio 
management is to take interest-rate risk into account. 

How can we evaluate present value without the Financial Toolbox? Func- 
tion mypvvar in figure 2.7 is a possible answer. Note that, in computing the 
vector of discount factors, we must use a vector from 0 to length n minus 
1; also note the use of the dot operator both in the division (. /) and in the 
power (.^).  The function d o t  computes the dot product of vectors: 

m 

X'Y = C XiYi, 
k = l  

provided that the vectors have the same number m of elements. The advantage 
of using dot  is that we do not need worrying whether vectors are row or column 
vectors, as is the case when we use matrix multiplication. 

>> cf = [O 8 8 8 8 1081; 
>> mypvvar (cf , 0 .08)  
ans = 
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100.0000 
>> mypvvar (cf ,O .09) 
ans = 

96.1103 
>> mypvvar(cf,0.07) 
ans = 

104.1002 

Another quite common concept linked to analyzing cash flow streams is the 
internal rate of return. Given a stream of cash flows Ct ( t  = 0 , 1 , 2 , .  . . , n) ,  
the internal rate of return is defined as a value p such that the present value of 
the stream is zero. In other words, it is a solution of the non-linear equation 

ct 
t =o 

Clearly, in order to find a solution, we must assume that a t  least one cash flow 
is negative. Typically, t,his is the initial cash flow Co, which may correspond to 
an investment or to the price you pay to purchase a bond. MATLAB provides 
us with useful functions to compute the internal rate of return. 

Example 2.8 We will describe methods to solve general non-linear equa- 
tions in section 3.4. However, the equation defining internal rate of return may 
be easily transformed to a specific non-linear equation, a polynomial equation, 
which is relatively easy to solve. With the change of variable h = 1/(1 + p) ,  
we may rewrite equation (2.2) as 

n 

C C t h t  = 0, 
t =o 

which is readily solved by the MATLAB function roots. All we have to do is 
to represent a cash flow stream as a vector, as done in the following MATLAB 
interaction snapshot. 

>> cf=[-lOO 8 8 8 8 1081 
cf = 

>> h=roots(fliplr(cf)) 
h =  
-0.8090 + 0.58781 
-0.8090 - 0.5878i 
0.3090 + 0.9511i 
0.3090 - 0.9511i 
0.9259 

-100 8 8 8 8 108 
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>> rho=l./h -1 
rho = 

-1.8090 - 0.5878i 
-1.8090 + 0.5878i 
-0.6910 - 0.9511i 
-0.6910 + 0.9511i 
0.0800 

A few comments are in order. First, we define a variable cf and we associate a 
cash flow to it. Then, in a single command line, we flip the cash flow from left 
to right with the function f liplr and we invoke the roots function to assign 
the roots of the resulting polynomial to the variable h. Flipping the cash flow 
vector is necessary since roots assumes that a polynomial is represented by 
a vector in which the first components correspond to the highest power terms 
in the polynomial, whereas when we represent cash flows we put such terms 
at the end. After obtaining the solution in terms of h, we go back to the 
original variable p (note that the dot in . / is necessary since h is a vector of 
solutions). Since in this example n = 5, we have a vector of five roots: four 
are complex conjugates, and the one we are interested in is the real one, i.e., 
p = 0.08. Indeed, it can be shown that for a cash flow stream with CO < 0 and 
Ct 2 0 (t = 1,. . . , n) and Cy=, Ct > 0, we have a unique real and positive 
solution of the non-linear equation (see, e.g., [15, chapter 21). 

If we want to devise a function filtering complex roots away, we may use 
the MATLAB find function, which returns the indexes of the elements in a 
vector meeting some condition: 

>> index = find(abs(imag(rh0)) < 0.001) 
index = 

>> rho (index) 

0.0800 

5 

ans = 

What we have done here is finding the indexes of elements in rho such that 
the absolute value of their imaginary part is less than a specified tolerance; 
then we get the elements from the vector. It is tempting to think that we 
should look for elements such that the imaginary part is exactly zero, but 
this type of “exact thinking” should be avoided when numerical computing is 
involved. To get the point, consider the trivial equation 

(X - 1)3 = x3 - 300~’ + 30,000~ - 1,000,000 = 0 

and use roots to solve it: 

>> v = [l -300 30000 -10000001; 
>> h=roots(v) 
h =  
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1.0e+002 * 
1.0000 + 0.OOOOi 
1.0000 - 0.OOOOi 
I .  0000 

>> index = find(abs(imag(h1) == 0) 
index = 

3 

The nasty thing occurring here is that multiple real roots may turn out as 
complex conjugates with a very small imaginary part. This is arguably un- 
likely to occur when computing internal rates of return of non-pathological 
cash flow streams, but it is a good example of pitfalls in numerical computing 
and it points out the care we need to take. All the work above (including filter- 
ing complex roots out) is done by the irr  function available in the Financial 
toolbox: 

>> irr(cf) 
ans = 

0.0800 

We urge the reader to try writing a function doing all of this automatically; 
then, readers having access to the Financial Toolbox may compare their func- 
tion with irr. 0 

With rwpect to present value, when computing internal rate of return we 
are going the other way around, in some sense. Moreover, the present value 
may be computed using a set of discount factors linked to different interest 
rates applied over time periods differing in length; the internal rate of return 
is one rate which, applied over all of the time periods, would give the same 
present value. 

2.3.2 

Pricing a zero-coupon bond Consider a zero-coupon bond, with a face value 
F ,  maturing in one year, which is currently sold at  price P.  If we purchase 
this security and we keep it until maturity, we will have a total return 

Basic pricing of fixed-income securities 

F R =  - 
P 

An obvious relationship between T ,  F ,  and P is 

F pz- 
1 S T '  
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We may see this relationship the other way around. If we fix F and r ,  this 
may be interpreted as a pricing relationship. 

What rate r should we use in pricing? If the bond is default-free, as is 
usually the case with government bonds, this should be the prevailing risk- 
free interest rate: no more, no less. To see why, we may use a common 
principle in finance, i.e., the no-arbitrage principle. Assume that the bond is 
underpriced, i.e., it sells for a price PI such that 

F P 1 < P = -  I + r ’  

and that we may take out a loan at  the risk-free interest rate r (we are 
assuming that borrowing and lending rates are equal). Then we can borrow 
an amount L and use i t  to purchase LIP1 bonds. Note that the immediate 
net cash flow is zero. Then, at  maturity, we must pay L(1+ r )  to our money 
lender, and we get an amount FLIP1 when the face value is redeemed for 
each bond. But since, by hypothesis, 

F 
- > l + r ,  
Pl 

the net cash flow a t  maturity will be 

Hence, we pay nothing a t  the beginning and receive a positive amount in the 
future; sincc the bargain is an interesting one, we might well exploit it, in 
the limit, to ensure an unbounded profit for increasing L. This is a simple 
example of arbitrage. Of course, limitless borrowing is not available; more 
important, purchasing a huge amount of those bonds would raise their prices, 
and the arbitrage opportunity would soon disappear. Indeed, a common as- 
sumption in many financial problems is that arbitrage opportunities do not 
exist. Note that this does not imply that they actually do not exist; on the 
contrary, it is the very fact that many people are out there to exploit those 
opportunities which tends to eliminate them quickly. The argument may be 
repeated similarly if the inequality is reversed and the bond is overpriced: 

F P , > P = -  
1 + r ’  

In this case we should borrow the bond itself, rather than the cash needed to 
buy it. This is accomplished by selling the bond short (see example 2.1 on 
page 32 for an illustration of short-selling a stock). There are many limitations 
to short-selling in practice, but for pricing models it is often (not always) 
reasonable to assume that it is possible. Then we may sell the overpriced 
bond and invest the proceeds a t  the risk-free rate; let us assume that we 
borrow bonds for a total value L,  we sell them at price PI ,  and we invest the 
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money we obtain. The immediate net cash flow is again zero. At maturity, 
we get L(1-t r )  from our investment, and we have to pay the face value F to  
the owner for each bond that we have borrowed. Hence the net cash flow a t  
maturity is again positive: 

We have also implicitly assumed that transaction costs are negligible and that 
we may lend or borrow money at the same rate. Again, these assumptions are 
violated in practice, but they may be close enough to reality, at  least for some 
large investors, to warrant their use. The reader may have the impression that 
the arbitrage argument is, a t  least in this case, an unnecessary complication to 
obtain an almost obvious result: the price is obtained by taking the present 
value of its future cash flows. However, the no-arbitrage principle is used, 
with some modification, to price quite complex securities where uncertainty 
is involved and intuition does not help (as in the case of options; see section 
2.6.2). 

No-arbitrage and linearity of pricing Before proceeding and considering pric- 
ing coupon-bearing bonds, it is useful to point out a couple of important 
implications of the no-arbitrage principle. 

The first implication is the law of one price. Different assets cannot sell 
for different prices, in idealized markets, otherwise an immediate arbitrage 
opportunity arises. In practice, markets are not perfect, and we all know that 
the same product may be sold at different prices in different countries. In this 
case, arbitrage opportunities are eliminated by transportation costs, taxes, 
etc. Financial markets, also thanks to Internet, are closer to perfect markets, 
and for modeling purposes we may assume that the law of one price makes 
sense. We will also see that it makes sense when uncertainty is involved. 

Another implication is that pricing is a linear operator. To get the point, 
let us denote by P( . )  an abstract pricing operator that maps assets to prices. 
Linearity means that the price of a portfolio of assets should be the weighted 
sum of the prices of each single asset. Formally, if we denote an asset by X , ,  
i = 1,.  . . , n, we have 

where P ( X , )  is the price of asset i and ai is the number of assets of type i 
in the portfolio. To see this, let us break the argument in two parts. If we 
consider one asset, we should have P ( 2 X )  = 2 P ( X ) .  If, for instance, P ( 2 X )  < 
2 P ( X ) ,  we may make an immediate profit by purchasing two assets and selling 
them separately. A similar consideration applies if P ( 2 X )  > 2 P ( X ) .  The 
same reasoning can be applied with an arbitrary number of assets, a t  least in 
idealized markets with no friction; in real markets, transaction costs, round 
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lots, etc., make the argument only approximately valid. By the same token, 
we must have P(X1+ X2) = P ( X 1 )  + P(X2). If, for instance, P ( X 1  + X z )  < 
P(X1)  + P(X, ) ,  we may buy the bundle of two assets and then make an 
immediate profit by selling them separately. Again, reality is a bit different. 
Prices may be non-linear when transaction costs are involved or when assets 
are in limited supply and markets are thin. 

Linearity of pricing has an important implication on pricing coupon-bearing 
bonds; if we regard such a bond as a portfolio of zero-coupon bonds, it is 
immediate to see that we may price each coupon as a zero-coupon bond and 
sum the results. 

Pricing a coupon-bearing bond Linearity of pricing implies that a bond may 
be priced by pricing vach coupon separately, including payment of face value 
at  maturity. Consider a bond with face value F ,  paying a coupon C per 
period. Pricing is very simple, if we assume that the bond is default-free, so 
that a riskless interest rate may be applied, and that this rate can be applied 
to any period length (provided that we account for compounding). It is easy 
to see that the fair bond price may be obtained by computing the present 
value of its cash flow stream: 

F +- " c  
z=1 ( l + r ) z  ( l + r ) n '  

PV=C---  

This is the basic principle, which links present values and prices. As expected, 
several complications may arise in practice. 

0 If r is quoted yvarly and there is more than one coupon payment per 
year, the formulit could be adjusted in the same vein as equation (2.1). 
If m coupons an' paid in a year: 

n Clm + F 
PV = c 

(1 + r / m ) z  (1 + r / m ) "  i=l 

where n is the number of periods. 

0 Another fundamental issue is that different interest rates are typically 
associated to different time horizons. This implies that bond pricing 
requires knowledge of several discount factors. If we denote by rt the 
interest rate which applies from now to time t ,  i.e., the spot rate, we 
should discount oach coupon C, appropriately: 

The set of rates rt is related to the term structure of interest rates. The 
idea is depicted in figure 2.8, where we see an upward-sloping structure; 
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0 

f ig. 2.8 
and the corresponding (percentage) spot interest rates are plotted. 

Term structureof the interest rate; years are reported on the horizontal axis, 

this corresponds to the intuitive notion that longer interest rates are 
usually associated with longer terms. Actually, other shapes are possible 
in general. A downward sloping curve is usually associated to recession, 
whereby interest rates are expected to drop in the future. Note that an 
upward sloping curve does not necessarily imply that interest rates are 
expected to rise. 

0 If these simple formulas were generally applicable, any bond with the 
same coupon rate and maturity date should have the same price, which 
is actually not the case. A first point is that not all bonds are issued 
by institutions with the same credit rating. Although a bond issued by 
some governments may be default-free, a corporate bond may not be of 
the same quality; hence, all other things being equal, you would require 
a lower price for it. This difference may be captured by the bond yield, 
which is introduced in the next section. 

Measuring return of a bond: yield t o  maturity We have seen that the price of a 
fixed-coupon bond is basically the present value of its cash flow stream, which 
may depend on a whole set of interest rates. But how can we measure the 
return of a bond of given price by a single number? One possible idea is to 
compute the internal rate of return of the bond. The internal rate of return 
of a bond is called the yield,' and for a bond with price P it is the solution, 

6hctually, there are different concepts of yield (see, e.g., [6] or [7]), but  we will stick t o  this 
one for the sake of simplicity, even though it may be subject to  some criticism. 
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A, of the following equation: 

F 
(1 + A ) i  + (1 + A ) n *  

i= l  

If more than one coupon payment is made during a year, the equation defining 
yield is immediately adapted: 

n C l m  + F P = X  
(1 + A / r n ) %  (1 + A/m).' 

i=l 

From these equations it is easy to see that bond prices will drop if there is 
an increase in required yield A, and vice versa. Required yield may increase 
if bond rating gets worse, which calls for some risk premium, or if the general 
level of interest rates rises. Analyzing the relationship between price and yield 
is relatively easy, but it is just an approximation. A full term structure of 
interest rates should be taken into account, as the curve may not only go up 
or down, but it may also twist and change its qualitative shape. Nevertheless, 
an approximate analysis is often valuable, as we will see shortly. 

Issues in bond portfolio management: interest-rate risk Intuitively, the higher 
the required yield, the lower the price, and higher yields must be offered for 
risky bonds. If the credit rating of the bond issuer changes, the bond price 
will change accordingly to reflect the new situation. But is credit risk the 
only source of risk for bonds? Unfortunately, the answer is no. To begin 
with, coupon rates may depend on some other economic or financial variable, 
resulting in some uncertainty in the cash flow, so we have a form of financial 
risk. Another point is that some bonds have embedded options which may 
be unfavorable for the holder; for instance, the issuer may call the bond, 
that is, redeem it before maturity, which results in reinvestment risk since we 
would have to reinvest the cash we receive from the bond issuer (bonds with 
embedded options may be analyzed using techniques we discuss later when 
we deal with options). 

But even if all of these risks are ruled out, there may still be a form of 
risk, depending on the intended use of the security. The point is that any 
portfolio of bonds has some purpose, and the portfolio risk must be evaluated 
with reference to this purpose. A common use of a bond portfolio is to enable 
some institution (e.g., a pension fund) to comply with a stream of future 
liabilities. To be more concrete, assume that we have to pay a sequence of 
liabilities over a time horizon which is discretized in T periods and that the 
liability in period t = 1,. . . , T is Lt. Now, we could just purchase bonds in 
such a way as to meet all the liabilities. In fact, this is possible, at least in 
principle. Consider a set of N bonds, each with a price Pi (i = 1,. . . , N ) .  If 
the cash flow from a unit of security i at  time t is represented by Fit, we may 
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consider the following cash flow matching model: 

N 

r = l  

N 

s.t. vt 

Here the decision variable xi represents the amount of bond i purchased 
(rather than the weight in the portfolio). If we neglect the possibility of 
default and assume that the liabilities are known in advance, the resulting 
portfolio would certainly meet the obligations; unfortunately, it is likely to 
be quite expensive. Unless bond maturities are matched to the liabilities, we 
will have to meet the obligations with coupon payments, requiring a possibly 
large number of bonds. Note also that liabilities are taken into account by an 
inequality constraint, which may turn out to be strict, since it is unlikely that 
a perfect match of cash flows and liabilities may be obtained with a given set 
of bonds. In the case of a long planning horizon, the lack of suitable long-term 
bonds may compound these difficulties. 

Hence, we must manage our bond portfolio in a more dynamic manner, 
buying and selling bonds along the way. But here comes the trouble. Bond 
prices are related to interest rates, and these may change in unpredictable 
ways. For instance, is a five-year zero-coupon bond riskless? 

Example 2.9 Consider a five-year zero-coupon bond, with face value 100, 
sold with required yield r1 = 0.08. Which is the percentage change in its price 
if the yield is increased immediately after purchase to r2 = 0.09? 

>> r1=0.08; 
>> r2=0.09; 
>> P1=100/(l+r1)-5 
PI = 

>> ~2=100/ (I+r2) -5 
P2 = 

64.9931 
>> (P2-P1)/P1 

-0.0450 

68.0583 

ans = 

We see that we have a 4.5% decrease the value of the bond. Note that this 
loss occurs only if you have to sell the bond before maturity. No harm is done 
if you keep the bond to maturity, but this makes sense only if the liability 
you want to match coincides with maturity. Now what if the maturity is 20 
rather than five years? 
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>> P1=100/(1+r1)^20 
Pl = 

>> P2=100/(l+r2)-20 
P2 = 

>> (P2-Pl)/Pl 

-0.1683 

21.4548 

17.8431 

ans = 

We see that the loss is now much larger, almost 17%. Although zero-coupon 
bonds with long maturities may not be available easily, it is a general rule 
that the longer the maturity, the more sensitive to yield changes the bond 
price is. Coupon rates play some role, too. We may compare two bonds with 
coupon rates of 4% and 8%, respectively. 

>> cfl=[O 8 8 8 8 8 8 8 8 8 1081; 
>> cf2=[0 4 4 4 4 4 4 4 4 4 1041; 
>> P1=pvvar(cfl,0.08) 
P1 = 

>> P2=pvvar (cf 1 , O .  09) 
P2 = 

100.0000 

93.5823 
>> (P2-Pl)/Pl 

-0.0642 
ans = 

>> Pl=pvvar(cf2,0.08) 
P1 = 

>> ~2=pvvar(cf2,0.09) 
P2 = 

67.9117 
>> (P2-P1)/Pl 

73.1597 

ans = 
-0.0717 

We see that a lower coupon rate implies a larger sensitivity. 0 

The problem is that the interest rates are not constant over time; they 
may change, depending, e.g., on inflation or general economic conditions. The 
changes in interest rates may be complex, as we should take a whole curve 
of spot rates into account. The curve may shift up or down, but it may also 
change shape, as it may steepen or flatten. In the example above we have 
just captured these complex changes with one measure, yield. If rates move 
up, a higher yield will be required for new bonds of the same characteristics. 
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For bonds issued in the past and traded on secondary markets, an increase in 
the yield results in a decrease in the price a t  which they may be sold. On the 
contrary, if interest rates drop, we may gain something from the decrease in 
the required yield, which results in an increase in the price. Depending on the 
maturity and the coupon rate, we have seen that a bond may be more or less 
sensitive to yield changes. We need a formal way to measure the interest-rate 
risk associated with bonds, in order to figure out a way to shape a fixed- 
income portfolio. A relatively simple answer is represented by the duration 
and convexity concepts discussed in the next section. 

2.3.3 

Imagine that you are an investor facing a stream of known liabilities in the 
future and you want to hold a portfolio of bonds such that you may meet the 
liabilities. On the one hand, you would like to do it at  minimum cost, but you 
would also like to hold a portfolio that is not likely to get you in trouble in 
case of changes in the interest rates. As a simple example, imagine that you 
have one liability L to be paid in five years. If you may find a safe zero-coupon 
bond maturing in five years, with face value F ,  you may just buy an amount 
L I F  of these bonds. However, if the bond maturity is less than five years, 
you will face reinvestment risk; if the bond maturity is more than five years, 
you will face interest rate risk, as we have seen in example 2.9. Ideally, you 
would like to find a zero-coupon bond with maturity corresponding exactly to 
the date of each liability. Unfortunately, it is practically impossible to do so, 
and we must find another way to protect the bond portfolio against interest 
rate uncertainty. Immunization is a possible, and simple, solution. 

Formally, we have a function P(A) that gives the relationship between the 
yield and the price of a bond. We may draw this curve (how this may be done 
in MATLAB is explained in example 2.11), obtainingsomething like the curve 
illustrated in figure 2.9. We see that the curve is c o n ~ e x , ~  which is actually 
the case for usual bonds. Now, consider small movements in the required 
yield; we would like to find out a way to approximate the change in price with 
respect to a change in yield. Indeed, there are two concepts, duration and 
convexity, which can be used to this aim. 

Given a stream of cash flows occurring a t  times t o ,  t l ,  . . . , t,, the duration 
of the stream is defined as 

Interest rate sensitivity and bond portfolio immunization 

PV(t0)to + PV(t1)tl + PV(t2)tz + . . . + PV(t,)t, D =  1 

PV 

where PV is the present value of the whole stream and PV(ti) is the present 
value of cash flow ci occurring at  time t i ,  i = 0,1,  . . . , n. In some sense, the 

gFormally, a function f is convex on a set if, for any choice of x and y in that  set, f(Ax + 
(1 - X)y) 5 Xf(x) + (1 - X) f (y )  holds for 0 5 X 5 1 ;  more on this in supplement S6.1. 
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Fig. 2.9 Price-yield curve. 

duration looks like a weighted average of cash flow times, where the weights 
are the present values of the cash flows. Note that for a zero-coupon bond, 
which has a single cash flow, the duration is simply the time to maturity. 
When we consider a generic bond and use the yield as the discount rate in 
computing the present values, we get Macaulay duration: 

" k  Ck C m (1 + X/m)k 

C k = l  (1 + X/m)k 

D = k=l  
n 1 

ck 

where it is assumed that there are m coupon payments per year. In order 
to see why duration is useful, let us compute the derivative of the price with 
respect to yield: 

d - dP 
dX 
- -  

If we define the modified duration DM = D/(1+ X/m), we get 

- = -DMP. dP 
dX 



FIXED- INCOME SECURI TIES: ANAL YSlS AND PO R TFO L 10 IM M U NIZA TI0 N 59 

Thus, we see that the modified duration is related to the slope of the price- 
yield curve at  a given point; technically speaking, it is the price elasticity of 
the bond with respect to changes in the yield. This suggests the opportunity 
of using a first-order approximation: 

6P M - D M P  6.A. 

An even better approximation may be obtained by using a second-order ap- 
proximation. This may be done by defining the convexity: 

1 d2P C = - -  
P dX2 

It turns out that, for a bond with m coupons per year, 

C =  
m2 ( l + X / r n ) k ’  

k = l  

Note that the unit of measure of convexity is time squared. Convexity is 
actually a desirable property of a bond, since a large convexity implies a slower 
decrease in value when the required yield increases, and a faster increase in 
value if the required yield decreases. Using both convexity and duration, we 
have the second-order approximation 

PC 
2 

6P M - D M P  6X + - ( c ~ X ) ~ .  

Example 2.10 We may check the quality of the price change approximation 
based on duration and convexity with a simple example. Let us consider a 
stream of four cash flows (10,10,10,10) occurring a t  times t = 1,2 ,3 ,4 .  We 
may compute the present values of this stream under different yield values 
using MATLAB function pvvar:  

>> cf = [ l o  10 10 101 
cf = 

>> pl=pvvar(  [O, cf ]  , 0.05) 
10 10 10 10 

p l  = 

35.4595 
>> p2=pvvar ( [O,  cf 1 , 0.055) 
p2 = 

>> p2-pi 
35.0515 

ans = 

-0.4080 

Note that we have to add a 0 in front of the cash flow vector cf since pvvar  
assumes that the first cash flow occurs at  time 0. We see that increasing the 
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yield by 0.005 results in a price drop of 0.4080. Now we may compute the 
modified duration and the convexity using the functions cfdur and cf conv. 
The function cfdur returns both Macauley and modified duration; for our 
purposes, we must pick up the second output value. 

>> [dl  dml = cfdur(cf,0.05) 
dl = 

d m =  

>> cv = cfconv(cf,0.05) 

2.4391 

2.3229 

cv = 

8.7397 
>> -dm*pl*0.005 
ans = 

-0.4118 
>> -dm*p1*0.005+0.5*cv*p1*(0.005)-2 
ans = 

-0.4080 

We see that at least for a small change in the yield, the first-order approxima- 
tion is satisfactory and the second-order approximation is practically exact. 

0 

We have defined duration and convexity for a single bond; what about a 
bond portfolio? If the yield is the same for all the bonds, it can be shown that 
the duration of the portfolio is simply a weighted average of all the durations 
(the weight is given by the weight of each bond within the portfolio). This is 
not exactly true if yields are not the same; however, the weighted average of 
the durations may be used as an approximation. How can we take advantage 
of this? In the case of asset liability management, one possible approach is to 
match the duration (and possibly the convexity) of the portfolio of bonds and 
the portfolio of liabilities. This process is called immunization. To carry out 
the necessary calculations, we may use the functions available in the Financial 
toolbox. 

2.3.4 MATLAB functions t o  deal with fixed-income securities 

When turning our attention from simple cash flows streams to real-life bonds, 
various complications arise. The first one is that in order to represent the 
settlement date and the maturity date of a bond correctly, we must be able 
to cope with a calendar, taking leap years into account. MATLAB has an 
internal way of dealing with dates, which is based on converting a date to 
an integer number. For instance, if we type today, MATLAB replies with a 
number corresponding to the current date; this number may be converted to  
a more meaningful string by using datestr: 
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>> today 
ans = 

732681 
>> d a t e s t r  ( today) 
ans = 

04-Jan-2006 

You may wish to check which date corresponds to day 1. The inverse of 
d a t e s t r  is datenum: 

>> datenum(’04-Jan-2006’) 
ans = 

732681 

There is a wide variety of string formats that you may use to input a date in 
MATLAB; the one you see above is only one of them (note that it is neces- 
sary to enclose the string between quotes). Dates must be taken into account 
for different reasons. Consider buying a bond after it is issued; if you buy a 
bond at  a date between two coupon payments, the time elapsed from the last 
coupon payment date must be taken into account. If not, you would receive 
a coupon benefit to which the previous owner is partially entitled. Actually, 
by computing the present value of the cash flow stream you would take it into 
account; however, the market convention is to quote a bond price without 
considering this issue. What you read is the clean price, to which accrued 
interest must be added in order to obtain the correct price. Accrued interest 
may be computed by prorating the coupon payment over the period between 
two payments. Roughly speaking, if coupons are paid every six months and 
you buy a bond two months before the next coupon payment, you owe some- 
thing like two-thirds of the coupon to the previous owner. However, there 
are different day count conventions to make the necessary calculations. These 
issues are considered in the bndprice function, which is used to price a bond, 
for a given yield value. To understand the input arguments required, we may 
use the online help (we have included only the first few lines appearing on the 
screen): 

>> help bndprice 
BNDPRICE Price a fixed income security from yield to maturity. 

Given NBONDS with SIA date parameters and semi-annual yields to 
maturity, return the clean prices and the accrued interest due. 

[Price, AccruedInt] = bndprice(Yield, CouponRate, Settle, Maturity) 

[Price, AccruedInt] = bndprice(Yield, CouponRate, Settle, . .  
Maturity, Period, Basis, EndMonthRule, IssueDate, . . .  
FirstCouponDate, LastCouponDate, StartDate, Face) 

We see that, as usual in MATLAB, this function may be called with a minimal 
set of input arguments, which are required yield, coupon rate, settlement date 
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(i.e., when the bond is purchased), and maturity date. The two output values 
are the clean price and the accrued interest, which must be summed in order 
to get the real (dirty) price: 

>> [clPr accrInt] = bndprice(0.08, 0.1. ’10-aug-2007’, ’31-dec-2020’) 
clPr = 

116.2366 
accrInt = 

1.1141 
>> clPr+accrInt 
ans = 

117.3507 

When calling the function this way, all the other arguments take a default 
value. For instance, the Period parameter] which is the number of coupon 
payments per year, is assumed to be two, and the face value (Face) is assumed 
to be 100. Another possibly important parameter is Basis, which controls 
the day count convention in computing the accrued interest; the default value 
is 0, which corresponds to  the actuallactual convention; if the parameter is 
set to 1, the convention is 301360 (i.e., it is assumed that all months consist of 
30 days). To appreciate the difference between the day count conventions, we 
may compute the number of days between two dates by the 301360 convention 
and the actual number of days: 

>> days360(’27-Feb-2006’, ’4-Apr-2006’) 
ans = 

37 
>> daysact(’27-Feb-2006’, ’4-Apr-2006’) 
ans = 

36 

Other day count conventions are possible and used for different securities (see, 
e.g., [i’]). The remaining parameters are related to the coupon structure and 
are described in the Financial toolbox manual. 

Example 2.11 To obtain the priceyield curve of figure 2.9, we may use the 
following code fragment: 

settle = ’19-Mar-2000’; 
maturity = ’15-Jun-2015’; 
face = 1000; 
couponRate = 0.05; 
yields = 0.01:0.01:0.20; 
CcleanPrices , accrIntsl = bndprice(yields, couponRate, settle, . . .  

plot (yields, cleanPrices+accrInts) ; 
grid on 

Note that when we have to provide a function with an optional argument] 
such as the face value, but we do not want to use optional arguments which 

maturity, 2, 0, C1 , [I , [I , [I, [I , face); 
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should occur before that one, we have to pass empty vectors represented by 
[I so that the arguments are properly matched. 0 

For now, we have computed a price given a required yield. We may also 
go the other way around; we may compute the yield given the price, using 
another predefined function: 

>> Cleanprices = 195 100 1051; 
>> bndyield(CleanF'rices, 0.08, datenum( '31-Jan-2006'), '31-Dec-2015') 
ans = 

0.0876 
0.0800 
0.0728 

The minimal set of parameters for the bndyield function are: the clean price, 
with no accrued interest; the coupon rate; the settlement date; and the matu- 
rity date. In this case we have used a common feature of MATLAB functions. 
If a vector is passed as an argument, where a scalar would be used in the 
simplest case, the output is, typically, the vector of the results obtained by 
applying the function to each component of the input vector. Here we have 
used different prices, and we see that a bond selling below par (95) has a 
yield higher than the coupon rate; yield and coupon rate are equal for a bond 
selling at  par (100); yield is lower for a bond selling above par (105). Optional 
parameters may be passed to bndyield, which are similar to the parameters 
of bndprice. 

Other useful functions may be used to compute duration and convexity, 
given the price or the yield of a bond. They are best illustrated by a simple 
immunization example. 

Example 2.12 A common problem in bond portfolio management is to 
shape a portfolio with a given (modified) duration D and convexity C. Sup- 
pose that we have a set of three bonds; we would like to find a set of portfolio 
weights wl ,  w2, and 203, one for each bond, such that 

3 

i=l 
? 

E C i W i  = c 
i=l 

3 CWi = 1, 
i=l 

where Ci and Di are the bond durations and convexities, respectively (i = 

1 ,2 ,3 ) .  Note that we have assumed that both the duration and the convex- 
ity of the portfolio can be computed as weighted combinations of the bond 
characteristics; actually, this is not true in general, but for the moment we 
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% SET BOND FEATURES (bondimmun.m) 
settle = ’28-Aug-2007’; 
maturities = [’15-Jun-2012’ ; ’31-Oct-2017’ ; ’01-Mar-2027’1; 
couponRates = c0.07 ; 0.06 ; 0.081 ; 
yields = C0.06 ; 0.07 ; 0.0751 ; 

% COMPUTE DURATIONS AND CONVEXITIES 
durations = bnddury(yields, couponRates, settle, maturities); 
convexities = bndconvy(yields, couponRates, settle, maturities); 

% COMPUTE PORTFOLIO WEIGHTS 
A = [durations’ 

convexities’ 
1 1  11; 

b = [ 1 0  
160 

weights = A\b 
11 ; 

Fig. 2.10 Simple code for bond portfolio immunization. 

will consider this as a simple approximation. All we have to do is to compute 
the coefficients Ci and Di and to  solve a system of three equations and three 
unknowns. This is easily accomplished by the script in figure 2.10. Note that 
we have assumed a given yield, and that we have used the functions bnddury 
and bndconvy to compute durations and convexities. It is possible to carry 
out a similar computation starting from the clean bond prices; we have just 
to use functions bnddurp and bndconvp. By running the script, we obtain the 
following solution: 

weights = 
0.1209 
-0.4169 
1.2960 

Note that we have to sell bond 2 short, which may not be feasible. 0 

2.3.5 Critique 

The naive immunization and cash flow matching models, that we have just 
discussed, leave room for many criticisms. 

To begin with, duration is only an approximate measure of bond price 
sensitivity. It is a correct measure only if the term structure is flat (i.e., 
the same rate applies to  any period length) or if there is a parallel shift on 



STOCK PORTFOLIO OPTIMIZATION 65 

the term structure. In practice, shape changes are possible, calling for more 
sophisticated sensitivity measures and immunization approaches. 

Another issue is that immunization protects against small changes in the re- 
quired yield. But after such a change, the duration and convexity are changed 
and the portfolio is no longer immunized. In fact, we are not paying due atten- 
tion to the dynamic character of portfolio management. In the limit, consider 
a portfolio consisting of two bonds, one with a short and the other with a 
long duration, bracketing the target duration. It may be the case that the 
first bond has a short maturity; when maturity is reached, we are left with 
only one bond and a portfolio that is far from immunized. Continuous port- 
folio rebalancing may lead to nervous trading and high transaction costs. An 
alternative is to use dynamic optimization models, accounting for uncertainty 
in the interest rates and for dynamic trading. This leads to stochastic pro- 
gramming models, which are described in chapter 11. With such models, the 
stochastic nature of liabilities can also be accounted for. 

Apart from using more sophisticated models, one can use more sophisti- 
cated assets. In fact, the need for interest-rate risk management has produced 
a vast array of interest-rate derivatives (see section 2.8). Both pricing such 
derivatives and managing interest-rate risk requires modeling the term struc- 
ture of interest rates; this is a vast and difficult topic, which is actually beyond 
the introductory aim of this book. 

2.4 STOCK PORTFOLIO OPTIMIZATION 

Unlike bonds and derivatives, we do not consider pricing problems for stocks. 
There are models aimed at  finding a “rational” price for a stock share of a 
firm, but they are beyond the scope of the book. Hence, we will consider stock 
prices as exogenous and we will only consider stock portfolio management. 
There is a set of n stocks and we must allocate our wealth among them. For 
simplicity, we do not consider dividend issues nor consumption, and we tackle 
a simple single-period problem, leaving multi-period portfolio optimization to 
later chapters. Our basic assumption is that uncertainty can be modeled by a 
probability distribution, which we treat as it were objective, and likely built on 
the basis of historical data. This need not be the case in portfolio management, 
as one could have some view, or information, which should be reflected in the 
decision problem. By selecting a portfolio, we select a probability distribution 
of future wealth, which is a random variable. We have seen in examples 
2.5 and 2.6 on page 40 that using plain expected values in decision making 
under uncertainty may lead to unreasonable results. We must find a sensible 
way to model preferences under uncertainty, which essentially means that 
we must express risk aversion. The simplest approach to do so is based on 
utility theory, which is introduced in section 2.4.1. Since finding the utility 
function of a decision maker is no trivial task, practical approaches have been 
proposed based on risk measures. The best-known concept is mean-variance 
efficiency, which is dealt with in section 2.4.2; in section 2.4.3 we also illustrate 



66 FINANCIAL THEORY 

a few MATLAB functions to cope with mean-variance portfolio optimization. 
Alternative risk measures, most notably Value a t  Risk, are discussed in section 
2.4.5. 

2.4.1 Utility theory 

The idea that most investors are risk averse is intuitively clear, but what does 
risk aversion really mean? A theoretical answer, commonly used in economic 
theory, can be found by assuming that decision makers order uncertain out- 
comes by some utility function. To introduce the concept, let us consider 
simple lotteries, which may be regarded as investments under uncertainty. If 
a lottery has discrete outcomes, then it corresponds to a random variable X ,  
with possible values xi and probabilities p i ,  and it can be represented by a fan 
like figure 2 .2 .  The decision maker should select among alternative lotteries 
or she may also combine them, forming new random variables. For instance, 
consider an agent who has to choose between the following two lotteries: lot- 
tery a l ,  which is actually deterministic and ensures a payoff p, and lottery 
a2, which has two equally likely payoffs p + 6 and p - 6. The two lotteries 
are clearly equivalent in terms of expected payoff, but a risk-averse agent will 
arguably select lottery a l .  More generally, if we have a random variable X 
and we add a mean-preserving spread, i.e., a random variable E with E[E] = 0, 
this addition is not welcome by a risk-averse decision maker. 

Given a set of lotteries, the agent should be able to pick up the preferred 
one; or, given any pair of lotteries, the agent should be able to tell which one 
she prefers or to decide that she is indifferent among them. In this case, we 
would have a preference relationship among lotteries. Since preference rela- 
tionships are a bit cumbersome and are not easy to deal with, we could map 
each lottery to a number, measuring the utility of that lottery to the agent, 
and use the standard ordering of numbers to sort lotteries. For arbitrary pref- 
erence relationships, a function representing them may not exist, but under a 
set of more or less reasonable assumptions,1° such a mapping does exist and it 
can be represented by a utility function. A particularly simple form of utility 
function, which looks reasonable but is justified by specific hypotheses on the 
preference relationship it models, is the Von Neumann-Morgenstern utility: 

n 

i=l 

for some function u(.), where a is a lottery with outcomes xi and probabilities 
p i .  The function u(.) is the utility of a certain payoff, and U ( . )  is clearly 
the expected utility. If u(x) = x, then the utility function boils down to the 

'OThe discussion of these assumptions is best left to books on Microeconomics; we should 
mention that most of them look rather innocent and reasonable under most circumstances, 
but they may lead to  surprising effects in paradoxical examples. 
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rxpec'tecl value of the payoff, but by selecting the utility u we may model 
differcwt attitiides towards risk. For our problems, it is reasonat)le to assuirie 
that utilitv u( . )  is an increasing function, since we prefer inore wealth to less. 

111 the case of the two lotteries above, preference for a1 is expressed by 

Siiiw t,lie iiieqiidit,y is not, strict, we should say that lottery a1 is a t  least 
iis prcferretl as (12, as t,he agent could he indifferent between the two. More 
goilc!rally, if  we have t,wo possible outcomes 2 1  and 22, with probabilities 
p~ = p n n r l  p a  = 1 - p ,  a risk-averse decision rnaker would prefer not taking 
Cll iL1 Ices: 

u(E[X])  = '7/(lJ:t:] + (1 - P ) : C ~ )  2 ~ H L ( : c ~ )  + (1 - ? ) ) I L ( : C ~ )  = E[7r(X)]. 

Tliis coiitlitioii I>iisi(:idly stat,cs tliat the function u(.) is C O ~ C ~ V J C .  Wc sec that 
(YJll('ilVit,y is linked to ronvexity, a s  the two concepts are related by tt chttnge 
in t lw seiise of the inequality, and a function f ( . )  is concave if and only if the 
fiinctioii -f(.) is coiivcx (see supplcrnent S6.1). Figure 2.11 illustrates the 
role of ctoiiwvit,y. It can he shown that for a continuoiis or discrete randoni 
vni iab lc .  t l io following .Jenseii's inequality holds for a concave function: 

I t  is f\lntl;iinrntid to ohscrve that the exact nutiierical valuc of the utility 
;issigiiatl t,o lottcrios is irrclcvnnt; only tlic relative orderiiig of altcriiiitivcs is 
twseiitinl. Iii fiwt, we speak of ordinal rather than cardinal utility. Giveii the 
linciirity o f  c~xl,c":t,~Lt,ion, we also see that an affiiie transforination of utility 

Fig.2.11 How concave utility functions imply risk aversion: the certainty equvalent
is also shown.
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has no effect, provided it is increasing: if we use au(z) + b instead of u(z), 
the ordering is preserved, provided that a > 0. 

How can we say something about the properties of a specific utility func- 
tion? In particular, we would like to come up with some way to measure 
risk aversion. We have said that a risk-averse agent would prefer a certain 
payoff rather than an uncertain one, when the expected values are the same. 
She would take the gamble only if the expected value of the risky lottery 
were suitably larger than the certain payoff. In other words, she requires a 
risk premium. The risk premium depends partly on the risk attitude of the 
agent, partly on the uncertainty of the gamble itself. We will denote the risk 
premium by p u ( X ) ;  note that it is a number, which a decision maker with 
utility u(.) associates to a random variable X. The risk premium is defined 
by requiring 

@[XI - PU.(X)) = U ( X ) .  (2.8) 

The risk premium implicitly defines a certainty equivalent, i.e. a certain payoff 
such that the agent would be indifferent between the lottery and this payoff 

Note that the certainty equivalent is smaller than the expected value, and the 
difference is larger when the risk premium is larger. These concepts may be 
better grasped by looking again at figure 2.11. 

A difficulty with the risk premium concept is that it mixes the intrinsic risk 
of a lottery with the risk attitude of the agent. We might wish to separate 
the two sides of the coin. Consider a lottery X = x + El, where x is a given 
number and El is a random variable with E[El] = 0 and Var(El) = a’. Assume 
that the random variable El is a “small” perturbation, in the sense that each of 
its realizations 6 is a relatively small number.“ Hence, we may approximate 
both sides of equation (2.8) by Taylor expansions. Consider for instance the 
expression u(z + 6 ) .  Since only numbers are involved here, we may write 

By writing the same approximation for the random variable El and taking 
expected values, we may approximate the right-hand side of (2.8): 

1 E[U(X)] M E u(x) + Zu’(z) + li2u‘’(z) 
2 
1 

= u(x) + E[Ell~‘(z) + -E[E12]u”(x) 2 

‘lFor the sake of convenience, in this section we denote by E a random variable and by E 
a realization of that  variable. This notation is common in Economics; in Statistics, one 
typically uses X and I with the corresponding pair of meanings. 



STOCK PO R TFO L 10 OP TlMlZA TlON 69 

1 
2 

= ~ ( x )  + O . d ( x )  + -Var(E)d’(x) 

1 
2 

= U(X) + -ff2U1yx). 

In the second-to-last line we have used Var(2) = E[C2] - E2[E] = E[Z2] - 0. We 
may also approximate the left-hand side of (2.8), which only involves numbers, 
by a first-order expansion around E[X] = x: 

Equating both sides and rearranging yields 

1 U ” ( X )  

2 Ul(X)  
p u ( X )  = f f2  

Since we assume utility is concave and increasing, the right-hand side is pos- 
itive.” We may also see that the risk premium is factored as the product of 
one term depending on agent’s risk aversion and of another one depending 
on uncertainty. This justifies the definition of the coefficient of absolute risk 
aversion: 

(2.9) 

We have said that, given the linearity of the expectation operator, an (increas- 
ing) affine transformation of a utility function ~ ( x )  is inconsequential. The 
definition of the risk-aversion coefficient is consistent with this observation, 
as it is easy to see that the coefficients for u(x) and au(z) + b are the same. 

Note that r t ( x )  does not depend on uncertainty, but it does depend on the 
expected value of the lottery. From an investor’s point of view, this implies 
that risk aversion depends on the current level of wealth. The more concave 
the utility function, the larger risk aversion. 

By the same token, we may define a coefficient of relative risk aversion. 
This is motivated by considering a multiplicative, rather than additive, shock 
on an expected value x: X = x(1 + 2). Using a similar reasoning, we get: 

1 U ” ( X )  2 
p u ( X )  = 

2 d(X) xff I 

which motivates the definition 

(2.10) 

12A useful property of differentiable concave function of one variable is u”(r) 5 0; see 
supplement S6.1. 



70 NNANClAL THEORY 

Example 2.13 (A few standard utility functions) A typical utility 
function is logarithmic ~ t i l i t y ' ~ :  

u ( x )  = log(x) 

Clearly this makes sense only for positive values of wealth. It is easy to  check 
that for the logarithmic utility we have 

1 
R E ( X )  = -, RL(X) = 1. 

X 

Hence, logarithmic utility has decreasing absolute risk aversion, but constant 
relative risk aversion. We say that logarithmic utility belongs to the families of 
DARA (decreasing absolute risk aversion) and CRRA (constant relative risk 
aversion) utility functions. We will see that this has important implications 
in portfolio optimization. 

Another common utility function is quadratic utility: 

A 2  u ( x )  = x - n x  . (2.11) 
L 

Note that this function is not monotonically increasing and makes only sense 
for x E [O, l /X ] .  Another odd property of quadratic utility is that it is IARA 
(increasing absolute risk aversion): 

> 0. 
x 2  dR"(x) - x Rt(X)  = - j - 

1 - Ax dx (1 -AX) '  

This is usually considered a t  odds with typical behavior of investors. Never- 
theless, we may also see that quadratic utility emphasizes the role of variance, 
since for this utility 

x x 
2 2 

U(X) = E[X - -X2] = E[X] - - (Var(X) + E2[X]). 

A decision maker with quadratic utility is basically concerned only with the 
expected value and the variance of an uncertain outcome. We will see how 
quadratic utility is linked to mean-variance portfolio optimization. 0 

Armed with the utility function concept, we may formalize portfolio optimiza- 
tion problems. In a single period portfolio optimization problem, we have an 
investor with given initial wealth Wo, which must be allocated to different 
assets, in such a way to maximize expected utility. Let t$ be the wealth in- 
vested in asset i = 1, . . . , n, and let Ri be the random return of the asset. The 

131n the following we will use the notation log, rather than In, t o  denote the natural loga- 
rithm. 
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simplest formulation of the portfolio optimization problem is: 

n 

(2.12) 

The formulation is single-period, in the sense that no rebalancing is involved: 
a buy and hold strategy is assumed over the time period of interest. If short- 
selling is ruled out, we should also add non-negativity restrictions & > 0. It is 
common to include in the model a risk-free asset, whose return is deterministic, 
but this does not affect the form of the optimization model (it may affect the 
solution, of course). 

In general, we should not take for granted that the above optimization 
model has a solution. For instance, if the model of uncertainty is not ar- 
bitrage free, we may expect an unbounded solution exploiting the arbitrage 
opportunity. But for non-pathological cases, an optimal portfolio (not neces- 
sarily unique) exists. It is important to note that the optimal portfolio may 
depend on the initial wealth WO. Quite often, we may see models in which the 
decision variables are the weights wi &/Wo of each asset in the portfolio, 
and the budget constraint (2.12) is rewritten as 

n 

c w i  = 1. 
i= l  

The drawback of such a model formulation is that we do not see clearly the 
effect of initial wealth on the optimal solution. Since risk aversion depends 
on wealth, the optimal solution does depend on WO. There are exceptions, 
however, as shown by the following example. 

Example 2.14 Consider the following portfolio optimization problem: 

0 Uncertainty is modeled by a binomial distribution: There are two pos- 
sible states of the world in the future, the up and down state, with 
probabilities p and q, respectively. 

There are two assets: one is risk-free, the other one is risky. 

0 The risk-free asset has total return R f  in both states (total return is 
one plus interest rate). 

0 Current price for the risky asset is So and its total return is u in the 
up-state and d in the down-state. 

0 Initial wealth is Wo and the investor has logarithmic utility. 
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In this problem, there is actually one decision variable, which we may take 
as 6, the number of stock shares purchased by the investor. To get rid of 
the budget constraint, we observe that 65’0 is the wealth invested in the risky 
asset, and WO - 6So is invested in the risk-free asset. Then, future wealth will 
be, for each of the two possible states: 

wu = 

w, 
6Sou + (Wo - 6SO)Rf = SSo(u - Rf) + WORf 
6Sod + (WO - 6SO)Rf = 6So(d - Rf) + WORf, = 

and expected utility is plog(W,) + qlog(Wd). The problem is then 

A necessary condition for optimality is stationarity (the first-order derivative 
vanishes): 

So(u - Rf) So(d- Rf) = 0. 
P6so(u - Rf) + WORf + %o(d - Rf) + WORf 

In order to solve for 6, we may rewrite the equation a bit: 

SSo(u - Rf) + WORf - - 6S,(d - Rf) + WORf - 
PSO(U - Rf) qSo(d - Rf) 

Straightforward manipulations yield 

6 WORf WORf - - -- - 6 - +  
P PSo(u-Rf)  q qSo(d-Rf) 

and 
WORf [q(d - Rf) f d u  - Rf)l 

and, finally 
-- & s o  Rf [UP + dq - Rf]  
Wo (. - Rf)(Rf - 4 .  

- 

This relationship implies that the fraction of initial wealth invested in the 
risky asset does not depend on the initial wealth itself. We have derived this 
property in a simplified setting, but it holds more generally for logarithmic 
utility, and is essentially due to its CRRA characteristic. 0 

Specifying a utility function may be a difficult task, since assessing the trade- 
off between risk and return is far from trivial. This may be no concern in 
Economics, if the aim is to build a model explaining some observed behavior 
and qualitative insights are of interest; however, in Financial Engineering and 
operational decision making, this is a difficulty. A relatively simple approach 
is based on the idea of restricting the choice to “reasonable” portfolios. If you 
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fix the expected return you want to get from the investment, you would like 
to find the portfolio achieving that expected return with minimal risk. By 
the same token, if you fix the level of risk you are willing to take, you would 
like to select a portfolio maximizing the expected return. This approach 
leads to mean-variance portfolio theory, which, despite considerable criticism, 
underlies quite a significant part of financial theory. 

2.4.2 Mean-variance portfolio optimization 

Let us go back to the asset allocation problem, when only two risky assets 
are available. Let us denote by F2, F , ,  and ui the random rate of return for 
asset i = 1 , 2  and its expected value and standard deviation respectively. I t  
is tempting to say that the problem is trivial when > f 2  and 01 < ~ 7 2 .  In 
this case, stock 1 has a larger expected return than stock 2, and it is also 
less risky; hence, a naive argument would lead to the conclusion that asset 2 
should not be considered at all. Actually, this may not be the case, since we 
have neglected the possible correlation between the two assets. The inclusion 
of asset 2 may, in fact, be beneficial in reducing risk, if its return is negatively 
correlated with the return of asset 1. So we see that there is some need for 
formalization in order to  solve the problem. 

Assume that we are interested in defining the portfolio weights, w1 and w2 
in our case. A natural constraint is 

w1+ w2 = 1. 

Note that we are not considering the initial wealth level Wo, since we deal 
with the allocation of fractions of wealth. If we want to rule out short-selling, 
we must also require wi 2 0. Elementary probability theory tells us that the 
portfolio rate of return will be 

r = W l F l +  W2F2, 

and the expected return will be 

F = w1r1 + w2F2, 

More generally, when we must devise a portfolio of n risky assets, the expected 
return is given by 

n 

a = ]  

The variance of F is given, for the two-asset case, by 

2 o = Var(wlr l+ ~ 2 7 - 2 )  = w f ~ f  + 2 ~ 1 ~ 2 ~ 7 1 ~  + w,2u,2, 

where u12 is the covariance between r1 and 7-2. For n assets we have 
n 
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where all covariances ui j  have been collected in the covariance matrix !Z. 
By choosing the weights wi, we will get different portfolios characterized 

by the expected value of the return and by its variance or standard deviation, 
which we may assume as a risk measure. Any investor would like both to  
maximize the expected return and to minimize variance. Since these two 
objectives are, in general, conflicting, we must find a trade-off. The exact 
trade-off will depend on the degree of risk aversion, which is hard to assess, 
but it is reasonable to assume that for a given target value FT of the expected 
return, one would like to minimize variance. This is obtained by solving the 
following optimization problem: 

min W'CW 

(2.13) 

i=l 

Wi 2 0 .  

This is a quadratic programming problem, which may be solved by numerical 
methods described in chapter 6,  where we also show how to use MATLAB 
functions provided by the Optimization Toolbox. The Financial Toolbox also 
includes functions to solve mean-variance portfolio optimization problems, 
which are described in the next section. 

By changing the target expected return, one may obtain a set of eficient 
portfolios. Roughly speaking, a portfolio is efficient if it is not possible to 
obtain a higher expected return without increasing risk. There are infinite 
efficient portfolios in general, and it is reasonable to assume that the preferred 
portfolio will be one of them. 

2.4.3 MATLAB functions to deal with mean-variance portfolio 
optimization 

MATLAB includes a set of functions based on mean-variance portfolio the- 
ory. They rely on the Optimization toolbox to solve optimization problem 
(2.13) for different values of expected return. The first function we consider 
is f rontcon. In the simplest case, f rontcon receives three arguments: the 
vector of expected rates of return, covariance matrix, and the number of effi- 
cient portfolios we wish to find. The last argument is actually the number of 
risk minimization subproblems we wish to solve; this yields a finite subset of 
the efficient frontier, which may be enough to trace a good plot. The output 
arguments are: a vector of expected portfolio risks (standard deviation) for 
each efficient portfolio; expected rates of return; portfolio weights for each 
asset in each portfolio. It is instructive to go back to the case of two assets. 
Assume the following data: 

F 1  = 0.2 r;! = 0.1 
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2 a: = 0.2 

0 1 2  = -0.1. 

u2 = 0.4 

Note that asset 2 is apparently useless, but it is negatively correlated with 
asset 1; hence, when asset 1 performs poorly, we may hope that asset 2 will 
perform well (and vice versa). Hence, including asset 2 may result in some 
beneficial diversification. Let us find a set of efficient portfolios: 

>> r = CO.2 0.11; 
>> s = [0.2 -0.1; -0.1 
>> [PRisk, PRoR, PWts] 
>> [PWts, PRoR, PRisk] 
ans = 

0.6250 0.3750 
0.6667 0.3333 
0.7083 0.2917 
0.7500 0.2500 
0.7917 0.2083 
0.8333 0.1667 
0.8750 0.1250 
0.9167 0.0833 
0.9583 0.0417 
1.0000 0 

0.41 ; 
= frontcon(r,s,lO); 

0.1625 0.2958 
0.1667 0.2981 
0.1708 0.3051 
0.1750 0.3162 
0.1792 0.3312 
0.1833 0.3496 
0.1875 0.3708 
0.1917 0.3944 
0.1958 0.4200 
0.2000 0.4472 

Here we display a table showing expected rate of return, in the first column, 
standard deviation, and portfolio weights. Each line correspond to one of 
the ten portfolios we wanted to find. The last line correspond to the riskiest 
portfolio, yielding the largest expected return. As we could expect, return 
is maximized by investing 100% of our wealth in the first asset, with and 
01 = = 0.4472 (recall that we are forbidding short sales in this model). 
It is interesting to note that it is possible to obtain portfolios whose standard 
deviation of return is lower than the standard deviation of both assets, which 
is due to negative correlation between returns in this case. The first portfolio 
displayed in the first line corresponds to the portfolio of minimal risk. We may 
also plot the efficient frontier by calling f rontcon without output arguments: 

>> frontcon(r, s ,  10) ; 

We get the plot in figure 2.12. 
We may repeat the experiment with more complex portfolios: 

>> ExpRet = [ 0.15 0.2 0.081; 
>> CovMat = [ 0.2 0.05 -0.01 ; 0.05 0.3 0.015 ; . . .  

>> [PRisk, PRoR, PWts] = frontcon(ExpRet, CovMat, 10);  
>> [PWts, PRoR, PRisk] 
ans = 

-0.01 0.015 0.11; 
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Mean-Variance-Efficient Frontier 
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fig. 2.12 Efficient frontier for a portfolio with two risky assets. 

0.2914 
0.3117 
0.3320 
0.3524 
0.3727 
0.3930 
0.4133 
0.3811 
0.1905 

0 

0.1155 
0.1831 
0.2506 
0.3181 
0.3857 
0.4532 
0.5207 
0.6189 
0.8095 
1.0000 

0.5931 
0.5052 
0.4174 
0.3295 
0.2417 
0.1538 
0.0659 

0 
0 

-0.0000 

0.1143 
0.1238 
0.1333 
0.1428 
0.1524 
0.1619 
0.1714 
0.1809 
0.1905 
0.2000 

0.2411 
0.2456 
0.2588 
0.2794 
0.3060 
0.3370 
0.3714 
0.4093 
0.4682 
0.5477 

By the way, we should not get fooled by the apparent negative weight of an 
asset in the last portfolio: 

>> PWts(l0,3) 
ans = 

-1.4461e-017 

This is a typical example of small numerical errors that we must expect. 
Like any professionally crafted code, f rontcon is safe in the sense that some 

consistency checks are carried out on the input arguments. For instance, a 
covariance matrix must be positive semidefinite. The reader is urged to try 
f rontcon with the following covariance matrix: 
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CovMat = E0.2 0 . 1  -0. I ; 0 . 1  0.2 0.15 ; -0. I 0.15 0.21 

We have considered trivial portfolio optimization problems with no additional 
constraints. In real life, it is typical to  have some constraints enforcing lower 
and upper bounds on the allocation to single assets or groups of assets. This 
may make sense if you want to limit the exposure to certain risky stocks or to 
market sectors (eg. ,  telecommunications or energy). The f ron tcon  function 
is able to cope with such constraints, which may be represented by using 
additional arguments. However, a richer function, from this point of view, is 
p o r t o p t ,  which is able to cope with more general constraints. 

To illustrate, consider a problem involving five assets. Suppose that you 
do not want to consider short-selling and that the following upper bounds are 
given on each asset weight in the portfolio: 

0.35 0.3 0.3 0.4 0.5. 

Furthermore, the assets can be partitioned into two groups, consisting of assets 
1 and 2 and of assets 3, 4, and 5, respectively. You might wish to enforce 
both lower and upper bounds on asset allocation to each group; say the lower 
bounds are 0.2 and 0.3 and the upper bounds are 0.6 and 0.7. Formally, this 
would result in a constraint set like the following, which should be added to 
our quadratic programming problems: 

0 5 W I  5 0.35 

0 5 ~4 5 0.4 

0.2 5 201 + w:! 5 0.6 

0.3 5 ~3 + ~4 + ws 5 0.7. 

0 5 ~2 5 0.3 0 5 ~3 5 0.3 

0 5 ws 5 0.5 

The optimization functions available in MATLAB can easily cope with such 
constraints, but they must be represented in matrix form. In other words, it is 
customary to specify (linear) constraints as systems of equations Aeqw = be, 
or inequalities Aw 5 b. Writing constraints in such a form is conceptually 
simple, but practically difficult. In the past, persons working on numerical 
optimization had to write matrix generators in order to solve large problems 
by numerical libraries. Then, to ease a tedious and error-prone task, algebraic 
languages have been developed, such as AMPL, which is used in chapters 11 
and 12 (see also appendix C). Algebraic languages allow us to express an 
optimization model in a quite natural way. In MATLAB there is no high- 
level way to express optimization models, but for mean-variance problems 
there is a sort of specialized matrix generator, called po r t cons .  

For our small example, we would call this function as illustrated in figure 
2.13, obtaining the constraint matrix in figure 2.14.14 Note that we must 

"We should note that  frontcon can also be used for such a problem, but we prefer using 
portcons and portopt to illustrate a more general point related to  matrix generators. 
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% Cal1Portcons.m 
NAssets = 5; 
AssetMin = NaN; 
AssetMax = 10.35 0.3 0.3 0.4 0.51; 
Groups = [l 1 0  0 0 ; 0 0 1 1 11; 
GroupMin = [ 0.2 0.3 1; 
GroupMax = [ 0.6 0.7 1 ; 

ConstrMatrix = portcons(’Default’, NAssets, ... 
’AssetLirns’, AssetMin, AssetMax, NAssets, . . .  
’GroupLirns’, Groups, GroupMin, GroupMax) 

~~~~ ~~ ~ 

Fig. 2.13 How to use portcons to build the constraint matrix 

ConstrMatrix = 

1.0000 1.0000 
-1.0000 -1.0000 
-1.0000 0 

0 -1.0000 
0 0 
0 0 
0 0 

1.0000 0 
0 1.0000 
0 0 
0 0 
0 0 

-1.0000 -1.0000 
0 0 

1.0000 1.0000 
0 0 

1.0000 
-1.0000 

0 
0 

-1.0000 
0 
0 
0 
0 

1.0000 
0 
0 
0 

-1.0000 
0 

1.0000 

1.0000 
-1.0000 

0 
0 
0 

-1.0000 
0 
0 
0 
0 

1.0000 
0 
0 

-1.0000 
0 

1.0000 

1.0000 
-1.0000 

0 
0 
0 
0 

-1.0000 
0 
0 
0 
0 

1.0000 
0 

-1.0000 
0 

1.0000 

1.0000 
-1.0000 

0 
0 
0 
0 
0 

0.3500 
0.3000 
0.3000 
0.4000 
0.5000 

-0.2000 
-0.3000 
0.6000 
0.7000 

Fig. 2.14 Sample constraint matrix built by portcons. 
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Ca1lPortopt.m 
CallPortcons; 
ExpRet = C0.03 0.06 0.13 0.14 0.151; 
CovMat = [ 

0.01 0 0 0 0 
0 0.04 -0.05 0 0 
0 -0.05 0.30 0 0 
0 0 0 0.40 0 .20  
0 0 0 0 . 2 0  0.40 1;  

[PRisk, PRoR, PWts] = portopt (ExpRet , CovMa 
[PRoR, PRisk] 
PWt s 

, 10, [I, ConstrMa c ix )  ; 

Fig. 2.15 Calling portopt. 

include a 'Defaul t '  argument in order to specify that the sum of weights 
does not exceed 1 and short selling is ruled out. This is why we use NaN 
(not-a-number) as a lower bound on asset allocation AssetMin: otherwise, we 
would have twice the same constraints w, 2 0. Also note how the equality 
constraint Cz=l wz = 1 is represented by two inequalities, x:=l w, 5 1 and 
z:=l (-wz) 5 -1. This is because por topt  assumes inequality constraints 
only. Then the matrix may be used by calling portopt  as illustrated in figure 
2.15 (some optional arguments are omitted; see MATLAB online help). 

5 

Using that script, we get the following output: 

ans = 
0.0816 
0.0860 
0.0904 
0.0948 
0.0991 
0.1035 
0.1079 
0.1122 
0.1166 
0.1210 

PWts = 

0.3000 
0.2623 
0.2220 
0.1816 
0.1413 

0.1487 
0.1620 
0.1762 
0.1906 
0.2054 
0.2203 
0.2361 
0.2526 
0.2799 
0.3995 

0.3000 0.2250 0.0875 0.0875 
0.3000 0.2309 0.0905 0.1163 
0.3000 0.2496 0.0998 0.1286 
0.3000 0.2683 0.1091 0.1410 
0.3000 0.2870 0.1185 0.1533 
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0.1017 0.3000 0.3000 0.1299 0.1684 
0.0639 0.3000 0.3000 0.1463 0.1899 
0.0260 0.3000 0.3000 0.1627 0.2113 
0.0000 0.3000 0.2650 0.1075 0.3275 

0 0.3000 0 0.2000 0.5000 

It is useful to check that the maximum return portfolio allocates 50% of wealth 
to asset 5, which is the maximum return asset; the upper bound wg 5 0.5 
prevents us from investing all of our wealth in this asset. Then 20% is allocated 
to asset 4 and nothing to asset 3, because wg + w4 + w5 5 0.7. The last 30% 
is allocated to asset 2. 

Another consideration we should point out is that por tcons  generates a full 
matrix with many zero entries. Good optimization solvers deal with sparse 
matrices, which avoid storing zero entries in order to save memory space. 
Algebraic languages exploit this possibility, which is essential to deal with 
large-scale problems with special structure. 

A last function we describe here may be used to find an optimal portfolio. 
So far, we have dealt with efficient portfolios, leaving the risk/return trade-off 
unresolved. We may resolve this trade-off by linking mean-variance portfolio 
theory to the more general utility theory illustrated in section 2.4.1. Actually, 
mean-variance theory is not necessarily compatible with an arbitrary utility 
function: An optimal portfolio for some utility function need not be on the 
mean-variance efficient frontier. I t  can be shown that this inconsistency does 
not arise if the returns are normally distributed or if the utility function is 
quadratic (see, e.g., [ll] or [15]). The last point implies that if may specify a 
quadratic utility function such as (2.11), the optimal solution will be a mean- 
variance efficient portfolio. All we have to do is to choose the X parameter 
according to our degree of risk aversion. In the Financial toolbox the function 
p o r t a l l o c  is provided, which yields the optimal portfolio assuming quadratic 
utility with some risk-aversion parameter; its default value is 3 and suggested 
alternative values range between 2 and 4. There is still another issue that we 
have neglected so far. We have considered mean-variance efficient portfolios, 
assuming that only risky assets were available. However, we may obtain a 
known return by investing in a bank account with a fixed interest rate or in 
a safe zero-coupon bond (with maturity equal to our investment horizon, to 
avoid interest rate risk issues). What is the effect of the inclusion of such 
a risk-free asset in our portfolio? A detailed analysis of this issue is rich in 
implications in financial theory, but it would lead us too far. For our purposes 
it is sufficient to say that the optimal portfolio will be a combination of the 
risk-free asset and one particular efficient portfolio. The amounts invested in 
the risk-free asset and in the risky portfolio depend on our risk aversion, but 
the risky portfolio involved does not. An important implication of this, if we 
believe in the theory, is that investors could live with just one “mutual” fund, 
mixing it with the risk-free asset. The p o r t a l l o c  function yields the optimal 
combination of the risky portfolio and the risk-free asset; it assumes further 
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% CallPortAl1oc.m 
ExpRet = [ 0.18 0.25 0.21; 
CovMat = [ 0.2 0.05 -0.01 ; 0.05 0.3 0.015 ; . . .  

RisklessRate = 0.05; 
BorrowRate = NaN; 
RiskAversion = 3; 

-0.01 0.015 0.11; 

[PRisk, PRoR, PWts] = frontcon(ExpRet, CovMat, 100) ; 

[RiskyRisk , RiskyReturn, RiskyWts. RiskyFraction, . . .  
PortRisk, PortReturn] = portalloc(PRisk, PRoR, PWts, . . .  

AssetAllocation = [I-RiskyFraction, RiskyFraction*RiskyWts] 
RisklessRate, BorrowRate. RiskAversion); 

Fig. 2.16 Calling portalloc. 

that cash may be borrowed at  some rate. Figure 2.16 illustrates a script to 
call this function. 

Some explanation is in order. First, we give the vector of the expected 
rates of return and the covariance matrix, which are used by frontcon to 
generate an approximation of the efficient frontier with a given number of 
points. We also give a riskless rate (for investing) and a risk-aversion coeffi- 
cient. The borrowing rate is set to NaN since we do not consider the possibility 
of borrowing. There are several output returned by portalloc: RiskyRisk, 
RiskyReturn, and RiskyWts are the risk, the expected return, and the com- 
position of the ideal fund. RiskyFraction is the fraction we should invest in 
the risky portfolio; PortRisk and PortReturn are the risk and return of the 
portfolio consisting of the risky portfolio and the risk-free asset. 

Cal l ingportal loc with these parameters will produce the following output: 

>> CallPortAlloc 
AssetAllocation = 

0.1401 0.2004 0.1640 0.4954 

One could wonder why we should compute first the efficient frontier. In 
fact, this is due to the way portalloc is built. We can formulate and solve an 
optimization problem directly, using the concepts we will illustrate in chapter 
6 (see also section C.2). 

2.4.4 Critical remarks 

Mean-variance portfolio theory leads to relatively simple numerical problems. 
However, despite its prominent role in financial theory, the approach has been 
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the subject of widespread criticism. We have pointed out that mean-variance 
portfolio theory is consistent with the utility function framework in the case 
of normally distributed returns and in the case of a quadratic utility function. 
Both conditions may be debated.15 

One important feature of the normal distribution is its symmetry. If the 
return distribution is symmetric, then using variance or standard deviation as 
a measure of risk may make sense; in fact, variance takes into account returns 
that are both higher and lower than the average. The former are actually 
desirable, but in the case of normal distribution a potential for good perfor- 
mance is exactly counterbalanced by the risk of underperformance. However, 
if the distribution is not symmetric, we must distinguish the upside potential 
from the downside risk. While symmetric returns may be assumed for stocks, 
derivative assets, such as those we shall describe shortly, may lead to more 
complex distributions. As for the quadratic utility function, we have seen that 
it implies increasing absolute risk aversion, which is itself a counterintuitive 
behavior for the usual investor. A solution to both issues would be the use of a 
carefully chosen utility function, which is hard to come up with, when dealing 
with real investors. We could also enforce constraints on the probability of 
large losses; if L is the random variable modeling the portfolio loss, we could 
require something like 

P{L > w} 5 a ,  

where a is a small probability and w is a threshold parameter; such a prob- 
abilistic constraint is known as chance constraint. All of these ideas lead to 
more complex optimization problems, namely stochastic programming prob- 
lems, which are dealt with in chapter 11. 

A further reason for using stochastic programming models is another dif- 
ficulty in mean-variance theory. The covariance matrix is assumed to  be 
constant over time. Unfortunately, it is likely that correlation may rise when 
stock market crashes occur, just when diversification should help. So we 
should use more complex models in describing the uncertainty. Stochastic 
programming does so by building a set of multiperiod scenarios, like the tree 
in figure 2.3 on page 27. This also enables us to consider another feature 
that is disregarded by mean-variance models: the dynamic nature of portfolio 
management, which is not considered in single-period models. Portfolios are 
revised in time, and the impact of transaction costs should not be neglected. 

Modeling transaction costs exactly may be rather difficult. They depend in 
a non-trivial way on the amounts traded. For instance, it may be preferable 
to buy and sell stocks in round lots, since trading in odd lots may increase 
transaction costs. It might also be advisable to avoid a portfolio with a very 

15See, e.g., [13] for a discussion of alternative utility functions in portfolio optimization. 
We should also mention that  mean-variance theory is justified not only when returns are 
assumed normally distributed, but  in the more general case of elliptic distributions, which 
include the normal; see [ll]. 
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small weight on some assets; the benefit of diversification will probably be lost 
because of increasing transaction costs. So we could require that if a stock 
enters the portfolio, it does so with a minimal weight. We may also look for 
portfolios including no more than a predetermined number of assets. Such 
constraints require the introduction of integer programming models, which 
are the subject of chapter 12. 

2.4.5 Alternative risk measures: Value at Risk and quantile-based 

measures 

Mean-variance portfolio theory is based on the use of variance or standard 
deviation as risk measures. We have already pointed out that this may not be 
always appropriate, but another practical issue is that they may be difficult 
to interpret by a portfolio manager. This is why alternative risk measures 
have been proposed and adopted, based on the concept of a portfolio loss. In 
general, a risk measure is a function mapping a random variable to  a number; 
the larger this number, the riskier the distribution. More specifically, some 
measures are based on quantiles of the probability distribution of portfolio 
loss. The most widely known such measure is Value at  Risk, or VaR (not to 
be confused with variance or, for people with a background in Econometrics, 
with a Vector Auto-Regressive, VAR, model). 

The VaR concept was introduced as an easy-to-understand measure of port- 
folio risk. In fact, measuring, monitoring, and managing risk are fundamental 
activities for any portfolio manager. Bonds and stocks involve different forms 
of risk, and derivatives, if used for speculation, may be even riskier. Basically, 
VaR aims at  measuring the maximum portfolio loss one could suffer, over a 
given time horizon, within a given confidence level. Technically speaking, it is 
a quantile of the probability distribution of future wealth. Suppose that our 
initial wealth is Wo and the future (random) wealth is, at  the end of the time 
horizon, 

where i: is the random rate of return. We are interested in characterizing the 
potential loss, which occurs when the wealth increment 

w = Wo(1 + T), 

6W = w - w, = WoT 

turns out to be negative. The VaR a t  confidence level a is implicitly defined 
by the following condition: 

P(6W 5 -VaR} = 1 - a ,  (2.14) 

which shows that VaR is, disregarding the change in sign to make it positive, 
a quantile with confidence level a. Typical values for the confidence level 
could be a = 0.95 or a = 0.99. To be precise, the definition above holds 
for a continuous probability distribution, but it can be extended to a discrete 
probability distribution. 
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Let f ( r )  be the probability density of the rate of return. Then we should 
look for a critical rate of return rl--a such that 

T *  

P{F 5 = f(r)  dr = 1 - a.  L 
The quantile ~1~~ is obviously linked to a critical wealth ~ 1 - ~ ,  since from 
equation (2.14) we may deduce 

W I - ~  - WO = -VaR, 

which in turn implies 

VaR = WO - = -WOrl--a. 

Note that the critical return is usually negative and VaR is positive. Some- 
times VaR is defined with respect to  the expected future wealth: 

VaR = E[W] - ~ 1 - ~  = - W ~ ( r l - ~  - E[R]). 

The two definitions may give approximately the same value for a short time 
horizon, say a few days. In this case volatility dominates drift16 and E[W] M 

WO. This assumption is not unreasonable, as regulations suggest using a risk 
measure in order to set aside enough cash to be able to cover short-term losses. 

Computing VaR is easy if one assumes that returns are normally distributed 
and we are considering short time periods, so that the rate of return over a few 
successive periods is the sum of returns on each period (i.e., the compounding 
effect is negligible). For simplicity, assume that we hold N shares of an asset 
whose current price is S. Let u be the daily volatility for that asset; hence, for 
a period of length bt days, volatility is u f i ,  if we assume daily returns are 
independent on each other. Since, by summing normal random variables, we 
get another normal variable, the return over the time period bt is normal too, 
and to get the quantile we need we may standardize as usual. Hence, given a 
confidence level a,  we have to obtain the quantile ~ 1 - ~  of the standard normal 
distribution by inverting its cumulative distribution function. For instance, if 
a is 99% and 95%: 

>> z = norminv( LO.01 0.051, 0 ,  1) 
z =  

-2.3263 -1.6449 

16The terms “volatility” and “drift” will be clarified in the next sections on stochastic 
differential equations. Intuitively, drift is related to  expected return and volatility is related 
to standard deviation. On a short time interval of length 6 t ,  drift scales linearly with 6 t ,  
whereas volatility is proportional t o  a, which means that  when the time interval tends 
to zero, drift goes to zero faster than volatility. 
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For the VaR over the time period 6 t ,  with a confidence level a,  we have 

VaR = - z ~ - ~ ~ & N S ,  (2.15) 

where the term NS is the current wealth W,. If the time horizon is longer, 
we should not neglect the drift due to the expected return. In such a case, we 
should modify (2.15) as follows: 

VaR = N S ( p 6 t  - Z I - ~ U ~ ) ,  

where p is the expected daily return. For a portfolio of assets, computing VaR 
is again easy if normality is assumed. We have just to evaluate the portfolio 
risk as in mean-variance theory. 

Example 2.15 Suppose that we hold a portfolio of two assets. The portfolio 
weights are w1 = 213 and w2 = 113, respectively; the two daily volatilities are 
u1 = 2% and u2 = 1%, and the correlation is p = 0.7. Let the time horizon 
6t  be 10 days. To obtain the portfolio risk, we compute the variance: 

hence u = 0.05011. Assuming that the overall portfolio value is $10 million, 
and that the confidence level is 99%, 

Var = lo7 .2.3263. 0.05011 = $1,165,709. 

The same result can be obtained by using the MATLAB functions portstats 
and portvrisk. The first one, given the expected return vector for each asset, 
the covariance matrix, and the portfolio weights, computes the portfolio risk 
and the expected return: 

[PRisk, PReturn] = portstats (ExpReturn, CovMat, Wts). 

The second one computes the VaR, given the expected portfolio return, its 
risk, the risk threshold 1 - Q, and the portfolio current value: 

VaR = portvrisk(PReturn, PRisk, RiskThreshold, PValue) 

Using these functions, we get 

>> 
>> 
>> 
>> 
>> 
>> 
>> 

format bank 
si = 0.02 * sqrt(l0); 
s2 = 0.01 * sqrt(l0); 
rho = 0.7; 
CovMat = [ sl-2 rho*sl*s2 ; rho*sl*s2 s2-21; 
s = PortStats([O 03, CovMat, [2/3 1/31); 
var = portvrisk(0,s,0.01,10000000) 
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var = 

1165755.90 

Note that the previous result was a bit different because of truncation errors 
in the pencil-and-paper calculation. 0 

The general formula for a portfolio of n assets with current price Si, i = 
1,. . . , n, daily volatility c i ,  correlation p i j  between assets i and j ,  where we 
hold a number Ni of shares for each asset is 

I n. n 

Needless to say, this formula holds if normality is assumed. But what if the 
assumption is not warranted? Indeed, empirical data do not suggest that 
stock returns are normally distributed. Furthermore, we may have to deal 
with assets which depend on risk factors, and even if a risk factor is normally 
distributed, non-linear dependence of the price with respect to the underlying 
factor will destroy normality. A familiar example is the non-linear dependence 
of a bond price with respect to required yield. In this case, however, if we 
recall equation (2.6), we may settle for a duration-based approximation like 

6P DM P 6X. 

Hence, if 6X is normally distributed, 6P will be too, and normality holds 
approximately. Similar considerations apply in the case of derivatives, if we 
are able to compute suitable sensitivities of the price of the derivative with 
respect to the price of the underlying asset. 

If we look for a better approximation, we must give up normality and deal 
with the consequences. Indeed, in this case there are many issues. To begin 
with, we cannot find the quantile of the wealth distribution by looking at  
the quantile of the standard normal distribution. In this case, a numerical 
solution can rely on Monte Carlo simulation (see chapter 4). A thornier issue 
concerns the way we model the dependence among the different risk factors. 
In fact, correlation tells the whole story when normality is assumed, but not in 
general. This requires the adoption of more sophisticated statistical models, 
such as copula theory, which is beyond the scope of this book (see references). 

Even if we leave all such modeling and computational issues aside, and we 
assume that we can compute VaR, there is something wrong with the VaR 
concept itself. For instance, a quantile cannot distinguish between different 
distributions. Consider figure 2.17. The plot on the left shows the normal 
case; if we assume a sort of truncated distribution like the one on the right, 
VaR will be the same, since the area under the density function to its left is 
the same. However, the potential loss in the second case is quite different. 
In particular, it is different the expected value of loss conditional on being 
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o i i  t , l i c  lcft, (iiiilucky) of the portfolio value tlistribut,ioii. This hiis let1 t.o 
tlie drfinit~ion of alt,ernative risk nieasIirrs, such as Conditional Value at. Risk 
(CVttR). wliich is tlic cxpcct,cd valnt: of loss, coriditional on being to  tlie left 
of VaR. 

R h k  mcasures like VaR. or CVaR could be also used in portfolio optimiza- 
tioii by solving opt,irnization probleins with t,he same structure as 2.13, with 
variance replaced tjy such measures. The resulting problem can be rather 
coiiiplcx. In particular it, may lack coiivexity properties that  arc so important 
in  1111Iileri(:id optimization (see c:liapter 6). It tunis out that  mininiizirig VaR 
wh(w unccrt,aiiity is motlrled hy a finite set of scenarios (which may hc usrful 
t,o cill)tlirc coiiiplcx tlist,rit)iit,ioiis iilld dcpcndcncies aiiioiig asset priccs) is it 

Iliist,Y iioii-convex probleni, whereas mininiizing CVaR is (numerically) easier. 
Tliero is on(! h s t  issiic wi th  VaR that deserves mention. Intuitively, risk 

is rctluc:e:tl by diversificat,ion. This should be reflected by any risk measure 
p ( . )  we consider. A little inore fornially, we should require a subadditivity 
wntlitioii likc 

P(A + B )  5 P(A) + P(B), 

wliere ,4 ant1 B arc taw portfolio positioiis. The following counter-example is 
of tw iisc.tl t,o show that ViiR lack this propcrty. 

Example 2.16 Lct u s  consider two corporate t)oiids; A and B,  whose issucrs 
niay tfefaiilt wit,h probability 4%. Say that,  in thc case of default, we lose $100 
( in  practice. we might partially recover the face value of the bond). Let 11s 

coinputc thc VaR of each bond with confidence level 95%. 
Before doing so: we should clarify what Van is, when uncertainty is riiodeled 

I)y a discwt,e distribution. Definition (2.14) can be extended by defining Van 
its t , l i ~  srnollc.sl vdlic 7 sticll tliat, 

P(0W 5 -7)  2 1 -a. 

Basic:ally, with il tliscret,c’ distribution we niay not find a value such that 
cyuatioii (2.14) is satisfied aiid we must resort to an inequality. Since default 
proi)itl)ilit,v is oiily 4%: and 1 - 0.04 = 0.96 > 0.95, we have in our case 

VaR(A) = VaR(l3) = VaR(A) + VaR(B) = 0. 

ain
Fig. 2.17 Value at risk can be the same in different cases.
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Now what happens if we hold both bonds, and assume independent defaults? 
We will suffer 

0 a loss 0, with probability 0.962 = 0.9216; 

0 a loss 200, with probability 0.042 = 0.0016; 

0 a loss 100, with probability 2 x 0.96 x 0.04 = 0.0768. 

Hence, with that confidence level, VaR(A + B )  = 100 > VaR(A) + VaR(B), 
which means that diversification increases risk, if we measure it by VaR. 0 

Subadditivity is one of the properties that sensible risk measures should 
enjoy. The term coherent risk measure has been introduced to label a risk 
measure that meets a set of sensible requirements. VaR is not a coherent risk 
measure, whereas it can be shown that CVaR is. 

2.5 MODELING THE DYNAMICS OF ASSET PRICES 

In mean-variance portfolio theory we have considered a buy-and-hold portfo- 
lio. Hence, we were not interested in modeling the dynamics of asset prices, 
but only the distribution of return at the end of a given time interval. For 
more complex portfolio management models, we do need a dynamic model of 
asset prices. This is also required to solve option pricing models, as we will 
see in section 2.6. A model of the dynamics of asset prices must reflect the 
random nature of price movements, and the asset price S ( t )  must be described 
as a stochastic process. This could be a discrete- or a continuous-time pro- 
cess. It turns out that for option pricing purposes, a continuous-time model is 
most useful, based on random walks. In this section with deal with modeling 
asset prices as stochastic processes in continuous time, which will lead us to 
consider stochastic differential equations and stochastic integrals. 

2.5.1 From discrete to continuous time 

It is a good idea to start with a discrete-time model and then derive a 
continuous-time model. Consider a time interval [0, TI, and imagine that 
we discretize the interval with a time step 6t  such that T = N ' 6 t ;  we may 
index the discrete-time instants by t = 0,1,2, .  . . , N .  Let St be the stock price 
at time t .  One possible and reasonable model is the multiplicative form: 

St+l = WStr (2.16) 

where ut is a nonnegative random variable and the initial price So is known. 
If we consider continuous random variables ut, the model is continuous-state. 
The random variables ut are assumed identically distributed and independent. 
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Independency is an assumption linked to market efficiency. Under this (debat- 
able and debated) assumption, current prices reflect all information available 
so far. 

The multiplicative model is reasonable since i t  ensures that prices will stay 
nonnegative, which is an obvious requirement for stock prices. If we used an 
additive model such as St+l = ut + S,, we should admit negative values for 
the random variables ut to model price drops, and we would not have the 
guarantee St 2 0. With the multiplicative form, a price drops when ut < 1, 
but it stays positive. Furthermore, the actual price change depends on the 
present stock price (a $1 increase is different if the present price is $100 rather 
than $ 5 ) ,  and this is easily accounted for by the multiplicative form. 

In order to determine a plausible probability distribution for the random 
variables ut ,  it is helpful to consider the natural logarithm of the stock price: 

logSt+1 = l o g S t + l o g u t = l o g S t + z t .  

The random variable .zt is the increment in the logarithm of price, and a 
common assumption is that it is normally distributed, which implies that ut 
is 10gnormal.l~ Starting from the initial price SO and unfolding (2.16), we get 

t - I  

k=O 

which implies that 
t-1 

log st = log SO + c zk. 
k=O 

Since the sum of normal random variables is still a normal variable (see ap- 
pendix B), we have that logst is normally distributed, which in turn implies 
that, according to this model, stock prices are lognormally distributed. Using 
notation 

E[ztI = V, Var(zt) = 2, 

we see that 
t-1 

E[logSt] = E logs0 4- zk [ k=O 1 
t-1 

= l O g S o + ~ E [ z k ]  = log&+Ut  (2.17) 
k=O 

/ t-1 \ t-1 

171f X is a normal random variable, then taking the exponential exp(X) yields a lognormal 
random variable; see appendix B. 
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where intertemporal independence of zt is used in computing variance. The 
important point to see here is that the expected value and the variance of the 
increment in the logarithm of the stock price scale linearly with time; this 
implies that the standard deviation scales with the square root of time. 

The next step is to obtain a model in continuous time. In the deterministic 
case, when you take the limit of a difference equation, you get a differential 
equation. Informally, in the deterministic case, we may recast what we have 
seen in discrete time as 

6 logS(t) = log S(t + 6t) - log S(t) = u 6t 

(note that we are basically working with the expected values, since for the 
moment we do not include randomness). If we take the limit as 6t -+ 0, we 
obtain: 

dlogS(t) = v dt. 

Integrating both differentials over the interval [0, t] yields 

This is coherent with the discrete time result. Actually, in the deterministic 
case, it is customary to  write the differential equation as 

d log S( t) 
dt 

= v  

or, equivalently, as 

= V S ( t ) ,  
dt 

where we have used calculus to rewrite the differential 

(2.20) 

We see that u is linked to the continuously compounded return of the asset. 

that we should write the equation in the form 
When we include noise, there are a few important changes. The first, is 

dlogS(t) = v d t + a d W ( t ) ,  (2.21) 

where dW(t) can be considered as the increment of a stochastic process over 
the interval [ t , t  + dt]. This is a rather tricky object, called a stochastic dzf- 
ferential equation. It is reasonable to  guess that the solution of a stochastic 
differential equation is a stochastic process, rather than a deterministic func- 
tion of time. However, this topic is quite difficult to deal with rigorously, as it 
requires some background in measure theory and stochastic calculus (see the 
references at the end of the chapter). We will limit ourselves to a reasonably 
detailed treatment. 
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The first thing we need is to investigate which type of continuous-time 
stochastic process W ( t )  we can use as a building block. In the next section 
we introduce such a process, called the Wiener process, which plays more or 
less the same role as process zt above. It turns out that this process is not 
differentiable, whatever this may mean for a stochastic process. Hence, we 
cannot write the stochastic differential equation as 

d log S( t )  dW(t) = v + a -  d t  d t  ’ 

Actually, a stochastic differential equation must be interpreted as a shorthand 
for an integral equation much like (2.19), involving increments of a stochastic 
process. This calls for the definition of a stochastic integral and the related 
stochastic calculus. A consequence of the definition of the stochastic integral 
is that working with differentials as in equation (2.20) is not possible. We 
need a way to generalize the chain rule for differentials from the deterministic 
to the stochastic case. This leads to a fundamental tool of stochastic calculus 
called Ito’s lemma. 

2.5.2 Standard Wiener process 

In the discrete-time model, we have assumed normally distributed increments 
in logarithmic prices, and we have also seen that the expected value of the 
increment of the logarithm of price scales linearly with time, whereas standard 
deviation scales with the square root of time. 

In discrete time, we could consider the following process as a building block: 

Wt+l = wt + E t & ,  

where E t  is a sequence of independent standard normal variables. We see that,  
for Ic > j ,  

k - l  

. .  
a =J 

which implies that 

Passing to continuous time, we may define the standard Wiener process as 
a continuous-time stochastic process characterized by the following properties. 

1. W(0)  = 0,  which is actually a convention. 

2. Given any time interval [s ,  tIl the increment W ( t )  - W ( s )  is distributed 
as N(0, t - s ) ,  a normal random variable with zero expected value and 
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fig. 2.18 Sample paths of a “degenerate” stochastic process. 

standard deviation fi. Increments are stationary, as they do not 
depend on where the time interval is, but only on its width. 

3. Increments are independent: If we take time instants tl < t 2  5 t 3  < 
t 4 ,  then W(t2) - W(t1) and W(t4) - W(t3) are independent random 
variables. 

To see the importance of the independent increments assumption, let us com- 
pare the sample path of the Wiener process, which was shown in figure 2.5 
on page 29, with the sample paths of a process defined as Q(t) = e d ,  with 
e - N ( 0 ,  l), which are shown in figure 2.18. This is a “degenerate” stochastic 
process, since knowledge of one point on a sample path implies knowledge of 
the whole sample path, which makes the process quite predictable. However, 
if we just look at the marginal distribution of Q(t), it seems just like the 
Wiener process, since 

E[Q(t)l = 0 = E[W(t)l 
Var[Q(t)] = t = Var[W(t)]. 

It is lack of independence that makes the difference. From figure 2.5, we also 
see that sample paths of the Wiener process look continuous, but not differ- 
entiable. This may be stated precisely, but it is not very easy. Introducing 
continuity and differentiability rigorously calls for specifying some concept of 
stochastic convergence. In fact, we should say that the Wiener process is 
nowhere differentiable with probability 1. To get an intuitive feeling for this 
fact, let us consider the incremental ratio: 

dW(t) - W ( t  + dt) - W ( t )  
-- 

bt dt 
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Given the above properties, it is easy to  see that 

Var [W(t + 6 t )  - W ( t ) ]  - 1 _ -  (W2 bt . 
Var (T) = 

If we take the limit for 6t  --+ 0, this variance goes to infinity. Strictly speaking, 
this is no proof of non-differentiability of W ( t ) ,  but it does suggest that there 
is some trouble in using something like dW(t ) /d t ;  indeed, you will never see a 
notation like this. We only use the differential dW(t) of the Wiener process. 
Informally, we may think of d W ( t )  as a random variable with distribution 
N(0, d t ) .  Actually, we should think of this differential as an increment, which 
may be integrated as follows: 

dW(7) = W ( t )  - W ( S ) .  

This looks reasonable, doesn’t it? We may even go further and use W ( t )  as 
the building block of stochastic differential equations. For instance, given real 
numbers a and b,  we may imagine a stochastic process X ( t )  satisfying the 
equation 

d X ( t )  = a d t  + b dW(t). 
This is a generalized Wiener  process and straightforward integration yields 

X ( t )  = X ( 0 )  + a t  + bW(t). 

d X ( t )  = a ( t ,  X ( t ) )  d t  + b ( t ,  X ( t ) )  dW(t) 

But if we consider something more complicated, like 

(2.22) 

things are not that intuitive. A process satisfying an equation like (2.22) is 
called an Ito process. We could argue that the solution should be something 
like 

(2.23) 

Here the first integral looks like a standard Riemann integral of a function over 
time, but what about the second one? We need to assign a precise meaning 
to it, and this leads to the definition of a stochastic integral. 

t 

~ ( t )  = X ( O )  + 1 a(s,  ~ ( s ) )  ds + b(7 ,  ~ ( 7 ) )  d ~ ( 7 ) .  I” 

2.5.3 

In a stochastic differential equation defining a process X ( t ) ,  where a Wiener 
process W ( t )  is the driving factor, we may assume that the value X ( t )  depends 
only on the history of W ( t )  over the time interval from 0 to t .  Technically 
speaking, we say that process X ( t )  is adapted to process W ( t ) .  Now let us 
consider a stochastic integral like 

Stochastic integrals and stochastic differential equations 



94 FINANCIAL THEORY 

How can we assign a meaning to this expression? To begin with, it is rea- 
sonable to guess that a stochastic integral is a random variable. If we inte- 
grate a deterministic function of time we get a number; so, it is natural to 
guess that, by integrating a stochastic process over time, we should get a ran- 
dom variable. Furthermore, the stochastic integral above looks related to the 
sample paths of process W ( t ) ,  and an approximation could be obtained by 
partitioning the integration interval in small subintervals by selecting points 
0 = t o ,  t l ,  t 2 , .  . . , tn = T and considering the sum 

n-1 

X ( t k )  [W(tk+l) - W(tk)] * (2.24) 
k=O 

It is very important to notice how we select the time instants in the expression 
above: X ( t k )  is a random variable which is independent from the increment 
W(tk+l)  - W(tk)  by which it is multiplied. This is actually one possible 
choice, which may be motivated as follows. 

Example 2.17 Consider a set of n assets, whose prices are modeled by 
stochastic processes S,(t), i = 1,. . . , n, which are described by stochastic 
differential equations like (2.22), and assume that we have a portfolio strat- 
egy represented by functions h,(t). These functions represent the number of 
stock shares we hold in the portfolio. But which functions make sense? An 
obvious requirement is that functions h, (.) should not be anticipative: h, ( t )  
may depend on all the history so far, over the interval [0, t ] ,  but clairvoyance 
should be ruled out. Furthermore, we should think of h,(t) as the number of 
shares we hold over a time interval of the form [t ,  t + d t ) .  

Now, assume that we have some initial wealth that we invest in our port- 
folio, whose initial value, depending on portfolio strategy h, is 

n 

Vh(0) = c h,(O)S,(O) = h’(O)S(O), 
z=1 

where we have grouped h, and S, in vectors and use notation h’S to  denote 
inner vector product. What about the dynamics of the portfolio value? If the 
portfolio is self-financing, i.e., we can trade assets but we do not invest (nor 
withdraw) any more cash after t = 0, it can be shown that the portfolio value 
will satisfy the equation 

n 

dVh( t )  = C h,(t) dS,(t) = h’(t) d S ( t )  
2 = 1  

This looks fairly intuitive and convincing, but some careful analysis is needed 
to prove it.” In particular, we may guess that the wealth at time t = T will 

lsSee, e.g., [l, chapter 61. 
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be: 

Vh(T) = Vh(0) + h ’ ( t ) d S ( t ) .  I’ 
However, it is fundamental to  interpret the stochastic integral as the limit of 
an approximation like (2.24), i.e., 

,.T n-1 

The number of stock shares we hold at  time t k  does not depend on future 
prices S(tk+l). First we allocate wealth, and then we observe return. This 
is why Ito stochastic integrals are defined the way they are, and this makes 
financial sense. 0 

Now, if we take approximation (2.24) and consider finer and finer partitions 
of the interval [ O , t ] ,  letting n -+ 00, what do we obtain? The answer is 
technically involved. We must select some concept of stochastic convergence 
and check that everything makes sense. Using mean square convergence, it 
can be shown that the definition makes indeed sense, and we get the so-called 
stochastic integral in the sense of Ito. 

The definition of stochastic integral has some important consequences. To 
begin with, what is the expected value of the integral above? We may get a 
clue by considering approximation (2.24): 

n- 1 

= x E { X ( t k )  [W(tk+l) - W(tk)]) 
k=O 

n-1 

= E [X(tk) ]  ’ E [W(tk+l) - W(tk)] = 0, 
k=O 

where we have used independence of X(tk) from the increments of the Wiener 
process, along with the fact that  the expected value of the increments is zero. 

The definition of stochastic integral does not yield a precise way t o  compute 
it. We may try, however, to consider a specific case to get some intuition. The 
following example illustrates one nasty consequence of the way we have defined 
the stochastic integral. 

Example  2.18 (The chain rule does not apply to stochastic differ- 
entials) Say that we want to “compute” the stochastic integral 
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Analogy with ordinary calculus would suggest using the chain rule of differen- 
tiation to obtain a differential which can be integrated directly. Specifically, 
we might guess that 

dW2(t) = 2W(t) dW(t). 

This would suggest 

l T  1 
0 2 

lT W ( t )  dW(t) = 5 1 dW2(t) = -W2(T). 

But this cannot be true. We have just seen that the expected value of the 
integral is zero, but 

1 T 
2 2 

= - {Var[W(T)] + E2 [W(T)]} = - # 0. 

We see that the expected values do not match. 0 

The last example shows that the chain differentiation rule does not work in 
Ito stochastic calculus. To proceed further, we need to find the right rule, and 
the answer is Ito’s lemma which is introduced below. 

We close this section by noting that we started from differential equation 
(2.22) and we ended up studying the equivalent integral form (2.23). Actually, 
from a mathematical point of view, only the latter makes sense, and we should 
regard the differential form as a shorthand notation for the integral form. An 
obvious advantage of the differential form is its readability; working on this 
form helps intuition, which is essential in devising sensible models for asset 
prices and interest rates. 

2.5.4 Ito’s lemma 

We now give an informal argument (following [lo,  chapter lo]) to  obtain 
Ito’s lemma. Recall that an Ito process X ( t )  satisfies a stochastic differential 
equation such as 

dX = u ( X ,  t )  dt + b(X,  t )  dW, (2.25) 

which is in some sense the continuous limit of 

6X = u ( X ,  t )bt  + b ( X ,  t)E(t)&, (2.26) 

where E N N ( 0 ,  1)1 i.e., it  has a standard normal distribution. Our aim is to 
derive a stochastic differential equation for a function F ( X ,  t )  of X ( t ) .  One 
key ingredient is the formula for the differential of a function G(z, y )  of two 
variables: 

dG dG 
dX dY 

dG = -dx + -dy, 
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which may be obtained from Taylor expansion, 

d2 G 6x 6y + . . ’ dG dG 1 d2G 1 d2G 6G = - 6x + - 6y + --(6x)’ 4- a by)^ + - 
ax dy 2 aY d X  dY 2 8x2 

when 6x, 6g + 0. Now we may apply this Taylor expansion to F(X, t ) ,  lim- 
iting it to the leading terms. In doing so it is important to notice that the 
term fi in equation (2.26) needs careful treatment when squared. In fact, 
we have something like 

which implies that the term in (SX)’ cannot be neglected in the approxima- 
tion. Since c is a standard normal variable, we have E[c2] = 1 and E[c2 6t]  = 6 t .  
A delicate point is the following. It can be shown that, as bt tends to zero, 
the term c2 6t  can be treated as non-stochastic, and it is equal to its expected 
value. A useful way to remember this point is the formal rule 

(SX)’ = b2c26t + . . . , 

(dW)’ = dt .  (2.27) 

Hence, when S t  tends to zero, in the Taylor expansion we have 

(SX)’ + b2d t .  

Neglecting higher-order terms and taking the limit as both 6X and 6t  tend 
to zero, we end up with 

d F  d F  1 d 2 F  d F  = -ddX + -dt + - -b2 d t ,  ax at 2 8x2 
which, substituting for d X ,  becomes the celebrated Ito’s lemma: 

(2.28) 
dF ) dt  + b E d W .  d F  d F  1 2 d 2 F  a - + - + - b -  ax at 2 8x2 

Although this proof is far from rigorous, we see that all the trouble is due to 
the term of order fi linked to the Wiener process. Indeed, if we set b = 0, 
i.e., there is no random term due to the Wiener process in the differential 
equation, Ito’s lemma boils down the chain rule for derivatives 

d F  d F d x  d F  + - 1  dt  dx dt  d t  
and thus, given differential equation (2.22) for x, 

- - - -- 

dF dF 
dX at d F  = a-dt + -dt. 

In Ito’s lemma we have an extra term in d W ,  which is expected given the 
input stochastic process, and an unexpected term: 

l b 2 d 2 F  
2 8x2 
- -  
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In the deterministic case, second-order derivatives occur in second-order terms 
linked to (b t )2 ,  which can be neglected; but here we have a term of order d& 
which must be taken into account even when it is squared. In order to grasp 
Ito’s lemma, we should try a couple of examples. 

Example 2.19 Let us consider again example 2.18. In order to compute 
the stochastic integral of W 2 ( t ) ,  we may simply apply Ito’s lemma to the case 
X ( t )  = W ( t ) ,  by setting a ( X ,  t )  = 0 ,  b ( X ,  t )  = 1, and F ( X ,  t) = X 2 ( t ) .  Hence 
we have: 

d F  - = o  
dt 
d F  
- = 2x d X  

(2.29) 

(2.30) 

(2.31) 

It is important to point out that in equation (2.29) the partial derivative with 
respect to time is zero; it is true that F(X( t ) , t )  depends on time through 
X ( t ) ,  but here we have no direct dependence on t ,  thus the partial derivative 
with respect to time vanishes. 

Ito’s lemma tells us 

d F  = d(W2) = dt + 2WdW. 

It is instructive to note that d t  is the term which we would not expect by 
applying the usual chain rule. But this term allows us to  get the correct 
expected value of W 2 ( T ) ,  since 

T 
w2p)  = w2(0) + dW2(t) = 0 + l T d t  + W ( t )  dW(t). 

Taking expected values we get 

E[W2(T)] = T,  

which is coherent with what we have seen in example 2.18. 0 

Ito’s lemma may be used to find the solution of a stochastic differential equa- 
tion, at  least in relatively simple cases. A most important one is geometric 
Brownian motion. 

Example 2.20 Geometric Brownian motion. Geometric Brownian mo- 
tion is defined by the stochastic differential equation 

dS(t) = pS(t)  dt + uS(t)  dW(t),  
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where p and u are constant parameters referred to as drift and volatility, 
respectively. Intuition would suggest to  rewrite the equation as 

and then to consider the differential of d log S ,  which would be dS/S in deter- 
ministic calculus, to get the integral. However, we know that some extra care 
is needed. Nevertheless, it is useful to find the stochastic differential equa- 
tion for F ( S , t )  = logS(t). To apply Ito's lemma, we first compute partial 
derivatives: 

from which we may write 

dF  dt + asas dW dY = dF  ( - - + ~ S - + - C T ~ S ~ -  d F  1 
at as 2 as2 

= (p - ; )d t+udW 

Now we see that our guess was not that  bad, as this equation may be integrated 
and vields 

logS(t) = logS(0) + p - - t + uW(t).  ( 3 
Recalling that W ( t )  has a normal distribution, as it can be written as W ( t )  = 
c f i ,  where E N N(0, l),  we see that the logarithm of price is normally dis- 
tributed: 

logS(t) " pOgs(0) + (P - f) t ,  0 2 1 1  

We can rewrite the solution in terms of S(t) :  

or 

This shows that prices, according to  the geometric Brownian motion model, 
are lognormally distributed. Recalling the relationships between normal and 
lognormal variables (see appendix B), we may also conclude that 

E[S(t)] = S(O)ep', 
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from which we see that the drift parameter p is linked to continuously com- 
pounded return. The volatility parameter (T is related to standard deviation 
of the increment of logarithm of price. 

The roles of drift and volatility can also be grasped intuitively by consid- 
ering the following approximation of the equation defining Brownian motion: 

6S 
S - M p6t + u6W, 

where 6S/S is the return of the asset over small time interval 6t. According 
to this approximation, we see that return can be approximated by a normal 
variable with expected value p 6t and standard deviation u f i .  Actually, this 
normal distribution is only a local approximation of the “true” (according to 
the model) lognormal distribution. 0 

Example 2.21 In the next sections we will apply Ito’s lemma to pricing 
options written on an underlying asset whose price follows geometric Brownian 
motion. Assuming that the option price a t  time t is a function of time and 
price only, i e . ,  a function f (S ,  t ) ,  let us write a differential equation for the 
value of an option. Applying again Ito’s lemma, with a = pS and b = US, 
yields 

df = 

- - d f d t + - d S +  af -0 1 2 S 2d2f - d t .  
at dS 2 as2 

(2.32) 

This seems an intractable object, since it looks like a partial differential equa- 
tion involving a stochastic process. Actually, by exploiting the no-arbitrage 
principle, it can be simplified and transformed to a deterministic partial dif- 
ferential equation, which is amenable to solution by numerical methods. In 
some cases it may even be solved analytically. 0 

2.5.5 Generalizations 

Geometric Brownian motion is not the only type of stochastic process relevant 
in finance, and the Wiener process is not the only relevant building block. 
One of the main features of these processes is the continuity of sample paths. 
However, discontinuities do occur sometimes, such as jumps in prices. In this 
case, different building blocks are used, such as the Poisson process, which is 
used to count events occurring with a certain rate. We should also note that 
continuous sample paths do not make sense for certain state variables such as 
credit rating. Another point is that the lognormal distribution, that we get 
from geometric Brownian motion, is a consequence of the normality associated 
to the Wiener process. Distributions with fatter tails are typically observed, 
questioning the validity of the models we have seen so far. However, dealing 
with sophisticated stochastic processes is beyond the scope of this book. 
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What we should consider, at  least, is generalizing the Wiener process to a 
multidimensional process; we should also point out different forms of stochas- 
tic differential equations, leading to qualitatively different processes, such as 
mean reverting processes. 

Correlated Wiener processes and multidimensional Ito's lemma When an option 
depends on more than one underlying asset, the simplest model is a general- 
ization of geometric Brownian motion. According to this approach, we assume 
that the price Sz(t)  of asset i = 1, . . . , n satisfies 

dSz(t) = p2sz( t )  dt + ozS,(t) dW,(t), 

where the Wiener processes WZ(t)  are not necessarily independent. They 
are characterized by a set of instantaneous correlation coefficients pa, , whose 
meaning can be grasped by an extension of the usual formal rule: 

dW, ' dW, = pZJ dt. 

Another point of view is that when simulating correlated Wiener processes, we 
must generate standard normal variates E, which are correlated; how this can 
be accomplished will be explained in the chapter on Monte Carlo simulation. 
It is relatively easy to generalize the results of example 2.21 to an option 
whose price a t  time t depends on time and a set of asset prices. To generalize 
Ito's lemma, we write the differential of f ( S l ( t ) ,  Sz(t), . . . , S n l  t ) ,  using Taylor 
expansion to get 

where terms have been included or neglected according to the formal multi- 
plication rules: 

(dt)' = 0 
dt.dW, = O  Qi 
dW, ' dW, = pa, dt 'di, j 

and pz2 = 1. 

multidimensional Ito's lemma: 
If we plug the equation of geometric Brownian motion here, we get the 

Mean reverting processes With geometric Brownian motion, the expected 
value of a price should go to infinity as time goes by, which is not really 
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what happens in practice. In fact, stocks pay dividends, and no-arbitrage 
arguments show that the stock price should drop when dividends are paid. 
Other relevant variables, such as interest rates, cannot grow without bound. 
On the contrary, they tend to swing around long-term values, depending on 
economic conditions. We say that interest rates are characterized by mean 
reversion. Modeling interest rates is needed when dealing with interest rate 
derivatives which are used to  control risk in fixed-income portfolios. We will 
have a brief look at such models in section 2.8. We just note here that we 
could model interest rates, and any variable showing mean reversion, by a 
stochastic differential equation like 

dr = a ( i  - r )  d t  + CJ dW, 

where a > 0. There is much to say about a model like this, since we should 
investigate consistency with the entire term structure of interest rates and 
with no-arbitrage properties. Actually, a model like this is only concerned 
with the short term interest rate. Yet it is easy to see that the process r ( t )  
tends to swing around the value P .  If r > i ,  the drift term is negative, 
and r ( t )  tends to drop; if r < P ,  the drift term is positive and r ( t )  tends to 
increase. Variations of such a model may be needed in order to  make sure 
that the output is consistent with observed dynamics and that interest rates 
stay positive. 

Similar considerations hold when modeling a stochastic and time-varying 
volatility a(t) .  Indeed, geometric Brownian motion assumes constant volatil- 
ity, whereas in practice we may observe time periods in which volatility is 
higher than usual. One possible model for stochastic volatility consists of a 
pair of stochastic differential equations: 

dS(t)  = pS(t) dt  + CJ(t)S(t) dW1 ( t )  
dV(t) = a(V - V ( t ) )  d t  + E r n d W : ! ( t )  

where V ( t )  = a2(t) ,  V is a long-term value, and different assumptions can be 
made on the correlation of the two driving Wiener processes. According to 
this model, volatility displays mean reversion, and it can be shown that the 
square root term prevents negative values of V(t) .  Complex models may also 
link volatility to price. 

2.6 DERIVATIVES PRICING 

There are two basic issues in dealing with derivatives. The first issue is pricing. 
What is the fair price of a forward or an option contract? The second issue 
is hedging. Suppose that you are the writer of an option rather than the 
holder. In some sense the holder is at an advantage, since she is not forced 
to exercise the option if the circumstances are unfavorable (although example 
2.2 on page 36 shows that careless management of an option portfolio may 
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lead to a disaster). If you are the writer of an option and this is exercised, you 
have to  meet your obligation, and in principle there may be no limit to your 
loss. Thus, you are interested in trading policies to reduce the risk to which 
you are exposed. We will not pursue real-life hedging in any detail in this 
book (see, e.g., [26]), but it is worth noting that, at  least in theory, hedging 
is related to pricing. 

A key role in pricing is played by the no-arbitrage argument we have already 
used, in a trivial situation, for bond pricing. This is best illustrated by a couple 
of examples. In the first one we derive the price of a forward contract. In the 
second one we derive a fundamental relationship between the price of a call 
and the price of a put, called put-call parity.  

Example 2.22 Consider a forward contract for delivery at time T of an 
asset whose spot price now is S(0). The spot price S(T)  a t  delivery is a 
random variable; hence, it would seem that randomness is involved in finding 
the fair forward price F that the holder of the long position of the forward 
will have to pay to the holder of the short position to purchase the underlying 
asset. Actually, a simple arbitrage argument shows that this is not the case. 

Suppose that we hold the short position in the contract, and consider the 
following portfolio. We may borrow an amount S(0) a t  the risk-free interest 
rate r ,  assuming continuous compounding, to buy the asset. The net cash 
flow now is zero. Then, at time T we may deliver the asset at price F ,  and we 
must pay back S(0)eTT. Despite the randomness in the spot price, the value 
of our portfolio a t  T is deterministic and given by F - S(0)erT. But since 
the portfolio value at  time t = 0 is zero, the same must hold a t  time t = T .  
Hence, 

F = S(0)erT.  

Any different forward price would lead to an arbitrage opportunity. If F > 
S(0)erT , the portfolio above will lead to  a safe gain F -  S(0)erT , with no initial 
commitment. If F < S(0)erTl we may reverse the portfolio by short-selling 
the asset and investing the proceeds. The reasoning assumes that short-selling 
the asset is possible and that no storage charge is paid for keeping the asset. 
See [lo] for a full account of forward pricing. 

It is interesting to note that a simple-minded approach would suggest a 
guess like F = E[S(T)], i.e., that the fair forward price is the expected price 
of the underlying in the future. This could look reasonable, assuming risk 
neutrality (linear utility function). The trouble with a reasoning like this 
is that we know most individual decision makers are characterized by some 
degree of risk aversion, but coming up with the “market” risk aversion, on 
the basis of individual utility functions, is awkward. Actually, in the idealized 
case we are considering, risk aversion does not play any role. This does not 
mean that risk aversion is not important, but that in this case we are using a 
sort of relative pricing, in which the attitude towards risk is irrelevant. 

Finally, we should note that we could write the forward price as an expected 
value, if we assume that the underlying asset price S(t) satisfies an equation 
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like 
dS(t)  = rS(t )  d t  + aS(t)  dW(t), 

where the “true” drift has been replaced by the risk free rate. Indeed, in a 
risk neutral world investors would not care about risk and they would not 
require a risk premium. Hence, all assets would have the same return r .  We 
begin seeing here a powerful principle: risk-neutral pricing. II 
Example 2.23 Consider a call and a put options, both European-style, writ- 
ten on an underlying asset whose current price is S(O), with the same exercise 
price K and maturity T .  For now, we are not able to figure out the fair prices 
C and P of the two options, but it is easy to see that a precise relationship 
must hold between them. Consider two portfolios: 

1. Portfolio P1 consists of one European call option and an amount of cash 
equal to Ke-rT, where r is the risk-free interest rate. 

2. Portfolio PZ consists of one European put option and one share of the 

The value of portfolio P1 at  time t = 0 is C + Ke-TT; the value of portfolio 
PZ at time t = 0 is P + S(0).  At time T ,  we may have two cases, depending 
on the price S(T) .  If S(T)  > K ,  the call option will be exercised and the put 
option will not. Hence, under this hypothesis, portfolio PI at time t = T will 
be worth 

underlying stock. 

[S(T)  - K )  + K = S(T) ,  
and portfolio PZ will be worth 

0 + S(T)  = S(T).  

If S(T)  < K ,  the put option will be exercised and the call option will not. In 
this case, portfolio P1 is worth 

O + K = K  

and portfolio Pz 

In both cases, the two portfolios have the same value at  time T .  Hence, their 
values at time t = 0 must be equal; otherwise, there will be an arbitrage 
opportunity. We have shown that the following put-call parity relationship 
must hold: 

[K - S(T)] + S(T)  = K. 

C + Ke-TT = P + S(0). 
This implies that if we are able to find the fair price for one of the two options, 
the other one is obtained as well. 0 

We will see that the use of arbitrage arguments leads to pricing equations 
in the form of partial differential equations. These may sometimes be solved 
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Fig. 2.19 Siinple single-period linomial lattice. 

analytically to yield a pricing formula in closed form, as in the case of Black 
and Scholes. In other cases, an analytical approach to option pricing may lead 
to useful approximate pricing formillas. In general, however: we need to resort 
to numerical procedures. There are basically three numerical approaches to 
price it derivative: 

0 Solving a partial differential equation, e.g., by finite difference approxi- 
mations 

0 Monte Carlo simulation 

0 Binomial or trinomial lattices 

All of thein will be pursued in later chapters. 
The first ingredient of an option pricing model is a model for the dynamics 

of the underlying asset price. The simplest such model, in continuous time, 
is gcomctric Brownian motion. which we have introduced in example 2.20. 
However: it is best to start with an even simpler representation model of price 
uncertainty: a one-step binomial model. 

2.6.1 

Consider a single time step of length at. We know the asset price So at the 
beginning of the tinie step; thc price S1 at the end of the period is a random 
variable. The simplest model we may think of specifies only two possible 
values, accounting, e.g., for the possibility of an increase and a decrease in 
the stock price. To be specific, let us consider figure 2.19. We start with a 
price So; at the next time instant we assume that the price may take either 
valiie So?/. or Sod, where d < 11, with probabilities pu and p d ,  rcspect,ively. 
Note the siiriiliirity with the niultiplicative model of equation (2.16); this is 
it discrete-time model as well, but it is also discrete-state. Now, imagine an 
opt,ioii whosc unknown value now is denoted by fo. If the option can only 
be exercised after h’t, it is easy to find it,s values f i L  and fd corresponding to 
the two outcomes. They are simply the option payoffs, which are determined 

Simple binomial model for option pricing 
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by the type of contract. How can we find fo? We may again exploit the 
no-arbitrage principle. Let us set up a portfolio consisting of two assets: a 
riskless bond, with initial price BO = 1 and future price B1 = er.bt, and the 
underlying asset with initial value SO. We denote the number of stock shares 
in the portfolio by A and the number of bonds by Q. The initial value of this 
portfolio is 

and its future value, depending on the realized state, will be either 

no = AS0 + 9,  

rI, = A S o u  + 9eT '6 t ,  or 

Now let us try to find a portfolio which will exactly replicate the option payoff, 
i.e., 

n d  = ASod + Qer'6t. 

A S o u  + QeT'6t = f, 
A S o d  + Qer'6t = fd. 

Solving this system of two linear equations in two unknown variables, we get 

= e-r.6t u f d  - df ,  
U - d  * 

But in order to avoid arbitrage, the initial value of this portfolio must be 
exactly fo: 

f o  = AS0 + Q  

(2.34) 

It is important to note that this relationship does not depend on the objective 
probabilities p ,  and p d .  In particular, the option price is not the, discounted, 
expected value of the payoff, which could have been a seemingly reasonable 
guess. If we think again at example 2.22 on forward pricing, we could wonder 
if we can nevertheless interpret equation (2.34) as an expected value. Indeed, 
if we set 

u - eT.6t 
ITd = 

d eT.6t - 
IT ,  = 

~ - d  ' u - d  ' 
we may notice that 

I T , + I T d = 1  

0 IT,  and ITd are positive if d < eT'6t < u, which must be the case if there 
is no arbitrage strategy involving the riskless and the risky asset; hence, 
we may interpret IT ,  and ITd as probabilities; 
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the option price (2.34) can be interpreted as the discounted expected 
value of payoff under those probabilities: 

fo = e-T.bt E[fi] A e-T’6t(7ruf, -I- n d f d ) ,  (2.35) 

where notation E is used to point out that expectation is taken with 
respect to a different probability measure; 

the expected value of S1 under probabilities T, and 7rd is 

E[S1] = 7ruSou + TdSod = SgeT’bt .  

The last observation explains why the “artificial probabilities” 7ru and 7rd are 
called risk-neutral. What we have found is coherent with pricing of a forward 
contract and suggests that derivatives can be priced by taking expectations 
under a risk-neutral measure. The objective probability measure does not 
play any role here, as the option payoff can be perfectly replicated by the 
two “primary” assets. When a set of “primary” assets allows us to replicate 
an arbitrary payoff, we say that the market is complete. It can be proved 
that a risk-neutral measure exists if arbitrage is impossible and it is unique if 
the market is complete. The risk-neutral valuation principle has far-reaching 
consequences; we refer the reader to a book like [20] for a deeper, yet readable, 
analysis. 

What we have seen is a typical pricing argument based on replication. We 
may obtain the same result by taking a slightly (but equivalent) view. Assume 
that we have wri t ten  a call option on a stock. How can we hedge against our 
risk? One possibility would be to purchase one stock share, so that if the 
holder will exercise the option, our position is covered. However, this strategy 
may be too conservative and expensive, if the option expires worthless. We 
could try to find the “right” number of shares to hold. Say that we purchase 
A stock shares to cover the writer’s risk for a generic option with payoffs f u  
and fd. If we have written the option, the initial value of our portfolio is 

Note that the option value, fo ,  has a minus sign because we have a short 
position in the option, whose value in the future is a liability. The possible 
portfolio values after time period 6t are 

In the replication argument, we have built a synthetic option using the stock 
and the riskless asset. Here we may replicate the riskless asset by choosing A 
such that 

f u  - f d  II, = IId =+ A = 
So(U - d )  
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must hold. But due to the no-arbitrage principle, if this portfolio is riskless, 
it must earn the risk-free interest rate r. Assuming continuous compounding, 
we must have 

SoA - fo = (AuSo - fu)e-"'6t, 

or 
= AuSo - e"6tSoA - fu .  

Substituting the expression for A and rearranging, we obtain equation (2.34) 
again. 

We may interpret A as a hedging parameter, in the sense that it is the 
number of stock shares we should hold in order to hedge risk away. It is also 
useful to interpret 

as a discretized approximation of the derivative of the option value with re- 
spect to changes in the underlying price, i.e., A = d f 1%'. In the next section 
we show that, in the continuous-time and continuous-state case, this interpre- 
tation is indeed correct. 

2.6.2 Black-Scholes model 

In the single-step binomial model, we are able to price an option assuming 
that future prices of the underlying will take one of two values. Hence, using 
only two assets, we are able to replicate any payoff. But two states make a 
rather crude model of uncertainty. What if we want to use a better probabil- 
ity distribution? One possibility would be to use more assets for replication, 
but this may be rather impractical. An alternative is to allow for trading at 
intermediate times. We should model asset prices not only now and at  ma- 
turity, but also along the whole way. This can be done by using the binomial 
scheme recursively and devising a full recombining binomial lattice; this route 
yields interesting numerical schemes which are treated in chapter 7. Multi- 
stage binomial lattices are discrete-state and discrete-time models. But what 
if we want to account for a continuous distribution of future prices, such as 
the lognormal distribution associated with geometric Brownian motion? The 
answer is that we should allow for trading at infinite times, which calls for a 
continuous-time, continuous-state model. Curiously enough, this apparently 
complex model may yield simple solutions in closed form. 

Consider a vanilla option like a European-style call option written on a non- 
dividend paying stock, whose price S( t )  follows a geometric Brownian motion. 
Since increments in the driving Wiener process are independent, we may say 
that future history does not depend on the past. And we may also show that 
the value of the option at a time t before maturity will depend only on time 
(more precisely, time to maturity) and current price of the underlying. If we 
denote this value by f ( S ( t ) , t ) ,  we have seen in example 2.21 that it satisfies 
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the stochastic differential equation: 

df = -dt+ af -dS+ df -0 1 2 S 2d2f -dt. 
at dS 2 dS2 

(2.36) 

What we know is that, a t  maturity, the option value is just the payoff, 

F ( S ( T ) ,  T )  = max{S(T) - K ,  O}, 

and what we would like to know is f(S(O), 0), the fair option price now. Equa- 
tion (2.36) does not suggest an immediate way to find the option price, but it 
would look a little bit nicer without the random term dS. Remember that by 
using no-arbitrage arguments, we have obtained deterministic relationships 
in examples 2.22 and 2.23, despite the randomness involved. To get rid of 
randomness, we may try to use options and stock shares to build a portfolio 
whose value is deterministic, just as we did in the simple binomial setting. 
Consider a portfolio consisting of a short position in an option and a long po- 
sition in a certain number, say A,  of stock shares. The value of this portfolio 
is 

I I = A . S -  f ( S , t ) .  
Differentiating II and using equation (2.32), we get 

d I I = A d S - d f =  

We may eliminate the term in dS by choosing 

With this choice of A, our portfolio is riskless; hence, by no-arbitrage argu- 
ments, it must earn the risk-free interest rate r:  

dII = rIIdt. (2.38) 

Eliminating drI between equations (2.37) and (2.38), we obtain 

and finally 
af af 1 d2f - + rS- + -u2s2- - r f  = 0. at dS 2 dS2 

(2.39) 

Now we have a deterministic partial differential equation describing an option 
value f (S, t ) .  This equation applies to any option whose payoff depends only 
on the current price of the underlying asset, or its price a t  maturity. When 
the payoff depends on the whole history of prices, as in the case of Asian 
options, we get a slightly more complex equation. Typical partial differential 
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equations need boundary and initial conditions to pin down a specific solution. 
In our case we have final conditions. For a vanilla European call we have a 
final condition at time T :  

f(s, T )  = max{S - K ,  0). 

By the same token, the terminal condition for a put is 

f(S, T )  = max{S - K ,  0). 

A remarkable and counterintuitive feature of equation (2.39) is that the drift 
p of the underlying asset does not play any role. Only the risk-free interest 
rate T is involved. This is not really a surprise, given what we have seen 
for a forward or for an option under the single-step binomial model, and it 
is another example of the general and far-reaching principle of risk-neutral 
pricing. 

In general, a partial differential equation is too difficult to use to get a 
solution in closed form, and it must be solved by numerical approaches; the 
difficulty stems partly from the equation itself and partly from the boundary 
conditions. We illustrate rather simple methods in chapter 5, and their appli- 
cation to option pricing is described in chapter 9.  However, there are a few 
cases where equation (2.39) can be solved analytically. The most celebrated 
case is due to Black and Scholes, who were able to  show that the solution for 
a European call is 

C = SoN(d1) - Ke- 'TN(d2) ,  (2.40) 

where 

log(So/K) + (T + u2/2 )T  

U J T  

U J T  

dl = 

10g(so/K) + (' - g 2 / 2 ) T  = dl  - gJ?;, dz = 

and N is the distribution function for the standard normal distribution: 

N ( z )  = - 1 Ix e-y2/2 dy .  6 -03 

By using put-call parity, it can be shown that the value of a vanilla European 
put is 

P = K e C T N ( - d 2 )  - SoN(-dl). (2.41) 

It is also possible to give a value to the number A of shares we should sell 
short to build the riskless portfolio II: 
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For a generic option of value f (S ,  t ) ,  

measures the sensitivity of the option price to small variations in the stock 
price. Other sensitivities may be obtained, such as 

These sensitivities, collectively nicknamed the Greeks, may be used to evaluate 
the risk involved in holding a portfolio of options. They are known in closed 
form for some options and must be estimated numerically in general. A and 
r play a somewhat similar role to that of duration and convexity in bond 
portfolios. 0 measures the change in option value as the expiration date is 
approached, whereas p and V (vega) measure the sensitivity to changes in the 
riskless rate and in volatility. A is particularly significant due to its role in 
the riskless portfolio we have used to derive the Black-Scholes equation. In 
fact, the writer of an option might use that portfolio to hedge the option. In 
principle, this requires a continuous portfolio rebalancing since A will change 
in time; since practical considerations and transaction costs make continuous 
rebalancing impossible, some hedging error would result. In practice, hedging 
is not just based on option A; furthermore, a whole portfolio of options must 
be typically hedged. 

2.6.3 

In the case of the simple binomial model, we have found that the option 
value is the discounted expected value of future payoff, under a risk-neutral 
measure. But in continuous time, so far, we have relied on an apparently 
different framework, based on partial differential equations. Actually, they 
are two sides of the same coin, and the gap can be bridged by one version of 
the Feynman-KaE formula. 

THEOREM 2.1 Feynman-KaC representation theorem. Consider the 
partial diflerential equation 

Risk-neutral expectation and Feynman-KaE formula 

aF dF 1 d2F 
- + p ( x , t ) -  + -u (x , t ) -  = rF,  at ax 2 a x 2  

and let F = F ( x ,  t )  be a solution, with boundary condition 

F ( T ,  X )  = @(x). 

Then, under technical conditions, F ( x ,  t )  can be represented as 
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where X ( t )  is a stochastic process satisfying the differential equation 

d X ,  = p(x,, T )  dT + ff(xT, T )  dW, 

with initial condition X t  = x. 

The notation E,J points out that this is a conditional expectation, given that 
at time t the value of the stochastic process is X ( t )  = 2. From a mathematical 
point of view, the theorem is a consequence of how Ito stochastic integral is 
defined (see [l] for a clear proof). From a physical point of view, it is a 
consequence of the connection between Brownian motion (which is a diffusion 
process) and a certain type of PDEs which can be transformed into the heat 
equation.lg 

Applying this representation theorem to Black-Scholes equation, for an 
option with payoff function a(.), immediately yields 

which is consistent with (2.35). We point out that expectation is taken under a 
risk-neutral measure, which essentially means that we work as if the stochastic 
differential equation for S(t)  were 

dS = rSdt -+- oSdW. 

It is interesting to note that changing measure in this case means changing 
the drift coefficient, whereas volatility is not affected.20 

We should recall that according to the geometric Brownian motion model, 
a positive drift means that expected price in the future goes to infinity. This 
does not happen because dividends are paid, which cause a corresponding 
decrease in the stock price. It s fairly easy to show by no-arbitrage arguments 
that the price should fall by an amount corresponding to the paid dividend. 
Options on stocks paying lump sums at certain time instants can be priced by 
numerical methods such as binomial lattices. Black-Scholes model is easily 
extended if we assume that dividends are paid as a continuous stream at  a 
rate q (the rate is applied to the current stock price, just like a continuously 
compounded interest rate). In this case, the risk neutral dynamics can be 
described by the equation 

dS = ( r  - q)Sdt + crSdW. (2.42) 

A continuous dividend yield is a useful idealization in many circumstances. 
We may think of a stock index, which aggregates many stocks: Their discrete 
dividend cash flows may be aggregated to one dividend yield. 

19We will introduce parabolic PDEs and the heat equation in chapter 5. 
20Formally, this is a consequence of a theorem due to Girsanov; see [l]. 



DERIVATIVES PRICING 113 

2.6.4 Black-Scholes model in MATLAB 

Implementing the Black-Scholes formula in MATLAB is quite easy. We may 
take advantage of the normcdf function provided by the Statistics toolbox to 
compute the cumulative distribution function for the standard normal distri- 
bution. Straightforward translation of equation (2.40) gives 

dl = (log(SO/K)+(r+sigma^2/2)*T) / (sigma * sqrt(T)); 
d2 = dl - (sigma*sqrt(T)); 
C = SO * normcdf(d1) - K * (exp(-r*T)*normcdf(d2)); 
P = K*exp(-r*T) * normcdf (-d2) - SO * normcdf (-dl); 

where the variables SO, K, R ,  T, sigma are self-explanatory. The Finan- 
cial toolbox function blsprice implements these formulas with a couple of 
extensions. First, it may take vector arguments to compute a set of option 
prices at  once; second, it may take into account a continuous dividend rate 
q (whose default value is zero). It is easy to adjust the Black-Scholes model 
and the related pricing formula to cope with a continuous dividend rate (see 
[28, chapter 51). The following is an example of calling blsprice: 

>> SO = 50; 
>> K = 52; 
>> r = 0.1; 
>> T = 5/12; 
>> sigma = 0.4; 

>> [C, P] = blsprice(S0, K, r, T, sigma, q) 
C =  

P =  

>> q = 0; 

5.1911 

5.0689 

It is interesting to plot the value of an option, say a vanilla European call, 
for different values of the current stock price while approaching the maturity. 
Running the code illustrated in figure 2.20, we get the plot of figure 2.21. We 
see that as time progresses, the plot approaches the kinky payoff diagram.21 
An important point is that we have to be consistent in specifying the risk-free 
interest rate, the volatility, and the expiration date. In the snapshot above 
everything is expressed in a yearly base; hence, the expiration date is in five 
months. Similar functions are available to compute the Greeks, too; they are 
best illustrated through a simple example. 

Example 2.24 The Greeks may be used to approximate the change in an 
option value with respect to risk factors, just like duration and convexity for 

21See section A.2 to see how to get a surface, rather a set of plots. 
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X P1otBLS.m 
SO = 30:1:70; 
K = 50; 
r = 0.08; 
sigma = 0.4; 
f o r  T=2:-0.25:O 

plot (SO ,blsprice (SO ,K,r ,T, sigma)) ; 
hold on; 

end 
axis( [30 70 -5 351 1 ; 
grid on 

Fig. 2.20 Valuing a European call for different current prices of the underlying stock 
while approaching the expiration date. 
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Fig. 2.21 Option value approaching the expiration date. 
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a bond portfolio, where the main risk factor is interest rate uncertainty. For 
instance, consider the change in the price of a call option due to an increase 
in the price of the underlying asset. Using a second-order Taylor expansion, 
we get the following approximation of this change: 

(2.43) 

In MATLAB we may use such an approximation by exploiting the functions 
blsdelta and blsgamma. It is important to note that, unlike the other two 
functions, blsgamma returns only one argument, as it can be shown that is 
the same for a call and a put. A simple MATLAB snapshot shows that the 
approximation is fairly good: 

>> CO = blsprice(50, 50, 0.1, 5/12, 0.3) 
co = 

4.8851 
>> dS = 2; 
>> C1 = blsprice(50+dS, 50, 0.1, 5/12, 0.3) 
c1 = 

>> delta = blsdelta(50, 50, 0.1, 5/12, 0.3) 
delta = 

>> gamma = blsgamma(50, 50, 0.1, 5/12, 0.3) 
gamma = 

>> CO + delta*dS + 0.5*gamma*dS-2 
ans = 

6.2057 

0.6225 

0.0392 

6.2086 

Greeks, as we have said, may play a role in hedging, and A and r play 
the same role as duration and convexity for bonds. We may come up with 
strategies to build portfolios of options which are A-neutral, which means 
that the overall value of the portfolio will not change for small changes in the 
underlying price. Actually, from a practical point of view, small changes is 
not enough, and it is arguably better to have an imperfect hedging for large 
perturbations than a perfect hedging for infinitesimal perturbations. 

Leaving hedging aside, we should note that Greeks also have a role in risk 
management. Consider estimating Value at Risk for a portfolio of options. 
Even if we assume that risk factors such as stock price perturbations bS are 
normally distributed, the pricing formula is non-linear in So, and this will 
destroy normality. However, if we use a A-based approximation like 6C M A ' 
6s we see that normality is preserved, resulting in easy calculations. Actually, 
more accurate models and better descriptions of statistical dependence which 
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go beyond correlation require numerical evaluation methods, such as Monte 
Carlo simulation. 

2.6.5 A few remarks on Black-Scholes formula 

The Black-Scholes formula has been a remarkable achievement and has played 
a fundamental role in the development of a huge and increasingly sophisticated 
market. However, there is a little fly in the ointment. If the Black-Scholes 
formula were “really correct,” there would be no market for derivatives. The 
reason is disarmingly simple: The formula is based on replicating the option 
with two basic assets, and if this were really that easy, there would be no need 
for derivatives altogether. A little more formally, in a complete market there 
is no need for further assets, which would be redundant by definition. But 
of course, markets are not complete. The replication (or hedging) argument 
we have used assumes a rather idealized market, whereas, in practice, perfect 
hedging is made impossible by issues such as transaction costs, stochastic 
volatility, jumps in asset prices, etc. Geometric Brownian motion does not 
account for all of these features. 

Furthermore, if we assume that perfect replication is feasible, there is no 
need to consider risk aversion; in fact the machinery we have developed in 
section 2.4.1 on utility theory does not play any role in simple option pricing 
models. In fact, several alternative pricing models have been developed, based 
on more sophisticated models of the dynamics of the underlying asset price. 
Moreover, while lack of arbitrage implies that a risk-neutral measure exists, 
market incompleteness implies that it is not unique. Hence, there is a range 
of prices which are compatible with lack of arbitrage. Which one is the right 
one? It depends on risk. From a theoretical point of view, we cannot get rid 
of issues related to  decision making under uncertainty. 

From a practical point of view, the simplicity and intuitive appeal of the 
Black-Scholes formula should not be discarded, however. Indeed, rather than 
resorting to overly complex models, the common practical approach is to use 
the Black-Scholes framework in a slightly different way, whose aim is to get 
relative prices; in other words, given prices we observe in financial markets, 
we use the arbitrage-free pricing machinery to price other assets in a way 
that is consistent with observed prices. Indeed, the Black-Scholes formula is 
sometimes considered as a sort of “interpolation” formula. 

One common way to use the formula is by computing implied volatility. In 
a naive view, the volatility parameter u in the formula should be estimated 
by analyzing the time series of prices of the underlying asset; this is what we 
mean by historical volatility. Implied volatility is computed the other way 
around: We observe option prices, and compute the volatility that makes the 
prices from the Black-Scholes formula consistent with the observed prices. 
This looks a bit like chasing our tail, but it allows to price new instruments 
in a consistent way. In practice, volatility surfaces are estimated as implied 
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volatility depends on multiple factors, including time to maturity and strike 
price. 

Another way to extend the machinery we have just developed to cope with 
incomplete market is by calibrating models directly under the risk-neutral 
measure, which is implicitly chosen by the market. We will motivate the 
idea in section 2.8, where we see that the Black-Scholes approach can be 
generalized by introducing a market price of risk. Roughly speaking, for each 
possible value of the market price of risk there is a risk-neutral measure, and 
a price under that measure. By observing prices, we may try to recover the 
market price of risk, or alternatively the risk-neutral measure; then, we may 
proceed pricing other instruments whose value depends on interest rates. One 
way to do so is to analyze bond prices to calibrate a model which can be used 
to price interest-rate derivatives. 

2.6.6 Pricing American options 

Unlike their European counterparts, American options can be exercised a t  
any date prior to expiration. This seemingly innocent variation makes the 
analysis of American options much more complex. One easy conclusion is 
that an American option has a larger value than the corresponding European 
option, as it gives more opportunity for exercise. From a theoretical point of 
view, valuing an American option entails the solution of a dynamic stochastic 
optimization problem. If you hold such an option, you must decide, for each 
time instant, if it is optimal or not to exercise the option. You should compare 
the intrinsic value of the option, i.e., the immediate payoff you would get from 
exercising the option early, and the continuation value, which is linked to the 
possibility of waiting for better opportunities. 

Formally, the price of an American option can be written as 

(2.44) 

where function @ is the option payoff, expectation is taken under a risk- 
neutral measure, and 7- is a stopping time. The term “stopping time” has a 
very precise meaning in the theory of stochastic processes, but here we may 
simply interpret stopping time as the time a t  which we exercise the option. 
The time of early exercise (if this occurs) is a random variable depending only 
on the history of prices so far. 

Clearly, early exercise will not occur if the option is not in-the-money. For 
a put option, we do not exercise the option at  time t if S( t )  > K .  But 
even if S( t )  < K ,  it may be better to keep the option and wait. Early 
exercise will occur only if the option is LLenough’’ in-the-money; by how much, 
it will generally depend on time to expiration, and we may expect that when 
expiration gets closer, we are more willing to exercise early. Qualitatively, for 
an American put option we would expect an early exercise boundary like the 
one depicted in figure 2.22. This boundary specifies a stock price S ( t )  such 
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f ig 2 22 Qua1it;Ltive sketch of the early exercise boundary for a vanilla Aiiiericaii 
pit. The option is exerrised within the shaded area. 

that if S(t)  < S*(t) ,  i.e., the option is sufficiently deep in-the-money, then 
we are in the exercise region and it is optimal to exercise the option." If we 
are above the boundary, we are in the continuation region, and we keep the 
option. 

Finding this boundary is part of the problem and it is what makes it diffi- 
cult. Unlike European options, we cannot simply compute an expected value: 
and this makes the use of hlonte Carlo methods for pricing American-style op- 
tions much more difficult. In the past, this was considered impossible, but we 
will see relatively simple approaches in chapter 10. Within the partial differen- 
tial equation framework, this reasoning translates to a free boundary problem, 
which is contrasted against typical problems in which boundary conditions 
are given. However, in the context of finite difference methods of chapter 9, 
we will see that this essentially boils down to comparing the intrinsic and the 
continuation value to take a decision. 

2.7 INTRODUCTION T O  EXOTIC AND PATH-DEPENDENT 
OPTIONS 

Thc variety of options that have been conceived in the past years seems to  
have no limit. You have options on stocks, commodities, and even options 
on options. Interest-rate derivatives play a fundamental role in interest-rate 
risk management. Some options are rather peculiar and are traded over-the- 
counter for specific needs." 

"For a detailed treatment of the exercise boundary for American options, see, e.g., [14, 
chapter 41. 
"As we mentioned, this means that  they are not traded on an  organized exchange. 
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Exotic options on stocks may be designed by introducing a certain degree 
of path dependency. The idea is that, unlike a vanilla European option, 
the payoff depends not only on the underlying asset price at  expiration, but 
also on its whole path. In the following we briefly describe barrier, Asian, 
and lookback options. They are of particular interest in learning and testing 
numerical methods. 

2.7.1 Barrier options 

In barrier options, a specific asset price sb is selected as a barrier value. During 
the life of the option, this barrier may be crossed or not. In knock-out options, 
the contract is canceled if the barrier value is crossed at  any time during the 
whole life; on the contrary, knock-in options are activated only if the barrier 
is crossed. The barrier sb may be above or below the current asset price SO: 
if s b  > So, we have an up option; if &, < SO, we have a down option. These 
features may be combined with the payoffs of call and put options to define 
an array of barrier options. 

For instance, a down-and-out put option is a put option that becomes void 
if the asset price falls below the barrier Sb; in this case sb < SO, and sb < K .  
The rationale behind such an option is that the risk for the option writer is 
reduced. So, it is reasonable to expect that a down-and-out put option is 
cheaper than a vanilla one. From the point of view of the option holder, this 
means that the potential payoff is reduced; however, if you are interested in 
options to manage risk, and not as a speculator, this also means that you may 
get cheaper insurance. By the same token, an up-and-out call option may be 
defined. 

Now, consider a down-and-in put option. This option is activated only if 
the barrier level s b  < SO is crossed. Holding both a down-and-out and a 
down-and-in put option is equivalent to holding a vanilla put option. So we 
have the following parity relationship: 

where P is the price of the vanilla put, and Pdi and P d o  are the prices for the 
down-and-in and the down-and-out options, respectively. Sometimes a rebate 
is paid to the option holder if the barrier is crossed and option is canceled; in 
such a case the parity relationship above is not correct. 

In principle, the barrier might be monitored continuously; in practice, pe- 
riodic monitoring may be applied (e.g., the price could be checked each day 
at  the close of trading). This may affect the price, as a lower monitoring 
frequency makes crossing the barrier less likely. 

Analytical pricing formulas are available for certain barrier options. As an 
example, consider a down-and-out put with strike price K ,  expiring in T time 
units, with a barrier set to s b .  The following formulas are known (see, e.g., 
[28, pp. 250-2511), where SO, T ,  have the usual meaning. 
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where 

and 

log(SoK/S,2) - (?- - u 2 / 2 ) T  

U J T  
d7 = 

log(soK/s;) - (?- + u 2 / 2 ) T  

U J T  
d8 = 

A MATLAB code implementing these formulas is given in figure 2.23. 

>> [Call, Put] = blsprice (50,50,0.  I ,  5/12,0.4) ; 
>> Put 
Put = 

>> DOPut (50,50,0.1,5/12,0.4,40) 
4.0760 

ans = 
0.5424 

>> DOPut (50,50,0.  I ,  5/12,0.4,35) 
ans = 

1.8481 



INTRODUCVON T O  EXOTlC AND PATH-DEPENDENT O f  TlONS 121 

% Down0utPut.m 
function P = DownOutPut (SO,K,r,T,sigma,Sb) 
a = (Sb/SO)^(-l + (2*r / sigma-2)); 
b = (Sb/SO)̂ (l + (2*r / sigma-2)); 
dl = (log(SO/K) + (r+sigma-2 / 2)* T) / (sigma*sqrt(T>>; 
d2 = (log(SO/K) + (r-sigma-2 / 2)* T) / (sigma*sqrt(T)>; 
d3 = (log(SO/Sb) + (r+sigma-2 / 2)* T) / (sigma*sqrt(T)); 
d4 = (log(SO/Sb) + (r-sigma-2 / 2)* T) / (sigma*sqrt(T)>; 
d5 = (log(SO/Sb) - (r-sigma-2 / 2)* T) / (sigma*sqrt(T>); 
d6 = (log(SO/Sb) - (r+sigma-2 / 2)* T) / (sigma*sqrt(T)); 
d7 = (log(SO*K/Sb-2) - (r-sigma-:! / 2)* T) / (sigma*sqrt(T)); 
d8 = (log(SO*K/Sb-2) - (r+sigma-2 / 2)* T) / (sigma*sqrt(T)); 
P = K*exp (-r*T) * (normcdf (d4) -normcdf (d2) - . . . 

a*(normcdf(d7)-normcdf(d5))) . . .  
- SO* (normcdf (d3) -normcdf (dl)  - . . . 
b* (normcdf (d8) -normcdf (d6) ) ) ; 

f ig. 2.23 Implementing the analytical pricing formula for a down-and-out put option. 

>> DOPut (50,50,0.1,5/12 ,O. 4,30) 
ans = 

3.2284 
>> DOPut(50,50,0.1,5/12,0.4,1) 
ans = 

4.0760 

We see that the down-and-out put is indeed cheaper than the vanilla put; the 
price of the barrier option tends to that of the vanilla put as Sb tends to zero. 
It is also interesting to see what happens with respect to volatility: 

>> [Call, Put] = blsprice(50,50,0.1,5/12,0.4); 
>> Put 
Put = 

>> [Call, Put] = blsprice(50,50,0.1,5/12,0.3); 
>> Put 
Put = 

>> DOPut(50,50,0.1,5/12,0.4,40) 

4.0760 

2.8446 

ans = 

0.5424 
>> DOPut (50,50,0.1,5/12,0.3,40) 
ans = 
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0.8792 
>> DOPut(50,50,0.1,5/12,0.4,30) 
ans = 

3.2284 
>> DOPut (50,50,0. I, 5/12,0.3,30) 
ans = 

2.7294 

For a vanilla put, less volatility implies a lower price, as there is less uncer- 
tainty; for the barrier option, less volatility may imply a higher price since 
breaching the barrier may be less likely. We see that the dominating effect 
depends on the barrier level. 

In the formula above, it is assumed that barrier monitoring is continuous. 
When monitoring discrete, we should expect that the price for a down-and-out 
option is increased, since breaching the barrier is less likely. An approximate 
correction has been suggested (see [2] or [14, p. 2661). The idea is using the 
analytical formula above, correcting the barrier ~ 1 s  follows: 

where the term 0.5826 derives from the Riemann zeta function, 6t is time 
elapsing between two consecutive monitoring time instants, and the sign f 
depends on the option type. For a down-and-out put we should take the minus 
sign, as the barrier level should be lowered to reflect the reduced likelihood 
of crossing the barrier. For instance, if we monitor the barrier each day, the 
prices above change approximately as follows: 

>> DOPut (50,50,0. I, 5/12,0.4,40) 
ans = 

0.5424 
>> DOPut(50,50,0.1,5/12,0.4,40*exp(-0.5826*0.4*sqrt(1/12/30))) 
ans = 

0.6380 
>> DOPut(50,50,0.1,5/12,0.4,30) 
ans = 

3.2284 
>> D0Put(50,50,0.1,5/12,0.4,30*exp(-0.5826*0.4*sqrt(1/12/30~~~ 
ans = 

3.3056 

We have assumed here that each month consists of 30 days. It should be noted 
that alternative analytical methods for discrete-time barrier options have been 
developed, but we will stick to this one because of its conceptual simplicity. 
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2.7.2 Asian options 

Barrier options exhibit a weak degree of path dependency. A stronger degree 
of path dependency is typical of Asian options, as the payoff depends on the 
average asset price over the option life. 

Different Asian options may be devised, depending on how the average is 
computed. Sampling may be discrete or (in principle) continuous. Further- 
more, the average may be arithmetic or geometric. The discrete arithmetic 
average is 

l n  
Ada = - s ( t i ) ,  n 

i = l  

where t i ,  i = 1,. . . , n, are the discrete sampling times. The geometric average 
is 

If continuous sampling is assumed, we get 

A,, = f 1' S(t )  dt 

A,, = e x p [ $ l  T log S(t)dt]  

Given some way to measure the average A, you may use it to define a rate or 
a strike. An average rate call has a payoff given by 

max{A - K ,  0}, 

whereas for an average strike call we have 

max{S(T) - A, 0). 

By the same token, we may define an average rate put: 

max{K - A, 0), 

or an average strike put: 

max{A - S(T) ,  0). 

Early exercise features may also be defined in the contract. 

2.7.3 Lookback options 

Lookback options come in many forms, just like Asian options. The basic 
difference is that a maximum (or a minimum) value is monitored during the 
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option life, Assuming continuous monitoring, we may measure the maximum 
and the minimum asset price: 

A European style lookback call has a payoff given by 

whereas in the case of a lookback put we have 

Just as in the Asian option case, you may use the maximum and minimum 
to define rates or strikes, and you may also add early exercise features. As- 
suming continuous monitoring, some analytical pricing formulas are known 
for lookback options. 

2.8 AN OUTLOOK O N  INTEREST-RATE DERIVATIVES 

In this book we will only deal with pricing equity options, as this is enough to  
introduce and motivate the numerical methods we are interested in.24 How- 
ever, there is a huge market of interest-rate derivatives, and in this section we 
would like to point out why they are important and why they are so difficult 
to deal with. Actually, any bond is an interest-rate derivative, since its value 
depends on interest rates; if we model interest rates as stochastic processes, 
we may apply the option pricing machinery to pricing a zero-coupon bond. 
This may look like “overkill,” but it may play a fundamental role in pricing 
more complex interest-rate derivatives, as we will see. 

The following is a non-exhaustive list of the most basic assets that can be 
classified as interest-rate derivatives. 

Interest-rate swaps. A swap is an arrangement between two parties, 
which agree to exchange cash flows at predetermined dates in the future. 
In the vanilla swap, one party will pay cash flows given by a fixed interest 
rate applied to a nominal amount of money (the notional principal). The 
other party will pay an amount given by a variable interest rate, applied 
to a given interval of time (the tenure), on the same notional principal. 
The net cash flow will depend on the level of future interest rates. 

24This section is included for the sake of completeness, but it can be safely skipped by 
readers just interested in numerical methods. 
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Bond options. A call option on a bond works more or less like a call 
option on a stock, with a different underlying asset. In this case we 
have two maturities: the maturity T of the option, a t  which the option 
can be exercised, and the maturity S of the bond. Obviously, we must 
have T < S. The payoff of the option will depend on the bond price 
at  T ,  which in turn depends on uncertain interest rates. Call options 
are actually embedded in certain types of bonds. A callable bond can 
be redeemed before maturity by the issuer, if prevailing interest rates 
make this choice attractive, i.e., when interest rates drop and the bond 
issuer may refinance its debt at lower rates. In this case, the investor 
purchasing the bond implicitly sells a call option to the bond issuer. 
Hence, the callable bond must cost less than its non-callable counterpart. 

Interest-rate caps. A cap offers protection against a rise in interest 
rates. This may be interesting to someone who wants to borrow money 
at  a variable rate. A cap is a portfolio of caplets, applying to different 
time intervals in the future. If L is a notional principal and RK is the 
cap rate, a caplet applying to a time interval of length bt gives a payoff 

L . bt ' max(0, R - R K } ,  

where R is the interest rate prevailing for that interval. Should interest 
rates rise in the future, the owner of the cap will receive a payoff covering 
the payment interest above the cap rate. It can be shown that caps are 
equivalent to portfolios of bond options. 

Interest-rate floors. A floor is similar to a cap, but it offers protection 
against a drop in interest rates. The payoff of a floorlet is 

L .  bt . max(0, RK - R}.  

The list of available interest-rate derivatives is increasing because of their use- 
fulness as interest-rate risk management tools. They are, at least potentially, 
more powerful than older-style practices based on immunization. 

The elementary interest-rate derivatives we have just described can be 
priced using fairly simple models, if some assumptions are made. But this 
does not hold in general, and more sophisticated models are needed, either 
to account for the complexity in the dynamics of interest rates, or to price 
complex derivatives. In the following sections we will just offer some intuition 
about the reasons behind such a complexity. In the Black-Scholes model for 
stock options, we have assumed constant interest rates and constant volatility 
for the price of the underlying asset. Of course the first assumption does not 
make any sense for interest-rate derivatives. But also the second one cannot 
be reasonable: The bond price, when maturity is approaching, is less and less 
volatile (the duration gets smaller and smaller). 
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2.8.1 Modeling interest-rate dynamics 

Several models have been proposed over the years to capture the uncertain 
dynamics of interest rates. They differ in the following basic features: 

0 The number of stochastic factors. In the simplest models, we describe 
the dynamics of the short rate r ( t ) ,  which is essentially a rate applying 
for a very short time span ( t , t  + bt)  in the future. However, we know 
that bond prices depend on a whole term structure of interest rates. If 
we build a one-factor model, we are essentially assuming that we may 
capture the dynamics of the whole term structure just by the short rate 
and its future evolution. Actually, it is difficult to get a realistic model 
based on one factor only, and more complex models based on a set of 
factors should be built, with a corresponding increase in difficulty. 

0 The focus on equilibrium or arbitrage. It is possible to pursue the some- 
what ambitious idea of building an economically sound model, which 
yields interest rates as a consequence of market equilibrium. An alter- 
native idea is trying to build models which match the currently observed 
term structure. This is less ambitious, but it may better replicate ob- 
served prices. In fact, a basic requirement of a credible model is that 
it replicates the prices of basic assets, which may be observed in the 
market. In general, arbitrage based approach aim at  this idea of relative 
pricing. 

As a result, there is a significant variety of models, with advantages and 
disadvantages, and there is no obvious choice among them. We do not want 
to venture into this difficult domain but, given our knowledge of Ito processes, 
we may at least sketch a few models based on stochastic differential equations 
for the short rate. 

The general structure of such models is 

dr( t )  = p[t, r( t)]  d t  + u[t, r ( t ) ]  dW(t), (2.45) 

where W ( t )  is a standard Wiener process. Multifactor models use multidi- 
mensional Wiener processes. Geometric Brownian motion is a clearly inade- 
quate model, at least in the long term, as interest rates cannot grow without 
bound. Mean reversion is a common feature of many models, among which 
we mention: 

1. VasiEek: 
dr = ( b  - ar) d t  + u dW, 

where a > 0. 

2. Cox-Ingersoll-Ross (CIR): 

dr = a (b  - r )  dt + uf idW.  
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3. Black-Derman-Toy (BDT): 

dr = O(t)r  dt  + a( t ) r  dW. 

4. Hull-White (extended CIR): 

dr = [o(t) - a( t ) r ]  dt + a(t)&dW, 

where a( t )  > 0. 

VasiEek model exhibits mean reversion, but the rate can get negative. Avoid- 
ing negative rates is the rationale behind the fi term in the CIR model. The 
BDT model includes time-varying functions: On the one hand, this makes the 
model more complicated, but it allows to match the current term structure 
(which can be done only approximately with simpler models). The Hull- 
White extension of CIR model, in some sense, puts all of the above ideas 
toget her. 

In the next chapters, we will see how continuous-time stochastic models 
may be exploited computationally, either by Monte Carlo simulation or by 
building discretized approximations such as binomial lattices or trees. The 
same ideas, with significant complications may be applied to interest rate 
models. For instance, the MATLAB Financial derivatives toolbox includes 
functions to build trees for the BDT short rate model and the Heat-Jarrow- 
Morton (HJM) model, which the best-known multifactor model. Whatever 
model and computational technique we use, we must calibrate the parameters 
of the models above. One would think that to accomplish this task, we should 
gather market data for interest rates and use some numerical procedure to fit 
model parameters to observed data. The next section shows that this is not 
really the case. 

2.8.2 

We have already pointed out that an apparently paradoxical feature of Black- 
Scholes formula is that it prices an option under the very assumption that 
options are no use. This is due to the fact the markets are assumed complete, 
thus options can be replicated using a risk-free asset and the underlying asset. 
In practice, this is not true for many reasons, including market imperfections 
(e.g., transaction costs) and stochastic volatility. This does not imply that 
the theory is useless: On the contrary, it is used to build internally coherent 
prices by exploiting concepts such as implied volatility and volatility surfaces. 

When we consider interest-rate derivatives, however, we are facing an im- 
mediate difficulty: The interest rate is not an asset that can be included in 
a portfolio. Hence, we cannot build a replicating portfolio. A similar diffi- 
culty is faced with certain derivatives written on commodities which are not 
investment goods and which cannot be included in an investment portfolio 
leading to replication arguments. The fundamental difficulty is that markets 

Incomplete markets and the market price of risk 
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are incomplete. Hence, while no-arbitrage conditions imply that a risk-neutral 
measure exists, market incompleteness implies that it is not unique. All we 
can do is to build an internally coherent price system, which is consistent with 
some observed prices and is arbitrage-free. In other words, we need to pin 
down a risk-neutral measure which is linked to observed prices. 

When dealing with interest-rate derivatives, the simplest asset we may work 
with is a zero-coupon bond. Actually, we need a set of zero-coupon bonds, 
one for each possible maturity. Let us assume that a market exists for zero- 
coupon bonds of any maturity. We may work with a short rate model like 
(2.45) to explore the consequences of no-arbitrage. Let p ( t ,  T )  be the price a t  
time t of a zero-coupon bond with maturity T.  Given a model for the short 
rate, it is reasonable to  assume that this price is a function of time t and the 
current short rate r ( t ) :  

As we have seen with pricing stock options, we need some boundary or termi- 

~ ( t ,  T )  = F ( t ,  r ( t ) ;  T) .  

nal condition. 
condition is 

for any value 
bond by F T .  
application of 

If we assume that the face value of the bond is $1, the terminal 

F ( T ,  r ;  T )  = 1, 

of r .  To ease the notation, we will denote the price of this 
Assuming that the short rate is modeled by equation (2.45), 
[to’s lemma yields 

= vTFTdt + J T F ~  dW, 

where, for the sake of convenience, we have introduced 

c dFT 
FT dr ‘ 

~- <T = 

If we consider another bond, with maturity S, we have 

dFS = vsFSdt  + <sFsdW, 

where W ( t )  is the same Wiener process, as both bonds depend on the same 
underlying factor. Hence, we may eliminate the term dW by forming the 
following portfolio of bonds: 

II = ( D ~ F ~ ) F ~  - ( e T ~ T ) ~ S .  

It is important to realize that the expressions between parentheses are the 
amounts of each bond we hold, which do not change over a short time period 



AN OUTLOOK ON INTEREST-RATE DERIVATIVES 129 

d t ,  whereas the bond value does. Hence, differentiation in the Ito sense yields 

d l l  = ( o s F S )  dFT - ( ~ T F ~ )  dFS 
= ( p ~ o s F ~ F ~  - p s a ~ F  T S  F ) d t .  

But since this is a risk-free portfolio, lack of arbitrage opportunities implies 

d l l  = r l ld t ,  

which in turn gives 
~ T U S  - ~ S U T  = rus  - r q .  

This equality must hold for any maturity. This means that if our bond market 
is arbitrage free, there must exist a process X ( t )  such that 

(2.46) 

for any maturity T .  The process X(t) is called the market price of risk. If 
we write p = r + Xa, we may understand the reason behind this name: the 
drift p is the risk free rate plus a compensation depending on volatility and 
the price of risk. If the price of risk is X = 0, as in the usual risk neutral 
world, we have p = r ,  which is exactly the drift we use when pricing options 
in the Black-Scholes world. 

If we substitute p~ and (TT in (2.46), we get the following PDE: 

rFT = 0. dFT dFT 1 2a2FT 
at dr 2 dr2 - + ( p  - Xu)- + -u - - 

This PDE, together with the boundary condition FT(T ,  r )  = 1, is called term 
structure equation. Application of the Feynman-KaE formula to this PDE 
yields the price of the zero-coupon bond as an expected value: 

where notation E f r  means that we are taking a conditional expectation given 
t and r ( t ) ,  under a risk-neutral measure Q, and the process ~ ( s )  satisfies the 
stochastic differential equation: 

dr(s)  = { p  - Xa} ds + a d W ( s ) ,  

with initial condition r ( t )  = r .  
Using a similar procedure we could price other interest-rate derivatives, 

provided we use the appropriate market price of risk. To spot the right A, we 
should calibrate the model, in the sense that we should find the market price 
of risk that fits the observed prices of zero-coupon bonds. This means that 
we should find a stochastic differential equation describing the dynamics of 



130 FINANCIAL THEORY 

the short rate directly in the risk-neutral world. Doing so basically requires 
the solution of an inverse problem: Given bond prices and the term structure 
equation, we should find the market price of risk. This task may be relatively 
easy or not, depending on the model we assume for the short rate. Some 
models result in an analytical solution, some do not. Of course, if a model 
depends on three numerical parameters (like CIR), we cannot hope to find an 
exact fit. 

In practice, model calibration based on zero-coupon bonds is not that easy 
because of the lack of enough assets. Actually, what we need is a model en- 
abling coherent pricing with traded assets; hence, any asset related to interest 
rates is a possible data source for calibration. Recently, many market models 
have been developed which do not claim to be economically motivated mod- 
els, but aim at  making practical pricing easier. In fact, the short rate is a 
mathematically convenient object, but it is not directly observable. Other 
rates, such as LIBOR,25 are more convenient from this point of view. 

For further reading 

In the literature 

0 A book dealing with investments in general and their mathematical 
modeling is [15]. It is comprehensive and quite readable. A higher-level 
treatment can be found in [ll]. Another general reference is (281, which 
has a sharper focus on derivatives. 

0 If you are interested in how a stock exchange actually works, see [27]. 

0 More specific references for bond markets and fixed-income-related as- 
sets are [6], [7], [8], and [25]. See also [16]. 

0 Portfolio theory is covered in [5]; you might wish to have a look at 
chapter 10 there to  gain a deeper understanding of utility theory. 

0 Advanced issues in portfolio management are dealt with in [23]. 

0 The classical reference for options and derivatives in general is (10). For 
a more formal treatment, see, e.g., [14]. 

0 A good reference on Value at Risk is [12]. 

0 A book dealing extensively with the intricacies of option hedging is [26]; 
it is not very readable for the uninitiated, but it gives a precise idea of 
practical option trading. 

25London Inter-Bank Offer Rate 
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0 There is a growing literature on continuous-time stochastic calculus in 
finance. Many books in this vein are quite hard to read; but if you want 
to find a good compromise between intuition and mathematical rigor, 
take a look at  [17] or [19]. A more recent text is [24]. 

0 Discrete-time models are dealt with in [20], which is an excellent refer- 
ence for an understanding of the relationship between risk-neutral prob- 
ability measures and the no-arbitrage hypothesis. 

0 Readers interested in a broader view of Financial Economics should 
consult [4]. Another readable reference is [3]. 

0 Interest-rate derivatives are also covered in books on fixed-income secu- 
rities such as [16]. A book which is more focused on this class of assets 
is [21]. Recent market models are described in [22]. 

0 For a mathematically rigorous yet readable treatment of the theoretical 
background of interest-rate derivatives, see [ 11. 

0 Readers interested in the use of derivatives for interest-rate risk man- 
agement are [9] and [18]. 

On the Web 

0 A site where you may find a list many interesting resources for finance 
is http://fisher.osu.edu/fin/journal/jofsites.htm. 

0 An academic society that could be of interest to you is IAFE (Inter- 
national Association of Financial Engineers, http : //www . iaf e .  org). 
Another interesting academic society is the Bachelier Finance Society 
(http://www.bachelierfinance.com). 
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Part 11 

Numerical Methods 





Basics o f  Numerical 
d 

Anal  ysis 

The core of the MATLAB system implements a set of functions to cope with 
some classical numerical problems. Although there is no need for a really 
deep knowledge of numerical analysis in order to use MATLAB, a grasp of 
the basics is useful in order to choose among competing methods and to 
understand what may go wrong with them. In fact, numerical computation is 
affected by machine precision and error propagation, in ways that may result 
in quite unreasonable outcomes. Hence, we begin by considering the effect of 
finite precision arithmetic and the issues of numerical instability and problem 
conditioning, which are outlined in section 3.1. This material is essential, 
among other things, in understanding the pitfalls of pricing derivatives by 
solving PDEs. 

Then we describe methods for solving systems of linear equations in section 
3.2; MATLAB provides the user with both direct and iterative methods to 
this purpose, and it is important to understand the characteristics of the 
two classes of methods. Section 3.3 introduces the reader to the problems 
of approximating functions and interpolating data values. Solving non-linear 
equations is the subject of section 3.4. 

Other topics, such as numerical integration and finite difference methods for 
PDEs are dealt with in specific chapters. With respect to  standard textbooks 
in numerical analysis, a few types of numerical problems have been omitted, 
most notably the computation of matrix eigenvalues and eigenvectors and 
the solution of ordinary differential equations. Both problems are solved by 
methods available in MATLAB, but since they will not be used in the rest of 
the book, we refer the reader to the references listed at  the end of the chapter. 

137 
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3.1 NATURE OF NUMERICAL COMPUTATION 

Real analysis is based on real numbers. Unfortunately, dealing with real 
numbers on a computer is impossible. Each number is represented by a fi- 
nite number of bits, taking the values 0 or 1. Hence, we have to settle for 
binary and finite precision arithmetic. The progress in computing hardware 
has improved the quality of the representation, since more bits may be used 
efficiently without resorting to low-level software tricks. Yet some represen- 
tation error is unavoidable, and its effect may lead to unexpected results. We 
have seen some examples of what may go wrong in section 1.3. In this section 
we try to explain why this may happen. 

3.1.1 

The usual way we represent numbers relies on a decimal base. When writing 
1492, we actually mean 

Number representation, rounding, and truncation 

1 x lo3 + 4 x lo2 + 9 x 10' + 2 x loo. 

Similarly, when we have to represent the fractional part of a number, we use 
negative powers of the base 10: 

0.42 =+ 4 x lo-' + 2 x 

Some numbers, such as 1/3 = 0.3, do not have a finite representation and 
should be thought as limits of an infinite series. However, on a computer we 
must use a binary base, since the hardware is based on a binary logic; for 
instance, 

(21.5)10 + 2* + 22 + 2'+ 2-1 = (10101.1)2. 

How can we convert numbers from a decimal to  a binary base? Let us begin 
with an integer number N .  It can be thought of as 

N = ( b k  ' 2 9  + (bk-1 .2"-1) + * * * + (bl  -21 )  + (bo * 20). 

Dividing both sides by 2, we get 

N b0 
2 2 
- = ( b k  * 2k--1) + ( b k - 1  * 2 9  +.  * .  + ( b l  .2') + -. 

Hence, the rightmost digit in the binary representation, bo, is simply the 
remainder of the integer division of N by 2. We may think of N as 

N = 2 * Q + bo, 

where Q is the result of the integer division by 2. Repeating this step, we 
obtain all the digits of the binary representation. This suggests the algorithm 
whose MATLAB code is illustrated in figure 3.1. The function DecToBinary 
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function b=DecToBinary (n) 
nO = n; 
i=l ; 
while (no > 0) 

nl = floor(n0/2) ; 
b(i) = nO - nl*2; 
nO=nl ; 
i = i+l; 

end 
b=f liplr (b) ; 

Fig. 3.1 MATLAB code to obtain the binary representation of an integer number. 

takes an integer number n and returns a vector b containing the binary digits': 

>> DecToBinary(3) 

1 1 
>> DecToBinary(8) 

ans = 

ans = 

1 0 0 0 
>> DecToBinary(l3) 
ans = 

1 1 0 1 

Similarly, the fractional part of a number is represented in a binary base as 

k=l 

Some numbers, which can be represented finitely in a decimal base, cannot in 
a binary base; for instance, 

7/10 = (0.7)10 = (0.10110)2. 

Clearly, in such cases the infinite series is truncated, with a corresponding 
error. The binary representation of a fractional number R can be obtained 
by the following algorithm, which is similar to the previous one (int and frac 
denote the integer and the fractional part of a number, respectively): 

1. Set dl  = int(2R) and F1 = frac(2R). 

'This is not the best implementation, as the output vector b is resized incrementally. We 
could compute the number of necessary bits and preallocate b. 
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2. Recursively compute dk = int(2Fk-1) and F k  = frac(2Fk-1) for k = 
2,3 , .  * .. 

Knowing how to change the base may seem useless, but we will see an ap- 
plication of these procedures in section 4.6, dealing with quasi-Monte Carlo 
simulation. 

In practice, we have to represent both quite large and quite small numbers. 
Hence we resort to a floating-point representation like 

2 = f q  x 2", 

where q is the mantissa and n is the exponent. The exact details of the 
representation depend on the chosen standard and the underlying hardware. 
In any case, since only a finite memory space is available to  store the mantissa, 
we will have a roundoff error. 

Rounding off is not the only source of error in numerical computation. An- 
other one is truncation. This occurs, for instance, when we substitute a finite 
sum for an infinite sum. As an example, consider the following expression for 
the exponential function: 

O0 xk ex=C-. 
k! 

k=O 

When we truncate a sum like this, a truncation error occurs. 

Example 3.1 One typically troublesome situation is when you subtract two 
nearly equal numbers. To see why, consider the following example2: 

x = 0.3721478693 

y = 0.3720230572 
x - y  = 0.0001248121. 

If you represent the numbers by five significant digits only (rounding the last 
one), the actual result will be 

2 - $ = 0.37215 - 0.37202 = 0.00013, 

with a relative error of about 4% with respect to the correct result. In fact, 
it is good practice to avoid expressions like 

& G i - l ,  

which could result in remarkable losses in significance for small values of x. 
In such cases, it is easy to rewrite the expression above as 

X 2  

[13, pp. 58-59] 
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Here there is no subtraction involved, but in other cases, there is no easy way 
to avoid the difficulty. [I 

3.1.2 

Roundoff errors have been mitigated by the increase in the number of bits 
used to store numbers on modern computers. From a practical perspective, 
numbers are virtually represented exactly. Nevertheless, such errors may ac- 
cumulate within the steps of an algorithm, possibly with disruptive effects, 
as we have seen in example 1.3. Hence, algorithms should be analyzed with 
respect to their numerical stability properties. We typically have alternative 
algorithms for the same problem, and it may happen that some of them are 
subject to instability issues and some are not. A typical case we will con- 
sider in chapter 5 is the choice between explicit and implicit methods to solve 
PDEs by finite differences. Sometimes, but not always, there is a trade-off 
between potential instability and computational efficiency. As an example, 
an advanced optimization library like ILOG CPLEX offers different interior 
point solvers to tackle large-scale linear programming problems3; in case of 
numerical difficulties we may switch to  more robust but slower options. 

We see that stability is a property of a specific algorithm to solve a numer- 
ical problem. There is still another issue, which is related to  the difficulty of 
solving the problem per se, which is called conditioning. When we consider 
the numerical conditioning of a problem, we are not dealing with specific al- 
gorithms to compute a solution, but with the intrinsic difficulty of a problem. 
Hence, it is important to have a conceptually clear view of how stability and 
conditioning are related. 

From an abstract point of view, a numerical problem may be considered as 
a mapping 

Error propagation, conditioning, and instability 

Y = fb), 
which transforms the input data x into the output y. An algorithm is a compu- 
tationally workable approach to computing that function; different algorithms 
may be used to solve the same numerical problem, possibly with different char- 
acteristics with respect to computational effort and stability properties. When 
using a computer, roundoff errors will be introduced in the representation of 
the input; we should check the effects on the output of a perturbation 6x in 
the input data. Denoting the actual input by Ir: = x + 62, the output should 
be f(lt.),  whereas an algorithm will yield some answer, say y*. An algorithm 
is stable if the relative error 

31nterior point methods are dealt with in section 6.4.4. 
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is of the same order of magnitude as the machine preci~ion.~ 
By comparing f (3) with f(x), we analyze a different issue, called the condi- 

tioning of the numerical problem. We should compare the error in the output 
with the error in the input; when the input error is small, the output error 
should be small, too. Ideally, it would be nice to  have a bounding relationship 
like 

where 1 1  11 is an appropriate The number K is called the condition 
number of the problem. Later, we investigate the condition number for the 
problem of solving a system of linear equations, but a simple example will 
illustrate the point. 

Example 3.2 Consider the following non-linear equation: 

p(x) = x8 - 36x7 + 5 4 6 ~ ~  - 4 5 3 6 ~ ~  + 2 2 4 4 9 ~ ~  - 6 7 2 8 4 ~ ~  

+118124x2 - 1 0 9 5 8 4 ~  + 40320 = 0. 

This is actually a specific type of non-linear equation, as it is a polynomial 
equation, and it can be solved by special purpose methods, one of which is 
implemented in the function roots6:  

>> pl=[  1 -36 546 -4536 22449 -67284 118124 -109584 403203; 
>> roots(p1)  
ans = 

8.0000 
7.0000 
6.0000 
5.0000 
4.0000 
3.0000 
2.0000 
1.0000 

Note how the polynomial is represented by a vector containing its coefficients. 
We see a clear pattern in the solution. In particular, we have one root in 
the interval [5.5,6.5]. Now let us change the second coefficient from -36 to 

4T0 get an intuitive idea of what machine precision is about, consider the inequalities 
1 - E < I < 1 + E ,  which are obviously true for any E > 0. With computer arithmetic, 
there is a smallest E such that the inequalities hold; below that value, we cannot tell the 
difference between the two sides of the inequalities. 
5The reader should be familiar with the norm concept for vectors; anyway, it is recalled in 
section 3.2.1. 
6We have already met roots when computing the internal rate of return in example 2.8 on 
page 47. 
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36.001. This is a small change in the problem data, and one would expect a 
corresponding slight change in the solution: 

>> p2=[ 1 -36.001 546 -4536 22449 -67284 118124 -109584 403201; 
>> roots (p2)  
ans = 

8.2726 
6.4999 + 0.7293i  
6.4999 - 0.7293i  
4.5748 
4.1625 
2.9911 
2.0002 
1.0000 

Some roots do not move that much, but now there is no root in the interval 
[5.5,6.5], and we have a pair of complex conjugate roots, instead. Note again 
that the conditioning issue is linked to the numerical problem itself, not to  
the specific algorithm used to solve it: With r o o t s  we are able to find a 
very good approximation of the solution, but this is significantly changed 
by a slight change in the problem data. Indeed finding the roots of a high- 
degree polynomial is an ill-conditioned problem, and you may imagine the 
potentially dramatic effects of errors in collecting empirical data to define a 
numerical problem. 0 

Putting the two concepts together, we will find a "good" answer to a specific 
problem when the problem is well-conditioned and the algorithm is stable. 

3.1.3 

Sometimes, we are able to find a solution of a numerical problem directly by 
a relatively straightforward procedure. In other cases, we use iterative algo- 
rithms which generate a sequence of approximations. Given an approximate 
solution x ( ~ ) ,  some transformation is applied to obtain an improved approx- 
imation x ( ~ + ' ) .  The minimal requirement of a good algorithm is that  the 
sequence generated converges to  the correct solution x*. Furthermore, one 
would hope that such convergence is reasonably fast. The speed of conver- 
gence may be quantified by a rate. The rate of convergence is at  least linear 
if there are a constant c < 1 and an integer N such that 

Order of convergence and computational complexity 

The rate of convergence is a t  least quadratic if there are a constant C and 
an integer N such that 

IlXn+l - x* 111 c IIXn - x* [ I 2 ,  n L N .  
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In this case we do not require C < 1. This can be generalized to an arbitrary 
order of convergence a: 

IIX,+l--*IIICIIX,--*IIQ, n 2 N .  

The larger the rate q, the better; quadratic convergence ( q  = 2) is preferred 
to linear convergence ( q  = 1). An iterative method need not always converge. 
Sometimes, convergence depends on the initial estimate x(O) and its distance 
from the solution. 

When we use an iterative algorithm, we may have no precise idea of the 
number of iterations we need to get a satisfactory solution. In other cases, 
some direct method will yield the answer. By direct method we mean a pro- 
cedure which, after a known number of steps, gives the desired solution (if no 
difficulty due to instability arises). For direct methods, it may be possible to 
quantify the number of elementary operations (e.g., additions and multiplica- 
tions) needed to get the answer; this measures the computational complexity 
of the algorithm. The amount of computation will be a function of the size 
of the problem. The number of operations may depend on implementation 
details, and the size of the problem may depend on the type of encoding 
used to represent the problem. In practice, it is not necessary to be overly 
precise in this measure as it is usually enough to have an idea of the rate of 
growth of the computational effort with respect to the increase in problem 
size. Furthermore, the computational burden of running an algorithm may 
depend on the specific problem instance at hand, where by problem instance 
we mean a specific problem with specific numerical data. Sometimes, it is 
possible to analyze the average complexity with respect to the universe of 
problem instances. Usually, it is easier to quantify the worst-case complexity. 

Computational complexity issues are quite important for discrete optimiza- 
tion problems, as they must often solved by potentially time-consuming algo- 
rithms. 

Example 3.3 Consider again the knapsack model for capital budgeting, 
which was introduced in example 1.2. Since there is a finite set of possi- 
ble solutions, in principle one could find the optimal solution by enumerating 
all of them. However, since each project may or may not be financed, there 
may be up to 2 N  solutions, where N is the number of competing projects and 
is the essential measure of the problem size. This number is actually only an 
upper bound on the number of solutions, since many will be infeasible with 
respect to the budget constraint. Yet we may say that the worst-case com- 
plexity of complete enumeration is in the order of 2N [technically speaking, 
we say that the complexity is O(2N)] .7  0 

Clearly, an exponential growth like this is quite undesirable. Efficient algo- 
rithms are usually characterized by a polynomial growth of the computational 

7A function f(n) is O(g(n)) if limn+oo f(n)/g(n) < 00. 
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effort; their complexity is something like O(NP) for some constant p .  When 
we find a polynomial algorithm for an optimization problem, we say that the 
problem has polynomial complexity. However, if we cannot find a polynomial 
algorithm and only methods with worst-case exponential complexity are avail- 
able, does this mean that the problem has exponential complexity? Actually, 
this need not be the case: Maybe there is a polynomial algorithm, but we are 
not smart enough to come up with it. So, while considering the complexity of 
an algorithm may be relatively easy, doing that for a problem is not trivial in 
general. We wee here the same problem-algorithm duality that we have seen 
with stability and conditioning. 

3.2 SOLVING SYSTEMS OF LINEAR EQUATIONS 

The solution of systems of linear equations is an important problem per se; 
however, it is also instrumental for a variety of other problems. For instance, 
Newton's method for solving systems of non-linear equations calls for the 
repeated solution of linear systems (see section 3.4.2); in chapter 5 we will 
also see how solving linear systems is needed in certain methods to cope with 
PDEs. 

In pencil-and-paper mathematics, when we have to solve a system of linear 
equations like Ax = b, we use matrix inversion to get x = A-'b (provided 
the matrix is non singular). Although MATLAB offers a function, called inv,  
to invert a matrix, it may sound surprising to the newcomer that this is not 
used to solve systems of linear equations. More efficient approaches are used. 

It is not our aim to dwell too deeply on this subject; we limit ourselves to 
the basic concepts needed to understand what MATLAB offers to solve linear 
equations. Methods for solving linear equations can be broadly classified 
as direct or iterative. Direct methods have a clearly defined computational 
complexity, as they yield the result directly within a given number of steps; 
iterative methods build a sequence of solutions whose limit is (under some 
conditions) the desired solution. For iterative methods, the number of steps 
is not known a priori, as it depends on convergence speed. They are useful 
for some large systems characterized by sparse matrices (i.e., matrices with a 
small number of non-zero entries). Both classes are available in MATLAB, and 
there exist definite situations where application of one class is advantageous 
over application of the other. 

We have seen in example 1.3 that solving linear systems may be a difficult 
task with certain matrices. One would expect that when a matrix is close to 
singular, solving the related system may be numerically hard. While this is 
reasonably true, there are other reasons why numerical difficulties may arise. 
In order to see why, we need to analyze problem conditioning, which in this 
case amounts to consider the condition number of the matrix. Before doing 
so, we must introduce preliminary concepts related to the norms of vectors 
and matrices. 
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3.2.1 Vector and matrix norms 

We are all familiar with the concept of vector length in the Euclidean sense. 
The norm is a generalization of that idea, which can be extended to matrices 
and functions, and it is extremely useful in analyzing convergence, stability, 
and conditioning issues in numerical analysis. 

The vector norm is a function mapping vectors x E Rn to real numbers 
1 1  x 1 1  such that: 

0 I l x l l > O f o r a n y x f O , a n d  ) IxI I=Oifandonly i fx=O;  

0 I I cx I )= Ic l I lx l ) fo ranyc~IW;  

I l x + Y l l I I l x l l + I I Y l l f o ~ a n Y x , Y ~ ~ n ~  

These properties are the intuitive properties a measure of vector length should 
satisfy. The most natural way to define a vector length is through the Eu- 
clidean norm 

However, there are different notions of vector length, which satisfy the condi- 
tions above for a vector norm. The most common ones are: 

0 1 1  x lloo = maxl l i l n  1 xi 1, which is known as L1 norm; 

0 1) x 111 E C:=l I xi 1, which is known as L, norm. 

Generally speaking, one may define a vector L, norm as 

Letting p tend to  infinity we get L, norm. 

Example 3.4 Vector and matrix norms are computed in MATLAB by the 
norm function. 

>> v = [2 4 -1 31; 
>> [norm(v,i) norm(v,2) norm(v,inf)] 
ans = 

10.0000 5.4772 4.0000 

The function takes two arguments: the vector and an optional parameter 
specifying the type of norm. The default value for the optional parameter is 
2. A call like norm(v,p) corresponds to 

sum(abs(v) .-p)-(l/p). 
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The L,  norm is computed when the value of the optional parameter is inf. 
0 

Example 3.5 Quite often we consider the norm of an LLerror.” In numerical 
analysis the error can be the distance between the solution of a problem and 
the current approximation in an iterative algorithm, or an error due to round- 
off or truncation. Most people in Finance and Economics are familiar with 
the idea of least squares. In the simplest setting, given a set of experimental 
data represented by pairs ( x i ,  yi), i = 1, . . . , n, we look for a linear law like 

y = u + b x ,  

which fits the experimental data as best as possible. Since perfect fitting is 
impossible in practice, one defines an LLerrorll ei such that for each experimen- 
tal point yi = a + bxi + ei.  Typically, the term residual is used rather than 
error, which in any case we would like to keep as low as possible. This can be 
accomplished by minimizing the norm 1 1  e )I of the residual by solving 

n 

s.t. yi = u + bx,  + ei Vi. 

Taking squares makes sense in order to avoid compensation between positive 
and negative residuals, but we should wonder if there is something wrong in 
using alternative norms such as L1 and solving 

n 

i=l  

or, if we consider the L, norm, solving the min-max problem 

min { max Ieii}. 

The first case makes perfect sense, as it is related to plain average of residu- 
als in absolute value, whereas using Euclidean norm tends to penalize large 
errors a bit more. However, given the non-differentiability of absolute value 
as a function, minimization using the L1 norm requires numerical solution by 
linear programming, whereas the least squares problem has a straightforward 
analytical solution which paves the way to statistical interpretations in the 
case of linear regression. The L,  norm makes sense when we are interested in 
controlling the worst-case deviation, rather than minimizing a measure related 

a , b  i = l ,  ..., n 

to average residual. 0 

A less familiar concept is the matrix norm, which can be defined by requir- 
ing the same properties as above. In the case of square matrices, the norm 
function maps RnXn to W. The required properties are: 
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0 I I A I I > O f o r a n y A f O , a n d  IIAII=OifandonlyifA=O. 

0 ))cA(I = I c ( .  IIAII for any c~ R. 

0 1 1  A + B )I I 1 1  A 11 + 11 B 1 1  for any A ,  B E Rnxn. 

Sometimes, the following additional condition is required: 

IIABII I IIAII . IIBII * 

It may also be important to connect vector and matrix norms. We say that a 
vector and a matrix norm are compatible  if the following inequality holds: 

II A x  II SII A II II x II 
for any matrix A and vector b (note that in the left-hand side of the inequality 
we are using the vector norm). 

Typical matrix norms are: 

II A llca = max15i5n c;=, I aij I. 

II A 111 = maxl5j ln  CZl I aij I. 

0 11 A 112 = d m ,  the spectral nom,  where p( . )  is the spectral radius 

The first two norms may look a bit weird, but they are easy to compute. In 
the first case, for each matrix row we sum absolute values of the elements in 
each column, and then we take the maximum over the rows. In the second 
case the two roles are swapped. 

Example 3.6 The norm function may be used to compute matrix norms as 
well. A call like 

of a matrix, i.e., p(B) = max{I X I ,  I: XI, is an eigenvalue of B}. 

> > A = [ 2 4 - 1 ; 3 1 5 ;  -23-11; 
>> [norm(A,inf) norm(A,l) norm(A,2) norm(A,’fro’)l 
ans = 

9.0000 8,0000 6.1615 8.3666 

computes the four matrix norms we have defined, including the spectral and 
Frobenius norms. For the spectral norm, you may check the result by com- 
puting the square root of the eigenvalues of A‘A: 

>> sqrt(eig(A’ * A)) 
ans = 

2.2117 
5.2100 
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6.1615 

and picking up the largest value. 0 

The Frobenius norm looks like a straightforward generalization of Euclidean 
vector norm, but the other three norms look somewhat unnatural. In fact, 
there is a natural way to introduce a matrix norm, given a vector norm. 
A square matrix may be considered as an operator transforming vectors: it 
rotates a vector and it changes its length, making it longer or shorter. We 
may consider the degree of “amplification” of the vectors as the norm of the 
matrix. Formally, given a vector norm, we may define its subordinate norm 
as 

In this case we also say that the matrix norm is induced by the vector norm. 
It is easy to see that in this case the two norms are compatible. Now it can 
be shown that the vector 1 1 .  Itrn norm induces the matrix 11 . lloo norm and that 
the same holds for the 1 1  . 111 norms. A surprising fact is that the Euclidean 
vector norm does not induce the Frobenius norm. In fact it is easy to see that 
the Frobenius norm is not a subordinate norm, by considering the identity 
matrix I: From (3.2) we should have IIIII = 1, but IIIIIF = fi, for a matrix 
of order n. The matrix norm induced by the Euclidean vector norm is the 
spectral norm, and this explains why it is denoted by 11.112 (see, e.g., [13]). 

A fundamental property of compatible matrix norms is the following. 

THEOREM 3.1 For any matrix norm that is compatible with a vector norm, 
we have 

P(A) 5 I1 All . 

The proof is straightforward. Given a pair of compatible vector and matrix 
norms, consider any eigenvalue X of A and let v be a related eigenvector of 
unit length, IIvII = 1. Then we have 

I 1 = 1 1  XvII=Il Av I1 i l l  A IIII vII=II A II . 
Since this holds for any eigenvalue of the matrix, the theorem follows. 

3.2.2 Condition number for a matrix 

Now we are ready to start analyzing the effect of numerical errors on the 
solution of a linear system. Consider the system 

A x = b  

and suppose that we perturb b by adding a term 6b; such a perturbation 
may indeed occur due to rounding off. Then the solution will somehow be 
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perturbed, too. We will have 

A(x + 6x) = b + Sb, 

which implies that 

We would like to assess the error in the solution, 6x, as a function of the input 
error 6b. If we adopt compatible matrix and vector norms, we may write 

II 6x II = II 
II b II = II Ax II L II A II * IIX II ' 

II 5 II A-l II . II 6b II 

Dividing term by term these two inequalities yields 

which is analogous to (3.1). The condition number K(A) A 1 1  . 11 A-' 1 1  
gives an upper bound on the ratio of the relative error in the solution to  the 
relative perturbation. Generally speaking, the higher the condition number, 
the more difficult it is to solve a linear system. 

Example 3.7 The cond function computes the condition number. An op- 
tional parameter may be provided to select a norm; the default value corre- 
sponds to the spectral norm. 

>> cond(hilb(3)) 
ans = 

524.0568 
>> cond(hilb(7)) 

4.7537e+008 
ans = 

>> cond(hilb(l0)) 
ans = 

1.6025e+013 

Checking these numbers it is easy to see why solving a linear system involving 
the Hilbert matrix is a difficult task. 

Intuitively, we expect that a matrix which is close to singular will be difficult 
to deal with. The following theorem, due to Gastinel, somewhat supports this 
view. 

THEOREM 3.2 Let A a non-singular matrix of order n. 
subordinate matrix norm we have 

0 

Then for any 

1 - = min { 1' A - ' 1  1 B is a singular matrix 
cond(A) I1 A I1 
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The theorem basically states that when condition number is large, the matrix 
can be well approximated by a singular matrix, which may mean trouble 
when we deal with that matrix numerically. However, ill-conditioning is not 
necessarily related to singularity, as the following example clearly shows. 

Example 3.8 Consider the system8 

2 1 - 2 2 - 2 3 -  . . . -  2 ,  = -1 

2 2 - 2 3 -  . . . -  2, = -1 

2 3 -  ...-Ic, = -1 
. . .  

Note that the matrix 

A =  

1 -1 -1 . . .  -1 -1 
0 1 -1 . . .  -1 -1 
0 0 1 . . .  -1 -1 

. .  

. .  . .  
0 0 0 . . .  1 -1 
0 0 0 . . .  0 1 

is not singular, as det(A) = 1. We have 

b = [-1, -1, -1, . . . , -1, l]’, 

and the solution is easy to find by a process called “backsubstitution.” We 
see 2 ,  = 1. Then we may find xn-1 = 2 ,  - 1 = 0. Knowing x,-I, we find 
~ ~ - 2 ,  and so on. Using this strategy systematically, we get 

x = [O, 0, 0, . . ., 0, 1]T. 

We may also “verify” this using MATLAB: 

>> N=20; 
>> A = eye ( N )  ; 
>> f o r  i=l:N, for  j=i+l:N, A(i,j) = -1;. end. end 
>> b=-ones(N,l); 
>> b(N,l) = 1; 
>> A\b 
ans = 

0 

‘See chapter 3 of E.A. Volkov, Numerical Methods, MIR Publishers, 1986. 
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0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 

Now, assume that we apply a small perturbation to the right-hand side vector 
b, adding E to the last component. Then we should find a different solution. 
The first step of backsubstitution shows a small effect of this small perturba- 
tion: 

2, = 2, + 6x, = 1 + E. 
However, if we go on finding the remaining unknown variables, we see that 
the perturbation gets amplified: 

- 

>> b(N,1) = 1.00001; 
>> A\b 
ans = 

2,6214 
1.3107 
0.6554 
0.3277 
0.1638 
0.0819 
0.0410 
0.0205 
0.0102 
0.0051 
0.0026 
0.0013 
0.0006 
0.0003 
0.0002 
0.0001 
0.0000 
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0.0000 
0.0000 
1.0000 

Thus, a negligible error in the input may result in a large error in the output. 
Please note that this is due to the structure of the matrix itself, even though it 
is not singular. We are facing a difficulty with the conditioning of the problem 
itself, not with stability. Indeed, we can try to figure out what's happening 
analytically. The error vector dx satisfies the system of equations: 

6x1 - 6x2 - 6x3 - . . . - 6xn = 0 

6x2 - 6 2 3  - . . . -  6xn = 0 

6x3 - . . .  -6x, = 0 

6xn-1-6xn = 0 

6xn = E .  

By backsubstitution we see 

In fact, 

>> cond(A, inf) 
ans = 

10485760 
>> 2-18 
ans = 
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262144 
>> 0.00001 * 2-18 
ans = 

2.6214 

3.2.3 

Direct methods for solving linear equations are based on the idea of trans- 
forming the matrix into a suitable form. Example 3.8, among other things, 
shows that if the matrix is in upper triangular form, we may immediately find 
the last unknown x, and then the other ones by backsubstitution. Let us 
make the approach explicit for a system 

Direct methods for solving systems of linear equations 

A x = b  

where A is an upper triangular matrix: 

~11x1 + ~ 1 2 x 2  + * * * + alnxn = bl 

~ 2 2 x 2  + * * * + a2nxn = b2 

. - .  . - .  
annxn = b,. 

Backsubstitution starts from the last variable xn and proceeds backwards as 
follows: 

Now we should come up with a systematic method to transform a linear 
system of equations into an equivalent triangular form. Gaussian elimination 
is such a procedure. In principle, the idea is rather simple; we must form linear 
combinations of equations in order to eliminate some coefficients from some 
equations. Since combining equations linearly does not change the solution, 
the resulting system is equivalent to the original one. Starting from the system 
in the form 
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we may try to obtain a column of zeros under the coefficient a l l .  This is the 
first step in getting an equivalent triangular system. For each equation (Ek) 
( I c  = 2 , .  . . , n) ,  we must apply the transformation 

which leads to the equivalent system: 

Now we may repeat the procedure to obtain a column of zeros under the 
coefficient a;;’, and so on, until the desired form is obtained, allowing for 
backsubstitution. 

Example 3.9 Consider the following system: 

1 2 1  

-1 -3 0 

It is convenient to represent the operations of Gaussian elimination on an 
augmented matrix: 

-1 -3 0 2 0 - 1 1 2  

From this it is easy to get z3 = 1, 2 2  = -1, and 2 1  = 1. 0 

We will not quantify exactly the number of operations needed for the overall 
procedure, but it is evident that the algorithm has a quantifiable computa- 
tional complexity, which is of order O(n3) for a system of order n. 

Actually, what we have explained is only the starting point of Gaussian 
elimination, as many things may go wrong with this naive procedure. A first 
point is that we must have all  # 0 to carry out the first step of the Gaussian 
elimination; by the same token, we must have a;:) # 0, and so on. Fortunately, 
if the original system is non-singular, this may be accomplished by a suitable 
permutation of variables (columns) or equations (row). 

Example 3.10 Consider the matrix 
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If we try Gaussian elimination to get rid of element a32 = 1, we are in trouble 
since a22 = 0. However, to avoid the difficulty, we may simply swap the 
second and the third equation. Formally, permutations may be represented by 
suitable matrices, called permutation matrices, characterized by the following 
properties: 

0 All elements are either 0 or 1. 

0 For each row, one element is equal to 1. 

0 For each column, one element is equal to 1. 

As an example, consider 

We may check the effect on matrix A: 

1 0 0  5 1 4  5 1 4  

There is another reason why Gaussian elimination should include the pos- 
sibility of swapping rows or columns: Some care is needed to minimize the 
effects of finite precision arithmetic. We have seen in example 3.1 that sub- 
traction is a potentially dangerous operation, because of the potential loss of 
significance. Suitable row and column permutations may help in keeping the 
trouble to a minimum; such operations are called pivoting. Scaling the size 
of the coefficients may be used, too. These points are well treated in any 
numerical analysis book, and the details are beyond the scope of this one. 

There are alternative ways to see Gaussian elimination. A compact rep- 
resentation is obtained if we see Gaussian elimination as a way of factoring 
the matrix A into the product of a lower triangular matrix L and an upper 
triangular matrix U. More precisely we have 

PA = LU, 

where P is a permutation matrix which may be necessary or advisable to 
introduce for the above-mentioned reasons. We may try to understand, at 
least intuitively, where the above factorization comes from. The permutation 
matrix P corresponds to the pivoting operations; if pivoting is not required 
for a matrix, then this matrix can be neglected. The upper triangular matrix 
U corresponds to the end result of Gaussian elimination we just described. 
The lower triangular matrix L corresponds to the transformations we must 
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carry out to obtain the equivalent system in upper triangular form. These 
transformations are linear combinations of rows, which can be obtained by 
multiplying the original matrix by suitable elementary matrices; the matrix 
L is linked to the product of these elementary matrices. This factorization is 
called L U-decomposition. 

Example 3.11 LU-decomposition is obtained in MATLAB by calling the 
l u  function with a matrix argument. 

>> A = [I 4 -2 ; -3 9 8; 5 1 - 6 1 ;  
>> [L,U,PI  = l u ( A )  
L =  

1.0000 0 0 

-0.6000 1.0000 0 
0.2000 0.3958 1.0000 

U =  

5.0000 I .  0000 -6.0000 
0 9.6000 4.4000 
0 0 -2.5417 

P =  
0 0 1 
0 1 0 
1 0 0 

With such a factorization, solving a system like Ax = b is equivalent to 
solving the two systems 

Ly = Pb 

ux = y 

in cascade. 

>> b = [1;2;31; 
>> x = A\b 

1.0820 
0.1967 
0.4344 

x =  

>> x = U \ ( L \ (P*b)) 
x =  

1.0820 
0.1967 
0.4344 
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7, TryLU.m 
N=2000; 
A=rand(100,100) ; 

t i c  
for i=1:1000 

b=rand(100,1); 
x=A\b; 

end 
t o c  

t i c  
[L,U,Pl = lu(A); 
for i=1:1000 

b=rand(100,1); 
x=U\ (L\ (P*b) 1 ; 

end 
t o c  

Fig. 3.2 Script to check the advantage of using LU decomposition. 

LU-decomposition may be advantageous when it is necessary to solve a sys- 
tem repeatedly with different right-hand sides, as it occurs in the solution of 
certain PDEs by finite difference methods. In order to  appreciate the point 
immediately, let us try a little experiment by running the MATLAB script in 
figure 3.2. In the example we generate a randomg matrix of order n = 2000 
and then solve 1000 systems with randomly generated right-hand sides. We 
may compare the CPU time with standard Gaussian elimination (cold start) 
and LU decomposition (warm start): 

>> TryLU 
Elapsed time is 0.904283 seconds. 
Elapsed time is  0.096623 seconds. 

Basically, with LU decomposition we obtain the same advantage we would 
have with matrix inversion, without all of its potential numerical difficulties. 

LU-decomposition takes a special form when applied to symmetric positive 
definite matrices; such matrices occur in many optimization problems, and a 
typical example is a covariance matrix. If A is a symmetric positive definite 
matrix, it can be shown that there exists a unique upper triangular matrix 

'The function rand generates a pseudo-random variable in the interval (0,l) .  It will be 
used extensively for Monte Carlo simulation. 
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U such that A = U'U; this is called Cholesky factorization." Cholesky 
factorization may be a suitable alternative to the usual Gaussian elimination 
for special matrices. 

Example 3.12 The Cholesky factorization is computed in MATLAB by the 
chol function. For instance, let us define a matrix and check that it is positive 
definite, by verifying that its eigenvalues are positive: 

> > A = [ 3 1 4 ; 1 5 3 ; 4 3 7 1  
A =  

3 1 4 
1 5 3 
4 3 7 

>> eig(A1 
ans = 

0.3803 
3.5690 
11.0507 

Given a known term b, we may factor A and solve the system. 

>> b=(l : 3) ' ; 
>> U=chol(A) 
U =  

1.7321 0.5774 2.3094 
0 2.1602 0.7715 
0 0 1.0351 

>> U \ (U' \ b) 
ans = 

-1.0000 
-0.0000 
1.0000 0 

In chapter 4 we will see that the Cholesky factorization is also useful when we 
have to simulate random variables with a multivariate normal distribution. 

3.2.4 Tridiagonal matrices 

In certain applications, the matrix of a system of linear equations has a very 
specific form. One such case is the tridiagonal matrix, which may occur in 
the solution of option pricing problems by PDEs. A tridiagonal matrix has 

' O h  many texts, a lower triangular matrix L is considered, and the factorization is written 
as A = LL'. It is easy to see that the two definitions are actually equivalent. We will stick 
to this one, since the MATLAB function chol returns an upper triangular matrix. 
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the following form: 

A =  

0 
0 
0 

... all a12 0 0 0 
a21 a22  a23 0 0 
0 a32 a33 a34 0 

0 . . .  . . .  
0 . . .  ... 
0 . . .  . . .  

. . .  

. . .  

an-Z,n-3 an-2,n-2 an-2,n-1 0 
0 an-1,n-2 an-2,n-1 an-1,n 

0 0 an,n--l ann 

This matrix has a banded form, and it is sparse; i.e., it has few non-zero 
entries. Without loss of generality, assume that ai,j+l # 0. If aj,j+l = 0, it is 
easy to see that the original system may be decomposed into two subsystems, 
since in such a case we have an upper block of lower triangular form. We may 
solve the system by a specially structured direct method. Consider the first 
equation: 

a l l x l  + a1222 = b l .  

We may solve for 52, in terms of X I :  

where c2 = b l / a l z  and d2 = -a11/a12. By the same token, we may obtain an 
expression of 23 in terms of X I .  In fact, given the second equation 

we may express 23 as a function of 21 and 2 2 .  But since we know xg as a 
function of XI, we may get an expression of the form 

23 = ~3 + d 3 ~ 1 .  

Going on the same way for all equations up to the (n - 1)th one, we obtain 
expressions like X k  = Ck + d k x l ,  for all k = 2 , .  . . , n. Finally, plugging the 
expressions for xn- l  and x n  into the last equation, we end up with 

a n , n - ~ x n - l  + annxn = an,n-~(cn- l  + d , - l x l )  + ann(cn + & X I )  = b,, 

which yields XI, and, by substitution, all the other unknowns. The approach 
may be adapted in the case of similar banded matrices. It is also worth noting 
that memory savings may be obtained by storing only the non-zero matrix 
entries. 

3.2.5 

In many situations we must solve a large system of linear equations, charac- 
terized by a sparse matrix. PDEs are a typical source of such systems, but 

Iterative methods for solving systems of linear equations 
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there are others, such as computing the long-term probability distribution of 
some discrete-state, discrete-time stochastic systems (Markov chains). Stor- 
ing a sparse matrix is a waste of memory, since many entries are zero; special 
techniques have been developed to avoid the problem. However, applying a 
direct method such as Gaussian elimination to  a sparse matrix may destroy its 
characteristic. So we may try a different approach. One possibility is an iter- 
ative method, generating a sequence of vectors that converges to the solution 
desired. The process may be stopped when a reasonable accuracy has been 
achieved. Note that, unlike direct methods, the number of steps required by 
an iterative algorithm is not known a priori, and its behavior should be char- 
acterized in terms of convergence speed, along the lines illustrated in section 
3.1.3. The first issue to consider is how to characterize the conditions under 
which an iterative method converges; in fact, the method could simply blow 
up due to instability, giving rise to an unbounded sequence. 

Here we illustrate the basic iterative approaches described in any numerical 
analysis text. It is worth emphasizing that MATLAB has efficient capabilities 
to represent sparse matrices and provides the user with a rich set of iterative 
methods, which are much more sophisticated than the ones we describe here. 
Nevertheless, we believe that the background behind relatively simple itera- 
tive methods will be a useful reading, for a t  least a couple of reasons. On the 
one hand, they have been proposed in the literature on financial engineering to 
solve PDEs (see, e.g., [20, pp. 895-9011 for a comparison of LU-decomposition 
and successive overrelaxation in option pricing). Second, in chapter 5 we inves- 
tigate the numerical stability of finite difference methods for solving PDEs, 
using the same concepts we use here to study the convergence of iterative 
methods. 

Iterative schemes are one possible approach when the fixed point of an 
operator is needed. Consider a generic operator G(.)  and assume that you 
want to find a fixed point of G ,  i.e., a point satisfying the equation 

x = G(x). 

A possible approach is to generate a sequence of approximations of the solu- 
tion, according to the iteration scheme 

(3.3) X(k+l)  = G(x(k)) 

starting from some initial approximation x(O). This approach, called fixed- 
point iteration, may be used for both linear and non-linear equations, and for 
many other problems as well. Now the question is if and when this scheme 
will converge to a fixed point of G.  The general answer lies in the contraction 
mapping concept, which is widely applied in many diverse settings. To keep it 
simple, let us investigate the idea in the case of the familiar system of linear 
equations Ax = b, which can be rewritten as 

x = (A +I)x - b = AX - b. 
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We want to find a fixed point of the operator G ( x )  = Ax - b, and we could 
consider the iterative approach (3.3). Would such a scheme converge? To be- 
gin with, consider starting from a first guess x(O), and trace the first iteration 
steps: 

x(l) = Ax(o) - b 
~ ( 2 )  

x(3) = A3x(0) - A2b - Ab - b 
= Ax(1) - b = A2x(0) - Ab - b 

. . .  

Intuition suggests that if the elements of the matrix An grow without bound 
as n .--t 00, the iteration scheme will diverge. Indeed, it can be shown that 
convergence will occur only if all the eigenvalues of A have an absolute value 
less than 1 (see below). Since this may well not be the case for an arbitrary 
system of equations, it is better to take a slightly different approach and split 
the matrix A as follows: 

A = D + C ,  

which yields an equivalent system 

DX = -CX + b. 

Then we may apply the iteration scheme 

d ( k )  = -Cx(k) + b  

(3.4) Dx(k++') = d(k) 

in order to generate a sequence of approximations x ( ~ ) .  In some sense, this 
is a generalization of the previous fixed-point approach, but the flexibility 
in choosing D may be exploited to improve convergence. To investigate the 
convergence issue further, we may write, as before, 

X ( k + l )  = -D-lCx(k) + D-lb 

Letting B = -D-'C = I - D-lA, we may check how the absolute error 
e(k) = x* - x ( ~ )  evolves, where x* is the correct solution: 

e(k+l) = x*-x('+l) = (Bx*+D-lb)-(Bx(k)+D-lb) = B(x*-x(k)) = Be(k)  

from which it is easy to see that 

lim e(') = lim Bke('). 
k-co k-co 

It can be shown that 
lim B~ = o 

k-co 
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if and only if the spectral radius of B is strictly less than 1, i.e., if all of its 
eigenvalues have an absolute value less than 1. This implies that the approach 
will converge if and only if 

P(I - D - ~ A )  < 1. 

To verify this condition, we should compute the eigenvalues of a possibly large 
matrix (actually, only the largest one in absolute value is needed). We may 
avoid this trouble by recalling that 

for any matrix norm compatible with a vector norm. Hence, we may settle 
the convergence question, in the sense of characterizing sufficient but not 
necessary conditions for convergence, by considering easily computable matrix 
norms such as 11 B ( ( 1  or 11 B [loo. From a practical point of view, the whole 
approach makes sense only if solving the linear equation (3.4) is easy. By a 
proper choice of D, we obtain the methods described in the following. 

Jacob; method A particularly convenient choice for D is a diagonal matrix: 

which is easily inverted provided that aii # 0; this condition may be obtained 
by proper row/column permutations if A is non-singular. Choosing L ,  norm, 
we obtain a sufficient condition for convergence: 

j#i  

which actually boils down to diagonal dominance, i.e., 

n 

j=1 
j #i 

To implement the method, we must rewrite the initial equations as 

1 

aii 
, i = l ,  ..., 12, 
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function [x, il = Jacobi (A, b ,xO, eps ,MaxIter) 
dA = diag(A); 
C = A - diag(dA); 
Dinv = diag( 1. /dA) ; 
B = - Dinv * C; 
bl = Dinv * b; 
oldx = x0; 
for i=l:MaxIter 

X get elements on the diagonal of A 

x = B * oldx + bl; 
if norm(x-oldx) < eps*norm(oldx) break; end 
oldx = x; 

end 

Fig. 3.3 Implementation of the Jacobi iterative method. 

which leads immediately to  the iteration scheme 

The iterations should be stopped when a satisfactory precision has been 
achieved. One possible condition to  check is related to relative error. Having 
specified a tolerance parameter E ,  we could stop the algorithm when 

1 1  X@+l) - X@) I /< E 1 1  11 . 

Example 3.13 Jacobi method is easily coded in MATLAB, as illustrated 
in figure 3.3. Input arguments are matrix A and vector b of course, an 
initial approximation XO, convergence parameter E ,  and maximum number of 
iterations. The implementation is based on vector and matrices as preferred 
in MATLAB. Note the twofold use of the diag function; given a matrix, it 
yields the vector of its elements on the diagonal ; given a vector, it builds a 
matrix with the elements of the vector on the diagonal. 

To check jacobi, we may use the script of figure 3.4. Note that the first 
matrix is diagonally dominant; the second one is too, but to a lesser extent; 
the third one is not diagonally dominant. In the script, we compare the 
solution we get from the iterative method with the “correct” one obtained 
by Gaussian elimination; iterations are stopped after at most 10,000 steps. 
Please also note the use of the format string in fprintf (see online help). 
This is the output of the script. 

Case of matrix 
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% ScriptJacobi 
A 1 = [ 3 1 1 0 ;  1 5 - 1 2 ;  1 0 3 1 ; 0 1 1 4 ] ;  
A2 = [2.5 1 10; 14.1 -1 2; 1 0  2.1 1; 0 1 12.11; 
A3 = [2 1 1 0 ;  1 3.5 -1 2; 1 0 2.1 1; 0 1 1 2.11; 
b = [l 4 -2 11’; 

exactl = Al\b; 
[xl ,ill = Jacobi(Al,b,zeros(4,1) ,le-08,10000); 
fprintf(1, ’Case of matrix\n’); 
disp(A1) ; 
fprintf(1, ’Terminated after %d iterations\n’, 11); 
fprintf(1, ’ Exact Jacobi\n’); 
fprintf(1, ’ 2 -10.5g % -10.5g \n’, [exactl’ ; ~1’1); 

exact2 = A2\b; 
[x2, i2] = Jacobi (A2 ,b, zeros (4,l) , le-08,10000) ; 
fprintf(1, ’\nCase of matrix\n’); 
disp(A2) ; 
fprintf(1, ’Terminated after %d iterations\n’, i2); 
fprintf(1, ’ Exact Jacobi\n’) ; 
fprintf(1, ’ % -10.5g % -10.5g \n’, Cexact2’ ; ~2’1); 

exact3 = A3\b; 
[x3,i3] = Jacobi(A3,b,zeros(4,1) ,le-08,10000) ; 
fprintf(1, ’\nCase of matrix\n’); 
disp(A3) ; 
fprintf(1, ’Terminated after %d iterations\n’, i3); 
fprintf(1, ’ Exact Jacobi\n’) ; 
fprintf(1, ’ % -10.5g % -10.5g \n’, Lexact3’ ; ~3’1); 

Fig. 3.4 Script to check jacobi .m. 
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3 1 1 0 
1 5 -1 2 
1 0 3 i 
0 1 1 4 

Terminated a f t e r  41 i t e r a t i o n s  
Exact Jacobi 
0.55556 0.55556 
0.32407 0.32407 

-0.99074 -0.99074 
0.41667 0.41667 

Case of matrix 
2.5000 1.0000 1.0000 
I .  0000 4.1000 -1.0000 
I .  0000 0 2.1000 

0 1.0000 1.0000 
Terminated a f t e r  207 i t e r a t i o n s  

Exact Jacobi 
3.1996 3.1996 

-2.7091 -2.7091 
-4.2898 -4.2898 
3.809 3.809 

Case of matrix 
2.0000 1.0000 1 * 0000 
1.0000 3.5000 -1.0000 
1.0000 0 2.1000 

0 1.0000 1.0000 

0 
2.0000 
1.0000 
2.1000 

0 
2.0000 
1.0000 
2.1000 

Terminated a f t e r  10000 i t e r a t i o n s  
Exact Jacobi 

-42.808 1.6603e+027 
47.769 -1.8057e+027 
38.846 -1.5345e+027 

-40.769 1.5812e+027 

We see that convergence is faster in the first case than in the second, and 
that divergence occurs in the third case. This is no surprise, if we check 
the degree of diagonal dominance, but we should note that lack of diagonal 
dominance does not necessarily imply divergence. The reader is urged to  
check the spectral radius of matrix B in the three cases: 

p(B1) = 0.6489, p(B2) = 0.9257, p(B3) = 1.0059. 

It may also be interesting to check the speed of convergence by plotting the 
norm of relative error with respect to  the true solution. To this aim we modify 
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function [x,i] = JacobiBIS(A,b,xO,eps,MaxIter) 
TrueSol = A\b; 
aux = norm(TrueSo1); 
Error = zeros (MaxIter ,1) ; 
dA = diag(A); 
C = A - diag(dA); 
Dinv = diag(1 ./dA) ; 
B = - Dinv * C; 
bl = Dinv * b; 
oldx = x0; 
for i=l:MaxIter 

% get elements on the diagonal of A 

x = B * oldx + bl; 
Error(i) = norm(x-TrueSol)/aux; 
if norm(x-oldx) < eps*norm(oldx) break; end 
oldx = x; 

end 
plot(l:i,Error(l:i)) 

~ ~ 

fig. 3.5 Modifying Jacobi to plot residual. 

% ScriptJacobiBIS 
A 1 = [ 3 1 1 0 ;  1 5 - 1 2 ; 1 0 3 1 ; 0 1 1 4 1 ;  
A2 = C2.5 1 10; 14.1 -1 2; 1 0  2.1 1; 0 1 12.11; 
A3 = [2 1 10; 13.5 -1 2; 1 0  2.1 1; 0 1 12.11; 
b = [l 4 -2 11’; 
hold on 
[xl,il] = JacobiBIS(Al,b,zeros(4,1),le-08,10000); 
pause (3) ; 
[x2,i2] = JacobiBIS(A2,b,zeros(4,1),le-08,10000); 
pause (3) ; 
[x3,i3] = JacobiBIS(A3,b,zeros(4,1), le-08,10000) ; 
pause(3) ; 
axis(C1 100 0 21) 

Fig. 3.6 Script t o  tun JacobiBIS 

jacobi and the relative script as shown in figures 3.5 and 3.6. The resulting 
plot is displayed in figure 3.7. 

We see how important the spectral radius of matrix B is. In fact, later we 
discuss methods aimed at shifting its eigenvalues to speed up convergence. 

0 
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Fig. 3.7 Error in Jacobi method. 

Gauss-Seidel method The Gauss-Seidel method is a variant of the Jacobi 
method. The idea is to use the updated values of xik+')  immediately, as soon 
as they are computed. The iteration scheme is therefore 

i-1 n 
b, - C aij x j  ( k + l )  - c a i j x j  (k) 

(3-5) 
j=i+l 

$ + I )  = j = 1  , i =  1 ,..., 72. 
aii 

To analyze convergence of this method, we may note that this corresponds to 
choosing as D the lower triangle of A: 

a11 0 0 * . .  0 
a 2 2  0 

D =  [ "i a:: ' I '  ] . 
Then it can be shown that diagonal dominance is again a sufficient condition 
for convergence: 

an1 an2 an3 * * *  ann 

Speeding up convergence: successive overrelaxation Consider the iteration 
scheme 

X ( k + l )  = Bx(k) + d. 
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Since we move from the current point x ( ~ )  to the updated point x(lC+l), we 
may think of it as the addition of a displacement to the old approximation: 

,(k+l) = ,(k) + 

Even though this method will converge if p(B) < 1, convergence will be slow 
if the spectral radius of B is close to 1 (see example 3.13). We could try to 
speed up convergence by modifying the iteration: 

Intuitively, if d k )  is a good direction, we might think of accelerating the 
movement by setting w > 1. We must make sure that a poor choice of w does 
not lead to instability. On the other hand, if the starting iteration is itself 
unstable, we might think that the difficulty stems from moving "too much" 
along the directions d'), which leads to oscillations and instability. In this 
case, we might think of dampening the oscillations with a suitable modification 
of the iteration scheme. To pursue this dampening, we may form a convex 
combination" of the new and the old point as follows: 

j p + U  = w X ( k + l )  + (1 - w)x(w 
= u ( B x ( ~ )  + d) + (1 - w ) x ( ~ )  = B , x ( ~ )  + wd. (3.6) 

This is actually a convex combination if w E (0,l) .  It is worth noting that 
it looks like common exponential smoothing methods for time series analysis, 
where the aim is just to dampen oscillations in the estimates. The iterative 
scheme is stable if p(B,) < 1. Moreover, by a suitable choice of w ,  the spectral 
radius will be reduced, with a corresponding improvement in convergence 
speed. 

The reasoning above suggests that we may try to pursue modifications of 
the iterative approaches we have just described. For instance, we may try 
the idea on the Gauss-Seidel scheme. We may replace (3.5) by the following 
iteration: 

In order to analyze the effect of this modification, let us rewrite the Gauss- 
Seidel scheme in a compact form, based on the following decomposition of 
A: 

A = L + D + U ,  

"A convex combination of two points x1 and x2 is just a particular linear combination 
with nonnegative weights, such that their sum is 1: Ax1 + (1 - X)xz for X E (0, I]. 
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where 

0 0 . . .  0 0  
0 0 . . .  0 0  

0 ... 0 0  a32 

0 0 0 an-1,n-1 0 
0 0 0 . . .  0 ann 

a3,n-1 a3n 0 ... 
u =  I 0  0 

With this notation, the modified Gauss-Seidel scheme may be rewritten in 
matrix form as 

z ( k + l )  = D-l(b - Lx(k++l) - UX(k)) 

#+l) = w z ( k + l )  + (1 - W)X(k)*  

Eliminating z (~+ ' )  and rearranging yields 

(I + wD-'L)x(~+') = [ ( l -  w ) I  - uD-'U]X(~) + wD-'b, 

which will be stable if 

p ((I + wD-lL)-l[(l - w ) I  - wD-lU]) < 1. 

This method is called SOR (Successive OverRelaxation) and by proper selec- 
tion of the parameter w ,  we may reduce the spectral radius of the matrix, 
thus improving convergence. 

Example 3.14 Figure 3.8 shows a possible implementation of successive 
overrelaxation, based on the Gauss-Seidel scheme. We may try to see the 
effect on convergence on the second matrix of example 3.13, which took 207 
steps to converge with the Jacobi method. We do so by plotting the number 
of iterations needed for convergence as a function of different values of w in 
the interval [0,2], which is obtained by running the script of figure 3.9. We 
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function [x, k] = SORGaussSeidel(A, b,xO, omega, eps,MaxIter) 
oldx = x0;  
x = xo; 
N = length(x0); 
omega1 = l-omega; 
for k=l:MaxIter 

for i=l:N 
z = (b(i) - sum(A(i, (l:i-l))*x(l:(i-l))) . . . 

- sum(A(i,(i+l):N)*x((i+l):N))) / A(i,i); 
x(i) = omega*z + omegal*oldx(i); 

end 
if norm(x-oldx) < eps*norm(oldx) break; end 
oldx = x; 

end 

Fig. 3.8 Implementation of SOR modification of Gauss-Seidel method. 

X ScriptSOR 
A2 = r2.5 1 1 0 ;  14.1 -1 2; 1 0  2.1 1; 0 1 12.11; 
b = [l 4 -2 11’; 
omega = 0:0.1:2; 
N = length(omega1; 
NumIterations = zeros(N,l); 
for i=l:N 

[x,k] = SORGaussSeidel(A2,b,zeros(4,1) ,omega(i) ,le-08,1000); 
NumIterations(i) = k; 

end 
plot (omega, NumIterations) 
grid on 

Fig. 3.9 Script to check SOR modification of Gauss-Seidel method. 

get the plot in figure 3.10. This shows the impact of w on speed of conver- 
gence. Actually] when the number of iterations exceeds the limit, we have 
divergence] since by playing with the relaxation parameter a stable case may 
result in instability and vice versa. With w = 1, we have the standard Gauss- 
Seidel approach, which requires 117 iterations; the best result, 49 iterations, 
is obtained with w = 1.4. 0 

This example shows that finding the right value of the relaxation parameter is 
far from trivial, and in fact it is subject of quite some literature. For specific 
applications, there are strategies to estimate a good value for w. By the way, 
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Fig. 3.10 Number of iterations in modified Gauss-Seidel as a function of the relaxation 
parameter w. 

the careful reader may wonder why in 3.10 we considered values of w in the 
range [0,2]. In fact, it can be proved that this acceleration method cannot 
converge for values of w outside this interval. Finally, looking at  equation 
(3.6) we may also guess why the method is actually called under-relaxation 
when w < 1, and overrelaxation when w > 1. 

The conjugate gradient method In MATLAB you will not find either Jacobi or 
Gauss-Seidel functions, as they are just the basic iterative methods to solve 
systems of linear equations. Some functions are related to an apparently 
weird approach to  solving such systems, i.e., the solution of an optimization 
problem. In fact, solving the system Ax = b is equivalent to solving the 
optimization problem: 

min 11 Ax - b ( I 2 ,  
X 

where we are using Euclidean norm. Clearly, the objective function cannot 
be negative, and it will be zero for the solution of that system of equation 
(assuming it is unique). We may make the objective function more explicit: 

1 1  AX - b = (AX - b)’(Ax - X) = (x’A’ - b’)(Ax - b) 
= x’A’Ax - 2b’Ax + b’b, 

where the last term is actually irrelevant, as it is constant. We will see in 
chapter 6 that this is a quadratic programming problem (much like risk min- 
imization in mean-variance portfolio optimization), and it can be solved by a 
number of ways. The most general approach, as we will see, is based on the 
gradient of the objective function, which yields a search direction to maximize 
or minimize its value. 
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In general, there is no advantage in using this approach, but for the case of 
a symmetric positive definite matrix, it can be shown that solving the system 
of equations is equivalent to the following problem: 

1 
2 

min -x’Ax - b’x. 

The conjugate gradient method is based on a peculiar set of search directions, 
such that in theory the method would converge in a number of steps given 
by the order of the matrix. Hence, the method could be classified as a direct 
method. In practice, due to roundoff errors, this property does not hold and 
the method is considered as iterative. With recent improvements, conjugate 
gradient methods have become quite competitive for problems with specific 
structure. Such a structure occurs quite often in the numerical solution of 
PDEs. 

3.3 FUNCTION APPROXIMATION AND INTERPOLATION 

There are several reasons why we need the ability to approximate a function. 

Sometimes, we know an expression of the function, but it is impossible 
or expensive to evaluate. A typical example is the standard normal 
distribution function 

/x e-y2/2 dy.  
1 

N ( 2 )  = - 
-m 

which occurs in the Black-Scholes pricing formula. 

More generally, we may be able to evaluate the function itself, but we 
need something different, like the integral of the function. An approxi- 
mation of the original function may be easier to integrate. 

Finally, there are situations in which the function is known or computed 
only at  a discrete set of points (nodes), and we would like to find a 
suitable function which takes the same value (or a close one) a t  those 
nodes but can be evaluated outside this set. 

In some cases, it is enough to find a local approximation, in the neighborhood 
of a given point 50, in which case a Taylor expansion would suffice: 

f(2) M f ( 2 o )  + f’(zo)(z - 20) + $’(zo)(z 1 - d2 + . . . . 

We have seen such an idea in the duration-convexity approximation used for 
bond portfolio immunization and the delta-gamma approximation used with 
derivatives (see examples 2.10 and 2.24 on pages 59 and 113, respectively). 
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In this section, however, we are interested in an approximation valid over an 
extended range of values of the independent variable. 

Another criterion to classify approximation methods is based on the gen- 
erality of the approach. In the case of the cumulative function for the normal 
distribution, we may look for some ad hoc approximation. In other cases we 
look for more general strategies based on classes of approximating functions. 
A possible choice for the class of approximating functions is represented by the 
class of polynomials of given degree m; let Pm(z; a )  denote such a polynomial, 
with coefficients represented by the vector a. One reason behind this choice is 
that polynomials are continuous functions, as well as their derivatives, which 
lend themselves to easy differentiation and integration. One possible metric to 
select the best approximation is the least squares approximation, whereby we 
try to minimize the average square deviation of the approximating function 
from f on a set of selected points zi, for which we know the value f(zi). The 
approximation problem can be stated as 

n 

Different objective functions could be used, basically corresponding to differ- 
ent ways of measuring the norm of the vector of the approximation errors. 
Another typical choice is the “min-max” metric, which is based on the )I . lloo 
norm: 

Sometimes, it is very useful to  take a slightly more explicit view of function 
approximation. What we usually try to find, given a function f(x), is a 
suitable approximation expressed as a linear combination of a set of basis 
functions. If we consider a set of m basis functions &(x), j = 1,. . . , m, we 
want something like 

m. 

j = 1  

The basis functions may be polynomials, but there are alternatives. Finding 
the approximation means finding the m coefficients cj in the linear combina- 
tion. In function approximation by least squares, we have a set of n nodes 
at which we know the value of the function, and n > m. In this case, we 
have too few degrees of freedom, and we cannot enforce an exact match. In 
other words, we would like to find the approximation by solving a set of linear 
equations like 

m 

CCj4j(ZI) =f(zi), i =  l , . . . , n  
j = 1  

or, in compact form, 
9 c  = y, (3.7) 
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where yi = f ( x i )  and 4ij = 4j(zi). Unfortunately, if n > m the system is 
overdetermined and it cannot be solved. What we can do is finding the least 
squares approximation, which requires the minimization of the sum of squared 
residuals ei,  where 

m ... 

ei = f(xi) - C cj$j(zi), i = 1,. . . , n. 
j=1 

Using relatively straightforward calculus, we can show that the least squares 
solution is 

c = (+'+)-1*'y. 

If, however, the number of nodes and the number of basis function is the same, 
m = n, then we may be able to find an exact match of the function values a t  
nodes. We find the solution by enforcing the interpolation conditions: 

m 

3=1 

This process is called function interpolation and, within this framework, it 
leads to the solution of a system of linear equations. The following example 
will illustrate the difference between approximation and interpolation. 

Example 3.15 Say that we want to approximate/interpolate an increasing 
concave function, such as log(x). We are given a set of five nodes, which may 
be plotted as follows: 

>> xdata = [I 5 10 30 501; 
>> ydata = log(xdata1; 
>> plot (xdata,ydata, '0') 
>> hold on 

resulting in the plot of figure 3.11 We may try fitting a second-order polyno- 
mial, ax2 + bx + c. Note that this may correspond to selecting basis functions: 

41(z) = 1, 4 2 ( . )  = 2, 43(x) = 2. 
This choice is referred to as the monomial basis, but a different set of poly- 
nomials could be used. Polynomial fitting, in the least squares sense, can be 
accomplished by the MATLAB polyf it function: 

>> p = polyfit(xdata,ydata,2) 
P =  

>> xvet=l:0.1:50; 
>> plot (xvet ,polyval(p,xvet)) 

This snapshot produces the plot in figure 3.12. The 
mial does not really pass through the data point, but 

-0.0022 0.1802 0.3544 

approximating polyno- 
this is expected, as the 



176 BASICS OF NUMERICAL ANALYSIS 

Fig. 3.11 Data points (nodes) for example 3.15. 

I 2  I 

' 0  5 10 15 20 25 30 35 40 45 

Fig. 3.12 Fitting a second-order polynomial in example 3.15. 

number of nodes is larger than the set of coefficients in the polynomial. The 
trouble may be that, even if the fit is good, the approximating function is not 
monotonically increasing. If the logarithm is actually a utility function, we 
would require an increasing approximation which shows non-satiation. Since 
using a second-order polynomial is not that satisfactory, we could try increas- 
ing the order of the polynomial. We have five data points, and a fourth-order 
polynomial may result in exact polynomial interpolation. Note that the order 
of the polynomial is one less the number of nodes. To remember this, think 
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0 5 10 15 20 25 30 35 40 45 50 

-1 ' 

Fig. 3.13 Interpolation in example 3.15. 

that there is one line (polynomial of order one) passing through two points. 
This is also easily accomplished in MATLAB: 

>> p = polyfit(xdata,ydata,4) 
P =  

>> plot (xvet ,polyval(p,xvet)) 

and we get the plot in figure 3.13. Now we do pass through the data points, 
which is nice, but there are spurious oscillations and the approximating func- 
tion is neither concave nor increasing, which is certainly bad for a utility 
function. In finance, we could have similar trouble when we try to define a 
term structure of interest rates fitted on the basis of a limited set of bond 
prices. Hence we see, that polynomial approximation and interpolation is not 

-0.0000 0.0017 -0.0529 0.6705 -0.6192 

that trivial. 0 
Function interpolation and approximation is a vast sub-field of numerical anal- 
ysis. In the next sections we will just cover the essentials: an example of ad 
hoc methods is given in section 3.3.1; straightforward polynomial interpola- 
tion is the topic of section 3.3.2; cubic splines are introduced in section 3.3.3; 
section 3.3.4 deals with least squares approximation a t  a more general level. 
We should also mention that the methods we illustrate here can be extended 
to multivariate cases. 

3.3.1 Ad hoc approximation 

In this section we consider an example of ad hoc approximation by a rational 
function. While polynomials enjoy nice characteristics, sometimes approxi- 
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function z = mynormcdf(x) 
c = [ 0.31938153 , -0.356563782 , 1.781477937 , . .  

gamma = 0.2316419; 
vx = abs(x); 
k = l./(l+gamma.*vx); 
n = exp(-vx.^2./2) ./sqrt(2*pi); 
matk = ones(5,l) * k; 
matexp = (ones(length(x) ,1)*(1:5))’; 
matv = matk.-matexp; 
z = 1 - n.*(c*matv); 
i = find(x < 0); 
z ( i )  = l-z(i); 

-1.821255978 , 1.330274429 1; 

Fig. 3.14 MATLAB code to approximate the cumulative normal distribution. 

mations involving rational functions fit more nicely. For instance, there are 
various approximation formulas that can be used to evaluate the standard 
normal distribution function N ( x ) .  One is the following12: 

1 - N’(x)(alk + a2k2 + ask3 + a4k4 + ask5) 
1 - N (  -x) 

if x 2 0 
if x < 0, 

N ( x )  = 

where 

y = 0.2316419, a1 = 0.31938153 

a2 = -0.356563782, 

a4 = -1.821255978, 

a3 = 1.781477937 

a5 = 1.330274429. 

The MATLAB code for this function is shown in figure 3.14; it is a little 
involved, as we have made sure it can operate on vector arguments (as it should 
be the case with good MATLAB functions). This is not really the formula 
used in the equivalent MATLAB function normcdf, but we may compare the 
two approximations: 

>> normcdf([-1.5 -1 -0.5 0.5 1 1.53) 
ans = 

12This formula is proposed in [9, p. 2481. It is based on approximation 7.1.26 of the error 
function in [I], which in turn refers to  (81. If you have some archaeological instinct, you 
may go further back in time. 
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0.0668 0.1587 0.3085 0.6915 0.8413 0.9332 
>> mynormcdf([-l.5 -1 -0.5 0.5 I 1.51) 
ans = 

0.0668 0.1587 0.3085 0.6915 0.8413 0.9332 

3.3.2 Elementary polynomial interpolation 

We consider here elementary interpolation by polynomials of sufficient degree. 
Let us consider aset  ofsupport points (xi ,  y i ) ,  i = 0 , 1 , .  . ., n, where yi = f ( x t )  
and 2% # xi  for i # j .  It  is easy to find a polynomial of degree (at most) n 
such that P,(xi) = yi for any i. We may rely on the Lagrange polynomials 
Li(x) ,  defined as 

n 

xi - xj 
j = O  
i # i  

Note that these are polynomials of degree n and that 

1 i f i = k  
L i ( x k )  = { 0 otherwise. 

Now an interpolating polynomial can be easily written as 

n 

i = O  

In practice, no one should use this form for computational purposes, and 
some tricks are needed for the sake of computational efficiency, but the idea 
is hopefully clear. 

Example 3.16 We consider here the interpolation of a set of ten data points. 
We may try interpolating them by a polynomial of degree 9: 

>> x=1:10; 
>> y = [8 2.5 -2 0 5 2 4 7 4.5 21; 
>> plot(x,y,’o’) 
>> hold on 
>> x2=1:0.05:10; 
>> p=polyfit(x,y,g); 
Warning: Polynomial is badly conditioned. 

data points or try centering and 
in HELP POLYFIT. 

>> plot (x2,polyval(p,x2)) 

Remove repeated 
scaling as described 

We get some warning from MATLAB, which we disregard for a moment. The 
result is shown in figure 3.15. We may see that the polynomial passes through 
the data set but, unfortunately, we also see that the interpolating polynomial 
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'7 12,  

-6- ' I 
1 2  3 4 5 6 7 8 9 10 

Fig. 3.15 Interpolating a given data set by a polynomial of degree 9. 

has some undesirable oscillation behavior near the end points of the interval. 
This is not surprising: a polynomial of degree n may have up to n zeros, which 
means it may have up to  n - 1 local minima and maxima and oscillations are 
to be expected. 0 

The oscillation of high-degree interpolating polynomials is a typical diffi- 
culty, and there are a few ways to  try overcoming it. One obvious way is to use 
more sophisticated functions, for both approximation and interpolation. But 
actually there is still another basic mistake we are doing in the last example: 
we did a poor choice in selecting nodes. In selecting nodes over an interval 
[a, b ] ,  the natural choice is taking evenly spaced ones: 

This choice may have nasty effects in itself. It turns out that a better choice 
is given by Chebyshev nodes: 

a f b  b - a  
xz = - + -cos (" - + 0.5r) , i = 1,. . .,n. 

2 2 n 

An investigation of why this seemingly odd choice is an improvement over 
a naive placement of nodes goes beyond the scope of this book, but we will 
illustrate the effect with a typical example. 

Example 3.17 We consider polynomial interpolation for a well-known func- 
tion, called Runge function: 

1 
1 + 25x2 
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% RungeScript.m 
1 define inline function 
runge = inline(’l./(l+25*x.*2) ’1; 
1 use equispaced nodes 
EquiNodes = -5:5; 
peq = polyf it (EquiNodes, runge (EquiNodes) ,101 ; 

figure 
plot(x,runge(x)); 
hold on 
plot (x ,polyval(plO,x) 1 ; 
% use Chebyshev nodes 
ChebNodes = 5*cos(pi*(ll - (1:11) + 0.5)/11); 
pcheb = polyfit (ChebNodes,runge(ChebNodes) ,101 ; 
figure 
plot(x,runge(x)> ; 
hold on 
plot(x,polyval(pcheb,x)); 

~=-5:0.01:5; 

Fig. 3.16 MATLAB script for example 3.17 

over the interval [ - 5 , 5 ] .  As we mentioned, a seemingly obvious and natu- 
ral choice is to place equally spaced interpolation nodes, for instance xi = 
-5, -4, - 3 , .  . . , 4 , 5 .  These are eleven nodes, and we may try interpolating by 
a polynomial of degree ten. 

Straightforward interpolation is accomplished by the MATLAB script in 
figure 3.16. Selecting equally spaced nodes results in the first plot, depicted 
in figure 3.17. We see the usual oscillation near the end points, but in this 
case the behavior looks really pathological. The reader is invited to verify 
that increasing the order of approximation only makes things worse. If we use 
Chebyshev nodes, which is done in the second half of the script, we get the 
result in figure 3.18. While the result is not yet satisfactory, a t  least it looks 
a bit less pathological. 0 

Even though choosing Chebyshev nodes helps in the last example, there 
is still something wrong with the quality of the approximation we get by 
interpolating with one high-degree polynomial. Using the right nodes, we 
may try increasing the order of the polynomial, but there is an easier way 
out: using piecewise polynomial functions. A look at figure 3.18 suggests that 
there are regions in which the function is essentially zero, and we should use 
a different approximation there. Using piecewise polynomial interpolation is 
pursued in the next section on splines. 

We close the section here by noting that we have still another issue when 
using simple-minded polynomial interpolation. Consider again the basis func- 
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Fig. 3.1 7 

-0.5 1 
-5 0 5 

nodes. 

Fig. 3.18 Polynomial interpolation for Runge function: Chebyshev nodes. 
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tion framework. If we want polynomial approximation or interpolation, the 
monomial basis (1, x, . . . , xn-l) is the natural choice when selecting basis 
functions. However, this may lead to a badly conditioned matrix @ in equa- 
tion (3.7), along with a few numerical difficulties. In fact, several alternative 
families of polynomials have been proposed to avoid them. Since we men- 
tioned Chebyshev nodes, we should at  least mention in passing Chebyshev 
polynomials, which are recursively defined as follows: 

To(.) = 1 

Ti(x) = X 

T2(x) = 2x2 - 1 

T3(2) = 4x3-3x  

Tn(x) = 2ZT,-l(S) - Tj-2(2). 

. . .  

(3.9) 

3.3.3 Interpolation by cubic splines 

One possible way to avoid oscillating polynomials in function interpolation is 
resorting to low-degree polynomials, interpolating the data points piecewise. 
The simplest idea is to use piecewise linear interpolation. Given the N + 
1 nodes (or knots) (xi, yi), we may use N first-degree polynomials Si(z), 
each one valid on the interval (xi, xi+l). An obvious requirement is that the 
resulting function is continuous, i.e., Si(xi+l) = Si+l (xi+l). Recalling the 
Lagrange polynomials defined in equation (3.8), we have 

This type of interpolation is called l inear spline. Whereas the interpolat- 
ing function is continuous, its derivative is not, which may have undesirable 
consequences. If the data we are interpolating are prices of an asset as a 
function of an underlying factor, non-differentiability prevents the estima- 
tion of sensitivities. If we are approximating a function which must then be 
optimized, as is the case with the value function in dynamic programming, 
non-differentiability is clearly a complication. 

We may enforce the continuity of the derivatives of the spline by increas- 
ing the degree of the polynomials. The most common spline is obtained by 
“joining” N third-degree polynomials Si (x), with coefficients sio, sil, si2, si3, 
which must satisfy the following requirements: 
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Si(xifl) = Si+l (xi+l), i = 0,1 , .  . ., N - 2 

S,’(ZZ+l) = s;+l(xz+l), i = O , l , .  . ., N - 2 

s;/(xi+1) = s;+l (ZZ+l) i = 0,1, . . . , N - 2. 

The resulting spline S ( x )  is called a cubic spline. The condition above re- 
quire continuity for the spline itself and for its first and second derivatives. 
To specify a spline, we must give 4N coefficients. Passage through the sup- 
port points gives N + 1 conditions; the continuity of the spline and the two 
derivatives enforces 3 ( N  - 1) conditions, yielding a total of 4N - 2 conditions. 
Hence, we have two degrees of freedom which may be eliminated by enforcing 
further requirements. Usually, they involve some conditions at, or near, the 
end points x o  and X N .  Among the most common conditions, we recall the 
following ones: 

0 S”(x0) = S”(ZN) = 0,  which leads to  natural splines. 

0 S’(x0) = f’(z0) and S’(ZN) = ~ ’ ( x N ) ,  which may be used if we have a 
precise idea of the behavior of f (x) near the end points. 

0 The not-a-knot condition, which is obtained by requiring that the third- 
order derivative s”’(~) be continuous in x1 and zjv-1. This implies that 
S ( x )  would be a spline for knots x o , x 2 , 2 3 , .  . . , X N - 2 ,  ZN, but it would 
interpolate through x1 and XN-1 too (hence the name). 

We should note that these conditions are symmetric with respect to the end 
points of the interval; actually we could make different choices for the two end 
points. It is also interesting to  note that we have no degree of freedom in linear 
splines; in the case of splines of degree 2, we would have one degree of freedom, 
with a corresponding asymmetry in end points. Despite the appealing name, 
natural splines are usually avoided. Their importance stems from the following 
theorem, which we state without pr00f.l~ 

THEOREM 3.3 Let f“  be continuous in ( a ,  b) and let a = zo < 2 1  < . . . < 
XN = b .  If S is the natural cubic spline interpolating f on  the knots xi, then 

[[S”(z)]’ dx I Jd [f”(x)]’ dx. 
b 

The importance of this theorem can be understood by recalling that the 
curvature of the curve described by the equation y = f (x) is given by 

I f”(5) I . { 1 + f ’ ( x ) 2 } - 3 ’ 2 .  

If f’ is sufficiently small, we see that I f”(x) I approximates the curvature; 
hence, the natural spline is, in some sense, an approximation of minimal 

13See, e.g., [13, pp. 380-3811. 
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1 
1 2  3 4 5 6 7 8 9 10 

fig. 3.19 Interpolating a given data set by a cubic spline. 

curvature over the interval (a, b).  When nothing is known about the function, 
the not-a-knot condition is the recommendable choice; in fact, this is the 
default option in MATLAB. 

To find the unknown coefficients, we have to set up a system of linear 
equations; the details are a bit tedious, and since they are implemented in a 
ready-to-use MATLAB function, they are omitted. Yet it is interesting to note 
that for most choices of free conditions, the resulting system has a tridiagonal 
form like that discussed in section 3.2.4; furthermore, it is symmetric and 
diagonally dominant, hence it is particularly easy to solve. 

Splines are so important that an entire MATLAB toolbox is devoted to  
them. In the base MATLAB system, you have two functions that may be 
used for cubic spline interpolation. One is interpl, provided that you call it 
with the parameter 'spline'; the other one is spline. 

E x a m p l e  3.18 Let us compare the interpolation we obtain for the cases 
we have already discussed in examples 3.16 and 3.17. Running the following 
script, we get the result in figure 3.19: 

x=l: 10; 
y = [8  2.5 -2 0 5 2 4 7 4.5 21; 
plot(x,y, '0') 
ho ld  on 
x2=1:0.05:10; 
y2=interpi(x,y,x2, 'spline') ; 
plot(x,y, 'o',x2,y2); 

We see that spurious oscillations are avoided. The same result is obtained by 
calling spline, which also returns a spline object; this object may be used 
for later evaluations by the function ppval: 
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% RungeSp1ine.m 
% define inline function 
runge = inline ( ’ 1. / (1+25*x. -2) ’1 ; 
1 use 11 equispaced nodes 
EquiNodesll = -5:5; 
ppeqll = spline(EquiNodesl1 ,runge(EquiNodesll)) ; 

subplot (3,1,1) 
plot (x, runge (x) 1 ; 
hold on 
plot(x,ppval(ppeqll,x)); 
axis([-5 5 -0.15 11) 
title(’l1 equispaced points’); 
% use 20 equispaced nodes 
EquiNodes20 = linspace(-5,5,20) ; 
ppeq20 = spline (EquiNodes20 ,runge(EquiNodes20)) ; 
subplot (3,1,2) 
plot (x, runge (x) ; 
hold on 
plot(x,ppval(ppeq20,x)) ; 
axis([-5 5 -0.15 11) 
title(’20 equispaced points’); 
% use 21 equispaced nodes 
EquiNodes21 = linspace(-5,5,21); 
ppeq21 = spline (EquiNodes21 ,runge(EquiNodes2l)) ; 
subplot(3.1,3) 
plotCx,runge(x)); 
hold on 
plot (x , ppval (ppeq21, x) 1 ; 
axis( 1-5 5 -0.15 11 1 
title(’21 equispaced points’) ; 

~=-5:0.01:5; 

Fig. 3.20 MATLAB script to interpolate Runge function by cubic splines. 

x=l : 10; 

plot(x,y, ’0’) 
y = [8 2.5 -2 0 5 2 4 7 4.5 21; 

hold on 
pp=spline (x, y) ; 
x2=1:0.05:10; 
y2 = ppval(pp,x2); 
plot(X,yJ’oJ,x2,y2); 

We may also check the result with the Runge function. Running the script 
of figure 3.20 we get the plots in figure 3.21. We may notice that using 21 
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Fig. 3.21 Interpolating Runge function by a cubic spline. 
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points rather than 11 improves the approximation, whereas an even number 
of points result in a very poor match near the maximum. The approximation 
is still not satisfactory: the reader is urged to try placing nodes in points 
-5, -3 ,3 ,5  and distributing 17 nodes on the interval [-2,2]. 0 

As we have pointed out, in MATLAB the default way to define the two degrees 
of freedom in cubic splines is the not-a-knot condition. But if you provide the 
function spline with an y vector with two more components than the vector 
x ,  the first and last components are used to  enforce a value for the spline 
slopes at the extreme points of the interval. 

Cubic splines are only the basic type of spline; many more have been pro- 
posed. A typical application in finance is in estimating term structures of in- 
terest rates given a limited set of market data related to bond prices (see, e.g., 
[3], [4], and the references therein). In economics, shape-preserving splines are 
sometimes used, which make sure that the resulting spline has certain quali- 
tative features which are essential from an economical point of view. 

3.3.4 

This section is somewhat more theoretical, and basically aims at  providing a 
more general and abstract framework for function approximation. The basic 
concept we use here is a generalization of orthogonality between vectors. We 
should start with a general formulation of the best approximation problem. 
We are given a normed linear space E and a subspace G of E. By “normed” 
we mean that the objects in that space have an associated norm (e.g., the 
vector norms we have discussed in section 3.2.1); by “linear” we mean that 
by taking any linear combination of objects in G or El we get another object 
in that set. 

Given a norm, we may define distances between arbitrary objects in the 
space. The distance between two elements f, g E E is simply given by 11 f - g  [I. 
More generally, the distance o f f  E E from the subspace G is defined by 

Theory of function approximation by least squares 

dist(f, G) = inf I (  f - g [I . 
gEG 

An interesting specific case occurs when we have an inner-product space, 
whereby norm is based on the inner product defined on the space: 

I l f l l=  d< f,f >. 

< X , Y  > = C x i Y i ,  

Typical examples of inner products are 
n 

i=l 
for x , y  E R”, and 

(3.10) 
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for f,g E C(a, b), i.e., the space of continuous functions on the interval (a ,  b). 
We say that two elements f ,  g E E are orthogonal (denoted by f l g )  if 

< f,g > = 0. 

We say that a finite or infinite sequence of elements f1, f2 ,  f 3 , .  . . E E is an 
orthogonal system if 

Furthermore, if all elements in the subset have unit norm, we say that the 
system is orthonormal. 

< f i ,  f j  > = 0 Vi # j .  

Example 3.19 The following polynomials: 

2 1  pz(x) = x  - - 
3 

3 3  p3(x) = x - -x 
5 

4 6  3 
p4(x) = x - -x2 + - 

7 35 

form an orthogonal system, on interval [-1,1], if the inner product 

1 

<f,s>=S_lf(x)g(x)dx. 

They are the first polynomials in the family of Legendre polynomials. Simi- 
larly, the Chebyshev polynomials defined in (3.9) form 
with respect to the inner product: 

an orthogonal system 

Actually, there are general strategies to build orthogonal systems, which will 
be outlined in section 4.1.2. 

We should also mention that orthogonal systems of random variables can 
also be built. The idea, said very roughly in financial terms, is to decompose 
risk (a random variable) into the sum of uncorrelated sources of risk, each one 
carrying a piece of information in such a way that redundancy is avoided and 
a simple representation of risk is obtained. 

The fundamental result of approximation in a normed space is that, if the 
space is equipped by an inner product, there is an equivalence between the 
two conditions: 

1. g is a best approximation to f in G. 
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Z 

T 

Fig. 3.22 Orthogonal projection. 

2. The residual is ortliogonal to the subspace: f - g I G. 

This is again it generalization of the familiar geometric concept of orthogonal 
projection in Euclidean spaces (see figure 3.22) .  If we have a vector in the 
(z, y, z )  space, and we want to find the closest vector on the (2, y) plane, we do 
an ortliogonal projection. The following example shows how this equivalence 
can he exploited. 

Example 3.20 Consider the space E = C(0,l) of continuous functions over 
interval (0, l), and assume that we want to find an optimal approximation (in 
thc least-squares sense) in the subspace G consisting of polynoniials of degree 
n. We niay build the linear subspace G by using monomials g ) ( ~ c )  = z’. 
J = 0,1 , .  . ., n, as the basis. Thus, g(z) = ~ ~ = o u J g J ( x )  = C ~ = o u J z J .  We 
want t,o minimize thc deviation 

If f - g is ortliogontil to G, then we must require 

or, in other words, 

11 

x u . ,  < gj(x),g7(x) > = < f1s1(x) >, i = 0 , .  . . ,n .  
3 =o 

In o w  case, this yields a set of linear equations: 
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These equations are collectively called the normal equations. Unfortunately, 
the matrix of coefficients includes definite integrals evaluating to 

But this is the (dreaded) Hilbert matrix that we already met in example 1.3 
on page 18. 0 

The example shows that a simple-minded approach may lead to ill-condition- 
ed numerical problems. Proper selection of the basis functions is fundamental 
from the numerical point of view, and this is why families of orthogonal poly- 
nomials are often used. 

We have so far considered the continuous least squares problem, in order to 
motivate the introduction of orthogonal polynomials. Typically, in numerical 
applications, we have to solve a discrete problem in which a set of n data 
points (xi,yi), i = 1,. . .,n, is given, where yi = f(xi), and we look for an 
approximation in terms of a linear combination of m basis functions (e.g., 
polynomials). Using the Euclidean norm, as we have already seen, we get the 
ordinary least squares problem: 

In this case the normal equations (or ordinary calculus) yield 

c = (@'@)-l@'y. 

In this case too, solving the normal equations may be easier with a proper 
selection of basis functions. In chapter 10 we will see an application of lin- 
ear regression with polynomials to pricing American options by Monte Carlo 
simulation. 

3.4 SOLVING NON-LINEAR EQUATIONS 

Solving non-linear equations is a common task in finance; the most elementary 
example is the computation of the internal rate of return (see example 2.8 on 
page 47), which calls for finding the roots of a polynomial. A polynomial 
equation is a particular case of general non-linear equations, and it is a very 
lucky case, in the sense that we are typically able to find all of the roots of 
the equation by specific methods. For instance, if we consider 

x3 + 3x2 - 2x2 + 4 = 0. 

we may use the MATLAB r o o t s  function and get 
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Fig. 3.23 Exairiple of the bisection method. 

>> roots([l 3 -2 41) 
ans = 
-3.8026 
0.4013 + 0.94393. 
0.4013 - 0.9439i 

In general we must settle for one root near some prespecified point. 

as 

or a system of equations in several variables, such as 

You might wish to find a solution of' an equation in a single variable, such 

f(x) = 0 

F(x) = 0.  

MATLAB offers different functionalities to this purpose. We first outline 
the l m i c  features of numerical methods for non-linear equations, limiting the 
treatment to bisection and Newton methods. 

3.4.1 Bisection method 

The bisection method is the simplest method for solving the scalar equation 

f (x) = 0 

without requiring anything more than the ability to evaluate, or estimate, the 
funct,ion f at, a given point. This is an important feature; since in some cases 
we do not even have an analytical expression for the function f ,  and there- 
fore we are riot able to apply more sophisticated methods such as Newton's 
nietliod, which calls for computation of the derivative of f .  Suppose that we 
know two points a ,  b (u < b) such that f ( a )  < 0 and f ( b )  > 0. Then, if the 
function is continuous, it is obvious that it must cross the zero axis somewhere 
in the interval [ a ,  b] (see figure 3.23). The same observation holds if the signs 
of the function in a and b are reversed. So [a ,  b] is an interval encapsulating 
a root of the equation. Then we may try to reduce this interval by checking 
the sign of f in the midpoint of the interval, i.e., 

a + b  
2 

c =  -. 
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If f ( c )  = 0, possibly within some prespecified tolerance, we are done. If 
f ( c )  < 0, we may conclude that a zero must be located somewhere in the 
interval [c, b ] ;  otherwise, the interval to check is [a ,c] .  Going on this way, we 
build a sequence of smaller and smaller intervals bracketing the zero. Formally, 
you generate a non-decreasing sequence a,  and a non-increasing sequence b, 
such that: 

where r is the (unknown) root and c, = (b, + a n ) / 2 .  It can be shown that 
this method is characterized by a linear convergence rate. 

The method, as usual, will not really find the exact root (in general), but 
only a suitable approximation. Furthermore, we should define some termina- 
tion criteria to stop the algorithm. Possible choices are 

maximum number of iterations 

There is no best criterion and for a robust algorithm we must use all of them. 
Actually, the second one may depend on the chosen units of measure: by 
scaling the equation, this criterion may be met by any point. It is advisable 
to restate the criterion in relative terms. 

Example 3.21 Consider a typical problem in Microeconomics. We want to 
find the price p such that supply S(p) of some item equals demand D(p) .  What 
we are looking for is a zero of the excess demand function f(p) = D(p)  - S ( p ) .  
Asking for I f(p) I< E is a bit arbitrary, as we have said. A better termination 
test could be I D ( p )  - S(p)  I< 6 D ( p ) ,  i.e., demand minus supply is small with 
respect to demand. This is an example of “relative” rather than “absolute” 
condition. 0 

A possible difficulty of bisection is that you need an interval with a sign 
change to start. Library routines such as fzero may relieve the task, since 
they require a starting interval or one starting value, in which case they are 
supposed to locate a root near there; the search for an interval with a change 
in sign is carried out automatically. The following example shows what may 
go wrong with bisection. 

Example 3.22 Consider the non-linear equation 

1 
- = 0. 
2 

Using MATLAB requires the definition of a function handle: 

>> fzero(@(x)  l / x ,  3) 



194 BASICS OF NUMERICAL ANALYSIS 

0 -  

II 

80 

60 

40 

20 

-20 

40 

-60 

4 0  

-lW -0 

- 

~ 

- 

- 

- 

- 

- 

- 

0 0 5  5 

Fig. 3.24 Bisection cannot be applied to a discontinuous function. 

ans = 

-2.7776e-016 

We get a very small number, virtually zero. But this is not really a root: 

>> l/ans 
ans = 
-3.6003e+015 

In this case we get a “false” zero. Of course it is our fault: we are applying 
bisection to a discontinuous function (see figure 3.24). But what bisection sees 
is a function with a change in sign and a shrinking interval which eventually 
satisfies the first termination criterion, but not the second one. 

In other cases (e.g., x2 = 0) you do not get any root by bisection: 

>> fzero(Q(x1 x-2, 3) 
Exiting fzero: aborting search for an interval containing a 

sign change because NaN or Inf function value encountered 
during search. 

(Function value at -1.8203e+154 is Inf.) 
Check function or try again with a different starting value. 
ans = 

NaN 

The problem here is that we have a root where the graph is tangent to  the 
x-axis and the initialization function is clearly not able to find an interval 
with a change in sign. 0 

Despite all of its weaknesses, the bisection method has the remarkable 
characteristic that it requires nothing more than the ability to evaluate, or 
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estimate] the function f at a given point. To appreciate this, think of a func- 
tion defined as a complicated expected value, or a function defined implicitly 
by an optimization problem: 

f (x)  = E, (F(x,w)] or g(x) = minG(x,y) .  
YES 

In both cases, getting more information on f and g (e.g., the value of the 
derivative] if it exists), may be no easy task. Moreover] bisection does not 
require the differentiability of the function. On the other hand, it can only be 
applied to problems in one unknown variable. 

3.4.2 Newton’s method 

Unlike bisection] Newton’s method exploits more knowledge of the function f ;  
in particular, it requires computing the first-order derivative of the function 
f. The method can be applied to solving a system of non-linear equations] 
but let us first consider Newton’s method for the scalar equation 

f ( x )  = 0 

and assume that f E C2, i.e., is sufficiently well-behaved in terms of continuity 
and differentiability. Consider a point x(O), which is not a solution of the 
equation since f(x(’)) # 0. We would like to move by a step Ax, such that 
the new point x = do) + Ax solves the equation] i.e., 

f (do) + AX) = 0. 

To obtain the displacement Axl we may consider the Taylor expansion: 

f (x(O) + Ax) z f (x(O)) + f’(J0)) AX, 

Solving this equation for Axl we get 

Since the Taylor expansion is truncated, we will not find a root of the equation 
in one step, but we may use the idea to define a sequence of points: 

Geometrically, the method uses the tangent of f in x ( ~ )  to improve the es- 
timate of the solution, as shown in figure 3.25. Like any method, Newton’s 
method has strengths and weaknesses: 

0 Convergence, unlike bisection] is quadratic] which is good news. 
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Fig. 3.25 Geometrical illustration of Newton’s method. 

0 The lmd news is that convergence is only local: This means that unless 
you start near the root, the method may fail; homotopy continuation 
methods (section 3.4.5) are a possible approach to  ease this difficulty. 

0 Many things may go wrong, and stalling may result; in practice, many 
adjustments are needed to get a robust implementation of this meth- 
ods.14 

As an example of application of bisection and Newton‘s method, we consider 
next the computation of implicit volatility. 

Example 3.23 As we have pointed out in section 2 6.5. sometimes Black- 
Scholes formula is used in an apparently weird way to find the value of volatil- 
ity such that the theoretical price predicted by the formula matched the ob- 
served price. This is the zrriplzed volatility. This might be useful in order to 
estimate volatility as perceived by the market participants rather than using 
historical data; indeed. this approach has been advocated for Van calcula- 
tlOIlb.  

This is easily accomplished in MATLAB. consider a call option with strike 
price $54, expiring in five months, on a stock whose current price is $50, 
volatility is 30%. when the risk-free interest rate is 7%. Its price is obtained 
as follows: 

>> c=blsprice(50, 54, 0.07, 5/12, 0.3) 
c =  

2.8466 

’“or a fu l l  treatment of Newton’s method, including MATLAB code, see [12]. 



SOLVING NON-LINEAR EQUATIONS 197 

Now let’s go the other way around, and check which volatility would yield this 
price. We may define an anonymous function handle and find a zero using 
f zero: 

>> fzero(Q(x) blsprice(50, 54, 0.07, 5/12, x) - 2.8466, 1) 
ans = 

0.3000 

Alternatively, we could use an M-file to  define the function. 
Since in the Black-Scholes formula we have the option price in analytical 

terms, one might wonder if it is better to use Newton’s method rather than 
simpler methods such as bisection. This requires computing the derivative of 
the non-linear function, but this effort could pay off in terms of efficiency. In 
fact, the Financial toolbox includes a function, blsimpv, which computes the 
implied volatility of a European call by Newton’s method. Its performance 
may be compared with that of fzero. 

>> tic, blsimpv(50,54,0.07,5/12,2.8466), toc 
ans = 

0.3000 
Elapsed time is 0.030920 seconds. 
>> tic, fzero(Q(x) blsprice(50, 54, 0.07, 5/12, x)-2.8466,1), toc 
ans = 

Elapsed time is 0.039830 seconds. 
0.3000 

You see that there is a (small) advantage in using Newton’s method. I] 

A significant advantage of Newton’s method is that its is immediately gener- 
alized to a vector equation such as 

F(x) = 0, 

where F = [fl f2 . . . fn]’. Given an approximation x(lC) = [xy) xr) . . . xn ( W ] l  

of the root x* = [x; xa + ‘ .  x:]’, we may write 

. .  

which is simply a system of linear equations in which the matrix coefficients 
form the Jacobian matrix 
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A sequence of solution estimates is built by solving the linear systems 

and setting 

A disadvantage of this approach is that it requires computation of the Jacobian 
matrix at each step. Coding that may be difficult and error-prone. Hence 
numerical approximations of the Jacobian are often used, leading to  quasi- 
Newton methods. 

, (k+l )  = X ( k )  + Ax(k). 

3.4.3 

Newton's method and its variants are a possible strategy to solve systems 
of non-linear equations. However, there are alternative approaches based on 
optimization. We have already established the connection between optimiza- 
tion and equation solving by the conjugate gradient method in section 3.2.5. 
When tackling a system of linear equations, like the one we have discussed in 
the previous section, we may consider the following reformulation: 

Optimization-based solution of non-linear equations 

n 

i = l  

The idea is illustrated graphically in figure 3.26. Since the squared norm 
cannot be negative, if we find a minimizer such that the function value is 
zero, then the minimizer is a root of the equation. This is the approach 
taken in the MATLAB f solve function; this function, unlike fzero, aims at 
solving systems of linear equations and is part of the Optimization Toolbox, 
not the MATLAB core. The figure also explains why, in general, finding the 
whole set of roots is a tough issue, corresponding to a non-convex optimization 
problem, possibly featuring several minima. The root we find will depend on 
the starting point. Furthermore, some numerical care is needed as shown in 
the following example. 
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Plot of f(x) 
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Plot O f f  2(x) 
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Fig. 3.26 Solving non-linear equations by optimization methods. 
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Fig. 3.27 Function for example 3.24. 

Example 3.24 To solve the equation 

we may use fsolve as follows. First we define the function (and we plot it, 
obtaining the graph illustrated in figure 3.27): 

>> f = @(XI (x."3>.*exp(-x.^2>; 
>> ~~=-4:0.05:4; 
>> plot (vx , f (VX) > 
Then we may easily apply f solve, providing a starting point: 

>> f solve (f ,I> 
Optimization terminated : 
first-order optimality is less than options.TolFun. 
ans = 

0 
>> f solve (f , 2 )  
Optimization terminated: 
first-order optimality is less than options.TolFun. 
ans = 

3.4891 

We see that the root we get depends on the starting point, which is expected. 
Unfortunately, the second point is not an actual root of the equation. Looking 
at the graph of the function, we may see that for x + f o o  the function tends 
to zero. This implies that we get a numerical "false" zero when the value of 
the function is smaller than a prescribed tolerance. 0 
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Example 3.25 To illustrate the advantage of quasi-Newton methods, we 
consider here a classical example in Microeconomics, i.e., the computation of 
a Cournot equilibrium for a duopoly. For the unfamiliar reader, the problem 
is finding the two production outputs for two firms, in such a way that no 
firm would find advantageoys to deviate (unilaterally) from that output. The 
problem each firm faces is that increasing output may increase revenue (the 
firm sells more) but it may also decrease prices (because of larger availability). 
Hence, we should look for production quantities maximizing net profit. 

The two firms have cost functions: 

1 
Cz(q2) = p z q , 2 ,  i = 1,2,  

which display increasing marginal cost. We assume the inverse demand func- 
tion (for the whole market): 

P(q)  = q-1/q. 

This function yields the market price, given the joint supply q = q1+ q z .  The 
profit for firm i is revenue minus cost: 

7rz(q1,42) = P(q1+ qz)q2 - Cz(qt),  i = 1,2. 

To find the Cournot equilibrium, we should enforce the optimality condition 
of profit for firm 1, as a function of its output q1, and of profit for firm 2, as 
a function of qz. The stationarity ~ond i t ion '~  yields the following set of two 
non-linear equations: 

f Z ( 4 )  = (q1 + qz)-'/" - (l/v)(q1 + qz)-l'Q-l q, - c,q, = 0 i = 1,2. 

We also need the Jacobian matrix, and to improve readability it is better to 
rewrite the function above as 

fz(q) = qe + eqe-lq, - G Q Z ,  

where e = -1/q. Then straightforward calculations yield 

Assume q = 1.6, c1 = 0.6, and cg = 0.8. To solve the problem by Newton's 
method, we need a function computing both the function itself and the Ja- 
cobian. This is accomplished by the code displayed in figure 3.28, which also 
includes a script to call the function. 

"More on this in chapter 6. 
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function [fval,f jac] = cournotJac(q,c,eta) 
e = -l/eta; 

fval = qtot-e + e*qtot-(e-l)*q - c.*q; 
fjac = zeros(2,2); 
fjac(l,l) = 2*e*qtot-(e-l) + e*(e-l)*qtot”(e-2)*q(l) - ~(1); 
f jac(l,2) = e*qtot-(e-l) + e* (a-1) *qtot̂ (e-2) *q(2) ; 
fjac(2,l) = e*qtot-(e-l) + e*(e-l)*qtot-(e-2)*q(I); 
fjac(2,2) = 2*e*qtot-(e-l) + e*(e-1)*qtota(e-2)*q(2) - ~(2); 

qtot = sum(q1; 

% CournotJacScript 
c = L0.6; 0.81; 
eta = 1.6; 
qo = E l ;  11; 
options = optimset(’Jacobian’, ’on’, ’DerivativeCheck’, ’on’); 
[q,fval,exitflag,outputl = fsolve(@(q)cournotJac(q,c,eta), q0, options); 
fprintf(1,’ ql = %f\n q2 = %f\n’, q(l), q(2)); 
fprintf(1,’ number of iterations = %d\n’, output.iterations); 

Fig. 3.28 Code and script for Cournot duopoly. 

With optimset we tell MATLAB that we are going to  provide the Jacobian, 
and we ask to check derivatives against a finite difference approximation. 
Running the script, we get 

>> CournotJacScript 
Maximum discrepancy between derivatives 
Optimization terminated: 
first-order optimality is less than options.TolFun. 

= 3.12648e-009 

ql = 0.839568 
q2 = 0.688796 
number of iterations = 5 

It is interesting to note what happens if we introduce an error in the compu- 
tation of the Jacobian. For instance, if the last line in cournot Jac is changed 
to 

fjac(2’2) = e*qtot-(e-1) + e*(e-1)*qtotA(e-2)*q(2) - ~(2); 

we get an error message: 

>> CournotJacScript 
Maximum discrepancy between derivatives 
Warning: Derivatives do not match within tolerance 

= 0.202631 
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function [f Val ,f jac] = cournotNoJac(q, c, eta) 
e = -l/eta; 
qtot = sum(q); 
fval = qtot-e + e*qtot-(e-l)*q - c.*q; 

% CournotNoJacScript 
c = C0.6; 0.81; 
eta = 1.6; 
qo = [l ;  11; 
[q, fval, exitflag, output] = fsolve(@(q) cournotNoJac(q,c,eta), SO); 
fprintf(i,’ ql = %f\n q2 = %f\n’, q(I), q(2)); 
fprintf(1,’ number of iterations = %d\n’, output.iterations); 

Fig. 3.29 Code and script for Cournot duopoly using quasi-Newton method. 

Derivative from finite difference calculation: 
-0.8406 -0.0380 
-0.0380 -1.0406 

User-supplied derivative, Q(q) cournotJac(q, c,eta) : 
-0.8406 -0.0380 
-0.0380 -0.8380 

0.0000 0.0000 
0.0000 0.2026 

Difference: 

Strike any key to continue or Ctrl-C to abort 

To avoid this kind of potential trouble, we may rely on numerical approx- 
imations of derivatives. This is easily accomplished by writing a function 
which does not compute the Jacobian, and by calling fsolve with default 
options. This is accomplished by the function and script in figure 3.29, which 
is definitely less prone to errors. Running the script, we get 

>> CournotNoJacScript 
Optimization terminated: 
first-order optimality is less than options.TolFun. 
ql = 0.839568 
q2 = 0.688796 
number of iterations = 3 

We get the same solution, and what looks surprising is that less iterations 
are reported. Intuitively, we would expect less iterations by providing more 
information in the form of the Jacobian. However, we are not really using 
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Newton’s method for non-linear equations, and intuition may fail. In fact, 
the performance of an algorithm depends on many features: f solve is based 
on a choice of three optimization methods and several options may be selected 
influencing the number and speed of iterations. 0 

3.4.4 Putting two things together: solving a functional equation by a 
collocation method 

Assume we have to solve a functional equation of the form 

dx, f(x)) = 0 vx E [a, bl, 

where g is given and f is the unknown function. Note that since we want 
to find a function defined over a real interval, this is an infinite-dimensional 
problem. The first step to  deal with such a problem numerically is to  find 
a suitable way to discretize it. One possibility would be to select a discrete 
subset of n points xi in the interval and solve a system of non-linear equations: 

g(zi, yi) = 0,  i = 1, . . . , n, 

where the unknown is really yi = f(zi). Then we may use interpolation to  
“complete” the function on the whole interval. 

However there is a more elegant alternative, known as the collocation 
method. The idea is still to  fix a set of n points, called collocation nodes, 
and to approximate f by a linear combination of n basis functions: 

n 

i=l 

Then our problem boils down to finding the coefficients ci by solving a system 
of non-linear equations: 

We will meet other functional equations in the form of partial differential 
equations or recursive equations associated to dynamic programming. The 
collocation method is at the heart of the finite element method for solving 
PDEs and of some computational approaches to solve stochastic optimization 
problems by dynamic programming. 

3.4.5 Homotopy continuation methods 

Since Newton’s method is not globally convergent, a good initial guess may 
be necessary. To overcome this difficulty, and enhance global convergence, we 
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may embed the problem within a parameterized family of problems. Assume 
that we want to solve the equation f (2 ;  t )  = 0 for a specific value t* of the 
parameter t .  If we know that for t = to we have a solution xo, then we may 
generate a sequence of problems corresponding to parameters to, t’, t 2 ,  . . ., 
using xi-’ as the initial guess for problem i. More generally, if we know a 
solution of the equation g(z) = 0, in order to solve f(z) = 0 we may define 

and “move” t from 0 to 1. In practice we are “deforming” an easy problem 
into a hard one. This idea may be formalized by a homotopy. Given two 
functions f, g : X - Y, a homotopy between f and g is a continuous map 

h : [ O , l ] x X - Y  

such that h(0,z)  = g(z) and h(1,x) = f(z) Equation (3.11) is the linear 
homotopy. Newton’s homotopy is 

where zo is the solution for t = 0. 
We have a parameterized family of problems, such that a path of solutions 

z ( t )  results. Strictly speaking, this makes sense if h(t ,  z) = 0 has one root for 
each t E [0,1]. Assuming this property holds, we must come up with a way 
to follow the path of solutions, leading to the one we are interested in. In 
the following example, based on [13, pp. 140-1411, we give an idea of a path 
following strategy. 

Example 3.26 Assuming differentiability of the involved functions, we may 
differentiate the equation 

h(t, z ( t ) )  = 0 

and get 
dh  dh  
-(t,  at z ( t ) )  + -(t,  d X  z ( t ) )  * z’(t) = 0. 

This yields the following differential equation 

where we have eased the notation by using h, and ht to denote partial deriva- 
tives. We could integrate this equation, with initial condition z(O), to get the 
solution ~ ( 1 ) .  

As a numerical example, consider the following problem, where X = Y = 
R2: 

x: - 32; + 3 ] = o .  
~ 1 ~ 2  + 6 

F(x) = 
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Using Newton's homotopy with xo = (1, l ) ,  we have 

We may invert h,: 

A = 2x9 + 62:. 

Finally, we get the ordinary differential equations: 

By numerical integration, we get x(1) = (-2.961,1.978). Now we are in a 
neighborhood of the solution of the original equation; to polish the solution, 
we may take a few iterations of Newton's method, which yields the solution 
(-372). 0 

We have included the example above to  illustrate the overall idea, but there 
is a rich set of path following approaches. The same idea can be applied to op- 
timization problems; in fact, we will meet path following again, since it is the 
foundation of advanced optimization methods such as interior point methods 
for linear programming (section 6.4.4). The homotopy continuation method 
is quite sophisticated and powerful; for advanced applications to economics, 
see [7] and [lo]. 

For further reading 

In the literature 

0 The literature on numerical methods is quite extensive. One classical 
reference is [18]. Other references are [2], [13], and [17]. 

An interesting book on numerical methods from an economist's point of 
view is [lo]. 

Splines are dealt with in depth in [5]. They are a widespread tool, both 
in engineering (e.g., in computer-aided design) and in economics. For a 
recent application in financial economics, see [Il l .  

0 A classical source for special function evaluation is [l]. 
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0 Approximation theory is the subject of [15] and [19]. 

0 If you would like a “cookbook” collection of algorithms, [16] is a well- 
known reference providing many C-language codes implementing nu- 
merical methods (a  Fortran version is available, too). 

0 Several numerical analysis books have been written based on MATLAB; 
see, e.g., [6] and [14]. 

On the Web 

0 http : //www . netlib. org is a web site offering many pointers to  numer- 
ical analysis material. 

0 http : //www .mathworks. com/support/books lists several MATLAB- 
based books, including basic numerical analysis texts. 
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4 
Numerical Integration: 

Deterministic and Monte 
Carlo Methods 

Numerical integration is a standard topic in numerical analysis. We have 
preferred to dedicate a specific chapter to it because of its importance in 
computational finance. Furthermore, we include topics such as Monte Carlo 
integration which are not always covered in standard textbooks on numerical 
analysis. Usually, the term Monte Carlo simulation is used, which is somewhat 
more appealing, but it is important to cast this approach within a numerical 
integration framework in order to pave the way to quasi-Monte Carlo methods. 
Classical approaches to numerical integration based on quadrature formulas 
are deterministic, just as quasi-Monte Carlo methods. Monte Carlo methods 
are based on random sampling, a t  least conceptually, and so some connection 
with statistics is expected. 

We have seen that option pricing requires computing an expected value 
under a risk-neutral measure, but an expected value is actually an integral. 
The expected value of a function g(.)  of a random variable X with probability 
density fx(z) is 

E[S(X)I = J + % ( 4 f X  -ca dx. 

In one-dimensional cases, we may find an analytical solution, like in the Black- 
Scholes case, but this is difficult in general. If the random variable X is a 
scalar, classical deterministic methods work quite well, but when expectation 
is taken with respect to a random vector and we must integrate over a high- 
dimensional space, random sampling may be necessary. Random sampling 
is a natural way to simulate dynamics affected by uncertainty, such as prices 
modeled by stochastic differential equations. Natural applications, apart from 

209 
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option pricing, are portfolio optimization, risk management, and estimation 
of Value at Risk. 

It is worth noting that numerical integration may be implicitly used to 
estimate probabilities. If A is an event which may occur or not depending on 
a random variable X, then 

+m 

P(A) = l , Z A ( Z ) f X ( Z ) d Z ,  

where ZA(Z) is the indicator function for event A (taking the value 1 if A 
occurs when X = Z, 0 otherwise). When A is a rare event, clever strategies 
are needed to get an accurate estimate with a reasonable computational effort. 

Finally, there are situations in which we define a function by an integral. A 
typical case is the expected value of a function depending on a control variable 
(modeling our decisions) and a random variable (modeling what we cannot 
control): 

f m  

H ( z )  = Ex[g(X, 211 = g(z, z)fx(.) dx. L 
This is quite common in stochastic optimization and dynamic programming, 
whereby we want to find a maximizer (or minimizer) of H ( z ) ,  and this calls 
for a suitable approximation of H by discretization of the continuous distribu- 
tion. In other words, we want to generate a discrete set of scenarios yielding a 
reasonable approximation of the underlying uncertainty. Numerical methods 
such as Gaussian quadrature are helpful here. Indeed, all numerical integra- 
tion methods require some form of discretization, or sampling, via regular 
grids or other mechanisms. We should also note that we may also be inter- 
ested in the derivative of H ( z ) ,  not only for optimization purposes, but also 
to evaluate sensitivities. A familiar case is computing the Greeks of an option. 

We start the chapter with a very brief overview of classical deterministic 
quadrature in section 4.1. We will just present very basic approaches in order 
to point out the conceptual basis of quadrature functions available in MAT- 
LAB. We will also deal with Gaussian quadrature because of its importance 
in computational dynamic programming. 

Then we introduce Monte Carlo integration in section 4.2. Monte Carlo 
simulation is based on random number generation; actually, we must speak 
of pseudorandom numbers, since nothing is random on a computer. How this 
is accomplished is described in section 4.3. 

If we feed random numbers into a simulation procedure, the output will be a 
sequence of random numbers. Given this output, we use statistical techniques 
to build an estimate of a quantity of interest. We would like to evaluate the 
reliability of this estimate in some way, e.g., by a confidence interval, or the 
other way around, we would like to carry out the simulation experiments in 
such a way that the estimation error is controlled. Section 4.4 deals with the 
issue of setting the number of simulation experiments (replications) properly. 
Intuitively, the more replications we run, the more reliable our estimates will 
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be. Unfortunately, reaching a suitable precision might require a prohibitive 
number of experiments. Improving the quality of the estimates without in- 
curring huge CPU times calls for proper variance reduction techniques, which 
are the subject of section 4.5. Using pseudorandom numbers on a computer 
and then applying statistical techniques may raise some philosophical issues; 
after all, the sequences of numbers we use are deterministic. It can be argued 
that the success of Monte Carlo simulation simply shows that there are some 
deterministic sequences that work well and that there could be others that 
work even better. Pursuing this idea leads to quasi-Monte Carlo simulation, 
which is dealt with in section 4.6. 

A final consideration is that simulation may be used to evaluate the con- 
sequences of a certain policy, but it cannot generate the policy itself. To this 
end, we should use the optimization methods which will be described in chap- 
ter 6 .  Unfortunately, most of those techniques require an analytical model 
that may be too complex or not available a t  all, which is the very reason 
why we resort to simulation so often. Possible ways to couple simulation and 
optimization techniques are described in section 6.6. 

In order to better illustrate the material we will use simple examples from 
elementary integration and pricing of vanilla options. We should bear in mind 
that for those vanilla options analytical formulas are available, and that our 
examples are just illustrative. We will consider practically relevant cases in 
chapter 8. 

4.1 DETER M I N I STI  C Q U A D  RAT U RE 

Consider the problem of approximating the value of a definite integral like 

b 

I[fl = 1 f (x )  dx 

over a bounded interval [a,  b] for a function f of a single variable. Since the 
integration is a linear operator, it is natural to look for an approximation 
preserving this property. Using a finite number of values of f over a set of 
nodes xj such that 

a = XO < X I  < < XN = b, 

we may define a quadrature formula such as 

A quadrature formula is characterized by the weights wj and by the nodes xj. 
To be precise, a quadrature formula like the one we are describing is called a 
closed formula, since evaluation of the function in the extreme points of the 
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interval is used. Sometimes, open formulas are used when the function is not 
well-behaved near a or b, or when we are integrating on an infinite interval. 

Any quadrature formula is characterized by a truncation error: 

E = Wl - QVI. 
A reasonable requirement is that the error should be zero for sufficiently simple 
functions such as polynomials. We may define the order of a certain quadra- 
ture formula as the maximum degree m such that the truncation error is zero 
for all the polynomials of degree rn or less. In other words, if the original 
function is substituted by an interpolating polynomial, we should not commit 
any error in integrating the polynomial. It is quite common to see expressions 
for the truncation error like 

E = rf'k'(J), 
where y is some constant depending, among other things, on a and b, E is some 
unknown point in the interval (a ,  b) ,  and k is the order of some derivative. 
Since the derivative of order k is zero for a polynomial of degree not exceeding 
k - 1, there is clear link between k and the order of the quadrature formula. 
If the function f is smooth enough, we may hope that high order translates 
to high accuracy. 

4.1.1 Classical interpolatory formulas 

One way to derive quadrature formula is to consider equally spaced nodes: 

xj=a+jh, j = O , 1 , 2  ,..., n, 

where h = ( b  - a ) / n ;  also let fj = f(xj). We have seen in function interpo- 
lation that this choice need not be the best one, but it is a natural starting 
point. Selecting equally spaced nodes yields the set of Newton-Cotes quadra- 
ture formulas. 

Given those n + 1 nodes, we may consider the interpolating polynomial 
P,(x) using Lagrange polynomials of degree n: 

n 

j =O 

Then we may compute the correct weights as follows: 
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Fig. 4.1 Example of the trapezoidal quadrature formula. 

Considcr the case of two nodes only, xo = a and 2 1  = b. Here we are just 
interpolating f by a straight line: 

A straightforward calculation yields 

Actually, what we are saying is that we may approximate the area below the 
function using trapezoidal elements, as depicted in figure 4.1, and the formula 
above gives the area of one element. Applying the idea to more subintervals, 
we get the trapezoidal rule: 

Given any quadrature formula for an interval: we may get a composite formula 
by applying the same pattern to  small subintervals of a large one. 

A quadrature formula based on n + 1 nodes is by construction exact for 
polynomials of degree 5 n. We may go the other way around, and build a 
formula by requiring a certain order. Consider the case 

1' f(x) M wof(0) f ~ f ( 0 . 5 )  + Wf(l),  

and say we want a formula that is exact for polynomials of degree 5 2. Having 
fixed the riodcs, we may find the weights by solving the system of linear 
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equations: 
I 

1 = Jd d x = w o + w i + w 2  

1 - = x d x = - w l + w z  
2 2 

1 

1 1 
3 4 

1 

= Jd x 2 d x  = -w1 f w 2 ,  - 

which yields wo = 116, w1 = 213,  w2 = 116. Applying the same idea on the 
interval [ a ,  b ] ,  we get Simpson’s rule: 

[f(x) dx M - 
6 

It fairly easy to see that, somewhat surprisingly, this formula is actually exact 
for polynomials of degree I 3 .  In fact, we have 

b4 - a4 
[x dx=-  

4 .  

Applying Simpson’s rule we have, by some straightforward algebra: 

b-a 6 [ a 3 + 4 ( T ) 3 + b 3 ]  

1 b4 - a4 b-a [a3 + - (a3 + 3 a 2 b + 3 a b 2  + b3) + b3 = - 
1 4  

- - 
6 2 

Simpson’s rule may be applied to  subintervals of (a, b) in order to get a com- 
posite formula. 

It is important to see the connection between the approach we have just 
pursued and the idea of moment matching in probability. We may discretize 
a continuous probability distribution in such a way that the discrete distri- 
bution matches moments of the continuous distribution, e.g., expected value 
and variance. This idea is used to approximate stochastic processes, such as 
geometric Brownian motion, by binomial and trinomial lattices and it will be 
pursued in chapter 7. Now, what we have seen is that for given nodes we 
may find suitable weights to obtain a quadrature formula with desired order. 
We have also seen that in function interpolation equispaced nodes need not 
be the best choice. Generalizing the idea we should wonder if there is a way 
to find weights and nodes jointly, in order to obtain a quadrature formula of 
maximal order. This idea leads to  Gaussian quadrature formulas. 

4.1.2 Gaussian quadrature 

In Newton-Cotes formulas we fix nodes and try to  find suitable weights so 
that the order of the formula is as large as possible. The rationale behind 
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Gaussian quadrature is that if we do not fix nodes a priori, we essentially 
double the degrees of freedom, in such a way that the order can be more or 
less doubled. Furthermore, Gaussian quadrature formulas are developed with 
respect to a non-negative weight function ~ ( x ) .  We look for a quadrature 
formula like 

which is exact when f is a polynomial. Note that in this section, unlike 
the previous one, it is convenient to consider n nodes xi, i = 1,. . . ,n. The 
weight function w(x) can be used to encapsulate undesired singularities of 
the integrand function. In our setting, ~ ( x )  will be interpreted as a proba- 
bility density. In fact we will only outline the development of Gauss-Hermite 
quadrature, where w ( x )  = e - x z ,  and there is a clear connection with comput- 
ing the expected value of a function of a normal random variable. 

Let Y be a random variable with normal distribution N(p,  u'). Then 

In order to use weights and nodes from a Gauss-Hermite formula, we need 
the following change of variable 

Hence 

Now, how should we select the nodes and weights in (4.1) in order to get a 
quadrature formula with maximum order? We should choose as nodes the 
n roots of a polynomial of order n, selected within a family of orthogonal 
polynomials with respect to the inner product (see also section 3.3.4): 

< f I9  > = w ( x ) f ( x ) g ( x )  dx .  I" 
It can be shown that a polynomial of degree k within that family has k distinct 
real roots. Furthermore, these roots are interleaved, in the sense that each of 
the k - 1 roots of the polynomial of degree k - 1 lies in an interval defined by 
a pair of consecutive roots of the polynomial of degree k .  Using this choice of 
nodes, along with a proper choice of weights, yields a quadrature formula with 
order 2n - 1. To see this, consider a polynomial q E II,, i.e., a polynomial of 
degree n, which is orthogonal to  all polynomials in IIn-l: 
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Any polynomial f E I Izn- l  can be divided by q, obtaining a quotient p and a 
remainder r :  

f = qP + r ,  
where p ,  r E IIn-l. Now let us integrate w f by a quadrature formula on n 
nodes xi, i = 1,.  . . , n, which are the zeros of q: 

A family of 
procedure: 

I” b 

w(x)p(x)q(x)  dx + / w ( x ) r ( x )  dx (division) 
a 

0 + lb w ( x ) r ( x )  dx (q  is orthogonal to p )  

n 

wir(xi)  (quadrature is exact for r E r I n - ~ )  
i=l 
n 

C w i f ( x i )  

orthogonal polynomials p j ( x )  may be built by the following 

(xi is a zero of q).  
i=l 

where 

j = 0,1 ,2 , .  . . 

Here coefficient bo is arbitrary and it can be set to 0. At each step, the 
procedure generates a new polynomial of degree one plus the degree of the 
previous polynomial. In the end, we have a family of orthogonal polynomials, 
one for each degree. Actually there are different choices of normalizations 
yielding different families of polynomials. 

In the Gauss-Hermite case, whereby w ( x )  = e-zz ,  applying the proce- 
dure above results in the following recursive procedure yielding a sequence of 
Hermite polynomials Hj:  

Hj+l = 2 ~ H j  - 2jHj-1. 

It is worth noting that this procedure is not quite numerically viable, as it 
implicitly computes factorials which tend to overflow for large n. This is 
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why a different normalization can be used, yielding a family of orthonormal 
polynomials': 

I 

H-1= 0 
1 Ho = - 

,+14 

In order to select weights, one possibility would be to require exact integration 
for the first n polynomials in the family, including the polynomial of degree 
0. Since po(x) = 1, this means that the (weighted) integrals of pj(x), j = 
1,.  . . , n - 1 should be zero, since they are all orthogonal to po(x). These 
conditions yield the following system of linear equations: 

Po (xn) 

It can be shown that a possibly more convenient way of getting weights is by 
using the following recursion: 

< Pn-1,pn-1 > 
wj = 

Pn- 1 ( Z j  ) P i  (Zj 1 ' 
where p;(xj) is the derivative of the polynomial. In the Gauss-Hermite case, 
using the orthonormal set of polynomials, this boils down to: 

where the derivative of polynomial j is 

MATLAB code to  implement Gauss-Hermite quadrature is displayed in figure 
4.2. Polynomials are stored in vectors; HPolyl, HPoly2, and HPoly3 play the 
roles of polynomials Hj-1, H j ,  and Hj+1 in recursion (4.2), respectively. In 
the f o r  loop, we must pay attention to i, since there is the typical shift in 
index values because of the MATLAB convention (array indexing starts from 
1). On exit from the loop, HPoly3 contains fin and HPolyl contains fin-l. 
In computing roots, we use the standard roots function. This need not be 

'See,  e .g . ,  113, pp. 150-154). 
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function [x,w] = GaussHermite(mu,sigma2,N) 
HPolyl = [ l/pi-0.25 1 ; 
HPoly2 = Csqrt(2) / pi-0.25, 01 ; 
for j=1: N-1 

HPoly3 = [sqrt(2/(j+l))*HPoly2 , 01 - LO, 0, sqrt(j/(j+l)*HPolyll; 
HPolyl = HPoly2; 
HPoly2 = HPoly3; 

end 
xl = roots(HPoly3) ; 
wl = zeros(N,l); 
for i=l:N 

wl (i) = l/(N)/ (polyval(HPoly1, xl(i)) 1-2; 
end 
[x, index] = sort (xl*sqrt(2*sigma2)+mu) ; 
w = wl(index)/sqrt(pi); 

f ig. 4.2 Code to implement Gauss-Hermite quadrature. 

the best approach, as using the interleaving property one can compute roots 
for each polynomial in the sequence by the Newton’s method, using previous 
roots for initialization.2 The last two lines are used to sort nodes in increasing 
order, and the index vector is used to sort weights accordingly. 

It is interesting to  check the weights and nodes we get from this function. 
For instance, let us consider a normal random variable with p = 10 and 
o2 = 20, and let us apply a quadrature formula based on five nodes: 

>> [x,w] = GaussHermite(10,20,5) 
x =  

-2.7768 
3.9375 
10.0000 
16.0625 
22.7768 

0.0113 
0.2221 
0.5333 
0.2221 
0.0113 

w =  

>> sum(w) 

2This is the approach taken in [13]. A MATLAB implementation, which generalizes to mul- 
tidimensional integration, can be found in the Computational Economics Toolbox described 
in [lo]. 
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1 GHScript.m 
N = [5, 10, 15, 201; 
mu = 4; 
sigma2 = 4; 
Truevalue = exp(mu+O. 5*sigma2) ; 
for i=l:length(N) 

[x,w] = CaussHermite(mu,sigma2,N(i)); 
ApproxValue = dot (w, exp(x)) ; 
fprintf(l,’N=%2d True=%g Approx=%g PercError=%g \nJ ,  N(i), . . .  

Truevalue, ApproxValue, abs(TrueVa1ue-ApproxValue)/TrueValue); 
end 

Fig. 4.3 Script to check Gauss-Hermite quadrature. 

ans = 

1 * 0000 

Nodes, as expected, are symmetrically centered around the expected value; 
furthermore, the sum of weights is 1, which is only convenient, since this 
should be a discretization of a continuous distribution. As a complete exam- 
ple, we may deal with the case of integrating an exponential function. From 
the properties of the lognormal distribution (see section B.2.1) we know that 
if X N N(p ,  a’), then 

E[ex] = eP+02 /2  

A script to check this is displayed in figure 4.3. Running the script, we may see 
that remarkable precision is obtained with a fairly modest number of nodes: 

>> CHScript 
N= 5 True=403.429 Approx=398.657 PercError=0.0118287 
N=10 True=403.429 Approx=403.429 PercError=5.53771e-007 
N=15 True=403.429 Approx=403.429 PercError=1.90343e-012 
N=20 True=403.429 Approx=403.429 PercError=3.95931e-014 

Actually, the number of nodes needed to obtain a suitable accuracy depends 
on variance. The reader is urged to write a function pricing a vanilla European 
call option using Gauss-Hermite quadrature and to compare the result with 
b l sp r  ice. 

4.1.3 Extensions and product rules 

The interpolatory rules of section 4.1.1 are extended in many ways, which we 
just outline here. To begin with, nodes should be added dynamically until a 
prespecified accuracy is obtained. This can done according to clever strategies 



220 NUMERICAL INTEGRATION: DETERMINISTIC AND MONTE CARL0 METHODS 

in order to avoid unnecessary function re-evaluations. This leads to recursive 
quadrature formulas and to Romberg integration. Furthermore, the choice of 
the nodes may be improved by adapting it to the function characteristics; more 
nodes are needed where there is more variation, and less are needed where the 
function is more "constant"; this leads to adaptive quadrature formulas. All 
these improvements are exploited in scientific libraries, including MATLAB 
functions. 

Product rules are used when we want to extend quadrature formulas to 
multidimensional integration. Suppose we want to compute an integral on 
the unit hypercube 

r 

where [0, lId = [0,1] x [0,1] x . . . x [0,1], and that we have weights and nodes 
for, say, a Newton-Cotes quadrature formula along each dimension; more 
precisely, for dimension k, k = 1, . . . , d ,  we have weights wf and nodes x f ,  
i = 1, . . . , m k .  A product rule approximates the integral above as 

i l= l  i z = l  Z d = l  

A product rule builds nodes taking the Cartesian product of node sets along 
each dimension. It is easy to see that this regular grid is going to be impracti- 
cal for large d ,  and this motivates Monte Carlo integration based on random 
sampling. 

4.1.4 Numerical integration in MATLAB 

There are a few MATLAB functions to compute one-dimensional integrals. 
They are based on refinements of basic schemes, such as adaptive extensions 
of Simpson's rule. 

Example 4.1 Consider the integral 

r 2 x  

I = jo e-" sin(l0z) dz. 

Integration by parts yields 

I = - I e - "  [sin( lox) + 10 cos( lox)] I x 0.0988. 
0 101 

Using the quad function, we get 

>> f=@(x) exp(-x).*sin(lO*x) 
f =  

@(x) exp(-x) .*sin(lO*x) 
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>> quad(f ,0,2*pi) 
ans = 

0.0987 

Precision may be improved by specifying a tolerance parameter: 

>> quad(f,0,2*pi, IOe-6) 
ans = 

0.0987 
>> quad(f,0,2*pi, 10e-8) 
ans = 

0.0988 

We may also adopt alternative strategies, based on adaptive Lobatto quadra- 
ture: 

>> quadl(f,0,2*pi) 
ans = 

0.0988 

MATLAB also provides us with functions for multidimensional integration. 
In the bidimensional case, dblquad can be used, whereas tr iplequad is used 
for triple integrals. Actually, the latter is a relatively recent addition and was 
not available in earlier MATLAB versions. You can see that we cannot go 
beyond three dimensions. This is due to the intrinsic difficulty of using regular 
grids when we integrate in several dimensions. The typical way to  avoid this 
difficulty is resorting to random sampling. 

4.2 MONTE CARLO INTEGRATION 

The definite integral of a function is a number, and computing that number is 
a deterministic problem involving no randomness. Nevertheless, we may cast 
the problem within a stochastic framework by interpreting the integral as an 
expected value. Consider an integral on the unit interval [0,1]: 

r l  

I = J, g(x)  dx. 

We may think of this integral as the expected value E[g(U)], where U is a uni- 
form random variable on the interval (0, l), i.e., U N (0 , l ) .  We may estimate 
the expected value (a number) by a sample mean (a random variable). What 
we have to do is generating a sequence {Ui} of independent random samples 
from the uniform distribution and then evaluate the sample mean: 

- m  
1 fm = - C g ( U , ) .  

r = l  
m 
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The strong law of large numbers implies that, with probability 1, 

lim I ,  = I .  

Random sampling, which is where “Monte Carlo” comes from, is not really 
possible with a computer, but we can generate a sequence of pseudo-random 
numbers using generators provided by most programming languages and en- 
vironments. 

m-m 

Example 4.2 Consider the trivial case 

1 

I = ez dz = e - 1 M 1.7183. 

To generate uniformly distributed random numbers, we may use the MATLAB 
rand function; a call like rand (m, n) yields a m x n matrix of uniform random 
numbers. Please note that the parameters m and n have nothing to do with 
the distribution, which is U ( 0 , l )  anyway. We can see the reliability of our 
estimates as a function of the sample size m: 

>> rand(’state’, 0) 
>> mean(exp(rand(1,lO))) 
ans = 

1.8318 
>> mean(exp(rand(1,lO))) 
ans = 

2.0358 
>> mean(exp(rand(1,lO) 1) 
ans = 

1.3703 
>> mean(exp(rand(1,1000000))) 
ans = 

1.7189 
>> mean(exp(rand(l,1000000))) 
ans = 

1.7178 
>> mean(exp(rand(1,1000000) ) )  
ans = 

1.7174 

In order to understand the role of the command rand(’state’ ,O>, we should 
consider how “random” numbers are generated on a computer. For now it is 
enough to say that the command resets the generator so that the experiment 
can be replicated obtaining the same results. We see that the estimate is not 
quite reliable for m = 10, whereas variance of the estimator is much lower 
when m = 1,000,000, and the result is close to the correct number. Needless 
to say, we do not know the exact result in practice, and we should wonder 
how to qualify the reliability of the estimate, and how to improve it. 0 
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For one-dimensional integration, Monte Carlo is hardly competitive with de- 
terministic quadrature, but when computing a multidimensional integral it 
may be the only viable option. In general, if we have an integral like 

(4.3) 

where A c R", we may estimate I by randomly sampling a sequence of points 
xi E A, i = 1 , .  . . , m, and building the estimator 

i= l  

where vol(A) denotes the volume of the region A. To understand the formula, 
we should think that the ratio (l/m) xzl $(xi) estimates the average value 
of the function, which must be multiplied by the volume of the integration 
region in order to get the integral. 

We will see that in practice we need only to integrate over the unit hyper- 
cube, i.e., 

A = [0,1] x [0,1] x . * * x [0,1], 

hence vol(A) = 1. Considering the unit hypercube looks restrictive. In gen- 
eral, we have a vector random variable 

with joint density function f(z1, . . . , xn), and we use Monte Carlo integration 
to estimate the expected value of an arbitrary function of X: 

MATLAB provides us with many functions to generate random variables, but 
we will see that the primary input is always a stream of uniform random 
numbers U N U(0, l ) .  These generators are actually part of the Statistics 
Toolbox, but the core MATLAB environment also offers a function (randn) 
to sample the standard normal distribution. Using this function, we may use 
Monte Carlo integration to price a vanilla call option. 

Example 4.3 We know that the price of a European style option is the 
expected value, under the risk-neutral measure, of the discounted payoff of 
the option: 

f = e-'TE[f77], 
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X BlsMC1.m 
function Price = BlsMCl (SO, K , r , T , sigma, NRepl) 
nuT = (r - 0.5*sigma-2)*T; 
siT = sigma * sqrt(T) ; 
DiscPayof f = exp( -r*T) * m a x ( O ,  SO*exp(nuT+siT*randn(NRepl, 1) 
Price = mean(DiscPayoff) ; 

-K) ; 

Fig. 4.4 Code to price a vanilla European call by Monte Carlo simulation. 

where fT is the payoff a t  the maturity date T and a constant risk-free rate r 
is assumed. The notation E[-] is used to emphasize that expectation is taken 
with respect to the risk-neutral measure. If we assume geometric Brownian 
motion, this means that the drift p for the asset price must be replaced by 
the risk-free rate r (see section 2.6). Depending on the nature of the option at 
hand, we may need to generate the full sample paths, or simply the terminal 
asset price. Path generation will be dealt with in chapter 8, but a vanilla call 
option requires just sampling the payoff max{O,S(T) - K } ,  where S(T)  is 
the price of the underlying asset at maturity and K is the strike price. From 
example 2.20 on page 98, we know that we may easily accomplish this by 
generating a standard normal random variable e N N(0,l): 

A MATLAB function to price the call option is displayed in figure 4.4. The 
first five input parameters are self-explanatory and are those required by the 
blsprice function implementing Black-Scholes formula. The last parameter 
NRepl is the number of replications, i.e., samples we want to take. We may 
check the impact of this parameter: 

>> S0=50; 
>> K=60; 
>> r=0.05; 
>> T=1; 
>> sigma=0.2; 
>> randnOstate’, 0) 
>> BlsMCl (SO,K,r ,T, sigma, 1000) 
ans = 

1.2562 
>> BlsMCI(SO,K,r,T,sigma,1000) 
ans = 

1.8783 
>> BlsMCl (SO, K ,r ,T, sigma, 1000) 
ans = 

1.7864 
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>> BlsMC1(SO,K,r,T,sigma,1000000) 
ans = 

1.6295 
>> BlsMCl (SO,K,r ,T, sigma, lOOO000) 
ans = 

1.6164 
>> BlsMC1(SO,K,r,T,sigma,1000000) 
ans = 

1.6141 

As before, we reset first the state of the randn generator, so that the exper- 
iment can be repeated by the reader. With only 1000 samples, we see quite 
some variability in the estimate, which starts looking reasonable when the 
number of samples is increased considerably. Clearly, we cannot yield just 
a point estimate: we should also compute some confidence interval for the 
estimate. Possibly, we should understand how many samples are needed in 
order to attain a given precision. Another point is that too many samples are 
needed; things may be worse with higher volatility, and with complex path- 
dependent options we cannot afford taking a huge number of samples. Hence 
we need clever ways to reduce the variance of the estimator. 0 

Needless to say, the example above is presented for illustrative purposes, 
as there is no need to resort to Monte Carlo simulation to price a vanilla 
European-style call option. What we need is a numerical approximation of 
the integrals involved in the cumulative distribution function for standard nor- 
mal random variables. Nevertheless, we will see that pricing “easy” options 
by simulation may be useful in variance reduction by control variates. 

4.3 GENERATING P S E U D O R A N D O M  VARlATES 

The usual way to generate pseudorandom variates, i.e., samples from a given 
probability distribution, starts from the generation of pseudorandom num- 
bers, which are simply variates from the uniform distribution on the inter- 
val (0,l) .  Then, suitable transformations are applied in order to  obtain the 
desired distribution. We discuss briefly the most common transformations: 
the inverse transform method, the acceptancerejection approach, and ad hoc 
strategies such as those used to generate standard normal variates. The MAT- 
LAB Statistics toolbox provides the user with a rich library of random variate 
generators, so that the user need not herself program the procedures we de- 
scribe in the following. Nevertheless, we believe it is important to have at 
least a grasp of what is done, in order to properly apply variance reduction 
procedures to improve the estimates. 
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for 

end 

i=l :N 
seed = mod(a*seed+c, m); 
ZSeq(i) = seed; 
USeq(i) = seedh; 

Fig. 4.5 Code to generate random numbers by a linear congruential generator. 

4.3.1 Generating pseudorandom numbers 

The standard textbook method to generate U ( 0 , l )  variates, is based on linear 
congruential generators (LCGs). A LCG generates a sequence of non-negative 
integer numbers Zi as follows; given an integer number Zi-1, we generate the 
next number in the sequence by computing 

Zi = (aZi-1 + c) mod m, 

where a (the multiplier), c (the shift), and m (the modulus) are properly 
chosen parameters and mod denotes the remainder of integer division (e.g., 
15 mod 6 = 3). Then, to generate a uniform variate on the unit interval, we 
return the number (&/m). 

Example 4.4 In figure 4.5 we display MATLAB code to implement a LCG. 
Running the code with some choice of the parameters a, c, and m yields 

>> a=5; 
>> c=3; 
>> m=16; 
>> seed=7; 
>> N=20; 
>> [USeq, ZSeq] = LCC(a,c,m,seed,N); 
>> fprintf(l,’%2d %2d 16.4f \nJ, [(l:N)’, ZSeq, USeq]’) 
1 6 0.3750 
2 1 0.0625 
3 8 0.5000 
4 11 0.6875 
5 10 0.6250 
6 5 0.3125 
7 12 0.7500 
8 15 0.9375 
9 14 0.8750 
10 9 0.5625 
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11 0 0.0000 
12 3 0.1875 
13 2 0.1250 
14 13 0.8125 
15 4 0.2500 
16 7 0.4375 
17 6 0.3750 
18 1 0.0625 
19 8 0.5000 
20 11 0.6875 

U 

It is clear that there is nothing random in the sequence generated by a LCG. 
To begin with, it must start from an initial number 20; this is called the seed 
of the sequence. Starting the sequence from the same seed will always yield 
the same sequence. Indeed, any time you start MATLAB and type rand, you 
get the same number; if you keep typing rand, you see a sequence of numbers 
that look random and uniformly distributed. However, this sequence is always 
the same, since starting MATLAB sets the seed to a precise value. This may 
seem rather dull, and using a command like 

rand(’seed’ ,sum(lOO*clock)), 

which sets the seed of the random generator to a number depending on the 
current clock value, may seem a brilliant idea. In practice this is not a good 
idea at all; on the one hand, it makes debugging difficult; on the other one, 
the variance reduction techniques we describe in the following may call for 
the ability to control the seeds3 

A few remarks are in order. A first observation is that with a LCG we 
actually generate rational numbers rather than real ones; this is not a serious 
problem, provided that m is large enough. But there is another reason to 
choose a large value for m; the generator is periodic. In fact, we may generate 
at most m distinct integer numbers Zi, in the range from 0 to m - 1, and 
whenever we repeat a previously generated number, the sequence repeats itself 
(which is not very random at  all). We may see from the previous example 
that we get back to the initial seed 20 = 7 after 16 steps. This is not too bad, 
as 16 is the maximum possible period, for m = 16. We do much worse if we 
select a = 11, c = 5, and m = 16. In this case, starting from 20 = 3, we get 
the following sequence of integer numbers Zi: 

6, 7, 2, 11, 14, 15, 10, 3 

which has half the maximal period. Since the maximum possible period is 
m, we should make it very large in order to have a large period. The proper 

3Actually, this need is evident when we have a complex simulation with multiple sources of 
uncertainty. 
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choice of a and c ensures that the period is maximized and that the sequence 
looks random. A sequence like 

i u. 1 -  - - 
m’ i = O , l , .  . . 

which is obtained if a = c = 1, has a maximum period and is, in some sense, 
uniformly distributed on the interval ( O , l ) ,  but it is far from satisfactory. The 
point is that the samples should also look independent; to be more precise, 
they should be able to trick statistical testing procedures into “believing” that 
they are a sequence of independent samples from the uniform distribution. 
This is why designing a good random number generator is not easy; luckily, 
when you purchase good numerical software, someone has already solved the 
issue for you. 

Example 4.5 Consider the generator Zi = (aZi-1) mod m with a = 216+3 
and m = 231. It is fairly easy to show that for the sequence Ui = Zi /m the 
expression 

takes integer  value^.^ In fact, given Zi (integer) we have 

Ui+2 - 6Ui+1 + 9Ui 

Zi+l = a& mod m = a& - k l m  

for some integer kl .  We also have 

z i + ~  = 

= 
aZi+i mod m = a (aZi mod m) mod m = a (a& - k l m )  - kzm 
a2Zi - ( a k l +  k2)m = a’& mod m 

for some integer kz. This implies 

zi+~ - 6zi+l + gzi = 

= 

= 

= 232Zi - k m ,  

(216 + 3)’Zi mod m - 6(216 + 3)Zi  mod m + gZi 
[(216 + 3)’Zi - 6(216 + 3)Zi  + 9Zi] - k m  
(Z3’ + 6  216 + 9 - 6 216 - 18+ g)zi - k m  

Therefore 

is integer. This means that points of the form (Ui, Ui+l, Ui+2) lie on a limited 
number of hyperplanes. 0 

The type of phenomenon illustrated in the example results in a lattice struc- 
ture of LCGs. This concept may also be illustrated by the MATLAB script in 

4The examples below are taken from (14, pp. 22-25]. 



GENERATING PSEUDORANDOM VARIATES 229 

1 Rip1eyLCG.m 
m = 2048; 
a = 65; 
c = 1; 
seed = 0; 
u = LCG(a,c,m,seed, 2048); 
subplot(2,1,1) 
plot(U(1:m-l), U(2:m), ’ . ’ I ;  
subplot(2,1,2) 
plot(U(1:511), U(2:512), ’ .  ’1; 
1 
a=1365; 
c=l ; 
u = LCG(a,c,m,seed, 2048); 
figure 
plot(U(i:m-I), U(2:m), ’ . ’ I ;  

Fig. 4.6 Script to illustrate the lattice structure of LCGs. 

figure 4.6, which yields the plot displayed in figures 4.7 and 4.8. The top part 
of figure 4.6 shows a fairly good filling of the unit square by points of the form 
(Ui,Ui+l), for the choice a = 65, c = 1, and m = 2048. This may suggest 
that the distribution is uniform and that consecutive samples behave as if 
they were “statistically independent”. However, the second part of the figure 
shows that the first part of the sequence follows some definite pattern. This 
is even worse in the second case, where a = 1365, whose pattern is displayed 
in figure 4.8. We see that selecting parameters for LCGs is not trivial, and 
many commercially used generators in the past were indeed flawed. 

The examples above show that LCGs may have several limitations. Indeed, 
LCGs were state of the art in the past. In fact, they were used in the release 
4 of MATLAB. Now a different approach is taken; we will not enter in any 
detail, but it suffices to say that the new generator is based on a state vector 
with 35 components (see [ll] for more information). By issuing a command 
like rand(state ,O>, we tell MATLAB to reset this state vector to the config- 
uration which is loaded when MATLAB is started. Another important point 
is that when generating normal variates, MATLAB uses the randn function; 
this function generates standard normal variates, and it has a separate state 
from the uniform generator. The state mechanism for randn is similar to that 
of rand; the important point to keep in mind is that they are separate, and 
resetting the state for the uniform generator is no use when you are generating 
normal variates (which is a common task when pricing options). 
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"0 0.2 0.4 0.6 0.8 1 

" 
0 0.2 0.4 0.6 0.8 1 

Fig. 4.7 Plots obtained by running the RipleyLCG script. 

4.3.2 Inverse transform method 

Suppose we are given the distribution function F ( x )  = P{X 5 x } ,  and that 
we want to generate random variates according to F .  If we are able to invert 
F easily, we may apply the following inverse transform method: 

1. We draw a random number U N U(0, l ) .  

2. We return X = F- ' (U) .  

It is easy to see that the random variate X generated by this method is 
actually characterized by the distribution function F :  

P { X  5 X} = P { F - ' ( U )  5 X} = P{U 5 F ( x ) }  = F ( x ) ,  
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“0 0.2 0.4 0.6 0.8 1 

Fig. 4.8 Plot obtained by running the RipleyLCG script. 

where we have used the monotonicity of F and the fact that U is uniformly 
distributed. 

Example 4.6 A typical distribution which can be simulated easily by the 
inverse transform method is the exponential distribution. If X - exp(p), 
where l /p  is the expected value of X, its distribution function is 

F ( z )  = 1 - e - p x .  

Direct application of the inverse transform yields 

1 

P 
z = -- ln(1 - U ) .  

Since the distributions of U and (1 - U )  are actually the same, it is custom- 
ary to generate exponential variates by drawing a random number U and by 
returning - ln(U)/p. We may check that this is indeed the method used in 
the Statistics toolbox to simulate exponential random variables through the 
exprnd function: 

>> rand(’state’,O) 
>> exprnd(1) 
ans = 

0.0512 
>> rand(’state’,O) 
>> -log(rand) 

0.0512 
ans = 
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Generating exponential random variables is useful when you have to simulate 
a Poisson process, which is a possible model for shocks in asset prices or credit 
rating. 0 

The inverse transform method is quite simple, and it may also be applied 
when no theoretical distribution model is available and all you have is a set 
of empirical data. You just have to  build a sensible distribution function 
based on your data set (see, e.g., [9]); one way to build a distribution function 
in this case is linear interpolation, and inverting a piecewise linear function 
is easily accomplished. However, we may not apply the inverse transform 
method when F is not invertible, as it happens with discrete distributions (in 
this case the distribution function is piecewise constant, with jumps where 
probability mass is concentrated). Nevertheless, we may adapt the method. 
Consider a discrete empirical distribution with a finite support: 

P ( X  = Xj} =pj ,  j = 1 , 2 , .  . .,n. 

Then we should generate a uniform random variate U and return X as 

It may be instructive to see how this code may be implemented in a simple 
way (not the most efficient one, however). Suppose we have a distribution 
defined by probabilities 

0.1 0.2 0.4 0.2 0.1 

over values 1 ,2 ,3 ,4 ,5 .  First we define cumulative probabilities: 

0.1 0.3 0.7 0.9 1.0, 

then we draw a uniform random number, say U = 0.82. For each cumulative 
probability P we may check if U > P,  yielding a vector 

1 1 1 0 0 ,  

where 1 corresponds to “true” and 0 to “false.” To select the right value to 
return, we must sum the ones in this vector (the total is 3 here) and add 
1; in this case we should return the value 4. Using MATLAB, this may be 
accomplished by working on vectors; code is displayed in figure 4.9 (howmany 
is the number of samples we want). For the example we are considering, we 
may check the function by plotting a histogram: 

>> rand(’state’,O) 
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function samples = EmpiricalDrnd(values, probs, howmany) 
% get cumulative probabilities 
cumprobs = cumsum(probs) ; 
N = length(probs1; 
samples = zeros(howmany, 1) ; 
for k=l : howmany 

loc=sum(rand*cumprobs(N) > cumprobs) + 1; 
samples(k)=values(loc) ; 

end 

Fig. 4.9 Sampling from an empirical discrete distribution. 

Fig. 4.10 Histogram produced by calling EhpiricalDrnd. 

>> values=l:5; 
>> probs=[0.1 0.2 0.4 0.2 0.11; 
>> samples=FmpiricalDrnd(values ,probs ,10000) ; 
>> hist (samples, 5) 

The resulting histogram is displayed in figure 4.10. 
For many relevant distributions, the distribution function is invertible, but 

this is not easily accomplished. In such a case, one possibility is to resort to 
the acceptance-rej ection met hod. 

4.3.3 Acceptance-rejection method 

Suppose we must generate random variates according to a probability density 
f(x), and that the difficulty in inverting the corresponding distribution func- 
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T 

O A  B 1 

fig. 4.11 Graphical example of the acceptance-rejection method. 

tion makes the inverse transform method unattractive. Assume that we know 
a function t(x) such that 

t(X) 2 f(.) vx E 1, 

where I is the support of f .  The function t(x) is not a probability density, 
but the related function ~ ( x )  = t(x)/c is, provided that we select 

c = lt(x) dx. 

If the distribution r(x)  is easy to simulate, it can be shown that the follow- 
ing acceptance-rejection method generates a random variate X distributed 
according to the density f: 

1. Generate Y N r .  

2. Generate U N U ( 0 ,  l), independent of Y .  

3. If U 5 f (Y) / t (Y) ,  return X = Y; otherwise, repeat the procedure. 

If the support I is bounded, a natural choice for ~ ( x )  is simply the uniform 
distribution on I ,  and we may choose 

t(x) = maxf(x). 
X E I  

We will not prove the correctness of the method, but an intuitive grasp can be 
gained from figure 4.11. In the figure, the support of f(x) is the unit interval. 
A typical distribution that looks like f is the beta distribution: 



GENERATING PSEUDORANDOM VARIATES 235 

provided that the parameters satisfy a1,a2 > 1 (the beta distribution does 
not require this condition, but its appearance would be different from figure 
4.11). The beta function is defined as 

1 

B(cr1, a2) = 1 xa1-'(l - z)Q2-1 dz. 

The Y variables are generated according to the uniform distribution and will 
spread evenly over the unit interval. Consider point A;  since f ( A )  is close to 
t (A) ,  A is likely to be accepted, as the ratio f ( A ) / t ( A )  is close to 1. When we 
consider point B,  where the value of the density f is small, we see that the 
ratio f ( B ) / t ( B )  is small; hence, B is unlikely to be accepted, which is what 
we would expect. It can also be shown that the average number of iterations 
to terminate the procedure with an accepted value is c. 

Example 4.7 Consider the density 

f(.) = 30(x2 - 2 2  + x E [O, 11. 

The reader is urged to verify that this is indeed a density (actually, it is the 
beta density with 01 = a2 = 3). If we apply the inverse transform method, 
we have to invert a fifth-degree polynomial at each generation, which suggests 
use of the acceptancerejection method. By ordinary calculus we see that 

max f(z) = 30/16 
XE[O,11 

for x* = 0.5. Using the uniform density as the easy density r ,  we get the 
following algorithm: 

1. Draw two independent and uniformly distributed random variables U1 
and U2. 

2. If U2 5 16(U; - 2U: + V,"), accept X = U1; otherwise, reject and go 
back to step 1. 

The average number of iterations to generate one random variate is 30/16. 
n 

4.3.4 

The inverse transform and acceptancerejection methods are general purpose, 
but they are not always applicable. In the case of normal variables inverting 
the cumulative distribution function is no easy task, nor may we easily find a 
majorant function for the normal density, since its support is not finite. Actu- 
ally, efficient approximations have been developed for the inverse distribution 
function for normal random variables. In MATLAB, a function call like 

Generating normal variates by the polar approach 

x = norminv(p, mu, sigma) 
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returns the quantile for probability p of a variable with expected value mu 
and standard deviation sigma This can be used to generate samples from the 
standard normal distribution, but it may not be the most efficient way: 

>> t i c ,  Z = norminv(rand(1000000,1));, t o c  
Elapsed time is  1.279080 seconds. 
>> t i c ,  Z = randn(1000000,1);, t o c  
Elapsedtime is  0.048054 seconds. 

Here, function randn uses a recent ad hoc method for the generation of 
normal variates. We outline here the basics of the classical polar approach, 
which may be outdated but is a nice example of ad hoc method. 

Recall first that if X - N(0,  l), then p + uX N N ( p , a 2 ) ;  hence we just 
need a method for generating standard normal variables. One old-fashioned 
possibility, which is still suggested in some textbooks, is to exploit the central 
limit theorem and to  generate and sum a suitable number of uniform variates. 
Although this approach would work in the limit, computational efficiency 
would restrict the number of uniform variates that we use. The result is 
that we obtain a variate which could be of sufficient quality in noncritical 
simulations in which we are interested in average values, but is of debatable 
quality when we are interested in critical behavior in the tail of the distribution 
(as is the case in Value at Risk computations). 

An alternative method is the Box-Muller approach. Consider two indepen- 
dent variables X ,  Y N N ( 0 ,  l), and let (R, 0) be the polar coordinates of the 
point of Cartesian coordinates (XI Y )  in the plane, so that 

d = R2 = X 2  + Y 2  0 = tan-’ Y / X  

The joint density of X and Y is 

The last expression looks like a product of an exponential density for d and 
a uniform distribution; the term 1 / 2 ~  may be interpreted as the uniform 
distribution for the angle 6’ E (0,27r). However, we are missing some constant 
term in order to obtain the exponential density. To express the density in 
terms of (d ,e) ,  we should properly take the Jacobian of the transformation 
from (2, y) to (d,  0 )  into a c ~ o u n t . ~  Some calculations yield 

dd dd - 
d x  dy 
ae de 
d x  ay 

J =  
- 

= 2, 

’See, e .g . ,  [16] for details. 
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and the correct density in the alternative coordinates is 

1 1  
2 2lr 

f(d, e) = - - c d j 2  

Hence, we may generate R2 as an exponential variable with mean 2 and 
0 as a uniformly distributed angle, and then transform back into Cartesian 
coordinates in order to obtain two independent standard normal variates. The 
Box-Muller algorithm may be implemented as follows: 

1. Generate two independent uniform variates U1, UZ N U ( 0 , l ) .  

2. Set R2 = -2 log U1 and B = 21rU2. 

3. Set X = Rcose, Y = Rsine. 

In practice, this algorithm may be improved by avoiding the costly evaluation 
of trigonometric functions and integrating the Box-Muller approach with the 
rejection approach. The idea results in the following polar rejection method: 

1. Generate two independent uniform variates U1, Uz - U(0, l ) .  

2. Set ~1 = 2 ~ 1 -  1, VZ = 2 ~ 2  - 1, S = Vf + V:. 

3. If S > 1, return to  step 1; otherwise, return the independent standard 
normal variates: 

We refer the reader to [15, section 5.31 for a justification of the polar rejection 
method. 

Example 4.8 We have seen that LCGs may exhibit a lattice structure. Since 
the Box-Muller transformation is non-linear, one might wonder if the com- 
position of these two features may yield weird effects. We may check this 
in a somewhat peculiar case (see [14]), using the MATLAB script in figure 
4.12. The script generates 2046 uniform random numbers for a sequence with 
modulus m = 2048; we discard the last pair, because the generator has maxi- 
mum period and reverts back to  the seed, which is 0 and causes trouble with 
the logarithm. Vectors U1 and U2 contain odd- and even-numbered random 
numbers in the sequence. The first part of the resulting plot, displayed in 
figure 4.13, shows poor coverage of the plane. The second part shows that 
swapping the pairs of random numbers may have a significant effect, whereas 
with truly random numbers the swap should be irrelevant. Of course, using 
better LCGs, or better random number generators prevents pathological be- 
havior like this. However, it may be sometimes preferable to use the inverse 
transform method. 

0 
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X Ripley2.m 
m = 2048; 
a = 1229; 
c = 1; 
N = m-2; 
seed = 0; 
U = LCG(a,c,m,seed,N); 

U2 = U(2:2:N); 
X=sqrt(-2*1og(Ul)).* cos(2*pi*U2); 
Y=sqrt(-2*log(Ul)).* sin(2*pi*U2); 
figure 
subplot (2,1,1) 
plot(X,Y,'. '1; 
~=sqrt(-2*log(U2)). * cos(2*pi*U1); 
Y=sqrt(-2*log(U2)).* sin(2*pi*U1); 
subplot (2,1,2) 
plot (X ,Y, ' . '1 ; 

U1 = U(l:2:N-l); 

Fig. 4.12 Script to check Box-Muller approach. 

In many financial applications one has to generate variates according to a 
multivariate normal distribution with (vector) expected value p and covari- 
ance matrix C. This task may be accomplished by obtaining the Cholesky 
factor for C ,  i.e., an upper triangular matrix U such that C = UTU (see 
section 3.2.3). Then we may apply the following algorithm: 

1. Generate n independent standard normal variates 21,. . . , 2, N N(0,l). 

2. Return X = p + UTZ, where Z = [Z,, . . . , Z,lT 

Example 4.9 A rough code to simulate multivariate normal variables is 
illustrated in figure 4.14. The code builds a matrix whose columns correspond 
to the different variables, and the rows correspond to the different realizations 
of them. Assume that we have the following parameters: 

>> Sigma = [4 1 -2 ; 1 3 1 ; -2 1 51; 
>> mu = [ 8 ; 6 ; 101; 
>> eig(Sigma) 

1.2855 
4.1433 
6.5712 

ans = 
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4 

-4 
-4 -3 -2 -1 0 1 2 3 4 

...................... 
........ 

2 ..... 
2.5 ;,,. 

................. 
....... 

................ 

-.. /(@ ,,./.'"' ~ 

......... '\ .... ..... ..... ..... ........................ 
-2 -1 0 1 2 3 

- 
4 

Fig. 4.13 Effect of swapping random numbers in the Box-Muller transformation. 

Note that we make sure that the matrix C is positive definite, as it should be, 
by checking its eigenvalues. Now we may generate a few samples and verify 
the results. 

>> rand('state',O); 
>> Z = MultiNormrnd(mu,Sigma,10000) ; 
>> m e a n ( Z )  
ans = 

8.0266 6.0234 9.9703 
>> COV(Z) 
ans = 

4.0159 1.0193 -1.9671 
1.0193 3.0011 1.0171 
-1.9671 1.0171 5.0060 

We leave to the reader the exercise of improving the code, by checking that 
the vector and matrix sizes of the input arguments agree, by checking that 
the matrix Sigma is a positive definite symmetric matrix, and by avoiding the 
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function Z = MultiNormrnd(mu,sigma,howmany) 
n = length(mu); 
Z = zeros(howmany,n); 
mu = mu(:); 1 make sure it’s a column vector 
U = chol(sigma); 
for i=l:howmany 

end 
Z ( i , : )  = mu’ + randn(1,n) * U; 

f ig. 4.14 Code to simulate multivariate normal variables. 

for loop. Then have a look at the function mvnmd, included in the Statistics 
toolbox, which does just this job. 0 

4.4 SETTING THE NUMBER OF REPLICATIONS 

Carrying out a Monte Carlo simulation entails the generation of samples of 
the quantity of interest and then an estimation of the relevant parameters. 
One would expect that the larger the number of samples, or replications, the 
better the quality of the estimates will be. From appendix B we recall that 
given a sequence of independent (and we stress the independence) samples X i ,  
drawn from the same underlying distribution, we may build the sample mean: 

- r l  
1 X ( n )  = - C X ~ ,  n i=l 

which is an unbiased estimator of the parameter p = E [ X i ] ,  and the sample 
variance: 

l n  
S2(n) = - C [xi - X(n)]  ’ . 

n - 1 ,  
Z=1 

We may try to quantify the quality of our estimator by considering the ex- 
pected value of squared error of estimate: 

2 
n E[(X(n) - P ) ~ ]  = Var[X(n)] = -, 

where 0’ may be estimated by the sample variance. Clearly, increasing the 
number n of replications improves the estimate; but how can we reasonably 
set the value of n? 

Recall that the confidence interval at level (1 - a) may be computed as 

(4.5) 
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where ~ 1 - ~ / 2  is the quantile of the standard normal distribution corresponding 
to probability 1 - a. Strictly speaking, this is just an approximation, which 
will be a good one provided that n is large enough, both because X ( n )  will 
be approximately normal (central limit theorem) and because the quantile 
t n - l , l - a / 2  from the t distribution with n - 1 degrees of freedom tends to  
Z1-a .  

Suppose you are interested in controlling the absolute error in such a way 
that, with probability (1 - a) ,  

I X(n)  - p I< P, 

where /? is the maximum acceptable tolerance. But the confidence interval 
(4.5) is just built in such a way that 

P{X(n) - H < p L X(n)+  H }  M 1-0 ,  

where we denote the half-length of the interval by 

H = z 1 - 4 2 m m  

of the confidence interval. This implies that, with probability 1 - a ,  we have 

X ( n )  - p I H ,  p - X(n)  < H + I X(n)  - p 15 H .  

Hence, linking H to P, we should simply run replications until H is less than 
or equal to the tolerance P, and the number n must satisfy 

z 1 - a , 2 d 3 m F  I P. (4.6) 

Actually, we are chasing our tail a bit here, since we cannot estimate the 
sample variance S2(n)  until the number n has been set. One way out is to 
run a suitable number, say k = 30, of pilot replications, in order to come up 
with an estimate S 2 ( k ) .  Then we may apply (4.6) using S 2 ( k )  to determine 
n. After running the n replications, it is advisable to check that equation 
(4.6) holds with the new estimate S2(n).  Alternatively, we may simply add 
replications, updating the sample variance, until the criterion is met; however, 
with this approach we do not control the amount of computation we are willing 
to spend. 

If you are interested in controlling the relative error, so that 

holds with probability (1 -a ) ,  things are a little more involved. The difficulty 
is that we may run replications until the half-length H satisfies 

H 
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function [Price, CI] = BlsMC2(SO ,K, r , T, sigma, NRepl) 
nuT = (r - O.5*sigmaa2)*T; 
siT = sigma * sqrt(T) ; 
DiscPayoff = exp(-r*T)*max(O, SO*exp(nuT+siT*randn(NRepl,l))-K) ; 
[Price, VarPrice, CI] = normf it (Discpayoff 1 ; 

Fig. 4.15 Revised code to price a vanilla European call by Monte Carlo simulation. 

but in this inequality we are using the known quantity X ( n )  rather than the 
unknown parameter p. Nevertheless, if the inequality above holds, we may 
write 

where inequality (4.7) follows from the triangle inequality and the last equa- 
tion is obtained by a slight rearrangement. Therefore, we see that if we pro- 
ceed without care, the actual relative error we get is bounded by y/( l  - y), 
which is larger than the desired bound y; so, we should choose n such that 
the following criterion is met: 

where 
yl = -2- < y. 

l+Y 
Again, we should run some pilot replications in order to get a first estimate 
of the sample variance S2 (n). 

Confidence intervals in MATLAB may be computed using the normfit 
function. This function is part of the Statistics Toolbox and it assumes that 
we are fitting a normal distribution based on samples from the normal distri- 
bution, which is not exactly what we have in mind; nevertheless, the way it 
computes confidence intervals fits our purpose. By default, normf it returns 
a 95% confidence interval, and different values may be specified, as usual in 
MATLAB, by passing an optional parameter. 

Example 4.10 We may extend the code for pricing a vanilla call in order 
to compute confidence intervals on prices, as shown in figure 4.15. Note that 
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in the last line we must collect three output arguments from normfi t ;  the 
second one is sample variance, which is discarded. We can pIay a bit with 
BlsMC2 in order to get a feeling for how many replications are needed to get 
a fairly accurate estimate: 

>> randn( ’state’, 0 )  
>> S0=50; 
>> K=55; 
>> r=0.05; 
>> T=5/12; 
>> sigma=0.2; 
>> Call = blsprice(SO,K,r,T,sigma) 
Call = 

>> [CallMC, CI] = BlsMC2(SO,K,r,T,sigma,50000) 
CallMC = 

CI = 

1.1718 

1.1953 

1.1704 
1.2201 

>> (CI(2)-CI(l))/CallMC 
ans = 

0.0416 

We may notice that with 50000 samples the estimate is not quite satisfactory; 
however the true value is within the confidence interval, even though close 
to the left end-point. Of course, in a practically relevant case, we could only 
notice that the confidence interval is fairly wide. It may take a very large 
number of replications to get a reliable estimate: 

>> [CallMC, CI] = BlsMC2(S0,K,r,T,sigma,1000000) 
CallMC = 

CI = 
1.1749 

1.1694 
1.1804 

>> (CI(2)-CI(l))/CallMC 
ans = 

0.0094 

From equation (4.5) we see that the rate of improvement of the quality of our 
estimate, i.e., the rate of decrease of the error, is something like O(l/&). In 
practice, this means that the more samples we get the better, but the rate of 
improvement is slower and slower as we keep adding samples. Thus a brute- 
force Monte Carlo simulation may take quite some amount of computation to  
yield an acceptable estimate. One way to overcome this issue is to adopt a 
clever sampling strategy in order to reduce the variance o2 of our samples; 
the other one is to  adopt a quasi-Monte Carlo approach. 
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4.5 VARIANCE REDUCTION TECHNIQUES 

We have seen in section 4.4 that one way to improve the accuracy of an 
estimate is to increase the number of replications n, since Var(x(n)) = 
Var(Xi)/n. However, this brute-force approach may require an excessive com- 
putational effort. An alternative is to work on the numerator of this fraction 
and to reduce the variance of the samples Xi directly. This may be accom- 
plished in different ways, more or less complicated, and more or less rewarding 
as well. 

4.5.1 Antithetic sampling 

A first approach that is easy to  apply and does not require deep knowledge of 
what we are simulating is antithetic sampling. In plain Monte Carlo, we gen- 
erate a sequence of independent samples. However, inducing some correlation 
in a clever way may be helpful. Consider the idea of generating a sequence of 
paired replications (Xiz), Xt ’ ) ,  i = 1,. . . , n: 

These samples are “horizontally” independent, in the sense that Xj(E1) and 

Xf2) are independent however we choose j ,  k = 1 , 2 ,  provided il # i2. Thus 

the pair-averaged samples X(2) = (Xii’ + Xt’) /2  are independent, and we 
may build a confidence interval based on them. However, we do not require 
“vertical” independence, since for a fixed i, Xii) and X t )  may be dependent. 
If we build the sample mean X(n)  based on the samples X(i) ,  

4n 

We see that, in order to reduce the variance of the sample mean, we should 
take negatively correlated replications within each pair. Each sample Xi$ is 
obtained by generating random variates according to one of the methods we 
have described before; but all of these methods exploit a stream of uniformly 
distributed random numbers. Hence, to  induce a negative correlation, we may 
use a random number sequence { Uk}  for the first replication in each pair, and 
then (1 - U k }  in the second one. Since the input streams are negatively 
correlated, we hope that the output streams will, too. 
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Example 4.11 Let us repeat example 4.2, where we used Monte Carlo in- 
tegration to estimate 

1 

I = e" dx = e - 1 M 1.7183. 

With only 100 samples, we do not get a reliable estimate: 

>> randn( ' state ' ,O) 
>> X=exp(rand(100,1)); 
>> [I,dummy,CII = normfit(X1; 
>> I 
I =  

>> (CI (2) -CI(l) )/I 
ans = 

1.7631 

0.1089 

Antithetic sampling is easily accomplished here. We must store random num- 
bers and take their complements to one. In order to have a fair comparison, 
we consider 50 antithetic pairs, which means 100 function samples as before: 

>> randn( 'state' ,O) 
>> Ul=rand(50,1) ; 
>> u2=1-u1; 
>> x=o .5* (exp(Ul)+exp(U2)) ; 
>> [I, dummy ,CI] = normf it (XI ; 
>> I 
I =  

1.7021 
>> (CI (2) -CI (1)) /I 
ans = 

0.0200 

Now the confidence interval is much smaller and, despite the limited number 
of samples, the estimate is fairly reliable. 0 

The antithetic sampling method looks quite easy to apply and, in the example 
above, it works pretty well. May we always expect a similar pattern? Of course 
not. To begin with, if we integrate the exponential function over [0,1] there is 
a strong positive correlation between U and eu because the function is almost 
linear there. We should not expect impressive results in more complex cases. 
Moreover, the following counterexample shows that the method may actually 
backfire, resulting in an increase in the variance. 

Example 4.12 Consider the function h(x), defined as 

x < o  
0 5 x _< 0.5 
0.5 5 x 5 1 
x > l  

2 - 2 ~ ,  h(x) = 
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and suppose that we want to take a Monte Carlo approach to estimate 

1' h(x) dx. 

The function we want to integrate is obviously a triangle with both basis and 
height equal to 1; note that, unlike the exponential function of example 4.11, 
this is not a monotone function with respect to x. It is easy to  compute the 
integral as the area of a triangle: 

1 1 

h(x) dx + E[h(U)] = / h(u). 1 du = 1/2. 
0 

Now let 

where U1 and V2 are independent uniform variates, be the usual sample based 
on independent sampling, and let 

h(V) + h(1 - V )  
2 

x* = 

be the pair-averaged sample built by antithetic sampling. We may compare 
the two variances: 

Var(Xr 

V 4 X A )  

The difference between 

Var[h(V)] Cov[h(U), h(1- V ) ]  
2 

+ - - 
2 

the two variances is 

Cov[h(U), h ( l  - V ) ]  
A = Var(XA) - Var(X1) = 2 

1 
= - {E[h(U)h(l - V ) ]  - E[h(U)]E[h(l - V ) ] } .  

2 

But in this case, due to the shape of h, we have 

E[h(U)] = E[h(l - V)] = 1/2 

and 

112 
E[h(U)h(l - U ) ]  = 1 2u .  (2 - 2(1 - u)) du + 2(1 - u) . (2 - 2u) du 

1/2 1 

= 1 4u2 du + L l 2 ( 2  - 2 ~ ) ~  du = 1/3. 

Therefore, Cov[h(U), h(1 - V)] = 1/3 - 1/4 = 1/12 and A = 1/24 > 0, and 
antithetic sampling actually increases variance in this case. 
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function [Price, CI] = BlsMCAV (SO, K, r ,T, sigma, NRepl) 
nuT = (r - 0.5*sigma-2)*T; 
siT = sigma * sqrt (TI ; 
Veps = randn(NRep1,l) ; 
Payoff1 = max( 0 , SO*exp(nuT+siT*Veps) - K); 
Payoff2 = max( 0 , SO*exp(nuT+siT*(-Veps)) - K); 
DiscPayoff = exp(-r*T) * 0.5 * (Payoffl+Payoff2); 
[Price, VarPrice, CI] = normf it (DiscPayoff) ; 

Fig. 4.16 Using antithetic variates to price a vanilla European call by Monte Carlo 
simulation. 

Indeed, there is a trivial explanation. The two antithetic samples have the 
same value h ( U )  = h(1-U), so that Cov[h(U), h(1-U)] = Cov[h(U), h ( U ) ]  = 
Var[h(U)]. In this (pathological) case, the variance of the single sample is 
doubled by applying antithetic sampling. 0 

What is wrong with example 4.12? The variance of the antithetic pair is 
actually increased due to the non-monotonicity of h(s). In fact, while it is true 
that the random numbers {Ui} and (1 - Vi} are negatively correlated, there 
is no guarantee that the same holds for X!') and Xi in general. To be sure 
that the negative correlation in the input random numbers yields a negative 
correlation in the output samples, we must require a monotonic relationship 
between them. The exponential function is a monotonic function, but the 
triangle function of the second example is not. We should also pay attention 
to how random variates are generated. The inverse transform method is based 
on the distribution function, which is a monotonic function; hence, there is a 
monotonic relationship between the input random numbers and the random 
variates generated. This is not necessarily the case with the acceptance- 
rejection method or the Box-Muller method. Luckily, when we need normal 
variates, we may simply generate a sequence Z,, where Zi N N ( 0 ,  l), and use 
the sequence -2, for the antithetic samples. This idea is best illustrated by 
applying antithetic sampling to option pricing in the simplest setting. 

We may easily incorporate antithetic sampling in our function BlsMC2 to 
price a European-style call option. MATLAB code is shown in figure 4.16. 
We simply generate a stream of standard normal variates and use the same 
sequence, with a change in sign, in the antithetic run. Each pair of antithetic 
samples is averaged and used as an estimator. Note that the last input pa- 
rameter] NPairs, is the number of antithetic pairs, rather than samples; this 
must be taken into account when checking the variance reduction with respect 
to crude Monte Carlo: 

(2) 

>> randn( 'state',O) 
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>> [Price, CI] = BlsMC2(50,50 ,O. 05,l ,O. 4,200000) 
Price = 

CI = 

9.0843 

9.0154 
9.1532 

>> (cI(2)-CI(l))/Price 
ans = 

0.0152 
>> randn(’ state’ ,O) 
>> [Price, CI] = BlsMCAV(50,50,0.05,1,0.4,100000) 
Price = 

CI = 

9.0553 

8.9987 
9.1118 

>> (CI(2)-CI(l))/Price 
ans = 

0.0125 

We see that some improvement is obtained, but it is not that impressive, 
in this case. Clearly, one run for one example does not allow to draw any 
conclusion, but it is a fact that antithetic sampling is a simple technical trick 
which does not exploit too much knowledge. 

In the case of a vanilla call option, the monotonicity condition required by 
antithetic sampling is met: the higher the sample from the standard normal 
distribution, the higher the terminal price of the underlying, and the higher 
the payoff. With non-monotonic payoffs, this need not be the case. We may 
illustrate this by using a payoff which is similar to the triangle function of 
example 4.12. The butterfly spread6 is a trading strategy involving options 
on the same underlying asset, with the same maturity, but with different strike 
prices. The payoff from this combination is illustrated in figure 4.17. It can 
be obtained by buying one call option with strike price K1, one call option 
with strike price K3 (K1 < K3), and by selling two call options with a strike 
K2 halfway between the other two. Since the butterfly spread is simply a 
combination of European calls, an option with that payoff may be directly 
priced by using Black-Scholes formula. 

Since the payoff is clearly non-monotonic, and we know the “correct” price, 
it is interesting to check whether antithetic sampling works in this case. A 
crude Monte Carlo approach leads to the code in figure 4.18. The function 
MCButterf ly receives the usual input arguments, plus the three strikes. Note 
the use of vectors In1 and In2 to  collect the indexes corresponding to repli- 
cations in which the terminal asset price falls in the increasing region of the 

‘See, e.g., [6, chapter 81 for more option trading strategies. 
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Fig. 4.1 7 Payoff froni a butterfly spread. 

function [P, CI] = MCButterfly(SO,r,T,sigma,NRepl,Ki,K2,K3) 
nuT = (r-0.5*sigma-2)*T; 
siT = sigma*sqrt (T) ; 
Veps = randn(NRep1,l) ; 
Stocks = SO*exp(nuT + siT*Veps) ; 
In1 = find((Stocks > K1) & (Stocks < K2)); 
In2 = find((Stocks >= K2) & (Stocks < K3)); 
Payoff = exp(-r*T)*[(Stocks(Inl)-Kl); (K3-Stocks(In2)); . . . 

[P, v, CI1 = normfit(Payoff); 
zeros(NRep1 - length(In1) - length(In2) ,111 ; 

payoff (K1 < ST < K 2 )  or in the decreasing region (Kz 5 Sr < K:j); outside 
t,liose regions the payoff is zero. The two vectors are used to avoid for loops. 

The function MCAVButterf ly of figure 4.19 is a modification based on an- 
tithetic sarripling. The vector Veps contains the samples from the standard 
iior1r1al distribution, which are changed in sign to obtain the antithetic stock 
price samples Stocks2. Note that in this case we must preserve the order 
of' the samples so as to pair the corresponding payoffs properly; this is why 
tho code looks A bit inore involved, and it uses find in order to spot samples 
falling in the interval of zero, increasing, or decreasing payoff. 

It is comirion to choose I<2 close to the current stock price So, as this 
st,ratcgy is based on the bet that the stock price will not move too much. Let 
1.1s check the results in such a case. Using blsprice we may get the theoretical 
rcsult. 

>> SO = 60; 
>> K1 = 55; 
>> K2 = 60; 
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function [P, CI] = MCAVButterfly(SO,r,T,sigma,NPairs,Kl,K2,K3) 
nuT = (r-0.5*sigmaa2)*T; 
siT = sigma*sqrt(T) ; 
Veps = randn(NPairs,l) ; 
Stocksl = SO*exp(nuT + siT*Veps) ; 
Stocks2 = SO*exp(nuT - siT*Veps) ; 
Payoff 1 = zeros “Pairs, 1) ; 
Payoff 2 = zeros (NPairs, 1) ; 
In = find((Stocks1 > K1) & (Stocksl < K2)); 
Payoffl(1n) = (Stocksl(1n) - K1); 
In = find((Stocks1 >= K2) & (Stocksl < K3)); 
Payoffl(1n) = (K3 - Stocksl(1n)); 
In = find((Stocks2 > K1) & (Stocks2 < K2)); 
Payoff2(In) = (StocksZ(1n) - Kl); 
In = find((Stocks2 >= K2) & (Stocks2 < K3)); 
Payoff2(In) = (K3 - Stocks2(In)); 
Payoff = 0.5 * exp(-r*T) * (Payoff1 + Payoff2); 
[P, V, CI] = normf it (Payof f) ; 

Fig. 4.19 Using antithetic sampling to  price a butterfly spread combination. 

>> K3 = 65; 
>> T = 5/12; 
>> r = 0.1; 
>> sigma = 0.4; 
>> calls = blsprice(S0, CK1, K2, K31, r, T, sigma); 
>> Price = calls(1) - 2*calls(2) + calls(3) 
Price = 

0.6124 

Next, we may compare the two Monte Carlo methods: 

>> randn(’state’ ,O) 
[P, CI] = MCButterfly(SO,r,T,sigma,100000,K1,K2,K3); 
>> P 
P =  

0.6095 
>> (C1(2)-CI(l))/P 
ans = 

0.0256 
>> randn(’state’.O) 
>> [P, CI] = MCAVButterf ly(S0,r ,T, sigma,50000,Kl ,K2,K3) ; 
>> P 
P =  

>> (C1(2)-CI(l))/P 
0.6090 
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ans = 

0.0355 

We may see that variance is actually increased in this case. This does not 
mean that you will always have an increase in variance, as this depends on 
the input data (try changing the strikes to see this). Anyway, since one run 
does not tell us much, a better comparison may be carried out by checking 
the standard error of estimate with respect to the exact result using multiple 
runs: 

Indeed, we see that the standard error of estimate is increased by antithetic 
sampling. 

4.5.2 Common random numbers 

The common random numbers (CRN) technique is very similar to  antithetic 
sampling, but it is applied in a different situation. Suppose that we use Monte 
Carlo simulation to estimate a value depending on a parameter a. In formulas, 
we are trying to estimate something like 

where we have emphasized randomness through the variable w .  We could also 
be interested in evaluating the sensitivity of this value on the parameter a: 

dh(a) 
da * 

This would be of interest when dealing with option sensitivities beyond the 
Black-Scholes model. Clearly, we cannot compute the derivative analytically; 
otherwise, we wouldn’t use simulation to evaluate h in the first place. So the 
simplest idea would be using simulation to estimate the value of the finite 
difference, 

h(a + Sa) - h(a)  
ba 1 
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for a small value of the increment ba. However, what we can really do is to 
generate samples of the difference 

f(a + 6a; w )  - f ( a ;  w )  
6a 

and to estimate its expected value. Unfortunately, when the increment 6cu 
is small, it is difficult to tell if the difference we obtain from the simulation 
is due to random noise or to variation in the parameter. A similar problem 
arises when we want to compare two portfolio management policies on a set 
of scenarios; in this case, too, what we need is an estimate of the expected 
value of the difference between two random variables. 

Let us abstract a little and consider the difference of two random variables 

where, in general, E[X1] # E[Xz], since they come from simulating two dif- 
ferent systems, possibly differing only in the value of a single parameter. By 
Monte Carlo simulation we get a sequence of independent samples 

zj = Xl, j  - x2,j 

and use statistical techniques to build a confidence interval for E[X1- XZ] . To 
improve our estimate, it would be useful to reduce the variance of the samples 

Var(X1j - Xzj) = Var(X1j) + Var(Xzj) - 2 Cov(Xlj, X2j). 

To achieve this, we may try inducing some positive correlation between X1j 
and Xzj. This can be obtained by using the same stream of random numbers 
in simulating both X I  and XZ. The technique works much like antithetic 
sampling, and the same monotonicity assumption is required to ensure that 
the technique does not backfire. We will see an application of these concepts 
in section 8.5, where we apply Monte Carlo sampling to estimate option price 
sensitivities. 

zj : 

4.5.3 Control variates 

Antithetic sampling and common random numbers are two almost foolproof 
techniques that, provided the monotonicity assumption is valid, do not require 
much knowledge about the systems we are simulating. Better results might 
be obtained by exploiting some more knowledge. Suppose that we want to 
estimate 6' = E[X], and that there is another random variable Y ,  with a 
known expected value u, which is somehow correlated with X. Such a case 
occurs when we use Monte Carlo simulation to price an option for which an 
analytical formula is not known: 0 is the unknown price of the option, and v 
is the price of a corresponding vanilla option. 
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The variable Y is called the control variate. Additional knowledge about 
Y may be exploited by adopting the controlled estimator 

xc = x + c(Y - u) ,  

where c is a parameter we must choose. Intuitively, when we run a simulation 
and we observe that our estimates are such that 

E[Y] > u, 

we may argue that the estimate E[X] should be increased or reduced accord- 
ingly, depending on the sign of the correlation between X and Y. Indeed, we 
may see that 

E[Xc] = 8 

Var(Xc) = Var(X) + c2Var(Y) + 2c COV(X, Y). 

The first formula says that the controlled estimator is, for any choice of the 
control parameter c, an unbiased estimator of 8. The second formula suggests 
that by a suitable choice of c, we could reduce the variance of the estimator. 
We could even minimize the variance by choosing the optimal value for c: 

COV(X, Y) 
Var(Y) ’ c* = - 

where pxy is the correlation between X and Y. Note that the sign of c 
depends on the sign of this correlation. For instance, if Cov(X, Y) > 0, then 
c < 0. This implies that if E[Y] > Y, we should reduce E[X], which does 
make sense, because if our sample values for Y are larger than the average, 
the sample values for X are probably too. 

In practice, the optimal value of c must be estimated, since Cov(X,Y) 
and possibly Var(Y) are not known. This may be accomplished by a set of 
pilot replications. It would be tempting to  use these replications both for 
selecting c* and to estimate 8; however, in doing so you induce some bias in 
the estimate of 8,  since in this case c* is a random variable depending on X 
itself. So, unless suitable statistical techniques are used, which are beyond 
the scope of this book, the pilot replications should be discarded. 

The control variates approach may be generalized to as many control vari- 
ates as we want, with a possible improvement in the quality of the estimates. 
Of course, this requires more knowledge about the system we are simulating 
and more effort in setting the control parameters. We may illustrate the ap- 
proach using again the vanilla call option. In this case the stock price is a 
natural control variate, as both its expected value and the variance at  the 
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function [Price, CI] = BlsMCCV(SO,K,r,T,sigma,NRepl,NPilot) 
nuT = (r - 0.5*sigma-2)*T; 
siT = sigma * sqrt(T) ; 
% compute parameters first 
StockVals = SO*exp(nuT+siT*randn(NPilot ,1)) ; 
OptionVals = exp(-r*T) * max( 0 , StockVals - K); 
MatCov = cov(StockVals, OptionVals); 
Vary = SO-2 * exp(2*r*T) * (exp(T * sigma-2) - 1); 
c = - MatCov(l,2) / Vary; 
ExpY = SO * exp(r*T) ; 
% 
NewStockVals = SO*exp(nuT+siT*randn(NRepl, 1) ; 
NewOptionVals = exp(-r*T) * max( 0 , NewStockVals - K); 
ControlVars = NewOptionVals + c * (NewStockVals - ExpY); 
[Price, VarPrice, CI] = normf it (ControlVars) ; 

Fig. 4.20 Using control variates to price a vanilla European call by Monte Carlo 
simulation. 

expiration of the option are known. To apply the method, we must compute 
an estimation of the covariance between the option value and the underlying 
asset price. The MATLAB code is illustrated in figure 4.20. The BlsMCCV 
function requires as an additional input parameter the number NPilot of pi- 
lot replications we want to run to estimate the covariance. Note that the first 
set of pilot replications is discarded to avoid biasing the estimator. 

>> randn( state ,O) 
>> [P,CI] = BlsMC2(50,52,0.1,5/12,0.4,200000); 
>> P 
P =  

>> (C1(2)-CI(l))/P 
5.2328 

ans = 

0.0149 
>> randn(’state’,O) 
>> [P ,CI] = BlsMCCV(50,52,0.1,5/12 ,O .4,195000,5000) ; 
>> P 
P =  

5.2008 
>> (C1(2)-CI(l))/P 
ans = 

0.0066 

From these runs it would seem that there is some reduction in variance by 
using control variates. We should prepare a script in order to systematically 
check gain in efficiency. This is left as an exercise for the reader. 
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4.5.4 Variance reduction by conditioning 

Computing expected values by conditioning is a common technique in proba- 
bility theory. When we want to compute (or estimate) E[X], it is sometimes 
useful to condition with respect to another random variable Y, as the following 
formula holds: 

E[X] = E[E[X I Y]]. (4.9) 

Variances may be computed by conditioning, too. We recall the conditional 
variance formula [see also equation (B.2) in appendix B] 

Var(X) = E[Var(X I Y)] + Var(E[X I Y]). 

We do not use the conditional variance formula directly in this book. However, 
since all the involved quantities are non-negative, we immediately see that the 
formula implies two consequences: 

1. Var(X) 2 E[Var(X I Y)]. 

2. Var(X) 2 Var(E[X I Y]). 

Using the first inequality to reduce the variance of an estimator leads to 
variance reduction by stratification, which is discussed in the next section. 
The second one leads to  variance reduction by Conditioning. 

Using conditioning is useful when our aim is to estimate 8 = E[X] and 
there is another random variable Y such that the value of E[X I Y = y] is 
known. From equation (4.9) we see that E[X I Y] is also an unbiased estimator 
for 8, and the conditional variance formula implies that it may be a better 
one. In practice, to apply variance reduction by conditioning, we simulate Y 
rather than X .  Unlike antithetic sampling, variance reduction by conditioning 
requires some careful thinking and is strongly problem dependent. 

As an example of conditioning, we consider the problem of pricing an “as- 
you-like-it” option (also known as chooser option). The option is European- 
style and has maturity Tz. At time TI < TZ you may choose if the option is a 
call or a put; the strike price K is fixed at time t = 0. Clearly, at time TI we 
should compare the values of the two options and choose the more valuable 
one. This can be done by using Black-Scholes formula to evaluate the price of 
call and put options with initial underlying price S(T1) and time to maturity 
Tz -TI .  This means that, conditional on S(T1), we may get an exact estimate 
of the expected payoff at time Tz, under the risk-neutral probability. However, 
it is extremely instructive to write a pure Monte Carlo code, in which we only 
use sampling to get estimates. 

In this case, this is not that trivial, as we must take a decision at time 
T I ;  this is similar to the early exercise decision we must take with American 
options. To get a feeling for the issues involved, let us consider figure 4.21. 
Starting from the initial node, with price So, we generate four samples of 
price S(Tl) ,  and for each of these, we sample three prices S(T2). We have 
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t = O  t = q  t = T 2  

Fig. 4.21 Scenario tree for the as you like it option. 

4 x 3 = 12 scenarios, but they are tree-structured. We need this structure, 
because the decision at  time TI (we like the put or the call) must be the 
same for all scenarios departing from each node at time T I .  Without this 
structure, our decisions would be based on perfect foresight about the future 
price a t  time T2. This non-anticipativity concept is fundamental in dynamic 
stochastic optimization and in pricing American options. 

A crude Monte Carlo code to  price the option is displayed in figure 4.22. 
Here NRepl 1 is the number of samples (replications) a t  time TI and NRepl2 
is the number of samples a t  time Tz, for each node at time T I ;  hence, the 
overall number of scenarios is the product of NRepll and NRepl2. The vector 
DiscountedPayof f s has size corresponding to  the overall number of scenar- 
ios. For each node at  T I ,  which is generated as usual with geometric Brownian 
motion, we generate nodes at time T2, and we compare the estimates of ex- 
pected payoff if we take the option as a call and if we take it as a put. Then 
we select one of the two alternatives and we fill a block (of size NRepl2) in 
the vector of discounted payoffs. Then we compute average and confidence 
intervals as usual. Later, we discuss if this is really correct. 

Clearly, we are doing much more work than necessary in the crude Monte 
Carlo code. Conditional on a price S(T1), we know how to estimate expected 
payoff from each of the two choices, as this is given (apart from a discount 
factor) by the Black-Scholes formula. A code exploiting such a knowledge is 
displayed in figure 4.23. The code is actually much simpler: for each node at 
time S(T1) we take the larger value between the price of a call and the price of 
a put with initial price S(T1) and time to maturity T2 - T I ,  and we discount 
this value back from TI to time t = 0. 

A script to compare crude and conditional Monte Carlo is given in figure 
4.24. Running the script, we get 
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function [Price, CI] = AYLIMC(SO,K,r,Tl,T2,sigma,NRepll,NRep12) 
% compute auxiliary quantities outside the loop 
DeltaT = T2-Tl; 
muTl = (r-sigmaA2/2)*Tl; 
muT2 = (r-sigma-2/2)*(T2-T1); 
siTl = sigma*sqrt (T1) ; 
siT2 = sigma*sqrt(T2-T1); 
X vector to contain payoffs 
DiscountedPayoffs = zeros(NRepll*NRepl2, 1); 
% sample at time T1 
Samples1 = randn(NRepl1,l); 
PriceTl = SO*exp(muTl + siTl*Samplesl); 
for k=l:NRepll 

Samples2 = randn(NRepl2,l) ; 
PriceT2 = PriceTl(k)*exp(muT2 + siT2*Samples2); 
Valuecall = exp(-r*DeltaT)*mean(max(PriceT2-K, 0)); 
ValuePut = exp(-r*DeltaT)*mean(max(K-PriceT2, 0 ) ) ;  
if ValueCall > ValuePut , 

DiscountedPayoffs(l+(k-l)*NRepl2:k*NRepl2) = . . .  
exp(-r*T2)*max(PriceTZ-K, 0 ) ;  

else 
DiscountedPayoffs(l+(k-l)*NRepl2:k*NRepl2) = . . .  

exp(-r*T2)*max(K-PriceT2, 0 ) ;  
end 

end 
[Price, dummy, CI] = normfit(DiscountedPayoffs); 

~~ ~ ~ 

Fig 4 22 Crude Monte Carlo code to price an as-you-like-it option. 

function [Price, CI] = AYLIMCCond(SO,K,r,Tl,T2,sigma,NRepl) 
muTl = (r-sigma^2/2)*Tl; 
siTl = sigma*sqrt(Tl); 
Samples = randn(NRep1,l) ; 
PriceTl = SO*exp(muTl + siTl*Samples) ; 
[calls, puts] = blsprice(PriceTl,K,r,T2-Tl,sigma); 
Values = exp(-r*Tl)*max(calls, puts) : 
[Price, dummy, CI] = normfit(Va1ues) ; 

Fig. 4.23 Using conditioning to price an as-you-like-it option. 
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% AYL1Script.m 
SO = 50; 
K = 50; 
r = 0.05; 
T1 = 2/12; 
T2 = 7/12; 
sigma = 0.4; 
NRepll = 100; 
NRepl2 = 100; 
[Call, Put] = blsprice(SO,KJr,T2,sigma); 
randn(’state’,O); 
[Price, CI] = AYLIMC(SO,K,r ,T1 ,T2, sigma,NRepll,NRepl2) ; 
rand(’state’,O); 
[PriceCond, CICond] = AYLIMCCond(S0,K ,r ,T1 ,T2, sigma,NRepll*NRepl2) ; 
fprintf(l,’Call= %f Put = %f\n’, Call, Put); 
fprintf(1,’MC -> Price = If CI = (%f, If) \nJ, . . . 

Price, CI(1), CI(2)); 
fprintf (1,’ Price = %6.4f%%\n’, . . . 

lOO*(CI(2>-CI(1))/Price); 
fprintf(l,’MC+Cond -> Price = %f CI = (%f, If) \nJ, . . .  

PriceCond, CICond(l), CICond(2)) ; 
fprintf(1,’ Price = %6.4f%%\n’, . . .  

100*(CICond(2)-CICond(l))/PriceCond); 

Fig. 4.24 Script to compare pricing methods for an as-you-like-it option. 
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>> AYLIScript 
Call = 6.728749 Put = 5.291478 
MC -> Price = 8.698173 CI = (8.489842, 8.906504) 

MC+Cond -> Price = 9.298894 CI = (9.218362, 9.379426) 
Ratio = 4.7902% 

Ratio = 1.7321% 

A few things should be noticed: 

1. The value of the as you like it option is larger than the value of the call 
and the put options; deferring the choice has a significant value. 

2. Conditioning seems to reduce variance, using the same number of sce- 
narios in the two cases. 

3. The value obtained by conditional Monte Carlo is larger. 

The last point is quite relevant. Using conditional Monte Carlo, we do not 
only reduce variance; we take truly optimal decisions, whereas in crude Monte 
Carlo we may take the wrong choice a t  time TI because we are comparing esti- 
mates of the expected payoff. This may happen even if we estimate the payoffs 
with the same samples of price a t  time Tz (which is essentially variance re- 
duction by common random numbers). Hence, we have a bias. The estimator 
with crude Monte Carlo is biased low, since we are getting less money from 
a suboptimal strategy. And the bias does not disappear by increasing the 
number of replications. We urge the reader to run the script setting both 
NRepll and NRepl2 to 1000, which results in the following output: 

>> AYLIScript 
Call = 6.728749 Put = 5.291478 
MC -> Price = 8.930494 CI = (8.909643, 8.951345) 

MC+Cond -> Price = 9.259405 CI = (9.251437, 9.267372) 
Ratio = 0.4670% 

Ratio = 0.1721% 

We see that the bias is still there. This must be taken into account when 
using Monte Carlo methods to price American options (see chapter 10). If we 
use suboptimal exercise strategies, than we get a lower bound on the option 
price. It is also worth noting that this pricing problem is essentially a one- 
dimensional integration problem which may be solved more efficiently by other 
techniques. 

To close this section, we should ask ourselves if the procedure we have 
followed is really correct. We have computed a confidence interval using the 
standard procedure, which assumes that samples are independent, but is this 
actually the case? Consider an intermediate node in our scenario tree, at time 
TI, and its successor nodes a t  time T2. Are the payoffs we receive in these 
successor nodes independent? Arguably, they are not, since we have used all 
of them to decide which option type we like at  time TI .  The problem is that 
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we are mixing two issues. The first one is learning an optimal decision rule by 
sampling; the second one is estimating the payoff we receive with that rule. 
A sound procedure would require two separate sampling phases. Doing so, 
we would be sure that payoffs are independent in the second sampling phase, 
and that the estimate we get is low-biased (since we are probably using a 
sub-optimal decision rule). We will meet such issues again in section 10.4, 
where we consider pricing American options by Monte Carlo sampling. 

4.5.5 Stratified sampling 

Suppose, as usual, that we are interested in estimating E[X] and that X is 
somehow dependent on the value of another variable random Y ,  which may 
take a finite set of values y j  with known probability. Thus, Y has a discrete 
probability distribution with a known probability mass function: 

P { Y = y j } = p j ,  j = 1 ,  ..., m. 

Using conditioning, we see that 

m 

E[X] = C E [ X  I Y = yjlpj. 
j=1 

So, we may use simulation to  estimate the values E[X I Y = yj], for j = 
1,. . . , m, and use the formula above to  put the results together. The condi- 
tional variance formula implies that this may yield a variance reduction with 
respect to crude sampling. The approach may look like variance reduction 
by conditioning. The key difference is that here we select a value for Y and 
then we sample X, conditioned on the event Y = yj; this event is a stratum. 
In variance reduction by conditioning, you actually sample Y ,  not X. The 
following example justifies why such sampling is called stratified. 

Example 4.13 As a simple example of stratification, consider using simu- 
lation to compute 

0 = 1' h(x) dx = E[h(U)]. 

In crude Monte Carlo simulation you would simply draw n uniform random 
numbers Ui N U(0, l )  and compute the sample mean 

An improved estimator over crude sampling may be obtained by parti- 
tioning the integration interval (0 , l )  into m subintervals ((j - l ) /m, j /m) ,  
j = 1,. . . , m. Each event Y = y j  corresponds to a random number falling 
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in the j t h  subinterval; in this case we have p j  = l/m. For each stratum 
j = 1,. . . , m we may generate nj random numbers uk N U(0 , l )  to estimate 

Then we build the overall estimator: 
m 

B = c &pi. 0 
j =1  

How should we determine the number of samples nj to be allocated to 
each stratum? A uniform allocation in example 4.13 makes sure that we 
sample uniformly over the integration interval (0, l),  but this need not be the 
optimal solution. Consider the variance of the estimator 8, and denote by Xj 
the random variable sampled in each stratum. If the strata are independently 
sampled, we have 

To minimize the overall variance, we should allocate more samples to  the 
strata where Var(Xj) is larger. So we could run a set of pilot replications 
to estimate Var(Xj) by sample variances Sj” and then obtain the fraction of 
samples to be allocated to each stratum by solving a non-linear programming 
problem: 

p?s? 
min xe 

j=1 

m 

s.t. Cnj = n 

4.5.6 Importance sampling 

Unlike other variance reduction methods, importance sampling is based on the 
idea of “distorting” the underlying probability measure. It may be particularly 
useful when simulating rare events or sampling from the tails of a distribution. 
Consider the problem of estimating 

8 = E[h(X)] = 1 h(x)f(x) dx, 

where X is a random vector with joint density f(x). If we know another 
density g such that f(x) = 0 whenever g(x) = 0, we may write 

(4.10) 
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where the notation E, is used to  stress the fact that the last expected value is 
taken with respect to  another measure. The ratio f(x)/g(x) is used to  correct 
the change in probability measure, and it is typically called the likelihood 
ratio: when using random sampling, this ratio will be a random ~ a r i a b l e . ~  
That changing the underlying probability measure may be useful should not be 
a surprise for people interested in finance; risk-neutral valuation does just that. 
However, it is not so obvious why this should be helpful in reducing variance. 
Indeed, the method may backfire if g is not chosen with care. Intuitively, we 
may argue that when looking for rare but important events, as is the case in 
estimating Value a t  Risk, we should distort the probability measure in order 
to sample from the critical region, provided that we compensate for this bias. 
This is exactly what is done in equation (4.10). 

To gain more insight into how density g should be chosen, let us introduce 
the notation 

8 = E”)1 

and assume for simplicity that h(x) 2 0. As we have pointed out above, there 
are two possible ways of estimating 8: 

= /h*(x)g(x) dx = E,[h*(X)], 

where h*(X) = h(x)f(x)/g(x). Note that the condition on the support o f f  
and g is needed in order to  avoid any trouble with the case g(x) = 0 in the 
definition of h*; we may think of integrating only on the support. 

The two estimators have the same expectation, but what about the vari- 
ance? Using the well-known properties of the variance, we obtain 

Varf[h(X)] = 1 h2(x)f(x) dx - 8’ 
Var,[h*(X)] = Jh’(x)--f(x) f (4 dx - 8’. 

g(x) 

From the second equation, it is easy to  see that the choice 

leads to the ideal condition Varg[h*(X)] = 0. Unfortunately, this is indeed 
“ideal,” as using this density requires knowledge of 8; still, we may at least 
try to use approximations of the ideal density (see the example below). Note 

7Readers with a background in stochastic calculus would probably use the term “Radon- 
Nikodym derivative.” 
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function out=estpi(m) 
z=sqrt(l-rand(1,m) . -2)  ; 
out = 4*sum(z)/m; 

Fig. 4.25 Trivial code to estimate T .  

also that the condition h(x) 2 0 is needed in order to ensure that this is a 
density; see, e.g., [17, p. 1221 to see how to deal with a generic function h. 

In general, the difference between the two variances is 

AVar = Varr[h(X)] -Var,[h*(X)] = /h2(x) [l - -1 f (XI f(x)dx. 
d x )  

From this expression we see that, in order to ensure that we do reduce variance, 
we should select a new density g such that 

g(x) > f(x) 
g(x) < f(x) 

when the term h2(x)f(x) is large, 
when the term h2(x)f(x) is small. 

The name “importance sampling” derives from this observation. 

Example 4.14 We may use a trivial integration example to illustrate the 
idea. Let us consider a way to compute T .  We know that8 

?T 
6 =  1’ d-dx= 4, 

since this is simply the area of a quarter of a unit circle; hence, estimating the 
value of this integral is a possible way to obtain an estimate of T .  A trivial 
code to do this is shown in figure 4.25, where the input parameter m is the 
number of points we want to sample. From the snapshot below we see that 
with 1000 samples, the estimates are not so reliable. 

>> rand(’state’,O) 
>> estpi(1000) 

3.1378 
>> estpi(1000) 

3.1311 
>> estpi(1000) 

a n s  = 

ans = 

ans = 

sThis example is based on [2]. 
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3.0971 
>> estpi(1000) 

3.1529 
ans = 

So, let us try to improve our estimates by using importance sampling. A 
possible idea to approximate the ideal probability distribution is to  divide the 
integration interval [0,1] into L equally spaced subintervals of width 1/L. The 
extreme points of the kth subinterval (k = 1, .  . . , L) are (k - 1)/L and k/L, 
and the midpoint of this subinterval is s k  = (k - 1)/L + 1/(2L). A rough 
estimate of the integral is obtained by computing 

Then, an approximation of the ideal density g(x), we could use something like 

since f(z) = 1 (uniform distribution). Unfortunately, this need not be a den- 
sity integrating to one over the unit interval. In order to avoid this difficulty 
and to simplify sampling, we may define a probability of sampling from a 
subinterval and use a uniform density 
consider the quantities 

within each subinterval. To this aim, 

k =  1, ..., L. 

Clearly, = 1 and q k  2 0, since our function h is non-negative; hence, 
the numbers q k  may be interpreted as probabilities. In our case, they may be 
used as the probabilities of selecting a sample point from the kth subinterval. 
To summarize, and to cast the problem within the general framework, we have 

h(x) = JD 
f ( x )  = 1 
g(X) = Lqk, ( k -  1 ) / L <  x < k/L. 

Here, g(x) is a piecewise constant density; the L factor multiplying the q k  in 
g(x) is just needed to obtain the uniform density over an interval of length 
1/L. The resulting code is illustrated in figure 4.26, where m is the number of 
sampled points and L is the number of subintervals. The code is fairly simple, 
and sub-intervals are selected as described in the last part of section 4.3.2, on 
page 233, where we have seen how to sample discrete empirical distributions 
by the function EmpiricalDmd. 

>> rand( ’ s tate  ’ , 0) 
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function z=estpiIS(m,L) 
% define left end-points of sub-intervals 
s= (0: (1/L) : (l-l/L)) + 1/(2*L) ; 
hvals = sqrt(1 - s . ^ 2 ) ;  
% get cumulative probabilities 
cs=cumsum(hvals) ; 
for j=l:m 

% locate sub-interval 
loc=sum(rand*cs(L) > cs) +1; 

x=(loc-l)/L + rand/L; 
p=hvals(loc)/cs(L) ; 
est(j) = sqrt(1 - x.^2)/(p*L); 

sample uniformly within sub-interval 

end 
z = 4*sum(est)/m; 

Fig. 4.26 Importance sampling-based code to estimate 7r. 

>> estpiIS(1000,lO) 
ans = 

3.1491 
>> estpiIS(1000,10) 
ans = 

3.1434 
>> estpiIS(1000,10) 
ans = 

3.1311 
>> estpiIS(1000,100> 
ans = 

3.1403 
>> estpiIS(1000,lOO) 
ans = 

3.1416 
>> estpiIS(1000,100) 
ans = 

3.1411 

We see that the improved code, although not a very sensible way to compute 
x ,  yields a remarkable reduction in variance. 

The approach we have just taken looks suspiciously like stratified sampling. 
Actually, there is a subtle difference. In stratified sampling we define a set 
of strata, which correspond to events of known probability; here we have not 
used strata with known probability, as we have used sampling to estimate the 
probabilities q k .  0 
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Importance sampling is often used when small probabilities are involved. 
Consider, for instance, a random vector X with joint density f, and suppose 
that we want to estimate 

0 = E[h(X) 1 X E A], 

where {X E A} is a rare event with a small, but unknown probability P{X E 
A}. Such an event could be the occurrence of a loss larger than the Value at  
Risk. The conditional density is 

f (XI 
P{X E A} 

f(xlX E A) = 

for x E A. Defining the indicator function Id(x) as 

1 i f X E A  
Id(x)  = { 0 i f X @ A ,  

we may rewrite 0 as 

If we use crude Monte Carlo simulation, many samples will be wasted, as the 
event {X E A} will rarely occur. Now, assume that there is a density g such 
that this event is more likely under the corresponding probability measure. 
Then, we may generate the samples Xi according to g and estimate 

Importance sampling is certainly more difficult to apply than antithetic sam- 
pling or control variates: It requires more knowledge about what we are sim- 
ulating, since we must be able to figure out a suitably distorted probability 
measure. 

As an example, let us consider pricing a deep out-of-the-money vanilla call. 
If SO is the initial price of the underlying, we know that its expected value at 
maturity is, according to  geometric Brownian motion under the risk-neutral 
measure, SOerT. If this expected value is small with respect to the strike price 
K ,  it is unlikely that the option will be in-the-money at maturity. If we apply 
crude Monte Carlo, many replications are wasted because the payoff will be 
zero in most of them. We should change the drift in order to  increase the 
probability that the payoff is positive. It is easy to find a drift such that the 
expected value of ST is the strike price: 

&ePT = K 
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While under the risk neutral measure we sample ST = SoeZ by generating 

we should sample by generating 

which in turn requires generating standard normal variates E and then using 

Y = l o g -  (E) -- u y  -t * f i e .  

Now the tricky part is to compute the likelihood ratio. For the sake of clarity, 
assume that we sample Y from a normal distribution n/(p,<) whereas the 
original distribution is N(Q, <). Then, the ratio of the two probability densities 
is 

1 -ly? 
ze 
6 r t e  2 F L  

= e  - [(Y-a)Z-(Y-P)Z]/Z€Z = e- [ Z ( a - P ) Y - a Z + P 2 ] / 2 5 2  
1 - ( Y - O P  

Now it is easy to extend BlsMC2 to the function BlsMCIS displayed in figure 
4.27. We may check the efficiency gain of importance sampling by running the 
script CheckBlsMCIS of figure 4.28. For a deep out-of-the-money option, we 
compute price with crude Monte Carlo and with importance sampling, and 
we compare the percentage error with respect to the exact price. We reset 
the random variate generator randn twice in order to use exactly the same 
stream of standard normal variates. Running the script, we get 

>> CheckBlsMCIS 
Average Percentage Error: 
MC = 3.060% 
MC+IS = 1.155% 

We should note that this improvement is not to be expected for at-the-money 
options. 

4.6 QUASI-MONTE CARLO SIMULATION 

In the preceding sections, we have considered the use of variance reduction 
techniques, which are based on the idea that random sampling is really ran- 
dom. However, the random numbers produced by a LCG or by more sophisti- 
cated algorithms are not random at all. Hence, one could take a philosophical 
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function [Price, CI] = BlsMCIS(SO,K,r .T, sigma.NRep1) 
nuT = (r - O.5*sigmaA2)*T; 
siT = sigma * sqrt(T) ; 
ISnuT = log(K/SO) - 0.5*sigmaa2*T; 
Veps = randn(NRep1,l) ; 
VY = ISnuT + siT*Veps; 
ISRatios = exp( (2*(nuT - ISnuT)*VY - nuT-2 + ISnuT-2)/2/siT-2); 
DiscPayoff = exp(-r*T)*max(O, (SO*exp(VY)-K)); 
[Price, VarPrice, CI] = normfit(DiscPayoff.*ISRatios); 

Fig. 4.27 Importance sampling-based code to price an out-of-the-money vanilla call. 

% CheckBlsMC1S.m 
SO = 50; 
K = 80; 
r = 0.05; 
sigma = 0 . 4 ;  
T = 5/12; 
NRepl = 100000; 
MCError = zeros (NRepl ,1> ; 
MCISError = zeros (NRepl, 1) ; 
TruePrice = blsprice(SO,K,r ,sigma,T) ; 
randn(’state’ ,O); 
for k=1:100 

MCPrice = BlsMC2 (SO, K,r , sigma, T,NRepl) ; 
MCError = abs(MCPrice - TruePrice)/TruePrice; 

end 
randn(’stata’,O); 
for k=l:100 

MCISPrice = BlsMCIS(S0, K,r , sigma, T, NRepl) ; 
MCISError = abs(MC1SPrice - TruePrice)/TruePrice; 

end 
fprintf (1, ’Average Percentage Error:\n’); 
fprintf (1, MC = %6.3f%%\n’, 100*mean(MCError)); 
fprintf(1,’ MC+IS = %6.3f%%\n’, lOO*mean(MCISError)); 

~ ~ 

Fig. 4.28 Script to  check effectiveness of importance sampling. 



QUASI-MONTE CARL0 SIMULATION 269 

view and wonder about the very validity of variance reduction methods, and 
even the Monte Carlo approach itself. Taking a more pragmatic view, and 
considering the fact that Monte Carlo methods have proven their value over 
the years, we should conclude that this shows that there are some determinis- 
tic number sequences that work well in generating samples. So one could try 
to devise alternative deterministic sequences of numbers which are in some 
sense evenly distributed. This idea may be made more precise by defining the 
discrepancy of a sequence of numbers. 

Assume that we want to generate a sequence of N "random" vectors 
X1 , X2, .  . . , X N  in the m-dimensional hypercube I" = [0, 11" c W". Now, 
given a sequence of such vectors, if they are well distributed, the number of 
points included in any subset G of I" should be roughly proportional to  its 
volume vol(G). Given a vector X = ( X I ,  x2,. . . , xm), consider the rectangular 
subset G, defined as 

which has a volume ~ 1 x 2 . .  . x,. If we denote by SN(G)  the function counting 
the number of points in the sequence, which are contained in a subset G C I", 
a possible definition of discrepancy is 

D(x~,...,x~)= SUP I S N ( G ~ ) - N X ~ X ~ * . . X ~  1 .  
X E P  

When computing a multidimensional integral on the unit hypercube, it is 
natural to look for low-discrepancy sequences; an alternative name for a low- 
discrepancy sequence is quasirandom sequence, which is why the term quasi- 
Monte Carlo is used. Actually, the quasirandom term is a bit misleading, 
as there is no randomness at all. Some theoretical results suggest that low- 
discrepancy sequences may perform better than pseudorandom sequences ob- 
tained through a LCG or its variations. The point is that from section 4.4 we 
know that the estimation error with Monte Carlo simulation is something like 
O ( l / f i ) ,  where N is the number of samples. With certain low-discrepancy 
sequences, it can be shown that the error is something like O(ln N ) " / N ,  where 
m is the dimension of the space in which we are integrating. We refer the 
reader to the comprehensive book [12] for a detailed and rigorous account on 
this subject. Different sequences have been proposed in the literature. In the 
following, we illustrate the basic ideas behind two low-discrepancy sequences, 
Halton and Sobol sequences, and their implementation. Low-discrepancy se- 
quences are sequences in the unit interval (0 , l ) ;  from what we know about 
the generation of generally distributed random variates, we see that this is 
what we need to simulate according to any distribution we need. 

4.6.1 Generating Halton low-discrepancy sequences 

Halton low-discrepancy sequences are based on a simple recipe: 
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function h=Halton(n,b) 
nO = n; 
h = 0; 
f = l/b; 
while (no > 0) 

nl = floor(nO/b) ; 
r = nO - nl*b; 
h = h+f*r; 
f = f/b; 
nO=nl ; 

end 

Fig. 4.29 MATLAB code to generate the nth element of a Halton sequence with a 
given base. 

Representing an integer number n in a base b, where b is a prime number: 

Reflecting the digits and adding a radix point to obtain a number within 
the unit interval: 

h = (O.dodldzdsd4..  * ) b .  

More formally, if we represent an integer number n as 

m 

n = x d k b k ,  
k=O 

the nth number in the Halton sequence with base b is 

m 
- ( k + l )  h(n, b )  = dkb 

k=O 

To be precise, what we get is known as Van der Corput sequence. Halton 
sequences are obtained in multiple dimensions when a Van der Corput gen- 
erator is associated to each dimension, making sure different prime numbers 
are used for each base which is associated to each dimension. For the sake of 
simplicity we will only speak of Halton sequences. 

Using the principles illustrated in section 3.1.1 on the binary representation 
of numbers on a computer, it is easy to  generate the nth number in a Halton 
sequence with base b. The code is illustrated in figure 4.29. Let us generate 
the first 10 numbers in the sequence with base 2: 

>> seq = zeros(10,l); 
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function Seq = CetHalton(HowMany, Base) 
Seq = zeros(HowMany,l); 
NumBits = l+ceil(log(HowMany)/log(Base)); 
VetBase = Base.-(-(l:NumBits)); 
WorkVet = zeros (1 ,NumBits) ; 
for i=l:HowMany 

increment last bit and carry over if necessary 
j=1; 
ok = 0; 
while ok == 0 

WorkVet (j) = WorkVet (j )+1; 
if WorkVet(j) < Base 

else 
ok = 1; 

WorkVet(j) = 0; 
j = j+l; 

end 
end 
Seq(i) = dot(WorkVet,VetBase); 

end 

Fig. 4.30 MATLAB code to generate a Halton low-discrepancy sequence with a given 
base. 

>> for i=1:10, seq(i) = Halton(i,2);, end 
>> seq 
seq = 

0.5000 
0.2500 
0.7500 
0.1250 
0.6250 
0.3750 
0.8750 
0.0625 
0.5625 
0.3125 

We see how Halton sequences work; by reflecting and adding more bits, we 
fill the space between 0 and 1 with finer and finer intervals. A code to ob- 
tain a whole sequence is illustrated in figure 4.30; the input parameters are 
HowMany, i.e., how long the sequence should be, and the base Base. Rather 
than generating each number in the sequence one at a time, we generate the 
sequence 1, .  . . , n by incrementing the bit representation in base b, which is 
immediately converted into H ( n ,  b) .  
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Fig. 4.32 Covering the bidimensional unit square with Halton sequences. 
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Fig. 4.33 Bad choice of bases in Halton sequences. 

Example 4.15 It is instructive to compare how a pseudorandom sample 
covers the square ( 0 , l )  x (0 , l )  in two dimensions. Using the MATLAB random 
generator, we get the plot of figure 4.31: 

>> plot(rand(100,l) ,rand(100,1), ’0’) 
>> grid on 

To do the same with Halton sequences we must use different bases, which 
should be prime numbers. Let us try with 2 and 7: 

>> plot (GetHalton(100,2) ,GetHalton (100,7), ’0’ 
>> grid on 

The result is shown in figure 4.32. The judgment is a bit subjective here, but 
it could be argued that the covering of the Halton sequence is more even. On 
the other hand, using a non-prime number as the base, as in 

>> plot(GetHalton(100,2), CetHalton(100,4), ’0’) 

>> grid on 

may result in quite unsatisfactory patterns, such as the one shown in figure 
4.33. 0 

Example 4.16 Let us explore the use of Halton low-discrepancy sequences 
in a bidimensional integration context. Suppose that we want to  compute 

1-1 1-1 

eCZy (sin 6na: + cos 87ry) da: dy. l o  l o  



274 NUMERICAL INTEGRATION: DETERMINISTIC AND MONTE CARL0 METHODS 

Fig. 4.34 Plot of the integrand function in example 4.16. 
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To begin with, let us set up a function in order to plot the integrand and to use 
the dblquad MATLAB function to get an estimate by traditional quadrature 
formulas. 

>> f=@(x,y) exp(-x.*y) .*(sin(6*pi*x)+cos(8*pi*y)); 
>> dblquad(f ,0,1,0,1) 
ans = 

0.0199 
>> [X,Y] = meshgrid(0:O.Ol:l , 0:O.Ol:l); 
>> z = f(X,Y); 
>> surf(X,Y,Z) 

Please note how the function is defined using the dot operator, in order to 
receive vector or matrix arguments and to compute the vector or matrix of 
the corresponding function values. The resulting surface is illustrated in figure 
4.34. It is easy to  see that Monte Carlo estimates with 10,000 sampled points 
are not reliable: 

>> rand(’state’,O); 
>> mean(f (rand(1,lOOOO) ,rand( 1,10000) ) ) 
ans = 

0.0276 
>> mean(f (rand(1,10000),rand(l,10000))) 
ans = 

0.0332 
>> mean(f(rand(l,10000~,rand~l,10000~~~ 
ans = 

0.0098 

So, we may try with Halton sequences, changing the bases and keeping the 
same number of samples: 

>> seq2 = GetHalton(10000,2) ; 
>> seq4 = GetHalton(10000,4); 
>> seq5 = GetHalton(10000,5) ; 
>> seq7 = GetHalton(10000,7) ; 
>> mean(f (seq2,seq5)) 
ans = 

0.0200 
>> mean(f (seq2, seq4) 1 
ans = 

0.0224 
>> mean(f (seq2,seq7)) 
ans = 

0.0199 
>> mean(f (seq5,seq7)) 
ans = 

0.0198 
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We see that, provided that we use prime numbers as the bases, the results are 
much more accurate. It is also instructive to compare the results for a small 
number of samples. 

>> rand(’state’,O> 
>> mean(f (rand(1,lOO) ,rand(l, 100)) 
ans = 

-0.0032 
>> mean(f (rand(1,500) ,rand(1,500))) 
ans = 

0.0197 
>> mean(f (rand(1,lOOO) ,rand(l,1000))) 
ans = 

0.0577 
>> mean(f (rand(1,1500) ,rand(1,1500))) 
ans = 

0.0461 
>> mean(f (rand(1.2000) ,rand(1,2000))) 
ans = 

0.0311 

The potential advantage of low-discrepancy sequences is evident even if the 
optimal choice of bases is an issue. 0 

Example 4.17 As a more practical exercise, we may try pricing the usual 
vanilla European call using a low-discrepancy sequence. We use here the 
simplest sequence, the Halton sequence. To generate normal variates, we 
may either use the Box-Muller method, which we described in section 4.3.4 
or the inverse transform method. We cannot apply polar rejection, because 
when using low discrepancy sequences we must integrate over a space with a 
well-defined dimensionality. We must know exactly how many quasi-random 
numbers we need, whereas with rejection-based methods we cannot anticipate 
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function Price = BlsHaltonBM(SO,K,r,T,sigma,NPoints,Basel,BaseZ) 
nuT = (r - 0.5*sigma^2)*T; 
siT = sigma * sqrt(T) ; 
% Use Box Muller to generate standard normals 
H1 = GetHalton(ceil(NPoints/2) ,Basel) ; 
H2 = GetHalton(ceil(NPoints/2) ,Base21 ; 
VLog = sqrt (-2*log(H1)) ; 
Norml = VLog .*  cos(2*pi*H2); 
Norm2 = VLog .*  sin(2*pi*H2); 
Norm = [Norml ; Norm21; 
% 
DiscPayoff = exp(-r*T) * max( 0 , SO*exp(nuT+siT*Norm) - K); 
Price = mean(DiscPayoff1; 

Fig. 4.35 Using Halton sequences and Box-Muller algorithm to price a vanilla Euro- 
pean call. 

that. This is an important remark to keep in mind when pricing complex 
options. 

We recall the Box-Muller algorithm here for convenience. To generate two 
independent standard normal variates, we should first generate two indepen- 
dent random numbers Ul and U2, and then set 

x = d a c o s ( 2 7 r u Z )  

Y = J-2 In U I  sin(27r~2). 

Rather than generating pseudorandom numbers, we may use two Halton se- 
quences with two prime numbers as bases. This is accomplished by the code 
displayed in figure 4.35. 

An alternative approach is based on the inverse transform method. Given 
the potentially weird effects of the Box-Muller transformation, which we have 
illustrated in figure 4.12 on page 238, one could argue that this is a safer 
approach. The code is given in figure 4.36 

Let us check first the use of Halton sequences with Box-Muller transfor- 
mation first: 

>> blsprice(50,52,0.1,5/12,0.4) 
ans = 

5.1911 
>> BlsHaltonBM (50,52,0.1,5/ 12,O. 4,5000,2,7) 
ans = 

>> BlsHaltonBM(50,52,0.1,5/12,0.4,5000,11,7) 
5.1970 

ans = 
5.2173 
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function Price = BlsHaltonINV(SO,K,r,T,sigma,NPoints,Base) 
nuT = (r - O.5*sigmaA2)*T; 
siT = sigma * sqrt (TI ; 
1 Use inverse transform to generate standard normals 
H = GetHalton(NPoints,Base) ; 
Veps = norminv(H); 
1 
Discpayoff = exp(-r*T) *max(O,SO*exp(nuT+siT*Veps)-K) ; 
Price = mean(DiscPayof f) ; 

Fig. 4.36 Using Halton sequences and inverse transform to price a vanilla European 
call. 

>> BlsHaltonBM(50,52,0.1,5/12 ,O .4,5OOO, 2,4) 
ans = 

6.2485 

The first run shows the potential of low-discrepancy sequences; we get a good 
estimate of the option with a limited number of samples. It is instructive to  
see the variability of a Monte Carlo estimate with 5000 samples: 

>> randn(’state’ ,O) 
>> BlsMC2(50,52,0.1,5/12,0.4,5000) 
ans = 

5.2549 
>> BlsMC2 (50,52,0.1,5/12 ,O. 4,5000) 
ans = 

5.1090 
>> BlsMC2(50,52,0. 1,5/12 ,O .4,5000) 
ans = 

5.2777 

From the second run with Halton sequences, we also see that the quality 
of the estimate may depend on the choice of the bases; the third run shows 
that using a non-prime number as a basis yields a very poor result. 

Using the inverse transform, an interesting pattern emerges: 

>> BlsHaltonINV(50,52,0.1,5/12,0.4,1000,2) 
ans = 

5.1094 
>> BlsHaltonINV(50,52,0.1,5/12,0.4,2000,2) 
ans = 

5.1469 
>> BlsHaltonINV(5O,52,0.1,5/12,0.4,5000,2) 
ans = 

5.1688 
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>> B1sHa1ton1NV(50,52,0.1,5/12,0.4,10000,2) 
ans = 

>> B1sHa1ton1NV(50,52,0.1,5/12,0.4,50000,2) 
5.1789 

ans = 

5.1879 

We see that prices look monotonically increasing with respect to the number 
of samples. This is not really the case, as a detailed plot of the price as a 
function of number of samples would show that there are oscillations, yet there 
is a tendency for the price to increase from below. We can try to find a reason 
for this trend: Using Halton sequence with base 2, we fill the unit interval 
with consecutive runs from a low extreme to a high extreme, according to the 
following scheme: 

0.5 

0.25 0.75 

0.125 0.625 0.375 0.875 

0.0625 0.5625 0.3125 0.8125 0.1875 0.6875 0.4375 0.9375 

0.0313 . . .  

Each subsequence is delimited by the new lowest and the new highest point. 
We see that the current maximum found so far increases according to a regular 
pattern; and high values of these numbers correspond to  large prices of the 
underlying asset, which are those contributing to the increase of the option 
price. 

If we use 17 as the basis, we see longer monotonically increasing sequences: 

>> GetHalton(l7,17) 
ans = 

0.0588 
0.1176 
0.1765 
0.2353 
0.2941 
0.3529 
0.4118 
0.4706 
0.5294 
0.5882 
0.6471 
0.7059 
0.7647 
0.8235 
0.8824 
0.9412 
0.0035 
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Hence, it is not surprising that if we use a large prime number as the basis, 
the price we get is, in a sense, “more low-biased”: 

>> BlsHaltonINV(50,52,0.1,5/12,0.4,1000,499) 
ans = 

5.1139 
>> BlsHaltonINV(50,52,0.1,5/12,0.4,2000,499) 
ans = 

5.1141 
>> BlsHaltonINV(50,52 ,O. 1,5/12,0.4,5000,499) 
ans = 

5.1148 
>> BlsHaltonINV(50,52 ,O. 1,5/12,0.4,10000,499) 
ans = 

5.1159 
>> BlsHaltonINV(50,52,0.1,5/12,0.4,50000,499~ 
ans = 

5.1252 

Using a large base, even if it is a prime number, has an even more detri- 
mental effect if we use the Box-Muller transformation: 

>> BlsHaltonBM(50,52,0.1,5/12,0.4,5000,59,83) 
ans = 

5.3232 
>> BlsHaltonBM(50,52,0.1,5/12,0.4,5000,101,103) 
ans = 

6.0244 

To understand why using large bases is a bad idea, we may plot the first 1000 
points in the bidimensional sequence when 109 and 113 are used: 

>> plot (GetHalton(1000,109), GetHalton(1000,113), ’ 0  I) 

yields the plot displayed in figure 4.37. The result should be compared 
against figure 4.32. 

Since pricing certain options is a high-dimensional problem, straightfor- 
ward use of Halton sequences is not feasible, as this would require using large 
bases. As an alternative, Faure sequences have been proposed. The basic 
idea in Faure sequences is using only one base, a prime number which must 
be greater than problem dimensionality; coordinates are generated by suitable 
permutations of Van der Corput sequences. This net effect is using a smaller 
base than the largest one used by Halton sequences. Another alternative is 
represented by Sobol sequences, which are discussed in the next section. In 
Sobol sequences only the base 2 is used, which is good. In order to  gener- 
ate multidimensional sequences, the Van der Corput sequence with base 2 is 
permuted by a mechanism linked to polynomials in a binary arithmetic. 
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o.6 t 

Fig. 4.37 Poor coverage of the unit square when large bases are used in Halton se- 
quences. 

4.6.2 Generating Sobol low-discrepancy sequences 

In this section we would like at least to take a look at  a more sophisticated 
alternative than Halton sequences, i.e., Sobol sequences. For the sake of 
clarity, it is better to consider the generation of a one-dimensional sequence 
xn. in the [0,1] interval. A Sobol sequence is generated on the basis of a set 
of “direction numbers” w1, w ~ ,  . . .; we will see shortly how direction numbers 
are selected, but for now just think of them as numbers which are less than 
1. To get the nth number in the sequence, consider the binary representation 
of the integer n: 

n = (. . .b3b~b1)2.  

The result is obtained by computing the bitwise exclusive or of the direction 
numbers wi for which bi # 0: 

zn = blvl CB bzvz CB . . . . (4.11) 

If direction numbers are chosen properly, a low-discrepancy sequence will be 
generated [18]. A direction number may be thought as a binary fraction: 

wi = ( 0 . W ~ ~ W ~ ~ W i ~ .  . . )2 ,  

or as 
m i  

2a 
wi = -, 

where mi < 2i is an odd integer. To generate direction numbers, we ex- 
ploit primitive polynomials over the field Z2, i.e., polynomials with binary 
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coefficients: 

Irreducible polynomials are those polynomials which cannot be factored; prim- 
itive polynomials are a subset of the irreducible polynomials and are strongly 
linked to the theory of error-correcting codes, which is beyond the scope of 
the book. Some irreducible polynomials over the field ZZ are listed, e.g., in 
[13, chapter 71, to which the reader is referred for further information. Given 
a primitive polynomial of degree d, the procedure for generating direction 
numbers is based on the recurrence formula 

Some numbers ml, . . . , md are needed to initialize the recursion. They may 
be chosen arbitrarily, provided that each mi is odd and mi < 2a. 

Example 4.18 As an example, let us build the set of direction numbers on 
the basis of the primitive polynomial 

+ + 1. 

The recursive scheme runs as follows: 

which may be initialized with ml = 1, m2 = 3, m3 = 7.9 We may carry 
out the necessary computations step by step in MATLAB, using the bitxor 
function. 

gThe reasons why this may be a good choice are given in 131. 
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function [v, m] = GetDirNumbers(p,mO,n) 
degree = length(p)-1; 
p = p(2:degree); 
m = [ mO , zeros(1,n-degree) 1 ;  
for i= (degree+l):n 

m ( i )  = bitxor(m(i-degree), 2-degree * m(i-degree)) ; 
f o r  j=1: (degree-1) 

end 
m(i) = bitxor(m(i), 2-j * p(j) * m(i-j)); 

end 
v=m. / (2. - (1 :length(m) 1) ; 

Fig. 4.38 MATLAB code to generate direction numbers for Sobol sequences. 

Given the integer numbers mi, we may build the direction numbers vi. To 
implement the generation of direction numbers, we may use a function like 
GetDirNumbers, which is given in figure 4.38. The function requires a primi- 
tive polynomial p, a vector of initial numbers m, and the number n of direction 
numbers we want to generate. On exit we obtain the direction numbers v and 
the integer numbers m. 

>> p = [l 0 1 11; 
>> mO = C1 3 71; 
>> [v,m] =CetDirNumbers(p,mO, 6) 
v =  

0.5000 0.7500 0.8750 0.3125 0.2188 0.6719 
m =  

1 3 7 5 7 43 

The code is not optimized; for instance, the first and last coefficients of the 
polynomial should be 1 by default, and no check is done on the congruence in 
size of the input vectors. 

After computing the direction numbers, we could generate a Sobol sequence 
according to equation (4.11). However, an improved method was proposed by 
Antonov and Saleev [l], who proved that the discrepancy is not changed by 
using the Gray code representation of n. Gray codes are discussed, e.g., in 
(13, chapter 201; all we need to know is the following: 

1. A Gray code is a function mapping an integer i to a corresponding binary 
representation G(i) ;  the function, for a given integer N ,  is one-to-one 
for o 5 i 5 z N  - 1. 

0 

2. A Gray code representation for the integer n is obtained from its binary 
representation by computing 

. * .g3gZg1 = (. . .b3bZb1)2 @ (. . .b4b3b2)2. 
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3. The main feature of such a code is that the codes for consecutive num- 
bers n and n + 1 differ only in one position. 

Example 4.19 Computing a Gray code is easily accomplished in MATLAB. 
For instance, we may define an inline function and compute the Gray codes 
for the numbers i = 0, 1, . . . ,15 as follows: 

>> gray = inline(’bitxor(x,bitshift(x,-l))’); 
>> codes = zeros(l6.4); 
>> f o r  i=1:16, codes(i,:)=bitget(gray(i-11, [4 3 2 i l l ; ,  end 
>> codes 
codes = 

0 0 0  0 
0 0 0  1 
0 0  1 1 
0 0  1 0 
0 1 1 0 
0 1 1 1 
0 1 0 1 
0 1 0 0 
1 1 0 0 
1 1 0 1 
1 1 1 1 
1 1 1 0 
1 0 1 0 
1 0 1 1 
1 0 0  1 
1 0 0  0 

We have used the function b i t sh i f  t to shift the binary representation of x one 
position to the right and the function b i tge t  to get specific bits of the binary 
representation of a number. We see that indeed the Gray codes for consecutive 
numbers i and i + 1 differ in one position; that position corresponds to  the 
rightmost zero bit in the binary representation of i (adding leading zeros if 
necessary). 0 

Using the feature of Gray codes, we may streamline generation of a Sobol 
sequence. Given xn, we have 

xn+l = xn @vc, 

where c is the index of the rightmost zero bit 6 ,  in the binary representation 
of n. 

Example 4.20 To implement the mechanism in MATLAB, we need a way 
to find the rightmost zero bit in the binary representation of a number. A 
function like the following one will do (provided that at most eight bits are 
used to represent x): 
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function SobSeq = GetSobol(GenNumbers, x0, HowMany) 
Nbits = 20; 
factor = 2-Nbits; 
BitNumbers = GenNumbers * factor; 
SobSeq = zeros(HowMany + 1, 1) ; 
SobSeq(1) = fix(xO*factor) ; 
for i=l : HowMany 

c = min(find( bitget(i-l,1:16) == 0)); 
SobSeq(i+l) = bitxor(SobSeq(i1 , BitNumbers(c)) ; 

end 
SobSeq = SobSeq / factor; 

Fig. 4.39 MATLAB code to generate a Sobol sequence by the Antonov and Saleev 
approach. 

rightbit = inline(’min(find( bitget(x,l:8) == 0))’) 

Now we may put it all together. First, we generate the direction numbers. 
Then we initialize the sequence in some way, e.g., xo = 0, and apply the code 
of figure 4.39. The code is straightforward; the only point is that in theory we 
should compute the exclusive or on bits of a binary fraction; however, b i t x o r  
works on integer numbers only. This is why we shift everything to the left by 
Nbits  position, which is accomplished multiplying by f a c t o r  and dividing on 
exit from the function. Also, we truncate the initial number in order to make 
sure that we are “xoring” integer numbers. 

>> p = [1 0 1 11; 
>> mO = C1 3 71; 
>> [v,m] =GetDirNumbers(p,m0,6) ; 
>> GetSobol(v,O.lO) 

0 
0.5000 
0.2500 
0.7500 
0.1250 
0.6250 
0.3750 
0.8750 
0.6875 
0.1875 
0.9375 

ans = 

Using a different set of generating numbers and a different starting point, we 
generate different sequences. 
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>> p = c1 0 1 1  1 1 1 ;  
>> mO = [I 3 5 9 111; 
>> [v,ml =GetDirNumbers (p,m0,8) ; 
>> GetSobol(v,O. 124,IO) 
ans = 

0.1240 
0.6240 
0.3740 
0.8740 
0.4990 
0 * 9990 
0.2490 
0.7490 
0.1865 
0.6865 
0.4365 

Note that to generate longer sequences, more generating numbers are needed. 
[I 

For further reading 

In the literature 

For a general introduction to simulation, see [9] or [15], both of which 
have heavily influenced the presentation in this chapter; [14] is another 
classical reference. 

For a more theoretical treatment of Monte Carlo simulation and random 
number generation, see [4]. The random number generators used in 
MATLAB are described in [ 111. 

Low-discrepancy sequences are treated in [12], which is at a quite ad- 
vanced level. 

An excellent and very readable introduction to Monte Carlo and quasi- 
Monte Carlo methods in finance is [5]. See also [7] for a discussion on 
selecting primitive polynomials for Sobol sequences. A table of primitive 
polynomials is also given in [ 131. 

See [8] for an early account on the use of low-discrepancy sequences 
within financial engineering. 

On the Web 

0 For a list of resources on Monte Carlo and quasi-Monte Carlo simulation, 
see http : //www .mcqmc . org. 
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See also http://www.mat.sbg.ac.at/"schmidw/links.html. 
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Finite Difference 
Methods for Partial 

Differentia[ Equations 
Partial differential equations (PDEs) play a major role in financial engineer- 
ing. Since the seminal work leading to the Black-Scholes equation, which 
we introduced in section 2.6.2, PDEs have become an important tool in op- 
tion valuation. It turns out that PDEs provide a powerful and consistent 
framework for pricing rather complex derivatives. Unfortunately, as analyti- 
cal solutions like the Black and Scholes formula are not available in general, 
one must often resort to  numerical methods. 

The numerical solution of PDEs is a common tool in mathematical physics 
and engineering, and quite sophisticated methods have been developed. The 
complexity of the methods also depends on the specific type of PDE at hand. 
As expected, non-linear equations are generally more difficult than linear 
ones, but there is also a subtler dependence on numerical parameters, since 
a change in the value of a coefficient may drastically change the character- 
istics of an equation. In the financial engineering case, it happens that in 
many cases rather simple methods are enough to obtain a reasonably accu- 
rate solution. Indeed, we deal here only with relatively straightforward finite 
difference methods, which are based on the natural idea of approximating par- 
tial derivatives with difference quotients. Even so, the topic is not as trivial 
as one may think, since careless use of finite difference schemes may lead to 
unreasonable results. In fact, while some authors suggest the use of PDEs 
as the single most useful tool in derivatives pricing [9, p. 6151, others suggest 
that they are quite vulnerable to numerical difficulties and, while acknowledg- 
ing the role of finite difference methods, they suggest the use of lattice-based 
methods whenever possible (see, e.g., [2, p. 3651). Actually, this is a bit a 

289 
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matter of taste, and when confident with a method, one is able to squeeze 
the most out of it. Fortunately, when numerical difficulties occur in solving 
a PDE for a financial problem, often the answers we get from the algorithm 
are so blatantly senseless that we may easily spot the trouble; in other cases, 
however, unreliable answers may have nasty effects. In this chapter we also 
introduce concepts related to convergence, consistency, and stability in or- 
der to understand the basic issues connected with the numerical solution of 
PDEs. It should be stressed that PDEs are actually a difficult topic requiring 
advanced mathematical concepts for a rigorous treatment, and as usual we 
will rely mostly on relatively informal arguments and intuition. 

We first classify PDEs in section 5.1. Then in section 5.2 we introduce dif- 
ferent ways to approximate partial derivatives by finite differences, leading to 
different solution schemes which may turn out numerically stable or unstable. 
We devote a particular attention to the heat equation, which is the subject of 
section 5.3, since the Black-Scholes PDE is strongly linked to diffusion pro- 
cesses. We generalize to multiple spatial dimensions in section 5.4, where we 
consider the heat equation in two dimensions; the Alternating Direction Im- 
plicit approach is described. Finally, in section 5.5 we briefly point out a few 
theoretical concepts concerning the convergence of finite difference methods. 

5.1 INTRODUCTION AND CLASSIFICATION OF PDEs 

We introduced the Black-Scholes PDE in section 2.6.2 to find the theoretical 
price f (S, t )  of a derivative security depending on the price S of one underlying 
asset at time t .  Using a stochastic differential equation to model the dynamics 
of the underlying asset price and using no arbitrage arguments, we have found 
that f must satisfy the PDE 

af 1 2 2d2f af 
-+ - -0  s - + r S - - r f  =o,  at 2 as2 as 

where T is the risk-free interest rate and -0 is the asset price volatility. Suitable 
boundary conditions must be added to find a specific solution corresponding 
to the option type we are considering. This equation has various features: 

0 It is second-order. 

0 It is linear. 

0 It is a parabolic equation. 

All these features refer to how PDEs are classified; such a classification is 
relevant in that the choice of a numerical method to cope with a PDE generally 
depends on its characteristics. 

In order to classify PDEs, let us abstract from the financial interpretation 
of the variables involved and refer to an unknown function qi(x, y), depending 



INTRODUCTION AND CLASSIFICATION OF PDEs 291 

on variables x and y; for simplicity we deal with a function of two independent 
variables only, but the classification scheme may be applied in a more general 
setting. The order of a PDE is the highest order of the derivatives involved. 
For instance, a generic first-order equation has the form 

where a,  b, c, dare given functions of the independent variables. This equation 
is first-order since only first-order derivatives are involved. Furthermore, it 
is linear, since the functions a,  b, c,  and d depend only on the independent 
variables x and y and not on 4 itself. By the same token, the generic form of 
a linear second-order equation is 

a24 a24 a24 a4 a4 
ax2 axay ay2 ax ay a- + b- + c- + d- + e- + f4 + g  = 0, 

where again all the given functions, from a to g, depend only on x and y. An 
example of a first-order non-linear equation is 

2 (g)2+(g) = l .  

An example of a second-order non-linear equation is 

Equation (5.3) is non-linear but in a different way than (5.2). In this equation, 
the coefficient a of the highest-order derivative depends only on the first- 
order derivative. We have a quasilinear equation whenever the highest-order 
derivatives occur linearly, with coefficients depending only on the independent 
variables, the unknown function 4, and its lower-order derivatives. For the 
sake of simplicity, in this introductory book we deal only with linear equations. 
It should be noted that while most of the models you will see in finance 
are linear, non-linear equations may be obtained when relaxing some of the 
assumptions behind the Black-Scholes model; for an example of a non-linear 
equation that arises when introducing transaction costs, see [9, chapter 211. 

It is customary to classify quasilinear second-order equations depending on 
the sign of the expression 6' - 4ac: 

If b2 - 4ac > 0,  the equation is hyperbolic. 

If b2 - 4ac = 0,  the equation is parabolic. 

If 6' - 4ac < 0 ,  the equation is elliptic. 

It is easy to see that the discriminant term b2 - 4ac is formally similar to 
the analogous term we have in second-degree algebraic equations. Elliptic 
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equations may arise in equilibrium models (where time is not involved). A 
typical example is the Laplace equation 

Here we have a = c = 1 and b = 0, so that b2 - 4ac = -4 < 0. The wave 
equation 

a24 2a24 -- p - - 0 ,  8t2 8x2 
where t is time, is a typical example of a hyperbolic equation, since the dis- 
criminant term is 4p2 > 0. The prototype parabolic equation is the heat (or 
diffusion) equation: 

_ -  84 a24 
- k-, at 8x2 

where t is time and 4 is the temperature of a point with coordinate x on a 
line. In this case, b2 - 4ac = 0. By a change of variables, the equation may 
be cast into a dimensionless form: 

Now consider the Black-Scholes equation; again b = c = 0, so the equation 
is parabolic. This does not happen by chance, since with a transformation 
of coordinates it can be shown that the Black-Scholes equation actually boils 
down to the heat equation. 

An equation like (5.4) must be integrated with suitable conditions in order 
to pinpoint a meaningful solution. For instance, assume that $(x, t )  is the 
“temperature” at  point x E [0,1] of a rod of length 1 at time t ;  the end points 
are kept a t  a constant temperature UO, and the initial temperature of the rod 
is given over all of its length. Then we must add the initial condition 

and the boundary conditions 

Here the domain is bounded with respect to space and unbounded with re- 
spect to time. In financial problems, the initial condition is usually replaced 
by a terminal condition, as the option payoff is known at  expiration; therefore, 
the time domain is bounded, whereas the domain with respect to the price of 
the underlying asset may be (in principle) unbounded. From a computational 
point of view, the domain must be limited in some sensible way. Boundary 
conditions are easy to spot for vanilla European options. With exotic op- 
tions, enforcing boundary conditions may be more complicated, e.g., when 
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the boundary conditions must themselves be approximated by some numeri- 
cal scheme. In other cases, such as barrier options, the boundary conditions 
may actually result in a simplification of the problem. American options raise 
another issue; for each time before expiration, there is a critical value for the 
price of the underlying asset at which it is optimal to  exercise the option (see 
figure 2 .22  on page 118); depending on the option type (call or put), it will 
also be optimal to exercise the option for prices above and below the critical 
price.' So with American options we should cope with a free boundary, i.e., 
a boundary within the domain, which separates the exercise and no-exercise 
region. We deal with these issues in chapter 9. 

A noteworthy feature of the heat equation is that any discontinuity in the 
initial conditions is somehow smoothed out, so that the solution for t > 0 is 
differentiable everywhere. On the contrary, in the wave equation, the irreg- 
ularities are propagated along lines called characteristics.2 Another feature 
of parabolic equations is that they are relatively easy to work with from the 
numerical point of view. 

A final remark is that the form of the equation and the boundary conditions 
determine if a given problem involving a PDE is well-posed. A problem is well- 
posed if: 

0 There exists a solution. 

0 The solution is unique (at least within a certain class of functions of 
interest). 

The solution depends in a nice way on the problem data (i.e., a small 
perturbation in the problem data results in a small perturbation of the 
solution). 

We will trust our intuition that the equations we write make sense and will 
assume implicitly that all our problems are well-posed. 

5.2 NUMERICAL SOLUTION BY FINITE DIFFERENCE METHODS 

Finite difference methods to solve PDEs are based on the simple idea of ap- 
proximating each partial derivative by a difference quotient. This transforms 
the functional equation into a set of algebraic equations. As in many nu- 
merical algorithms, the starting point is a finite series approximation. Under 
suitable continuity and differentiability hypotheses, Taylor's theorem states 

'Recall that a vanilla American call should be never exercised unless the stock pays divi- 
dends. 
21n hyperbolic equations, two characteristic lines exist, and this is actually linked to  the 
fact that the discriminant b2 - 4ac is positive, a property that is linked to the existence of 
two roots in algebraic second-order equations. 
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Fig. 5.1 
a derivative. 

Graphical illustration of forward, backward, and central approximations of 

that a function f(x) may be represented as 

If we neglect the terms of order h2 and higher, we get 

(5.6) f(. + h) - f(x) + O(h).  
h fW = 

This is the forward approximation for the derivative; indeed, the derivative is 
just defined as a limit of the difference quotient above as h -+ 0. There are 
alternative ways to approximate first-order derivatives. By similar reasoning, 
we may write 

from which we obtain the backward approximation, 

In both cases we get a truncation error of order O(h).  A better approxima- 
tion can be obtained by subtracting equation (5.7) from equation (5.5) and 
rearranging: 

+ O(h2).  
f(x + h) - f(x - h) 

2h fW = (5.9) 

This is the centrul or symmetric approximation, and for small h it is a better 
approximation, since the truncation error is O(h2) .  Why this is the case 
may also be seen from figure 5.1. However, this does not imply that forward 
and backward approximations must be disregarded; they may be useful to 



NUMERICAL SOLUTION BY F/N/T€ DFFERENCE METHODS 295 

come up with efficient numerical schemes, depending on the type of boundary 
conditions. 

The reasoning may be extended to higher-order derivatives. To cope with 
the Black-Scholes equation, we must approximate second-order derivatives, 
too. This is obtained by adding equations ( 5 . 5 )  and (5.7), which yields 

and rearranging yields 

(5.10) 

In order to apply the ideas above to a PDE involving a function 4(s, y), it 
is natural to set up a discrete grid of points of the form (i 62, j 6y), where 6s 
and 6y are discretization steps, and to look for the values of 4 on this grid. It 
is customary to use the grid notation: 

42j = 4(i 62, j 6y). 

Depending on the type of equation and on how the derivatives are approx- 
imated, we obtain a set of algebraic equations which may be more or less 
easily solved. A possible difficulty is represented by boundary conditions. If 
the equation is defined over a rectangular domain in the ( 2 ,  y) space, it is easy 
to set up a grid such that the boundary points are on the grid. Other cases 
might not be so easy, and a sensible way to approximate the boundary condi- 
tions must be devised. Nevertheless, we would expect that for 6x, 6y + 0 the 
solution of this set of equations converges (in some sense) to the solution of 
the PDE. Actually, this is not granted at all, as different complications may 
arise. 

5.2.1 

Consider the following example of a first-order linear e q ~ a t i o n : ~  

Bad example of a finite difference scheme 

a4 84 - + c - - 0 ,  
at ax 

where 4 = $(s, t ) ,  c > 0, and the initial condition 

4(2 ,0 )  = f(.) vs 
is given. It is easy to verify that the solution is of the form 

4(& t )  = f(. - 4; 

(5.11) 

3The example is taken from [I, chapter 21. 
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i j + l  P 
. .  
' J  i+l j 

Fig. 5.2 Rqmsenting a finite difference scheme by a computational diagram. 

in other words, the solution is simply a translation of f(x) with velocity of 
propagation c. In fact, this type of equation is called the transport equation. 
A real transport equation typically involves a function C ( X )  rather than a 
constant velocity c. We take for granted that the problem is well-posed, 
and we do not check the uniqueness of the solution (see [l, pp. 21-25] for 
a thorough discussion). Now let us ignore what we know about the solution 
and try a finite difference scheme based on forward approximations. Equation 
(5.11) may be approximated by 

which, neglecting the truncation error and using the grid notation x = i 6x l  
t = j S t ,  yields 

(5.12) 
4 .  . - 4 . .  1.3 + 4i+l,j - 4i j  t , j+ i  = 0, 6t 6 2  

4 i o  = f ( ibx )  = fi 

with the initial condition 

Vi .  

In practice, in order to  solve the problem on a computer, we should restrict 
the domain in some way, enforcing some limits on i and j .  For now, we simply 
awime that we are interested in the solution for t > 0, thus j = 1 , 2 , 3 , .  . .. 
Now; how can we solve equation (5.12) in a systematic way? If we consider 
equation (5.12) for j = 0, we see that values q5i+l,o and qbio are involved, 
and they are known from the initial conditions; the only unknown value is 

which may be obtained as an explicit function of known values. In fact, 
solving for the unknown value, we get 

(5.13) 

where p = 6x/6t .  This computational scheme can be represented by the 
computational diagram depicted in figure 5.2, and it is easy to understand 
and implement. Unfortunately, it need not converge to the solution of the 
ecpat,ion. Consider the following initial condition: 

2 < -1, 
(5.14) 
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which implies 
4 i O  = f(i6x) = 1 vi 2 0. 

Now, using the computational scheme (5.13), for j = 0 we have 

Repeating this argument for any time instant ( j  = 2 , 3 , .  . .), it is easily seen 
that, however small we take the discretization steps, 

4 i j  = 1, i,j 2 0, 

which is certainly not the correct solution. Some readers might wonder if 
this is due to some irregularity in the initial values. In fact, the derivative 
of f(z) is discontinuous at certain points, but it is easy to  see that using a 
smoothed version of this function would not change the issue. This example 
also shows that non-differentiable functions may look like acceptable solutions 
of a PDE, which is a bit odd since derivatives are not defined everywhere for 
such functions; a rigorous investigation of this question leads to the concept 
of weak solution of a PDE [l]. 

5.2.2 

The example illustrated in the previous section shows that a numerically rea- 
sonable scheme, with a truncation error that tends to zero as discretization 
steps get smaller and smaller, may fail to converge. From a mathematical 
point of view, there is a non trivial interplay between concepts such as con- 
sistency, stability, and convergence. A full investigation calls for a deep treat- 
ment, and we will just briefly outline the concepts in section 5.5. From a more 
intuitive point of view, the reason for the failure of the previous finite differ- 
ence scheme is that it does not reflect the physical propagation process, where 
the initial condition is translated “to the right” with respect to space. Hence, 
we could try and fix the problem by adopting the computational scheme rep- 
resented in figure 5.3, which is obtained by using a backward difference for 
the partial derivative with respect to x. This yields 

Instability in a finite difference scheme 

4 . . - 4 . .  + . . -+ .  
6t 6X 

= 0, (5.15) w+1 $3 + v % - I d  

and solving for $i,j+l, we get the scheme 

(5.16) 

Note that here 4i,j+1 still depends on the data at the previous time instant 
but “to the left” with respect to space. Let us try this scheme with MATLAB. 
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P i + l j + l  

i j i + l j  

Fig. 5.3 Cornputational diagrarn of the niodified scheme for the transport equation. 

% f0transp.m 
funct ion  y=f Otransp (x) 
i f  (x < -1) 

y=o ; 
e l s e i f  (x <= 0) 

y=x+l ; 
e l s e  

y = l  ; 
end 

Fig. 5.4 Finiction to evaluate the initial values for the transport equation. 

Example 5.1 In order to apply the computational scheme (5.16) with ini- 
tial condition (5.14), we have to  write a few M-files. In figure 5.4 we show 
code to evaluate the initial value a t  a given point 2 a t  t = 0. In figure 5.5 we 
see the MATLAB code for solving the equation. Note that we must truncate 
thc domain between minimum and maximum x values, and with respect to 
time as well. We use a fixed value for the leftmost value in space, assuming 
that for smaller values of x the initial value is constant. Finally, the function 
TransportPlot illustrated in figure 5.6 is used to plot the numerical solu- 
tion at  different times: Four time subscripts are passed as an argument and 
the corresponding four plots are obtained. To begin with, we may solve the 
equation on the domain -2 5 x 5 3, 0 5 t 5 2, with discretization steps 
6x = 0.05, 6t = 0.01: 

>> xmin = -2; 
>> xmax = 3 ;  
>> dx = 0.05; 
>> tmax = 2 ;  
>> d t  = 0.01;  
>> c = 1; 

>> sol = t ranspor t (xmin ,  dx ,  xmax. d t ,  tmax. c ,  ' f o t r ansp ' ) ;  
>> TransportPlot(xmin, dx ,  xmax, [l 51 101 2011, sol) 

We should note that, since array indexing in MATLAB starts from 1, the 
solution for t = 2 is in column 201 in the array. The solution, plotted in 
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% transport .m 
function [solution, N, M] = transport(xmin, dx, xmax, dt, tmax, c, fO) 
N = ceil( (xmax - xmin) / dx) ; 
xmax = xmin + N*dx; 
M = ceil(tmax/dt); 

k2 = dt*c/dx; 
solution = zeros(N+l,M+l); 
vetx = xmin:dx:xmax; 
for i=l:N+l 

end 
f ixedvalue = solution(1,l) ; 
% this is needed because of finite domain 
for j=l:M 

end 

kl = 1 - dt*c/dx; 

solution(i,l) = feval(fO,vetx(i)); 

solution(:, j+l) = kl*solution(: ,j)+k2*[ xedvalue ; solution(l:N, 11 ; 

Fig. 5.5 Code implementing the finite difference scheme for the transport equation. 

% TransportP1ot.m 
function TransportPlot (xmin, dx, xmax, times, sol) 
subplot (2,2,1) 
plot (xmin:dx: xmax, sol ( : ,times (1) ) 1 
axis([xmin xmax -0.1 1.11) 
subplot (2,2,2) 
plot(xmin:dx:xmax, sol(:,times(2)) 
axis([xmin xmax -0.1 1.13) 
subplot (2,2,3) 
plot(xmin:dx:xmax, sol(:,times(3)) 
axis([xmin xmax -0.1 1.13) 
subplot (2,2,4) 
plot(xmin:dx:xmax, sol(:,times(4))) 
axis ( Cxmin xmax -0.1 1.11 ) 

Fig. 5.6 Function for plotting the numerical solution of the transport equation. 
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f ig. 5.7 Numerical solution of the transport equation for 6x = 0.05, 6 t  = 0.01; t = 0, 
t = 0.5, t = 1, and t = 2. 

figure 5.7, gets progressively translated as we would expect, but it also looks 
progressively “smoothed.” This could be due to a coarse discretization along 
the x axis. So we may try with Sx = 0.01: 

>> dx = 0.01; 
>> s o l  = transport(xmin, dx, xmax. d t ,  tmax, c ,  ’ fo t r ansp ’ ) ;  
>> TransportPlot(xmin, dx, xmax, [l 51 101 2011, s o l )  

The solution is depicted in figure 5.8, and it looks much better. So, why don’t 
we try a finer discretization, say Sx = 0.005? 

>> dx = 0.005; 
>> s o l  = transport(xmin, dx, xmax, d t ,  tmax, c ,  ’ fo t ransp’ ) ;  
>> TransportPlot (xmin, dx, xmax, [l 6 7 81, s o l )  

The solution we see in figure 5.9 is not really satisfactory. Something is 
definitely going wrong. 0 

As we may see, for certain settings of the discretization steps, the finite 
difference method is subject to numerical instability. By looking at  equation 
(5.16), we may see that what we are doing is similar to a convex combination 
(i.e., an average) of two values; indeed, it will be a convex combination, pro- 
vided that c l p  > 0, which is the case as we assumed that c > 0, and c l p  5 1, 
i.e., 

cSt 5 62. (5.17) 
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Fig. 5.8 
t = 0.5, t = 1, and t = 2. 

Numerical solution of the transport equation for 6x = 0.01, d t  = 0.01; t = 0,  

-2 -1 0 1 2 

~~ 

-2 -1 0 1 2 3 - 2 - 1  0 1 2  3 

Fig. 5.9 
t = 0, t = 0.05, t = 0.06, and t = 0.07. 

Numerical solution of the transport equation for 6x = 0.005, bt = 0.01; 
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Fig. 5.10 Pliysid interpretation of the stability coiiditiori (5.17) 

If thib condition is not met, we have a negative coefficient in the linear combi- 
iiation (5.16); hut if the initial data are positive, we would not expect negative 
(pant i t ies . 

It is also possible to give a more physical interpretation of the stability 
condition (5.17) in terms of a domain of influence. Consider figure 5.10. Due 
to the structure of the niiinerical scheme (5.16), the value a7+l,l depends on 
the values 410 and q!1~+1,0. The exact solution of the transport equation is 
such that the initial value a t  point i 6x  should influence only the values on 
the characteristic" represented as a dotted line in figure 5.10. The slope of 
the characteristic line is l /c ;  the slope of the line joining the points (i 6z, 0) 
and ((i + 1)6z,St) is clearly 6t/6x. In the figure this second line has a larger 
slope than the first one and the stability condition (5.17) is violated, since 

6t 1 
62 c 
- > -  

Froiii a physical point of view this makes no sense, since in this case the 
numerical sclienie is such that the initial value at  point i 6 2  is influencing the 
value at  a point nbo~ue the characteristic line. In other words, the "speed" of 
the numerical scheme, 6x/6t ,  should not be smaller than the transport speed 
c to ensure stability. 

All of these considerations are nothing more than intuitive arguments. The 
instability problem may be analyzed rigorously in different ways. One ap- 
pronch, known as Von Neumann stability analysis, is related to Fourier analy- 
sis and is illustrated in the next example. Another approach, based on matrix 
theoretic arguments, will be illustrated in section 5.3, where we consider the 
heat equation. It should also he noted that in some cases a financial interpre- 
tation of instability niay be given (see section 9.2.1). 

*The characteristic is also a curve on which singularities in the  solution may propagate. 
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Example 5.2 Consider again the transport equation, but with different ini- 
tial values: 

(3 4(x1 0) = f(x) = E cos 

Since we know that the exact solution is $(x, t )  = f(x - ct), we see that the 
solution will be bounded everywhere, just like the initial values. Note also 
that after discretization we have a peculiar set of initial values on the grid: 

Going forward one layer of nodes in time, applying the scheme (5.16) yields 

C 4 3 P 
4 2 , l  = (1 - ;) E ( - l ) %  + - E ( - 1 ) 2 - 1  - 1 - - E ( - l ) %  - - E ( - 1 ) 2  

C 

P 

= E (-l) i  (1 - 2 ; )  . 

By the same token, 

( 3 $h2,2 = (1 - ;) E (-1)i (1 - 2 ; )  + p'(-l)i-l 1 - 2- 
C 

2 

= E ( - l ) i  (1 - 2 3  , 

and in general we get 

j 

4ij = E ( - l ) i  (1 - 2;) . 

We see that the if the stability condition (5.17) is violated, i.e., if c/p > 1, we 
have 

/ l - p l > l  2c 

and the initial data are amplified by a factor that goes to infinity for increasing 
values of j. 0 

5.3 EXPLICIT AND IMPLICIT METHODS FOR T H E  HEAT 
E Q U AT1 0 N 

Let us consider the heat equation in dimensionless form: 

84 - a24 
at ax2' 
- -  - 



304 NNlTE DlFFERENCE METHODS FOR PARTlAL DlFFERENTlAL EQUATlONS 

x-6x X x+6x x-6x X x+Fx 

With some work, the Black-Scholes equation can be transformed into this 
form, so it is worthwhile to investigate this equation in some detail. We also 

lime that, the domain of interest is x E (0 , l )  and t E (0, m); actually, in a 
practical scheme, we will also limit the domain with respect to time, t E (0; 7'). 
We have inibial conditions for t = 0 and boundary conditions a t  x = 0 and 
x = 1 for any t > 0. We discretize with respect to x with a step 62, such that 
N6:c = 1, and with respect to t with a step dt ,  such that M d t  = T .  Note 
that this results in  a grid with ( N  + 1) x ( M  + 1) points. 

Before proceeding with the treatment of standard methods for the heat 
equation: it may he useful to get an intuitive feeling for the physical sense 
of this equation. To this aim, let us consider figure 5.11. The figure on the 
left shows a temperature profile which is (at least) locally convex at  point 2. 
In taliis case, heat should diffuse from the warmer points x - 6x and .2: + 6z 
towards the center, arid temperature in x should rise. In fact, the second-order 
tlerivative with respect to time is positive and the derivative with respect to 
time is positive as well. Ift,lic temperature profile is locally concave, in which 
case t,he second-order derivative is negative, heat should diffuse from the centjer 
to the left and to the right; temperature at  point x should decrease, and its 
derivative with respect to time is negative. 

In general, when we have a term like a24/6x2 in a P D E ,  it is called a 
diflusion term. In cquation (5.11) we have seen that a term D#/Dx may he 
linked to transportation, or convection, phenomena. Indeed, an equation like 

(5.18) 

is called a convection-diflusion equation. 

5.3.1 

A first possibility for coping with this equation is to approximate the derivatiw 
with respect. to time by a forward approximation, and the second derivative 

Solving the heat equation by an explicit method 
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Fig. 5.12 Coinputai ional diagrani of the explicit method for the heat equation. 

by the appioxiniation (5.10). This yields 

4L.J+1 - 4 , 3  - - 41+l.J - 248, + L 1 , J  

St  (62 )2  

that we rnay rearrange this equation by solving for the un- 
known value 4, ,) + I : 

4,.J+1 = P4L-1,) + (1 - 2/J)4,, + /)42+1,3’ (5.19) 

where p = bt/(6x)’. 
Starting from the initial conditions ( j  = O),  we may solve the equation for 

increasing valiics of 3 = 1,.  . . , AT. Note that for each 3 ,  i e., for each layer in 
time, we rnust use equation (5.19) to firid out N -  1 values for 1 = 1, . . . , N - 1. 
as the reniaining two are given by the boundary conditions. Since the unknown 
values are giveii by an explicit expression, this approach is called explzczt. It 
can he represented by the computational diagram in figure 5.12. 

Example 5.3 Consider the following initial data: 

0 5 x 5 0.5 
0.5 5 x 5 1, { -z), 

$(:c, 0) = f(x) = 

and Imuntlary conclitioiis 

4(0, t )  = qql, t )  = 0 vt. 

The MATLAB code for solving the heat equation for this initial condition is 
shown in figure 5.13. Note that we store the results in a matrix; we could also 
store only two consecutive layers of points in time, but keeping the whole set 
of resiilts makes plotting the solution easier. Let us solve the equation with 
6X 

>> 
>> 
>> 
>> 
>> 

= 0.1 ant1 bt = 0.001, and plot the result for t = 0, 10St, 506t, 100St. 

dx = 0.1; 
dt = 0.001; 
tmax = dt*100; 
sol=HeatExpl(dx, dt , tmax) ; 
subplot (2,2,1) ; 
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1 

0.8. 

0.6. 

0.4 

% HeatExp1.m 
function sol = HeatExpl(deltax, deltat, tmax) 
N = round(l/deltax); 
M = round(tmax/deltat) ; 
sol = zeros(N+l,M+l) ; 
rho = deltat / (deltaxl-2; 
rho2 = 1-2*rho; 
vetx = 0:deltax:l; 
for i=2: ceil ((N+1) /2) 

sol(i,l) = 2*vetx(i); 
sol(N+2-i,l) = sol(i,l); 

end 
for j=l:M 

for i=2:N 
sol(i,j+l) = rho*sol(i-l,j) + . . . 

rho2*sol(i,j) + rho*sol(i+l,j); 
end 

end 

’ 

Fig. 5.13 MATLAB code for solving the heat equation by the explicit method. 

0.6 o . : r l  
0.2 0.4D 0 

0 0.2 0.4 0.6 0.8 1 

Fig. 5.14 Numerical solution of the heat equation with 6x = 0.1 and 6t = 0.001, by 
the explicit method, for t = 0,  t = 0.01, t = 0.05, t = 0.1. 
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>> plot (0: dx: 1, sol ( : ,1)) 
>> axis(E0 1 0  11) 
>> subplot(2,2,2); 
>> plot (0:dx: 1 ,sol( : ,11)) 
>> axis( [O 1 0 11 1 
>> subplot(2,2,3); 
>> plot(O:dx:l,sol(:,51)) 
>> axis(C0 1 0 11) 
>> subplot(2,2,4); 
>> plot(O:dx:l,sol(:,l01)) 
>> axis([0 1 0 11) 

The result, plotted in figure 5.14, looks reasonable, as the heat is progressively 
diffused and lost through the end points. At this point the reader may wish 
to refer back to figure 2.21, which depicts the value of a call option when the 
expiration date is approached. The only difference between figures 5.14 and 
2.21 is that time goes forward for the heat equation, and it goes backward 
for the Black-Scholes equation; in fact, for an option we have a final condi- 
tion rather than an initial one. Apart from this difference, the two solutions 
are qualitatively similar, as the boundary condition is a kinky function which 
is smoothed going forward or backward in time. This is a characteristic of 
parabolic equations, which smooth the irregularities of the boundary condi- 
tions out. On the contrary, these are propagated by hyperbolic equations and, 
as we have seen, by the transport equation. 

However, we note that the discretization with respect to space is a bit 
coarse: we could increase precision by letting 6x = 0.01. We can repeat the 
above set of MATLAB and plot the solution a t  time instants t = 6t, 26t, 3St, 46t. 
The result is shown in figure 5.15. We see that the solution does not make any 
sense; first, it assumes negative values, which should not be the case for intu- 
itive physical reasons; then it shows an evident instability. The point is that 
here we have chosen discretization steps such that p = 10. In the following 
we show that for stability, the condition 0 < p 5 0.5 is required. 0 

How can we figure out a way to understand what condition should be 
required on the discretization steps to ensure numerical stability? In the 
case of the transport equation we have used one approach, based on Fourier 
analysis. Here we illustrate a matrix theoretic approach. The explicit method 
of equation (5.19), together with the boundary conditions 

can be represented in matrix terms as 

@j+l = AQj + p g j ,  j = 0 , 1 , 2 , .  . ., 
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Fk. 5.15 Instability in the solution of the heat equation by an explicit method. 

where 

1 - 2 P  P 0 . * .  0 0 

p 1 - 2 p  . . .  0 0 
1 p 1 - 2 p  p * f a  0 0 

. .  . .  
0 0 * * a  p 1 - 2 p  

Note that A E RN-l>N-l is a tridiagonal matrix. Recalling the convergence 
analysis that we carried out in section 3.2.5 for iterative algorithms, it is easy 
to see that the scheme will be stable when 
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fig. 5.16 Compiittitioiinl diagram of t~he implicit method for the heat equation. 

But if p > 1/2, then I 1 - 2p I =  2p - 1 and 

and stability carinot be guaranteed. 
To get a more intuitive feeling for this stability condition, we see from figure 

5.12 that the explicit scheme is based on a linear combination of three values 
in the previous time layer. Since the heat equation is a diffusion equation, we 
should take an average of these three values. But an average must be a convex 
combination, with positive weights; indeed, the stability condition makes the 
weight 1 - 2p positive. In a financial framework, similar interpretations can be 
found where weights are interpreted as risk-neutral probabilities, which must 
he positive as well. 

To avoid instability, we may be forced to keep bt very small, since it must 
satisfy the condition bt 5 0.5(Sx)’; if we want accuracy, we must take a small 
62; which is smaller when squared, placing a severe restriction on bt. As this 
may require too much computational effort, an alternative approach may be 
pursued; based on implicit methods. 

5.3.2 

If we use a forward approxirnation for the derivative with respect to time. we 
get an explicit method for the heat equation. We get a completely different 
sclicine if wt: usc a backward approximation: 

Solving the heat equation by a fully implicit method 

4 I J  - 47.J-1 

bt 

In this case we link one known 
values in time layer j :  

value in time layer j - 1 to three unknown 

- / $ f - l , J  + + 2/1)47J - p47+1,J = 4 7 , ~ - 1 r  (5.20) 

wliere again p = S t / ( 6 ~ ) ~ :  see the computational diagram of figure 5.16. Thus, 
the unknown values are givcn implicitly, which is where the “implicit method” 
name coines from; a scheme like this is often referred to as fully zmplicit. We 
have to solve a system of linear equations for each time layer. Since boundary 
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% HeatImp1.m 
function sol = HeatImpl(deltax, deltat, tmax) 
N = round(l/deltax); 
M = round(tmax/deltat) ; 
sol = zeros(N+l,M+l); 
rho = deltat / (deltaxl-2; 
B = diag((l+2*rho) * ones(N-1,l)) - . . .  

vetx = 0:deltax:l; 
for i=2:ceil((N+1)/2) 

diag(rho*ones(N-2, l ) ,  1) - diag(rho*ones(N-2,1) ,-1) ; 

sol(i,l) = 2*vetx(i); 
sol(N+2-i, 1) = sol(i, 1) ; 

end 
for j=l:M 

end 
sol(2:N,j+l) = B \ sol(2:N,j); 

Fig. 5.1 7 MATLAB code for the implicit method. 

conditions are given, we have N - 1 equations in N - 1 unknowns. In matrix 
terms, we have to solve a set of systems like 

B@j+l = @ j  + p g j ,  j = 0, 1 ,2 , .  . . , (5.21) 

where B E l R N - l z N - l  is a tridiagonal matrix, 

B =  

1 f 2 p  - p  0 . . .  0 0 
- p  1 + 2 p  - p  . . *  0 0 
0 - p  1 + 2 p  . * *  0 0 

0 0 0 -p  1 + 2 p  

Example 5.4 The MATLAB code for the implicit method to  solve the heat 
equation is illustrated in figure 5.17 (here gj = 0) .  Note that we are not 
exploiting the fact that the matrix B is tridiagonal, as we simply leave to  
MATLAB the solution of the system of linear equations; the techniques de- 
scribed in section 3.2.4 could and should be used here. Furthermore, a matrix 
factorization like LU would be also useful, since the systems we are solving 
share the same matrix. 

We may verify that the case 6x = 0.1 and 6t = 0.001 does not cause any 
trouble. 

>> dx=O.Ol; 
>> dt=0.001; 
>> tmax=dt*100 ; 
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Fig. 5.18 Numerical solution of the heat equation with 6x = 0.1 and 6t = 0.001, by 
the implicit method, for t = 0,  t = 0.01, t = 0.05, t = 0.1. 

>> sol=HeatImpl(dx,dt,tmax); 
>> subplot(2,2,1); 
>> plot ( 0 :  dx: 1, s o l (  : ,1) 1 
>> axis(C0 1 0 13) 
>> subplot (2,2,2) ; 
>> plot (0:dx: 1, sol ( : ,111 
>> axis([O 1 0 11) 
>> subplot (2,2,3) ; 
>> plot(O:dx:l,sol(:,51)) 
>> axis(C0 1 0  11) 
>> subplot(2,2,4); 
>> plot(O:dx:l,sol(:,lOl)) 
>> axis(C0 1 0  11) 

The plots in figure 5.18 look less jagged than the plots of figure 5.14), because 
of the smaller discretization step with respect to space. In fact, we may prove 
that the implicit method is unconditionally stable. I] 

To prove that the implicit method of equation (5.21) is stable, we may rewrite 
the scheme as 

@j+i = B-l(@j + Pgj), 

from which it is easy to see that stability depends on the spectral radius 
p(B- ' ) .  In this case, we may work directly on the spectral radius, rather 
than on a matrix norm. The scheme will be stable if the eigenvalues of B-' 
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- 
2 -1 0 . ' .  0 0  

-1 2 -1 . . .  0 0  
0 -1 2 . . .  0 0  T =  . .  . .  - . .  . .  

0 0 0 . . .  -1 2 - - 

are less than 1 in absolute value; to see that this is indeed the case, we may 
rewrite the matrix as follows: 

B = I + p T ,  

where 

(5.22) 

We will not prove this claim, but we may have a quick informal check with 
MATLAB: 

>> N=6; 
>> T = diag(2*ones(N-l,l)) - diag(ones(N-2,1),1) - . . .  

>> s o r t  (eig(T) 1 

0.2679 
1.0000 
2.0000 
3.0000 
3.7321 

diag(ones(N-2,1),-1); 

ans = 

>> s o r t  (4*sin((l :N-l)*pi/(2*N)) . -2) 
ans = 

0.2679 1.0000 2.0000 3.0000 3.7321 

Now we recall a couple of facts from matrix algebra, which are easily proved: 

0 If X is an eigenvalue of the matrix T, 1 + pX is an eigenvalue of the 
matrix I + pT. 

B-1. 
0 If /3 is an eigenvalue of the matrix B, p-' is an eigenvalue of the matrix 

Putting all together, we may conclude that the eigenvalues of B-' are 

< 1 ,  k = 1 , 2  ,..., N - 1 ,  
1 

(Yk = 
1 + 4p sin2 (&) 

and the fully implicit scheme is unconditionally stable. 
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Conlput,i~t,iurli~l diagrilrn o f  the Crank-Nicolson method for the heat eqiia- 

5.3.3 Solving the heat equation by the Crank-Nicolson method 

So far. we have seen methods involving three points on one time layer and 
one on il neighboring layer. It is natural to wonder if a better scheme may 
be obtained by considering three points on both layers. One way to  do this 
is to consider the point (x,, t , + l / z )  = (x,, t ,  + 6t/2), which is actually outside 
the grid, and to approxiinate the derivatives at  that point using values in the 
six neighboring points 011 the grid. By using Taylor expansions, a5 we did in 
section 5.2, we may see that 

and a central difference approximation for the derivative with respect to time 
in ( x 7 ,  t j+ Ip )  yields 

Using these two approximations together with the usual ones, we get the 
Craiik-Nicolson scheme: 

-~41-1.3+1+2(1+~)4i,j+l -~4i+l.j+1 = ~4i-l,j+2(1-~)4ij+~4i+i,j, (5.23) 

which is represented in figure 5.19. The fundamental feature of this scheme is 
that the error is both O(Sx2) and O(bt2); this implies that less computational 
effort is required to oht,ain a satisfactory degree of accuracy in the numerical 
soliit,ion. 

The Crank-Nicolson scheme may be analyzed in a more general framework. 
Wc may think of using a convex combination of two approximations of the 
second-order derivative in the finite difference scheme: 

+ (1 - W(4i-lj - 24ij + 4i+l,j)I (5.24) 

for 0 5 X 5 1. Note that we get the explicit scheme by choosing X = 0, the 
fiilly implicit scheme for X = 1, and the Crank-Nicolson scheme for X = 1/2. 
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- 
2(1 - P I  P 0 . . .  0 0 

P 2(1 - P )  P 
0 p 2(1-p) . . .  0 0 

0 0 0 . - .  p 2(1-p) 

0 . . .  0 

. .  . .  

To see that the Crank-Nicolson scheme is unconditionally stable, we may 
proceed just as with the first implicit scheme. We may rewrite equation (5.23) 
in matrix form: 

where 

C =  

D =  

2(1+P) -P 0 0 0 . . .  
0 0 

0 
-P . . .  -p 2(1+ P )  

-p 2(1+P) . * *  0 0 

Then, using matrix the same matrix T of equation (5.22) again, we may see 
that the eigenvalues of C-lD are 

2 - 4 sin2 (&) 
2 + 4 s i n  2 (m> k7r 

(Yk = k = 1 , 2 ,  ..., N-1.  

As these eigenvalues are, in absolute value, less than 1, we see that the scheme 
is unconditionally stable. 

5.4 SOLVING THE BlDlMENSlONAL HEAT EQUATION 

Sometimes, PDEs arising in financial engineering involve two uncertain quan- 
tities. They may be the prices of two assets in a multidimensional option, or 
a price and an interest rate, or a price and a volatility. In these cases we have 
a more complex PDE to deal with. When the dimensionality of the equa- 
tion goes beyond a certain limit, we must necessarily resort to Monte Carlo 
methods, but in two or three dimensions (plus time), finite difference schemes 
can be still applied. To get a feeling for the issues involved, we consider here 
the simplest generalization of the heat equation, i.e., the bidimensional heat 
equation 

(5.25) 

where the unknown function +(t, x, y) is the temperature of a point (z, y) in 
the plane at time t .  We may extend the standard grid notation by introducing 
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discretization steps bx,  by, and bt: 

q!(kbt, ibs, jby) 4fj, 

where time index k is written as a superscript and should not be confused 
with a power. For the sake of simplicity we will assume that we are interested 
in the solution on the unit square 

given initial and boundary conditions. 
Just like in the onedimensional case, we may use central differences for 

the second-order spatial derivatives. If we use the forward difference for the 
derivative with respect to time, we get the finite difference approximation: 

This immediately leads to an explicit scheme: 

where 
bt bt 

P -- - ( h X ) 2 '  PY = (62)2 

This method is relatively straightforward to implement, but it suffers from 
instability. It can be shown that a stability condition is: 

1 
PX+P -. y - 2  

This condition may be interpreted intuitively as usual: it just makes sure that 
we are taking a convex combination of five neighboring values in the previous 
time layer to get the value 41";". This implies a rather severe condition on 6t ,  
just like the onedimensional case. However, in this case an explicit algorithm 
is more time-consuming and requires more memory. In fact, now we must 
solve the equation by avoiding storage of a tridimensional array, whereas in 
the one-dimensional case we stored all the solution in one matrix. We alternate 
time layers, keeping track of two consecutive ones, and swapping them as time 
goes forward. 

A code to implement this explicit method is shown in figure 5.20. A few 
comments are in order here. 

0 The input arguments are: 

- the three discretization steps (d t ,  dx, dy) 

- the time Tmax a t  which we want to stop the solution process 
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function U = Heat2D(dt, dx, dy, Tmax, Tsnap, value, bounds) 
% make sure steps are consistent 
Nx = 
dx = 

Ny = 
dy = 
Nt = 

dt = 
rhox 
rhoy 

round(l/dx) ; 
l/Nx; 
round(l/dy) ; 
1/Ny; 
round(Tmax/dt) ; 
Tmax/Nt ; 
= dt/dx^2; 
= dt/dy^2; 

if 

end 
C1 = 1-2*rhox-2*rhoy; 
Layers = zeros(2, 1+Nx, 1+Ny) ; 
tpast = 1; 
tnow = 2; 
iTsnap = Tsnap/dt; 
[X ,  Y] = meshgrid(O:dx:l, 0:dy:l); 

% set up initial conditions and plot 
Layers(tpast, (l+round(bounds(l)/dx)):(l+round(bounds(2)/dx)), . . .  

(l+round(bounds(3)/dy)) : (l+round(bounds(4)/dy) )) = value; 
U = shif tdim(Layers (tpast, : , : 1) ; 
figure ; 
surf (X,Y,U) ; 
title(’t=O’, ’Fontsize’ ’12); 
% Carry out iterations 
for t=l :Nt 

rhox + rhoy > 0.5 
fprintf(1,’Warning: bad selection of steps\n’); 

for i=2:Nx 
for j=2 : Ny 

Layers(tnow,i,j) = Cl*Layers(tpast,i,j) + . . . 
rhox*(Layers(tpast,i+l,j) + Layers(tpast,i-l,j)) + . . . 
rhoy*(Layers(tpast,i,j+l) + Layers(tpast,i,j-1)); 

end 
end 
if find(iTsnap == t) % Plot if required 

U = shif tdim(Layers (tnow, : , : 1) ; 
figure ; 
surf (X,Y,U) ; 
title([’t=’, num2str(Tsnap(l)) I ,  ’Fontsize’,lZ); 
Tsnap(1) = [I; 

end 
tnow = l+mod(t+l,2); 
tpast = l+mod(t,2); 

% Swap layers 

end 

Fig. 5.20 Code to solve the bidimensional heat equation by an implicit method. 
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dt = 0.0001; 
dx = 0.05; 
dy = 0.05; 
value = 10; 
bounds = E0.7, 0 .9,  0.1, 0 . 9 1 ;  
Tmax = 0.1; 
Tsnap = EO.01, 0 . 0 2 ,  0.03, 0.04, 0.05, 0.061; 
U = Heat2D(dt, dx, dy, Tmax, Tsnap, value,  bounds); 

Fig. 5.21 Script to test Heat2D. 

- a vector Tsnap of time instants a t  which we want to display a plot 

- a value value and a four-dimensional vector bounds to store the 

of the solution 

initial conditions, which we assume of the form 

V for 0 < bl 5 x 5 bz < 1 and 0 < b3 5 y 5 b4 < 1 4(x7 ” = { 0 otherwise. 

0 In the first few lines we check consistency of discretization steps with the 
boundaries of the domain, changing discretization steps a bit if neces- 
sary. Then we precompute fixed quantities outside the main loop of the 
procedure (issuing a warning message if discretization steps may lead to 
instability). 

0 The solution is stored in two consecutive layers of size (1 + N , )  x (1  + 
Ny), which form the tridimensional array Layers. The two layers are 
alternated, as one is indexed by tnow and the other one by tpast ;  these 
two indexes are incremented modulo two at  the end of the main loop 
(so that copying a matrix is not necessary). 

0 Plots are displayed in separate figures (with some heading) a t  time t = 0 
and when required; to that purpose we must use meshgrid to set up 
matrices of coordinates in the plane, and shiftdim to transform one 
layer in the tridimensional array Layers to the bidimensional array U. 

0 Finally, things are made a bit more complicated by the fact that in 
mathematics we start subscripts from 0, whereas in MATLAB array 
indexing starts from 1. 

Running the script of figure 5.21 we get a set of surfaces, three of which are 
displayed in figure 5.22. 

The explicit method may prove time-consuming because of the restriction 
on the time step, and we would like to have stability guarantees typically 
associated with implicit methods. A fully implicit method is easily obtained 
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Fig. 5.22 Numerical solution of the bidimensional heat equation by an explicit 
met hod. 
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by taking a backward approximation of the derivative with respect to time, 
but in the bidimensional case we have a system of linear equations which may 
be time-consuming to solve, since there is no easy structure to exploit. 

Alternative approaches have been proposed, including the Alternating Di- 
rection Implicit (ADI) method. There are several variations on this theme, 
and we will just describe the simplest one, due to Peaceman and Rachford. 
A sound motivation of the scheme would call for a detailed analysis of finite 
difference operators and their truncation errors, which together with a stabil- 
ity analysis would prove convergence. Since this is not trivial, we refer the 
reader to the references listed a t  the end of the ~ h a p t e r . ~  The intuitive idea 
is to introduce an intermediate time layer in the solution process, stepping 
from t to t + 6 t / 2 ,  and to use an approximation scheme which is implicit with 
respect to one of the two space dimensions, and explicit with respect to the 
other one. Then we step from t + 6 t / 2  to t + 6 t ,  swapping the role of the two 
space dimensions. The net effect is to solve the bidimensional problem as a 
set of one-dimensional ones. 

We can specify the method in detail by using first a difference scheme based 
on points (2, y, t )  and (z, y, t + 6 t / 2 ) :  

Note that the scheme is implicit in x but explicit in y, since the second-order 
derivative for z is approximated by a central difference on time layer k + 112 
rather than on time layer k .  This may look arbitrary, but it introduces a 
truncation error which is comparable to other terms. Equation (5.27) can be 
rewritten as 

which can be rearranged by separating what is known and what is not: 

(5 .28)  
We should note that everything is known on the right-hand side, whereas on 
the left-hand side subscript j is fixed; hence we may solve one tridiagonal 
system for each j ,  i.e., for given y. Indeed, we see that a bidimensional 
problem is decomposed into a sequence of one-dimensional problems. By the 
same token, we can step forward to Ic + 1, reversing the roles of i and j. The 
starting point is the finite difference scheme: 

51n particular, we suggest section 7.3 of [7] or chapter 3 of [4]. 
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which is explicit in x and implicit in y and can be rearranged to 

PY k + l  k + l  PY k + l  PI k + L  k+' p x  k+' 
--4i,j-1+ 2 (1 + PyI4i.j - Z4i,j+l = pi-& + (1 - P X M i j  + 7 4 i + < j .  

(5.30) 
In this case, we solve one tridiagonal system for each value of II: in the time 
layer. 

The idea is implemented in the MATLAB code displayed in figures 5.23 
and 5.24. The remarks we have made for the implementation of the explicit 
method apply here too, with some additional issues: 

We use LU factorization of both matrices involved, since they are con- 
stant with respect to  time, resulting in matrices Ll, U1, L2, and U2; 
right-hand sides of systems are stored in vectors Rhsl and Rhs2. 

0 The intermediate layer for time t + 6t/2 is stored in the bidimensional 
array Auxlayer, which is the unknown in the first system, and makes 
up the right-hand side in the second one. 

In checking the code pay attention to the shift from mathematical sub- 
scripts to MATLAB array indexing. 

The code may be easily tested by adapting the script of figure 5.21. 

5.5 CONVERGENCE, CONSISTENCY, AND STABILITY 

We have developed finite difference schemes, and we have informally noted 
that there is some truncation error that tends to zero as the discretization 
steps tend to zero. We would expect that this ensures the convergence of the 
solution to the difference equations to the solution of the differential equation. 
However, the counterexample of section 5.2.1 shows that the matter is not 
so trivial, since we should consider carefully the interplay of three concepts: 
convergence, stability, and consistency. The point is that the solution of the 
finite difference equations for discretization steps ax,& -+ 0 could converge 
to a function which is not the solution of the PDE. A rigorous analysis of 
these concepts and their relationships is beyond the scope of the book, but 
we would like to give at least a glimpse into these topics. 

An initial value problem such as the familiar heat equation is defined over 
a space/time domain 

The problem can be cast in a more abstract way as 

v x (0 < t < w). 

where L is a differential operator, f is a known function, and 4 is the unknown 
function we seek to determine. When we set up a discrete grid BA, we also 
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function U = Heat2DADI(dt, dx, dy, Tmax, Tsnap, value, bounds) 
X make sure steps are consistent 
Nx = round(l/dx); 
dx = 1/Nx; 
Ny = round(l/dy); 
dy = 1/Ny; 
Nt = round (Tmax/dt ) ; 
dt = Tmax/Nt; 
rhox = dt/dx^2; 
rhoy = dt/dy^2; 

Layers = zeros(2, 1+Nx, 1+Ny) ; 
Auxlayer = zeros (1+Nx, 1+Ny) ; 
tpast = 1; 
tnow = 2; 
iTsnap = Tsnap/dt; 
[X, Y] = meshgrid(O:dx:l, 0:dy:l); 

% set up initial conditions 
Layers(tpast, (l+round(bounds(l)/dx)):(l+round(bounds(2~/dx~~, . . .  

(l+round(bounds(3)/dy)):(l+round(bounds(4)/dy))) = value; 
U = shiftdim(Layers(tpast,:,:)); 
figure ; 
surf(X,Y,U); 
title(’t=O’, ’Fontsize’ ,121 ; 
% Prepare matrices and LU decomposition 
Matrix1 = diag((l+rhox)*ones(Nx-l,l)) + . . .  

diag(-rhox/2*ones(Nx-2,1),1) + . . .  
diag(-rhox/2*ones(Nx-2,1),-1); 

[Ll, U11 = lu(Matrix1); 
Matrix2 = diag((l+rhoy)*ones(Ny-1,l)) + . . .  

diag(-rhoy/2*ones(Ny-2,1),1) + . . .  
diag(-rhoy/2*ones(Ny-2,1) ,-1) ; 

[L2, U21 = lu(Matrix2); 
Rhsl = zeros(Nx-1,l); 
Rhs2 = zeros (Ny-l,l) ; 

Fig. 5.23 Code to solve the bidiniensional heat equation by a n  AD1 method (continued 
in figure 5.24). 
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% Carry out iterations 
for t=l : Nt 

% first half step 
for j =1: Ny- 1 

% set up right hand side 
for i=l:Nx-1 

Rhsl(i) = rhoy/2*Layers(tpast,i+l,j) + . . .  
(1-rhoy)*Layers(tpast,i+l,j+l) + ... 
rhoy/2*Layers (tpast , i+l , j+2) ; 

end 
% solve 
Auxlayer(2:Nx,j+l) = U1 \ (L1 \ Rhsl); 

end 
% second half step 
for i=l:Nx-1 

% set up right hand side 
for j=l:Ny-1 

Rhs2(j) = rhox/2*Auxlayer(i,j+l) + . . . 
(1-rhox)*Auxlayer(i+l,j+l) + . . . 
rhox/2*Auxlayer(i+2,j+l) ; 

end 
% solve 
Layers(tnow, i+l,2:Ny) = (U2 \ (L2 \ Rhs2) 1 ; 

end 
1 plot if necessary 
if find(iTsnap == t) 

U = shiftdim(Layers(tnow,: ,:I); 
figure ; 
surf (X,Y,U) ; 
title(['t=', num2str(Tsnap(l)) 1 ,'FontsizeJ,12); 
Tsnap(1) = [ I ;  

end 
2 swap layers 
tnow = l+mod(t+l,2); 
tpast = l+mod(t,2); 

end 

Fig. 5.24 
from figure 5.23). 

Code to solve the bidimensional heat equation by an AD1 method (continued 
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discretize the operator L by an operator La. Given a function $ and a point 
(Pi l t , )  E G A ,  we may consider the truncation error 

t $ ( P i ~  t j )  = L$(Pi,  t j )  - LA$(Pi, t j ) .  

If, when the grid is refined and the discretization steps tend to zero, this 
truncation error tends to zero,‘ the numerical scheme is said to be consistent. 
This essentially says that the finite difference representation we are using 
tends to the PDEs we are interested in. 

The stability issue is concerned basically with whether or not the difference 
between the numerical solution and the exact solution remains bounded as 
time progresses. To be more specific, consider the heat equation of section 
5.3.  Let q5ij be the solution of the finite difference scheme and +(x , t )  the 
correct solution of the PDE. We may investigate 

0 the behavior of 1 & - 4(i 6 2 ,  j bt) 1 as j + CQ for fixed discretization 
steps bx and bt, 

0 or the behavior of I g5ij - +(z bx, j b t )  I as bx,6t -+ 0 for a fixed value of 
j 6t. 

The first issue is related to stability; the second issue is related to convergence. 
To ensure the convergence of the numerical solution to the exact solution, 
the consistency condition is not enough. However, it can be shown (Lax’s 
equivalence theorem; see [ 5 ] )  that for a well-posed linear initial value problem, 
stability is a necessary and sufficient condition for convergence of a consistent 
numerical scheme. As the following example shows, the numerical scheme of 
section 5.2.1 is not stable, and this is why it fails to converge. 

Example 5.5 For the sake of convenience, let us recall the numerical scheme 
of section 5.2.1 for the transport equation with constant velocity c: 

where p = ax/&. We may apply the same Von Neumann analysis of stability 
that we applied in example 5.2. Leaving the details as an exercise, we may 
see that in this case 

3 

42j = E ( - l ) i  (1 + 2;) . 

Since c and p are both positive, we see that +i j  goes to infinity as j + DC). 

Hence, the scheme is unconditionally unstable and convergence is not ensured 
even if the discretization steps tend to zero. 0 

“his should be made more precise, as the space and time discretization steps could tend 
to zero in an arbitrary way, or with some relationship between them. 
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For further reading 

0 Partial differential equations are a large and complicated topic. For an 
introduction including both classical and advanced concepts, see, e.g., 
[ 3 1 . ~  

0 Another book covering PDEs in a relatively general setting is [l], which 
also includes many pieces of MATLAB code. 

0 A classical reference on finite difference methods for PDEs is [6] .  See 
also [4] and [8]. 

0 A recent addition to the literature on finite difference schemes is [7]. 

0 Advanced issues, including the important Lax theorem, are covered in 
[51. 

0 To see extensive examples of PDEs in action to  tackle financial engi- 
neering problems, see [9] or [lo]. 
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6 
Convex Optimization 

Optimization methods play an important role in finance. As we have seen 
in chapter 2, optimization models may be used in portfolio management, in 
which case they are used as a decision support tool; sometimes, optimization 
methods are somewhat more instrumental and are used, e.g., to solve model 
calibration problems. Covering in depth all optimization methods that could 
be useful in solving finance-related problems would require a few books (tough 
ones, by the way). The aim of this chapter is much less ambitious. We want 
to provide the reader with a minimal background required to grasp what 
MATLAB offers in the Optimization toolbox; in particular, one should know 
what she’s doing when choosing one among the various methods that are 
available to cope with the same type of problem. 

To simplify things, we consider only basic optimization problems in this 
chapter. In particular, we assume they are convex and deterministic. Basic 
notions on convexity are summarized in supplement S6.1 at the end of this 
chapter. Basically, convexity ensures that a local optimum is a global one, 
and allows to find easy characterizations of optimal solutions, which pave the 
way to solution algorithms. Optimization models and methods in non-convex 
cases are dealt with in chapter 12. When data are uncertain, we should resort 
to stochastic optimization models, which is quite important in the context of 
dynamic decision making over time. There are two basic approaches to cope 
with dynamic decision making under uncertainty: dynamic programming and 
stochastic programming with recourse. Dynamic programming is described 
in chapter 10, where we also describe its role in pricing American options 
by Monte Carlo simulation; stochastic programming with recourse is covered 
in chapter 11. Actually, these two approaches have a lot in common, but 
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apparently the first one is quite common in Economics, whereas the second 
one is more appreciated within the engineering community. We will try to 
explain why in later chapters. 

We first provide a framework to classify optimization models in section 6.1. 
In fact, models may be classified along many directions, including constrained 
and unconstrained problems. Unconstrained optimization is covered in sec- 
tion 6.2. Methods for unconstrained optimization differ in their requirements; 
many are gradient-based, and require the ability of computing or approxi- 
mating function derivatives; other methods are derivative-free, in the sense 
that they are just based on function evaluations.' Constrained optimization 
is dealt with in section 6.3, where we also introduce fundamental theoretical 
concepts like Kuhn-Tucker conditions and duality theory. A specific case of 
constrained optimization is linear programming, which is the topic of section 
6.4; quite often, non-trivial problems may be expressed as linear programming 
models, and the ability to  solve really huge optimization problems efficiently 
make linear programming a fundamental tool. We illustrate MATLAB func- 
tions all along the way with small toy examples, and we close with more 
significant examples in section 6.5. 

Finally, we should bear in mind that optimization methods typically assume 
that we are able to capture the desirability of a solution by a function given 
in closed form. But analytical models may be too complex or not available a t  
all, and we may be forced to resort to simulation tools for performance evalu- 
ation. The integration of simulation and optimization techniques is described 
in section 6.6. 

6.1 CLASSIFICATION OF OPTIMIZATION PROBLEMS 

There is a huge variety of optimization models that we meet in financial 
applications, which can be tackled by an equally vast array of methods. Hence, 
the starting point of this chapter should be a listing of the basic features by 
which an optimization model may be characterized. 

6.1.1 Finite- vs. infinite-dimensional problems 

In this chapter we are concerned with problems whose abstract form is 

min f(x) 

s.t. x E s c IWn. 

Derivative-free optimization methods are the core of a recently released MATLAB toolbox, 
called Genetic Algorithm and Direct Search. We outline genetic algorithms in section 12.4. 
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The objective function f is a scalar function quantifying the suitability of 
a solution x, which is a vector of decision variables and must belong to a 
feasible set S,  which is a subset of the set of vectors with n real components. 
Since the solution is expressed by a finite-dimensional vector, we speak of a 
finite-dimensional problem. There is no loss of generality in considering only 
minimization problems, since a maximization problem may be transformed 
into a minimization problem simply by changing the sign in the objective: 

maxf(2) =+ - min[-f(s)]. 

Indeed, all MATLAB functions in the Optimization toolbox assume a mini- 
mization problem. Solving an optimization problem like (6.1) means finding 
a point x* E S such that 

f(x*) 5 f(x) vx E s. 
The point x* is said to be a global optimum (the terms optimizer or min- 
imizer are also used to avoid confusion between the optimal point and the 
corresponding value of the objective function). Neither the existence nor the 
uniqueness of a global optimum should be taken for granted. To begin with, 
the problem may be unbounded, which is the case if there is a sequence of 
solutions x ( ~ )  E S such that 

lim f ( ~ ( ~ ) )  = -oo. 

Furthermore, the problem may be infeasible, i.e., the feasible set S may be 
empty. Finally, the solution is not unique when condition (6.2) is satisfied 
by a set of alternative optima, which may be a discrete and finite set, or an 
infinite set. If the condition (6.2) holds only in a neighborhood of x*, we 
speak of a local optimum. 

Example 6.1 A typical objective function that gives rise to local optima is 
a polynomial function; recall that the oscillatory behavior of high-order poly- 
nomials is the reason why they are not well-suited to function interpolation 
(see example 3.16 on page 179). We may check this with a simple MATLAB 
snapshot. Consider a polynomial like 

k - m  

f(x) = z4 - 1 0 . 5 ~ ~  + 392' - 59.52 + 30 

and use MATLAB to plot it. 

>> g = @(x)  polyval(  [ 1 -10.5 39 -59.5 301, x ) ;  
>> xvet=1:0.05:4; 
>> p lo t (xve t ,g (xve t ) )  

The plot produced is illustrated in figure 6.1, from which it is clear that there 
are two local minimizers. One MATLAB function to solve a minimization 
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1.5 2 2.5 3 3.5 
-2‘ 

Fig. 6.1 Global and local optima for a polynomial. 

problem is fminunc; the "uric" stands for unconstrained, since we are not 
enforcing any requirement on the decision variable. This function requires an 
argument which is the initial point of the search process. 

>> [x,fval] = fminunc(g, 0) 
Warning: Gradient must be provided for trust-region method; 

using line-search method instead. 
x =  

1.4878 

-1.8757 
fval = 

>> [x,fval] = fminunc(g, 5) 
Warning: Gradient must be provided f o r  trust-region method; 

using line-search method instead. 
x =  

3.6437 

-0.6935 
fval = 

We see that depending on the starting point, we get the global or the local 
minimizer. The MATLAB output has been cut a little, but we see some 
messages concerning trust regions and line search; the meaning of these terms 
is illustrated in the following (this is all this chapter is about, after all). A 
different situation occurs in the following case: 

>> f = O(X) polyval( C I -8 22 -24 11 , X); 
>> xvet=0:0.05:4; 
>> plot (xvet , f (xvet) 1 
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Fig. 6.2 Objective function with two global optima. 

The plot is shown in figure 6.2. It may be seen that we have two alternative 
global minima. 0 

Example 6.2 It is easy to build problems which are, respectively: 

1. Unbounded: 

max x y + x i  
s.t. 5 1  + x2 2 4 

x1,xz 2 0. 

2 .  Infeasible: 

max 2x1 + 3 x 2  

s.t. 2 1  + 2 2  L 4 

0 i x1,52 5 1. 

3. Characterized by an infinite set of optima: 

max 2 1  + x z  
s.t. 2 1  + 2 2  5 4 

Z l r Z 2  2 0. 

The reader is urged to check this by drawing the feasible set and the level 
curves of the objective function. 

Another important remark is that some problems may have no solution 
because they are posed the wrong way. Consider the innocent-looking example 

min z 

s.t. z > 2 .  
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This problem has no solution, as the feasible set is open, and the apparently 
obvious solution x = 2 is not feasible. In fact, there is not a minimum but only 
an infimum. This is why in any optimization software you only get constraints 
such as 2 or 5, so that the feasible set is a closed region. 0 

So far we have assumed that the feasible set is a subset of the space on 
n-dimensional vectors with real components. In infinite-dimensional problems 
the solution is represented by an infinite collection of decision variables. This 
is the case when the solution we are seeking is a function of time over a 
continuous interval. Consider, for instance, a continuous-time dynamic system 
represented by the vector differential equation 

X(t) = “( t ) ,  U(t) l ,  

where x is the vector of state variables and u is the vector of control inputs. 
An optimal control u( t ) ,  t E [0, T ]  for this system may be found by solving 

T 

min f [x( t>,u( t ) l  dt + g[x(T)I 

s.t. X(t) = h[x( t ) ,  ~ ( t ) ]  Vt E [0, T ]  
x(0) = XI) 

U(t) E R vt E [O,T], 

where [0, T ]  is the time horizon we are interested in, xo is the (known) initial 
state of the system, and fl is the set of admissible controls. The objective 
function includes both a trajectory cost, depending on both states and controls, 
and a terminal cost, depending on the terminal state x(T).  It is also possible 
to specify some constraints on the terminal state. 

There is a vast literature on optimal control models in finance. They are 
actually formulated within a stochastic setting (returns are random and mod- 
eled by stochastic differential equations as discussed in chapter 2 )  and solved 
by dynamic programming (see, e.g., [13]). Optimal control methods are an ex- 
cellent tool to analyze relatively simple models and to derive valuable insights 
from a qualitative and theoretical point of view; however, it might be argued 
that, in general, complex and realistic problems are usually best formulated 
and solved as finite-dimensional models. This is an admittedly debatable 
point, as many would disagree, particularly when it comes to stochastic mod- 
els for finance (see, e.g., [12] for an alternative view). Anyway, we do not deal 
with this class of models, essentially to keep the book to a reasonable size. It 
is worth noting that finite-dimensional models may be used to approximate 
infinite-dimensional problems by discretizing the continuous-time model. For 
instance, the infinite-dimensional problem above can be transformed into the 
finite-dimensional problem 

K 
min c f ( X k ,  U k )  + g(xK) 

k = l  
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where the time horizon has been discretized in time intervals of width d t  and 
xk = x ( k d t ) .  Note that xk is the state at the end of the kth period [i.e., the 
period between ( I c  - 1)dt and k dt], whereas u k  is the control applied during 
the kth period. 

6.1.2 Unconstrained vs. constrained problems 

If S = R”, we have an unconstrained problem; otherwise, we have a con- 
strained problem. Needless to say, real-life problems are rarely unconstrained; 
yet methods for unconstrained optimization are the foundation for many con- 
strained optimization methods. The set S is usually specified by enforcing 
the following types of constraints on the decision variables. 

Equality constraints: 

hi(X) = 0, i E E ,  

or in vector form: 
h ( x )  = 0. 

0 Inequality constraints: 

S i ( X )  L 0, i E I .  

or in vector form: 

d x )  LO,  

having stipulated that a vector inequality is interpreted componentwise. 
The constraint g i ( x )  L 0 is said to be active a t  the point 12 if g i ( x )  = 0, 
and inactive if gi(12) < 0. A “greater than” constraint such as & ( X )  2 0 
can be rewritten immediately in the form - g k ( X )  5 0. In MATLAB, in- 
equality constraints are assumed in the “less than” form. Non-negativity 
restrictions such as x 2 0, also denoted by x E R+, may be thought of 
as inequality constraints. However, simple bounding constraints of the 
form 1 5 x 5 u are usually dealt with in a special way by optimiza- 
tion algorithms; hence, inequality constraints and bounds are passed 
separately to optimization procedures. 

6.1.3 Convex vs. non-convex problems 

Depending on the nature of the objective function f and of the feasible set 
S,  problem (6 .1 )  may or may not be easy. In particular, when there is only 
one local optimum which is also the global optimum, the problem should be 



334 CONVEX OPTIMIZATION 

expected to be relatively easy. The key concept here, and in most optimization 
theory as well, is convexity. Some background in convex analysis is given in 
supplement S6.1 at the end of the chapter. 

Problem (6.1) is a convex problem iff is a convex function and S is a convex 
set. Problem (6.1) is a concave problem if f is a concave function and S is 
a convex set. Assuming that the optimization problem has a finite solution, 
the following properties can be proved. 

PROPERTY 6.1 I n  a convex problem a local optimum is  also a global op- 
timum. 

PROPERTY 6.2 I n  a concave problem the global optimum lies on the bound- 
ary of the feasible region s. 
To get a feeling for the second property, the reader is urged to solve the 
following problem graphically: 

min -(x - 2)2 + 3 
1 5 x 5 4. s.t. 

Ideally, we would like to come up with a set of necessary and sufficient 
conditions for global optimality. Regrettably, what we have, in general, are 
just either sufficient or necessary conditions for local or global optimality. 
However, when the problem is unconstrained and the function is convex, it is 
easy to find a convenient characterization of a global minimizer. 

THEOREM 6.3 If the function f is  convex and differentiable on R”, the 
point x* is a global minimizer o f f  if and only if it satisfies the stationarity 
condition: 

Vf(X*) = 0. 

f(x) 2 f(xo)+vf’(Xo)(X--o) vx,xo. 

Proof. I f f  is convex and differentiable, then we have 

But if the function is stationary at  point x*, 

f (x) 2 f (x*) + v f’(x*)(x - x*) = f (x*) + O’(x - x*) = f (x*) vx, 

which simply says that x* is a global optimum. 0 
The stationarity condition is a first-order condition; for generic functions, 

second-order conditions involving the Hessian matrix are required to guaran- 
tee that a stationary point is actually a (local) minimizer. The stationarity 
condition is easily extended to  the case of a convex non-differentiable function. 

THEOREM 6.4 If the function f is  convex on R”, the point x* is a global 
minimizer o f f  if and only i f  the subdiflerential of f  at x* includes the zero 
vector: 

0 E af(X*). 
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Proof. As discussed in supplement S6.1, a convex function f is subdifferen- 
tiable at  any point2; that is, a t  any point xo there is a set of subgradients, 
which is called the subdifferential. A subgradient at  xo is a vector y such that 

It is easy to see that if 0 belongs to the subdifferential a t  x * ,  we have f ( x )  2 
f ( x * )  for any x .  It is worth noting that this theorem is a generalization of 
the previous one, as if the function is differentiable in x * ,  the subdifferential 
includes only the gradient, and this condition boils down to stationarity. 0 

It  should be noted that a set S = { x  E Rn 1 gz(x)  5 0, i E I} is convex if 
the functions gi are convex. To see this for a single function g ( x ) ,  assume 
that XI, x2 E S. Convexity of g implies that 

Since the intersection of convex sets is a convex set, the result is valid for an 
arbitrary number of convex functions. The equality-constrained case is more 
critical. Since an inequality constraint hi(x)  = 0 can be thought of as two 
inequalities , 

hi(x)  L 0, -hi(x)  5 0, 

we see that it will describe a convex set only if the function hi is both convex 
and concave. This will be the case only if hi is affine, i.e., it is of the form 

6.1.4 Linear vs. non-linear problems 

A finite-dimensional problem is called a linear programming (LP) problem 
when both the constraints and the objective are expressed by affine functions. 
The general form of a linear programming problem is 

j = 1  
n 

.j = 1 

’Strictly speaking, this is true only for the interior of the domain over which the function 
is convex. 
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which can be written in matrix form as 

min c’x 
s.t. Ax = b 

D x  5 e.  

Linear programming problems have two important features; they are both 
convex and concave problems. Thus, a local optimum is also a global one, 
and it lies on the boundary of the feasible solution; actually, it turns out that 
the feasible set is a polyhedron and that there is an optimal solution which 
corresponds to one of its vertices. 

Example 6.3 Here is an example of an LP problem: 

min 

s.t. 
2 x 1  + 3 x 2  + 3 x 3  

2 1  + 2 x 2  = 3 

X I +  2 3  L 3 

X l , X 2 , X 3  L 0. 

If either condition is not met, i.e., if the objective function or a constraint is 
expressed by a non-linear function, we have a non-linear programming prob- 
lem. 

Example 6.4 The following are examples of non-linear programming prob- 
lems: 

min 

s.t. 

min 

s.t. 

min 

s.t. 

22; + 32; + 3 5 1 x 3  

2 1  + 2 x 2  = 3 

2 1  + 2 3  L 3 

X l , X 2 ,  x 3  L 0. 
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The last problem is characterized by a quadratic objective function and by 
linear constraints. This kind of problem is called a quadratic programming 
problem. Quadratic programming problems are the simplest non-linear pro- 
gramming problems, provided that the objective function is convex. If the 
quadratic part of the objective is related to a covariance matrix, as it happens 
for mean-variance portfolio optimization, the objective function is convex, as 
the covariance matrix is positive semidefinite (see theorem 6.11 in supplement 
S6.1.1). 0 

6.1.5 Continuous vs. discrete problems 

Linear and quadratic programming problems are rather easy to solve, as they 
are convex problems. In some decision problems, it is necessary to enforce 
integrality constraints on some decision variables: 

X E Z?, 

where Z+ = ( 0 , 1 , 2 , .  . .} is the set of non-negative integers (models involving 
negative integer variables are quite rare). If the integrality constraint applies 
to all of the decision variables, we have a pure integer program; otherwise, we 
have a mixed-integer program. Such a restriction makes the problem much 
harder, mainly because a discrete feasible region is not convex. While non- 
linear integer programming techniques are known, robust commercial tools 
are available only for mixed-integer linear  program^.^ 

Quite often, an integrality restriction has the form 2 E (0, l}, which is 
used when we have to model all-or-nothing decisions. One such case is the 
knapsack problem we met in example 1.2 on page 15. We will illustrate 
several “modeling tricks” based on logical variables in section 12.1.1. We 
should mention that past versions of the Optimization toolbox were not able 
to cope with discrete optimization problems. At the time of writing, a function 
bintprog is available to solve pure binary problems, i.e., linear programming 
problems in which all the decision variables are restricted to the set (0 , l ) .  
This is a limited functionality which could be improved in future versions to 
cope with general mixed-integer problems. Nevertheless, we should mention 
that large-scale mixed-integer problems are a hard nut to crack and that 
specialized state-of-the-art packages are required. 

6.1.6 Deterministic vs. stochastic problems 

All the model classes we have considered so far assume, on the one hand, 
that there is no uncertainty in the data and, on the other one, that a sensible 
analytical model can be built. In some cases, building an analytical model 

3However, recently released versions of ILOG CPLEX are able to solve mixed-integer 
quadratic problems. 
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is out of the question, because of both the randomness and the complexity 
involved. As an example, consider a set of rules for portfolio rebalancing; say 
these rules depend on a set of parameters and that you would like to find the 
optimal value of these parameters. It may be the case that a thorough testing 
of the rules may be carried out only by running a set of simulated experiments. 
This means that a simulator acts as a black box mapping a vector of decision 
variables x into an estimate of an objective function f(x) = E[U(x)], possibly 
related to an expected utility. In this case, you have to integrate stochastic 
simulation and optimization methods, as described in section 6.6. 

In other cases, we may be able to build an optimization model, but uncer- 
tainty in the problem data prevents the application of standard optimization 
methods. It is fairly obvious that coping with uncertain data is a significant 
complication, but there is a subtler issue. When uncertainty is involved, we 
should consider how and when the “true” values of the problem data are dis- 
covered: In fact, time and information are likely to  play a role, since decision 
making under uncertainty typically involves a dynamic process in which de- 
cisions are ‘Ladjusted” when more and more information is revealed. Dealing 
with this dynamic decision process calls for an appropriate framework which 
is discussed in chapters 10 and 11. 

6.2 NUMERICAL METHODS FOR UNCONSTRAINED 
OPTIMIZATION 

In principle, an unconstrained problem minxcp  f(x) may be solved by look- 
ing for a stationary point. Some care is needed for the non-convex case, 
since second-order information should be checked; furthermore, what we get 
in general is a local optimizer; indeed, almost all the non-linear programming 
libraries commercially available are aimed at  local optimization. The station- 
arity condition yields a set of non-linear equations which could be solved to  
spot candidate optima; in fact, there are a few links between unconstrained 
optimization and the numerical solution of non-linear equations. 

In optimization, one avoids direct solution of the non-linear equations. The 
computational approaches are generally based on the generation of a sequence 
of points x(’), converging to  a local optimum x*. In order to drive the search 
process in the right direction, one should find, for each point x ( ~ )  in the 
sequence, a descent direction, i.e., a vector s ( ~ )  E Rn such that 

for some (u > 0. If we consider the function h((u) = f(x + (us), a descent 
direction is characterized by 

dhl = [Vf(x)]’s < 0. 
a = O  
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It may be convenient to consider true direction vectors, i.e., unit norm vectors 
such that 11 s 1 )  = 1. A general iteration scheme is, after initialization with a 
starting guess x(O): 

1. Find a descent direction ~ ( ~ 1 .  

2. Find a step length a(k)  E R+. 

3. Update ~ ( ~ + l )  = ~ ( ~ 1  + a ( k ) ~ ( ~ ) .  

The scheme is iterated until some convergence criterion is met. There are 
a variety of choices, which lead to different algorithms, some of which are 
briefly outlined in the following. I t  should be noted that this approach can 
be extended to deal with constrained optimization problems. An easy case is 
when we have to solve 

min f(x). 
XEW; 

Here it is sufficient to slightly modify the updating rule as follows: 

which should be interpreted componentwise; if some component becomes neg- 
ative, set it at  zero. This operation essentially amounts to  projecting x ( ~ + ~ )  
onto the feasible set RT (projection can be exploited for more general feasible 
sets, with computational difficulties depending on their nature). 

6.2.1 Steepest descent method 

One seemingly obvious choice for the descent direction is 

which yields the steepest descent or gradient method. The step length Q may 
be chosen by solving the one-dimensional problem 

This one-dimensional problem is easier than the original problem, as it is a 
scalar optimization problem. It can be solved by a variety of line search meth- 
ods. One possibility, which works for convex functions, is using a quadratic 
fit. Assume that we have three points 0 5 a1 < a2 < a3, such that 

h(a1) > h(a2) ,  h(ff2) < h(a3) .  

An initial set of points satisfying these conditions can be found by some search 
procedure. Now we may fit a quadratic curve passing through the three points; 
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t“ 
X, 

Fig. 6.3 Zig-zagging in the steepest  descent procedure 

rninimization of the quadratic curve is easily accomplished, under convexity 
assumption, by setting its derivative to zero. This yields another point, a*. 
Assume that N* > 0 2 .  If h(cu*) 2 h(az), we proceed with the new set of 
points (all LYZ, N*); otherwise, we proceed with (QZ, a*, 0 3 ) .  Actually, there 
is a rich set of line search methods, involving, e.g., cubic interpolation and 
other tricks of the trade; some may be selected by setting MATLAB option 
parameters. 

Despite its apparent, appeal, the steepest descent method may suffer from 
poor convergence near the minimizer. In some cases, pathological behavior 
called “zig-zagging” is observed. The zig-zagging phenomenon is illustrated 
in figure G.3.4 Furthermore, roundoff errors may make the straightforward 
steepest descent method rather unreliable. 

6.2.2 The subgradient method 

It is obvious that the gradient method cannot be applied to  a non-differentiable 
function. In supplement 56.1.1 we note that the subgradient is a geiier a 1‘ iza- 
tion of the gradient concept to the case of non-smooth functions. Hence, 
assanling we can compute a subgradient +’) for a convex function f a t  any 
point x(‘), we may wonder if a scheme like 

could work. The answer is not easy, since there is no guarantee that by chang- 
ing the sign of the subgradient we find a descent direction. However, if some 
condition is enforced on the step lengths dk), it can be shown that the sub- 
gradient, method converges to  the optimal solution. An intuitive justification 
runs as follows. 

4The purpost. o f  the figure is just to illustrate the phenomenon, as the angles between 
successive segments are not necessarily realistic. To really see zig-zagging, the reader is 
urged to try the optimization toolbox demos. Just type demo, which opens a window 
in which you should select the Optimization toolbox. Then try the “minimization of the 
hanaila. function” demo. 
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Consider a point xo and let yo be a subgradient of f at  XO. Then, by 
definition of a subgradient: 

f(x) L f(x0) + rbb - xo) h. 

By applying this inequality to the optimal solution x* and rearranging, we 
obtain 

-rb(x* - xo) L f(x0) - f(x*) 2 0. 

Note that the vector x* - xo is the direction along which we should move 
to reach the optimal solution from XO. The inequality above shows that this 
vector forms an angle less than 90 degrees with -yo. Hence, the subgradient, 
changed in sign, need not be a descent direction, but at  least it points to  the 
“right” half-space, where the optimal solution lies. 

6.2.3 

The convergence problems in the gradient method are essentially due to the 
fact that the gradient method uses a first-order local approximation of f 
ignoring curvature information. The situation could be improved by using a 
second-order approximation, for a displacement vector 6: 

Newton and the trust region methods 

1 
2 

f(x + 6 )  M f(x) + [V f (x)]’S + -6’H(x)6, 

where H is the Hessian matrix. If H is positive definite, the function is locally 
strictly convex and we may find a minimizer for the quadratic approximation 
by solving the system of linear equations 

H ( x ) ~  = -Vf(x). 

This method is known as Newton’s method (for optimization) and it has better 
convergence properties as well as higher computational costs. However, we 
are in trouble if the Hessian is not positive definite. 

Another approach is to restrict the step a taken along the direction given 
by the gradient. The rationale is that the first-order approximation is valid 
only in a neighborhood of the current iterate x(’). To find the displacement 
6,  we could consider the restricted minimization subproblem: 

s.t. 11611< h(”. 

Exploiting this idea leads to trust region methods, which are actually used 
in MATLAB for large-scale problems. The trust region is delimited by the 
parameter h ( k ) ,  which controls the step length and should be adjusted dynam- 
ically. We may compare the predicted improvement in the objective function 
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(according to the approximating function) with the actual improvement. A 
large difference suggests that the approximation is not reliable and that the 
step length should be reduced. Otherwise, the step length can be increased. 

6.2.4 No-derivatives algorithms: quasi-Newton method and simplex 
search 

One problem with Newton’s method is that the Hessian matrix is required. 
Since providing the software with this information requires a good deal of 
error-prone work, alternative approaches have been developed in order to 
approximate this matrix based on function evaluations only. This leads to 
quasi-Newton methods, which we have already met in the case of non-linear 
equations (see example 3.25 on page 201). The same observation applies to  
providing the gradient of the objective function. As we have seen in chapter 
5, one idea is to approximate the gradient by finite differences like 

N f(2 + hil i )  - f(2) %1,=* - hi 

or 
f(2 + hil i )  - f(2 - hil i )  aft,,/ dxi x=f = 2hi 9 

where l i  is the ith unit vector. By the same token, we may devise suitable 
approximations of the Hessian matrix. 

In some circumstances, you would not be able to compute the gradient any- 
way; one case is when the objective function is not known, but it is implicitly 
computed by a simulation model; another one is when there are discontinuities 
in the objective function. In such cases, it is useful to adopt methods that 
rely only on function evaluations. One such approach is the simplex search 
method developed by Nelder and Mead.5 The rationale behind the method 
is illustrated in figure 6.4 for a minimization problem in R2. A simplex in Rn 

In two dimensions, a simplex is simply a triangle, whereas in three dimen- 
sions it is a tetrahedron. The simplex search method works by building and 
transforming a set of n + 1 points rather than generating a sequence of single 
points; the point with the worst value of the objective is spotted and replaced 
by another point. For instance, consider the three vertices of the triangle in 
figure 6.4 and assume that f(x3) is the worst objective value; then it seems 
reasonable to move away from x3 by reflecting it through the center of the 

is the convex hull of a set of n + 1 affinely independent points XI, . . . , xn+l. 6 

5This method should not be confused with the celebrated simplex method for linear pro- 
gramming. 
6Affine independence here means that the vectors (x2 - xi), . . . , (xn+l - xi)  are linearly 
independent. For TI = 2 this means that the three points do not lie on the same line. For 
n = 3 this means that the four points do not lie on the same plane. 
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t 

. 
Fig. 6.4 
cediire. 

Rcflcctioii of the worst value Imirit iri the Nelder-Mead simplex search pro- 

face formed by the other points. This is easily accomplished algebraically. 
Assume that x,,+1 is the worst point; then we compute the centroid of the 
best 11 points as 

1 I '  
c = - E x , ,  

n 
a=1 

and we try a new point of the form 

x, = c + a(c  - x,+1). 

The reflection coefficient a > 0 is adjusted depending on the circumstances. If 
x, turns out to be even worse than x,,+l, we may argue that the step was too 
lorig, and the siniplex should be contracted. If x,. turns out to be the new best 
point, we have fouiicl a good direction and the simplex should be expanded. 
Difftwnt tricks have lieen devised in order to  improve the convergence of the 
method. 

6.2.5 Unconstrained optimization in MATLAB 

Consider the unconstrained optimization problem 

niiiif(z1,22) = ( 2 1  - q4 + ( 2 1  - 2 ~ 2 ) ~ .  

Clearly, f ( ~ 1 ,  x 2 )  2 0 and f ( 2 , l )  = 0; hence ( 2 , l )  is a globally optimal 
solution. The gradient o f f  is given by 

It is casy to see that V f ( 2 , l )  = 0. 

uiicoiist,raineci optimization: 
In the Optimization toolbox we have two functions that can be used for 
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fminsearch, which implements a variant of the simplex search method. 

0 fminunc, which actually implements a variety of methods, which are 
selected according to  a set of options controlled by the user. 

Both functions require an M-file, a function handle, or an inline function to  
evaluate the objective, and an initial estimate of the solution. An optional 
parameter may be used to set the desired options through the optimset func- 
tion. 

Let us first try the simplex search procedure, giving an initial estimate 
xo = 0:  

>> f = Q(x) (~(1) - 21-4 + (~(1) - 2 * ~(2))-2; 
>> x=fminsearch(f, [O 01) 

2.0000 1.0000 
x =  

>> f(x) 
ans = 

2.9563e-017 
>> 

Now we may try fminunc: 

>> x=fminunc(f , [O 01 ) 
Warning: Gradient must be provided for trust-region method; 

Optimization terminated: relative infinity-norm of gradient less 
using line-search method instead. 

than options.TolFun. 

1.9897 0.9948 
x =  

>> f(x) 
ans = 
1.1274e-008 

The result is not exact really. The point is that the function is rather “flat” 
around the minimizer; in fact the objective function is close to zero in the 
solution reported by MATLAB. We could change the tolerance parameters 
in order to improve the solution, but this could make no sense in practice. 
We may also note that MATLAB complains about the lack of gradient in- 
formation, so that it cannot apply a trust region method. This is not much 
trouble, as the gradient may be estimated numerically. However, we could 
ask MATLAB not to use the default “large-scale” algorithm, which is a trust 
region method, but a “medium-scale” algorithm. 

>> options=optimset(’largescale’ , ’off I )  ; 
x=fminunc(f, [O 01, options) 
Optimization terminated: relative infinity-norm of gradient less 
than options.TolFun. 

x =  
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1.9897 0.9948 

Alternatively, we may provide a function to compute the gradient and tell 
MATLAB to use it within a large-scale algorithm, possibly with a stricter 
tolerance: 

>> f = @(XI ( ~ ( 1 )  - 21-4 + ( ~ ( 1 )  - 2 * ~(2))-2; 
>> gradf = @(x) [4*(~(1)-2)-3+2*(~(1)-2*~(2)) , -4*(~(1)-2*~(2))] ; 
>> options=optimset(’gradobj’,’on’, ’largescale’,’on’, ’tolfunJ,le-13); 
>> x=fminunc((f, gradf), [ O  01, options) 
Optimization terminated: relative function value changing by less 
than 0PTIONS.TolFun. 

1.9997 0.9998 
x =  

Computing a gradient analytically is clearly an error-prone activity. To help 
with this task, it is possible to ask MATLAB to compare the gradient we 
provide with a numerical estimate. All we have to do is to reset the options and 
to set the derivativecheck option om7 Here we may try this functionality, 
providing MATLAB with an incorrect expression for the gradient implemented 
in the function gradf I: 

>> options = optimset; 
>> options=optimset(’gradobj’, ’on’, ’largescale’, ’off’, . . .  
’derivativecheck’, ’on’) ; 
>> gradfl = @(x) [S*(x(l)-2)’3+2*(~(1)-2*~(2)) , -4*(x(1)-2*x(2))1 ; 
>> x=fminunc({f, gradf 11, [O 01, options) 
Maximum discrepancy between derivatives = 16 
Warning: Derivatives do not match within tolerance 
Derivative from finite difference calculation: 

-32.0000 
0 

User-supplied derivative, 
@(XI [6* (~(1) -2) -3+2*(~(1)-2*~(2)) , -4* (~(1) -2*x(2) 11 : 
-48 
0 

Difference: 
-16.0000 

0 
Strike any key to continue or Ctrl-C to abort 
Optimization terminated: 
relative infinity-norm of gradient less than options.TolFun. 

x =  
1.9841 0.9921 

Indeed, we see that a warning is issued by the system, spotting a likely trouble 
with our analytical gradient. 

7See also the code displayed in figure 3.28 on page 202. 
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6.3 METHODS FOR CONSTRAINED OPTIMIZATION 

Consider a general constrained optimization problem, such as 

min f(x) 
s.t. hi(x) = 0 i E E 

i E I .  gz(x) 5 0 

In this section we assume that all the involved functions have suitable differen- 
tiability properties. For a constrained problem, stationarity is not a necessary 
condition anymore, since the optimal solution may be a non-stationary point 
on the boundary of the feasible set (this means that there are descent direc- 
tions, but they all lead outside the feasible region). One possible approach to 
cope with this difficulty is trying to transform the problem in such a way that 
stationarity condition may be applied again; this leads to the penalty func- 
tion approach (section 6.3.1). Another idea is to develop optimality conditions 
which include some form of stationarity, plus some additional requirements; 
this leads to the Kuhn-Tucker conditions (section 6.3.2). Kuhn-Tucker con- 
ditions generalize the Lagrange multiplier method for equality-constrained 
problems, and they are linked to  a body of optimization theory called duality 
theory (section 6.3.3), which leads both to  theoretical insights and to practical 
algorithms. Another important observation is that a constrained problem is 
relatively easy when all the involved function are affine; indeed, linear pro- 
gramming is a very well developed branch of optimization theory (section 
6.4). So it may be interesting to develop algorithms which somehow trans- 
form a non-linear problem to a linear problem. This may be accomplished 
easily if the constraints are linear and the objective function is convex; Kel- 
ley’s cutting planes algorithm (section 6.3.4) is based on this idea, and it is 
the conceptual basis of some methods for stochastic problems. In general, it 
is reasonable to assume that a linearly constrained problem has some specific 
features that may be exploited in a computational algorithm. The active set 
method (section 6.3.5) is one such strategy; it also worth noting that, in the 
earlier versions of the Optimization toolbox, the active set method was the 
basis of the functions for both linear and quadratic programming. 

Due to its introductory nature, this book has been written sacrificing the 
mathematical rigor. This is particularly true for this chapter, as optimization 
theory is a tough subject in which simplistic approaches may lead to  disasters. 
Hence, the serious reader is urged not to  take what we illustrate in the follow- 
ing as a foolproof set of recipes; it is a good starting point, but the references 
at  the end of the chapter should be consulted for a more thorough treatment. 

6.3.1 Penalty function approach 

Penalty functions are based on the idea of relaxing constraints through the 
addition of a suitable term to the objective function. Consider a problem with 



METHODS FOR CONSTRAINED OPTIMIZATION 347 

equality constraints: 

min f(x) 

s.t. hi(x) = 0, i E E. 

It is possible to approximate this constrained problem by the unconstrained 
one 

min@(x, u) = f(x) + u hT(x). 
~ 

iEE 

This function penalizes both positive and negative values of hi. If u is large 
enough, the optimization algorithm will, in some sense, first drive the solution 
toward the feasible region by minimizing the penalty term; then it will try to 
minimize the objective f. Actually, convergence difficulties will arise if we try 
solving the unconstrained problem with a large value of the penalty coefficient 
u. So it is advisable to solve a sequence of unconstrained problems using the 
optimal solution of each subproblem as the initial solution of the next one: 

1. Choose a sequence {dk)} -+ 00. 

2. Find the minimizer x*(dk)) of @(x, a) .  

3. Stop if hi(x*) is sufficiently small for all i. 

We can see this as an example of a continuation strategy (see section 3.4.5). 
The case of inequality constraints 

min f(x) 
s.t. gi(x) 5 0 i E 1. 

can be tackled by a similar approach. In this case, however, we must only 
penalize positive values of the constraint functions gi. Using the notation 
[y]+ = max{y, 0}, we may use a penalty function like 

or 

for increasing values of 0. The first penalty function is differentiable, whereas 
the second one is not, as you may see in figure 6.5a; however, the second 
function may be advantageous from the numerical point of view, as there is 
no need to use too large values of the penalty coefficients. Indeed, one of the 
driving forces behind the development of non-smooth optimization algorithms 
was the use of exact penalty functions. 

In both cases, we are actually using an exterior penalty function. The 
name stems from the fact that the feasible set is approached from outside for 
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Fig. 6.5 Exlcrior (a) and interior (b) penalties. 
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increasing values of CJ, as illustrated in figure 6.5a. If the optimal solution 
is on the boundary of the feasible set (which is usually the case, since some 
inequality constraints are active), a feasible solution is obtained only in the 
limit. In some cases, this is quite natural, as the constraints may be soft or 
“elastic” and express some desirable feature rather than a hard requirement. 
In other cases, we would like to be able to stop the algorithm whenever we want 
and still come up with a strictly feasible solution. To overcome this problem, 
an interior penalty approach can be pursued, by introducing a suitable barrier 
function. One example is 

The barrier function goes to infinity when x tends to the boundary of the 
feasible region from inside. Then an unconstrained problem, 

rninf(x) + aB(x), 

is solved for decreasing values of CJ, until the term aB(x) is small enough. 
As shown in figure 6.5b, in this case we approach the optimal solution on 
the boundary staying within the feasible region; this may be an advantage, 
provided that we have a way to start the iterations with a feasible point. 
From figure 6.5 it should also be clear that both exterior and interior penalty 
functions are numerically feasible ways of approximating the ideal penalty: 

gi(x) I0 { ”+, gi(x) > 0. 
Pa(.) = 

E x a m p l e  6.5 Consider the problem 

min 

s.t. 2, y 5 1, 

(x - 1.5)’ + ( y  - 0.5)’ 

whose optimal solution is clearly x* = 1, y* = 0.5. An interior penalty 
function could be 

0 I7 
(2  - 1.5)’ + ( y  - 0.5)’ + - + - 

1 - 2  1 - y  

Using MATLAB graphics, we may easily plot the level curves of the penalty 
function for different values of the parameter 0. We need to define a function 
and to use the functions meshgrid, to define the grid of points on which we 
want to evaluate the function, and contour, to plot a set of level curves. 

>> f=@(sigma,x,y) (~-~.5).^2+(y-0.5).^2+sigma./(I-x)+sigma./(l-y); 
>> [x y] = meshgrid(0.01 : 0.01 : 0.99); 
>> subplo t  (2,2, I) 
>> contour(f (O.i,x,y) ,301 
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fig. 6.6 Plots of the level curves for the interior penalty function of example 6.5 for 
u = 0.1, u = 0.01, u = 0.001, u = 0.0001. 
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>> subplot(2,2,2) 
>> contour(f (O.Ol,x,y) ,301 
>> subplot (2,2,3) 
>> contour(f (O.OOI,x,y) ,301 
>> subplot (2,2 , 4) 
>> contour(f (O.OOOl,x,y) ,301 

The three plots are shown in figure 6.6. We see that the optimal solution of 
the unconstrained problem tends to the optimal solution of the original one 
from the inside. 0 

The penalty function approach is conceptually very simple, and some con- 
vergence properties can be proved. However, severe numerical difficulties may 
arise, for instance, when u gets very large in the case of an exterior penalty. 
Nevertheless, penalty functions are most useful in providing a starting point 
for other, more sophisticated methods. They may be integrated with the La- 
grangian methods described below, giving rise to the augmented Lagrangian 
methods, and they are one of the ingredients of the increasingly popular inte- 
rior point methods for linear programming. 

6.3.2 Kuhn-Tucker conditions 

Consider a general constrained problem ( PEI) :  

min f ( x )  
s.t. hi(.) = 0, i E E 

i E I .  g i ( x )  5 0, 

The stationarity of f plays no role in proving optimality here, but the sta- 
tionarity of a related function does. Consider the Lagrangian function 

The stationarity of C does play a role in the following conditions. 

THEOREM 6.5 (Kuhn-Tucker conditions) Assume that the functions 
f ,  hi,gi  in ( P E I )  are continuously differentiable, and that x* is feasible and 
satisfies a constraint qualification condition. Then a necessary condition for 
the local optimality of X *  is that there exist numbers A t  (i E E )  and & 2 
0 ( i  E I )  such that 

i E E  i E I  
p f g i ( x * )  = 0 V i  E I .  
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The first condition is the stationarity of the Lagrangian function; if the 
set of inequality constraints is empty, these conditions boil down to the older 
Lagrange method to deal with equality-constrained problems. The numbers X i  
and pi are called Lagrange multipliers; note that the multipliers for inequality 
constraints are restricted in sign. For reasons that will be clear in the next 
section, the multipliers are also called dual variables (as opposed to the primal 
variables x). The Kuhn-Tucker conditions are, in a sense, rather weak, as they 
are only necessary conditions for local optimality, and they further require 
differentiability properties and some additional qualification condition on the 
constraints (to be clarified in example 6.7). They are, however, necessary and 
sufficient for global optimality in the convex case. 

Example 6.6 As a first example, we may solve the optimization problem we 
have considered in example 2.3, on page 37. It is a non-linear programming 
problem with one equality constraint: 

max x ~ x ; - *  
s.t. P I X 1  f p z x z  = w. 

We introduce a Lagrange multiplier X and build the Lagrangian function: 

LI 1-LI C(Xl,X2rX) = + ( P l X l  +P2XZ - W )  . 
Since there is no inequality, we have just to write first-order optimality con- 
ditions: 

dC - dX = p l x l  +pzx2 - w = 0. 

Dividing the first two equations term by term, after a rearrangement, we get 

From the budget equation we may get 2 2 :  

w - P l X l  x2 = 7 

P2 

which may be substituted in (6.4): 

( 1  - Q ) P l X l  - a (W - PlXl )  = 0 ,  
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We see that consumption of each good is inversely proportional to its price, 
0 and it depends on the preference parameter a. 

We will not prove the Kuhn-Tucker conditions, as a rigorous proof is be- 
yond the scope of the book; informally, they can be derived by characterizing 
a local optimum as a point such that an improvement in the objective function 
can only be obtained by going outside the feasible region. It is worth noting 
that the stationarity condition says that the gradient of the objective function 
can be expressed as a linear combination of the gradients of the objectives; 
this clarifies a little what we mean by constraint qualification; if the gradients 
of the constraints are not linearly independent at  XI, it might be the case 
that we cannot use them as a basis to express Of. So it may happen that the 
Kuhn-Tucker conditions are not satisfied by a point that is actually a local 
minimizer. 

Example 6.7 To understand the issue behind the constraint qualification 
condition, consider the problem: 

min X I  f x z  

s.t. 3 
h l ( X )  = 2 2  - XI = 0 

h 2 ( X )  = 2 2  = 0. 

It is easy to see that the feasible set is the single point ( O , O ) ,  which is the 
(trivial) optimal solution. If we try applying the Kuhn-Tucker conditions, we 
first build the Lagrangian function 

C ( X l , X Z ,  X1,  X2) = 2 1  + x 2  + X l ( X 2  - x;) + x 2 x z .  

Writing the stationarity yields the system 

- = 2 2  = 0, 
ac 

8 x 2  

which has no solution (the first equation requires that x 1  # 0, which is not 
compatible with the last two equations). This is due to the fact that the 
gradients of the two constraints are parallel at  the origin: 
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and they are not a basis able to express the gradient of f 

Different constraint qualification conditions have been proposed in the lit- 
erature. Sufficient conditions to  avoid trouble are that the gradients of the 
active constraints are linearly independent, or that the constraints are all lin- 
ear. We will not pursue this issue any further, but we recommend a book like 
[18] as a warning against easy cookbook recipes in optimization. 

The Kuhn-Tucker theorem also includes a second set of conditions, which 
are known as complementary slackness conditions. They may be interpreted 
by noting that if a constraint is inactive at x*, i.e., if gi(x*) < 0, the corre- 
sponding multiplier must be zero; by the same token, if the multiplier p: is 
strictly positive, the corresponding constraints must be active (which roughly 
means that it could be substituted by an equality constraint without chang- 
ing the optimal solution). The complementary slackness conditions could be 
used, in principle, to  find a feasible point and a set of multipliers satisfying 
the Kuhn-Tucker conditions. 

Example 6.8 Consider the convex problem 

s.t. 21 2 0 

5 2  2 3 
21 + 2 2  = 4. 

First write the Lagrangian function: 

A set of numbers satisfying the Kuhn-Tucker conditions can be found by 
solving the following system: 

2x1 - p1+ x = 0 
2x2 - p2 + x = 0 
21 2 0, 
21 + x2 = 4 
1-1121 = o ,  1-11 LO 
PZ(Q - 3) = 0, 

x2 2 3 

1-12 2 0. 

We may proceed with a case-by-case analysis exploiting the complementary 
slackness conditions. If a multiplier is strictly positive, the corresponding 
inequality is active, which helps us in finding the value of a decision variable. 



METHODS FOR CONSTRAINED OPTIMIZATION 355 

Case 1 (p1 = p~ = 0). In this case, the inequality constraints are dropped 
from the Lagrangian function. From the stationarity conditions we ob- 
tain the system 

2x1 + x = 0 
2x2 + x = 0 
2 1  + 22 - 4 = 0. 

This yields a solution XI = x2 = 2 ,  which violates the second inequality 
constraint. 

Case 2 ( P I ,  p~ # 0). The complementary slackness conditions immediately 

Case 3 (p1  # 0, p2 = 0). We obtain 

yield x1 = O,x2 = 3 ,  violating the equality constraint. 

21 = 0 
x2 = 4 
X = - 2 ~ 2  = -8 
111 = X = -8. 

The Kuhn-Tucker conditions are not satisfied since the value of p1 is 
negative. 

Case 4 (p1 = 0, p2 # 0). We obtain 

x2 = 3 
x1 = 1 
x = -2 
p2 = 4, 

which satisfy all the necessary conditions. 

Since this is a convex problem, we have obtained the global optimum. Note 
how non-zero multipliers correspond to the active constraints, whereas the 
inactive constraint 21 2 0 is associated to a multiplier p1 = 0. The same 
result can easily be obtained through MATLAB. The quadprog function deals 
with quadratic programming problems such as 

1 
min -x’Hx + f’x 

2 
s.t. Ax 5 b 

AeqX = beq 
l < X < U .  

For our example, some entries of the problem are empty. Note also that 
simple bounds are treated apart in practice and that the quadratic term in 
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the objective function must be written in a specific way, as it involves a 1 / 2  
factor and it assumes a symmetric Hessian matrix H. 

>> H = 2*eye(2) ; 

>> Aeq = Cl 11; 
>> beq = 4; 
>> lb = LO; 31; 
>> options=optimset( 'Largescale', 'off  '1 ; 
>> [x,fval,exitflag,output,lambda] = quadprog(H,f, [ I ,  [I ,Aeq,beq, . 

Optimization terminated. 
>> x 

>> f = ro 01; 

lb, [I , [I ,options) ; 

X' 

1.0000 
3.0000 

>> 1ambda.eqlin 
ans = 

-2.0000 
>> 1ambda.lower 
ans = 

0 
4.0000 

. .  

The output arguments include the optimal decision variables, the optimal 
value of the objective function, an exit flag containing information about the 
termination of the algorithm, additional output information, and the mul- 
tipliers included in the structure lambda. The multipliers in our case are 
associated to the linear equalities and to the lower bounds on the decision 
variables. 0. 

Clearly, the approach we have taken in the example is not practical. Some 
alternative way must be found to spot the optimal multipliers. This leads to  
duality theory, which is the topic of next section. Before proceeding, it is also 
useful to get an intuitive grasp of the meaning of the Lagrange multipliers. 

Example 6.9 Consider the parameterized problem 

min 2; +x; 
s.t. 2 1  + 22 = b. 

The stationarity conditions on the Lagrangian function, 

C ( ~ i , 2 2 ,  A) = 2: + 2; + X ( Z ~  + 2 2  - b) ,  

immediately yield xr = x; = b / 2  and A* = -b. Now, ask how slight changes 
in the parameter b will affect the optimal value f* = b 2 / 2 :  
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This suggests that, neglecting the sign, the dual variables are linked to  the 
sensitivity of the optimal value with respect to perturbations in the right hand 
side of the constraints. 0 

The intuition suggested by the example is correct, provided we assume 
that the derivative makes sense. Consider an equality-constrained problem 
and apply a small perturbation to the constraints 

hi(X) = € i ,  i E E. 

Applying the Lagrangian approach to  the perturbed problem, we get a new 
solution x * ( E )  and a new multiplier vector A*(€) ,  both depending on E .  The 
Lagrangian function for the perturbed problem is 

C(X, A, E )  = f(x) + C Xi(hi(x) - ~ i ) .  (6.5) 
iEE 

Equality constraints must be satisfied by the optimal solution of the perturbed 
problem. Hence: 

f *  = f(X*(€)) = C(X*(E), A*(€), E). (6.6) 

We can evaluate the derivative of the optimal value with respect to each 
component of E ,  

Y 

=O 

where we have used the stationarity condition of C. As to inequality con- 
straints, they are either inactive or active in x*: in the first case, they play 
no role for small enough perturbations; in the second one, they essentially act 
as equality constraints. I t  may be tempting to conclude that if a constraint is 
associated to a null multiplier, then it can be dropped without changing the 
optimal solution. The counterexample shown in figure 6.7 shows that this is 
not the case. Here we have a convex quadratic objective, to which the two 
concentric level curves are associated; the feasible region is the portion of the 
“bean” S below the constraint g(x) I 0, which is actually an upper bound 
on 52. The optimal solution is the point A ,  and the constraint g(x) 5 0 is 
inactive at  that point; however, if we eliminate the constraint, the optimal 
solution is B (it remains true that A is a locally optimal solution). The issue 
here is that the overall problem is not convex. 

6.3.3 Duality theory 

In preceding sections we have shown that the stationarity of the Lagrangian 
function plays a crucial role in constrained optimization. Stationarity is linked 
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Fig. 6.7 Coiinterexaniple showing that a constraint may be relevant even if it has it 

null mi ilt iplier . 

to an optimalitmy condition for either minimization or maximization. It is 
rather intuitive that we should minimize the Lagrangian function with re- 
spect to the primal variables, but what about the dual variables? This is an 
important point if’ we want to devise a numerical way to find optimal values 
for both the primal and dual variables. In this section we show that inter- 
cst,ing results are obtained by maxcimizing a dual function with respect to the 
dual variables: leading to duality theory. 

Consider the inequalitmy-constrained problem 

( P )  niin f (x)  

s.t. gz(x) 5 0 2 E z (6.8) 
x E s c W”. 

This problem is called the primal problem. Note that the set S is any subset 
of W”: possibly a discrete one; furthermore, in this section we do not assume 
the differentiability nor the convexity of the objective function. The results 
we get are therefore extremely general. 

Consider the Lagrangian function obtained by dualizing constraints (6.8): 

a x ,  P )  = f(x) + c Pigi.(x). 
i E I  

For a given multiplier vector p,  the minimization of the Lagrangian function 
with respect to x E S is called the relaxed problem; the solution of the relaxed 
problem defines a function ui(p), called the dual function: 

Consider the d ~ d  problem,: 

( D )  

w(p) = minC(x, p).  
XES 

maxw(p) = max (6.9) 
PLLO 
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The following theorem holds. 

THEOREM 6.6 (Weak duality theorem) For any p 2 0, the dual func- 
tion is a lower bound for the optimum f (x*) of the primal problem ( P ) ,  i.e., 

W ( P )  i f b * )  v p  2 0. 

Proof. Let us adopt the notation v ( P )  to denote the optimal value of the 
objective function for an optimization problem P.  Under the hypothesis p 2 
0, it is easy to see that 

(6.10) 

(6.11) 

1 min f(x) 
v ( P )  2 v s.t. xE s 

dg(x) 5 0 

min f(x) + p’g(x) 

( 
2 v ( s . t .  X € S  

p’g(x) 5 0  

(6.12) 

Inequality (6.10) is justified by the fact that the points satisfying the set of 
constraints gi(x) 5 0, for all i ,  also satisfy the aggregate constraint p’g(x) 5 0 
if p 2 0, but not vice versa. In other words, the feasible set of the first problem 
is a subset of the feasible set of the second one. Clearly, when we relax the 
feasible set, the optimal value cannot increase. Inequality (6.11) holds since 
the third problem involves the same feasible set as the second problem, but we 
have added a non-positive term to the objective function. Finally, inequality 
(6.12) holds since the fourth problem is a relaxation of the third one (we delete 
a constraint). 

0 
We obtain a very general but weak relationship. Under suitable conditions 

(essentially convexity) , a stronger property holds, known as strong duality: 

v ( D )  = w(p*) = f(x*) = v(P) .  

The convexity assumption does not hold, in particular, for the case of a dis- 
crete set; therefore, in general, duality yields only a lower bound for discrete 
optimization problems. The following theorem is useful in establishing when 
the dual problem yields an optimal solution of the primal problem. 

THEOREM 6.7 If there is a pair (x*,p*), where x* E S and p* 2 0, 
satisfying the following conditions: 

1. f b * )  + (p*)’g(x*) = minxEs{f(x) + (P*)’g(x)l; 

2. (p*)’g(x*) = 0; 



360 CONVEX OPTIMIZATION 

3. g(x*) 5 0; 
then x* is a global optimum for the primal problem ( P ) .  

In other words, the optimal solution x* of the relaxed problem for a multi- 
plier vector p* is a global optimum for the primal problem if the pair ( x * ,  p * )  
is primal feasible, dual feasible, and it satisfies the complementary slackness 
conditions. Note that these are suficient conditions for global optimality. 

Weak duality also holds in the equality-constrained case. Consider the 
optimal solution X* of the primal problem: 

min f ( x )  
s.t. hi(.) = 0, i E E 

x E s, 
and the optimal solution % of the relaxed problem: 

min { f ( x )  + X'h(x)} . 
XES 

For any multiplier vector X (not restricted in sign), it is easy to see that 

f(X) + X'h(%) 5 f(x*) + X'h(x*) = f(x*). 

Unfortunately, convexity does not hold easily for equality constraints. In fact, 
it holds only for linear equality constraints such as al,x = bi. Hence, strong 
duality with equality constraints holds only in specific cases; a very important 
one is linear programming (see section 6.4.3). 

Example 6.10 Consider the problem 

min x f + x z  
s.t. 21 + 2 2  2 4 

z1,22 2 0. 

The optimal value is 8, corresponding to the optimal solution (2 ,2) .  Since 
this is a convex problem, we can apply strong duality. The dual function is 

w(p)  = :;Ip: + 2; + p(-s1 - 2 2  + 4); s.t. 21, 2 2  2 0) 

= min{z: - pzl ;  s.t. 21 2 0) + min{zi - pzz; s.t. 22 2 0) + 4p. 
x1 x2 

Since ,LL 2 0, the optima with respect to XI, 22 are obtained for 

Hence, 
1 

w ( p )  = --p2 2 + 4p. 
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The maximum of the dual function is reached for p* = 4, and we have w(4) = 
f* = 8 .  0 

In example 6.10, we have found an explicit representation of the dual func- 
tion. In general, the maximization of the dual function must be tackled by 
a numerical method. In practice, the following iterative procedure can be 
adopted (assuming the inequality-constrained case): 

1. Assign an initial value p(O) 2 0; set k +- 0. 

2. Solve the relaxed problem with multipliers p(') .  

3. Given the solution k ( k )  of the relaxed problem, compute a search di- 
and update the multipliers (making rection s ( ~ )  and a step length 

sure they stay non-negative): 

p(k+l) = max { 0 ,  p(k) + C y ( k ) S ( k ) }  . 

Then set k t k + 1, and go to step 2. 

In order to find a search direction, one would be tempted to compute a gra- 
dient of the dual function. Unfortunately, the dual function need not be 
everywhere differentiable, as we can see from the following example. 

Example 6.11 Consider the discrete optimization problem 

min c'x 

s.t. a'x 2 b (6.13) 

(6.14) 

where c ,  a, x E Rn, b E R and S is a discrete set. Dualizing constraint (6.13) 
with a multiplier p 2 0, we obtain the dual function: 

x E s = {xl,x2,. . . ,xm}, 

w ( p )  = , min { ( b  - a'xj)p + c ' d }  . 
j=l,  ..., m 

It is easy to see that the dual function is the lower envelope of a family of 
affine functions, as shown in figure 6.8. We have a non-differentiability point 
when the relaxed problem has multiple optimal solutions. 0 

Rom example 6.11 we may conclude that there is no differentiability guar- 
antee for the dual function; however, the dual function for this case is concave. 
In fact, we may easily prove that the dual function is always concave. 

THEOREM 6.8 The  dual funct ion w(p) i s  a concaue funct ion.  

Proof. We must show that for any multiplier vectors p1 and pz,  

" [ h l  + (1 - X)P21 2 W P 1 )  + (1 - X).w(P2), A E [0,1]. 
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Fig. 6.8 Nori-tliffc.reiitiable dual function. 

Let us denote by XI  and Xz the optimal solutions of the relaxed subproblems 
with multipliers pl  and pz,  respectively. We have 

4 P I )  = f @ l )  + P M X d  I f b x )  + P M X X )  

7 4 4  = f F 2 )  + C L M ~ Z )  I f ( x x )  + CLk(xx),  

where xx is the optimal solution corresponding to the multiplier vector A p l  + 
(1 - A)pz. The result is obtained by multiplying the first inequality by A, the 
second one by 1 - A, and summing. 0 

Siiire maximizing a concave function is equivalent to minimizing a convex 
function, this is a reassuring result. In fact, we may apply a subgradient 
algorithm (see section 6.2.2) provided that we are able to find a subgradient 
of the d 1 d  function for any value of the niultipliers. 

THEOREM 6.9 Let x he an optimal solution of the relaxed problem for  a 
multiplier vector ji. Then g ( 2 )  is a subgradient of the dual function at f i .  

Proof. To show that g(X) E dw(ji) ,  we must show that, for any p, we have 

W ( P )  I 4fi) + g(X)’(p - f i ) .  

Here the inequality is reversed with respect to the definition of a subgradient 
for a convex function, since w is concave. We know that x is the optimal 
solution of the relaxed problem for C;: 

‘ u I ( j i )  = f (2) + fi’g(Xz) (6.15) 

lxit not for a generic p: 

(6.16) 
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Subtracting equation (6.15) from inequality (6.16), we get 

W(P) - W ( P )  I g’(X)(cL - PI1 
and the result follows. 0 

Theorem 6.9 allows us to solve the dual problem (6.9) by a subgradient 
algorithm. A remarkable point is that we are able to optimize a function, 
even if it is not known in explicit form, provided we know how to find a 
subgradient; this applies to the dual function, which is implicitly defined by 
an optimization problem, and to the recourse function that we will meet in 
stochastic programming (chapter 11). 

In order to maximize the dual function, a sequence of relaxed problems is 
solved, updating the dual variables as follows: 

where X ( k )  is the solution of the kth relaxed problem. Note that this solution 
need not be feasible for the original (primal) problem. Provided that strong 
duality holds, the method converges to the optimal solution of the original 
problem. When only weak duality applies, we obtain a lower bound on the 
optimal value of the primal problem (which may be valuable in itself), and 
probably a near-feasible solution, from which a feasible near-optimal solution 
may be obtained with some problem-dependent procedure. It should be noted 
that duality theory in itself does not generally yield numerically efficient al- 
gorithms directly. Nevertheless, it may be fruitfully exploited for specially 
structured problems; in fact, we have seen in example 6.10 that dualizing cer- 
tain constraints may decompose an optimization problem into independent 
subproblems; certain model formulations lend themselves to a decomposition 
by dualization of the interaction constraints. Furthermore, duality theory 
is a fundamental theoretical tool paving the way for important algorithmic 
developments. 

6.3.4 Kelley’s cutting plane algorithm 

In the last section, we have been able to maximize the dual function, even 
if it is not known in an explicit form. We have relied on the fact that the 
function was concave and we were able to evaluate the function and to  find 
a subgradient at  a given point. A similar idea leads to Kelley’s cutting plane 
method for the minimization of a convex function. Assume that we have to 
solve a convex problem minxes f(x), where the objective function f is actually 
not known in analytical form. Suppose that, for a given point xk, we are not 
only able to compute the function value f ( x k )  = a k ,  but also a subgradient 
yk, which does exist if the function is convex on the set S. In other words, 
we are able to find an affine function such that 

f(xk) = a k + y : X k  (6.17) 
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Fig. 6.9 Example of Kelley’s cutting plane algorithm. 

f (x)  2 TYk:+-/;x V X E  s. (6.18) 

Thc availability of such a support hyperplane suggests the possibility of ap- 
proximating f from below, by the upper envelope of support hyperplanes, as 
illustrated in figure 6.9. The Kelley’s cutting plane algorithm exploits this idea 
by building and improving a lower bounding function until some convergence 
criterion is met. 

Step 0. Let x1 E S lie an initial feasible solution; initialize the iteration 
counter k + 0, the upper bound ug = f(x’), the lower bound 10 = -35, 

a i d  thc lower bounding function ,&(x) = -m. 

Step 1. Iricreinent the iteration counter k + k + 1. Find a subgradient of f 
at  xk, such that equation (6.17) and condition (6.18) hold. 

Step 2. Updatte the upper bouiid 

ant1 the lower l~oiincling function 

Step 3. Solve the problem 
l k  = minpk:(x), 

XES 

and let x’+l he the optimal solution. 

Step 4. If uk - lk < c, stop: xk+l is a satisfactory approximation of the 
optimal solutioii; othcrwise, go to step 1. 
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It is worth noting that, if the feasible set S is polyhedral, then all the 
subproblems we solve are LP problems. The Kelley's cutting plane algorithm 
is the conceptual basis of some algorithms for stochastic programming, such 
as the L-shaped decomposition for stochastic programming, which will be 
described in section 11.4. 

6.3.5 Active set method 

Although duality theory is a powerful tool, both in theory and practice, dual 
algorithms have the general drawback that a feasible solution is generally 
obtained only in the limit. A natural aim of many constrained optimization 
algorithms is to stay within the feasible region. This is particularly easy to 
accomplish if the problem is linearly constrained. Consider the problem 

min f(x) 

s.t. AX = b, 

where the matrix A E Bm,n, m < n, is assumed of full row rank for simplicity. 
Given a feasible solution 12, how can we characterize descent directions 6 such 
that the new solution 12 + a6 remains feasible for some cr > O? Since both 
solutions must be feasible, 

A ( i + c t 6 ) = b + a A S = b  + A 6 = 0 .  

Technically speaking, the vector 6 must lie in the null space of the matrix A; 
since this is a linear space, there must be a basis for it. Let Z E Bnl("-m) be 
a matrix whose columns are a basis for this space; then we have 

AZ = 0, 

and the direction 15 is a linear combination of the columns of Z: 

6 = Zd. 

The basis consists of (n-m) vectors. To see why, consider that the m equality 
constraints eliminate m degrees of freedom for the n decision variables. Then 
we may move in some space with (n - m) degrees of freedom. The first-order 
Taylor expansion for a perturbed point along the feasible direction is 

f (i + eZd) M f (x) + td'Z'V f (x). 

A descent direction is obtained when d'Z'V f (x) < 0; furthermore, the first- 
order necessary optimality condition is 

z ' v  f (x*) = 0 .  (6.19) 

The vector Z'V f is called the reduced gradient,  and we see that a stationarity 
condition must be required for this reduced gradient. By the way, the condi- 
tion (6.19) implies that the gradient Of is a linear combination of the rows 
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of A. This means that 

which could also be obtained by the Lagrange multipliers approach. 
Provided that we are able to find a suitable matrix Z, an algorithm is 

readily devised, as we must simply spot descent directions and select the step 
length a: in order to reduce the objective function while keeping the iterates 
feasible. One possible choice of Z is obtained by exploiting QR factorization. 
This factorization, which is implemented by the qr function in MATLAB, 
allows us to write 

Vf(x*) = A'X, 

A ' = Q  [ t ] = [ QI QZ ] [ t ] = QIR, 

where Q E B"1" is an orthogonal matrix (Le., its columns are orthogonal 
vectors), and R E B"jn-" is upper triangular. The choice Z = Q2 satisfies 
our requirements, since the orthogonality of Q implies that 

A = R'Q: + AZ = R'QiQ2 = 0. 

Different choices of Z and different approaches in selecting the descent direc- 
tion and the step length result in a variety of methods which are described 
in the literature. It should also be mentioned that second-order conditions 
should be checked i f f  is not convex. 

To cope with a 
problem like 

The approach may be extended to linear inequalities. 

min f(x) 

s.t. Ax 5 b, 

a possible idea is to restrict the attention to the active constraints, i.e., the 
constraints which are satisfied at  equality. In principle, if we knew which 
constraints are active in the optimal solution, we could treat the problem like 
an equality-constrained problem. The active set strategy works on a pool of 
active constraints, trying to identify which constraints must be brought in and 
out of the active set. Roughly speaking, if we see that a relaxed constraint 
would get violated by a move along the feasible direction, it should be added to  
the set. Similarly, an inactive constraints can be dropped. The details of the 
method are not so easy, but it is enough to know the qualitative aspects of its 
working and that it is actually implemented and used in MATLAB functions 
for both quadratic and linear programming (see section 6.5.1 to appreciate 
this point). 

6.4 LINEAR PROGRAMMING 

A general LP problem can be expressed as 

min c'x 
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s.t. a:x = b;, i E E 
a E I ,  a:x 2 bi, 

where C, ail x E W", bi E W. When dealing with solution algorithms for LP 
problems, it is convenient to assume that the problem has a specific form. 
An LP problem is said to be in canonical form if it involves only inequality 
constraints, and all the decision variables are restricted in sign. A canonical 
form for a maximization problem is 

max c'x 

s.t. Ax 5 b 

x 2 0 ,  

where c,x E Rn,  b E W", A E R"?". We denote the ith row (corresponding 
to the ith constraint) of A by a: and the j t h  column (corresponding to  the j t h  
variable) by Aj. An LP problem is said to be in standard form if it involves 
only equality constraints: 

min c'x 

s.t. AX = b 

x L 0 ,  

with the same notation as in the case of the canonical form. Clearly, we must 
have m < n, so that the system of linear equations is underdetermined and 
there are multiple solutions. 

The reader might think that the canonical and standard forms are some- 
what restrictive; in fact, this is not true, since a generic LP problem can be 
reduced to either form using the following transformations: 

If a variable xj is not restricted in sign, it can be rewritten as xj = 
xj' - xi, where xj',xT 2 0. 

An inequality constraint 
a:x 2 bi 

can be transformed into an equality constraint by introducing a slack 
variable si 2 0: 

a:x - si = bi.  

An equality constraint 
a:x = b, 

can be transformed into two inequality constraints: 

a:x 2 bi ,  -a:x 2 - b i .  

We know from supplement S6.1 that the feasible set of a LP problem is convex 
and polyhedral. Furthermore, the problem is both convex and concave. This 
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implies that an optimal solution (if any exists) may be found on the boundary 
of the feasible set; more specifically, it will be a vertex of the feasible set. 
This is easy to see by expressing the feasible region S as the convex hull of 
its extreme points X k ,  k = 1 , .  . . , I .  Strictly speaking, if S is unbounded, we 
should also consider its extreme rays; however, if we assume that the optimal 
value is finite, there is no loss of generality by discarding the possibility of 
going to infinity along a ray. Denoting by Ck the cost of the extreme point 
X k ,  we may transform the LP problem 

min c’x 

s.t. x E s 
into the equivalent problem 

I 

k = l  

i= l  

X I ,  2 0. 

This problem has just one constraint, but a possibly huge number of variables; 
nevertheless, it is easy to see that an optimal solution can be found as the 
least cost extreme point. 

If the problem is cast in standard form, the extreme points correspond to 
special solutions of the system of linear equations Ax = b; this is explained 
briefly in section 6.4.1 and is the basis of the simplex algorithm to which 
section 6.4.2 is devoted. Applying the duality principles to LP problems pro- 
duces an interesting theory, outlined in section 6.4.3. The simplex algorithm 
is certainly the best known method for LP problems, but it is not the only 
method that you get in MATLAB. The Optimization toolbox provides the 
user with two options: for medium-scale problems, a version of the active 
set method is also implemented; for large-scale problems, an interior point 
method is available. Some ideas behind interior point methods are described 
in section 6.4.4. It is interesting to note that the simplex algorithm is not, 
in the worst case, a polynomial complexity algorithm, whereas polynomial 
complexity may be proved for interior point methods. In fact, interior point 
methods are faster on many problem instances, but not always. 

6.4.1 

Given an LP problem, one of the three following cases occurs: 

Geometric and algebraic features of linear programming 

1. The feasible set is empty, and the problem has no solution. 

2. The optimal solution is, loosely speaking, “unbounded.” This case may 
occur only if the feasible set is an unbounded polyhedron, and we may 
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keep improving the objective value by going to infinity along an extreme 
ray. 

3. The problem has a finite optimal solution, corresponding to an extreme 
point of the feasible set; note that we have an infinite set of optimal 
solutions if the level curves of the objective function are parallel to a 
face of the polyhedron (see example 6.2). 

Since there is a finite number of extreme points in a polyhedron, one way 
to solve an LP problem is to explore the set of extreme points of the feasible 
set without considering the interior points. Furthermore, a local minimizer 
will also be a global one; hence, if we find an extreme point such that no 
adjacent extreme point improves the objective function, then we have found 
the optimal solution. 

To implement this idea, the geometrical intuition must be translated into 
algebraic terms. To this end, it is convenient to work on the standard LP 
form. To avoid unnecessary complications, let us assume that the matrix 
A E It",", m < n, has full row rank. This assumption is not necessary in 
practice, as redundant equations are easily spot and eliminated. It is useful 
to consider a solution of the system Ax = b as a way to express the vector b 
as a linear combination of the columns of A: 

n c 
j = 1  

x ~ A J  = b. 

This system has infinite solutions, but not all of them are feasible with respect 
to the requirement x 2 0. Furthermore, we would like to work on feasible 
solutions which are extreme points of the feasible set. This is easily accom- 
plished by considering only solutions in which at  most m components xj are 
strictly positive, and the remaining n - m variables are zero. Such solutions 
are called basic solutions; the name derives from the fact that the m column 
vectors associated with the m possibly non-null variables are sufficient to ex- 
press the m-dimensional vector b. Any basic solution is associated with a 
basis of R" consisting of m columns of A. The m variables corresponding to 
the columns selected are called basic variables; the others are called non-basic 
variables. A basic solution with non-negative components is called a basic 
feasible solution. 

Example 6.12 Consider the following system of linear equations: 
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A basic solution is 

2 1  = 2, 2 2  = 3, 2 3  = 2 4  = 0, 2 5  = 1, 

which corresponds to the basis formed by the columns A',A2,A5. This 
solution is also feasible. If we take the basis formed by A', A3, A5, we obtain 
the basic solution 

2 1  = 0 ,  2 2  = 3, 2 3  = -2, 54 = 0 ,  x5 = 5, 

which is not feasible since 2 3  < 0. U 
Basic feasible solutions are fundamental because it can be shown that they 

actually correspond to the extreme points of the feasible set. Furthermore, 
given a current extreme point, the adjacent extreme point may be obtained 
by exchanging one basic variable with a non-basic one; this means that we 
may move from a vertex to  another one by driving one basic variable out of 
the basis and driving one non-basic variable into the basis. 

6.4.2 Simplex method 

The simplex method is an iterative algorithm; given a current extreme point 
(or basic feasible solution, or basis), it looks for an adjacent extreme point 
such that the objective function is improved, and it stops when no improving 
adjacent extreme point is found. 

Assume that we have a basic feasible solution x; we will consider later how 
to obtain an initial basic feasible solution. We can partition the vector x into 
two subvectors: the subvector XB E Rm of the basic variables and the sub- 
vector XN € R"-" of the non-basic variables. Using a suitable permutation 
of the variable indexes, we may rewrite the system of linear equations 

A x = b  

as 

(6.20) 

where Ag E R"?" is non-singular and AN E R"~"-" . If x is basic feasible, 

where 
b = Ai'b 2 0. 

The objective function value corresponding to x is 

f = [C'B c;v] [ g ] = C'Bb.  (6.21) 
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Now we must find out if it is possible to improve the current solution by 
slightly changing the basis, i.e., by replacing one basic variable with a non- 
basic one. To assess the potential benefit of introducing a non-basic variable 
into the basis, we may eliminate the basic variables in equation (6.21). Using 
equation (6.20), we may express the basic variables as 

XE = AB1(b - ANXN) = b - AB'ANxN; (6.22) 

then we rewrite the objective function value 

C'X = CLXB + C ~ X N  = cL(b - A B ' A N X ~ )  + c h  = f̂  + N x Ni  

where 

eh = C" - cLAB 1 AN. (6.23) 

The quantities cb are called reduced costs, as they measure the marginal 
variation of the objective function with respect to the non-basic variables. If 
c h  2 0, it is not possible to improve the objective function; in this case, 
bringing a non-basic variable into the basis at  some positive value cannot 
reduce the overall cost. Therefore, the current basis is optimal if ch 2 0. If, 
on the contrary, there exists a q E N such that i., < 0, it is possible to improve 
the objective function by bringing xq into the basis. A simple strategy is to 
choose q such that 

2, = min 2 j .  
3EN 

This selection does not necessarily result in the best performance of the algo- 
rithm; we should consider not only the rate of change in the objective function, 
but also the value attained by the new basic variable. Furthermore, it may 
happen that the entering variable is stuck to zero and does not change the 
value of the objective. In such a case, there is danger of cycling on a set of 
bases; ways to overcome this difficulty are well explained in the literature. 

When xq is brought into the basis, a basic variable must "leave" in order 
to maintain Ax = b. To spot the leaving variable we can reason as follows. 
Given the current basis, we can use it to express both b and the column AQ 
corresponding to the entering variable: 

m 

(6.24) 
i=l 

m 

a = 1  

where B(i )  is the index of the i th basic variable (i = 1,. . . , rn) and 
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If we multiply equation (6.25) by a number 8 and subtract it from equation 
(6.24), we obtain 

m. 

(6.26) 
i = l  

From equation (6.26) we see that 8 is the value of the entering variable in 
the new solution, and that the value of the current basic is affected in a way 
depending on the sign of di. If di 5 0, x ~ ( i )  remains non-negative when xg 
increases. But if there is an index i such that di > 0, then we cannot increase 
zq at will, since there is a limit value for which a currently basic variable 
becomes zero. This limit value is attained by the entering variable xq, and 
the first current basic variable which gets zero leaves the basis 

bi 
x q = ,  min -. 

If d 5 0, there is no limit on the increase of zg, and the optimal solution is 
unbounded. 

In order to start the iterations, a starting basis is needed. One possibility 
is to introduce a set of auxiliary artificial variables z in the constraints: 

z = l ,  ..., m di 
di > O  

A x + z = b  
x,z 2 0. 

Assume also that the equations have been rearranged in such a way that b 2 0; 
then a basic feasible solution is trivially z = b. Minimizing the inadmissibility 
form 

4 = m i n x  t i  

by the simplex method itself, we may find a basic feasible solution if 4 = 0; 
otherwise, the original problem is not feasible. 

At this point, one should wonder what is the connection, if any exists, 
between the simplex method for LP problems and the simplex search we have 
hinted at in section 6.2.4. Actually, they are quite different approaches for 
different problems. The name of the simplex method comes from the fact that 
it works on a simplex in the reduced space of the non-basic variables. In this 
space, the origin corresponds to the current basic solution, as the non-basic 
variables are zero; the remaining extreme points of the simplex correspond to  
the adjacent bases. The simplex method checks, in the reduced space, if any 
of these extreme points improves the objective function. 

m 

i= l  

6.4.3 Duality in linear programming 

We dealt with duality in non-linear programming in section 6.3.3. Duality in 
LP can be developed without considering the more general non-linear case, 
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but we prefer to put it in a more general framework. Note that, due to  the 
convexity of LP problems, strong duality holds. Let us start with an LP 
problem (PI) in the following canonical form: 

(PI)  min c’x 

s.t. Ax 2 b. 

If we dualize the inequality constraints with a vector p E Wl;. of dual variables, 
we get the dual problem 

maxmin {c’x + p‘ (b - Ax)} = max (c’ - p’A) x} . 
p l o  x p 3  

Since x is unrestricted in sign, the inner minimization problem has a finite 
value if and only if 

C‘ - p‘A = 0; 

otherwise, each component of x is set to fco,  depending on the sign of the 
corresponding cost coefficient, and this results in a value -co for the dual 
function. Since we want to maximize the dual function, we may enforce the 
condition above, and the dual problem (01) turns out to be 

(01) max p’b 

s.t. A’p = c 

p 2 0. 

The dual problem is still an LP problem, resulting from exchanging b with c 
and by transposing A. The duality relationship between ( P I )  and (01)  can 
be interpreted the other way round, too: 

max x‘c 
min b’u ( s.t. Ax = b ) u ( 

x 2 0  

Given an LP problem (Pz) in standard form, 

(Pz) min c‘x 

s.t. AX = b 

x 2 0 ,  

we can use the relationship above to find its dual: 

min c’x max XI(-c) 
( s . t .  A x = b )  u ( s.t. (A’)’x = b 

x 2 0  x 2 0  

min -b’p 
s.t. -Alp 2 -C 

min b’u 
s.t. A’u 2 -C 

max b’p 
s.t. A’p 5 c 
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Table 6.1 Duality Relationships 

Primal Dual 

min c'x 

a:x = bi 

a:x 2 bi 

xj 2 0 
xj unrestricted 

where we have introduced p = -v; we obtain the dual ( 0 2 )  of problem (P2). 
Note the similarities and the differences between the two dual pairs. The 

dual variables are restricted in sign when the constraints of the primal problem 
are inequalities, and are unrestricted in sign in the other case (this is coherent 
with the Kuhn-Tucker conditions). When the variables are restricted in sign 
in the primal, we have inequality constraints in the dual, whereas in the case 
of unrestricted variables we have equality constraints in the dual. In table 6.1 
we summarize the "recipe" for building the dual of a generic LP. 

Given a primal-dual pair of LP problems, the following cases may occur: 

0 Both problems have a finite optimal solution, in which case the two 
objectives have the same value at  the optimum. 

0 Both problems are infeasible. 

0 One problem is unbounded, in which case the other one is infeasible. 

As a final remark, it is important to note that the dual feasibility constraint 
Alp 5 c for the dual of the problem in standard form can be read as the non- 
negativity condition on the reduced costs by equating p' = CIA,'. Recall the 
sufficient conditions (6.7) for global optimality. They correspond to 

0 Primal feasibility 

0 Dual feasibility 

0 Complementary slackness 

In fact, the simplex method works by maintaining primal feasibility and com- 
plementary slackness, and it iterates until dual feasibility is obtained. Switch- 
ing roles between primal and dual problems, it is possible to devise a dual 
simplex method which works toward primal feasibility. This is sometimes ad- 
vantageous over the primal simplex approach. However, there is still a third 
possibility: We can keep a pair of primal and dual feasible solutions and work 
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to obtain complementary slackness. This approach leads to primal-dual algo- 
rithms, and it is exploited in the interior point method described in the next 
section. 

6.4.4 Interior point methods 

The simplex method works only on the extreme points of the feasible set. As 
the name suggests, interior point methods move on a path that lies within 
the feasible set. There are several variants of interior point algorithms; we 
describe just the basics of a rather simple approach, which may be called 
the primal-dual barrier method, as it exploits the correspondence between a 
primal and dual problems, and an interior penalty function. It is convenient 
to start with the LP problem written in canonical form for a maximization 
problem’: 

max c’x 
s.t. A x  5 b 

x 2 0, 

which may be converted to the standard form by adding slack variables w: 

max c’x 
s.t. AX + w = b 

XI w 2 0. 

Now suppose that we do not know anything about the simplex method. We 
could try applying what we know from the general theory of constrained 
optimization; one idea would be getting rid of the non-negativity restriction by 
a suitable penalty function and then apply the method of Lagrange multipliers. 
Using an interior penalty function based on a logarithmic barrier, we get the 
problem 

j i 

s.t. AX + w = b. 

Since this problem has only equality constraints, we may dualize them by 
introducing the vector of Lagrange multipliers y, yielding the Lagrangian 
function 

L(x, w, y) = C’X + c logzj + 0 c logwi + y’(b - A x  - w). 
3 2 

8The exposition here is based on [19]. 
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The first-order stationarity conditions are then 

Using the notation 

the optimality equations may be rewritten in matrix form: 

A’y - oX-’e = c 

y = czW-le 

A x + w = b .  

The addition of the auxiliary vector 

and a slight rearrangement yield the following set of optimality equations: 

A X + W  = b 

A’y-z  = C 

XZe = cze 

YWe = cze. 

These equations have a nice interpretation. We have just to  recall that the 
starting problem has an LP  dual: 

min b’y 

s.t. A’y 1 c 

Y L 01 

or, adding slack variables z, 

min b’y 
s.t. A’y - z = c 

Y , Z  2 0.  
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Hence, the equations we arrived a t  are simply the conditions of primal feasi- 
bility, dual feasibility, and (if D = 0) complementary slackness (see theorem 
6.7). For (T > 0, they are a set of non-linear equations: 

where 

which may be tackled by Newton’s method (section 3.4.2). 
In principle, by solving this system of non-linear equations for different 

values of 0 we get a path (xar yo, w,, 2,). This path is called central pa th  
and for D + 0, it leads to the optimal solution of the original LP. From a 
computational point of view, it is not convenient to start with a too small (T, 

nor to solve the non-linear equations exactly for each D. One idea is to reduce 
the value of the penalty parameter within the iterations of Newton’s method, 
so that the central path is only a reference path leading to solution through 
the interior of the feasible set. It is worth noting the similarity between this 
path following approach and homotopy continuation methods described in 
section 3.4.5. In both cases we solve a difficult problem by a sequence of 
easier problems which converge to the original one. 

Interior point methods have a polynomial computational complexity which 
is, theoretically, better than the complexity of the simplex method, which is 
exponential in pathological cases.’ I t  should be stressed that many compu- 
tational tricks are needed to implement both the simplex and interior point 
method in a very efficient way. These are beyond the scope of this book, but 
it should be clear that the two approaches may lead to qualitatively different, 
though cost-equivalent solutions, as illustrated in the next section. 

6.5 CONSTRAINED OPTIMIZATION IN MATLAB 

In this section, we briefly describe functions from the Optimization toolbox 
which can be used for constrained optimization. In particular we consider the 
functions l inprog  for linear programming, quadprog for quadratic program- 
ming, and fmincon for generic constrained optimization. The coverage is not 
complete really, but we will provide a couple of examples related to financial 
problems. 

gComputational complexity has been introduced in section 3.1.3. 
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6.5.1 Linear programming in MATLAB 

The Optimization toolbox includes a function, linprog, which solves LP prob- 
lems of the form 

min c’x 

s.t. Ax 5 b 

We have seen that alternative algorithms are available for linear programming. 
What happens in MATLAB, then? Consider the following rather trivial LP 
problem: 

It is easy to see that two basic optimal solutions are ( 1 , O )  and (0 , l ) .  All 
the solutions between these two extreme points are equivalent and optimal. 
We expect that the simplex algorithm should report one of the two extreme 
points. To use linprog, we have to change the sign of the coefficients in the 
objective function and to pass as null vectors the parameters we do not need: 

>> x=linprog( C-1 -11, Ci 11 I, [I C1 CO 01) 
Optimization terminated successfully. 
x =  

0.5000 
0.5000 

We see that the reported solution is on  the center of the face of equivalent 
solutions, and it is not basic. This happens since the default LP option in 
MATLAB is an interior point algorithm. Actually, linprog implements three 
alternative approaches: 

if the Largescale option is on, then an interior point method is used; 

if the Largescale option is off, then an active set method is used (see 
section 6.3.5), which by the way is the same used by quadprog ; 

when Largescale option is off, we may select the simplex method by 
setting the Simplex option. 

The three methods also differ in terms of using an initial solution or not. To 
get the point, we may play a little bit with the options. 

>> options = optirnset(’LargeScale’,’off’); 
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>> x=linprog( [-I -11 , [I 11 ,I, [I , [ I  , [O 01 , [I , [ I  ,options) 
Optimization terminated successfully. 
x =  

0.5000 
0.5000 

>> x=linprog( [-I -11 , [I 11 ,I, [I , [ I ,  CO 01, [ I ,  CO 0.51 ,options) 
Optimization terminated successfully. 
x =  

0.2500 
0.7500 

Note that to set the options, we have to pass (possibly empty) vectors cor- 
responding to upper bounds and initial points. We see that, starting from 
the initial solution, the search moves along the gradient until the constraint 
is reached, which is turned active and the process is stopped. With the active 
set method, the solution depends on the initial point. If we select the simplex 
method, we have a different behavior: 

>> options = optimset(’LargeScale’, ’ o f f ’ ,  ’Simplex’, ’on’); 
>> x=linprog(C-I -11, [I 11 ,I, [ I ,  [ I ,  [O 01, [ I ,  [I ,options) 
Optimization terminated. 
x =  

I 
0 

>> x=linprog( [-1 -11, [1 11,1, [ I ,  [ I ,  [O 01, [ I ,  [O 0.51 ,options) 
Warning: Simplex method uses a built-in starting point; 

> In linprog at 215 
Optimization terminated. 

ignoring user-supplied XO.  

x =  
1 
0 

We see that a basic solution is obtained, and that the initial point is ignored. 
The initial point is ignored by the interior point method as well: 

>> options = optimset(’LargeScale’,’on’); 
>> x=linprog( 1-1 -11, C1 11,1 ,  [ I ,  [ I ,  [O 01, [ I ,  [O 0.51 ,options) 
Warning: Large scale (interior point) method uses 
a built-in starting point; ignoring user-supplied XO.  
> In linprog at 205 
Optimization terminated. 
x =  

0.5000 
0.5000 
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It is important to bear in mind that, unless the simplex method is selected, an 
optimal but non-basic solution may be obtained. This may have consequences 
if linprog is embedded within an algorithm that requires basic optimal so- 
lutions. For instance, in some problems with special structure, the simplex 
method yields an integer solution; this is the case when the feasible set is 
a polyhedron whose extreme points have integer coordinates. Indeed, the 
simplex method must be used when tackling a mixed-integer programming 
problem by a branch and bound strategy (see chapter 12). 

6.5.2 

In chapter 2 we have considered the immunization of a bond portfolio (see 
example 2.12 on page 63). We considered three bonds and we selected a port- 
folio with given value, duration, and convexity. The problem was set up in 
such a way that there was a unique solution (which may require selling a bond 
short). However, when many bonds are available, more than one solution can 
be found. In such a case, it might make sense to look for the “best” solution 
among the feasible ones. Defining “best” is not easy at all. We should prob- 
ably include some explicit characterization of uncertainty in interest rates, 
and this leads to stochastic programming problems described in chapter 11. 
Furthermore, since this is likely to  be an asset-liability management problem, 
rather than a simple portfolio management problem, we should also character- 
ize uncertainty in liabilities. However, just to try a MATLAB programming 
exercise, let us consider a simple linear programming model.1° One possible 
idea is maximizing the average yield of the portfolio, given that the portfolio 
must have duration D and convexity C;  we also add the requirement that 
short sales are not allowed. This results in the following linear programming 
(LP) model: 

A trivial LP model for bond portfolio management 

N 

i= l  

N 

i=l 

N 

i=l 
N 

l0We should probably say “simplistic” rather than simple. The model is somewhat inspired 
by a model discussed in (141 for a different purpose. 



CONSTRAINED OPTIMIZATION IN MATLAB 381 

Note that, without the non-negativity constraints on the weights wi, we may 
easily end up with an unbounded solution." It is easy to  write a MATLAB 
function solving this problem. The code is illustrated in figure 6.10. 

Since all the functions dealing with bonds are able to cope with vector 
arguments, provided that they are of compatible size, we group the bond 
characteristics in vectors." Here we assume that we know the clean price 
for each bond, and we use bndyield to compute the corresponding yield and 
bnddury and bndconvy to obtain the sensitivities. Note that, when calling 
linprog, we must change the sign of the coefficients in the objective function, 
because we want to maximize it; the next four arguments contain the coef- 
ficient matrix and the right-hand side of inequality and equality constraints 
(since we have only equality constraints in this model, the first two arguments 
are empty); finally, we have a vector of zeros representing the lower bound 
on the decision variables. First we consider a set of five bonds, and then we 
enlarge the set by adding five more bonds. Running this script, we get the 
following output: 

>> LPbondsl 
Optimization terminated. 
weights1 = 

0.4955 
0.0000 
0.4361 
0.0684 
0.0000 

Optimization terminated. 
weights2 = 

0.0000 
0.0000 
0.3813 
0.0000 
0.0000 
0.0800 
0.0000 
0.5387 
0.0000 
0.0000 

You may notice that in both cases only three bonds are included in the port- 
folio. This might appear a bit odd, since one would assume that considering 

"See (141 for conditions ensuring the finiteness of the solution and for generalizations of 
the model. 
"The reader is referred to  section 2.3.4 for a description of MATLAB functions to deal 
with simple bonds. 
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% SCRIPT LPBonds1.m 
% BOND CHARACTERISTICS FOR SET 1 
settle = ’19-Mar-2006’; 
maturityl = [’15-Jun-2021’ ; ’02-Oct-2016’ ; ’01-Mar-2031’ ; . . .  

Face 1 = [500 ; 1000 ; 250 ; 100 ; 1003; 
couponRate1 = C0.07 ; 0.066 ; 0.08 ; 0.06 ; 0.051; 
cleanPrice1 = [ 549.42 ; 970.49 ; 264.00 ; 112.53 ; 87.93 I; 
% COMPUTE YIELDS AND SENSITIVITIES 
yields1 = bndyield(cleanPrice1, couponRate1, settle, maturityl, . . .  

durationsl = bnddury(yields1, couponRate1, settle, maturityl, ... 

convexitiesl = bndconvy(yields1, couponRate1, settle, maturityl, . . .  

% SET UP AND SOLVE LP PROBLEM 
A1 = [durationsl’ 

’01-Mar-2026’ ; ’01-Mar-2011’1 ; 

2, 0, [I , [I , [I , [I, [I , Facell; 

2, 0, [I , [I , [I , [I, [I , Facell; 

2, 0, [I , [I , [I , [I, [I , Facell; 

convexitiesl’ 
ones(l,5)1; 

b = [ 10.3181 ; 157.6346 ; 11; 
weights1 = linprog(-yieldsl, [ I ,  [I ,Al,b,zeros(l,5)) 
% BOND CHARACTERISTICS FOR SET 2 
maturity2 = [maturityl ; . . . 

’15-Jan-2019’ ; ’10-Sep-2010’ ; ’01-Aug-2023’ ; . . .  
’ 01-Mar-2016 ’ ; ’01-May-2013’1 ; 

Face2 = [Facel ; 100 ; 500 ; 200 ; 1000 ; 1003; 
couponRate2 = [couponRatel ; 0.08 ; 
cleanPrice2 = [ cleanPrice1 ; . . . 

% COMPUTE YIELDS AND SENSITIVITIES 
yields2 = bndyield(cleanPrice2, couponRate2, settle, maturity2. . . .  

durations2 = bnddury(yields2, couponRate2, settle, maturity2, . . .  

convexities2 = bndconvy(yields2, couponRate2, settle, maturity2, . . .  

% SET UP AND SOLVE LP PROBLEM 
A2 = [durations2’ 

convexities2’ 
ones(1,lO)l; 

0.07 ; 0.075 ; 0.07 ; 0.061 ; 

108.36 ; 519.36 ; 232.07 ; 1155.26 ; 89.29 1; 

2, 0, [I , [I , [I , [I, [I , Face2); 

2, 0, [I , [I , [I , [I, [I , Face2); 

2, 0, C1 , Cl , [I , [ I ,  [I , Face2); 

weights2 = linprog(-yields2, [I, c1 ,A2,b,zeros(l,lO)) 

Fig. 6.10 Code to set up and solve a linear programming model for bond portfolio 
optimization. 
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more bonds leaves more space for diversification. Actually, this does not hap- 
pen by chance, but it depends on the structure of the optimal solution of a 
linear programming problem. If we have only M equality constraints in a 
linear program, there is an optimal solution (provided that the problem is 
bounded and feasible) with a t  most M decision variables which take a non- 
zero value at  optimality. Since here M = 3, the optimal portfolio will always 
include just three bonds, even if many more are available, unless there are 
alternative optima (in which case the solution would depend on the algorithm 
we select for linprog; for this problem instance, there are no alternative op- 
tima, and the interior point method returns the same solution we would obtain 
by selecting the simplex method). If we considered only duration constraints, 
we would include just two bonds, whose durations would bracket the target 
duration. 

6.5.3 

In section 2.4.3 we have considered some MATLAB functions to trace the 
set of mean-variance efficient portfolios. To that aim, we must solve a set of 
problems of the form (2.13), which we recall here for convenience: 

Using quadratic programming to trace efFicient portfolio frontier 

min w'Xw 

s.t. w'f; = 
n 

c w i  = 1 
i=l 

for different values of the target expected return F T .  We see that this is 
a quadratic programming problem, which can be solved by quadprog. It 
is a useful exercise to write a function to do that, which will be a (very) 
simplified version of frontcon. The input arguments to this function, which 
we call NaiveMV and whose code is displayed in figure 6.11, are: ERet, the 
vector of expected return for the assets we are considering, ECov, the variance- 
covariance matrix, and NPts the number of efficient points (portfolios) we want 
to find on the frontier. Output arguments are: PRisk, the risk (standard 
deviation of return) for each portfolio we generate, PRoR, the rate of return, 
and PWts, the matrix portfolio weights (one vector for each portfolio). 

To select target returns we have to spot both the maximum return achiev- 
able and the return associated with the minimum variance (minimum risk) 
portfolio. The first target return is obtained by solving 

max W'F 
n 
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function [PRisk, PRoR, PWts] = NaiveMV(ERet, ECov, NPts) 
ERet = ERet( : ; % makes sure it is a column vector 
NAssets = length(ERet); 
% vector of lower bounds on weights 
VO = zeros(NAssets, 1); 
% row vector of ones 
V1 = ones(1, NAssets); 
% set medium scale option 
options = optimset(’LargeScdle’, ’off’); 
1 Find the maximum expected return 
MaxReturnWeights = linprog(-ERet , [I, [ I ,  V1, 1, VO) ; 
MaxReturn = MaxReturnWeights’ * ERet; 
Find the minimum variance return 

MinVarWeights = quadprog(ECov,VO, [ I ,  [I ,V1,1,VO, [ I ,  [I ,options); 
MinVarReturn = MinVarWeights’ * ERet; 
MinVarStd = sqrt (MinVarWeights’ * ECov * MinVarWeights) ; 
% check if there is only one efficient portfolio 
if MaxReturn > MinVarReturn 

% get number of assets 

RTarget = linspace(MinVarReturn, MaxReturn, NPts) ; 
NumFrontPoints = NPts; 

RTarget = MaxReturn; 
NumFrontPoints = 1; 

end 
% Store first portfolio 
PRoR = zeros(NumFrontPoints, 1) ; 
PRisk = zeros(NumFrontPoints, 1); 
PWts = zeros (NumFrontPoints, NAssets) ; 
PRoR(1) = MinVarReturn; 
PRisk(1) = MinVarStd; 
PWts(1, :) = MinVarWeights(:)’; 
% trace frontier by changing target return 
VConstr = ERet’; 
A = [Vl ; VConstr 1; 
B = [I ; 01; 
for point = 2:NumFrontPoints 

else 

B(2) = RTarget (point) ; 
Weights = quadprog(ECov,VO, [ I ,  [I ,A,B,VO, [ I ,  [I ,options) ; 
PRoR(point) = dot(Weights, ERet); 
PRisk(point) = sqrt (Weights’*ECov*Weights) ; 
PWts(point, :) = Weights(:)’; 

end 

Fig. 6.11 Simple MATLAB code to trace the mean-variance efficient frontier. 
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Actually, this is a trivial LP problem, whose optimal solution is clearly the 
maximum expected return. Nevertheless, if additional constraints are given 
on asset allocation, we may really have to solve an LP problem. This is why we 
use linprog in the code to get the MaxReturn. The second return is obtained 
by finding the minimum risk portfolio: 

min wlCw 
n 

i= l  

wa 2 0 

and by computing its return (we take for granted that the solution of this 
problem is unique). These are the two extreme efficient portfolios. If they 
are equal, there is a unique portfolio maximizing return and minimizing risk: 
an unlikely event in practice, which is taken into account by the function 
(in this case the number NumFrontPoints of efficient points in the frontier is 
1; otherwise it is the input number NPts). To find other efficient portfolios, 
we use the function linspace to specify the vector of NPts target returns 
between the two extremes. Then we solve a sequence of risk minimization 
problems, obtaining the risk/return characteristics and the composition of 
each portfolio. To that aim we must simply change one element, corresponding 
to target return, in the vector B containing the right-hand sides of linear 
equality constraints in the quadratic program. 

We may check that NaiveMV yields the same results as f rontcon for this 
simple problem: 

>> ExpRet = [ 0.15 0.2 0.081; 
>> CovMat = [ 0.2 0.05 -0.01 ; 0.05 0.3 0.015 ; . . .  

>> [PRisk, PRoR, PWts] = naiveMV(ExpRet, CovMat, 10); 
>> [PRoR , PRisk] 

-0.01 0.015 0.11; 

ans = 

0.1143 0.2411 
0.1238 0.2456 
0.1333 0.2588 
0.1428 0.2794 
0.1524 0.3060 
0.1619 0.3370 
0.1714 0.3714 
0.1809 0.4093 
0.1905 0.4682 
0.2000 0.5477 

6.5.4 Non-linear programming in MATLAB 

The most general function to deal with a non-linear programming problem 
is fmincon. How this function should be called depends on the problem at 
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hand, as constraints are partitioned in linear and non linear constraints as 
follows: 

min f(x) 

s.t. Ax < b 

AeqX = be, 

g(x) 5 0  
geq(X) = 0 
l < x < u .  

Matrices and both upper and lower bounds are passed as vector arguments, 
whereas the non-linear functions for inequality and equality constraints must 
be written as M-files or anonymous functions. For instance, to solve 

min ezl (4s; + 2 4  + 4x122 + 2x2 + 1) 

~ 1 ~ 2  - 21 - ~2 5 -1.5 
z1z2 2 10 

s.t. 

we may write two M-files. The first one must return two vectors corresponding 
to non-linear constraints: 

function [c, ceql = confun(x) 
'L non-linear inequality constraints 
c = C1.5 + x(l)*x(2) - ~(1) - ~(2); 

% non-linear equality constraints 
ceq = [ I ;  
Here the second vector is empty, since there are no equality constraints. Also 
note the change in sign for the second constraint. Another file is needed for 
the objective function: 

function fval = objfun(x) 
fval = exp(x(1)) * ( 4*x(1)'2 + 2*x(2)-2 + 4*x(l)*x(2) + 2*x(2) + 1); 

These M-files may also return analytical values for the gradients of the in- 
volved functions. Then we may call fmincon: 

>> xo = [-1,11 ; 
>> options = optimset ( 'Largescale ' , ' off '1 ; 
>> [x, fval] = fmincon(@objfun,xO, 11, [ I ,  [ I ,  [ I ,  [ I ,  [I ,Qconfun,options) 
Optimization terminated: first-order optimality measure less 

-x(l)*x(2) - 101; 

than options.TolFun and maximum constraint violation is less 
than options.TolCon. 
Active inequalities (to within options.TolCon = le-006): 
lower upper ineqlin ineqnonlin 

1 
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x =  
-9.5474 1.0474 

f v a l  = 

0.0236 

We should note that fmincon is not always the best choice. For instance, 
model calibration may lead to optimization models of the form 

m 

i= l  

which are best solved as non-linear least squares problems by lsqnonlin. 

6.6 INTEGRATING SIMULATION AND OPTIMIZATION 

Simulation models are a convenient way to evaluate the performance of com- 
plex and stochastic systems for which analytical models may be very hard 
or even impossible to come up with. However, they are just able to evaluate 
a performance measure given a set of input parameters. In option pricing, 
this may be just what we need, but we could also be interested in finding the 
optimal set of parameters; in other words, in many settings, such as portfo- 
lio optimization, we would like to integrate simulation and optimization (see, 
e.g., [5]). Such an integration may certainly be worthwhile, as it provides us 
with a way to optimize complex and stochastic systems which cannot be dealt 
with by deterministic and even stochastic programming. However, we may 
have to face at  least some of the following issues: 

0 The objective function may be non-convex. 

0 Some of the input parameters may be discrete rather than continuous. 

0 The evaluation of the objective function may be affected by noise. 

0 Using gradient-based methods may be difficult, as gradients must be 
estimated. 

Let us start from the last point and assume for simplicity that we want to 
solve an unconstrained optimization whereby the objective function is the 
expected value of some random performance measure depending on a vector 
of parameters x E Rn: 

min f(x) = E,[h(x,w)]. 

For optimization purposes it would be useful to have a way to compute the 
gradient V f (x) a t  any point. As pointed out in section 4.5.2, a gradient could 
be estimated by finite differences, but this is made difficult by the noise in 



388 CONVEX OPTIMIZATION 

the estimates. Using common random numbers to reduce variance is the least 
we should do; an alternative is represented by using some form of regression. 
The idea is to use a simulation model to build a sort of empirical metamodel, 
the response surface, which yields an analytical approximation g(x) of the 
unknown objective function f (x) with respect to the input parameters. If we 
want to estimate the gradient at a certain point x, we may consider a linear 
approximation, such as 

n 

g(x) = a + c pixi  = a + plx. 
i=l 

We may estimate a and p by evaluating f for a set of test values xj and by 
minimizing a function of the regression errors. Let fj be the estimate of f 
corresponding to the point xi ( j  = 1,. . . , m). We have 

fj = a + p’xi + €j, 
where c j  is an error term (or a residual, if you prefer; see section 3.3). Using 
least squares, we may find a and E; is minimized. 
Let us define the matrix 

in such a way that 

where x i  is the j t h  setting of the parameter x i .  It can be shown that the sum 
of the squared errors is minimized by 

[ ; ] = (x’x)-’x’i, 

where f is the vector of the m estimates of f .  Then we may set V f (k) = p and 
use it within a gradient optimization method. A first-order fit is suitable when 
we are not close to the optimum. When we are approaching the minimizer, a 
quadratic polynomial can be fitted: 

1 
2 

f (x) = (Y + p’x + 4 r X ,  
where I’ is a square matrix, and quadratic programming may be used to  
find the optimal set of parameters for the metamodel, which is successively 
updated until some convergence criterion is met [7]. This results in a method 
resembling the quasi-Newton methods for non-linear programming. 

An obvious disadvantage of an approach based on the response surface 
methodology is that it is likely to  be quite expensive in computational terms. 
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Alternative methods, such as perturbation analysis, have been proposed to 
estimate sensitivities with a single simulation runs. An example of an appli- 
cation to estimate option sensitivities can be found in [4]; we will consider a 
simple case in section 8.5. A treatment of these methods require deep mathe- 
matical knowledge, so we refer, e.g., to [15] for a thorough treatment of these 
topics. We would only like to point out a subtle issue of using gradient-based 
methods for simulation optimization. In principle, we should evaluate 

0 . w  = V L W ,  w)l, 

Eu [V+, w)]. 

but simulation actually yields something like 

That expectation can be commuted with differentiation is not granted at 
all. This issue is well explored in [8]; for a treatment oriented to financial 
engineering, see [9]. 

Given all of the considerations above, it’s no surprise that non-linear pro- 
gramming methods that do not exploit derivatives in any way are of interest 
for simulation optimization. One such method is the simplex search procedure 
we have outlined in section 6.2.4; see [ll] for a recent paper on this 

Although using a simplex search procedure has its merit, it does not over- 
come the possible difficulties due to the non-convexity of the objective func- 
tion or the discrete character of some decision parameters. For such cases the 
integration of simulation with metaheuristics such as tabu search or genetic 
algorithms, which we will describe in section 12.4, is probably the only practi- 
cal solution approach. Indeed, this is the approach taken in some commercial 
stochastic simulation packages. The application of a population-based ap- 
proach like genetic algorithms or their variants has the further advantage of 
making the noisy function evaluations less critical. 

S6.1 ELEMENTS OF CONVEX ANALYSIS 

Convexity is arguably the most important concept in optimization theory. In 
the next two sections we want first to recall the related concepts of convex set 
and convex function, and then to outline a few concepts in polyhedral theory 
which are important for linear and mixed-integer programming. 

S6.1.1 Convexity in optimization 

Convexity is a possible attribute of the feasible set S of an optimization prob- 
lem. 

131t may also be worth noting that  MATLAB allows the integration of simplex search and 
other no-derivatives methods with the dynamic systems simulator SIMULINK. 
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Fig. 6.12 Convex and non-convex sets. 

Definition. A set S 2 W'l is a convex set if 

x,y€S*Xx+(l-X)yES V X E  [0,1]. 

Example 6.13 The concept of convexity can be grasped intuitively by con- 
sidering that the points of the form Ax + (1 - X)y, where 0 5 X 5 1, are 
simply the points 011 the straight line joining x and y. A set S is convex if 
the line joining any pair of points x, y E S is contained in S. Consider the 
three subsets of R2 depicted in Figure 6.12. S1 is convex; but Sz is not. $3 is 
a discrete set and it is not convex; this fact has important consequences for 
discrete optimization problems. 0 

The following property is easy to verify. 

PROPERTY 6.10 The intersection of convex sets is a convex set. 

Note that the union of convex sets need not be convex. The convex comhi- 
natzon of p points x1 , x2, . . . , xp E W" is defined as 

1=1 ?=I 

Given a set S c W"; the set of points which are the convex combinations of 
points in S is the convex hull of S (denoted by [S ] ) .  If S is a convex set, 
then S = [S ] .  The convex hull of a generic set S is the smallest convex set 
containing S; it can also be regarded as the intersection of all the convex sets 
containing S. Two non-convex sets and their convex hulls are shown in figure 
6.13. 

Definition. A scalar function f: W" + R, defined over a convex set S R", 
is a convex function on S if,  for any x and y in S,  for any X E [0,1], we have 

f (Ax + (1 - WY) I Xf(4 + (1 - X)f (Y) .  
If this condition is met with strict inequality for all x # y, the function is 
strictly convex. 
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fg. 6 14 Coiivcx ai i t i  iioii-corivex functions. 

Definition. A fiiiiction .f is c071c11.11e i f  (-f) is convcx. 

Tlie c:oncept of convex function is illustrated in figure 6.14. The first func- 
t,ioii is convex; wlicrcas t,he second is not. Also, the third function is convex; ii 

convex fiiiiction need not, he differentiable everywhere. The definition can he 
interpreted as follows. Given any two points x and y,  consider another point 
which is H convex combination of x and y; then the function value in this 
point is ovcrestiinatecl by the convex conihination of the function values f(x) 
;uitl  f (y ) ,  siricc tlic linc scgiiicnt joining (x, f(x)) arid ( y ,  f (y))  lics abovc 
the griL1)li of the fiinction between x and y.  In other words, it fiinctiori is 
(:oiivcx if its epigrapli, i.e., the region above the functioii graph, is a coiivex 
set,. A fiutlicr link hetwcen coIivcx sets and convex functions is that the set 
S = {x E R" I g(x) 5 O} is convex if g is a convex function. Convexity of 
fiilictioris is prc!scrved hy some operations; in  particular, a lincar conihination 

Fig. 6.13 NOn-convex sets and their convex hulls.
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of convex functions fi,  

n 

f(x) = CXifi(4, 
i=l  

is a convex function if X i  
There are alternative characterizations of a convex function. For our pur- 

poses the most important is the following. If f is a differentiable function, it 
is convex (over S) if and only if 

0, for any i. 

f(x) L f(x0) + Vf'(XO)(X - xo) vx,xo E s. (6.27) 

Note that the hyperplane 

z = f(x0) + Vf'(XO)(X - XO) 

is the usual tangent hyperplane, i.e., the first-order Taylor expansion of f at  
XO. For a differentiable function, convexity implies that the first-order approx- 
imation at a certain point xo consistently underestimates the true value of the 
function at all the other points x E S. The concept of a tangent hyperplane 
applies only to differentiable convex functions, but it can be generalized by 
the concept of a support hyperplane. 

Definition. Given a convex function f and a point xo, the hyperplane (in 
R"+l) given by z = f(xo) + T'(X - xo), which meets the epigraph of f in 
(xo, f(xo)) and lies below it is called the support hyperplane of f at  xo. 

The concept of a support hyperplane is depicted in figure 6.15. A support 
hyperplane at xo is essentially defined by a vector y such that 

f (x) L f (xo) + r'(x - xo) vx E s. (6.28) 

The vector y in inequality (6.28) plays the same role as the gradient does 
in inequality (6.27). If f is differentiable in XO, the support hyperplane is 
the usual tangent hyperplane and = Vf(x0). This is why a vector y such 
that inequality (6.28) holds is called a subgradient of f at XO. If f is non- 
differentiable, the support hyperplane need not be unique and there is a set of 
subgradients. The set of subgradients at a point xo is called the subdifferential 
off  at XO, and it is denoted by af (xo). It can be shown that a convex function 
on a set S is subdifferentiable on the interior of S, i.e., we can always find a 
subgradient (on the boundary of the set S some difficulties may occur due, 
e.g., to discontinuities, but we need not be concerned with this technicality in 
the following). 

A further characterization of convex functions can be given for twice- 
differentiable functions. 

THEOREM 6.11 Iff is a twice-differentiable function, defined on  a non- 
empty and open convex set S ,  then f is  convex if and only if its Hessian 
matrix is positive semidefinite at any point in S .  
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Fig. 6.15 Illustratioii of the support hyperplane for convex fuiictions. 

We recall that the Hessian matrix H(x) is the (symmetric) matrix of 
second-order derivatives of f(x): 

d2 f H -- ‘’ - ax, ax, 
We also recall that a symmetric (hence square) matrix A(x) is positive seniidef- 
inite on S if 

x’A(x)x 2 0 ‘dx E 5’. 

Thc matrix is positive definite if the inequality above is strict for all x # 0. If 
the Hessian matrix is positive definite, the function is strictly convex; however, 
the converse is not necessarily true. The definiteness of a matrix may be 
investigated by checking the sign of its eigenvalues; the matrix is positive 
scinidefinite if all of its eigenvalues are non-negative, and it is positive definite 
if all of its oigcnvalues are positive. 

S6.1.2 Convex polyhedra and polytopes 

Consider in  R” the hyperplane a:x = b,, where b, E W and a,, x E R” are 
coluniri vectors. l4 A hyperplane divides R” into two half-spaces expressed by 
the linear inequalities aix 5 b, and aix 2 b,. 

Definition. A polyhedron P 
tion of linear inequalities, i.e., 

R” is a set of points satisfying a finite collec- 

P = {X E R” I Ax 2 b} .  

A polyhedron is therefore the intersection of a finite collection of half-spaces. 

’*Unless the contrary is stated, we assume that all vectors are columns. 
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PROPERTY 6.12 A polyhedron is a convex set (it is the intersection of 
convex sets). 

Definition. A polyhedron is bounded if there exists a positive number M 
such that 

P {X E JR" I -M 5 ~j 5 M j = 1,. . . , n } .  

A bounded polyhedron is called a polytope. A polytope and an unbounded 
polyhedron are shown in figure 6.16. 

Definition. A point x is an extreme point of a polyhedron P if x E P and it 
is not possible to express x as x = fx' + fx" with x', x" E P and x' # x". 

A polytope P has a finite number of extreme points x l , .  . . , d. Any point 
x in a polytope P can be expressed as a convex combination of its extreme 
points: 

in other words, a polytope is the convex hull of its extreme points. In the case 
of an unbounded polyhedron, this is not true and we must introduce another 
concept. 

Definition. A vector r E R" is called a ray of the polyhedron 

P = {x E JR" I Ax 2 b} 

if Ar 2 0. 

If xo is a point in a polyhedron P and r is a ray of P,  then 

Clearly, only unbounded polyhedra have rays. 

Definition. A ray r of a polyhedron P is called an extreme ray if it cannot 
be expressed as r = i r l  + ir2 where r1,r2 are rays of P such that rl # Xr2 

for any number X > 0. 

A polyhedron P can be described in terms of its extreme rays and points, 
in the sense that any point x E P can be expressed combining extreme rays 
and points: 

K 9 

j=1 k = l  j = 1  
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Fig 6.16 Two-tliiiieiisional polytope (a) arid uiibountletl polyhedron (b) . 
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For further reading 

In the literature 

0 A general and introductory book on optimization theory is [18]. 

0 See, e.g., [3] for non-linear programming and I191 for linear program- 
ming. 

0 Interior point methods are dealt with in [20]. 

0 If you are interested in the theory behind convex optimization, you 
should check [lo] or [16]. If you are more interested in the numerical 
aspects of optimization, [6] is for you. 

0 For a text which presents non-linear programming methods is some de- 
tail, with applications to finance, see [l]. 

0 Advanced issues in portfolio management are dealt with in [17]. 

0 For a tutorial survey on the integration of simulation and optimization, 
see [7]. A deep mathematical treatment is given in [15]. 

0 The use of simplex search to drive a simulator is explored in [2] and [ 111. 

On the Web 

A good source for information on the practical application of optimiza- 
tion models and methods to a variety of problems is 

http://e-0PTIMIZATION.COM. 

0 Relevant academic societies in the field are: 

- h t t p  : //www . inf orms . org (INFORMS: Institute for Operations Re- 

- h t t p  : //www . siam. org (SIAM: Society for Industrial and Applied 

- h t t p :  //www. c a m .  r i c e .  edu/"mathprog (MPS: Mathematical Pro- 

search and the Management Sciences) 

Mathematics) 

gramming Society) 

A good pointer for interior point methods is 

http://www-unix.mcs.anl.gov/otc/InteriorPoint, 

0 Michael Trick's Web page lists several useful links to journals, societies, 
people, etc.; see h t t p :  //mat. g s i a .  cmu. edu. 



REFERENCES 397 

REFERENCES 

1. M. Bartholomew-Biggs. Nonlinear Optimization woith Financial Appli- 
cations. Kluwer Academic Publishers, New York, 2005. 

2. R.R. Barton and J.S. Ivey, Jr. Nelder-Mead Simplex Modifications for 
Simulation Optimization. Management Science, 42:954-973, 1996. 

3. M.S. Bazaraa, H.D. Sherali, and C.M. Shetty. Nonlinear Programming. 
Theory and Algorithms (2nd ed.). Wiley, Chichester, West Sussex, Eng- 
land, 1993. 

4. M. Broadie and P. Glasserman. Estimating Security Price Derivatives 
Using Simulation. Management Science, 42:269-285, 1996. 

5. A. Consiglio and S.A. Zenios. Designing Portfolios of Financial Products 
via Integrated Simulation and Optimization Models. Operations Research, 
47:195-208, 1999. 

6. R. Fletcher. Practical Methods of Optimization (2nd ed.). Wiley, Chi- 
Chester, West Sussex, England, 1987. 

7. M.C. Fu. Optimization by Simulation: A Review. Annals of Operations 
Research, 53:199-247, 1994. 

8. P. Glasserman. Gradient Estimation via Perturbation Analysis. Kluwer 
Academic, Boston, MA, 1991. 

9. P. Glasserman. Monte Carlo Methods in Financial Engineering. Springer- 
Verlag, New York, NY, 2004. 

10. J.-B. Hiriart-Urruty and Claude Lemarkhal. Convex Analysis and Mini- 
mization Algorithms (vols. 1 and 2). Springer-Verlag, Berlin, 1993. 

11. D.G. Humphrey and J.R. Wilson. A Revised Simplex Search Procedure 
INFORMS for Stochastic Simulation Response Surface Optimization. 

Journal on Computing, 12:272-283,2000. 

12. R. Korn. Optimal Portfolios: Stochastic Models for Optimal Investment 
and Risk Management in Continuous Time. World Scientific Publishing, 
Singapore, 1997. 

13. R.C. Merton. Continuous- Time Finance. Blackwell Publishers, Malden, 
MA, 1990. 

14. J. Paroush and E.Z. Prisman. On the Relative Importance of Duration 
Constraints. Management Science, 43: 198-205, 1997. 

15. G.C. Pflug. Optimization of Stochastic Models: The Interface Between 
Simulation and Optimization. Kluwer Academic, Dordrecht, The Nether- 
lands, 1996. 



398 CONVEX OPTIMIZATION 

16. R.T. Rockafellar. Convex Analysis. Princeton University Press, Prince- 
ton, NJ, 1970. 

17. B. Scherer and D. Martin. Introduction to Modern Portfolio Optimization 
with NuOPT, S-Plus, and PBayes. Springer, New York, 2005. 

18. R.K. Sundaram. A First Course in Optimization Theory. Cambdridge 
University Press, Cambridge, 1996. 

19. R. J. Vanderbei. Linear Programming: Foundations and Extensions. Kluwer 
Academic, Dordrecht, The Netherlands] 1996. 

20. S. J. Wright. Primal-Dual Interior-Point Methods. Society for Industrial 
and Applied Mathematics, Philadelphia, 1997. 



Part 111 

Pricing Equity Options 



This Page Intentionally Left Blank



7 
Option Pricing by 

Binomial and Trinomial 
Lattices 

In this chapter we deal with binomial and trinomial lattices for option pric- 
ing. Binomial lattices were introduced in section 2.1 as a basic way to model 
uncertainty in prices. They rely on a discretization of the underlying stochas- 
tic process and exploit recombination to keep computational and memory 
requirements to a manageable level. We have also seen in section 2.6.1 that 
pricing options by a no-arbitrage argument is rather simple in a single step 
binomial lattice. In order to get a practical pricing procedure, we must extend 
the idea to a multistep lattice, but first we have to find a way to calibrate 
the lattice so that it reflects the underlying model which is a continuous-time, 
continuous-state stochastic differential equation. Then we can generalize to 
multidimensional binomial lattices and to trinomial lattices. 

In section 7.1 we start by showing how a simple binomial lattice may be 
calibrated by matching moments of the discrete probability distribution of 
prices to drift and volatility of the stochastic process. F’rom this point of view, 
it is important to understand the connection between lattice techniques and 
Monte Carlo simulation: Moment matching is a variance reduction strategy, 
and it can be regarded as a sort of clever sampling. Then we discuss how 
memory-efficient implementations may be devised. Pricing American options 
is the subject of section 7.2. Again, it is important to see connections with 
other techniques. What we do here is essentially a very simple application 
of the dynamic programming principle which is fully developed in chapter 
10. In section 7.3 we consider the generalization to an option depending on 
two underlying assets; this is only the simplest case, but we see that efficient 
memory management is fundamental in this case. Another generalization is 
represented by trinomial lattices 7.4; trinomial lattices can be regarded as a 

401 
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Fig. 7.1 Simple single-period binomial lattice. 

particular case of the more general finite difference approach (t,his is discussed 
in section 9.2.1). Finally, we consider advantages and disadvantages of lat#tices 
in section 7.5 .  

7.1 PRICING B Y  BINOMIAL LATTICES 

In sectioii 2.G.1, we have considered arbitrage-free pricing of an option by a 
single step I>inomial lattice, which is recalled in figure 7.1 for convenience. 
The idea was to replicate the option with two assets, a risk-free asset and the 
untlerlying stork. With two assets, we may replicate any payoff defined over 
two states. If we model uncertainty with two possible multiplicative shocks u 
and d. we have seen that, the fair option price fo is 

where f i L  and f,l are the option payoffs in the up and down states, respectively, 
and p is the risk-neutral probability of the up step: 

e r 4 t  - d  
u-(1 . 

p = 

To allow for a better model of uncertainty, we should increase the number of 
states; to replicate the option payoff, we can either use more assets or allow for 
trading at  intermediate dates. The second possibility is more practical and it is 
essential, e.g., to price American options, which allow for early exercise a t  any 
tinie during optioii life. In the limit, this leads to a continuous time model and 
to the Black--%holes framework. When the Black-Scholes framework does not 
lend to an analytical solution, we must resort to some discretization approach, 
which can he sampling hy Monte Carlo simulation, to  estimate the risk-neutral 
expectat,ion, or setting up a grid an apply finite difference methods to solve 
t,he corresponding PDE. A multistage binomial lattice, like the one shown in 
figure 7.2, is an alternative discretization approach; we could also consider 
trees, but recornhination keeps computational effort to a manageable level. 
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SU' 

SU? 

8 

s u  
Su'd 

s a  a s  

1 * Sud2 
Sd 

V 

SdL 
Sd3 

Fig. 7.2 Recombining binoniial lattice 

Here we have adopted the convenient choice u = l /d .  This is not necessary, 
a s  w(: will SCY shortly, Init, iii this way, ail l i p  st,cp followed by a clown step 
yicllds t,lic: siiiiic! init,ial p r i w  

SCl nd = S ( & L  = Si,. 

As MT iiiily SCC form the figurel, riot, only we have recombination, hut, thr 
I;ttt,ic:e iises a liiiiited number of prices too. This may he an advantage wlien 
iiiil)lCiiiciiit,iiig t.lic nicthod. How can we select sensible values for u. and d'? WL' 
shoiiltl calilnxt,c the lattice in siich a way that it approximates the underlying 
coiitiiiiioiis-t,irrio proccss. 

7.1.1 Calibrating a binomial lattice 

Tlie 1)iiioiriinl Iat t,ic:e shorilrl t x  a good approximation of the risk-neutral pro- 

t l S  = 7.s /it + 0s dkV. 

€ I c m ~ .  ~ ( 3  slioultl find paramc%ers t,o set, up the lattice, in s;uch a way t , h t  
sonit: esscritial properties of the continuous-time model are preserved. This 
proross is callctl r :nl ib~nt ion.  St,art,irig from S t ,  after a small t,iine iiiterviil bt . 
\w h o w  froin srctioii 2.5 thnt tlie new price is a randoni variatde St+,s t  such 

('CSS 

t,liil t 
log(S/,+,j//S/) N N ( ( T  - g2 /2 )  ht,  ~ ' h t )  . 

Usiiig properties of t,he logriorrrial tlistrilxition (see appendix B) , we have 

E[sL+,j/ /S~I  = eT "" (7.2) 

iLil(1 

9 . (7.3) 
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A reasonable requirement on the discretized dynamics is that it should match 
these moments. Note that these are two conditions, but we have three pa- 
rameters: p ,  u, and d.  So we have one degree of freedom, and we may choose 
u = l / d .  This is a convenient choice from a computational point of view, but 
it is not the only possibility. 

On the lattice, we have 

which, together with (7.2), yields 

Note that p is a risk-neutral probability, which does not depend on the true 
drift. To match variance, we see that, on the lattice, 

2 e2r 6t  Var (St+s t )  = E[S?+bt] - E2[St+6t] = S?(pu2 + (1 - p ) d 2 )  - S, . 

From (7.3) we also see 

~ a r [ ~ t + s t ]  = S?e2'6t (em2'' - 1 )  , 

and putting the last two equations together we get 

S?e2r6t (eUzbt - 1) = S?(pu2 + ( 1  - p ) d 2 )  - S?e2r6 t ,  

which boils down to 

eZr 6t+u26t = pu2  + ( 1  - p)&. 

Substituting p in the right-hand side of the last equation and simplifying: 

erst - d u - er6t 
u2 + ~ d2 

u - d  u - d  
u2eT6t - u2d + U d 2  - d2er6t 

- - 
21-d 

(u2 - d2)e r6 ,  - (u  - d )  
- - = (u  + d)erd t  - 1 ,  u - d  

we end up with the equation 

e~r6t+uz  6t  - - (u  + d)erbt  - 1, 

which, using u = l / d ,  can be transformed into the quadratic equation: 

) + erst = 0. 
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A root of the equation is 

Using first-order expansions, limited to powers of order 6t, we may simplify 
the expression. Starting from the term under square root, we get 

(1 + e2r6t+u26t - 4eZTbt M ( 2  + (27- + - 4(1 + 2 r 6 t )  M 4 0 2 6 t .  

Hence, 

1 + T 6t + "'st + U J s t  (1 - T 6 t )  = (  2 1 
0 2  u2 
2 2 

M 1 + T 6t + -6t + a& - r 6t  = 1 + U J b t  + -6t. 

But this, to the second order, is the expansion of eua. We end up with the 
parameterization 

(7.4) 

which is known as CRR (Cox, ROSS, and Rubinstein). 
It should be stressed that this is not the only plausible approach, and that 

alternative parameters are proposed in the literature. For instance, we could 
arbitrarily choose p = 0.5, which, after some calculations, leads to  

(7.-  g) b t + o f i  = e(T-g)6t-u6t 
u = e  

1 p = -  
2 '  

, , 

which is known as Jarrow-Rudd parameterization. Furthermore, we have been 
grappling with rather involved calculations involving non-linear equations. By 
working on logarithms of price we may try to avoid these difficulties; we will 
pursue this approach later. 

Assuming that the risk-free interest rate and volatility are constant in time, 
the parameters we have obtained apply to the entire lattice. To price an 
option, we should build (explicitly or implicitly) a lattice for the underlying 
asset prices, and then we should proceed backward in time. In fact, the 
option value is known at  maturity, where it is given by the option payoff. 
Then we should apply equation (7.1) recursively, going backward one step at  
a time, until we reach the initial node. The binomiaI Iattice approach is best 
illustrated by its application to a vanilla European call option. 
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Example 7.1 Suppose that we want to find the price of a vanilla European 
call with SO = K = 50, T = 0.1, 0 = 0.4, and maturity in five months. From 
the Black-Scholes model, we know the solution: 

>> call=blsprice(50,50,0.1,5/12,0.4) 
call = 

6.1165 

If we want to approximate the result by a binomial lattice, we must first set 
up the lattice parameters. Suppose that each time step is one month. Then 

bt = 1/12 = 0.0833 

u = eua = 1.1224 

d = 1/21 = 0.8909 

The resulting lattices for the stock price and the option value are shown 
in figure 7.3. The rightmost layer in the call price lattice is obtained by 
computing the option payoff. To clarify the calculations, let us consider how 
the uppermost node in the second-to-last time layer is obtained: 

e - ~ , 6 t  [p. 39.07 + (1 - p )  .20.77] 

- - e-0.1,0.0833 [0.5073. 39.07 + 0.4927.20.771 M 29.77. 

Going on recursively, we see that the resulting option price is about 6.36, 
which is not too close to  the exact price; a smaller time step is needed to  get 
a good approximation. 

To implement the approach in MATLAB we require an algebraic expression 
of the backward evaluation process. Let f i j  be the option value in node (i,j),  
where j refers to time instant j bt (j  = 0 , .  . . , N )  and i is the ith node in period 
j (node numbers increase going up in the lattice, i = 0, .  . . , j ,  so we should 
think of turning the lattice upside down). N is the number of time steps we 
consider; hence, there are N + 1 time layers in the lattice and N6t = T ,  the 
option maturity. With these conventions, the price of the underlying asset in 
node (i, j )  is S u i d j - i .  At maturity we have 

f i , N  = max(0, SuidN-i - K } ,  i = O , l ,  ..., N.  

Going backward in time (decreasing time subscript j), we get 

f i j  = e-r 6 t [ p j i + l , j + l  + (1 -p)fi,j+l]. (7.5) 

The implementation in MATLAB is straightforward, and the resulting code 
is shown in figure 7.4. The only point worth noting is that matrix indexes 
start from 1 in MATLAB, which requires a little adjustment. The function 
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Fig.7.3 Binomial lattices for the European call option of example 7.1.
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function [price, lattice] = LatticeEurCall(SO,K,r,T,sigma,N) 
deltaT = T/N; 
u=exp(sigma * sqrt (deltaT)) ; 
d=l/u; 
p=(exp(r*deltaT) - d)/(u-d) ; 
lattice = zeros(N+l,N+l); 
for i=O:N 

end 
for j=N-1 : -1 : 0 

for i=O:j 

lattice(i+l,N+l)=max(O , SO*(u-i)*(d-(N-i)) - K); 

lattice(i+l,j+l) = exp(-r*deltaT) * . . .  
(p * lattice(i+2,j+2) + (1-p) * lattice(i+l,j+2)); 

end 
end 
price = lattice(1,l) ; 

Fig. 7.4 MATLAB code for pricing a European call by a binomial lattice. 

Latt iceEurCall receives the usual arguments, with the addition of the num- 
ber of time steps N. By increasing the last parameter, we see that we get a 
more accurate price (with an increase in the computing time): 

>> call=LatticeEurCall(50,50,0.1,5/12,0.4,5) 
call = 

>>call=LatticeEurCal1(50,50 ,O. 1,5/12,0.4,500) 
call = 

6.3595 

6.1140 

It is interesting to investigate how the price computed by the binomial lattice 
converges to the correct price. This may be accomplished by the script in 
figure 7.5, which produces the output shown in figure 7.6. In this case, the 
error exhibits an oscillatory behavior as the number of time steps increases. 

0 

The implementation we have just discussed has a number of weaknesses. To 
begin with, it uses a large matrix to store the lattice, almost half of which is 
left empty. We also return the whole lattice as an output argument, which 
may be useful to check the correspondence with figure 7.3, but may be useless 
in practice. Actually, we need only two consecutive time layers to  store the 
required information, so some improvement can be obtained. Furthermore, 
we keep multiplying the discount factor times the risk-neutral probabilities 
inside the loop; time can be saved by moving this computation outside the 
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C0mpLatticeBLS.m 
SO = 50; 
K = 50; 
r = 0.1; 
sigma = 0.4; 
T = 5/12; 
N=50 ; 
BlsC = blsprice (SO,K,r ,T, Sigma) ; 
LatticeC = zeros(1,N); 
for i=(l:N) 

end 
plot(l:N, ones(l,N)*BlsC); 
hold on; 
plot(l:N, LatticeC); 

Latt iceC (i) = Latt iceEurCal1 (SO, K , r , T, sigma, i) ; 

Fig. 7.5 Script to check the accuracy of the binomial lattice for decreasing 6t .  
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Fig. 7.6 Exact and approximate prices for increasing number of steps in a binomial 
lattice. 
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loop. We will pursue these improvements in section 7.1.3; in the next section 
we show an application of binomial lattices to a non-standard option. 

7.1.2 

We consider here a pay-later call option on a non-dividend paying stock.' The 
feature of the pay-later option is that no premium is paid up front, when the 
contract is entered; it will be paid later. If the option is in the money at 
expiration, the option must be exercised and a premium is paid to the writer. 
Otherwise, the option expires worthless and no premium is due. Note that the 
net payoff for the option holder can be negative, when the option is not deeply 
in the money, so that the payoff is smaller than the premium; it is easy to  see 
by no-arbitrage arguments that if the net payoff were always non-negative, we 
could not have a contract with zero value at time t = 0. How can we find the 
fair premium value? 

Putting two things together: pricing a pay-later option 

Given a premium P ,  the payoff will be 

S T - K - P  i f S r 2 K  
f (ST,P)  = { otherwise. 

For a given P we may find the value of the option using a binomial lattice. 
Now we must find a value P such that the risk-neutral expectation of the 
payoff, with respect to ST, is zero: 

Note that here the discount factor, provided interest rate is constant over 
time, does not play any role. To solve this equation for P, we may couple 
the binomial lattice with the bisection method to solve non-linear equations 
(see section 3.4.1). First we prepare a function to evaluate the expectation for 
given P; the MATLAB code is shown in figure 7.7. Let us consider an option 
on a stock whose current price is $12, with volatility 20%; the risk-free rate is 
10%; the strike price is $14; maturity is 10 months. We use a binomial lattice 
with a time step corresponding to one month; hence the number of time steps 
is 10. We may build an anonymous function returning the discounted payoff 
when P is given, and then we apply bisection using fzero  and a starting 
premium for the search: 

>> f = @(PI Lll(P,12,14,0.1, 0.2, 10/12, 10) 
f =  

@(P) Lll(P,l2,14,0.1, 0.2, 10/12, 10) 
>> fzero(f ,2 )  

2.0432 
ans = 

'This example is based on [5 ,  chapter 13, exercise 111. 
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1 exercise 11 chapter 13 from Luenberger, Investment Science 
function ExpPayoff = Lll(premium,SO,K,r,sigma,T,N) 
deltaT = T/N; 
u=exp(sigma * sqrt (deltaT)) ; 
d=l/u; 
p=(exp(r*deltaT) - d)/(u-d) ; 
lattice = zeros(N+l,N+l) ; 
for i=O:N 

if (SO*(u*i)*(d^(N-i)) >= K) 

end 
lattice(i+l,N+l)=SO*(u^i)*(d-(N-i)) - K - premium; 

end 
for j=N-1 : -1 : 0 

for i=O: j 

end 
lattice(i+l, j+l)  = p*lattice(i+2, j+2) + (l-p)*lattice(i+l, j+2) ; 

end 
ExpPayoff = lattice(1,l); 

Fig. 7.7 MATLAB code to price a pay-later option by a binomial lattice. 

We see how fze ro  could be used in all those cases in which an analytical 
pricing formula is not known, even without relying on derivatives (which may 
be hard to compute for a binomial lattice, but it could be approximated 
numerically). 

7.1.3 

The implementation of binomial lattices we have used so far can be improved, 
both from the point of view of CPU time and memory requirements. To begin 
with, there is no need to repeat calculation of discounted probabilities in the 
f o r  loop; we can multiply discount factor and probabilities once. F’urther- 
more, we may also see that with the CRR lattice calibration, whereby ud = 1, 
we may save memory by using a vector to store the underlying asset prices, 
rather than a two-dimensional matrix. For instance, we see in figure 7.3 that 
only eleven different values are used for the underlying asset price. With this 
lattice calibration, if there are N time steps, we have 2N + 1 different price 
values. Hence they can be stored in a single array, with considerable saving. 
If we require 1000 steps for an accurate evaluation, there is a big difference 
between requiring a matrix with 1000 x 1000 elements or a vector with 2001 
entries. A possible scheme to store prices is shown in figure 7.8. The numbers 
shown in the picture are locations in the vector. In element 1 we store the 
lowest value, resulting from a sequence of down steps only. We see that odd- 

An improved implementation of binomial lattices 
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Fig. 7.8 Saving memory for bimniial lattices. 

nunihcred entries correspond to the last time layer, whcreas even-numbered 
entries correspond to the second-to-last time layer. The root of the lattice 
may be even or odd-numbered depending on the number of time steps. 

The same scheme may be adopted to  store option values. In principle, we 
should use two vectors corresponding to  two consecutive time layers; however, 
we may exploit the fact that even numbered elements belong to a layer, and 
odd-nuinhered elements belong to another one, in order to use one vector of 
2N + 1 elements. The resulting code is shown in figure 7.9. A few comments 
are in order. 

0 We precompute invariant quantities, including discounted probabilities, 
in the first section of the code. 

0 When we write the vector SVals of underlying asset prices, we start 
with the smallest element, which is SodN; then we multiply by u;  for 
nuinerical accuracy it would be somewhat better to store " 3 ~ ~  in element 
SVals (N+i) which is the mid-element, and then proceed both up and 
down. 

0 Note that when we work with call values (CVals) we step by two over 
the index, which amounts to alternating odd- and even-indexed values 
corresponding to consecutive time layers. 

0 When time to maturity is 7, we need to consider only the 2 ( N  - 7) + 1 
innermost elements of the array CVals. The option price is stored in 
the root of the lattice, which corresponds to position N+i. 

M'e may check that the computation here is a bit more efficient than with the 
previoiis version: 

>> blsprice(50,50,0.1,5/12,0.4) 
ans = 
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function price = SmartEurLattice(SO,K,r,T,sigma,N) 
% Precompute invariant quantities 
deltaT = T/N; 
u=exp(sigma * sqrt (deltaT)) ; 

d=l/u; 
p=(exp(r*deltaT) - d)/(u-d) ; 
discount = exp(-r*deltaT); 
p-u = discount*p; 
p-d = discount*(l-p); 
7, set up S values 
SVals = zeros(2*N+1,1> ; 
SVals(1) = SO*d-N; 
f o r  i=2:2*N+1 

end 
1 set up terminal CALL values 
CVals = zeros (2*N+1,1> ; 
for i=1:2:2*N+1 

end 
% work backwards 
for tau=l : N 

SVals(i) = u*SVals(i-l); 

CVals(i) = max(SVals(i)-K,O) ; 

for i= (tau+l):2: (2*N+l-tau) 

end 
CVals(i) = p-u*CVals(i+l) + p-d*CVals(i-l) ; 

end 
price = CVals(N+l); 

Fig. 7.9 Improved code for pricing a European call by a binomial lattice. 



414 OPTION PRICING BY BINOMIAL AND TRINOMIAL LATTICES 

6.1165 
>> tic,LatticeEurCa11(50,50,0.1,5/12,0.4,2000~,t0c 
ans = 

6.1159 
Elapsed time is 0.262408 seconds. 
>> tic,SmartEurLattice(50,50,0.1,5/12,0.4,2000),toc 
ans = 

6.1159 
Elapsed time is 0.069647 seconds. 

We could try looking for some further improvements by vectorizing code, 
or by taking a different approach. We will not pursue this in order to avoid 
obscure code, and to make further developments easier to grasp. The saving 
in CPU time may not look impressive, but this memory saving approach is 
essential when we deal with multidimensional options. 

7.2 PRICING AMERICAN OPTIONS BY BINOMIAL LATTICES 

Pricing an American option by the binomial lattice technique that we have 
illustrated in the last section is fairly easy. The only critical point is how we 
should account for early exercise. We deal here with a vanilla American-style 
put option on a non-dividend paying stock.’ Consider a point ( i ,  N )  on the 
last time layer of the lattice. If the option is in the money a t  expiration, it is 
obviously optimal to exercise it. Hence, in the last time layer we have 

f i N  = max{K - si~,O}, 
where S ~ N  = SuidNPi is the underlying asset price on that node. Now con- 
sider a point in the second-to-last time layer. If the option is not in the 
money, i.e., if Si ,N-l  > K, we do not exercise. But if the option is in the 
money, we should wonder about the opportunity of taking an immediate profit 
K - Si ,~- l ,  rather than waiting for possibly better opportunities in the fu- 
ture. In other words, we have to solve an optimal stopping problem, whereby 
a t  each time step we must observe the state of a dynamical system and decide 
whether we should stop the game, and just grab the money we can immedi- 
ately, or we should go on. 

We do this in a simple way, by comparing the immediate payoff (the in- 
trinsic value of the option) against the continuation value. If we continue and 
keep the option, we have an asset whose value is 

’The corresponding call is not interesting, as it can be shown that it is never optimal to  
exercise it early, unless dividends are paid during the option life. 
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where p ,  and p d  are risk-neutral probabilities. We should exercise if the 
intrinsic value exceeds the continuation value. Hence, the option value in 
each node in the second-to-last time layer is 

f l , N - l  = max{K - S i , N - l r  e - T b t ( p u f i + l , N  + p d f i , N ) ) .  

The same argument may be repeated in a recursive fashion for any time layer. 
This means that we should start from the last time ayer, where the option 
value is just the option payoff, and we should proceed backward in time using 
a slight modification of the usual discounted expectation scheme of equation 
(7.5): 

(7.6) f .  z , J  . - - m a x { ~  - s i j ,  e - T b t ( p j i + i , j + i  + (1 - ~ ) f i , j + l ) ) .  

This idea looks deceptively simple, but it is an application of a very general 
principle called dynamic programming. We will see in chapter 10 that the 
dynamic programming principle is extremely powerful in theory, but it is 
sometimes difficult to apply because of the “curse of dimensionality.” In 
the binomial lattice case, we use a computationally cheap discretization of 
the underlying stochastic process, and dynamic programming looks almost 
trivial. However, the application of this principle should be carefully justified 
along the lines of section 2.6.6. In fact, the reasoning we have followed is 
somewhat misleading, as we have taken the point of view of the option holder 
who wants to exercise her option optimally. But we should wonder why we 
are just using expected values, ignoring risk aversion. A careful justification 
is not so trivial, and it should involve no-arbitrage arguments and the point 
of view of the option writer who should care about his worst case, which is 
when the option holder exercises optimally her rights. 

Leaving theoretical issues aside, it is actually easy to adapt the code that 
we have developed for the European-style call to an American-style put. The 
resulting code is shown in figure 7.10. We initialize the lattice in a slightly 
different way, but the only significant change is in backward time-stepping, 
where we compare the hold value against intrinsic value. 

The Financial toolbox provides us with a function, binprice, which prices 
vanilla American puts and calls, allowing for the possibility of continuous and 
lumpy dividends. We may compare binprice with AmPutLattice to check 
our implementation: 

>> SO = 50; 
>> K = 50; 
>> r = 0 . 0 5 ;  
>> T = 5/12; 
>> sigma = 0.4; 
>> N = 1000; 
>> price = AmPut Lattice (SO, K, r , T , sigma, N) 
price = 

>> [p ,  01 = binprice(SO,K,r,T,T/N,sigma,O); 
4.6739 
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function price = AmPutLattice(SO,K,r,T,sigma,N) 
% Precompute invariant quantities 
deltaT = T/N; 
u=exp(sigma * sqrt(de1taT)) ; 
d=l/u; 
p=(exp(r*deltaT) - d)/(u-d) ; 
discount = exp(-r*deltaT); 
p-u = discount*p; 
p-d = discount*(l-p) ; 
% set up S values 
SVals = zeros (2*N+1,1> ; 
SVals(N+l) = SO; 
for i=l:N 

SVals(N+l+i) = u*SVals(N+i); 
SVals (N+l-i) = d*SVals (N+2-i) ; 

end 
% set up terminal values 
PVals = zeros (2*N+1,1) ; 
for i=1:2:2*N+1 

end 
% work backwards 
for tau=l:N 

PVals(i) = max(K-SVals(i) ,O) ; 

for i= (tau+l) :2: (2*N+l-tau) 
hold = p-u*PVals(i+l) + p-d*PVals(i-l); 
PVals(i) = max(hold, K-SVals(i)); 

end 
end 
price = PVals(N+l); 

Fig. 7.10 MATLAB code for pricing an American put by a binomial lattice. 
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>> o ( l , l )  
ans = 

4.6739 

The function b inpr ice  requires a flag indicating if the option is a put (flag set 
to 0) or a call (flag set to 1). This parameter is the last one in the snapshot 
above. Also note that b inp r i ce  requires both option expiration date T and 
time step d t  as inputs; we have set d t  = T/N. We have omitted the optional 
parameters that may be used to account for dividends. The output from 
binpr ice  is in the form of two lattices, one for the underlying asset price and 
one for the option value; it is important, when the time step is small, to  use 
the semicolon to suppress output on the screen. 

7.3 PRICING BlDlMENSlONAL OPTIONS BY BINOMIAL LATTICES 

To illustrate the extension of lattice techniques to multidimensional options, 
we consider here an American spread option on two assets. The payoff of this 
option is 

max(S1 - S2 - K ,  0). 

The basic approach can be extended to more general options, provided we do 
not include complex path dependencies. As a further generalization, we also 
consider continuous dividend yields q1 and 92. Actually this does not change 
the problem that much, as we have only to adjust the risk-neutral dynamics, 
which are given by the equations [see also equation (2.42)]: 

where the two Wiener processes are correlated, and the formal rule d W 1  d W 2  = 
p d t  applies (see section 2.5.5). 

To avoid the difficulties we had with non-linearities in the calibration 
process, it is convenient to work with logarithms of asset prices. Setting 
2% = log Si and using Ito’s lemma, we get the two stochastic differential equa- 
tions: 

where ui = T - qi - ~2212, i = 1 , 2 .  
Now, as typical in binomial lattices, we assume that both assets may go up 

or down by an amount Sxi ,  in terms of logarithm of prices. To calibrate the 
lattice, we match first- and second-order moments. We have two stocks which 
may jump up or down. Hence, each node in the lattice has four successors and 
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we must also find four probabilities: puu, P u d ,  p d u ,  and p d d .  We first require 
a matching condition on the expected values of the increments 6Xi :  

E [ 6 X 1 ]  = (Puu + p u d ) 6 x 1  - ( p d u  + p d d ) d X l  = v1 bt 
E [ d X 2 ]  = (Puu + P d u ) & Z 2  - ( p u d  f P d d ) b x 2  = v2 bt, 

where we distinguish between random variables 6Xi and their realizations 
f 6 x i .  Then, we require a similar condition for second-order moments: 

E [ ( ~ X I ) ~ ]  = (PUU + p u d  + p d u  + P d d ) ( b Z i ) 2  = Uf 6t + V ; ( 6 t ) 2  M Of 6t 
E [ ( ~ X L ? ) ~ ]  = (PUU + p u d  + p d u  + p d d ) ( 6 X : 2 ) 2  = Ug 6t  + V i ( 6 t ) 2  M Ug 6t ,  

where we have used the usual identity Var(X) = E ( X 2 ]  - E 2 [ X ]  and we 
have neglected higher-order terms in 6t. These equations are immediately 
simplified, since probabilities must add up to 1: 

6 x 1  = O1&, 6 x 2  = u,&. 

We should also account for covariance or, equivalently, for the cross product: 

E [ 6 X 1  . b X 2 ]  = (Puu - p u d  - p d u  + p d d )  6 x 1  6x2 
= p a l o 2  6t  + v p 2 ( 6 t ) 2  M p u l a 2  6t .  

Now we have a system of four equations with four unknown probabilities: 

Puu - P u d  - p d u  + p d d  = p 

p u u + p u d + p d u + P d d =  1. 

These equations may be solved by inverting the matrix numerically, or by 
taking suitable linear combinations of equations: 

1 -1 -1 1 1  1 1  
-1 

-1 -1 

which yields: 
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These conditions have an intuitive interpretation. The probability of having 
two up jumps is large when the two drifts are large (with respect to the 
corresponding volatilities) and when correlation is positive. In the probability 
of an up jump in S1 and a down jump in S2, the drift p2 occurs with a minus 
sign (the larger the drift, the less likely a down jump), and negative correlation 
makes this joint movement more likely. A similar consideration applies to pdu ,  

whereas p d d  is smaller when drifts are large and is larger when correlation is 
positive. 

The implementation of this bidimensional lattice really requires careful 
memory management: We cannot simply store a large tridimensional matrix. 
Since up and down jumps in the two asset prices are the same in absolute value, 
we may exploit the same ideas we have used in section 7.1.3. The resulting 
code is displayed in figure 7.11 Input parameters are self-explanatory. First 
we compute invariant quantities. Note that in the lattice we work with prices, 
and not their logarithm. Hence, the up jumps are given by 

and d, = l / u i ,  i = 1 ,2 .  Probabilities are discounted outside the main loop. 
The values of the two underlying assets are stored in two vectors S l v a l s  and 
S2vals,  which work exactly like their counterpart in the vanilla option on 
one asset. The price of the option is stored in a bidimensional matrix Cvals,  
which is initialized with the option payoff here subscript i refers to asset 
1, and j refers to asset 2. We can use one matrix for two consecutive time 
layers because odd- and even-numbered positions are alternatively used for 
consecutive time layers. Since the option is American, we compute the con- 
tinuation value hold as a risk-neutral expectation and we compare it against 
the intrinsic value. 

To check the implementation we use the following example3: 

>> s10 = 100; 
>> s20 = 100; 
>> K = 1; 
>> r = 0 . 0 6 ;  

>> sigmal = 0.2; 
>> sigma2 = 0.3; 
>> rho = 0.5; 
>> q l  = 0.03; 
>> q2 = 0.04; 

>> AmSpreadLattice (S10 ,S20 ,K,r ,T, sigmal , sigma2,rho ,ql .q2,N) 

>> T = 1; 

>> N = 3 ;  

ans = 

10.0448 

3This is the same example used in (1 ,  pp. 47-51]. 
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function price = AmSpreadLattice 610, S20 ,K ,r ,T, sigma1 , sigma2 ,rho ,ql, q2, N) 
1 Precompute invariant quantities 
deltaT = T/N; 
nu1 = r - ql - 0.5*sigmal-2; 
nu2 = r - q2 - 0.5*sigma2-2; 
ul = exp(sigmal*sqrt(deltaT)) ; 
dl = l / u l ;  
u2 = exp(sigma2*sqrt(deltaT)); 
d2 = l/u2; 
discount = exp(-r*deltaT) ; 
p-uu = discount*O.25*(1 + sqrt(deltaT)*(nul/sigmal + nu2/sigma2) + rho); 
p-ud = discount*O.25*(1 + sqrt(deltaT)*(nul/sigmal - nu2/sigma2) - rho); 
p-du = discount*0.25*(1 + sqrt(deltaT)*(-nul/sigmal + nu2/sigma2) - rho); 
p-dd = discount*O.25*(1 + sqrt(deltaT)*(-nul/sigmal - nu2/sigma2) + rho); 
% set up S values 
Slvals = zeros(2*N+l,l); 
S2vals = zeros(2*N+1,1) ; 
Slvals(1) = SlO*dl-N; 
S2vals(l) = S20*d2-N; 
for i=2:2*N+1 

Slvals(i) = ul*Slvals(i-l) ; 
S2vals(i) = u2*S2vals(i-l) ; 

end 
% set up terminal values 
Cvals = zeros(2*N+1,2*N+i); 
for i=1:2:2*N+1 

for j=1: 2 : 2*N+1 

end 
end 
% roll back 
for tau= 1 : N 

Cvals(i, j) = max(Slvals(i)-S2vals(j)-K,O); 

for i= (tau+l) :2: (2*N+l-tau) 
for j= (tau+l) :2: (2*N+l-tau) 

hold = p-uu * Cvals(i+l,j+l) + p-ud * Cvals(i+l,j-1) + . . .  
p-du * Cvals(i-l,j+l) + p-dd * Cvals(i-1,j-1); 

Cvals(i,j) = max(ho1d. Slvals(i) - S2vals(j) - K); 
end 

end 
end 
price = Cvals(N+l,N+l); 

Fig. 7.11 
binomial lattice. 

MATLAB code for pricing a n  American spread option by a bidimensional 
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Clearly, three steps are not enough to get an acceptable approximation, 
but we may use this toy example to understand how the matrix Cvals is 
managed to store the lattice, by checking what happens layer by layer. In 
MATLAB, this can be done by stepping with the debugger, and we display 
here the essential information we get. The initial lattice is the following; for 
clarity, we have used an asterisk * to spot irrelevant data (when displaying 
Cvals with the debugger you would see some number there): 

10.2473 * 0 * 0 * 0 

28.6198 * 3.9982 * 0 * 0 

51.7652 * 27.1436 * 0 * 0 

80.9233 * 56.3017 * 21.4873 * 0 

* * * * * * * 

* * * * * * * 

* * * * * * * 

After the first iteration, with one time step to maturity, the relevant data are 

* * * * * * * 
* 9.3123 * 0.5653 * 0 * 

* 28.2778 * 5.3263 * 0 * 

* 54.2561 * 25.8626 * 3.0381 * 

* * * * * * * 

* * * * * * * 

* * * * * * * 

Note that the new values are obtained as averages of four neighboring values 
which store data for the next time layer. Then, going back one step, we have 

* * * * * 
* * * * * 
* * 9.4563 * 0.9635 

* * 28.1353 * 6.7420 
* * * * * 

* * * * * 
* * * * * 

and the final result is, in the root of the lattice: 

* * * * * 
* * * * * 
* * * * * 
* * * 10.0448 * 
* * * * * 
* * * * * 
* * * * * 

* * 
* * 
* * 
* * 
* * 
* * 
* * 

* * 
* * 
* * 
* * 
* * 
* * 
* * 

We may see that we are working with a sort of recursive pyramidal structure, 
which suffers from a small but acceptable memory waste. 
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fig. 7.12 Siiigle-period trinomial lattice. 

7.4 PRICING BY TRINOMIAL LATTICES 

Thc idea of a trinomial lattice arises quite naturally as a generalizat,ioii of 
1)inoniial lat,tices. Each node has three successors, corresponding to the price 
going up, down; or staying the same (this is just one possible choice, actually). 
The lattice is calibrated in such a way to allow for recombination and to 
match the first two moments of the underlying continuous random variables. 
The additional degrees of freedom may be used to improve convergence or 
to impose additional conditions. A situation in which this may be useful is 
pricing a barrier option; in such a case we may require that the barrier price 
is on the latt,ice. 

Here too it, is convenient to work with the equation describing the stochas- 
X ( t )  = logs@).  Over a small time step bt we may move in thrce 

directions: corresponding to iiicreriients +bx, 0, or -62 in the logarithm of 
price: corresponding to multiplicative shocks on the price itself. The thrce 
alternatives occur with risk-neutral probabilities p,, p,,, and p d ,  respectively. 
The structure of the hranching is shown in figure 7.12. Given the usual equa- 
t,ioii 

dX = v d t  + adW, 

wherc v = 7’  - a2/2,  we writc the iiioment matching equations: 

E[6X] = P ? ~ C S X  + p,,O - p d 6 ~  = v St  

E[(CSX)’] = ~ , , ( S X ) ~  + p7,0 + p d ( 6 ~ ) ’  = 026t + v2(6t)’ 
ps + plrl + P d  = 1. 

Solving t,his systciii yiclds 

1 a26t + v2(bt)2 + ”) ( 

1 a26t + V 2 ( b t ) 2  - EE) , 
P ,  - - - 2 ( (bx)2 b X  

( 6 5 ) 2  62 

a2bt + v2(6t)2 

( b x y  

Pu = - 2 

P7‘ = 1 - (7.7) 
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Fig. 7.13 Full example of triiioinial lattice. 

where we see that an additional degree of freedom is left to  choose Sx. In 
fact,, it, t.uriis out t,liat one ca.nnot choose bx and bt independently. A cominoii 
rille of t,liiinil) is d:r; = 3 6 .  This relationship will he appreciated when we 
tlral wit,h stahility of finite diffrrrnce schemes. We should also riot,e that) a. 
careless c:hoic~ may result in negative probabilities. As an example; consider 
pricing a Eiiropem call option on a no11 dividend paying stock with: 5’0 = 100; 
li = 100; 7‘ = 0.06, T = 1, and 0 = 0.3. If wc build a three-step lattice, with 
h x  = 0.2: we get, the lat,t,ice in figure 7.13, where 

p , ,  = 0.3878, p , ,  = 0.2494, pd = 0.3628 

T\,IATI,AB code to  accomplish calculations on a trinomial lattice is sliowii in 
figure 7.14. As usual, discountrd probabilitics are computed outsidc tlic iiiain 
f o r  loops. Therc is ,jiist oiie observation iieeded here: unlike binomial lattices, 
W(I niust store at, least, two consccuttive time layers of the latt,ice, since there 
is iio alteriiatiori lxtween odd- and even-indexed entries in the arrays. Hence, 
we iise a. two-column array, with 2N + 1 rows, where the roles of the colunins 
~ i i i i y  l x  Lbi~ow’’ or ”fiiturc.” Wc use increments modulo 2 to swap t,he roles 
of t,ht: two 1itYel.s: which are indexed by variables know and kthen, taking the 
values 1 aiitl 2 altcrnatively. Here is the computation for the previous lattice: 

>> S O = l O O ;  
>> K=100; 
>> r=0.06; 
>> T = l ;  
>> sigma=0.3; 

>> deltaX = 0.2; 
>> EuCallTrinomial(SO,K,r,T,sigma,N,deltaX) 
ans = 

>> N=3; 

14.6494 
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function price = EuCallTrinomial(SO,K,r,T,sigma,N,deltaX) 
% Precompute invariant quantities 
deltaT = T/N; 
nu = r - 0.5*sigma-2; 
discount = exp(-r*deltaT) ; 
p-u = discount*0.5*((sigma^2*deltaT+nu^2*deltaT-2)/deltaX^2 + . . .  

nu*deltaT/deltaX) ; 
p-rn = discount*(l - (sigma^2*deltaT+nu^2*deltaT-2)/deltaX-2); 
p-d = discount*0.5*((sigma^2*deltaT+nu^2*deltaT^2)/deltaX^2 - . . .  

% set up S values (at maturity) 
Svals = zeros(2*N+l, 1) ; 
Svals(1) = SO*exp(-N*deltaX); 
exp-dX = exp(de1taX); 
for j=2: 2*N+1 

Svals(j) = exp-dX*Svals(j-1) ; 
end 
% set up lattice and terminal values 
Cvals = zeros(2*N+1,2); 
t = mod(N,2)+1; 
for j=1:2*N+1 

end 
for t=N-1 : -1 : 0 ; 

nu*delt aT/delt ax) ; 

Cvals(j ,t) = rnax(Svals(j)-K,O); 

know = mod(t.2)+1; 
knext = mod(t+l,2)+1; 
for j = N-t+l:N+t+l 

Cvals(j ,know) = p-d*Cvals(j-l,knext)+p-m*Cvals(j,knext)+. . . 
p-u*Cvals(j+l,knext); 

end 
end 
price = Cvals(N+1,1); 

Fig. 7.14 MATLAB code for pricing a European call by a trinomial lattice. 
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We mentioned that proper choice of Sx is an issue here. Playing with numbers 
as follows we see that the rule of thumb Sx = a& does make sense: 

>> blspr ice (SO, K , r , T, sigma) 
ans = 

14.7171 
>> N=100; 
>> deltaX = 0.2; 
>> EuCallTrinomial(SO,K,r,T,sigma,N,delta)() 
ans = 

14.0715 
>> deltaX = 0.5; 
>> EuCallTrinomial(SO,K,r,T,sigma,N,deltaX) 
ans = 

10.9345 
>> deltaX = sigma*sqrt (T/N) ; 
>> EuCallTrinomial(SO,K,r,T,sigma,N,delta;[) 
ans = 

14.6869 
>> N=1000; 
>> deltaX = sigma*sqrt (T/N) ; 
>> EuCallTrinomial(SO,K,r,T,sigma,N,delt~) 
ans = 

14.7141 

7.5 SUMMARY 

Binomial lattices are typically the first numerical method one meets when 
learning about option pricing, which is reasonable given the apparent sim- 
plicity of the approach. We have preferred to describe the approach at a 
later stage in order to place it within a more generic framework. Lattices are 
actually related to Monte Carlo and finite difference methods. 

With respect to Monte Carlo methods, binomial and trinomial lattice rep- 
resent a clever deterministic sampling based on moment matching; moment 
matching is one of the many variance reduction techniques which have been 
proposed over the years. An advantage of lattice techniques with respect to 
Monte Carlo simulation is computational speed, when the problem dimen- 
sionality is small. Lattice methods are not easily applied when complex path 
dependencies are built in the option. Clever techniques may be used and have 
been proposed, e.g., for lookback options, but they may suffer from poor con- 
vergence. Hence, for complex and/or high dimensional options, Monte Carlo 
simulation can well be the only practical approach. On the other side of the 
coin, lattice methods easily deal with early exercise features. 

Some authors regard explicit finite difference schemes as a generalization 
of trinomial lattices. In fact, this will be apparent in section 9.2.1, where 
we see that numerical instability in an explicit scheme is linked to a bad 
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discretization, essentially leading to a trinomial lattice with negative proba- 
bilities. Hence, it may be argued that the additional flexibility of grids and 
the possibility to use implicit and accurate schemes may supersede lattice 
techniques. But actually, as we have already pointed out, this is sometimes 
a matter of taste. With good calibrations (we have just scratched the sur- 
face here), accurate pricing may be obtained by lattice techniques in many 
practical cases. 

We should also point out that we have worked under the idealized assump- 
tion of complete markets, deterministic volatility, etc. Furthermore, we have 
basically worked with the historical volatility, whereas we know that implied 
volatility is often considered as the relevant one. Lattice techniques have been 
proposed which are calibrated against market prices, resulting in the so-called 
implied lattices. We refer to the literature for more on this advanced topics, 
but we should keep in mind that the conceptual simplicity and the compu- 
tational efficiency of lattice methods may be extremely useful to generalize 
option pricing beyond the Black-Scholes framework. 

For further reading 

0 A very good source on lattice techniques is [l]. There you may also 
find a careful analysis of the relationship between finite differences and 
trinomial lattices. 

0 The classical reference [3] includes many variations on the basic tech- 
niques we have considered, including lattices for barrier and lookback 
options, adaptive node placement, etc. In the chapters on numerical 
methods you may also find the background on pricing options on stocks 
paying discrete dividends by binomial lattices. This is the basis of the 
implementation provided by the Financial toolbox function binprice. 

0 You may also consult [4], which also includes implied lattices and ideas 
for efficient implementations. 

0 If you want to dig deeply into the issue of implementing binomial lattices 
in MATLAB, you should have a look at [2]. 
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8 
Option Pricing by Monte 

Carlo Methods 

Monte Carlo simulation is an important tool in computational finance: I t  may 
be used to evaluate portfolio management rules, to price options, to simulate 
hedging strategies, and to estimate Value a t  Risk. Its main advantages are 
generality, relative ease of use, and flexibility. It may take stochastic volatil- 
ity and many complicating features of exotic options into account, and it 
lends itself to treating high-dimensional problems, where the lattice and PDE 
framework cannot be applied. The potential disadvantage of Monte Carlo 
simulation is its computational burden. An increasing number of replications 
is needed to refine the confidence interval of the estimates we are interested 
in. The problem may be partially solved by variance reduction techniques or 
by resorting to low-discrepancy sequences. The aim of this chapter is to illus- 
trate the application of these techniques to a few examples, including some 
path-dependent options. This chapter is a direct extension of chapter 4, where 
we dealt with Monte Carlo integration. It must be emphasized that even if 
we use the more appealing terms “simulation” or “sampling,”, Monte Carlo 
methods are conceptually a numerical integration tool. This must be kept in 
mind when applying low-discrepancy sequences rather than pseudo-random 
generators. 

When possible, we will compare the results of simulation with analytical 
formulas. Clearly, our aim in doing so is a purely didactic one. If you have to 
compute the area of a rectangular room, you just multiply the room length 
times the room width; you would never count how many times a standard 
tile fits the surface. However, you should learn first to use simulation in easy 
cases, where we may check the consistency of results; moreover, we will also 

429 
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see that simulating options for which analytical formulas are available may 
yield powerful control variates for variance reduction purposes. 

The starting point in the application of Monte Carlo simulation is sam- 
ple path generation, given a stochastic differential equation describing the 
dynamics of a price (or an interest rate). In section 8.1 we illustrate path 
generation for geometric Brownian motion; two hedging strategies are simu- 
lated as a concrete example, and we also deal with Brownian bridge, which is 
an alternative to simulating sample paths by going forward in time. Section 
8.2 deals with an exchange option, which is used as a simple illustration of 
how the approach can be extended to multidimensional processes. In section 
8.3 we consider an example of weakly path-dependent option, a down-and-out 
put option; we apply both conditional Monte Carlo and importance sampling 
to reduce variance. A strongly path-dependent option is dealt with in section 
8.4, where we show the application of control variates and low-discrepancy 
sequences to pricing an arithmetic average Asian option. We close the chap- 
ter by outlining the basic issues in estimating option sensitivities by Monte 
Carlo sampling; in section 8.5 we consider the simple case of the option A for 
a vanilla call. 

Another application of stochastic simulation to option pricing is given in 
section 10.4, which is dedicated to  American options; the early exercise feature 
makes a straightforward simulation approach infeasible, and the problem must 
be cast within the framework of stochastic dynamic optimization. 

8.1 PATH GENERATION 

The starting point for the application of Monte Carlo methods to option 
pricing is the generation of sample paths of the underlying factors. In vanilla 
options, there is really no need for path generation, as we have seen in chapter 
4: only the price of the underlying asset a t  maturity is of concern. But if the 
option is path-dependent, we need the whole path or, a t  least, a sequence of 
values at given time instants. With geometric Brownian motion, we are facing 
a very lucky case. In fact, it must be understood that we have two potential 
sources of errors in path generation: 

sampling error, 

discretization error. 

Sampling error is due to random nature of Monte Carlo methods, and it can be 
mitigated using variance reduction strategies. To understand what discretiza- 
tion error is, let us consider how we can discretize a typical continuous-time 
model, i.e., an Ito stochastic differential equation: 

dSt = a(St, t )  d t  + b(St, t )  dWt. 
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The simplest discretization approach, known as Euler scheme, yields the fol- 
lowing discrete-time model: 

sst = St+st - s, = a(&,  t )6 t  + b(St ,  t ) & E ,  

where 6t is the discretization step and E N N(0,l). This scheme is conceptu- 
ally linked to finite differences and its application to a deterministic differential 
equation would yield a truncation error, which is arguably negligible when the 
discretization step is small.’ Convergence is a critical concept in stochastic 
differential equations, as we are dealing with stochastic processes, but we 
may guess that, by sampling realizations of the random variable E from the 
standard normal distribution, we should be able to simulate a discrete-time 
stochastic process which is well related to the solution of the continuous-time 
equation. Increasing the number of sample paths, or replications, we should 
also be able to reduce sampling error. 

While the above reasoning can be justified more formally, we should realize 
that the discretization error may even change the probability distributions 
characterizing the solution. For instance, consider the geometric Brownian 
motion model: 

dSt = p&dt + OStdWt. (8.1) 

The Euler scheme yields 

St+st = (1 + pbt)St + O S t A E .  

This is very easy to grasp and to implement, but the marginal distribution 
of each value Si = S(i 6 t )  is normal, rather than lognormal. Actually, taking 
a very small 6t we may reduce the error, but this is time consuming. In 
this specific case, we may get rid of the discretization error altogether by a 
straightforward application of Ito’s lemma, but this is not true in general. 
With complicated stochastic differential equations, we may have to generate 
the whole sample path, even if we are only interested in values at maturity, 
just to reduce the discretization error. In such a case, it may be advisable to 
use the more refined discretization schemes available in the literature. 

8.1.1 Simulating geometric Brownian motion 

Using Ito’s lemma, we may transform (8.1) into the following form: 

We also recall that, using properties of the lognormal distribution2 and letting 
u = p - a2/2, we obtain: 

‘We have seen in chapter 5 that  convergence of discretization schemes is not that  trivial. 
2See appendix B. 
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E[log(S(~)/S(O))l = vt 
~ a r [ l o g ( ~ ( t ) / ~ ( ~ ) ) ]  = a2t 

E[S(t)/S(O)] = ept (8.3) 

var[s(t)/s(o)l = e 2 ~ t ( e ~ z t  - 1)- (8.4) 

Equation (8.2) is particularly useful as it can be integrated exactly, yielding: 

To simulate the path of the asset price over an interval (0, T ) ,  we must dis- 
cretize time with a time step St .  From the last equation, and recalling the 
properties of the standard Wiener process (see section 2.5), we get 

where E N N(0, l )  is a standard normal random variable. Based on equation 
(8.5), it is easy to generate sample paths for the asset price. 

A straightforward code to generate sample paths of asset prices following 
geometric Brownian motion is given in figure 8.1. The function AssetPaths 
yields a matrix of sample paths, where the replications are stored row by row 
and columns correspond to time instants. The first column contains the same 
value, the initial price, for all sample paths. We have to provide the function 
with the initial price SO, the drift mu, the volatility sigma, the time horizon T, 
the number of time steps NSteps, and the number of replications NRepl. Note 
that the function takes the drift parameter p as input and then it computes 
the parameter v. 

For instance, let us generate and plot three one-year sample paths for an 
asset with an initial price $50, drift 0.1, and volatility 0.3 (on a yearly basis), 
assuming that the time step is one day3: 

>> randn(’state’,O>; 
>> paths=AssetPaths(50,0.1,0.3,1,365,3>; 
>> plot(l:length(paths) ,paths(l, : )>  

>> hold on 
>> plot(l:length(paths) ,paths(2, : ) I  
>> hold on 
>> plot(l:length(paths) ,paths(3, : > >  

The result is plotted in figure 8.2. If you start the random number generator 

3We assume here that a year consists of 365 trading days. How to  treat non-trading days 
is a bit controversial (see, e.g., [ll,  pp. 251-2521). 
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function SPaths=AssetPaths(SO,mu,sigma,T,NSteps,NRepl) 
SPaths = zeros(NRep1, l+NSteps); 
SPaths(:,l) = SO; 
dt = T/NSteps; 
nudt = (mu-0.5*sigma-2)*dt; 
sidt = sigma*sqrt(dt) ; 
for i=l:NRepl 

for j=1: NSteps 

end 
SPaths(i,j+l)=SPaths(i,j)*exp(nudt + sidt*randn); 

end 

Fig. 8.1 MATLAB code t o  generate asset price paths by Monte Carlo simulation. 

35 - 

30 - 

25 ' I 
0 50 100 150 2W 250 3W 350 400 

Fig. 8.2 Sample paths generated by Monte Carlo simulation. 
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function SPaths=AssetPathsV(SO,mu,sigma,T,NSteps,NRepl) 
dt = T/NSteps; 
nudt = (mu-O.5*sigma^2)*dt; 
sidt = sigma*sqrt (dt) ; 
Increments = nudt + sidt*randn(NRepl, NSteps); 
LogPaths = cumsum( Clog(S0) *ones (NRepl, 1) 
SPaths = exp(LogPaths) ; 
Spaths(:,l) = SO; 

Increments] , 2) ; 

Fig. 8.3 Vectorized code to generate asset price paths. 

for standard normals randn with another seed state, you will get different 
results. 

The code in figure 8.1 is based on two nested for loops. Sometimes, effi- 
ciency can be achieved in MATLAB by vectorizing code. In order to vectorize 
the code, it is convenient to rewrite equation (8.5) as 

log St+& - log st = v 6t + a& 6. 

We may generate the differences in the logarithm of the asset prices and 
then use the cumsum function with an optional parameter set to 2 in order 
to compute the cumulative sums over the rows (the default is summing over 
columns). The resulting function AssetPathsV is illustrated in figure 8.3. We 
should note that in the last line we write the initial asset price in the first 
column. To see why, check the following snapshot: 

>> format long 
>> exp(log(50)) 
ans = 
49.99999999999999 

It is better to avoid this error (which is apparently negligible, but see later). 
We may compare the two implementations in terms of speed: 

>> tic, paths=AssatPaths(50,0.1,0.3,1,~~~,1~~~);, toc 
Elapsed time is 0.029226 seconds. 
>> tic, paths=AssetPathsV(5010.1,0.31~,~~~,~~~~);, toc 
Elapsed time is 0.034177 seconds. 

In this case we do not see advantages in vectorizing code. We should keep 
in mind that the elapsed time returned by tic and toc is subject to  some 
variability due to the background tasks carried out by the operating system, 
but when the first edition of this book was written, there was a striking 
advantage in vectorizing code. And, in fact, there are many situations in 
which this is true. The point is that improvements in hardware and in software 
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(in this case, MATLAB interpreter has been arguably improved) may make 
certain programming practices obsolete. Sometimes a fully vectorized code 
requires huge matrices, which do not fit the main memory of the computer. 
In such a case, using disk space as virtual memory may slow the execution. 
So we should be aware of all possible tricks of the trade, but an empirical 
efficiency check has the ultimate say in the matter. 

8.1.2 Simulating hedging strategies 

Armed with a function to generate sample paths, we may try a first experiment 
in comparing hedging strategies for a vanilla European call option. We know 
from chapter 2 that the option price is essentially the cost of a delta-hedging 
strategy and that the continuous-time hedging strategy for the call option 
requires holding an amount A of the underlying asset. A simpler strategy is 
the stop-loss ~ t r a t e g y . ~  The idea is that we should have a covered position 
(hold one share) when the option is in the money, and a naked position (hold 
no share) when it is out of the money. In practice, we could buy a share 
when the asset price goes above the strike price K ,  and we should sell it 
when it goes below. This strategy makes intuitive sense, but it is not that 
trivial to analyze in continuous time.5 Nevertheless, we may evaluate its 
performance in discrete time by Monte Carlo simulation. The problem with 
an implementation in discrete time is that we cannot really buy or sell at the 
strike price: We buy at  a price larger than K ,  when we detect that the price 
went above that critical value, and we sell a t  a price which is slightly lower. So, 
even without considering transaction costs, that would affect delta-hedging as 
well, we see a potential trouble with the stop-loss strategy. 

A MATLAB function to estimate the average cost of a stop-loss strategy is 
given in figure 8.4. The function receives a matrix of sample Paths, possibly 
generated by function AssetPaths. Note that in this case, unlike option 
pricing, the real drift mu must be used in the simulation. In checking the 
code, we should note that the true number of steps (time intervals) is one 
less the number of columns in matrix Paths. If we need to buy shares of the 
underlying stock, we may need to borrow money, which should be taken into 
account. But, since we assume deterministic and constant interest rates, we 
will not account for borrowed money, since we can simply record cash flows 
from trading and discount them back to time t = 0, having precomputed 
discount factors in the vector DiscountFactors. We use a state variable 
Covered to detect when we cross the strike price going up or down. Since 
cash Aow is negative when we buy, and positive when we sell, the option 
“price” is evaluated as the average total discounted cash flow, with a change 
in sign. We should also pay attention to what happens at maturity: If the 

4See [ll,  pp, 300-3021. 
5See 151. 
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function P = StopLoss(SO,K,mu,sigma,r,T,Paths) 
[NRepl, NSteps] = size (Paths) ; 
NSteps = NSteps - 1; % true number of steps 
Cost = zeros(NRep1,l); 
dt = T/NSteps; 
DiscountFactors = exp(-r*(O:l:NSteps)*dt); 
for k=l:NRepl 

CashFlows = zeros (NSteps+l, 1) ; 
if (Paths(k,l) >= K) 

Covered = 1; 
CashFlows(1) = -Paths(k,l) ; 

else 
Covered = 0; 

end 
for t=2:NSteps+l 

if (Covered == 1) 8 (Paths(k,t) < K) 
% Sell 
Covered = 0; 
CashFlows(t) = Paths(k,t) ; 

% Buy 
Covered = 1; 
CashFlows(t) = -Paths(k,t); 

elseif (Covered == 0) & (Paths(k,t) > K) 

end 
end 
if Paths(k,NSteps + 1) >= K 

% Option is exercised 
CashFlows(NSteps + 1) = . . .  

CashFlows(NSteps + 1) + K; 
end 
Cost(k) = -dot(DiscountFactors, CashFlows); 

end 
P = mean(Cost1; 

fig. 8.4 Evaluating the cost of a stop-loss hedging strategy. 

option is in the money, the option holder will exercise her right and we will 
also get the strike price, which should be included in the cash flows. 

Since we know that sometimes vectorizing code is beneficial, we also show 
a vectorized version of this code in figure 8.5. The main trick here is using a 
vector OldPrice, which is essentially a shifted copy of Paths to spot where 
the price crosses the critical level, going up or down. Times at  which we go 
up are recorded in vector UpTimes, and there we have a negative cash flow; a 
similar consideration applies to DownTimes. 
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function P = StopLossV(SO,K,mu,sigma,r,T,Paths) 
[NRepl,NSteps] = size(Paths1; 
NSteps = NSteps - 1; 
Cost = zeros(NRep1,l); 
CashFlows = zeros(NRepl,NSteps+l); 
dt = T/NSteps; 
DiscountFactors = exp(-r*(O:l:NSteps)*dt); 
OldPrice = [zeros(NRepl,l), Paths(: ,l:NSteps)l; 
UpTimes = find(0ldPrice < K & Paths >= K); 
DownTimes = find(0ldPrice >= K 6 Paths < K); 
CashFlows (UpTimes) = -Paths (UpTimes) ; 
CashFlows(DownTimes) = Paths(DownTimes1; 
ExPaths = find(Paths(:,NSteps+l) >= K); 
CashFlows(ExPaths,NSteps+l) = CashFlows(ExPaths,NSteps+l) + K; 
Cost = -CashFlows*DiscountFactors’; 
P = mean(Cost1; 

Fig. 8.5 Vectorized code for the stop-loss hedging strategy. 

Now we may check if the two function are actually consistent, and if there 
is any advantage in vectorization: 

>> SO = 50; 
>> K = 50; 
>> mu = 0.1; 
>> sigma = 0.4; 
>> r = 0.05; 
>> T = 5/12; 
>> NRepl =100000; 
>> NSteps = 10; 
>> randn( ’state’ ,0) ; 
>> Paths=AssetPaths(SO,mu, sigma,T,NSteps,NRepl) ; 
>> tic, StopLoss(SO,K,mu,sigma,r,T,Paths), toc 
ans = 

5.5780 
Elapsed time is 3.100619 seconds. 
>> tic, StopLossV(SO,K,mu,sigma,r,T.Paths), toc 
ans = 

5.5780 
Elapsed time is 0.735455 seconds. 

Here, unlike asset path generation, we see an advantage from vectorization. 
We may also appreciate here why, with the vectorized function to generate 
asset paths, it may be important to assign the initial asset price correctly, as 
we did in the last line of the code in figure 8.3. In this case the option is a t  
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function P = DeltaHedging(SO,K,mu,sigma,r,T,Paths) 
[NRepl,NSteps] = size(Paths1; 
NSteps = NSteps - 1; 
Cost = zeros(NRepl.1); 
CashFlows = zeros(l,NSteps+l) ; 
dt = T/NSteps; 
DiscountFactors = exp(-r*(O:l:NSteps)*dt); 
for i=l:NRepl 

Path = Paths(i,:); 
Position = 0; 
Deltas = blsdelta(Path(1 :NSteps) ,K,r ,T-(0 :NSteps-1) *dt ,sigma) ; 
for j=l:NSteps; 

CashFlows(j) = (Position - Deltas(j))*Path(j); 
Position = Deltas (j 1 ; 

end 
if Path(NSteps+l) > K 

else 

end 
Cost(i) = -CashFlows*DiscountFactors’; 

CashFlows(NSteps+l) = K - (1-Position)*Path(NSteps+l); 

CashFlows(NSteps+l) = Position*Path(NSteps+l); 

end 
P = mean(Cost); 

Fig. 8.6 Evaluating the performance of delta-hedging. 

the money, and we always buy the stock initially; but if the initial stock price 
is 49.9999 we don’t do that, and an apparently negligible error has serious 
consequences in the analysis. 

Now we should compare the cost of the stop-loss strategy with the cost of 
delta-hedging, and with the theoretical option price. A code to estimate the 
average cost of delta-hedging is displayed in figure 8.6. The code is similar 
to the stop-loss strategy, but it is not vectorized. The only vectorization we 
have done is in calling b l s d e l t a  once to get the option A for each point on 
the sample path. Note that A must be computed using the current asset 
price and the current time to maturity; we use the b l s d e l t a  function of the 
Financial toolbox. The current Posi t ion  in the stock is updated given the 
new A, generating cash flows which are discounted. 

Figure 8.7 displays a script to  compare performances of the two hedging 
strategies. Running the script, we get the following: 

>> Hedgingscript 
true price = 4.732837 
cost of stop/loss (S) = 4.826756 
cost of delta-hedging = 4.736975 



PATH GENERATION 439 

% HedgingScript.m 
SO = 50; 
K = 52; 
mu = 0.1; 
sigma = 0.4; 
r = 0.05; 
T = 5/12; 
NRepl =10000; 
NSteps = 10; 
1 
C = blsprice(SO,K,r,T, sigma); 
fprintf(1, ’%s %f\n’, ’true price = ’, C); 
% 
randn( ’state’ ,O) ; 
Paths=AssetPaths(SO,mu,sigma,T,NSteps.NRepl) ; 
SL = StopLossV(SO,K,mu,sigma,r,T,Paths); 
fprintf(1, ’cost of stop/loss (S) = %f\n’, SL); 
DC = DeltaHedging(SO,K,mu,sigma,r,T,Paths); 
fprintf(1, ’cost of delta-hedging = %f\n’, DC); 
% 
NSteps = 100; 
randn ( ’ state ’ , 0) ; 
Paths=AssetPaths(SO,mu,sigma,T,NSteps,NRepl); 
SL = StopLossV(S0, K ,mu, sigma, r, T,Paths) ; 
fprintf (1, ’cost of stop/loss (S) = %f\n’. SL); 
DC = DeltaHedging(SO,K,mu,sigma,r,T,Paths); 
fprintf(1, ’cost of delta-hedging = %f\n’, DC); 

fig. 8.7 A script to compare hedging strategies. 

cost of stop/loss (S) = 4.828571 
cost of delta-hedging = 4.735174 

where in the first pair of runs we use ten hedging steps and one hundred 
in the second pair. We see that the stop-loss strategy does not seem to  
converge to the true option price, unlike the cost of delta-hedging. Actually, 
the comparison should be made in different settings, and it should also involve 
the variability of the hedging cost. 

8.1.3 Brownian bridge 

In the previous sections we generated asset paths according to a natural pro- 
cess, which proceeds forward in time. Actually, the Wiener process enjoys 
some peculiar properties which allow us to generate the sample paths in a 
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different way. Consider a time interval with left and right end points tl and 
t,, respectively, and an intermediate time instant s, such that tl < s < t,. 
In standard path generation, we would generate the Wiener process in the 
natural order: W(tl ) ,  W ( s ) ,  and finally W(t,). Using the so-called Brown- 
ian bridge, we may generate W(s)  conditional on the values w1 = W(tl )  and 
w, = W(t,) .  It can be shown that W ( s ) ,  conditional on those two values, is 
a normal variable with expected value 

( t r  - s)w1+ (S - tl)wr 

t r  - tl 

and variance 

This is a consequence of some properties of the conditional distribution of a 
multivariate normal distribution. We will not prove the formulas above,6 but 
they are fairly intuitive: The conditional expected value of W ( s )  is obtained 
by linear interpolation through w1 and w,; the variance is low near the two 
end points tl and t,, and is maximum in the middle of the interval. 

Using Brownian bridge, we may generate sample paths by a sort of bisection 
strategy. Given W(0)  = 0, we sample W ( T ) ;  then we sample W(T/2) .  Given 
W(0)  and W(T/2)  we sample W(T/4); given W(T/2)  and W ( T )  we sample 
W(3T/4), etc. Actually, we may generate sample paths in any order we wish, 
with non-homogeneous time steps. One could wonder why this complicated 
construction could be useful. There are at least two reasons. 

1. It may help in using variance reduction by stratification. It is difficult to 
use stratification in multiple dimensions, but we may use stratification 
just on the terminal value of asset price, and maybe an intermediate 
point. Then we generate intermediate values using the bridge. 

2. The Brownian bridge construction is also useful when used in conjunc- 
tion with low-discrepancy sequences. We have seen in section 4.6 that 
application of simple low discrepancy sequences in high-dimensional do- 
mains may be difficult, because some dimensions are not well-covered. 
Using Brownian bridge, we may use high quality sequences to outline the 
paths of the Wiener process, by sampling points acting as milestones; 
then we can fill the trajectory using other sequences, or even Monte 
Carlo sampling. 

In figure 8.8 we illustrate a MATLAB function to generate paths of the stan- 
dard Wiener process using the Brownian bridge technique, but only in the 
specific case in which the time interval [O,T] is bisected (i.e., the number of 

‘See, e.g., [8, pp. 82-84] for a readable proof. 
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intervals is a power of 2);  the technique may be applied in more general set- 
tings. In this case, we may simplify the formulas above to sample W ( s ) ;  if we 
let 6t = tl - t,, we have 

w r + w l  1 W ( S )  = ~ + z&Z, 
2 

where Z is a standard normal variable. The function receives the length T of 
the time interval and the number NSteps of sub-intervals in which it must be 
partitioned, and it returns a vector containing one sample path. Assume that 
the number of intervals is 8 (it must be a power of two). Then we must carry 
out 3 bisections. 

0 Given the initial condition W(t0) = 0, we must first sample W(t8), 
which means “jumping” over an interval of length T ,  which is TJump 
in the program. Since we store elements in a vector of nine elements 
(starting with index 1, and including W(t,)) ,  we must jump eight places 
in this vector to store the new value. The number of places to jump is 
stored in IJump. 

0 Then we start the first for loop. In the first pass we must only sample 
W(t4) ,  given W(t0) and W(t8). Given positions left = I and right = 

IJump + 1 we must generate a new value and store that value in position 
i = IJump/2 + I, which is 4+1 = 5 in this case. Here we generate only 
one value, and we divide both jumps by 2. 

0 In the second iteration we must sample W(t,), given W(t0) and W(t4), 
and W(ts), given W(t4) and W(t8). The nested loop will be executed 
twice, and indexes left, right, and i are incremented by 4. 

0 In the third and final iteration we generate the remaining four values. 

We urge the reader to step through the function using the debugger to verify 
the pattern we have just described. In figure 8.8 we also give a script to check 
that the marginal distributions of the stochastic process we generate are the 
correct ones. Expected values should be zero, and standard deviation should 
be the square root of time: 

>> CheckBridge 
m =  

sdev = 
0.0025 0.0015 0.0028 0.0030 

0.5004 0.7077 0.8646 0.9964 
ans = 

0.5000 0.7071 0.8660 1.0000 

We see that, apart from sampling errors, the result looks correct. Given a way 
to generate standard Wiener process, it is easy to simulate geometric Brownian 
motion. The function is given in figure 8.9, and it uses a similar approach as 
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function WSamples = WienerBridge(T, NSteps) 
NBisections = log2 (NSteps) ; 
if round(NBisecti0ns) I= NBisections 

fprintf(’ERR0R in WienerBridge: NSteps must be a power of 2\n’); 
return 

end 
WSamples = zeros(NSteps+l,l); 
WSamples(1) = 0 ;  
WSamples(NSteps+l) = sqrt(T)*randn; 
TJump = T; 
IJump = NSteps; 
for 

end 

k=l:NBisections 
left = 1; 
i = IJump/2 + 1; 
right = IJump + 1; 
for j=l:2-(k-l) 

a = 0.5*(WSamples(left) + WSamples(right)); 
b = 0.5*sqrt(TJump); 
WSamples(i) = a + b*randn; 
right = right + IJump; 
left = left + IJump; 
i = i + IJump; 

end 
IJump = IJump/2; 
TJump = TJump/2; 

% CheckBridge.m 
randn(’state’,O); 
NRepl = 100000; 
T = 1; 
NSteps = 4; 
WSamples = zeros(NRep1, l+NSteps) ; 
for i=l:NRepl 

end 
m = mean(WSamples(:,2:(1+NSteps))) 
sdev = sqrt(var(WSamples(:,2:(1+NSteps)))) 
sqrt((l:NSteps).*T/NSteps) 

WSamples(i,:) = WienerBridgecT, NSteps); 

fig. 8.8 Implementing and checking path generation for the standard Wiener process 
by a Brownian bridge. 
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function SPaths = GBMBridge(S0, mu, sigma, T, NSteps, NRepl) 
if round(log2(NSteps)) -= log2(NSteps) 

fprintf(’ERR0R in GBMBridge: NSteps must be a power of 2\n’); 
return 

end 
dt = TINSteps; 
nudt = (mu-0.5*sigmam2)*dt; 
SPaths = zeros(NRep1, NSteps+l); 
for k=l:NRepl 

W = WienerBridge(T,NSteps); 
Increments = nudt + sigma*diff (W’) ; 
LogPath = cumsum( [log(SO) , Increments] ; 

SPaths(k,:) = exp(LogPath1; 
end 
Spaths(:,l) = SO; 

Fig. 8.9 Sampling geometric Brownian motion by a Brownian bridge 

the vectorized version AssetPathsV. One thing we should note is the use of the 
function d i f f  to generate the vector of Increments in the logarithmic asset 
price. In fact, in standard Monte Carlo we generate the underlying Wiener 
process by successive increments; with the Brownian bridge construction we 
build directly the values of the process at  different time instants, and we must 
use the function d i f  f to obtain the relative differences. In some sense, d i f  f 
works in the opposite way to cumsum, as shown by the following example: 

8.2 PRICING AN EXCHANGE OPTION 

The purpose of this section is to  show that Monte Carlo simulation may 
be easily adapted to multidimensional options. We will use a very simple 
example, so that we may compare our estimates against the exact value for 
illustration purposes. We want to price a European-style exchange option 
written on two assets whose price, under the risk neutral measure, is modeled 
as a bidimensional geometric Brownian motion: 

d U ( t )  = T U ( t )  dt + auU(t) d W U ( t )  
dV(t)  = TV(t) d t  + uvV(t )  dWv(t),  
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function p = Exchange(VO,UO,sigmaV,sigmaU,rho,T,r) 
sigmahat = sqrt(sigmaU-2 + sigmaV-2 - 2*rho*sigmaU*sigmaV); 
dl = (log(VO/UO) + 0.5*T*sigmahat^2)/(sigmahat*sqrt(T)); 
d2 = dl - sigmahat*sqrt(T); 
p = VO*normcdf (dl) - UO*normcdf (d2) ; 

Fig. 8.10 Code to price an exchange option analytically. 

where the two Wiener processes have instantaneous correlation p. The option 
payoff at maturity T is max(VT -UT, 0). We see that this option is a particular 
case of a spread option, whose payoff depends on the difference between two 
asset prices (we considered an American spread option in section 7.3). It is 
called “exchange” because it allows us to exchange one asset for the other at 
maturity. For instance, if we hold asset U and one exchange option, the payoff 
at maturity will be 

UT + max( VT - UT , 0) = max( VT, UT).  

For this option, there is an analytical pricing formula which is a fairly straight- 
forward generalization of the Black-Scholes formula: 

8 = ~ u ; + u Z , - 2 p u v u r r  

The reason why we get this type of formula is that the payoff has a homo- 
geneous form, which allows to  simplify the corresponding partial differential 
equation by considering the ratio V / U  of the two prices7 MATLAB code 
implementing this formula is shown in figure 8.10. 

The only point we need to consider in order to apply Monte Carlo is how 
to generate sample paths for two correlated Wiener processes. We may ap- 
ply the same idea we have seen in section 4.3.4 for the multivariate normal 
distribution. We should find the Cholesky factor for the covariance matrix 
corresponding to two standard normal variables with correlation p: 

7See,  e.g., [2, pp. 184-1881 for a proof. 
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function [p, ci] = ExchangeMC(V0 ,UO , sigmaV, sigmaU, rho, T, r, NRepl) 
epsl = randn(1,NRepl); 
eps2 = rho*epsl + sqrt(l-rho^2)*randn(l,NRepl); 
VT = VO*exp((r - 0.5*sigmaVA2)*T + sigmaV*sqrt(T)*epsl); 
UT = UO*exp((r - 0.5*sigmaU"2)*T + sigmaU*sqrt(T)*eps2); 
DiscPayoff = exp(-r*T)*max(VT-UT, 0) ; 
[p, s ,  ci] = normf it (Discpayof f 1 ; 

Fig. 8.11 Code to  price an exchange option by Monte Carlo simulation. 

It may be verified by straightforward multiplication that I= = LL', where 

O I  
L =  [ 1 

P d W  
Hence, to simulate bidimensional correlated Wiener processes, we must gen- 
erate two independent standard normal variates 21 and 2 2  and use 

to drive path generation. 
In our case, we only need to generate joint samples of the two asset prices 

at  maturity. The resulting MATLAB code is displayed in figure 8.11. We may 
check our results as usual: 

>> VO = 50; 
>> UO = 60; 
>> sigmaV = 0.3; 
>> sigmaU = 0.4; 
>> rho = 0.7; 
>> T = 5/12; 
>> r = 0.05; 
>> Exchange (VO ,UO, sigmav, sigmau, rho, T ,r) 
ans = 

>> NRepl = 200000; 
>> randn('state', 0 )  
>> [p,ci] = ExchangeMC(VO,UO,sigmaV,sigmaU,rho,T,r,NRepl) 
P =  

ci = 

0.8633 

0.8552 

0.8444 
0.8660 
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% D0PutMC.m 
function [P,CI,NCrossed] = DOPutMC(SO,K,r,T,sigma,Sb,NSteps,NRepl) 
% Generate asset paths 
[Call,Putl = blsprice(SO,K,r,T,sigma); 
Payoff = zeros(NRep1,l); 
NCrossed = 0; 
for i=l:NRepl 

Path=AssetPaths (SO, r , sigma, T, NSteps ,1) ; 
crossed = any(Path <= Sb); 
if crossed == 0 

else 
Payoff(i) = max(0, K - Path(NSteps+l)); 

Payoff(i) = 0; 
NCrossed = NCrossed + 1; 

end 
end 
[P , aux, CI] = normf it ( exp (-r*T) * Payoff ) ; 

fig. 8.12 Crude Monte Carlo simulation for a discrete barrier option. 

8.3 PRICING A DOWN-AND-OUT P U T  OPTION 

In this section, we consider an example of weakly path-dependent option, 
i.e., a down-and-out put option, under the assumption that the barrier is 
checked at the end of each trading day. We have seen in section 2.7.1 how the 
analytical formula for continuous monitoring can be adjusted to reflect discrete 
monitoring; we will use the function DOPut to check the result of Monte Carlo 
simulation. An important point is that barrier options in practice may be 
very sensitive to stochastic volatility; Monte Carlo simulation could be used 
together with a model of stochastic volatility to price a barrier option. 

8.3.1 Crude Monte Carlo 

A code implementing crude Monte Carlo simulation is given in figure 8.12. 
The parameter NSteps is used to determine how many times the stock price 
should be checked against the barrier level sb. The payoff is set to 0 whenever 
the barrier is crossed. Note that we always simulate the complete path even if 
the barrier is crossed during the option life; some part of the path is actually 
useless, but doing so we can streamline code by using AssetPaths and the any 
vector operator. The DOPutMC function also returns the number NCrossed of 
paths in which the barrier has been crossed. 
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Let us price an option with two months to maturity, assuming that each 
month consists of 30 days and that the barrier is checked each day. The barrier 
Sb is $40: 

>> DOPut(50,50,0.1,2/12,0.4,40*exp(-0.5826*0.4*sqrt~1/12/30~~~ 
ans = 

1.3629 
>> randn( seed ,O) 
>> [P,CI,NCrossed]=DOPutMC(50,50,0.1,2/12,0.4,40,60,50000~ 
P =  

CI = 

1.3600 

1.3393 
1.3808 

NCrossed = 

7392 

8.3.2 Conditional Monte Carlo 

From section 4.5.1 we know that antithetic sampling may be not very effective 
in this case, because the payoff is nonmonotonic with respect to the asset price 
at  expiration. Things are more complicated here, as the complete asset price 
path matters. Control variates may also be used; a natural candidate as a 
control variate is the price of a vanilla put, which may be computed by the 
Black-Scholes formula. However, the strength of the correlation between the 
two options is questionable. Hence, we try a different approach, i.e., variance 
reduction by conditioning, which was explained in section 4.5.4. To this end, 
we will see that is convenient to consider the price Pdi of the down-and-in 
put. Pricing this knock-in option is equivalent to pricing the corresponding 
knock-out option, since we know that 

Assume that we discretize the option life in time intervals of width bt (in our 
case, one day), so that T = M b t ,  and consider the asset price path for days 
i ,  i = l ,  . . . ,  M :  

s = {sly sz, . . . , S M } .  

Based on this path, we estimate the option price as 

Pdi = e-TTEII (S) (K - s ~ ) ' ] ,  
where the indicator function I is 

1 
0 otherwise. 

if Sj < Sb for some j 
I ( S )  = { 

Now let j *  be the index of the time instant a t  which the barrier is first crossed; 
by convention, let j *  = M + 1 if the barrier is not crossed during the option 
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life. At time j * &  the option is activated, and from now on it behaves just like 
a vanilla put. So, conditional on the crossing time t* = j*b t  and the price Sj. 
at which we detect barrier crossing,8 we may use the Black-Scholes formula 
to estimate the expected value of the payoff. Hence, if the barrier is crossed 
before maturity, we have 

where Bp(Sj*,  K ,  T - t*) is the Black-Scholes price for a vanilla put with 
strike price K ,  initial underlying price Sj*,  and time to maturity T - t*; 
the exponential term takes discounting into account, from maturity back to  
crossing time. Given a simulated path S, this suggests using the following 
estimator: 

I(S)e-Tt*Bp(Sj*,  K ,  T - t* ) .  
Unlike antithetic sampling, conditional Monte Carlo exploits specific knowl- 
edge about the problem; the more we know, the less we leave to numerical 
integration. The function DOPutMCCond in figure 8.13 implements this vari- 
ance reduction method. The only point worth noting is that, for efficiency 
reasons, it is advisable to call the blsprice function only once with a vector 
argument, rather than once per replication. So, when the barrier is crossed, 
we record the time Times a t  which the down-and-in put has been activated, 
and the stock price StockVals. When the barrier is not crossed, the estimator 
is simply 0. Also note that the vectors passed to blsprice have NCrossed el- 
ements, whereas the size of the vector Payof f containing the estimator values 
is NRepl. 

>> DOPut(50,52,0.1,2/12,0.4,30*exp(-0.5826*0.4*sqrt(1/12/30))) 
ans = 

3.8645 
>> randn(’seed’,O) 
>> [P,CI,NCrossed] = DDPutMC(50,52,0.1,2/12,0.4,30,60,200000) 
P =  

CI = 

3.8751 

3.8545 
3.8957 

NCrossed = 

249 
>> randn(’seed’,O) 
>> [P,CI,NCrossed] = D0PutMCCond(50,52,0.1,2/12,0.4,30,60,200000~ 
P =  

CI = 

3.8651 

‘With continuous monitoring, we would immediately detect crossing when S( t * )  = S,, but 
this is not the case with discrete monitoring. 
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% D0PutMCCond.m 
function [Pdo,CI,NCrossed] = . . .  

dt = T/NSteps; 
[Call,Put] = blsprice(SO,K,r,T,sigma); 
% Generate asset paths and payoffs for the down and in option 
NCrossed = 0; 
Payoff = zeros(NRep1,l) ; 
Times = zeros(NRep1,l); 
StockVals = zeros(NRep1,l); 
for i=l:NRepl 

DOPutMCCond(SO,K,r,T,sigrna,Sb,NSteps,NRepl) 

Path=AssetPaths(SO,r,sigma,T,NSteps,l); 
tcrossed = min(find( Path <= Sb 1);  
if not (isempty(tcrossed)) 

NCrossed = NCrossed + 1; 
Times(NCrossed) = (tcrossed-1) * dt; 
StockVals(NCrossed) = Path(tcrossed); 

end 
end 
if (NCrossed > 0 )  

[Caux, Paux] = blsprice(StockVals(l:NCrossed),K,r, . . .  

Payoff(1:NCrossed) = exp(-r*Times(l:NCrossed)) . *  Paux; 
T-Times(1:NCrossed) ,sigma) ; 

end 
[Pdo, aux, CI] = normfit(Put - Payoff); 

Fig. 8.13 Conditional Monte Carlo simulation for a discrete barrier option. 
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3.8617 
3.8684 

NCrossed = 
249 

8.3.3 Importance sampling 

The last run shows that variance reduction by conditioning may indeed be 
helpful, but we should not get too excited. To begin with, one lucky run does 
not prove anything. Even worse, we have run a huge number of replications 
(200,000), but the barrier has been crossed only in 249 replications. This 
means that most of the replications are a wasted e f f ~ r t . ~  In other words, with 
the data for this option, crossing the barrier is a rare event. This is a typical 
case in which importance sampling may help (see section 4.5.6). 

One possible idea is changing the drift of the asset price in such a way that 
crossing the barrier is more likely.'' We should go a step back and consider 
what we do in order to generate an asset price path S .  For each time step, 
we generate a normal variate Zj with expected value 

and variance IT' 6t. All these variates are mutually independent, and the asset 
price is generated by setting 

10gsj - logs,-1 = zj. 

Let Z be the vector of the normal variates, and let f (Z)  be its joint density. 
If we use the modified expected value 

u - b, 

we may expect that the barrier will be crossed more often. Let g(Z) be the 
joint density for the normal variates generated with this modified expected 
value. Then we must find out a correction term, the likelihood ratio, to come 
up with the correct importance sampling estimator. Combining importance 
sampling with the conditional expectation we have just described, we have (if 
the barrier is crossed before maturity): 

'It can also be argued that  in this case we are doing a good job only because the option 
price is slightly less than the Black-Scholes price, which we use in conditioning, because 
crossing the barrier is unlikely. 
"The treatment here follows the approach of [18]. 
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In the expressions above, we should note the difference between z and 2; the 
first samples, given conditioning information, are actually numbers and are 
taken outside the expectation. In practice, we should generate the normal 
variates with expected value (v - b) ,  and multiply the conditional estimator 
by the likelihood ratio, which from the sampling point of view is a random 
variable." The only open problem is how to compute the likelihood ratio. In 
appendix B we consider the joint distribution of a multivariate normal with 
expected value p and covariance matrix E: 

In our case, due to the mutual independence of the random variates Zj ,  the 
covariance matrix is a diagonal matrix with elements a' bt, and the vector of 
the expected values has components 

for the density f and p - b for the density g. So we have 

f(z1, . . . , z j  * ) 
g ( z l , . . * , z j * )  

[-2(z1~ - p)b - b2] 

I) =exp{ -A [ - 2 b ~ z k + 2 j * p b - j * b 2  j' 

k=l 

Readers with a background in stochastic calculus will recall that  the Radon-Nikodym 
derivative is a random variable. 
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=exp - c L k - -  j * b  ( a2) j*b2  } 
a2 ‘-y +- . 2a2 S t  

k = l  

The resulting code is illustrated in figure 8.14. The function DOPutMCCondIS is 
similar to DOPutMCCond; the difference is that we must generate the asset price 
path and record the normal variates in vector vetZ, so that we may compute 
the likelihood ratio which is stored in the vector ISRatio. We compute the 
Black-Scholes price only at the end of the main loop. Finding the parameter 
b is a matter of trial and error. In the function DOPutMCCondIS we assume 
that the user provides a percentage bp, and the modified expected value is 
computed as 

(1 - bp)(r-0.5*sigmaA2)*dt 

Thus the parameter b is given as a percentage of the correct expected value. 
Note that we may use a value for bp which is larger than 1, to lower the drift 
rate at will. Now we may experiment a bit with importance sampling. 

>> randn(’seed’,O) 
>> [P,CI,NCrossed] 
P =  

CI = 

3.8698 

3.7778 
3.9618 

NCrossed = 
12 

>> randn(’seed’,O) 
>> [P,CI ,NCrossed] 
P =  

CI = 
3.8661 

3.8513 
3.8810 

NCrossed = 

12 
>> randn(’seed’,O) 
>> [P, CI , NCrossedl 
P -  

CI = 
3.8651 

3.8570 
3.8733 

NCrossed = 
43 

>> randn(’seed’,O) 
>> [P,CI,NCrossed] 
P =  

= DOPutMC(50,52,0.1,2/12,0.4,30,60,10000) 

= DOPutMCCond1S(50,52,0.1,2/12,0.4,30,60,10000,0~ 

= DOPutMCCond1S(50,52,0.1,2/12,0.4,30,60,10000,20) 

= DOPutMCCond1S(50,52,0.1,2/12,0.4,30,60,10000,50) 



PRlClNG A DOWN-AND-OUT PUT O f  T/ON 453 

% DOPutMCCond1S.m 
function [Pdo,CI,NCrossed] = . . .  

dt = T/NSteps; 
nudt = (r-0.5*sigma-2)*dt; 
b = bp*nudt; 
sidt = sigma*sqrt(dt); 
[Call,Put] = blsprice(SO,K,r,T,sigma); 
% Generate asset paths and payoffs for the down and in option 
NCrossed = 0; 
Payoff = zeros(NRep1,l); 
Times = zeros (NRepl ,I) ; 
StockVals = zeros(NRep1,l) ; 
ISRatio = zeros (NRepl ,1) ; 
for i=l :NRepl 

% generate normals 
vetZ = nudt - b + sidt*randn(l,NSteps); 
LogPath = cumsum( [log(SO), vet21 ; 
Path = exp(LogPath) ; 
jcrossed = min(find( Path <= Sb 1) ;  
if not (isempty(jcrossed)) 

DOPutMCCondIS(SO,K,r,T,sigma,Sb,NSteps,NRepl,bp) 

NCrossed = NCrossed + 1; 
TBreach = jcrossed - 1; 
Times(NCrossed) = TBreach * dt; 
StockVals(NCrossed) = Path(jcrossed1; 
ISRatio(NCrossed) = exp( TBreach*bA2/2/sigmaA2/dt +. . .  
b/sigma-2/dt*sum(vetZ(I:TBreach)) - . . .  
TBreach*b/sigmaA2*(r - sigma-2/2)); 

end 
end 
if (NCrossed > 0) 

[Caux, Paux] = blsprice(StockVals(l:NCrossed),K,r, . . .  
Payoff(1:NCrossed) = exp(-r*Times(l:NCrossed)) . *  Paux . . .  

T-Times (1 : NCrossed) ,sigma) ; 

. *  ISRatio(1:NCrossed); 
end 
[Pdo, aux, CI] = normf it (Put - Payoff) ; 

Fig. 8.14 
rier option. 

Using conditional Monte Carlo and importance sampling for a discrete bar- 



454 OPT/ON PRlClNG BY MONTE CARL0 METHODS 

3.8634 

3.8596 
3.8671 

NCrossed = 
225 

>> randn(’seed’,O) 
>> [P, CI , NCrossed] 
P =  

CI = 

CI = 

3.8637 

3.8629 
3.8645 

NCrossed = 
8469 

= D0PutMCCond1S(50,52,0.1,2/12,0.4,30,60,10000,200~ 

Calling DOPutMCCondIS with the parameter bp set to zero is just like calling 
DOPutMCCond; by increasing bp we see that the barrier is crossed in more and 
more replications, and the quality of the estimate is improved. Note that this 
does not necessarily imply that the larger b, the better; suggestions for setting 
this parameter are given in [IS]. 

8.4 PRICING AN ARITHMETIC AVERAGE ASIAN OPTION 

We consider here pricing an Asian average rate call option with discrete arith- 
metic averaging. The option payoff is 

where the option maturity is T years, ti = a & ,  and 6t = T I N .  For the sake 
of simplicity we assume that the contract prescribes taking sample prices at 
equally spaced time instants, but this need not be the case. In a crude Monte 
Carlo approach, we must simply generate asset price paths and average the 
discounted payoff as usual. The code is illustrated in figure 8.15; the only 
thing worth noting is that NSamples is the number N of sampled points 
to compute the arithmetic average, which should not be confused with the 
number of replications NRepl. In this case, we have to generate whole sample 
paths; we need samples only at  the time instants specified by the contract, 
but we may still have to generate a large amount of data. This is why the 
code is not vectorized: to avoid trouble with possibly large matrices. In the 
following sections we consider variance reduction by control variates and use 
of low discrepancy sequences. 
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function [P ,CI] = AsianMC(S0, K,r ,T,sigma,NSamples ,NRepl) 
Payoff = zeros(NRep1,l); 
for i=l:NRepl 

Path=AssetPaths (SO, r, sigma.T,NSamples, 1) ; 
Payoff (i) = max(0, mean(Path(2: (NSamples+l))) - K); 

end 
[P,aux,CI] = normfit( exp(-r*T) * Payoff); 

Fig. 8.15 Monte Carlo simulation for an Asian option. 

8.4.1 Control variates 

This crude Monte Carlo sampling may be improved by using control variates. 
In this case, we have different possibilities. 

0 As a first control variate, we could use the sum of the asset prices12: 

N 

i =O 

This is a plausible control variate, because we are able to compute its 
expected value, and Y is clearly correlated to the option payoff. Note 
that the sum includes SO, which is not random at all; we could eliminate 
that from the sum, but we prefer not doing that just to  ease the following 
notation. 

0 A second possibility would be using the vanilla call option, whose ana- 
lytical price is known. However, the option payoff of this control variate 
depends only on the price a t  maturity. 

0 A third, more sophisticated, control variate is the payoff of a geometric 
average option. This is also known analytically, and it looks much more 
promising than the vanilla call. 

We will illustrate the application of the first and the third idea. 

(under the risk-neutral measure): 
The expected value of the sum of the stock prices Y, as defined in (8.6), is 

N 

12This is the approach suggested in [17, chapter 91. 



456 OPTION PRICING BY MONTE CARL0 METHODS 

function [P, CI] = AsianMCCV(S0, K ,r ,T, sigma,NSamples, NRepl , NPilot) 
% pilot replications to set control parameter 
TryPath=AssetPaths(SO,r,sigma,T,NSamples,NPilot); 
StockSum = sum(TryPath,2) ; 
PP = mean(TryPath( : ,2: (NSamples+l)) , 2) ; 
TryPayoff = exp(-r*T) * max(0, PP - K); 
MatCov = cov(StockSum, Trypayoff); 
c = - MatCov(l,2) / var(StockSum); 
dt = T / NSamples; 
ExpSum = SO * (1 - exp((NSamp1es + l)*r*dt)) / (1 - exp(r*dt)); 
% MC run 
ControlVars = zeros(NRep1,l) ; 
for i=l:NRepl 

StockPath = AssetPaths(SO,r, sigma,T,NSamples, 1) ; 
Payoff = exp(-r*T) * max(0, mean(StockPath(2: (NSamples+l))) - K) ; 
ControlVars(i) = Payoff + c * (sum(StockPath) - ExpSum); 

end 
[P, aux, CI] = normf it (ControlVars) ; 

fig. 8.16 Monte Carlo simulation with control variates for an Asian option. 

where we have used the following formula: 

N 

CQi = - 1 - Q  f fN+l*  
i = O  

The MATLAB code in figure 8.16 implements this variance reduction strategy. 
The user must fix the number of pilot replications NPilot, needed to  set the 
control parameter c in the control variates procedure. The following runs give 
an idea of the improvement we may obtain: 

>> randn(’state’ ,O) 
[P,CI] = AsianMC(50,50,0.1,5/12,0.4,5,50000) 
P =  

CI = 
3.9939 

3.9418 
4.0460 

>> CI(2) - CI(1) 
ans = 

0.1042 
>> [P,CI] = AsianMCCV(50,50 ,O .1,5/12,0.4,5,45000,5000) 
P =  

CI = 

3.9562 
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3.9336 
3.9789 

>> CI(2) - CI(1) 
ans = 

0.0453 

The alternative control variate is based on the exploitation of much deeper 
knowledge. The payoff of the discretetime, geometric average Asian option 
is 

Since the product of lognormal random variables is still lognormal, it is possi- 
ble to find an analytical formula for the price of the geometric average option, 
which looks like a modified Black-Scholes formula. We report the formula as 
given in [6, pp. 118-1191, where m is the last time at  which we observed the 
price of the underlying asset, q is the continuous dividend yield, and Gt is the 
current geometric average: 

PGA = e-rT [ea+bbN(x)  - K N  

where 

m 
N N 

a = - log(Gt) + ___ 

1 2  

2 
u = r - 9 -  -a 

a - log(K) + b 
6 

X =  

The formula gets considerably simplified if we just consider the option price 
at  its inception, i.e., at  time t = 0. In such a case m = 0, and the resulting 
MATLAB implementation is illustrated in figure 8.17. 

Using the geometric average option as a control variate is fairly simple; 
we have to adapt the code in figure 8.16, obtaining the function displayed in 
figure 8.18. The figure also includes a script to compare crude Monte Carlo 
against the two control variates: 

>> CompareAsian 
P1 = 

CI1 = 

3.6276 

3.4814 
3.7738 
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function P = GeometricAsian (SO, K ,r ,T, sigma,delta,NSamples) 
dT = T/NSamples; 
nu = r - sigmaA2/2-de1ta; 
a = log(SO)+nu*dT+O.5*nu*(T-dT); 
b = sigma^2*dT + sigma^2*(T-dT)*(2*NSamples-l)/6/NSamples; 
x = (a-log(K)+b)/sqrt(b) ; 
P = exp(-r*T)*(exp(a+b/2)*normcdf (x) - K*normcdf (x-sqrt(b))) ; 

Fig. 8.1 7 MATLAB code for the analytical pricing formula of a geometric average 
Asian option. 

P2 = 

CI2 = 
3.4694 

3.3907 
3.5480 

3.4452 

3.4356 
3.4549 

P3 = 

C13 = 

The advantage of a control variate embodying sophisticated knowledge is 
pretty evident. 

8.4.2 Using Halton sequences 

Another tool that we may use to improve pricing an Asian option is quasi- 
Monte Carlo simulation based on low-discrepancy sequences. We will use 
here Halton sequences to generate uniform “quasi-random” numbers and the 
inverse transform method to transform them to  samples from the standard 
uniform distribution. This is just the simplest possibility, as we could use 
Sobol or other sequences, and maybe the Box-Muller transformation to gen- 
erate normal variates. 

The first issue to tackle is the generation of sample paths of geometric 
Brownian motion using Halton sequences. Say that we want to price an Asian 
option maturing in one year and we must sample price monthly. What is the 
dimension of the space over which we are integrating? We are integrating in 
a twelve-dimensional space, and we need a Halton sequence based on twelve 
Van der Corput sequences. I t  is very important to  understand that each se- 
quence must be assigned to a time instant. Sequences are not associated to  
sample paths. By the way, should we use Box-Muller approach to  transform 
uniform numbers to standard normal variates, we would need twice as much 
sequences. Also note that we cannot use rejection-based approaches to gen- 
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function [P,CI] = AsianMCGeoCV(SO,K,r,T,sigma,NSamples,NRepl,NPilot) 
% precompute quantities 
DF = exp(-r*T); 
GeoExact = GeometricAsian(SO,K,r ,T, sigma,O ,NSamples) ; 

GeoPrices = zeros(NPilot,l); 
AriPrices = zeros(NPilot,l); 
for i=l:NPilot 

pilot replications to set control parameter 

Path=AssetPaths(SO,r,sigma,T,NSamples,l) ; 
GeoPrices (i) =DF*max (0, (prod (Path (2 : (NSamples+l) ) ) ) (l/NSamples) - K) ; 
AriPrices (i)=DF*max(O,mean(Path(2 : (NSamples+l))) - K) ; 

end 
MatCov = cov(GeoPrices, AriPrices); 
c = - MatCov(l,2) / var(GeoPrices); 
% MC run 
ControlVars = zeros(NRep1,l); 
for i=l:NRepl 

Path = AssetPaths(SO,r, sigma,T, NSamples ,1) ; 
GeoPrice = DF*max(O, (prod(Path(2: (NSamples+l))))^(l/NSamples) - K) ; 
AriPrice = DF*max(O, mean(Path(2: (NSamples+l))) - K); 
ControlVars(i) = AriPrice + c * (GeoPrice - GeoExact); 

end 
[P, aux ,CI] = normf it (ControlVars) ; 

% C0mpareAsian.m 
randn ( ’ st ate ’ , 0) 
SO = 50; 
K = 55; 
r = 0.05; 
sigma = 0 .4 ;  
T = 1; 
NSamples = 12; 
NRepl = 9000; 
NPilot = 1000; 
[Pl,CIl] = AsianMC(SO,K,r,T,sigma,NSamples,NRepl+NPilot) 
[P2,CI21 = AsianMCCV(SO,K,r,T,sigma,NSamples,NRepl,NPilot) 
[P3,CI3] = AsianMCGeoCV(SO,K,r,T,sigma,NSamples,NRepl,NPilot) 

Fig. 8.18 Using the geometric average Asian option as a control variate. 
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function SPaths=HaltonPaths(SO,mu,sigma,T,NSteps,NRepl) 
dt = T/NSteps; 
nudt = (mu-O.5*sigma^2)*dt; 
sidt = sigma*sqrt(dt) ; 
1 Use inverse transform to generate standard normals 
NormMat = zeros(NRep1, NSteps); 
Bases = myprimes(NSteps) ; 
for i=l:NSteps 

H = GetHalton(NRepl,Bases(i)) ; 
RandMat ( : , i) = norminv (HI ; 

end 
Increments = nudt + sidt*RandMat; 
LogPaths = cumsum( [log(SO)*ones(NRepl, 1) , Increments] , 2) ; 
SPaths = exp(LogPaths1; 
SPaths(:,l) = SO; 

Fig. 8.19 Generating asset price paths by Halton sequences. 

function P = AsianHalton(SO,K,r,T,sigma,NSamples,NRepl) 
Payoff = zeros(NRep1,l); 
Path=HaltonPaths (SO ,r , sigma,T ,NSamples , NRepl) ; 
Payoff = max(0, mean(Path(: ,2: (NSamples+l)),2) - K); 
P = mean( exp(-r*T) * Payoff); 

Fig. 8.20 Pricing an Asian option by Halton sequences. 

erate variates, as in that case the dimension of the space is not well-defined. 
For each dimension, we need a prime number to be used as the basis. To gen- 
erate the first N prime numbers, we may use the myprimes function which is 
discussed in section A.3. The function HaltonPaths illustrated in figure 8.19 
is an extension of the vectorized function AssetPathsV to generate random 
sample paths. The idea is generating each column of matrix NormMat using 
one dimension of the Halton sequence, corresponding to one prime number. 
We see replications along the rows of the matrix, and each column corresponds 
to a time instant. Given this, we compute increments in the natural logarithm 
of the asset price, which are then cumulated and transformed to asset prices. 

Based on sample paths generated by HaltonPaths, it is very easy to  write 
a function to price the arithmetic Asian option, as shown in figure 8.20. We 
may see the potential of low-discrepancy sequences from the following runs, 
in which we first compute a very accurate price using a large number of 
replications with crude Monte Carlo to  have a reliable benchmark: 
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>> randn(’state’,O) 
>> [P ,CI] = AsianMC(50,50,0.1,5/12 ,O. 4,5,500000) 
P =  

CI = 

3.9639 

3.9474 
3.9803 

>> AsianHalton(50,50,0.1,5/12 ,O. 4,5,1000) 
ans = 

>> AsianHalton(50,50,0.1,5/12 ,O. 4,5,3000) 
ans = 

>> AsianHalton(50,50,0.1,5/12 ,O. 4,5,10000) 
ans = 

>> AsianHalton(50,50,0.1,5/12 ,O. 4,5,50000) 

3.8450 

3.9103 

3.9461 

ans = 

3.9605 

We cannot associate a confidence interval to the estimate obtained by the 
quasi-random a p p r ~ a c h , ’ ~  but we see that with a limited number of replica- 
tions we get an acceptable result. Here we have considered an option maturing 
in five months, with monthly sampling. Let us check what happens if we in- 
crease maturity to two years, with a corresponding increase in the number of 
monthly samples: 

>> randn( ’state’ ,0) 
>> [P ,CI] = AsianMC(50,50,0.1,2,0.4,24,500OOO) 
P =  

CI = 

8.3859 

8.3495 
8.4222 

>> AsianHalton(50,50,0.1,2,0.4,24,1000) 
ans = 

>> AsianHalton(50,50,0.1,2,0.4,24,5000) 
6.6219 

ans = 

7.9257 
>> AsianHalton(50,50,0.1,2,0.4,24,50000) 
ans = 

8.3424 

We see that in this case the performance of Halton sequences is much worse. 
This is due to the fact that we need 24 bases, which are large prime numbers, 

13The randomization of quasi-Monte Carlo scheme is one of the actively pursued research 
directions to  get confidence bounds when using low discrepancy sequences. 
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and we have seen in section 4.6 that using large prime numbers yields poor 
results. We may expect that if the contract is characterized by more samples 
the situation will get even worse. 

One possible solution is using more sophisticated approaches, such as Sobol 
sequences. Another idea, is using the Brownian bridge construction. Using 
the Brownian bridge, we associate the "good" small bases to time instants 
acting as milestones. Large bases are used to fill the sample paths, but we 
may hope that this will not have a too detrimental effect. In what follows we 
use Brownian bridge with Halton sequences, for the sake of simplicity, but of 
course the same idea can be used with any low-discrepancy sequence. We also 
consider the possibility of using low-discrepancy sequences for milestone time 
instants, and pseudo-random numbers to fill the sample paths. 

The first step is simulating the standard Wiener process by Halton se- 
quences and the Brownian bridge. We extend function WienerBridge of fig- 
ure 8.8 to obtain the code in figure 8.21. The function WienerHaltonBridge 
differs from WienerBridge in a few basic features: 

0 It is partially vectorized, as it is convenient to generate all of the sample 
points on each time layer, in order to use Halton sequences in a more 
compact and readable way; the function returns a matrix, containing 
several replications, rather than only one. 

0 The matrix NormMat contains samples from standard normal distribu- 
tion, which are used just like in function HaltonPaths; each column is 
associated to one prime number and one time instant. 

0 The input arguments also include the number of replications NRepl and 
a parameter Limit; this is used to limit the number of dimensions of the 
Halton sequence which are used; note how the variable HUse is incre- 
mented within the main for loop to  pick successive dimensions, associ- 
ated to increasingly large prime numbers; when HUse exceeds Limit, we 
switch to random sampling (just to  fill sample paths which have been 
already outlined). 

Please note that our function is very limited, in that we can only use Brownian 
bridge when the number of time instants is a power of two. This is a limitation 
of our implementation, but not of the technique in itself. 

The second step is transforming the standard Wiener process to a geometric 
Brownian motion. The function GBMHaltonBridge of figure 8.22 works much 
like the function GBMBridge of figure 8.9. We should only note that it is 
vectorized and that this requires a different use of the diff function, which 
has to work horizontally on a matrix. In order to compute Increments, 
we call diff (W, 1,2) on the matrix W containing the paths of the standard 
Wiener process: The argument 1 means that we want to compute first-order 
differences, and the argument 2 means that we want to work along the rows of 
the matrix, whereas the default is along columns (just like mean or cumsum). 
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function WSamples = WienerHaltonBridge(T, NSteps, NRepl, Limit) 
NBisections = log2(NSteps) ; 
if round(NBisecti0ns) -= NBisections 

fprintf(’ERR0R in WienerHB: NSteps must be a power of 2\n’); 
return 

end 

NormMat = zeros (NRepl , NSteps) ; 
Bases = myprimes (NSteps) ; 
for i=l:NSteps 

Generate standard normal samples 

H = GetHalton(NRepl,Bases(i)); 
NormMat ( : , i) = norrninv(H) ; 

end 
% Initialize extreme points of paths 
WSamples = zeros(NRepl,NSteps+l); 
WSamples(:,l) = 0; 
WSamples(:,NSteps+l) = sqrt(T)*NormMat(:,l); 
% Fill paths 
HUse = 2; 
TJump = T; 
IJump = NSteps; 
for k=l:NBisections 

left = 1; 
i = IJump/2 + 1; 
right = IJump + 1; 
for j=1: 2-(k-1) 

a = 0.5*(WSamples(: ,left) + WSamples(: ,right)); 
b = 0.5*sqrt(TJump); 
if HUse <= Limit; 

else 

end 
right = right + IJump; 
left = left + IJump; 
i = i + IJump; 

WSamples ( : , i) = a + b*NormMat ( : ,HUse) ; 

WSamples(:,i) = a + b*randn(NRepl,l); 

end 
IJump = IJump/2; 
TJump = TJump/2; 
HUse = HUse + 1; 

end 

fig. 8.21 
nian bridge. 

Siniulating the standard Wiener process by Halton sequences and the  Brow- 
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function Paths=GBMHaltonBridge(SO,mu,sigma,T,NSteps,NRepl,Limit) 
if round(log2(NSteps)) -= logZ(NSteps) 

fprintf(’ERFl0R in GBMBridge: NSteps must be a power of 2\n’); 
return 

end 
dt = T/NSteps; 
nudt = (mu-O.5*sigma-2)*dt; 
W = WienerHaltonBridge(T,NSteps,NRepl,Limit); 
Increments = nudt + sigma*diff(W,1,2); 
LogPath = cumsum( [log(SO) *ones(NRepl, 1) , Increments] , 2) ; 
Paths = exp(LogPath1; 
Paths(:,l) = SO; 

Fig. 8.22 Simulating geometric Brownian motion by Halton sequences and the Brow- 
nian bridge. 

Now we should pause a little and use our knowledge of geometric Brownian 
motion, represented by equations (8.3) and (8.4) to check if we do generate 
a process with the correct expected values and variances at different time 
instants. In particular, we may wish to check the relative error of the sample 
mean and sample variance of the process generated by Monte Carlo and Halton 
sequences, with and without the Brownian bridge, against the theoretically 
correct values. In order to  do so, it is convenient to use the function of figure 
8.23. Given a matrix of sample paths, the function returns a two-column 
matrix; the first column contains, for each time instant (contained in vector 
Tvet), the relative percentage error in the mean, whereas the second column 
returns the error in variance. In the same figure we also provide the reader 
with a script to compare results. The script prints a table with six columns 
and sixteen rows. 

>> CheckHaltonScript 
ans = 

0.2510 
0.4838 
0.5893 
0.3609 
0.5580 
0.4847 
0.5960 
0.8787 
1.2209 
1.1240 
0.8548 
1.0240 
0.9923 

0.0269 
0.0701 
0.1042 
0.1651 
0.2644 
0.3787 
0.4814 
0.6607 
0.8061 
1.0044 
1.2322 
1.4891 
1.6941 

0.0927 
0.0983 
0.1685 
0.1235 
0.2351 
0.2251 
0.2826 
0.2053 
0.3353 
0.3299 
0.3945 
0.2976 
0.4268 

0.9473 0.4045 
0.9765 0.8147 
0.4233 1.1434 
1.0490 1.9696 
0.9005 3.1095 
1.0232 4.2511 
3.7522 5.4619 
4.4059 7.5672 
5.3788 9.6047 
2.8125 11.1005 
0.0401 12.3976 
1.0730 14.0780 
0.7693 14.5632 

1.0480 
1.1005 
1.9098 
1.4138 
2.7626 
2.8336 
3.3645 
2.5914 
4.1374 
4.4781 
5.2199 
4.1875 
5.9899 
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1.2271 1.9678 0.3922 3.2472 15.2210 5.8546 
1.1193 2.2621 0.4274 0.8804 16.4125 6.2836 
1.5650 2.6552 0.3018 0.1313 18.6872 4.9231 

The first three columns give the relative errors in the estimate of expected 
value at each of the sixteen time instants, for Monte Carlo, Halton sequences 
without Brownian bridge, and Halton sequences with Brownian bridge, re- 
spectively. If we look a t  the second column, we see that the error tends to 
grow in time if we do not use the bridge; this makes sense, as we use large 
"bad" bases for later time intervals. If we compare the first and the third 
column, we see that the error with Halton sequences and the bridge com- 
pares favorably against the error with Monte Carlo. The last three columns 
display a similar pattern for variance, in the sense that there is a significant 
error that tends to increase over time if we use Halton sequences without the 
bridge. The error with Monte Carlo does not display a clear pattern. We 
may also see that Halton sequences with the bridge does not seem so superior 
to Monte Carlo in terms of matching variances. This is not that surprising 
given the simplicity of Halton sequences; nevertheless the reader is invited to 
verify that if we increase the number of sample paths we have a significant 
improvement. 

After all of this work, it is easy to write a function to price the arithmetic 
Asian option based on Halton sequences and the Brownian bridge. The code 
is illustrated in figure 8.24, and we may check the advantage over a straight- 
forward use of low-discrepancy sequences. To this purpose, we may use the 
script in figure 8.25. The idea here is 

1. to evaluate first the option price by plain Monte Carlo with a large 
number of replications (500,000); 

2. then to calculate the price with straightforward Halton sequences, on a 
limited number of replications (10,000); 

3. to check what we obtain with plain Monte Carlo with the small number 
of replications, repeating the procedure twenty times and collecting the 
average price and its standard deviation; 

4. to compare the two prices above with what we obtain using the Brown- 
ian bridge with different mixes of Halton and random sequences; when 
only Halton sequences are used, the experiment is not repeated and no 
standard deviation is reported, as there is no variability in that case. 

The result is the following (the script takes some time to execute): 

>> CompareAsiadl 
Extended MC 9.068486 
Halton 8.800511 
MC mean 9.135870 st .dev 0.135540 
HB (limit: 1) mean 9.074675 st.dev 0.077153 
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function PercErrors = CheckGBMPaths(S0, mu, sigma, T, Paths) ; 
[NRepl, NTimes] = size(Paths1; 
NSteps = NTimes-1; 
Tvet = (l:NSteps).*T/NSteps; 
SampleMean = mean(Paths(: ,2:NTimes)); 
TrueMean = SO * exp(mu*Tvet) ; 
RelErrorM = abs((Samp1eMean - TrueMean)./TrueMean); 
SampleVar = var(Paths(: ,2: (I+NSteps))); 
TrueVar = SO-2 * exp(2*mu*Tvet) .* (exp((sigma-2) * Tvet) - 1) ; 
RelErrorV = abs( (SampleVar - TrueVar) ./TrueVar) ; 
PercErrors = 100* [RelErrorM’ , RelErrorV’l ; 

X CheckHa1tonScript.m 
randn ( ’ state ’ , 0) 
NRepl = 10000; 
T = 5; 
NSteps = 16; 
Limit = NSteps; 
SO = 50; 
mu = 0.1; 
sigma = 0.4; 
Paths = AssetPaths(S0, mu, sigma, T, NSteps, NRepl); 
PercErrorsl = CheckGBMPaths(S0, mu, sigma, T, Paths) ; 
Paths = HaltonPaths(S0, mu, sigma, T, NSteps, NRepl); 
PercErrors2 = CheckGBMPaths(S0, mu, sigma, T. Paths) ; 
Paths = GBMHaltonBridge(S0, mu, sigma, T, NSteps, NRepl, Limit); 
PercErrors3 = CheckGBMPaths(S0, mu, sigma, T, Paths); 
[PercErrorsl(: ,1), PercErrors2(: ,I), PercErrors3(: ,1), . . . 

PercErrorsl(: ,2), PercErrors2(: ,2), PercErrors3(: ,211 

f ig. 8.23 MATLAB function and script to evaluate sampling errors in the generation 
of geometric Brownian motion. 

function P = AsianHaltonBridge(SO,K,r,T,sigma,NSamples,NRepl.Limit) 
Payoff = zeros(NRep1,l); 
Path=GBMHaltonBridge(SO,r,sigma,T,NSamples,NRepl,Limit); 
Payoff = max(0, mean(Path(: ,2: (NSamples+l)) ,2) - K); 
P = mean( exp(-r*T) * Payoff); 

f ig. 8.24 Pricing the arithmetic Asian option by Halton sequences and the Brownian 
bridge. 
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% C0mpareAsianH.m 
randn ( ’ state ’ , 0) 
SO = 50; 
K = 55; 
r = 0.05; 
sigma = 0.4; 
T = 4; 
NSamples = 16; 
NRepl = 500000; 
aux = AsianMC(S0 ,K,r,T,sigma,NSamples ,NRepl) ; 
fprintf(1,’Extended MC %f\n), aux); 
NRepl = 10000; 
aux = AsianHalton( SO, K , r ,TI sigma, NSamples , NRepl) ; 
fprintf(1,’Halton %f\n’, aux); 
for i=1:20 

end 
fprintf(1,’MC mean %f st.dev %f\nJ, mean(aux), sqrt(var(aux))); 
Limit = 1; 
for i=1:20 

end 
fprintf(1,’HB (limit: %d) mean %f st.dev %f\n’, . . .  

Limit = 2 ;  
for i=1:20 

end 
fprintf(1,’HB (limit: %d) mean %f st.dev %f\n’, . . .  

Limit = 4; 
for i=1:20 

end 
fprintf(1,’HB (limit: %d) mean %f st.dev %f\nJ, . . .  

Limit = 16; 
aux = AsianHaltonBridge (SO, K ,r ,T, sigma, NSamples ,NRepl ,Limit) ; 
fprintf(1,’HB (limit: %d) %f\n’, Limit, aux); 

aux(i) = AsianMC(SO,K,r,T,sigma,NSamples,NRepl); 

aux(i) = AsianHaltonBridge(SO,K,r,T,sigma,NSamples,NRepl,Limit); 

Limit, mean(aux), sqrt(var(aw))) ; 

aux (i) = AsianHaltonBridge (SO, K, r ,T, sigma,NSamples, NRepl ,Limit) ; 

Limit, mean(aux), sqrt(var(aux1)) ; 

aux(i) = AsianHaltonBridge(SO,K,r,T,si~a,NSamples,NRepl,Limit); 

Limit, mean(aux), sqrt(var(aux))) ; 

~~~ ~ 

Fig. 8 25 Comparing Monte Carlo and Halton sequences with Brownian bridge. 
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HB (limit: 2) mean 9.017819 st.dev 0.035962 
HB (limit: 4) mean 9.307306 st.dev 0.010279 
HB (limit: 16) 9.367783 

We see that straightforward use of Halton sequences does not give a satisfac- 
tory result and that Monte Carlo with few replications is fairly acceptable. 
We should note that since the payoff is defined by an average, there is much 
less variability than with the corresponding vanilla option depending only on 
price at maturity. Using an Halton sequence only for the terminal price of the 
underlying asset, filling the trajectory by Brownian bridge and random vari- 
ates yields good results with limited variability. Using more Halton sequences 
kills variability, of course, but it also tends to  introduce a bias. In fact, using 
only Halton sequences with the Brownian bridge does not seem to work, and 
we overestimate the price. To understand why, we should carry out a more 
detailed analysis, which we do not report in detail, on the average price of the 
underlying asset generated by Halton sequences with the Brownian bridge. 
On the average, it is not too different from what we obtain by simple Monte 
Carlo sampling, but it is somewhat right-skewed which means that it tends 
to generate larger payoffs on the tail where the option is in-the-money. 

To summarize this section, we see that Halton sequences are not very sat- 
isfactory, and we should look for alternatives. Nevertheless, the idea of the 
Brownian bridge looks like tool one should keep in mind. The best results we 
have obtained in the last experiment are actually due to  a sort of stratifica- 
tion effect on the terminal price, and Brownian bridge allows to exploit such 
a mechanism. 

8.5 ESTIMATING GREEKS BY M O N T E  CARLO SAMPLING 

So far, we have only considered option pricing problems. However, estimating 
option sensitivities is another quite important task. We deal here with the 
estimation of A for a vanilla call, for the sake of simplicity. This section is 
linked to section 6.6, where we considered the interplay between simulation 
and optimization. We recall here the general framework. We have a function 
f ( S o ) ,  which in our case is the price of an option depending on the initial 
underlying asset price So, and the sensitivity we want to estimate is 

df(S0) f(S0 + 6So) - f (So) A = - = lim 
dSrJ 6.90-o 6SO 

Since we are estimating the option price by Monte Carlo simulation, the first 
approach coming to mind is to  take sample paths and estimate A by the 
sample mean of finite differences between discounted payoffs. This approach 
can be implemented as illustrated in figure 8.26. 

However, this idea is too naive. To begin with, some care is needed, since 
what we are doing is swapping an expectation and a limit. In fact, what we 
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function [Delta, CI] = BlsDeltaMCNaive(SO,K,r,T,sigma,dS,NRepl) 
nuT = (r - 0.5*sigma*2)*T; 
siT = sigma * sqrt(T) ; 
Payoff1 = max(0, SO*exp(nuT+siT*randn(NRepl,l))-K); 
Payoff2 = max(0, (SO+dS)*exp(nuT+siT*randn(NRepl.l))-K); 
SampleDiff = exp(-r*T)*(Payoff2 - Payoffl)/dS; 
[Delta, dummy, CI] = normf it (SampleDiff) ; 

fig. 8.26 Estimating the option A by crude Monte Carlo. 

are interested in is 

Eu[C(So + 6So,w>l - Eu[C(So,w)l lim 
Isso-0 SSO 

1 

where C(S0,w)  is the discounted payoff of the call with initial price SO, for a 
sample path corresponding to event w .  But what we are really computing is: 

Even if we accept the approximation of the limit by a finite difference, we 
should not take for granted that swapping the two operators is legal. To see 
a potential trouble intuitively, we should think that we are interested in the 
derivative of a function defined by an integral (the expected value). But the 
integral is a ‘‘smoothing” operator; hence, even if the function we integrate is 
not quite regular, the derivative of the integral may be no trouble. However, if 
we integrate the derivative, we may run into difficulties. In statistical terms, 
commuting the two operators may result in a biased e~ t ima to r . ’~  

Even if we disregard these subtle issues, it is easy to see that the function 
above is far from satisfactory. If we compare the estimate we get against the 
exact value provided by taking the derivative of the Black-Scholes formula, l5 
we see that the estimate is quite poor: 

>> S0=50; K=52; r=0.05; T=5/12; sigmal0.4; 
>> blsdelta(S0, K ,r , T, sigma) 
ans = 

0.5231 
>> randn( ’state’ ,O) 
>> NRepl=50000; 
>> dS = 0.5; 

I4See [ B ,  chapter 71 for a full treatment. 
15The function blsde l ta  is available in the Financial Toolbox. 
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function [Delta, CI] = BlsDeltaMCNaive(SO,K,r,T,sigma,dS,NRepl) 
nuT = (r - O.5*sigmae2)*T; 
siT = sigma * sqrt (T) ; 
Payoff1 = max(0, SO*exp(nuT+siT*randn(NRepl,l))-K); 
Payoff2 = max(0, (SO+dS)*exp(nuT+siT*randn(NRepl,l))-K); 
SampleDiff = exp(-r*T)*(Payoff2 - Payoffl)/dS; 
[Delta, dummy, CI] = normfit(Samp1eDiff) ; 

Fig. 8.27 Improving the estimate of the option A by Common Random Numbers. 

>> [Delta, CI] = BlsDeltaMCNaive (SO, K , r , T, sigma, dS , NRepl) 
Delta = 

CI = 

0.3588 

0.1447 
0.5729 

Actually, it is not too difficult to improve the estimator. From the theory of 
finite differences (section 5.2) we know that taking a central difference may 
be preferable: 

C(S0 + 6 S 0 , W )  - C(S0 - 6 S 0 , W )  

26690 

In our case, this may also reduce the effect of noise in our random sampling. 
Another point is that, to  reduce variance, we may rely on common random 
numbers (section 4.5.2). In other words, we should use the same samples from 
the standard normal distribution when generating the two option payoffs. The 
related code is displayed in figure 8.27. We may verify that using these two 
tricks, we definitely improve the estimate of A: 

>> randn( 'state' ,O) 
>> [Delta, CI] = BlsDeltaMC(S0, K ,r ,T, sigma,dS ,NRepl) 
Delta = 

CI = 
0.5296 

0.5241 
0.5350 

We see that the least one should do to estimate option sensitivities is using 
central differences, when it makes sense, and using common random numbers. 
However, we see that if we are also interested in the option price, we basically 
have to repeat the same computations three times, for SO and SO f 6690. The 
computational burden is actually larger, since we are typically interested in 
other sensitivities as well, and we have also to bother wondering about the 
right step 6690. It would be much nicer if we could just use one run to  estimate 
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both the option price and A. In fact, this may be done in many cases, if we 
analyze more carefully what we are doing.16 

Our discounted option payoff is a random variable 

c = ePrT max{ST - K, 01, 

where 
(r-u2 /2)T+uOZ ST = Soe 

and 2 is a standard normal variable. Using the chain rule for differentiation, 
we have 

The last derivative is easy: 
dST - ST _ _ -  - 
dSo so ’ 

The first derivative is a bit more problematic, but we may see that 

0, i f x < K  
1, if x > K 

d - max{x - K, 0} = 
dx 

There is some trouble when x = K ,  as the function as a kink there. It 
turns out that, since this event has probability zero, this difficulty can be 
disregarded. Hence, we may conclude 

where I is the usual indicator function. Putting everything together, we obtain 
the following estimator of A: 

ST 

SO 
e-‘T-I{Sr > K }  

This type of estimator, because of the way it is built, is called pathwise es- 
timator. We should stress that this is not the only available approach, and 
that we have cut a few delicate corners in its explanation. However, the 
implementation is straightforward and is illustrated in figure 8.28. 

>> randn(’state’,O) 
>> [Delta, CI] = BlsDeltaMCPath(S0 ,K, r, TI sigma. NRepl) 
Delta = 

0.5297 
CI = 

0.5241 
0.5352 

“The treatment here follows [8,  pp. 388-3891, 
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function [Delta, CI 1 = B1 sDe 1 t aMCPath (SO, K , r , T , sigma, NRepl 1 
nuT = (r - 0.5*sigma-2)*T; 
siT = sigma * sqrt (T) ; 
VLogn = exp(nuT+siT*randn(NRepl,l)); 
SampleDelta = exp(-r*T) . *  VLogn .* (SO*VLogn > K); 
[Delta, dummy, CI] = normfit(SampleDe1ta); 

Fig. 8.28 Estimating the option A by a pathwise estimator. 

This snapshot shows that the estimator actually works. The careful reader 
will notice that in this run the true value falls outside the confidence interval; 
this may actually happen, because of the way confidence interval are built. 
The reader is urged to run the experiment a few times in order to check that 
the true value usually falls within the bounds of the confidence interval. 

For further reading 

In the literature 

Path generation and numerical solution of stochastic differential equa- 
tions are extensively treated in [14]. See also [lo] for an introduction 
including MATLAB code. 

The main reference for Monte Carlo methods in finance is [8]. You may 
also see [ 61 and [ 121. 

An early paper on using Monte Carlo simulation in option pricing is [3]. 
An updated survey is given in [4]. 

A nice collection of papers, gathered from the otherwise scattered liter- 
ature, is [7]. 

Interesting sources on the use of low-discrepancy sequences for deriva- 
tives pricing are [15] and [16]. See also [l] and [19] for specific issues 
such as path generation in high-dimensional problems and quantifying 
the estimation error. 

Another interesting paper on quasi-Monte Carlo simulation in finance is 
[ 131, where Faure low-discrepancy sequences, which we did not consider, 
are discussed. 

In this chapter we have only considered applications to option pricing. 
However, another important application field for Monte Carlo simulation 
is estimating Value at  Risk. In [9], and related references, you may find 



REFERENCES 473 

some information on the use of variance reduction methods to speed up 
VaR computations. 

On the Web 

a A Web page related to Monte Carlo and quasi-Monte Carlo methods is 
http://www.mcqmc.org. 

a Some information on using low-discrepancy sequences in finance can be 
also obtained by browsing the following pages: 

http://www.cs.columbia.edu/’traub 

http://www.cs.columbia.edu/”ap/html/info~ation.html 
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Option Pricing by Finite 
Difference Methods 

In this chapter we give a few simple examples of how the Partial Differential 
Equation (PDE) framework may be exploited in option pricing. The idea is 
applying the finite difference methods illustrated in chapter 5 to solve the 
Black-Scholes PDE. We start in section 9.1 by recalling derivatives approxi- 
mation schemes and by pointing out how suitable boundary conditions may 
be set up in order to model a specific option. In section 9.2 we apply a 
straightforward explicit scheme to the pricing of a vanilla European option; 
as we already know, this scheme is prone to  numerical instabilities, which 
we may also interpret from a financial point of view. In section 9.3 we see 
how a fully implicit method may overcome the instability issue. The Crank- 
Nicolson method, which may be regarded as a hybrid between the explicit 
and the fully implicit approach, is applied in section 9.4 to a barrier option. 
Finally, in section 9.5 we see how iterative overrelaxation methods may be 
exploited to tackle an American option with a fully implicit method, which 
is not trivial due to the presence of a free boundary due to the possibility of 
early exercise. 

9.1 APPLYING FINITE DIFFERENCE METHODS TO T H E  
BLACK-SCHOLES EQUATION 

We have shown in section 2.6.2 that the value at  time t of an option written 
on an underlying asset whose price is S( t )  is a function f(S, t )  satisfying the 

4 75 
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partial differential equation 

af af 1 2 2d2f -+frS-+--a s - = r f ,  at as 2 as2 
(9.1) 

with suitable boundary conditions that characterize the type of option. Dif- 
ferent equations may be written if the hypotheses are changed and if path 
dependency is introduced, but this equation is the starting point to learn how 
to apply numerical methods based on finite differences for option pricing. 

As we have seen in chapter 5 ,  to solve a PDE by finite difference methods 
we must set up a discrete grid, in this case with respect to  time and asset 
prices. Let T be option maturity and S,,, a suitably large asset price, that 
cannot be reached by S ( t )  within the time horizon we consider. We need S,,,, 
since the domain for the PDE is unbounded with respect to asset prices, but 
we must bound it in some way for computational purposes; S,,, plays the 
role of $00. The grid consists of points (S ,  t )  such that 

S = 0,6S, 2 65’7.. . , M 6 s  Smax, 

t = 0 , 6 t , 2 6 t , .  .., N 6 t  G T. 

We will use the grid notation f i , j  = f (i bS, j 6 t ) .  

tives in equation (9.1): 
Let us recall the different ways we have to approximate the partial deriva- 

a Forward difference: 

a Backward difference: 

a Central (or symmetric) difference: 

a As to the second derivative, we have 

Depending on which combination of schemes we use in discretizing the equa- 
tion, we end up with different approaches, explicit or implicit, which we ex- 
periment with in the following sections. 
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Another issue, which we must take care of, is setting the boundary condi- 
tions. The terminal condition a t  expiration is 

f ( S , T )  =max{S- K,O} VS 

for a call with strike price K, and 

f (S, T )  = max{ K - S, 0) VS 

for a put. When we consider boundary conditions with respect to asset prices, 
the problem is not so trivial, since we have to solve the equation numerically 
on a bounded region, whereas the domain is unbounded with respect to asset 
prices. We may use a few examples to clarify this issue. 

Example 9.1 Let us consider first a vanilla European put option. When 
the asset price S(t)  is very large, the option is worthless, since we may be 
(almost) sure that it will stay out-of-the-money: 

f ( s m a x ,  t )  = 0. 

The value of S,,, must be relatively large for this boundary condition to 
work properly. When the asset price is S( t )  = 0, we may say that, given 
our geometric Brownian motion model for asset dynamics, the asset price will 
remain zero. So the payoff at  expiration will be K; discounting back to time 
t ,  we have 

f (0, t )  = Ke-'(T-t). 

In grid notation: 

f i ,N = max[K - iSS,O], 
f0,j  = Ke- 

i = 0,1,. . . , M  
, j = O , l ,  ..., N r ( N - j ) a t  

f M , j  = 0, j = 0, 1,. . . , N .  0 

Example 9.2 We may deal with a vanilla European call by reasoning as in 
example 9.1. When the asset price is S(t)  = 0, at  any time t ,  the option will 
expire worthless: 

For a large asset price S(t) ,  we may be sure that it will be in-the-money a t  
expiration and we will get a payoff S(T)  - K. The value at  time t requires 
discounting back the term K and considering that the arbitrage-free price 
at  time t for the underlying asset is simply S( t ) .  Then a suitable boundary 
condition is 

f (S,,,, t )  = S,,, - Ke-'(T-t). 

f (0, t )  = 0. 

In grid notation: 

f i , N  = max[iSS - K,O], 

f o , j = o ,  j = o , 1 ,  ..., N 

f M , j  = M dS - Ke-'(N-j)6t , 

i = 0,1,. . ., M 

j = O , l , . . . ,  N .  
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An alternative boundary condition for large values of S would be requir- 
ing that the option A is 1; in such a case we have a boundary condition 
on the derivative of the unknown function, rather than the function itself. 
This is called a Neumann boundary condition and is common in mathemat- 
ical physics. We will not pursue this approach, because it complicates the 
numerical solution a bit. 0 

When dealing with barrier options, things may be easier. In the case of 
a knock-out option, such as a down-and-out put, the option value is 0 on 
the barrier. The case of an up-and-out call is similar, with the additional 
advantage that the domain we must consider is naturally bounded. American 
options are more complex to deal with because of the early exercise boundary; 
we should take into account for which asset prices and at  which times (if any) 
it is optimal to exercise the option. Thus we have a free boundary that must 
be discovered in the solution process. A variety of boundary conditions must 
be required for exotic options; figuring out the correct boundary conditions 
and approximating them within the numerical scheme is an option-dependent 
issue. 

9.2 PRICING A VANILLA EUROPEAN OPTION BY AN EXPLICIT 
METHOD 

As a first attempt to solve equation (9.1), let us consider a vanilla European 
put option. We approximate the derivative with respect to S by a central 
difference and the derivative with respect to time by a backward difference. 
This is not the only possibility, but any choice must be somehow compatible 
with the boundary conditions. The result is the following set of equations: 

to be solved with the boundary conditions of example 9.1. It should be noted 
that, since we have a set of terminal conditions, the equations must be solved 
backward in time. Let j = N in equation (9.2); given the terminal condition, 
we have one unknown quantity, f i , N - l ,  expressed as a function of three known 
quantities. If we imagine going backward in time the same consideration holds 
for each time layer. Rewriting the equations, we get an explicit scheme: 

f , .  a , j - 1  - *  - ai fi-1,j + bj*fi,j + cj*.fi+l,j 

j ~ N - 1 , N - 2 , . . . , 1 , 0 ~  i = 1 , 2  ,..., M-1,  (9.3) 

where 
1 
2 

a: = -6t(a2i2 -Ti) 
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function price = EuPutExpl (SO ,K, r, T, sigma, Smax. dS , dt) 
% set up grid and adjust increments if necessary 
M = round(Smax/dS); 
dS = Smax/M; 
N = round(T/dt) ; 
dt = T/N; 
matval = zeros(M+l,N+l); 
vets = linspace(O,Smax,M+l)’; 
veti = 0:M; 
vetj = 0:N; 
% set up boundary conditions 
matval(:,N+l) = max(K-vetS,O); 
matval(1, : 
matval(M+l,:) = 0; 
% set up coefficients 
a = 0.5*dt*(signa-2*veti - r).*veti; 
b = 1- dt*(signa^2*veti.-2 + r); 
c = 0.5*dt*(sigma-2*veti + r).*veti; 
% solve backward in time 
for j=N: -1 : 1 

f o r  i=2:M 

= K*exp(-r*dt*(N-vetj) 1 ; 

matval(i,j) = a(i)*matval(i-l,j+l) + b(i)*matval(i, j+l)+ . . . 
c(i)*matval(i+l,j+l); 

end 
end 
% return price, possibly by linear interpolation outside the grid 
price = interpl(vetS, matval(:,l), SO); 

Fig. 9.1 
scheme. 

MATLAB code t o  price a European vanilla put by a straightforwardexplicit 

bf = 1 - bt(a2i2 + T )  

1 
2 

c: = -6t(o2i2 + Ti). 
This scheme is rather straightforward to implement in MATLAB. The code 

is illustrated in figure 9.1, and it requires the value S,,, as well as the two 
discretization steps. The only point requiring some care is that in the math- 
ematical notation it is convenient to uses indexes starting from 0, whereas 
matrix indexes start from 1 in MATLAB. Moreover, if the initial asset price 
does not lie on the grid, we must interpolate between the two neighboring 
points. We have used here a crude linear interpolation; more sophisticated 
splines could be a better alternative, especially if we are interested in approx- 
imating option price sensitivities (as it is always the case in practice). 

>> [c,p] = blsprice(50.50.0.1,5/12,0.4); 
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(a) (b) 

Fig 9.2 View of explicit (a) aiitl implicit (h) schemes to solve the Black-Scholes PDE. 

>’ P 
P =  

>> EuPutExpl(50,5OI0.1,5/12 ,O .4,100,2,5/1200) 
ans = 

>> [ c  ,p] = blsprice (50,50,0.1,5/12 ,O. 3) ; 
>> P 
P =  

>> EuPutExp1(50,50,0.1,5/12,0.3,100,2,5/1200~ 

4.0760 

4.0669 

2.8446 

ans = 
2.8288 

We see that the numerical method gives fairly accurate results. We might try 
to improve them by using a finer grid. 

>> EuPutExp1(50,50,0.1,5/12,0.3,100,1.5,5/1200~ 
ans = 

2.8597 
>> EuPutExp11(50,50,0.1,5/12,0.3,100,1,5/1200~ 
ans = 

-2.8271e+022 

What we see here is another example of the numerical instability that we 
have analyzed in chapter 5. One possibility to avoid the trouble is to resort 
t80 implicit methods. Another one is to carry out a stability analysis and to 
derive honnds on the discretization steps. We will not pursue the second way 
here, which would be quite similar to what we have done in chapter 5 for the 
simpler transport and heat equations. Rather, in the next section we describe 
a financial interpretation of instability, which suggests still another possibility: 
rewriting the equation with a change of variables. 
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9.2.1 

In the explicit scheme, we obtain an option value f (S ,  t )  as a combination of 
the values f ( S  +6S, t + 6 t ) ,  f (S ,  t + 6 t ) ,  and f(S -bS, t + b t ) .  This looks a bit 
like a trinomial lattice method, which we have described in section 7.4 (see 
figure 9.2a). We can make this interpretation clearer by deriving an alternative 
version of the explicit method. Following [ l ,  chapter 181, we assume that the 
first- and second-order derivatives with respect to S at point ( i , j )  are equal 
to those at  point ( i , j  + 1 ) :  

Financial interpretation of the instability of the explicit method 

af - fi+l,j+l - fZ-l,j+l - _  
dS 265 

An alternative way to obtain the same scheme is substituting the right-hand 
term f i , j  in equation (9.2) by f 1 , j - l .  This introduces an error which is bounded 
and tends to zero as the grid is refined.' 

The finite difference equation is now 

which may be rewritten (for i = 1 , 2 , .  . ., M - 1 and j = 0, 1, . . ., N - 1 )  as 

f .  . - 
2 , J  - k f - l , j + l  + i, f,,j+l + 2.1 f a + l , j + l ,  

where 

Ea = - - ( - r 2 6 t + - 0 2 i 2 6 t  1 1 .  1 =- 1 
1 + r 6 t  2 2 ) l + r 6 t T u .  

This scheme is again explicit and is subject to numerical instabilities as well. 
However, the coefficients 61, iZ,  and 2.1 lend themselves to a nice interpretation. 
Recall that, in a binomial or a trinomial lattice, we obtain an option value 
in a node as the discounted expected value of the values in the successor 
nodes, where expectation is taken with respect to a risk-neutral probability 
measure. In fact, the coefficients above include a 1 / ( 1  + r 6 t )  term, which 

'A similar line of reasoning was used when deriving the AD1 method in section 5.4. 
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may be interpreted as a discount factor over a time interval of length 6t .  
Furthermore, we have 

‘7rd +TO +nu = 1. 

This suggests interpreting the coefficients as probabilities, times a discount 
factor. Are they risk-neutral probabilities? We should first check the expected 
value of the increase in the asset price during the time interval 6t:  

which is exactly what we would expect in a risk-neutral world. As to the 
variance of the increment, we have 

Hence, for small 6t  

Var[A] = E[A2] - E2[A] = a2S2 bt - r 2 S 2 ( b t ) 2  M n2S2 6 t ,  

which is also coherent with geometric Brownian motion in a risk-neutral world. 
Thus we see that indeed the explicit method could be regarded as a trinomial 
lattice approach, except for a little problem. The “probabilities” 7?d and r o  
may be negative. The careful reader will see a recurring pattern, since in 
chapter 5 we have already met stability conditions linked to the coefficients 
of a linear combination; in both transport and heat equations, we must make 
sure that this combination is convex, i.e., that the coefficients are positive and 
sum up to one, just like a discrete probability distribution. 

One possibility to avoid the trouble, described in [l], is to change variables. 
By rewriting the Black-Scholes equation in terms of 2 = Ins ,  simple condi- 
tions for stability may be derived. However, a change of variables may not 
be a good idea for certain exotic options. In the next section we implement a 
fully implicit approach that avoids the stability issue altogether. 

9.3 PRICING A VANILLA EUROPEAN OPTION BY A FULLY 
IMPLICIT METHOD 

To overcome the stability issues of the explicit method, we may resort to an 
implicit method. This is obtained by using a forward difference to approxi- 
mate the partial derivative with respect to time. We get the grid equations 
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- f l j  
f 2 j  

f 3 3  

f M - 2 , j  
f M - 1 , j  

which we may rewrite (for i = 1 , 2 , .  . . , M - 1 and j = 0 ,1 , .  . . , N - 1) as 

- 
alfo, j  

0 
0 

0 
c M - l f M , j  - 

where, for each i, 

1 .  1 
2 2 

--ri 6t - -a2i2 6t. 

ai = -rz6t - -a2i26t 

b, = 1+a2i’6t+r6t 

c, = 
1 1 
2 2 

Here we have three unknown values linked to one known value (see figure 
9.2b). First note that, for each time layer, we have M - 1 equations in A4 - 1 
unknowns; the boundary conditions yield the two missing values for each time 
layer and the terminal conditions give the values in the last time layer. As in 
the explicit case, we must go backward in time, solving a sequence of systems 
of linear equations for j = N - 1,. . . , O  . The system for time layer j is the 
following: 

fl,j+l 
f 2 , j + l  

f3,jfl 

f M - Z , j + l  
f M - l , j + l  

We may note that the matrix is tridiagonal and that it is constant for each 
time layer i. So we may speed up the computation by resorting to a LU- 
factorization.’ All of this is accomplished by the MATLAB code in figure 
9.3. 

>> [c ,pl  = blsprice(50,50,0.1,5/12,0.4); 
>> P 
P =  

2Due to the  sparse structure of the  matrix, it  would be much better to  write a specific 
code to solve the sequence of linear systems. Here we use just the  ready-to-use MATLAB 
functionalities. 
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function price = EuPutImpl(SO,K.r,T,sigma,Smax,dS,dt) 
2 set up grid and adjust increments if necessary 
M = round(Smax/dS); 
dS = Smax/M; 
N = round(T/dt) ; 
dt = T/N; 
matval = zeros(M+l ,N+1) ; 
vets = linspace(O,Smax,M+l) ’; 
veti = 0:M; 
vetj = 0:N; 
% set up boundary conditions 
matVal(: ,N+1) = max(K-vetS,O) ; 
matval(1, :) = K*exp(-r*dt*(N-vetj)); 
matval(M+l, :> = 0; 
% set up the tridiagonal coefficients matrix 
a = 0.5*(r*dt*veti-sigma-2*dt*(veti.^2)); 
b = l+sigma^2*dt*(veti.^2)+r*dt; 
c = -0.5*(r*dt*veti+sigma-2*dt*(veti.^2)); 
coeff = diag(a(3:M) ,-1) + diag(b(2:M)) + diag(c(2:M-l),1) ; 
[L,Ul  = lu(coeff); 

% solve the sequence of linear systems 
aux = zeros(M-1.1); 
for j=N:-1:l 

aux(1) = - a(2) * matval(1,j); % other term from BC is zero 
matval(2:M,j) = U \ (L \ (matval(2:M,j+l) + aux)); 

end 
% return price, possibly by linear interpolation outside the grid 
price = interpi (vets, matVal( : ,I>, SO) ; 

Fig. 9.3 MATLAB code to price a vanilla European option by a fully implicit method. 
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4.0760 
>> EuPut1mp1(50,50,0.1.5/12,0.4,100,0.5,5/2400) 
ans = 

4.0718 

The results are fairly accurate and may be improved by a refined grid with- 
out the risk of running into numerical instabilities. Another way to improve 
accuracy is to exploit the Crank-Nicolson method; we will do this in the next 
section for a barrier option. 

9.4 PRICING A BARRIER OPTION BY THE CRANK-NICOLSON 
METHOD 

The Crank-Nicolson method has been introduced in section 5.3.3 as a way to 
improve accuracy by combining the explicit and implicit methods. Applying 
this idea to the Black-Scholes equation leads to the following grid equation: 

r r 
2 

- - - f z , j - 1  + Zhj .  

These equations may be rewritten as 

-azfz-l,j-l + (1 - Pi)fz,j-l - Yifi+l,J-l = Wfi-1,j + (1 + P i M j  + Y i f i + l , j ,  

(9.5) 
where 

bt a, = -((a2i2 - r i )  
4 

6t pi = --(a2i2 + r )  
2 

6t 
4 

~i = - ( 2 i 2  + r i ) .  

We consider here the down-and-out put option, that we have introduced in 
section 2.7.1, assuming continuous barrier monitoring. In this case we need 
only to consider the domain Sb 5 S 5 Smax; the boundary conditions are 

f ( s m a x ,  t )  = 01 f (sb, t )  = 0. 

Taking these boundary conditions into account, we may rewrite equation (9.5) 
in matrix form: 

Mlfj-1 = Mzfj, (9.6) 



where 
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-71 

- a 3  l - p3  -y3 
1 - P 2  -72 

-ffM-2 1 - P M - 2  - 7 M - 2  

-ffM-l 1 - O M - 1  

71  

1 + P z  72  

ff3 1 f P 3  7 3  

f f M - 2  1 + P M - 2  YM-2 

ffM-1 1 + P M - l  

T 
. , . fM-l , j ]  . 

The MATLAB code is displayed in figure 9.4. The result may be compared 
with those obtained by the analytical pricing formula of section 2.7.1: 

>> DOPut (50,50,0.1,5/12,0.4,40) 
ans = 

0.5424 
>> D0PutCK(50,50,0.1,5/12,0.4,40,100,0.5,1/1200~ 
ans = 

0.5414 

Barrier options come in a variety of forms; more on the application of PDEs 
to barrier options may be found in [9]. 

9.5 DEALING WITH AMERICAN OPTIONS 

While pricing a vanilla European option by finite differences is certainly in- 
structive, it is not very practical. We may apply the idea to American options, 
for which exact formulas are not available. The main difficulty in pricing an 
American option is the existence of a free boundary due to the possibility of 
early exercise. To avoid arbitrage, the option value at  each point in the (S,  t )  
space cannot be less than the intrinsic value (i.e., the immediate payoff if the 
option is exercised). For a vanilla American put, this means 

f(S, t )  2 max{K - S( t ) ,  0). 

From a strictly practical point of view, taking this condition into account is 
not very difficult, at least in an explicit scheme. We could simply apply the 
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function price = DOPutCK(SO,K,r,T,sigma,Sb,Smax,dS,dt) 
% set up grid and adjust increments if necessary 
M = round( (Smax-Sb) /dS) ; 
dS = (Smax-Sb)/M; 
N = round(T/dt); 
dt = T/N; 
matval = zeros(M+l,N+l); 
vets = linspace(Sb,Smax,M+l)’; 
veti = vets / dS; 
vetj = 0:N; 
% set up boundary conditions 
matVal(: ,N+1) = max(K-vetS,O); 
matval(1,:) = 0 ;  
matval(M+l,:) = 0; 
% set up the coefficients matrix 
alpha = 0.25*dt*( sigmaA2*(veti.-2) - r*veti 1; 
beta = -dt*0.5*( sigma^2*(veti.^2) + r 1; 
gamma = 0.25*dt*( sigmaA2*(veti.-2) + r*veti 1; 
M1 = -diag(alpha(S:M) ,-1) + diag(1-beta(2:M)) - diag(gamma(2:M-1) ,1) ; 
[L,Ul = lu(M1); 
M2 = diag(alpha(3:M) ,-1) + diag(l+beta(2:M)) + diag(gamma(2:M-1) ,1); 
% solve the sequence of linear systems 
for j=N: -1 : 1 

end 
X return price, possibly by linear interpolation outside the grid 
price = interpl(vetS, matval(:,l), SO); 

matval(2:M,j) = U \ (L \ (M2*matval(2:M,j+l))); 

Fig. 9.4 
met hod. 

MATLAB code to price a down-and-out put option by the Crank-Nicolson 
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procedure of section 9.2 with a small modification. After computing f i j ,  we 
should check for the possibility of early exercise, and set 

just like we do with binomial lattices. Due to instability issues, we might prefer 
adopting an implicit scheme. In this case, there is an additional complication, 
as the relationship above requires knowing fij already, which is not the case 
in an implicit scheme. To get past this difficulty, we may resort to an iterative 
method to solve the linear system rather than to a direct method based on 
LU-factorization. In section 3.2.5 we considered the Gauss-Seidel method 
with overrelaxation. We recall the idea here for convenience. Given a system 
of linear equations such as 

Ax = b, 

we should apply the following iterative scheme, starting from an initial point 
x(0): 

where k is the iteration counter and w is the overrelaxation parameter, until 
a convergence criterion is met, such as 

where E is a tolerance parameter. 
Now, suppose that we want to apply the Crank-Nicolson method to price 

an American put option. We have to  solve more or less the same system 
as (9.6), but here the boundary conditions are a bit different, since there is 
no barrier on which the option value is zero. The systems we should solve 
backward in time look like 

Mlfj-1 = rj, 

where the right-hand side is 

rj = M2fj + a1 

f0,j-1 0 + f0,j 

0 

The additional term takes the customary boundary conditions for a put into 
account. The overrelaxation scheme should take into account the tridiagonal 
nature of the matrix MI,  and it should also be adjusted for early exercise. 
Let g2 ,  i = 1, .  . . , M - 1, be the intrinsic value when S = ibS. For each time 
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When passing from a time layer to the next one, it may be reasonable to 
initialize the iteration with a starting vector equal to the outcome of the 
previous time layer. The resulting code is displayed in figure 9.5. The code is 
a bit tricky because MATLAB starts indexing vectors from 1, but it should 
be clear enough. In this case we have not set up a matrix to contain all of 
the fij values, and the sparse matrix M1 has not been stored; the iterations 
above are best carried out by using the vectors a, p, and -y directly. 

The code may be compared with the binprice function, available in the Fi- 
nancial toolbox, which prices American options by a binomial lattice method 
(see section 7.1). 

>> tic, [pr, opt] = binprice(50,50 ,O. 1.5/12,1/1200,0.4 ,O) ; , toc 
Elapsed time is 0.408484 seconds. 
>> opt(1,l) 
ans = 

4.2830 
>> tic ,AmPutCK (50,50,0.1,5/12 ,O .4,100,1,1/600,1.5,0.001), toc 
ans = 

4.2815 
Elapsed time is 0.031174 seconds. 
>> tic,AmPutCK(50,50,0.1,5/12,0.4,100,1,1/600,1.8,0.001) ,toc 
ans = 

4.2794 
Elapsed time is 0.061365 seconds. 
>> tic,AmPutCK(50,50,0.1,5/12,0.4,100,1,1/600,1.2,0.001) ,toc 
ans = 

4.2800 
Elapsed time is 0.023053 seconds. 
>> tic,AmPutCK(50,50,0.1,5/12,0.4,100,1,1/1200,1.2,0.001), toc 
ans = 

4.2828 
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function price = AmPutCK(SO,K,r,T,sigma,Smax,dS,dt,omega,tol) 
M = round(Smax/dS); dS = Smax/M; % set up grid 
N = round(T/dt); dt = T/N; 
oldval = zeros(M-1,l); % vectors for Gauss-Seidel update 
newval = zeros(M-l,l) ; 
vets = linspace(O,Smax,M+l)’; 
veti = 0:M; vetj = 0:N; 
% set up boundary conditions 
payoff = max (K-vets (2 : M) ,O> ; 
pastval = payoff; % values for the last layer 
boundval = K*exp(-r*dt*(N-vetj)); % boundary values 

alpha = 0.25*dt*( sigmaa2*(veti.^2) - r*veti 1; 
beta = -dt*0.5*( sigmaA2*(veti.-2) + r ) ;  
gamma = 0.25*dt*( sigma^2*(veti.^2) + r*veti 1; 
M2 = diag(alpha(3:M) ,-1) + diag(l+beta(2:M)) + diag(gamma(2:M-1) ,1); 
X solve the sequence of linear systems by SOR method 
aux = zeros (M-l,l) ; 
for j=N: -1 : 1 

set up the coefficients and the right hand side matrix 

aux(1) = alpha(2) * (boundval(1,j) + boundval(l,j+l)); 
% set up right hand side and initialize 
rhs = MZ*pastval(: + aux; 
oldval = pastval; 
error = realmax; 
while to1 < error 

newval(1) = max ( payoff ( I ) ,  . . . 
oldval(1) + omega/(l-beta(2)) * ( . . .  
rhs(1) - (l-beta(2))*oldval(l) + gamma(2)*oldval(2))) ; 

for k=2 : M-2 
newval(k) = max ( payoff (k), . . . 

oldval(k) + omega/(l-beta(k+l)) * (. . . 
rhs(k) + alpha(k+l)*newval(k-l) - . . .  
(1-beta(k+l))*oldval(k) + gamma(k+l)*oldval(k+l))) ; 

end 
newVal(#-1) = max( payoff (M-11, . . . 

oldVal(#-1) + omega/(l-beta(M)) * ( . . .  
rhs(M-1) + alpha(M)*newval(M-2) - . . .  
(1-beta(M) ) *oldVal (M-1) 1) ; 

error = norm(newva1 - oldval); 
oldval = newval; 

end 
pastval = newval; 

end 
newval = [boundval(l) ; newval ; 01 ; % add missing values 
1 return price, possibly by linear interpolation outside the grid 
price = interpl(vetS, newval, SO); 

Fig. 9.5 MATLAB code to price an American put option by Crank-Nicolson method. 
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Elapsed time is 0.036693 seconds. 
>> tic,AmPutCK(50,50,0.1,5/12,0.4,100,1,1/100,1.2,0.001) ,toc 
a s  = 

4.2778 
Elapsed time is 0.009989 seconds. 

From these examples we see that the overrelaxation parameter w has a signifi- 
cant effect on the convergence of the iterative methods. In terms of computa- 
tional speed, the finite difference approach seems even faster than the binomial 
lattice approach, but we must be very careful here. We are comparing im- 
plementations of approaches, and both could be improved. Furthermore, the 
CPU requirements are possibly affected by the way the MATLAB interpreter 
works.3 Anyway, having a whole grid of values, rather than nodes on a bino- 
mial lattice, allows us to obtain better estimates of some of the sensitivities 
(those involved in the Black-Scholes equation). Furthermore, the finite differ- 
ence approach may be preferable when dealing with complex exotic options. 

For further reading 

0 Many examples of how the PDE approach may be exploited in financial 
engineering are given in [6] or [7], which include interesting chapters on 
finite difference methods. You may also find [2] useful. 

0 We have used the finite difference approach on the Black-Scholes equa- 
tion directly; however, a change of variables may be helpful in analyzing 
stability. See, e.g., the related chapters in [3]. In that book you also 
find a treatment on finite element methods, which are considerably more 
refined than simple-minded finite difference schemes. 

0 Books aimed specifically a t  finite differences in financial engineering are 
[4] and [ B ] .  

0 See also (51 if you are interested in the finite element method. 
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I0  
Dynamic Programming 

Dynamic programming is arguably the most powerful principle in optimiza- 
tion and it can be applied to a wide range of problems with radically different 
features. As its name suggests, dynamic programming was originally con- 
ceived as a method to solve dynamic optimization models over time. As such, 
it can be applied to discrete- and continuous-time models, deterministic and 
stochastic models, and finite- and infinite-horizon models. Actually, with a 
little creativity, it can also be applied to non-dynamic problems. For instance, 
it can be used to tackle a combinatorial optimization problem like the knap- 
sack model.’ All of this potential comes with a price. To begin with, dynamic 
programming is a principle, rather than a well-defined and ready-to-use al- 
gorithm. It must be customized to the problem at hand. Furthermore, it 
may be computationally quite expensive. This is not always true: in some 
cases, application of the principle yields quite efficient numerical algorithms, 
or even analytical solutions. Even when dynamic programming does not yield 
the solution itself, it can be most valuable in characterizing its qualitative 
properties, which can provide us with very valuable insights. But in many 
practical cases, straightforward application of the principle is not possible 
because of the so-called “curse-of-dimensionality.” 

Some tricks of the trade can be used to reduce problem dimensionality, 
but dynamic programming is often considered a typically academic concept. 
Nevertheless, there are very good reasons why we have decided to include a 
chapter on this topic. 

’See, e . g . ,  [16]. 
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0 Having a basic grasp of dynamic programming is needed to understand 
recently developed approaches to  price high-dimensional American op- 
tions by Monte Carlo methods. Finite difference and lattice based meth- 
ods are very well suited to price American options, but they do not cope 
well with high-dimensionality. On the other hand, Monte Carlo methods 
deal easily with high-dimensionality, but not with early exercise. Ex- 
ploiting early exercise opportunities optimally requires going backward 
in time, since at  each point in the state space we must compare the 
value of immediate exercise with the value of keeping the option, which 
is simply the price of the option at that point. Hence, it would seem 
that one has to chase her tail a bit, since while running a simulation 
forward in time, we should already know the option value. Indeed, until 
a few years ago, it was a common belief that simulation could not be 
applied to American-style options, but the situation has changed. 

0 While a literal application of dynamic programming may be overly diffi- 
cult, approximate strategies have been developed which are very promis- 
ing in terms of their ability to tackle real problems. Clearly, the increase 
in computational power of hardware plays a role here, but it is not the 
only factor. 

0 Understanding dynamic programming also sheds some light on stochas- 
tic programming, which is the topic of next chapter. 

A comprehensive treatment of dynamic programming in one chapter is out 
of the question. Our main aim is to illustrate Monte Carlo methods to price 
American options. A secondary aim is to  outline how the idea can be applied 
to portfolio optimization over a finite time horizon. Given our limited scope, 
we will only cover discrete-time and finite-horizon models. In section 10.1 we 
first illustrate the principle behind dynamic programming with the simplest 
example, the shortest path problem in a network. Then, in section 10.2, we 
show the connection between this simple example and more general determin- 
istic sequential decision processes. In this section we get acquainted with the 
dynamic programming principle in a deterministic setting. In section 10.3 we 
illustrate how the principle can be extended to stochastic problems. Finally, a 
regression-based Monte Carlo method to price American options is illustrated 
in section 10.4. 

10.1 THE SHORTEST PATH PROBLEM 

The easiest way to introduce dynamic programming is by considering one of its 
most natural applications, i.e., finding the shortest path in a network. Graph 
and network optimization are not customary topics in Finance or Economics, 
but a quick look at  figure 10.1 is enough to understand what we are talking 
about. A network consists of a set of nodes (numbered from 0 to 7 in our 
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\6 

Fig. 10.1 A shortest p i t h  pmI)leiri. 

t.oy example) and a set of arcs joiiiing pairs of nodes. Arcs are labeled by a 
riuiiibcir wliicli can he intcrprctcd as thc arc length (or cost). Our purpose 
is firirlirig H path in t,he network, starting from node 0 and leading to node 
7 ;  such that the pat,h has tota.1 iiiiniinal length. For instance, summing tlie 
iirc kiigths we visit on the path (0, 1, 4, 7 ) :  we see tliat its total length is 18; 
wlieims path (0. I 3,  5 ,  7 )  has lengt,h 16. At each node, we must choose the 
iicxt, iiotlc t,o visit,. We rriay iiiirrictlint,cly apprcciatc that this probleiii bears 
soiw reseriil)lancx: to dyiiamic decision making; given some state we are in. we 
hhoultl dccitlc wliat, to do in order to optiniizc an outcome that depends on 
t,ht: whole path. A greedy decision need not be the optimal one; for instance, 
tlie rlosest node to the starting point 0 in our network is node 2, but there is 
no guararit,cc t,hat t,liis a.rc is on an optiiiial path. 

Of course, we coiild simply enumerate all the possible paths to  spot the 
optimal one: here we have just a finite set of alt,ernatives ancl there is no 
iiiiwrtaiiity iiivolved, so the approach is conceptually feasible. However, this 
nppronrli I)rcoiiies quickly infeasihle iii practice, as the network size incrrases. 
So wc must coirie up wit,li some clever way to avoid exhaustive enumeration. 
Dyiiariiic prt)grit1ririiilig is one possible approach to accomplish this aim. It 
is worth rioting that more efficient algorithms are available for the shortest 
pi th  prol)leiii. h i t  the itlea we illustrate here can he extended to problenis 
ft?aturing infinite state spaces (countable or not) and uncertain data. 

Let n/ = {0,1,2, .  . . , N }  be the node set and A be the arc set; let the start 
aiid filial r io t lw be 0 and N .  respectively. For simplicity; we assuirie that  the 
iirt,work is acyclic arid that  the arc lengths c r J :  i , j  E N ;  are non-negative: If 
wc Iiatl  t,hc possibility of get,t,iiig trappcd iii a loop of negative length arcs, the 
optiinal cost would be --oc ancl we do not want to consider such pathological 
( ‘ i lSFS.  
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The starting point is to find a characterization of the optimal solution, that 
can be translated into a constructive algorithm. Let V, be the length of the 
shortest path from node i E hf to node N (denoted by i A N ) .  Assume 
that, for a specific i E N, node j lies on the optimal path i 5 N .  Then the 
following property holds: j N is a subpath of i 5 N. In other words, the 
optimal solution for a problem is obtained by assembling optimal solutions 
for subproblems. To understand why, consider the decomposition of i -?, N 
into the subpaths i -t j and j + N .  The length of i A N is the sum of the 
lengths of the two subpaths: 

V, = L(i + j )  + L ( j  -+ N). (10.1) 

Note that the second subpath is not affected by how we go from i to j. This 
is strongly related to the concept of state in Markovian dynamic systems: 
how we get to state j has no influence on the future. Now, assume that the 
subpath j -+ N is not the optimal path from j to N .  Then we could improve 
the second term of (10.1) by considering the path consisting of i + j followed 
by j -r, N. The length of this new path would be 

L(i  + j )  + L ( j  N )  < L(i -+ j )  + L ( j  + N) = V,, 

which is a contradiction, as we assumed that V, was the optimal path length. 
This observation leads to the following recursive equation for the shortest 

path from a generic node i to the terminal node N: 

(10.2) 

In other words, to find the optimal path from node i to node N, we should 
consider the immediate cost cij of going from i to all of its immediate suc- 
cessors j ,  plus the optimal cost of going from j to the terminal node. Note 
that we do not only consider the immediate cost, as in a greedy decision rule. 
We also add the future cost of the optimal sequence of decisions starting from 
each state we can visit next; this is what makes the approach non myopic. The 
function V, is called cost-to-go or value function and is defined recursively 
by equation (10.2). The value function, for each point in the state space, tells 
us what the future optimal cost would be, if we reach that state and go on 
with an optimal policy. This kind of recursive equation, whose exact form 
depends on the problem at  hand, is the heart of dynamic programming and is 
an example of a functional equation. In the shortest path problem, we have 
a finite set of states, and the value function is a vector; in an continuous-state 
model, the value function is an infinite-dimensional object. 

Solving the problem requires finding the value function Vo for the initial 
node, and to do that we should go backward in time.2 We can associate a 

2We are considering here only the backward version of dynamic programming. For the 
shortest path, and other deterministic combinatorial optimization problems, we could also 
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terminal condition VN = 0 to our functional equation. Then we unfold the 
recursion by considering the immediate predecessors i of the terminal node 
N ;  for each of them, finding the optimal path length is trivial, as this is just 
C,N. Then we proceed backward, labeling each node with the corresponding 
value function. In this unstructured network, we may label a node only when 
all of its successors have been labeled; we can always find the correct ordering 
in acyclic networks. 

Example 10.1 Let us find the shortest path for the network depicted in 
Figure 10.1. We have the terminal condition V7 = 0 for the terminal node, 
and we look for its immediate predecessors 4 and 6 (we cannot label node 5 
yet, because node 6 is one of its successors). We have 

v4 = c47 + v7 = 10 + 0 = 10 

v6 = C67 f v7 = 8 f 0 = 8. 

Now we may label node 5: 

v5 =,in{ c56 f v6 } =min{ 5 + o  l + 8  } = 5 .  
c57 + v7 

Then we consider node 3 and its immediate successors 4, 5, and 6: 

c34 + v4 3 + 1 0  

c36 + v6 1 + 8  
.=.;.in{ C 3 5 f f i  } =min{ 2 + 5  } = 7 .  

By the same token we have: 

~ l = m i n {  c13 + v3 } = m i n i  2 + 7  } = 9  
c14 f v4 1 + 10 

~2 =min{  c23 + v3 } =min{ 4 + 7  7 + 5  } = 11 
c25 + v5 
co1 + Vl 7 f 9  
c02 + v2 6 +  11 

Vo = min { } = min { } = 16. 

Apart from getting the optimal length, which is 16, we may find the optimal 
path by looking for the nodes optimizing each single decision, starting from 
node 0: 

o +  1 - - + 3 + 5 - + 7 .  

0 
This might seem like a clumsy approach, but even in our simple shortest path 
problem this is better than an exhaustive enumeration of the alternatives. 
Furthermore, the same idea may be applied when uncertainty is involved and 
the value function is defined as an expected value. 

apply a fornard equation (see, e.g. ,  [3, appendix D]). We consider only backward DP because 
of its relevance in stochastic decision making. 
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10.2 SEQUENTIAL DECISION PROCESSES 

In this section we generalize the functional equation approach that we have 
just introduced for the shortest path problem. Consider a discrete-time dy- 
namic system modeled by the state equation: 

where xt is the vector of the state variables at the beginning of time interval 
t and ut is the vector of the control variables applied during time interval 
t .  No uncertainty is considered here: Given the current value of the state 
variable xt, after selecting the control variable ut we know exactly what the 
future state will be, according to the time-varying dynamics described by the 
ht functions. If system dynamics does not change in time, we can drop the 
subscript t from ht. The initial state xo is given and we consider a finite 
time horizon from t = 0 to t = T .  We want to find an optimal sequence of 
controls (u;, u;, . . . , u>-~), to which an optimal trajectory (x;, x;, . . . , x;) 
corresponds, in such a way as to  minimize the objective function: 

T- 1 c ft(Xt, .t) + FT(XT). 

We have assumed an additive form, which makes the application of the dy- 
namic programming principle easier, but other forms lend themselves to a 
decomposition approach. The objective function consists of a trajectory cost 
and a cost linked to the terminal state. The optimization must be carried out 
subject to the dynamic constraints (10.3) and, possibly, to constraints on the 
control variables and/or the state variables. 

(10.4) 
t = l  

Example 10.2 As an example of deterministic sequential decision process 
we consider a stylized consumption-saving problem. We have an initial wealth 
Wo, and we must decide how much to save and how much to consume, at 
time instants t = 0,1 ,2 .  . . , T - 1. What we save can be invested at  a risk-free 
interest rate T .  Furthermore, we have an income stream over the planning 
horizon. The state variable is Wt, the current wealth level. The control 
variable is immediate consumption Ct; if we rule out borrowing money, we 
must have Ct 5 Wt. The (exogenous) income stream is It. The state dynamics 
is 

Wt+i = (Wt - Ct)( 1 + T )  + I t ,  t = 0,  1, . . . , T - 1. 

We may want to maximize an additive utility function including a time dis- 
count factor D < 1: 
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where u is some concave utility function and B(.) is the utility from bequest, 
valuing terminal wealth. If we do not consider the utility from bequest, the 
last decision is clearly to consume all available wealth. There is no uncertainty 
in this model, but the concavity of the utility function tends to enforce some 
regularity in the consumption ~ t r e a m . ~  

In some cases, the terminal valuation function B must be selected in such a 
way to overcome myopic behavior due to end-of-horizon effects. This happens 
when our planning horizon is truncated to make the problem manageable or 
to avoid planning for time periods so far that we cannot even characterize 
uncertainty in probabilistic terms. However, infinite time horizon models are 
often used in Economics: 

m 

t =o 

Here, discounting is essential to get a bounded objective function. The average 
cost/profit criterion may be also be used: 

but this more common in Engineering applications. 0 

This sequential decision problem can be solved by ordinary mathematical 
programming techniques, such as those discussed in chapter 6. However, 
understanding how we can tackle i t  by dynamic programming is helpful to 
develop approaches which can also be applied in more general settings. 

10.2.1 

The objective function (10.4) is separable, in the sense that, for a given number 
r ,  the contribution of the last r decision stages depends only on the current 
state X T - ~  and the r controls U T - ~ ,  . . . , U T - ~ .  Furthermore, a similar sepa- 
ration property (known as Murkovian state property) holds for the trajectory, 
in the sense that the state xt+l reached from xt by applying the control ut 

depends only on xt and ut, and not on the past history XO, . . . , xt-1. AS a 
consequence of such separation properties, we obtain the optimality prin- 
ciple. 

The optimality principle and solving the functional equation 

A n  optimal policy (u;, u;, . . . , u>-~) is  such that, whatever the initial 
state xo and the first control u;, the next controls (u:, . . . , u>-~) are 
an optimal policy for  the (T - 1)-stage problem with initial state xi, 
obtained b y  applying the first control u;. 

30ne  may actually argue that such a simple additive function does not capture habit for- 
mation effects. 
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Therefore, we may write a recursive functional equation to obtain the optimal 
policy: 

vt(Xt) = min {ft(Xt, U t )  + Vt+l(ht(Xt, 4)) , (10.5) 

where the minimization is possibly carried out taking into account constraints 
on the control variable. This equation is known as Bellman equation, after 
the pioneer in dynamic programming. The value function &(xt) is the total 
cost we incur by applying the optimal policy starting from state xt at time 
t . This is a again a backward functional equation which must be solved to  
obtain the initial value function Vo(x0). 

The functional equation has a boundary condition that helps to start un- 
folding the recursion: 

Then we step back to t = T - 1 and, for each possible state X T - ~ ,  we solve 
the following optimization problem: 

Ut 

VT (XT ) = FT (XT ) * 

This is, for each value of the state variable XT-1, a possibly constrained 
optimization problem: we have eliminated the dynamic constraint (10.3), but 
we could have constraints on state and/or control variables. Assuming we 
know the value function VT-~ (.), we may step back to  build the value function 
VT-~(.), by solving: 

VT-~(XT-~) = min { f ~ - - 2 ( ~ ~ - 2 ,  U T - 2 )  + VT-l(hT-2(XT-2, U T - - 2 ) ) )  . 
UT--2 

Going backward to the initial state XO, we solve the overall problem, one stage 
at a time. Note that if we knew the whole set of value functions, we could find 
the optimal control a t  each decision stage, given the current state we observe 
before making our decision. 

We should wonder where this sequential decision problem differs from the 
previous shortest path problem: 

0 the state space is continuous 

0 there is an explicit time dynamics 

0 the set of available controls can be continuous, whereas in the shortest 
path problem the set of control actions was finite, as there was a finite 
set of successor nodes 

Having a continuous state space means that, in principle, we should solve 
an infinite set of optimization problems for each time period. This can be 
avoided in a few lucky cases where we can find an analytical solution, but this 
is the exception rather than the rule. A possible approach is to  discretize the 
state space. If we imagine doing that for each time period, we may see some 
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'T- 1 
- -  

I .  
I , 

similarity with the shortest, path problem by looking at  figure 10.2, whcre a 
network of discrete states is drawn. In order to emphasize the similarity with 
the shortest path problem: tlie network has been drawn under tlie assumption 
that tlie t,errriinnl sttate x r  is fixed. In this case we see that we have no difficulty 
with labeling nodes as the network is layered. The arc lengths are given by 
tlie cost of the corresponding state transitions. 

Clearly, if we may find a suitable discretization of the state space, we have 
a corriputatioiially feasible approach. But we already know, from chapter 4, 
t,hat. tliscrc:t,iziIig highdimensional state spaces with regular grids niay be dif- 
ficult,. This is known as the curse of dimensionality in dynamic programming. 
Nevertheless, we niay also see tliat the real issue is approximating the value 
fiinction. If we know the set of value functions, or a suitable approximation; 
we can find the optimal control a t  any point of the state space. Using concept,s 
introduced in section 3.3, we can approximate each value function as a linear 
coin1)iniLtioii of a set of basis functions: 

M 

v , (Xt )  = C n k . t 3 k ( X d 1  (10.6) 
h = 1  

where we have assunietl that tlie set of basis functions does not change over 
tirric. hut t,lic set> of wcights ( Y ~ J  does. Hence, an infinite-dirnensional prob- 
l ~ m  boils down to the finite-dimensional problem of finding a suitable set of 
weights, possibly determined by interpolation or least squares. The quality of 

Fig. 10.2 A sliortcst p t l i  r q m x i i t a t i o n  of a finitc scqueiitinl dccisioii proc:ess (for 
c,liirit,p, not it11 t,riiiisitioiis a re  slioaii); tho filial stsate is assunled fixcd. 
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the solution we find depends on our choice of basis functions and on the choice 
of nodes in the state space, which we use to solve the function approximation 
problem. This is not easy and it is rather problem-dependent, but we see that 
the numerical techniques we have considered in the previous chapters, such 
as function approximation and numerical optimization, are building blocks in 
numerical dynamic programming. If we also introduce uncertainty, numerical 
integration comes into play as well. 

10.3 SOLVING STOCHASTIC DECISION PROBLEMS BY DYNAMIC 
PROGRAMMING 

In the deterministic setting, we may find the optimal control sequence and the 
corresponding state trajectory. But in a stochastic problem, the current state 
xt and the control ut we apply do not determine the next state, but only 
its conditional probability distribution. In a discrete-state setting, we may 
introduce a set of controlled transition probabilities. To ease the notation, let 
us assume that the transition probabilities are time-independent: 

(lij(U) = P{Xt+l = j I Xt = j ,  Ut = u}. 

where Xt+l is the next state (a random variable) and we have indexed states 
by integer numbers for conveniency. In the continuous-state case, we may 
think of dynamic equations such as 

Xt+l = hbt,  Ut, E t + l ) ,  (10.7) 

where Et+l is a random shock; this random variable has a subscript t + 1 to 
emphasize that it is realized after we decide the control action u t .  We cannot 
anticipate the control sequence, which is implicitly determined by the solution 
of recursive equations such as 

vt (Xt )  = min{f(xt,ut) +Et [Vt+l (h(Xt ,Ut , . t+ l ) ] ) } ,  (10.8) 

This is a straightforward generalization of equation (10.5). In the stochastic 
case, the future cost term is a conditional expectation; the notation E t  points 
out that expectation is carried out with respect to what we know now (the 
current state). 

U t  

Example 10.3 To illustrate (10.7) and (10.8), we may generalize example 
10.2 by including a risky asset in the set of investment opportunities. Assume 
we have a risky asset, whose price S t  follows, in continuous-time, the familiar 
geometric Brownian motion with drift p and volatility u. In discrete-time, we 
have: 

P 
S t + l  = S t e  
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where $' N N ( ( p  - 0 2 / 2 ) 6 t  , od& and 6t is the length of the time step. We ) 
use here the notation to point out what is random at time t ,  and what is 
not. If we denote by at E [0, 11 the fraction of saved wealth that is invested 
in the risky asset, the wealth dynamics is 

1 %+I 
%+I = (Wt -Ct )  0- + (1 - C y ) ( l + ? - )  +I t .  [ st 

The recursive Bellman equation is, a t  time t ,  

with terminal condition 

VT(W7-1 = B(WT). 

In deterministic sequential processes, we want the optimal control path. In 
stochastic dynamic programming, what we really need is the set of value 
functions, one for each decision stage. Given the value function, a t  each 
decision stage we observe the current state and, given the value function, find 
the optimal control by solving a one-step optimization problem. The value 
function is what we need to avoid myopic decisions. Hence, we implicitly 
obtain the optimal control in feedback form: ut = &(xt). 

As we already mentioned, in a continuous-state model the value function 
is an infinite-dimensional object, and we must somehow reduce it to a finite- 
dimensional object. Interpolation or approximation by a set of basis function 
are typically used to this aim. As we have seen in section 3.3, placing nodes is 
important in function approximation. This means that we should devise a grid 
in the state space, and using an evenly spaced one need not be the best idea.4 
In the stochastic case, an additional difficulty is given by the conditional ex- 
pectation in (10.8). If the random shocks are continuously distributed random 
variables, our recursive equation involves a numerical integration problem. As 
we have seen in chapter 4, we may use deterministic or stochastic approaches, 
such as Gaussian quadrature or Monte Carlo sampling. It is important to 
note that here we want to approximate a function defined by an expectation, 
and not just an expected value as typical in option pricing. The following 
example shows how Gaussian quadrature can be extremely valuable in the 
discretization of conditional e~pec ta t ion .~  

4See, e.g., (51 for numerical tricks useful in solving discrete-time DP models. 
5This is strongly linked to scenario generation issues in stochastic programming with re- 
course; see section 11.3. 
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Example 10.4 Let us consider an extremely stylized asset allocation prob- 
lem. An investor has a current wealth WO that she can invest a t  a continuously 
compounded risk free rate r ,  locking a total return R = eTT over a time hori- 
zon of length T. As an alternative, she can consider a risky stock whose 
current price is SO. The risky asset price a t  T will be a random variable &-; 
assuming geometric Brownian motion, we can express this future price as 

where is normally distributed with expected value (p-a2/2)T and variance 
u2T. In section 4.1.2 we have described how Gauss-Hermite quadrature can 
be used to discretize such a random variable, and we have also implemented 
a MATLAB function, GaussHermite, to  this aim. As an alternative, we may 
adopt plain Monte Carlo sampling. 

We consider in this example a buy-and-hold strategy, with no intermediate 
consumption. Hence, the only decision variable is the fraction 6 of wealth 
that our investor should allocate to the risky stock; we do not consider either 
borrowing or short-selling, hence 6 must lie in the interval [0,1]. Assuming a 
concave utility function u(.) the problem is 

where future wealth WT is 

+ (1 - 6)R = Wo (e’ - R )  + R] 1 
and the term e’ - R can be interpreted as an excess return over the risk-free 
(total) return R. To discretize the problem, we should generate K scenarios, 
characterized by a realization Y k  and a probability Irk .  If we use Monte 
Carlo sampling, we have 7rk = 1/K; if we use Gauss-Hermite quadrature, the 
probability is the weight in the quadrature formula. The resulting problem is 

K 

Such a simple optimization problem can be tackled by the MATLAB function 
f minbnd. MATLAB code implementing Monte Carlo sampling is displayed 
in figure 10.3. The function receives self-explanatory arguments including a 
function argument utilf which is the utility function. If we assume logarith- 
mic utility, here is the solution we may get: 

>> randn(’state’,O) 
>> share = OptFolioMC(1000,50 ,O. 1,0.4,0.05.1,10000,Qlog) 
share = 
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function share = OptFolioMC(WO,SO,mu,sigma,r,T,NScen,utilf) 
muT = (mu - 0.5*sigma-2)*T; 
sigmaT = sigmatsqrt (T) ; 
R = exp(r*T); 
Normsamples = muT + sigmaT*randn(NScen,l); 
ExcessRets = exp(NormSamples1 - R; 
MExpectedUtility = @(XI -mean(utilf(WO*((x*ExcessRets) + R))); 
share = fminbnd(MExpectedUtility, 0, 1); 

Fig. 10.3 Simple asset allocation problem under uncertainty: Monte Carlo sampling. 

0.3092 
>> share = OptFo1ioMC(1000,50,0.1,0.4,0.05,1,10000,@1og~ 
share = 

>> share = OptFolioMC(1000,50,0.1,0.4,0.05,1,10000,@log) 
share = 

>> share = OptFolioMC(1000,50,0.l,O.4,O.O5,1,lOOOO,~log~ 
share = 

>> share = OptFolioMC(1000,50,0.l,O.4,O.O5,1,lOOOO,@log) 
share = 

>> share = OptFolioMC(1000,50,0.l,O.4,O.O5,1,lOOOO,@log~ 
share = 

>> share = OptFolioMC(1000,50,0.l,O.4,O.O5,l,lOOOO,@log~ 
share = 

0.3246 

0.3112 

0.3763 

0.3341 

0.3436 

0.2694 

There is a striking variability in the solution, which is due to sampling vari- 
ability in scenario generation. Even 10000 samples do not seem reliable. If 
we increase the number of scenarios, the solution does stabilize: 

>> randn(’state’,O) 
>> share = OptFo1ioMC(1000,50,0.1,0.4,0.05,1,5000000,@1og) 
share = 

>> share = 0ptFo1ioMC(1000,50,0.1,0.4,0.05,1,5000000,@1og~ 
share = 

>> share = OptFo1ioMC(1000,50,0.1,0.4,0.05,1,5000000,@1og~ 
share = 

0.3049 

0.3067 

0.3074 
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function share = OptFolioGauss(WO,SO,mu,sigma,r,T,NScen,utilf) 
muT = (mu - 0.5*sigma^2)*T; 
sigmaT = sigma*sqrt (TI ; 
R = exp(r*T); 
[x,u] = GaussHermite(muT,sigmaT-2,NScen) ; 
ExcessRets = exp(x) - R; 
MExpectedUtility = @(XI -dot(w, 
share = fminbnd(MExpectedUtility, 0, 1); 

utilf (WO*((x*ExcessRets) + R))) ; 

Fig. 10.4 Simple asset allocation problem under uncertainty: Gauss-Hermite quadra- 
ture. 

However, we cannot afford such a huge number of scenarios in a complex 
problem, even less when we have to  solve such a problem repeatedly within 
a numerical dynamic programming scheme. Hence, we may try to  improve 
things using Gauss-Hermite quadrature. Using the function GaussHermite 
from chapter 4, we get the code in figure 10.4. Using clever scenario genera- 
tion, we need much less scenarios to  get a reliable solution: 

>> share = OptFolioGauss (1000,50 ,O. 1 ,O. 4,O .05,1,2,@10g) 
share = 

>> share = OptFolioGauss (1000,50 ,O. 1 ,O .4,0.05,1,3,@1og) 
share = 

>> share = 0ptFo1ioGauss(1000,50,0.1,0.4,0.05,1,4,@1og) 
share = 

>> share = 0ptFo1ioGauss(1000,50,0.1,0.4,0.05,1,5,@1og~ 
share = 

>> share = OptFolioGauss (1000,50,0.1,0.4,0.05,1,100,@log) 
share = 

0.3139 

0.3061 

0.3064 

0.3064 

0.3064 

This little experiment just shows that Gaussian quadrature is a most valuable 
tool for numerical dynamic programming. Of course, apart from playing with 
numbers, one should try to understand some qualitative properties of the 
optimal solution by more analytical approaches. For instance, we have seen 
in example 2.14 (page 71) that logarithmic utility is a CRRA (constant relative 
risk aversion) function. Hence, we should expect that the solution does not 
depend on the current wealth Wo. Numerical experimentation confirms (but 
does not prove) this: 

>> share = OptFolioGauss(100.50,O.l,O.4,O.O5,1,5,@log~ 
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share = 

>> share = OptFolioGauss (10,50,0.1 ,O. 4,O .05,1,5 ,@log) 
share = 

0.3064 

0.3064 

We may also play with different utility functions, such as power utility u(W)  = 
W1-Y/(l - y), to see the effect of risk aversion: 

>> gamma = 0.3;, powU = @(W) W.-(l-gamma)/(l-gamma); 
>> share = 0ptFo1ioGauss(1000,50,0.1,0.4,0.05,1,5,powU) 
share = 

>> gamma = 0.4;, powU = @(W) W.^(l-gamma)/(l-gamma); 
>> share = OptFolioGauss (1000,50 ,O. 1,O.  4,0.05,1,5,powU) 
share = 

>> gamma = 0.5;, powU = @(W) W.^(l-gamma)/(l-gamma); 
>> share = OptFolioGauss (1000,50 ,O. 1 ,O. 4 ,O .05,1,5 ,powU) 
share = 

0.9999 

0.7887 

0.6295 

Note the use of the dot (.) operator in the definition of powU and the fact that ,  
if we change gamma, we have to redefine the function, because the function is 
bound to the current value of gamma when the function is defined. 0 

In the example above, we have just played with numbers on a possible sub- 
problem of dynamic programming. We may also take this opportunity to 
stress the fact that, by analyzing the Bellman equations, we may obtain im- 
portant insights into the structure of the optimal solution. For instance, ap- 
plying dynamic programming to a consumption-saving problem like the one 
we have described in example 10.3, it can be shown that logarithmic utility 
implies that a fixed fraction of wealth is consumed at  each decision stage.6 

Generalizing the example, if we apply Gaussian quadrature to discretize 
conditional expectation, equation (10.8) becomes 

Even though Gaussian quadrature is very helpful, it does not solve all of our 
difficulties. In high-dimensional problems, we may still be forced to  use Monte 
Carlo sampling. Furthermore, we have to discretize the state space and to 
solve possibly difficult optimization problems. But all of this is very easy if we 

%ee, e.g., [8, chapter 111 for a careful analysis of intertemporal consumption and portfolio 
choices with logarithmic and power utilities. 
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are able to find a suitable discretization of the state space and if the control 
decision is very simple, as the following example shows. 

Example 10.5 Now that we are acquainted with dynamic programming, it 
is very useful to reinterpret the binomial lattice approach to price American 
options (see section 7.2). Indeed, equation (7.6), which we recall here for 
convenience, is a very simple case of a dynamic programming recursion: 

It is so easy because we have a finite state space, arising from a moment 
matching discretization of geometric Brownian motion, and because the set 
of control decisions is finite: either we continue, or we exercise the option. 
The value function is fi,j, i.e., the option value for asset price i at  time 
j. Maximization over control decisions just requires to choose if we want 
to exercise, and grab the intrinsic value, or we want to continue. In the 
second case, the continuation value is the discounted expected value function, 
computed over the two successor states of the current one, under the risk 
neutral measure. 0 

We close this section by giving a few clues about how one can handle infinite- 
horizon dynamic programs, assuming a discount factor is used.? A fairly 
natural guess is that the recursive equation (10.8) can be applied by dropping 
the time subscripts: 

V(x) = min{f(x, u) + E [V(h(x, u, Z)])} . 
U 

(10.9) 

The intuition here is that in an infinite-horizon problem we may look for a 
stationary policy, i.e., a policy such that a control decision is associated to each 
state; on the contrary, in a finite-horizon problem the policy can change when 
we are approaching the end of the time horizon. Existence of a stationary 
optimal policy should not be taken for granted,8 but the approach can be 
rigorously justified under some hypotheses. It is also interesting to note that, 
in this case, solving the Bellman equation calls for finding a fixed point of an 
operator; iterative methods are available to this purpose. 

In the finite-dimensional case the Bellman equation boils down to a set of 
non-linear equations: 

r N 1 
(10.10) 

’The average cost/profit case is more difficult; see, e.g., 111. 
8A rather odd case may occur when chance constraints are enforced on states, i.e., when 
we require that the probability of visiting a subset of “bad” states is low. It may happen 
that the optimal policy is randomized, i.e., when we are in certain states we should select 
the control action according to a probability distribution. See, e.g., [14, pp. 255-2571. 
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where q i j  (u) is an element of the (control dependent) transition probability 
matrix. This system can be tackled by iterative methods, including variants 
of Newton's method. In the infinite-dimensional case, we may resort to  the 
collocation method that we have introduced in section 3.4.4. This requires 
choosing a set of basis functions and collocation nodes to approximate the 
value function: 

M 

If we consider A4 basis functions, we should select M collocation nodes X I ,  . . . , 
xM. We should also discretize the random shocks. Assume we adopt Gaussian 
quadrature with weights I'rk and nodes € k ,  k = 1,. . . , K .  Then, Bellman 
equation for each state x, reads 

1 K M  i k = l  j=1 

M 

c Q j $ j ( X i )  =min  U f ( x i , ~ ) f @ ~ ~ A k ~ j $ ' j  (h(xi,u,Ek)) . 
j=1 

This is a set of non-linear equation in the unknown weights ~ j .  It  can be 
tackled, e.g., by Newton's m e t h ~ d . ~  

10.4 AMERICAN OPTION PRICING BY MONTE CARLO 
SI M U LATlO N 

Example 10.5 shows that if we discretize geometric Brownian motion using a 
lattice, dynamic programming boils down to a simple pricing approach. How- 
ever, discretization with respect to time means that we are actually pricing 
a Bermudan option; since the exercise opportunities are restricted to a set of 
discrete times, what we get is actually a lower bound on the option price. We 
may actually apply a dynamic programming framework in continuous-time, 
but this essentially leads to the Black-Scholes partial differential equation 
with a free boundary. This may be tackled, e.g., by finite differences. Both 
lattices and finite differences are limited in their ability to cope with multiple 
stochastic factors, which is what Monte Carlo simulation is good at .  Hence, 
it is natural to wonder if Monte Carlo simulation can be applied to option 
pricing with early exercise features. The answer is that indeed we can apply 
Monte Carlo, within a stochastic dynamic optimization framework. In this 
section we describe an approach due to Longstaff and Schwartz [lo], which 
should be interpreted as a way to approximate the value function of dynamic 
programming by linear regression against a set of basis functions. Since we 

9We refer the reader to [I21 for more details, a set of examples, and a MATLAB-based 
toolbox accomplishing this task. 
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approximate the value function, what we expect is a suboptimal solution; fur- 
thermore, time is discretized; hence, we should expect some low bias in our 
estimate of price. Approaches to get high-biased estimators are described in 
the literature, and are useful to bound the price. 

For the sake of simplicity, we will just consider a vanilla American put 
option on a single, non-dividend paying stock. Clearly, the approach makes 
sense in more complex settings. As usual with Monte Carlo simulation, we 
generate sample paths (SO, S1,. . . , Sj, .  . . , SN) ,  where we use j as a discrete 
time index, Sj = S(j 6 t ) ,  and T = M 6t is the expiration time of the option. 
If we denote by Ij (Sj)  the intrinsic value of the option at time j, the dynamic 
programming recursion for the value function V, (S j )  is 

(10.11) 

In the case of a vanilla American put, we have Ij  (S j )  = max{ K - Sj , 0). This 
is the generalization to a continuous-state model of the recursive equation in 
example 10.5. Having to cope with continuous prices is the only difficulty we 
have here, as time is discretized and the set control actions is finite: either 
exercise, or continue. It is important to realize that we cannot take this 
decision along individual sample paths; if we are a t  a given point of a sample 
path generated by Monte Carlo sampling, we cannot exploit knowledge of 
future prices along that path, as this would imply clairvoyance.1° What we 
can do is using our set of scenarios to build an approximation of the conditional 
expectation in equation ( l O . l l ) ,  for some choice of basis functions $ J k ( S j ) ,  
Ic = 1, . . . , K .  The simplest choice we can think of is regressing the conditional 
expectation against a basis of monomials: $Jl(S) = 1, $z(S) = S, $3(S) = S2, 
etc. In practice, orthogonal polynomials can also be used. Note that we are 
using the same set of basis function for each time instant, but the weights in 
the linear combination will depend on time: 

The weights "kj can be found by linear regression, going backward in time; 
the approximation is non-linear in Sj, but it is linear in terms of the weights. 

In order to illustrate the method, we should start from the last time period. 
Assume we have generated N sample paths, and let us denote by Sji the price 
at time j on sample path i = 1,. . . , N .  When j = M ,  i.e., a t  expiration, the 
value function is trivially: 

'OThis point will also be appreciated in section 11.2, where we discuss the role of non- 
anticipativity in multistage stochastic programming. See also section 4.5.4 where we use 
Monte Carlo simulation to price a chooser option. 
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for each sample path i. These values can be used, in a sense, as the Y-values 
in a linear regression, where the X values are the prices at time j = A4 - 1. 
More precisely, we may consider the regression model: 

where ei is the residual for each sample path. We may find the weights ( Y k , M - l  

by the usual least squares approach, minimizing the sum of squared residuals. 
Note that we are considering the discounted payoff, so that we may then 
compare it directly against the intrinsic value. 

In the regression above, we have considered all of the generated sample 
paths. Actually, it is much better to consider only the subset of sample paths 
for which we have a decision to take a t  time j = A4 - 1. This subset is 
simply the set of sample paths in which the option is in the money at  time 
j = M - 1. In fact, if the option is not in the money, we have no reason to 
exercise; using only the sample paths for which the option is in the money 
is called the “moneyness” criterion and it improves the performance of the 
overall approach. Denoting this subset by Z M - ~  and assuming K = 3, we 
would have to solve the following least squares problem: 

The output of this problem is a set of weights, which allow us to approximate 
the continuation value. Note that the weights are linked to the time period, 
and not to sample paths. Using the same approximation for each sample path 
in Z M - ~ ,  we may decide if we exercise or not. 

We should pause and illustrate what we have seen so far by a little numerical 
example. We will use the same example as the original reference [lo], where 
the eight sample paths given in table 10.1 are considered for a vanilla American 
put with strike price K = 1.1. For each sample path, we also have a set of 
cash flows at  expiration; cash flows are positive where the option is in the 
money. Cash flows are discounted back to time j = 2 and used for the first 
linear regression. Assuming a risk free rate of 6% per period, the discount 
factor is e-0.06 = 0.94176. The data for the regression are given in table 
10.2; X corresponds to current underlying asset price and Y corresponds to 
discounted cash flows in the future. We see that only the sample paths in 
which the option is in the money at time j = 2 are used. The following 
approximation is obtained: 

E[Y I X ]  M -1.070 + 2.983X - 1.813X2. 
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Table 10.1 
put. 

Sample path and cash flows at option expiration for a vanilla American 

Path 

1 
2 
3 
4 
5 
6 
7 
8 

j = o  j = 1  

1.00 1.09 
1.00 1.16 
1.00 1.22 
1.00 0.93 
1.00 1.11 
1.00 0.76 
1.00 0.92 
1.00 0.88 

j = 2  

1.08 
1.26 
1.07 
0.97 
1.56 
0.77 
0.84 
1.22 

j = 3  

1.34 
1.54 
1.03 
0.92 
1.52 
0.90 
1.01 
1.34 

- 
Path j = l  j = 2  j = 3  

. 00 

.oo 

.07 

.18 

.oo 

.20 

.09 

.oo 

Table 10.2 Regression data for time j = 2. 

Path Y X 

.oo 

.07 

.18 

.20 

.09 

x .94176 

x .94176 
x .94176 

x .94176 
x .94176 

1.08 

1.07 
0.97 

0.77 
0.84 
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Table 10.3 Comparing intrinsic and continuation value at time j = 2, and resulting 
cash flow matrix. 

Path Exercise Continue Path j = l  j = 2  j = 3  

.02 .0369 

.03 .046 1 

.13 ,1176 

.33 .1520 

.26 .1565 

.oo .oo 

.oo .oo 

.OO .07 

.13 .oo 

.oo .oo 

.33 .oo 

.26 .OO 

.oo .oo 

Now, based on this approximation, we may compare a t  time j = 2 the intrinsic 
value and the continuation value. This is carried out in table 10.3. Given the 
exercise decisions, we update the cash flow matrix. Note that the exercise 
decision does not exploit knowledge of the future. Consider sample path 4: 
we exercise, making $0.13; on that sample path, we would regret our decision, 
because we could make $0.18 at  time j = 3. We should also note that on 
some paths we exercise at  time j = 2, and this is reflected by the updated 
cash flow matrix in the table. 

The process is repeated going backward in time. To carry out the regres- 
sion, we must consider the cash flows on each path, resulting from the early 
exercise decisions. Say we are a t  time step j ,  and consider path i. For each 
path i, there will be an exercise time j $ ,  which we set conventionally to M + 1 
if the option will never be exercised in the future. Then the regression problem 
(10.12) should be rewritten, for the generic time period j, as: 

(10.13) 

Since there can be a t  most one exercise time for each path, it may be the 
case that after comparing the intrinsic value with the continuation value on 
a path, the exercise time jz is reset to a previous period. Stepping back to 
time j = 1, we have the regression data of table 10.4. The discount factor 
e-2'o.06 = 0.88692 is applied on paths 1 and 8. Since the cash flow there is 
zero, the discount factor is irrelevant, but we prefer using this to point out 
that we are discounting cash flows from time period j = 3; if we had a positive 
cash flow a t  j = 3 and zero cash flow at  j = 2, this is the discount factor we 
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Table 10.4 Regression data for time j = 1. 

Path 

1 
2 
3 
4 
5 
6 
7 
8 

Y 

.OO x .88692 

.13 x .94176 

.33 x .94176 

.26 x .94176 

.OO x .88692 

X 

1.09 
- 

0.93 

0.76 
0.92 
0.88 

Table 10.5 Comparing intrinsic and continuation value at time j = 1, and resulting 
cash flow matrix. 

Path Exercise Continue Path j = 1  j = 2  j = 3  

.01 .0139 

.17 .lo92 

.34 .2866 

.18 .1175 

.22 .1533 

.oo 

.oo 

.oo 

.17 

.oo 

.34 

.18 

.22 

.oo .oo 

.oo .oo 

.OO .07 

.oo .oo 

.oo .oo 

.oo .oo 

.oo .oo 

.oo .oo 

should use. Least squares yield the approximation: 

E[Y I XI x 2.038 - 3.335X + 1.356X2. 

This approximation may seem unreasonable, as we expect smaller payoffs for 
larger asset prices, yet the highest power of the polynomial has a positive 
coefficient here. It can be verified that, for the range of X values we are 
considering, the function is decreasing. Based on this approximation of the 
continuation value, we obtain the exercise decisions illustrated in table 10.5. 
Discounting all cash flows back to time j = 0 and averaging over the eight 
sample paths, we get an estimate of the continuation value of $0.1144, which is 
larger than the intrinsic value $0.1; hence, the option should not be exercised 
immediately. In the next section we illustrate how MATLAB can be used to  
implement this procedure. 
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10.4.1 

To carry out linear regression, there are a t  least two possibilities. One is to  use 
the regress function from the Statistics toolbox. This function also returns a 
lot of statistically relevant information; however, since we are using regression 
only as a function approximation tool, and not all readers have access to that 
toolbox, we will use the familiar backslash \ operator. When used with a 
square matrix A and a correspondingly sized vector b, this operator solves 
the system Ax = b. Otherwise, it returns a least squares solution, which is 
what we are looking for. 

A first step is writing a function which replicates the toy example we have 
just considered. The MATLAB code is displayed in figure 10.5; it is written 
as a function, but in fact it is a script. The sample paths from the example 
are assigned to matrix SPaths, where we do not include the initial price So. 
The cash flow matrix is stored in the vector CashFlows. We use a vector, 
since there can be a t  most one positive entry on each row in this matrix; we 
use another vector, ExerciseTime, to store the times a t  which the option 
is exercised on each path; this corresponds to time subscript j,* above, and 
is used to select the appropriate discount factor in the vector discountvet. 
If the option is never exercised along a sample path, we can set j l  to  the 
number of steps, since we are discounting zero for that path. The main f o r  
loop proceeds backward in time. The vector InMoney contains the indexes of 
sample paths which are in the money a t  the time step we are considering; we 
carry out regression by least squares using the relevant data, obtaining the 
coefficient vector alpha which is used to compute the continuation value for 
each point. The vector Index contains the indexes of the in-the-money sample 
paths on which we exercise; these indexes are relative to the subset of these 
sample paths (which are in one-to-one correspondence to the rows of matrix 
RegrMat) and do not correspond to the original sample path indexes; these 
are recovered in vector ExercisePaths. After carrying out all regressions, 
we average the discounted cash flows to get the continuation value a t  time 
j = 0; this should be checked against the immediate intrinsic value to yield 
the option price. The reader is urged to step through this function using the 
debugger to check the calculations in the toy example. 

Now it is fairly easy to extend this function to price an American put option 
using an arbitrary set of basis functions. The code for GenericLS and a script 
to check it against binomial lattices are given in figure 10.6. Sample paths are 
generated by function AssetPaths from section 8.1.1, and we get rid of the 
initial price. The function is much like ExampleLS, and the only difference is 
that we use a cell array, fhandles, of function handles to contain the set of 
basis functions. Each element in the set of basis function is used to evaluate 
a column in the regression matrix. To this aim, we use the feval MATLAB 
function; this is, in some sense, a higher-order function taking as arguments 
another function and a set of arguments on which this should be evaluated. 
Function handles are built in the script using the @ operator and can be stored 

A MATLAB implementation of the least squares approach 
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function price = ExampleLS; 
% this function replicates example 1 on pages 115-120 of the 
% original paper by Longstaff and Schwartz 
SO = 1; K = 1.1; r = 0.06; T = 3; 
NSteps = 3; dt = T/NSteps; 
discountvet = exp(-r*dt*(l:NSteps) '1 ; 
% generate sample paths 
NRepl = 8; 
SPaths = [ 

1.09 1.08 1.34 
1.16 1.26 1.54 
1.22 1.07 1.03 
0.93 0.97 0.92 
1.11 1.56 1.52 
0.76 0.77 0.90 
0.92 0.84 1.01 
0.88 1.22 1.34 

I ;  
% 
alpha = zeros(3,l) ; % regression parameters 
CashFlows = max (0, K - SPaths ( : , NSteps) ) ; 
ExerciseTime = NSteps*ones(NRepl,l); 
for step = NSteps-1:-l:l 

InMoney = find(SPaths(: ,step) < K); 
XData = SPaths(InMoney,step); 
RegrMat = [ones(length(XData), 11, XData, XData.-21; 
YData = CashFlows(InMoney).*discountVet(ExerciseTime(InMoney)-step); 
alpha = RegrMat \ YData; 
Intrinsicvalue = K - XData; 
ContinuationValue = RegrMat * alpha; 
Index = f ind(IntrinsicValueXontinuationVa1ue) ; 
Exercisepaths = InMoney(1ndex); 
CashFlows(ExercisePaths) = IntrinsicValue(1ndex); 
ExerciseTime(ExercisePaths) = step; 

end % for 
price = max( K-SO, mean(CashFlows.*discountVet(ExerciseTime)) ) ;  

fig. 10.5 MATLAB function to replicate example 1 from [lo]. 
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either in cell arrays or structs, not in ordinary arrays; we have chosen the first 
possibility. 

Now we may check the results we obtain by least squares Monte Carlo 
against those provided by lattice based binprice function: 

>> CheckLS 
priceLS = 

6.8074 
priceBIN = 

6.8129 

10.4.2 

In the previous example, we have used a simple quadratic polynomial. In 
more complex cases, we should be careful in the selection of basis functions. 
In the case of multiple assets, say S1 and Sz, one could consider regressing 
against polynomials involving cross-products such as S1S2, SyS2, S1 S& etc. 
There is a non-trivial trade-off between accuracy and complexity. 

The reader may also have noticed that we did not evaluate a confidence 
interval for the price. Actually, this can and should be done, but we must be 
careful in considering the bias in our estimator. Least-squares Monte Carlo, 
when properly used, yields a low-biased estimator. As we have already noted, 
one source of bias, for truly American options, comes from the fact that 
we are considering a subset of the available exercise opportunities. This is 
not a problem for Bermudan options, and Richardson extrapolation has been 
proposed to improve accuracy for American options. Another source of bias 
comes from suboptimality. We have seen a similar issue when pricing a chooser 
option in section 4.5.4. But to have a clear bias, we should actually use least 
squares Monte Carlo first to generate an early exercise strategy; then we 
should simulate the application of that (suboptimal) strategy to estimate the 
average discounted payoff. Alternative, more sophisticated, approaches have 
been proposed to compute high-biased estimators. One way to do so could be 
simulating early exercise with clairvoyance: along each path, we take exercise 
decisions knowing what comes next along each sample path. This is not 
feasible in practice, and corresponds to relaxing obvious non-anticipativity 
constraints on our decisions, and it results in a upper bound on the option 
price. Having 
confidence intervals from low- and high-biased estimators, we may build an 
overall confidence interval for the price. 

In least squares Monte Carlo, we have built an exercise strategy based on 
the value of continuation. A possible alternative is trying to find the exercise 
boundary directly, e.g., using splines or a suitably parameterized family of 
functions. This is clearly feasible for simple options; for the vanilla put, we 
should get something like figure 2.22 on page 118. But this is not easy in 
general, since the early exercise region need not be connected: We may have 
to find multiple surfaces describing a complicated region. 

Some remarks and alternative approaches 

However, this bound may be rather weak, i.e., too large. 
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function price = GenericLS(SO,K,r,T,sigma,NSteps,NRepl,fhandles) 
dt = T/NSteps; 
discountvet = exp(-r*dt* (1 : NSteps) '1 ; 
NBasis = length(fhand1es); % number of basis functions 
alpha = zeros(NBasis,l); % regression parameters 
RegrMat = zeros (NRepl , NBasis) ; 
X generate sample paths 
SPaths=AssetPaths(SO,r,sigma,T,NSteps,NRepl); 
SPaths(: ,1) = [I ; 1 get rid of starting prices 
% 
CashFlows = max (0, K - SPaths ( : , NSteps) ; 
ExerciseTime = NSteps*ones (NRepl, 1) ; 
for step = NSteps-1:-l:l 

InMoney = find(SPaths(: ,step) < K); 
XData = SPaths(InMoney,step); 
RegrMat = zeros(length(XData) , NBasis) ; 
for k=l:NBasis 

end 
YData = CashFlows(InMoney).*discountVet(ExerciseTime(InMoney)-step); 
alpha = RegrMat \ YData; 
Intrinsicvalue = K - XData; 
ContinuationValue = RegrMat * alpha; 
Index = f ind(IntrinsicVa1ue > ContinuationValue) ; 
Exercisepaths = InMoney(1ndex) ; 
CashFlows(ExercisePaths) = IntrinsicValue(1ndex); 
ExerciseTime(ExercisePaths) = step; 

RegrMat(:, k) = feval(fhandlesCk1, XData) ; 

end % for 
price = max(K-SO, mean(CashF1ows .*discountvet (ExerciseTime))) ; 

% CheckLS.m 
SO = 50; K = 50; r = 0.05; 
sigma = 0.4; T = 1; NSteps = 50; 
NRepl = 10000; 
randn( 'state' ,O) 
fhandles = (@(x)ones(length(x) ,1), @(x)x, @(x)x.-2>; 
priceLS = GenericLS (SO ,K ,r , T, sigma,NSteps ,NRepl ,fhaudles) 
[LatS, LatPrice]=binprice(SO,K,r,T,T/NSteps,sigma,O); 
priceBIN = LatPrice(1,l) 

Fig. 10.6 MATLAB function to price a vanilla American put by least squares Monte 
Carlo and a script to check it. 
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In recent years, many alternative approaches have been proposed for pricing 
American or Bermudan options by random sampling. In section 4.5.4 we have 
seen a simple case in which we build a bushy tree; given the need to  generate a 
large number of samples, the approach may be feasible when a limited number 
of exercise opportunities are given. Alternative discretization strategies based 
on a recombining mesh have been proposed; for all of this we refer the reader 
to the specific literature. 

For further reading 

In the literature 

0 Dynamic programming is arguably the most powerful concept in op- 
timization, and its many potential applications are well illustrated in 

PI. 
a To overcome the curse of dimensionality, a great deal of effort has been 

devoted to the development of approximate solution methods [l, 21, 
which also include simulation-based methods. This has paved the way to 
simulation-based pricing for high-dimensional American-style options. 
An example of this line of research is [15]. 

0 In the original paper [lo], the reader may also find some treatment of 
convergence issues, which we have neglected. 

0 The best treatment of Monte Carlo for American options is [6, chapter 
81. See also [13, chapter 61 or [7]. 

0 Numerical dynamic programming for applications in Economics is dealt 
with in [9] and [12]. 

Continuous-time models are quite useful when the model is reasonably 
simple and an analytical solution can be found, usually yielding valu- 
able insights into the nature of the problem. An excellent reference on 
continuous-time dynamic programming in finance is [ll]. 

0 Another valuable reference is [4], where stylized models are used to gain 
insights into household long-term saving behavior. There, the value of 
approximate analytical solutions is also emphasized. 

On the Web 

The MATLAB toolbox for computational economics, which is associated 
to [12], can be downloaded from 

http://www4.ncsu.edu/Npfackler/compecon/ 
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0 Useful lecture notes on numerical dynamic programming, and some 
(Mathematica) code, can be downloaded from 

http://www.econ.jhu.edu/people/ccarroll/index.html 
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Linear Stochastic 
Programming Models 

with Recourse 
In the last chapter we have considered dynamic programming as a way to 
tackle dynamic stochastic optimization problems. Dynamic programming is, 
in principle, a very powerful framework, which is able to cope with a wide 
variety of problems, but it is plagued by the curse of dimensionality. An 
alternative framework is represented by stochastic programming models with 
recourse. Among economists, stochastic programming models are arguably 
much less widespread than dynamic programming approaches. Nevertheless, 
there is a rich literature concerning financial applications, and we do believe 
that having at  least some familiarity with this modeling framework is useful, 
even if we cannot dwell too deeply in the severe computational challenges 
stochastic programming must face. We will only consider linear models; this 
is a limitation, but non-linear models can often be approximated using linear 
programming modeling tricks. 

Stochastic programming models are introduced in section 11.1 as an exten- 
sion of the linear programming models we have described in chapter 6. We will 
see that stochastic programming with recourse is just one possible modeling 
framework; however, since it is arguably the most common one, we will iden- 
tify this subclass of models with “stochastic programming models” for the sake 
of brevity. We will see a few toy portfolio management models in section 11.2, 
just to show the potential for applications. A fundamental issue in stochastic 
programming is scenario generation, which is outlined in section 11.3. A po- 
tentially large scenario tree is needed to represent uncertainty, resulting in a 
large-scale optimization model. Sometimes, special-purpose methods can be 
applied, which rely on the special structure of stochastic programming mod- 
els to devise decomposition approaches. We will outline the basic method in 
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this vein, L-shaped decomposition, in section 11.4. This will also shed some 
light on the differences and similarities between stochastic programming with 
recourse and dynamic programming, an issue which is briefly discussed in 
section 11.5. 

11.1 LINEAR STOCHASTIC PROGRAMMING MODELS 

We have introduced linear programming (LP) models in chapter 6. An LP 
model in canonical form is 

min c‘x 

s.t. Ax b 

x 2 0. 

When we formulate a model like this, we assume that we have exact knowledge 
of all the model parameters embedded in matrix A and in vectors c and b. 
However, in finance there are several sources of uncertainty, and this modeling 
framework may be insufficient to tackle general optimization problems, such as 
portfolio optimization. One naive attempt to extend LP models to cope with 
uncertainty would be to replace the given parameters with random variables, 
yielding the model below: 

“min” c(w)’x 

x 2 0. 

s.t. A(w)x 2 b(w)  (11.1) 

Here the data c(w), A(w), and b(w) depend on random events w. The “min” 
notation is used to point out that this problem actually does not make sense, 
since minimizing a random variable has no meaning. We could define a sen- 
sible objective function by taking its expected value: 

E[c(w)’x] = E[c(w)]’x. 

An objection here may concern risk neutrality, but the real trouble is feasibility 
of the solution. Finding a solution x such that the constraints (1 1.1) are always 
satisfied may be impossible, or it could lead to a poor solution. By the way, 
this is why we did not consider LP problems in standard form, i.e., involving 
equality constraints. A possible approach is to relax the constraints a bit and 
to accept the fact that, in some cases, the constraints could not be met; we 
might just ask that this undesirable event is unlikely enough. This leads to  
chance-constrained models such as 

min c’x 

s.t. Ax 2 b 

P{G(w)x L h(w)) L 
x 2 0 ,  
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where we have separated the deterministic constraints from those involving 
uncertainty. Such models trade off the cost of the solution with its reliability, 
or robustness. We will not consider the computational challenge of solving 
such a model. This task may be relatively easy, if the problem above turns 
out to be a convex model. This may happen, depending on the probability 
distribution of the uncertain parameter. In general, the problem may be non- 
convex, which makes it much more difficult to cope with. 

But even if we leave computational issues aside, there is another potential 
difficulty. Chance-constrained models may fully capture decision making un- 
der uncertainty in many cases of practical relevance, but they lack the ability 
of modeling a dynamic decision process in which decisions are revised when 
more and more information is acquired. In a truly dynamic decision process, 
we take a set of decisions here-and-now, based on limited information, but 
then we may adjust the decisions when the uncertainty is resolved. Of course, 
adjusting the decisions will imply some additional costs, and we would like to 
take good decisions minimizing the immediate costs as well as the expected 
value of the adjustment costs we will pay in the future. This idea leads to 
stochastic programming models with recourse. As an example, we may con- 
sider a two-stage stochastic linear programming model, which is usually stated 
as follows. The first-stage problem, involving the decisions x that we must 
take here and now, is 

min c’x + E[h(x, w)] 
s.t. AX = b 

x 2 0 .  

The first-stage problem involves a set of deterministic constraints and the 
expected cost of adjusting the solution at  the second stage. The second- 
stage problem, involving the adjustments, or recourse variables y ,  defines the 
function h(x, w): 

h(x,w) = min q(w)’y 

W(w)y = r(w) - T(w)x 

y 2 0 .  

s.t. 

There are a few things to point out as far as the second-stage problem is 
concerned. 

0 We have written the problem in its most general form, allowing random- 
ness in all the parameters, but this need not be the case. For instance, if 
the recourse matrix W is deterministic, we have afixed recourse problem. 
Some algorithms may only be applied if the recourse is fixed and if the 
recourse cost vector q is deterministic as well; other solution algorithms 
have no such limitations. 

0 The overall problem can be thought of as a non-linear programming 
problem involving a recourse function H(x) = E[h(x, w)]. Such a func- 
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Fig. 11.1 Scenario t,ree for a two-stage stochastic optimization probleni. 

tion may seem intractable, as it involves the multidimensional integra- 
tion of a function implicitly defined through an optimization problem. 
However; it may be shown that in the relevant cases the recourse func- 
tion is convex. So, even if we do not know how to  express H ( x )  in a 
simple analytical form, we may still be able both to evaluate (or es- 
timate) it5 value and to find a subgradient at  a given point x. On 
the coiitrary; chance-constrained problems are not convex problems in 
general. 

0 Depending on its structure, the second-stage problem may have a fea- 
sible solution for any first-stage vector x and for any random event w ,  
or not. In t8he second case, the second-stage problem implicitly defines 
home further constraints on x. 

0 The approach may be generalized to multiple stages. We will see how 
in the next section. 

In principle, we can define a stochastic programming model based on a contin- 
uoiis distribution of the uncertain parameters. However; although there are 
methods which a,re devised to solve approximately such problems, they are 
beyond the scope of this introduction. A natural alternative, given our knowl- 
edge of Monte Carlo sampling, is to approximate the continuous distribution 
by a discrete scenario tree like the one depicted in figure 11.1. We repeat that 
picture here, hut we have already met this type of representation in figure 2.2 
and we know that, the idea can be generalized to multiple stages as shown 
i n  figure 2.3. The root, node of the tree represents the present state of the 
world, from which different future states branch, corresponding to possible 
realizat,ioiis of the uncertain data. We have to take first-stage decisions here 
and now; i.e., in the root of the tree; then, when the uncertainty is revealed, 
wc' will have the chance to take second-stage decisions to adapt to the circum- 
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stances; each possible contingency is represented by a leaf node in the tree. 
The overall problem entails taking a good first-stage decision, which should 
be robust, in that it should leave room for not too costly adaptations at the 
second-stage. Assume that we have a set of scenarios, indexed by s E S, each 
with associated probability p , .  Then the two-stage stochastic LP problem 
boils down to a large-scale LP problem: 

3 E S  

s.t. AX = b 

T,x + W3y3 = r3 

XlYS 2 0. 

Vs E 5’ 

In principle, This problem could be simply tackled by standard LP tech- 
niques; however, its size and its peculiar structure suggest the adoption of 
more specific approaches, one of which is described in section 11.4. Now a 
natural question is: Since solving a stochastic LP looks like a non-trivial task, 
why bother? Shouldn’t we simply take the expected values of the data and 
solve a much simpler deterministic problem? Indeed, in some cases, solving 
a stochastic LP is a wasted effort. To characterize the cases in which the 
added effort is worthwhile, we may consider the VSS (value of the stochastic 
solution) concept. 

Let us define the individual scenario problem 

min 

s.t. AX = b 

z(x, w) = c’x + min{q,y 1 W, = rw - Tux, y 2 0 )  

x 2 0. 

Note that this scenario problem assumes knowledge of the future event w. 
The recourse problem we have just considered amounts to solving 

RP = minE,[z(x,w)]. 
X 

Solving a deterministic problem, based on the expected values ij = E[w] of 
the data, corresponds to the expected value problem: 

EV = minz(x,i j) ,  X 

which yields a solution X(ij ) .  However, this solution should be checked in the 
real context; this means that we should evaluate the expected cost of using 
the EV solution, which calls for some adjustments anyway: 

EEV = E,[z(X(G),w)]. 
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The VSS is defined as' 
VSS = EEV - RP. 

It can be shown that VSS 2 0. A large VSS value suggests that solving 
the stochastic problem is well worth the effort; a small value suggests the 
opportunity to take the much simpler deterministic approach. As expected, 
it turns out that finance is a typical field in which the stochastic character 
of the problem cannot be neglected. Furthermore, by a proper choice of 
the recourse function, different risk attitudes of the decision makers may be 
represented. 

11.2 MULTISTAGE STOCHASTIC PROGRAMMING MODELS FOR 
PORTFOLIO MANAGEMENT 

The best way to introduce multistage stochastic models is by using a simple 
asset-liability management model. We use the same basic problem and data 
as (2, pp. 20-281. We have an initial wealth Wo now, and in the future we 
will have to pay an amount L, which is our only liability. We should devise 
an investment strategy to meet the liability; if possible, we would like to end 
up with a final wealth larger than L; however, we should account properly 
for risk aversion, since there could be some chance to end up with a terminal 
wealth which is not sufficient to  pay for the liability, in which case we will 
have to borrow some money. A non-linear, strictly concave utility function of 
the difference between the terminal wealth and the liability would do the job, 
but this would lead to a non-linear programming model. As an alternative, 
we may build a piecewise linear utility function like that illustrated in figure 
11.2. The utility is zero when the terminal wealth W matches the liability 
exactly. If the slope T penalizing the shortfall is larger than q, this function 
is concave, but not strictly. 

The portfolio consists of a set of I assets. For simplicity, we assume that we 
may rebalance it only at  a discrete set of time instants t = 1, . . . , T, with no 
transaction cost; the initial portfolio is chosen at time t = 0, and the liability 
must be paid at  time T + 1. Time period t is the period between time instants 
t - 1 and t. In order to  represent uncertainty, we may build a tree like that 
in figure 11.3, which is a generalization of the two-stage tree of figure 11.1. 
Each node n k  corresponds to  an event, where we should take some decision. 
We have an initial node no corresponding to time t = 0. Then, for each 
event node, we have two branches; each branch is labeled by a conditional 
probability of occurrence, P { n k  I ni}, where ni = a ( n k )  is the immediate 
predecessor of node n k .  Here, we have two nodes at  time t = 1 and four at 
time t = 2, where we may rebalance our portfolio on the basis of the previous 

'A related but different concept is the expected value of perfect information (EVPI); see, 
e.g., 12, chapter 4). 
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t=O 

< 

I 

f / g .  11.2 Pircewise linear coric;ave utility fiirictioii. 

t= I t=2 t=3 

Fig 11 3 Sr(JIlii1 io 1 ree for a. simple asset arid liability iiiaiiageiiieiit probleni. 
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asset returns. Finally, in the eight nodes corresponding to  t = 3, we just 
compare our final wealth to the liability and we evaluate our utility function. 
Each node of the tree is associated with the set of asset returns during the 
corresponding time period. A scenario consists of an event sequence, i.e., a 
sequence of asset returns. We have eight scenarios in figure 11.3. For instance, 
scenario 2 consists of the node sequence (no, 711,123, ns). The probability of 
each scenario depends on the conditional probability of each node on its path. 
If each branch at each node is equiprobable, i.e., the conditional probability is 
1/2, each scenario in the figure has probability 118. The branching factor may 
be arbitrary in principle; the more branches we use, the better our ability to 
model uncertainty; unfortunately, the number of nodes grows exponentially 
with the number of stages, as well as the computational effort. 

At each node in the tree, we must take a set of decisions. In practice, 
we are interested in the decisions that must be implemented here and now, 
i.e., those corresponding to the first node of the tree; the other (recourse) 
decision variables are instrumental to the aim of devising a robust plan, but 
they are not implemented in practice, as the multistage model is solved on a 
rolling horizon basis. This suggests that, in order to model the uncertainty as 
accurately as possible with a limited computational effort, a possible idea is to 
branch many paths from the initial node, and less from the subsequent nodes. 
Each decision at  each stage may depend on the information gathered so far, 
but not on the future; this requirement is called non-anticipativity condition. 
There are two basic ways to  build a multistage stochastic programming model: 
the split-variable and the compact formulations, which are described in the 
next sections. They depend on how the non-anticipativity requirement is 
modeled. The suitability of each modeling approach also depends on the 
solution algorithm. 

The numerical parameters, which are common to both model formulations, 
are as follows: 

a The initial wealth is 55. 

a The target liability is 80. 

There are two assets, stocks and bonds. 

a In the scenario tree of figure 11.3 we have up and down branches; in the 
up (lucky) branches, the (total) return is 1.25 for stocks and 1.14 for 
bonds; in the down (bad) branches, the (total) return is 1.06 for stocks 
and 1.12 for bonds. 

a The reward for excess wealth above the target liability is 1. 

0 The penalty for the shortfall below the target liability is 4. 

11.2.1 Split-variable model formulation 

In the split-variable approach, the decision variables are defined as follows: 
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t=O t= 1 t=2 t=3 

1 
1 
1 

Fig. 11.4 Split-varial)le view of a sceriario tree 

0 z;'t is the ainount invested in asset i at the beginning of time period t 
in sceniirio S .  

By the same token, R:t is the (total) return of asset i in scenario s = 1, . . . , S 
during time period t .  It  is important to understand that, if we define the de- 
cision variables in this way; we must enforce the non-anticipativity constraint 
(3xplic:itly. The issue may be understood by looking at  figure 11.4. Wc have 
a set of decision variables for each node; however, the decision variables cor- 
responding to different scenarios a t  the same time t must be equal if the two 
scenarios are indistinguishable at time t .  This is represented by the dotted 
lines in figure 11.4. To begin with, the initial portfolio must be the same for 
all scenarios. Hence: 

Now conhider tiirie f = 1 and node n1 of the original event tree as depicted 
in figure 11.3: the scenarios s = 1 , 2 , 3 , 4  pass through this node and are 
i1itlihtiIigUisliaI)lc a t  time t = 1. Hence. we niust have 

4 
.fl = = = 2 , 1 ,  i = 1 , . . . , I .  



534 LINEAR STOCHASTIC PROGRAMMING MODELS WITH RECOURSE 

In fact, node n1 corresponds to four nodes in the split view of the tree. By 
the same token, a t  time t = 2 we have constraints like 

5 -  6 
522 - xz2, i = 1,. . . , I .  

More generally, it is customary to denote by { s } t  the set of scenarios which 
are not distinguishable from s up to time t .  For instance: 

(110 = (1, 2 , 3 , 4 , 5 , 6 , 7 , 8 )  

(211 = {1 ,2 ,3 ,41  
(512 = {5,6}.  

Then the non-anticipativity constraints may be written as 

XZt = x;; vi,  t ,  s, s' E { S } t .  

This is not the only way of expressing the non-anticipativity requirement, and 
the best approach depends on the chosen solution algorithm. Now we may 
write the following model for the basic asset-liability management problem: 

(11.2) 
S 

I 

s.t. Ex;o = wo v s  E s (11.3) 
i=l 

I 

E RZ,T+lx;T = L + W $  - wS. Vs E S (11.5) 
Z=l 

x;t = xi; 
x;t, w;, w: 2 0. 

vi, t ,  s, s' E { S } t  

Here w; is the surplus a t  the end of the planning horizon, with reward q, 
and w5 is the shortfall, with penalty T .  The objective function (11.2) is the 
expected value of the utility function; p s  is the probability of each scenario; 
the utility function is concave if T > q. Equation (11.3) states that our initial 
wealth WO is allocated among the different assets. The portfolio rebalancing 
constraints (11.4) say that the wealth at time t is reallocated. In equation 
(11.5) we evaluate how we did, by comparing the final wealth with the liability 
L,  and setting the proper surplus and shortfall values. Then we add non- 
anticipativity and non-negativity constraints. Note that, since the variables 
w; and WE are restricted by non-negativity constraints, we will have w$.wE = 
0 in the optimal solution (i.e., only one variable may be different than 0 in 
each scenario). The non-negativity requirements on xft may be relaxed if we 
allow short selling. 
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In this modeling approach, we introduce a large set of variables, which are 
then linked by non-anticipativity constraints. Hence, one could wonder if this 
really makes sense. The answer depends on the solution algorithm. If one 
wants to adopt an algorithm like the L-shaped decomposition, the compact 
formulation explained in the following section must be used. The split-variable 
approach may be exploited with interior point methods aimed at  stochastic 
programming. Furthermore, relaxing the non-anticipativity constraints by a 
set of Lagrange multipliers, we obtain a set of independent subproblems, one 
per scenario (much in the same vein as example 6.10). Pursuing this idea 
leads to scenario aggregation algorithms. 

Representing the split-variable formulation in AMPL The split-variable formu- 
lation is easily expressed in an algebraic language like AMPL, which is intro- 
duced in appendix C, to which we refer the reader interested in a quick tour. 
It is customary to set up two files: The first one contains the model structure, 
which is illustrated in figure 11.5, and the other one contains the data for a 
particular model instance, as illustrated in figure 11.6. 

The way we express a model in AMPL is almost self-explanatory. All the 
characters after the # character are treated as a comment; note also that in an 
algebraic language, one prefers longer names than in the usual mathematical 
notation. As is customary in AMPL models, we have to define sets, param- 
eters, decision variables, the objective function, and the constraints. Most 
of the following reflects what we illustrate in the simple introductory models 
described in the appendix, but there are a few new things. Let us check the 
model file first (figure 11.5). 

The sets involved in our formulation are introduced by the keyword se t .  
Here we have a simple set, assets.  

0 The numerical parameters are introduced by the keyword param. Most 
of them are scalar values, with the exception of scenario probabilities, 
which are contained in the vector parameter prob, and returns, which 
are contained in the tridimensional array return. 

0 A new element is the indexed collection of sets links. For each time 
period, we have a set of pairs; each pair consists of two scenarios, which 
are not distinguishable up to that time period. As we have said, this is 
where we enforce non-anticipativity. 

The decision variables are introduced by the var keyword and corre- 
spond clearly to the variables in the mathematical statement of the 
model. 

Then the objective function is expressed and the solver is instructed to 
maximize its value. Note how the sum notation is used to express sums 
over an index in a very natural way. 
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set assets; # set of available assets 
param initwealth; # initial wealth 
param scenarios; # number of scenarios 
param T; 
param target; 
param reward; 
param penalty; 
# return of each asset during each period in each scenario 
param returnCassets, 1.. scenarios, 1. .TI; 
param prob{l..scenarios); # probability of each scenario 
# the indexed set points out which scenarios 
# are linked at each period t in O..T-1 
set links{O..T-l) within {l..scenarios, l..scenarios); 

# number of time periods 
# target value (liability) at time T 
# reward for wealth beyond target value 
# penalty for not meeting the target 

# DECISION VARIABLES 
# amount invested in each asset at each period of time 
# in each scenario 
var invest{assets,l..scenarios,O..T-1) >= 0; 
var above-target{l..scenarios)>=O; # amount above final target 
var below-target{l..scenarios)>=O; # amount below final target 

# OBJECTIVE FUNCTION 
maximize exp-value: 

sumCi in 1. .scenarios) prob[il *(reward*above-target [i] 
- penalty*below-target [i]) ; 

# CONSTRAINTS 
# initial wealth is allocated at time 0 
subject to budgetCi in l..scenarios): 

# portfolio rebalancing at intermediate times 
subject to balanceCj in l..scenarios, t in l..T-l) : 

sum{k in assets) (invest[k,i,O]) = initwealth; 

(sumCk in assets) return[k,j,tl*invest[k,j,t-11) = 

sumCk in assets) invest [k, j ,t] ; 
# check final wealth against liability 
subject to scenario-value{j in l..scenarios) : 

(sumCk in assets) return[k,j,Tl*investCk,j,T-ll) 
- above-target [j] + below-target "j] = target; 

# this makes all investments non-anticipative 
subject to linkscenarios 

Ck in assets, t in O..T-1, (sl,s2) in linksCt1) : 
invest [k, sl, tl = invest [k, s2, tl ; 

Fig. 11.5 AMPL model for the split variable formulation (SplitALM.mod). 
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set assets :=  stocks bonds; 
param initwealth := 55; 
param scenarios := 8; 
param T := 3; 

param target := 80; 
param reward := 1; 
param penalty := 4; 

param return := 

[stocks, 1, *I 1 1.25 2 1.25 3 1.25 
[stocks, 2, *I 1 1.25 2 1.25 3 1.06 
[stocks, 3, *I 1 1.25 2 1.06 3 1.25 
[stocks, 4, *I 1 1.25 2 1.06 3 1.06 
[stocks, 5, *I 1 1.06 2 1.25 3 1.25 
[stocks, 6, *I 1 1.06 2 1.25 3 1.06 
[stocks, 7, *I 1 1.06 2 1.06 3 1.25 
[stocks, 8, *I 1 1.06 2 1.06 3 1.06 
[bonds, 1, *I 1 1.14 2 1.14 3 1.14 
[bonds, 2, *I 1 1.14 2 1.14 3 1.12 
[bonds, 3, *I 1 1.14 2 1.12 3 1.14 
[bonds, 4, *I 1 1.14 2 1.12 3 1.12 
[bonds, 5, *I 1 1.12 2 1.14 3 1.14 
[bonds, 6, *I 1 1.12 2 1.14 3 1.12 
[bonds, 7, *I 1 1.12 2 1.12 3 1.14 
[bonds, 8, *I 1 1.12 2 1.12 3 1.12; 

param prob default 0.125; 

Fig. 11.6 AMPL data file for the split variable model formulation (SplitALM.dat). 
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The constraints are introduced by the subject t o  keywords. For each 
constraint we list a name first (which may be used to get the dual 
variables for each constraint after solving the model); then, we specify 
the index values for which the constraint should be replicated (which 
corresponds to universal quantification, such as ‘ds, in mathematical 
notation); finally, we express the constraints themselves. 

An interesting piece of syntax is the last constraint, where we model 
non-anticipativity by enforcing the constraint for each time period and 
for each scenario pair in the indexed collection for that time period. We 
have a small glimpse of how powerful the AMPL syntax is to work with 
sets. 

Now let us check the data file (figure 11.6). 

The set of assets and the scalar parameters are specified with a simple 
syntax. 

With respect to what we illustrate in the appendix on AMPL, one new 
element is how we specify the timeindexed collection links of sets of 
pairs. Again the syntax is rather natural and self-explanatory. 

Another new element is how we list asset returns, indexed by asset, 
scenario, and time period. In this case, what we have illustrated in 
the appendix for vector and matrix data is not enough, as we have a 
tridimensional array. We basically %lice” the tridimensional array in 
two matrices. A notation like [stocks, 1, *I means that values of the 
third index, to which the wildcard corresponds, will be listed together 
with the corresponding entries: Given an asset and a scenario, we list 
the return for each time period. 

The last parameter, prob, is assigned using a shorthand notation; since 
the probability for all the scenarios is 0.125, we use the default keyword 
to streamline notation. 

Now we are ready to load the two files, solve the model, and display the 
solution: 

ampl: model SplitALM.mod; 
ampl: data SplitALM.dat; 
ampl: solve; 
CPLEX 9.1.0: optimal solution; objective -1.514084643 
20 dual simplex iterations (13 in phase I) 
ampl: display invest; 
invest [bonds, * , *I 

1 13.5207 2.16814 0 
2 13.5207 2.16814 0 

0 1 2 := 
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3 13.5207 2.16814 71.4286 
4 13.5207 2.16814 71.4286 
5 13.5207 22.368 71.4286 
6 13.5207 22.368 71.4286 
7 13.5207 22.368 0 
8 13.5207 22.368 0 

[stocks, *, *I 
0 1 

1 41.4793 65.0946 
2 41.4793 65.0946 
3 41.4793 65.0946 
4 41.4793 65.0946 
5 41.4793 36.7432 
6 41.4793 36.7432 
7 41.4793 36.7432 
8 41.4793 36.7432 

2 := 

83.8399 
83.8399 
0 
0 
0 
0 
64 
64 

We see quite clearly the non-anticipative nature of the solution: The first 
column of each table shows one number, since the initial decision, in the root 
of the tree, is common to all scenarios; the second column shows two values, 
corresponding to the decisions in nodes n1 and n2; a t  time period 2, we have 
four nodes, and four different values. We may notice that in the last period 
the portfolio is not diversified, since the whole wealth is allocated to one asset, 
and we should wonder if this makes sense. Actually, it is a consequence of 
two features of this toy model: 

0 We are approximating a non-linear utility function by a piecewise linear 
function, and this may imply “local” risk neutrality; we should either 
use a non-linear programming model or a more accurate representation 
with more pieces. 

0 The scenario tree has a very low branching factor, and this does not 
represent uncertainty accurately. 

However, the portfolio allocation in the last time period is not necessarily a 
critical output of the model: the real stuff is the initial portfolio allocation. 
The decision variables for future stages have the purpose of avoiding a myopic 
policy, but they are not meant to be implemented. Nevertheless, the possi- 
ble impact of poor modeling in the last stages should be assessed; in fact, 
for problems involving a short time horizon, end-effects may be detrimental. 
Unlike dynamic programming, we do not get the solution in feedback form: 
We do not have a good recipe to take optimal decisions in the future, as a 
multistage stochastic program should be re-run in a rolling horizon fashion 
whenever we need taking more decisions. More on this in section 11.5. 

Finally, we should note that the solution has been obtained using CPLEX 
as a solver, but this need not be the case. If you have the AMPL student demo 
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version, you could also use MINOS. By the way, MINOS should be used if you 
want to use a truly non-linear utility function. Other linear and non-linear 
solvers are available for use with AMPL.' 

11.2.2 Compact model formulation 

The split-variable formulation is based on a large number of variables, which 
are then linked together by the non-anticipativity constraints. This may 
be useful for algorithms based on decomposition into independent scenarios, 
which could be accomplished by dualizing non-anticipativity constraints. But 
if we want to apply a generalization of the L-shaped method (section 11.4) to  
multistage stochastic programs, the model must be written in a different way. 
A more compact formulation may be obtained directly by associating decision 
variables to the nodes in the tree. Let us introduce the following notation: 

N is the set of event nodes, in our case 

Each node n E N ,  apart from the root node no, has a unique direct 
predecessor node, denoted by u(n):  for instance, u(n3) = n1. 

There is a set S c N of leaf (terminal) nodes, in our case 

S = (727,. . . , n ~ } ;  

for each node s E S we have surplus and shortfall variables w$ and WE. 

There is a set T c N of intermediate nodes, where portfolio rebalancing 
may occur after the initial allocation in node no; in our case 

T = (121, .  . . , ns};  

for each node n E {no} U T there is an investment variable xin, corre- 
sponding to the amount invested in asset a at  node n. 

With this notation, the model may be written as follows: 

SES 

I 

s.t. C x i , n o  = wo 
i=l 

I 1 

i=l i=l 

'See http: www. ampl. corn and the other web sites listed at the end of appendix C. 
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where Ri,n is the total return for asset i during the period that leads to node n, 
and p" is the probability of reaching the terminal node s E S; this probability 
is the product of all the conditional probabilities on the path that leads from 
node no to s. 

Representing the compact formulation in AMPL The compact formulation can 
also be easily expressed in AMPL. The structure of the model file is similar 
to the split-variable formulation. The main differences are: 

We introduce the three sets of nodes: the set of initial nodes, i n i t n o d e ,  
which is actually a singleton; the set of intermediate nodes intermnodes;  
and, finally, the set of terminal nodes termnodes, which correspond to 
the eight scenarios. 

For each node, apart from no, we have a predecessor; we use an array 
pred of singleton sets to store the predecessor; this is needed if we want 
to treat nodes as sets of symbols, but we could also use an array of 
numerical values to  index nodes. 

Return and decision variables are now indexed by nodes, rather than by 
a (scenario, time) pair as we did in the split-variable model formulation. 

The objective function and the constraints are a straightforward trans- 
lation of the mathematical model. 

The data file is also fairly self-explanatory. We may see how the three node 
subsets are listed. The only noteworthy point is the use of transposition 
(keyword tr)  to assign the r e t u r n  table; in fact, return is defined in the 
model file as a table indexed by assets and nodes, and we must transpose the 
table if we want to swap the two indexes in order to improve readability in 
the data file. 

Now we are ready to  solve the model and to check that we get the same 
solution we obtained by the alternative model formulation: 

ampl: model CompactALM.mod; 
ampl: data CompactALM.dat; 
ampl: solve; 
CPLEX 9.1.0: optimal solution; objective -1.514084643 
20 dual simplex iterations (13 in phase I) 
ampl: display invest; 
invest := 

bonds nO 13.5207 
bonds nl 2.16814 
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set assets; 
param initwealth; # initial wealth 
param target; 
param reward; 
param penalty; # shortfall penalty 

# available investment options 

# target liability at time T 
# reward for excess wealth beyond target value 

# NODE SETS 
set init-node; # initial node 
set interm-nodes; # intermediate nodes 
set term-nodes; # terminal nodes 
# immediate predecessor node 
set prediinterm-nodes union term-nodes) 

within (init-node union interm-nodes); 
param prob(term-nodes); # probability of each scenario 
# return of each investment option at the end of time periods 
param returnfassets, interm-nodes union term-nodes); 

# DECISION VARIABLES 
# amount invested in trading nodes 
var invest{assets,init-node union interm-nodes) >= 0; 
var above-target{term-nodes)>=O; 
var below-target(term-nodes)>=O; 

# amount above final target 
# amount below final target 

# OBJECTIVE FUNCTION 
maximize exp-value: 

sum{s in term-nodes) prob [s] * (reward*above-target [s] 
- penalty*below-target[s]); 

# CONSTRAINTS 
# initial wealth is allocated in the root node 
subject to budget{nO in init-node) : 

# portfolio rebalancing at intermediate nodes 
subject to balanceCn in interm-nodes, a in pred[n]) : 

(sumCk in assets) return[k,n] *invest [k,a]) = 
sum(k in assets) invest [k,n] ; 

sumCk in assets) (invest Ck,nOl) = initwealth; 

# check final wealth against target 
subject to scenario-value{s in term-nodes, a in pred[sl) : 

(sumCk in assets) returnCk,s]*invest [k,a]) 
- above-target [s] + below-target Is] = target; 

fig. 11.7 AMPL model for the compact formulation (CompactALM.mod). 
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s e t  a s s e t s  := s tocks  bonds; 
param in i twea l th  := 55; 
param t a r g e t  : =  80; 
param reward :=  1; 
param penalty := 4 ;  

s e t  init-node := no; 
s e t  interm-nodes := n l  n2 n3 n4 n5 n6; 
s e t  term-nodes := n7 n8 n9 n10 n l l  n12 n13 n14; 

param r e t u r n  ( t r ) :  

n l  1.25 1.14 
n2 1.06 1.12 
n3 1.25 1.14 
n4 1.06 1.12 
n5 1.25 1 .14  
n6 1 .06  1.12 
n7 1.25 1.14 
n8 1 .06  1 . 1 2  
n9 1.25 1.14 
n10 1.06 1 .12  
n l l  1 .25  1.14 
n12 1 .06  1 . 1 2  
n13 1.25 1.14 
n14 1.06 1 .12  ; 

s tocks  bonds : = 

param prob de fau l t  0.125; 

# immediate predecessors 
s e t  pred[nl] := no; 
s e t  predCn21 := no; 
s e t  predln31 := n l ;  
s e t  pred[n4] := n l ;  
s e t  pred[n5] :=  n2; 
s e t  pred[n6] := n2; 
s e t  pred[n71 := n3; 
s e t  predCn81 :=  n3; 
s e t  predCn91 := n4; 
s e t  pred[nlOl := n4; 
s e t  p red[n l l ]  := n5; 
s e t  predCnl21 := n5; 
s e t  pred[nl3] := n6; 
s e t  pred[nl4] := n6; 

~~~ 

Fig. 11.8 AMPL data file for the compact model formulation (CompactALM.dat). 
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bonds n2 22.368 
bonds n3 0 
bonds n4 71.4286 
bonds n5 71.4286 
bonds n6 0 
s tocks  nO 41.4793 
s tocks  n l  65.0946 
s tocks  n2 36.7432 
s tocks  n3 83.8399 
s tocks  n4 0 
s tocks  n5 0 
s tocks  n6 64 
, 

It is worth noting that writing the data file manually, in particular the in- 
formation representing the scenario tree structure, is out of the question for 
realistically sized problem instances. One possibility is writing a MATLAB 
function to do that. A few modeling tools for stochastic programming have 
also been developed; although they are mostly research products a t  present, 
the situation is likely to change in the future. 

11.2.3 

To give the reader an idea of how to build non-trivial financial planning mod- 
els, we generalize a bit the compact formulation of the preceding section. The 
assumptions and the limitations behind the model are the following: 

Asset and liability management with transaction costs 

0 We are given a set of initial holdings for each asset; this is a more 
realistic assumption, since we should use the model to rebalance the 
portfolio periodically according to  a rolling horizon strategy. 

0 We take linear transaction costs into account; the transaction cost is a 
percentage c of the traded value, both for buying and selling. 

0 We want to maximize the expected utility of the terminal wealth. 

0 There is a stream of uncertain liabilities that we have to meet. 

a We do not consider the possibility of borrowing money; we assume all 
of the available wealth at each rebalancing period is invested in the 
available assets; actually, the possibility of investing in a risk-free asset 
is implicit in the model. 

0 We do not consider the possibility of investing new cash at  each rebal- 
ancing date (as would be the case, e.g., for a pension fund). 

Some of the limitations of the model may easily be relaxed. The important 
point we make is that when transaction costs are involved, we have to  intro- 
duce new decision variables to  express the amount of assets held, sold, and 
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bought a t  each rebalancing date. We use a notation which is similar to that 
used in the compact formulation: 

0 N is the set of nodes in the tree; no is the initial node. 

0 The (unique) predecessor of node n E N\{no} is denoted by a ( n ) ;  the 
set of terminal nodes is denoted by S; as in the previous formulation, 
each of these nodes corresponds to a scenario, which is the unique path 
leading from no to s E S, with probability p s .  

0 T = N\({no} U S) is the set of intermediate trading nodes. 

0 L" is the Iiability we have to meet in node n E N .  

0 c is the percentage transaction cost. 

0 zyo is the initial holding for asset i = 1 , .  . . , I at the initial node. 

0 P," is the price for asset i a t  node n. 

0 zp is the amount of asset i purchased at node n. 

y l  is the amount of asset i sold at  node n. 

0 xl is the amount of asset i we hold a t  node n, after rebalancing. 

0 W s  is the wealth at node s E S. 

0 V (  W )  is the utility for wealth W .  

Based on this notation, we may write the following model: 

(11.6) 

(11.7) 

(11.8) 
I I 

(1 - c) c P,'" yp - (1 + c) c P,'".zp = L" V n  E T U {no} 
i= l  i= l  

(11.9) 
I 

w s  = c P:x;(s) - L" vs E s (11.10) 
i= l  

51, zz", y;, ws 2 0. (1 1.11) 

The objective (11.6) is the expected utility of the terminal wealth; if we 
approximate this non-linear concave function by a piecewise linear concave 
function, we get an LP problem (as we did in section 12.1.1). Equation (11.7) 
expresses the initial asset balance, taking the current holdings into account; 
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the asset balance at intermediate trading dates is taken into account by equa- 
tion (11.8). Equation (11.9) makes sure that enough cash is generated by 
selling assets in order to meet the liabilities; we may also reinvest the pro- 
ceeds of what we sell in new asset holdings; note how the transaction costs are 
expressed for selling and purchasing. Equation (11.10) is used to estimate the 
final wealth; note that here we have not taken into account the need to sell 
assets to generate cash to meet the last liability. If we assume that the entire 
portfolio is liquidated at  the end of the planning horizon, we could rewrite 
equation (11.10) as 

I 

W" = (1 - c)  c P,ax;(") - L". 
i=l 

In practice, we would repeatedly solve the model on a rolling horizon basis, 
so the exact expression of the objective function is a bit debatable. 

This model can be generalized in a number of ways, which are left as an 
exercise to the reader. The most important point is that we have assumed that 
the liabilities must be met. This may be a very hard constraint; if extreme 
scenarios are included in the formulation, as they should be, it may well be the 
case that the model above is infeasible. So the formulation should be relaxed 
in a sensible way; we could consider the possibility of borrowing cash; we could 
also introduce suitable penalties for not meeting the liabilities. In principle, 
we could also require that the probability of not meeting the liabilities is small 
enough; this leads to chance-constrained formulations, for which we refer the 
reader to the literature. 

11.3 SCENARIO GENERATION FOR MULTISTAGE STOCHASTIC 
PROGRAMMING 

The quality of the solution obtained by solving a multistage stochastic pro- 
gram depends on how well the scenario tree represents the inherent uncer- 
tainty influencing the decision problem. To generate scenarios in the financial 
domain, the necessary starting point is a sensible model describing the evolu- 
tion of relevant quantities, such as interest rates, stock prices, inflation, etc. 
Stochastic differential equations are a possible modeling framework, in which 
case we should discretize time according to the structure of our scenario tree. 
Alternatively, discrete-time models may be built directly, such as time se- 
ries models. A class of simple discrete-time models are vector autoregressive 
models (VAR, which should not be confused with Value at Risk). Let ht be 
a vector of economic and financial variables at time t .  An example of a VAR 
model is 

where c and S2 are model parameters, and E - N ( 0 ,  E) is a vector of jointly 
normal random variables with zero mean and covariance matrix E. 

ht = c + S2ht-1 + ~ t ,  t = 1,. . . ,T, 
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Given a dynamic model in some form, generating a scenario tree requires 
some form of sampling. However, especially in multistage problems, there is 
the danger of an exponential growth in size of the tree. Note that we cannot 
exploit recombination, as we did with binomial lattices, because we have to 
take path-dependent decisions a t  each stage. Hence, due attention must be 
paid to scenario generation. In this section we first review clever mechanisms 
that have been proposed to keep the size of the tree limited. We should bear 
in mind that the purpose of scenario trees is not really to yield a 100% faithful 
representation of the underlying uncertainty over the whole planning horizon, 
as there is little hope to achieve this goal while keeping the optimization model 
to a computationally tractable size. The real aim is to get robust first-stage 
decisions. Then we illustrate issues related to arbitrage, which is obviously 
relevant in a financial domain. 

11.3.1 

The first decision to take is the shape of the scenario tree, i.e., the branching 
factor which is applied at  each node. A typical approach is to have a larger 
branching factor a t  early stages, as representing uncertainty there accurately 
may be more important in getting robust first stage decisions. A further 
observation is that the time step need not be the same for each stage; it may 
be reasonable to use larger time steps in later time periods, where aggregate 
decisions may be considered. 

Given a scenario tree structure, we have to decide which outcomes we 
should associate to nodes in the tree, and possibly the (conditional) probabil- 
ities associated to each branch in the tree. The techniques we have already 
met in chapter 4 can be used here. 

Sampling for scenario tree generation 

0 The first possibility that we may think of is naive Monte Carlo sampling. 
In this case, the probability distribution for future nodes branching from 
current node is uniform. This approach may be sensible for two-stage 
models, but it is not quite feasible for multistage models due to  the 
number of nodes we need to capture uncertainty. Variance reduction 
techniques may be useful. Antithetic sampling is the simplest option; 
importance sampling has been proposed in [5] and [13]. In the last 
case, probabilities should be adjusted to reflect the change in measure. 
Stratified sampling may also be used. 

0 Numerical integration methods are an alternative. In particular, Gaus- 
sian quadrature is a suitable way to discretize a continuous probability 
distribution; we have seen in example 10.4 how Gaussian quadrature 
may capture uncertainty much more efficiently than crude Monte Carlo 
sampling. Low-discrepancy sequences may also be used, but this again 
looks feasible for two-stage models. See, e.g., (161. 
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0 Antithetic sampling, in the case of symmetric distributions, leads to  a 
sample that matches odd moments of the underlying density; for in- 
stance, expected value is matched, and the symmetric sampling leads 
to zero skewness. It is natural to  consider sampling in such a way that 
other moments are matched as well, such as variances, covariances, and 
kurtosis. In general, matching all moments exactly will be impossible 
with a limited number of samples, but we can try to match them as 
well as possible, in a least squares sense, This leads to an approach to  
generate a set of “optimized” scenarios. To illustrate the idea, consider 
a random variable X which has a multivariate normal distribution. As- 
sume that we know the expected values pi of each component Xi, as 
well as the variance u: and the set of covariances uij for each pair (i, j )  
of variables (uii = a:). Furthermore, since we are dealing with a nor- 
mal distribution, we know that skewness = E[(J- P ) ~ / u ~ ]  should be 
zero and that kurtosis x = E[(J-  ~ ) ~ / a ~ ]  should be 3 (here we are 
considering the marginal distribution of each random variable). 

Let us denote by x! the sample of Xi in node s belonging to  a cer- 
tain branching of size S. For the sake of simplicity, we assume that 
all conditional probabilities of branches are equal, but we know from 
Gaussian quadrature that there are potential advantages in setting such 
probabilities with care. Natural requirements are 

We should point out, e.g., in the second requirement related to covari- 
ance, that we divide by number of sample S, and not by S - 1 as typical 
with sample variance, since the parameters are known a priori and not 
estimated from the data. Approximate moment matching is obtained 
by minimizing the following squared error: 
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(11.12) 

The objective function includes four weights Wk, which may be used to 
fine tune performance. I t  should be mentioned that the resulting sce- 
nario optimization problem need not be convex. However, if we manage 
to find any solution with a low value of the “error” objective function, 
this is arguably a satisfactory solution, even though it is not necessarily 
the globally optimal one [12]. 

The moment matching approach is a flexible and intuitively appealing 
way of generating scenarios. Nevertheless, it has been argued that it 
lacks a sound theoretical background. Indeed, counterexamples can be 
built, showing that quite different probability distributions may share 
the first moments [ll]. In order to find a scenario generation approach 
resting on a sound basis, some researchers have proposed formal ap- 
proaches relying on stability concepts and the definition of probability 
metrics. These methods require a high level of mathematical sophistica- 
tion; hence, in this introductory chapter, we limit ourselves to  provide 
the reader with a basic feeling for the overall idea (see, e.g., [20], for 
a thorough treatment). To begin with, we should try to formalize the 
concept of stability. To this aim, let us consider an abstract view of a 
stochastic optimization problem: 

Here x is the set of decision variables, constrained on a set X. The 
random data are represented by <, which belongs to set Z on which a 
probability measure P is defined. The optimal value of this stochastic 
program depends on the probability measure P ,  as pointed out by the 
notation u(P) .  What happens if we perturb the measure P? A possible 
reason for the perturbation is that we have unreliable data, which means 
that we actually ignore the “true” measure P and we consider another 
measure Q instead. Alternatively, we may be forced to resort to  an 
approximate measure Q, in the sense that we use a scenario tree which 
approximates the true measure P.  Whatever the reason, we must first 
define a probability metric in order to quantify the distance between 
two probability measures. 

There are many ways to do so. One possibility has its roots in the Monge 
transportation problem, which asks for the optimal way of transporting 
mass (e.g., soil, when we are building a road). The problem has a prob- 
abilistic interpretation, which was pointed out by Kantorovich, when 
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Fig. 11.9 Two simple sceiiario trees for asset price paths. 

we interpret mass in a probabilistic sense (see [19], for more details). In 
order to define a concept of distance between two probability measur~b, 
we may define a transportation functional: 

Here c( . ,  .) is a suitably chosen cost function; the problem calls for find- 
ing the minimum of the integral over all joint measures 7 ,  defined on 
the Cartesian product Z x E, whose marginals coincide with P and Q; 
respectively (7rl and 7r2 represent projection operators). In the case of 
two discrete measures P and Q ,  this boils down to the classical trans- 
portation problem with a linear programming formulation. Under some 
tcclinical conditions, a form of Lipschitz continuity can be proved: 

In practical terms, what one can do is selecting a cost function c : 
Z x Z -+ IR in order to define a probability metric. Then we look 
for an approxirnate distribution PtTrf . .  i.e., the scenario tree, such that 
1-1, (P,  Pt ,p , )  < f. This leads to algorithms to reduce the scenario tree. In 
[9] it scenario rediiction procedure is described, based on the theoretical 
concepts above. The idea is sampling a large tree, and then reducing its 
size to a manageable level. 

11.3.2 Arbitrage free scenario generation 

The considerations we have done so far apply to a generic stochastic program. 
U l e n  WP deal with itri application in finance, there is still another issue: 
arbitrage. Consider the data of the toy problem we have solved in section 11.2. 
Art. they sensible data? To uridcrstand the issue, consider the two siniple trees 
tlepictd in figure 11.9. The first one corresponds to the scenarios we have 
used in the example. If we assume that the initial prices are 1 for both assets, 
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the total returns we used in the toy example can be regarded as prices in the 
two scenarios. Sensible scenarios should not only reflect the information we 
have, but they should also rule out arbitrage opportunities. One way to define 
an arbitrage opportunity is the following. We have an arbitrage opportunity 
if there exists a portfolio which is guaranteed to have a non-negative value at  
the end of the holding period in any scenario, but which has a negative value 
at the beginning. Formally, let p E RT be the vector of the initial prices for n 
assets, x E R" the portfolio holdings for each asset, and R E R")" the return 
of each asset in each of the m scenarios (i.e., Rij is the return of asset j in 
scenario i ) .  Then an arbitrage opportunity is a portfolio x such that 

Rx 2 0 and p'x< 0. (1 1.13) 

Another form of arbitrage opportunity is the following3: 

Rx 2 0 and p'x=O, (1 1.14) 

where at  least one inequality is strict. In other words, we are sure that we 
will not lose any money in any scenario and there is at  least one scenario in 
which we gain something. 

In order to exploit an arbitrage opportunity to gain an infinite profit, we 
should be able to do some short selling; if the optimization model forbids 
short selling, we will not see such a blatant error as an unbounded solution, 
but what we get could be not very sensible anyway. 

It is easy to see that the scenario tree in figure 11.9b leads to an arbitrage 
opportunity like (11.14). With those asset prices, an initial portfolio has zero 
value if 

z1+ 2 2  = 0. 

We may use this condition to express the final portfolio value in the two 
scenarios: 

1.2521 + 1.1422 = (1.25 - 1.14)Sl 

1.1521 + 1.1222 = (1.15 - 1.12)21. 

It is easy to see that we should sell the second asset short, so that 2 1  > 0, 
to get an arbitrage opportunity. The same does not hold in the case of figure 
11.9a. 

But how can we be sure that a set of scenarios is arbitrage-free? An answer 
is given by the following theorem. 

THEOREM 11.1 There is no arbitrage opportunity of the form (11.13) if 
and only i f  there exists a vector y such that 

R'y = p and y 2 0. 

3See [14, chapter 2) for a discussion about the relationships between the two forms of 
arbitrage. 
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Proof. Consider the following linear programming problem: 

max O’y 

s.t. R’y = p 

Y 2 0. 

If this problem is solvable, so is its dual: 

min p’x 

set. Rx 2 0. 

But in this case, the optimal objective values are both equal to zero. Then we 
see that if there exists a feasible vector y for the primal problem, we cannot 
have p‘x < 0. 0 

On the one hand, the theorem suggests a way to make scenarios arbitrage 
free. We could simply add a node in such a way that the conditions of the 
theorem are met. The full details of this idea are given in [6]. It should be 
noted that finding the best way to generate scenarios is still an open issue, as 
we may well generate arbitragefree scenarios which do not fit the assumed 
distributions at  all. On the other hand, by reasoning along the lines of the 
theorem, we may get a grasp on the relationships between the absence of ar- 
bitrage opportunities and the existence of risk-neutral probability  measure^.^ 

To begin with, we should note that if a vector p of initial prices satisfies 
theorem 11.1, then any vector Xp, X > 0, does, too. So there is a degree of 
freedom in pricing; in fact, we have only considered risky assets. What if we 
consider a risk-free asset with a risk-free rate r? To characterize arbitrage 
when a risk-free asset is available, let us consider a two-stage scenario tree: 
the initial node is 0 and there are N nodes at the second stage. Let Pi0 
be the current price of asset i, i = 1,. . . , I, and Pi, the price if scenario n, 
n = 1,. . . , N ,  occurs. For each asset, we may define the discounted gain for 
asset i in scenario n, with respect to  the risk-free asset: 

pi, 
2n l + r  Pi0 R? =-- Vi, n. 

Note that if a discounted gain is positive, it means that the risky asset has 
performed better than the risk-free asset. Given a set of portfolio holdings xi, 
we may define the overall discounted gain in node n: 

I 

*The rest of this section can be safely skipped; we include this topic to  point out another 
use of linear programming duality, but it is not essential for the following. The treatment 
follows [17], to which we refer the interested reader for more details. 
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which is the realization of a random variable G* in scenario n. Now it is 
intuitive that an arbitrage opportunity may be characterized by the conditions 

Sn * - > O  V n  
E[G*] > 0. 

This means that the portfolio is expected to gain more than the risk-free 
asset on the average, but it cannot gain less in any possible scenario. To find 
a condition ruling out arbitrage, we may try to reason as in theorem 11.1. We 
may rewrite the arbitrage conditions as 

N I  C C R,*,xi = 1 
n=l i=l 

I CRT,X~ 2 o Vn. 
i=l 

The first condition may look a bit arbitrary, but its purpose is to make sure 
that at  least one of the g: is strictly positive; since an arbitrage opportunity 
may be scaled arbitrarily, setting the double sum value to 1 serves the purpose. 
Now, to apply linear programming duality, we should rewrite these conditions 
in the standard form: 

A x = b  

x 2 0. 
(1 1.15) 

We may simply express each portfolio holding, which may be negative if short- 
selling is allowed, as 

X i = +  2, - , xT,xL.+ 2 0, 

and introduce a set of non-negative auxiliary variables  XI+^, n = 1,. . . , N :  

I I 

X I + n  = C R ; ~ x ~  = C (R,*,x+ - R:,,x;) Vn. 
i=l i= l  

So we have a vector of non-negative decision variables: 
- x = [XT 2;  22' . . ' X I  XI+1 . . . X I + N ] ' .  

Now the existence of an arbitrage is linked to the existence of a solution to  
the system (11.15), where 

A =  
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and 
b = [1 ,0 , .  . . , O ] ’ .  

If there is a feasible solution of (11.15), there cannot be a solution of the 
following system: 

A‘y I 0  

b’y > 0. 
(11.16) 

This is a direct consequence of linear programming duality. In fact, the ex- 
istence of a solution of system (11.16) would imply that there is direction y 
along which we may arbitrarily increase the objective function b’y without 
violating the constraints A’y 5 c, for an arbitrary vector c. Hence, the dual 
linear program would be unbounded, and the primal could not be feasible. 

Seeing it the other way around, if there is a solution to system (11.16), there 
is no arbitrage opportunity. It is possible to find an important interpretation 
of system (11.16), taking the forms of A and b into account. Let us denote 
the dual variable corresponding to the first primal constraint by yo; we also 
have a dual variable yn for each primal constraint corresponding to  scenario 
n. Now let us write the dual constraints A’y 5 0 explicitly. For each asset i, 
we have a pair of inequalities: 

Together, they imply that for all assets i we have 

N 

(11.17) 
n=l 

Furthermore, considering the last n columns of matrix A, we also have 

YO -Yn 5 0 Vn. 

This, together with second condition in system (11.16), has the following 
implications: 

b’y>O * y 0 > 0  + 
Let us rescale the dual solution as follows: 

Yn > 0 Vn.  

Vn .  (11.18) 
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We see that the vector T may be interpreted as a probability measure, since 
the components are non-negative and their sum is 1. Moreover, it is a risk- 
neutral probability measure, according to which any scenario is possible (it 
has strictly positive probability) and any asset gains the risk-free return on 
the average. To see this, we may plug equation (11.18) into equation (11.17) 
to obtain 

N 

n=l 

This means that, under this probability measure, the expected discounted 
gain for any asset is zero, which in turn implies 

En[Pz] = (1 + r ) h .  

Now we may see a little better why risk-neutral probability measures play a 
role in option pricing under the no-arbitrage assumption, a t  least in a two- 
period economy with discrete states of the world. Rigorous treatment with 
continuous time and continuous asset prices requires the tools of stochastic 
calculus. 

11.4 L-SHAPED M E T H O D  FOR TWO-STAGE LINEAR STOCHASTIC 
PROGRAMMING 

In the first sections of this chapter, we have formulated a few simple stochastic 
LP models, and we have seen that they can be tackled by the simplex method; 
interior point methods are a possible alternative. In other words, by using a 
discretized representation of uncertainty we obtain a deterministic equivalent 
program. However, given the number of scenarios we need to generate, the 
sheer size of the resulting model may be overwhelming and it can exceed 
the capabilities of the best available solvers. This is why clever scenario 
generation is so important. Another difficulty which is not so evident, is that 
even moderately sized stochastic programs may be difficult to solve because of 
their structure: it may happen that the progress made by the simplex method 
is very slow. Interior point methods may be a suitable alternative in some 
cases, and another possibility is the development of specific solution methods 
which take advantage of the structure of stochastic programs. This is a very 
active and technically challenging area of research. What we would like to 
do is to give an idea of how structure can be exploited to devise solution 
algorithms based on decomposition. We will describe a simplified version of 
L-shaped decomposition, which was the first specific algorithm developed to 
cope with large-scale two-stage stochastic programs. 

Consider a two-stage problem with a fixed recourse matrix W: 

min c’x + C p,qbys 
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s.t. AX = b 

W y ,  + T,x = rs 

X,Y, 2 0, 

Qs E S 

where p ,  is the probability of scenario s. It may be seen that the problem 
lends itself to a decomposition approach: in fact, once the first-stage decisions 
x are fixed, the problem is decomposed into a set of small subproblems, one 
for each scenario s. This point may be appreciated by looking at  the sparse 
structure of the overall technological matrix for this problem: 

This matrix is almost block-diagonal. The recourse function is 

s E S  

where 

h,(x) = min q‘,ys 

s.t. Wy, = rs - Tsx (1 1.19) 

Ys 2 0. 

Evaluating the recourse function for a given first-stage decision 2 entails solv- 
ing a set of independent LP problems. For simplicity, we assume here that all 
these problems are solvable, i.e., h,(x) < +m for any scenario s, for any x 
that is feasible with respect to the first-stage constraints. We say in this case 
that the problem has relatively complete recourse. This may be a reasonable 
assumption in financial problems. Consider, for instance, an asset-liability 
management problem; if we include extreme and pessimistic financial scenar- 
ios in our model, it might be the case that some liabilities are not always met; 
in such a case, we may relax the constraints by suitable shortfall penalties 
(like we did section 11.2). These penalties make the recourse complete. If 
the recourse is not complete, the approach we describe here may easily be 
extended. 

It can be shown that the recourse function H(x) is convex; hence we may 
consider the application of Kelley’s cutting plane algorithm, which was il- 
lustrated in section 6.3.4. To this end, let us rewrite the two-stage problem 
as 

min c’x+ e 
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(11.20) 

We may relax the constraint (11.20), obtaining a relaxed master problem, and 
then add cutting planes of the form 

e 2 ~ I X  + p. 

The coefficients of each cut are obtained by solving the scenario subproblems 
for given first-stage decisions. To see how, let i be the optimal solution of the 
initial master problem. Consider the dual of problem (11.19): 

h , ( i )  = max (r, - Tsk)’7r, 
s.t. W’T, 5 g , .  (11.21) 

Given an optimal dual solution +,, it is easy to see that the following rela- 
tionships hold: 

/Z,(E?) = (r, - T,X)’+, (1 1.22) 

h,(x)  2 (r, - T,x ) ’+ ,  V X .  (1 1.23) 

The inequality (11.23) derives from the fact that +, is the optimal dual solu- 
tion for x ,  but not for a generic x .  Summing (11.23) over the scenarios, we 

Hence, we may add the cutting plane 

S E S  

The L-shaped decomposition algorithm is obtained by iterating the solution 
of the relaxed master problem, which yields 8 and 2, and of the corresponding 
scenario subproblem. At each iteration, cuts are added to the master problem. 
The algorithm stops when the optimal solution of the master problem satisfies 

9 5 H(E?). 

This condition may be relaxed if a near-optimal solution is good enough for 
our purposes. 

If the recourse is not complete, some of scenario subproblems may be in- 
feasible for certain first-stage decisions. In this case we may again exploit the 
dual of the scenario subproblem. Note that the feasibility region of this dual 
does not depend on the first-stage decisions, since 2 does not enter constraints 
(11.21). Thus, if a dual problem is infeasible, it means that the second-stage 
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problem for the corresponding scenario will be infeasible for any first-stage 
decision. Ruling out this case, which is likely to be due to a modeling error, 
when the primal problem is infeasible, the dual will be unbounded. Hence, 
there is an extreme ray of the dual feasible set along which the optimal solu- 
tion goes to infinity. In this case we may easily add an infeasibility cut to  the 
master, cutting the first-stage decisions which lead to an infeasible second- 
stage problem. Thus, at any iteration, we discover either an extreme point 
or an extreme ray of the dual feasible sets of each second-stage subproblem. 
The finite convergence of the method derives from the fact that any polyhe- 
dron has a finite number of extreme points and extreme rays (see supplement 
S6.1.2). 

We have just outlined the basic principles of one possible approach to cope 
with stochastic programs. Other approaches have been pursued, but we would 
like to point out that this idea can also be generalized to multistage stochastic 
programs. Furthermore, the idea of cutting planes is the foundation of some 
methods which are able to  cope with continuous distributions. In the modeling 
approach we have pursued we first sample a set of scenarios, and then we 
solve an optimization model. It is also possible to  integrate sampling within 
the optimization algorithm, to generate cutting planes, in such a way that a 
problem with continuously distributed parameters can be tackled (see [lo]). 

11.5 A COMPARISON WITH D Y N A M I C  PROGRAMMING 

In the last chapter, we have considered dynamic programming as a framework 
to tackle dynamic decision making under uncertainty, and it is natural to won- 
der about connections or differences between that approach and stochastic 
programming with recourse. Indeed, the concept of recourse function looks 
quite similar to the concept of value function or cost-to-go in dynamic pro- 
gramming. While the two approaches are clearly related, they are actually 
complementary. 

0 Dynamic programming approaches require finding the value function, 
as a function of state variables, for each decision stage. Stochastic pro- 
gramming methods based on L-shaped decomposition aim at finding 
only a local approximation of the recourse function. 

0 Dynamic programming methods, after computing the value functions, 
allow for a simulation of the whole decision process over the planning 
horizon. Stochastic programming methods aim at finding the solution 
for the first stage only, even though in principle further stage decision 
variables represent a feedback policy. In this sense stochastic program- 
ming is a more operational approach. Indeed, the use of dynamic pro- 
gramming models is the rule whenever one wants to  use an optimization 
model to gain insights in a problem, possibly by a stylized model, rather 
than actually solving it in operational terms. This is quite common in 
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Economics. For instance, dynamic programming has been used to  in- 
vestigate strategic allocation between risky and risk-free assets for a 
long-term investor, for varying income profiles over time [3]. This is 
certainly important in Pension Economics, but it is probably not what 
the manager of a pension fund would use for operational decisions. 

0 Dynamic programming methods are able to cope with infinite-horizon 
problems, whereas stochastic programming methods are not. Again, 
this is typical of dynamic models in Economics. 

0 Dynamic programming models, in some cases, may be solved analyt- 
ically, maybe approximately. The usefulness of insights from approx- 
imate analytical solutions is illustrated, e.g., in [3]. On the contrary, 
stochastic programming approaches are numerical in nature. 

0 Dynamic programming models assume some condition on the under- 
lying uncertainty, since the disturbance process should be Markovian 
(actually, often one can get around this difficulty by augmenting the set 
of state variables). In principle, any type of uncertainty and any type 
of intertemporal dependence can be tackled by stochastic programming, 
provided we are able to generate a scenario tree. 

Given these differences, it is no surprise that dynamic programming is more 
common in the Economics community, whereas stochastic programming is 
more familiar to the Operations Research community. However, a broader 
knowledge of pro and cons of both approaches is most valuable. For instance, 
the regression-based approach to pricing American options by Monte Carlo 
simulation can be better understood if we interpret the procedure as a way 
to enforce non-anticipativity of decisions under uncertainty. 

For further reading 

In the literature 

0 An early reference on stochastic programming with recourse is [4]. 

Introductions to modeling with stochastic programming can be found 
in (211 and [23]. 

0 Textbook treatments, covering also solution methods, are available in 
[2] and [15]. 

0 A survey about solution methods can also be found in [l].  

0 The L-shaped method is described in the original reference [24]. 

0 We have only covered stochastic programming models with recourse. 
For an introduction to chance-constrained models, see [18]. 
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0 Since scenario generation is only an approximate way to represent un- 
certainty, we should wonder how errors may affect the solution. Theo- 
retical results are surveyed in [20]; a sensitivity analysis approach based 
on “contamination” between different scenario trees is described in [7]. 

0 Scenario generation is one of the topics covered in [6] and [12]. The first 
reference also addresses arbitrage issues in financial scenario generation. 

0 For a thorough discussion on arbitrage and risk-neutral probability mea- 
sures, see [14] and [17]. 

0 The AMPL language is described in [8]. 

0 A reference describing many portfolio optimization models, including 
stochastic programming models, is the two-volume set [25] and [26]. 

0 Stochastic programming for portfolio management is also covered by 
[221* 

On the Web 

The AMPL site is http: //www. amp1 . com. 

The main web reference for stochastic programming is 

http://stoprog.org. 

0 Other pointers to stochastic programming, including financial applica- 
tions, can be found by browsing http : //mat. gsia. cmu. edu. 
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12 
Non- Convex 

Op timixa ti o n 

All of the optimization models we have considered so far have a common 
characteristic: They are convex, which means that we are minimizing a con- 
vex objective function (or maximizing a concave one) over a convex feasible 
set. In principle, convex optimization problems are easy. In practice, they 
can prove numerically difficult to deal with because of hard non-linearities 
or because of their sheer size (as is the case with large-scale stochastic pro- 
gramming models). Nevertheless, the optimal solution of convex problems is 
characterized by some relatively simple properties. Hence, if we are handed 
a solution by someone claiming it is the optimal one, it is usually easy to 
check the claim. In non-convex problems, even checking optimality is a hard 
task. Hence, solution methods for non-convex problems are far less efficient 
and much less standardized. Many of them are actually heuristics aimed at 
finding a good solution with a reasonable computational effort, without any 
claim about optimality. 

In fact, non-convex optimization methods are typically outside the bag 
of customary tools of people in Economics and Finance. Despite all of these 
difficulties, there are good reasons why we should have at  least a grasp of them. 
There are a variety of issues in portfolio management, which are neglected 
in classical mean-variance models, that could be tackled fruitfully within an 
integer programming framework: 

0 Limited diversification portfolio 

0 Minimum portfolio weights for assets 

0 Minimum transaction lots 

563 
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0 Fixed or piecewise linear transaction costs 

While the resulting models were very hard to solve some years ago, astonishing 
progress both in computing hardware and commercially available solvers has 
made their practical use feasible. 

Non-convexity can arise because the feasible region is non-convex. The 
most common case arises because some decision variables are restricted to  
integer values, possibly the set ( 0 , l ) .  This happens when decision variables 
model logical decisions, which are by their very nature discrete: Either I do 
something or I do not. In section 12.1 we introduce mixed-integer program- 
ming models. First we show the most common “modeling tricks” based on 
logical decision variables; then we outline portfolio optimization models in- 
cluding logical variables. 

Another way non-convexity can arise is in the objective function. For in- 
stance, an objective function represented by a polynomial is likely to have a lot 
of local minima. This is why such problems are known m global optimization 
problems. In section 12.2 we show a portfolio optimization model based on a 
fixed-mix, which gives rise to a non-convex problem over continuous decision 
variables. 

Then we consider solution methods for non-convex models. We will ac- 
tually only consider branch-and-bound methods in section 12.3. Branch and 
bound is the standard approach for mixed-integer models, and it is available 
in most commercial solvers. MATLAB, at  present, has a limited ability to 
cope with such models, and this is why we will mainly use AMPL and CPLEX 
to illustrate how models can be solved. Branch and bound can also be applied 
to some continuous global optimization models. However, global optimization 
methods are far less standardized. There is a wide variety of methods which 
are specific to subclasses of global optimization models. Apart from their 
conceptual difficulty, most of them are not available in commercial packages, 
and this is another reason why we will not deal with them in detail. 

Finally, in section 12.4 we will cover some general-purpose principles that 
can be used to devise heuristics. In fact, non-convex problems may be a very 
hard nut to crack. In extreme cases, a practical alternative is to  give up op- 
timality and to look for a reasonably good solution. We will consider local 
search heuristics, such as simulated annealing, tabu search, and genetic algo- 
rithms. They are fairly general and flexible approaches, and indeed they have 
been implemented in commercial solvers which have been successfully inte- 
grated with simulation packages to tackle some optimization problems, where 
complexity precludes the mathematical formulation of an objective function. 

12.1 MIXED-INTEGER PROGRAMMING MODELS 

We have already met an integer programming model in example 1.2 on page 
15, where we introduced the knapsack problem as a very rough representation 



MIXED-INTEGER PROGRAMMING MODELS 565 

of capital budgeting: 

n 

max C Rzxi 
i = l  
N 

i=l  

xi E (0 , l ) .  

This is actually a linear programming model with an additional restriction on 
the decision variables, which may take values only within a discrete set; this 
is what makes the problem non-convex. 

A more general form of a mixed-integer linear programming model is 

min C’X+ d’y 

s.t. Ax + D y  2 b 

~ 2 0 ,  ~ E Z + = { 0 , 1 , 2 , 3  , . . .  } 

The name stems from the fact that we mix continuous variables x and integer 
variables y. When all of the decision variables must take integer values, we 
speak of pure integer programming models. A very common case arises when 
a decision variable is binary, i.e., it must take values within the set (0 , l ) .  This 
is typical of logical decision variables, as we will illustrate in the next section. 
Moreover, using binary variables is a very powerful modeling trick to represent 
non-trivial constraints. When all the decision variables are binary, we have a 
pure binary programming model. The knapsack problem is such a case. 

General integer variables may arise, e.g., when an asset must be purchased 
in multiples of a base lot. If the number of such multiples is large, then a 
continuous approximation is reasonable; otherwise the discrete nature of the 
investment must be properly reflected in the optimization model. However, 
the most common model is a linear mixed-integer model in which all integer 
variables are actually logical. Non-linear mixed-integer programming models 
can be formulated, but efficient solvers are not that widespread commercially, 
although they are actually available. An exception is quadratic mixed-integer 
programming. Recent releases of ILOG CPLEX are able to tackle this class 
of models, which allow us to generalize mean-variance portfolio optimization 
models, as we shall see. 

12.1.1 Modeling with logical variables 

It is useful to point out a few situations that require the introduction of binary 
decision variables. 

Logical constraints Consider a set of N activities, perhaps investment oppor- 
tunities. Starting an activity or not is modeled by a corresponding binary 
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decision variable xi ,  i = 1,. . . , N .  You might wish to enforce some logical 
constraints involving subsets of activities. Here are a few examples: 

Exactly one activity within a subset S must start (exclusive “or”): 

c x j  = 1. 
j € S  

0 At least one activity within a subset S must start (inclusive “or”): 

c x j  2 1. 
j € S  

At most one activity within a subset S may start: 

j € S  

If activity j is started, then activity k must start, too: 

xj  5 xk, 

All the constraints above may be generalized to more complex situations, 
which are relevant, for instance, if you want to enforce qualitative constraints 
on a portfolio of investments. 

Fixed-charge problem and semicontinuous decision variables We obtain LP mod- 
els when we assume, among other things, that the cost of carrying out a set 
of activities depend linearly on the activity levels. In some cases, the cost 
structure is more complex; the fixed-charge problem is one such case. We 
are given a set of activities, indexed by i = 1,. . . , N .  The level of activity i 
is measured by a non-negative continuous variable xi; the activity levels are 
subject to a set of constraints, formally expressed as x E S. Each activity has 
a cost proportional to  the level xi and a fixed cost fi, which is paid whenever 
xi > 0. The fixed cost does not depend on the activity level. It is interesting 
to note that the cost function is in this case discontinuous at the origin, but 
a simple modeling trick allows us to build a mixed-integer model. 

Assume that we know an upper bound Mi on the level of activity i, and 
introduce a set of binary variables yi such that 

1 if zi > 0 
0 otherwise. Y i  = { 

We can build the following model: 
N 

i=l 

s.t. xi 5 Miyi Vi 
X € S  

yi E (0, l} Vi. 

(12.1) 
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The inequality (12.1) is a common way to model fixed-charge costs. If yi = 0, 
necessarily xi = 0; if yi = 1, then we obtain xi 5 Mi,  which is a non-binding 
constraint if Mi is large enough. Apparently, the constraint (12.1) allows a 
non-logical choice: pay the fixed charge, but let xi = 0. However, this is ruled 
out by the minimization of the objective function. 

Another common requirement on the level of an activity is that, if it is 
undertaken, its level should be in the interval [mi, Mi] .  Note that this is not 
equivalent to requiring that mi 5 xi 5 Mi. Rather, we want something like 

which is a non-convex set (recall that the union of convex sets need not be 
convex). Using the same trick as above, we may just write 

These constraints define a semicontinuous decision variable. Semicontinuous 
variables may be used when the amount of an asset in a portfolio must be 
above a minimum threshold if the asset is included in the portfolio. 

Piecewise linear functions Sometimes we have to model a non-linear depen- 
dency between two variables; to name one case, transaction costs may depend 
in a non-obvious way on the trading volume. Although it is possible to adopt 
non-linear programming methods to cope with this case, it may be advisable 
to avoid the issue by approximating the non-linear function by a piecewise 
linear function; in other words, we may try a linear interpolation (see section 
3.3). Piecewise linear functions may arise quite naturally in applications. A 
few examples are shown in figure 12.1, where the points di)  are the break- 
points separating the linearity intervals. There are different reasons for doing 
so. If the non-linear function occurs in an equality constraints, the problem is 
non-convex; the practical implication is that a non-linear optimizer may get 
stuck in a local optimum. The same happens if the objective function is non- 
linear and non-convex. Here we show that these cases may be transformed 
into mixed-integer programming problems which are non-convex but can be 
solved by branch and bound methods yielding a global optimum. Further- 
more, it may be the case that the model involves integer decision variables, 
in which case it may be preferable to keep the model linear, as non-linear 
mixed-integer programming problems may be overly difficult to solve. 

Consider a function like 

0 5 x 5 
f(x) = cz(x - x(1)) + C l Z ( l ) ,  x(1) 5 x 5 x(2) { c3(x c lx l  - x @ ) )  + c1x(1) + c2(x(2) - x q  x(2) 5 x 5 x(3) .  

If c1 < c2 < c3 (increasing marginal costs), then f(x) is convex (figure 12.la); 
if c1 > c2 > cg (decreasing marginal costs), the function is concave (figure 
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Fig. 12.1 Piecewise linear functions: (a) convex, (b) concave, (c) neither convex nor 
Co11CH.ve. 
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Fig. 12.2 hlotlelirig a piecewise linear function. 

12.111); for arbitrary slopes c7 the function is neither convex nor concave (figure 

The convex case is easy and it can be coped with by continuous LP models. 
Tlie function f(x) can be converted to  a linear form by introducing three 
auxiliary variables y1, l ~ 2 ,  l~:$ and substituting: 

2 = Y1 + Y2 + 93 

12.k) .  

0 5 711 5 dl) 
0 5 y2 5 ( 2 3 2 )  - d 1 ) )  

0 5 yJ 5 (d %) - z(2)). 

T1ir.n wo ciiii cxprcss 

f(.) = C l l J l  + czy2 + C31J:3, 

sirice c'1 < ( '2 ,  ?/a is positive iii the optimal solution only if y1 is set to  its upper 
Imintl. Sirriilarly, y:{ is ac:tivat,ed only if both y1 and y2 are satiirated to tlieir 
upper boiintls. If tlie function is not convex, this is not guaranteed, and we 
inust, cornc! iip with a rnodcling t,rick based on binary decision variables. 

To get a clue on how a general piecewise linear function may be modeled; 
assiiirir: that tlie function is described by the knots (z i ,y i ) ,  y7 = f(zi), z = 

0,1,2:  3; as in figure 12.2. Any point on the line from (zz, pi) to  (zi+lr y2+l)  
can l x  expressed as a convex combination: 

z =  Xz, + (1 - X)Zi+ l  
y = XlJ i  + (1 - X)y,+1, 

w l i c w  0 5 X 5 1. Now wliat about foriiiiiig a convex combination of tlie four 
knots? 

3 

z = c x i z ;  
2 =o 
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3 EX2 = 1, xi LO. 
i=O 

This is not really what we want, since this is the convex hull of the four 
knots (the shaded area in figure 12.2; see supplement S6.1). However, we are 
close; we have just to allow only pairs of adjacent coefficients Xi to be strictly 
positive. This is accomplished by introducing a binary decision variable si, 
i = 1,2 ,3 ,  for each line segment (i - 1, i ) :  

3 

x = C xixi 
i=O 

3 

i=O 

0 I A0 I s1 

0 I A1 I s1 + s2 

0 I A2 L 32 + s3 

0 L A3 L 33 
3 

i=l 

In practice, optimization software packages and languages, such as AMPL, 
provide the user with an easier but equivalent way to express piecewise linear 
functions. 

Example 12.1 Assume we want to model a piecewise linear objective func- 
tion like those depicted in figure 12.1, where we have two breakpoints and 
three slopes. To express this in AMPL, we should use the keyword param to  
declare parameters corresponding to breakpoints and slopes, say xi, x2, cl, 
c2, and c3, and the keyword var to  introduce a decision variable, say x. In 
AMPL, the objective function would include a term like: 

<<xl, x2; cl, c2, c3>> x 

We see that slopes are always one more than breakpoints: the first slope cl 
applies to values of x smaller than xl, and c3 applies to values larger than x2. 
AMPL detects automatically if, given the characteristics of the function and 
the sense of optimization (min or max), a continuous or a discrete optimization 
method is required. 0 
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12.1.2 Mixed-integer portfolio optimization models 

An efficient mean-variance portfolio may include a large set of assets, and some 
of them may account for a tiny part of the overall asset allocation. While this 
is, at least in principle, beneficial for diversification, there are a few downsides 
in a too diversified portfolio. One issue is the amount of transaction costs we 
have to pay, making small transactions unattractive. Another issue is the 
effort that is required in analyzing the historical data for too many assets, 
in order to control the portfolio risk. These requirements are particularly 
important for passively-managed funds, which cannot be expensive, since they 
just aim at tracking some target. We could extend the mean-variance model 
by constraining the portfolio cardinality, i.e., the number of assets included. 
Writing a constraint stating that a t  most k assets out of the I available may 
be included in the portfolio is easily accomplished by introducing, for each 
asset i = 1, . . . , I ,  the following binary variable: 

1 
0 otherwise. 

if asset i is included in the portfolio, 6, = { 
Then all we have to do is to add the following constraints to the model: 

x ,  5 Mt6, Vi (12.2) 
I 

(12.3) 
i=l  

where Mi is an upper bound on the weight of asset i. This is actually the same 
trick we have just described to model fixed costs in the fixed-charge problem. 
Another requirement could be enforcing a minimal limit to an asset weight 
if positive. This requirement cannot be enforced within a continuous linear 
or quadratic programming model. However, it is easy to extend constraint 
(12.2): 

mi& 5 xi 5 Midi Vi. 
This is an example of a semicontinuous variable. By the way, xi need not be 
the weight in a portfolio; it could be the amount of stock traded, in which 
case mi would be the minimal tradeable lot. We could even go further and 
require, in such a case, that xi is a general integer variable, in order to avoid 
the additional costs involved in trading odd lots. Putting all of this together, 
we can trace the efficient frontier by solving a set of mixed-integer quadratic 
programs like the following: 

i=l 
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T 

risk 
b 

Fig. 12.3 Qiinlitativc skrtcli of  a c.;lrdiriality-c.oristrairied efficient froiit,ic.r. 

i= l  

w; 2 0, si E ( 0 , l )  vz, 

where is the expected return of asset i, aij is the covariance between the re- 
turns of assets i and j ,  and 7~ is a target return. By varying the target return 
we would trace the efficient frontier. It is also important to realize that the 
efficient frontier will be qualitatively different from the usual one, which was 
illustrat.et1 in  figure 2.12. A qualitative sketch of the cardinality-const,rained 
efficient, frontier is illustrated in figure 12.3. This plot may he understood by 
imagining of t,raciiig the efficient sets for each portfolio consisting of a suh- 
set of cardinality k ,  and then patching all of them together. One difficulty 
with the formulation above is that it is a mixed-integer quadratic, rather than 
linmr, problem. In principle, and in practice as well, it can be solved by 
the saine branch and bound algorithm illustrated in section 12.3.1; the only 
difference is t,hat the lower bounds are computed by solving a quadratic pro- 
gramming problem. Nowadays, commercial codes are available to  tackle such 
prohlems efficiently; however, the computational requirements could turn out 
t,o be prohihitrive for a large-scale application. Still, different alternatives may 
lie tried. 

0 We may trace only the relevant part of the efficient set, given our risk 
aversion. 

0 In [3] ad hoc methods are discussed for mixed-integer quadratic pro- 
gramming; taking a route like this may be advantageous, but it requires 
writing our own code. 
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Another possibility is to simplify the model by reducing the data re- 
quirements, e.g., by assuming that all the correlations are equal. See 
[17] for an approach like this, and for additional references as well. 

Metaheuristics such as genetic algorithms and simulated annealing (sec- 
tion 12.4) may also be used [4]. 

If one wants to use MILP codes, it is also possible to  devise a different 
representation of risk. In [9] the use of the mean absolute deviation has 
been advocated: 

where R, is the random return of asset i. This definition is quite similar 
to variance; an absolute deviation is used rather than a squared devia- 
tion. This objective may be translated in linear terms, and MILP meth- 
ods, exact or heuristic, may be applied. Suppose in fact that we have a 
set of historical returns rZt for each asset in time periods t = 1, .  . . , T .  
Then we may estimate E[R,] = F, = (l/T) E:=l rZt and set 

N 

By the same token, we may approximate the objective function as 

This objective function may be expressed in linear form by introducing 
a set of auxiliary variables yt. The model will include, among other 
things, the following objective function and constraints: 

1 '  
min -Cyt 

t=1 
T 

N 

i = l  
N .. 

yt - C(rzt - F,)xz 2 0 vt. 
i = l  

For instance, this approach is taken in [ll], where minimum transac- 
tion lots are dealt with. This approach does not require any statistical 
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modeling, but we should mention that there is a risk of overfitting with 
respect to  historical data. 

0 Finally, the MILP model may not really be aimed at building a portfolio 
from scratch. Rather, one could devise a target portfolio by whatever 
technique, subject to  variety of constraints related to  critical market 
exposure and liquidity. Then the target is approximated by enforcing 
some practical requirements, such as minimizing the number of assets 
included in the real portfolio. This is the approach taken in [2] to cope 
with a real-life case. 

A final important remark is that the difficulty of solving a mixed-integer 
problem depends on the strength of its relaxation (see section 12.3.1). The 
least one should do is to  reduce the Mi bounds in constraints like (12.2). 
Thanks to careful modeling, computational times on the order of a few minutes 
are reported in [2] for problems involving something like 1500 assets (using 
what is now an old version of CPLEX). 

A last point is that classical mean-variance models neglect transaction 
costs. This is debatable in a single-period model, and is even more ques- 
tionable in a multiple-period model, since excessive trading may disrupt any 
advantage gained by optimizing the portfolio. The simplest idea is to  use a 
linear model of the transaction cost; i.e., if we trade an amount xi of an asset, 
we pay a proportional cost o i x i ,  where the proportionality constant may de- 
pend on the asset liquidity. This results in a linear programming model, and 
one such formulation was given in section 11.2.3. However, a linear model 
fails to account for the dependence of transaction costs on the volume traded. 
Different assumptions can be made, depending on the nature of the traded 
asset, leading to different model formulations. In the case of fixed transaction 
costs, we may simply adopt the binary variable trick used earlier and treat it 
as a fixed cost. If transaction costs are non-linear, they may be approximated 
by piecewise linear functions, along the lines we illustrated at  the beginning 
of this chapter. If we assume that transaction costs increase marginally with 
the traded volume (maybe because the asset is highly illiquid and it is difficult 
to deal with the sale/purchase order), the function is convex and can be dealt 
with by ordinary L P  methods. However, in the case of concave costs, this is 
no longer the case, and mixed-integer models must be used. See also [lo] for 
an example of how a model involving fixed transaction costs may be tackled. 

Example 12.2 We illustrate here how AMPL can be used to express risk 
minimization subject to constraints on maximum cardinality of the portfolio 
and on target expected return. This is a fairly simple extension of the mean- 
variance model we illustrated in section C.2, in appendix C. The model file is 
illustrated in figure 12.4. We see that binary decision variables delta are in- 
troduced and linked to portfolio weights by the constraint LogicalLink. The 
maximum cardinality MaxAssets is enforced in constraint MaxCardinality. 
The corresponding data file is given, for a toy problem instance, in figure 12.5. 
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param NAssets > 0, integer; 
param MaxAssets > 0, integer; 
param ExpRet{l..NAssets); 
param CovMatCl. .NAssets, 1. .NAssets); 
param TargetRet ; 

var W{l..NAssets) >= 0; 
var delta{l..NAssets) binary; 

minimize Risk: 
sum Ci in 1. .NAssets, j in 1. .NAssets) W[il*CovMat[i,jl*W[j]; 

subject to SumToOne: 
sum {i in 1. .NAssets) W[i] = 1; 

subject to MinReturn: 
sum (i in 1. . NAssets) ExpRet [i] *W [i] = TargetRet ; 

subject to LogicalLink {i in l..NAssets): 
W[i] <= delta[i]; 

subject to MaxCardinality : 
sum {i in l..NAssets) deltari] <= MaxAssets; 

Fig. 12.4 AMPL model file for limited cardinality portfolio (MeanVarCard .mod). 

param NAssets = 3; 
param MaxAssets = 2;  
param ExpRet := 

1 0.15 
2 0.2 
3 0.08; 

param CovMat: 

1 0.2000 0.0500 -0.0100 
2 0.0500 0.3000 0.0150 
3 -0.0100 0.0150 0.1000; 

1 2 3 .= 

param TargetRet := 0.1; 

Fig. 12.5 AMPL data file for limited cardinality portfolio (MeanVarCard.dat) 
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Using AMPL, we may compare what happens here against what we have 
obtained in section C.2: 

AMPL Version 20021038 (x86-win32) 
ampl: model MeanVarCard.rnod; 
ampl: data MeanVarCard.dat; 
ampl: option cplex-options 'mipdisplay 2'; 
ampl: solve; 
CPLEX 9.1.0: mipdisplay 2 
MIP emphasis: balance optimality and feasibility 
Root relaxation solution time = 0.05 sec. 

Nodes Cuts/ 
Node Left Objective IInf Best Integer Best Node ItCnt Gap 

0 0  0.0631 1 0.0631 7 
* o+ 0 0 0.0633 0.0631 7 
CPLEX 9.1.0: optimal integer solution; objective 0.06326530612 
9 MIP simplex iterations 
1 branch-and-bound nodes 
ampl: display W; 
w [*I := 

1 0.285714 
2 0  
3 0.714286 
, 

0.27% 

The first thing we should notice is that branch and bound is invoked, rather 
than just a barrier solver. We also see that asset 2 does not enter the portfolio, 
and that the cardinality constraint also implies an increase in risk. This 
increase is moderate here, but it should traded off against simplified portfolio 
management and the reduction in transaction costs in a real setting. 0 

12.2 FIXED-MIX MODEL BASED ON GLOBAL OPTIMIZATION 

In the multistage stochastic programming models we have illustrated in sec- 
tion 11.2, we have assumed that the portfolio could be freely rebalanced at 
specified time instants. A different type of model is obtained if we assume 
that the asset mix is held constant over the whole period. This means that 
the proportion of wealth that we allocate to each asset is kept constant; thus, 
we trade according a sell-high/buy-low strategy. Using the same notation as 
in section 11.2.1, we have a discrete set of scenarios, each with a probability 
p , ,  s = 1 . .  . , S, where the returns are represented by R:t. Now, the decision 
variables are simply the proportion of wealth allocated to each asset, denoted 
by xi; note that since there is no recourse action, the scenarios need not be 
structured according to a tree, as the non-anticipativity condition is immedi- 
ately satisfied, given the definition of the decision variables. The model we 
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describe here is due to [12] ,  to which we refer the reader for further informa- 
tion and for computational experiments, and is basically an extension of the 
mean-variance framework; no liability is considered, and we base our objective 
function on the terminal wealth. 

Let WO be the initial wealth. Then the wealth a t  the end of time period 1 
in scenario s will be 

I 

i=l 

Note that the wealth is scenario-dependent, but the asset allocation is not. In 
general, when we consider two consecutive time periods, we have 

I 

vt, s. 
i=l 

The wealth at  the end of the planning horizon is 

Within a mean-variance framework, we may build a quadratic utility function 
depending on the terminal wealth. Given a parameter X linked to our risk 
aversion, the objective function will be something like 

max XE[WT] - ( 1  - A )  Var(WT). 

To express the objective function, we must recall that Var(X) = E[X2] - 
E2[X], and we may write the model as 

s=l Lt=1 \i=1 / J  

I 

s.t. E X i  = 1 
i=l 

0 5 zz _< 1. 

This looks like a very complex problem; however, while the objective function 
is a bit messy, the constraints are quite simple. The real difficulty is that  this 
is a non-convex problem. To see why, just note that the objective turns out to 
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be a polynomial in the decision variables; since polynomials may have many 
minima and maxima, we have a non-linear non-convex problem. 

The problem may be tackled by the branch and bound methods described 
in section 12.3. In particular, the idea of bounding a non-convex function by 
a convex underestimator is used in [12]. If complicating features are added 
to the model, this may turn out a quite difficult mixed-integer non-linear 
problem; in this case, the use of metaheuristics such as tabu search may be 
the best option [6 ] .  

It is useful to interpret this approach within an integration framework of 
simulation and optimization. Actually, simulation is separated from optimiza- 
tion, since scenarios are generated beforehand; we evaluate the solutions on 
the same set of scenarios, which is consistent with variance reduction by com- 
mon random numbers. After the optimization, simulation could be used to  
evaluate the solution we obtain on a larger set of scenarios, possibly includ- 
ing stress test scenarios; in other words, we may carry out an out-of-sample 
analysis to check the robustness of the solution. This is easily accomplished 
for a fixed-mix policy, but not for a dynamic policy, as this would require the 
repeated solution of difficult multistage stochastic programs. In fact, even if 
a fixed-mix policy is in principle an inferior policy with respect to a dynamic 
one, it may be more robust in practice; what’s more important, it is easier 
to prove its robustness with respect to  an arbitrary set of scenarios, and to 
persuade a manager to adopt it. 

Selection of the best portfolio management policy is actually an open is- 
sue, but it is worth noting that the fixed-mix policy is only the simplest 
policy structure that we may consider for the integration of simulation and 
optimization. More complex policies could be devised, depending on a set of 
numerical parameters, whose value may be set by the integration of simulation 
and optimization methods. 

12.3 BRANCH AND BOUND METHODS FOR NON-CONVEX 
0 PTI M I Z AT1 0 N 

Consider a generic optimization problem 

P ( S )  : 

and assume that it is a difficult one, as either the objective function or the 
feasible set is non-convex. Consider figure 12.6; in the first case, the objective 
function has local minima; in the second case, the feasible set is discrete, 
and hence non-convex. While solving non-convex problems is very difficult in 
general, in some cases it could be made a straightforward task if a suitable 
convexification were available. For instance, if S is convex but f is not, we 
could take the convex hull of the epigraph of f ,  as illustrated in figure 12.7. 
Taking the convex hull of the epigraph of f yields a function h such that: 
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w 
IX 
f ig.  12.6 N(JII-COIIV~Y. ol).jer.(ive function and discrete non-coiivex feasible set. 

X 
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X 

b 
XI 

b 

Fig 12.8 Convex lower l)oiinding function and a relaxation of a discrete feasible sct. 

0 h is convex on S. 

0 h(x) 5 f(x) for any x E S 

0 If y is a convex function such that g(x) 5 f(x) for any x E S,  then 

In this case, we could think of replacing f by h and solve the problem by 
convex optimization techniques. By the same token, consider a linear integer 
pi ogramining problem: 

y(x) 5 17(x) for any x E S. 

(PI) rniri c'x 

s.t. Ax 5 b 

x E zi;. 
The feasihle set is a discrete set much like that in figure 12.6. If we knew its 
coiivcx hull, illustrated in figure 12.7, we could simply tackle the problem as 
an ordinary LP prohleni by the simplex method. In fact, the convex hull of a 
discrete set of points is a polyhedron; if the points have integer coordinates, 
tliw the cxtrerne points of the convex hull will be integer too, and one of them 
will turn out to be the optimal solution returned by the simplex method.' 

Uiifortunatcly, we arc rarely in the lucky position of heing able to find such 
a convexification easily. However, we might he able to find weaker convex 
objects, as illustrated in figure 12.8. They are exploited to define a relaxation 
of the original problem. 

DEFINITION 12.1 An optzmizatzon problem, 

RP(T) : niinh(x), 
XET 

'We recall from section 6.5.1 that  interior point methods, when alternative optima exist, 
tend to yield a solution on the center of a face of the polyhedron defining the feasible set. 
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is a relaxation of problem P ( S )  if: 

0 S c T .  

0 h(x) 5 f(x), f o r  a n y  x E S. 

Solving a relaxation does not yield the optimal solution of the original 
problem in general, but it gives a lower bound for its optimal value. 

Example 12.3 Consider a non-convex function f (x) on a hyperrectangle S 
defined by the bounds 

l j < x J 5 u j ,  j = l  , . . . ,  n. 

Assume that f is twice continuously differentiable. In supplement S6.1.1 
we stated that a twice continuously differentiable function is convex if its 
Hessian matrix is positive semidefinite, which is equivalent to requiring that 
its eigenvalues are non-negative. We may build a convex underestimating 
function for f by adding an additional term and considering 

n 

i=l 

for some a > 0. It is easy to see that the additional term is nonpositive on 
the region S and that it is zero on its boundary. Thus h is an underestimator 
for f. It will be convex if a is large enough. To see this, consider how the 
Hessian H of h is related to the Hessian Hf of the original objective f: 

d2 f 
ax: - + f a ,  i = l ,  ..., n - -  - d2h 

The eigenvalues of h are the solution of the following equation: 

det(Hf + 2aI - p1) = det(Hf - ( p  - 2a)I) = 0. 

It is easy to see that, if the eigenvalues of Hf are Xi ,  i = 1,. . . , n, then the 
eigenvalues of the Hessian of h are simply 

pz = X i  + 2a, 

which may be made positive by choosing a suitably large value of a. We will 
see shortly that a relaxation should be as tight as possible. This means that 
the underestimating function should be as large as possible and that a should 
be as small as possible. Guidelines for the selection of a are given in the 
original reference [ 131. 0 
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Example 12.4 Consider the integer programming problem (IP). A convex 
relaxation of the feasible set 

S = {x : Ax 5 b;x  E ZS;) 

can be obtained by dropping the integrality requirement: 

T = {X : AX 5 b; x E Ry}. 

This yields an LP problem which is readily solved by the simplex method. 
In general, some components of the solution of the relaxed problem will be 
fractional; this implies that the solution we obtain is not feasible, but we get 
a lower bound on the optimal value of the objective function. 0 

We have seen, in the two examples above, that when the relaxed problem is 
convex, it is easily solved, but it will only yield a lower bound on the optimal 
value of the objective function. 

A possible solution strategy is to decompose the original problem P ( S )  by 
splitting the feasible set S into a collection of subsets S1,. . . , S, such that 

s = s1 u s2 u * . . u s,; 
then we have 

The rationale behind this decomposition of the feasible set is that we may 
expect that solving the problems over smaller sets is easier; or, a t  least, the 
lower bounds obtained by solving the relaxed problems will be tighter. For 
efficiency reasons it is advisable, but not strictly necessary, to partition the 
set S in such a way that 

Si n Sj = 0, i fj. 

This type of decomposition is called brunching. 

Example 12.5 Consider the binary programming problem: 

min c'x 

s.t. x E S = {X 1 AX 2 b; ~j E (0 , l ) ) .  

The problem may be decomposed in two subproblems by picking a variable 
xp and fixing it to 1 and 0: 

s1 = {x E s xp = 0) 

s2 = {x E s; xp = 1 ) .  

The resulting problems P(S1) and P(S2) can be decomposed in turn, until 
eventually all the variables have been fixed. The branching process can be 
pictorially represented as a search tree, as shown in figure 12.9. 0 
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Fig. 12.9 Search tree for a binary prograruming problem. 

The 1)ranching process leads to easier problems. In the example, the leaves 
of the search tree are trivial problems, since all variables are fixed to  one 
of the t.wo fmsible values; actually, the search tree is, in this case, just a 
way to eniiinerttte the possible solutions. Unfortunately; there are a large 
nunher of letaves: if x E (0, l } N ,  there are 2 N  possible solutions. Actually, 
the constraints Ax b rule out many of them, but a brute-force enumeration 
is not feasihle except for the smallest problems. 

To reduce the computational burden, one can try to eliminate a subproblem 
P(S,+) or, equivalently, a node of the tree, by showing that it cannot lead to 
the optimal solution of P ( S ) .  This can be accomplished if it is possible to 
cwnpute a lower bound for each subproblem by a convex relaxation or by 
whatever method. Let ~ [ P ( S A J ]  denote the optimal value of problem P(SA.).  
The lower bound /3[P(Sk)] is such that 

Now assume that we know a feasible, but not necessarily optiinal solution x 
of P ( S ) .  Such a solution, if any exists, is eventually found while searching the 
tree (with the exception of pathological cases). The value f(x) is an upper 
1)ound 011 the optimal value v* = v[P(S) ] .  Clearly, there is 110 point in solving 
ii siibprol)lcm P(Sk)  if 

0[P(Sk)I L f(2). (12.4) 

In fact. solving this subprobleiri cannot yield an improvement with respect to 
feasible solution x that we already know. In this case, we can eliminate P(Sk)  
from further considcration; this elimination, called futhornzng, corresponds to 
pruning a branch of the search tree. Note that P(Sk)  can be fathomed only by 
comparing the lower bound P[P(Sk)] with an upper bound on v[P(S) ] .  It is 
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not correct to fathom P(Sk) on the basis of a comparison with a subproblem 
P(S,) such that 

P[p(Sz)] < P[P(sk)]* 

The branching and fathoming mechanism is the foundation of a wide class of 
algorithms known as branch and bound methods. In the next subsection we 
outline the basic structure of branch and bound methods for mixed-integer 
linear programming (MILP) problems. These methods are widely available 
in commercial optimization software libraries. On the contrary, branch and 
bound methods for non-convex continuous problems require ad hoc coding in 
practice. 

12.3.1 LP-based branch and bound for MILP models 

The fundamental branch and bound algorithm can be outlined as follows. 
At each step we work on a list of open subproblems, corresponding to nodes 
of a search tree, and we try to generate a sequence of improving incumbent 
solutions until we can prove that an incumbent solution is the optimal one. 
At intermediate steps, the incumbent solution is the best feasible (integer) 
solution found so far; the incumbent solution, for a minimization problem, 
provides us with an upper bound on the value of the optimal solution. We give 
the algorithm for a minimization problem; it is easy to adapt the algorithm 
to a maximization problem. 

Fundamental branch and bound algorithm 

1. Initialization. The list of open subproblems is initialized to P(S) ;  the 
value of the incumbent solution v* is set to +oo. 

2. Selecting a candidate subproblem. If the list of open subproblems is 
empty, stop: the incumbent solution x*, if any has been found, is opti- 
mal; if v* = +oo, the original problem was infeasible. Otherwise, select 
a subproblem P ( s k )  from the list. 

3. Bounding. Compute a lower bound p(Sk) on v[P(Sk)] by solving a 
relaxed problem P ( s k ) .  Let Fk be the optimal solution of the relaxed 
subproblem. 

4. Prune by optimality. If Xk is feasible, prune subproblem P ( s k ) .  Fur- 
thermore, if f (Xk) < v*, update the incumbent solution x* and its value 
v*. Go to step 2. 

5. Prune by  infeasibility. If the relaxed subproblem P(sk )  is infeasible, 
eliminate P ( s k )  from further consideration. Go to step 2. 

6 .  Prune by  bound. If P(Sk) 2 v*, eliminate subproblem P(Sk)  and go to  
step 2. 
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7. Branching. Replace P(Sk)  in the list of open subproblems with a list of 
child subproblems P(Skl) ,  P(Sks),. . ., P(Skq), obtained by partitioning 
s k ;  go to step 2. 

To apply this algorithm successfully, we must cope with the following issues: 

How to compute a strong lower bound efficiently 

0 How to branch to generate subproblems 

0 How to select the right candidate from the list of open subproblems 

The last issue is very important and calls for selecting a strategy to explore 
the tree. One possibility is to explore the most promising node first, in terms 
of lower bound; this yields the best-bound strategy. Another possibility is 
the depth-first strategy, whereby the last generated node is explored first; 
this strategy may have the merit of limiting the memory space required to 
store the search tree. In practice, we should also pay attention to how far the 
solution of a relaxed problem is from integrality. In example 12.8 below we 
will also check the effect of these choices. 

Commercial branch and bound procedures compute bounds by the follow- 
ing LP-based (continuous) relaxation. Given a MILP problem 

P ( S )  min c'xfd'y 

s.t. Ax + Ey 5 b 
XEW;', Y E Z ? ,  

the continuous relaxation is obtained by relaxing the integrality constraints: 

P ( s )  min c'x+d'y 

s.t. Ax + Ey 5 b 

[j E W;'+? 

Ideally, the relaxed region should be as close as possible to the convex hull 
of S; the smaller 3, the larger the lower bound. Tighter lower bounds make 
pruning by bound easier. To this end, careful model formulation may help. 

Example 12.6 Consider a fixed-charge model in which the level of activity i 
is measured by the continuous decision variable xi  and the decision of starting 
that activity is modeled by the binary decision variable 6i E (0 , l ) .  To relate 
the two decision variables, we may write the constraint 

where Mi is an upper bound on the level x i .  When we solve the continuous 
relaxation, we drop the integrality constraint on S i ,  and we replace it by 
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6i E [0, 11. In principle, Mi may be a very large number, but to get a tight 
relaxation, we should select Mi as small as possible. 0 

Example 12.7 In example 1.2 we have considered how the basic knapsack 
model can be extended to deal with interactions among activities: in the 
example, activity 0 may be started only if all of the activities within a certain 
subset may be started. A possible constraint to model this requirement is 

N 

where xo E (0 , l )  models the decision of starting activity 0, and xi E ( 0 , l )  is 
related to the N activities in the subset conditioning activity 0. An alternative 
and equivalent formulation is 

X O < Z ~ ,  i = l ,  . . .  , N .  

On the one hand, this disaggregated form entails more constraints and prob- 
ably require more work in solving the continuous relaxation. However, when 
we consider the continuous relaxation, all the points that are feasible for the 
disaggregate formulation are feasible for the aggregate constraint, but not vice 
versa. Hence, the feasible set for the relaxation of the disaggregate formula- 
tion is smaller, and the lower bound is tighter. Such a reformulation, as well as 
others, is carried out automatically by some packages (..gel CPLEX) and may 
cut the computational effort of a branch and bound algorithm considerably. 

0 

As to branching, the following strategy is commonly applied to general in- 
teger variables. Assume that an integer variable y j  takes a non-integer value 
$j in the optimal solution of the relaxed subproblem (one must exist; other- 
wise, we would prune by feasibility). Then two subproblems are generated; in 
the down-child we add the constraint 

to the formulation; in the up-child we add 

y j  L LYj] + 1. 

For instance, if yj = 4.2, we generate two subproblems with the addition of 
constraints y j  5 4 (for the down-child) and y j  2 5 (for the up-child). 

A thorny issue is which variable we should branch on. Similarly, we should 
decide which subproblem we select from the list at step 2 of the branch and 
bound algorithm. As is often the case, there is no general answer; software 
packages offer different options to the user, and some experimentation may 
be required to come up with the best strategy. 
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Quite impressive improvements have been made in commercial branch and 
bound packages. Despite this, some large-scale problems cannot be solved 
to optimality within a reasonable amount of time. If this is the case, one 
possibility is to run branch and bound with a suboptimality tolerance. Instead 
of pruning a subproblem P(Sk)  only if the lower bound is larger than or equal 
to the incumbent, P(Sk) 2 u*, we may introduce a tolerance parameter E and 
eliminate a node in the tree whenever 

Doing so, we have only the guarantee of finding a near-optimal solution, but we 
have a bound on the level of suboptimality. In exchange, we may considerably 
reduce the computational effort. Whet we get is a mathematically motivated 
heuristic. Of course, heuristics need not be based on mathematical principles, 
but before considering heuristics, we would like to illustrate branch and bound 
in some detail. 

Example 12.8 In section (2.3 (page 652) we show how the following knap- 
sack problem can be solved by AMPL: 

max 

s.t. 

10x1 + 7x2 + 25x3 + 24x4 

221 + 1x2 + 6x3 + 524 5 7 
xi E ( 0 , l ) .  

The same problem can be solved by MATLAB using bintprog. A script for 
doing so is illustrated in figure 12.10. The script is very simple; the only 
noteworthy point is strategy selection. In the first run we use the depth-first 
exploration strategy, whereas the second run uses best-node. Strategies are 
selected as usual in the Optimization toolbox, building a option structure 
by optimset. We may also see that there is some difference between the two 
strategies: 

>> knapsack 
Optimization terminated. 
Optimization terminated. 
Optimal so lut ion:  1 0 0 1 
Value: 34 
Nodes with depth-f irst  : 9 
Nodes with best-node: 7 

A fair number of nodes is explored to find the optimal solution and prove 
its optimality. It is very instructive to try doing branch and bound manually 
using linprog. We must use the simplex algorithm in this case, because of its 
tendency to yield extreme solutions, when multiple ones exist, which means 
that they tend to be integer. 

We first solve the root problem (Po) in the tree, which is the continuous 
relaxation of the binary problem: 
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% Knapsack.m 
A = [2 1 6  51; 
b = 7; 
c = - [ l o  7 25 241; 
options = optimset(’NodeSearchStrategy’,’df’); 
[x, value, exitflag, outputdf] = bintprog(c,A,b, [I, [ I ,  [I ,options); 
options = optimset(’NodeSearchStrategy’,’bn’); 
[x ,  value, exitflag, outputbn] = bintprog(c,A,b, [I, [I, [I ,options); 
fprintf(1,’Optimal solution: ’, x ’ ) ;  
fprintf(l,’%d ’, x’); 
fprintf(l,’\nValue: %d\n’, -value); 
fprintf (1,’Nodes with depth-first: %d\n’, outputdf .nodes); 
fprintf (1, ’Nodes with best-node: %d\n’, outputbn.nodes) ; 

Fig. 12.10 MATLAB script to solve a simple knapsack problem. 

>> options = optimset(’LargeScale’, ’off’, ’Simplex’, ’on’); 
>> A = [2 1 6  51; 
>> b = 7; 
>> c = - 
>> lb = zeros(4,l) ; 
>> ub = ones(4,l); 
>> [x, val] = linprog(c,A,b, [I, [I ,lb,ub, [I ,options) 
Optimization terminated. 

[ l o  7 25 241; 

x =  
1.0000 
1.0000 

0 
0.8000 

-36.2000 
Val = 

We see that the value of the objective is 36.2, which is an upper bound on the 
optimal value 34 (recall that we are maximizing and that there is a change in 
the sign of the objective), and that 2 4  is fractional. We may branch on this 
variable by generating subproblems P I ,  where 2 4  = 0, and Pz, where 24 = 1. 
Let us solve P1 first: 

>> Aeq = [O 0 0 11; 
>> beq = 0; 
>> [x, vall = linprog(c,A,b,Aeq,beq,lb,ub, [I ,options) 
Optimization terminated. 
x =  

1.0000 
1.0000 
0.6667 
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0 
Val = 

-33.666 

We see that the solution is getting worse because of the additional constraints. 
Solving P2, we get 

>> Aeq = [O 0 0 11; 
>> beq = 1; 
>> [x, val] = linprog(c,A, b ,Aeq, beq, lb,ub, [I ,options) 
Optimization terminated. 
x =  

0.5000 
1.0000 

0 
1.0000 

Val = 
-36 

This relaxation looks more promising, so we branch from here, generating 
subproblems P3, where 5 1  = 0, and P4, where 2 1  = 1. It is easy to see that 
P4 yields the integer solution x1 = 2 4  = 1, 2 2  = 23 = 0, with value 34. Now 
we may eliminate PI, since its bound shows that this subproblem cannot yield 
the optimal solution. However, we have not finished yet, because subproblem 
P3 yields a promising fractional solution: 

>> Aeq = [O 0 0 1; 1 0  0 01; 
beq = [1;01 ; 
[x, val] = linprog(c,A,b,Aeq,beq,lb,ub,[],options) 
Optimization terminated. 
x =  

0 
1.0000 
0.1667 
1.0000 

-35.1667 
Val = 

We leave to the reader the task of verifying that branching on 53  = 0, we get 
a solution with value 32, whereas 2 3  = 1 yields an unfeasible problem (we 
have three items in the knapsack, exceeding its capacity). Hence, we have 
proven that the optimal solution has value 34, after exploring a few nodes. It 
is important to notice that a brute force enumeration strategy would require 
the exploration of 24 = 16 possible solutions. Now what about AMPL? Well, 
you can see from the appendix that AMPL/CPLEX uses zero branch and 
bound nodes: 

amp1 : model Knapsack .mod; 
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ampl: data Knapsack.dat; 
ampl: options cplex-options 'mipdisplay 2'; 
ampl: solve; 
CPLEX 9.1.0: mipdisplay 2 
Clique table members: 2 
MIP emphasis : balance optimality and feasibility 
Root relaxation solution time = 0.02 sec. 

Nodes Cuts/ 
Node Left Objective IInf Best Integer Best Node ItCnt Gap 

0 0  36.2000 1 36.2000 1 

* 34.0000 0 34.0000 Cuts: 3 3 0.00% 
* o+ 0 0 32.0000 36.2000 1 13.12% 

Cover cuts applied: 1 
Implied bound cuts applied: 1 
CPLEX 9.1.0: optimal integer solution; objective 34 
3 MIP simplex iterations 
0 branch-and-bound nodes 

How is this possible? If we check the budget constraint, it is easy to see that 
item 1 and 3 cannot be both selected, as their total capacity is 8 and it exceeds 
the available budget. Hence we might add the constraint: 

which is obviously redundant in the discrete domain, but is not redundant 
in the continuous relaxation. By the same token, we could add the following 
constraints 

2 3  + 2 4  I 1 

21 + 2 2  + 2 4  I 2 

Such additional constraints are called cover inequalities and may contribute 
to strengthen the bound from the LP relaxation, cutting the CPU time con- 
siderably. If we try solving the LP relaxation in MATLAB, adding the three 
cover inequalities, we get 

> > A l = [ 2 1 6 5 ;  1 0 1 0 ; 0 0 1 1 ;  1 1 0 1 1 ;  
bl = [7;1;1;21; 
c = -  110 7 25 241; 
lb = zeros(4,l); 
ub = ones(4,l); 
[x, val] = linprog(c,Al,bl, [I, [I ,lb,ub, [I ,options) 
Optimization terminated. 
x =  

0.3333 
1.0000 
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0.3333 
0.6667 

V a l  = 

-34.6667 

We see how cover inequalities my strengthen the relaxation. Now we may 
conclude that the optimal solution cannot be worth more than 34, since all 
the coefficients in the model are integer. AMPL/CPLEX is able to exploit 
this and other type of inequalities to reduce the computational requirements 
of branch and bound. The automatic generation of inequalities is also called 
cut generation, as we aim at cutting the relaxed feasible region in order to 
get as close as possible to the convex hull of integer solutions. Efficient cut 
generation is not trivial, as it is important to generate only the effective cuts; 
the reader may play with MATLAB to check that in the toy example above, 
not all the cover inequalities are really helpful as some are actually redundant. 

[I 

In the example above, we may appreciate the sophistication of state-of-the-art 
packages for mixed-integer programming. We should also stress that heuristics 
may actually be integrated within a branch-and-bound procedure. The role 
of heuristics is to generate, given a nearly-integer solution, a feasible solution; 
if this is of good quality, it will improve the incumbent solution and the upper 
bound against which we compare lower bounds. In the ILOG CPLEX trace 
above whenever you see an asterisk (*) in a row, it means that the search 
process has found a new incumbent. When you also see a plus (+), it means 
that it was found by a heuristic. One possibility to devise such heuristics is 
clever rounding; rounding does not work in general, if we use it to find an 
optimal solution, but when the continuous relaxation is tight enough, it may 
yield very good solutions. Another principle that can be exploited is local 
search, which is introduced in the next section. 

12.4 HEURISTIC METHODS FOR NON-CONVEX OPTIMIZATION 

When a branch and bound method is not able to yield an optimal or near- 
optimal solution with a reasonable effort, we may settle for a quick heuristic 
method able to provide us with a good solution. For any specific problem 
it is possible to devise an ad hoc method. However, it is interesting to con- 
sider relatively general principles which, with some adaptation, may yield 
good heuristics for a wide class of problems. Local search metaheuristics’ are 
quite popular and have also been proposed for financial problems. They were 
originally developed for discrete optimization problems; however, they may 

’This name reflects the relatively general nature of the principle. In practice, a good deal 
of customization is needed to come up with a truly effective method for a specific problem. 
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also be applied to continuous non-linear programming when the objective is 
non-convex. 

Local search algorithms are similar to the gradient method for non-linear 
programming. The basic idea is to improve a known solution by applying a 
set of local perturbations. Consider a generic optimization problem 

defined over a discrete set S. Given a feasible solution x,  a neighborhood 
n/(x) is defined as the set of solutions obtained by applying a set of sim- 
ple perturbations to x. Different perturbations yield different neighborhood 
structures. 

The simplest local search algorithm is local improvement. Given a current, 
or incumbent, solution 3, an alternative (candidate) solution xo is searched 
for in the neighborhood of the incumbent, such that 

f (xo )  = min f(x) .  
XEN(Z)  

If the neighborhood structure N(.) is simple enough, the minimization above 
can be performed by an exhaustive search; we speak of a best-improving 
method since we try to find the best solution in the neighborhood. Clearly, 
there is a trade-off between the effectiveness of the neighborhood structure 
(the larger the better) and the efficiency of the algorithm. If f (xo)  < f(3), 
then xo is set as the new current solution and the process is iterated. If 
f ( x o )  2 f(3), the algorithm is stopped. A possible variation is to partially 
explore the neighborhood of the current solution until an improving solution 
is found; this approach is known as first-improving, since we do not explore 
the entire neighborhood before committing to a new current solution. 

The neighborhood structure is problem dependent. In the case of discrete 
optimization problems, devising a neighborhood structure may be relatively 
straightforward. For instance, in a capital budgeting problem, the solution is 
represented by the subset of selected projects. The neighborhood might be 
generated by exchanging a project within the current subset with a project 
not included in it. In a general programming problem with binary variables, 
one might consider complementing each variable in turn. Actually, devising a 
clever and effective neighborhood is not as trivial as it might seem, since due 
attention must be paid to constraints. In the case of continuous variables, a 
further complication arises; we may generate neighboring points by moving 
along a set of directions, but we must find a way to select the step size. To 
this aim, dynamic strategies have been devised (see, e.g., [6] for a financial 
application). 

This basic idea is generally easy to apply, but it has one major drawback: 
The algorithm usually stops in a locally (with respect to the neighborhood 
structure) optimal solution. This is the same difficulty we face when applying 
the gradient method to  a non-convex objective function; the reason behind 
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the trouble is that only improving perturbations [i.e., such that A f = f (x') - 
f(z) < 01 are accepted. To avoid getting stuck in a local optimum, we must 
relax this assumption. 

In the following we describe three local search approaches that have been 
proposed to overcome the limitations of local improvement: simulated anneal- 
ing, tabu search, and genetic algorithms. 

Simulated annealing It has been pointed out that to overcome the problem 
of local minima, we have to accept, in some disciplined way, non-improving 
perturbations, i.e., perturbations for which Af > 0. Simulated annealing is 
based on an analogy between cost minimization in discrete optimization and 
energy minimization in physical systems. The local improvement strategy 
behaves much like physical systems do, according to  classical mechanics. It 
is impossible for a system to have a certain energy a t  a certain time and to 
increase it without external input: If you place a ball in a hole, it will stay 
there. This is not true in thermodynamics and statistical mechanics; according 
to these physical models, a t  a temperature above absolute zero, thermal noise 
makes an increase in the energy of a system possible. An increase in energy is 
more likely to occur a t  high temperatures. The probability P of this upward 
jump depends on the amount of energy A E  acquired and the temperature T ,  
according to the Boltzmann distribution 

P ( A E ,  T )  = exp -- ( iET), 
where K is the Boltzmann constant. 

Annealing is a metallurgical process by which a melted material is slowly 
cooled in order to obtain good (low-energy) solid-state configurations. If the 
temperature is decreased too fast, the system gets trapped in a local energy 
minimum, and a glass is produced. But if the process is slow enough, random 
kinetic fluctuations due to thermal noise allow the system to escape from local 
minima, reaching a point very close to the global optimum. 

In strict analogy with statistical mechanics, in the simulated annealing 
method a perturbation of the current solution yielding Af < 0 is always 
accepted; a perturbation with A f > 0 is accepted with a probability given by 
a Boltzmann-like probability distribution 

P ( A f , T )  = e x p ( - F ) .  

This probability distribution is a decreasing exponential in A f ,  whose shape 
depends on the parameter T ,  acting as a temperature (see figure 12.11). The 
probability of accepting a non-improving perturbation decreases as the dete- 
rioration of the solution increases. For a given A f ,  the acceptance probability 
is higher at  high temperatures. For T -+ 0 the probability collapses into a 
step function, and the method behaves like local improvement. For T + +oo 
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T decreasing s 

Fig. 12.11 Ac cqttti1c.e probabilities as a funct,ian of cost increase for tliffertliit t,rrii- 
perat tires. 

the probability is 1 everywhere, and we have a random exploration of the 
solutions space. The parameter T allows balancing the need to expZoit the 
solut,ion a.t hand by improving it and the need to explore the solution space. 

The simulated annealing method simply substitutes the deterministic ac- 
ceptance rule of local improvement with a probabilistic rule. The temperatmure 
is set to a relatively high initial value T I ,  and the algorithm is iterated using 
at  step I;  a temperature T k  until some termination criterion is satisfied. The 
strategy by which the temperature is decreased is called the cooling schedule. 
The simplest cooling schedule is 

Ti: = a T k - 1 ,  0 < (Y < 1. 

In practice, it is advisable to keep the temperature constant for a certain num- 
her of skps,  in order to reach a thermodynamic equilibrium before changing 
the coiitrol paramet.er. More sophisticated adaptive cooling strategies have 
tieen proposed, biit, t,he increasc in complexity does not always seem justi- 
fictl. A very siniple implementation of the annealing algorithm could be the 
following: 

Step 1. Choose an initial solution Zold, an initial temperature T I ,  and 
a decrease parameter a; let k = 1, fo ld  = f(z, ld);  let f = fC, lc1  

and 2 = z,ld be the current optimal value and optimal solution, 
respectively. 

Step 2. Randomly choose a candidate solution xncw from the neigh- 
liorhootl of zc,lcl , and compute its value f,,c.w. 

Step 3. Set, the acceptance probability 
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Step 4. Accept the new solution with probability P ;  if accepted, set 
xold = xnew and fold = fnew; if necessary, update f and 2.  

Step 5. If some termination condition is met, stop; otherwise, set 
k = k + 1, set the new temperature according to the cooling 
schedule, and go to step 2. 

The probabilistic acceptance is easy to implement. P is evaluated according 
to the Boltzmann distribution; then a pseudorandom number U ,  uniformly 
distributed between 0 and 1, is generated and the move is accepted if U 5 P 
(pseudorandom number generation is dealt with in section 4.3). 

The termination condition could be related to a maximum iteration num- 
ber, to a minimum temperature, or to  a maximum number of steps in which 
the current solution remains unchanged. Note that we do not explore the en- 
tire neighborhood of the current solution; the method is of the first-improving 
type. If a candidate solution is rejected, we select another candidate in the 
neighborhood of the current solution. In principle, it is possible to visit the 
same solution twice; if the neighborhood structure is rich enough, this is un- 
likely. It is necessary to save the best solution found, since the freezing point 
(the last current solution) need not be the best solution visited. 

An implementation of the annealing algorithm is therefore characterized 
by the solution space, the neighborhood structure, the rule by which the 
neighborhood is explored, and the cooling schedule. It can be shown that un- 
der some conditions, the method asymptotically converges (in a probabilistic 
sense) to the global optimum. The convergence property is a reassuring one, 
but it is usually considered of little practical value, since its conditions would 
require impractical running times. However, the experience suggests that 
in many practical settings, very good solutions (often optimal) are actually 
found. The running time of the algorithm to obtain high-quality solutions, 
however, is problem dependent. 

Tabu search Like simulated annealing, tabu search is a neighborhood search- 
based metaheuristic aimed a t  escaping local minima. Unlike simulated an- 
nealing, tabu search tries to keep the search biased toward good solutions. 

The basic idea of tabu search is that the best solution in the neighborhood 
N of the current solution should be chosen as the new current solution, even 
if this implies increasing the cost. If we are in a local minimum, this means 
accepting a non-improving perturbation. The problem with this basic idea is 
that the possibility of cycling arises. If we try to escape from a local minimum 
by choosing the best solution in its neighborhood, it might well be the case 
that at  the next iteration, we fall back into the local minimum, since this 
could be the best solution in the new neighborhood. 

To prevent cycling, we must prevent revisiting solutions. One way would be 
to keep a record of the already visited solutions; however, this would be both 
memory- and time-consuming, since checking a candidate solution against the 
list of visited ones would require a substantial effort. A better idea could be 
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to record only the most recent solutions. A practical alternative is to keep in 
memory only some attributes of the solutions or of the applied perturbations; 
such attributes are called tabu. For instance, the reverse of the selected pertur- 
bation at each step can be marked as tabu, restricting the neighborhood to be 
considered. Consider a pure integer program involving only binary variables; 
if we complement variable xi, in the next few iteration we might forbid any 
perturbation complementing this variable again. As an alternative, a tabu 
attribute of a solution could be the value of the objective function. In prac- 
tice, it is necessary to keep only a record of the most recent tabu attributes to 
avoid cycling; the data structure implementing this function is the tabu list. 

The basic tabu navigation algorithm can be described as follows: 

Step 1. Choose an initial current solution xcur, a tabu list size; let 
k = 1, .f = f(xcur)l  2 = xcur. 

Step 2. Evaluate the neighborhood N(xcur); update the current so- 
lution with the best non-tabu solution in the neighborhood; if 
necessary, update the current optimal solution 2 and the current 
optimal value f .  

Step 3. Add some attribute of the new solution or of the applied 
perturbation to the tabu list. 

Step 4. If the maximum iteration number has been reached, stop; 
otherwise, set k = k + 1, and go to step 2. 

Note that, unlike simulated annealing, this version of tabu search explores 
the entire neighborhood of the current solution; basic tabu search is a strategy 
of the best-improving rather than first-improving type. However, it is possible 
to restrict the neighborhood to reduce the computational burden. 

There are several issues and refinements to consider in order to implement 
an effective and efficient algorithm. They are rather problem specific; this 
shows that, although local search metaheuristics are general-purpose, a certain 
degree of “customization’l is necessary. 

Genetic algorithms Unlike simulated annealing and tabu search, genetic al- 
gorithms work on a set of solutions rather than a single point. In this sense 
they are similar to the simplex search method of section 6.2.4. The idea is 
based on the survival-of-thefittest mechanism of biological evolution. Each 
solution is represented by a string of numbers or symbols; strings are subject 
to random evolution mechanisms which change the current population. One 
evolution mechanism is mutation; an attribute of a string is randomly se- 
lected and modified using a neighborhood structure. Mutation is very similar 
to the usual local search mechanism, but there is another mechanism which 
is peculiar to genetic algorithms: crossover. In the crossover mechanism, two 
elements of the current set of solutions are selected and merged in some way. 
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Given two strings, we select a “breakpoint” position k and merge the strings 
as follows: 

21, 221 ’ . . I  Zk, Ykfl, . ., Yn 
YllY21~. .,Yk,Zk+lr * .  .,Zn 

21rZZi...iXkiZk+lr..rZn 

Y11 Yz,. . . , Yk, Yk+lr.. ., Yn 

Different variations are possible; for instance, a double crossover may be ex- 
ploited, in which two breakpoints are selected for the crossover. 

The set of solutions is updated at  each iteration, selecting the “best” in- 
dividuals for mutation and crossover and/or letting only the best individuals 
survive. Rather than selecting the best individuals deterministically, based 
on the value of the objective function, random selection mechanisms are em- 
ployed to avoid freezing the population to a locally optimal solution. Genetic 
algorithms may be integrated with local search strategies; one idea is to use 
genetic mechanisms to find a set of initial points from which a local improve- 
ment search is carried out. 

The idea of genetic algorithms certainly has a good potential for solving 
quite complex problems; the evident downside is that considerable experimen- 
tation may be needed to  come up with the best strategy and the best setting 
of numerical parameters regulating the evolution mechanisms. The potential 
of this class of methods is also proved by the recent introduction of the Ge- 
netic Algorithm and Direct Search toolbox, which extends the functionalities 
of the MATLAB Optimization toolbox. 

For further reading 

In the literature 

0 A comprehensive reference on mixed-integer programming is [16]. A 
more recent treatment, including developments in automatic model strength- 
ening, is [19]. 

0 The use of mixed-integer programming models in portfolio management 
is the subject of an increasing number of papers including [2], [3], [4], 
[lo],  [ l l ] ,  and [17]. 

0 For a textbook treatment, see also [18]. 

0 The AMPL language is described in [5]. 

0 Global optimization techniques for optimization of a fixed-mix portfolio 
are discussed in [12]; the model is extended and tackled by metaheuris- 
tics in [6]. 

0 For a broader view of the principles behind global optimization algo- 
rithms see, e.g., [8]. 
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0 Tabu search is covered in depth by [7]. See, e.g., [l] for an application 
to global optimization. 

0 A textbook on genetic algorithms is [15]. An application to global opti- 
mization is described in [14]. 

On the Web 

0 The AMPL web site is http  : / /www . ampl. com. 

0 See also http  : //www . ilog . corn. 

0 Meta-heuristics are the algorithmic foundation of an optimization en- 
gine, OptQuest, which thanks to its flexibility has been integrated with 
many simulation packages. See http:  / /www.  optquest.  corn. The tool 
has also been applied to portfolio management problems, too. 

0 The Genetic Algorithm and Direct Search toolbox is described on The 
Mathworks’ web site h t t p :  //www .mathworks. corn 
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Part V 

A p p e n d i ce s 





Appendix A 
Introduction to  

MATLAB Programming 

We give here a brief outline of the MATLAB basics, referring to the user 
manual for a full treatment. You may also type demo to see a demonstration 
of both MATLAB and the toolboxes you are interested in. Actual use of the 
features we describe is illustrated in the remainder of the book. A rich online 
documentation is available in the MATLAB environment; the reader should 
take advantage of this whenever a piece of code in the book is not clear. 

A . l  MATLAB ENVIRONMENT 

0 MATLAB is an interactive computing environment. You may enter 
expressions and obtain an immediate evaluation: 

>> rho = l+sqrt(5)/2 
rho = 

2.1180 

By entering a command like this, you also define a variable rho  which is 
added to the current environment and may be referred to in any other 
expression. 

603 
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There is a rich set of predefined functions. Try typing help  e l f  un, help  
elmat, and help  ops to get information on elementary mathematical 
functions, matrix manipulation, and operators, respectively. For each 
predefined function there is an online help: 

>> help sqrt 
SQRT Square root. 

SQRT(X) is the square root of the elements of X. Complex 
results are produced if X is not positive. 

See also sqrtm, realsqrt, hypot. 

Reference page in Help browser 
doc sqrt 

The help command should be used when you know the name of the 
function you are interested in, but you need additional information. 
Otherwise, lookf o r  may be tried: 

>> lookfor sqrt 
REALSQRT Real square root. 
SQRT Square root. 
SQRTM Matrix square root. 

We see that lookf o r  searches for functions whose online help documen- 
tation includes a given string. Recent MATLAB releases include an 
extensive online documentation which can be accessed by the command 
doc. 

0 MATLAB is case sensitive ( P i  and p i  are different). 

>> pi 
ans = 

3.1416 
>> Pi 
??? Undefined function or variable 'Pi'. 

MATLAB is a matrix-oriented environment and programming language. 
Vectors and matrices are the basic data structures, and more complex 
ones have been introduced in the more recent MATLAB versions. Func- 
tions and operators are available to deal with vectors and matrices di- 
rectly. You may enter row and column vectors as follows: 

>> V1=[22, 5, 31 
v1 = 

22 5 3  
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>> v2 = c33; 7; 11 
v2 = 

33 
7 
1 

We may note the difference between comma and semicolon; the latter is 
used to terminate a row. In the example above, commas are optional, 
as we could enter the same vector by typing V 1 =  122 5 31. 

0 The who and whos commands may be used to check the user defined 
variables in the current environment, which can be cleared by the clear 
command. 

>> who 
Your variables are: 
v1 v2 
>> whos 

Name Size Bytes Class 
v1 1x3 24 double array 
v2 3x 1 24 double array 

Grand total is 6 elements using 48 bytes 
>> clear V1 
>> whos 

Name Size Bytes Class 
v2 3x 1 24 double array 

Grand total is 3 elements using 24 bytes 
>> clear 
>> whos 
>> 

0 You may also use the semicolon to suppress output from the evaluation 
of an expression: 

>> V1=[22, 5, 31 ; 
>> v2 = [33; 7; 11; 
>> 

Using semicolon to suppress output is important when we deal with 
large matrices (and in MATLAB programming as well). 

0 You may also enter matrices (note again the difference between ‘ ; ’  and 
L, ’): 

>> A = [ l  2 3; 4 5 61 
A =  
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1 2 3 
4 5 6 

>> B=[V2 , V21 
B =  

33 33 
7 7 
1 1 

>> C=[V2 ; v21 
C =  

33 
7 
1 
33 
7 

Also note the effect of the following commands: 

>> Ml=zeros(2,2) 
M1 = 

0 0 
0 0 

>> Ml=rho 
M1 = 

2.1180 
>> Ml=zeros(2,2) ; 
>> Ml(:,:)=rho 
M1 = 

2.1180 2.1180 
2.1180 2.1180 

0 The colon ( : ) is used to spot subranges of an index in a matrix. 

>> Ml=zeros(2,3) 
M1  = 

0 0 0 
0 0 0 

>> M1(2,:)=4 
M1 = 

0 0 0 
4 4  4 

>> M1(1,2:3)=6 
M1  = 

0 6 6 
4 4 4 

0 The dots (.  . .) may be used to write multiline commands. 
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>> M=ones(2, 
??? M=ones (2, 

Missing variable or function. 
>> M=ones(2, . . .  
2) 
M =  

1 1 
1 1 

0 The zeros and ones commands are useful to initialize and preallocate 
matrices. This is recommended for efficiency. In fact, matrices are 
resized automatically by MATLAB whenever you assign a value to  an 
element beyond the current row or column range, but this may be time 
consuming and should be avoided when possible. 

>> M = [l 2; 3 41; 
>> M(3,3) = 5 
M =  

1 2 0 
3 4 0 
0 0 5 

It should be noted that this flexible management of memory is a double- 
edged sword: It may increase flexibility, but it may make debugging 
difficult. 

0 [I is the empty vector. You may also use it to  delete submatrices: 

M1 = 

0 6 6 
4 4 4 

>> M1(: ,2)=[1 
M1 = 

0 6 
4 4 

0 Another use of the empty vector is to pass default values to MATLAB 
functions. Unlike other programming languages, MATLAB is rather 
flexible in its processing of input arguments to functions. Suppose we 
have a function f taking three input parameters. The standard call 
would be something like f (XI, x2, x3). If we call the function with 
one input arguments, f (xi), the missing ones are given default values. 
Of course this does not happen automatically; the function must be 



608 INTRODUCTION TO MATLAB PROGRAMMING 

programmed that way, and the reader is urged to see how this is accom- 
plished by opening predefined MATLAB functions with the editor. 

Now suppose that we want to pass only the first and the third argument. 
We obviously cannot simply call the function like f (XI, x31, since x3 
would be assigned to the second input argument of the function. To 
obtain what we want, we should use the empty vector: f (xi, [I , x3). 

0 Matrices can be transposed and multiplied easily (if dimensions fit): 

>> M1’ 
ans = 

0 4  
6 4 

>> M2=rand(2,3) 
M2 = 

0.9501 0.6068 0.8913 
0.2311 0.4860 0.7621 

>> M1*M2 
ans = 

1.3868 2.9159 4.5726 
4.7251 4.3713 6.6136 

>> M1+1 
ans = 

1 7 
5 5 

The rand command yields a matrix with random entries, uniformly 
distributed in the (0,l)  interval. 

0 Note the use of the dot . to  operate element by element on a matrix: 

>> A=O .5*ones (2,2) 
A =  

0.5000 0.5000 
0.5000 0.5000 

>> M 1  
M1 = 

0 6 
4 4 

>> Ml*A 
ans = 

3 3 
4 4  

>> Ml.*A 
ans = 

0 3 
2 2 
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>> I=[l 2; 3 41 
I =  

1 2 
3 4 

>> 1-2 
ans = 

7 10 
15 22 

>> 1.-2 
ans = 

1 4 
9 16 

Subranges may be used to build vectors. For instance, to compute the 
factorial: 

>> 1:lO 
ans = 

1 2 3 4 5 6 7 a 9 10 
>> prod(1: 10) 
ans = 

3628800 
>> sUm(1:lO) 
ans = 

55 

You may also specify an optional increment step in these expressions: 

>> 1:0.8:4 
ans = 

i . 0000 1. aooo 2.6000 3.4000 

The step can be negative too: 

>> 5:-1:0 
ans = 

5 4 3 2 1 0 

0 One more use of the colon operator is to make sure that a vector is a 
column vector: 

>> V1 = 1:3 
v1 = 

>> V2 = (1:3IJ 
v2 = 

1 2 3 

1 

2 
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1 

2 
3 

>> V2(:) 
ans = 

1 

2 
3 

The same effect cannot be obtained by transposition, unless one writes 
code using the function s ize  to check matrix dimensions: 

>> [m,n] = size(V2) 
m =  

3 
n =  

1 

0 Note the use of the special quantities Inf (infinity) and NaN (not a 
number): 

>> 1=1/0 
Warning: Divide by zero. 
1 =  

>> 1 
1 =  

>> prod(l:200) 

Inf 

Inf 

ans = 
Inf 

>> 1/0 - prod(l:200) 
Warning: Divide by zero. 
ans = 

NaN 

0 Useful functions to operate on matrices are: eye, inv, eig,  det, rank, 
and diag: 

>> eye(3) 
ans = 

1 0 0 
0 1 0 
0 0 1 
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>> K=eye(3)*[1 2 31 ’ 
K =  

1 

3 
>> K=inv(K) 
K =  

1.0000 0 0 
0 0.5000 0 
0 0 0.3333 

>> eig(K) 
ans = 

1.0000 
0.5000 
0.3333 

>> rank(K) 

3 
ans = 

>> det(K) 
ans = 

0.1667 
>> K=diag([l 2 31) 
K =  

1 0 0 
0 2 0 
0 0 3 

We should note a sort of dual nature in diag. If it receives a vector, it  
builds a matrix; if it receives a matrix, it returns a vector: 

>> A = [1:3 ; 4:6 ; 7:91; 
>> diag(A) 

1 
5 
9 

ans = 

Some functions operate on matrices columnwise: 

> > A = C 1 3 5 ; 2 4 6 ] ;  
>> sum(A) 
ans = 

>> maan(A) 
3 7 11 

ans = 
1.5000 3.5000 5.5000 

The last example may help to understand the rationale behind this 
choice. If the matrix contains samples from multiple random variables, 
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and we want to  compute the sample mean, we should arrange data in 
such a way that variables corresponds to columns, and joint realizations 
corresponds to rows. However, it is possible to specify the dimension 
along which these functions should work: 

>> sum(A,2) 

9 
12 

>> mean(A,2) 

3 
4 

ans = 

ans = 

Another useful function in this vein computes cumulative sums: 

>> cumsum(l:5) 
ans = 

1 3 6 10 15 

Systems of linear equations are easily solved: 

>> A = [3 5 -1; 9 2 4; 4 -2 -91; 
>> b = (1:3)’; 
>> X = A\b 
X =  

0.3119 
-0.0249 
-0.1892 

>> A*X 
ans = 

1.0000 
2.0000 
3.0000 

The efficiency of a function may be checked by using the commands t i c  
and toc as follows: 

>> tic, inv(rand(500,500)) ;, toc 
Elapsedtime is 0.472760 seconds. 

We will see in section A.3 how MATLAB code can be developed in 
order to compute complicated functions. However, when the function 
is a relatively simple expression it may be preferable to define functions 
in a more direct way. One possibility is using the inline mechanism, 
which builds a function based on a string: 
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>> f = inline(’exp(2*x) .*sin(y) ’1 
f =  

Inline function: 
f (x,y) = exp(2*x) .*sin(y) 

>> f(2,3) 
ans = 

7.7049 

Note the use of the dot operator to make sure the function works on 
vector inputs and how inline determines automatically the name and 
the order of the input arguments. If one wants to change that order, an 
explicit list of arguments can be given: 

>> f = inline(’exp(2*foo).*sin(fee)’) 
f =  

Inline function: 
f (fee,foo) = exp(2*foo) .*sin(fee) 

>> g = inline( ’exp(2*foo). *sin(fee) ’ , ’foo ’ , ’fee ’1 
g =  

Inline function: 
g(foo,fee) = exp(2*foo) .*sin(fee) 

0 An alternative approach to inline is based on the function handle op- 
erator @: 

We see that the operator is used to LLabstractll a function from an ex- 
pression.’ The @ operator is also useful to define anonymous functions 
which may be passed to higher-order functions, i.e., functions which re- 
ceive functions as inputs (e.g., to compute integrals or to solve non-linear 
equations). 

We may also fix some input parameters to obtain function of the re- 
maining arguments: 

‘Readers, like myself, with a little background in theoretical computer science or mathe- 
matical logic will notice some similarity with the notation used in A-calculus. 



614 INTRODUCTION TO MATLAB PROGRAMMING 

7.7049 

0 In this book we will practically use only matrices, but MATLAB has 
included many more data structures over the years. We can deal with 
strings (delimited by quotes) and structures (called (‘struct”’ ) with ar- 
bitrary fields: 

>> p.name = ’Donald Duck’ 
>> p.age = 55; 
>> P 
P =  

name: ’Donald Duck’ 
age: 55 

Structures are used by some functions to group output data in one 
structure, avoiding an excessive number of output arguments. 

0 Cell arrays may also be used to implements ragged arrays, i.e., arrays 
containing vectors with different lengths (which cannot be accomplished 
by traditional matrices): 

>> M = ce11(2,1); 
>> MC1) = 1 2 3 1 ;  
>> M(2) = C 4 5 6 7 8 1 ;  
>> M 
M =  

[1x3 double] 
[1x5 double] 

>> MC1) 
ans = 

1 2 3  

Note the use of braces rather than standard parentheses. 

A.2 MATLAB GRAPHICS 

0 Plotting a function of a single variable is easy. Try the following com- 
mands: 

>> x = O:O.O1:2*pi; 
>> plot(x,sin(x)) 
>> axis( CO 2*pi -1 11 ) 

The axis command may be used to resize plot axes at  will. There is 
also a rich set of ways t o  annotate a plot. 
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0 Different types of plots may be obtained by using optional parameters 
of the p l o t  command. Try with 

0 To obtain a tridimensional surface, the surf command may be used. 

>> f = a(x,y) exp(-3*(x.-2 + y.*2)).*(sin(5*pi*x)+ cos(lO*pi*y)); 
>> [X Y1 = meshgrid(-l:O.Ol:l , -1:O.Ol:l); 
>> surf (X,Y,f (X,Y)) 

Some explanation is in order here. The function surf must receive three 
matrices, corresponding to the x and y coordinates in the plane, and to 
the function value (the ‘ z ’  coordinate). A first requirement is that the 
function we want to draw should be encoded in such a way that it can 
receive matrix inputs; use of the dot operator is essential: Without the 
dots ‘ . I, input matrices would be multiplied row by column, as in linear 
algebra, rather than element by element. To build the two matrices 
of coordinates, meshgrid is used. To understand what this function 
accomplishes, let us consider a small scale example: 

>> [X,Y] = meshgrid(l:4,1:4) 
X =  

1 2 3 4 
1 2 3 4 
1 2 3 4 
1 2 3 4 

1 1 1 1 
2 2 2 2 
3 3 3  3 
4 4 4 4 

Y =  

We see that, for each point in the plane, we obtain matrices containing 
each coordinate. 

0 We may close this section with a more practical example: plotting the 
Black-Scholes price of a vanilla call option, for time to maturity T rang- 
ing from one year down to zero, initial price SO ranging from 30 to  70, 
strike price K = 50, risk-free rate r = 0.1, and volatility o = 0.4. The 
following commands produce the surface in figure A . l :  

>> T = 1:-0.05:O; 
>> SO = 30:70; 
>> K = 50; 
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f ig. A.l  
asset price. 

Price of a call option as a function of time to  maturity and initial underlying 

>> sigma = 0.4; 
>> r = 0.1; 
>> [X,Y] = meshgrid(T,SO); 
>> f = Q(time,price) blsprice(price, 50, 0.1, time, 0.4); 
>> surf (X,Y,f (X,Y)> 

Of course we are relying on the fact that the blsprice function, available 
in the Financial toolbox, has been properly coded to  handle matrix 
inputs. 

A.3 MATLAB PROGRAMMING 

a MATLAB toolboxes extend considerably the capabilities of the MAT- 
LAB core. They consist of a set of functions that are coded in the 
MATLAB programming language. They are contained in M-files, which 
are plain text files with default extension * .m. It  is quite instructive to  
open some of these files in the MATLAB editor to see how a robust and 
flexible code is written. 

You may also write your own functions. You have simply to  open the 
MATLAB editor and save the file in a directory which is on the MAT- 
LAB path. 

0 A simple function is displayed in figure A.2. The function consists of the 
function header, which specifies the input and output arguments. Note 
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function Cxout, youtl = samplefile(x,y) 
x a simple M-file to do some pointless computation 
1 this comment is printed by issuing the help samplefile 
X command 
[m,nl = size(x); 
[p,ql = size(y); 
z = rand(lO,m)*x*rand(n,lO) + rand(lO,p)*y*rand(q,lO); 
xout = sum(z); 
yout = sin(z); 

Fig. A.2 Typical structure of a MATLAB function. 

how multiple output arguments are expressed. The comments below 
the function heading are displayed if you ask for some help  about the 
function: 

>> help samplefile 
a simple M-file t o  do some pointless computation 
this comment is printed by issuing the help samplefile 
command 

Then the function body is given, which may contain further comment 
lines and arbitrarily complex control structures. 

0 In general, you may write a function in which some input arguments are 
optional and are given default parameters. To see a simple example, try 
typing the following commands: 

>> help mean 

and 

>> type mean.m 

Alternatively, you may open mean.m within the MATLAB editor. 

0 The function body includes a sequence of instructions, which in turn are 
built by: 

- Using control structures common to any other programming lan- 
guage, such as if, for, while, etc. 

- Calling other predefined functions. 
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function p = myprimes(N1 
found = 0; 
trynumber = 2; 

while (found < N) 
p = [I; 

if isprime(trynumber) 
p = [p , trynumber]; 
found = found + 1; 

end 
trynumber = trynumber + 1; 

end 

Fig. A.3 MATLAB function to return the first N prime numbers. 

- Building expressions based on the familiar arithmetic, relational, 
and logical operators. 

For instance, suppose you want to write a function that returns the 
first N prime numbers. MATLAB provides the user with two related 
functions, primes and isprime. The function primes returns the prime 
numbers that are less than or equal to an input number: 

>> primes(l1) 
ans = 

2 3 5 7 11 

whereas isprime returns 1 if the input number is prime, 0 otherwise: 

>> isprime(C3 4 51) 
ans = 

1 0 1 

Unfortunately, primes is not what we need, since we want the first N 
prime numbers. One way to accomplish our aim is illustrated in figure 
A.3. Note how the if statement treats 1 as “true” and 0 as “false.” 

>> myprimes ( 8 )  
ans = 

2 3 5 7 11 13 17 19 

The function can and should be improved. To begin with, even numbers 
larger than 2 cannot be prime and should not be checked; furthermore, 
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the vector p should be preallocated, rather than dynamically resized. 
These improvements are left as an exercise. 

0 A typical way to improve performance of MATLAB code is vectorization. 
This means that one should try to avoid for loops working on elements 
of vectors and matrices, which should be acted on as a whole block. As 
an example, we may write different functions to build a Hilbert matrix. 
This matrix is introduced in example 1.3 on page 18, and its elements 
are 

In figure A.4 we illustrate different functions to build a Hilbert matrix 
of order N :  MyHilbDumb is based on two nested loops, without matrix 
preallocation; MyHilb is the same, but it preallocates the output matrix; 
MyHilbV is partially vectorized, as rows are built and assigned as vectors. 

Let us compare the performance of the three functions: 

>> tic, 
Elapsed 
>> tic, 
Elapsed 
>> tic, 
Elapsed 
>> tic, 
Elapsed 
>> tic, 
Elapsed 

MyHilbDumb(1000) ; , toc 
time is 10.565729 seconds. 
MyHilb(1000) ; , toc 
time is 0.053242 seconds. 
MyHilbV(1000);, toc 
time is 0.063986 seconds. 
MyHilb(5000) ; , toc 
time is 1.245170 seconds. 
MyHilbV(5000) ; , toc 
time is 1.202888 seconds. 

We see how fundamental preallocation is. Vectorization does not seem 
an impressive technique here (the reader is urged to check the perfor- 
mance of the built-in function hilb, which is fully vectorized). In older 
MATLAB versions vectorized code typically worked much better that 
non-vectorized code; improvements in the MATLAB interpreter have 
made this practice less important in some cases, but not always. 

The following example shows that when the overhead of a function call 
is involved, vectorization may be useful: 

>> prices = 30:0.1:70; 
>> N = length(prices1; 
>> calls = zeros(N,l); 
>> tic, calls = blsprice(prices,50,0.1,1,0.4);, toc 
Elapsed time is 0.012505 seconds. 
>> tic, . . .  
f o r  i=l:N, calls(i)=blsprice(prices(i) ,50,0.1,1,0.4);, end, toc 
Elapsed time is 0.397540 seconds. 
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function H = MyHilbDumb(N1 
for i=l:N 

for j=l:N 

end 
H(i,j) = l/(i+j-l); 

end 

function H = MyHilb(N) 
H = zeros(N,N); 
for i=l:N 

for j=l:N 

end 
H(i,j) = l/(i+j-l); 

end 

function H = MyHilbV(N1 
H = zeros(N,N) ; 
for i=l:N 

end 
H(i,:) = l./(i:(i+N-l)); 

Fig. A.4 Three ways to build a Hilbert matrix. 
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0 Useful operators to vectorize code are any and f ind :  

>> v = [ 1 3 -4 9 -2 11 
V =  

1 3 -4 9 -2 1 
>> any(V > 9) 

>> any(V >= 7) 

ans = 

0 

ans = 

1 
>> Sum(V<O) 

2 
ans = 

>> find(V < 0 )  
ans = 

3 5 
>> V(find(V<O))=[I 
V =  

1 3 9 1 

0 When developing M-files, a most useful tool is the interactive debugger. 
We refer the reader to the manual for details. 
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Appendix B 
Refresher on  Probability 

Theory and Statistics 

In this appendix we recall very briefly some basic facts about probability 
theory and parameter estimation. This is not meant as a substitute for a 
thorough treatment, for which we refer the reader to the references. We will 
not use measure theoretic concepts and will mostly rely on intuition. We 
also give information on some functions provided by the MATLAB Statistics 
toolbox. 

6 .1  SAMPLE SPACE, EVENTS, AND PROBABILITY 

Probability is defined based on random events that take place within a sample 
space. A sample space S contains the possible outcomes of a random exper- 
iment or a sequence of random experiments. An event E is a subset of the 
sample space S.  Which subsets are events may depend on the application, 
what we are interested in, and the available information on random outcomes. 
The empty set 0 is a particular event. For any event El we may consider its 
complement EC;  since the sample space S contains all the possible outcomes, 
we have S" = 0. Given any two events El and E2, we may consider their 

623 
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union El U E2 and their intersection El n E2; to ease notation, we will de- 
note intersection by E1E2. If the intersection of two events is empty, i.e., if 
ElE2 = 0, we say that the two events are mutually exclusive. More generally, 
we may consider the union and the intersection of an arbitrary number of 
events. 

For each event E on a sample space S, we define a probability measure 
P ( E )  which must satisfy the following three conditions: 

1. 

2. 

3. 

0 5 P ( E )  5 1. 

P ( S )  = 1. 

For any sequence of mutually exclusive events El ,  E2, E3,. . . (i.e., such 
that EiEj = 0, for i # j ) ,  we have 

Different properties may be proven as a consequence of these conditions. For 
instance, it can be shown that 

P ( E )  + P(E")  = 1 

and that 
P(E1 U Ez) = P(E1) + P(E2) - P(EiE2). 

Often we are interested in the probability of an event E conditional on the 
occurrence of another event F ,  denoted by P ( E  I F ) .  It is natural to  define 
the conditional probability as1 

This follows from the observation that if we know that the event F has oc- 
curred, the new sample space is F ,  so that probabilities must be adjusted 
accordingly. Finally, we say that two events are independent if 

P ( E F )  = P ( E ) P ( F ) ,  
which in turn implies that 

P ( E  1 F )  = P(E) .  

So, for independent events, knowing that F has occurred tells us nothing 
about the probability of the occurrence of E.  Note that mutually exclusive 
events are not independent; if we know that one has occurred, we know that 
the other cannot. 

'This definition is not completely satisfactory: It does not work with events with zero 
probability. Conditioning is treated at a higher level in advanced probability texts, but  we 
do not really need that  machinery for this introductory textbook. Hence we will stick to 
this intuitive definition. 
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B.2 RANDOM VARIABLES, EXPECTATION, AND VARIANCE 

When we associate numerical values of one or more variables to events, we 
obtain random variables. Random variables may be thought of as mappings 
from events to real or integer numbers. Usually, a random variable is denoted 
by a capital letter such as X ;  the value assumed by a random variable on a 
particular realization of the events is denoted by a lowercase letter such as x. 
A different notation is common in economics, and it may be preferable when 
dealing with the Greek alphabet: For instance, we may use C for a random 
variable, and 6 for its realizations. When X takes values on a finite or count- 
able domain, such as non-negative integer numbers, we speak of a discrete 
random variable. For a discrete random variable, we define the probability 
mass function p ( . )  for each possible outcome value x i :  

p ( x 2 )  = P { X  = xi}. 

00 
We have 

i=l 

We also define the (cumulative) distribution function F( . ) :  

F ( a )  = P { X  5 a }  = c p ( z z ) ,  
.;<a 

It is easy to see that the distribution function for a discrete random variable 
is a piecewise constant, nondecreasing function. 

Example B . l  A typical example of discrete probability distribution is the 
Poisson random variable, with parameter A. In this case the random variable 
X takes values in the set { 0 , 1 , 2 , 3 , .  . .}, and its probability mass function is 

We may check that this is indeed a probability mass function: 

U. 
i=O i = O  

In practice, one usually works with a parameter At,  where X is the rate a t  
which certain events occurs over time and t is the length of the time interval 
we observe. For instance, this could model the number of shocks we observe 
over a time interval on the price of a stock or the credit rating of a bond 
issuer. 0 

If the random variable may take values over a continuous set, such as a 
bounded interval on the real line, say (a, b ) ,  or the entire line (-a, fm), we 
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have a continuous random variable. In this case, we cannot define a probability 
mass function; since the outcome values are infinite and uncountable, the 
probability that X takes a specific value will be zero.' We must define a 
non-negative probability density function f(x) for z E (--00, +m) such 
that for a given subset B of real numbers, 

P { X  E B }  = f ( x )  dx. J, 

+W 

s_,f (XI  dx = 1. 

P { X  E (5 ,  x + A X ) }  = I f (Y) = fb) A x ,  

To understand what the probability density means, consider the following: 

x+Ax 

for a small A x .  So we see that density cannot be interpreted as a probability, 
but it does give a measure of how likely given values of the random variable are 
and is needed to define probability of sets. We may also define the distribution 
function: 

F(a )  = P{X 5 a} = 

from which we obtain3 
-- d F ( x )  - f ( x ) .  

dx 
Given a random variable, we may compute its expected value using the 
probability mass function or the density function. In the discrete case we 
have 

i 

and, for the continuous case, 

+W 

E[X] = 1, xf(x) dx. 

An important property of the expectation operator is 

E[aX + b] = aE[X] + b. 

'We are not considering mixed probabilitydistributions, which are a hybrid between discrete 
and continuous distributions. 
3The distribution function is not everywhere differentiablein the case of mixed distributions, 
which we do not consider. 



RANDOM VARIABLES, EXPECTATION, AND VARIANCE 627 

Example B.2 Let us compute the expected value of a Poisson random vari- 
able. Applying the definition yields 

00 Xi-' 
O0 Aa 

E[X] = ie-' 7 = Ae-' - 
a .  ( a  - l)! 

i=O i=l  

This may be interpreted as follows. If events occur at a rate of A events per 
time unit, the expected number of events over a unit interval is actually the 
rate A. By the same token, the expected number of events occurring over an 
interval of length t is At. 0 

The expected value of a random variable gives a measure of location of the 
entire distribution, but it does not tell anything about its dispersion. The 
typical measure of dispersion is variance: 

Var(X) = E[(X - E[X])2] 

The variance of a random variable X is often denoted by r&. Unfortunately, 
variance has not the same unit of measure of the random variable itself; hence, 
the square root of variance, OX, called standard deviation, is often used. 
A couple of properties of the variance are the following: 

Var(X) = E[X2] - E2[X] 

Var(uX + b)  = u2 Var(X). 

We see immediately that, unlike the expectation, the variance operator is not 
linear. Indeed, it is not true in general that the variance of a sum of random 
variables is the sum of their variances (see later). 

Example B.3 Consider a random variable X such that 

E[X] = p and Var(X) = 02. 

If we define another random variable 

cl 

it is easy to see that the properties above imply 

E[Z] = 0 and Var(2) = 1. 

0 
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It is also natural to define the expected value of a function g(X) of a random 
variable: 

g(xi)p(xi) for the discrete case 

E[g(X)I = { j.6. 
g(x)f(x) dx 

It is important to note that, in general, 

for the continuous case. 

If the function g is convex, then the following Jensen’s inequality holds: 

Another fundamental concept linked to  probability distributions is the quan- 
tile. In the continuous case, the quantile qp is linked to a probability level ,f3 
as follows: 

P{X 5 Qp}  = P. 
We see that the quantile is the solution of the equation 

If there are multiple solutions to  this equation, we take the smallest one as 
the quantile. This does not happen in common probability distributions, as 
the distribution function is strictly monotonically increasing over the support 
of the distribution. In the discrete case, the cumulative distribution ‘?jumps” 
and we may fail to find a solution to this equation. In this case we adapt the 
definition as follows: The quantile is the smallest number qp such that 

8.2.1 Common continuous random variables 

Uniform random variable A random variable is distributed uniformly over the 
interval ( a ,  b)  if its density function is 

A typical case is the uniform distribution 
see that 

E[X] = lb & dx = 

if x E (a ,  b)  
otherwise. 

over the interval (0 , l ) .  It is easy to 

b 2 - a 2  b f a  
2 ( b -  a )  2 

- 
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and 

2 
x2 u f b  

Var(X) = E[X2] - E2[X] = / - dx - (I> 
a b - a  

- b3 - u3 ( b f  - ( b -  u ) ~  
- 

3(b - U) 4 12 

Exponential random variable 
sume non-negative values, and its density is given by 

The exponential random variable may only as- 

i f x > O  
if x < 0, 

f(x) = { O”e+ 

for some parameter A > 0. The distribution function is 

F ( a )  = lo Ae-Xz dx = 1 - e-xa. 

The expected value is 

1 

and the variance is 1/A2. It is interesting to note that if the time elapsing 
between events is exponentially distributed with parameter A, the events occur 
at a rate A, and the distribution of the number of events over a time interval 
of length t is a Poisson random variable with parameter At.  

Normal random variable The normal random variable has an infinite support, 
i.e., it may take values over the whole real line, and its density function is the 
bell-shaped function: 

for given parameters p and u2. The distribution function for the normal 
distribution is not known in closed form, but it can be computed by numerical 
approximations (see section 3.3.1). With some calculations it can be shown 
that the parameters p and u have indeed a precise meaning: 

E[X] = p, Var[X] = u2. 

We use the notation X N N ( p , u 2 )  to say that X has normal distribution 
with given expected value and variance. A variable 2 N N(0,l) is called a 
unit or standard normal variable. 

Example B.4 The parameter p influences where the maximum of the den- 
sity is located, whereas the variance u2, or the standard deviation u, tells how 
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0.4 ' ' . 
0.35 . 

0.3 . 

0.25 . 

0.15. 

-10 -8 -6 -4 -2 0 2 4 6 8 10 

Fig. B.l Normal density functions for p = 0 and u = 1 or u = 3. 

stretched the function is. We may plot the density functions for two normal 
distributions with p = 0 and u = 1 or u = 3. 

>> x=-10:0.1:10; 
>> plot(x, normpdf(x,O,l)) 
>> hold on 
>> plot(x, normpdf (x,0,3)) 

The result is plotted in figure B.l. The Statistics toolbox includes functions to 
compute the probability functions for all of the main probability distributions. 

0 
An important property of the normal distribution is that if X is normally 

distributed with parameters p and u2, then ax + p is normally distributed 
with parameters a p  +P and a2u2. In particular, Z = (X - p ) / u  is a standard 
normal. 

The importance of the standard normal distribution is apparent if we think 
of computing the distribution function or the quantiles for a generic normal 
variable. By working with standard normal variables, we are actually able to  
deal with the more general case. For instance, to compute the distribution 
function for an arbitrary normal variable, it is sufficient to come up with an 
approximation for the standard case: 

J x  e-22/2dz.  N ( z )  = - 
1 

6 --oo 

Let zp be the P-quantile for the standard normal: 

P { Z  5 zp }  = N ( z p )  = p. 

Knowing zg, it is easy to find the P-quantile for a normal variable X N 

N(p,  u2):  

P = P { X 5 4 p )  
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from which we get 
qp = p + zpu. 

In statistics, we are typically interested in quantiles of the form ~ 1 - ~ ,  where 
a is a relatively small number, such as 0.01 or 0.05. Quantiles and values of 
N ( z )  are tabulated or computed using suitable approximations. 

Example B.5 The function normcdf (x, sigma,mu) yields the distribution 
function. To compute the probability that a standard normal variable lies in 
the interval ( -2 ,2) :  

>> p = normcdf ([-2 21) ; 
>> p(2)  - p ( 1 )  
ans = 

0.9545 

Similarly: 

>> p = normcdf (C-3 31 1 ; 
>> p ( 2 ) - p ( l )  
ans = 

0.9973 

from which we see that for a normal distribution, the probability of falling 
outside the interval ( p  - 3c7, p + 3 0 )  is quite small. In fact, the normal dis- 
tribution is a debatable model for asset returns, as in practice these exhibit 
fat tails, i.e., the occurrence of extreme values is more likely than it should 
be with the normal distribution. 

You may also invert the distribution function. Compare x and xnew in the 
following: 

>> x=r-3:0.2:0.31; 
>> xnew=norminv(normcdf(x,O, 1) ,o, 1) ; 0 

The importance of normal variables, apart from their many properties, 
stems from the central limit theorem. Roughly speaking, it states that if 
we sum many identically distributed and independent random variables, their 
sum tends to have a normal distribution as the number of summed random 
variables goes to infinity. 

Lognormal random variable Due to the central limit theorem, a normal ran- 
dom variable may be thought of as the limit of a sum of random variables. 
The lognormal variable may be thought of as the limit of a product of ran- 
dom variables. Formally, we say that a random variable Z is lognormally 
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distributed if l og2  is normally distributed; put another way, if X is normal, 
then ex is lognormal. 

The following formulas illustrate the relationships between the parameters 
of a normal and a lognormal distribution. If X N N(p ,  2 )  and Z = ex, then 

E[Z] = ep+02/2 

va r (2 )  = e2p+u(eaZ - 1). 

In particular, we see that 

Since the exponential is a convex function, this is a consequence of Jensen’s 
inequality. 

8.3 JOINTLY DISTRIBUTED RANDOM VARIABLES 

When considering jointly distributed random variables, we may follow the 
same route as in the scalar case. We illustrate in the bidimensional case, as 
the generalization is straightforward. Given two random variables X and Y ,  
we may define the joint distribution function: 

In the discrete case we also consider the probability mass function: 

whereas continuous variables are characterized by a density f (2, y) such that, 
for a region D in the plane, 

From the joint distribution we may derive the marginal distributions for the 
single variables. For instance 

P { X  E A }  = P { X  E A,  Y E (--00, +w)} = J ,  l+j (2, Y) dY dx 

where 
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is the marginal density for the random variable X; the other density fy(y) 
may be defined similarly. 

The computation of expected values is quite similar to the scalar case. 
Given a function g(X, Y) of the two random variables, we have 

in the discrete case 

g(xl y)f(z, y) dy d x  

From the linearity of these operations, it is easy to see that the expected value 
of a linear combination of random variables, 

in the continuous case. 

n 

z = c xixi, 
i=l 

is the same linear combination of the expected values: 

n 

i = l  

However, a similar result does not hold, in general, for variance. Similarly, 
for jointly distributed variables it is not true in general that 

E[S(X)h(Y)I = E[S(X)lE[W-)l. 

To investigate this matter we must deal with the dependence or independence 
between the random variables. 

B.4 INDEPENDENCE, COVARIANCE, AND CONDITIONAL 
EXPECTATION 

Two random variables X and Y are independent if the two events {X 5 a }  
and {Y 5 b }  are independent, i.e., 

F ( a ,  b )  = P{X 5 a, Y 5 b} = P{X 5 a}P{Y 5 b }  = Fx(a)Fy(b). 

This in turn implies that 

for discrete and continuous variables, respectively. If the variables are inde- 
pendent, it is easy to show that 
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holds. 
If there is some degree of dependence between random variables, we should 

try to measure it somehow. One measure of mutual dependence is the co- 
variance: 

COV(X, Y) = E[(X - E[X])(Y - E[Y])] = E[XY] - E[X]E[Y]. 

If X and Y are independent, their covariance is zero (but the converse is not 
necessarily true, as the covariance is only one measure of dependence). If 
Cov(X,Y) > 0, Y tends to  be large when X is, and small when X is. More 
precisely, when X is above its expected value, then Y is too, and when X 
is below its expected value, then Y is too. As a result, the expected value 
of (X - E[X])(Y - E[Y]) is positive because the two factors tend to have 
the same sign. A similar observation holds when covariance is negative. The 
following properties of the covariance are useful: 

0 Cov(X, X) = Var(X), 

0 Cov(X, Y) = Cov(Y, X), 

0 Cov(aX, Y) = a Cov(Y, X), 

0 Cov(X, Y + 2) = Cov(X, Y) + Cov(X, 2). 

Using these properties (or the definitions), it can be shown that 

Var(X) + Var(Y) + 2 Cov(X, Y), 

Var(X) + Var(Y) - 2 Cov(X, Y). 

Var(X + Y) 

Var(X - Y) 

= 

= 

More generally, 

/ n  \ n n 

Thus, for mutually independent variables, the variance of a sum is the sum of 
the variances. 

Example B.6 We often have to work with multivariate normals. Let 

be a vector of normal random variables with expected value p and covariance 
matrix 

X = E[(X - p)(X - /A)’]. 
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Then the joint density function is given by 

where I C I is the determinant of the covariance matrix. If the normal vari- 
ables are mutually uncorrelated, then both the matrix C and its inverse are 
diagonal. This implies that the density function may be factorized into sep- 
arate components, one for each Xi ; hence, uncorrelated normal variables are 
also independent. 

Another property of jointly normal variables is that they may combined 
linearly to yield other jointly normal variables. Given a matrix T E R"?" 
TX is a vector of m jointly normal variables. 0 

The value of the covariance depends on the magnitude of the random vari- 
ables involved. Often, a normalized measure of dependence is preferred, the 
coefficient of correlation: 

Cov(X, Y )  
pxy = JvqqJviqYJ' 

It can be shown that pxy E [-1,1]. 

Example B.7 Correlation is often used in finance. However, it is important 
to realize its limitations. Consider the following example. 

>> x = -1:0.001:1; 
>> y = sqrt(l-x.^2); 
>> cov(x,y) 
ans = 

0.3338 0.0000 
0.0000 0.0501 

Here we have a random variable X which is distributed uniformly on (-1, l),  
and a random variable Y which is deterministically linked to X, as 

Y = JZ. 
However, the covariance and the correlation are zero, since 

COV(X, Y) = E[XY] - E[X]E[Y], 

but E[X] = 0, and (because of symmetry) 

1 

E[XY] = 1, x J s d x  = 0. 

The key issue is that the correlation is a measure of linear dependence. Here 
the dependence is non-linear, as the points (X, Y )  lie on the upper half of the 
unit circle X 2  + Y 2  = 1. 0 
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If two variables are not independent, then knowing something about the 
value taken by one of them can give us valuable information about the other 
one. This leads us to investigate conditioning. Just as we have defined con- 
ditional probabilities for events, we may define conditional expectation. 
This means that we want to know how an event like (Y = y )  influences the 
distribution of X. For discrete random variables we have 

Similarly, for continuous variables 

Conditioning is a useful way to  solve many problems. A fundamental property 
is the following: 

In practice, this may be used when fixing the value of a random variable 
makes working with another one easier. Equation (B.l)  may be rewritten, in 
concrete, as 

E[X] = E[E[X I Y]]. (B.1) 

C E [ X  I Y = yj]P{Y = y j }  in the discrete case 

E [ X ]  = [ j 
E[X I y = 9 l f Y ( Y )  dY in the continuous case. 

We may also define a conditional variance: 

Var(X I Y )  = E [(X - E[X I Y ] ) 2  I Y ]  . 

The following formula may be proved for the conditional variance: 

Var(X) = E[Var(X I Y ) ]  + Var(E[X 1 Y]). (B.2) 

This formula may be used to compute variance by conditioning, but it also 
implies that 

Var(X) 2 E[Var(X I Y ) ]  
Var(X) 2 Var(E[X I Y ] ) ,  

since variance is a non-negative quantity by definition. These properties may 
be used for variance reduction in Monte Carlo simulation (see section 4.5). 

We would like to  close this section by pointing out that our treatment 
of conditioning, apart from being very brief by necessity, has followed the 
classical lines of basic textbooks on probability theory. A solid understanding 
of conditioning and of the role of information in probability requires advanced 
tools which are beyond the scope of this book (see the references). 
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6.5 PARAMETER ESTIMATION 

In the theory of probability, we assume a lot of knowledge about a set of 
random variables, and we ask questions about the probability of some events, 
about expected values of functions of those variables, etc. However, the knowl- 
edge required to get those answers, i.e., the whole probability distribution, is 
a scarce commodity. Even the expected value and variance are typically un- 
known, and must be estimated on the basis of samples. The sample data 
might come from the real world (e.g., stock prices) or from a Monte Carlo 
simulation. Typical parameters we want to estimate are the expected value, 
the variance, or the covariance matrix; furthermore, we would also like to  
quantify the reliability of the estimate. 

A random sample should be thought as a set XI , X2, . . . , X, of independent 
and identically distributed random variables, drawn from the same underlying 
distribution. Say that the expected value of the underlying population is p 
and the variance is a2; these parameters are unknown, and we would like to  
come up with a reasonable estimate of them. An intuitive way to estimate p 
is to use the sample mean: 

l n  x = - E X i .  
Z=l 

Note that the expected value is an unknown number, whereas the sample 
mean is a random variable. It is a reasonable estimator, in the sense that it 
is unbiased: 

E[X] = p. 

The more samples we get, the better, in the sense that the variance of the 
estimator decreases: 

It is fundamental to understand that in this derivation we have assumed the 
independence of the samples; if the samples are not independent, reasoning 
this way may lead to  underestimate the uncertainty in the e ~ t i m a t e . ~  We 
see from the last formula that, if n goes to infinity, the variance of the es- 
timator goes to zero. So, in some sense, the sample mean should "tend" to 
the unknown expected value. To state this in a mathematically precise way, 
we should introduce concepts of stochastic convergence. In fact, the law of 
large numbers comes in two forms, weak and strong, depending on the kind of 
stochastic convergence we use. We will not consider this issue and settle for 
an intuitive understanding. Another interesting property of the sample mean 

4See, e .g . ,  [2] for a clear discussion of this point. 
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stems from the central limit theorem. Roughly speaking, when the number 
of samples grow, X tends to  be distributed normally. More precisely, we have 
that the distribution of 

x - p  

D l f i  
tends to the standard normal distribution. How many samples it takes to have 
an approximately normal distribution depends on the distribution of the Xi. If 
they are normal, then the sample mean is always normal. If it is symmetric, a 
few samples may be enough; if it is strongly asymmetric (skewed), then many 
samples may be needed. This is not an issue in this book, as we apply these 
ideas to Monte Carlo simulation, where many thousands of samples are taken. 
We should recall again that all of the ideas above rely on the assumption of 
independence between samples. 

Another difficulty derives form the fact that the variance is typically un- 
known too. If we knew p,  we could estimate u2 by averaging squared devia- 
tions: 

Since we must use an estimate of p, the estimator of u' is the sample vari- 
ance: 

1 "  
s2 = - c [Xi -XI2 .  

n - 1 .  
z=1 

Note the l / ( n  - 1) factor, which is essentially due to the use of an estimate of 
p. It can be shown that this factor is needed to make the estimator unbiased 
(E[S'] = u'). By a similar expression we may estimate the covariance between 
two random variables X and Y: 

1 "  sxy = - c (Xi - X) (K - F) I 
n - 1 

It can be shown that E [ S x y ]  = Cov(X, Y ) .  We can also estimate the corre- 
lation coefficient: 

These tasks are accomplished by MATLAB functions. The basic versions are 
available in the MATLAB core; some advanced functionalities are included 
only in the Statistics toolbox. 
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Example B.8 The function mean yields the sample mean. For instance, 
let us use the normrnd function to generate a set of independent normally 
distributed data values5: 

>> randn(’state’,O) 
>> x=normrnd(2,3,1000,2) ; 
>> mean(x) 
ans = 

1.8708 2.1366 

The first two parameters of normrnd are the expected value and the standard 
deviation of the normal variable; the remaining two are optional and define 
the size of the matrix to generate. The matrix, which here has 1000 rows and 
two columns, is interpreted columnwise, as 1000 realizations of two random 
variables. This is why two means are estimated, one per column of the data 
matrix. The function cov(x> estimates the covariance matrix (assuming a 
column-oriented data matrix). 

>> randn(’state’ ,O) 
>> x=normrnd(l0,2,10000,4) ; 
>> cov(x) 
ans = 

4.0091 0.0480 0.0204 -0.0457 
0.0480 4.0291 0.0374 -0.0050 
0,0204 0.0374 4.0390 0.0193 
-0.0457 -0.0050 0.0193 4.0464 

Note that the values on the diagonal are close to the “correct” variance u2 = 4 
for each of the four independent variables; off-diagonal elements should be 
zero, as the samples should be independent. Given the limited number of 
samples, it is not surprising that the results do not match exactly what we 
would expect in theory. 

Consider 
drawing 100 samples from a normal distribution with known parameters and 
checking if the sample mean corresponds to the known expected value. Let 
us repeat ten of these experiments: 

In practice, estimating parameters may be a tough problem. 

5We use the instruction randn(’state’,O) to make sure you will get the same numbers 
shown here. Otherwise, the numbers you get may differ from the following ones, depending 
on the current state of the random number generator; the issue is explained in section 4.3. 
Furthermore, if you repeat the experiment, you will get different outcomes. 
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0.0460 
0.1437 
0.2803 
0.0048 
0.1646 
0.4143 
0.1915 
0.4961 
0.0013 

You see that the estimated mean va.Je may be quite different ,,om the correct 
value p = 0.3. Actually, if you repeat the experiment a few times, you will 
even get negative sample means. This is due to the fact that the expected 
value is small with respect to the variance of the data; if you think of esti- 
mating stock returns over short periods, using historical data when volatility 
is high, you will realize that this is not a hypothetical circumstance. This 
phenomenon, called meun blur, is described, e.g., in [3, chapter 81. Another 
point worth mentioning is that if you use historical data, you might question 
the validity of the old data; however, using only the recent ones may lead 
to unreliable estimates. The Financial toolbox includes a more sophisticated 
function (ewstats) to compute a covariance matrix by applying a “forgetting 
factor,” reducing the weight of the old data. 0 

Given the remarkable amount of variability in the estimator, which is evident 
in the last example, it is clear that we need some way to measure the reliability 
of our estimate. Consider (B.3) and assume we know the (1 - a/2)-quantile 
from the standard normal distribution, i.e., the number 2 1 - a / 2  such that 

where 2 N N(0,l). Then, given the symmetry of the standard normal distri- 
bution, we see that 

This is only approximately true unless the Xi are normal, but given the central 
limit theorem, it will be a good approximation when a large number of samples 
are taken. Rearranging the above inequality, we see that, with probability 
close to 1 - a ,  we have 

In other words, we may build a confidence interval that, with a suitable 
degree of confidence, will contain the unknown parameter p. Unfortunately, 



PARA METER ESTIMATION 641 

this is not really true, since we have to estimate u2 by the sample variance. 
Hence, we should consider the distribution of the random quantity: 

It turns out that the distribution is not really standard normal. If the Xi are 
normal, then this ratio is distributed according to a Students’s t distribution 
with n - 1 degrees of freedom. This distribution is qualitatively similar to 
a standard normal distribution, as it is bell shaped and symmetric around 
the origin, but it has fatter tails. In practice, in building the confidence 
interval, we should use the quantiles t n - l , l - a / 2  from this distribution, where 
tn-l,l-ap > ~ 1 - ~ / 2 .  This basically means that the confidence interval should 
be wider, which makes sense given the need to estimate more parameters. It 
turns out that when n is large, the t distribution tends to the standard normal 
distribution. Again, all of this is only approximately true in general, since the 
samples are not necessarily normal themselves. However, when the number of 
samples is large, thanks to the central limit theorem, we may use the following 
approximate confidence interval: 

The idea is that if we repeat the sampling and estimation procedure over and 
over, the percentage of cases in which the “true” value falls within this interval 
should be 100 x (1 - a ) .  Typical values of a are 0.05 and 0.01. 

Example B.9 Calling the function [muhat, sigmahat, muci, sigmacil  
= normfit(x) yields an estimate of the expected value and the standard 
deviation and the respective 95% confidence intervals. 

>> randn(’state’,O) 
>> x=normrnd(1,2,100,1); 
>> [mu,s,mci,scil = normfit(x) 
mu = 

1.0959 

1.7370 

0.7512 
1.4405 

1.5251 
2.0178 

s =  

mci = 

sci = 

This function assumes normal samples and uses the quantiles from the t dis- 
tribution. Keeping the above warnings in mind, we may use this function to 
build confidence intervals for parameters we estimate by Monte Carlo simula- 
tion. It is possible to specify a different confidence level by calling the function 
with an optional parameter: normf it (x, alpha) .  0 
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8.6 LINEAR REGRESSION 

Linear regression by the method of least squares is a two-fold technique. On 
the one hand, we may consider it as a function approximation technique. Say 
that we have a set of n data points (x i ,  y i ) ,  i = 1,. . . , n. We may assume a 
functional form y = f ( x )  linking the data, and we look for the function f(.) 
that yields the best fitting. Linear regression is the case in which we assume 
a linear form: 

y = f ( x )  = a + bx. 
If we define the residual ei as 

ei = yi - f(xi) = yi - ( a  + bz i ) ,  (B.4) 

we may look for the optimal parameters a and b minimizing the sum of squared 
residuals: 

n n 

e = e; = (yi  - a - bxi)’. 0 3 . 5 )  
i=l i=l 

Straightforward calculus yields 

where 1 and jj are formally equivalent to sample means, and 
n n n 

n x x i y i  - C x i  . C y i  
b =  i = l  i=l i=l 

2 -  

i=l i=l 
All of this has nothing to do with statistics, and it is just a simple case of the 
more general problem of function approximation (see section 3.3). However, 
the expression for b looks suspiciously like the ratio of a sample covariance over 
a sample variance. The following manipulations show that this interpretation 
is not unreasonable: 

n n 

1 

n - 1  c ( X i  - L1) ( X i  - z) - C ( X i  - q2 
i=l i=l 
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Here we have somewhat misused the notations Sxy and 5’2, since we have 
no statistical interpretation of these quantities. A statistical interpretation 
can be given if we assume that our data come from a statistical model. One 
possible model is 

Y,=a+pxa+Ez, 2’1, ..., 72, 03.9) 

where 

the parameters a and ,B are (in practice) unknown numbers; 

E ,  is a random variable such that 

E[Q] = 0 ,  Var(ci) = a2, i = 1,. . . , n; 

this implies that the errors ~i are identically distributed; 

the random variables ~i are mutually independent and do not depend 
on the associated value of xi; 

the values x, are given numbers. 

The last observation makes sense when the xi is under our control; hence, 
Y,  is random due to the impact of the random error, but xi is not. In other 
statistical models, we consider random variables Xi, but the general approach 
does not change that much. 

Under these hypotheses, it can be shown that the regression coefficients 
a and b are unbiased estimators of the parameters a and p. Note that the 
regression coefficients are random because they are influenced by the errors. 
Under additional assumptions on the distribution of the errors, which are 
typically assumed normal, we may build confidence intervals for the estimates. 

Example B.10 The Statistics toolbox offers a function to perform multiple 
linear regression, i.e., linear regression where there are multiple “x” variables. 
It is interesting to carry out a little experiment to understand the nature of 
the problem. Let us assume a linear model: 

Y = 1 0 + 5 ~ + ~  

where E N N(O,4). We consider ten values of x: 

xi = 1 + 0 . 2  x i ,  i = 0 , l  I..., 9, 

and generate ten random samples as errors. Then we check if the estimates 
we get are close to the known values: 

>> randn(’state’,O) 
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>> errors=normrnd(0,2,10,1) ; 
>> x = 1 + 0.2*(0:9)’ 
x =  

1.0000 
1.2000 
1.4000 
1.6000 
1.8000 
2.0000 
2.2000 
2.4000 
2.6000 
2.8000 

>> y = 10 + 5*x + errors 
Y -  

14.1349 
12.6688 
17.2507 
18.5754 
16.7071 
22.3818 
23.3783 
21.9247 
23.6546 
24.3493 

>> v = regress(y, [ones(lO,l), XI) 
v =  

7.2801 
6.4328 

What we get, a = 7.2801 and b = 6.4328, is fairly distant from what we know. 
This is due to the amount of noise, but there is another factor. Let us repeat 
the experiment with different x values: 

>> x = (1:lO)’; 
>> y = 10 + 5*x + errors; 
>> v = regress(y, [ones(lO,l), XI) 
v =  

8.4264 
5.2866 

Here the estimates look a bit better. The reason is that the values of x are 
more widespread, and the errors have a smaller impact. If we could reduce 
noise, we would get really close to  the correct value: 

>> y = 10 + 5*x + normrnd(O,l,l0,1); 
>> v = regress(y, Cones(lO,l), XI) 
v =  

10.6117 
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4.9308 

Of course, we have cheated and this is not what happens in a real setting, 
and confidence intervals for the estimates should be derived. 0 

We will only use regression in pricing American-style options, and this is why 
we just give this very sketchy overview of an important topic. However, we 
should at least mention the following caveats about linear regression: 

Regression describes association, not causation: we tend to interpret x 
as a cause and Y as an effect, but this need not be true. 

Due to sampling variability we may "see" relationships which are not 
really supported by data. 

On the other hand, since the b parameter is linked to covariance, and 
covariance is only a measure of linear association (see example B.7), 
linear regression may not properly account for more complex, non-linear, 
associations. 

For further reading 

There are many excellent books on probability theory, ranging from the ele- 
mentary to the very sophisticated. 

An introductory book characterized by a remarkable clarity, plenty of 
insightful examples, and a wide range of topics is [ 5 ] ,  which does not 
rely on measure-theoretic concepts. 

If you are interested in a more advanced treatment, based on rigorous 
axiomatic foundations, see, e.g., [6] .  

A less encyclopedic, but perhaps more readable, treatment can be found 
in [l]. 

Apart from good statistics books, such as [4], a quick and readable 
introduction to parameter estimation may be found in simulation books 
such as [2]. 
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Appendix C 
Introduction to A MPL 

In this brief appendix, we want to introduce the basic syntax of AMPL. We 
use AMPL only in the last chapters on optimization models, and the syntax 
is almost self explanatory. Hence, we will just describe a few basic examples, 
so that the reader can get a grasp of the basic language elements. The reader 
is referred to the original reference [l], written by the developers of AMPL. 
Unlike MATLAB, AMPL is not a procedural language. There is a part of the 
language which is aimed at writing scripts, which behave like any program 
based on a sequence of control statements and instructions. But the core 
of AMPL is a declarative syntax to describe a mathematical programming 
model and the data to instantiate it. The optimization solver is separate: 
You can write a model in AMPL, and solve it with different solvers, possibly 
implementing different algorithms. Actually, AMPL interfaces have been built 
for many different solvers; in fact, AMPL is more of a language standard which 
has been implemented and is sold by a variety of providers. 

A demo version is currently available on the web site http: //www . amp1 . corn. 
The reader with no access to a commercial implementation can get the student 
demo and install it following the instructions. This student demo comes with 
two solvers: MINOS and CPLEX. MINOS is a solver for linear and nonlinear 
programming models with continuous variables, developed a t  Stanford Uni- 
versity. CPLEX is a solver for linear and mixed-integer programming models. 
Originally, CPLEX was a university product, but it is now developed and dis- 
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tributed by ILOG. Recent CPLEX versions are able to cope with quadratic 
programming models, both continuous and mixed-integer. All the examples 
in this book have been solved using CPLEX. 

Clearly, software choice is a very subjective matter. I personally work a lot 
integrating MATLAB and ILOG AMPL/CPLEX. But for the sake of fairness, 
alternative modeling languages are listed in the references. 

C . l  RUNNING OPTIMIZATION MODELS IN AMPL 

Typically, optimization models in AMPL are written using two separate files. 

0 A model file, with standard extension * .mod, contains the description 
of parameters (data), decision variables, constraints, and the objective 
function. 

0 A separate data file, with standard extension * . dat,  contains data val- 
ues for a specific model instance. These data must match the description 
provided in the model file. 

Both files are normal ASCII files which can be created using any text editor, 
including MATLAB editor (if you are using word processors, be sure you are 
creating plain text files, with no hidden control characters for formatting). It 
is also possible to describe a model in one file, but separating structure and 
data is a good practice, enabling to solve multiple instances of the same model 
easily. 

When you start AMPL, you get a DOS-like window' with a prompt like: 

ampl : 

To load a model file, you must enter a command like: 

ampl: model mymodel.mod; 

where the semicolon must not be forgotten, as it marks the end of a command 
(otherwise AMPL waits for more input by issuing a prompt like am~l?).~ To 
load a data file, the command is 

ampl : data mymodel. dat ; 

Then we may solve the model by issuing the command: 

ampl: solve; 

'The exact look of the window and the way you start  AMPL depend on the AMPL version 
you use. 
2Here we are assuming that  the model and da ta  files are in the same directory as the AMPL 
executable, which is not good practice. It is much better t o  place AMPL on the DOS path 
and to launch it from the directory where the files are stored. See the manuals for details. 
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To change data without loading a new model, you should do something like: 

ampl: r e s e t  data;  
ampl : data mymodel. dat ; 

Using reset ; unloads the model too, and it must be used if you want to load 
and solve a different model. This is also important if you get error messages 
because of syntax errors in the model description. If you just correct the 
model file and load the new version, you will get a lot of error messages about 
duplicate definitions. 

The solver can be select using the option command. For instance, you 
may choose 

ampl: option s o l v e r  minos; 

or 

ampl: option s o l v e r  cplex;  

Many more options are actually available, as well as ways to display the solu- 
tion and to save output to files. We will cover only the essential in the follow- 
ing. We should also mention that the commercial AMPL versions include a 
powerful script language, which can be used to write complex applications in 
which several optimization models are dealt with, whereby one model provides 
input to another one. 

C.2 MEAN VARIANCE EFFICIENT PORTFOLIOS IN AMPL 

The best way to get acquainted with AMPL syntax is by considering a simple 
but relevant example. We describe the theory of mean-variance efficient port- 
folios in section 2.4.2. This framework leads to the solution of the following 
quadratic program: 

min w'Xw 
s.t. w'F = FT 

n 

AMPL syntax for this model is given in figure C.l. First we define model 
parameters: the number of assets NAssets, the vector of expected return 
(one per asset), the covariance matrix, and the target return. Note that each 
declaration must be terminated by a semicolon, as AMPL does not consider 
end of line characters. The restriction NAssets > 0 is not a constraint of the 
model: It is an optional consistency check that is carried out when data are 
loaded, before issuing the solve command. Catching data inconsistencies as 
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param NAssets > 0; 
param ExpRetCl. .NAssets); 
param CovMat(1. .NAssets, 1. .NAssets); 
param TargetRet; 

var WCl..NAssets> >= 0; 

minimize Risk: 
sum (i in 1. .NAssets, j in 1. .NAssets) W[il*CovMatCi,jI*W[jl; 

subject to SumToOne: 
sum Ci in 1. .NAssets) W[il = 1; 

subject to MinReturn: 
sum (i in 1. .NAssets> ExpRet [il *WCi] = TargetRet; 

param NAssets := 3;  
param ExpRet := 

10.15 
2 0.2 
3 0.08; 

param CovMat: 
1 2 3 .= 

1 0.2000 0.0500 -0.0100 
2 0.0500 0.3000 0.0150 
3 -0.0100 0.0150 0.1000; 

param TargetRet := 0.1; 

Fig. C.1 AMPL model (MeanVar.mod) and data (MeanVar.dat) files for mean- 
variance efficient portfolios. 
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early as possible may be very helpful. Also note that in AMPL it is typical 
(but not required) to  assign long names to parameters and variables, which 
are more meaningful than the terse names we use in mathematical models. 

Then the decision variable W is declared; this variable must be non-negative 
to prevent short-selling, and this bound is associated to the variable, rather 
than being declared as a constraint. Finally, the objective function and the 
two constraints are declared. In both cases we use the sum operator, with a 
fairly natural syntax. We should note that braces ({}) are used when declaring 
vectors and matrices, whereas squares brackets ( [ I )  are used to access ele- 
ments. Objectives and constraints are always given a name, so that later we 
can access information such as the objective value and dual variables. Expres- 
sions for constraints and objective can be entered freely. There is no natural 
order in the declarations: We may interleave any type of model elements, 
provided what is used has already been declared. 

In the second part of figure C.l we show the data file. The syntax is fairly 
natural, but you should notice its basic features: 

0 Blank and newline characters do not play any role: We must assign 
vector data by giving both the index and the value; this may look a bit 
involved, but it allows quite general indexing. 

0 Each declaration must be closed by a semicolon. 

0 To assign a matrix, a syntax has been devised that allows to  write data 
as a table, with rows and columns arranged in a visually clear way. 

Now we are ready to load and solve the model, and to display the solution: 

ampl: model MeanVar.mod; 
ampl : data MeanVar . dat ; 
ampl: s o l v e ;  

CPLEX 9.1.0: optimal s o l u t i o n ;  object ive  0.06309598494 
18 QP barrier i t e r a t i o n s ;  no b a s i s .  

ampl: display W ;  
w [*I := 

1 0.260978 
2 0.0144292 
3 0.724592 

We see that a barrier solver is used, hence, no basis is available; see section 
6.4 to understand this point. We can also evaluate expressions based on the 
output from the optimization models, as well as checking dual variables of 
constraints: 

ampl: d isplay  Risk; 
Risk = 0.063096 

ampl : display  sqrt  (Risk) ; 
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sqrt(Risk) = 0.251189 
ampl: display MinReturn.dua1; 
MinReturn.dua1 = -0.69699 

ampl : display sum {k in 1. . NAssets) W [k] *ExpRet [kl ; 
sum{k in 1 . . NAssets) W[k]*ExpRet Ckl = 0.1 

C.3 THE KNAPSACK MODEL IN AMPL 

We have considered the knapsack model as a trivial model for capital budget- 
ing (example 1.2 on page 15). This is a pure binary programming model: 

i=l 

N 

s.t. ~ C i X i  5 w 
i=l 

xz E {O, l} .  

The corresponding AMPL model is displayed in figure C.2. Again, the syntax 
is fairly natural, and we should just note a couple of points: 

The decision variables are declared as binary. 

In the data file, the two vectors of parameters are assigned at  the same 
time to save on writing; you should compare carefully the syntax used 
here against the syntax used to assign a matrix (see the covariance 
matrix in the previous example). 

Now we may solve the model and check the solution (we must use reset to 
unload the previous model): 

ampl: reset; 
ampl: model Knapsack.mod; 
ampl : data Knapsack. dat ; 
ampl: solve; 
CPLEX 9.1.0: optimal integer solution; objective 34 
3 MIP simplex iterations 
0 branch-and-bound nodes 

ampl: display x; 
x [*I := 
1 1  
2 0  
3 0  
4 1  
, 
In this case, branch and bound is invoked (see chapter 12). In fact, if you are 
using the student demo, you cannot solve this model with MINOS; CPLEX 
must be selected using 
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param NItems > 0; 
param Value{l..NItems) >= 0; 
param Cost{l..NItems) >= 0; 
param Budget >= 0; 

var x{l..NItems) binary; 

maximize Totalvalue : 
sum {i in 1. . NItems) Value [il *x [il ; 

subject to AvailableBudget: 
sum {i in 1. .NItems) Cost[il*x[i] <= Budget; 

param NItems = 4; 

param: Value Cost := 
1 10 2 
2 7 1  
3 25 6 
4 24 5; 

param Budget := 7; 

Fig. C.2 AMPL model (Knapsack.mod) and data (Knapsack.dat) files for the knap- 
sack model. 
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anpl: option solver cplex; 

If you use MINOS, you will get the solution for the continuous relaxation 
of the model above, i.e., a model in which the binary decision variables are 
relaxed: z E [0,1], instead of z E (0 , l ) .  The same can be achieved in ILOG 
AMPL/CPLEX by issuing appropriate commands: 

ampl: option cplex-options 'relax'; 
ampl: solve; 
CPLEX 9.1.0: relax 
Ignoring integrality of 4 variables. 
CPLEX 9.1.0: optimal solution; objective 36.2 
1 dual simplex iterations ( 0  in phase I) 

anpl: display x; 
x [*I := 

1 1  
2 1  
3 0  
4 0.8 

, 

Here we have used the r e l a x  option to solve the relaxed model. We may also 
use other options to gain some insights on the solution process: 

ampl: option cplex-options 'mipdisplay 2 ' ;  
ampl: solve; 
CPLEX 9.1.0: mipdisplay 2 
MIP start values provide initial solution with objective 34.0000. 
Clique table members: 2 
MIP emphasis: balance optimality and feasibility 
Root relaxation solution time = 0.00 sec. 

Nodes cuts/ 
Node Left Objective IInf Best Integer Best Node ItCnt Gap 

0 0 36.2000 1 34.0000 36.2000 1 6.47% 
cutoff 34.0000 Cuts: 2 2 0.00% 

Cover cuts applied: 1 
CPLEX 9.1.0: optimal integer solution; objective 34 
2 MIP simplex iterations 
0 branch-and-bound nodes 

To interpret this output, the reader should have a look at chapter 12, where 
the branch and bound method is explained. 
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param NBonds >0, integer; 
param TimeHorizon >O, integer; 
param BondPriceCl. .NBonds); 
param CashFlow{l..NBonds, l..TimeHorizon); 
param Liability{l..TimeHorizon); 

var x{l. .NBonds) >= 0; 

minimize PortfolioCost: 
sum {i in 1. . NBonds) BondPrice [i] *x [i] ; 

subject to MeetLiability It in l..TimeHorizon): 
sum {i in 1. . NBonds) CashFlow [i, t] *x [i] >= Liability It]; 

Fig. C.3 AMPL model file for simple cash flow matching. 

C.4 CASH FLOW MATCHING 

As a final example, we consider a cash flow matching model (see section 2.3.2) 

N 

min C P ~ X ~  
i = l  
N 

i=l 

xi 2 0. 

The only new point here, with respect to previous models, is the constraint 
which must be replicated for each time period within the planning horizon. 
How this can be accomplished is illustrated in the AMPL model of figure C.3. 
Also note that a few parameters have been restricted to  integer variables; the 
in teger  keyword can also be used to specify general integer decision variables. 

For further reading 

In the literature 

0 AMPL was introduced in [l] by its developers. 

0 There are many other modeling languages. A notable one is GAMS, 
which are similar in spirit to  AMPL, in the sense that it is not linked to  
a specific solver. See http : //www . gams . com. GAMS is probably more 
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familiar to people in Economics, and it is also used in [2, 31 to  develop 
financial optimization models. 

On the Web 

0 The AMPL student version and additional material can be found on 
http: //www . amp1 .corn. There you may also see the list of solvers com- 
patible with AMPL. 

0 For the commercial ILOG AMPL version and the CPLEX solver, see 
http://www.ilog.corn. 

0 MINOS and other optimization solvers from Stanford University are 
described in http : //www . sbsi-sol-opt imize . corn. 

0 We should mention that there are other languages such as LINGO. This 
is a more of a “proprietary” system, as it is linked to a specific opti- 
mization library. See http: //www . lindo. corn. 
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acceptancerejection method, 233, 

active set method, 365, 378 
ADI, see Alternating Direction Im- 

algorithm 

Alternating Direction Implicit method, 

antithetic 

arbitrage, 71, 103, 126, 415, 486, 

opportunity, 39, 104, 129, 551 

235, 237, 247, 276, 458 

plici t met hod 

polynomial, 145 

319 

sampling, 244, 447, 547 

550 

arc (in a network), 497 
arithmetic 

finite precision, 15 
asset allocation, 73, 77, 506 
asset-liability management, 530, 534, 

augmented Lagrangian method, 351 
556 

backsubstitution, 154 
barrier 

function, 349, 375 

logarithmic, 375 
monitoring, 122 
option, see option, barrier 

binary, 138 
decimal, 138 
in Halton sequence, 270 

feasible solution, 369 
solution, 369 
variable, 369 

function, 174, 204, 503, 512, 

monomial, 175 

base 

basic 

basis, 370 

517 

Bayesian statistics, 26 
Bellman equation, 502, 510 
bias, 259, 512 
biased low estimator, 259 
bid-ask spread, 24 
binary 

binomial 
decision variable, 565 

lattice, see lattice, binomial 

657 
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model, 26 
bisection method, 192, 410 
Black-Derman-Toy (BDT) model, 

Black-Scholes 
127 

equation, 290, 292, 307, 511 
formula, 110, 173, 224 

above par, 31 
at  par, 31 
below par, 31 
callable, 31, 125 
convexity, 59 
coupon, 30 
coupon rate, 30 
embedded options, 31 
face value, 30 
option, 125 
par value, 30 
portfolio, 380 
pricing, 52 
yield, 53 
zero-coupon, 30, 49, 124, 128 

condition, 110, 292, 477 
free, 486 
Neumann condition, 478 

Box-Muller method, 236,247, 276, 

branch and bound, 572, 578, 584 
LP-based, 584 

branching, 582, 586 
branching factor, 27 
Brownian bridge, 440, 462 
Brownian motion, see geometric Brow- 

nian motion 
butterfly spread, 248 
buy and hold, 88 

bond, 30 

boundary 

458 

c++, 11 
calibration 

Cox, Ross, and Rubinstein (CRR), 
405, 411 

Jarrow-Rudd, 405 
lattice, 417 

model, 9 
of a binomial lattice, 403 

canonical form (of LP problem), 526 
caplet, 125 
cash flow 

central limit theorem, 236, 241, 631 
central path, 377 
certainty equivalent, 68 
chance constraint, 82, 510 
chance-constrained model, 526 
C heby shev 

matching, 55, 655 

node, 180 
polynomial, 183 

factor, 238, 444 
factorization, see factorization 

Cholesky 

clean price, 381 
code vectorization, 434, 436 
collocation method, 511 
combination 

convex, 390 
linear, 369 

combinatorial optimization, 495 
common random numbers, 251,470, 

compact model formulation, 540 
complementary slackness, 354,355, 

360, 374,377 
complexity, 144, 155 

exponential, 145, 377 
polynomial, 368, 377 

function, 334, 391, 530, 567 
optimization problem, 334 

578 

concave 

condition number, 142, 150 
conditional 

density, 266 
distribution, 504 
expectation, 504,509,512,636 
Monte Carlo, 447, 448 
probability, 530 
Value at Risk (CVaR), 87 
variance, 255, 636 

conditioning, 20, 142, 255 
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confidence 
interval, 240, 640 
level, 83 

consistency, 320 
consistent numerical scheme, 323 
constraint 

active, 333, 354, 366 
bounding, 333 
dualization, 373 
dualized, 358 
equality, 333, 347, 357, 381 
inactive, 333, 354 
inequality, 333, 347, 358, 381 
integrality, 337 
qualification, 351, 353 

consumption-saving problem, 500 
continuation 

region, 118 
value, 117, 414, 419 

continuous-time 
dynamic system, 332 

contraction mapping, 161 
control variate, 253, 447, 455 
convection term, 304 
convection-diffusion equation, 304 
convergence, 168 

global, 204 
linear, 143, 193 
quadratic, 143, 195 
rate of, 143 

combination, 169,300,309,390, 

function, 334, 390, 528, 567 
hull, 342, 368, 390, 394, 570, 

optimization problem, 334 
problem, 527, 528 
set, 334, 335, 390 

convex 

394, 569 

578 

convex hull, 578, 591 
convexity, 63, 113, 334, 359, 389 

correlation, 73, 82, 86, 253, 417 
bond, 380 

coefficient, 638 
coefficient of, 635 

instantaneous, 101, 444 
negative, 244 
positive, 252 

cost-to-go, 498 
covariance, 73, 337, 451, 548, 634 

cover inequality, 590 
covered position, 435 
Cox-Ingersoll-Ross (CIR) model, 

126 
Crank-Nicolson method, 313, 485, 

488 
cumulative distribution function, see 

distribution, function 
cut generation, 591 
cutting plane, 557 
cycling, 371 

matrix, 238, 337, 444 

decision variable, 329 
binary, 565 
semicontinuous, 567, 571 

decomposition, see factorization 
LU, 483 

default, 31, 87 
delta-hedging, 435 
derivative, 4, 33 

descent direction, 338 
diagonal dominance, 163, 168 
differentiable function, 334 
diffusion 

Over the Counter (OTC), 30 

partial differential equation, 292 
term, 304 

direction number, 281 
discounted gain, 552 
discrepancy, 269 
discrete-time 

model, see model 
system, 500 

t,  241 
beta, 234 
conditional, 440 
discrete empirical, 232 
exponential, 231 

distribution 
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function, 110, 173, 230, 233, 
625, 626 

joint, 632 

431 
lognormal, 89, 100, 219, 403, 

marginal, 548, 632 
multivariate normal, 238, 548 
normal, 80, 82, 235 
standard normal, 110,173,638 
Student’s t ,  641 
symmetric, 82 
uniform, 228 

dividend, 31, 112, 417 
yield, 112, 417 

domain of influence, 302 
drift, 84, 112, 435 
dual 

feasibility, 374 
function, 358, 360, 373 
problem, 358, 373, 552, 557 
variable, 352, 554 

strong, 359, 360 
theory, 358 
weak, 359 

Macauley, 58 
modified, 58 

duality, 372 

duration, 57, 63, 86, 113, 125, 380 

dynamic programming, 210, 332, 
401, 415, 539, 558 

average cost, 501 
discounted, 501 
discrete state, 510 
finite horizon, 502 
infinite horizon, 510 
stochastic, 504 

early exercise, 117, 414, 486 

efficient frontier, 74, 75, 383, 571 
eigenvalue, 148, 162, 163, 239, 311, 

eigenvector, 149 
epigraph, 391, 392, 578 
equation 

boundary, 117 

312, 393, 581 

linear system, 18, 483 
non-linear, 142, 191, 410 
polynomial, 47, 142, 191 

Cournot, 201 
pricing, 37 

absolute, 162, 241 
approximation, 174 
discretization, 430 
function, 178 
relative, 140, 141, 241 
roundoff, 140, 173 
sampling, 430 
truncation, 140, 212 

biased, 469 
high-biased, 519 
low-biased, 519 
unbiased, 637, 643 

equilibrium, see market, equilibrium 

error, 150 

estimator 

Euler scheme, 431 
event, 623 

independent, 624 
excess return, 506 
expected return, see return 
expected value, 626 

explicit method, 305 
extreme 

of a function, 209, 628, 633 

point, 368, 370, 378, 394, 558 
ray, 368, 394, 558 

factorization 
Cholesky, 159, 238 
LU, 157 
QR, 366 

Faure sequence, 472 
feasible 

region, 365, 564 
set, 329 

feedback control, 505 
Feynman-KaE formula, 11 1, 129 
finite difference, 251, 468 

Alternating Direction Implicit, 
319 
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backward, 294, 476 
central, 294, 470, 476 
Crank-Nicolson method, 313 
explicit method, 305, 478 
forward, 294, 476, 482 
fully implicit method, 482 
implicit method, 309 
method, 402, 496 
stability, 423 
symmetric, see finite difference, 

central, see finite differ- 
ence, central 

first-order optimality condition, 334 
fixed point, 510 
fixed-charge problem, 566, 571 
fixed-income 

portfolio, 102 
security, 30 

fixed-mix portfolio, 576 
fixed-point iteration, 161 
floorlet, 125 
Fortran, 11 
forward contract, 33, 35, 103 
Fourier analysis, 302 
free boundary, 118, 293, 511 
function 

affine, 335, 363 
approximation, 173, 505 
concave, 67, 361 
distribution, 84, 178 
indicator, 210, 266 
interpolation, 175 
inverse demand, 201 
non-convex, 581 
non-differentiable, 334, 340 
piecewise linear, 545, 567, 574 
Runge, 180, 186 
strictly concave, 530 
strictly convex, 390, 393 
utility, 176, 530 

function approximation, 642 
functional equation, 498 
future contract, 34 

Gauss-Seidel method, 488 

Gaussian 
elimination, 154 
quadrature, see quadrature 

gearing, 36 
genetic algorithm, 389, 596 
geometric Brownian motion, 98, 116, 

126, 430, 441, 477, 482, 
504 

bidimensional, 443 
global optimization, 564 
gradient 

conjugate, 173 
method, 387 

graph optimization, 496 
Gray code, 283 
Greek, see option, sensitivity 
grid, 476 

notation, 295, 476 

Halton sequence, 269, 276, 458 
heat equation, 292, 303 

bidimensional, 314 
physical interpretation, 304 

hedging, 33, 108, 435 
heuristic method, 591 
homotopy, 205 

Hull-White model, 127 
continuation, 206, 377 

ill-conditioning, 151 
immunization, 63, 125 
importance sampling, 261,450,547 
inadmissibility form, 372 
independent increment, 92, 108 
indicator function, 447 
infinitetime horizon, 501 
initial condition, 292 
inner product, 188, 215 
integer programming, see program- 

integration 

interest 

ming, integer 

numerical, 448 

accrued, 61 
compound, 43 
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continuously compounded, 44 
simple, 43 

interest rate, 43 
spot, 52, 56 
term structure, 52, 64 

interest-rate 
cap, 125 
derivative, 9, 124 
dynamics, 126 
floor, 125 
risk management, 125 
swap, 124 

interior point method, 375, 378 
internal rate of return, 47, 53 
interpolation, 212, 503 

intrinsic value, 117, 414, 419 
inverse transform method, 230,234, 

237, 247, 277, 458 
iterative method, 488, 511 
It0 

linear, 479 

lemma, 96, 128, 417, 431 
multidimensional lemma, 101 
stochastic differential equation, 

stochastic integral, 95 
430 

Jacobian 
determinant, 236 
matrix, 197 

Jensen’s inequality, 628, 632 
jump 

in asset price, 6 

Kelley’s cutting planes algorithm, 

knapsack problem, 16,144,337,495, 

Kuhn-Tucker conditions, 351 
kurtosis, 548 

L-shaped decomposition, 365, 540, 

Lagrange 

364, 556 

564, 587, 652 

555, 557 

multiplier, 352, 356, 366, 375, 
535 

polynomial, 212 

function, 351, 354, 358, 375 
multiplier, see Lagrange, mul- 

Lagrangian 

tiplier 
large numbers 

lattice, 214 
strong law of, 222 

binomial, 28, 489, 510 
implied, 426 
method, 496 
recombining, 28 
structure in LCG, 228, 237 
trinomial, 422, 481 

law of large numbers, 637 
law of one price, 51 
Lax’s equivalence theorem, 323 
LCG, see linear congruential gen- 

least squares, 147, 175, 388, 503, 

leverage, 36 
liability, 54, 57, 530 

uncertain, 544 
LIBOR, 130 
likelihood ratio, 262, 450 
limited liability (assets), 31, 32 
line search, 339 
linear congruential generator, 226, 

linear programming, see program- 

erator 

513, 548,642 

267 

ming, linear 
canonical form, 367 
duality, 553 
standard form, 367 

linear regression, 147,388,512,642 
local improvement, 592 
local search, 591, 592 

best-improving, 592 
first-improving, 592 

low-discrepancy sequence, 269,458, 
547 

Halton, 269 
Sobol, 281 

lower bound, 572, 581, 583 
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LU decomposition, 310 

marginal density, 633 
market 

complete, 107 
efficiency, 89 
equilibrium, 126 
incomplete, 117, 128 
model, 130 

dynamic system, 498 
state property, 501 

Markovian 

martingale, 25 
matrix 

block-diagonal, 556 
diagonal, 451 
diagonally dominant, 163 
Hessian, 334, 341, 356, 392, 

Hilbert, 18, 150, 191, 619 
orthogonal, 366 
permutation, 156 
positive definite, 239, 341, 393 
positive semidefinite, 337,392, 

393 
singular, 151 
sparse, 80, 160, 556 
triangular, 366 
tridiagonal, 159, 308, 310, 483 

bond, 30 
option, 4, 35 

393, 581 

maturity 

mean absolute deviation, 573 
mean blur, 640 
mean reversion, 102, 127 
mean-variance 

efficient portfolio, 383, 649 
framework, 577 
portfolio optimization, 571 

metaheuristic, 389, 578, 591 
metarnodel, 388 
method 

direct, 144, 154 
Gauss-Seidel, 168, 169 
iterative, 143, 161 

Jacobi, 163 
Microsoft Excel, 11 
MILP, 584 
minimizer, 329 
minimum 

minimum lot, 573 
model 

variance portfolio, 383 

binomial, 39, 105 
calibration, 39, 117 
continuous-state, 29 
continuous-time, 29 
discrete-state, 26 
discrete-time, 27 

modulus 
in LCG, 226 

moment matching, 214, 401, 510, 
548 

monomial, 190 
monomial basis, 512 
Monte Carlo 

integration, 222 
sampling, 528, 547 

Monte Carlo sampling, 505 
multiplier 

in LCG, 226 

naked position, 435 
neighborhood structure, 592 
Nelder-Mead method, 342 
network optimization, 496 
Newton’s method, 195, 197, 204, 

377, 511 
for optimization, 341 

argument, 103 
principle, 50, 51, 106 

node (in a network), 496 
non-anticipativity, 256 

condition, 532, 576 
constraint, 533 

function, 387 
problem, 577 
set, 567 

no-arbitrage 

non-convex 



664 lNDEX 

non-differentiability, 361 
norm 

L,, 146 
compatible, 148, 163 
Euclidean, 146, 172 
Frobenius, 148 
matrix, 147 
spectral, 148, 150 
subordinate, 149 
vector, 146 

multivariate, 159 
standard distribution, 84 
variate, 247 

normal 

normed linear space, 188 
not-a-knot condition, 184, 188 
null space, 365 
numeraire 

numerical 
good, 38 

instability, 19, 169, 300, 480 
stability, 307, 320 

ture, 504 
numerical integration, see quadra- 

objective function, 329 
separable, 501 

optimal control, 332, 500 
optimal stopping, 414 
optimality principle, 501 
optimization, 198 

discrete, 390 
global, 576 
problem, 172 

optimization method 
active set, 366, 368 
gradient, 339 
interior point, 535 
steepest descent, 339 
subgradient, 340 
trust region, 341 

optimization problem 
concave, see convex 
constrained, 333, 346 
convex, see convex 

dual, 358 
finite-dimensional, 329 
infeasible, 329, 331 
infinite-dimensional, 332 
non-smooth, 347 
relaxed, 358, 581 
unbounded, 329, 331 
unconstrained, 333, 338 

optimizer, 329 
optimum 

global, 329, 334 
local, 329, 334 

American, 4,35, 117,256,478, 
496, 510 

American call, 8 
American put, 414, 486 
American put , 488 
American spread, 417 
as-you-like-it, 255 
Asian, 35, 109 

arithmetic, 454 
arithmetic average, 123 
average rate, 454 
geometric, 457 
geometric average, 123 

at-the-money, 35 
barrier, 119, 446, 478, 486 
Bermudan, 35, 511 
call, 35 
chooser, 255, 519 
continuation value, 117 
delta, 108, 109, 115, 478 
down-and-in put, 119, 447 
down-and-out put, 119, 446, 

485 
European call, 4,110,219,242, 

247, 276, 406, 435, 477, 
615 

European put, 110, 477 
exchange, 443 
exotic, 35, 119 
expiration, 117 
gamma, 115 
Greek, 111, 210 

option, 4, 35 
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in-the-money, 35, 117, 266,435, 
477, 513 

intrinsic value, 117, 486 
lookback, 123, 425 
multidimensional, 417 
on a bond, 125 
out-of-the-money, 35,266,435, 

477 
path dependent, 123 
pay-later, 410 
put, 35 
sensitivity, 251, 468, 479 
spread, 444 
weakly path-dependent, 446 

elements, 189 
matrix, 366 
polynomial, 191, 215, 512 
projection, 190 
system, 189 

polynomial, 217 
system, 189 

method, 168, 488 
parameter, 491 

orthogonal 

orthonormal 

overrelaxation 

parity 
for barrier options, 119 
put-call, 104 

partial differential equation, 109 
elliptic, 291 
first-order, 291 
hyperbolic, 291 
linear, 291 
order of, 291 
parabolic, 291, 307 
quasilinear, 291 
second-order, 290 

path generation, 430 
pathwise estimator, 471 
PDE, see partial differential equa- 

Peaceman-Rachford method, 319 
penalty function, 346, 375 

tion 

barrier, 349 
exact, 347 
exterior, 347 
interior, 349, 375 

perturbation analysis, 389 
pivoting, 156 
point 

Poisson 
extreme, 558 

distribution, 625 
process, 6, 100, 232 
random variable, 627 

coordinate, 236 
rejection, 237, 276 

bounded, 394 

function, 329 
interpolating, 212 
interpolation, 179 
Lagrange, 179, 183 
primitive, 281 

polar 

polyhedron, 393 

polynomial 

polytope, 394 
portfolio 

cardinality-constrained, 571 
efficient, 74, 385 
management, 380 
mean-variance optimization, 337 
optimization, 15, 40, 71 
rebalancing, 534 

covered, 435 
long, 33 
naked, 435 
short, 33 

power utility, 509 
predecessor node, 540 
present value, 44, 45, 52, 59 
price 

position 

clean, 61 
dirty, 62 
spot, 103 

linearity of, 51 
pricing 
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risk-neutral, 104 

feasibility, 374 
optimization problem, 358 
variable, 352 

prime number, 270, 460, 618 
principal (amount), 43 
principal (notional), 124 
probability 

conditional, 624 
density, 233, 632 
density function, 626 
mass function, 625, 632 
measure, 261, 555, 624 

continuous-time, 88 
discrete-time, 88 
generalized Wiener, 93 
standard Wiener, 91 
Wiener, 29, 91, 108, 126 

primal 

process 

non-differentiability of, 93 
programming 

integer, 16, 83, 564, 580 
linear, 147, 335, 380, 647 
mixed-integer, 337, 565, 647 
mixed-integer quadratic, 571 
non-linear, 261, 336, 385 
nonlinear, 647 
pure binary, 565, 652 
pure integer, 337 
quadratic, 337, 355, 648, 649 
stochastic, 28,65,82,365, 387, 

496 
with recourse, 527 

stochastic multistage, 530 
protective put, 36 
pseudorandom numbers, 225 

QR factorization, 366 
quadrat ure 

adaptive, 220 
composite formula, 213 
formula, 211 

closed, 211 
open, 212 

Gauss-Hermite, 215, 219, 506 
Gaussian, 215, 505, 509, 547 
Newton- formula, 220 
Newton-Cotes formula, 212 
product rule, 220 
recursive, 220 
trapezoidal rule, 213 

quantile, 83, 84, 236, 241, 628, 630, 

quasi-Monte Carlo simulation, 269, 

quasi-Newton method, 201 

640 

458 

for optimization, 342 
in optimization, 388 

quasirandom sequence, 269 

Radon-Nikodym derivative, 262 
random variable, 232, 625 

continuous, 626 
discrete, 625 
exponential, 629 
function of, 628, 633 
independent, 633 
jointly distributed, 632 
lognormal, 631 
multivariate normal, 634 
normal, 215, 629 
standard normal, 236,432,629, 

630 
uniform, 628 

random variate generator, 225 
rare event, 450 
rate of return 

ray, 394 

recourse 

internal, 191 

extreme, 394, 558 

fixed, 527 
function, 363, 527, 556, 558 
relatively complete, 556 
variable, 527 

recursive equation, 498, 502 
reduced 

cost, 371 
gradient, 365 
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relaxation 
continuous, 585 
of an optimization problem, 580 

replicating portfolio, 127 
replication, 107 
replication (in simulation), 240 
residual, 175, 513, 642 
response surface, 388 
return 

expected, 40, 73, 383 
rate of, 32, 73 
total, 32 

Richardson extrapolation, 519 
risk, 73, 383, 573 

aversion, 66, 74, 80, 415, 509, 
530, 577 

coefficient of absolute aversion, 
69 

coefficient of relative aversion, 
69 

coherent measure, 88 
credit, 31, 54 
interest rate, 54 
market price of, 117, 129 
measure, 41, 83 
minimization, 574 
neutrality, 526 
premium, 68 
reinvestment, 31 

asset, 72, 552 
interest rate, 39 
rate, 224, 500 

dynamics, 112 
measure, 111, 117, 128, 129, 

probability, 107, 482 
probability measure, 555 
valuation, 262 

risk-free 

risk-neutral 

224, 266,481, 552 

Romberg integration, 220 
roots 

of a polynomial, 48, 142, 191, 
217 

sample 
covariance, 642 
mean, 221, 240, 637 
path, 430 
space, 623 
variance, 240, 638, 641, 642 

aggregation, 535 
bushy tree, 27 
fan, 26 
generation, 546 
tree, 528, 546 

scenario, 532 

search tree, 582 
second-order optimality condition, 

334 
seed (in random number genera- 

tion), 227 
semicontinuous variable, 567 
shift 

short rate, 126 
short-selling, 32, 73, 103 
short-squeezing, 33 
shortest path problem, 496 
shortfall, 530, 556 
significance loss, 140, 156 
simplex, 342 

method, 370, 378 
search, 342, 344, 372, 389 

in LCG, 226 

Simpson’s rule, 214, 220 
simulated annealing, 593 
simulation, 578 

stochastic, 338 
simulation- based optimization, 387 
skewness, 548 
Sobol sequence, 281, 462 
solution 

basic, 369 
unbounded, 368, 551 

spectral radius, 148, 163, 166, 169, 

spline, 479 
311 

cubic, 184 
linear, 183 
natural, 184 
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shape-preserving, 188 
split-variable model formulation, 532 
St. Petersburg paradox, 41 
stability, 141 

stability analysis 
condition, 302, 309, 315 

matrix theoretic, 307 
Von Neumann, 302, 323 

standard deviation, 74,83,383, 627 
state equation, 500 
stationarity, 357 
stationarity condition, 334,338,357, 

376 
statistical model, 643 
step 

length, 339 
stochastic 

differential, 91 
differential equation, 90 
integral, 91, 93 
optimization, 210, 256 

stochastic programming, see pro- 
gramming, stochastic, 363 

stop-loss hedging, 435 
stopping 

time, 117 
stratification, 440 
stratified sampling, 260, 547 

optimal allocation of the sam- 
ples, 261 

strike price, 4, 35 
subadditivity, 87 
subdifferentiable 

subdifferential, 334, 392 
subgradient, 335, 340, 362, 392 
support hyperplane, 364, 392 

function, 335 

tabu 
list, 596 
search, 389, 578, 595 

Taylor expansion, 97, 115,173, 195, 

term structure 
293, 365, 392 

equation, 129 

terminal cost, 332 
trajectory cost, 332 
transaction cost, 35, 39, 51, 65, 82, 

111, 127, 544, 567, 571, 
574 

transition probability, 504 
transport equation, 296 
truncation error, 294, 323 
trust region method, 341 

unbounded 

unconstrained 

unit hypercube, 220, 223, 269 
utility 

problem, 368 

optimization problem, 330 

Cobb-Douglas function, 37 
CRRA, 70, 72, 508 
DARA, 70 
expected, 41, 338, 545 
from bequest, 501 
function, 37,66, 500,506, 530, 

IARA, 70 
logarithmic, 70, 71, 506 
power, 509 
quadratic, 70, 80, 577 
theory, 80 
Von Neumann-Morgenstern, 66 

545 

value 

Value at Risk, 83, 115, 262, 266, 

value function, 498, 558 
value of the stochastic solution, 529 
Van der Corput sequence, 270 
VAR, see vector autoregressive model 
VaR, see Value at Risk 
variable 

artificial, 372 
binary, 565, 571 
dual, 554 
slack, 367 

intrinsic, 486 

472 

variance, 83, 627 



INDEX 669 

of a sum of variables, 634 
reduction, 244 

by conditioning, 447 
VasiEek model, 126 
vector autoregressive model, 546 
vectorization (of MATLAB code), 

Visual Basic, 11 
volatility, 84, 112 

619 

historical, 116 
implied, 116, 426 
role in barrier options, 121 
stochastic, 102, 446 

Von Neumann 
stability analysis, 302, 323 

VSS, see value of the stochastic 
solution 

well-posed problem, 293, 323 
Wiener process, 432, 439, 462 

bidimensional, 445 

yield, 59, 86, 381 
curve, 57 
required, 54 
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