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In this age of viruses and hackers, of electronic eavesdropping and electronic fraud, security is paramount.

As the disciplines of cryptography and network security have matured, more practical, readily available

applications to enforce network security have developed. This text provides a practical survey of both the

principles and practice of cryptography and network security. First, the basic issues to be addressed by a

network security capability are explored through a tutorial and survey of cryptography and network security

technology. Then, the practice of network security is explored via practical applications that have been

implemented and are in use today.
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Dedication

To Antigone never dull never boring always a Sage
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Notation

Even the natives have difficulty mastering this peculiar vocabulary.

The Golden Bough, Sir James George Frazer

Symbol Expression Meaning

D, K D(K, Y) Symmetric decryption of ciphertext Y using secret key K.

D, PRa D(PRa, Y) Asymmetric decryption of ciphertext Y using A's private key PRa

D,PUa D(PUa, Y) Asymmetric decryption of ciphertext Y using A's public key PUa

E, K E(K, X) Symmetric encryption of plaintext X using secret key K.

E, PRa E(PRa, X) Asymmetric encryption of plaintext X using A's private key PRa

E, PUa E(PUa, X) Asymmetric encryption of plaintext X using A's public key PUa

K  Secret key

PRa  Private key of user A

PUa  Public key of user A

C, K C(K, X) Message authentication code of message X using secret key K.

GF(p)  The finite field of order p, where p is prime. The field is defined as the 

set Zp together with the arithmetic operations modulo p.

GF(2
n
)  The finite field of order 2

n
.

Zn  Set of nonnegative integers less than n

gcd gcd(i, j) Greatest common divisor; the largest positive integer that divides both i

and j with no remainder on division.

mod a mod m Remainder after division of a by m.

mod, a  b(mod m) a mod m = b mod m

mod, a  b(mod m) a mod m  b mod m

dlog dloga,p(b) Discrete logarithm of the number b for the base a (mod p)

f f(n) The number of positive integers less than n and relatively prime to n. 

This is Euler's totient function.

S a1 + a2 + ... + an



Symbol Expression Meaning

a1 x a2 x ... x an

| i|j i divides j, which means that there is no remainder when j is divided by i

|,| |a| Absolute value of a

|| x||y x concatenated with y

x  y
x is approximately equal to y

x  y
Exclusive-OR of x and y for single-bit variables; Bitwise exclusive-OR 

of x and y for multiple-bit variables

, x
The largest integer less than or equal to x

x  S The element x is contained in the set S.

A  (a1,a2, ...,ak) The integer A corresponds to the sequence of integers (a1,a2, ...,ak)
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Preface

"The tie, if I might suggest it, sir, a shade more tightly knotted. One aims at the perfect butterfly effect. If you will 

permit me"

"What does it matter, Jeeves, at a time like this? Do you realize that Mr. Little's domestic happiness is hanging in 

the scale?"

"There is no time, sir, at which ties do not matter."

Very Good, Jeeves! P. G. Wodehouse

In this age of universal electronic connectivity, of viruses and hackers, of electronic eavesdropping and electronic fraud, there is indeed 

no time at which security does not matter. Two trends have come together to make the topic of this book of vital interest. First, the 

explosive growth in computer systems and their interconnections via networks has increased the dependence of both organizations and 

individuals on the information stored and communicated using these systems. This, in turn, has led to a heightened awareness of the 

need to protect data and resources from disclosure, to guarantee the authenticity of data and messages, and to protect systems from 

network-based attacks. Second, the disciplines of cryptography and network security have matured, leading to the development of 

practical, readily available applications to enforce network security.
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Objectives

It is the purpose of this book to provide a practical survey of both the principles and practice of cryptography and network security. In the 

first two parts of the book, the basic issues to be addressed by a network security capability are explored by providing a tutorial and 

survey of cryptography and network security technology. The latter part of the book deals with the practice of network security: practical 

applications that have been implemented and are in use to provide network security.

The subject, and therefore this book, draws on a variety of disciplines. In particular, it is impossible to appreciate the significance of 

some of the techniques discussed in this book without a basic understanding of number theory and some results from probability theory. 

Nevertheless, an attempt has been made to make the book self-contained. The book presents not only the basic mathematical results 

that are needed but provides the reader with an intuitive understanding of those results. Such background material is introduced as 

needed. This approach helps to motivate the material that is introduced, and the author considers this preferable to simply presenting all 

of the mathematical material in a lump at the beginning of the book.

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html
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Intended Audience

The book is intended for both an academic and a professional audience. As a textbook, it is intended as a one-semester undergraduate 

course in cryptography and network security for computer science, computer engineering, and electrical engineering majors. It covers the 

material in IAS2 Security Mechanisms, a core area in the Information Technology body of knowledge; NET4 Security, another core area 

in the Information Technology body of knowledge; and IT311, Cryptography, an advanced course; these subject areas are part of the 

Draft ACM/IEEE Computer Society Computing Curricula 2005.

[Page xiv]

The book also serves as a basic reference volume and is suitable for self-study.
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Plan of the Book

The book is organized in four parts:

Part One. Conventional Encryption: A detailed examination of conventional encryption algorithms and design 

principles, including a discussion of the use of conventional encryption for confidentiality.

Part Two. Public-Key Encryption and Hash Functions: A detailed examination of public-key encryption 

algorithms and design principles. This part also examines the use of message authentication codes and hash 

functions, as well as digital signatures and public-key certificates.

Part Three. Network Security Practice: Covers important network security tools and applications, including 

Kerberos, X.509v3 certificates, PGP, S/MIME, IP Security, SSL/TLS, and SET.

Part Four. System Security: Looks at system-level security issues, including the threat of and countermeasures 

for intruders and viruses, and the use of firewalls and trusted systems.

In addition, the book includes an extensive glossary, a list of frequently used acronyms, and a bibliography. Each chapter includes 

homework problems, review questions, a list of key words, suggestions for further reading, and recommended Web sites.

A more detailed, chapter-by-chapter summary of each part appears at the beginning of that part.
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Internet Services for Instructors and Students

There is a Web site for this book that provides support for students and instructors. The site includes links to other relevant sites, 

transparency masters of figures and tables in the book in PDF (Adobe Acrobat) format, and PowerPoint slides. The Web page is at 

WilliamStallings.com/Crypto/Crypto4e.html. As soon as typos or other errors are discovered, an errata list for this book will be available 

at WilliamStallings.com. In addition, the Computer Science Student Resource site, at WilliamStallings.com/StudentSupport.html, 

provides documents, information, and useful links for computer science students and professionals.
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Projects for Teaching Cryptography and Network Security

For many instructors, an important component of a cryptography or security course is a project or set of projects by which the student 

gets hands-on experience to reinforce concepts from the text. This book provides an unparalleled degree of support for including a 

projects component in the course. The instructor's manual not only includes guidance on how to assign and structure the projects, but 

also includes a set of suggested projects that covers a broad range of topics from the text:

[Page xv]

Research projects: A series of research assignments that instruct the student to research a particular topic on the Internet 

and write a report

Programming projects: A series of programming projects that cover a broad range of topics and that can be implemented in 

any suitable language on any platform

Lab exercises: A series of projects that involve programming and experimenting with concepts from the book

Writing assignments: A set of suggested writing assignments, by chapter

Reading/report assignments: A list of papers in the literature, one for each chapter, that can be assigned for the student to 

read and then write a short report

See Appendix B for details.
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What's New in the Fourth Edition

In the three years since the third edition of this book was published, the field has seen continued innovations and improvements. In this 

new edition, I try to capture these changes while maintaining a broad and comprehensive coverage of the entire field. To begin this 

process of revision, the third edition was extensively reviewed by a number of professors who teach the subject. In addition, a number of 

professionals working in the field reviewed individual chapters. The result is that, in many places, the narrative has been clarified and 

tightened, and illustrations have been improved. Also, a large number of new "field-tested" problems have been added.

Beyond these refinements to improve pedagogy and user friendliness, there have been major substantive changes throughout the book. 

Highlights include the following:

Simplified AES: This is an educational, simplified version of AES (Advanced Encryption Standard), which enables students 

to grasp the essentials of AES more easily.

Whirlpool: This is an important new secure hash algorithm based on the use of a symmetric block cipher.

CMAC: This is a new block cipher mode of operation. CMAC (cipher-based message authentication code) provides message 

authentication based on the use of a symmetric block cipher.

Public-key infrastructure (PKI): This important topic is treated in this new edition.

Distributed denial of service (DDoS) attacks: DDoS attacks have assumed increasing significance in recent years.

Common Criteria for Information Technology Security Evaluation: The Common Criteria have become the international 

framework for expressing security requirements and evaluating products and implementations.

Online appendices: Six appendices available at this book's Web site supplement the material in the text.

In addition, much of the other material in the book has been updated and revised.
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The art of war teaches us to rely not on the likelihood of the enemy's not coming, but on our own readiness to 

receive him; not on the chance of his not attacking, but rather on the fact that we have made our position 

unassailable.

The Art of War, Sun Tzu

This book, with its accompanying Web site, covers a lot of material. Here we give the reader an overview.
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0.1. Outline of this Book

Following an introductory chapter, Chapter 1, the book is organized into four parts:

Part One: Symmetric Ciphers: Provides a survey of symmetric encryption, including classical and modern 

algorithms. The emphasis is on the two most important algorithms, the Data Encryption Standard (DES) and the 

Advanced Encryption Standard (AES). This part also addresses message authentication and key management.

Part Two: Public-Key Encryption and Hash Functions: Provides a survey of public-key algorithms, including 

RSA (Rivest-Shamir-Adelman) and elliptic curve. It also covers public-key applications, including digital signatures 

and key exchange.

Part Three: Network Security Practice: Examines the use of cryptographic algorithms and security protocols to 

provide security over networks and the Internet. Topics covered include user authentication, e-mail, IP security, 

and Web security.

Part Four: System Security: Deals with security facilities designed to protect a computer system from security 

threats, including intruders, viruses, and worms. This part also looks at firewall technology.

Many of the cryptographic algorithms and network security protocols and applications described in this book have been specified as 

standards. The most important of these are Internet Standards, defined in Internet RFCs (Request for Comments), and Federal 

Information Processing Standards (FIPS), issued by the National Institute of Standards and Technology (NIST). Appendix A discusses 

the standards-making process and lists the standards cited in this book.
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0.2. Roadmap

Subject Matter

The material in this book is organized into three broad categories:

Cryptology: This is the study of techniques for ensuring the secrecy and/or authenticity of information. The two 

main branches of cryptology are cryptography, which is the study of the design of such techniques; and 

cryptanalysis, which deals with the defeating such techniques, to recover information, or forging information that 

will be accepted as authentic.

[Page 3]

Network security: This area covers the use of cryptographic algorithms in network protocols and network 

applications.

Computer security: In this book, we use this term to refer to the security of computers against intruders (e.g., 

hackers) and malicious software (e.g., viruses). Typically, the computer to be secured is attached to a network and 

the bulk of the threats arise from the network.

The first two parts of the book deal with two distinct cryptographic approaches: symmetric cryptographic algorithms and public-key, or 

asymmetric, cryptographic algorithms. Symmetric algorithms make use of a single shared key shared by two parties. Public-key 

algorithms make use of two keys: a private key known only to one party, and a public key, available to other parties.

Topic Ordering

This book covers a lot of material. For the instructor or reader who wishes a shorter treatment, there are a number of opportunities.

To thoroughly cover the material in the first two parts, the chapters should be read in sequence. With the exception of the Advanced 

Encryption Standard (AES), none of the material in Part One requires any special mathematical background. To understand AES, it is 

necessary to have some understanding of finite fields. In turn, an understanding of finite fields requires a basic background in prime 

numbers and modular arithmetic. Accordingly, Chapter 4 covers all of these mathematical preliminaries just prior to their use in Chapter 5

on AES. Thus, if Chapter 5 is skipped, it is safe to skip Chapter 4 as well.

Chapter 2 introduces some concepts that are useful in later chapters of Part One. However, for the reader whose sole interest is 

contemporary cryptography, this chapter can be quickly skimmed. The two most important symmetric cryptographic algorithms are DES 

and AES, which are covered in Chapters 3 and 5, respectively. Chapter 6 covers two other interesting algorithms, both of which enjoy 

commercial use. This chapter can be safely skipped if these algorithms are not of interest.

For Part Two, the only additional mathematical background that is needed is in the area of number theory, which is covered in Chapter 8. 

The reader who has skipped Chapters 4 and 5 should first review the material on Sections 4.1 through 4.3.

The two most widely used general-purpose public-key algorithms are RSA and elliptic curve, with RSA enjoying much wider acceptance. 

The reader may wish to skip the material on elliptic curve cryptography in Chapter 10, at least on a first reading. In Chapter 12, Whirlpool 

and CMAC are of lesser importance.



Part Three and Part Four are relatively independent of each other and can be read in either order. Both parts assume a basic 

understanding of the material in Parts One and Two.
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0.3. Internet and Web Resources

There are a number of resources available on the Internet and the Web to support this book and to help one keep up with 

developments in this field.

Web Sites for This Book

A special Web page has been set up for this book at WilliamStallings.com/Crypto/Crypto4e.html. The site includes the following:

Useful Web sites: There are links to other relevant Web sites, organized by chapter, including the sites listed in this section 

and throughout this book.

Errata sheet: An errata list for this book will be maintained and updated as needed. Please e-mail any errors that you spot to 

me. Errata sheets for my other books are at WilliamStallings.com.

Figures: All of the figures in this book in PDF (Adobe Acrobat) format.

Tables: All of the tables in this book in PDF format.

Slides: A set of PowerPoint slides, organized by chapter.

Cryptography and network security courses: There are links to home pages for courses based on this book; these pages 

may be useful to other instructors in providing ideas about how to structure their course.

I also maintain the Computer Science Student Resource Site, at WilliamStallings.com/StudentSupport.html. The purpose of this site 

is to provide documents, information, and links for computer science students and professionals. Links and documents are organized 

into four categories:

Math: Includes a basic math refresher, a queuing analysis primer, a number system primer, and links to numerous math sites

How-to: Advice and guidance for solving homework problems, writing technical reports, and preparing technical presentations

Research resources: Links to important collections of papers, technical reports, and bibliographies

Miscellaneous: A variety of other useful documents and links

Other Web Sites

There are numerous Web sites that provide information related to the topics of this book. In subsequent chapters, pointers to specific 

Web sites can be found in the Recommended Reading and Web Sites section. Because the addresses for Web sites tend to change 

frequently, I have not included URLs in the book. For all of the Web sites listed in the book, the appropriate link can be found at this 

book's Web site. Other links not mentioned in this book will be added to the Web site over time.

http://WilliamStallings.com/Crypto/Crypto4e.html
http://WilliamStallings.com
http://WilliamStallings.com/StudentSupport.html
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USENET Newsgroups

A number of USENET newsgroups are devoted to some aspect of cryptography or network security. As with virtually all USENET 

groups, there is a high noise-to-signal ratio, but it is worth experimenting to see if any meet your needs. The most relevant are

sci.crypt.research: The best group to follow. This is a moderated newsgroup that deals with research topics; postings must 

have some relationship to the technical aspects of cryptology.

sci.crypt: A general discussion of cryptology and related topics.

sci.crypt.random-numbers: A discussion of cryptographic-strength random number generators.

alt.security: A general discussion of security topics.

comp.security.misc: A general discussion of computer security topics.

comp.security.firewalls: A discussion of firewall products and technology.

comp.security.announce: News, announcements from CERT.

comp.risks: A discussion of risks to the public from computers and users.

comp.virus: A moderated discussion of computer viruses.
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The combination of space, time, and strength that must be considered as the basic elements of this theory 

of defense makes this a fairly complicated matter. Consequently, it is not easy to find a fixed point of departure.

On War, Carl Von Clausewitz

Key Points

The OSI (open systems interconnection) security architecture provides a systematic framework for defining 

security attacks, mechanisms, and services.

Security attacks are classified as either passive attacks, which include unauthorized reading of a message 

of file and traffic analysis; and active attacks, such as modification of messages or files, and denial of 

service.

A security mechanism is any process (or a device incorporating such a process) that is designed to 

detect, prevent, or recover from a security attack. Examples of mechanisms are encryption algorithms, 

digital signatures, and authentication protocols.

Security services include authentication, access control, data confidentiality, data integrity, 

nonrepudiation, and availability.

The requirements of information security within an organization have undergone two major changes in the last several decades. 

Before the widespread use of data processing equipment, the security of information felt to be valuable to an organization was provided 

primarily by physical and administrative means. An example of the former is the use of rugged filing cabinets with a combination lock for 

storing sensitive documents. An example of the latter is personnel screening procedures used during the hiring process.

With the introduction of the computer, the need for automated tools for protecting files and other information stored on the computer 

became evident. This is especially the case for a shared system, such as a time-sharing system, and the need is even more acute for 

systems that can be accessed over a public telephone network, data network, or the Internet. The generic name for the collection of tools 

designed to protect data and to thwart hackers is computer security.

The second major change that affected security is the introduction of distributed systems and the use of networks and communications 

facilities for carrying data between terminal user and computer and between computer and computer. Network security measures are 

needed to protect data during their transmission. In fact, the term network security is somewhat misleading, because virtually all 

business, government, and academic organizations interconnect their data processing equipment with a collection of interconnected 

networks. Such a collection is often referred to as an internet,
[1]

 and the term internet security is used.

[1] We use the term internet, with a lowercase "i," to refer to any interconnected collection of networks. A corporate 

intranet is an example of an internet. The Internet with a capital "I" may be one of the facilities used by an 

organization to construct its internet.
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There are no clear boundaries between these two forms of security. For example, one of the most publicized types of attack on 

information systems is the computer virus. A virus may be introduced into a system physically when it arrives on a diskette or optical disk 

and is subsequently loaded onto a computer. Viruses may also arrive over an internet. In either case, once the virus is resident on a 



computer system, internal computer security tools are needed to detect and recover from the virus.

This book focuses on internet security, which consists of measures to deter, prevent, detect, and correct security violations that involve 

the transmission of information. That is a broad statement that covers a host of possibilities. To give you a feel for the areas covered in 

this book, consider the following examples of security violations:

User A transmits a file to user B. The file contains sensitive information (e.g., payroll records) that is to be protected from 

disclosure. User C, who is not authorized to read the file, is able to monitor the transmission and capture a copy of the file 

during its transmission.

1.

A network manager, D, transmits a message to a computer, E, under its management. The message instructs computer E to 

update an authorization file to include the identities of a number of new users who are to be given access to that computer. 

User F intercepts the message, alters its contents to add or delete entries, and then forwards the message to E, which 

accepts the message as coming from manager D and updates its authorization file accordingly.

2.

Rather than intercept a message, user F constructs its own message with the desired entries and transmits that message to E 

as if it had come from manager D. Computer E accepts the message as coming from manager D and updates its 

authorization file accordingly.

3.

An employee is fired without warning. The personnel manager sends a message to a server system to invalidate the 

employee's account. When the invalidation is accomplished, the server is to post a notice to the employee's file as 

confirmation of the action. The employee is able to intercept the message and delay it long enough to make a final access to 

the server to retrieve sensitive information. The message is then forwarded, the action taken, and the confirmation posted. 

The employee's action may go unnoticed for some considerable time.

4.

A message is sent from a customer to a stockbroker with instructions for various transactions. Subsequently, the investments 

lose value and the customer denies sending the message.

5.

Although this list by no means exhausts the possible types of security violations, it illustrates the range of concerns of network security.
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Internetwork security is both fascinating and complex. Some of the reasons follow:

Security involving communications and networks is not as simple as it might first appear to the novice. The requirements 

seem to be straightforward; indeed, most of the major requirements for security services can be given self-explanatory 

one-word labels: confidentiality, authentication, nonrepudiation, integrity. But the mechanisms used to meet those 

requirements can be quite complex, and understanding them may involve rather subtle reasoning.

1.

In developing a particular security mechanism or algorithm, one must always consider potential attacks on those security 

features. In many cases, successful attacks are designed by looking at the problem in a completely different way, therefore 

exploiting an unexpected weakness in the mechanism.

2.

Because of point 2, the procedures used to provide particular services are often counterintuitive: It is not obvious from the 

statement of a particular requirement that such elaborate measures are needed. It is only when the various countermeasures 

are considered that the measures used make sense.

3.

Having designed various security mechanisms, it is necessary to decide where to use them. This is true both in terms of 

physical placement (e.g., at what points in a network are certain security mechanisms needed) and in a logical sense [e.g., at 

what layer or layers of an architecture such as TCP/IP (Transmission Control Protocol/Internet Protocol) should mechanisms 

be placed].

4.

Security mechanisms usually involve more than a particular algorithm or protocol. They usually also require that participants 

be in possession of some secret information (e.g., an encryption key), which raises questions about the creation, distribution, 

and protection of that secret information. There is also a reliance on communications protocols whose behavior may 

complicate the task of developing the security mechanism. For example, if the proper functioning of the security mechanism 

requires setting time limits on the transit time of a message from sender to receiver, then any protocol or network that 

introduces variable, unpredictable delays may render such time limits meaningless.

5.

Thus, there is much to consider. This chapter provides a general overview of the subject matter that structures the material in the 

remainder of the book. We begin with a general discussion of network security services and mechanisms and of the types of attacks they 



are designed for. Then we develop a general overall model within which the security services and mechanisms can be viewed.
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1.1. Security Trends

In 1994, the Internet Architecture Board (IAB) issued a report entitled "Security in the Internet Architecture" (RFC 1636). The report stated 

the general consensus that the Internet needs more and better security, and it identified key areas for security mechanisms. Among these 

were the need to secure the network infrastructure from unauthorized monitoring and control of network traffic and the need to secure 

end-user-to-end-user traffic using authentication and encryption mechanisms.
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These concerns are fully justified. As confirmation, consider the trends reported by the Computer Emergency Response Team (CERT) 

Coordination Center (CERT/CC). Figure 1.1a shows the trend in Internet-related vulnerabilities reported to CERT over a 10-year period. 

These include security weaknesses in the operating systems of attached computers (e.g., Windows, Linux) as well as vulnerabilities in 

Internet routers and other network devices. Figure 1.1b shows the number of security-related incidents reported to CERT. These include 

denial of service attacks; IP spoofing, in which intruders create packets with false IP addresses and exploit applications that use 

authentication based on IP; and various forms of eavesdropping and packet sniffing, in which attackers read transmitted information, 

including logon information and database contents.
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Figure 1.1. CERT Statistics
(This item is displayed on page 10 in the print version)

[View full size image]
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Over time, the attacks on the Internet and Internet-attached systems have grown more sophisticated while the amount of skill and 

knowledge required to mount an attack has declined (Figure 1.2). Attacks have become more automated and can cause greater amounts 

of damage.
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2.3. Transposition Techniques

All the techniques examined so far involve the substitution of a ciphertext symbol for a plaintext symbol. A very different kind of mapping 

is achieved by performing some sort of permutation on the plaintext letters. This technique is referred to as a transposition cipher.

The simplest such cipher is the rail fence technique, in which the plaintext is written down as a sequence of diagonals and then read off 

as a sequence of rows. For example, to encipher the message "meet me after the toga party" with a rail fence of depth 2, we write the 

following:
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m e m a t r h t g p r y

 e t e f e t e o a a t

The encrypted message is

MEMATRHTGPRYETEFETEOAAT

This sort of thing would be trivial to cryptanalyze. A more complex scheme is to write the message in a rectangle, row by row, and read 

the message off, column by column, but permute the order of the columns. The order of the columns then becomes the key to the 

algorithm. For example,

Key:           4 3 1 2 5 6 7

Plaintext:     a t t a c k p

               o s t p o n e

               d u n t i l t

               w o a m x y z

Ciphertext:    TTNAAPTMTSUOAODWCOIXKNLYPETZ

A pure transposition cipher is easily recognized because it has the same letter frequencies as the original plaintext. For the type of 

columnar transposition just shown, cryptanalysis is fairly straightforward and involves laying out the ciphertext in a matrix and playing 

around with column positions. Digram and trigram frequency tables can be useful.

The transposition cipher can be made significantly more secure by performing more than one stage of transposition. The result is a more 

complex permutation that is not easily reconstructed. Thus, if the foregoing message is reencrypted using the same algorithm,

Key:         4 3 1 2 5 6 7

Input:       t t n a a p t

             m t s u o a o

             d w c o i x k

             n l y p e t z

Output:      NSCYAUOPTTWLTMDNAOIEPAXTTOKZ



To visualize the result of this double transposition, designate the letters in the original plaintext message by the numbers designating 

their position. Thus, with 28 letters in the message, the original sequence of letters is

01 02 03 04 05 06 07 08 09 10 11 12 13 14

15 16 17 18 19 20 21 22 23 24 25 26 27 28
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After the first transposition we have

03 10 17 24 04 11 18 25 02 09 16 23 01 08

15 22 05 12 19 26 06 13 20 27 07 14 21 28

which has a somewhat regular structure. But after the second transposition, we have

17 09 05 27 24 16 12 07 10 02 22 20 03 25

15 13 04 23 19 14 11 01 26 21 18 08 06 28

This is a much less structured permutation and is much more difficult to cryptanalyze.
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2.4. Rotor Machines

The example just given suggests that multiple stages of encryption can produce an algorithm that is significantly more difficult to 

cryptanalyze. This is as true of substitution ciphers as it is of transposition ciphers. Before the introduction of DES, the most important 

application of the principle of multiple stages of encryption was a class of systems known as rotor machines.
[9]

[9] Machines based on the rotor principle were used by both Germany (Enigma) and Japan (Purple) in World War II. 

The breaking of both codes by the Allies was a significant factor in the war's outcome.

The basic principle of the rotor machine is illustrated in Figure 2.7. The machine consists of a set of independently rotating cylinders 

through which electrical pulses can flow. Each cylinder has 26 input pins and 26 output pins, with internal wiring that connects each input 

pin to a unique output pin. For simplicity, only three of the internal connections in each cylinder are shown.

Figure 2.7. Three-Rotor Machine with Wiring Represented by Numbered Contacts
(This item is displayed on page 52 in the print version)

[View full size image]
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If we associate each input and output pin with a letter of the alphabet, then a single cylinder defines a monoalphabetic substitution. For 

example, in Figure 2.7, if an operator depresses the key for the letter A, an electric signal is applied to the first pin of the first cylinder and 

flows through the internal connection to the twenty-fifth output pin.

Consider a machine with a single cylinder. After each input key is depressed, the cylinder rotates one position, so that the internal 

connections are shifted accordingly. Thus, a different monoalphabetic substitution cipher is defined. After 26 letters of plaintext, the 

cylinder would be back to the initial position. Thus, we have a polyalphabetic substitution algorithm with a period of 26.

A single-cylinder system is trivial and does not present a formidable cryptanalytic task. The power of the rotor machine is in the use of 

multiple cylinders, in which the output pins of one cylinder are connected to the input pins of the next. Figure 2.7 shows a three-cylinder 

system. The left half of the figure shows a position in which the input from the operator to the first pin (plaintext letter a) is routed through 

the three cylinders to appear at the output of the second pin (ciphertext letter B).

With multiple cylinders, the one closest to the operator input rotates one pin position with each keystroke. The right half of Figure 2.7

shows the system's configuration after a single keystroke. For every complete rotation of the inner cylinder, the middle cylinder rotates 

one pin position. Finally, for every complete rotation of the middle cylinder, the outer cylinder rotates one pin position. This is the same 

type of operation seen with an odometer. The result is that there are 26 x 26 x 26 = 17,576 different substitution alphabets used before the 

system repeats. The addition of fourth and fifth rotors results in periods of 456,976 and 11,881,376 letters, respectively. As David Kahn 

eloquently put it, referring to a five-rotor machine [KAHN96, page 413]:

[Page 53]

A period of that length thwarts any practical possibility of a straightforward solution on the basis of letter frequency. 

This general solution would need about 50 letters per cipher alphabet, meaning that all five rotors would have to go 

through their combined cycle 50 times. The ciphertext would have to be as long as all the speeches made on the 

floor of the Senate and the House of Representatives in three successive sessions of Congress. No cryptanalyst is 

likely to bag that kind of trophy in his lifetime; even diplomats, who can be as verbose as politicians, rarely scale 

those heights of loquacity.

The significance of the rotor machine today is that it points the way to the most widely used cipher ever: the Data Encryption Standard 

(DES). This we examine in Chapter 3.
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2.5. Steganography

We conclude with a discussion of a technique that is, strictly speaking, not encryption, namely, steganography.

A plaintext message may be hidden in one of two ways. The methods of steganography conceal the existence of the message, whereas 

the methods of cryptography render the message unintelligible to outsiders by various transformations of the text.
[10]

[10] Steganography was an obsolete word that was revived by David Kahn and given the meaning it has today 

[KAHN96].

A simple form of steganography, but one that is time-consuming to construct, is one in which an arrangement of words or letters within an 

apparently innocuous text spells out the real message. For example, the sequence of first letters of each word of the overall message 

spells out the hidden message. Figure 2.8 shows an example in which a subset of the words of the overall message is used to convey 

the hidden message.

Figure 2.8. A Puzzle for Inspector Morse
(This item is displayed on page 54 in the print version)

(From  The Silent World of Nicholas Quinn, by Colin Dexter)



Various other techniques have been used historically; some examples are the following [MYER91]:

Character marking: Selected letters of printed or typewritten text are overwritten in pencil. The marks are ordinarily not 

visible unless the paper is held at an angle to bright light.

Invisible ink: A number of substances can be used for writing but leave no visible trace until heat or some chemical is 

applied to the paper.
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Pin punctures: Small pin punctures on selected letters are ordinarily not visible unless the paper is held up in front of a light.

Typewriter correction ribbon: Used between lines typed with a black ribbon, the results of typing with the correction tape 

are visible only under a strong light.

Although these techniques may seem archaic, they have contemporary equivalents. [WAYN93] proposes hiding a message by using the 

least significant bits of frames on a CD. For example, the Kodak Photo CD format's maximum resolution is 2048 by 3072 pixels, with 

each pixel containing 24 bits of RGB color information. The least significant bit of each 24-bit pixel can be changed without greatly 

affecting the quality of the image. The result is that you can hide a 2.3-megabyte message in a single digital snapshot. There are now a 

number of software packages available that take this type of approach to steganography.

Steganography has a number of drawbacks when compared to encryption. It requires a lot of overhead to hide a relatively few bits of 

information, although using some scheme like that proposed in the preceding paragraph may make it more effective. Also, once the 

system is discovered, it becomes virtually worthless. This problem, too, can be overcome if the insertion method depends on some sort 

of key (e.g., see Problem 2.11). Alternatively, a message can be first encrypted and then hidden using steganography.

The advantage of steganography is that it can be employed by parties who have something to lose should the fact of their secret 

communication (not necessarily the content) be discovered. Encryption flags traffic as important or secret or may identify the sender or 

receiver as someone with something to hide.



[Page 55]

2.6. Recommended Reading and Web Sites

For anyone interested in the history of code making and code breaking, the book to read [KAHN96]. Although it is concerned more with 

the impact of cryptology than its technical development, it is an excellent introduction and makes for exciting reading. Another excellent 

historical account is [SING99].

A short treatment covering the techniques of this chapter, and more, is [GARD72]. There are many books that cover classical 

cryptography in a more technical vein; one of the best is [SINK66]. [KORN96] is a delightful book to read and contains a lengthy section 

on classical techniques. Two cryptography books that contain a fair amount of technical material on classical techniques are [GARR01] 

and [NICH99]. For the truly interested reader, the two-volume [NICH96] covers numerous classical ciphers in detail and provides many 

ciphertexts to be cryptanalyzed, together with the solutions.

An excellent treatment of rotor machines, including a discussion of their cryptanalysis is found in [KUMA97].

[KATZ00] provides a thorough treatment of steganography. Another good source is [WAYN96].

GARD72 Gardner, M. Codes, Ciphers, and Secret Writing. New York: Dover, 1972.

GARR01 Garrett, P. Making, Breaking Codes: An Introduction to Cryptology. Upper Saddle River, NJ: Prentice 

Hall, 2001.

KAHN96 Kahn, D. The Codebreakers: The Story of Secret Writing. New York: Scribner, 1996.

KATZ00 Katzenbeisser, S., ed. Information Hiding Techniques for Steganography and Digital Watermarking. 

Boston: Artech House, 2000.

KORN96 Korner, T. The Pleasures of Counting. Cambridge, England: Cambridge University Press, 1996.

KUMA97 Kumar, I. Cryptology. Laguna Hills, CA: Aegean Park Press, 1997.

NICH96 Nichols, R. Classical Cryptography Course. Laguna Hills, CA: Aegean Park Press, 1996.

NICH99 Nichols, R. ed. ICSA Guide to Cryptography. New York: McGraw-Hill, 1999.

SING99 Singh, S. :The Code Book: The Science of Secrecy from Ancient Egypt to Quantum Cryptography.

New York: Anchor Books, 1999.

SINK66 Sinkov, A. Elementary Cryptanalysis: A Mathematical Approach. Washington, DC: The Mathematical 

Association of America, 1966.

WAYN96 Wayner, P. Disappearing Cryptography. Boston: AP Professional Books, 1996.

Recommended Web Sites



American Cryptogram Association: An association of amateur cryptographers. The Web site includes information and links 

to sites concerned with classical cryptography.
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Crypto Corner: Simon Singh's Web site. Lots of good information, plus interactive tools for learning about cryptography.

Steganography: Good collection of links and documents.
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2.7. Key Terms, Review Questions, and Problems

Key Terms

block cipher

brute-force attack

Caesar cipher

cipher

ciphertext

computationally secure

conventional encryption

cryptanalysis

cryptographic system

cryptography

cryptology

deciphering

decryption

enciphering

encryption

Hill cipher

monoalphabetic cipher

one-time pad

plaintext
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Playfair cipher

polyalphabetic cipher

rail fence cipher

single-key encryption

steganography

stream cipher

symmetric encryption

transposition cipher

unconditionally secure

Vigenère cipher

Review Questions

2.1 What are the essential ingredients of a symmetric cipher?

2.2 What are the two basic functions used in encryption algorithms?

2.3 How many keys are required for two people to communicate via a cipher?

2.4 What is the difference between a block cipher and a stream cipher?

2.5 What are the two general approaches to attacking a cipher?

2.6 List and briefly define types of cryptanalytic attacks based on what is known to the attacker.

2.7 What is the difference between an unconditionally secure cipher and a computationally secure cipher?

2.8 Briefly define the Caesar cipher.

2.9 Briefly define the monoalphabetic cipher.

2.10 Briefly define the Playfair cipher.

2.11 What is the difference between a monoalphabetic cipher and a polyalphabetic cipher?

2.12 What are two problems with the one-time pad?

2.13 What is a transposition cipher?



2.14 What is steganography?

Problems

2.1 A generalization of the Caesar cipher, knows as the affine Caesar cipher, has the following form: For each 

plaintext letter p, substitute the ciphertext letter C:

C = E([a, b], p) = (ap + b) mod 26
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A basic requirement of any encryption algorithm is that it be one-to-one. That is, if p  q, then E(k, p) 

E(k, q). Otherwise, decryption is impossible, because more than one plaintext character maps into the same 

ciphertext character. The affine Caesar cipher is not one-to-one for all values of a. For example, for a = 2 and 

b = 3, then E([a, b], 0) = E([a, b], 13) = 3.

Are there any limitations on the value of b? Explain why or why not.a.

Determine which values of a are not allowed.b.

Provide a general statement of which values of a are and are not allowed. Justify your statement.c.

2.2 How many one-to-one affine Caesar ciphers are there?

2.3 A ciphertext has been generated with an affine cipher. The most frequent letter of the ciphertext is 'B', and 

the second most frequent letter of the ciphertext is 'U'. Break this code.

2.4 The following ciphertext was generated using a simple substitution algorithm:

53 305))6*;4826)4 .)4 );806*;48 8¶60))85;;]8*;: *8 83

(88)5* ;46(;88*96*?;8)* (;485);5* 2:* (;4956*2(5*-4)88*

;4069285);)6 8)4 [ddagger];1( 9;48081;8:8 1;48 85;4)485 528806*81

( 9;48;(88;4( ?34;48)4 ;161;:188; ?;

Decrypt this message. Hints:

As you know, the most frequently occurring letter in English is e. Therefore, the first or second (or 

perhaps third?) most common character in the message is likely to stand for e. Also, e is often 

seen in pairs (e.g., meet, fleet, speed, seen, been, agree, etc.). Try to find a character in the 

ciphertext that decodes to e.

1.

The most common word in English is "the." Use this fact to guess the characters that stand for t 2.



and h.

Decipher the rest of the message by deducing additional words.3.

Warning: The resulting message is in English but may not make much sense on a first reading.

2.5 One way to solve the key distribution problem is to use a line from a book that both the sender and the 

receiver possess. Typically, at least in spy novels, the first sentence of a book serves as the key. The 

particular scheme discussed in this problem is from one of the best suspense novels involving secret codes, 

Talking to Strange Men, by Ruth Rendell. Work this problem without consulting that book!

Consider the following message:

SIDKHKDM AF HCRKIABIE SHIMC KD LFEAILA

This ciphertext was produced using the first sentence of The Other Side of Silence (a book about the spy 

Kim Philby):

The snow lay thick on the steps and the snowflakes driven by the wind looked black in 

the headlights of the cars.

A simple substitution cipher was used.

What is the encryption algorithm?a.

How secure is it?b.

To make the key distribution problem simple, both parties can agree to use the first or last 

sentence of a book as the key. To change the key, they simply need to agree on a new book. The 

use of the first sentence would be preferable to the use of the last. Why?

c.

2.6 In one of his cases, Sherlock Holmes was confronted with the following message.

534 C2 13 127 36 31 4 17 21 41

DOUGLAS 109 293 5 37 BIRLSTONE

26 BIRLSTONE 9 127 171

Although Watson was puzzled, Holmes was able immediately to deduce the type of cipher. Can you?
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2.7 This problem uses a real-world example, from an old U.S. Special Forces manual (public domain). A copy is 

available at ftp://shell.shore.net/members/w/s/ws/Support/Crypto/FM-31-4.pdf

Using the two keys (memory words) cryptographic and network security, encrypt the following 

message:

Be at the third pillar from the left outside the lyceum theatre tonight at seven. If you are distrustful 

a.

ftp://shell.shore.net/members/w/s/ws/Support/Crypto/FM-31-4.pdf


bring two friends.

Make reasonable assumptions about how to treat redundant letters and excess letters in the 

memory words and how to treat spaces and punctuation. Indicate what your assumptions are. 

Note: The message is from the Sherlock Holmes novel, The Sign of Four.

Decrypt the ciphertext. Show your work.b.

Comment on when it would be appropriate to use this technique and what its advantages are.c.

2.8 A disadvantage of the general monoalphabetic cipher is that both sender and receiver must commit the 

permuted cipher sequence to memory. A common technique for avoiding this is to use a keyword from which 

the cipher sequence can be generated. For example, using the keyword CIPHER, write out the keyword 

followed by unused letters in normal order and match this against the plaintext letters:

plain:      a b c d e f g h i j k l m n o p q r s t u v w x y z

cipher:     C I P H E R A B D F G J K L M N O Q S T U V W X Y Z

If it is felt that this process does not produce sufficient mixing, write the remaining letters on successive lines 

and then generate the sequence by reading down the columns:

C I P H E R

A B D F G J

K L M N O Q

S T U V W X

Y Z

This yields the sequence

C A K S Y I B L T Z P D M U H F N V E G O W R J Q X

Such a system is used in the example in Section 2.2 (the one that begins "it was disclosed yesterday"). 

Determine the keyword.

2.9 When the PT-109 American patrol boat, under the command of Lieutenant John F. Kennedy, was sunk by a 

Japanese destroyer, a message was received at an Australian wireless station in Playfair code:

KXJEY UREBE ZWEHE WRYTU HEYFS

KREHE GOYFI WTTTU OLKSY CAJPO

BOTEI ZONTX BYBNT GONEY CUZWR

GDSON SXBOU YWRHE BAAHY USEDQ

The key used was royal new zealand navy. Decrypt the message. Translate TT into tt.

2.10
Construct a Playfair matrix with the key largest.a.

Construct a Playfair matrix with the key occurrence. Make a reasonable assumption about how to 

treat redundant letters in the key.

b.



2.11
Using this Playfair matrix

M F H I/J K

U N O P Q

Z V W X Y

E L A R G

D S T B C

[Page 59]

encrypt this message:

Must see you over Cadogan West. Coming at once.

Note: The message is from the Sherlock Holmes story, The Adventure of the Bruce-Partington 

Plans.

a.

Repeat part (a) using the Playfair matrix from Problem 2.10a.b.

How do you account for the results of this problem? Can you generalize your conclusion?c.

2.12
How many possible keys does the Playfair cipher have? Ignore the fact that some keys might 

produce identical encryption results. Express your answer as an approximate power of 2.

a.

Now take into account the fact that some Playfair keys produce the same encryption results. How 

many effectively unique keys does the Playfair cipher have?

b.

2.13 What substitution system results when we use a 25 x 1 Playfair matrix?

2.14
Decipher the message YITJP GWJOW FAQTQ XCSMA ETSQU SQAPU SQGKC PQTYJ using 

the Hill cipher with the inverse key . Show your calculations and the result.

a.

Decipher the message MWALO LIAIW WTGBH JNTAK QZJKA ADAWS SKQKU AYARN 

CSODN IIAES OQKJY B using the Hill cipher with the inverse key . Show 

your calculations and the result.

b.

2.15
Encrypt the message "meet me at the usual place at ten rather than eight oclock" using the Hill 

cipher with the key . Show your calculations and the result.

a.



Show the calculations for the corresponding decryption of the ciphertext to recover the original 

plaintext.

b.

2.16 We have shown that the Hill cipher succumbs to a known plaintext attack if sufficient plaintext-ciphertext pairs 

are provided. It is even easier to solve the Hill cipher if a chosen plaintext attack can be mounted. Describe 

such an attack.

2.17

It can be shown that the Hill cipher with the matrix  requires that (ad bc) is relatively prime to

26; that is the only common positive factor of (ad bc) and 26 is 1. Thus, if (ad bc) = 13 or is even, the matrix

is not allowed. Determine the number of different (good) keys there are for a 2 x 2 Hill cipher without counting 

them one by one, using the following steps:

Find the number of matrices whose determinant is even because one or both rows are even. (A 

row is "even" if both entries in the row are even.)

a.

Find the number of matrices whose determinant is even because one or both columns are even. 

(A column is "even" if both entries in the column are even.)

b.

Find the number of matrices whose determinant is even because all of the entries are odd.c.

Taking into account overlaps, find the total number of matrices whose determinant is even.d.

Find the number of matrices whose determinant is a multiple of 13 because the first column is a 

multiple of 13.

e.

Find the number of matrices whose determinant is a multiple of 13 where the first column is not a 

multiple of 13 but the second column is a multiple of the first modulo 13.

f.

Find the total number of matrices whose determinant is a multiple of 13.g.

Find the number of matrices whose determinant is a multiple of 26 because they fit case (a) and 

(e). (b) and (e). (c) and (e). (a) and (f). And so on ...

h.

Find the total number of matrices whose determinant is neither a multiple of 2 nor a multiple of 13.i.

2.18 Using the Vigenère cipher, encrypt the word "explanation" using the key leg.
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2.19 This problem explores the use of a one-time pad version of the Vigenère cipher. In this scheme, the key is a

stream of random numbers between 0 and 26. For example, if the key is 3 19 5 ..., then the first letter of 

plaintext is encrypted with a shift of 3 letters, the second with a shift of 19 letters, the third with a shift of 5 

letters, and so on.

Encrypt the plaintext sendmoremoney with the key stream 9 0 1 7 23 15 21 14 11 11 2 8 9.a.

Using the ciphertext produced in part a, find a key so that the cipher text decrypts to the plaintext b.



cashnotneeded.

2.20 What is the message embedded in Figure 2.8?

2.21 In one of Dorothy Sayers's mysteries, Lord Peter is confronted with the message shown in Figure 2.9. He 

also discovers the key to the message, which is a sequence of integers:

787656543432112343456567878878765654

3432112343456567878878765654433211234

Decrypt the message. Hint: What is the largest integer value?a.

If the algorithm is known but not the key, how secure is the scheme?b.

If the key is known but not the algorithm, how secure is the scheme?c.

Figure 2.9. A Puzzle for Lord Peter



Programming Problems

2.22 Write a program that can encrypt and decrypt using the general Caesar cipher, also known as an additive 

cipher.

2.23 Write a program that can encrypt and decrypt using the affine cipher described in Problem 2.1.

2.24 Write a program that can perform a letter frequency attack on an additive cipher without human intervention. 

Your software should produce possible plaintexts in rough order of likelihood. It would be good if your user 

interface allowed the user to specify "give me the top 10 possible plaintexts".
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2.25 Write a program that can perform a letter frequency attack on any monoalphabetic substitution cipher without 

human intervention. Your software should produce possible plaintexts in rough order of likelihood. It would be 

good if your user interface allowed the user to specify "give me the top 10 possible plaintexts".

2.26 Create software that can encrypt and decrypt using a 2 x 2 Hill cipher.

2.27 Create software that can perform a fast known plaintext attack on a Hill cipher, given the dimension m. How 

fast are your algorithms, as a function of m?
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Chapter 3. Block Ciphers and the Data Encryption 

Standard

3.1 Block Cipher Principles

3.2 The Data Encryption Standard

3.3 The Strength of Des

3.4 Differential and Linear Cryptanalysis

3.5 Block Cipher Design Principles

3.6 Recommended Reading

3.7 Key Terms, Review Questions, and Problems
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All the afternoon Mungo had been working on Stern's code, principally with the aid of the latest messages which 

he had copied down at the Nevin Square drop. Stern was very confident. He must be well aware London Central 

knew about that drop. It was obvious that they didn't care how often Mungo read their messages, so confident 

were they in the impenetrability of the code.

Talking to Strange Men, Ruth Rendell

Key Points

A block cipher is an encryption/decryption scheme in which a block of plaintext is treated as a whole and 

used to produce a ciphertext block of equal length.

Many block ciphers have a Feistel structure. Such a structure consists of a number of identical rounds of 

processing. In each round, a substitution is performed on one half of the data being processed, followed by 

a permutation that interchanges the two halves. The original key is expanded so that a different key is used 

for each round.

The Data Encryption Standard (DES) has been the most widely used encryption algorithm until recently. It 

exhibits the classic Feistel structure. DES uses a 64-bit block and a 56-bit key.



Two important methods of cryptanalysis are differential cryptanalysis and linear cryptanalysis. DES has 

been shown to be highly resistant to these two types of attack.

The objective of this chapter is to illustrate the principles of modern symmetric ciphers. For this purpose, we focus on the most widely 

used symmetric cipher: the Data Encryption Standard (DES). Although numerous symmetric ciphers have been developed since the 

introduction of DES, and although it is destined to be replaced by the Advanced Encryption Standard (AES), DES remains the most 

important such algorithm. Further, a detailed study of DES provides an understanding of the principles used in other symmetric ciphers. 

We examine other important symmetric ciphers, including AES, in Chapters 5 and 6.

This chapter begins with a discussion of the general principles of symmetric block ciphers, which are the type of symmetric ciphers 

studied in this book (with the exception of the stream cipher RC4 in Chapter 6). Next, we cover full DES. Following this look at a specific 

algorithm, we return to a more general discussion of block cipher design.

Compared to public-key ciphers such as RSA, the structure of DES, and most symmetric ciphers, is very complex and cannot be 

explained as easily as RSA and similar algorithms. Accordingly, the reader may with to begin with a simplified version of DES, which is 

described in Appendix C. This version allows the reader to perform encryption and decryption by hand and gain a good understanding of 

the working of the algorithm details. Classroom experience indicates that a study of this simplified version enhances understanding of 

DES.
[1]

[1] However, you may safely skip Appendix C, at least on a first reading. If you get lost or bogged down in the 

details of DES, then you can go back and start with simplified DES.
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3.1. Block Cipher Principles

Most symmetric block encryption algorithms in current use are based on a structure referred to as a Feistel block cipher [FEIS73]. For that 

reason, it is important to examine the design principles of the Feistel cipher. We begin with a comparison of stream ciphers and block 

ciphers. Then we discuss the motivation for the Feistel block cipher structure. Finally, we discuss some of its implications.

Stream Ciphers and Block Ciphers

A stream cipher is one that encrypts a digital data stream one bit or one byte at a time. Examples of classical stream ciphers are the 

autokeyed Vigenère cipher and the Vernam cipher. A block cipher is one in which a block of plaintext is treated as a whole and used to 

produce a ciphertext block of equal length. Typically, a block size of 64 or 128 bits is used. Using some of the modes of operation 

explained in Chapter 6, a block cipher can be used to achieve the same effect as a stream cipher.

Far more effort has gone into analyzing block ciphers. In general, they seem applicable to a broader range of applications than stream 

ciphers. The vast majority of network-based symmetric cryptographic applications make use of block ciphers. Accordingly, the concern in 

this chapter, and in our discussions throughout the book of symmetric encryption, will focus on block ciphers.

Motivation for the Feistel Cipher Structure

A block cipher operates on a plaintext block of n bits to produce a ciphertext block of n bits. There are 2
n
 possible different plaintext blocks 

and, for the encryption to be reversible (i.e., for decryption to be possible), each must produce a unique ciphertext block. Such a 

transformation is called reversible, or nonsingular. The following examples illustrate nonsingular and singular transformation for n = 2.

Reversible Mapping

Plaintext Ciphertext

00 11

01 10

10 00

11 01
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Irreversible Mapping

Plaintext Ciphertext

00 11

01 10

10 01

11 01

In the latter case, a ciphertext of 01 could have been produced by one of two plaintext blocks. So if we limit ourselves to reversible 

mappings, the number of different transformations is 2
n
!.
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Figure 3.1 illustrates the logic of a general substitution cipher for n = 4. A 4-bit input produces one of 16 possible input states, which is 

mapped by the substitution cipher into a unique one of 16 possible output states, each of which is represented by 4 ciphertext bits. The 

encryption and decryption mappings can be defined by a tabulation, as shown in Table 3.1. This is the most general form of block cipher 

and can be used to define any reversible mapping between plaintext and ciphertext. Feistel refers to this as the ideal block cipher, 

because it allows for the maximum number of possible encryption mappings from the plaintext block [FEIS75].
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Figure 3.1. General n-bit-n-bit Block Substitution (shown with n = 4)
(This item is displayed on page 65 in the print version)





Table 3.1. Encryption and Decryption Tables for Substitution Cipher of Figure 3.4
(This item is displayed on page 65 in the print version)

Plaintext Ciphertext

0000 1110

0001 0100

0010 1101

0011 0001

0100 0010

0101 1111

0110 1011

0111 1000

1000 0011

1001 1010

1010 0110

1011 1100

1100 0101

1101 1001

1110 0000

1111 0111

0000 1110

0001 0011

0010 0100

0011 1000

0100 0001

0101 1100

0110 1010

0111 1111

1000 0111

1001 1101

1010 1001

1011 0110

1100 1011

1101 0010

1110 0000



But there is a practical problem with the ideal block cipher. If a small block size, such as n = 4, is used, then the system is equivalent to a 

classical substitution cipher. Such systems, as we have seen, are vulnerable to a statistical analysis of the plaintext. This weakness is not 

inherent in the use of a substitution cipher but rather results from the use of a small block size. If n is sufficiently large and an arbitrary 

reversible substitution between plaintext and ciphertext is allowed, then the statistical characteristics of the source plaintext are masked to 

such an extent that this type of cryptanalysis is infeasible.

An arbitrary reversible substitution cipher (the ideal block cipher) for a large block size is not practical, however, from an implementation 

and performance point of view. For such a transformation, the mapping itself constitutes the key. Consider again Table 3.1, which defines 

one particular reversible mapping from plaintext to ciphertext for n = 4. The mapping can be defined by the entries in the second column, 

which show the value of the ciphertext for each plaintext block. This, in essence, is the key that determines the specific mapping from 

among all possible mappings. In this case, using this straightforward method of defining the key, the required key length is (4 bits) x (16 

rows) = 64 bits. In general, for an n-bit ideal block cipher, the length of the key defined in this fashion is n x 2
n
 bits. For a 64-bit block, which 

is a desirable length to thwart statistical attacks, the required key length is 64 x 2
64

 = 2
70

  10
21

bits.

In considering these difficulties, Feistel points out that what is needed is an approximation to the ideal block cipher system for large n, built 

up out of components that are easily realizable [FEIS75]. But before turning to Feistel's approach, let us make one other observation. We 

could use the general block substitution cipher but, to make its implementation tractable, confine ourselves to a subset of the possible 

reversible mappings. For example, suppose we define the mapping in terms of a set of linear equations. In the case of n = 4, we have

y1 = k11x1 + k12x2 + k13x3 + k14x4

y2 = k21x1 + k22x2 + k23x3 + k24x4

y3 = k31x1 + k32x2 + k33x3 + k34x4

y4 = k41x1 + k42x2 + k43x3 + k44x4

where the xi are the four binary digits of the plaintext block, the yi are the four binary digits of the ciphertext block, the kij are the binary 

coefficients, and arithmetic is mod 2. The key size is just n
2
, in this case 16 bits. The danger with this kind of formulation is that it may be 

vulnerable to cryptanalysis by an attacker that is aware of the structure of the algorithm. In this example, what we have is essentially the 

Hill cipher discussed in Chapter 2, applied to binary data rather than characters. As we saw in Chapter 2, a simple linear system such as 

this is quite vulnerable.
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The Feistel Cipher

Feistel proposed [FEIS73] that we can approximate the ideal block cipher by utilizing the concept of a product cipher, which is the 

execution of two or more simple ciphers in sequence in such a way that the final result or product is cryptographically stronger than any of 

the component ciphers. The essence of the approach is to develop a block cipher with a key length of k bits and a block length of n bits, 

allowing a total of 2
k
 possible transformations, rather than the 2

n
! transformations available with the ideal block cipher.

In particular, Feistel proposed the use of a cipher that alternates substitutions and permutations. In fact, this is a practical application of a 

proposal by Claude Shannon to develop a product cipher that alternates confusion and diffusion functions [SHAN49]. We look next at 

these concepts of diffusion and confusion and then present the Feistel cipher. But first, it is worth commenting on this remarkable fact: The 

Feistel cipher structure, which dates back over a quarter century and which, in turn, is based on Shannon's proposal of 1945, is the 

structure used by many significant symmetric block ciphers currently in use.



Diffusion and Confusion

The terms diffusion and confusion were introduced by Claude Shannon to capture the two basic building blocks for any cryptographic 

system [SHAN49].
[2]

 Shannon's concern was to thwart cryptanalysis based on statistical analysis. The reasoning is as follows. Assume 

the attacker has some knowledge of the statistical characteristics of the plaintext. For example, in a human-readable message in some 

language, the frequency distribution of the various letters may be known. Or there may be words or phrases likely to appear in the 

message (probable words). If these statistics are in any way reflected in the ciphertext, the cryptanalyst may be able to deduce the 

encryption key, or part of the key, or at least a set of keys likely to contain the exact key. In what Shannon refers to as a strongly ideal 

cipher, all statistics of the ciphertext are independent of the particular key used. The arbitrary substitution cipher that we discussed 

previously (Figure 3.1) is such a cipher, but as we have seen, is impractical.

[2] Shannon's 1949 paper appeared originally as a classified report in 1945. Shannon enjoys an amazing and unique 

position in the history of computer and information science. He not only developed the seminal ideas of modern 

cryptography but is also responsible for inventing the discipline of information theory. In addition, he founded 

another discipline, the application of Boolean algebra to the study of digital circuits; this last he managed to toss off 

as a master's thesis.

Other than recourse to ideal systems, Shannon suggests two methods for frustrating statistical cryptanalysis: diffusion and confusion. In 

diffusion, the statistical structure of the plaintext is dissipated into long-range statistics of the ciphertext. This is achieved by having each 

plaintext digit affect the value of many ciphertext digits; generally this is equivalent to having each ciphertext digit be affected by many 

plaintext digits. An example of diffusion is to encrypt a message M = m1, m2, m3,... of characters with an averaging operation:

adding k successive letters to get a ciphertext letter yn. One can show that the statistical structure of the plaintext has been dissipated. 

Thus, the letter frequencies in the ciphertext will be more nearly equal than in the plaintext; the digram frequencies will also be more 

nearly equal, and so on. In a binary block cipher, diffusion can be achieved by repeatedly performing some permutation on the data 

followed by applying a function to that permutation; the effect is that bits from different positions in the original plaintext contribute to a 

single bit of ciphertext.
[3]

[3] Some books on cryptography equate permutation with diffusion. This is incorrect. Permutation, by itself, does not 

change the statistics of the plaintext at the level of individual letters or permuted blocks. For example, in DES, the 

permutation swaps two 32-bit blocks, so statistics of strings of 32 bits or less are preserved.
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Every block cipher involves a transformation of a block of plaintext into a block of ciphertext, where the transformation depends on the 

key. The mechanism of diffusion seeks to make the statistical relationship between the plaintext and ciphertext as complex as possible in 

order to thwart attempts to deduce the key. On the other hand, confusion seeks to make the relationship between the statistics of the 

ciphertext and the value of the encryption key as complex as possible, again to thwart attempts to discover the key. Thus, even if the 

attacker can get some handle on the statistics of the ciphertext, the way in which the key was used to produce that ciphertext is so 

complex as to make it difficult to deduce the key. This is achieved by the use of a complex substitution algorithm. In contrast, a simple 

linear substitution function would add little confusion.

As [ROBS95b] points out, so successful are diffusion and confusion in capturing the essence of the desired attributes of a block cipher that 

they have become the cornerstone of modern block cipher design.



Feistel Cipher Structure

Figure 3.2 depicts the structure proposed by Feistel. The inputs to the encryption algorithm are a plaintext block of length 2w bits and a key 

K. The plaintext block is divided into two halves, L0 and R0. The two halves of the data pass through n rounds of processing and then 

combine to produce the ciphertext block. Each round i has as inputs Li-1 and Ri-1, derived from the previous round, as well as a subkey Ki, 

derived from the overall K. In general, the subkeys Ki are different from K and from each other.

Figure 3.2. Classical Feistel Network
(This item is displayed on page 69 in the print version)



All rounds have the same structure. A substitution is performed on the left half of the data. This is done by applying a round function F to 

the right half of the data and then taking the exclusive-OR of the output of that function and the left half of the data. The round function has 

the same general structure for each round but is parameterized by the round subkey Ki. Following this substitution, a permutation is 

performed that consists of the interchange of the two halves of the data.
[4]

 This structure is a particular form of the 

substitution-permutation network (SPN) proposed by Shannon.

[4] The final round is followed by an interchange that undoes the interchange that is part of the final round. One 

could simply leave both interchanges out of the diagram, at the sacrifice of some consistency of presentation. In any 

case, the effective lack of a swap in the final round is done to simplify the implementation of the decryption process, 

as we shall see.

The exact realization of a Feistel network depends on the choice of the following parameters and design features:

Block size: Larger block sizes mean greater security (all other things being equal) but reduced encryption/decryption speed for 

a given algorithm. The greater security is achieved by greater diffusion Traditionally, a block size of 64 bits has been 

considered a reasonable tradeoff and was nearly universal in block cipher design. However, the new AES uses a 128-bit block 

size.
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Key size: Larger key size means greater security but may decrease encryption/decryption speed. The greater security is 

achieved by greater resistance to brute-force attacks and greater confusion. Key sizes of 64 bits or less are now widely 

considered to be inadequate, and 128 bits has become a common size.

Number of rounds: The essence of the Feistel cipher is that a single round offers inadequate security but that multiple rounds 

offer increasing security. A typical size is 16 rounds.

Subkey generation algorithm: Greater complexity in this algorithm should lead to greater difficulty of cryptanalysis.
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Round function: Again, greater complexity generally means greater resistance to cryptanalysis.

There are two other considerations in the design of a Feistel cipher:

Fast software encryption/decryption: In many cases, encryption is embedded in applications or utility functions in such a 

way as to preclude a hardware implementation. Accordingly, the speed of execution of the algorithm becomes a concern.

Ease of analysis: Although we would like to make our algorithm as difficult as possible to cryptanalyze, there is great benefit in 

making the algorithm easy to analyze. That is, if the algorithm can be concisely and clearly explained, it is easier to analyze that 

algorithm for cryptanalytic vulnerabilities and therefore develop a higher level of assurance as to its strength. DES, for example, 

does not have an easily analyzed functionality.

Feistel Decryption Algorithm

The process of decryption with a Feistel cipher is essentially the same as the encryption process. The rule is as follows: Use the ciphertext 

as input to the algorithm, but use the subkeys Ki in reverse order. That is, use Kn in the first round, Kn-1 in the second round, and so on 

until K1 is used in the last round. This is a nice feature because it means we need not implement two different algorithms, one for 

encryption and one for decryption.

To see that the same algorithm with a reversed key order produces the correct result, consider Figure 3.3, which shows the encryption 

process going down the left-hand side and the decryption process going up the right-hand side for a 16-round algorithm (the result would 

be the same for any number of rounds). For clarity, we use the notation LEi and REi for data traveling through the encryption algorithm and 

LDi and RDi for data traveling through the decryption algorithm. The diagram indicates that, at every round, the intermediate value of the 

decryption process is equal to the corresponding value of the encryption process with the two halves of the value swapped. To put this 

another way, let the output of the ith encryption round be LEi||REi (Li concatenated with Ri). Then the corresponding input to the (16 i)th 

decryption round is REi||LEi or, equivalently, RD16-i||LD16-i.

Figure 3.3. Feistel Encryption and Decryption
(This item is displayed on page 71 in the print version)



Let us walk through Figure 3.3 to demonstrate the validity of the preceding assertions.
[5]

 After the last iteration of the encryption process, 

the two halves of the output are swapped, so that the ciphertext is RE16||LE16. The output of that round is the ciphertext. Now take that 

ciphertext and use it as input to the same algorithm. The input to the first round is RE16||LE16, which is equal to the 32-bit swap of the 

output of the sixteenth round of the encryption process.

[5] To simplify the diagram, it is untwisted, not showing the swap that occurs at the end of each iteration. But please 

note that the intermediate result at the end of the ith stage of the encryption process is the 2w-bit quantity formed by 

concatenating LEi and REi, and that the intermediate result at the end of the ith stage of the decryption process is the 

2w-bit quantity formed by concatenating LDi and RDi.
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Now we would like to show that the output of the first round of the decryption process is equal to a 32-bit swap of the input to the sixteenth 

round of the encryption process. First, consider the encryption process. We see that

LE16 = RE15

RE16 = LE15 x F(RE15, K16)
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On the decryption side,

LD1 = RD0 = LE16 = RE15

RD1 = LD0 x F(RD0, K16)

= RE16 x F(RE15, K16)

= [LE15 x F(RE15, K16)] x F(RE15, K16)

The XOR has the following properties:

[A x B] x C = A x [B x C]

D x D = 0

E x 0 = E

Thus, we have LD1 = RE15 and RD1 = LE15. Therefore, the output of the first round of the decryption process is LE15||RE15, which is the 

32-bit swap of the input to the sixteenth round of the encryption. This correspondence holds all the way through the 16 iterations, as is 

easily shown. We can cast this process in general terms. For the ith iteration of the encryption algorithm,

LEi = REi-1

REi =LEi-1 x F(REi-1, Ki)

Rearranging terms,

REi-1 = LEi

LEi-1 = REi x F(REi-1, Ki2 = REi x F(LEi, Ki)

Thus, we have described the inputs to the ith iteration as a function of the outputs, and these equations confirm the assignments shown in 

the right-hand side of Figure 3.3.

Finally, we see that the output of the last round of the decryption process is RE0||LE0. A 32-bit swap recovers the original plaintext, 

demonstrating the validity of the Feistel decryption process.

Note that the derivation does not require that F be a reversible function. To see this, take a limiting case in which F produces a constant 

output (e.g., all ones) regardless of the values of its two arguments. The equations still hold.
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3.2. The Data Encryption Standard

The most widely used encryption scheme is based on the Data Encryption Standard (DES) adopted in 1977 by the National Bureau of 

Standards, now the National Institute of Standards and Technology (NIST), as Federal Information Processing Standard 46 (FIPS PUB 

46). The algorithm itself is referred to as the Data Encryption Algorithm (DEA).
[6]

 For DES, data are encrypted in 64-bit blocks using a 

56-bit key. The algorithm transforms 64-bit input in a series of steps into a 64-bit output. The same steps, with the same key, are used to 

reverse the encryption.

[6] The terminology is a bit confusing. Until recently, the terms DES and DEA could be used interchangeably. 

However, the most recent edition of the DES document includes a specification of the DEA described here plus the 

triple DEA (TDEA) described in Chapter 6. Both DEA and TDEA are part of the Data Encryption Standard. Further, 

until the recent adoption of the official term TDEA, the triple DEA algorithm was typically referred to as triple DES and

written as 3DES. For the sake of convenience, we use the term 3DES.
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The DES enjoys widespread use. It has also been the subject of much controversy concerning how secure the DES is. To appreciate the 

nature of the controversy, let us quickly review the history of the DES.

In the late 1960s, IBM set up a research project in computer cryptography led by Horst Feistel. The project concluded in 1971 with the 

development of an algorithm with the designation LUCIFER [FEIS73], which was sold to Lloyd's of London for use in a cash-dispensing 

system, also developed by IBM. LUCIFER is a Feistel block cipher that operates on blocks of 64 bits, using a key size of 128 bits. 

Because of the promising results produced by the LUCIFER project, IBM embarked on an effort to develop a marketable commercial 

encryption product that ideally could be implemented on a single chip. The effort was headed by Walter Tuchman and Carl Meyer, and it 

involved not only IBM researchers but also outside consultants and technical advice from NSA. The outcome of this effort was a refined 

version of LUCIFER that was more resistant to cryptanalysis but that had a reduced key size of 56 bits, to fit on a single chip.

In 1973, the National Bureau of Standards (NBS) issued a request for proposals for a national cipher standard. IBM submitted the results 

of its Tuchman-Meyer project. This was by far the best algorithm proposed and was adopted in 1977 as the Data Encryption Standard.

Before its adoption as a standard, the proposed DES was subjected to intense criticism, which has not subsided to this day. Two areas 

drew the critics' fire. First, the key length in IBM's original LUCIFER algorithm was 128 bits, but that of the proposed system was only 56 

bits, an enormous reduction in key size of 72 bits. Critics feared that this key length was too short to withstand brute-force attacks. The 

second area of concern was that the design criteria for the internal structure of DES, the S-boxes, were classified. Thus, users could not 

be sure that the internal structure of DES was free of any hidden weak points that would enable NSA to decipher messages without benefit 

of the key. Subsequent events, particularly the recent work on differential cryptanalysis, seem to indicate that DES has a very strong 

internal structure. Furthermore, according to IBM participants, the only changes that were made to the proposal were changes to the 

S-boxes, suggested by NSA, that removed vulnerabilities identified in the course of the evaluation process.

Whatever the merits of the case, DES has flourished and is widely used, especially in financial applications. In 1994, NIST reaffirmed DES 

for federal use for another five years; NIST recommended the use of DES for applications other than the protection of classified 

information. In 1999, NIST issued a new version of its standard (FIPS PUB 46-3) that indicated that DES should only be used for legacy 

systems and that triple DES (which in essence involves repeating the DES algorithm three times on the plaintext using two or three 

different keys to produce the ciphertext) be used. We study triple DES in Chapter 6. Because the underlying encryption and decryption 

algorithms are the same for DES and triple DES, it remains important to understand the DES cipher.
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DES Encryption

The overall scheme for DES encryption is illustrated in Figure 3.4. As with any encryption scheme, there are two inputs to the encryption 

function: the plaintext to be encrypted and the key. In this case, the plaintext must be 64 bits in length and the key is 56 bits in length.
[7]

[7] Actually, the function expects a 64-bit key as input. However, only 56 of these bits are ever used; the other 8 bits 

can be used as parity bits or simply set arbitrarily.

[Page 74]

Figure 3.4. General Depiction of DES Encryption Algorithm



Looking at the left-hand side of the figure, we can see that the processing of the plaintext proceeds in three phases. First, the 64-bit 

plaintext passes through an initial permutation (IP) that rearranges the bits to produce the permuted input. This is followed by a phase 

consisting of 16 rounds of the same function, which involves both permutation and substitution functions. The output of the last (sixteenth) 

round consists of 64 bits that are a function of the input plaintext and the key. The left and right halves of the output are swapped to 

produce the preoutput. Finally, the preoutput is passed through a permutation (IP
-1

) that is the inverse of the initial permutation function, to 

produce the 64-bit ciphertext. With the exception of the initial and final permutations, DES has the exact structure of a Feistel cipher, as 

shown in Figure 3.2.
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The right-hand portion of Figure 3.4 shows the way in which the 56-bit key is used. Initially, the key is passed through a permutation 

function. Then, for each of the 16 rounds, a subkey (Ki) is produced by the combination of a left circular shift and a permutation. The 

permutation function is the same for each round, but a different subkey is produced because of the repeated shifts of the key bits.

Initial Permutation

The initial permutation and its inverse are defined by tables, as shown in Tables 3.2a and 3.2b, respectively. The tables are to be 

interpreted as follows. The input to a table consists of 64 bits numbered from 1 to 64. The 64 entries in the permutation table contain a 

permutation of the numbers from 1 to 64. Each entry in the permutation table indicates the position of a numbered input bit in the output, 

which also consists of 64 bits.



Table 3.2. Permutation Tables for DES
(This item is displayed on page 76 in the print version)

(a) Initial Permutation (IP)

58 50 42 34 26 18 10 2

60 52 44 36 28 20 12 4

62 54 46 38 30 22 14 6

64 56 48 40 32 24 16 8

57 49 41 33 25 17 9 1

59 51 43 35 27 19 11 3

61 53 45 37 29 21 13 5

63 55 47 39 31 23 15 7

(b) Inverse Initial Permutation (IP
1
)

40 8 48 16 56 24 64 32

39 7 47 15 55 23 63 31

38 6 46 14 54 22 62 30

37 5 45 13 53 21 61 29

36 4 44 12 52 20 60 28

35 3 43 11 51 19 59 27

34 2 42 10 50 18 58 26

33 1 41 9 49 17 57 25

(c) Expansion Permutation (E)

 32 1 2 3 4 5  

 4 5 6 7 8 9  

 8 9 10 11 12 13  

 12 13 14 15 16 17  

 16 17 18 19 20 21  

 20 21 22 23 24 25  

 24 25 26 27 28 29  

 28 29 30 31 32 1  

(d) Permutation Function (P)

16 7 20 21 29 12 28 17

1 15 23 26 5 18 31 10



(a) Initial Permutation (IP)

19 13 30 6 22 11 4 25

To see that these two permutation functions are indeed the inverse of each other, consider the following 64-bit input M:

M1 M2 M3 M4 M5 M6 M7 M8

M9 M10 M11 M12 M13 M14 M15 M16

M17 M18 M19 M20 M21 M22 M23 M24

M25 M26 M27 M28 M29 M30 M31 M32

M33 M34 M35 M36 M37 M38 M39 M40

M41 M42 M43 M44 M45 M46 M47 M48

M49 M50 M51 M52 M53 M54 M55 M56

M57 M58 M59 M60 M61 M62 M63 M64

where Mi is a binary digit. Then the permutation X = IP(M) is as follows:

M58 M50 M42 M34 M26 M18 M10 M2

M60 M52 M44 M36 M28 M20 M12 M4

M62 M54 M46 M38 M30 M22 M14 M6

M64 M56 M48 M40 M32 M24 M16 M8

M57 M49 M41 M33 M25 M17 M9 M1

M59 M51 M43 M35 M27 M19 M11 M3

M61 M53 M45 M37 M29 M21 M13 M5

M63 M55 M47 M39 M31 M23 M15 M7

If we then take the inverse permutation Y = IP
-1

(X) = IP
-1

(IP(M)), it can be seen that the original ordering of the bits is restored.

Details of Single Round

Figure 3.5 shows the internal structure of a single round. Again, begin by focusing on the left-hand side of the diagram. The left and right 

halves of each 64-bit intermediate value are treated as separate 32-bit quantities, labeled L (left) and R (right). As in any classic Feistel 



cipher, the overall processing at each round can be summarized in the following formulas:
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Li = Ri-1

Ri = Li-1 x F(Ri-1, Ki)
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Figure 3.5. Single Round of DES Algorithm

[View full size image]

The round key Ki is 48 bits. The R input is 32 bits. This R input is first expanded to 48 bits by using a table that defines a permutation plus 

an expansion that involves duplication of 16 of the R bits (Table 3.2c). The resulting 48 bits are XORed with Ki. This 48-bit result passes 

through a substitution function that produces a 32-bit output, which is permuted as defined by Table 3.2d.

The role of the S-boxes in the function F is illustrated in Figure 3.6. The substitution consists of a set of eight S-boxes, each of which 



accepts 6 bits as input and produces 4 bits as output. These transformations are defined in Table 3.3, which is interpreted as follows: The 

first and last bits of the input to box Si form a 2-bit binary number to select one of four substitutions defined by the four rows in the table for 

Si. The middle four bits select one of the sixteen columns. The decimal value in the cell selected by the row and column is then converted 

to its 4-bit representation to produce the output. For example, in S1 for input 011001, the row is 01 (row 1) and the column is 1100 (column 

12). The value in row 1, column 12 is 9, so the output is 1001.

Figure 3.6. Calculation of F(R, K)
(This item is displayed on page 78 in the print version)

Table 3.3. Definition of DES S-Boxes
(This item is displayed on page 79 in the print version)

[View full size image]





Each row of an S-box defines a general reversible substitution. Figure 3.1 may be useful in understanding the mapping. The figure shows 

the substitution for row 0 of box S1.

The operation of the S-boxes is worth further comment. Ignore for the moment the contribution of the key (Ki). If you examine the 

expansion table, you see that the 32 bits of input are split into groups of 4 bits, and then become groups of 6 bits by taking the outer bits 

from the two adjacent groups. For example, if part of the input word is
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... efgh ijkl mnop ...

this becomes

... defghi hijklm lmnopq ...

The outer two bits of each group select one of four possible substitutions (one row of an S-box). Then a 4-bit output value is substituted for 

the particular 4-bit input (the middle four input bits). The 32-bit output from the eight S-boxes is then permuted, so that on the next round 

the output from each S-box immediately affects as many others as possible.

Key Generation

Returning to Figures 3.4 and 3.5, we see that a 64-bit key is used as input to the algorithm. The bits of the key are numbered from 1 

through 64; every eighth bit is ignored, as indicated by the lack of shading in Table 3.4a. The key is first subjected to a permutation 

governed by a table labeled Permuted Choice One (Table 3.4b). The resulting 56-bit key is then treated as two 28-bit quantities, labeled C0

and D0. At each round, Ci-1 and Di-1 are separately subjected to a circular left shift, or rotation, of 1 or 2 bits, as governed by Table 3.4d. 

These shifted values serve as input to the next round. They also serve as input to Permuted Choice Two (Table 3.4c), which produces a 

48-bit output that serves as input to the function F(Ri-1, Ki).
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Table 3.4. DES Key Schedule Calculation

(a) Input Key

 1  2  3  4  5  6  7  8  

 9  10  11  12  13  14  15  16  

 17  18  19  20  21  22  23  24  

 25  26  27  28  29  30  31  32  

 33  34  35  36  37  38  39  40  

 41  42  43  44  45  46  47  48  

 49  50  51  52  53  54  55  56  

 57  58  59  60  61  62  63  64  

(b) Permuted Choice One (PC-1)

  57  49  41  33  25  17  9   

  1  58  50  42  34  26  18   

  10  2  59  51  43  35  27   

  19  11  3  60  52  44  36   

  63  55  47  39  31  23  15   

  7  62  54  46  38  30  22   

  14  6  61  53  45  37  29   

  21  13  5  28  20  12  4   

(c) Permuted Choice Two (PC-2)

 14  17  11  24  1  5  3  28  

 15  6  21  10  23  19  12  4  

 26  8  16  7  27  20  13  2  

 41  52  31  37  47  55  30  40  

 51  45  33  48  44  49  39  56  

 34  53  46  42  50  36  29  32  

(d) Schedule of Left Shifts

Round 

number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bits rotated 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1



DES Decryption

As with any Feistel cipher, decryption uses the same algorithm as encryption, except that the application of the subkeys is reversed.

The Avalanche Effect

A desirable property of any encryption algorithm is that a small change in either the plaintext or the key should produce a significant 

change in the ciphertext. In particular, a change in one bit of the plaintext or one bit of the key should produce a change in many bits of the 

ciphertext. If the change were small, this might provide a way to reduce the size of the plaintext or key space to be searched.
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DES exhibits a strong avalanche effect. Table 3.5 shows some results taken from [KONH81]. In Table 3.5a, two plaintexts that differ by one 

bit were used:

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

10000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

with the key

0000001 1001011 0100100 1100010 0011100 0011000 0011100 0110010



Table 3.5. Avalanche Effect in DES

(a) Change in Plaintext (b) Change in Key

Round Number of bits that differ Round Number of bits that differ

0 1 0 0

1 6 1 2

2 21 2 14

3 35 3 28

4 39 4 32

5 34 5 30

6 32 6 32

7 31 7 35

8 29 8 34

9 42 9 40

10 44 10 38

11 32 11 31

12 30 12 33

13 30 13 28

14 26 14 26

15 29 15 34

16 34 16 35

The Table 3.5a shows that after just three rounds, 21 bits differ between the two blocks. On completion, the two ciphertexts differ in 34 bit 

positions.

Table 3.5b shows a similar test in which a single plaintext is input:

01101000 10000101 00101111 01111010 00010011 01110110 11101011 10100100

with two keys that differ in only one bit position:

1110010 1111011 1101111 0011000 0011101 0000100 0110001 11011100

0110010 1111011 1101111 0011000 0011101 0000100 0110001 11011100

Again, the results show that about half of the bits in the ciphertext differ and that the avalanche effect is pronounced after just a few rounds.
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3.3. The Strength of Des

Since its adoption as a federal standard, there have been lingering concerns about the level of security provided by DES. These 

concerns, by and large, fall into two areas: key size and the nature of the algorithm.

The Use of 56-Bit Keys

With a key length of 56 bits, there are 2
56

 possible keys, which is approximately 7.2 x 10
16

. Thus, on the face of it, a brute-force attack 

appears impractical. Assuming that, on average, half the key space has to be searched, a single machine performing one DES 

encryption per microsecond would take more than a thousand years (see Table 2.2) to break the cipher.

However, the assumption of one encryption per microsecond is overly conservative. As far back as 1977, Diffie and Hellman postulated 

that the technology existed to build a parallel machine with 1 million encryption devices, each of which could perform one encryption per 

microsecond [DIFF77]. This would bring the average search time down to about 10 hours. The authors estimated that the cost would be 

about $20 million in 1977 dollars.

DES finally and definitively proved insecure in July 1998, when the Electronic Frontier Foundation (EFF) announced that it had broken a 

DES encryption using a special-purpose "DES cracker" machine that was built for less than $250,000. The attack took less than three 

days. The EFF has published a detailed description of the machine, enabling others to build their own cracker [EFF98]. And, of course, 

hardware prices will continue to drop as speeds increase, making DES virtually worthless.

It is important to note that there is more to a key-search attack than simply running through all possible keys. Unless known plaintext is 

provided, the analyst must be able to recognize plaintext as plaintext. If the message is just plain text in English, then the result pops out 

easily, although the task of recognizing English would have to be automated. If the text message has been compressed before 

encryption, then recognition is more difficult. And if the message is some more general type of data, such as a numerical file, and this 

has been compressed, the problem becomes even more difficult to automate. Thus, to supplement the brute-force approach, some 

degree of knowledge about the expected plaintext is needed, and some means of automatically distinguishing plaintext from garble is 

also needed. The EFF approach addresses this issue as well and introduces some automated techniques that would be effective in 

many contexts.

Fortunately, there are a number of alternatives to DES, the most important of which are AES and triple DES, discussed in Chapters 5

and 6, respectively.

The Nature of the DES Algorithm

Another concern is the possibility that cryptanalysis is possible by exploiting the characteristics of the DES algorithm. The focus of 

concern has been on the eight substitution tables, or S-boxes, that are used in each iteration. Because the design criteria for these 

boxes, and indeed for the entire algorithm, were not made public, there is a suspicion that the boxes were constructed in such a way that 

cryptanalysis is possible for an opponent who knows the weaknesses in the S-boxes. This assertion is tantalizing, and over the years 

a number of regularities and unexpected behaviors of the S-boxes have been discovered. Despite this, no one has so far succeeded in 

discovering the supposed fatal weaknesses in the S-boxes.
[8]



[8] At least, no one has publicly acknowledged such a discovery.
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Timing Attacks

We discuss timing attacks in more detail in Part Two, as they relate to public-key algorithms. However, the issue may also be relevant for 

symmetric ciphers. In essence, a timing attack is one in which information about the key or the plaintext is obtained by observing how 

long it takes a given implementation to perform decryptions on various ciphertexts. A timing attack exploits the fact that an encryption or 

decryption algorithm often takes slightly different amounts of time on different inputs. [HEVI99] reports on an approach that yields the 

Hamming weight (number of bits equal to one) of the secret key. This is a long way from knowing the actual key, but it is an intriguing 

first step. The authors conclude that DES appears to be fairly resistant to a successful timing attack but suggest some avenues to 

explore. Although this is an interesting line of attack, it so far appears unlikely that this technique will ever be successful against DES or 

more powerful symmetric ciphers such as triple DES and AES.
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3.4. Differential and Linear Cryptanalysis

For most of its life, the prime concern with DES has been its vulnerability to brute-force attack because of its relatively short (56 bits) key 

length. However, there has also been interest in finding cryptanalytic attacks on DES. With the increasing popularity of block ciphers with 

longer key lengths, including triple DES, brute-force attacks have become increasingly impractical. Thus, there has been increased 

emphasis on cryptanalytic attacks on DES and other symmetric block ciphers. In this section, we provide a brief overview of the two most 

powerful and promising approaches: differential cryptanalysis and linear cryptanalysis.

Differential Cryptanalysis

One of the most significant advances in cryptanalysis in recent years is differential cryptanalysis. In this section, we discuss the technique 

and its applicability to DES.

History

Differential cryptanalysis was not reported in the open literature until 1990. The first published effort appears to have been the cryptanalysis 

of a block cipher called FEAL by Murphy [MURP90]. This was followed by a number of papers by Biham and Shamir, who demonstrated 

this form of attack on a variety of encryption algorithms and hash functions; their results are summarized in [BIHA93].

The most publicized results for this approach have been those that have application to DES. Differential cryptanalysis is the first published 

attack that is capable of breaking DES in less than 2
55

 complexity. The scheme, as reported in [BIHA93], can successfully cryptanalyze 

DES with an effort on the order of 2
47

 encryptions, requiring 2
47

 chosen plaintexts. Although 2
47

 is certainly significantly less than 2
55

 the 

need for the adversary to find 2
47

 chosen plaintexts makes this attack of only theoretical interest.
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Although differential cryptanalysis is a powerful tool, it does not do very well against DES. The reason, according to a member of the IBM 

team that designed DES [COPP94], is that differential cryptanalysis was known to the team as early as 1974. The need to strengthen DES 

against attacks using differential cryptanalysis played a large part in the design of the S-boxes and the permutation P. As evidence of the 

impact of these changes, consider these comparable results reported in [BIHA93]. Differential cryptanalysis of an eight-round LUCIFER 

algorithm requires only 256 chosen plaintexts, whereas an attack on an eight-round version of DES requires 2
14

 chosen plaintexts.

Differential Cryptanalysis Attack

The differential cryptanalysis attack is complex; [BIHA93] provides a complete description. The rationale behind differential cryptanalysis is 
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to observe the behavior of pairs of text blocks evolving along each round of the cipher, instead of observing the evolution of a single text 

block. Here, we provide a brief overview so that you can get the flavor of the attack.

We begin with a change in notation for DES. Consider the original plaintext block m to consist of two halves m0,m1. Each round of DES 

maps the right-hand input into the left-hand output and sets the right-hand output to be a function of the left-hand input and the subkey for 

this round. So, at each round, only one new 32-bit block is created. If we label each new block m1(2  i  17), then the intermediate 

message halves are related as follows:

mi+1 = mi-1  f(mi, Ki), i = 1, 2, ..., 16

In differential cryptanalysis, we start with two messages, m and m', with a known XOR difference Dm = m  m', and consider the 

difference between the intermediate message halves: mi = mi  mi' Then we have:

Now, suppose that many pairs of inputs to f with the same difference yield the same output difference if the same subkey is used. To put 

this more precisely, let us say that X may cause Y with probability p, if for a fraction p of the pairs in which the input XOR is X, the output 

XOR equals Y. We want to suppose that there are a number of values of X that have high probability of causing a particular output 

difference. Therefore, if we know Dmi-1 and Dmi with high probability, then we know Dmi+1 with high probability. Furthermore, if a number 

of such differences are determined, it is feasible to determine the subkey used in the function f.

The overall strategy of differential cryptanalysis is based on these considerations for a single round. The procedure is to begin with two 

plaintext messages m and m' with a given difference and trace through a probable pattern of differences after each round to yield a 

probable difference for the ciphertext. Actually, there are two probable patterns of differences for the two 32-bit halves: (Dm17||m16). Next, 

we submit m and m' for encryption to determine the actual difference under the unknown key and compare the result to the probable 

difference. If there is a match,

E(K, m)  E(K, m') = (Dm17||m16)
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then we suspect that all the probable patterns at all the intermediate rounds are correct. With that assumption, we can make some 

deductions about the key bits. This procedure must be repeated many times to determine all the key bits.

Figure 3.7, based on a figure in [BIHA93], illustrates the propagation of differences through three rounds of DES. The probabilities shown on 

the right refer to the probability that a given set of intermediate differences will appear as a function of the input differences. Overall, after 

three rounds the probability that the output difference is as shown is equal to 0.25 x 1 x 0.25 = 0.0625.

Figure 3.7. Differential Propagation through Three Round of DES (numbers in hexadecimal)



Linear Cryptanalysis

A more recent development is linear cryptanalysis, described in [MATS93]. This attack is based on finding linear approximations to describe 

the transformations performed in DES. This method can find a DES key given 2
43

 known plaintexts, as compared to 2
47

 chosen plaintexts 

for differential cryptanalysis. Although this is a minor improvement, because it may be easier to acquire known plaintext rather than 

chosen plaintext, it still leaves linear cryptanalysis infeasible as an attack on DES. So far, little work has been done by other groups to 



validate the linear cryptanalytic approach.
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We now give a brief summary of the principle on which linear cryptanalysis is based. For a cipher with n-bit plaintext and ciphertext blocks 

and an m-bit key, let the plaintext block be labeled P[1], ... P[n], the cipher text block C[1], ... C[n], and the key K[1], ... K[m]. Then define

A[i, j, ..., k] = A[i]  A[j]  ...  A[k]

The objective of linear cryptanalysis is to find an effective linear equation of the form:

P[a1, a2, ..., aa]  C[b1, b2, ..., bb] = K[g1, g2, ..., gc]

(where x = 0 or 1; 1  a, b  n, 1  c  m, and where the a, b and g terms represent fixed, unique bit locations) that holds with 

probability p  0.5. The further p is from 0.5, the more effective the equation. Once a proposed relation is determined, the procedure is to 

compute the results of the left-hand side of the preceding equation for a large number of plaintext-ciphertext pairs. If the result is 0 more 

than half the time, assume K[g1, g2, ..., gc] = 0. If it is 1 most of the time, assume K[g1, g2, ..., gc] = 1. This gives us a linear equation on the 

key bits. Try to get more such relations so that we can solve for the key bits. Because we are dealing with linear equations, the problem can 

be approached one round of the cipher at a time, with the results combined.
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3.5. Block Cipher Design Principles

Although much progress has been made in designing block ciphers that are cryptographically strong, the basic principles have not 

changed all that much since the work of Feistel and the DES design team in the early 1970s. It is useful to begin this discussion by 

looking at the published design criteria used in the DES effort. Then we look at three critical aspects of block cipher design: the number 

of rounds, design of the function F, and key scheduling.

DES Design Criteria

The criteria used in the design of DES, as reported in [COPP94], focused on the design of the S-boxes and on the P function that takes 

the output of the S boxes (Figure 3.6). The criteria for the S-boxes are as follows:

No output bit of any S-box should be too close a linear function of the input bits. Specifically, if we select any output bit and 

any subset of the six input bits, the fraction of inputs for which this output bit equals the XOR of these input bits should not be 

close to 0 or 1, but rather should be near 1/2.

1.

Each row of an S-box (determined by a fixed value of the leftmost and rightmost input bits) should include all 16 possible 

output bit combinations.

2.

If two inputs to an S-box differ in exactly one bit, the outputs must differ in at least two bits.3.
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If two inputs to an S-box differ in the two middle bits exactly, the outputs must differ in at least two bits.4.

If two inputs to an S-box differ in their first two bits and are identical in their last two bits, the two outputs must not be the 

same.

5.

For any nonzero 6-bit difference between inputs, no more than 8 of the 32 pairs of inputs exhibiting that difference may result 

in the same output difference.

6.

This is a criterion similar to the previous one, but for the case of three S-boxes.7.

Coppersmith pointed out that the first criterion in the preceding list was needed because the S-boxes are the only nonlinear part of DES. 

If the S-boxes were linear (i.e., each output bit is a linear combination of the input bits), the entire algorithm would be linear and easily 

broken. We have seen this phenomenon with the Hill cipher, which is linear. The remaining criteria were primarily aimed at thwarting 

differential cryptanalysis and at providing good confusion properties.

The criteria for the permutation P are as follows:

The four output bits from each S-box at round i are distributed so that two of them affect (provide input for) "middle bits" of 

round (i + 1) and the other two affect end bits. The two middle bits of input to an S-box are not shared with adjacent S-boxes. 

The end bits are the two left-hand bits and the two right-hand bits, which are shared with adjacent S-boxes.

1.

The four output bits from each S-box affect six different S-boxes on the next round, and no two affect the same S-box.2.

For two S-boxes j, k, if an output bit from Sj affects a middle bit of Sk on the next round, then an output bit from Sk cannot affect 3.



a middle bit of Sj. This implies that for j = k, an output bit from Sj must not affect a middle bit of Sj.

These criteria are intended to increase the diffusion of the algorithm.

Number of Rounds

The cryptographic strength of a Feistel cipher derives from three aspects of the design: the number of rounds, the function F, and the key 

schedule algorithm. Let us look first at the choice of the number of rounds.

The greater the number of rounds, the more difficult it is to perform cryptanalysis, even for a relatively weak F. In general, the criterion 

should be that the number of rounds is chosen so that known cryptanalytic efforts require greater effort than a simple brute-force key 

search attack. This criterion was certainly used in the design of DES. Schneier [SCHN96] observes that for 16-round DES, a differential 

cryptanalysis attack is slightly less efficient than brute force: the differential cryptanalysis attack requires 2
55.1

 operations,
[9]

 whereas 

brute force requires 2
55

. If DES had 15 or fewer rounds, differential cryptanalysis would require less effort than brute-force key search.

[9] Recall that differential cryptanalysis of DES requires 247 chosen plaintext. If all you have to work with is known 

plaintext, then you must sort through a large quantity of known plaintext-ciphertext pairs looking for the useful 

ones. This brings the level of effort up to 255.1.

This criterion is attractive because it makes it easy to judge the strength of an algorithm and to compare different algorithms. In the 

absence of a cryptanalytic breakthrough, the strength of any algorithm that satisfies the criterion can be judged solely on key length.
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Design of Function F

The heart of a Feistel block cipher is the function F. As we have seen, in DES, this function relies on the use of S-boxes. This is also the 

case for most other symmetric block ciphers, as we shall see in Chapter 4. However, we can make some general comments about the 

criteria for designing F. After that, we look specifically at S-box design.

Design Criteria for F

The function F provides the element of confusion in a Feistel cipher. Thus, it must be difficult to "unscramble" the substitution performed 

by F. One obvious criterion is that F be nonlinear, as we discussed previously. The more nonlinear F, the more difficult any type of 

cryptanalysis will be. There are several measures of nonlinearity, which are beyond the scope of this book. In rough terms, the more 

difficult it is to approximate F by a set of linear equations, the more nonlinear F is.

Several other criteria should be considered in designing F. We would like the algorithm to have good avalanche properties. Recall that, in 

general, this means that a change in one bit of the input should produce a change in many bits of the output. A more stringent version of 

this is the strict avalanche criterion (SAC) [WEBS86], which states that any output bit j of an S-box should change with probability 1/2 

when any single input bit i is inverted for all i, j. Although SAC is expressed in terms of S-boxes, a similar criterion could be applied to F 

as a whole. This is important when considering designs that do not include S-boxes.

Another criterion proposed in [WEBS86] is the bit independence criterion (BIC), which states that output bits j and k should change 



independently when any single input bit i is inverted, for all i, j, and k. The SAC and BIC criteria appear to strengthen the effectiveness of 

the confusion function.

S-Box Design

One of the most intense areas of research in the field of symmetric block ciphers is that of S-box design. The papers are almost too 

numerous to count.
[10]

 Here we mention some general principles. In essence, we would like any change to the input vector to an S-box 

to result in random-looking changes to the output. The relationship should be nonlinear and difficult to approximate with linear functions.

[10] A good summary of S-box design studies through early 1996 can be found in [SCHN96].

One obvious characteristic of the S-box is its size. An n x m S-box has n input bits and m output bits. DES has 6 x 4 S-boxes. Blowfish, 

described in Chapter 6, has 8 x 32 S-boxes. Larger S-boxes, by and large, are more resistant to differential and linear cryptanalysis 

[SCHN96]. On the other hand, the larger the dimension n, the (exponentially) larger the lookup table. Thus, for practical reasons, a limit of n

equal to about 8 to 10 is usually imposed. Another practical consideration is that the larger the S-box, the more difficult it is to design it 

properly.

S-boxes are typically organized in a different manner than used in DES. An n x m S-box typically consists of 2
n
 rows of m bits each. The 

n bits of input select one of the rows of the S-box, and the m bits in that row are the output. For example, in an 8 x 32 S-box, if the input is 

00001001, the output consists of the 32 bits in row 9 (the first row is labeled row 0).
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Mister and Adams [MIST96] propose a number of criteria for S-box design. Among these are that the S-box should satisfy both SAC 

and BIC. They also suggest that all linear combinations of S-box columns should be bent. Bent functions are a special class of Boolean 

functions that are highly nonlinear according to certain mathematical criteria [ADAM90]. There has been increasing interest in designing 

and analyzing S-boxes using bent functions.

A related criterion for S-boxes is proposed and analyzed in [HEYS95]. The authors define the guaranteed avalanche (GA) criterion as 

follows: An S-box satisfies GA of order p if, for a 1-bit input change, at least p output bits change. The authors conclude that a GA in the 

range of order 2 to order 5 provides strong diffusion characteristics for the overall encryption algorithm.

For larger S-boxes, such as 8 x 32, the question arises as to the best method of selecting the S-box entries in order to meet the type of 

criteria we have been discussing. Nyberg, who has written a lot about the theory and practice of S-box design, suggests the following 

approaches (quoted in [ROBS95b]):

Random: Use some pseudorandom number generation or some table of random digits to generate the entries in the 

S-boxes. This may lead to boxes with undesirable characteristics for small sizes (e.g., 6 x 4) but should be acceptable for 

large S-boxes (e.g., 8 x 32).

Random with testing: Choose S-box entries randomly, then test the results against various criteria, and throw away those 

that do not pass.

Human-made: This is a more or less manual approach with only simple mathematics to support it. It is apparently the 

technique used in the DES design. This approach is difficult to carry through for large S-boxes.

Math-made: Generate S-boxes according to mathematical principles. By using mathematical construction, S-boxes can be 

constructed that offer proven security against linear and differential cryptanalysis, together with good diffusion.

A variation on the first technique is to use S-boxes that are both random and key dependent. An example of this approach is Blowfish, 

described in Chapter 6, which starts with S-boxes filled with pseudorandom digits and then alters the contents using the key. A 

tremendous advantage of key-dependent S-boxes is that, because they are not fixed, it is impossible to analyze the S-boxes ahead of 

time to look for weaknesses.



Key Schedule Algorithm

A final area of block cipher design, and one that has received less attention than S-box design, is the key schedule algorithm. With any 

Feistel block cipher, the key is used to generate one subkey for each round. In general, we would like to select subkeys to maximize the 

difficulty of deducing individual subkeys and the difficulty of working back to the main key. No general principles for this have yet been 

promulgated.

Hall suggests [ADAM94] that, at minimum, the key schedule should guarantee key/ciphertext Strict Avalanche Criterion and Bit 

Independence Criterion.
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3.6. Recommended Reading

There is a wealth of information on symmetric encryption. Some of the more worthwhile references are listed here. An essential 

reference work is [SCHN96]. This remarkable work contains descriptions of virtually every cryptographic algorithm and protocol 

published up to the time of the writing of the book. The author pulls together results from journals, conference proceedings, government 

publications, and standards documents and organizes these into a comprehensive and comprehensible survey. Another worthwhile and 

detailed survey is [MENE97]. A rigorous mathematical treatment is [STIN02].

The foregoing references provide coverage of public-key as well as symmetric encryption.

Perhaps the most detailed description of DES is [SIMO95]; the book also contains an extensive discussion of differential and linear 

cryptanalysis of DES. [BARK91] provides a readable and interesting analysis of the structure of DES and of potential cryptanalytic 

approaches to DES. [EFF98] details the most effective brute-force attack on DES. [COPP94] looks at the inherent strength of DES and 

its ability to stand up to cryptanalysis.

BARK91 Barker, W. Introduction to the Analysis of the Data Encryption Standard (DES). Laguna Hills, CA: 

Aegean Park Press, 1991.

COPP94 Coppersmith, D. "The Data Encryption Standard (DES) and Its Strength Against Attacks." IBM Journal 

of Research and Development, May 1994.

EFF98 Electronic Frontier Foundation. Cracking DES: Secrets of Encryption Research, Wiretap Politics, and 

Chip Design. Sebastopol, CA: O'Reilly, 1998

MENE97 Menezes, A.; van Oorschot, P.; and Vanstone, S. Handbook of Applied Cryptography. Boca Raton, 

FL: CRC Press, 1997.

SCHN96 Schneier, B. Applied Cryptography. New York: Wiley, 1996.

SIMO95 Simovits, M. The DES: An Extensive Documentation and Evaluation. Laguna Hills, CA: Aegean Park 

Press, 1995.

STIN02 Stinson, D. Cryptography: Theory and Practice. Boca Raton, FL: CRC Press, 2002.
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3.7. Key Terms, Review Questions, and Problems

Key Terms

avalanche effect

block cipher

confusion

Data Encryption Standard (DES)

differential cryptanalysis

diffusion

Feistel cipher

irreversible mapping

key

linear cryptanalysis

permutation

product cipher

reversible mapping

round

round function

subkey

substitution
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Review Questions

3.1 Why is it important to study the Feistel cipher?

3.2 What is the difference between a block cipher and a stream cipher?

3.3 Why is it not practical to use an arbitrary reversible substitution cipher of the kind shown in Table 3.1?

3.4 What is a product cipher?

3.5 What is the difference between diffusion and confusion?

3.6 Which parameters and design choices determine the actual algorithm of a Feistel cipher?

3.7 What is the purpose of the S-boxes in DES?

3.8 Explain the avalanche effect.

3.9 What is the difference between differential and linear cryptanalysis?

Problems

3.1
In Section 3.1, under the subsection on the motivation for the Feistel cipher structure, it was 

stated that, for a block of n bits, the number of different reversible mappings for the ideal block 

cipher is 2n!. Justify.

a.

In that same discussion, it was stated that for the ideal block cipher, which allows all possible 

reversible mappings, the size of the key is n x 2
n
 bits. But, if there are 2

n
! possible mappings, it 

should take log2 2
n
! bits to discriminate among the different mappings, and so the key length 

should be log2 2
n
!. However, log2 2

n
! <n x 2

n
. Explain the discrepancy.

b.

3.2 Consider a Feistel cipher composed of 16 rounds with block length 128 bits and key length 128 bits. Suppose 

that, for a given k, the key scheduling algorithm determines values for the first 8 round keys, k1, k2, ..., k8, and 

then sets

k9 = k8, k10 = k7, k11 = k6, ..., k16 = k1

Suppose you have a ciphertext c. Explain how, with access to an encryption oracle, you can decrypt c and 

determine m using just a single oracle query. This shows that such a cipher is vulnerable to a chosen 

plaintext attack. (An encryption oracle can be thought of as a device that, when given a plaintext, returns the 

corresponding ciphertext. The internal details of the device are not known to you and you cannot break open 



the device. You can only gain information from the oracle by making queries to it and observing its 

responses.)

3.3
Consider a block encryption algorithm that encrypts blocks of length n, and let N = 2

n
. Say we have t

plaintext-ciphertext pairs Pi, Ct = E(K, Pi), where we assume that the key K selects one of the N! possible 

mappings. Imagine that we wish to find K by exhaustive search. We could generate key K' and test whether C

= E(K', Pi) for 1  i  t. If K' encrypts each Pi to its proper Ci then we have evidence that K = K'. However, 

it may be the case that the mappings E(K, ·) and E(K', ·) exactly agree on the t plaintext-ciphertext pairs Pi, Ci

and agree on no other pairs.

What is the probability that E(K, ·) and E(K', ·) are in fact distinct mappings?a.

What is the probability that E(K, ·) and E(K', ·) agree on another t' plaintext-ciphertext pairs where 0 

 t'  N - t?

b.

3.4
Let p be a permutation of the integers 0, 1, 2, ... (2

n
 - 1) such that p(m) gives the permuted value of m, 0 

m  2
n
. Put another way, p maps the set of n-bit integers into itself and no two integers map into the same 

integer. DES is such a permutation for 64-bit integers. We say that p has a fixed point at m if p(m) = m. That 

is, if p is an encryption mapping, then a fixed point corresponds to a message that encrypts to itself. We are 

interested in the probability that p has no fixed points. Show the somewhat unexpected result that over 60% 

of mappings will have at least one fixed point.
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3.5 Consider the substitution defined by row 1 of S-box S1 in Table 3.3. Show a block diagram similar to Figure 

3.1 that corresponds to this substitution.

3.6 Compute the bits number 1, 16, 33, and 48 at the output of the first round of the DES decryption, assuming 

that the ciphertext block is composed of all ones and the external key is composed of all ones.



3.7 Suppose the DES F function mapped every 32-bit input R, regardless of the value of the input K, to

32-bit string of ones,a.

bitwise complement of R.b.

Hint: Use the following properties of the XOR operation:

What function would DES then compute?1.

What would the decryption look like?

(A  B)  C = A  (B  C)

A  A = 0

A  0 = A

A  1 = bitwise complement of A

2.

where

A, B, C are n-bit strings of bits

0 is an n-bit string of zeros

1 is an n-bit string of one

3.8 This problem provides a numerical example of encryption using a one-round version of DES. We start with 

the same bit pattern for the key K and the plaintext, namely:

in hexadecimal notation: 0 1 2 3 4 5 6 7 8 9 A B C D E F

in binary notation: 0000 0001 0010 0011 0100 0101 0110 0111

 1000 1001 1010 1011 0100 1101 1110 1111

Derive K1, the first-round subkey.a.

Derive L0, R0.b.

Expand R0 to get E[R0], where E[·] is the expansion function of Figure 3.8.c.

Calculate A = E[R0]  K1.d.

Group the 48-bit result of (d) into sets of 6 bits and evaluate the corresponding S-box 

substitutions.

e.

Concatenate the results of (e) to get a 32-bit result, B.f.

Apply the permutation to get P(B).g.

Calculate R1 = P(B)  L0.h.



Write down the ciphertext.i.

3.9 Show that DES decryption is, in fact, the inverse of DES encryption.

3.10 The 32-bit swap after the sixteenth iteration of the DES algorithm is needed to make the encryption process 

invertible by simply running the ciphertext back through the algorithm with the key order reversed. This was 

demonstrated in Problem 3.7. However, it still may not be entirely clear why the 32-bit swap is needed. To 

demonstrate why, solve the following exercises. First, some notation:

A||B = the concatenation of the bit strings A and B

Ti(R||L) = the transformation defined by the ith iteration of the encryption algorithm, for 1 

 I  16

TDi(R||L) = the transformation defined by the ith iteration of the decryption algorithm, for 1 

 i  16

T17(R||L) = L||R. This transformation occurs after the sixteenth iteration of the encryption 

algorithm.
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Show that the composition TD1(IP(IP
-1

(T17(T16(L15||R15))))) is equivalent to the transformation 

that interchanges the 32-bit halves, L15 and R15. That is, show that

TD1(IP(IP
-1

(T17(T16(L15||R15))))) = R15||L15

a.

Now suppose that we did away with the final 32-bit swap in the encryption algorithm. Then we 

would want the following equality to hold:

TD1(IP(IP
-1

(T16(L15||R15))))) = R15||L15

Does it?

b.

3.11 Compare the initial permutation table (Table 3.2a) with the permuted choice one table (Table 3.4b). Are the 

structures similar? If so, describe the similarities. What conclusions can you draw from this analysis?

3.12 When using the DES algorithm for decryption, the 16 keys (K1, K2, ..., K16) are used in reverse order. 

Therefore, the right-hand side of Figure 3.5 is no longer valid. Design a key-generation scheme with the 

appropriate shift schedule (analogous to Table 3.4d) for the decryption process.

3.13
Let X' be the bitwise complement of X. Prove that if the complement of the plaintext block is taken 

and the complement of an encryption key is taken, then the result of DES encryption with these 

values is the complement of the original ciphertext. That is,

If Y = E(K, X)

a.



Then Y' = E(K', X')

Hint: Begin by showing that for any two bit strings of equal length, A and B, (A  B)' = A  x B.

It has been said that a brute-force attack on DES requires searching a key space of 2
56

keys. 

Does the result of part (a) change that?

b.

3.14 Show that in DES the first 24 bits of each subkey come from the same subset of 28 bits of the initial key and 

that the second 24 bits of each subkey come from a disjoint subset of 28 bits of the initial key.

3.15 For any block cipher, the fact that it is a nonlinear function is crucial to its security. To see this, suppose that 

we have a linear block cipher EL that encrypts 128-bit blocks of plaintext into 128-bit blocks of ciphertext. Let 

EL(k, m) denote the encryption of a 128-bit message m under a key k (the actual bit length of k is irrelevant). 

Thus

EL(k, [m1  m2]) = EL(k, m1)  EL(k, m1) for all 128-bit patterns m1, m2

Describe how, with 128 chosen ciphertexts, an adversary can decrypt any ciphertext without knowledge of 

the secret key k. (A "chosen ciphertext" means that an adversary has the ability to choose a ciphertext and 

then obtain its decryption. Here, you have 128 plaintext/ciphertext pairs to work with and you have the ability 

to chose the value of the ciphertexts.)

Note: The following problems refer to simplified DES, described in Appendix C.

3.16 Refer to Figure C.2, which depicts key generation for S-DES.

How important is the initial P10 permutation function?a.

How important are the two LS-1 shift functions?b.

3.17 The equations for the variables q and r for S-DES are defined in the section on S-DES analysis. Provide the 

equations for s and t.
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3.18 Using S-DES, decrypt the string (10100010) using the key (0111111101) by hand. Show intermediate results 

after each function (IP, Fk, SW, Fk, IP
-1

). Then decode the first 4 bits of the plaintext string to a letter and the 

second 4 bits to another letter where we encode A through P in base 2 (i.e., A = 0000, B = 0001,..., P = 

1111).

Hint: As a midway check, after the application of SW, the string should be (00010011).

Programming Problems



3.19 Create software that can encrypt and decrypt using a general substitution block cipher.

3.20 Create software that can encrypt and decrypt using S-DES. Test data: Use plaintext, ciphertext, and key of 

Problem 3.15.
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Chapter 4. Finite Fields

4.1 Groups, Rings, and Fields

4.2 Modular Arithmetic

4.3 The Euclidean Algorithm

4.4 Finite Fields of the Form GF(p)

4.5 Polynomial Arithmetic

4.6 Finite Fields of the Form GF(2
n

)

4.7 Recommended Reading and Web Sites

4.8 Key Terms, Review Questions, and Problems

[Page 96]

The next morning at daybreak, Star flew indoors, seemingly keen for a lesson. I said, "Tap eight." She did a 

brilliant exhibition, first tapping it in 4, 4, then giving me a hasty glance and doing it in 2, 2, 2, 2, before coming for 

her nut.

It is astonishing that Star learned to count up to 8 with no difficulty, and of her own accord discovered that each 

number could be given with various different divisions, this leaving no doubt that she was consciously thinking 

each number. In fact, she did mental arithmetic, although unable, like humans, to name the numbers. But she 

learned to recognize their spoken names almost immediately and was able to remember the sounds of the 

names. Star is unique as a wild bird, who of her own free will pursued the science of numbers with keen interest 

and astonishing intelligence.

Living with Birds, Len Howard

Key Points

A field is a set of elements on which two arithmetic operations (addition and multiplication) have been 

defined and which has the properties of ordinary arithmetic, such as closure, associativity, commutativity, 

distributivity, and having both additive and multiplicative inverses.
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Modular arithmetic is a kind of integer arithmetic that reduces all numbers to one of a fixed set [0...n 1] for

some number n. Any integer outside this range is reduced to one in this range by taking the remainder after 

division by n.

The greatest common divisor of two integers is the largest positive integer that exactly divides both integers.

Finite fields are important in several areas of cryptography. A finite field is simply a field with a finite number 

of elements. It can be shown that the order of a finite field (number of elements in the field) must be a power 

of a prime p
n
, where n is a positive integer.

Finite fields of order p can be defined using arithmetic mod p.

Finite fields of order p
n
, for n > 1 can be defined using arithmetic over polynomials.

Finite fields have become increasingly important in cryptography. A number of cryptographic algorithms rely heavily on properties of finite 

fields, notably the Advanced Encryption Standard (AES) and elliptic curve cryptography.

The chapter begins with a brief overview of the concepts of group, ring, and field. This section is somewhat abstract; the reader may 

prefer to quickly skim this section on a first reading. Next, we need some elementary background in modular arithmetic and the 

Euclidean algorithm. We are then ready to discuss finite fields of the form GF(p), where p is a prime number. Next, we need some 

additional background, this time in polynomial arithmetic. The chapter concludes with a discussion of finite fields of the form GF(2
n
) 

where n is a positive integer.
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The concepts and techniques of number theory are quite abstract, and it is often difficult to grasp them intuitively without examples 

[RUBI97]. Accordingly, this chapter and Chapter 8 include a number of examples, each of which is highlighted in a shaded box.
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4.1. Groups, Rings, and Fields

Groups, rings, and fields are the fundamental elements of a branch of mathematics known as abstract algebra, or modern algebra. In 

abstract algebra, we are concerned with sets on whose elements we can operate algebraically; that is, we can combine two elements of 

the set, perhaps in several ways, to obtain a third element of the set. These operations are subject to specific rules, which define the 

nature of the set. By convention, the notation for the two principal classes of operations on set elements is usually the same as the 

notation for addition and multiplication on ordinary numbers. However, it is important to note that, in abstract algebra, we are not limited to 

ordinary arithmetical operations. All this should become clear as we proceed.

Groups

A group G, sometimes denoted by {G, ·} is a set of elements with a binary operation, denoted by ·, that associates to each ordered pair (a, 

b) of elements in G an element (a · b) in G, such that the following axioms are obeyed:
[1]

[1] The operator · is generic and can refer to addition, multiplication, or some other mathematical operation.

(A1) Closure: If a and b belong to G, then a · b is also in G.

(A2) Associative: a · (b · c) = (a · b) · c for all a, b, c in G.

(A3) Identity element: There is an element e in G such that a · e = e · a = a for all a in G.

(A4) Inverse element: For each a in G there is an element a' in G such that a · a' = a' · a = e.

Let Nn denote a set of n distinct symbols that, for convenience, we represent as {1,2,...,n}. A permutation of n distinct 

symbols is a one-to-one mapping from Nn to Nn. Define Sn to be the set of all permutations of n distinct symbols. Each 

element of Sn is represented by a permutation of the integers in {1,2,...,n}. It is easy to demonstrate that Sn is a group:
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A1: If p, r  Sn, then the composite mapping p · r is formed by permuting the elements of r according to the 

permutation p. For example, {3,2,1} · {1,3,2} = {2,3,1}. Clearly, p · r  Sn.

A2: The composition of mappings is also easily seen to be associative.



A3: The identity mapping is the permutation that does not alter the order of the n elements. For Sn, the 

identity element is {1,2,...,n}.

A4: For any p  Sn, the mapping that undoes the permutation defined by p is the inverse element for p. There 

will always be such an inverse. For example {2,3,1} · {3,1,2} = {1,2,3}

If a group has a finite number of elements, it is referred to as a finite group, and the order of the group is equal to the number of 

elements in the group. Otherwise, the group is an infinite group.

A group is said to be abelian if it satisfies the following additional condition:

(A5) Commutative: a · b = b · a for all a, b in G.

The set of integers (positive, negative, and 0) under addition is an abelian group. The set of nonzero real numbers under 

multiplication is an abelian group. The set Sn from the preceding example is a group but not an abelian group for n > 2.

When the group operation is addition, the identity element is 0; the inverse element of a is a; and subtraction is defined with the following 

rule: a b = a + (b).

Cyclic Group

We define exponentiation within a group as repeated application of the group operator, so that a
3
 = a · a · a. Further, we define a

0
 = e, the 

identity element; and a
-n

 = (a')
n
. A group G is cyclic if every element of G is a power a

k
 (k is an integer) of a fixed element a  G. The 

element a is said to generate the group G, or to be a generator of G. A cyclic group is always abelian, and may be finite or infinite.

The additive group of integers is an infinite cyclic group generated by the element 1. In this case, powers are interpreted 

additively, so that n is the nth power of 1.

Rings



A ring R, sometimes denoted by {R, +, x}, is a set of elements with two binary operations, called addition and multiplication,
[2]

 such that for 

all a, b, c in R the following axioms are obeyed:

[2] Generally, we do not use the multiplication symbol, x, but denote multiplication by the concatenation of two 

elements.

(A1-A5) R is an abelian group with respect to addition; that is, R satisfies axioms A1 through A5. For the case of an additive group, we 

denote the identity element as 0 and the inverse of a as a.

(M1) Closure under multiplication: If a and b belong to R, then ab is also in R.

(M2) Associativity of multiplication: a(bc) = (ab)c for all a, b, c in R.

(M3) Distributive laws: a(b + c) = ab + ac for all a, b, c in R. 

(a + b)c = ac + bc for all a, b, c in R.
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In essence, a ring is a set in which we can do addition, subtraction [a b = a + (-b)], and multiplication without leaving the set.

With respect to addition and multiplication, the set of all n-square matrices over the real numbers is a ring.

A ring is said to be commutative if it satisfies the following additional condition:

(M4) Commutativity of multiplication: ab = ba for all a, b in R.

Let S be the set of even integers (positive, negative, and 0) under the usual operations of addition and multiplication. S is a 

commutative ring. The set of all n-square matrices defined in the preceding example is not a commutative ring.

Next, we define an integral domain, which is a commutative ring that obeys the following axioms:

(M5) Multiplicative identity: There is an element 1 in R such that a1 = 1a = a for all a in R.

(M6) No zero divisors: If a, b in R and ab = 0, then either a = 0 or b = 0.



Let S be the set of integers, positive, negative, and 0, under the usual operations of addition and multiplication. S is an 

integral domain.

Fields

A field F, sometimes denoted by {F, +, x}, is a set of elements with two binary operations, called addition and multiplication, such that for all 

a, b, c in F the following axioms are obeyed:

(A1M6) F is an integral domain; that is, F satisfies axioms A1 through A5 and M1 through M6.

(M7) Multiplicative inverse:
For each a in F, except 0, there is an element a

-1
 in F such that aa

-1
 = (a

-1
)a = 1.

In essence, a field is a set in which we can do addition, subtraction, multiplication, and division without leaving the set. Division is defined 

with the following rule: a/b = a(b
-1

).

Familiar examples of fields are the rational numbers, the real numbers, and the complex numbers. Note that the set of all 

integers is not a field, because not every element of the set has a multiplicative inverse; in fact, only the elements 1 and 

-1 have multiplicative inverses in the integers.

Figure 4.1 summarizes the axioms that define groups, rings, and fields.
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Figure 4.1. Group, Ring, and Field

[View full size image]
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4.2. Modular Arithmetic

Given any positive integer n and any nonnegative integer a, if we divide a by n, we get an integer quotient q and an integer remainder r

that obey the following relationship:

Equation 4-1 

where  x  is the largest integer less than or equal to x.

Figure 4.2 demonstrates that, given a and positive n, it is always possible to find q and r that satisfy the preceding relationship. Represent 

the integers on the number line; a will fall somewhere on that line (positive a is shown, a similar demonstration can be made for negative a). 

Starting at 0, proceed to n, 2n, up to qn such that qn  a and (q + 1)n > a. The distance from qn to a is r, and we have found the unique 

values of q and r. The remainder r is often referred to as a residue.

Figure 4.2. The Relationship a = qn + r , 0  r  < n

[View full size image]

a = 11; n = 7; 11 = 1 x 7 + 4; r = 4 q = 1

a = -11; n = 7; -11 = (-2) x 7 + 3; r = 3 q = -2

If a is an integer and n is a positive integer, we define a mod n to be the remainder when a is divided by n. The integer n is called the 

modulus. Thus, for any integer a, we can always write:

a =  a/n  x n + (a mod n)
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11 mod 7 = 4; -11 mod 7 = 3

Two integers a and b are said to be congruent modulo n, if (a mod n) = (b mod n). This is written as a  b (mod n).
[3]

[3] We have just used the operator mod in two different ways: first as a binary operator that produces a remainder, as 

in the expression a mod b; second as a congruence relation that shows the equivalence of two integers, as in the 

expression To distinguish the two uses, the mod term is enclosed in parentheses for a congruence relation; this is 

common but not universal in the literature. See Appendix D for a further discussion.

73  4 (mod 23); 21  -9 (mod 10)
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Divisors

We say that a nonzero b divides a if a = mb for some m, where a, b, and m are integers. That is, b divides a if there is no remainder on 

division. The notation is commonly used to mean b divides a. Also, if b|a, we say that b is a divisor of a.

The positive divisors of 24 are 1, 2, 3, 4, 6, 8, 12, and 24.

The following relations hold:

If a|1, then a = ±1.

If a|b and b|a, then a = ±b.

Any b  0 divides 0.

If b|g and b|h, then b|(mg + nh) for arbitrary integers m and n.

To see this last point, note that

If b|g, then g is of the form g = b x g1 for some integers g1.

If b|h, then h is of the form h = b x h1 for some integers h1.

So

mg + nh = mbg1 + nbh1 = b x (mg1 + nh1)

and therefore b divides mg + nh.



b = 7; g = 14; h = 63; m = 3; n = 2.

7|14 and 7|63. To show: 7|(3 x 14 + 2 x 63)

We have (3 x 14 + 2 x 63) = 7(3 x 2 + 2 x 9)

And it is obvious that 7|(7(3 x 2 + 2 x 9))

Note that if a  0 (mod n), then n|a.

Properties of Congruences

Congruences have the following properties:

a  b (mod n) if n|(a b).1.

a  b (mod n) implies b  a (mod n)..2.

a  b (mod n) and b  c (mod n) imply a  c (mod n).3.

To demonstrate the first point, if n|(a b), then (a b) = kn for some k. So we can write a = b + kn. Therefore, (a mod n) = (reminder when b + kn

is divided by n) = (reminder when b is divided by n) = (b mod n)

23  8 (mod 5) because 23 8 = 15 = 5 3

11  5 (mod 8) because 11 5 = 16 = 8 x (2)

81  0 (mod 27) because 81 0 = 81 = 27 x 3

The remaining points are as easily proved.

 

[Page 103]

Modular Arithmetic Operations

Note that, by definition (Figure 4.2), the (mod n) operator maps all integers into the set of integers {0, 1,... (n 1)}. This suggests the question:

Can we perform arithmetic operations within the confines of this set? It turns out that we can; this technique is known as modular 

arithmetic.

Modular arithmetic exhibits the following properties:

[(a mod n) + (b mod n)] mod n = (a + b) mod n1.

[(a mod n) (b mod n)] mod n = (a b) mod n2.



[(a mod n) x (b mod n)] mod n = (a x b) mod n3.

We demonstrate the first property. Define (a mod n) = ra and (b mod n) = rb. Then we can write a = ra + jn for some integer j and b = rb + kn

for some integer k. Then

(a + b) mod n = (ra + jn + rb +kn) mod n

= (ra + rb (k + j)n) mod n

= (ra + rb) mod n

= [(a mod n] + (b mod n)] mod n

The remaining properties are as easily proved. Here are examples of the three properties:

11 mod 8 = 3; 15 mod 8 = 7

[(11 mod 8) + (15 mod 8)] mod 8 = 10 mod 8 = 2 

(11 + 15) mod 8 = 26 mod 8 = 2

[(11 mod 8) (15 mod 8)] mod 8 = 4 mod 8 = 4 

(11 15) mod 8 = 4 mod 8 = 4

[(11 mod 8) x (15 mod 8)] mod 8 = 21 mod 8 = 5 

(11 x 15) mod 8 = 165 mod 8 = 5

Exponentiation is performed by repeated multiplication, as in ordinary arithmetic. (We have more to say about exponentiation in Chapter 

8.)

To find 11
7
 mod 13, we can proceed as follows:

11
2
 = 121  4 (mod 13)

11
4
 = (11

2
)
2
  4

2
  3 (mod 13)

11
7
  11 x 4 x 3  132  2 (mod 13)

Thus, the rules for ordinary arithmetic involving addition, subtraction, and multiplication carry over into modular arithmetic.
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Table 4.1 provides an illustration of modular addition and multiplication modulo 8. Looking at addition, the results are straightforward 

and there is a regular pattern to the matrix. Both matrices are symmetric about the main diagonal, in conformance to the commutative 

property of addition and multiplication. As in ordinary addition, there is an additive inverse, or negative, to each integer in modular 

arithmetic. In this case, the negative of an integer x is the integer y such that (x + y) mod 8 = 0. To find the additive inverse of an 

integer in the left-hand column, scan across the corresponding row of the matrix to find the value 0; the integer at the top of that 

column is the additive inverse; thus (2 + 6) mod 8 = 0. Similarly, the entries in the multiplication table are straightforward. In ordinary 

arithmetic, there is a multiplicative inverse, or reciprocal, to each integer. In modular arithmetic mod 8, the multiplicative inverse of x is 



the integer y such that (x x y) mod 8 = 1 mod 8. Now, to find the multiplicative inverse of an integer from the multiplication table, scan 

across the matrix in the row for that integer to find the value 1; the integer at the top of that column is the multiplicative inverse; thus (3 

x 3) mod 8 = 1. Note that not all integers mod 8 have a multiplicative inverse; more about that later.

Table 4.1. Arithmetic Modulo 8

[View full size image]
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Properties of Modular Arithmetic

Define the set Zn as the set of nonnegative integers less than n:



Zn = {0, 1,...,(n 1)}

This is referred to as the set of residues, or residue classes modulo n. To be more precise, each integer in Zn represents a residue class. 

We can label the residue classes modulo n as [0], [1], [2],...,[n 1], where

[r] = {a: a is an integer, a  r (mod n)}

The residue classes modulo 4 are

 [0] = { ..., 16, 12, 8, 4, 0, 4, 8, 12, 16,... }

 [1] = { ..., 15, 11, 7, 3, 1, 5, 9, 13, 17,... }

 [2] = { ..., 14, 10, 6, 2, 2, 6, 10, 14, 18,... }

 [3] = { ..., 13, 9, 5, 1, 3, 7, 11, 15, 19,... }

Of all the integers in a residue class, the smallest nonnegative integer is the one usually used to represent the residue class. Finding the 

smallest nonnegative integer to which k is congruent modulo n is called reducing k modulo n.

If we perform modular arithmetic within Zn, the properties shown in Table 4.2 hold for integers in Zn. Thus, Zn is a commutative ring with a 

multiplicative identity element (Figure 4.1).

Table 4.2. Properties of Modular Arithmetic for Integers in Zn

Property Expression

Commutative laws (w + x) mod n = (x + w) mod n 

(w x x) mod n = (x x w) mod n

Associative laws [(w + x) + y] mod n = [w + (x + y)] mod n 

[(w x x) x y] mod n = [w x (x x y)] mod n

Distributive laws [w + (x + y)] mod n = [(w x x) + (w x y)] mod n 

[w + (x x y)] mod n = [(w + x) x (w + y)] mod n

Identities (0 + w) mod n = w mod n 

(1 + w) mod n = w mod n

Additive inverse (-w) For each w  Zn, there exists a z such that w + z  0 mod n

There is one peculiarity of modular arithmetic that sets it apart from ordinary arithmetic. First, observe that, as in ordinary arithmetic, we 

can write the following:

Equation 4-2 



(5 + 23)  (5 + 7)(mod 8}; 23  7 (mod 8)
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Equation (4.2) is consistent with the existence of an additive inverse. Adding the additive inverse of a to both sides of Equation (4.2), we 

have:

((a) + a + b)  ((a) + a + c)(mod n)

b  c (mod n)

However, the following statement is true only with the attached condition:

Equation 4-3 

where the term relatively prime is defined as follows: two integers are relatively prime if their only common positive integer factor is 1. 

Similar to the case of Equation (4.2), we can say that Equation (4.3) is consistent with the existence of a multiplicative inverse. Applying the 

multiplicative inverse of a to both sides of Equation (4.2), we have:

((a
1
)ab)  ((a

1
)ac)(mod n)

b  c (mod n)

To see this, consider an example in which the condition of Equation (4.3) does not hold. The integers 6 and 8 are not 

relatively prime, since they have the common factor 2. We have the following:

6 x 3 = 18  2 (mod 8)

6 x 7 = 42  2 (mod 8)

Yet 3  7 (mod 8).

The reason for this strange result is that for any general modulus n, a multiplier a that is applied in turn to the integers 0 through (n 1) will fail

to produce a complete set of residues if a and n have any factors in common.



With a = 6 and n = 8,

 Z8 0 1 2 3 4 5 6 7

 Multiply by 6 0 6 12 18 24 30 36 42

 Residues 0 6 4 2 0 6 4 2

Because we do not have a complete set of residues when multiplying by 6, more than one integer in Z8 maps into the 

same residue. Specifically, 6 x 0 mod 8 = 6 x 4 mod 8; 6 x 1 mod 8 = 6 x 5 mod 8; and so on. Because this is a 

many-to-one mapping, there is not a unique inverse to the multiply operation.

However, if we take a = 5 and n = 8, whose only common factor is 1,

 Z8 0 1 2 3 4 5 6 7

 Multiply by 6 0 5 10 15 20 25 30 35

 Residues 0 5 2 7 4 1 6 3

The line of residues contains all the integers in Z8, in a different order.
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In general, an integer has a multiplicative inverse in Zn if that integer is relatively prime to n. Table 4.1c shows that the integers 1, 3, 5, 

and 7 have a multiplicative inverse in Z8, but 2, 4, and 6 do not.
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4.3. The Euclidean Algorithm

One of the basic techniques of number theory is the Euclidean algorithm, which is a simple procedure for determining the greatest 

common divisor of two positive integers.

Greatest Common Divisor

Recall that nonzero b is defined to be a divisor of a if a = mb for some m, where a, b, and m are integers. We will use the notation gcd(a, b) 

to mean the greatest common divisor of a and b. The positive integer c is said to be the greatest common divisor of a and b if

c is a divisor of a and of b;1.

any divisor of a and b is a divisor of c.2.

An equivalent definition is the following:

gcd(a, b) = max[k, such that k|a and k|b]

Because we require that the greatest common divisor be positive, gcd(a, b) = gcd(a, b) = gcd(a, b) = gcd(a, b). In general, gcd(a, b) = 

gcd(|a|, |b|).

gcd(60, 24) = gcd(60, 24) = 12

Also, because all nonzero integers divide 0, we have gcd(a, 0) = |a|.

We stated that two integers a and b are relatively prime if their only common positive integer factor is 1. This is equivalent to saying that a

and b are relatively prime if gcd(a, b) = 1.

8 and 15 are relatively prime because the positive divisors of 8 are 1, 2, 4, and 8, and the positive divisors of 15 are 1, 3, 5, and 15, so 

1 is the only integer on both lists.

Finding the Greatest Common Divisor

The Euclidean algorithm is based on the following theorem: For any nonnegative integer a and any positive integer b,
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Equation 4-4 

gcd(55, 22) = gcd(22, 55 mod 22) = gcd(22, 11) = 11
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To see that Equation (4.4) works, let d = gcd(a, b). Then, by the definition of gcd, d|a and d|b. For any positive integer b, a can be expressed 

in the form

a = kb + r  r (mod b)

a mod b = r

with k, r integers. Therefore, (a mod b) = a kb for some integer k. But because d|b, it also divides kb. We also have d|a. Therefore, d|(a mod 

b). This shows that d is a common divisor of b and (a mod b). Conversely, if d is a common divisor of b and (a mod b), then d|kb and thus 

d|[kb + (a mod b)], which is equivalent to d|a. Thus, the set of common divisors of a and b is equal to the set of common divisors of b and (a

mod b). Therefore, the gcd of one pair is the same as the gcd of the other pair, proving the theorem.

Equation (4.4) can be used repetitively to determine the greatest common divisor.

gcd(18, 12) = gcd(12, 6) = gcd(6, 0) = 6

gcd(11, 10) = gcd(10, 1) = gcd(1, 0) = 1

The Euclidean algorithm makes repeated use of Equation (4.4) to determine the greatest common divisor, as follows. The algorithm 

assumes a > b > 0. It is acceptable to restrict the algorithm to positive integers because gcd(a, b) = gcd(|a|, |b|).

EUCLID(a, b)

1.   A  a; B  b

2.   if B = 0  return  A = gcd(a, b)

3.   R = A mod B

4.   A  B

5.   B  R

6.   goto 2

The algorithm has the following progression:
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To find gcd(1970, 1066)

1970 = 1 x 1066 + 904 gcd(1066, 904)

1066 = 1 x 904 + 162 gcd(904, 162)

904 = 5 x 162 + 94 gcd(162, 94)

162 = 1 x 94 + 68 gcd(94, 68)

94 = 1 x 68 + 26 gcd(68, 26)

68 = 2 x 26 + 16 gcd(26, 16)

26 = 1 x 16 + 10 gcd(16, 10)

16 = 1 x 10 + 6 gcd(10, 6)

10 = 1 x 6 + 4 gcd(6, 4)

6 = 1 x 4 + 2 gcd(4, 2)

4 = 2 x 2 + 0 gcd(2, 0)

Therefore, gcd(1970, 1066) = 2

The alert reader may ask how we can be sure that this process terminates. That is, how can we be sure that at some point B divides A? 

If not, we would get an endless sequence of positive integers, each one strictly smaller than the one before, and this is clearly 

impossible.
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4.4. Finite Fields of The Form GF(p)

In Section 4.1, we defined a field as a set that obeys all of the axioms of Figure 4.1 and gave some examples of infinite fields. Infinite fields 

are not of particular interest in the context of cryptography. However, finite fields play a crucial role in many cryptographic algorithms. It 

can be shown that the order of a finite field (number of elements in the field) must be a power of a prime p
n
, where n is a positive integer. 

We discuss prime numbers in detail in Chapter 8. Here, we need only say that a prime number is an integer whose only positive integer 

factors are itself and 1. That is, the only positive integers that are divisors of p are p and 1.

The finite field of order p
n
 is generally written GF(p

n
); stands for Galois field, in honor of the mathematician who first studied finite fields. 

Two special cases are of interest for our purposes. For n = 1, we have the finite field GF(p); this finite field has a different structure than that 

for finite fields with n > 1 and is studied in this section. In Section 4.6, we look at finite fields of the form GF(2
n
).

Finite Fields of Order p

For a given prime, p, the finite field of order p, GF(p) is defined as the set Zp of integers {0, 1,..., p 1}, together with the arithmetic operations

modulo p.

Recall that we showed in Section 4.2 that the set Zn of integers {0,1,...,n 1}, together with the arithmetic operations modulo n, is a 

commutative ring (Table 4.2). We further observed that any integer in Zn has a multiplicative inverse if and only if that integer is relatively 

prime to n [see discussion of Equation (4.3)].
[4]

 If n is prime, then all of the nonzero integers in Zn are relatively prime to n, and therefore 

there exists a multiplicative inverse for all of the nonzero integers in Zn. Thus, we can add the following properties to those listed in Table 

4.2 for Zp:

[4] As stated in the discussion of Equation (4.3), two integers are relatively prime if their only common positive integer 

factor is 1.
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Multiplicative inverse (w
1
) For each w  Zp, w  0, there exists a 

z  Zp such that w x z  1 (mod p)

Because w is relatively prime to p, if we multiply all the elements of Zp by w, the resulting residues are all of the elements of Zp permuted. 

Thus, exactly one of the residues has the value 1. Therefore, there is some integer Zp in that, when multiplied by w, yields the residue 1. 

That integer is the multiplicative inverse of w, designated w
1
. Therefore, Zp is in fact a finite field. Further, Equation (4.3) is consistent with 

the existence of a multiplicative inverse and can be rewritten without the condition:



Equation 4-5 

Multiplying both sides of Equation (4.5) by the multiplicative inverse of a, we have:

((a
1
) x a x b)  ((a

1
) x a x c)(mod p)

b  c (mod p)

The simplest finite field is GF(2). Its arithmetic operations are easily summarized:

Addition Multiplication Inverses

In this case, addition is equivalent to the exclusive-OR (XOR) operation, and multiplication is equivalent to the logical 

AND operation.

Table 4.3 shows GF(7). This is a field of order 7 using modular arithmetic modulo 7. As can be seen, it satisfies all of the properties 

required of a field (Figure 4.1). Compare this table with Table 4.1. In the latter case, we see that the set Z8 using modular arithmetic 

modulo 8, is not a field. Later in this chapter, we show how to define addition and multiplication operations on Z8 in such a way as to 

form a finite field.

Table 4.3. Arithmetic in GF(7)
(This item is displayed on page 111 in the print version)

[View full size image]



Finding the Multiplicative Inverse in GF(p)

It is easy to find the multiplicative inverse of an element in GF(p) for small values of p. You simply construct a multiplication table, such as 

shown in Table 4.3b, and the desired result can be read directly. However, for large values of p, this approach is not practical.

If gcd(m, b) = 1, then b has a multiplicative inverse modulo m. That is, for positive integer b < m, there exists a b
1
 < m such that bb

1
 = 1 mod 

m. The Euclidean algorithm can be extended so that, in addition to finding gcd(m, b), if the gcd is 1, the algorithm returns the multiplicative 

inverse of b.
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EXTENDED EUCLID(m, b)

1. (A1, A2, A3)  (1, 0, m); (B1, B2, B3)  (0, 1, b)

2. if B3 = 0 return A3 = gcd(m, b); no inverse

3. if B3 = 1 return B3 = gcd(m, b); B2 = b1 mod m



4. 

5. (T1, T2, T3)  (A1  QB1, A2  QB2, A3  QB3)

6. (A1, A2, A3)  (B1, B2, B3)

7. (B1, B2, B3)  (T1, T2, T3)

8. goto 2

Throughout the computation, the following relationships hold:

 mT1 + bT2 = T3 mA1 + bA2 = A3 mB1 + bB2 = B3

To see that this algorithm correctly returns gcd(m, b), note that if we equate A and B in the Euclidean algorithm with A3 and B3 in the 

extended Euclidean algorithm, then the treatment of the two variables is identical. At each iteration of the Euclidean algorithm, A is set 

equal to the previous value of B and B is set equal to the previous value of A mod B. Similarly, at each step of the extended Euclidean 

algorithm, A3 is set equal to the previous value of B3, and B3 is set equal to the previous value of A3 minus the integer quotient of A3 

multiplied by B3. This latter value is simply the remainder of A3 divided by B3, which is A3 mod B3.
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Note also that if gcd(m, b) = 1, then on the final step we would have B3 = 0 and A3 = 1. Therefore, on the preceding step, B3 = 1. But if B3 

= 1, then we can say the following:

mB1 + bB2 = B3

mB1 + bB2 = 1

bB2 = 1 mB1

bB2  1 (mod m)

And B2 is the multiplicative inverse of b, modulo m.

Table 4.4 is an example of the execution of the algorithm. It shows that gcd(1759, 550) = 1 and that the multiplicative 

inverse of 550 is 355; that is, 550 x 335  1 (mod 1759).



Table 4.4. Finding the Multiplicative Inverse of 550 in GF(1759)

Q A1 A2 A3 B1 B2 B3

1 0 1759 0 1 550

3 0 1 550 1 3 109

5 1 3 109 5 16 5

21 5 16 5 106 339 4

1 106 339 4 111 355 1

For a more detailed proof of this algorithm, see [KNUT97].

Summary

In this section, we have shown how to construct a finite field of order p, where p is prime. Specifically, we defined GF(p) with the following 

properties:

GF(p) consists of p elements.1.

The binary operations + and x are defined over the set. The operations of addition, subtraction, multiplication, and division can 

be performed without leaving the set. Each element of the set other than 0 has a multiplicative inverse.

2.

We have shown that the elements of GF(p) are the integers {0, 1,..., p} and that the arithmetic operations are addition and multiplication mod 

p.
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4.5. Polynomial Arithmetic

Before pursuing our discussion of finite fields, we need to introduce the interesting subject of polynomial arithmetic. We are 

concerned with polynomials in a single variable x, and we can distinguish three classes of polynomial arithmetic:

Ordinary polynomial arithmetic, using the basic rules of algebra

Polynomial arithmetic in which the arithmetic on the coefficients is performed modulo p; that is, the coefficients are in GF(p)

Polynomial arithmetic in which the coefficients are in GF(p), and the polynomials are defined modulo a polynomial m(x) whose 

highest power is some integer n

This section examines the first two classes, and the next section covers the last class.

Ordinary Polynomial Arithmetic

A polynomial of degree n (integer n  0) is an expression of the form

where the ai are elements of some designated set of numbers S, called the coefficient set, and an  0. We say that such polynomials 

are defined over the coefficient set S.

A zeroth-degree polynomial is called a constant polynomial and is simply an element of the set of coefficients. An nth-degree polynomial 

is said to be a monic polynomial if an = 1.

In the context of abstract algebra, we are usually not interested in evaluating a polynomial for a particular value of x [e.g., f(7)]. To 

emphasize this point, the variable x is sometimes referred to as the indeterminate.

Polynomial arithmetic includes the operations of addition, subtraction, and multiplication. These operations are defined in a natural way as 

though the variable x was an element of S. Division is similarly defined, but requires that S be a field. Examples of fields include the real 

numbers, rational numbers, and Zp for p prime. Note that the set of all integers is not a field and does not support polynomial division.

Addition and subtraction are performed by adding or subtracting corresponding coefficients. Thus, if

then addition is defined as
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and multiplication is defined as

where

ck = a0bk1 + a1bk1 + ... + ak1b1 + akb0

In the last formula, we treat ai as zero for i > n and bi as zero for i > m. Note that the degree of the product is equal to the sum of the 

degrees of the two polynomials.

As an example, let f(x) = x
3
 + x

2
 + 2 and g(x) = x

2
 x + 1, where S is the set of integers. Then

f(x) + g(x) = x
3
 + 2x

2
 x + 3

f(x) g(x) = x
3
 + x + 1

f(x) x g(x) = x
5
 + 3x

2
 2x + 2

Figures 4.3a through 4.3c show the manual calculations. We comment on division subsequently.

Figure 4.3. Examples of Polynomial Arithmetic



Polynomial Arithmetic with Coefficients in Zp

Let us now consider polynomials in which the coefficients are elements of some field F. We refer to this as a polynomial over the field F. In 

that case, it is easy to show that the set of such polynomials is a ring, referred to as a polynomial ring. That is, if we consider each 

distinct polynomial to be an element of the set, then that set is a ring.
[5]

[5] In fact, the set of polynomials whose coefficients are elements of a commutative ring forms a polynomial ring, but 

that is of no interest in the present context.
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When polynomial arithmetic is performed on polynomials over a field, then division is possible. Note that this does not mean that exact 

division is possible. Let us clarify this distinction. Within a field, given two elements a and b, the quotient a/b is also an element of the field. 

However, given a ring R that is not a field, in general division will result in both a quotient and a remainder; this is not exact division.

Consider the division 5/3 within a set S. If S is the set of rational numbers, which is a field, then the result is simply 

expressed as 5/3 and is an element of S. Now suppose that S is the field Z7. In this case, we calculate (using Table 4.3c):

5/3 = (5 x 3
1
) mod 7 = (5 x 5) mod 7 = 4

which is an exact solution. Finally, suppose that S is the set of integers, which is a ring but not a field. Then 5/3 produces 

a quotient of 1 and a remainder of 2:

5/3 = 1 + 2/3

5 = 1 x 3 + 2

Thus, division is not exact over the set of integers.

Now, if we attempt to perform polynomial division over a coefficient set that is not a field, we find that division is not always defined.



If the coefficient set is the integers, then (5x
2
)/(3x) does not have a solution, because it would require a coefficient with a 

value of 5/3, which is not in the coefficient set. Suppose that we perform the same polynomial division over Z7. Then we 

have (5x
2
)/(3x) = 4x which is a valid polynomial over Z7.

However, as we demonstrate presently, even if the coefficient set is a field, polynomial division is not necessarily exact. In general, 

division will produce a quotient and a remainder:

Equation 4-6 

If the degree of f(x) is n and the degree of g(x) is m, (m  n), then the degree of the quotient q(x) m n is and the degree of the remainder 

is at most m - 1. With the understanding that remainders are allowed, we can say that polynomial division is possible if the coefficient set 

is a field.

In an analogy to integer arithmetic, we can write f(x) mod g(x) for the remainder r(x) in Equation (4.6). That is, r(x) = f(x) mod g(x). If there 

is no remainder [i.e., r(x) = 0 ], then we can say g(x) divides f(x), written as g(x)|f(x); equivalently, we can say that g(x) is a factor of f(x) or 

g(x) is a divisor of f(x).
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For the preceding example and [f(x) = x
3
 + x

2
 + 2 and g(x) = x

2
 x + 1], f(x)/g(x) produces a quotient of q(x) = x + 2 and a 

remainder r(x) = x as shown in Figure 4.3d. This is easily verified by noting that

q(x)g(x) + r(x) = (x + 2)(x
2
 x + 1) + x = (x

3
 + x

2
 x + 2) + x

= x
3
 + x

2
 + 2 = f(x)

For our purposes, polynomials over GF(2) are of most interest. Recall from Section 4.4 that in GF(2), addition is equivalent to the XOR 

operation, and multiplication is equivalent to the logical AND operation. Further, addition and subtraction are equivalent mod 2: 1 + 1 = 1 1

= 0; 1 + 0 = 1 0 = 1; 0 + 1 = 0 1 = 1.



Figure 4.4 shows an example of polynomial arithmetic over GF(2). For f(x) = (x
7
 + x

5
 + x

4
 + x

3
 +x + 1) and g(x) = (x

3
 + x

+ 1), the figure shows f(x) + g(x); f(x) g(x); f(x) x g(x); and f(x)/g(x). Note that g(x)|f(x)

Figure 4.4. Examples of Polynomial Arithmetic over GF(2)



[Page 117]

A polynomial f(x) over a field F is called irreducible if and only if f(x) cannot be expressed as a product of two polynomials, both over F, 

and both of degree lower than that of f(x). By analogy to integers, an irreducible polynomial is also called a prime polynomial.

The polynomial
[6]

 f(x) = x
4
 + 1 over GF(2) is reducible, because x

4
 + 1 = (x + 1)(x

3
 + x

2
 + x + 1)

[6] In the remainder of this chapter, unless otherwise noted, all examples are of polynomials over GF(2).

Consider the polynomial f(x) = x
3
 + x + 1. It is clear by inspection that x is not a factor of f(x). We easily show that x + 1 is 

not a factor of f(x):

Thus f(x) has no factors of degree 1. But it is clear by inspection that if f(x) is reducible, it must have one factor of degree 

2 and one factor of degree 1. Therefore, f(x) is irreducible.



Finding the Greatest Common Divisor

We can extend the analogy between polynomial arithmetic over a field and integer arithmetic by defining the greatest common divisor as 

follows. The polynomial c(x) is said to be the greatest common divisor of a(x) and b(x) if

c(x) divides both a(x) and b(x);1.

any divisor of a(x) and b(x) is a divisor of c(x).2.

An equivalent definition is the following: gcd[a(x), b(x)] is the polynomial of maximum degree that divides both a(x) and b(x).

We can adapt the Euclidean algorithm to compute the greatest common divisor of two polynomials. The equality in Equation (4.4) can be 

rewritten as the following theorem:

Equation 4-7 
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The Euclidean algorithm for polynomials can be stated as follows. The algorithm assumes that the degree of a(x) is greater than the 

degree of b(x). Then, to find gcd[a(x), b(x)],

EUCLID[a(x), b(x)]

1. A(x)  a(x); B(x)  b(x)

2. if B(x) = 0 return A(x) = gcd[a(x), b(x)]

3. R(x) = A(x) mod B(x)

4. A(x)  B(x)

5. B(x)  R(x)

6. goto 2

Find gcd[a(x), b(x)] for a(x) = x
6
 + x

5
 +x

4
 + x

3
 + x

2
 +x + 1 and b(x) = x

4
 + x

2
 + x + 1.

A(x) = a(x); B(x) = b(x)



R(x) = A(x) mod B(x) = x
3
 + x

2
 + 1

A(x) = x
4
 + x

2
 + x + 1; B(x) = x

3
 + x

2
 + 1

R(x) = A(x) mod B(x) = 0

gcd[a(x), b(x)] = A(x) = x
3
 + x

2
 + 1

Summary

We began this section with a discussion of arithmetic with ordinary polynomials. In ordinary polynomial arithmetic, the variable is not 

evaluated; that is, we do not plug a value in for the variable of the polynomials. Instead, arithmetic operations are performed on 

polynomials (addition, subtraction, multiplication, division) using the ordinary rules of algebra. Polynomial division is not allowed unless the 

coefficients are elements of a field.
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Next, we discussed polynomial arithmetic in which the coefficients are elements of GF(p). In this case, polynomial addition, subtraction, 

multiplication, and division are allowed. However, division is not exact; that is, in general division results in a quotient and a remainder.

Finally, we showed that the Euclidean algorithm can be extended to find the greatest common divisor of two polynomials whose 

coefficients are elements of a field.

All of the material in this section provides a foundation for the following section, in which polynomials are used to define finite fields of 

order p
n
.
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4.6. Finite Fields Of the Form GF(2
n
)

Earlier in this chapter, we mentioned that the order of a finite field must be of the form p
n
 where p is a prime and n is a positive integer. In 

Section 4.4, we looked at the special case of finite fields with order p. We found that, using modular arithmetic in Zp, all of the axioms for a 

field (Figure 4.1) are satisfied. For polynomials over p
n
, with n > 1, operations modulo p

n
 do not produce a field. In this section, we show 

what structure satisfies the axioms for a field in a set with p
n
 elements, and concentrate on GF(2

n
).

Motivation

Virtually all encryption algorithms, both symmetric and public key, involve arithmetic operations on integers. If one of the operations that is 

used in the algorithm is division, then we need to work in arithmetic defined over a field. For convenience and for implementation 

efficiency, we would also like to work with integers that fit exactly into a given number of bits, with no wasted bit patterns. That is, we wish 

to work with integers in the range 0 through 2
n
 1, which fit into an n-bit word.

Suppose we wish to define a conventional encryption algorithm that operates on data 8 bits at a time and we wish to 

perform division. With 8 bits, we can represent integers in the range 0 through 255. However, 256 is not a prime number, 

so that if arithmetic is performed in Z256 (arithmetic modulo 256), this set of integers will not be a field. The closest prime 

number less than 256 is 251. Thus, the set Z251, using arithmetic modulo 251, is a field. However, in this case the 8-bit 

patterns representing the integers 251 through 255 would not be used, resulting in inefficient use of storage.

As the preceding example points out, if all arithmetic operations are to be used, and we wish to represent a full range of integers in n bits, 

then arithmetic modulo will not work; equivalently, the set of integers modulo 2
n
, for n > 1, is not a field. Furthermore, even if the encryption 

algorithm uses only addition and multiplication, but not division, the use of the set Z2n is questionable, as the following example illustrates.

[Page 120]

Suppose we wish to use 3-bit blocks in our encryption algorithm, and use only the operations of addition and multiplication. Then 

arithmetic modulo 8 is well defined, as shown in Table 4.1. However, note that in the multiplication table, the nonzero integers do not 

appear an equal number of times. For example, there are only four occurrences of 3, but twelve occurrences of 4. On the other hand, 

as was mentioned, there are finite fields of the form GF(2
n
) so there is in particular a finite field of order 2

3
 = 8. Arithmetic for this field 

is shown in Table 4.5. In this case, the number of occurrences of the nonzero integers is uniform for multiplication. To summarize,

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html


 Integer 1 2 3 4 5 6 7

 Occurrences in Z8 4 8 4 12 4 8 4

 Occurrences in GF(2
3
)

7 7 7 7 7 7 7

Table 4.5. Arithmetic in GF(23)
(This item is displayed on page 121 in the print version)

[View full size image]

For the moment, let us set aside the question of how the matrices of Table 4.5 were constructed and instead make some observations.

The addition and multiplication tables are symmetric about the main diagonal, in conformance to the commutative property 

of addition and multiplication. This property is also exhibited in Table 4.1, which uses mod 8 arithmetic.

1.

All the nonzero elements defined by Table 4.5 have a multiplicative inverse, unlike the case with Table 4.1.2.



The scheme defined by Table 4.5 satisfies all the requirements for a finite field. Thus, we can refer to this scheme as GF(2
3
).3.

For convenience, we show the 3-bit assignment used for each of the elements of GF(2
3
).4.

Intuitively, it would seem that an algorithm that maps the integers unevenly onto themselves might be cryptographically weaker than one 

that provides a uniform mapping. Thus, the finite fields of the form GF(2
n
) are attractive for cryptographic algorithms.

To summarize, we are looking for a set consisting of 2
n
 elements, together with a definition of addition and multiplication over the set that 

define a field. We can assign a unique integer in the range 0 through 2
n
 1 to each element of the set. Keep in mind that we will not use

modular arithmetic, as we have seen that this does not result in a field. Instead, we will show how polynomial arithmetic provides a means 

for constructing the desired field.

Modular Polynomial Arithmetic

Consider the set S of all polynomials of degree n 1 or less over the field Zp. Thus, each polynomial has the form

where each ai takes on a value in the set {0, 1,..., p 1}. There are a total of p
n
 different polynomials in S.
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For p = 3 and n = 2, the 3
2
 = 9 polynomials in the set are

0 x 2x

1 x + 1 2x + 1

2 x + 2 2x + 2

For p = 2 and n = 3, the 2
3
 = 8 the polynomials in the set are

0 x + 1
x
2
 + x

1
x
2

x
2
 + x + 1

x
x
2
 + 1  

With the appropriate definition of arithmetic operations, each such set S is a finite field. The definition consists of the following elements:



Arithmetic follows the ordinary rules of polynomial arithmetic using the basic rules of algebra, with the following two 

refinements.

1.

Arithmetic on the coefficients is performed modulo p. That is, we use the rules of arithmetic for the finite field Zp.2.
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If multiplication results in a polynomial of degree greater than n 1, then the polynomial is reduced modulo some irreducible

polynomial m(x) of degree n. That is, we divide by m(x) and keep the remainder. For a polynomial f(x), the remainder is 

expressed as r(x) = f(x) mod m(x).

3.

The Advanced Encryption Standard (AES) uses arithmetic in the finite field GF(2
8
), with the irreducible polynomial m(x) = x

8
 + x

4
 x

3
 + 

x + 1. Consider the two polynomials f(x) = x
6
 + x

4
 + x

2
 + x + 1 and g(x) = x

7
 + x + 1. Then

f(x) + g(x) = x
6
 + x

4
 x

2
 + x + 1 + x

7
 + x + 1

f(x) x g(x) = x
13

 + x
11

 + x
9
 + x

8
 + x

7
 +

x
7
 + x

5
 + x

3
 + x

2
 + x +

x
6
 + x

4
 + x

2
 + x + 1

= x
13

 + x
11

 + x
9
 + x

8
 + x

6
 + x

5
 + x

4
 + x

3
 + 1

Therefore, f(x) x g(x) mod m(x) = x
7
 + x

6
 + 1.

As with ordinary modular arithmetic, we have the notion of a set of residues in modular polynomial arithmetic. The set of residues modulo 

m(x), an nth-degree polynomial, consists of p
n
 elements. Each of these elements is represented by one of the p

n
 polynomials of degree m < 

n.

The residue class [x + 1], modulo m(x), consists of all polynomials a(x) such that a(x)  (x + 1) (mod m(x)). Equivalently, 

the residue class [x + 1] consists of all polynomials a(x) that satisfy the equality a(x) mod m(x) = x + 1.



It can be shown that the set of all polynomials modulo an irreducible nth-degree polynomial m(x) satisfies the axioms in Figure 4.1, and 

thus forms a finite field. Furthermore, all finite fields of a given order are isomorphic; that is, any two finite-field structures of a given order 

have the same structure, but the representation, or labels, of the elements may be different.
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To construct the finite field GF(2
3
), we need to choose an irreducible polynomial of degree 3. There are only two such polynomials: 

(x
3
 + x

2
 + 1) and (x

3
 + x + 1). Using the latter, Table 4.6 shows the addition and multiplication tables for GF(2

3
). Note that this set of 

tables has the identical structure to those of Table 4.5. Thus, we have succeeded in finding a way to define a field of order 2
3
.

Table 4.6. Polynomial Arithmetic Modulo (x3 + x + 1)
(This item is displayed on page 124 in the print version)

[View full size image]

Finding the Multiplicative Inverse



Just as the Euclidean algorithm can be adapted to find the greatest common divisor of two polynomials, the extended Euclidean algorithm 

can be adapted to find the multiplicative inverse of a polynomial. Specifically, the algorithm will find the multiplicative inverse of b(x) 

modulo m(x) if the degree of b(x) is less than the degree of m(x) and gcd[m(x), b(x)] = 1. If m(x) is an irreducible polynomial, then it has no 

factor other than itself or 1, so that gcd[m(x), b(x)] = 1. The algorithm is as follows:

EXTENDED EUCLID[m(x), b(x)]

1. [A1(x), A2(x), A3(x)]  [1, 0, m(x)]; [B1(x), B2(x),

   B3(x)]  [0, 1, b(x)]

2. if B3(x) = 0   return  A3(x) = gcd[m(x), b(x)]; no

   inverse

3. if B3(x) = 1   return  B3(x) = gcd[m(x), b(x)];

   B2(x) = b(x)1 mod m(x)

4. Q(x) = quotient of A3(x)/B3(x)

5. [T1(x), T2(x), T3(x)]  [A1(x)  Q(x)B1(x), A2(x) 

   Q(x)B2(x), A3(x)  QB3(x)]

6. [A1(x), A2(x), A3(x)]  [B1(x), B2(x), B3(x)]

7. [B1(x), B2(x), B3(x)]  [T1(x), T2(x), T3(x)]

8. goto 2

Table 4.7 shows the calculation of the multiplicative inverse of (x
7
 + x + 1) mod (x

8
 + x

4
 + x

3
 + x + 1). The result is that 

(x
7
 + x + 1)

1
 = (x

7
). That is, (x

7
 + x + 1)(x

7
)  1 (mod (x

8
 + x

4
 + x

3
 + x + 1)).

Table 4.7. Extended Euclid [(x8 + x4 + x3 + x + 1), (x7 + x + 1)]
(This item is displayed on page 125 in the print version)

Initialization
A1(x) = 1; A2(x) = 0; A3(x) = x

8
 + x

4
 + x

3
 + x + 1 

B1(x) = 0; B2(x) = 1; B3(x) = x
7
 + x + 1

Iteration 1 Q(x) = x 

A1(x) = 0; A2(x) = 1; A3(x) = x
7
 + x + 1 

B1(x) = 1; B2(x) = x; B3(x) = x
4
 + x

3
 + x

2
 + 1

Iteration 2
Q(x) = x

3
 + x

2
 + 1 

A1(x) = 1; A2(x) = x; A3(x) = x
4
 + x

3
 + x

2
 + 1 

B1(x) = x
3
 + x

2
 + 1; B2(x) = x

4
 + x

3
 + x + 1; B3(x) = x

Iteration 3
Q(x) = x

3
 + x

2
 + x 

A1(x) = x
3
 + x

2
 + 1; A2(x) = x

4
 + x

3
 + x + 1; A3(x) = x 

B1(x) = x
6
 + x

2
 + x + 1; B2(x) = x

7
; B3(x) = 1

Iteration 4
B3(x) = gcd[(x

7
 + x + 1), (x

8
 + x

4
 + x

3
 + x + 1)] = 1 

B2(x) = (x
7
 + x + 1)

1
 mod (x

8
 + x

4
 + x

3
 + x + 1) = x

7



Computational Considerations

A polynomial f(x) in GF(2
n
)

can be uniquely represented by its n binary coefficients (an1an2...a0). Thus, every polynomial in GF(2
n
) can be represented by an n-bit 

number.
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Tables 4.5 and 4.6 show the addition and multiplication tables for GF(2
3
) modulo m(x) = (x

3
 + x + 1). Table 4.5 uses the 

binary representation, and Table 4.6 uses the polynomial representation.

Addition

We have seen that addition of polynomials is performed by adding corresponding coefficients, and, in the case of polynomials over Z2

addition is just the XOR operation. So, addition of two polynomials in GF(2
n
) corresponds to a bitwise XOR operation.

Consider the two polynomials in GF(2
8
) from our earlier example: f(x) = x

6
 + x

4
 + x

2
 + x + 1 and g(x) = x

7
 + x + 1.

(x
6
 + x

4
 + x

2
 + x + 1) + (x

7
+ x + 1) = x

7
 + x

6
 + x

6
 + x

4
 + x

2 (polynomial notation)

(01010111)  (10000011)
= (11010100) (binary notation)

{57}  {83}
= {D4}

(hexadecimal notation)
[7]

[7] A basic refresher on number systems (decimal, binary, hexadecimal) can be found at the 

Computer Science Student Resource Site at WilliamStallings.com/StudentSupport.html. Here each 

http://WilliamStallings.com/StudentSupport.html


of two groups of 4 bits in a byte is denoted by a single hexadecimal character, the two characters 

enclosed in brackets.

Multiplication

There is no simple XOR operation that will accomplish multiplication in GF(2
n
) However, a reasonably straightforward, easily implemented 

technique is available. We will discuss the technique with reference to GF(2
8
) using m(x) = x

8
 + x

4
 + x

3
 + x + 1, which is the finite field 

used in AES. The technique readily generalizes to GF(2
n
).

The technique is based on the observation that

Equation 4-8 
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A moment's thought should convince you that Equation (4.8) is true; if not, divide it out. In general, in GF(2
n
) with an nth-degree polynomial 

p(x), we have x
n
 mod p(x) = [p(x) x

n
].

Now, consider a polynomial in GF(2
8
), which has the form f(x) = b7x

7
 + b6x

6
 + b5x

5
 + b4x

4
 + b3x

3
 + b2x

2
 + b1x + b0. If we multiply by x, we 

have

Equation 4-9 

If b7 = 0, then the result is a polynomial of degree less than 8, which is already in reduced form, and no further computation is necessary. If 

b7 = 1, then reduction modulo m(x) is achieved using Equation (4.8):

x x f(x) = (b6x
7
 + b5x

6
 + b4x

5
 + b3x

4
 + b2x

3
 +

b1x
2
 + b0x) + (x

4
 + x

3
 + x + 1)

It follows that multiplication by x (i.e., 00000010) can be implemented as a 1-bit left shift followed by a conditional bitwise XOR with 

(00011011), which represents (x
4
 + x

3
 + x + 1). To summarize,



Equation 4-10 

Multiplication by a higher power of x can be achieved by repeated application of Equation (4.10). By adding intermediate results, 

multiplication by any constant in GF(2
8
) can be achieved.

In an earlier example, we showed that for f(x) = x
6
 + x

4
 + x

2
 + x + 1, g(x) = x

7
 + x + 1, and m(x) = x

8
 + x

4
 + x

3
 + x + 1, 

f(x) x g(x) mod m(x) = x
7
 + x

6
 + 1. Redoing this in binary arithmetic, we need to compute (01010111) x (10000011). First, 

we determine the results of multiplication by powers of x:

(01010111) x (00000001) = (10101110)

(01010111) x (00000100) = (01011100)  (00011011) = (01000111)

(01010111) x (00001000) = (10001110)

(01010111) x (00010000) = (00011100)  (00011011) = (00000111)

(01010111) x (00100000) = (00001110)

(01010111) x (01000000) = (00011100)

(01010111) x (10000000) = (00111000)

So,

(01010111) x (10000011) = (01010111) x [(00000001) x (00000010) x (10000000)]

= (01010111)  (10101110)  (00111000) = (11000001)

which is equivalent to x
7
 + x

6
 + 1.
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Using a Generator

An equivalent technique for defining a finite field of the form GF(2
n
) using the same irreducible polynomial, is sometimes more 

convenient. To begin, we need two definitions: A generator g of a finite field F of order q (contains q elements) is an element whose first q 1

powers generate all the nonzero elements of F. That is, the elements of F consist of 0, g
0
, g

1
,..., g

q2
. Consider a field F defined by a 

polynomial f(x). An element b contained in F is called a root of the polynomial if f(b) = 0. Finally, it can be shown that a root g of an 

irreducible polynomial is a generator of the finite field defined on that polynomial.



Let us consider the finite field GF(2
3
), defined over the irreducible polynomial x

3
 + x + 1, discussed previously. Thus, the generator g

must satisfy f(x) = g
3
 + g + 1 = 0. Keep in mind, as discussed previously, that we need not find a numerical solution to this equality. 

Rather, we deal with polynomial arithmetic in which arithmetic on the coefficients is performed modulo 2. Therefore, the solution to the 

preceding equality is g
3
 = g 1 = g + 1. We now show that g in fact generates all of the polynomials of degree less than 3. We have the 

following:

g
4
 = g(g

3
) = g(g + 1) = g

2
 + g

g
5
 = g(g

4
) = g(g

2
 + g) = g

3
 + g

2
 = g

2
 + g + 1

g
6
 = g(g

5
) = g(g

2
 + g + 1) = g

3
 + g

2
 + g = g

2
 + g + g + 1 = g

2
 + 1

g
7
 = g(g

6
) = g(g

2
 + 1) = g

3
 + g = g + g + 1 = 1 = g

0

We see that the powers of g generate all the nonzero polynomials in GF(2
3
). Also, it should be clear that g

k
 = g

k mod 7
 for any integer k. 

Table 4.8 shows the power representation, as well as the polynomial and binary representations.

Table 4.8. Generator for GF(23) using x3 + x + 1

Power Representation Polynomial Representation Binary Representation Decimal (Hex) 

Representation

0 0 000 0

g
0
 ( = g

7
)

1 001 1

g
1 g 010 2

g
2

g
2 100 4

g
3 g + 1 011 3

g
4

g
2
 + g

110 6

g
5

g
2
 + g + 1

111 7

g
6

g
2
 + 1

101 5

This power representation makes multiplication easy. To multiply in the power notation, add exponents modulo 7. For example, g
4
 x g

6

= g
(10 mod 7)

 = g
3
 = g + 1. The same result is achieved using polynomial arithmetic, as follows: we have g

4
 = g

2
 + g and g

6
 = g

2
 + 1. 

Then, (g
2
 + g) x (g

2
 + 1) = g

4
 + g

3
 + g

2
 + 1. Next, we need to determine (g

4
 + g

3
 + g

2
 + 1) mod (g

3
 + g + 1) by division:
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We get a result of g + 1, which agrees with the result obtained using the power representation.

Table 4.9 shows the addition and multiplication tables for GF(2
3
) using the power represenation. Note that this yields the identical 

results to the polynomial representation (Table 4.6) with some of the rows and columns interchanged.

Table 4.9. GF(23) Arithmetic Using Generator for the Polynomial (x3 + x + 1)
(This item is displayed on page 128 in the print version)

[View full size image]

In general, for GF(2
n
) with irreducible polynomial f(x), determine g

n
 = f(x) g

n
. Then calculate all of the powers of g from g

n+1
 through g

2n2
. 

The elements of the field correspond to the powers of g from through g
2n2

, plus the value 0. For multiplication of two elements in the field, 

use the equality g
k
 = g

k mod (2n1)
 for any integer k.



Summary

In this section, we have shown how to construct a finite field of order 2
n
. Specifically, we defined GF(2

n
) with the following properties:

GF(2
n
) consists of 2

n
 elements.1.

The binary operations + and x are defined over the set. The operations of addition, subtraction, multiplication, and division can 

be performed without leaving the set. Each element of the set other than 0 has a multiplicative inverse.

2.

We have shown that the elements of GF(2
n
) can be defined as the set of all polynomials of degree n 1 or less with binary coefficients. Each

such polynomial can be represented by a unique n-bit value. Arithmetic is defined as polynomial arithmetic modulo some irreducible 

polynomial of degree n. We have also seen that an equivalent definition of a finite field GF(2
n
) makes use of a generator and that arithmetic 

is defined using powers of the generator.
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4.7. Recommended Reading and Web Sites

[HERS75], still in print, is the classic treatment of abstract algebra; it is readable and rigorous; [DESK92] is another good resource. 

[KNUT98] provides good coverage of polynomial arithmetic.
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One of the best treatments of the topics of this chapter is [BERL84], still in print. [GARR01] also has extensive coverage. A thorough 

and rigorous treatment of finite fields is [LIDL94]. [HORO71] is a good overview of the topics of this chapter.

BERL84 Berlekamp, E. Algebraic Coding Theory. Laguna Hills, CA: Aegean Park Press, 1984.

DESK92 Deskins, W. Abstract Algebra. New York: Dover, 1992.

GARR01 Garrett, P. Making, Breaking Codes: An Introduction to Cryptology. Upper Saddle River, NJ: Prentice 

Hall, 2001.

HERS75 Herstein, I. Topics in Algebra. New York: Wiley, 1975.

HORO71 Horowitz, E. "Modular Arithmetic and Finite Field Theory: A Tutorial." Proceedings of the Second ACM 

Symposium and Symbolic and Algebraic Manipulation, March 1971.

KNUT98 Knuth, D. The Art of Computer Programming, Volume 2: Seminumerical Algorithms. Reading, MA: 

Addison-Wesley, 1998.

LIDL94 Lidl, R., and Niederreiter, H. Introduction to Finite Fields and Their Applications. Cambridge: Cambridge 

University Press, 1994.

Recommended Web Sites

PascGalois Project: Contains a clever set of examples and projects to aid in giving students a visual understanding of key 

concepts in abstract algebra
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4.8. Key Terms, Review Questions, and Problems

Key Terms

abelian group

associative

coefficient set

commutative

commutative ring

cyclic group

divisor

Euclidean algorithm

field

finite group

finite ring

finite field

generator

greatest common divisor

group

identity element

infinite group

infinite ring

infinite field



integral domain

inverse element

irreducible polynomial

modular arithmetic

modular polynomial arithmetic

modulo operator

modulus

monic polynomial

order

polynomial

polynomial arithmetic

polynomial ring

prime number

prime polynomial

relatively prime

residue

ring
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Review Questions

4.1. Briefly define a group.

4.2. Briefly define a ring.

4.3. Briefly define a field.

4.4. What does it mean to say that b is a divisor of a?



4.5. What is the difference between modular arithmetic and ordinary arithmetic?

4.6. List three classes of polynomial arithmetic.

Problems

4.1 For the group Sn of all permutations of n distinct symbols,

What is the number of elements in Sn?a.

Show that Sn is not abelian for n > 2.b.

4.2 Does the set of residue classes modulo 3 form a group

with respect to addition?a.

with respect to multiplication?b.

4.3 Consider the set S = {a, b} with addition and multiplication defined by the tables:

Is S a ring? Justify your answer.

4.4 Reformulate Equation (4.1), removing the restriction that a is a nonnegative integer. That is, let a be any 

integer.

4.5 Draw a figure similar to Figure 4.2 for a < 0.

4.6 Find integers x such that

5x  4 (mod 3)a.

7x  6 (mod 5)b.

9x  8 (mod 7)c.



4.7 In this text we assume that the modulus is a positive integer. But the definition of the expression a mod n also 

makes perfect sense if n is negative. Determine the following:

5 mod 3a.

5 mod 3b.

5 mod 3c.

5 mod 3d.

4.8 A modulus of 0 does not fit the definition, but is defined by convention as follows: a mod 0 = a. With this 

definition in mind, what does the following expression mean: a  b (mod 0)?

4.9 In Section 4.2, we define the congruence relationship as follows: Two integers a and b are said to be 

congruent modulo n, if (a mod n) = (b mod n). We then proved that a  b (mod n) if n|(a b). Some texts on 

number theory use this latter relationship as the definition of congruence: Two integers a and b are said to be 

congruent modulo n, if n|(a b). Using this latter definition as the starting point, prove that if (a mod n) = (b mod 

n), then n divides (a b).

4.10
What is the smallest positive integer that has exactly k divisors, for 1  k  6?

4.11 Prove the following:

a  b (mod n) implies b  a (mod n)a.

a  b (mod n) and b  c (mod n) imply a  c (mod n)b.

4.12 Prove the following:

[(a mod n) (b mod n)] mod n = (a b) mod na.

[(a mod n) x (b mod n)] mod n = (a x b) mod nb.
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4.13 Find the multiplicative inverse of each nonzero element in Z5.

4.14 Show that an integer N is congruent modulo 9 to the sum of its decimal digits. For example, 475  4 + 7 + 5 

 16  1 + 6  7 (mod 9). This is the basis for the familiar procedure of "casting out 9's" when 

checking computations in arithmetic.

4.15
Determine gcd(24140, 16762).a.

Determine gcd(4655, 12075).b.

4.16 The purpose of this problem is to set an upper bound on the number of iterations of the Euclidean algorithm.



Suppose that m = qn + r with q > 0 and 0  r < n. Show that m/2 > r.a.

Let At be the value of A in the Euclidean algorithm after the ith iteration. Show thatb.

Show that if m, n, and N are integers with 1  m, n,  2
N

, then the Euclidean algorithm takes 

at most 2N steps to find gcd(m, n).

c.

4.17 The Euclidean algorithm has been known for over 2000 years and has always been a favorite among number 

theorists. After these many years, there is now a potential competitor, invented by J. Stein in 1961. Stein's 

algorithms is as follows. Determine gcd(A, B) with A, B  1.

STEP 1 Set A1 = A, B1 = B, C1 = 1

STEP n
If An = Bn stop. gcd(A, B) = AnCn1.

If An and Bn are both even, set An+1 = An/2, Bn+1 = Bn/2, Cn+1 = 2Cn2.

If An is even and Bn is odd, set An+1 = An/2, Bn+1 = Bn, Cn+1 = Cn3.

If An is odd and Bn is even, set An+1 = An, Bn+1 = Bn/2, Cn+1 = Cn4.

If An and Bn are both odd, set An+1 = |An Bn|, Bn + 1 = min(Bn, An), Cn+1 = Cn5.

Continue to step n + 1.

To get a feel for the two algorithms, compute gcd(2152, 764) using both the Euclidean and 

Stein's algorithm.

a.

What is the apparent advantage of Stein's algorithm over the Euclidean algorithm?b.

4.18
Show that if Stein's algorithm does not stop before the nth step, then

Cn+1 x gcd(An+1, Bn+1) = Cn x gcd(An, Bn)

a.

Show that if the algorithm does not stop before step (n 1), thenb.

Show that if 1  A, B  2
N

, then Stein's algorithm takes at most 4N steps to find gcd(m, n). c.



Thus, Stein's algorithm works in roughly the same number of steps as the Euclidean algorithm.

Demonstrate that Stein's algorithm does indeed return gcd(A, B).d.

4.19 Using the extended Euclidean algorithm, find the multiplicative inverse of

1234 mod 4321a.

24140 mod 40902b.

550 mod 1769c.

4.20 Develop a set of tables similar to Table 4.3 for GF(5).

4.21 Demonstrate that the set of polynomials whose coefficients form a field is a ring.

4.22 Demonstrate whether each of these statements is true or false for polynomials over a field:

The product of monic polynomials is monic.a.

The product of polynomials of degrees m and n has degree m + nb.

The sum of polynomials of degrees m and n has degree max[m, n].c.
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4.23 For polynomial arithmetic with coefficients in Z10, perform the following calculations:

(7x + 2) (x
2
 + 5)a.

(6x
2
 + x + 3) x (5x

2
 + 2)b.

4.24 Determine which of the following are reducible over GF(2):

x
3
 + 1a.

x
3
 + x

2
 + 1b.

x
4
 + 1 (be careful)c.

4.25 Determine the gcd of the following pairs of polynomials:

x
3
 + x + 1 and x

2
 + x + 1 over GF(2)a.

x
3
 x + 1 and x

2
 + 1 over GF(3)b.

x
5
 + x

4
 + x

3
 x

2
 x + 1 and x

3
 + x

2
 + x + 1 over GF(3)c.



x
5
 + 88x

4
 + 73x

3
 + 83x

2
 + 51x + 67 and x

3
 + 97x

2
 + 40x + 38 over GF(101)d.

4.26
Develop a set of tables similar to Table 4.6 for GF(4) with m(x) = x

4
 + x + 1.

4.27
Determine the multiplicative inverse of x

3
 + x + 1 in GF(2

4
), with m(x) = x

4
 + x + 1.

4.28
Develop a table similar to Table 4.8 for GF(2

4
) with m(x) = x

4
 + x + 1.

Programming Problems

4.29
Write a simple four-function calculator in GF(2

4
). You may use table lookups for the multiplicative inverses.

4.30
Write a simple four-function calculator in GF(2

8
). You should compute the multiplicative inverses on the fly.



[Page 134]

Chapter 5. Advanced Encryption Standard

5.1 Evaluation Criteria For AES

The Origins of AES

AES Evaluation

5.2 The AES Cipher

Substitute Bytes Transformation

ShiftRows Transformation

MixColumns Transformation

AddRoundKey Transformation

AES Key Expansion

Equivalent Inverse Cipher

Implementation Aspects

5.3 Recommended Reading and Web Sites

5.4 Key Terms, Review Questions, and Problems

Key Terms

Review Questions

Problems

Appendix 5A Polynomials With Coefficients In GF(2
8
)

MixColumns Transformation

Multiplication by x

Appendix 5B Simplified AES

Overview

S-AES Encryption and Decryption



Key Expansion

The S-Box

S-AES Structure
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"It seems very simple."

"It is very simple. But if you don't know what the key is it's virtually indecipherable."

Talking to Strange Men, Ruth Rendell

Key Points

AES is a block cipher intended to replace DES for commercial applications. It uses a 128-bit block size and 

a key size of 128, 192, or 256 bits.

AES does not use a Feistel structure. Instead, each full round consists of four separate functions: byte 

substitution, permutation, arithmetic operations over a finite field, and XOR with a key.

The Advanced Encryption Standard (AES) was published by NIST (National Institute of Standards and Technology) in 2001. AES is a 

symmetric block cipher that is intended to replace DES as the approved standard for a wide range of applications. In this chapter, we first 

look at the evaluation criteria used by NIST to select a candidate for AES and then examine the cipher itself.

Compared to public-key ciphers such as RSA, the structure of AES, and most symmetric ciphers, is very complex and cannot be 

explained as easily as RSA and similar algorithms. Accordingly, the reader may with to begin with a simplified version of AES, which is 

described in Appendix 5B. This version allows the reader to perform encryption and decryption by hand and gain a good understanding 

of the working of the algorithm details. Classroom experience indicates that a study of this simplified version enhances understanding of 

AES.
[1]

[1] However, you may safely skip Appendix 5B, at least on a first reading. If you get lost or bogged down in the 

details of AES, then you can go back and start with simplified AES.
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5.1. Evaluation Criteria For AES

The Origins of AES

We mentioned in Chapter 3 that in 1999, NIST issued a new version of its DES standard (FIPS PUB 46-3) that indicated that DES should 

only be used for legacy systems and that triple DES (3DES) be used. We describe 3DES in Chapter 6. 3DES has two attractions that 

assure its widespread use over the next few years. First, with its 168-bit key length, it overcomes the vulnerability to brute-force attack of 

DES. Second, the underlying encryption algorithm in 3DES is the same as in DES. This algorithm has been subjected to more scrutiny 

than any other encryption algorithm over a longer period of time, and no effective cryptanalytic attack based on the algorithm rather than 

brute force has been found. Accordingly, there is a high level of confidence that 3DES is very resistant to cryptanalysis. If security were 

the only consideration, then 3DES would be an appropriate choice for a standardized encryption algorithm for decades to come.
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The principal drawback of 3DES is that the algorithm is relatively sluggish in software. The original DES was designed for mid-1970s 

hardware implementation and does not produce efficient software code. 3DES, which has three times as many rounds as DES, is 

correspondingly slower. A secondary drawback is that both DES and 3DES use a 64-bit block size. For reasons of both efficiency and 

security, a larger block size is desirable.

Because of these drawbacks, 3DES is not a reasonable candidate for long-term use. As a replacement, NIST in 1997 issued a call for 

proposals for a new Advanced Encryption Standard (AES), which should have a security strength equal to or better than 3DES and 

significantly improved efficiency. In addition to these general requirements, NIST specified that AES must be a symmetric block cipher 

with a block length of 128 bits and support for key lengths of 128, 192, and 256 bits.

In a first round of evaluation, 15 proposed algorithms were accepted. A second round narrowed the field to 5 algorithms. NIST completed 

its evaluation process and published a final standard (FIPS PUB 197) in November of 2001. NIST selected Rijndael as the proposed 

AES algorithm. The two researchers who developed and submitted Rijndael for the AES are both cryptographers from Belgium: Dr. Joan 

Daemen and Dr. Vincent Rijmen.

Ultimately, AES is intended to replace 3DES, but this process will take a number of years. NIST anticipates that 3DES will remain an 

approved algorithm (for U.S. government use) for the foreseeable future.

AES Evaluation

It is worth examining the criteria used by NIST to evaluate potential candidates. These criteria span the range of concerns for the 

practical application of modern symmetric block ciphers. In fact, two set of criteria evolved. When NIST issued its original request for 

candidate algorithm nominations in 1997 [NIST97], the request stated that candidate algorithms would be compared based on the factors 

shown in Table 5.1 (ranked in descending order of relative importance). The three categories of criteria were as follows:

Security: This refers to the effort required to cryptanalyze an algorithm. The emphasis in the evaluation was on the 

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html


practicality of the attack. Because the minimum key size for AES is 128 bits, brute-force attacks with current and projected 

technology were considered impractical. Therefore, the emphasis, with respect to this point, is cryptanalysis other than a 

brute-force attack.

Cost: NIST intends AES to be practical in a wide range of applications. Accordingly, AES must have high computational 

efficiency, so as to be usable in high-speed applications, such as broadband links.
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Algorithm and implementation characteristics: This category includes a variety of considerations, including flexibility; 

suitability for a variety of hardware and software implementations; and simplicity, which will make an analysis of security more 

straightforward.



Table 5.1. NIST Evaluation Criteria for AES (September 12, 1997)

SECURITY

Actual security: compared to other submitted algorithms (at the same key and block size).

Randomness: the extent to which the algorithm output is indistinguishable from a random permutation on the input block.

Soundness: of the mathematical basis for the algorithm's security.

Other security factors: raised by the public during the evaluation process, including any attacks which demonstrate that 

the actual security of the algorithm is less than the strength claimed by the submitter.

COST

Licensing requirements: NIST intends that when the AES is issued, the algorithm(s) specified in the AES shall be 

available on a worldwide, non-exclusive, royalty-free basis.

Computational efficiency: The evaluation of computational efficiency will be applicable to both hardware and software 

implementations. Round 1 analysis by NIST will focus primarily on software implementations and specifically on one 

key-block size combination (128-128); more attention will be paid to hardware implementations and other supported 

key-block size combinations during Round 2 analysis. Computational efficiency essentially refers to the speed of the 

algorithm. Public comments on each algorithm's efficiency (particularly for various platforms and applications) will also be 

taken into consideration by NIST.

Memory requirements: The memory required to implement a candidate algorithmfor both hardware and software 

implementations of the algorithmwill also be considered during the evaluation process. Round 1 analysis by NIST will 

focus primarily on software implementations; more attention will be paid to hardware implementations during Round 2. 

Memory requirements will include such factors as gate counts for hardware implementations, and code size and RAM 

requirements for software implementations.

ALGORITHM AND IMPLEMENTATION CHARACTERISTICS

Flexibility: Candidate algorithms with greater flexibility will meet the needs of more users than less flexible ones, and 

therefore, inter alia, are preferable. However, some extremes of functionality are of little practical application (e.g., 

extremely short key lengths); for those cases, preference will not be given. Some examples of flexibility may include (but 

are not limited to) the following:

The algorithm can accommodate additional key- and block-sizes (e.g., 64-bit block sizes, key sizes other than 

those specified in the Minimum Acceptability Requirements section, [e.g., keys between 128 and 256 that are 

multiples of 32 bits, etc.])

a.

The algorithm can be implemented securely and efficiently in a wide variety of platforms and applications (e.g., 

8-bit processors, ATM networks, voice & satellite communications, HDTV, B-ISDN, etc.).

b.

The algorithm can be implemented as a stream cipher, message authentication code (MAC) generator, 

pseudorandom number generator, hashing algorithm, etc.

c.

Hardware and software suitability: A candidate algorithm shall not be restrictive in the sense that it can only be 

implemented in hardware. If one can also implement the algorithm efficiently in firmware, then this will be an advantage in 

the area of flexibility.

Simplicity: A candidate algorithm shall be judged according to relative simplicity of design.
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Using these criteria, the initial field of 21 candidate algorithms was reduced first to 15 candidates and then to 5 candidates. By the time 

that a final evaluation had been done the evaluation criteria, as described in [NECH00], had evolved. The following criteria were used in 

the final evaluation:

General security: To assess general security, NIST relied on the public security analysis conducted by the cryptographic 

community. During the course of the three-year evaluation process, a number of cryptographers published their analyses of 

the strengths and weaknesses of the various candidates. There was particular emphasis on analyzing the candidates with 

respect to known attacks, such as differential and linear cryptanalysis. However, compared to the analysis of DES, the 

amount of time and the number of cryptographers devoted to analyzing Rijndael are quite limited. Now that a single AES 

cipher has been chosen, we can expect to see a more extensive security analysis by the cryptographic community.

Software implementations: The principal concerns in this category are execution speed, performance across a variety of 

platforms, and variation of speed with key size.

Restricted-space environments: In some applications, such as smart cards, relatively small amounts of random-access 

memory (RAM) and/or read-only memory (ROM) are available for such purposes as code storage (generally in ROM); 

representation of data objects such as S-boxes (which could be stored in ROM or RAM, depending on whether 

pre-computation or Boolean representation is used); and subkey storage (in RAM).

Hardware implementations: Like software, hardware implementations can be optimized for speed or for size. However, in 

the case of hardware, size translates much more directly into cost than is usually the case for software implementations. 

Doubling the size of an encryption program may make little difference on a general-purpose computer with a large memory, 

but doubling the area used in a hardware device typically more than doubles the cost of the device.

Attacks on implementations: The criterion of general security, discussed in the first bullet, is concerned with cryptanalytic 

attacks that exploit mathematical properties of the algorithms. There is another class of attacks that use physical 

measurements conducted during algorithm execution to gather information about quantities such as keys. Such attacks 

exploit a combination of intrinsic algorithm characteristics and implementation-dependent features. Examples of such attacks 

are timing attacks and power analysis. Timing attacks are described in Chapter 3. The basic idea behind power analysis 

[KOCH98, BIHA00] is the observation that the power consumed by a smart card at any particular time during the 

cryptographic operation is related to the instruction being executed and to the data being processed. For example, 

multiplication consumes more power than addition, and writing 1s consumes more power than writing 0s.

Encryption versus decryption: This criterion deals with several issues related to considerations of both encryption and 

decryption. If the encryption and decryption algorithms differ, then extra space is needed for the decryption. Also, whether the 

two algorithms are the same or not, there may be timing differences between encryption and decryption.
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Key agility: Key agility refers to the ability to change keys quickly and with a minimum of resources. This includes both 

subkey computation and the ability to switch between different ongoing security associations when subkeys may already be 

available.

Other versatility and flexibility: [NECH00] indicates two areas that fall into this category. Parameter flexibility includes ease 

of support for other key and block sizes and ease of increasing the number of rounds in order to cope with newly discovered 

attacks. Implementation flexibility refers to the possibility of optimizing cipher elements for particular environments.

Potential for instruction-level parallelism: This criterion refers to the ability to exploit ILP features in current and future 

processors.

Table 5.2 shows the assessment that NIST provided for Rijndael based on these criteria.



Table 5.2. Final NIST Evaluation of Rijndael (October 2, 2000)

[Page 140]

General Security

Rijndael has no known security attacks. Rijndael uses S-boxes as nonlinear components. Rijndael appears to have an adequate 

security margin, but has received some criticism suggesting that its mathematical structure may lead to attacks. On the other hand, 

the simple structure may have facilitated its security analysis during the timeframe of the AES development process.

Software Implementations

Rijndael performs encryption and decryption very well across a variety of platforms, including 8-bit and 64-bit platforms, and DSPs. 

However, there is a decrease in performance with the higher key sizes because of the increased number of rounds that are 

performed. Rijndael's high inherent parallelism facilitates the efficient use of processor resources, resulting in very good software 

performance even when implemented in a mode not capable of interleaving. Rijndael's key setup time is fast.

Restricted-Space Environments

In general, Rijndael is very well suited for restricted-space environments where either encryption or decryption is implemented (but not 

both). It has very low RAM and ROM requirements. A drawback is that ROM requirements will increase if both encryption and 

decryption are implemented simultaneously, although it appears to remain suitable for these environments. The key schedule for 

decryption is separate from encryption.

Hardware Implementations

Rijndael has the highest throughput of any of the finalists for feedback modes and second highest for non-feedback modes. For the 

192 and 256-bit key sizes, throughput falls in standard and unrolled implementations because of the additional number of rounds. For 

fully pipelined implementations, the area requirement increases, but the throughput is unaffected.

Attacks on Implementations

The operations used by Rijndael are among the easiest to defend against power and timing attacks. The use of masking techniques 

to provide Rijndael with some defense against these attacks does not cause significant performance degradation relative to the other 

finalists, and its RAM requirement remains reasonable. Rijndael appears to gain a major speed advantage over its competitors when 

such protections are considered.

Encryption vs. Decryption

The encryption and decryption functions in Rijndael differ. One FPGA study reports that the implementation of both encryption and 

decryption takes about 60% more space than the implementation of encryption alone. Rijndael's speed does not vary significantly 

between encryption and decryption, although the key setup performance is slower for decryption than for encryption.

Key Agility

Rijndael supports on-the-fly subkey computation for encryption. Rijndael requires a one-time execution of the key schedule to 

generate all subkeys prior to the first decryption with a specific key. This places a slight resource burden on the key agility of Rijndael.

Other Versatility and Flexibility

Rijndael fully supports block sizes and key sizes of 128 bits, 192 bits and 256 bits, in any combination. In principle, the Rijndael 

structure can accommodate any block sizes and key sizes that are multiples of 32, as well as changes in the number of rounds that 

are specified.

Potential for Instruction-Level Parallelism

Rijndael has an excellent potential for parallelism for a single block encryption.
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5.2. The AES Cipher
[2]

[2] Much of the material in this section originally appeared in [STAL02].

The Rijndael proposal for AES defined a cipher in which the block length and the key length can be independently specified to be 128, 

192, or 256 bits. The AES specification uses the same three key size alternatives but limits the block length to 128 bits. A number of AES 

parameters depend on the key length (Table 5.3). In the description of this section, we assume a key length of 128 bits, which is likely to 

be the one most commonly implemented.

Table 5.3. AES Parameters

Key size (words/bytes/bits) 4/16/128 6/24/192 8/32/256

Plaintext block size (words/bytes/bits) 4/16/128 4/16/128 4/16/128

Number of rounds 10 12 14

Round key size (words/bytes/bits) 4/16/128 4/16/128 4/16/128

Expanded key size (words/bytes) 44/176 52/208 60/240

Rijndael was designed to have the following characteristics:

Resistance against all known attacks

Speed and code compactness on a wide range of platforms

Design simplicity

Figure 5.1 shows the overall structure of AES. The input to the encryption and decryption algorithms is a single 128-bit block. In FIPS PUB 

197, this block is depicted as a square matrix of bytes. This block is copied into the State array, which is modified at each stage of 

encryption or decryption. After the final stage, State is copied to an output matrix. These operations are depicted in Figure 5.2a. Similarly, 

the 128-bit key is depicted as a square matrix of bytes. This key is then expanded into an array of key schedule words; each word is four 

bytes and the total key schedule is 44 words for the 128-bit key (Figure 5.2b). Note that the ordering of bytes within a matrix is by column. 

So, for example, the first four bytes of a 128-bit plaintext input to the encryption cipher occupy the first column of the in matrix, the second 

four bytes occupy the second column, and so on. Similarly, the first four bytes of the expanded key, which form a word, occupy the first 

column of the w matrix.
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Figure 5.1. AES Encryption and Decryption

[View full size image]
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Figure 5.2. AES Data Structures

[View full size image]
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Before delving into details, we can make several comments about the overall AES structure:

One noteworthy feature of this structure is that it is not a Feistel structure. Recall that in the classic Feistel structure, half of the 

data block is used to modify the other half of the data block, and then the halves are swapped. Two of the AES finalists, 

including Rijndael, do not use a Feistel structure but process the entire data block in parallel during each round using 

substitutions and permutation.

1.

The key that is provided as input is expanded into an array of forty-four 32-bit words, w[i]. Four distinct words (128 bits) serve as 

a round key for each round; these are indicated in Figure 5.1.

2.

Four different stages are used, one of permutation and three of substitution:

Substitute bytes: Uses an S-box to perform a byte-by-byte substitution of the block

ShiftRows: A simple permutation

MixColumns: A substitution that makes use of arithmetic over GF(28)

AddRoundKey: A simple bitwise XOR of the current block with a portion of the expanded key

3.

The structure is quite simple. For both encryption and decryption, the cipher begins with an AddRoundKey stage, followed by 

nine rounds that each includes all four stages, followed by a tenth round of three stages. Figure 5.3 depicts the structure of a full 

encryption round.

Figure 5.3. AES Encryption Round
(This item is displayed on page 144 in the print version)

[View full size image]

4.



Only the AddRoundKey stage makes use of the key. For this reason, the cipher begins and ends with an AddRoundKey stage. 

Any other stage, applied at the beginning or end, is reversible without knowledge of the key and so would add no security.

5.

The AddRoundKey stage is, in effect, a form of Vernam cipher and by itself would not be formidable. The other three stages 

together provide confusion, diffusion, and nonlinearity, but by themselves would provide no security because they do not use 

the key. We can view the cipher as alternating operations of XOR encryption (AddRoundKey) of a block, followed by scrambling 

of the block (the other three stages), followed by XOR encryption, and so on. This scheme is both efficient and highly secure.

6.

Each stage is easily reversible. For the Substitute Byte, ShiftRows, and MixColumns stages, an inverse function is used in the 

decryption algorithm. For the AddRoundKey stage, the inverse is achieved by XORing the same round key to the block, using 

the result that A  A  B = B.

7.

As with most block ciphers, the decryption algorithm makes use of the expanded key in reverse order. However, the decryption 

algorithm is not identical to the encryption algorithm. This is a consequence of the particular structure of AES.

8.

Once it is established that all four stages are reversible, it is easy to verify that decryption does recover the plaintext. Figure 5.1

lays out encryption and decryption going in opposite vertical directions. At each horizontal point (e.g., the dashed line in 

the figure), State is the same for both encryption and decryption.
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9.

The final round of both encryption and decryption consists of only three stages. Again, this is a consequence of the particular 

structure of AES and is required to make the cipher reversible.

10.

We now turn to a discussion of each of the four stages used in AES. For each stage, we describe the forward (encryption) algorithm, the 

inverse (decryption) algorithm, and the rationale for the stage. This is followed by a discussion of key expansion.

As was mentioned in Chapter 4, AES uses arithmetic in the finite field GF(28), with the irreducible polynomial[3] m(x) = x8 + x4 + x3 + x + 1. 

The developers of Rijndael give as their motivation for selecting this one of the 30 possible irreducible polynomials of degree 8 that it is the 

first one on the list given in [LIDL94].



[3] In the remainder of this discussion, references to GF(28) refer to the finite field defined with this polynomial.

Substitute Bytes Transformation

Forward and Inverse Transformations

The forward substitute byte transformation, called SubBytes, is a simple table lookup (Figure 5.4a). AES defines a 16 x 16 matrix of 

byte values, called an S-box (Table 5.4a), that contains a permutation of all possible 256 8-bit values. Each individual byte of State is 

mapped into a new byte in the following way: The leftmost 4 bits of the byte are used as a row value and the rightmost 4 bits are used as a 

column value. These row and column values serve as indexes into the S-box to select a unique 8-bit output value. For example, the 

hexadecimal value[4] {95} references row 9, column 5 of the S-box, which contains the value {2A}. Accordingly, the value {95} is mapped 

into the value {2A}.

[4] In FIPS PUB 197, a hexadecimal number is indicated by enclosing it in curly brackets. We use that convention in 

this chapter.
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Figure 5.4. AES Byte-Level Operations
(This item is displayed on page 145 in the print version)

[View full size image]



Table 5.4. AES S-Boxes
(This item is displayed on page 146 in the print version)

[View full size image]



Here is an example of the SubBytes transformation:



The S-box is constructed in the following fashion:

Initialize the S-box with the byte values in ascending sequence row by row. The first row contains {00}, {01}, {02},.... {0F}; the 

second row contains {10}, {11}, etc.; and so on. Thus, the value of the byte at row x, column y is {xy}.

1.

Map each byte in the S-box to its multiplicative inverse in the finite field GF(28); the value {00} is mapped to itself.2.

Consider that each byte in the S-box consists of 8 bits labeled (b7, b6, b5, b4, b3, b2, b1, b0). Apply the following transformation to 

each bit of each byte in the S-box:

Equation 5-1 

where ci is the ith bit of byte c with the value {63}; that is, (c7c6c5c4c3c2c1c0) = (01100011). The prime (') indicates that the 

variable is to be updated by the value on the right. The AES standard depicts this transformation in matrix form as follows:

Equation 5-2 

3.
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Equation (5.2) has to be interpreted carefully. In ordinary matrix multiplication,[5] each element in the product matrix is the sum of products 

of the elements or one row and one column. In this case, each element in the product matrix is the bitwise XOR of products of elements of 

one row and one column. Further, the final addition shown in Equation (5.2) is a bitwise XOR.

[5] For a brief review of the rules of matrix and vector multiplication, see the Math Refresher document and the 

Computer Science Student Resource site at williamstallings.com/StudentSupport.html.

As an example, consider the input value {95}. The multiplicative inverse in GF(28) is {95}1 = {8A}, which is 10001010 in binary. Using 

Equation (5.2),

http://williamstallings.com/StudentSupport.html


The result is {2A}, which should appear in row {09} column {05} of the S-box. This is verified by checking Table 5.4a.

The inverse substitute byte transformation, called InvSubBytes, makes use of the inverse S-box shown in Table 5.4b. Note, for 

example, that the input {2A} produces the output {95} and the input {95} to the S-box produces {2A}. The inverse S-box is constructed by 

applying the inverse of the transformation in Equation (5.1) followed by taking the multiplicative inverse in GF(28). The inverse 

transformation is:

bi' = b(i + 2) mod 8   b(i + 5) mod 8   b(i + 7) mod 8   di

where byte d = {05}, or 00000101. We can depict this transformation as follows:

To see that InvSubBytes is the inverse of SubBytes, label the matrices in SubBytes and InvSubBytes as X and Y, respectively, and the 

vector versions of constants c and d as C and D, respectively. For some 8-bit vector B, Equation (5.2) becomes B' = XB  C. We need to 

show that Y(XB  C)  D = B. Multiply out, we must show YXB  YC  D = B. This becomes
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We have demonstrated that YX equals the identity matrix, and the YC = D, so that YC  D equals the null vector.

Rationale

The S-box is designed to be resistant to known cryptanalytic attacks. Specifically, the Rijndael developers sought a design that has a low 

correlation between input bits and output bits, and the property that the output cannot be described as a simple mathematical function of 

the input [DAEM01]. In addition, the constant in Equation (5.1) was chosen so that the S-box has no fixed points [S-box(a) = a] and no 

"opposite fixed points" [S-box(a) = ], where  is the bitwise complement of a.

Of course, the S-box must be invertible, that is, IS-box[S-box(a)] = a. However, the S-box is not self-inverse in the sense that it is not true 

that S-box(a) = IS-box(a). For example, [S-box({95}) = {2A}, but IS-box({95}) = {AD}.
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ShiftRows Transformation

Forward and Inverse Transformations

The forward shift row transformation, called ShiftRows, is depicted in Figure 5.5a. The first row of State is not altered. For the second 



row, a 1-byte circular left shift is performed. For the third row, a 2-byte circular left shift is performed. For the fourth row, a 3-byte circular 

left shift is performed. The following is an example of ShiftRows:

Figure 5.5. AES Row and Column Operations

[View full size image]

The inverse shift row transformation, called InvShiftRows, performs the circular shifts in the opposite direction for each of the last three 

rows, with a one-byte circular right shift for the second row, and so on.

Rationale



The shift row transformation is more substantial than it may first appear. This is because the State, as well as the cipher input and output, 

is treated as an array of four 4-byte columns. Thus, on encryption, the first 4 bytes of the plaintext are copied to the first column of State, 

and so on. Further, as will be seen, the round key is applied to State column by column. Thus, a row shift moves an individual byte from 

one column to another, which is a linear distance of a multiple of 4 bytes. Also note that the transformation ensures that the 4 bytes of one 

column are spread out to four different columns. Figure 5.3 illustrates the effect.
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MixColumns Transformation

Forward and Inverse Transformations

The forward mix column transformation , called MixColumns, operates on each column individually. Each byte of a column is 

mapped into a new value that is a function of all four bytes in that column. The transformation can be defined by the following matrix 

multiplication on State (Figure 5.5b):

Equation 5-3 



[1] (ANS) American National Standard: Financial Institution Key Management (Wholesale). From its title, X9.17 

appears to be a somewhat obscure standard. Yet a number of techniques specified in this standard have been 

adopted for use in other standards and applications, as we shall see throughout this book.

Currently, there are no practical cryptanalytic attacks on 3DES. Coppersmith [COPP94] notes that the cost of a brute-force key search on 

3DES is on the order of 2112  (5 x 1033) and estimates that the cost of differential cryptanalysis suffers an exponential growth, 

compared to single DES, exceeding 1052.

It is worth looking at several proposed attacks on 3DES that, although not practical, give a flavor for the types of attacks that have been 

considered and that could form the basis for more successful future attacks.
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The first serious proposal came from Merkle and Hellman [MERK81]. Their plan involves finding plaintext values that produce a first 

intermediate value of A = 0 (Figure 6.1b) and then using the meet-in-the-middle attack to determine the two keys. The level of effort is 256, 

but the technique requires 256 chosen plaintext-ciphertext pairs, a number unlikely to be provided by the holder of the keys.

A known-plaintext attack is outlined in [VANO90]. This method is an improvement over the chosen-plaintext approach but requires more 

effort. The attack is based on the observation that if we know A and C (Figure 6.1b), then the problem reduces to that of an attack on 

double DES. Of course, the attacker does not know A, even if P and C are known, as long as the two keys are unknown. However, the 

attacker can choose a potential value of A and then try to find a known (P, C) pair that produces A. The attack proceeds as follows:

Obtain n (P, C) pairs. This is the known plaintext. Place these in a table (Table 1) sorted on the values of P (Figure 6.2b).

Figure 6.2. Known-Plaintext Attack on Triple DES

1.



Pick an arbitrary value a for A, and create a second table (Figure 6.2c) with entries defined in the following fashion. For each of 

the 256 possible keys K1 = i, calculate the plaintext value Pi that produces a:

Pi = D(i, a)
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For each Pi that matches an entry in Table 1, create an entry in Table 2 consisting of the K1 value and the value of B that is 

produced for the (P, C) pair from Table 1, assuming that value of K1:

B = D(i, C)

At the end of this step, sort Table 2 on the values of B.

2.

We now have a number of candidate values of K1 in Table 2 and are in a position to search for a value of K2. For each of the 256

possible keys K2 = j, calculate the second intermediate value for our chosen value of a:

Bj = D(j, a)

At each step, look up Bj in Table 2. If there is a match, then the corresponding key i from Table 2 plus this value of j are candidate 

values for the unknown keys (K1, K2). Why? Because we have found a pair of keys (i, j) that produce a known (P, C) pair (Figure 

6.2a).

3.

Test each candidate pair of keys (i, j) on a few other plaintext-ciphertext pairs. If a pair of keys produces the desired ciphertext, 

the task is complete. If no pair succeeds, repeat from step 1 with a new value of a.

4.

For a given known (P, C), the probability of selecting the unique value of a that leads to success is 1/264. Thus, given n (P, C) pairs, the 

probability of success for a single selected value of a is n/264. A basic result from probability theory is that the expected number of draws 

required to draw one red ball out of a bin containing n red balls and N n green balls is (N + 1)/(n + 1) if the balls are not replaced. So the 

expected number of values of a that must be tried is, for large n,

Thus, the expected running time of the attack is on the order of

Triple DES with Three Keys

Although the attacks just described appear impractical, anyone using two-key 3DES may feel some concern. Thus, many researchers now 

feel that three-key 3DES is the preferred alternative (e.g., [KALI96a]). Three-key 3DES has an effective key length of 168 bits and is 

defined as follows:

C = E(K3, D(K2, E(K1, P)))



Backward compatibility with DES is provided by putting K3 = K2 or K1 = K2.

A number of Internet-based applications have adopted three-key 3DES, including PGP and S/MIME, both discussed in Chapter 15.
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6.2. Block Cipher Modes of Operation

A block cipher algorithm is a basic building block for providing data security. To apply a block cipher in a variety of applications, four 

"modes of operation" have been defined by NIST (FIPS 81). In essence, a mode of operation is a technique for enhancing the effect of a 

cryptographic algorithm or adapting the algorithm for an application, such as applying a block cipher to a sequence of data blocks or a 

data stream. The four modes are intended to cover virtually all the possible applications of encryption for which a block cipher could be 

used. As new applications and requirements have appeared, NIST has expanded the list of recommended modes to five in Special 

Publication 800-38A. These modes are intended for use with any symmetric block cipher, including triple DES and AES. The modes are 

summarized in Table 6.1 and described briefly in the remainder of this section.

Table 6.1. Block Cipher Modes of Operation

Mode Description Typical Application

Electronic Codebook (ECB) Each block of 64 plaintext bits is encoded 

independently using the same key. Secure transmission of single 

values (e.g., an encryption key)

Cipher Block Chaining (CBC) The input to the encryption algorithm is the 

XOR of the next 64 bits of plaintext and the 

preceding 64 bits of ciphertext.
General-purpose block-oriented 

transmission

Authentication

Cipher Feedback (CFB) Input is processed j bits at a time. Preceding 

ciphertext is used as input to the encryption 

algorithm to produce pseudorandom output, 

which is XORed with plaintext to produce 

next unit of ciphertext.

General-purpose 

stream-oriented transmission

Authentication

Output Feedback (OFB) Similar to CFB, except that the input to the 

encryption algorithm is the preceding DES 

output.
Stream-oriented transmission 

over noisy channel (e.g., 

satellite communication)

Counter (CTR) Each block of plaintext is XORed with an 

encrypted counter. The counter is 

incremented for each subsequent block.
General-purpose block-oriented 

transmission

Useful for high-speed 

requirements

Electronic Codebook Mode
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The simplest mode is the electronic codebook (ECB) mode, in which plaintext is handled one block at a time and each block of plaintext is 

encrypted using the same key (Figure 6.3). The term codebook is used because, for a given key, there is a unique ciphertext for every b-bit 

block of plaintext. Therefore, we can imagine a gigantic codebook in which there is an entry for every possible b-bit plaintext pattern 

showing its corresponding ciphertext.
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Figure 6.3. Electronic Codebook (ECB) Mode

[View full size image]

For a message longer than b bits, the procedure is simply to break the message into b-bit blocks, padding the last block if necessary. 

Decryption is performed one block at a time, always using the same key. In Figure 6.3, the plaintext (padded as necessary) consists of a 

sequence of b-bit blocks, P1, P2,..., PN; the corresponding sequence of ciphertext blocks is C1, C2,..., CN.

The ECB method is ideal for a short amount of data, such as an encryption key. Thus, if you want to transmit a DES key securely, ECB is 

the appropriate mode to use.

The most significant characteristic of ECB is that the same b-bit block of plaintext, if it appears more than once in the message, always 

produces the same ciphertext.

For lengthy messages, the ECB mode may not be secure. If the message is highly structured, it may be possible for a cryptanalyst to 



exploit these regularities. For example, if it is known that the message always starts out with certain predefined fields, then the 

cryptanalyst may have a number of known plaintext-ciphertext pairs to work with. If the message has repetitive elements, with a period of 

repetition a multiple of b bits, then these elements can be identified by the analyst. This may help in the analysis or may provide an 

opportunity for substituting or rearranging blocks.
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Cipher Block Chaining Mode

To overcome the security deficiencies of ECB, we would like a technique in which the same plaintext block, if repeated, produces 

different ciphertext blocks. A simple way to satisfy this requirement is the cipher block chaining (CBC) mode (Figure 6.4). In this scheme, 

the input to the encryption algorithm is the XOR of the current plaintext block and the preceding ciphertext block; the same key is used for 

each block. In effect, we have chained together the processing of the sequence of plaintext blocks. The input to the encryption function for 

each plaintext block bears no fixed relationship to the plaintext block. Therefore, repeating patterns of b bits are not exposed.

Figure 6.4. Cipher Block Chaining (CBC) Mode

[View full size image]



For decryption, each cipher block is passed through the decryption algorithm. The result is XORed with the preceding ciphertext block to 

produce the plaintext block. To see that this works, we can write

Cj = E(K, [Cj-1  Pj])

Then

D(K, Cj) = D(K, E(K, [Cj-1  Pj]))

D(K, Cj) = Cj-1  Pj

Cj-1  D(K, Cj) = Cj-1  Cj-1  Pj = Pj
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To produce the first block of ciphertext, an initialization vector (IV) is XORed with the first block of plaintext. On decryption, the IV is 

XORed with the output of the decryption algorithm to recover the first block of plaintext. The IV is a data block that is that same size as the 

cipher block.

The IV must be known to both the sender and receiver but be unpredictable by a third party. For maximum security, the IV should be 

protected against unauthorized changes. This could be done by sending the IV using ECB encryption. One reason for protecting the IV is 

as follows: If an opponent is able to fool the receiver into using a different value for IV, then the opponent is able to invert selected bits in 

the first block of plaintext. To see this, consider the following:

C1 = E(K, [IV  P1])

P1 = IV  D(K, C1)

Now use the notation that X[i] denotes the ith bit of the b-bit quantity X. Then

P1[i] = IV[i]  D(K, C1)[i]

Then, using the properties of XOR, we can state

P1[i]' = IV[i]'  D(K, C1)[i]

where the prime notation denotes bit complementation. This means that if an opponent can predictably change bits in IV, the 

corresponding bits of the received value of P1 can be changed.

For other possible attacks based on knowledge of IV, see [VOYD83].

In conclusion, because of the chaining mechanism of CBC, it is an appropriate mode for encrypting messages of length greater than b bits.

In addition to its use to achieve confidentiality, the CBC mode can be used for authentication. This use is described in Part Two.

Cipher Feedback Mode

The DES scheme is essentially a block cipher technique that uses b-bit blocks. However, it is possible to convert DES into a stream cipher, 

using either the cipher feedback (CFB) or the output feedback mode. A stream cipher eliminates the need to pad a message to be an 

integral number of blocks. It also can operate in real time. Thus, if a character stream is being transmitted, each character can be 

encrypted and transmitted immediately using a character-oriented stream cipher.



One desirable property of a stream cipher is that the ciphertext be of the same length as the plaintext. Thus, if 8-bit characters are being 

transmitted, each character should be encrypted to produce a cipher text output of 8 bits. If more than 8 bits are produced, transmission 

capacity is wasted.

Figure 6.5 depicts the CFB scheme. In the figure, it is assumed that the unit of transmission is s bits; a common value is s = 8. As with CBC, 

the units of plaintext are chained together, so that the ciphertext of any plaintext unit is a function of all the preceding plaintext. In this case, 

rather than units of b bits, the plaintext is divided into segments of s bits.
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Figure 6.5. s-bit Cipher Feedback (CFB) Mode

[View full size image]
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First, consider encryption. The input to the encryption function is a b-bit shift register that is initially set to some initialization vector (IV). 



The leftmost (most significant) s bits of the output of the encryption function are XORed with the first segment of plaintext P1 to produce the 

first unit of ciphertext C1, which is then transmitted. In addition, the contents of the shift register are shifted left by s bits and C1 is placed in 

the rightmost (least significant) s bits of the shift register. This process continues until all plaintext units have been encrypted.

For decryption, the same scheme is used, except that the received ciphertext unit is XORed with the output of the encryption function to 

produce the plaintext unit. Note that it is the encryption function that is used, not the decryption function. This is easily explained. Let Ss(X) 

be defined as the most significant s bits of X. Then

C1 = P1  Ss[E(K, IV)]

Therefore,

P1 = C1  Ss[E(K, IV)]

The same reasoning holds for subsequent steps in the process.

Output Feedback Mode

The output feedback (OFB) mode is similar in structure to that of CFB, as illustrated in Figure 6.6. As can be seen, it is the output of the 

encryption function that is fed back to the shift register in OFB, whereas in CFB the ciphertext unit is fed back to the shift register.

Figure 6.6. s-bit Output Feedback (OFB) Mode
(This item is displayed on page 187 in the print version)

[View full size image]



One advantage of the OFB method is that bit errors in transmission do not propagate. For example, if a bit error occurs in C1 only the 

recovered value of is P1 affected; subsequent plaintext units are not corrupted. With CFB, C1 also serves as input to the shift register and 

therefore causes additional corruption downstream.

The disadvantage of OFB is that it is more vulnerable to a message stream modification attack than is CFB. Consider that complementing 

a bit in the ciphertext complements the corresponding bit in the recovered plaintext. Thus, controlled changes to the recovered plaintext 

can be made. This may make it possible for an opponent, by making the necessary changes to the checksum portion of the message as 

well as to the data portion, to alter the ciphertext in such a way that it is not detected by an error-correcting code. For a further discussion, 

see [VOYD83].

Counter Mode

Although interest in the counter mode (CTR) has increased recently, with applications to ATM (asynchronous transfer mode) network 

security and IPSec (IP security), this mode was proposed early on (e.g., [DIFF79]).

Figure 6.7 depicts the CTR mode. A counter, equal to the plaintext block size is used. The only requirement stated in SP 800-38A is that 

the counter value must be different for each plaintext block that is encrypted. Typically, the counter is initialized to some value and then 

incremented by 1 for each subsequent block (modulo 2
b
 where b is the block size). For encryption, the counter is encrypted and then 

XORed with the plaintext block to produce the ciphertext block; there is no chaining. For decryption, the same sequence of counter 

values is used, with each encrypted counter XORed with a ciphertext block to recover the corresponding plaintext block.
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Figure 6.7. Counter (CTR) Mode

[View full size image]

[LIPM00] lists the following advantages of CTR mode:

Hardware efficiency: Unlike the three chaining modes, encryption (or decryption) in CTR mode can be done in parallel on 

multiple blocks of plaintext or ciphertext. For the chaining modes, the algorithm must complete the computation on one block 

before beginning on the next block. This limits the maximum throughput of the algorithm to the reciprocal of the time for one 

execution of block encryption or decryption. In CTR mode, the throughput is only limited by the amount of parallelism that is 

achieved.

Software efficiency: Similarly, because of the opportunities for parallel execution in CTR mode, processors that support 

parallel features, such as aggressive pipelining, multiple instruction dispatch per clock cycle, a large number of registers, and 

SIMD instructions, can be effectively utilized.

Preprocessing: The execution of the underlying encryption algorithm does not depend on input of the plaintext or ciphertext. 

Therefore, if sufficient memory is available and security is maintained, preprocessing can be used to prepare the output of the 

encryption boxes that feed into the XOR functions in Figure 6.7. When the plaintext or ciphertext input is presented, then the 

only computation is a series of XORs. Such a strategy greatly enhances throughput.
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Random access: The ith block of plaintext or ciphertext can be processed in random-access fashion. With the chaining 

modes, block Ci cannot be computed until the i - 1 prior block are computed. There may be applications in which a ciphertext is 

stored and it is desired to decrypt just one block; for such applications, the random access feature is attractive.

Provable security: It can be shown that CTR is at least as secure as the other modes discussed in this section.

Simplicity: Unlike ECB and CBC modes, CTR mode requires only the implementation of the encryption algorithm and not the 

decryption algorithm. This matters most when the decryption algorithm differs substantially from the encryption algorithm, as it 

does for AES. In addition, the decryption key scheduling need not be implemented.
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6.3. Stream Ciphers and RC4

In this section we look at perhaps the most popular symmetric stream cipher, RC4. We begin with an overview of stream cipher structure, 

and then examine RC4.

Stream Cipher Structure

A typical stream cipher encrypts plaintext one byte at a time, although a stream cipher may be designed to operate on one bit at a time or 

on units larger than a byte at a time. Figure 6.8 is a representative diagram of stream cipher structure. In this structure a key is input to a 

pseudorandom bit generator that produces a stream of 8-bit numbers that are apparently random. We discuss pseudorandom number 

generators in Chapter 7. For now, we simply say that a pseudorandom stream is one that is unpredictable without knowledge of the input 

key. The output of the generator, called a keystream, is combined one byte at a time with the plaintext stream using the bitwise 

exclusive-OR (XOR) operation. For example, if the next byte generated by the generator is 01101100 and the next plaintext byte is 

11001100, then the resulting ciphertext byte is
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Decryption requires the use of the same pseudorandom sequence:

Figure 6.8. Stream Cipher Diagram
(This item is displayed on page 189 in the print version)

[View full size image]
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The stream cipher is similar to the one-time pad discussed in Chapter 2. The difference is that a one-time pad uses a genuine random 

number stream, whereas a stream cipher uses a pseudorandom number stream.

[KUMA97] lists the following important design considerations for a stream cipher:

The encryption sequence should have a large period. A pseudorandom number generator uses a function that produces a 

deterministic stream of bits that eventually repeats. The longer the period of repeat the more difficult it will be to do 

cryptanalysis. This is essentially the same consideration that was discussed with reference to the Vigenère cipher, namely that

the longer the keyword the more difficult the cryptanalysis.

1.

The keystream should approximate the properties of a true random number stream as close as possible. For example, there 

should be an approximately equal number of 1s and 0s. If the keystream is treated as a stream of bytes, then all of the 256 

possible byte values should appear approximately equally often. The more random-appearing the keystream is, the more 

randomized the ciphertext is, making cryptanalysis more difficult.

2.

Note from Figure 6.8 that the output of the pseudorandom number generator is conditioned on the value of the input key. To 

guard against brute-force attacks, the key needs to be sufficiently long. The same considerations as apply for block ciphers are 

valid here. Thus, with current technology, a key length of at least 128 bits is desirable.

3.

With a properly designed pseudorandom number generator, a stream cipher can be as secure as block cipher of comparable key length. 

The primary advantage of a stream cipher is that stream ciphers are almost always faster and use far less code than do block ciphers. The 

example in this section, RC4, can be implemented in just a few lines of code. Table 6.2, using data from [RESC01], compares execution 

times of RC4 with three well-known symmetric block ciphers. The advantage of a block cipher is that you can reuse keys. However, if 

two plaintexts are encrypted with the same key using a stream cipher, then cryptanalysis is often quite simple [DAWS96]. If the two 

ciphertext streams are XORed together, the result is the XOR of the original plaintexts. If the plaintexts are text strings, credit card 

numbers, or other byte streams with known properties, then cryptanalysis may be successful.
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Table 6.2. Speed Comparisons of Symmetric Ciphers on a Pentium II

Cipher Key Length Speed (Mbps)

DES 56 9

3DES 168 3

RC2 variable 0.9

RC4 variable 45

For applications that require encryption/decryption of a stream of data, such as over a data communications channel or a browser/Web 

link, a stream cipher might be the better alternative. For applications that deal with blocks of data, such as file transfer, e-mail, and 

database, block ciphers may be more appropriate. However, either type of cipher can be used in virtually any application.

The RC4 Algorithm

RC4 is a stream cipher designed in 1987 by Ron Rivest for RSA Security. It is a variable key-size stream cipher with byte-oriented 

operations. The algorithm is based on the use of a random permutation. Analysis shows that the period of the cipher is overwhelmingly 

likely to be greater than 10
100

 [ROBS95a]. Eight to sixteen machine operations are required per output byte, and the cipher can be 

expected to run very quickly in software. RC4 is used in the SSL/TLS (Secure Sockets Layer/Transport Layer Security) standards that 

have been defined for communication between Web browsers and servers. It is also used in the WEP (Wired Equivalent Privacy) protocol 

and the newer WiFi Protected Access (WPA) protocol that are part of the IEEE 802.11 wireless LAN standard. RC4 was kept as a trade 

secret by RSA Security. In September 1994, the RC4 algorithm was anonymously posted on the Internet on the Cypherpunks anonymous 

remailers list.

The RC4 algorithm is remarkably simply and quite easy to explain. A variable-length key of from 1 to 256 bytes (8 to 2048 bits) is used to 

initialize a 256-byte state vector S, with elements S[0], S[1],..., S[255]. At all times, S contains a permutation of all 8-bit numbers from 0 

through 255. For encryption and decryption, a byte k (see Figure 6.8) is generated from S by selecting one of the 255 entries in a 

systematic fashion. As each value of k is generated, the entries in S are once again permuted.

Initialization of S

To begin, the entries of S are set equal to the values from 0 through 255 in ascending order; that is; S[0] = 0, S[1] = 1,..., S[255] = 255. A 

temporary vector, T, is also created. If the length of the key K is 256 bytes, then K is transferred to T. Otherwise, for a key of length keylen

bytes, the first keylen elements of T are copied from K and then K is repeated as many times as necessary to fill out T. These preliminary 

operations can be summarized as follows:
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/* Initialization */

for  i = 0 to 255 do
S[i] = i;

T[i] = K[i mod keylen];



Next we use T to produce the initial permutation of S. This involves starting with S[0] and going through to S[255], and, for each S[i], 

swapping S[i] with another byte in S according to a scheme dictated by T[i]:

/* Initial Permutation of S */

j = 0;

for  i = 0 to 255 do

  j = (j + S[i] + T[i]) mod 256;

  Swap (S[i], S[j]);

Because the only operation on S is a swap, the only effect is a permutation. S still contains all the numbers from 0 through 255.

Stream Generation

Once the S vector is initialized, the input key is no longer used. Stream generation involves cycling through all the elements of S[i], and, for 

each S[i], swapping S[i] with another byte in S according to a scheme dictated by the current configuration of S. After S[255] is reached, 

the process continues, starting over again at S[0]:

/* Stream Generation */

i, j = 0;

while (true)

  i = (i + 1) mod 256;

  j = (j + S[i]) mod 256;

  Swap (S[i], S[j]);

  t = (S[i] + S[j]) mod 256;

  k = S[t];

To encrypt, XOR the value k with the next byte of plaintext. To decrypt, XOR the value k with the next byte of ciphertext.

Figure 6.9 illustrates the RC4 logic.

Figure 6.9. RC4
(This item is displayed on page 193 in the print version)

[View full size image]



Strength of RC4

A number of papers have been published analyzing methods of attacking RC4 [e.g., [KNUD98], [MIST98], [FLUH00], [MANT01]). None of 

these approaches is practical against RC4 with a reasonable key length, such as 128 bits. A more serious problem is reported in 

[FLUH01]. The authors demonstrate that the WEP protocol, intended to provide confidentiality on 802.11 wireless LAN networks, is 

vulnerable to a particular attack approach. In essence, the problem is not with RC4 itself but the way in which keys are generated for use 

as input to RC4. This particular problem does not appear to be relevant to other applications using RC4 and can be remedied in WEP by 

changing the way in which keys are generated. This problem points out the difficulty in designing a secure system that involves both 

cryptographic functions and protocols that make use of them.
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6.4. Recommended Reading and Web Site

[SCHN96] provides details on numerous symmetric block ciphers as well as some stream ciphers. [ROBS95b] is an interesting and 

worthwhile examination of many design issues related to symmetric block ciphers.

[KUMA97] contains an excellent and lengthy discussion of stream cipher design principles. Another good treatment, quite mathematical, 

is [RUEP92]. [ROBS95a] is an interesting and worthwhile examination of many design issues related to stream ciphers.

KUMA97 Kumar, I. Cryptology. Laguna Hills, CA: Aegean Park Press, 1997.

ROBS95a Robshaw, M. Stream Ciphers. RSA Laboratories Technical Report TR-701, July 1995. 

http://www.rsasecurity.com/rsalabs

ROBS95b Robshaw, M. Block Ciphers. RSA Laboratories Technical Report TR-601, August 1995. 

http://www.rsasecurity.com/rsalabs

RUEP92 Rueppel, T. "Stream Ciphers." In [SIMM92].

SCHN96 Schneier, B. Applied Cryptography. New York: Wiley, 1996.

SIMM92 Simmons, G., ed. Contemporary Cryptology: The Science of Information Integrity. Piscataway, NJ: 

IEEE Press, 1992.

Recommended Web Site

Block cipher modes of operation: NIST page with full information on NIST-approved modes of operation

http://www.rsasecurity.com/rsalabs
http://www.rsasecurity.com/rsalabs




[Page 194 (continued)]

6.5. Key Terms, Review Questions, and Problems

Key Terms

Block cipher modes of operation

cipher block chaining mode (CBC)

cipher feedback mode (CFB)

meet-in-the-middle attack

counter mode (CTR)

electronic codebook mode (ECB)

output feedback mode (OFB)

RC4

stream cipher

Triple DES (3DES)
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Review Questions

6.1 What is triple encryption?

6.2 What is a meet-in-the-middle attack?

6.3 How many keys are used in triple encryption?

6.4 Why is the middle portion of 3DES a decryption rather than an encryption?

6.5 List important design considerations for a stream cipher.

6.6 Why is it not desirable to reuse a stream cipher key?

6.7 What primitive operations are used in RC4?

6.8 Why do some block cipher modes of operation only use encryption while others use both encryption and decryption?



Problems

6.1 You want to build a hardware device to do block encryption in the cipher block chaining (CBC) mode using an algorithm 

stronger than DES. 3DES is a good candidate. Figure 6.10 shows two possibilities, both of which follow from the definition 

of CBC. Which of the two would you choose:

For security?a.

For performance?

Figure 6.10. Use of Triple DES in CBC Mode

b.
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6.2 Can you suggest a security improvement to either option in Figure 6.10, using only three DES chips and some number of 

XOR functions? Assume you are still limited to two keys.

6.3 The Merkle-Hellman attack on 3DES begins by assuming a value A = 0 of (Figure 6.1b). Then, for each of the 256 possible 

values of K1, the plaintext P that produces A = 0 is determined. Describe the rest of the algorithm.

6.4 With the ECB mode of DES, if there is an error in a block of the transmitted ciphertext, only the corresponding plaintext 

block is affected. However, in the CBC mode, this error propagates. For example, an error in the transmitted C1 (Figure 6.4) 

obviously corrupts P1 and P2.

Are any blocks beyond P2 affected?a.

Suppose that there is a bit error in the source version of P1. Through how many ciphertext blocks is this error 

propagated? What is the effect at the receiver?

b.

6.5 If a bit error occurs in the transmission of a ciphertext character in 8-bit CFB mode, how far does the error propagate?

6.6 Fill in the remainder of this table:

Mode Encrypt Decrypt

ECB Cj = E(K, Pj) j = 1,...,N Pj = D(K, Cj) j = 1,..., N

CBC C1 = E(K, [P1  IV])

Cj = E(K, [Pj  Cj-1]) j = 2,..., N

P1 = D(K, C1)  IV

Pj = D(K, Cj)  Cj-1 j = 2,..., N

CFB   

OFB   

CTR   

6.7 CBC-Pad is a block cipher mode of operation used in the RC5 block cipher, but it could be used in any block cipher. 

CBC-Pad handles plaintext of any length. The ciphertext is longer then the plaintext by at most the size of a single block. 

Padding is used to assure that the plaintext input is a multiple of the block length. It is assumed that the original plaintext is 

an integer number of bytes. This plaintext is padded at the end by from 1 to bb bytes, where bb equals the block size in 

bytes. The pad bytes are all the same and set to a byte that represents the number of bytes of padding. For example, if 

there are 8 bytes of padding, each byte has the bit pattern 00001000. Why not allow zero bytes of padding? That is, if the 

original plaintext is an integer multiple of the block size, why not refrain from padding?

6.8 Padding may not always be appropriate. For example, one might wish to store the encrypted data in the same memory 

buffer that originally contained the plaintext. In that case, the ciphertext must be the same length as the original plaintext. A 

mode for that purpose is the ciphertext stealing (CTS) mode. Figure 6.11a shows an implementation of this mode.

Explain how it works.a.

Describe how to decrypt Cn-1 and Cnb.



6.9 Figure 6.11b shows an alternative to CTS for producing ciphertext of equal length to the plaintext when the plaintext is not 

an integer multiple of the block size.

Explain the algorithm.a.

Explain why CTS is preferable to this approach illustrated in Figure 6.11b.

Figure 6.11. Block Cipher Modes for Plaintext not a Multiple of Block Size
(This item is displayed on page 197 in the print version)

[View full size image]

b.

6.10 What RC4 key value will leave S unchanged during initialization? That is, after the initial permutation of S, the entries of S 

will be equal to the values from 0 through 255 in ascending order.
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6.11 RC4 has a secret internal state which is a permutation of all the possible values of the vector S and the two indices i and j.

Using a straightforward scheme to store the internal state, how many bits are used?a.

Suppose we think of it from the point of view of how much information is represented by the state. In that case, we 

need to determine how may different states there are, than take the log to the base 2 to find out how many bits of 

information this represents. Using this approach, how many bits would be needed to represent the state?

b.



6.12 Alice and Bob agree to communicate privately via email using a scheme based on RC4, but want to avoid using a new 

secret key for each transmission. Alice and Bob privately agree on a 128-bit key k. To encrypt a message m, consisting of a 

string of bits, the following procedure is used:

Choose a random 80-bit value v1.

Generate the ciphertext c = RC4(v || k)  m2.

Send the bit string (v || C)3.

Suppose Alice uses this procedure to send a message m to Bob. Describe how Bob can recover the message m

from (v || C) using k.

a.

If an adversary observes several values (v1 || C1), (v2 || C2), ... transmitted between Alice and Bob, how can 

he/she determine when the same key stream has been used to encrypt two messages?

b.
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Approximately how many messages can Alice expect to send before the same key stream will be used twice? Use 

the result from the birthday paradox described in Appendix 11A [Equation (11.7)].

c.

What does this imply about the lifetime of the key k (i.e., the number of messages that can be encrypted using k)?d.

Programming Problems

6.13 Create software that can encrypt and decrypt in Cipher Block Chaining mode using one of the following ciphers: affine 

modulo 256, Hill modulo 256, S-DES, DES. Test data for S-DES: using a binary initialization vector of 1010 1010, a 

binary plaintext of 0000 0001 0010 0011 encrypted with a binary key of 01111 11101 should give a binary plaintext of 

1111 0100 0000 1011. Decryption should work correspondingly.

6.14 Create software that can encrypt and decrypt in 4-bit Cipher Feedback mode using one of the following ciphers: 

additive modulo 256, affine modulo 256, S-DES;

or

8-bit Cipher Feedback mode using one of the following ciphers: 2 x 2 Hill modulo 256. Test data for S-DES: using a 

binary initialization vector of 1010 1011, a binary plaintext of 0001 0010 0011 0100 encrypted with a binary key of 

01111 11101 should give a binary plaintext of 1110 1100 1111 1010. Decryption should work correspondingly.

6.15 Create software that can encrypt and decrypt in 4-bit Output Feedback mode using one of the following ciphers: 

additive modulo 256, affine modulo 256, S-DES;

or

8-bit Output Feedback mode using one of the following ciphers: 2 x 2 Hill modulo 256,

6.16 Create software that can encrypt and decrypt in Counter mode using one of the following ciphers: affine modulo 256, 

Hill modulo 256, S-DES.

Test data for S-DES: using a counter starting at 0000 0000, a binary plaintext of 0000 0001 0000 0010 0000 0100 

encrypted with a binary key of 01111 11101 should give a binary plaintext of 0011 1000 0100 1111 0011 0010. 

Decryption should work correspondingly.



6.17 Implement a differential cryptanalysis attack on 3-round S-DES.



[Page 199]

Chapter 7. Confidentiality Using Symmetric 
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Amongst the tribes of Central Australia every man, woman, and child has a secret or sacred name which is 

bestowed by the older men upon him or her soon after birth, and which is known to none but the fully initiated 

members of the group. This secret name is never mentioned except upon the most solemn occasions; to utter it in 

the hearing of men of another group would be a most serious breach of tribal custom. When mentioned at all, the 

name is spoken only in a whisper, and not until the most elaborate precautions have been taken that it shall be 

heard by no one but members of the group. The native thinks that a stranger knowing his secret name would have 

special power to work him ill by means of magic.

The Golden Bough, Sir James George Frazer

John wrote the letters of the alphabet under the letters in its first lines and tried it against the message. 

Immediately he knew that once more he had broken the code. It was extraordinary the feeling of triumph he had. 

He felt on top of the world. For not only had he done it, had he broken the July code, but he now had the key to 

every future coded message, since instructions as to the source of the next one must of necessity appear in the 

current one at the end of each month.

Talking to Strange Men, Ruth Rendell

Key Points

In a distributed environment, encryption devices can be placed to support either link encryption or 

end-to-end encryption. With link encryption, each vulnerable communications link is equipped on both ends 

with an encryption device. With end-to-end encryption, the encryption process is carried out at the two end 

systems.

Even if all traffic between users is encrypted, a traffic analysis may yield information of value to an 

opponent. An effective countermeasure is traffic padding, which involves sending random bits during 

periods when no encrypted data are available for transmission.

Key distribution is the function that delivers a key to two parties who wish to exchange secure encrypted 

data. Some sort of mechanism or protocol is needed to provide for the secure distribution of keys.



Key distribution often involves the use of master keys, which are infrequently used and are long lasting, and 

session keys, which are generated and distributed for temporary use between two parties.

A capability with application to a number of cryptographic functions is random or pseudorandom number 

generation. The principle requirement for this capability is that the generated number stream be 

unpredictable.
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Historically, the focus of cryptology has been on the use of symmetric encryption to provide confidentiality. It is only in the last 

several decades that other considerations, such as authentication, integrity, digital signatures, and the use of public-key encryption, have 

been included in the theory and practice of cryptology.

Before examining some of these more recent topics, we concentrate in this chapter on the use of symmetric encryption to provide 

confidentiality. This topic remains important in itself. In addition, an understanding of the issues involved here helps to motivate the 

development of public-key encryption and clarifies the issues involved in other applications of encryption, such as authentication.

We begin with a discussion of the location of encryption logic; the main choice here is between what are known as link encryption and 

end-to-end encryption. Next, we look at the use of encryption to counter traffic analysis attacks. Then we discuss the difficult problem of 

key distribution. Finally, we discuss the principles underlying an important tool in providing a confidentiality facility: random number 

generation.
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7.1. Placement of Encryption Function

If encryption is to be used to counter attacks on confidentiality, we need to decide what to encrypt and where the encryption function 

should be located. To begin, this section examines the potential locations of security attacks and then looks at the two major approaches 

to encryption placement: link and end to end.

Potential Locations for Confidentiality Attacks

As an example, consider a user workstation in a typical business organization. Figure 7.1 suggests the types of communications facilities 

that might be employed by such a workstation and therefore gives an indication of the points of vulnerability.

Figure 7.1. Points of Vulnerability
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In most organizations, workstations are attached to local area networks (LANs). Typically, the user can reach other workstations, hosts, 

and servers directly on the LAN or on other LANs in the same building that are interconnected with bridges and routers. Here, then, is the 

first point of vulnerability. In this case, the main concern is eavesdropping by another employee. Typically, a LAN is a broadcast network: 

Transmission from any station to any other station is visible on the LAN medium to all stations. Data are transmitted in the form of frames, 

with each frame containing the source and destination address. An eavesdropper can monitor the traffic on the LAN and capture any traffic 

desired on the basis of source and destination addresses. If part or all of the LAN is wireless, then the potential for eavesdropping is 

greater.

Furthermore, the eavesdropper need not necessarily be an employee in the building. If the LAN, through a communications server or one 

of the hosts on the LAN, offers a dial-in capability, then it is possible for an intruder to gain access to the LAN and monitor traffic.

Access to the outside world from the LAN is almost always available in the form of a router that connects to the Internet, a bank of dial-out 

modems, or some other type of communications server. From the communications server, there is a line leading to a wiring closet. The 

wiring closet serves as a patch panel for interconnecting internal data and phone lines and for providing a staging point for external 

communications.

The wiring closet itself is vulnerable. If an intruder can penetrate to the closet, he or she can tap into each wire to determine which are 

used for data transmission. After isolating one or more lines, the intruder can attach a low-power radio transmitter. The resulting signals 

can be picked up from a nearby location (e.g., a parked van or a nearby building).

Several routes out of the wiring closet are possible. A standard configuration provides access to the nearest central office of the local 

telephone company. Wires in the closet are gathered into a cable, which is usually consolidated with other cables in the basement of the 

building. From there, a larger cable runs underground to the central office.

In addition, the wiring closet may provide a link to a microwave antenna, either an earth station for a satellite link or a point-to-point 

terrestrial microwave link. The antenna link can be part of a private network, or it can be a local bypass to hook in to a long-distance 

carrier.

The wiring closet may also provide a link to a node of a packet-switching network. This link can be a leased line, a direct private line, or a 

switched connection through a public telecommunications network. Inside the network, data pass through a number of nodes and links 

between nodes until the data arrive at the node to which the destination end system is connected.

An attack can take place on any of the communications links. For active attacks, the attacker needs to gain physical control of a portion of 

the link and be able to insert and capture transmissions. For a passive attack, the attacker merely needs to be able to observe 

transmissions. The communications links involved can be cable (telephone twisted pair, coaxial cable, or optical fiber), microwave links, or 

satellite channels. Twisted pair and coaxial cable can be attacked using either invasive taps or inductive devices that monitor 

electromagnetic emanations. Invasive taps allow both active and passive attacks, whereas inductive taps are useful for passive attacks. 

Neither type of tap is as effective with optical fiber, which is one of the advantages of this medium. The fiber does not generate 

electromagnetic emanations and hence is not vulnerable to inductive taps. Physically breaking the cable seriously degrades signal quality 

and is therefore detectable. Microwave and satellite transmissions can be intercepted with little risk to the attacker. This is especially true 

of satellite transmissions, which cover a broad geographic area. Active attacks on microwave and satellite are also possible, although they 

are more difficult technically and can be quite expensive.
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In addition to the potential vulnerability of the various communications links, the various processors along the path are themselves subject 

to attack. An attack can take the form of attempts to modify the hardware or software, to gain access to the memory of the processor, or to 

monitor the electromagnetic emanations. These attacks are less likely than those involving communications links but are nevertheless a 

source of risk.

Thus, there are a large number of locations at which an attack can occur. Furthermore, for wide area communications, many of these 

locations are not under the physical control of the end user. Even in the case of local area networks, in which physical security measures 

are possible, there is always the threat of the disgruntled employee.



Link versus End-to-End Encryption

The most powerful and most common approach to securing the points of vulnerability highlighted in the preceding section is encryption. If 

encryption is to be used to counter these attacks, then we need to decide what to encrypt and where the encryption gear should be 

located. As Figure 7.2 indicates, there are two fundamental alternatives: link encryption and end-to-end encryption.

Figure 7.2. Encryption Across a Packet-Switching Network
(This item is displayed on page 204 in the print version)

[View full size image]

Basic Approaches

With link encryption, each vulnerable communications link is equipped on both ends with an encryption device. Thus, all traffic over all 

communications links is secured. Although this recourse requires a lot of encryption devices in a large network, its value is clear. One of its 

disadvantages is that the message must be decrypted each time it enters a switch (such as a frame relay switch) because the switch must 

read the address (logical connection number) in the packet header in order to route the frame. Thus, the message is vulnerable at each 

switch. If working with a public network, the user has no control over the security of the nodes.

Several implications of link encryption should be noted. For this strategy to be effective, all the potential links in a path from source to 

destination must use link encryption. Each pair of nodes that share a link should share a unique key, with a different key used on each link. 

Thus, many keys must be provided.

With end-to-end encryption, the encryption process is carried out at the two end systems. The source host or terminal encrypts the data. 



The data in encrypted form are then transmitted unaltered across the network to the destination terminal or host. The destination shares a 

key with the source and so is able to decrypt the data. This plan seems to secure the transmission against attacks on the network links or 

switches. Thus, end-to-end encryption relieves the end user of concerns about the degree of security of networks and links that support 

the communication. There is, however, still a weak spot.

Consider the following situation. A host connects to a frame relay or ATM network, sets up a logical connection to another host, and is 

prepared to transfer data to that other host by using end-to-end encryption. Data are transmitted over such a network in the form of 

packets that consist of a header and some user data. What part of each packet will the host encrypt? Suppose that the host encrypts the 

entire packet, including the header. This will not work because, remember, only the other host can perform the decryption. The frame 

relay or ATM switch will receive an encrypted packet and be unable to read the header. Therefore, it will not be able to route the packet. It 

follows that the host may encrypt only the user data portion of the packet and must leave the header in the clear.
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Thus, with end-to-end encryption, the user data are secure. However, the traffic pattern is not, because packet headers are transmitted in 

the clear. On the other hand, end-to-end encryption does provide a degree of authentication. If two end systems share an encryption key, 

then a recipient is assured that any message that it receives comes from the alleged sender, because only that sender shares the relevant 

key. Such authentication is not inherent in a link encryption scheme.

To achieve greater security, both link and end-to-end encryption are needed, as is shown in Figure 7.2. When both forms of encryption are 

employed, the host encrypts the user data portion of a packet using an end-to-end encryption key. The entire packet is then encrypted 

using a link encryption key. As the packet traverses the network, each switch decrypts the packet, using a link encryption key to read the 

header, and then encrypts the entire packet again for sending it out on the next link. Now the entire packet is secure except for the time 

that the packet is actually in the memory of a packet switch, at which time the packet header is in the clear.

Table 7.1 summarizes the key characteristics of the two encryption strategies.

Table 7.1. Characteristics of Link and End-to-End Encryption [PFLE02]

Link Encryption End-to-End Encryption

Security within End Systems and Intermediate Systems

Message exposed in sending host Message encrypted in sending host

Message exposed in intermediate nodes Message encrypted in intermediate nodes

Role of User

Applied by sending host Applied by sending process

Transparent to user User applies encryption

Host maintains encryption facility User must determine algorithm

One facility for all users Users selects encryption scheme

Can be done in hardware Software implementation

All or no messages encrypted User chooses to encrypt, or not, for each message

Implementation Concerns

Requires one key per (host-intermediate node) pair and 

(intermediate node-intermediate node) pair

Requires one key per user pair

Provides host authentication Provides user authentication



Logical Placement of End-to-End Encryption Function

With link encryption, the encryption function is performed at a low level of the communications hierarchy. In terms of the Open Systems 

Interconnection (OSI) model, link encryption occurs at either the physical or link layers.
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For end-to-end encryption, several choices are possible for the logical placement of the encryption function. At the lowest practical level, 

the encryption function could be performed at the network layer. Thus, for example, encryption could be associated with the frame relay or 

ATM protocol, so that the user data portion of all frames or ATM cells is encrypted.

With network-layer encryption, the number of identifiable and separately protected entities corresponds to the number of end systems in 

the network. Each end system can engage in an encrypted exchange with another end system if the two share a secret key. All the user 

processes and applications within each end system would employ the same encryption scheme with the same key to reach a particular 

target end system. With this arrangement, it might be desirable to off-load the encryption function to some sort of front-end processor 

(typically a communications board in the end system).

Figure 7.3 shows the encryption function of the front-end processor (FEP). On the host side, the FEP accepts packets. The user data 

portion of the packet is encrypted, while the packet header bypasses the encryption process.
[1]

 The resulting packet is delivered to the 

network. In the opposite direction, for packets arriving from the network, the user data portion is decrypted and the entire packet is 

delivered to the host. If the transport layer functionality (e.g., TCP) is implemented in the front end, then the transport-layer header would 

also be left in the clear and the user data portion of the transport protocol data unit is encrypted.

[1] The terms red and black are frequently used. Red data are sensitive or classified data in the clear. Black data are 

encrypted data.

Figure 7.3. Front-End Processor Function

[View full size image]



Deployment of encryption services on end-to-end protocols, such as a network-layer frame relay or TCP, provides end-to-end security for 

traffic within a fully integrated internetwork. However, such a scheme cannot deliver the necessary service for traffic that crosses 

internetwork boundaries, such as electronic mail, electronic data interchange (EDI), and file transfers.

Figure 7.4 illustrates the issues involved. In this example, an electronic mail gateway is used to interconnect an internetwork that uses an 

OSI-based architecture with one that uses a TCP/IP-based architecture.
[2]

 In such a configuration, there is no end-to-end protocol below 

the application layer. The transport and network connections from each end system terminate at the mail gateway, which sets up new 

transport and network connections to link to the other end system. Furthermore, such a scenario is not limited to the case of a gateway 

between two different architectures. Even if both end systems use TCP/IP or OSI, there are plenty of instances in actual configurations in 

which mail gateways sit between otherwise isolated internetworks. Thus, for applications like electronic mail that have a store-and-forward 

capability, the only place to achieve end-to-end encryption is at the application layer.

[2] Appendix H provides a brief overview of the OSI and TCP/IP protocol architectures.
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Figure 7.4. Encryption Coverage Implications of Store-and-Forward Communications

[View full size image]



A drawback of application-layer encryption is that the number of entities to consider increases dramatically. A network that supports 

hundreds of hosts may support thousands of users and processes. Thus, many more secret keys need to be generated and distributed.

An interesting way of viewing the alternatives is to note that as we move up the communications hierarchy, less information is encrypted 

but it is more secure. Figure 7.5 highlights this point, using the TCP/IP architecture as an example. In the figure, an application-level 

gateway refers to a store-and-forward device that operates at the application level.
[3]

[3] Unfortunately, most TCP/IP documents use the term gateway to refer to what is more commonly referred to as a 

router.
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Figure 7.5. Relationship between Encryption and Protocol Levels

[View full size image]



With application-level encryption (Figure 7.5a), only the user data portion of a TCP segment is encrypted. The TCP, IP, network-level, and 

link-level headers and link-level trailer are in the clear. By contrast, if encryption is performed at the TCP level (Figure 7.5b), then, on a 

single end-to-end connection, the user data and the TCP header are encrypted. The IP header remains in the clear because it is needed 

by routers to route the IP datagram from source to destination. Note, however, that if a message passes through a gateway, the TCP 

connection is terminated and a new transport connection is opened for the next hop. Furthermore, the gateway is treated as a destination 

by the underlying IP. Thus, the encrypted portions of the data unit are decrypted at the gateway. If the next hop is over a TCP/IP network, 

then the user data and TCP header are encrypted again before transmission. However, in the gateway itself the data unit is buffered 

entirely in the clear. Finally, for link-level encryption (Figure 7.5c), the entire data unit except for the link header and trailer is encrypted on 

each link, but the entire data unit is in the clear at each router and gateway.
[4]

[4] The figure actually shows but one alternative. It is also possible to encrypt part or even all of the link header and 

trailer except for the starting and ending frame flags.
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7.2. Traffic Confidentiality

We mentioned in Chapter 1 that, in some cases, users are concerned about security from traffic analysis. Knowledge about the number 

and length of messages between nodes may enable an opponent to determine who is talking to whom. This can have obvious implications 

in a military conflict. Even in commercial applications, traffic analysis may yield information that the traffic generators would like to conceal. 

[MUFT89] lists the following types of information that can be derived from a traffic analysis attack:

Identities of partners

How frequently the partners are communicating

Message pattern, message length, or quantity of messages that suggest important information is being exchanged

The events that correlate with special conversations between particular partners

Another concern related to traffic is the use of traffic patterns to create a covert channel. A covert channel is a means of communication 

in a fashion unintended by the designers of the communications facility. Typically, the channel is used to transfer information in a way that 

violates a security policy. For example, an employee may wish to communicate information to an outsider in a way that is not detected by 

management and that requires simple eavesdropping on the part of the outsider. The two participants could set up a code in which an 

apparently legitimate message of a less than a certain length represents binary zero, whereas a longer message represents a binary one. 

Other such schemes are possible.

Link Encryption Approach

With the use of link encryption, network-layer headers (e.g., frame or cell header) are encrypted, reducing the opportunity for traffic 

analysis. However, it is still possible in those circumstances for an attacker to assess the amount of traffic on a network and to observe the 

amount of traffic entering and leaving each end system. An effective countermeasure to this attack is traffic padding, illustrated in Figure 

7.6.

Figure 7.6. Traffic-Padding Encryption Device
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Traffic padding produces ciphertext output continuously, even in the absence of plaintext. A continuous random data stream is 

generated. When plaintext is available, it is encrypted and transmitted. When input plaintext is not present, random data are encrypted and 

transmitted. This makes it impossible for an attacker to distinguish between true data flow and padding and therefore impossible to deduce 

the amount of traffic.

End-to-End Encryption Approach

Traffic padding is essentially a link encryption function. If only end-to-end encryption is employed, then the measures available to the 

defender are more limited. For example, if encryption is implemented at the application layer, then an opponent can determine which 

transport entities are engaged in dialogue. If encryption techniques are housed at the transport layer, then network-layer addresses and 

traffic patterns remain accessible.

One technique that might prove useful is to pad out data units to a uniform length at either the transport or application level. In addition, null 

messages can be inserted randomly into the stream. These tactics deny an opponent knowledge about the amount of data exchanged 

between end users and obscure the underlying traffic pattern.
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7.3. Key Distribution

For symmetric encryption to work, the two parties to an exchange must share the same key, and that key must be protected from access 

by others. Furthermore, frequent key changes are usually desirable to limit the amount of data compromised if an attacker learns the key. 

Therefore, the strength of any cryptographic system rests with the key distribution technique, a term that refers to the means of delivering 

a key to two parties who wish to exchange data, without allowing others to see the key. For two parties A and B, key distribution can be 

achieved in a number of ways, as follows:

A can select a key and physically deliver it to B.1.

A third party can select the key and physically deliver it to A and B.2.

If A and B have previously and recently used a key, one party can transmit the new key to the other, encrypted using the old 

key.

3.

If A and B each has an encrypted connection to a third party C, C can deliver a key on the encrypted links to A and B.4.

Options 1 and 2 call for manual delivery of a key. For link encryption, this is a reasonable requirement, because each link encryption 

device is going to be exchanging data only with its partner on the other end of the link. However, for end-to-end encryption, manual 

delivery is awkward. In a distributed system, any given host or terminal may need to engage in exchanges with many other hosts and 

terminals over time. Thus, each device needs a number of keys supplied dynamically. The problem is especially difficult in a wide area 

distributed system.

The scale of the problem depends on the number of communicating pairs that must be supported. If end-to-end encryption is done at a 

network or IP level, then a key is needed for each pair of hosts on the network that wish to communicate. Thus, if there are N hosts, the 

number of required keys is [N(N 1)]/2. If encryption is done at the application level, then a key is needed for every pair of users or

processes that require communication. Thus, a network may have hundreds of hosts but thousands of users and processes. Figure 7.7

illustrates the magnitude of the key distribution task for end-to-end encryption.
[5]

 A network using node-level encryption with 1000 nodes 

would conceivably need to distribute as many as half a million keys. If that same network supported 10,000 applications, then as many as 

50 million keys may be required for application-level encryption.

[5] Note that this figure uses a log-log scale, so that a linear graph indicates exponential growth. A basic review of 

log scales is in the math refresher document at the Computer Science Student Resource Site at 

WilliamStallings.com/StudentSupport.html.
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Figure 7.7. Number of Keys Required to Support Arbitrary Connections between Endpoints

[View full size image]
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Returning to our list, option 3 is a possibility for either link encryption or end-to-end encryption, but if an attacker ever succeeds in gaining 

access to one key, then all subsequent keys will be revealed. Furthermore, the initial distribution of potentially millions of keys must still be 

made.

For end-to-end encryption, some variation on option 4 has been widely adopted. In this scheme, a key distribution center is responsible for 

distributing keys to pairs of users (hosts, processes, applications) as needed. Each user must share a unique key with the key distribution 

center for purposes of key distribution.
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The use of a key distribution center is based on the use of a hierarchy of keys. At a minimum, two levels of keys are used (Figure 7.8). 

Communication between end systems is encrypted using a temporary key, often referred to as a session key. Typically, the session key 

is used for the duration of a logical connection, such as a frame relay connection or transport connection, and then discarded. Each 

session key is obtained from the key distribution center over the same networking facilities used for end-user communication. Accordingly, 

session keys are transmitted in encrypted form, using a master key that is shared by the key distribution center and an end system or user.

Figure 7.8. The Use of a Key Hierarchy



For each end system or user, there is a unique master key that it shares with the key distribution center. Of course, these master keys 

must be distributed in some fashion. However, the scale of the problem is vastly reduced. If there are N entities that wish to communicate 

in pairs, then, as was mentioned, as many as [N(N 1)]/2 session keys are needed at any one time. However, only N master keys are 

required, one for each entity. Thus, master keys can be distributed in some noncryptographic way, such as physical delivery.

A Key Distribution Scenario

The key distribution concept can be deployed in a number of ways. A typical scenario is illustrated in Figure 7.9, which is based on a 

figure in [POPE79]. The scenario assumes that each user shares a unique master key with the key distribution center (KDC).

Figure 7.9. Key Distribution Scenario
(This item is displayed on page 213 in the print version)
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Let us assume that user A wishes to establish a logical connection with B and requires a one-time session key to protect the data 

transmitted over the connection. A has a master key, Ka, known only to itself and the KDC; similarly, B shares the master key Kb with the 

KDC. The following steps occur:

1. A issues a request to the KDC for a session key to protect a logical connection to B. The message includes the identity of A and 

B and a unique identifier, N1, for this transaction, which we refer to as a nonce.
[6]

 The nonce may be a timestamp, a counter, or 

a random number; the minimum requirement is that it differs with each request. Also, to prevent masquerade, it should be 

difficult for an opponent to guess the nonce. Thus, a random number is a good choice for a nonce.

[6] The following definitions are useful in understanding the purpose of the nonce component. Nonce: The 

present or particular occasion. Nonce word: A word occurring, invented, or used just for a particular 

occasion. From the American Heritage Dictionary of the English Language, 3rd ed.

[Page 213]

2. The KDC responds with a message encrypted using Ka Thus, A is the only one who can successfully read the message, and A 

knows that it originated at the KDC. The message includes two items intended for A:

The one-time session key, Ks, to be used for the session

The original request message, including the nonce, to enable A to match this response with the appropriate request

Thus, A can verify that its original request was not altered before reception by the KDC and, because of the nonce, that this is 

not a replay of some previous request.

In addition, the message includes two items intended for B:



The one-time session key, Ks to be used for the session

An identifier of A (e.g., its network address), IDA

These last two items are encrypted with Kb (the master key that the KDC shares with B). They are to be sent to B to establish the 

connection and prove A's identity.
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3. A stores the session key for use in the upcoming session and forwards to B the information that originated at the KDC for B, 

namely, E(Kb, [Ks || IDA]). Because this information is encrypted with Kb, it is protected from eavesdropping. B now knows the 

session key (Ks), knows that the other party is A (from IDA), and knows that the information originated at the KDC (because it is 

encrypted using Kb).

At this point, a session key has been securely delivered to A and B, and they may begin their protected exchange. However, two 

additional steps are desirable:

4. Using the newly minted session key for encryption, B sends a nonce, N2, to A.

5. Also using Ks, A responds with f(N2), where f is a function that performs some transformation on N2 (e.g., adding one).

These steps assure B that the original message it received (step 3) was not a replay.

Note that the actual key distribution involves only steps 1 through 3 but that steps 4 and 5, as well as 3, perform an authentication function.

Hierarchical Key Control

It is not necessary to limit the key distribution function to a single KDC. Indeed, for very large networks, it may not be practical to do so. As 

an alternative, a hierarchy of KDCs can be established. For example, there can be local KDCs, each responsible for a small domain of the 

overall internetwork, such as a single LAN or a single building. For communication among entities within the same local domain, the local 

KDC is responsible for key distribution. If two entities in different domains desire a shared key, then the corresponding local KDCs can 

communicate through a global KDC. In this case, any one of the three KDCs involved can actually select the key. The hierarchical concept 

can be extended to three or even more layers, depending on the size of the user population and the geographic scope of the internetwork.

A hierarchical scheme minimizes the effort involved in master key distribution, because most master keys are those shared by a local KDC 

with its local entities. Furthermore, such a scheme limits the damage of a faulty or subverted KDC to its local area only.

Session Key Lifetime

The more frequently session keys are exchanged, the more secure they are, because the opponent has less ciphertext to work with for 

any given session key. On the other hand, the distribution of session keys delays the start of any exchange and places a burden on 

network capacity. A security manager must try to balance these competing considerations in determining the lifetime of a particular 

session key.

For connection-oriented protocols, one obvious choice is to use the same session key for the length of time that the connection is open, 

using a new session key for each new session. If a logical connection has a very long lifetime, then it would be prudent to change the 

session key periodically, perhaps every time the PDU (protocol data unit) sequence number cycles.



For a connectionless protocol, such as a transaction-oriented protocol, there is no explicit connection initiation or termination. Thus, it is 

not obvious how often one needs to change the session key. The most secure approach is to use a new session key for each 

exchange. However, this negates one of the principal benefits of connectionless protocols, which is minimum overhead and delay for each 

transaction. A better strategy is to use a given session key for a certain fixed period only or for a certain number of transactions.
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A Transparent Key Control Scheme

The approach suggested in Figure 7.9 has many variations, one of which is described in this subsection. The scheme (Figure 7.10) is useful 

for providing end-to-end encryption at a network or transport level in a way that is transparent to the end users. The approach assumes 

that communication makes use of a connection-oriented end-to-end protocol, such as TCP. The noteworthy element of this approach is a 

session security module (SSM), which may consists of functionality at one protocol layer, that performs end-to-end encryption and obtains 

session keys on behalf of its host or terminal.

Figure 7.10. Automatic Key Distribution for Connection-Oriented Protocol
(This item is displayed on page 216 in the print version)

[View full size image]

The steps involved in establishing a connection are shown in the figure. When one host wishes to set up a connection to another host, it 

transmits a connection-request packet (step 1). The SSM saves that packet and applies to the KDC for permission to establish the 

connection (step 2). The communication between the SSM and the KDC is encrypted using a master key shared only by this SSM and the 



KDC. If the KDC approves the connection request, it generates the session key and delivers it to the two appropriate SSMs, using a 

unique permanent key for each SSM (step 3). The requesting SSM can now release the connection request packet, and a connection is 

set up between the two end systems (step 4). All user data exchanged between the two end systems are encrypted by their respective 

SSMs using the one-time session key.

The automated key distribution approach provides the flexibility and dynamic characteristics needed to allow a number of terminal users to 

access a number of hosts and for the hosts to exchange data with each other.

Decentralized Key Control

The use of a key distribution center imposes the requirement that the KDC be trusted and be protected from subversion. This requirement 

can be avoided if key distribution is fully decentralized. Although full decentralization is not practical for larger networks using symmetric 

encryption only, it may be useful within a local context.

A decentralized approach requires that each end system be able to communicate in a secure manner with all potential partner end 

systems for purposes of session key distribution. Thus, there may need to be as many as [n(n 1)]/2 master keys for a configuration with n

end systems.

A session key may be established with the following sequence of steps (Figure 7.11):

1. A issues a request to B for a session key and includes a nonce, N1

2. B responds with a message that is encrypted using the shared master key. The response includes the session key selected by 

B, an identifier of B, the value f(N1), and another nonce, N2.

3. Using the new session key, A returns f(N2) to B.
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Figure 7.11. Decentralized Key Distribution

[View full size image]



Thus, although each node must maintain at most (n 1) master keys, as many session keys as required may be generated and used.

Because the messages transferred using the master key are short, cryptanalysis is difficult. As before, session keys are used for only a 

limited time to protect them.

Controlling Key Usage

The concept of a key hierarchy and the use of automated key distribution techniques greatly reduce the number of keys that must be 

manually managed and distributed. It may also be desirable to impose some control on the way in which automatically distributed keys are 

used. For example, in addition to separating master keys from session keys, we may wish to define different types of session keys on the 

basis of use, such as

Data-encrypting key, for general communication across a network

PIN-encrypting key, for personal identification numbers (PINs) used in electronic funds transfer and point-of-sale applications

File-encrypting key, for encrypting files stored in publicly accessible locations

To illustrate the value of separating keys by type, consider the risk that a master key is imported as a data-encrypting key into a device. 

Normally, the master key is physically secured within the cryptographic hardware of the key distribution center and of the end systems. 

Session keys encrypted with this master key are available to application programs, as are the data encrypted with such session keys. 

However, if a master key is treated as a session key, it may be possible for an unauthorized application to obtain plaintext of session keys 

encrypted with that master key.

Thus, it may be desirable to institute controls in systems that limit the ways in which keys are used, based on characteristics associated 

with those keys. One simple plan is to associate a tag with each key ([JONE82]; see also [DAVI89]). The proposed technique is for use 

with DES and makes use of the extra 8 bits in each 64-bit DES key. That is, the 8 nonkey bits ordinarily reserved for parity checking form 

the key tag. The bits have the following interpretation:

One bit indicates whether the key is a session key or a master key.

One bit indicates whether the key can be used for encryption.

One bit indicates whether the key can be used for decryption.

The remaining bits are spares for future use.

[Page 218]

Because the tag is embedded in the key, it is encrypted along with the key when that key is distributed, thus providing protection. The 

drawbacks of this scheme are that (1) the tag length is limited to 8 bits, limiting its flexibility and functionality; and (2) because the tag is not 

transmitted in clear form, it can be used only at the point of decryption, limiting the ways in which key use can be controlled.

A more flexible scheme, referred to as the control vector, is described in [MATY91a and b]. In this scheme, each session key has an 

associated control vector consisting of a number of fields that specify the uses and restrictions for that session key. The length of the 

control vector may vary.

The control vector is cryptographically coupled with the key at the time of key generation at the KDC. The coupling and decoupling 

processes are illustrated in Figure 7.12. As a first step, the control vector is passed through a hash function that produces a value whose 

length is equal to the encryption key length. Hash functions are discussed in detail in Chapter 11. In essence, a hash function maps values 

from a larger range into a smaller range, with a reasonably uniform spread. Thus, for example, if numbers in the range 1 to 100 are 

hashed into numbers in the range 1 to 10, approximately 10% of the source values should map into each of the target values.



Figure 7.12. Control Vector Encryption and Decryption
(This item is displayed on page 219 in the print version)
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The hash value is then XORed with the master key to produce an output that is used as the key input for encrypting the session key. Thus,

Hash value = H = h(CV)

Key input = Km  H

Ciphertext = E([Km  H], Ks)

where Km is the master key and Ks is the session key. The session key is recovered in plaintext by the reverse operation:

D([Km  H], E([Km  H], Ks))

When a session key is delivered to a user from the KDC, it is accompanied by the control vector in clear form. The session key can be 

recovered only by using both the master key that the user shares with the KDC and the control vector. Thus, the linkage between the 

session key and its control vector is maintained.

Use of the control vector has two advantages over use of an 8-bit tag. First, there is no restriction on length of the control vector, which 

enables arbitrarily complex controls to be imposed on key use. Second, the control vector is available in clear form at all stages of 

operation. Thus, control of key use can be exercised in multiple locations.
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7.4. Random Number Generation

Random numbers play an important role in the use of encryption for various network security applications. In this section, we provide a 

brief overview of the use of random numbers in network security and then look at some approaches to generating random numbers.
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The Use of Random Numbers

A number of network security algorithms based on cryptography make use of random numbers. For example,

Reciprocal authentication schemes, such as illustrated in Figures 7.9 and 7.11. In both of these key distribution scenarios, 

nonces are used for handshaking to prevent replay attacks. The use of random numbers for the nonces frustrates opponents' 

efforts to determine or guess the nonce.

Session key generation, whether done by a key distribution center or by one of the principals.

Generation of keys for the RSA public-key encryption algorithm (described in Chapter 9).

These applications give rise to two distinct and not necessarily compatible requirements for a sequence of random numbers: randomness 

and unpredictability.

Randomness

Traditionally, the concern in the generation of a sequence of allegedly random numbers has been that the sequence of numbers be 

random in some well-defined statistical sense. The following two criteria are used to validate that a sequence of numbers is random:

Uniform distribution: The distribution of numbers in the sequence should be uniform; that is, the frequency of occurrence of 

each of the numbers should be approximately the same.

Independence: No one value in the sequence can be inferred from the others.

Although there are well-defined tests for determining that a sequence of numbers matches a particular distribution, such as the uniform 

distribution, there is no such test to "prove" independence. Rather, a number of tests can be applied to demonstrate if a sequence does 

not exhibit independence. The general strategy is to apply a number of such tests until the confidence that independence exists is 

sufficiently strong.

In the context of our discussion, the use of a sequence of numbers that appear statistically random often occurs in the design of 

algorithms related to cryptography. For example, a fundamental requirement of the RSA public-key encryption scheme discussed in 

Chapter 9 is the ability to generate prime numbers. In general, it is difficult to determine if a given large number N is prime. A brute-force 

approach would be to divide N by every odd integer less than . If N is on the order, say, of 10
150

, a not uncommon occurrence in 



public-key cryptography, such a brute-force approach is beyond the reach of human analysts and their computers. However, a number of 

effective algorithms exist that test the primality of a number by using a sequence of randomly chosen integers as input to relatively simple 

computations. If the sequence is sufficiently long (but far, far less than ), the primality of a number can be determined with 

near certainty. This type of approach, known as randomization, crops up frequently in the design of algorithms. In essence, if a problem is 

too hard or time-consuming to solve exactly, a simpler, shorter approach based on randomization is used to provide an answer with any 

desired level of confidence.

Unpredictability

In applications such as reciprocal authentication and session key generation, the requirement is not so much that the sequence of 

numbers be statistically random but that the successive members of the sequence are unpredictable. With "true" random sequences, 

each number is statistically independent of other numbers in the sequence and therefore unpredictable. However, as is discussed shortly, 

true random numbers are seldom used; rather, sequences of numbers that appear to be random are generated by some algorithm. In this 

latter case, care must be taken that an opponent not be able to predict future elements of the sequence on the basis of earlier elements.
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Pseudorandom Number Generators (PRNGs)

Cryptographic applications typically make use of algorithmic techniques for random number generation. These algorithms are 

deterministic and therefore produce sequences of numbers that are not statistically random. However, if the algorithm is good, the 

resulting sequences will pass many reasonable tests of randomness. Such numbers are referred to as pseudorandom numbers.

You may be somewhat uneasy about the concept of using numbers generated by a deterministic algorithm as if they were random 

numbers. Despite what might be called philosophical objections to such a practice, it generally works. As one expert on probability theory 

puts it [HAMM91]:

For practical purposes we are forced to accept the awkward concept of "relatively random" meaning that with 

regard to the proposed use we can see no reason why they will not perform as if they were random (as the theory 

usually requires). This is highly subjective and is not very palatable to purists, but it is what statisticians regularly 

appeal to when they take "a random sample"they hope that any results they use will have approximately the same 

properties as a complete counting of the whole sample space that occurs in their theory.

Linear Congruential Generators

By far, the most widely used technique for pseudorandom number generation is an algorithm first proposed by Lehmer [LEHM51], which 

is known as the linear congruential method. The algorithm is parameterized with four numbers, as follows:

m the modulus m > 0

a the multiplier 0 < a < m

c the increment
0  c < m



X0 the starting value, or seed
0  X0 < m

The sequence of random numbers {Xn} is obtained via the following iterative equation:

Xn+1 = (aXn + c) mod m

If m, a, c, and X0 are integers, then this technique will produce a sequence of integers with each integer in the range 0  Xn < m.

The selection of values for a, c, and m is critical in developing a good random number generator. For example, consider a, = c = 1. The 

sequence produced is obviously not satisfactory. Now consider the values a = 7, c = 0, m = 32, and X0 = 1. This generates the sequence 

{7, 17, 23, 1, 7, etc.}, which is also clearly unsatisfactory. Of the 32 possible values, only 4 are used; thus, the sequence is said to have a 

period of 4. If, instead, we change the value of a to 5, then the sequence is {5, 25, 29, 17, 21, 9, 13, 1, 5, etc.}, which increases the period 

to 8.
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We would like m to be very large, so that there is the potential for producing a long series of distinct random numbers. A common criterion 

is that m be nearly equal to the maximum representable nonnegative integer for a given computer. Thus, a value of m near to or equal to 

2
31

 is typically chosen.

[PARK88] proposes three tests to be used in evaluating a random number generator:

T1: The function should be a full-period generating function. That is, the function should generate all the numbers 

between 0 and m before repeating.

T2: The generated sequence should appear random. Because it is generated deterministically, the sequence is not 

random. There is a variety of statistical tests that can be used to assess the degree to which a sequence exhibits 

randomness.

T3: The function should implement efficiently with 32-bit arithmetic.

With appropriate values of a, c, and m, these three tests can be passed. With respect to T1 it can be shown that if m is prime and c = 0, 

then for certain values of a, the period of the generating function is m 1, with only the value 0 missing. For 32-bit arithmetic, a convenient

prime value of m is 2
31

 1. Thus, the generating function becomes

Xn+1 = (aXn) mod(2
31

 1)

Of the more than 2 billion possible choices for a, only a handful of multipliers pass all three tests. One such value is a = 7
5
 = 16807, which 

was originally designed for use in the IBM 360 family of computers [LEWI69]. This generator is widely used and has been subjected to a 

more thorough testing than any other PRNG. It is frequently recommended for statistical and simulation work (e.g., [JAIN91], [SAUE81]).

The strength of the linear congruential algorithm is that if the multiplier and modulus are properly chosen, the resulting sequence of 

numbers will be statistically indistinguishable from a sequence drawn at random (but without replacement) from the set 1, 2,...,m 1. But

there is nothing random at all about the algorithm, apart from the choice of the initial value X0. Once that value is chosen, the remaining 

numbers in the sequence follow deterministically. This has implications for cryptanalysis.

If an opponent knows that the linear congruential algorithm is being used and if the parameters are known (e.g., a =7
5
, c = 0, m = 2

31
 1),

then once a single number is discovered, all subsequent numbers are known. Even if the opponent knows only that a linear congruential 

algorithm is being used, knowledge of a small part of the sequence is sufficient to determine the parameters of the algorithm. Suppose 

that the opponent is able to determine values for X0, X1, X2 and X3 Then

X1 = (aX0 + c) mod m



X2 = (aX1 + c) mod m

X3 = (aX2 + c) mod m

These equations can be solved for a, c, and m.
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Thus, although it is nice to be able to use a good PRNG, it is desirable to make the actual sequence used nonreproducible, so that 

knowledge of part of the sequence on the part of an opponent is insufficient to determine future elements of the sequence. This goal can 

be achieved in a number of ways. For example, [BRIG79] suggests using an internal system clock to modify the random number stream. 

One way to use the clock would be to restart the sequence after every N numbers using the current clock value (mod m) as the new seed. 

Another way would be simply to add the current clock value to each random number (mod m).

Cryptographically Generated Random Numbers

For cryptographic applications, it makes some sense to take advantage of the encryption logic available to produce random numbers. A 

number of means have been used, and in this subsection we look at three representative examples.

Cyclic Encryption

Figure 7.13 illustrates an approach suggested in [MEYE82]. In this case, the procedure is used to generate session keys from a master 

key. A counter with period N provides input to the encryption logic. For example, if 56-bit DES keys are to be produced, then a counter 

with period 2
56

 can be used. After each key is produced, the counter is incremented by one. Thus, the pseudorandom numbers produced 

by this scheme cycle through a full period: Each of the outputs X0, X1,... XN1 is based on a different counter value and therefore X0 

X1  ...  XN1. Because the master key is protected, it is not computationally feasible to deduce any of the session keys (random 

numbers) through knowledge of one or more earlier session keys.

Figure 7.13. Pseudorandom Number Generation from a Counter
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To strengthen the algorithm further, the input could be the output of a full-period PRNG rather than a simple counter.

DES Output Feedback Mode

The output feedback (OFB) mode of DES, illustrated in Figure 6.6, can be used for key generation as well as for stream encryption. Notice 

that the output of each stage of operation is a 64-bit value, of which the s leftmost bits are fed back for encryption. Successive 64-bit 

outputs constitute a sequence of pseudorandom numbers with good statistical properties. Again, as with the approach suggested in the 

preceding subsection, the use of a protected master key protects the generated session keys.

ANSI X9.17 PRNG

One of the strongest (cryptographically speaking) PRNGs is specified in ANSI X9.17. A number of applications employ this technique, 

including financial security applications and PGP (the latter described in Chapter 15).

Figure 7.14 illustrates the algorithm, which makes use of triple DES for encryption. The ingredients are as follows:

Input: Two pseudorandom inputs drive the generator. One is a 64-bit representation of the current date and time, which is 

updated on each number generation. The other is a 64-bit seed value; this is initialized to some arbitrary value and is updated 

during the generation process.

Keys: The generator makes use of three triple DES encryption modules. All three make use of the same pair of 56-bit keys, 

which must be kept secret and are used only for pseudorandom number generation.

Output: The output consists of a 64-bit pseudorandom number and a 64-bit seed value.

Define the following quantities:



DTi Date/time value at the beginning of ith generation stage

Vi Seed value at the beginning of ith generation stage

Ri Pseudorandom number produced by the ith generation stage

K1, K2 DES keys used for each stage

Figure 7.14. ANSI X9.17 Pseudorandom Number Generator
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Then

Ri = EDE([K1, K2], [Vi  EDE([K1, K2], DTi)])

Vi+1 = EDE([K1, K2], [Ri  EDE([K1, K2], DTi)])

where EDE([K1,K2], X) refers to the sequence encrypt-decrypt-encrypt using two-key triple DES to encrypt X.

Several factors contribute to the cryptographic strength of this method. The technique involves a 112-bit key and three EDE encryptions 



for a total of nine DES encryptions. The scheme is driven by two pseudorandom inputs, the date and time value, and a seed produced by 

the generator that is distinct from the pseudorandom number produced by the generator. Thus, the amount of material that must be 

compromised by an opponent is overwhelming. Even if a pseudorandom number Ri were compromised, it would be impossible to deduce 

the Vi+1 from the Ri because an additional EDE operation is used to produce the Vi+1.

Blum Blum Shub Generator

A popular approach to generating secure pseudorandom number is known as the Blum, Blum, Shub (BBS) generator, named for its 

developers [BLUM86]. It has perhaps the strongest public proof of its cryptographic strength. The procedure is as follows. First, choose 

two large prime numbers, p and q, that both have a remainder of 3 when divided by 4. That is,

p  q  3 (mod 4)

This notation, explained more fully in Chapter 4, simply means that (p mod 4) = (q mod 4) = 3. For example, the prime numbers 7 and 11 

satisfy 7  11  3 (mod 4). Let n = p x q. Next, choose a random number s, such that s is relatively prime to n; this is equivalent to 

saying that neither p nor q is a factor of s. Then the BBS generator produces a sequence of bits Bi according to the following algorithm:

X0 = s2 mod n

for i = 1 to 

   Xi = (Xi1)2 mod n

   Bi = Xi mod 2

Thus, the least significant bit is taken at each iteration. Table 7.2, shows an example of BBS operation. Here, n = 192649 = 383 x 503 and 

the seed s = 101355.



Table 7.2. Example Operation of BBS Generator
(This item is displayed on page 226 in the print version)

i Xi Bi

0 20749  

1 143135 1

2 177671 1

3 97048 0

4 89992 0

5 174051 1

6 80649 1

7 45663 1

8 69442 0

9 186894 0

10 177046 0

11 137922 0

12 123175 1

13 8630 0

14 114386 0

15 14863 1

16 133015 1

17 106065 1

18 45870 0

19 137171 1

20 48060 0

The BBS is referred to as a cryptographically secure pseudorandom bit generator (CSPRBG). A CSPRBG is defined as one that 

passes the next-bit test, which, in turn, is defined as follows [MENE97]: A pseudorandom bit generator is said to pass the next-bit test if 

there is not a polynomial-time algorithm
[7]

 that, on input of the first k bits of an output sequence, can predict the (k + 1)
st

 bit with probability 

significantly greater than 1/2. In other words, given the first k bits of the sequence, there is not a practical algorithm that can even allow 

you to state that the next bit will be 1 (or 0) with probability greater than 1/2. For all practical purposes, the sequence is unpredictable. 

The security of BBS is based on the difficulty of factoring n. That is, given n, we need to determine its two prime factors p and q.

[7] A polynomial-time algorithm of order k is one whose running time is bounded by a polynomial of order k.
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True Random Number Generators

A true random number generator (TRNG) uses a nondeterministic source to produce randomness. Most operate by measuring 

unpredictable natural processes, such as pulse detectors of ionizing radiation events, gas discharge tubes, and leaky capacitors. Intel has 

developed a commercially available chip that samples thermal noise by amplifying the voltage measured across undriven resistors 

[JUN99]. A group at Bell Labs has developed a technique that uses the variations in the response time of raw read requests for one disk 

sector of a hard disk [JAKO98]. LavaRnd is an open source project for creating truly random numbers using inexpensive cameras, open 

source code, and inexpensive hardware. The system uses a saturated CCD in a light-tight can as a chaotic source to produce the seed. 

Software processes the result into truly random numbers in a variety of formats.

There are problems both with the randomness and the precision of such numbers [BRIG79], to say nothing of the clumsy requirement of 

attaching one of these devices to every system in an internetwork. Another alternative is to dip into a published collection of good-quality 

random numbers (e.g., [RAND55], [TIPP27]). However, these collections provide a very limited source of numbers compared to the 

potential requirements of a sizable network security application. Furthermore, although the numbers in these books do indeed exhibit 

statistical randomness, they are predictable, because an opponent who knows that the book is in use can obtain a copy.

Skew

A true random number generator may produce an output that is biased in some way, such as having more ones than zeros or vice versa. 

Various methods of modifying a bit stream to reduce or eliminate the bias have been developed. These are referred to as deskewing 

algorithms. One approach to deskew is to pass the bit stream through a hash function such as MD5 or SHA-1 (described in Part Two). The 

hash function produces an n-bit output from an input of arbitrary length. For deskewing, blocks of m input bits, with m  n can be 

passed through the hash function.
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7.5. Recommended Reading and Web Sites

[FUMY93] is a good survey of key management principles.

Perhaps the best treatment of PRNGs is found in [KNUT98]. An alternative to the standard linear congruential algorithm, known as the 

linear recurrence algorithm, is explained in some detail in [BRIG79]. [ZENG91] assesses various PRNG algorithms for use in generating 

variable-length keys for Vernam types of ciphers.

An excellent survey of PRNGs, with an extensive bibliography, is [RITT91]. [MENE97] also provides a good discussions of secure 

PRNGs. Another good treatment, with an emphasis on practical implementation issues, is RFC 1750. This RFC also describes a number 

of deskewing techniques. [KELS98] is a good survey of secure PRNG techniques and cryptanalytic attacks on them.

BRIG79 Bright, H., and Enison, R. "Quasi-Random Number Sequences from Long-Period TLP Generator with 

Remarks on Application to Cryptography." Computing Surveys, December 1979.

FUMY93 Fumy, S., and Landrock, P. "Principles of Key Management." IEEE Journal on Selected Areas in 

Communications, June 1993.

KELS98 Kelsey, J.; Schneier, B.; and Hall, C. "Cryptanalytic Attacks on Pseudorandom Number Generators." 

Proceedings, Fast Software Encryption, 1998. http://www.schneier.com/paper-prngs.html

KNUT98 Knuth, D. The Art of Computer Programming, Volume 2: Seminumerical Algorithms. Reading, MA: 

Addison-Wesley, 1998.

MENE97 Menezes, A.; Oorshcot, P.; and Vanstone, S. Handbook of Applied Cryptography. Boca Raton, FL: 

CRC Press, 1997.

RITT91 Ritter, T. "The Efficient Generation of Cryptographic Confusion Sequences." Cryptologia, vol. 15 no. 2, 

1991. http://www.ciphersbyritter.com/ARTS/CRNG2ART.HTM

ZENG91 Zeng. K.; Yang, C.; Wei, D.; and Rao, T. "Pseudorandom Bit Generators in Stream-Cipher 

Cryptography." Computer, February 1991.

Recommended Web Sites

NIST Random Number Generation Technical Working Group: Contains documents and tests developed by NIST that 

related to PRNGs for cryptographic applications. Also has useful set of links.

http://www.schneier.com/paper-prngs.html
http://www.ciphersbyritter.com/ARTS/CRNG2ART.HTM
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LavaRnd: LavaRnd is an open source project that uses a chaotic source to generate truly random numbers. The site also 

has background information on random numbers in general.

A Million Random Digits: Compiled by the RAND Corporation.
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7.6. Key Terms, Review Questions, and Problems

Key Terms

Blum, Blum, Shub generator

covert channel

deskewing

end-to-end encryption

key distribution

key distribution center (KDC)

linear congruential

link encryption

master key

nonce

pseudorandom number generator (PRNG)

session key

skew

traffic padding

true random number generator

wiring closet

Review Questions

7.1 For a user workstation in a typical business environment, list potential locations for confidentiality attacks.

7.2 What is the difference between link and end-to-end encryption?
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7.3 What types of information might be derived from a traffic analysis attack?

7.4 What is traffic padding and what is its purpose?

7.5 List ways in which secret keys can be distributed to two communicating parties.

7.6 What is the difference between a session key and a master key?

7.7 What is a nonce?

7.8 What is a key distribution center?

7.9 What is the difference between statistical randomness and unpredictability?

Problems

7.1 Electronic mail systems differ in the manner in which multiple recipients are handled. In some systems, the originating 

mail-handler makes all the necessary copies, and these are sent out independently. An alternative approach is to 

determine the route for each destination first. Then a single message is sent out on a common portion of the route, and 

copies are made only when the routes diverge; this process is referred to as mail bagging.

Leaving aside considerations of security, discuss the relative advantages and disadvantages of the two methods.a.

Discuss the security requirements and implications of the two methods.b.

7.2 Section 7.2 describes the use of message length as a means of constructing a covert channel. Describe three additional 

schemes for using traffic patterns to construct a covert channel.

7.3 One local area network vendor provides a key distribution facility, as illustrated in Figure 7.15.

Describe the scheme.a.

Compare this scheme to that of Figure 7.9. What are the pros and cons?b.
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Figure 7.15. Figure for Problem 7.3

[View full size image]



7.4 "We are under great pressure, Holmes." Detective Lestrade looked nervous. "We have learned that copies of sensitive 

government documents are stored in computers of one foreign embassy here in London. Normally these documents exist 

in electronic form only on a selected few government computers that satisfy the most stringent security requirements. 

However, sometimes they must be sent through the network connecting all government computers. But all messages in 

this network are encrypted using a top secret encryption algorithm certified by our best crypto experts. Even the NSA and 

the KGB are unable to break it. And now these documents have appeared in hands of diplomats of a small, otherwise 

insignificant, country. And we have no idea how it could happen."

"But you do have some suspicion who did it, do you?" asked Holmes.

"Yes, we did some routine investigation. There is a man who has legal access to one of the government computers and 

has frequent contacts with diplomats from the embassy. But the computer he has access to is not one of the trusted ones 

where these documents are normally stored. He is the suspect, but we have no idea how he could obtain copies of the 

documents. Even if he could obtain a copy of an encrypted document, he couldn't decrypt it."

"Hmm, please describe the communication protocol used on the network." Holmes opened his eyes, thus proving that he 

had followed Lestrade's talk with an attention that contrasted with his sleepy look.

"Well, the protocol is as follows. Each node N of the network has been assigned a unique secret key Kn. This key is used 

to secure communication between the node and a trusted server. That is, all the keys are stored also on the server. User 

A, wishing to send a secret message M to user B, initiates the following protocol:

A generates a random number R and sends to the server his name A, destination B, and E(Ka, R).1.

Server responds by sending to E(Kb, R) to A.2.

A sends E(R, M) together with E(Kb, R) to B.3.

B knows Kb, thus decrypts E(Kb, R) to get R and will subsequently use R to decrypt E(R, M) to get M.4.

You see that a random key is generated every time a message has to be sent. I admit the man could intercept messages 

sent between the top secret trusted nodes, but I see no way he could decrypt them."
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"Well, I think you have your man, Lestrade. The protocol isn't secure because the server doesn't authenticate users who 

send him a request. Apparently designers of the protocol have believed that sending E(Kx, R) implicitly authenticates user 

X as the sender, as only X (and the server) knows Kx But you know that E(Kx, R) can be intercepted and later replayed. 



Once you understand where the hole is, you will be able to obtain enough evidence by monitoring the man's use of the 

computer he has access to. Most likely he works as follows. After intercepting E(Ka, R) and E(R, M) (see steps 1 and 3 of 

the protocol), the man, let's denote him as Z, will continue by pretending to be A and ...

Finish the sentence for Holmes.

7.5 If we take the linear congruential algorithm with an additive component of 0:

Xn+1 = (aXn) mod m

then it can be shown that if m is prime, and if a given value of a produces the maximum period of m 1, then ak will also 

produce the maximum period, provided that k is less than m and that m 1 is not divisible by k. Demonstrate this by using X0

= 1 and m = 31 and producing the sequences for a = 3, 3,2, 33, and 34.

7.6
What is the maximum period obtainable from the following generator?

Xn+1 = (aXn) mod 24`

a.

What should be the value of a?b.

What restrictions are required on the seed?c.

7.7 You may wonder why the modulus m = 231 1 was chosen for the linear congruential method instead of simply 231, because 

this latter number can be represented with no additional bits and the mod operation should be easier to perform. In 

general, the modulus 2k 1 is preferable to 2k. Why is this so?

7.8 With the linear congruential algorithm, a choice of parameters that provides a full period does not necessarily provide a 

good randomization. For example, consider the following two generators:

Xn+1 = (6Xn) mod 13

Xn+1 = (7Xn) mod 13

Write out the two sequences to show that both are full period. Which one appears more random to you?

7.9 In any use of pseudorandom numbers, whether for encryption, simulation, or statistical design, it is dangerous to trust 

blindly the random number generator that happens to be available in your computer's system library. [PARK88] found that 

many contemporary textbooks and programming packages make use of flawed algorithms for pseudorandom number 

generation. This exercise will enable you to test your system.

The test is based on a theorem attributed to Ernesto Cesaro (see [KNUT98] for a proof), which states the following: Given 

two randomly chosen integers, x and y, the probability that gcd(x, y) = 1 is 6/p2. Use this theorem in a program to determine 

statistically the value of p. The main program should call three subprograms: the random number generator from the 

system library to generate the random integers; a subprogram to calculate the greatest common divisor of two integers 

using Euclid's Algorithm; and a subprogram that calculates square roots. If these latter two programs are not available, you 

will have to write them as well. The main program should loop through a large number of random numbers to give an 

estimate of the aforementioned probability. From this, it is a simple matter to solve for your estimate of p.

If the result is close to 3.14, congratulations! If not, then the result is probably low, usually a value of around 2.7. Why 

would such an inferior result be obtained?

7.10 Suppose you have a true random bit generator where each bit in the generated stream has the same probability of being a 

0 or 1 as any other bit in the stream and that the bits are not correlated; that is the bits are generated from identical 

independent distribution. However, the bit stream is biased. The probability of a 1 is 0.5 +  and the probability of a 0 is 



0.5  where 0 <  < 0.5. A simple deskewing algorithm is as follows: Examine the bit stream as a sequence of 

non-overlapping pairs. Discard all 00 and 11 pairs. Replace each 01 pair with 0 and each 10 pair with 1.
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What is the probability of occurrence of each pair in the original sequence?a.

What is the probability of occurrence of 0 and 1 in the modified sequence?b.

What is the expected number of input bits to produce x output bits?c.

Suppose that the algorithm uses overlapping successive bit pairs instead of nonoverlapping successive bit pairs. 

That is, the first output bit is based on input bits 1 and 2, the second output bit is based on input bits 2 and 3, and 

so on. What can you say about the output bit stream?

d.

7.11 Another approach to deskewing is to consider the bit stream as a sequence of non-overlapping groups of n bits each and 

the output the parity of each group. That is, if a group contains an odd number of ones, the output is 1; otherwise the 

output is 0.

Express this operation in terms of a basic Boolean function.a.

Assume, as in the preceding problem, that the probability of a 1 is 0.5 + . If each group consists of 2 bits, what 

is the probability of an output of 1?

b.

If each group consists of 4 bits, what is the probability of an output of 1?c.

Generalize the result to find the probability of an output of 1 for input groups of n bits.d.

7.12 Suppose that someone suggests the following way to confirm that the two of you are both in possession of the same 

secret key. You create a random bit string the length of the key, XOR it with the key, and send the result over the channel. 

Your partner XORs the incoming block with the key (which should be the same as your key) and sends it back. You check, 

and if what you receive is your original random string, you have verified that your partner has the same secret key, yet 

neither of you has ever transmitted the key. Is there a flaw in this scheme?
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Part Two: Public-Key Encryption and Hash 
Functions

For practical reasons, it is desirable to use different encryption and decryption keys in a 

crypto-system. Such asymmetric systems allow the encryption key to be made available to 

anyone while preserving confidence that only people who hold the decryption key can 

decipher the information.

Computers at Risk: Safe Computing in the Information Age, National Research Council, 

1991

After symmetric encryption, the other major form of encryption is public-key encryption, which has revolutionized 

communications security. A related cryptographic area is that of cryptographic hash functions. Hash functions are 

used in conjunction with symmetric ciphers for digital signatures. In addition, hash functions are used for message 

authentication. Symmetric ciphers are also used for key management. All of these areas are discussed in Part 

Two.

Road Map for Part Two

Chapter 8: Introduction to Number Theory

Most public-key schemes are based on number theory. While the reader can take the number 

theoretic results on faith, it is useful to have a basic grasp of the concepts of number theory. 

Chapter 8 provides an overview and numerous examples to clarify the concepts.

Chapter 9: Public-Key Cryptography and RSA

Chapter 9 introduces public-key cryptography and concentrates on its use to provide 

confidentiality. This chapter also examines the most widely used public-key cipher, the 

Rivest-Shamir-Adleman (RSA) algorithm.
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Chapter 10: Key Management; Other Public-Key Cryptosystems

Chapter 10 revisits the issue of key management in light of the capabilities of symmetric ciphers. 

The chapter also covers the widely used Diffie-Hellman key exchange technique and looks at a 

more recent public-key approach based on elliptic curves.

Chapter 11: Message Authentication and Hash Functions

Of equal importance to confidentiality as a security measure is authentication. At a minimum, 

message authentication assures that a message comes from the alleged source. In addition, 
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authentication can include protection against modification, delay, replay, and reordering. Chapter 

11 begins with an analysis of the requirements for authentication and then provides a systematic 

presentation of approaches to authentication. A key element of authentication schemes is the use 

of an authenticator, usually either a message authentication code (MAC) or a hash function. 

Design considerations for both of these types of algorithms are examined, and several specific 

examples are analyzed.

Chapter 12: Hash and MAC Algorithms

Chapter 12 extends the discussion of the preceding chapter to discuss two of the most important 

cryptographic hash functions (SHA and Whirlpool) and two of the most important MACs (HMAC) 

and CMAC.

Chapter 13: Digital Signatures and Authentication Protocols

An important type of authentication is the digital signature. Chapter 13 examines the techniques 

used to construct digital signatures and looks at an important standard, the Digital Signature 

Standard (DSS).

The various authentication techniques based on digital signatures are building blocks in putting 

together authentication algorithms. The design of such algorithms involves the analysis of subtle 

attacks that can defeat many apparently secure protocols. This issue is also addressed in Chapter 

14.
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Chapter 8. Introduction to Number Theory

8.1 Prime Numbers

8.2 Fermat's and Euler's Theorems

Fermat's Theorem

Euler's Totient Function

Euler's Theorem

8.3 Testing for Primality

Miller-Rabin Algorithm

A Deterministic Primality Algorithm

Distribution of Primes

8.4 The Chinese Remainder Theorem

8.5 Discrete Logarithms

The Powers of an Integer, Modulo n

Logarithms for Modular Arithmetic

Calculation of Discrete Logarithms

8.6 Recommended Reading and Web Site

8.7 Key Terms, Review Questions, and Problems

Key Terms

Review Questions

Problems
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The Devil said to Daniel Webster: "Set me a task I can't carry out, and I'll give you anything in the world you ask 

for."

Daniel Webster: "Fair enough. Prove that for n greater than 2, the equation a
n
 + b

n
 = c

n
 has no non-trivial solution 

in the integers."

They agreed on a three-day period for the labor, and the Devil disappeared.

At the end of three days, the Devil presented himself, haggard, jumpy, biting his lip. Daniel Webster said to him, 

"Well, how did you do at my task? Did you prove the theorem?"

"Eh? No ... no, I haven't proved it."

"Then I can have whatever I ask for? Money? The Presidency?"

"What? Oh, thatof course. But listen! If we could just prove the following two lemmas"

The Mathematical Magpie, Clifton Fadiman

Key Points

A prime number is an integer that can only be divided without remainder by positive and negative values of 

itself and 1. Prime numbers play a critical role both in number theory and in cryptography.

Two theorems that play important roles in public-key cryptography are Fermat's theorem and Euler's theorem.

An important requirement in a number of cryptographic algorithms is the ability to choose a large prime 

number. An area of ongoing research is the development of efficient algorithms for determining if a 

randomly chosen large integer is a prime number.

Discrete logarithms are fundamental to a number of public-key algorithms. Discrete logarithms are 

analogous to ordinary logarithms, but operate over modular arithmetic.

A number of concepts from number theory are essential in the design of public-key cryptographic algorithms. This chapter provides an 

overview of the concepts referred to in other chapters. The reader familiar with these topics can safely skip this chapter.

As with Chapter 4, this chapter includes a number of examples, each of which is highlighted in a shaded box.
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8.1. Prime Numbers
[1]

[1] In this section, unless otherwise noted, we deal only with the nonnegative integers. The use of negative integers 

would introduce no essential differences.

A central concern of number theory is the study of prime numbers. Indeed, whole books have been written on the subject (e.g., [CRAN01], 

[RIBE96]). In this section we provide an overview relevant to the concerns of this book.

An integer p > 1 is a prime number if and only if its only divisors
[2]

 are ± 1 and ±p. Prime numbers play a critical role in number theory and in 

the techniques discussed in this chapter. Table 8.1 shows the primes less than 2000. Note the way the primes are distributed. In particular, 

note the number of primes in each range of 100 numbers.

[2] Recall from Chapter 4 that integer a is said to be a divisor of integer b if there is no remainder on division. 

Equivalently, we say that a divides b.

Table 8.1. Primes under 2000
(This item is displayed on page 237 in the print version)

[View full size image]

Any integer a > 1 can be factored in a unique way as



Equation 8-1 

where p1 < p2 < ... < pt are prime numbers and where each is a positive integer. This is known as the fundamental theorem of arithmetic; a 

proof can be found in any text on number theory.

91 = 7 x 13

3600
= 2

4
 x 3

2
 x 5

2

11011
= 7 x 11

2
 x 13

It is useful for what follows to express this another way. If P is the set of all prime numbers, then any positive integer a can be written 

uniquely in the following form:

The right-hand side is the product over all possible prime numbers p; for any particular value of a, most of the exponents ap will be 0.

The value of any given positive integer can be specified by simply listing all the nonzero exponents in the foregoing formulation.

The integer 12 is represented by {a2 = 2, a3 = 1}.

The integer 18 is represented by {a2 = 1, a3 = 2}.

The integer 91 is represented by {a7 = 2, a13 = 1}.

Multiplication of two numbers is equivalent to adding the corresponding exponents. Given a  . 

Define k = ab We know that the integer k can be expressed as the product of powers of primes: . It follows that kp = 

ap + bp for all p  P.
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k = 12 x 18 = (2
2
 x 3) x (2 x 3

2
) = 216



k2 = 2 + 1 = 3; k3 = 1 + 2 = 3

216 = 2
3
 x 3

3
 = 8 x 27

What does it mean, in terms of the prime factors of a and b, to say that a divides b? Any integer of the form can be divided only by an 

integer that is of a lesser or equal power of the same prime number, p
j
 with j  n. Thus, we can say the following:

Given ,  If a|b, then ap  bp then for all p.

a = 12;b = 36; 12|36

12
= 2

2
 x 3; 36 = 2

2
 x 3

2

a2 = 2 = b2

a3
= 1  2 = b3

Thus, the inequality ap  bp is satisfied for all prime numbers.

It is easy to determine the greatest common divisor
[3]

 of two positive integers if we express each integer as the product of primes.

[3] Recall from Chapter 4 that the greatest common divisor of integers a and b, expressed gcd(a, b), is an integer c

that divides both a and b without remainder and that any divisor of a and b is a divisor of c.

300
= 2

2
 x 3

1
 x 5

2

18
= 2

1
 x 3

2

gcd(18,300)
= 2

1
 x 3

1
 x 5

0
 = 6

The following relationship always holds:

If k = gcd(a,b) then kp = min(ap, bp) for all p

Determining the prime factors of a large number is no easy task, so the preceding relationship does not directly lead to a practical method 

of calculating the greatest common divisor.
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8.2. Fermat's and Euler's Theorems

Two theorems that play important roles in public-key cryptography are Fermat's theorem and Euler's theorem.
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Fermat's Theorem
[4]

[4] This is sometimes referred to as Fermat's little theorem.

Fermat's theorem states the following: If p is prime and a is a positive integer not divisible by p, then

Equation 8-2 

Proof: Consider the set of positive integers less than p:{1,2,..., p 1} and multiply each element by a, modulo p, to get the set X = {a mod p, 

2a mod p, . . . (p 1)a mod p}. None of the elements of X is equal to zero because p does not divide a. Furthermore no two of the integers in X

are equal. To see this, assume that ja  ka(mod p) where 1  j < k  p 1. Because a is relatively prime
[5]

 to p, we can eliminate a

from both sides of the equation [see Equation (4.3)] resulting in: j  k(mode p). This last equality is impossible because j and k are both 

positive integers less than p. Therefore, we know that the (p 1) elements of X are all positive integers, with no two elements equal. We can 

conclude the X consists of the set of integers {1,2,..., p 1} in some order. Multiplying the numbers in both sets and taking the result mod p

yields

[5] Recall from Chapter 4 that two numbers are relatively prime if they have no prime factors in common; that is, 

their only common divisor is 1. This is equivalent to saying that two numbers are relatively prime if their greatest 

common divisor is 1.

a x 2a x ... x (p 1)  [(1 x 2 x ... x (p 1)](mode p)

a
p1(p 1)!

  (p 1)!(mod p)

We can cancel the (p 1)! term because it is relatively prime to p [see Equation (4.3)]. This yields Equation (8.2).

a = 7, p = 19

7
2
 = 49  11(mod 19)
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7
4
  121  7(mod 19)

7
8
  49  7(mod 19)

7
16

  121  7(mod 19)

a
p1

 = 7
18

 = 7
16

 x 7
2
  7 x 11  1(mod 19)

An alternative form of Fermat's theorem is also useful: If p is prime and a is a positive integer, then

Equation 8-3 

Note that the first form of the theorem [Equation (8.2)] requires that a be relatively prime to p, but this form does not.

p = 5,a = 3
a
p
 = 3

5
 = 243  3(mod 5) = a(mod p)

p = 5, a = 10
a
p
 = 10

5
 = 100000  10(mod 5) = 0(mod 5) = a(mod p)
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Euler's Totient Function

Before presenting Euler's theorem, we need to introduce an important quantity in number theory, referred to as Euler's totient function 

and written f(n), defined as the number of positive integers less than n and relatively prime to n. By convention, f(1) = 1.

Determine f(37) and f(35).

Because 37 is prime, all of the positive integers from 1 through 36 are relatively prime to 37. Thus f(37) = 36.

To determine f(35), we list all of the positive integers less than 35 that are relatively prime to it:

1, 2, 3, 4, 6, 8, 9, 11, 12, 13, 16, 17, 18,

19, 22, 23, 24, 26, 27, 29, 31, 32, 33, 34.

There are 24 numbers on the list, so f(35) = 24.



Table 8.2 lists the first 30 values of f(n). The value f(1) is without meaning but is defined to have the value 1.



Table 8.2. Some Values of Euler's Totient Function f(n)

n f(n)

1 1

2 1

3 2

4 2

5 4

6 2

7 6

8 4

9 6

10 4

11 10

12 4

13 12

14 6

15 8

16 8

17 16

18 6

19 18

20 8

21 12

22 10

23 22

24 8

25 20

26 12

27 18

28 12

29 28

30 8

It should be clear that for a prime number p,



f(p) = p 1

Now suppose that we have two prime numbers p and q, with p  q. Then we can show that for n = pq,

f(n) = f(pq) = f(p) x f(q) = (p 1) x (q x 1)

To see that f(n) = f(p) x f(q), consider that the set of positive integers less that n is the set {1,..., (pq 1)}. The integers in this set that are not

relatively prime to n are the set {p,2 p,..., (q 1)p} and the set {q,2q,..., (p 1)q} Accordingly,
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f(n) = (pq 1) [(q 1) + (p 1)]

= pq (p + q) + 1

= (p 1) x (q 1)

= f(p) x f(q)

f(21) = f(3) x f(7) = (3 1) x (7 1) = 2 x 6 = 12

where the 12 integers are {1,2,4,5,8,10,11,13,16,17,19,20}

Euler's Theorem

Euler's theorem states that for every a and n that are relatively prime:

Equation 8-4 

a = 3; n = 10; f(10) = 4
a
f(n)

 = 3
4
 = 81  1(mod 10) = 1 (mod n)

a = 2; n = 11; f(11) = 10
a
f(n)

 = 2
10

 = 1024  1(mod 11) = 1 (mod n)

Proof: Equation (8.4) is true if n is prime, because in that case f(n) = (n 1) and Fermat's theorem holds. However, it also holds for any

integer n. Recall that f(n) is the number of positive integers less than n that are relatively prime to n. Consider the set of such integers, 

labeled as follows:

R {x1, x2,..., xf(n)}



That is, each element xi of R is a unique positive integer less than n with gcd(xi, n) = 1. Now multiply each element by a, modulo n:

S = {(ax1 mod n), (ax2 mod n),..., (axf(n) mod n)}

The set S is a permutation of R, by the following line of reasoning:

Because a is relatively prime to n and xi is relatively prime to n, axi must also be relatively prime to n. Thus, all the members of 

S are integers that are less than n and that are relatively prime to n.

1.

There are no duplicates in S. Refer to Equation (4.3). If axi mod n = axj mod n then xi = xj.2.

Therefore,
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This is the same line of reasoning applied to the proof of Fermat's theorem. As is the case for Fermat's theorem, an alternative form 

of the theorem is also useful:

Equation 8-5 

Again, similar to the case with Fermat's theorem, the first form of Euler's theorem [Equation (8.4)] requires that a be relatively prime to n, 

but this form does not.
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8.3. Testing for Primality

For many cryptographic algorithms, it is necessary to select one or more very large prime numbers at random. Thus we are faced with 

the task of determining whether a given large number is prime. There is no simple yet efficient means of accomplishing this task.

In this section, we present one attractive and popular algorithm. You may be surprised to learn that this algorithm yields a number that is 

not necessarily a prime. However, the algorithm can yield a number that is almost certainly a prime. This will be explained presently. We 

also make reference to a deterministic algorithm for finding primes. The section closes with a discussion concerning the distribution of 

primes.

Miller-Rabin Algorithm
[6]

[6] Also referred to in the literature as the Rabin-Miller algorithm, or the Rabin-Miller test, or the Miller-Rabin test.

The algorithm due to Miller and Rabin [MILL75, RABI80] is typically used to test a large number for primality. Before explaining the 

algorithm, we need some background. First, any positive odd integer n  3 can be expressed as follows:

n 1 = 2
k
q with k > 0, q odd

To see this, note that (n 1) is an even integer. Then, divide (n 1) by 2 until the result is an odd number q, for a total of k divisions. If n is 

expressed as a binary number, then the result is achieved by shifting the number to the right until the rightmost digit is a 1, for a total of k

shifts. We now develop two properties of prime numbers that we will need.

Two Properties of Prime Numbers

The first property is stated as follows: If p is prime and a is a positive integer less than p, then a
2
 mod p = 1 if and only if either a mod p = 1 

or a mod p= 1 mode p = p 1. By the rules of modular arithmetic (a mode p) (a mode p) = a
2
 mod p. Thus if either a mode p = 1 or a mod p = 

1, then a
2
 mod p = 1. Conversely, if a

2
 mod p = 1, then (a mod p)

2
 = 1, which is true only for a mod p = 1 or a mod p = 1.
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The second property is stated as follows: Let p be a prime number greater than 2. We can then write p 1 = 2
k
q, with k > 0 q odd. Let a be 

any integer in the range 1 < a < p 1. Then one of the two following conditions is true:

a
q
 is congruent to 1 modulo p. That is, a

q
 mod p = 1, or equivalently, a

q
  1 (mod p).1.

One of the numbers a
q
, a

2q
, a

4q
,..., a

2k-1q
 is congruent to 1 modulo p. That is, there is some number j in the range (1  j 2.
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k) such that a
2j-1q

 mod p = 1 mod p = p 1, or equivalently, a
2j-1q

  1 (mod p).

Proof: Fermat's theorem [Equation (8.2)] states that a
n1

  1 (mod n) if n is prime. We have p 1 = 2
k
q. Thus, we know that a

p1
 mod p = 

a
2kq

 mod p = 1. Thus, if we look at the sequence of numbers

Equation 8-6 

we know that the last number in the list has value 1. Further, each number in the list is the square of the previous number. Therefore, 

one of the following possibilities must be true:

The first number on the list, and therefore all subsequent numbers on the list, equals 1.1.

Some number on the list does not equal 1, but its square mod p does equal 1. By virtue of the first property of prime numbers 

defined above, we know that the only number that satisfies this condition p 1 is So, in this case, the list contains an element

equal to p 1.

This completes the proof.

2.

Details of the Algorithm

These considerations lead to the conclusion that if n is prime, then either the first element in the list of residues, or remainders, (a
q
, a

2q
,..., 

a
2k-1q

, a
2kq

) modulo n equals 1, or some element in the list equals (n 1); otherwise n is composite (i.e., not a prime). On the other hand, if 

the condition is met, that does not necessarily mean that n is prime. For example, if n = 2047 = 23 x 89, then n 1 = 2 x 1023. Computing,

2
1023

 mod 2047 = 1, so that 2047 meets the condition but is not prime.

We can use the preceding property to devise a test for primality. The procedure TEST takes a candidate integer n as input and returns 

the result composite if n is definitely not a prime, and the result inconclusive if n may or may not be a prime.

TEST (n)

1.  Find integers k, q, with k > 0, q odd, so that (n  1

    = 2kq);

2.  Select a random integer a, 1 < a < n  1;

3.  if aq mod n = 1 then return("inconclusive");

4.  for j = 0 to k  1 do

5.     if a2jq

 mod n  n  1 then return("inconclusive");

6.  return("composite");
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Let us apply the test to the prime number n = 29. We have (n 1) = 28 = 2
2
(7) = 2

k
q. First, let us try a = 10. We compute 

10
7
 mod 29 = 17, which is neither 1 nor 28, so we continue the test. The next calculation finds that (10

7
)
2
 mod 29 = 28, 

and the test returns inconclusive (i.e., 29 may be prime). Let's try again with a = 2. We have the following calculations: 

2
7
 mod 29 = 12;2

14
 mod 29 = 28; and the test again returns inconclusive. If we perform the test for all integers a in the 

range 1 through 28, we get the same inconclusive result, which is compatible with n being a prime number.

Now let us apply the test to the composite number n = 13 x 17 = 221. Then (n 1) = 220 = 2
2
(55) = 2

k
q. Let us try a = 5. 

Then we have 5
55

 mod 221 = 112, which is neither 1 nor 220; (5
55

)
2
 mod 221 = 168. Because we have used all values 

of j (i.e., j = 0 andj = 1) in line 4 of the TEST algorithm, the test returns composite, indicating that 221 is definitely a 

composite number. But suppose we had selected a = 21. Then we have 21
55

 mod 221 = 200; (21
55

)
2
 mod 221 = 220; 

and the test returns inconclusive, indicating that 221 may be prime. In fact, of the 218 integers from 2 through 219, 

four of these will return an inconclusive result, namely 21, 47, 174, and 200.

Repeated Use of the Miller-Rabin Algorithm

How can we use the Miller-Rabin algorithm to determine with a high degree of confidence whether or not an integer is prime? It can be 

shown [KNUT98] that given an odd number n that is not prime and a randomly chosen integer, a with 1 < a < n 1, the probability that TEST

will return inconclusive (i.e., fail to detect that n is not prime) is less than 1/4. Thus, if t different values of a are chosen, the probability that 

all of them will pass TEST (return inconclusive) for n is less than (1/4)
t
 For example, for t = 10, the probability that a nonprime number will 

pass all ten tests is less than 10
6
. Thus, for a sufficiently large value of t, we can be confident that n is prime if Miller's test always returns 

inconclusive.

This gives us a basis for determining whether an odd integer n is prime with a reasonable degree of confidence. The procedure is as 

follows: Repeatedly invoke TEST (n) using randomly chosen values for a. If, at any point, TEST returns composite, then n is determined 

to be nonprime. If TEST continues to return inconclusive for t tests, for a sufficiently large value of t, assume that n is prime.

A Deterministic Primality Algorithm

Prior to 2002, there was no known method of efficiently proving the primality of very large numbers. All of the algorithms in use, including 

the most popular (Miller-Rabin), produced a probabilistic result. In 2002, Agrawal, Kayal, and Saxena [AGRA02] developed a relatively 

simple deterministic algorithm that efficiently determines whether a given large number is a prime. The algorithm, known as the AKS 

algorithm, does not appear to be as efficient as the Miller-Rabin algorithm. Thus far, it has not supplanted this older, probabilistic 

technique [BORN03].
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Distribution of Primes

It is worth noting how many numbers are likely to be rejected before a prime number is found using the Miller-Rabin test, or any other 



test for primality. A result from number theory, known as the prime number theorem, states that the primes near n are spaced on the 

average one every (ln n) integers. Thus, on average, one would have to test on the order of ln(n) integers before a prime is found. 

Because all even integers can be immediately rejected, the correct figure is 0.5 ln(n). For example, if a prime on the order of magnitude 

of 2
200

 were sought, then about 0.5 ln(2
200

) = 69 trials would be needed to find a prime. However, this figure is just an average. In some 

places along the number line, primes are closely packed, and in other places there are large gaps.

The two consecutive odd integers 1,000,000,000,061 and 1,000,000,000,063 are both prime. On the other hand, 1001! 

+ 2,1001! + 3,..., 1001! + 1000, 1001! + 1001 is a sequence of 1000 consecutive composite integers.
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8.4. The Chinese Remainder Theorem

One of the most useful results of number theory is the Chinese remainder theorem (CRT).
[7]

 In essence, the CRT says it is possible to 

reconstruct integers in a certain range from their residues modulo a set of pairwise relatively prime moduli.

[7] The CRT is so called because it is believed to have been discovered by the Chinese mathematician Sun-Tsu in 

around 100 A.D.

The 10 integers in Z10, that is the integers 0 through 9, can be reconstructed from their two residues modulo 2 and 5 

(the relatively prime factors of 10). Say the known residues of a decimal digit x are r2 = 0 and r5 = 3; that is, x mod 2 =0 

and x mod 5 = 3. Therefore, x is an even integer in Z10 whose remainder, on division by 5, is 3. The unique solution is x = 

8.

The CRT can be stated in several ways. We present here a formulation that is most useful from the point of view of this text. An alternative 

formulation is explored in Problem 8.17. Let

where the mi are pairwise relatively prime; that is, gcd(mi, mj) = 1 for 1  i, j  k, and i  j. We can represent any integer A in Z
M

 by a 

k-tuple whose elements are in Zmi using the following correspondence:

Equation 8-7 

where A  ZM, ai  Zmi and ai = A mod mi for 1  i  k. The CRT makes two assertions.
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The mapping of Equation (8.7) is a one-to-one correspondence (called a bijection) between ZM and the Cartesian product 

Zm1 x Zm2 x ... x Zmk. That is, for every integer A such that 0  A < M there is a unique k-tuple (a1, a2,..., ak) with 0  ai < 

mi that represents it, and for every such k-tuple (a1, a2,..., ak) there is a unique integer A in ZM.

1.

Operations performed on the elements of ZM can be equivalently performed on the corresponding k-tuples by performing the 

operation independently in each coordinate position in the appropriate system.

2.

Let us demonstrate the first assertion. The transformation from A to (a1, a1,..., ak) is obviously unique; that is, each ai is uniquely 

calculated as ai = A mod mi. Computing A from (a1, a1,..., ak) can be done as follows. Let Mi = M/mi for 1  i  k. Note that Mi = m1 x 

m2 x ... x mi-1 x mi+1 x ... x mk so that Mi  0(mod mj) for all j  i. Then let

Equation 8-8 

By the definition of Mi it is relatively prime to mi and therefore has a unique multiplicative inverse mod mi So Equation (8.8) is well defined 

and produces a unique value ci. We can now compute:

Equation 8-9 

To show that the value of A produced by Equation (8.9) is correct, we must show that ai = A mod mi for 1  i  k. Note that cj  Mj

 0(mod mi) if j  i and that ci  1(mod mi). It follows that ai = A mod mi.

The second assertion of the CRT, concerning arithmetic operations, follows from the rules for modular arithmetic. That is, the second 

assertion can be stated as follows: If

then



One of the useful features of the Chinese remainder theorem is that it provides a way to manipulate (potentially very large) numbers mod 

M in terms of tuples of smaller numbers. This can be useful when M is 150 digits or more. However, note that it is necessary to know 

beforehand the factorization of M.

[Page 247]

To represent 973 mod 1813 as a pair of numbers mod 37 and 49, define
[8]

m1 = 37

m2 = 49

M = 1813

A = 973

We also have M1 = 49 and M2 = 37. Using the extended Euclidean algorithm, we compute  = 34 mod m1 and 

 = 4 mod m2. (Note that we only need to compute each Mi and each  once.) Taking residues modulo 37 

and 49, our representation of 973 is (11, 42), because 973 mod 37 = 11 and 973 mod 49 = 42.

Now suppose we want to add 678 to 973. What do we do to (11, 42)? First we compute (678)  (678 mod 37, 678 

mod 49) = (12, 41). Then we add the tuples element-wise and reduce (11 + 12 mod 37, 42 + 41 mod 49) = (23, 34). To 

verify that this has the correct effect, we compute

(23,34)  a1M1  + a2M2  mod M

= [(23)(49)(34) + (34)(37)(4)] mod 1813

= 43350 mod 1813

= 1651

and check that it is equal to (973 + 678) mod 1813 = 1651. Remember that in the above derivation,  is the 

multiplicative inverse of M1 modulo m1, and  is the multiplicative inverse of M2 modulo m2.

Suppose we want to multiply 1651 (mod 1813) by 73. We multiply (23, 34) by 73 and reduce to get (23 x 73 mod 37, 34 x 

73 mod 49) = (14,32). It is easily verified that

(32,14)  [(14)(49)(34) + (32)(37)(4)] mod 1813

= 865

= 1651 x 73 mod 1813

[8] This example was provided by Professor Ken Calvert of Georgia Tech.
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8.5. Discrete Logarithms

Discrete logarithms are fundamental to a number of public-key algorithms, including Diffie-Hellman key exchange and the digital signature 

algorithm (DSA). This section provides a brief overview of discrete logarithms. For the interested reader, more detailed developments of 

this topic can be found in [ORE67] and [LEVE90].
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The Powers of an Integer, Modulo n

Recall from Euler's theorem [Equation (8.4)] that, for every a and n that are relatively prime:

af(n)  1(mod n)

where f(n), Euler's totient function, is the number of positive integers less than n and relatively prime to n. Now consider the more general 

expression:

Equation 8-10 

If a and n are relatively prime, then there is at least one integer m that satisfies Equation (8.10), namely, m = f(n). The least positive 

exponent m for which Equation (8.10) holds is referred to in several ways:

the order of a (mod n)

the exponent to which a belongs (mod n)

the length of the period generated by a

To see this last point, consider the powers of 7, modulo 19:

7
1 7(mod 19)

7
2 = 49 = 2 x 19 + 11 11(mod 19)



7
3 = 343 = 18 x 19 + 1 1(mod 19)

7
4 = 2401 = 126 x 19 + 7 7(mod 19)

7
5 = 16807 = 884 x 19 + 11 11(mod 19)

There is no point in continuing because the sequence is repeating. This can be proven by noting that 7
3
  1(mod 19) 

and therefore 7
3+j

  7
3
7
j
  7

j
(mod 19), and hence any two powers of 7 whose exponents differ by 3 (or a multiple of 

3) are congruent to each other (mod 19). In other words, the sequence is periodic, and the length of the period is the 

smallest positive exponent m such that 7
m

  1(mod 19).

Table 8.3 shows all the powers of a, modulo 19 for all positive a < 19. The length of the sequence for each base value is indicated by 

shading. Note the following:

All sequences end in 1. This is consistent with the reasoning of the preceding few paragraphs.1.

The length of a sequence divides f(19) = 18. That is, an integral number of sequences occur in each row of the table.2.

Some of the sequences are of length 18. In this case, it is said that the base integer a generates (via powers) the set of 

nonzero integers modulo 19. Each such integer is called a primitive root of the modulus 19.

3.
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Table 8.3. Powers of Integers, Modulo 19

[View full size image]
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More generally, we can say that the highest possible exponent to which a number can belong (mod n) is f(n). If a number is of this order, 

it is referred to as a primitive root of n. The importance of this notion is that if a is a primitive root of n, then its powers

a, a
2
,..., a

f(n)

are distinct (mod n) and are all relatively prime to n. In particular, for a prime number p, if a is a primitive root of p, then

a, a
2
,..., a

p1

are distinct (mod p). For the prime number 19, its primitive roots are 2, 3, 10, 13, 14, and 15.

Not all integers have primitive roots. In fact, the only integers with primitive roots are those of the form 2, 4, p
a
, and 2p

a
, where p is any odd 

prime and a is a positive integer. The proof is not simple but can be found in many number theory books, including [ORE76].

Logarithms for Modular Arithmetic

With ordinary positive real numbers, the logarithm function is the inverse of exponentiation. An analogous function exists for modular 

arithmetic.

Let us briefly review the properties of ordinary logarithms. The logarithm of a number is defined to be the power to which some positive 

base (except 1) must be raised in order to equal the number. That is, for base x and for a value y:

y = x
logx(y)

The properties of logarithms include the following:



logx(1) = 0

logx(x) = 1

Equation 8-11 

Equation 8-12 

Consider a primitive root a for some prime number p (the argument can be developed for nonprimes as well). Then we know that the 

powers of a from 1 through (p 1) produce each integer from 1 through (p 1) exactly once. We also know that any integer b satisfies

b  r(mod p) for some r, where 0  r  (p 1)

by the definition of modular arithmetic. It follows that for any integer b and a primitive root a of prime number p, we can find a unique 

exponent i such that

b  a
i
(mod p) where 0  i  (p 1)
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This exponent i is referred to as the discrete logarithm of the number b for the base a (mod p). We denote this value as dloga.p(b).
[9]

[9] Many texts refer to the discrete logarithm as the index. There is no generally agreed notation for this concept, 

much less an agreed name.

Note the following:

Equation 8-13 

Equation 8-14 



Here is an example using a nonprime modulus, n = 9. Here f(n) = 6 and a = 2 is a primitive root. We compute the various 

powers of a and find

2
0
 = 1 2

4
  7(mod 9)

2
1
 = 2 2

5
  5(mod 9)

2
2
 = 4 2

6
  1(mod 9)

2
3
 = 8  

This gives us the following table of the numbers with given discrete logarithms (mod 9) for the root a = 2:

Logarithm 0 1 2 3 4 5

Number 1 2 4 8 7 5

To make it easy to obtain the discrete logarithms of a given number, we rearrange the table:

Number 1 2 4 5 7 8

Logarithm 0 1 2 5 4 3

Now consider

x
= a

dloga,p(x)
 mod p y = a

dloga,p(y)
 mod p

xy
= a

dloga,p(xy)
 mod p  

Using the rules of modular multiplication,



But now consider Euler's theorem, which states that, for every a and n that are relatively prime:

a
f(n)

  1(mod n)
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Any positive integer z can be expressed in the form z = q + kf(n), with 0  q < f(n). Therefore, by Euler's theorem,

a
z
  a

q
(mod n) if z  q mod f(n)

Applying this to the foregoing equality, we have

dloga,p(xy)  [dloga,p(x) + dloga,p(y)] (mod f(p))

and generalizing,

dloga,p(y
r
) 



Now, consider the set of points E(a, b) consisting of all of the points (x, y) that satisfy Equation (10.1) together with the element O. Using a 

different value of the pair (a, b) results in a different set E(a, b). Using this terminology, the two curves in Figure 10.9 depict the sets E(1,0) 

and E(1, 1), respectively.

Geometric Description of Addition

It can be shown that a group can be defined based on the set E(a, b) for specific values of a and b in Equation (10.1), provided the 

following condition is met:

Equation 10-2 

To define the group, we must define an operation, called addition and denoted by +, for the set E(a, b), where a and b satisfy Equation 

(10.2). In geometric terms, the rules for addition can be stated as follows: If three points on an elliptic curve lie on a straight line, their sum is 

O. From this definition, we can define the rules of addition over an elliptic curve:

O serves as the additive identity. Thus O = O; for any point P on the elliptic curve, P + O = P. In what follows, we assume P 

O and Q  O.

1.
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The negative of a point P is the point with the same x coordinate but the negative of the y coordinate; that is, if P = (x, y), then P = 

(x, y). Note that these two points can be joined by a vertical line. Note that P + (P) = P P = O.

2.

To add two points P and Q with different x coordinates, draw a straight line between them and find the third point of intersection 

R. It is easily seen that there is a unique point R that is the point of intersection (unless the line is tangent to the curve at either P

or Q, in which case we take R = P or R = Q, respectively). To form a group structure, we need to define addition on these three 

points as follows: P + Q = R. That is, we define P + Q to be the mirror image (with respect to the x axis) of the third point of 

intersection. Figure 10.9 illustrates this construction.

3.

[Page 305]

The geometric interpretation of the preceding item also applies to two points, P and P, with the same x coordinate. The 

points are joined by a vertical line, which can be viewed as also intersecting the curve at the infinity point. We therefore have P

+ ( P) = O, consistent with item (2).

4.

To double a point Q, draw the tangent line and find the other point of intersection S. Then Q + Q = 2Q = S.5.



With the preceding list of rules, it can be shown that the set E(a, b) is an abelian group.

Algebraic Description of Addition

In this subsection we present some results that enable calculation of additions over elliptic curves.
[4]

 For two distinct points P = (xP, yP) 

and Q = (xQ, yQ) that are not negatives of each other, the slope of the line l that joins them is D = (yQ yP). There is exactly one other point 

where l intersects the elliptic curve, and that is the negative of the sum of P and Q. After some algebraic manipulation, we can express the 

sum R = P + Q as follows:

[4] For derivations of these results, see [KOBL94] or other mathematical treatments of elliptic curves.

Equation 10-3 

We also need to be able to add a point to itself: P + P = 2P = R. When yP  0, the expressions are

Equation 10-4 

Elliptic Curves over Zp

Elliptic curve cryptography makes use of elliptic curves in which the variables and coefficients are all restricted to elements of a finite field. 

Two families of elliptic curves are used in cryptographic applications: prime curves over Zp and binary curves over GF(2
m

). For a prime 

curve over Zp, we use a cubic equation in which the variables and coefficients all take on values in the set of integers from 0 through p 1 and

in which calculations are performed modulo p. For a binary curve defined over GF(2
m

), the variables and coefficients all take on values in 

GF(2
n
) and in calculations are performed over GF(2

n
). [FERN99] points out that prime curves are best for software applications, because 

the extended bit-fiddling operations needed by binary curves are not required; and that binary curves are best for hardware applications, 



where it takes remarkably few logic gates to create a powerful, fast cryptosystem. We examine these two families in this section and the 

next.

There is no obvious geometric interpretation of elliptic curve arithmetic over finite fields. The algebraic interpretation used for elliptic curve 

arithmetic over real numbers does readily carry over, and this is the approach we take.
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For elliptic curves over Zp, as with real numbers, we limit ourselves to equations of the form of Equation (10.1), but in this case with 

coefficients and variables limited to Zp:

Equation 10-5 

For example, Equation (10.5) is satisfied for a = 1, b = 1, x = 9, y = 9, y = 7, p = 23:

7
2
 mod 23 = (9

3
 + 9 + 1) mod 23

49 mod 23 = 739 mod 23

3 = 3

Now consider the set Ep (a, b) consisting of all pairs of integers (x, y) that satisfy Equation (10.5), together with a point at infinity O. The 

coefficients a and b and the variables x and y are all elements of Zp.

For example, let p = 23 and consider the elliptic curve y
2
 = x

3
 + x + 1. In this case, a = b = 1. Note that this equation is the same as that of 

Figure 10.9b. The figure shows a continuous curve with all of the real points that satisfy the equation. For the set E23(1, 1), we are only 

interested in the nonnegative integers in the quadrant from (0, 0) through (p 1, p 1) that satisfy the equation mod p. Table 10.1 lists the 

points (other than O) that are part of E23(1,1). Figure 10.10 plots the points of E23(1,1); note that the points, with one exception, are 

symmetric about y = 11.5.

Table 10.1. Points on the Elliptic Curve E23(1,1)

(0, 1) (6, 4) (12, 19)

(0, 22) (6, 19) (13, 7)

(1, 7) (7, 11) (13, 16)

(1, 16) (7, 12) (17, 3)

(3, 10) (9, 7) (17, 20)

(3, 13) (9, 16) (18, 3)

(4, 0) (11, 3) (18, 20)



(5, 4) (11, 20) (19, 5)

(5, 19) (12, 4) (19, 18)

Figure 10.10. The Elliptic Curve E23(1,1)
(This item is displayed on page 307 in the print version)

It can be shown that a finite abelian group can be defined based on the set Ep(a, b) provided that (x
3
 + ax + b) mod p has no repeated 

factors. This is equivalent to the condition



Equation 10-6 

Note that Equation (10.6) has the same form as Equation (10.2).

The rules for addition over Ep(a, b) correspond to the algebraic technique described for elliptic curves defined over real number. For all 

points P, Q  Ep(a, b);

P + O = P.1.

If P = (xP, yP) then P + (xP, yP) = O. The point (xP, yP) is the negative of P, denoted as P. For example, in E23(1,1), for P = 

(13,7), we have P = (13, 7). But 7 mod 23 = 16. Therefore, P = (13, 16), which is also in E23(1,1).

2.
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If P = (xP, yQ) and Q = (xQ, yQ) with P  Q, then R = P + Q = (xR, yR) is determined by the following rules:

xR = (l
2
 xP xQ) mod p

yR = (l(xP xR) yP) mod p

where

3.

Multiplication is defined as repeated addition; for example, 4P = P + P + P + P.

For example, let P = (3,10) and Q = (9,7) in E23(1,1). Then

xR = (11
2
 3 9) mod 23 = 17

yR = (11(3 17) 10) mod 23 = 164 mod 23 = 20

4.
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So P + Q = (17, 20). To find 2P,

The last step in the preceding equation involves taking the multiplicative inverse of 4 in Z23. This can be done using the extended 

Euclidean algorithm defined in Section 4.4. To confirm, note that (6 x 4) mod 23 = 24 mod 23 = 1.

xR = (6
2
 3 3) mod 23 = 30 mod 23 = 7

yR = (6(3 7) 10) mod 23 = ( 34) mod 23 = 12

and 2P = (7, 12).

For determining the security of various elliptic curve ciphers, it is of some interest to know the number the number of points in a finite 

abelian group defined over an elliptic curve. In the case of the finite group Ep(a,b), the number of points N is bounded by

Note that the number of points in Ep(a, b) is approximately equal to the number of elements in Zp, namely p elements.

Elliptic Curves over GF(2
m

)

Recall from Chapter 4 that a finite field GF(2
m

) consists of 2
m

 elements, together with addition and multiplication operations that can be 

defined over polynomials. For elliptic curves over GF(2
m

), we use a cubic equation in which the variables and coefficients all take on 

values in GF(2
m

), for some number m, and in which calculations are performed using the rules of arithmetic in GF(2
m

).

It turns out that the form of cubic equation appropriate for cryptographic applications for elliptic curves is somewhat different for GF(2
m

) 

than for Zp. The form is

Equation 10-7 

where it is understood that the variables x and y and the coefficients a and b are elements of GF(2
m

) of and that calculations are performed 

in GF(2
m

).

Now consider the set E2m(a, b) consisting of all pairs of integers (x, y) that satisfy Equation (10.7), together with a point at infinity O.

For example, let us use the finite field GF(2
4
) with the irreducible polynomial f(x) = x

4
 + x + 1. This yields a generator that satisfies f(g) = 0, 



with a value of g
4
 = g + 1, or in binary 0010. We can develop the powers of g as follows:

g
0
 = 0001 g

4
 = 0011 g

8
 = 0101 g

12
 = 1111

g
1
 = 0010 g

5
 = 0110 g

9
 = 1010 g

13
 = 1101

g
2
 = 0100 g

6
 = 1100 g

10
 = 0111 g

14
 = 1001

g
3
 = 1000 g

7
 = 1011 g

11
 = 1110 g

15
 = 0001

For example, g
5
 = (g

4
)(g) = g

2
 + g = 0110.
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Now consider the elliptic curve y
2
 + xy = x

3
 + g

4
x
2
 + 1. In this case a = g

4
 and b = g

0
 = 1. One point that satisfies this equation is (g

5
, g

3
):

(g
3
)
2
 + (g

5
)(g

3
) = (g

5
)
3
 + (g

4
)(g

5
)
2
 + 1

g
6
 + g

8
 = g

15
 + g

14
 + 1

1100 + 0101 = 0001 + 1001 + 0001

1001 = 1001

Table 10.2 lists the points (other than O) that are part of E24(g
4
, 1). Figure 10.11 plots the points of E24(g

4
, 1).

Table 10.2. Points on the Elliptic Curve E2
4 (g4, 1)

(0, 1)
(g

5
, g

3
) (g

9
, g

13
)

(1, g
6
) (g

5
, g

11
) (g

10
, g)

(1, g
13

) g
6
, g

8
) (g

10
, g

8
)

(g
3
, g

8
) (g

6
, g

14
) (g

12
,0)

(g
3
, g

13
) (g

9
, g

10
) (g

12
, g

12
)

Figure 10.11. The Elliptic Curve E2
4(g4, 1)



It can be shown that a finite abelian group can be defined based on the set E2m(a, b), provided that b  0. The rules for addition can be 

stated as follows. For all points P, Q  E2m(a, b):

P + O = P.1.

If P = (xP, yP), then P + (xP, xp + yP) = O. The point (xP, xP + yP) is the negative of P, denoted as P.2.
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If P = (xP, yP) and Q = (xQ, yQ) with P  Q and P  Q, then R = P + Q = (xR, yR) is determined by the following rules:

xR = l
2
 + l + xP + xQ + a

yR = l(xP + xR) + xR + yP

where

3.



If = (xP, yP) then R = 2P = (xR, yR) is determined by the following rules:

where

4.

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html
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10.4. Elliptic Curve Cryptography

The addition operation in ECC is the counterpart of modular multiplication in RSA, and multiple addition is the counterpart of modular 

exponentiation. To form a cryptographic system using elliptic curves, we need to find a "hard problem" corresponding to factoring the 

product of two primes or taking the discrete logarithm.

Consider the equation Q = kP where Q, P  Ep(a, b) and k < p. It is relatively easy to calculate Q given k and P, but it is relatively hard to 

determine k given Q and P. This is called the discrete logarithm problem for elliptic curves.

We give an example taken from the Certicom Web site (www.certicom.com). Consider the group E23(9, 17). This is the group defined by 

the equation y
2
 mod 23 = (x

3
 + 9x + 17) mod 23. What is the discrete logarithm k of Q = (4, 5) to the base P = (16.5)? The brute-force 

method is to compute multiples of P until Q is found.

Thus

P = (16, 5); 2P = (20, 20); 3P = (14, 14); 4P = (19, 20); 5P = (13, 10); 6P = (7, 3); 7P = (8, 7); 8P (12, 17); 9P = (4, 5).

Because 9P = (4, 5) = Q, the discrete logarithm Q = (4, 5) to the base P = (16, 5) is k = 9. In a real application, k would be so large as to 

make the brute-force approach infeasible.

In the remainder of this section, we show two approaches to ECC that give the flavor of this technique.

Analog of Diffie-Hellman Key Exchange

Key exchange using elliptic curves can be done in the following manner. First pick a large integer q, which is either a prime number p or an 

integer of the form 2
m

 and elliptic curve parameters a and b for Equation (10.5) or Equation (10.7). This defines the elliptic group of points 

Eq(a, b). Next, pick a base point G = (x1, y1) in Ep(a, b) whose order is a very large value n. The order n of a point G on an elliptic curve is 

the smallest positive integer n such that nG = O. Eq(a, b) and G are parameters of the cryptosystem known to all participants.
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A key exchange between users A and B can be accomplished as follows (Figure 10.12):

A selects an integer nA less than n. This is A's private key. A then generates a public key PA = nA x G; the public key is a point in 

Eq(a, b).

1.

B similarly selects a private key nB and computes a public key PB.2.

A generates the secret key K = nA x PB. B generates the secret key K = nB x PA.3.

Figure 10.12. ECC Diffie-Hellman Key Exchange

http://www.certicom.com


The two calculations in step 3 produce the same result because

nA x PB = nA x (nB x G) = nB x (nA x G) = nB x PA

To break this scheme, an attacker would need to be able to compute k given G and kG, which is assumed hard.
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As an example,
[5]

 take p = 211; Ep(0, 4), which is equivalent to the curve y
2
 = x

3
 4; and G = (2, 2). One can calculate that 240G = O. A's 

private key is nA = 121, so A's public key is PA = 121(2, 2) = (115, 48). B's private key is nB = 203, so B's public key is 203(2, 2) = (130, 

203). The shared secret key is 121(130, 203) = 203(115, 48) = (161, 69).

[5] Provided by Ed Schaefer of Santa Clara University.

Note that the secret key is a pair of numbers. If this key is to be used as a session key for conventional encryption, then a single number 

must be generated. We could simply use the x coordinates or some simple function of the x coordinate.

Elliptic Curve Encryption/Decryption

Several approaches to encryption/decryption using elliptic curves have been analyzed in the literature. In this subsection we look at 

perhaps the simplest. The first task in this system is to encode the plaintext message m to be sent as an x-y point Pm. It is the point Pm

that will be encrypted as a ciphertext and subsequently decrypted. Note that we cannot simply encode the message as the x or y

coordinate of a point, because not all such coordinates are in Eq(a, b); for example, see Table 10.1. Again, there are several approaches 

to this encoding, which we will not address here, but suffice it to say that there are relatively straightforward techniques that can be used.

As with the key exchange system, an encryption/decryption system requires a point G and an elliptic group Eq(a, b) as parameters. Each 

user A selects a private key nA and generates a public key PA = nA x G.

To encrypt and send a message Pm to B, A chooses a random positive integer k and produces the ciphertext Cm consisting of the pair of 

points:

Cm = {kG, Pm + kPB}

Note that A has used B's public key PB. To decrypt the ciphertext, B multiplies the first point in the pair by B's secret key and subtracts the 

result from the second point:

Pm + kPB nB(kG) = Pm + k(nBG) nB(kG) = Pm

A has masked the message Pm by adding kPB to it. Nobody but A knows the value of k, so even though PB is a public key, nobody can 

remove the mask kPB. However, A also includes a "clue," which is enough to remove the mask if one knows the private key nB. For an 

attacker to recover the message, the attacker would have to compute k given G and kG, which is assumed hard.

As an example of the encryption process (taken from [KOBL94]), take p = 751; Ep(1, 188), which is equivalent to the curve y
2
 = x

3
 x + 188; 

and G = (0, 376). Suppose that A wishes to send a message to B that is encoded in the elliptic point Pm = (562, 201) and that A selects the 

random number k = 386. B's public key is PB = (201, 5). We have 386(0, 376) = (676, 558), and (562, 201) + 386(201, 5) = (385, 328). 

Thus A sends the cipher text {(676, 558), (385, 328)}.

Security of Elliptic Curve Cryptography

The security of ECC depends on how difficult it is to determine k given kP and P. This is referred to as the elliptic curve logarithm problem. 

The fastest known technique for taking the elliptic curve logarithm is known as the Pollard rho method. Table 10.3 compares various 

algorithms by showing comparable key sizes in terms of computational effort for cryptanalysis. As can be seen, a considerably smaller key 

size can be used for ECC compared to RSA. Furthermore, for equal key lengths, the computational effort required for ECC and RSA is 

comparable [JURI97]. Thus, there is a computational advantage to using ECC with a shorter key length than a comparably secure RSA.
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Table 10.3. Comparable Key Sizes in Terms of Computational Effort for Cryptanalysis

Symmetric Scheme (key size in bits) ECC-Based Scheme (size of n in bits) RSA/DSA (modulus size in bits)

56 112 512

80 160 1024

112 224 2048

128 256 3072

92 384 7680

256 512 15360

Source: Certicom
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10.5. Recommended Reading and Web Sites

A quite readable treatment of elliptic curve cryptography is [ROSI99]; the emphasis is on software implementation. Another readable, but 

rigorous, book is [HANK04]. Two other good treatments, both of which contain some rather stiff mathematics, are [BLAK99] and 

[ENGE99]. There are also good but more concise descriptions in [KUMA98], [STIN02], and [KOBL94]. Two interesting survey 

treatments are [FERN99] and [JURI97].

BLAK99 Blake, I.; Seroussi, G.; and Smart, N. Elliptic Curves in Cryptography. Cambridge: Cambridge 

University Press, 1999.

ENGE99 Enge, A. Elliptic Curves and Their Applications to Cryptography. Norwell, MA: Kluwer Academic 

Publishers, 1999.

FERN99 Fernandes, A. "Elliptic Curve Cryptography." Dr. Dobb's Journal, December 1999.

HANK04 Hankerson, D.; Menezes, A.; and Vanstone, S. Guide to Elliptic Curve Cryptography. New York: 

Springer, 2004.

JURI97 Jurisic, A., and Menezes, A. "Elliptic Curves and Cryptography." Dr. Dobb's Journal, April 1997.

KOBL94 Koblitz, N. A Course in Number Theory and Cryptography. New York: Springer-Verlag, 1994.

KUMA98 Kumanduri, R., and Romero, C. Number Theory with Computer Applications. Upper Saddle River, NJ: 

Prentice Hall, 1998.

ROSI99 Rosing, M. Implementing Elliptic Curve Cryptography. Greeenwich, CT: Manning Publications, 1999.

STIN02 Stinson, D. Cryptography: Theory and Practice. Boca Raton, FL: CRC Press, 2002.
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Recommended Web Site

Certicom: Extensive collection of technical material on elliptic curve cryptography and other topics in cryptography
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10.6. Key Terms, Review Questions, and Problems

Key Terms

abelian group

binary curve

cubic equation

Diffie-Hellman key exchange

discrete logarithm

elliptic curve

elliptic curve arithmetic

elliptic curve cryptography

finite field

key distribution

key management

man-the-middle attack

prime curve

primitive root

public-key certificate

public-key directory

zero point



Review Questions

10.1 What are two different uses of public-key cryptography related to key distribution?

10.2 List four general categories of schemes for the distribution of public keys.

10.3 What are the essential ingredients of a public-key directory?

10.4 What is a public-key certificate?

10.5 What are the requirements for the use of a public-key certificate scheme?

10.6 Briefly explain Diffie-Hellman key exchange.

10.7 What is an elliptic curve?

10.8 What is the zero point of an elliptic curve?

10.9 What is the sum of three points on an elliptic curve that lie on a straight line?

Problems

10.1 Users A and B use the Diffie-Hellman key exchange technique with a common prime q = 71 and a primitive 

root a = 7.

If user A has private key XA = 5, what is A's public key YA?a.

If user B has private key XB = 12, what is B's public key YB?b.

What is the shared secret key?c.

10.2 Consider a Diffie-Hellman scheme with a common prime q = 11 and a primitive root a = 2.

Show that 2 is a primitive root of 11.a.

If user A has public key YA = 9, what is A's private key XA?b.

If user B has public key YB = 3, what is the shared secret key K, shared with A?c.



10.3
In the Diffie-Hellman protocol, each participant selects a secret number x and sends the other participant a

x

mod q for some public number a. What would happen if the participants sent each other x
a
 for some public 

number a instead? Give at least one method Alice and Bob could use to agree on a key. Can Eve break your 

system without finding the secret numbers? Can Eve find the secret numbers?
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10.4 This problem illustrates the point that the Diffie-Hellman protocol is not secure without the step where you 

take the modulus; i.e. the "Indiscrete Log Problem" is not a hard problem! You are Eve, and have captured 

Alice and Bob and imprisoned them. You overhear the following dialog.

Bob: Oh, let's not bother with the prime in the Diffie-Hellman protocol, it will make things easier.

Alice: Okay, but we still need a base to raise things to. How about g = 3?

Bob: All right, then my result is 27.

Alice: And mine is 243.

What is Bob's secret XB and Alice's secret XA? What is their secret combined key? (Don't forget to show your 

work.)

10.5 Section 10.2 describes a man-in-the-middle attack on the Diffie-Hellman key exchange protocol in which the 

adversary generates two public-private key pairs for the attack. Could the same attack be accomplished with 

one pair? Explain.

10.6 In 1985, T. ElGamal announced a public-key scheme based on discrete logarithms, closely related to the 

Diffie-Hellman technique. As with Diffie-Hellman, the global elements of the ElGamal scheme are a prime 

number q and a, a primitive root of q. A user A selects a private key XA and calculates a public key YA as in 

Diffie-Hellman. User A encrypts a plaintext M < q intended for user B as follows:

Choose a random integer k such that 1  k  q 1.1.

Compute K = (YB)
k
 mod q.2.

Encrypt M as the pair of integers (C1, C2) where3.

C1 = a
k
 mod q C2 = KM mod q

User B recovers the plaintext as follows:

Compute K = (C1)
XB mod q.1.

Compute M = (C2K
1
) mod q.2.

Show that the system works; that is, show that the decryption process does recover the plaintext.

10.7 Consider an ElGamal scheme with a common prime q = 71 and a primitive root a = 7

If B has public key YB = 3 and A chose the random integer k = 2, what is the ciphertext of M = 30?a.

If A now chooses a different value of k, so that the encoding of M = 30 is C = (59, C2), what is the 

integer C2?

b.



10.8 Rule (5) for doing arithmetic in elliptic curves over real numbers states that to double a point Q, draw the 

tangent line and find the other point of intersection S. Then Q + Q = 2Q = S. If the tangent line is not vertical, 

there will be exactly one point of intersection. However, suppose the tangent line is vertical? In that case, 

what is the value 2Q? What is the value 3Q?

10.9 Demonstrate that the two elliptic curves of Figure 10.9 each satisfy the conditions for a group over the real 

numbers.

10.10
Is (4,7) a point on the elliptic curve y

2
 = x

3
 5x + 5 over real numbers?

10.11
On the elliptic curve over the real numbers y

2
 = x

3
 36x, let P = (3.5, 9.5) and Q = (2.5, 8.5). Find P + Q and 2P.

10.12
Does the elliptic curve equation y

2
 = x

3
 + 10x + 5 define a group over Z17?

10.13
Consider the elliptic curve E11(1, 6); that is, the curve is defined by y

2
 = x

3
 + x + 6 with a modulus of p = 11. 

Determine all of the points in E11(1, 6). Hint: Start by calculating the right-hand side of the equation for all 

values of x.

10.14 What are the negatives of the following elliptic curve points over Z17? P = (5, 8); Q = (3, 0); R = (0, 6).

10.15 For E11(1, 6), consider the point G = (2, 7). Compute the multiples of G from 2G through 13G.
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10.16 This problem performs elliptic curve encryption/decryption using the scheme outlined in Section 10.4. The 

cryptosystem parameters are E11(1, 6) and G = (2, 7). B's secret key is nB = 7.

Find B's public key PB.a.

A wishes to encrypt the message Pm = (10, 9) and chooses the random value k = 3. Determine 

the ciphertext Cm.

b.

Show the calculation by which B recovers Pm from Cm.c.

10.17 The following is a first attempt at an Elliptic Curve signature scheme. We have a global elliptic curve, prime p, 

and "generator" G. Alice picks a private signing key XA and forms the public verifying key YA = XAG. To sign a 

message M:

Alice picks a value k.

Alice sends Bob M, k and the signature S = M kXAG.

Bob verifies that M = S + kYA

Show that this scheme works. That is, show that the verification process produces an equality if 

the signature is valid.

a.

Show that the scheme is unacceptable by describing a simple technique for forging a user's 

signature on an arbitrary message.

b.



10.18 Here is an improved version of the scheme given in the previous problem. As before, we have a global 

elliptic curve, prime p, and "generator" G. Alice picks a private signing key XA and forms the public verifying 

key YA = XAG. To sign a message M,

Bob picks a value k.

Bob sends Alice C1 = kG.

Alice sends Bob M and the signature S = M XAC1-

Bob verifies that M = S + kYA

Show that this scheme works. That is, show that the verification process produces an equality if 

the signature is valid.

a.

Show that forging a message in this scheme is as hard as breaking (ElGamal) Elliptic Curve 

Cryptography. (Or find an easier way to forge a message?)

b.

This scheme has an extra "pass" compared to other cryptosystems and signature schemes we 

have looked at. What are some drawbacks to this?

c.
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At cats' green on the Sunday he took the message from the inside of the pillar and added Peter Moran's name to 

the two names already printed there in the "Brontosaur" code. The message now read: "Leviathan to Dragon: 

Martin Hillman, Trevor Allan, Peter Moran: observe and tail." What was the good of it John hardly knew. He felt 

better, he felt that at last he had made an attack on Peter Moran instead of waiting passively and effecting no 

retaliation. Besides, what was the use of being in possession of the key to the codes if he never took advantage of 

it?

Talking to Strange Men, Ruth Rendell

Key Points

Message authentication is a mechanism or service used to verify the integrity of a message. Message 

authentication assures that data received are exactly as sent by (i.e., contain no modification, insertion, 

deletion, or replay) and that the purported identity of the sender is valid.

Symmetric encryption provides authentication among those who share the secret key. Encryption of a 

message by a sender's private key also provides a form of authentication.

The two most common cryptographic techniques for message authentication are a message authentication 

code (MAC) and a secure hash function.

A MAC is an algorithm that requires the use of a secret key. A MAC takes a variable-length message and a 

secret key as input and produces an authentication code. A recipient in possession of the secret key can 

generate an authentication code to verify the integrity of the message.

A hash function maps a variable-length message into a fixed length hash value, or message digest. For 

message authentication, a secure hash function must be combined in some fashion with a secret key.



Perhaps the most confusing area of network security is that of message authentication and the related topic of digital signatures. The 

attacks and countermeasures become so convoluted that practitioners in this area begin to remind one of the astronomers of old, who 

built epicycles on top of epicycles in an attempt to account for all contingencies. Fortunately, it appears that today's designers of 

cryptographic protocols, unlike those long-forgotten astronomers, are working from a fundamentally sound model.

It would be impossible, in anything less than book length, to exhaust all the cryptographic functions and protocols that have been 

proposed or implemented for message authentication and digital signatures. Instead, the purpose of this chapter and the next two is to 

provide a broad overview of the subject and to develop a systematic means of describing the various approaches.
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This chapter begins with an introduction to the requirements for authentication and digital signature and the types of attacks to be 

countered. Then the basic approaches are surveyed, including the increasingly important area of secure hash functions. Specific hash 

functions are examined in Chapter 12.
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11.1. Authentication Requirements

In the context of communications across a network, the following attacks can be identified:

Disclosure: Release of message contents to any person or process not possessing the appropriate cryptographic key.1.

Traffic analysis: Discovery of the pattern of traffic between parties. In a connection-oriented application, the frequency and 

duration of connections could be determined. In either a connection-oriented or connectionless environment, the number and 

length of messages between parties could be determined.

2.

Masquerade: Insertion of messages into the network from a fraudulent source. This includes the creation of messages by an 

opponent that are purported to come from an authorized entity. Also included are fraudulent acknowledgments of message 

receipt or nonreceipt by someone other than the message recipient.

3.

Content modification: Changes to the contents of a message, including insertion, deletion, transposition, and modification.4.

Sequence modification: Any modification to a sequence of messages between parties, including insertion, deletion, and 

reordering.

5.

Timing modification: Delay or replay of messages. In a connection-oriented application, an entire session or sequence of 

messages could be a replay of some previous valid session, or individual messages in the sequence could be delayed or 

replayed. In a connectionless application, an individual message (e.g., datagram) could be delayed or replayed.

6.

Source repudiation: Denial of transmission of message by source.7.

Destination repudiation: Denial of receipt of message by destination.8.

Measures to deal with the first two attacks are in the realm of message confidentiality and are dealt with in Part One. Measures to deal 

with items 3 through 6 in the foregoing list are generally regarded as message authentication. Mechanisms for dealing specifically with 

item 7 come under the heading of digital signatures. Generally, a digital signature technique will also counter some or all of the attacks 

listed under items 3 through 6. Dealing with item 8 may require a combination of the use of digital signatures and a protocol designed to 

counter this attack.

In summary, message authentication is a procedure to verify that received messages come from the alleged source and have not been 

altered. Message authentication may also verify sequencing and timeliness. A digital signature is an authentication technique that also 

includes measures to counter repudiation by the source.
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11.2. Authentication Functions

Any message authentication or digital signature mechanism has two levels of functionality. At the lower level, there must be some 

sort of function that produces an authenticator: a value to be used to authenticate a message. This lower-level function is then used as a 

primitive in a higher-level authentication protocol that enables a receiver to verify the authenticity of a message.

This section is concerned with the types of functions that may be used to produce an authenticator. These may be grouped into three 

classes, as follows:

Message encryption: The ciphertext of the entire message serves as its authenticator

Message authentication code (MAC): A function of the message and a secret key that produces a fixed-length value that 

serves as the authenticator

Hash function: A function that maps a message of any length into a fixed-length hash value, which serves as the authenticator

We now briefly examine each of these topics; MACs and hash functions are then examined in greater detail in Sections 11.3 and 11.4.

Message Encryption

Message encryption by itself can provide a measure of authentication. The analysis differs for symmetric and public-key encryption 

schemes.

Symmetric Encryption

Consider the straightforward use of symmetric encryption (Figure 11.1a). A message M transmitted from source A to destination B is 

encrypted using a secret key K shared by A and B. If no other party knows the key, then confidentiality is provided: No other party can 

recover the plaintext of the message.

Figure 11.1. Basic Uses of Message Encryption
(This item is displayed on page 321 in the print version)

[View full size image]



In addition, we may say that B is assured that the message was generated by A. Why? The message must have come from A because A 

is the only other party that possesses K and therefore the only other party with the information necessary to construct ciphertext that can 

be decrypted with K. Furthermore, if M is recovered, B knows that none of the bits of M have been altered, because an opponent that does 

not know K would not know how to alter bits in the ciphertext to produce desired changes in the plaintext.

So we may say that symmetric encryption provides authentication as well as confidentiality. However, this flat statement needs to be 

qualified. Consider exactly what is happening at B. Given a decryption function D and a secret key K, the destination will accept any input X

and produce output Y = D(K, X). If X is the ciphertext of a legitimate message M produced by the corresponding encryption function, then Y

is some plaintext message M. Otherwise, Y will likely be a meaningless sequence of bits. There may need to be some automated means 

of determining at B whether Y is legitimate plaintext and therefore must have come from A.

The implications of the line of reasoning in the preceding paragraph are profound from the point of view of authentication. Suppose the 

message M can be any arbitrary bit pattern. In that case, there is no way to determine automatically, at the destination, whether an 

incoming message is the ciphertext of a legitimate message. This conclusion is incontrovertible: If M can be any bit pattern, then 

regardless of the value of X, the value Y = D(K, X) is some bit pattern and therefore must be accepted as authentic plaintext.
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Thus, in general, we require that only a small subset of all possible bit patterns be considered legitimate plaintext. In that case, any 

spurious ciphertext is unlikely to produce legitimate plaintext. For example, suppose that only one bit pattern in 10
6
 is legitimate plaintext. 

Then the probability that any randomly chosen bit pattern, treated as ciphertext, will produce a legitimate plaintext message is only 10
-6

.

For a number of applications and encryption schemes, the desired conditions prevail as a matter of course. For example, suppose that we 

are transmitting English-language messages using a Caesar cipher with a shift of one (K = 1). A sends the following legitimate ciphertext:

nbsftfbupbutboeepftfbupbutboemjuumfmbnctfbujwz

B decrypts to produce the following plaintext:

mareseatoatsanddoeseatoatsandlittlelambseativy
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A simple frequency analysis confirms that this message has the profile of ordinary English. On the other hand, if an opponent generates 

the following random sequence of letters:

zuvrsoevgqxlzwigamdvnmhpmccxiuureosfbcebtqxsxq

this decrypts to:

ytuqrndufpwkyvhfzlcumlgolbbwhttqdnreabdaspwrwp

which does not fit the profile of ordinary English.

It may be difficult to determine automatically if incoming ciphertext decrypts to intelligible plaintext. If the plaintext is, say, a binary object 

file or digitized X-rays, determination of properly formed and therefore authentic plaintext may be difficult. Thus, an opponent could 

achieve a certain level of disruption simply by issuing messages with random content purporting to come from a legitimate user.

One solution to this problem is to force the plaintext to have some structure that is easily recognized but that cannot be replicated without 

recourse to the encryption function. We could, for example, append an error-detecting code, also known as a frame check sequence 

(FCS) or checksum, to each message before encryption, as illustrated in Figure 11.2a. A prepares a plaintext message M and then 

provides this as input to a function F that produces an FCS. The FCS is appended to M and the entire block is then encrypted. At the 

destination, B decrypts the incoming block and treats the results as a message with an appended FCS. B applies the same function F to 

attempt to reproduce the FCS. If the calculated FCS is equal to the incoming FCS, then the message is considered authentic. It is unlikely 

that any random sequence of bits would exhibit the desired relationship.

Figure 11.2. Internal and External Error Control

[View full size image]
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Note that the order in which the FCS and encryption functions are performed is critical. The sequence illustrated in Figure 11.2a is 

referred to in [DIFF79] as internal error control, which the authors contrast with external error control (Figure 11.2b). With internal error 

control, authentication is provided because an opponent would have difficulty generating ciphertext that, when decrypted, would have valid 

error control bits. If instead the FCS is the outer code, an opponent can construct messages with valid error-control codes. Although the 

opponent cannot know what the decrypted plaintext will be, he or she can still hope to create confusion and disrupt operations.

An error-control code is just one example; in fact, any sort of structuring added to the transmitted message serves to strengthen the 

authentication capability. Such structure is provided by the use of a communications architecture consisting of layered protocols. As an 

example, consider the structure of messages transmitted using the TCP/IP protocol architecture. Figure 11.3 shows the format of a TCP 

segment, illustrating the TCP header. Now suppose that each pair of hosts shared a unique secret key, so that all exchanges between a 

pair of hosts used the same key, regardless of application. Then we could simply encrypt all of the datagram except the IP header (see 

Figure 7.5). Again, if an opponent substituted some arbitrary bit pattern for the encrypted TCP segment, the resulting plaintext would not 

include a meaningful header. In this case, the header includes not only a checksum (which covers the header) but also other useful 

information, such as the sequence number. Because successive TCP segments on a given connection are numbered sequentially, 

encryption assures that an opponent does not delay, misorder, or delete any segments.

Figure 11.3. TCP Segment



Public-Key Encryption

The straightforward use of public-key encryption (Figure 11.1b) provides confidentiality but not authentication. The source (A) uses the 

public key PUb of the destination (B) to encrypt M. Because only B has the corresponding private key PRb, only B can decrypt the 

message. This scheme provides no authentication because any opponent could also use B's public key to encrypt a message, claiming to 

be A.
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To provide authentication, A uses its private key to encrypt the message, and B uses A's public key to decrypt (Figure 11.1c). This 

provides authentication using the same type of reasoning as in the symmetric encryption case: The message must have come from A 

because A is the only party that possesses PRa and therefore the only party with the information necessary to construct ciphertext that can 

be decrypted with PUa. Again, the same reasoning as before applies: There must be some internal structure to the plaintext so that the 

receiver can distinguish between well-formed plaintext and random bits.

Assuming there is such structure, then the scheme of Figure 11.1c does provide authentication. It also provides what is known as digital 

signature.
[1]

 Only A could have constructed the ciphertext because only A possesses PRa. Not even B, the recipient, could have 

constructed the ciphertext. Therefore, if B is in possession of the ciphertext, B has the means to prove that the message must have come 

from A. In effect, A has "signed" the message by using its private key to encrypt. Note that this scheme does not provide confidentiality. 

Anyone in possession of A's public key can decrypt the ciphertext.

[1] This is not the way in which digital signatures are constructed, as we shall see, but the principle is the same.

To provide both confidentiality and authentication, A can encrypt M first using its private key, which provides the digital signature, and then 

using B's public key, which provides confidentiality (Figure 11.1d). The disadvantage of this approach is that the public-key algorithm, 

which is complex, must be exercised four times rather than two in each communication.

Table 11.1 summarizes the confidentiality and authentication implications of these various approaches to message encryption.



Table 11.1. Confidentiality and Authentication Implications of Message Encryption (see Figure 

11.1)
(This item is displayed on page 325 in the print version)

A  B:E(K, M)

•Provides confidentiality

Only A and B share K

•Provides a degree of authentication

Could come only from A

Has not been altered in transit

Requires some formatting/redundancy

•Does not provide signature

Receiver could forge message

Sender could deny message

(a) Symmetric encryption

A  B:E(PUb, M)

• Provides confidentiality

Only B has PRb to decrypt

• Provides no authentication

Any party could use PUb to encrypt message and claim to be A

(b) Public-key (asymmetric) encryption: confidentiality

A  B:E(PRa, M)

• Provides authentication and signature

Only A has PRb to encrypt

Has not been altered in transit

Requires some formatting/redundancy

Any party can use PUa to verify signature



A  B:E(PUb, E(PRa, M))

• Provides confidentiality because of PUb

• Provides authentication and signature because of PRa

(d) Public-key encryption: confidentiality, authentication, and signature

Message Authentication Code

An alternative authentication technique involves the use of a secret key to generate a small fixed-size block of data, known as a 

cryptographic checksum or MAC that is appended to the message. This technique assumes that two communicating parties, say A and B, 

share a common secret key K. When A has a message to send to B, it calculates the MAC as a function of the message and the key:MAC 

= C(K, M), where

M = input message

C = MAC function

K = shared secret key

MAC = message authentication code

The message plus MAC are transmitted to the intended recipient. The recipient performs the same calculation on the received message, 

using the same secret key, to generate a new MAC. The received MAC is compared to the calculated MAC (Figure 11.4a). If we assume 

that only the receiver and the sender know the identity of the secret key, and if the received MAC matches the calculated MAC, then

The receiver is assured that the message has not been altered. If an attacker alters the message but does not alter the MAC, 

then the receiver's calculation of the MAC will differ from the received MAC. Because the attacker is assumed not to know the 

secret key, the attacker cannot alter the MAC to correspond to the alterations in the message.
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1.

The receiver is assured that the message is from the alleged sender. Because no one else knows the secret key, no one else 

could prepare a message with a proper MAC.

2.

If the message includes a sequence number (such as is used with HDLC, X.25, and TCP), then the receiver can be assured of 

the proper sequence because an attacker cannot successfully alter the sequence number.

3.
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Figure 11.4. Basic Uses of Message Authentication Code (MAC)



[View full size image]

A MAC function is similar to encryption. One difference is that the MAC algorithm need not be reversible, as it must for decryption. In 

general, the MAC function is a many-to-one function. The domain of the function consists of messages of some arbitrary length, whereas 

the range consists of all possible MACs and all possible keys. If an n-bit MAC is used, then there are 2
n
 possible MACs, whereas there are 

N possible messages with N >> 2
n
. Furthermore, with a k-bit key, there are 2

k
 possible keys.

For example, suppose that we are using 100-bit messages and a 10-bit MAC. Then, there are a total of 2
100

 different messages but only 

2
10

 different MACs. So, on average, each MAC value is generated by a total of 2
100

/2
10

 = 2
90

 different messages. If a 5-bit key is used, 

then there are 2
5
 = 32 different mappings from the set of messages to the set of MAC values.

It turns out that because of the mathematical properties of the authentication function, it is less vulnerable to being broken than encryption.

The process depicted in Figure 11.4a provides authentication but not confidentiality, because the message as a whole is transmitted in the 

clear. Confidentiality can be provided by performing message encryption either after (Figure 11.4b) or before (Figure 11.4c) the MAC 

algorithm. In both these cases, two separate keys are needed, each of which is shared by the sender and the receiver. In the first case, 

the MAC is calculated with the message as input and is then concatenated to the message. The entire block is then encrypted. In the 

second case, the message is encrypted first. Then the MAC is calculated using the resulting ciphertext and is concatenated to the 

ciphertext to form the transmitted block. Typically, it is preferable to tie the authentication directly to the plaintext, so the method of Figure 

11.4b is used.
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Because symmetric encryption will provide authentication and because it is widely used with readily available products, why not simply 

use this instead of a separate message authentication code? [DAVI89] suggests three situations in which a message authentication code 

is used:



There are a number of applications in which the same message is broadcast to a number of destinations. Examples are 

notification to users that the network is now unavailable or an alarm signal in a military control center. It is cheaper and more 

reliable to have only one destination responsible for monitoring authenticity. Thus, the message must be broadcast in plaintext 

with an associated message authentication code. The responsible system has the secret key and performs authentication. If a 

violation occurs, the other destination systems are alerted by a general alarm.

1.

Another possible scenario is an exchange in which one side has a heavy load and cannot afford the time to decrypt all 

incoming messages. Authentication is carried out on a selective basis, messages being chosen at random for checking.

2.

Authentication of a computer program in plaintext is an attractive service. The computer program can be executed without 

having to decrypt it every time, which would be wasteful of processor resources. However, if a message authentication code 

were attached to the program, it could be checked whenever assurance was required of the integrity of the program.

Three other rationales may be added, as follows:

3.

For some applications, it may not be of concern to keep messages secret, but it is important to authenticate messages. An 

example is the Simple Network Management Protocol Version 3 (SNMPv3), which separates the functions of confidentiality and 

authentication. For this application, it is usually important for a managed system to authenticate incoming SNMP messages, 

particularly if the message contains a command to change parameters at the managed system. On the other hand, it may not 

be necessary to conceal the SNMP traffic.

4.

Separation of authentication and confidentiality functions affords architectural flexibility. For example, it may be desired to 

perform authentication at the application level but to provide confidentiality at a lower level, such as the transport layer.

5.

A user may wish to prolong the period of protection beyond the time of reception and yet allow processing of message 

contents. With message encryption, the protection is lost when the message is decrypted, so the message is protected against 

fraudulent modifications only in transit but not within the target system.

6.

Finally, note that the MAC does not provide a digital signature because both sender and receiver share the same key.

Table 11.2 summarizes the confidentiality and authentication implications of the approaches illustrated in Figure 11.4.
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Table 11.2. Basic Uses of Message Authentication Code C (see Figure 11.4)

A  B: M||C(K, M)

•Provides authentication

Only A and B share K

(a) Message authentication

A  B:E(K2, [M||C(K, M)])

• Provides authentication

Only A and B share K1

• Provides confidentiality



Only A and B share K2

(b) Message authentication and confidentiality: authentication tied to plaintext

A  B:E(K2, M)||C(K1, E(K2, M))

• Provides authentication

Using K1

• Provides confidentiality

Using K2

(c) Message authentication and confidentiality: authentication tied to ciphertext

Hash Function

A variation on the message authentication code is the one-way hash function. As with the message authentication code, a hash function 

accepts a variable-size message M as input and produces a fixed-size output, referred to as a hash code H(M). Unlike a MAC, a hash 

code does not use a key but is a function only of the input message. The hash code is also referred to as a message digest or hash 

value. The hash code is a function of all the bits of the message and provides an error-detection capability: A change to any bit or bits in 

the message results in a change to the hash code.

Figure 11.5 illustrates a variety of ways in which a hash code can be used to provide message authentication, as follows:

The message plus concatenated hash code is encrypted using symmetric encryption. This is identical in structure to the 

internal error control strategy shown in Figure 11.2a. The same line of reasoning applies: Because only A and B share the 

secret key, the message must have come from A and has not been altered. The hash code provides the structure or 

redundancy required to achieve authentication. Because encryption is applied to the entire message plus hash code, 

confidentiality is also provided.

a.

Only the hash code is encrypted, using symmetric encryption. This reduces the processing burden for those applications that 

do not require confidentiality.
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Note that the combination of hashing and encryption results in an overall function that is, in fact, a MAC (Figure 11.4a). That is, 

E(K, H(M)) is a function of a variable-length message M and a secret key K, and it produces a fixed-size output that is secure 

against an opponent who does not know the secret key.

b.

Only the hash code is encrypted, using public-key encryption and using the sender's private key. As with (b), this provides 

authentication. It also provides a digital signature, because only the sender could have produced the encrypted hash code. In 

fact, this is the essence of the digital signature technique.

c.

If confidentiality as well as a digital signature is desired, then the message plus the private-key-encrypted hash code can be 

encrypted using a symmetric secret key. This is a common technique.

d.



It is possible to use a hash function but no encryption for message authentication. The technique assumes that the two 

communicating parties share a common secret value S. A computes the hash value over the concatenation of M and S and 

appends the resulting hash value to M. Because B possesses S, it can recompute the hash value to verify. Because the secret 

value itself is not sent, an opponent cannot modify an intercepted message and cannot generate a false message.

e.

Confidentiality can be added to the approach of (e) by encrypting the entire message plus the hash code.f.

Figure 11.5. Basic Uses of Hash Function
(This item is displayed on page 329 in the print version)

[View full size image]



When confidentiality is not required, methods (b) and (c) have an advantage over those that encrypt the entire message in that less 

computation is required. Nevertheless, there has been growing interest in techniques that avoid encryption (Figure 11.5e). Several 

reasons for this interest are pointed out in [TSUD92]:

Encryption software is relatively slow. Even though the amount of data to be encrypted per message is small, there may be a 



steady stream of messages into and out of a system.

Encryption hardware costs are not negligible. Low-cost chip implementations of DES are available, but the cost adds up if all 

nodes in a network must have this capability.

Encryption hardware is optimized toward large data sizes. For small blocks of data, a high proportion of the time is spent in 

initialization/invocation overhead.

Encryption algorithms may be covered by patents. For example, until the patent expired, RSA was patented and had to be 

licensed, adding a cost.

Table 11.3 summarizes the confidentiality and authentication implications of the approaches illustrated in Figure 11.5. We next examine 

MACs and hash codes in more detail.
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Table 11.3. Basic Uses of Hash Function H (see Figure 11.5)

A  B:E(K, [M||H(M)]) A  B: E(K, [M||E(PRa, H(M))])

• Provides confidentiality • Provides authentication and digital signature

Only A and B share K

• Provides confidentiality

• Provides authentication

Only A and B share K

H(M) is cryptographically protected
 

(a) Encrypt message plus hash code (d) Encrypt result of (c)shared secret key

A  B: M||E(K, H(M)) A  B: M||H(M||S)

• Provides authentication • Provides authentication

H(M) is cryptographically protected Only A and B share S

(b) Encrypt hash codeshared secret key (e) Compute hash code of message plus secret value

A  B: M||E(PRa, H(M)) A  B: E(K, [M||H(M||S])

• Provides authentication and digital signature • Provides authentication

H(M) is cryptographically protected Only A and B share S

Only A could create E(PRa, H(M))

• Provides confidentiality



 
Only A and B share K

(c) Encrypt hash codesender's private key (f) Encrypt result of (e)
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11.3. Message Authentication Codes

A MAC, also known as a cryptographic checksum, is generated by a function C of the form

MAC = C(K, M)

where M is a variable-length message, K is a secret key shared only by sender and receiver, and C(K, M) is the fixed-length authenticator. 

The MAC is appended to the message at the source at a time when the message is assumed or known to be correct. The receiver 

authenticates that message by recomputing the MAC.

In this section, we review the requirements for the function C and then examine a specific example. Other examples are discussed in 

Chapter 12.

Requirements for MACs

When an entire message is encrypted for confidentiality, using either symmetric or asymmetric encryption, the security of the scheme 

generally depends on the bit length of the key. Barring some weakness in the algorithm, the opponent must resort to a brute-force attack 

using all possible keys. On average, such an attack will require 2
(k-1)

 attempts for a k-bit key. In particular, for a ciphertext-only attack, the 

opponent, given ciphertext C, would perform Pi = D(Ki, C) for all possible key values Ki until a Pi was produced that matched the form of 

acceptable plaintext.
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In the case of a MAC, the considerations are entirely different. In general, the MAC function is a many-to-one function, due to the 

many-to-one nature of the function. Using brute-force methods, how would an opponent attempt to discover a key? If confidentiality is not 

employed, the opponent has access to plaintext messages and their associated MACs. Suppose k > n; that is, suppose that the key size is 

greater than the MAC size. Then, given a known M1 and MAC1, with MAC1 = C(K, M1), the cryptanalyst can perform MACi = C(Ki, M1) for 

all possible key values Ki. At least one key is guaranteed to produce a match of MACi = MAC1. Note that a total of 2
k
 MACs will be 

produced, but there are only 2
n
 < 2

k
 different MAC values. Thus, a number of keys will produce the correct MAC and the opponent has no 

way of knowing which is the correct key. On average, a total of 2
k
/2

n
 = 2

(k-n)
 keys will produce a match. Thus, the opponent must iterate 

the attack:

Round 1

Given: M1, MAC1 = C(K, M1)

Compute MACi = C(Ki, M1) for all 2
k
 keys

Number of matches  2
(k-n)

Round 2
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Given: M2, MAC2 = C(K, M2)

Compute MACi = C(Ki, M2) for the 2
(k-n)

 keys resulting from Round 1

Number of matches  2
(k-2xn)

and so on. On average, a rounds will be needed if k = a x n. For example, if an 80-bit key is used and the MAC is 32 bits long, then the first 

round will produce about 2
48

 possible keys. The second round will narrow the possible keys to about 2
16

 possibilities. The third round 

should produce only a single key, which must be the one used by the sender.

If the key length is less than or equal to the MAC length, then it is likely that a first round will produce a single match. It is possible that 

more than one key will produce such a match, in which case the opponent would need to perform the same test on a new (message, 

MAC) pair.

Thus, a brute-force attempt to discover the authentication key is no less effort and may be more effort than that required to discover a 

decryption key of the same length. However, other attacks that do not require the discovery of the key are possible.

Consider the following MAC algorithm. Let M = (X1||X2||...||Xm) be a message that is treated as a concatenation of 64-bit blocks Xi. Then 

define

D(M)
=X1  X2  ...  Xm

C(K, M = E(K, D(M))

where  is the exclusive-OR (XOR) operation and the encryption algorithm is DES in electronic codebook mode. Thus, the key length 

is 56 bits and the MAC length is 64 bits. If an opponent observes {M||C(K, M)}, a brute-force attempt to determine K will require at least 2
56

encryptions. But the opponent can attack the system by replacing X1 through Xm-1 with any desired values Y1 through Ym-1 and 

replacing Xm with Ym where Ym is calculated as follows:
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Ym = Y1  Y2  ...  Ym1  D(M)

The opponent can now concatenate the new message, which consists of Y1 through Ym, with the original MAC to form a message that will 

be accepted as authentic by the receiver. With this tactic, any message of length 64 x (m 1) bits can be fraudulently inserted.

Thus, in assessing the security of a MAC function, we need to consider the types of attacks that may be mounted against it. With that in 

mind, let us state the requirements for the function. Assume that an opponent knows the MAC function C but does not know K. Then the 

MAC function should satisfy the following requirements:

If an opponent observes M and C(K, M), it should be computationally infeasible for the opponent to construct a message M' such 

that C(K, M') = C(K, M).

1.

C(K, M) should be uniformly distributed in the sense that for randomly chosen messages, M and M', the probability that C(K, M) = 

C(K, M') is 2
n
, where n is the number of bits in the MAC.

2.

Let M' be equal to some known transformation on M. That is, M' = f(M). For example, f may involve inverting one or more 

specific bits. In that case, Pr[C(K, M) = C(K, M')] = 2
n
.

3.

The first requirement speaks to the earlier example, in which an opponent is able to construct a new message to match a given MAC, even 

though the opponent does not know and does not learn the key. The second requirement deals with the need to thwart a brute-force attack 



based on chosen plaintext. That is, if we assume that the opponent does not know K but does have access to the MAC function and can 

present messages for MAC generation, then the opponent could try various messages until finding one that matches a given MAC. If the 

MAC function exhibits uniform distribution, then a brute-force method would require, on average, 2
(n1)

 attempts before finding a message 

that fits a given MAC.

The final requirement dictates that the authentication algorithm should not be weaker with respect to certain parts or bits of the message 

than others. If this were not the case, then an opponent who had M and C(K, M) could attempt variations on M at the known "weak spots" 

with a likelihood of early success at producing a new message that matched the old MAC.

Message Authentication Code Based on DES

The Data Authentication Algorithm, based on DES, has been one of the most widely used MACs for a number of years. The algorithm is 

both a FIPS publication (FIPS PUB 113) and an ANSI standard (X9.17). However, as we discuss in Chapter 12, security weaknesses in 

this algorithm have been discovered and it is being replaced by newer and stronger algorithms.

The algorithm can be defined as using the cipher block chaining (CBC) mode of operation of DES (Figure 6.4) with an initialization vector 

of zero. The data (e.g., message, record, file, or program) to be authenticated are grouped into contiguous 64-bit blocks: D1, D2,..., DN. If 

necessary, the final block is padded on the right with zeroes to form a full 64-bit block. Using the DES encryption algorithm, E, and a 

secret key, K, a data authentication code (DAC) is calculated as follows (Figure 11.6):
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O1 = E(K, D1)

O2
= E(K, [D2  O1])

O3
= (K, [D3  O2])

•  

•  

•  

ON
= E(K, [DN  ON1])

Figure 11.6. Data Authentication Algorithm (FIPS PUB 113)

[View full size image]



The DAC consists of either the entire block ON or the leftmost M bits of the block, with 16  M  64.
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11.4. Hash Functions

A hash value h is generated by a function H of the form

h = H(M)

where M is a variable-length message and H(M) is the fixed-length hash value. The hash value is appended to the message at the source 

at a time when the message is assumed or known to be correct. The receiver authenticates that message by recomputing the hash value. 

Because the hash function itself is not considered to be secret, some means is required to protect the hash value (Figure 11.5).

We begin by examining the requirements for a hash function to be used for message authentication. Because hash functions are typically 

quite complex, it is useful to examine some very simple hash functions to get a feel for the issues involved. We then look at several 

approaches to hash function design.
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Requirements for a Hash Function

The purpose of a hash function is to produce a "fingerprint" of a file, message, or other block of data. To be useful for message 

authentication, a hash function H must have the following properties (adapted from a list in [NECH92]):

H can be applied to a block of data of any size.1.

H produces a fixed-length output.2.

H(x) is relatively easy to compute for any given x, making both hardware and software implementations practical.3.

For any given value h, it is computationally infeasible to find x such that H(x) = h. This is sometimes referred to in the literature 

as the one-way property.

4.

For any given block x, it is computationally infeasible to find y  x such that H(y) = H(x). This is sometimes referred to as 

weak collision resistance.

5.

It is computationally infeasible to find any pair (x, y) such that H(x) = H(y). This is sometimes referred to as strong collision 

resistance.
[2]

[2] Unfortunately, these terms are not used consistently. Alternate terms used in the literature include 

one-way hash function: (properties 4 and 5); collision-resistant hash function: (properties 4, 5, and 6); 

weak one-way hash function: (properties 4 and 5); strong one-way hash function: (properties 4, 5, and 6). 

The reader must take care in reading the literature to determine the meaning of the particular terms used.

6.

The first three properties are requirements for the practical application of a hash function to message authentication.

The fourth property, the one-way property, states that it is easy to generate a code given a message but virtually impossible to generate a 

message given a code. This property is important if the authentication technique involves the use of a secret value (Figure 11.5e). The 

secret value itself is not sent; however, if the hash function is not one way, an attacker can easily discover the secret value: If the attacker 
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can observe or intercept a transmission, the attacker obtains the message M and the hash code C = H(SAB||M). The attacker then inverts 

the hash function to obtain SAB||M = H
1
(C). Because the attacker now has both M and SAB||M, it is a trivial matter to recover SAB.

The fifth property guarantees that an alternative message hashing to the same value as a given message cannot be found. This prevents 

forgery when an encrypted hash code is used (Figures 11.5b and c). For these cases, the opponent can read the message and therefore 

generate its hash code. However, because the opponent does not have the secret key, the opponent should not be able to alter the 

message without detection. If this property were not true, an attacker would be capable of the following sequence: First, observe or 

intercept a message plus its encrypted hash code; second, generate an unencrypted hash code from the message; third, generate an 

alternate message with the same hash code.

The sixth property refers to how resistant the hash function is to a type of attack known as the birthday attack, which we examine shortly.
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Simple Hash Functions

All hash functions operate using the following general principles. The input (message, file, etc.) is viewed as a sequence of n-bit blocks. The 

input is processed one block at a time in an iterative fashion to produce an n-bit hash function.

One of the simplest hash functions is the bit-by-bit exclusive-OR (XOR) of every block. This can be expressed as follows:

Ci = bi1  bi1  ...  bim

where

Ci
= ith bit of the hash code, 1  i  n

m = number of n-bit blocks in the input

bij = ith bit in jth block

= XOR operation

This operation produces a simple parity for each bit position and is known as a longitudinal redundancy check. It is reasonably effective for 

random data as a data integrity check. Each n-bit hash value is equally likely. Thus, the probability that a data error will result in an 

unchanged hash value is 2
n
. With more predictably formatted data, the function is less effective. For example, in most normal text files, the 

high-order bit of each octet is always zero. So if a 128-bit hash value is used, instead of an effectiveness of 2
128

, the hash function on this 

type of data has an effectiveness of 2
112

.

A simple way to improve matters is to perform a one-bit circular shift, or rotation, on the hash value after each block is processed. The 

procedure can be summarized as follows:

Initially set the n-bit hash value to zero.1.

Process each successive n-bit block of data as follows:

Rotate the current hash value to the left by one bit.a.

XOR the block into the hash value.b.

2.

This has the effect of "randomizing" the input more completely and overcoming any regularities that appear in the input. Figure 11.7



illustrates these two types of hash functions for 16-bit hash values.

Figure 11.7. Two Simple Hash Functions
(This item is displayed on page 337 in the print version)

Although the second procedure provides a good measure of data integrity, it is virtually useless for data security when an encrypted hash 

code is used with a plaintext message, as in Figures 11.5b and c. Given a message, it is an easy matter to produce a new message that 

yields that hash code: Simply prepare the desired alternate message and then append an n-bit block that forces the new message plus 



block to yield the desired hash code.

Although a simple XOR or rotated XOR (RXOR) is insufficient if only the hash code is encrypted, you may still feel that such a simple 

function could be useful when the message as well as the hash code are encrypted (Figure 11.5a). But you must be careful. A technique 

originally proposed by the National Bureau of Standards used the simple XOR applied to 64-bit blocks of the message and then an 

encryption of the entire message that used the cipher block chaining (CBC) mode. We can define the scheme as follows: Given a 

message consisting of a sequence of 64-bit blocks X1, X2,..., XN, define the hash code C as the block-by-block XOR of all blocks and 

append the hash code as the final block:
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C = XN+1 = X1  X2  ...  XN

Next, encrypt the entire message plus hash code, using CBC mode to produce the encrypted message Y1, Y2,..., YN+1. [JUEN85] points 

out several ways in which the ciphertext of this message can be manipulated in such a way that it is not detectable by the hash code. For 

example, by the definition of CBC (Figure 6.4), we have

X1
= IV  D(K, Y1)

Xi
= Yi1  D(K, Yi)

XN+1
= YN  D(K, YN+1)
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But XN+1 is the hash code:

XN+1
= X1  X2  ...  XN

 = [IV  D(K, Y1)]  [Y1  D(K, Y2)]  ...  [YN1  ...  D (K, YN)]

Because the terms in the preceding equation can be XORed in any order, it follows that the hash code would not change if the ciphertext 

blocks were permuted.

Birthday Attacks

Suppose that a 64-bit hash code is used. One might think that this is quite secure. For example, if an encrypted hash code C is transmitted 

with the corresponding unencrypted message M (Figure 11.5b or 11.5c), then an opponent would need to find an M' such that H(M') = H(M) 

to substitute another message and fool the receiver. On average, the opponent would have to try about 2
63

 messages to find one that 

matches the hash code of the intercepted message [see Appendix 11A, Equation (11.1)].



However, a different sort of attack is possible, based on the birthday paradox (Appendix 11A). Yuval proposed the following strategy 

[YUVA79]:

The source, A, is prepared to "sign" a message by appending the appropriate m-bit hash code and encrypting that hash code 

with A's private key (Figure 11.5c).

1.

The opponent generates 2
m/2

 variations on the message, all of which convey essentially the same meaning. The opponent 

prepares an equal number of messages, all of which are variations on the fraudulent message to be substituted for the real one.

2.

The two sets of messages are compared to find a pair of messages that produces the same hash code. The probability of 

success, by the birthday paradox, is greater than 0.5. If no match is found, additional valid and fraudulent messages are 

generated until a match is made.

3.

The opponent offers the valid variation to A for signature. This signature can then be attached to the fraudulent variation for 

transmission to the intended recipient. Because the two variations have the same hash code, they will produce the same 

signature; the opponent is assured of success even though the encryption key is not known.

4.

Thus, if a 64-bit hash code is used, the level of effort required is only on the order of 2
32

 [see Appendix 11A, Equation (11.7)].

The generation of many variations that convey the same meaning is not difficult. For example, the opponent could insert a number of 

"space-space-backspace" character pairs between words throughout the document. Variations could then be generated by substituting 

"space-backspace-space" in selected instances. Alternatively, the opponent could simply reword the message but retain the meaning. 

Figure 11.8 [DAVI89] provides an example.

Figure 11.8. A Letter in 237 Variations [DAVI89]
(This item is displayed on page 339 in the print version)

[View full size image]



The conclusion to be drawn from this is that the length of the hash code should be substantial. We discuss this further in Section 11.5.
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Block Chaining Techniques

A number of proposals have been made for hash functions based on using a cipher block chaining technique, but without the secret key. 

One of the first such proposals was that of Rabin [RABI78]. Divide a message M into fixed-size blocks M1, M2,..., MN and use a symmetric 

encryption system such as DES to compute the hash code G as follows:



Ho = initial value

Hi = E(Mi, Hi, Hi1)

G = HN
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This is similar to the CBC technique, but in this case there is no secret key. As with any hash code, this scheme is subject to the 

birthday attack, and if the encryption algorithm is DES and only a 64-bit hash code is produced, then the system is vulnerable.

Furthermore, another version of the birthday attack can be used even if the opponent has access to only one message and its valid 

signature and cannot obtain multiple signings. Here is the scenario; we assume that the opponent intercepts a message with a signature in 

the form of an encrypted hash code and that the unencrypted hash code is m bits long:

Use the algorithm defined at the beginning of this subsection to calculate the unencrypted hash code G.1.

Construct any desired message in the form Q1, Q2,..., QN2.2.

Compute for Hi = E(Qi, Hi1) for 1  i  (N 2).3.

Generate 2
m/2

 random blocks; for each block X, compute E(X, HN2). Generate an additional 2
m/2

 random blocks; for each 

block Y, compute D(Y, G), where D is the decryption function corresponding to E.

4.

Based on the birthday paradox, with high probability there will be an X and Y such that E(X, HN2) = D(Y, G).5.

Form the message Q1, Q2,..., QN2, X, Y. This message has the hash code G and therefore can be used with the intercepted 

encrypted signature.

6.

This form of attack is known as a meet-in-the-middle attack. A number of researchers have proposed refinements intended to 

strengthen the basic block chaining approach. For example, Davies and Price [DAVI89] describe the following variation:

Hi = E(Mi, Hi1)  Hi1

Another variation, proposed in [MEYE88],

Hi = E(Hi1, Mi)  Mi

However, both of these schemes have been shown to be vulnerable to a variety of attacks [MIYA90]. More generally, it can be shown that 

some form of birthday attack will succeed against any hash scheme involving the use of cipher block chaining without a secret key 

provided that either the resulting hash code is small enough (e.g., 64 bits or less) or that a larger hash code can be decomposed into 

independent subcodes [JUEN87].

Thus, attention has been directed at finding other approaches to hashing. Many of these have also been shown to have weaknesses 

[MITC92]. We examine two strong hash functions in Chapter 12.
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11.5. Security of Hash Functions and Macs

Just as with symmetric and public-key encryption, we can group attacks on hash functions and MACs into two categories: brute-force 

attacks and cryptanalysis.
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Brute-Force Attacks

The nature of brute-force attacks differs somewhat for hash functions and MACs.

Hash Functions

The strength of a hash function against brute-force attacks depends solely on the length of the hash code produced by the algorithm. 

Recall from our discussion of hash functions that there are three desirable properties:

One-way: For any given code h, it is computationally infeasible to find x such that H(x) = h.

Weak collision resistance: For any given block x, it is computationally infeasible to find y  x with H(y) = H(x).

Strong collision resistance: It is computationally infeasible to find any pair (x, y) such that H(x) = H(y).

For a hash code of length n, the level of effort required, as we have seen is proportional to the following:

One way
2
n

Weak collision resistance
2
n

Strong collision resistance
2
n/2

If strong collision resistance is required (and this is desirable for a general-purpose secure hash code), then the value 2
n/2

 determines the 

strength of the hash code against brute-force attacks. Oorschot and Wiener [VANO94] presented a design for a $10 million collision 

search machine for MD5, which has a 128-bit hash length, that could find a collision in 24 days. Thus a 128-bit code may be viewed as 

inadequate. The next step up, if a hash code is treated as a sequence of 32 bits, is a 160-bit hash length. With a hash length of 160 bits, 

the same search machine would require over four thousand years to find a collision. However, even 160 bits is now considered weak. We 

return to this topic in Chapter 12.



Message Authentication Codes

A brute-force attack on a MAC is a more difficult undertaking because it requires known message-MAC pairs. Let us see why this is so. To 

attack a hash code, we can proceed in the following way. Given a fixed message x with n-bit hash code h = H(x), a brute-force method of 

finding a collision is to pick a random bit string y and check if H(y) = H(x). The attacker can do this repeatedly off line. Whether an off-line 

attack can be used on a MAC algorithm depends on the relative size of the key and the MAC.

To proceed, we need to state the desired security property of a MAC algorithm, which can be expressed as follows:

Computation resistance: Given one or more text-MAC pairs [xi, C(K, xi)], it is computationally infeasible to compute any 

text-MAC pair [x, C(K, x)] for any new input x  xi.

In other words, the attacker would like to come up with the valid MAC code for a given message x. There are two lines of attack possible: 

Attack the key space and attack the MAC value. We examine each of these in turn.
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If an attacker can determine the MAC key, then it is possible to generate a valid MAC value for any input x. Suppose the key size is k bits 

and that the attacker has one known text-MAC pair. Then the attacker can compute the n-bit MAC on the known text for all possible keys. 

At least one key is guaranteed to produce the correct MAC, namely, the valid key that was initially used to produce the known text-MAC 

pair. This phase of the attack takes a level of effort proportional to 2
k
 (that is, one operation for each of the 2

k
 possible key values). 

However, as was described earlier, because the MAC is a many-to-one mapping, there may be other keys that produce the correct value. 

Thus, if more than one key is found to produce the correct value, additional text-MAC pairs must be tested. It can be shown that the level 

of effort drops off rapidly with each additional text-MAC pair and that the overall level of effort is roughly 2
k
 [MENE97].

An attacker can also work on the MAC value without attempting to recover the key. Here, the objective is to generate a valid MAC value for 

a given message or to find a message that matches a given MAC value. In either case, the level of effort is comparable to that for attacking 

the one-way or weak collision resistant property of a hash code, or 2
n
. In the case of the MAC, the attack cannot be conducted off line 

without further input; the attacker will require chosen text-MAC pairs or knowledge of the key.

To summarize, the level of effort for brute-force attack on a MAC algorithm can be expressed as min(2
k
, 2

n
). The assessment of strength 

is similar to that for symmetric encryption algorithms. It would appear reasonable to require that the key length and MAC length satisfy a 

relationship such as min(k, n)  N, where N is perhaps in the range of 128 bits.

Cryptanalysis

As with encryption algorithms, cryptanalytic attacks on hash functions and MAC algorithms seek to exploit some property of the algorithm 

to perform some attack other than an exhaustive search. The way to measure the resistance of a hash or MAC algorithm to cryptanalysis 

is to compare its strength to the effort required for a brute-force attack. That is, an ideal hash or MAC algorithm will require a cryptanalytic 

effort greater than or equal to the brute-force effort.

Hash Functions



In recent years, there has been considerable effort, and some successes, in developing cryptanalytic attacks on hash functions. To 

understand these, we need to look at the overall structure of a typical secure hash function, indicated in Figure 11.9. This structure, 

referred to as an iterated hash function, was proposed by Merkle [MERK79, MERK89] and is the structure of most hash functions in use 

today, including SHA and Whirlpool, which are discussed in Chapter 12. The hash function takes an input message and partitions it into L

fixed-sized blocks of b bits each. If necessary, the final block is padded to b bits. The final block also includes the value of the total length of 

the input to the hash function. The inclusion of the length makes the job of the opponent more difficult. Either the opponent must find two 

messages of equal length that hash to the same value or two messages of differing lengths that, together with their length values, hash to 

the same value.
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Figure 11.9. General Structure of Secure Hash Code

[View full size image]

The hash algorithm involves repeated use of a compression function, f, that takes two inputs (an n-bit input from the previous step, called 

the chaining variable, and a b-bit block) and produces an n-bit output. At the start of hashing, the chaining variable has an initial value that 

is specified as part of the algorithm. The final value of the chaining variable is the hash value. Often, b > n; hence the term compression. 

The hash function can be summarized as follows:

CVo = IV = initial n-bit value

CVi
= f(CVi1, Yi1) 1  i  L

H(M) = CVL

where the input to the hash function is a message M consisting of the blocks Yo, Y1,..., YL1.

The motivation for this iterative structure stems from the observation by Merkle [MERK89] and Damgard [DAMG89] that if the compression 



function is collision resistant, then so is the resultant iterated hash function.
[3]

 Therefore, the structure can be used to produce a secure 

hash function to operate on a message of any length. The problem of designing a secure hash function reduces to that of designing a 

collision-resistant compression function that operates on inputs of some fixed size.

[3] The converse is not necessarily true.

Cryptanalysis of hash functions focuses on the internal structure of f and is based on attempts to find efficient techniques for producing 

collisions for a single execution of f. Once that is done, the attack must take into account the fixed value of IV. The attack on f depends on 

exploiting its internal structure. Typically, as with symmetric block ciphers, f consists of a series of rounds of processing, so that the attack 

involves analysis of the pattern of bit changes from round to round.

Keep in mind that for any hash function there must exist collisions, because we are mapping a message of length at least equal to twice 

the block size b (because we must append a length field) into a hash code of length n, where b  n. What is required is that it is 

computationally infeasible to find collisions.
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The attacks that have been mounted on hash functions are rather complex and beyond our scope here. For the interested reader, 

[DOBB96] and [BELL97] are recommended.

Message Authentication Codes

There is much more variety in the structure of MACs than in hash functions, so it is difficult to generalize about the cryptanalysis of MACs. 

Further, far less work has been done on developing such attacks. A useful recent survey of some methods for specific MACs is [PREN96].
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11.6. Recommended Reading

[JUEN85] and [JUEN87] provide a good background on message authentication, with a focus on cryptographic MACs and hash 

functions. Solid treatments of hash functions and message authentication codes are found in [STIN02] and [MENE97]. A good recent 

survey is [PREN99].
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September 1988.

JUEN87 Jueneman, R. "Electronic Document Authentication." IEEE Network Magazine, April 1987.

MENE97 Menezes, A.; Oorshcot, P.; and Vanstone, S. Handbook of Applied Cryptography. Boca Raton, FL: 

CRC Press, 1997.

PREN99 Preneel, B. "The State of Cryptographic Hash Functions." Proceedings, EUROCRYPT '96, 1996; 

published by Springer-Verlag.

STIN02 Stinson, D. Cryptography: Theory and Practice. Boca Raton, FL: CRC Press, 2002.
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11.7. Key Terms, Review Questions, and Problems

Key Terms

authenticator

birthday attack

birthday paradox

compression function

cryptographic checksum

hash code

hash function

hash value

message authentication

message authentication code (MAC)

message digest

one-way hash function

strong collision resistance

weak collision resistance

Review Questions

11.1 What types of attacks are addressed by message authentication?



11.2 What two levels of functionality comprise a message authentication or digital signature mechanism?

11.3 What are some approaches to producing message authentication?

11.4 When a combination of symmetric encryption and an error control code is used for message authentication, 

in what order must the two functions be performed?

[Page 345]

11.5 What is a message authentication code?

11.6 What is the difference between a message authentication code and a one-way hash function?

11.7 In what ways can a hash value be secured so as to provide message authentication?

11.8 Is it necessary to recover the secret key in order to attack a MAC algorithm?

11.9 What characteristics are needed in a secure hash function?

11.10 What is the difference between weak and strong collision resistance?

11.11 What is the role of a compression function in a hash function?

Problems

11.1 If F is an error-detection function, either internal or external use (Figure 11.2) will provide error-detection 

capability. If any bit of the transmitted message is altered, this will be reflected in a mismatch of the received 

FCS and the calculated FCS, whether the FCS function is performed inside or outside the encryption 

function. Some codes also provide an error-correction capability. Depending on the nature of the function, if 

one or a small number of bits is altered in transit, the error-correction code contains sufficient redundant 

information to determine the errored bit or bits and correct them. Clearly, an error-correction code will provide 

error correction capability when used external to the encryption function. Will it also provide this capability if 

used internal to the encryption function?

11.2 The data authentication algorithm, described in Section 11.3, can be defined as using the cipher block 

chaining (CBC) mode of operation of DES with an initialization vector of zero (Figure 11.6). Show that the 

same result can be produced using the cipher feedback mode.

11.3 The high-speed transport protocol XTP (Xpress Transfer Protocol) uses a 32-bit checksum function defined 

as the concatenation of two 16-bit functions: XOR and RXOR, defined in Section 11.4 as "two simple hash 

functions" and illustrated in Figure 11.7.

Will this checksum detect all errors caused by an odd number of error bits? Explain.a.



Will this checksum detect all errors caused by an even number of error bits? If not, characterize 

the error patterns that will cause the checksum to fail.

b.

Comment on the effectiveness of this function for use as a hash function for authentication.c.

11.4
Consider the Davies and Price hash code scheme described in Section 11.4 and assume that 

DES is used as the encryption algorithm:

Hi = Hi1  E(Mi, Hi1)

and recall the complementarity property of DES (Problem 3.14): If Y = E(K, X), then Y' = E(K', X'). 

Use this property to show how a message consisting of blocks M1, M2,..., MN can be altered 

without altering its hash code.

a.

Show that a similar attack will succeed against the scheme proposed in [MEYE88]:

Hi = Mi  E(Hi1, Mi)

b.

11.5
Consider the following hash function. Messages are in the form of a sequence of decimal 

numbers, M = (a1, a2,..., ai). The hash value h is calculated as

, for some predefined value n. Does this hash function satisfy any of 

the requirements for a hash function listed in Section 11.4? Explain your answer.

a.
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Repeat part (a) for the hash function .b.

Calculate the hash function of part (b) for M = (189, 632, 900, 722, 349) and n = 989.c.

11.6 It is possible to use a hash function to construct a block cipher with a structure similar to DES. Because a 

hash function is one way and a block cipher must be reversible (to decrypt), how is it possible?

11.7 Now consider the opposite problem: using an encryption algorithm to construct a one-way hash function. 

Consider using RSA with a known key. Then process a message consisting of a sequence of blocks as 

follows: Encrypt the first block, XOR the result with the second block and encrypt again, etc. Show that this 

scheme is not secure by solving the following problem. Given a two-block message B1, B2, and its hash

RSAH(B1, B2) = RSA(RSA (B1)  B2)

Given an arbitrary block C1, choose C2 so that RSAH(C1, C2) = RSAH(B1, B2). Thus, the hash function 

does not satisfy weak collision resistance.



11.8 Suppose H(m) is a collision resistant hash function that maps a message of arbitrary bit length into an n-bit 

hash value. Is it true that, for all messages x, x' with x  x', we have H(x)  H(x')? Explain your answer.
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Appendix 11A Mathematical Basis of the Birthday Attack

In this appendix, we derive the mathematical justification for the birthday attack. We begin with a related problem and then look at the 

problem from which the name "birthday attack" is derived.

Related Problem

A general problem relating to hash functions is the following. Given a hash function H, with n possible outputs and a specific value H(x), if H 

is applied to k random inputs, what must be the value of k so that the probability that at least one input y satisfies H(y) = H(x) is 0.5?

For a single value of y, the probability that H(y) = H(x) is just 1/n. Conversely, the probability that H(y)  H(x) is [1 (1/n)]. If we generate k

random values of y, then the probability that none of them match is just the product of the probabilities that each individual value does not 

match, or [1 (1/n)]
k
. Thus, the probability that there is at least one match is 1 [1 (1/n)]

k
.

The binomial theorem can be stated as follows:

For very small values of a, this can be approximated as (1 ka). Thus, the probability of at least one match is approximated as 1 [1 (1/n)]
k

 1 [1 (k/n)] = k/n. For a probability of 0.5, we have k = n/2.

In particular, for an m-bit hash code, the number of possible codes is 2
m

 and the value of k that produces a probability of one-half is

Equation 11-1 
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The Birthday Paradox



The birthday paradox is often presented in elementary probability courses to demonstrate that probability results are sometimes 

counterintuitive. The problem can be stated as follows: What is the minimum value of k such that the probability is greater than 0.5 that at 

least two people in a group of k people have the same birthday? Ignore February 29 and assume that each birthday is equally likely. To 

answer, let us define

P(n, k) = Pr[at least one duplicate in k items, with each item able to take on one of n equally likely values between 1 

and n]

Thus, we are looking for the smallest value of k such that P(365, k)  0.5. It is easier first to derive the probability that there are no 

duplicates, which we designate as Q(365, k). If k  365, then it is impossible for all values to be different. So we assume k  365. Now 

consider the number of different ways, N, that we can have k values with no duplicates. We may choose any of the 365 values for the first 

item, any of the remaining 364 numbers for the second item, and so on. Hence, the number of different ways is

Equation 11-2 

If we remove the restriction that there are no duplicates, then each item can be any of 365 values, and the total number of possibilities is 

365
k
. So the probability of no duplicates is simply the fraction of sets of values that have no duplicates out of all possible sets of values:

and

Equation 11-3 

This function is plotted in Figure 11.10. The probabilities may seem surprisingly large to anyone who has not considered the problem 

before. Many people would guess that to have a probability greater than 0.5 that there is at least one duplicate, the number of people in 

the group would have to be about 100. In fact, the number is 23, with P(365, 23) = 0.5073. For k = 100, the probability of at least one 

duplicate is 0.9999997.

Figure 11.10. The Birthday Paradox
(This item is displayed on page 348 in the print version)



Perhaps the reason that the result seems so surprising is that if you consider a particular person in a group, the probability that some other 

person in the group has the same birthday is small. But the probability that we are concerned with is the probability that any pair of people 

in the group has the same birthday. In a group of 23, there are (23(23 1))/2 = 253 different pairs of people. Hence the high probabilities.

Useful Inequality

Before developing a generalization of the birthday problem, we derive an inequality that will be needed:

Equation 11-4 
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Figure 11.11 illustrates the inequality. To see that the inequality holds, note that the lower line is the tangent to e
x
 at x = 0. at The slope of 



that line is just the derivative of e
x
 at x = 0;

Figure 11.11. A Useful Inequality
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The tangent is a straight line of the form ax + b, with a = 1, and the tangent at x = o must equal e
o
 Thus, the tangent is the function (1 x), 

confirming the inequality of Equation (11.4). Further, note that for small x, we have (1 x)  e
x
.



The General Case of Duplications

The birthday problem can be generalized to the following problem: Given a random variable that is an integer with uniform distribution 

between 1 and n and a selection of k instances (k  n) of the random variable, what is the probability, P(n, k), that there is at least one 

duplicate? The birthday problem is just the special case with n = 365. By the same reasoning as before, we have the following 

generalization of Equation (11.3):

Equation 11-5 

We can rewrite as

Using the inequality of Equation (11.4):

Now let us pose the question: What value of k is required such that P(n, k)  0.5? To satisfy the requirement, we have



For large k, we can replace k x (k 1) by k
2
, and we get

Equation 11-6 

As a reality check, for n = 365, we get  which is very close to the correct answer of 23.

We can now state the basis of the birthday attack in the following terms. Suppose we have a function H, with 2
m

 possible outputs (i.e., an 

m-bit output). If H is applied to k random inputs, what must be the value of k so that there is the probability of at least one duplicate [i.e., 

H(x) = H(y) for some inputs x, y)]? Using the approximation in Equation (11.6):
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Equation 11-7 

Overlap between Two Sets

There is a problem related to the general case of duplications that is also of relevance for our discussions. The problem is this: Given an 

integer random variable with uniform distribution between 1 and n and two sets of k instances (k  n) of the random variable, what is the 

probability, R(n, k), that the two sets are not disjoint; that is, what is the probability that there is at least one value found in both sets?

Let us call the two sets X and Y, with elements {x1, x2,..., xk} and {y1, y2,..., yk}, respectively. Given the value of x1, the probability that y1 = 

x1 is just 1/n, and therefore probability that does not match x1 is [1 (1/n)]. If we generate the k random values in Y, the probability that none of 

these values is equal to is [1 (1/n)]
k
. Thus, the probability that there is at least one match to x1 is 1 [1 (1/n)]

k
.

To proceed, let us make the assumption that all the elements of X are distinct. If n is large and if k is also large (e.g., on the order of 

), then this is a good approximation. In fact, there may be a few duplications, but most of the values will be distinct. With that assumption, 

we can make the following derivation:



Using the inequality of Equation (11.4):

R(n, k) > 1 (e
1/n

)
k2

R(n, k) > 1 (e
k2/n

)

Let us pose the question: What value of k is required such that R(n, k) > 0.5? To satisfy the requirement, we have

Equation 11-8 

We can state this in terms related to birthday attacks as follows. Suppose we have a function H, with 2
m

 possible outputs (i.e., an m-bit 

output). Apply H to k random inputs to produce the set X and again to k additional random inputs to produce the set Y. What must be the 

value of k so that there is the probability of at least 0.5 that there is a match between the two sets (i.e., H(x) = H(y) for some inputs x  X, y

 Y)? Using the approximation in Equation (11.8):
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Each of the messages, like each one he had ever read of Stern's commands, began with a number and ended 

with a number or row of numbers. No efforts on the part of Mungo or any of his experts had been able to break 

Stern's code, nor was there any clue as to what the preliminary number and those ultimate numbers signified.

Talking to Strange Men, Ruth Rendell

The Douglas Squirrel has a distinctive eating habit. It usually eats pine cones from the bottom end up. Partially 

eaten cones can indicate the presence of these squirrels if they have been attacked from the bottom first. If, 

instead, the cone has been eaten from the top end down, it is more likely to have been a crossbill finch that has 

been doing the dining.

Squirrels: A Wildlife Handbook, Kim Long

Key Points

Virtually all secure hash algorithms have the general structure shown in Figure 11.9.

The compression function used in secure hash algorithms falls into one of two categories: a function 

specifically designed for the hash function or a symmetric block cipher. SHA and Whirlpool are examples of 

these two approaches, respectively.

Message authentication codes also fall into two categories; those based on the use of a secure hash 

algorithm and those based on the use of a symmetric block cipher. HMAC and CMAC are examples of 

these two approaches, respectively.

In this chapter, we look at important examples of both secure hash algorithms and message authentication codes (MACs). Most 

important modern hash functions follow the basic structure of Figure 11.9. This has proved to be a fundamentally sound structure, and 

newer designs simply refine the structure and add to the hash code length. Within this basic structure, two approaches have been 

followed in the design of the compression function, which is the basic building block of the hash function. Traditionally, most hash 

functions that have achieved widespread use rely on a compression function specifically designed for the hash function. Typically, the 

compression function makes use of modular arithmetic and logical binary operations. Another approach is to use a symmetric block 

cipher as the compression function. In this chapter, we examine perhaps the most important example of each approach: the Secure 

Hash Algorithm (SHA) and Whirlpool.

MACs also conveniently fall into two categories based on their fundamental building block. One popular approach is to use a hash 

algorithm such as SHA as the core of the MAC algorithm. Another approach is to use a symmetric block cipher in a cipher block 

chaining mode. Again, we look at perhaps the most important example of each approach: HMAC and CMAC.
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12.1. Secure Hash Algorithm

The Secure Hash Algorithm (SHA) was developed by the National Institute of Standards and Technology (NIST) and published as a 

federal information processing standard (FIPS 180) in 1993; a revised version was issued as FIPS 180-1 in 1995 and is generally referred 

to as SHA-1. The actual standards document is entitled Secure Hash Standard. SHA is based on the hash function MD4 and its design 

closely models MD4. SHA-1 is also specified in RFC 3174, which essentially duplicates the material in FIPS 180-1, but adds a C code 

implementation.

SHA-1 produces a hash value of 160 bits. In 2002, NIST produced a revised version of the standard, FIPS 180-2, that defined three new 

versions of SHA, with hash value lengths of 256, 384, and 512 bits, known as SHA-256, SHA-384, and SHA-512 (Table 12.1). These new 

versions have the same underlying structure and use the same types of modular arithmetic and logical binary operations as SHA-1. In 

2005, NIST announced the intention to phase out approval of SHA-1 and move to a reliance on the other SHA versions by 2010. Shortly 

thereafter, a research team described an attack in which two separate messages could be found that deliver the same SHA-1 hash using 

2
69

 operations, far fewer than the 2
80

 operations previously thought needed to find a collision with an SHA-1 hash [WANG05]. This result 

should hasten the transition to the other versions of SHA.

Table 12.1. Comparison of SHA Parameters

 SHA-1 SHA-256 SHA-384 SHA-512

Message digest size 160 256 384 512

Message size
<2

64
<2

64
<2

128
<2

128

Block size 512 512 1024 1024

Word size 32 32 64 64

Number of steps 80 64 80 80

Security 80 128 192 256

Notes: 1. All sizes are measured in bits.

2. Security refers to the fact that a birthday attack on a message digest of size n produces a collision with a workfactor of approximately 

2
n/2

In this section, we provide a description of SHA-512. The other versions are quite similar.

SHA-512 Logic

The algorithm takes as input a message with a maximum length of less than 2
128

 bits and produces as output a 512-bit message digest. 
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The input is processed in 1024-bit blocks. Figure 12.1 depicts the overall processing of a message to produce a digest.
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Figure 12.1. Message Digest Generation Using SHA-512

[View full size image]

This follows the general structure depicted in Figure 11.9. The processing consists of the following steps:

Step 1: Append padding bits. The message is padded so that its length is congruent to 896 modulo 1024 [length  896 

(mod 1024)]. Padding is always added, even if the message is already of the desired length. Thus, the number of padding bits 

is in the range of 1 to 1024. The padding consists of a single 1-bit followed by the necessary number of 0-bits.

Step 2: Append length. A block of 128 bits is appended to the message. This block is treated as an unsigned 128-bit integer 

(most significant byte first) and contains the length of the original message (before the padding).

The outcome of the first two steps yields a message that is an integer multiple of 1024 bits in length. In Figure 12.1, the 

expanded message is represented as the sequence of 1024-bit blocks M1, M2,..., MN, so that the total length of the expanded 

message is N x 1024 bits.

Step 3: Initialize hash buffer. A 512-bit buffer is used to hold intermediate and final results of the hash function. The buffer 

can be represented as eight 64-bit registers (a, b, c, d, e, f, g, h). These registers are initialized to the following 64-bit integers 

(hexadecimal values):



a = 6A09E667F3BCC908

b = BB67AE8584CAA73B

c = 3C6EF372FE94F82B

c = A54FF53A5F1D36F1

e = 510E527FADE682D1

f = 9B05688C2B3E6C1F

g = 1F83D9ABFB41BD6B

h = 5BE0CDI9137E2179
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These values are stored in big-endian format, which is the most significant byte of a word in the low-address (leftmost) byte 

position. These words were obtained by taking the first sixty-four bits of the fractional parts of the square roots of the first eight 

prime numbers.

Step 4: Process message in 1024-bit (128-word) blocks. The heart of the algorithm is a module that consists of 80 rounds; 

this module is labeled F in Figure 12.1. The logic is illustrated in Figure 12.2.

Figure 12.2. SHA-512 Processing of a Single 1024-Bit Block



Each round takes as input the 512-bit buffer value abcdefgh, and updates the contents of the buffer. At input to the first round, 

the buffer has the value of the intermediate hash value, Hi-1. Each round t makes use of a 64-bit value Wt derived from the 

current 1024-bit block being processed (Mi) These values are derived using a message schedule described subsequently. 

Each round also makes use of an additive constant Kt where 0  t  79 indicates one of the 80 rounds. These words 

represent the first sixty-four bits of the fractional parts of the cube roots of the first eighty prime numbers. The constants provide 

a "randomized" set of 64-bit patterns, which should eliminate any regularities in the input data.

The output of the eightieth round is added to the input to the first round (Hi-1)to produce Hi. The addition is done independently 

for each of the eight words in the buffer with each of the corresponding words in Hi-1 using addition modulo 2
64

.
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Step 5: Output. After all N 1024-bit blocks have been processed, the output from the Nth stage is the 512-bit message digest.

We can summarize the behavior of SHA-512 as follows:

H0 = IV

Hi = SUM64(Hi-1, abcdefghi)

MD = HN

where

IV = initial value of the abcdefgh buffer, defined in step 3

abcdefghi = the output of the last round of processing of the ith message block

N = the number of blocks in the message (including padding and length fields)

SUM64 = Addition modulo 2
64

 performed separately on each word of the pair of inputs

MD = final message digest value



SHA-512 Round Function

Let us look in more detail at the logic in each of the 80 steps of the processing of one 512-bit block (Figure 12.3). Each round is defined by 

the following set of equations:

where

t
=step number; 0  t  79

Ch(e, f, g)
= (e AND f)  (NOT e AND g) the conditional function: If e then f else g

Maj(a, b, c)
= (a AND b)  (a AND c)  (b AND c) the function is true only of the majority (two or three) of the 

arguments are true.
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ROTR
n
(x)

= circular right shift (rotation) of the 64-bit argument x by n bits

Wt = a 64-bit word derived from the current 512-bit input block

Kt = a 64-bit additive constant

+
= addition modulo 2

64

Figure 12.3. Elementary SHA-512 Operation (single round)

It remains to indicate how the 64-bit word values Wt are derived from the 1024-bit message. Figure 12.4 illustrates the mapping. The first 

16 values of Wt are taken directly from the 16 words of the current block. The remaining values are defined as follows:



where

ROTR
n
(x)

= circular right shift (rotation) of the 64-bit argument x by n bits

SHR
n
(x)

= left shift of the 64-bit argument x by n bits with padding by zeros on the right

Figure 12.4. Creation of 80-word Input Sequence for SHA-512 Processing of Single Block
(This item is displayed on page 358 in the print version)

[View full size image]

Thus, in the first 16 steps of processing, the value of Wt is equal to the corresponding word in the message block. For the remaining 64 

steps, the value of Wt consists of the circular left shift by one bit of the XOR of four of the preceding values of Wt, with two of those 

values subjected to shift and rotate operations. This introduces a great deal of redundancy and interdependence into the message blocks 

that are compressed, which complicates the task of finding a different message block that maps to the same compression function output.
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12.2. Whirlpool
[1]

[1] Most of the material in this section originally appeared in [STAL O6].

In this section, we examine the hash function Whirlpool [BARR03], one of whose designers is also co-inventor of Rijndael, adopted as the 

Advanced Encryption Standard (AES). Whirlpool is one of only two hash functions endorsed by NESSIE (New European Schemes for 

Signatures, Integrity, and Encryption).
[2]

 The NESSIE project is a European Unionsponsored effort to put forward a portfolio of strong

cryptographic primitives of various types.

[2] The other endorsed scheme consists of three variants of SHA: SHA-256, SHA-384, and SHA-512.

Whirlpool is based on the use of a block cipher for the compression function. As was mentioned in Chapter 11, there has traditionally been 

little interest in the use of block-cipher-based hash functions because of the demonstrated security vulnerabilities of the structure. The 

following are potential drawbacks:

Block ciphers do not possess the properties of randomizing functions. For example, they are invertible. This lack of randomness 

may lead to weaknesses that can be exploited.

1.

Block ciphers typically exhibit other regularities or weaknesses. For example, [MIYA90] demonstrates how to compromise many 

hash schemes based on properties of the underlying block cipher.

2.

Typically, block-cipher-based hash functions are significantly slower than hash functions based on a compression function 

specifically designed for the hash function.

3.

A principal measure of the strength of a hash function is the length of the hash code in bits. For block-cipher-based hash codes, 

proposed designs have a hash code length equal to either the cipher block length or twice the cipher block length. 

Traditionally, cipher block length has been limited to 64 bits (e.g., DES, triple DES), resulting in a hash code of questionable 

strength.
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4.

However, since the adoption of AES, there has been renewed interested in developing a secure hash function based on a strong block 

cipher and exhibiting good performance. Whirlpool is a block-cipher-based hash function intended to provide security and performance 

that is comparable, if not better, than that found in non-block-cipher based hash functions, such as SHA. Whirlpool has the following 

features:

The hash code length is 512 bits, equaling the longest hash code available with SHA.1.

The overall structure of the hash function is one that has been shown to be resistant to the usual attacks on block-cipher-based 

hash codes.

2.

The underlying block cipher is based on AES and is designed to provide for implementation in both software and hardware that 

is both compact and exhibits good performance.

3.

The design of Whirlpool sets the following security goals: Assume we take as hash result the value of any n-bit substring of the full 

Whirlpool output.

The expected workload of generating a collision is of the order of 2
n/2

 executions of Whirlpool.

Given an n-bit value, the expected workload of finding a message that hashes to that value is of the order of 2
n
 executions of 
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Whirlpool.

Given a message and its n-bit hash result, the expected workload of finding a second message that hashes to the same value is 

of the order of 2
n
 executions of Whirlpool.

It is infeasible to detect systematic correlations between any linear combination of input bits and any linear combination of bits of 

the hash result, or to predict what bits of the hash result will change value when certain input bits are flipped (this means 

resistance against linear and differential attacks).

The designers assert their confidence that these goals have been met with a considerable safety margin. However, the goals are not 

susceptible to a formal proof.

We begin with a discussion of the structure of the overall hash function, and then examine the block cipher used as the basic building 

block.

Whirlpool Hash Structure

Background

The general iterated hash structure proposed by Merkle (Figure 11.9) is used in virtually all secure hash functions. However, as was 

pointed out, there are difficulties in designing a truly secure iterated hash function when the compression function is a block cipher. 

Preneel [PREN93a, PREN93b] performed a systematic analysis of block-cipher-based hash functions, using the model depicted in Figure 

12.5. In this model, the hash code length equals the cipher block length. Additional security problems are introduced and the analysis is 

more difficult if the hash code length exceeds the cipher block length. Preneel devised 64 possible permutations of the basic model, based 

on which input served as the encryption key and which served as plaintext and on what input, if any, was combined with the ciphertext to 

produce the intermediate hash code. Based on his analysis, he concluded that only schemes in which the plaintext was fed forward and 

combined with the ciphertext were secure. Such an arrangement makes the compression function difficult to invert. [BLAC02] confirmed 

these results, but pointed out the security problem of using an established block cipher such as AES: The 128-bit hash code value 

resulting from the use of AES or another scheme with the same block size may be inadequate for security.
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Figure 12.5. Model of Single Iteration of Hash Function (hash code equals block length)

Note:  Triangular hatch indicates encryption key input.



Whirlpool Logic

Given a message consisting of a sequence of blocks m1, m2,..., mt the Whirlpool hash function is expressed as follows:

H0 = initial value

Hi = E(Hi-1, mi)  Hi-1  mi = intermediate value

Ht = hash code value

In terms of the model of Figure 12.5, the encryption key input for each iteration is the intermediate hash value from the previous iteration; 

the plaintext is the current message block; and the feedforward value is the bitwise XOR of the current message block and the 

intermediate hash value from the previous iteration.

The algorithm takes as input a message with a maximum length of less than 2
256

 bits and produces as output a 512-bit message digest. 

The input is processed in 512-bit blocks. Figure 12.6 depicts the overall processing of a message to produce a digest. This follows the 

general structure depicted in Figure 11.9. The processing consists of the following steps:

Step 1: Append padding bits. The message is padded so that its length in bits is an odd multiple of 256. Padding is always 

added, even if the message is already of the desired length. For example, if the message is 256 x 3 = 768 bits long, it is padded 

by 512 bits to a length of 256 x 5 = 1280 bits. Thus, the number of padding bits is in the range of 1 to 512.

Figure 12.6. Message Digest Generation Using Whirlpool
(This item is displayed on page 361 in the print version)

Note:  Triangular hatch marks key input.

[View full size image]



The padding consists of a single 1-bit followed by the necessary number of 0-bits.
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Step 2: Append length. A block of 256 bits is appended to the message. This block is treated as an unsigned 256-bit integer 

(most significant byte first) and contains the length in bits of the original message (before the padding).

The outcome of the first two steps yields a message that is an integer multiple of 512 bits in length. In Figure 12.6, the expanded 

message is represented as the sequence of 512-bit blocks m1, m2,..., mt so that the total length of the expanded message is t x 

512 bits. These blocks are viewed externally as arrays of bytes by sequentially grouping the bits in 8-bit chunks. However, 

internally, the hash state Hi is viewed as an 8 x 8 matrix of bytes. The transformation between the two is explained subsequently.

Step 3: Initialize hash matrix. An 8 x 8 matrix of bytes is used to hold intermediate and final results of the hash function. The 

matrix is initialized as consisting of all 0-bits.

Step 4: Process message in 512-bit (64-byte) blocks. The heart of the algorithm is the block cipher W.

Block Cipher W

Unlike virtually all other proposals for a block-cipher-based hash function, Whirlpool uses a block cipher that is specifically designed for 

use in the hash function and that is unlikely ever to be used as a standalone encryption function. The reason for this is that the designers 

wanted to make use of a block cipher with the security and efficiency of AES but with a hash length that provided a potential security equal 

to SHA-512. The result is the block cipher W, which has a similar structure and uses the same elementary functions as AES, but which 

uses a block size and a key size of 512 bits. Table 12.2 compares AES and W.
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Although W is similar to AES, it is not simply an extension. Recall that the Rijndael proposal for AES defined a cipher in which the block 

length and the key length can be independently specified to be 128, 192, or 256 bits. The AES specification uses the same three key size 



alternatives but limits the block length to 128 bits. AES operates on a state of 4 x 4 bytes. Rijndael with block length 192 bits operates on a 

state of 4 x 6 bytes. Rijndael with block length 256 bits operates on a state of 4 x 8 bytes. W operates on a state of 8 x 8 bytes. The more 

the state representation differs from a square, the slower the diffusion goes and the more rounds the cipher needs. For a block length of 

512 bits, the Whirlpool developers could have defined a Rijndael operating on a state of 4 x 16 bytes, but that cipher would have needed 

many rounds and it would have been very slow.

As Table 12.2 indicates, W uses a row-oriented matrix whereas AES uses a column-oriented matrix. There is no technical reason to prefer 

one orientation over another, because one can easily construct an equivalent description of the same cipher, exchanging rows with 

columns.

Table 12.2. Comparison of Whirlpool Block Cipher W and AES

 W AES

Block size (bits) 512 128

Key size (bits) 512 128, 192, or 256

Matrix orientation Input is mapped row-wise Input is mapped column-wise

Number of rounds 10 10, 12, or 14

Key expansion W round function Dedicated expansion algorithm

GF(2
8
) polynomial x

8
 + x

4
 + x

3
 + x

2
 + 1 (011D) x

8
 + x

4
 + x

3
 + x + 1 (011B)

Origin of S-box Recursive structure
Multiplicative inverse in GF(2

8
) plus affine 

transformation

Origin of round 

constants

Successive entries of the S-box
Elements 2

i
 of GF(2

8
)

Diffusion layer Right multiplication by 8 x 8 circulant MDS matrix (1, 

1, 4, 1, 8, 5, 2, 9) - mix rows

Left multiplication by 4 x 4 circulant MDS matrix (2, 

3, 1, 1) - mix columns

Permutation Shift columns Shift rows

Overall Structure

Figure 12.7 shows the overall structure of W. The encryption algorithm takes a 512-bit block of plaintext and a 512-bit key as input and 

produces a 512-bit block of ciphertext as output. The encryption algorithm involves the use of four different functions, or transformations: 

add key (AK), substitute bytes (SB), shift columns (SC), and mix rows (MR), whose operations are explained subsequently. W consists of 

a single application of AK followed by 10 rounds that involve all four functions. We can concisely express the operation of a round r as a 

round function RF that is a composition of functions:

Equation 12-1 
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where Kr is the round key matrix for round r. The overall algorithm, with key input K, can be defined as follows:

where the large circle indicates iteration of the composition function with index r running from 1 through 10.

Figure 12.7. Whirlpool Cipher W



The plaintext input to W is a single 512-bit block. This block is treated as an 8 x 8 square matrix of bytes, labeled CState. Figure 12.8

illustrates that the ordering of bytes within a matrix is by row. So, for example, the first eight bytes of a 512-bit plaintext input to the 

encryption cipher occupy the first row of the internal matrix CState, the second eight bytes occupy the second row, and so on. The 

representation of the linear byte stream as a square matrix can be concisely expressed as a mapping function m For a linear byte array X 

with elements xk(0  k  63), the corresponding matrix A with elements ai,j(0  i,j  7)we have the following correspondence:

A = m(X)  ai,j = x8i + j

Figure 12.8. Whirlpool Matrix Structure
(This item is displayed on page 364 in the print version )

[View full size image]



IPSec defines a number of techniques for key management.

The Internet community has developed application-specific security mechanisms in a number of application areas, including electronic 

mail (S/MIME, PGP), client/server (Kerberos), Web access (Secure Sockets Layer), and others. However, users have some security 

concerns that cut across protocol layers. For example, an enterprise can run a secure, private TCP/IP network by disallowing links to 

untrusted sites, encrypting packets that leave the premises, and authenticating packets that enter the premises. By implementing security 

at the IP level, an organization can ensure secure networking not only for applications that have security mechanisms but also for the 

many security-ignorant applications.

IP-level security encompasses three functional areas: authentication, confidentiality, and key management. The authentication 

mechanism assures that a received packet was, in fact, transmitted by the party identified as the source in the packet header. In 

addition, this mechanism assures that the packet has not been altered in transit. The confidentiality facility enables communicating 

nodes to encrypt messages to prevent eavesdropping by third parties. The key management facility is concerned with the secure 

exchange of keys.

We begin this chapter with an overview of IP security (IPSec) and an introduction to the IPSec architecture. We then look at each of the 

three functional areas in detail. The appendix to this chapter reviews internet protocols.

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html
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16.1. IP Security Overview

In response to these issues, the IAB included authentication and encryption as necessary security features in the next-generation IP, 

which has been issued as IPv6. Fortunately, these security capabilities were designed to be usable both with the current IPv4 and the 

future IPv6. This means that vendors can begin offering these features now, and many vendors do now have some IPSec capability in their 

products.

Applications of IPSec

IPSec provides the capability to secure communications across a LAN, across private and public WANs, and across the Internet. 

Examples of its use include the following:

Secure branch office connectivity over the Internet: A company can build a secure virtual private network over the Internet 

or over a public WAN. This enables a business to rely heavily on the Internet and reduce its need for private networks, saving 

costs and network management overhead.

Secure remote access over the Internet: An end user whose system is equipped with IP security protocols can make a local 

call to an Internet service provider (ISP) and gain secure access to a company network. This reduces the cost of toll charges 

for traveling employees and telecommuters.

Establishing extranet and intranet connectivity with partners: IPSec can be used to secure communication with other 

organizations, ensuring authentication and confidentiality and providing a key exchange mechanism.

Enhancing electronic commerce security: Even though some Web and electronic commerce applications have built-in 

security protocols, the use of IPSec enhances that security.

The principal feature of IPSec that enables it to support these varied applications is that it can encrypt and/or authenticate all traffic at the 

IP level. Thus, all distributed applications, including remote logon, client/server, e-mail, file transfer, Web access, and so on, can be 

secured.

Figure 16.1 is a typical scenario of IPSec usage. An organization maintains LANs at dispersed locations. Nonsecure IP traffic is conducted 

on each LAN. For traffic offsite, through some sort of private or public WAN, IPSec protocols are used. These protocols operate in 

networking devices, such as a router or firewall, that connect each LAN to the outside world. The IPSec networking device will typically 

encrypt and compress all traffic going into the WAN, and decrypt and decompress traffic coming from the WAN; these operations are 

transparent to workstations and servers on the LAN. Secure transmission is also possible with individual users who dial into the WAN. 

Such user workstations must implement the IPSec protocols to provide security.
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Figure 16.1. An IP Security Scenario



[View full size image]
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Benefits of IPSec

[MARK97] lists the following benefits of IPSec:

When IPSec is implemented in a firewall or router, it provides strong security that can be applied to all traffic crossing the 

perimeter. Traffic within a company or workgroup does not incur the overhead of security-related processing.

IPSec in a firewall is resistant to bypass if all traffic from the outside must use IP, and the firewall is the only means of entrance 

from the Internet into the organization.

IPSec is below the transport layer (TCP, UDP) and so is transparent to applications. There is no need to change software on a 

user or server system when IPSec is implemented in the firewall or router. Even if IPSec is implemented in end systems, 

upper-layer software, including applications, is not affected.

IPSec can be transparent to end users. There is no need to train users on security mechanisms, issue keying material on a 

per-user basis, or revoke keying material when users leave the organization.

IPSec can provide security for individual users if needed. This is useful for offsite workers and for setting up a secure virtual 

subnetwork within an organization for sensitive applications.

Routing Applications



In addition to supporting end users and protecting premises systems and networks, IPSec can play a vital role in the routing architecture 

required for internetworking. [HUIT98] lists the following examples of the use of IPSec. IPSec can assure that

A router advertisement (a new router advertises its presence) comes from an authorized router

A neighbor advertisement (a router seeks to establish or maintain a neighbor relationship with a router in another routing 

domain) comes from an authorized router.

A redirect message comes from the router to which the initial packet was sent.

A routing update is not forged.

Without such security measures, an opponent can disrupt communications or divert some traffic. Routing protocols such as OSPF should 

be run on top of security associations between routers that are defined by IPSec.
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16.2. IP Security Architecture

The IPSec specification has become quite complex. To get a feel for the overall architecture, we begin with a look at the documents that 

define IPSec. Then we discuss IPSec services and introduce the concept of security association.
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IPSec Documents

The IPSec specification consists of numerous documents. The most important of these, issued in November of 1998, are RFCs 2401, 

2402, 2406, and 2408:

RFC 2401: An overview of a security architecture

RFC 2402: Description of a packet authentication extension to IPv4 and IPv6

RFC 2406: Description of a packet encryption extension to IPv4 and IPv6

RFC 2408: Specification of key management capabilities

Support for these features is mandatory for IPv6 and optional for IPv4. In both cases, the security features are implemented as extension 

headers that follow the main IP header. The extension header for authentication is known as the Authentication header; that for encryption 

is known as the Encapsulating Security Payload (ESP) header.

In addition to these four RFCs, a number of additional drafts have been published by the IP Security Protocol Working Group set up by the 

IETF. The documents are divided into seven groups, as depicted in Figure 16.2 (RFC 2401):

Architecture: Covers the general concepts, security requirements, definitions, and mechanisms defining IPSec technology.
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Encapsulating Security Payload (ESP): Covers the packet format and general issues related to the use of the 

ESP for packet encryption and, optionally, authentication.

Authentication Header (AH): Covers the packet format and general issues related to the use of AH for packet authentication.

Encryption Algorithm: A set of documents that describe how various encryption algorithms are used for ESP.

Authentication Algorithm: A set of documents that describe how various authentication algorithms are used for AH and for 

the authentication option of ESP.

Key Management: Documents that describe key management schemes.

Domain of Interpretation (DOI): Contains values needed for the other documents to relate to each other. These include 

identifiers for approved encryption and authentication algorithms, as well as operational parameters such as key lifetime.



Figure 16.2. IPSec Document Overview
(This item is displayed on page 488 in the print version)

IPSec Services

IPSec provides security services at the IP layer by enabling a system to select required security protocols, determine the algorithm(s) to 

use for the service(s), and put in place any cryptographic keys required to provide the requested services. Two protocols are used to 

provide security: an authentication protocol designated by the header of the protocol, Authentication Header (AH); and a combined 

encryption/authentication protocol designated by the format of the packet for that protocol, Encapsulating Security Payload (ESP). The 



services are

Access control

Connectionless integrity

Data origin authentication

Rejection of replayed packets (a form of partial sequence integrity)

Confidentiality (encryption)

Limited traffic flow confidentiality

Table 16.1 shows which services are provided by the AH and ESP protocols. For ESP, there are two cases: with and without the 

authentication option. Both AH and ESP are vehicles for access control, based on the distribution of cryptographic keys and the 

management of traffic flows relative to these security protocols.

Table 16.1. IPSec Services
(This item is displayed on page 490 in the print version)

[View full size image]

Security Associations

A key concept that appears in both the authentication and confidentiality mechanisms for IP is the security association (SA). An 

association is a one-way relationship between a sender and a receiver that affords security services to the traffic carried on it. If a peer 

relationship is needed, for two-way secure exchange, then two security associations are required. Security services are afforded to an SA 

for the use of AH or ESP, but not both.
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A security association is uniquely identified by three parameters:

Security Parameters Index (SPI): A bit string assigned to this SA and having local significance only. The SPI is carried in AH 



and ESP headers to enable the receiving system to select the SA under which a received packet will be processed.

IP Destination Address: Currently, only unicast addresses are allowed; this is the address of the destination endpoint of the 

SA, which may be an end user system or a network system such as a firewall or router.

Security Protocol Identifier: This indicates whether the association is an AH or ESP security association.

Hence, in any IP packet,
[1]

 the security association is uniquely identified by the Destination Address in the IPv4 or IPv6 header and the 

SPI in the enclosed extension header (AH or ESP).

[1] In this chapter, the term IP packet refers to either an IPv4 datagram or an IPv6 packet.

SA Parameters

In each IPSec implementation, there is a nominal
[2]

 Security Association Database that defines the parameters associated with each SA. 

A security association is normally defined by the following parameters:

[2] Nominal in the sense that the functionality provided by a Security Association Database must be present in any 

IPSec implementation, but the way in which that functionality is provided is up to the implementer.

Sequence Number Counter: A 32-bit value used to generate the Sequence Number field in AH or ESP headers, described in 

Section 16.3 (required for all implementations).

Sequence Counter Overflow: A flag indicating whether overflow of the Sequence Number Counter should generate an 

auditable event and prevent further transmission of packets on this SA (required for all implementations).

Anti-Replay Window: Used to determine whether an inbound AH or ESP packet is a replay, described in Section 16.3 (required 

for all implementations).

AH Information: Authentication algorithm, keys, key lifetimes, and related parameters being used with AH (required for AH 

implementations).
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ESP Information: Encryption and authentication algorithm, keys, initialization values, key lifetimes, and related 

parameters being used with ESP (required for ESP implementations).

Lifetime of This Security Association: A time interval or byte count after which an SA must be replaced with a new SA (and 

new SPI) or terminated, plus an indication of which of these actions should occur (required for all implementations).

IPSec Protocol Mode: Tunnel, transport, or wildcard (required for all implementations). These modes are discussed later in 

this section.

Path MTU: Any observed path maximum transmission unit (maximum size of a packet that can be transmitted without 

fragmentation) and aging variables (required for all implementations).

The key management mechanism that is used to distribute keys is coupled to the authentication and privacy mechanisms only by way of 

the Security Parameters Index. Hence, authentication and privacy have been specified independent of any specific key management 

mechanism.



SA Selectors

IPSec provides the user with considerable flexibility in the way in which IPSec services are applied to IP traffic. As we will see later, SAs 

can be combined in a number of ways to yield the desired user configuration. Furthermore, IPSec provides a high degree of granularity in 

discriminating between traffic that is afforded IPSec protection and traffic that is allowed to bypass IPSec, in the former case relating IP 

traffic to specific SAs.

The means by which IP traffic is related to specific SAs (or no SA in the case of traffic allowed to bypass IPSec) is the nominal Security 

Policy Database (SPD). In its simplest form, an SPD contains entries, each of which defines a subset of IP traffic and points to an SA for 

that traffic. In more complex environments, there may be multiple entries that potentially relate to a single SA or multiple SAs associated 

with a single SPD entry. The reader is referred to the relevant IPSec documents for a full discussion.

Each SPD entry is defined by a set of IP and upper-layer protocol field values, called selectors. In effect, these selectors are used to filter 

outgoing traffic in order to map it into a particular SA. Outbound processing obeys the following general sequence for each IP packet:

Compare the values of the appropriate fields in the packet (the selector fields) against the SPD to find a matching SPD entry, 

which will point to zero or more SAs.

1.

Determine the SA if any for this packet and its associated SPI.2.

Do the required IPSec processing (i.e., AH or ESP processing).3.

The following selectors determine an SPD entry:

Destination IP Address: This may be a single IP address, an enumerated list or range of addresses, or a wildcard (mask) 

address. The latter two are required to support more than one destination system sharing the same SA (e.g., behind a firewall).
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Source IP Address: This may be a single IP address, an enumerated list or range of addresses, or a wildcard (mask) 

address. The latter two are required to support more than one source system sharing the same SA (e.g., behind a firewall).

UserID: A user identifier from the operating system. This is not a field in the IP or upper-layer headers but is available if IPSec 

is running on the same operating system as the user.

Data Sensitivity Level: Used for systems providing information flow security (e.g., Secret or Unclassified).

Transport Layer Protocol: Obtained from the IPv4 Protocol or IPv6 Next Header field. This may be an individual protocol 

number, a list of protocol numbers, or a range of protocol numbers.

Source and Destination Ports: These may be individual TCP or UDP port values, an enumerated list of ports, or a wildcard 

port.

Transport and Tunnel Modes

Both AH and ESP support two modes of use: transport and tunnel mode. The operation of these two modes is best understood in the 

context of a description of AH and ESP, which are covered in Sections 16.3 and 16.4, respectively. Here we provide a brief overview.

Transport Mode



Transport mode provides protection primarily for upper-layer protocols. That is, transport mode protection extends to the payload of an IP 

packet. Examples include a TCP or UDP segment or an ICMP packet, all of which operate directly above IP in a host protocol stack. 

Typically, transport mode is used for end-to-end communication between two hosts (e.g., a client and a server, or two workstations). When 

a host runs AH or ESP over IPv4, the payload is the data that normally follow the IP header. For IPv6, the payload is the data that normally 

follow both the IP header and any IPv6 extensions headers that are present, with the possible exception of the destination options header, 

which may be included in the protection.

ESP in transport mode encrypts and optionally authenticates the IP payload but not the IP header. AH in transport mode authenticates the 

IP payload and selected portions of the IP header.

Tunnel Mode

Tunnel mode provides protection to the entire IP packet. To achieve this, after the AH or ESP fields are added to the IP packet, the entire 

packet plus security fields is treated as the payload of new "outer" IP packet with a new outer IP header. The entire original, or inner, 

packet travels through a "tunnel" from one point of an IP network to another; no routers along the way are able to examine the inner IP 

header. Because the original packet is encapsulated, the new, larger packet may have totally different source and destination addresses, 

adding to the security. Tunnel mode is used when one or both ends of an SA are a security gateway, such as a firewall or router that 

implements IPSec. With tunnel mode, a number of hosts on networks behind firewalls may engage in secure communications without 

implementing IPSec. The unprotected packets generated by such hosts are tunneled through external networks by tunnel mode SAs 

set up by the IPSec software in the firewall or secure router at the boundary of the local network.
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Here is an example of how tunnel mode IPSec operates. Host A on a network generates an IP packet with the destination address of host 

B on another network. This packet is routed from the originating host to a firewall or secure router at the boundary of A's network. The 

firewall filters all outgoing packets to determine the need for IPSec processing. If this packet from A to B requires IPSec, the firewall 

performs IPSec processing and encapsulates the packet with an outer IP header. The source IP address of this outer IP packet is this 

firewall, and the destination address may be a firewall that forms the boundary to B's local network. This packet is now routed to B's 

firewall, with intermediate routers examining only the outer IP header. At B's firewall, the outer IP header is stripped off, and the inner 

packet is delivered to B.

ESP in tunnel mode encrypts and optionally authenticates the entire inner IP packet, including the inner IP header. AH in tunnel mode 

authenticates the entire inner IP packet and selected portions of the outer IP header.

Table 16.2 summarizes transport and tunnel mode functionality.

Table 16.2. Tunnel Mode and Transport Mode Functionality

 Transport Mode SA Tunnel Mode SA

AH Authenticates IP payload and selected portions of IP 

header and IPv6 extension headers.

Authenticates entire inner IP packet (inner header 

plus IP payload) plus selected portions of outer IP 

header and outer IPv6 extension headers.

ESP Encrypts IP payload and any IPv6 extension 

headers following the ESP header.

Encrypts entire inner IP packet.

ESP with 

Authentication

Encrypts IP payload and any IPv6 extension 

headers following the ESP header. Authenticates IP 

payload but not IP header.

Encrypts entire inner IP packet. Authenticates inner 

IP packet.
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16.3. Authentication Header

The Authentication Header provides support for data integrity and authentication of IP packets. The data integrity feature ensures that 

undetected modification to a packet's content in transit is not possible. The authentication feature enables an end system or network 

device to authenticate the user or application and filter traffic accordingly; it also prevents the address spoofing attacks observed in today's 

Internet. The AH also guards against the replay attack described later in this section.

Authentication is based on the use of a message authentication code (MAC), as described in Chapter 11; hence the two parties must 

share a secret key.
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The Authentication Header consists of the following fields (Figure 16.3):

Next Header (8 bits): Identifies the type of header immediately following this header.

Payload Length (8 bits): Length of Authentication Header in 32-bit words, minus 2. For example, the default length of the 

authentication data field is 96 bits, or three 32-bit words. With a three-word fixed header, there are a total of six words in the 

header, and the Payload Length field has a value of 4.

Reserved (16 bits): For future use.

Security Parameters Index (32 bits): Identifies a security association.

Sequence Number (32 bits): A monotonically increasing counter value, discussed later.

Authentication Data (variable): A variable-length field (must be an integral number of 32-bit words) that contains the Integrity 

Check Value (ICV), or MAC, for this packet, discussed later.

Figure 16.3. IPSec Authentication Header



Anti-Replay Service

A replay attack is one in which an attacker obtains a copy of an authenticated packet and later transmits it to the intended destination. The 

receipt of duplicate, authenticated IP packets may disrupt service in some way or may have some other undesired consequence. The 

Sequence Number field is designed to thwart such attacks. First, we discuss sequence number generation by the sender, and then we 

look at how it is processed by the recipient.

When a new SA is established, the sender initializes a sequence number counter to 0. Each time that a packet is sent on this SA, the 

sender increments the counter and places the value in the Sequence Number field. Thus, the first value to be used is 1. If anti-replay is 

enabled (the default), the sender must not allow the sequence number to cycle past 2
32

 1 back to zero. Otherwise, there would be

multiple valid packets with the same sequence number. If the limit of 2
32

 1 is reached, the sender should terminate this SA and negotiate

a new SA with a new key.

Because IP is a connectionless, unreliable service, the protocol does not guarantee that packets will be delivered in order and does not 

guarantee that all packets will be delivered. Therefore, the IPSec authentication document dictates that the receiver should implement a 

window of size W, with a default of W = 64. The right edge of the window represents the highest sequence number, N, so far received for a 

valid packet. For any packet with a sequence number in the range from N W + 1 to N that has been correctly received (i.e., properly 

authenticated), the corresponding slot in the window is marked (Figure 16.4). Inbound processing proceeds as follows when a packet is 

received:
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If the received packet falls within the window and is new, the MAC is checked. If the packet is authenticated, the corresponding 

slot in the window is marked.

1.

If the received packet is to the right of the window and is new, the MAC is checked. If the packet is authenticated, the window 

is advanced so that this sequence number is the right edge of the window, and the corresponding slot in the window is marked.

2.

If the received packet is to the left of the window, or if authentication fails, the packet is discarded; this is an auditable event.3.

Figure 16.4. Antireplay Mechanism

[View full size image]



Integrity Check Value

The Authentication Data field holds a value referred to as the Integrity Check Value. The ICV is a message authentication code or a 

truncated version of a code produced by a MAC algorithm. The current specification dictates that a compliant implementation must 

support

HMAC-MD5-96

HMAC-SHA-1-96

Both of these use the HMAC algorithm, the first with the MD5 hash code and the second with the SHA-1 hash code (all of these algorithms 

are described in Chapter 12). In both cases, the full HMAC value is calculated but then truncated by using the first 96 bits, which is the 

default length for the Authentication Data field.
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The MAC is calculated over

IP header fields that either do not change in transit (immutable) or that are predictable in value upon arrival at the endpoint for 

the AH SA. Fields that may change in transit and whose value on arrival are unpredictable are set to zero for purposes of 

calculation at both source and destination.

The AH header other than the Authentication Data field. The Authentication Data field is set to zero for purposes of calculation 

at both source and destination.

The entire upper-level protocol data, which is assumed to be immutable in transit (e.g., a TCP segment or an inner IP packet in 

tunnel mode).

For IPv4, examples of immutable fields are Internet Header Length and Source Address. An example of a mutable but predictable field is 

the Destination Address (with loose or strict source routing). Examples of mutable fields that are zeroed prior to ICV calculation are the 

Time to Live and Header Checksum fields. Note that both source and destination address fields are protected, so that address spoofing is 

prevented.



For IPv6, examples in the base header are Version (immutable), Destination Address (mutable but predictable), and Flow Label (mutable 

and zeroed for calculation).

Transport and Tunnel Modes

Figure 16.5 shows two ways in which the IPSec authentication service can be used. In one case, authentication is provided directly 

between a server and client workstations; the workstation can be either on the same network as the server or on an external network. As 

long as the workstation and the server share a protected secret key, the authentication process is secure. This case uses a transport mode 

SA. In the other case, a remote workstation authenticates itself to the corporate firewall, either for access to the entire internal network or 

because the requested server does not support the authentication feature. This case uses a tunnel mode SA.

Figure 16.5. End-to-End versus End-to-Intermediate Authentication

[View full size image]
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In this subsection, we look at the scope of authentication provided by AH and the authentication header location for the two modes. The 

considerations are somewhat different for IPv4 and IPv6. Figure 16.6a shows typical IPv4 and IPv6 packets. In this case, the IP payload is 

a TCP segment; it could also be a data unit for any other protocol that uses IP, such as UDP or ICMP.

For transport mode AH using IPv4, the AH is inserted after the original IP header and before the IP payload (e.g., a TCP segment); this is 

shown in the upper part of Figure 16.6b. Authentication covers the entire packet, excluding mutable fields in the IPv4 header that are set to 

zero for MAC calculation.



Figure 16.6. Scope of AH Authentication

[View full size image]

In the context of IPv6, AH is viewed as an end-to-end payload; that is, it is not examined or processed by intermediate routers. Therefore, 

the AH appears after the IPv6 base header and the hop-by-hop, routing, and fragment extension headers. The destination options 

extension header could appear before or after the AH header, depending on the semantics desired. Again, authentication covers the entire 

packet, excluding mutable fields that are set to zero for MAC calculation.
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For tunnel mode AH, the entire original IP packet is authenticated, and the AH is inserted between the original IP header and a new outer 

IP header (Figure 16.6c). The inner IP header carries the ultimate source and destination addresses, while an outer IP header may contain 

different IP addresses (e.g., addresses of firewalls or other security gateways).

With tunnel mode, the entire inner IP packet, including the entire inner IP header is protected by AH. The outer IP header (and in the case 

of IPv6, the outer IP extension headers) is protected except for mutable and unpredictable fields.
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16.4. Encapsulating Security Payload

The Encapsulating Security Payload provides confidentiality services, including confidentiality of message contents and limited traffic flow 

confidentiality. As an optional feature, ESP can also provide an authentication service.

ESP Format

Figure 16.7 shows the format of an ESP packet. It contains the following fields:

Security Parameters Index (32 bits): Identifies a security association.

Sequence Number (32 bits): A monotonically increasing counter value; this provides an anti-replay function, as discussed for 

AH.

Payload Data (variable): This is a transport-level segment (transport mode) or IP packet (tunnel mode) that is protected by 

encryption.

Figure 16.7. IPSec ESP format
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Padding (0255 bytes): The purpose of this field is discussed later.

Pad Length (8 bits): Indicates the number of pad bytes immediately preceding this field.

Next Header (8 bits): Identifies the type of data contained in the payload data field by identifying the first header in that payload 

(for example, an extension header in IPv6, or an upper-layer protocol such as TCP).

Authentication Data (variable): A variable-length field (must be an integral number of 32-bit words) that contains the Integrity 

Check Value computed over the ESP packet minus the Authentication Data field.

Encryption and Authentication Algorithms

The Payload Data, Padding, Pad Length, and Next Header fields are encrypted by the ESP service. If the algorithm used to encrypt the 

payload requires cryptographic synchronization data, such as an initialization vector (IV), then these data may be carried explicitly at the 

beginning of the Payload Data field. If included, an IV is usually not encrypted, although it is often referred to as being part of the 

ciphertext.

The current specification dictates that a compliant implementation must support DES in cipher block chaining (CBC) mode (described in 

Chapter 3). A number of other algorithms have been assigned identifiers in the DOI document and could therefore easily be used for 

encryption; these include

Three-key triple DES

RC5

IDEA

Three-key triple IDEA

CAST

Blowfish

Many of these algorithms are described in Chapter 6.

As with AH, ESP supports the use of a MAC with a default length of 96 bits. Also as with AH, the current specification dictates that a 

compliant implementation must support HMAC-MD5-96 and HMAC-SHA-1-96.

Padding

The Padding field serves several purposes:

If an encryption algorithm requires the plaintext to be a multiple of some number of bytes (e.g., the multiple of a single block for 

a block cipher), the Padding field is used to expand the plaintext (consisting of the Payload Data, Padding, Pad Length, and 

Next Header fields) to the required length.

The ESP format requires that the Pad Length and Next Header fields be right aligned within a 32-bit word. Equivalently, the 

ciphertext must be an integer multiple of 32 bits. The Padding field is used to assure this alignment.

Additional padding may be added to provide partial traffic flow confidentiality by concealing the actual length of the payload.
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Transport and Tunnel Modes

Figure 16.8 shows two ways in which the IPSec ESP service can be used. In the upper part of the figure, encryption (and optionally 

authentication) is provided directly between two hosts. Figure 16.8b shows how tunnel mode operation can be used to set up a virtual 

private network. In this example, an organization has four private networks interconnected across the Internet. Hosts on the internal 

networks use the Internet for transport of data but do not interact with other Internet-based hosts. By terminating the tunnels at the security 

gateway to each internal network, the configuration allows the hosts to avoid implementing the security capability. The former technique is 

support by a transport mode SA, while the latter technique uses a tunnel mode SA.

Figure 16.8. Transport-Mode vs. Tunnel-Mode Encryption

[View full size image]

In this section, we look at the scope of ESP for the two modes. The considerations are somewhat different for IPv4 and IPv6. As with our 

discussion of AH scope, we will use the packet formats of Figure 16.6a as a starting point.



Transport Mode ESP

Transport mode ESP is used to encrypt and optionally authenticate the data carried by IP (e.g., a TCP segment), as shown in Figure 

16.9a. For this mode using IPv4, the ESP header is inserted into the IP packet immediately prior to the transport-layer header (e.g., TCP, 

UDP, ICMP) and an ESP trailer (Padding, Pad Length, and Next Header fields) is placed after the IP packet; if authentication is selected, 

the ESP Authentication Data field is added after the ESP trailer. The entire transport-level segment plus the ESP trailer are encrypted. 

Authentication covers all of the ciphertext plus the ESP header.
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Figure 16.9. Scope of ESP Encryption and Authentication

[View full size image]

In the context of IPv6, ESP is viewed as an end-to-end payload; that is, it is not examined or processed by intermediate routers. 

Therefore, the ESP header appears after the IPv6 base header and the hop-by-hop, routing, and fragment extension headers. The 



destination options extension header could appear before or after the ESP header, depending on the semantics desired. For IPv6, 

encryption covers the entire transport-level segment plus the ESP trailer plus the destination options extension header if it occurs after the 

ESP header. Again, authentication covers the ciphertext plus the ESP header.

Transport mode operation may be summarized as follows:

At the source, the block of data consisting of the ESP trailer plus the entire transport-layer segment is encrypted and the 

plaintext of this block is replaced with its ciphertext to form the IP packet for transmission. Authentication is added if this 

option is selected.
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1.

The packet is then routed to the destination. Each intermediate router needs to examine and process the IP header plus any 

plaintext IP extension headers but does not need to examine the ciphertext.

2.

The destination node examines and processes the IP header plus any plaintext IP extension headers. Then, on the basis of the 

SPI in the ESP header, the destination node decrypts the remainder of the packet to recover the plaintext transport-layer 

segment.

3.

Transport mode operation provides confidentiality for any application that uses it, thus avoiding the need to implement confidentiality in 

every individual application. This mode of operation is also reasonably efficient, adding little to the total length of the IP packet. One 

drawback to this mode is that it is possible to do traffic analysis on the transmitted packets.

Tunnel Mode ESP

Tunnel mode ESP is used to encrypt an entire IP packet (Figure 16.9b). For this mode, the ESP header is prefixed to the packet and then 

the packet plus the ESP trailer is encrypted. This method can be used to counter traffic analysis.

Because the IP header contains the destination address and possibly source routing directives and hop-by-hop option information, it is not 

possible simply to transmit the encrypted IP packet prefixed by the ESP header. Intermediate routers would be unable to process such a 

packet. Therefore, it is necessary to encapsulate the entire block (ESP header plus ciphertext plus Authentication Data, if present) with a 

new IP header that will contain sufficient information for routing but not for traffic analysis.

Whereas the transport mode is suitable for protecting connections between hosts that support the ESP feature, the tunnel mode is useful 

in a configuration that includes a firewall or other sort of security gateway that protects a trusted network from external networks. In this 

latter case, encryption occurs only between an external host and the security gateway or between two security gateways. This relieves 

hosts on the internal network of the processing burden of encryption and simplifies the key distribution task by reducing the number of 

needed keys. Further, it thwarts traffic analysis based on ultimate destination.

Consider a case in which an external host wishes to communicate with a host on an internal network protected by a firewall, and in which 

ESP is implemented in the external host and the firewalls. The following steps occur for transfer of a transport-layer segment from the 

external host to the internal host:

The source prepares an inner IP packet with a destination address of the target internal host. This packet is prefixed by an ESP 

header; then the packet and ESP trailer are encrypted and Authentication Data may be added. The resulting block is 

encapsulated with a new IP header (base header plus optional extensions such as routing and hop-by-hop options for IPv6) 

whose destination address is the firewall; this forms the outer IP packet.

1.

The outer packet is routed to the destination firewall. Each intermediate router needs to examine and process the outer IP 

header plus any outer IP extension headers but does not need to examine the ciphertext.

2.
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The destination firewall examines and processes the outer IP header plus any outer IP extension headers. Then, on 3.



the basis of the SPI in the ESP header, the destination node decrypts the remainder of the packet to recover the plaintext inner 

IP packet. This packet is then transmitted in the internal network.

The inner packet is routed through zero or more routers in the internal network to the destination host.4.
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16.5. Combining Security Associations

An individual SA can implement either the AH or ESP protocol but not both. Sometimes a particular traffic flow will call for the services 

provided by both AH and ESP. Further, a particular traffic flow may require IPSec services between hosts and, for that same flow, separate 

services between security gateways, such as firewalls. In all of these cases, multiple SAs must be employed for the same traffic flow to 

achieve the desired IPSec services. The term security association bundle refers to a sequence of SAs through which traffic must be 

processed to provide a desired set of IPSec services. The SAs in a bundle may terminate at different endpoints or at the same endpoints.

Security associations may be combined into bundles in two ways:

Transport adjacency: Refers to applying more than one security protocol to the same IP packet, without invoking tunneling. 

This approach to combining AH and ESP allows for only one level of combination; further nesting yields no added benefit since 

the processing is performed at one IPsec instance: the (ultimate) destination.

Iterated tunneling: Refers to the application of multiple layers of security protocols effected through IP tunneling. This 

approach allows for multiple levels of nesting, since each tunnel can originate or terminate at a different IPsec site along the 

path.

The two approaches can be combined, for example, by having a transport SA between hosts travel part of the way through a tunnel SA 

between security gateways.

One interesting issue that arises when considering SA bundles is the order in which authentication and encryption may be applied between 

a given pair of endpoints and the ways of doing so. We examine that issue next. Then we look at combinations of SAs that involve at least 

one tunnel.

Authentication Plus Confidentiality

Encryption and authentication can be combined in order to transmit an IP packet that has both confidentiality and authentication between 

hosts. We look at several approaches.

ESP with Authentication Option

This approach is illustrated in Figure 16.9. In this approach, the user first applies ESP to the data to be protected and then appends the 

authentication data field. There are actually two subcases:

Transport mode ESP: Authentication and encryption apply to the IP payload delivered to the host, but the IP header is not 

protected.
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Tunnel mode ESP: Authentication applies to the entire IP packet delivered to the outer IP destination address (e.g., a 

firewall), and authentication is performed at that destination. The entire inner IP packet is protected by the privacy mechanism, 

for delivery to the inner IP destination.

For both cases, authentication applies to the ciphertext rather than the plaintext.

Transport Adjacency

Another way to apply authentication after encryption is to use two bundled transport SAs, with the inner being an ESP SA and the outer 

being an AH SA. In this case ESP is used without its authentication option. Because the inner SA is a transport SA, encryption is applied 

to the IP payload. The resulting packet consists of an IP header (and possibly IPv6 header extensions) followed by an ESP. AH is then 

applied in transport mode, so that authentication covers the ESP plus the original IP header (and extensions) except for mutable fields. 

The advantage of this approach over simply using a single ESP SA with the ESP authentication option is that the authentication covers 

more fields, including the source and destination IP addresses. The disadvantage is the overhead of two SAs versus one SA.

Transport-Tunnel Bundle

The use of authentication prior to encryption might be preferable for several reasons. First, because the authentication data are protected 

by encryption, it is impossible for anyone to intercept the message and alter the authentication data without detection. Second, it may be 

desirable to store the authentication information with the message at the destination for later reference. It is more convenient to do this if 

the authentication information applies to the unencrypted message; otherwise the message would have to be reencrypted to verify the 

authentication information.

One approach to applying authentication before encryption between two hosts is to use a bundle consisting of an inner AH transport SA 

and an outer ESP tunnel SA. In this case, authentication is applied to the IP payload plus the IP header (and extensions) except for 

mutable fields. The resulting IP packet is then processed in tunnel mode by ESP; the result is that the entire, authenticated inner packet is 

encrypted and a new outer IP header (and extensions) is added.

Basic Combinations of Security Associations

The IPSec Architecture document lists four examples of combinations of SAs that must be supported by compliant IPSec hosts (e.g., 

workstation, server) or security gateways (e.g. firewall, router). These are illustrated in Figure 16.10. The lower part of each case in the 

figure represents the physical connectivity of the elements; the upper part represents logical connectivity via one or more nested SAs. 

Each SA can be either AH or ESP. For host-to-host SAs, the mode may be either transport or tunnel; otherwise it must be tunnel mode.

Figure 16.10. Basic Combinations of Security Associations
(This item is displayed on page 505 in the print version)

[View full size image]



In Case 1, all security is provided between end systems that implement IPSec. For any two end systems to communicate via an SA, they 

must share the appropriate secret keys. Among the possible combinations:

AH in transport modea.

ESP in transport modeb.

ESP followed by AH in transport mode (an ESP SA inside an AH SA)c.

Any one of a, b, or c inside an AH or ESP in tunnel moded.
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We have already discussed how these various combinations can be used to support authentication, encryption, authentication before 

encryption, and authentication after encryption.

For Case 2, security is provided only between gateways (routers, firewalls, etc.) and no hosts implement IPSec. This case illustrates 

simple virtual private network support. The security architecture document specifies that only a single tunnel SA is needed for this case. 

The tunnel could support AH, ESP, or ESP with the authentication option. Nested tunnels are not required because the IPSec services 

apply to the entire inner packet.

Case 3 builds on Case 2 by adding end-to-end security. The same combinations discussed for cases 1 and 2 are allowed here. The 

gateway-to-gateway tunnel provides either authentication or confidentiality or both for all traffic between end systems. When the 

gateway-to-gateway tunnel is ESP, it also provides a limited form of traffic confidentiality. Individual hosts can implement any additional 

IPSec services required for given applications or given users by means of end-to-end SAs.

Case 4 provides support for a remote host that uses the Internet to reach an organization's firewall and then to gain access to some server 

or workstation behind the firewall. Only tunnel mode is required between the remote host and the firewall. As in Case 1, one or two SAs 

may be used between the remote host and the local host.
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16.6. Key Management

The key management portion of IPSec involves the determination and distribution of secret keys. A typical requirement is four keys for 

communication between two applications: transmit and receive pairs for both AH and ESP. The IPSec Architecture document mandates 

support for two types of key management:

Manual: A system administrator manually configures each system with its own keys and with the keys of other communicating 

systems. This is practical for small, relatively static environments.

Automated: An automated system enables the on-demand creation of keys for SAs and facilitates the use of keys in a large 

distributed system with an evolving configuration.

The default automated key management protocol for IPSec is referred to as ISAKMP/Oakley and consists of the following elements:

Oakley Key Determination Protocol: Oakley is a key exchange protocol based on the Diffie-Hellman algorithm but providing 

added security. Oakley is generic in that it does not dictate specific formats.

Internet Security Association and Key Management Protocol (ISAKMP): ISAKMP provides a framework for Internet key 

management and provides the specific protocol support, including formats, for negotiation of security attributes.

ISAKMP by itself does not dictate a specific key exchange algorithm; rather, ISAKMP consists of a set of message types that enable the 

use of a variety of key exchange algorithms. Oakley is the specific key exchange algorithm mandated for use with the initial version of 

ISAKMP.
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We begin with an overview of Oakley and then look at ISAKMP.

Oakley Key Determination Protocol

Oakley is a refinement of the Diffie-Hellman key exchange algorithm. Recall that Diffie-Hellman involves the following interaction between 

users A and B. There is prior agreement on two global parameters: q, a large prime number; and a a primitive root of q. A selects a random 

integer XA as its private key, and transmits to B its public key YA = a
XA

 mod q. Similarly, B selects a random integer XB as its private key 

and transmits to A its public key YB = a
XB

 mod q. Each side can now compute the secret session key:

The Diffie-Hellman algorithm has two attractive features:

Secret keys are created only when needed. There is no need to store secret keys for a long period of time, exposing them to 

increased vulnerability.



The exchange requires no preexisting infrastructure other than an agreement on the global parameters.

However, there are a number of weaknesses to Diffie-Hellman, as pointed out in [HUIT98]:

It does not provide any information about the identities of the parties.

It is subject to a man-in-the-middle attack, in which a third party C impersonates B while communicating with A and 

impersonates A while communicating with B. Both A and B end up negotiating a key with C, which can then listen to and pass 

on traffic. The man-in-the-middle attack proceeds as follows:

B sends his public key YB in a message addressed to A (see Figure 10.8).1.

The enemy (E) intercepts this message. E saves B's public key and sends a message to A that has B's User ID but 

E's public key YE. This message is sent in such a way that it appears as though it was sent from B's host system. A 

receives E's message and stores E's public key with B's User ID. Similarly, E sends a message to B with E's public 

key, purporting to come from A.

2.

B computes a secret key K1 based on B's private key and YE. A computes a secret key K2 based on A's private key 

and YE. E computes K1 using E's secret key XE and YB and computer K2 using YE and YB.

3.

From now on E is able to relay messages from A to B and from B to A, appropriately changing their encipherment 

en route in such a way that neither A nor B will know that they share their communication with E.

4.

It is computationally intensive. As a result, it is vulnerable to a clogging attack, in which an opponent requests a high number of 

keys. The victim spends considerable computing resources doing useless modular exponentiation rather than real work.
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Oakley is designed to retain the advantages of Diffie-Hellman while countering its weaknesses.

Features of Oakley

The Oakley algorithm is characterized by five important features:

It employs a mechanism known as cookies to thwart clogging attacks.1.

It enables the two parties to negotiate a group; this, in essence, specifies the global parameters of the Diffie-Hellman key 

exchange.

2.

It uses nonces to ensure against replay attacks.3.

It enables the exchange of Diffie-Hellman public key values.4.

It authenticates the Diffie-Hellman exchange to thwart man-in-the-middle attacks.5.

We have already discussed Diffie-Hellman. Let us look the remainder of these elements in turn. First, consider the problem of clogging 

attacks. In this attack, an opponent forges the source address of a legitimate user and sends a public Diffie-Hellman key to the victim. The 

victim then performs a modular exponentiation to compute the secret key. Repeated messages of this type can clog the victim's system 

with useless work. The cookie exchange requires that each side send a pseudorandom number, the cookie, in the initial message, which 

the other side acknowledges. This acknowledgment must be repeated in the first message of the Diffie-Hellman key exchange. If the 

source address was forged, the opponent gets no answer. Thus, an opponent can only force a user to generate acknowledgments and not 

to perform the Diffie-Hellman calculation.

ISAKMP mandates that cookie generation satisfy three basic requirements:



The cookie must depend on the specific parties. This prevents an attacker from obtaining a cookie using a real IP address and 

UDP port and then using it to swamp the victim with requests from randomly chosen IP addresses or ports.

1.

It must not be possible for anyone other than the issuing entity to generate cookies that will be accepted by that entity. This 

implies that the issuing entity will use local secret information in the generation and subsequent verification of a cookie. It must 

not be possible to deduce this secret information from any particular cookie. The point of this requirement is that the issuing 

entity need not save copies of its cookies, which are then more vulnerable to discovery, but can verify an incoming cookie 

acknowledgment when it needs to.

2.

The cookie generation and verification methods must be fast to thwart attacks intended to sabotage processor resources.3.

The recommended method for creating the cookie is to perform a fast hash (e.g., MD5) over the IP Source and Destination addresses, the 

UDP Source and Destination ports, and a locally generated secret value.

Oakley supports the use of different groups for the Diffie-Hellman key exchange. Each group includes the definition of the two global 

parameters and the identity of the algorithm. The current specification includes the following groups:
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Modular exponentiation with a 768-bit modulus

q = 2
768

 - 2
704

 - 1 + 2
64

 x ([2
638

 x p] + 149686)

a = 2

Modular exponentiation with a 1024-bit modulus

q = 2
1024

 - 2
960

 - 1 + 2
64

 x ([2
894

 x p] + 129093)

a = 2

Modular exponentiation with a 1536-bit modulus

Parameters to be determined

Elliptic curve group over 2
155

Generator (hexadecimal):X = 7B, Y = 1C8

Elliptic curve parameters (hexadecimal):A = 0, Y = 7338F

Elliptic curve group over 2
185

Generator (hexadecimal):X = 18, Y = D

Elliptic curve parameters (hexadecimal):A = 0, Y = 1EE9

The first three groups are the classic Diffie-Hellman algorithm using modular exponentiation. The last two groups use the elliptic curve 

analog to Diffie-Hellman, which was described in Chapter 10.

Oakley employs nonces to ensure against replay attacks. Each nonce is a locally generated pseudorandom number. Nonces appear in 

responses and are encrypted during certain portions of the exchange to secure their use.

Three different authentication methods can be used with Oakley:

Digital signatures: The exchange is authenticated by signing a mutually obtainable hash; each party encrypts the hash with 

its private key. The hash is generated over important parameters, such as user IDs and nonces.

Public-key encryption: The exchange is authenticated by encrypting parameters such as IDs and nonces with the sender's 



private key.

Symmetric-key encryption: A key derived by some out-of-band mechanism can be used to authenticate the exchange by 

symmetric encryption of exchange parameters.

Oakley Exchange Example

The Oakley specification includes a number of examples of exchanges that are allowable under the protocol. To give a flavor of Oakley, 

we present one example, called aggressive key exchange in the specification, so called because only three messages are exchanged.

Figure 16.11 shows the aggressive key exchange protocol. In the first step, the initiator (I) transmits a cookie, the group to be used, and I's 

public Diffie-Hellman key for this exchange. I also indicates the offered public-key encryption, hash, and authentication algorithms to be 

used in this exchange. Also included in this message are the identifiers of I and the responder (R) and I's nonce for this exchange. 

Finally, I appends a signature using I's private key that signs the two identifiers, the nonce, the group, the Diffie-Hellman public key, and 

the offered algorithms.
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Figure 16.11. Example of Aggressive Oakley Key Exchange

[View full size image]

When R receives the message, R verifies the signature using I's public signing key. R acknowledges the message by echoing back I's 

cookie, identifier, and nonce, as well as the group. R also includes in the message a cookie, R's Diffie-Hellman public key, the selected 

algorithms (which must be among the offered algorithms), R's identifier, and R's nonce for this exchange. Finally, R appends a signature 

using R's private key that signs the two identifiers, the two nonces, the group, the two Diffie-Hellman public keys, and the selected 

algorithms.

When I receives the second message, I verifies the signature using R's public key. The nonce values in the message assure that this is not 

a replay of an old message. To complete the exchange, I must send a message back to R to verify that I has received R's public key.



ISAKMP

ISAKMP defines procedures and packet formats to establish, negotiate, modify, and delete security associations. As part of SA 

establishment, ISAKMP defines payloads for exchanging key generation and authentication data. These payload formats provide a 

consistent framework independent of the specific key exchange protocol, encryption algorithm, and authentication mechanism.

ISAKMP Header Format

An ISAKMP message consists of an ISAKMP header followed by one or more payloads. All of this is carried in a transport protocol. The 

specification dictates that implementations must support the use of UDP for the transport protocol.

[Page 511]

Figure 16.12a shows the header format for an ISAKMP message. It consists of the following fields:

Initiator Cookie (64 bits): Cookie of entity that initiated SA establishment, SA notification, or SA deletion.

Responder Cookie (64 bits): Cookie of responding entity; null in first message from initiator.

Next Payload (8 bits): Indicates the type of the first payload in the message; payloads are discussed in the next subsection.

Major Version (4 bits): Indicates major version of ISAKMP in use.

Minor Version (4 bits): Indicates minor version in use.

Exchange Type (8 bits): Indicates the type of exchange; these are discussed later in this section.

Flags (8 bits): Indicates specific options set for this ISAKMP exchange. Two bits so far defined: The Encryption bit is set if all 

payloads following the header are encrypted using the encryption algorithm for this SA. The Commit bit is used to ensure that 

encrypted material is not received prior to completion of SA establishment.

Message ID (32 bits): Unique ID for this message.

Length (32 bits): Length of total message (header plus all payloads) in octets.

Figure 16.12. ISAKMP Formats



ISAKMP Payload Types

All ISAKMP payloads begin with the same generic payload header shown in Figure 16.12b. The Next Payload field has a value of 0 if this 

is the last payload in the message; otherwise its value is the type of the next payload. The Payload Length field indicates the length 

in octets of this payload, including the generic payload header.
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Table 16.3 summarizes the payload types defined for ISAKMP, and lists the fields, or parameters, that are part of each payload. The SA 

payload is used to begin the establishment of an SA. In this payload, the Domain of Interpretation parameter identifies the DOI under 

which negotiation is taking place. The IPSec DOI is one example, but ISAKMP can be used in other contexts. The Situation parameter 

defines the security policy for this negotiation; in essence, the levels of security required for encryption and confidentiality are specified 

(e.g., sensitivity level, security compartment).



Table 16.3. ISAKMP Payload Types
(This item is displayed on page 513 in the print version)

Type Parameters Description

Security Association 

(SA)

Domain of Interpretation, Situation Used to negotiate security attributes and indicate the 

DOI and Situation under which negotiation is taking 

place.

Proposal (P) Proposal #, Protocol-ID, SPI Size, # of Transforms, 

SPI

Used during SA negotiation; indicates protocol to be 

used and number of transforms.

Transform (T) Transform #, Transform-ID, SA Attributes Used during SA negotiation; indicates transform and 

related SA attributes.

Key Exchange (KE) Key Exchange Data Supports a variety of key exchange techniques.

Identification (ID) ID Type, ID Data Used to exchange identification information.

Certificate (CERT) Cert Encoding, Certificate Data Used to transport certificates and other certificate- 

related information.

Certificate Request (CR) # Cert Types, Certificate Types, # Cert Auths, 

Certificate Authorities

Used to request certificates; indicates the types of 

certificates requested and the acceptable certificate 

authorities.

Hash (HASH) Hash Data Contains data generated by a hash function.

Signature (SIG) Signature Data Contains data generated by a digital signature 

function.

Nonce (NONCE) Nonce Data Contains a nonce.

Notification (N) DOI, Protocol-ID, SPI Size, Notify Message Type, 

SPI, Notification Data

Used to transmit notification data, such as an error 

condition.

Delete (D) DOI, Protocol-ID, SPI Size, #of SPIs, SPI (one or 

more)

Indicates an SA that is no longer valid.

The Proposal payload contains information used during SA negotiation. The payload indicates the protocol for this SA (ESP or AH) for 

which services and mechanisms are being negotiated. The payload also includes the sending entity's SPI and the number of transforms. 

Each transform is contained in a transform payload. The use of multiple transform payloads enables the initiator to offer several 

possibilities, of which the responder must choose one or reject the offer.

The Transform payload defines a security transform to be used to secure the communications channel for the designated protocol. The 

Transform # parameter serves to identify this particular payload so that the responder may use it to indicate acceptance of this transform. 

The Transform-ID and Attributes fields identify a specific transform (e.g., 3DES for ESP, HMAC-SHA-1-96 for AH) with its associated 

attributes (e.g., hash length).

The Key Exchange payload can be used for a variety of key exchange techniques, including Oakley, Diffie-Hellman, and the RSA-based 

key exchange used by PGP. The Key Exchange data field contains the data required to generate a session key and is dependent on the 

key exchange algorithm used.

The Identification payload is used to determine the identity of communicating peers and may be used for determining authenticity of 

information. Typically the ID Data field will contain an IPv4 or IPv6 address.

The Certificate payload transfers a public-key certificate. The Certificate Encoding field indicates the type of certificate or 

certificate-related information, which may include the following:

PKCS #7 wrapped X.509 certificate



PGP certificate

DNS signed key

X.509 certificatesignature

X.509 certificatekey exchange

Kerberos tokens

Certificate Revocation List (CRL)

Authority Revocation List (ARL)

SPKI certificate

At any point in an ISAKMP exchange, the sender may include a Certificate Request payload to request the certificate of the other 

communicating entity. The payload may list more than one certificate type that is acceptable and more than one certificate authority 

that is acceptable.
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The Hash payload contains data generated by a hash function over some part of the message and/or ISAKMP state. This payload may 

be used to verify the integrity of the data in a message or to authenticate negotiating entities.

The Signature payload contains data generated by a digital signature function over some part of the message and/or ISAKMP state. This 

payload is used to verify the integrity of the data in a message and may be used for nonrepudiation services.

The Nonce payload contains random data used to guarantee liveness during an exchange and protect against replay attacks.

The Notification payload contains either error or status information associated with this SA or this SA negotiation. The following ISAKMP 

error messages have been defined:

Invalid Payload Type Invalid Protocol ID Invalid Cert Encoding

DOI Not Supported Invalid SPI Invalid Certificate

Situation Not Supported Invalid Transform ID Bad Cert Request Syntax

Invalid Cookie Attributes Not Supported Invalid Cert Authority

Invalid Major Version No Proposal Chosen Invalid Hash Information

Invalid Minor Version Bad Proposal Syntax Authentication Failed

Invalid Exchange Type Payload Malformed Invalid Signature

Invalid Flags Invalid Key Information Address Notification

Invalid Message ID   

The only ISAKMP status message so far defined is Connected. In addition to these ISAKMP notifications, DOI-specific notifications are 

used. For IPSec, the following additional status messages are defined:

Responder-Lifetime: Communicates the SA lifetime chosen by the responder.

Replay-Status: Used for positive confirmation of the responder's election of whether or not the responder will perform 



anti-replay detection.

Initial-Contact: Informs the other side that this is the first SA being established with the remote system. The receiver of this 

notification might then delete any existing SA's it has for the sending system under the assumption that the sending system has 

rebooted and no longer has access to those SAs.

The Delete payload indicates one or more SAs that the sender has deleted from its database and that therefore are no longer valid.

ISAKMP Exchanges

ISAKMP provides a framework for message exchange, with the payload types serving as the building blocks. The specification identifies 

five default exchange types that should be supported; these are summarized in Table 16.4. In the table, SA refers to an SA payload with 

associated Protocol and Transform payloads.
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Table 16.4. ISAKMP Exchange Types

Exchange Note

(a) Base Exchange

(1)I R: SA; NONCE Begin ISAKMP-SA negotiation

(2)R E: SA; NONCE Basic SA agreed upon

(3)I R: KE; IDI AUTH Key generated; Initiator identity verified by responder

(4)R E: KE; IDR AUTH Responder identity verified by initiator; Key generated; SA 

established

(b) Identity Protection Exchange

(1)I R: SA Begin ISAKMP-SA negotiation

(2)R E: SA Basic SA agreed upon

(3)I R: KE; NONCE Key generated

(4)R E: KE; NONCE Key generated

(5)*I R: IDI; AUTH Initiator identity verified by responder

(6)*R E: IDR; AUTH Responder identity verified by initiator; SA established

(c) Authentication Only Exchange

(1)I R: SA; NONCE Begin ISAKMP-SA negotiation

(2)R E: SA; NONCE; IDR; AUTH Basic SA agreed upon; Responder identity verified by initiator

(3)I R: IDI; AUTH Initiator identity verified by responder; SA established

(d) Aggressive Exchange

(1)I R: SA; KE; NONCE; IDI; Begin ISAKMP-SA negotiation and key exchange

(2)R E: SA; KE; NONCE; IDR; AUTH Initiator identity verified by responder; Key generated; Basic SA 

agreed upon

(3)*I R: AUTH Responder identity verified by initiator; SA established

(e) Informational Exchange

(1)*I R: N/D Error or status notification, or deletion

Notation:

I = initiator

R = responder

* = signifies payload encryption after the ISAKMP header

AUTH = authentication mechanism used



The Base Exchange allows key exchange and authentication material to be transmitted together. This minimizes the number of 

exchanges at the expense of not providing identity protection. The first two messages provide cookies and establish an SA with agreed 

protocol and transforms; both sides use a nonce to ensure against replay attacks. The last two messages exchange the key material and 

user IDs, with an authentication mechanism used to authenticate keys, identities, and the nonces from the first two messages.
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The Identity Protection Exchange expands the Base Exchange to protect the users' identities. The first two messages establish the SA. 

The next two messages perform key exchange, with nonces for replay protection. Once the session key has been computed, the two 

parties exchange encrypted messages that contain authentication information, such as digital signatures and optionally certificates 

validating the public keys.

The Authentication Only Exchange is used to perform mutual authentication, without a key exchange. The first two messages establish 

the SA. In addition, the responder uses the second message to convey its ID and uses authentication to protect the message. The initiator 

sends the third message to transmit its authenticated ID.

The Aggressive Exchange minimizes the number of exchanges at the expense of not providing identity protection. In the first message, 

the initiator proposes an SA with associated offered protocol and transform options. The initiator also begins the key exchange and 

provides its ID. In the second message, the responder indicates its acceptance of the SA with a particular protocol and transform, 

completes the key exchange, and authenticates the transmitted information. In the third message, the initiator transmits an authentication 

result that covers the previous information, encrypted using the shared secret session key.

The Informational Exchange is used for one-way transmittal of information for SA management.
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16.7. Recommended Reading and Web Site

IPv6 and IPv4 are covered in more detail in [STAL04]. [CHEN98] provides a good discussion of an IPSec design. [FRAN01] and 

[DORA99] are more comprehensive treatments of IPSec.

CHEN98 Cheng, P., et al. "A Security Architecture for the Internet Protocol." IBM Systems Journal, Number 1, 

1998.

DORA03 Doraswamy, N., and Harkins, D. IPSec. Upper Saddle River, NJ: Prentice Hall, 2003.

FRAN01 Frankel, S. Demystifying the IPSec Puzzle. Boston: Artech House, 2001.

STAL04 Stallings, W. Computer Networking with Internet Protocols and Technology. Upper Saddle River, NJ: 

Prentice Hall, 2004.

Recommended Web Site

NIST IPSEC Project: Contains papers, presentations, and reference implementations
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16.8. Key Terms, Review Questions, and Problems

Key Terms

anti-replay service

authentication header (AH)

encapsulating security payload (ESP)

Internet Security Association and Key Management Protocol (ISAKMP)

IP Security (IPSec)

IPv4

IPv6

Oakley key determination protocol

replay attack

security association (SA)

transport mode

tunnel mode

Review Questions

16.1 Give examples of applications of IPSec.

16.2 What services are provided by IPSec?

16.3 What parameters identify an SA and what parameters characterize the nature of a particular SA?



16.4 What is the difference between transport mode and tunnel mode?

16.5 What is a replay attack?

16.6 Why does ESP include a padding field?

16.7 What are the basic approaches to bundling SAs?

16.8 What are the roles of the Oakley key determination protocol and ISAKMP in IPSec?

Problems

16.1 In discussing AH processing, it was mentioned that not all of the fields in an IP header are included in MAC 

calculation.

For each of the fields in the IPv4 header, indicate whether the field is immutable, mutable but 

predictable, or mutable (zeroed prior to ICV calculation).

a.

Do the same for the IPv6 header.b.

Do the same for the IPv6 extension headers.

In each case, justify your decision for each field.

c.

16.2 When tunnel mode is used, a new outer IP header is constructed. For both IPv4 and IPv6, indicate the 

relationship of each outer IP header field and each extension header in the outer packet to the corresponding 

field or extension header of the inner IP packet. That is, indicate which outer values are derived from inner 

values and which are constructed independently of the inner values.

16.3 End-to-end authentication and encryption are desired between two hosts. Draw figures similar to Figures 

16.6 and 16.9 that show

Transport adjacency, with encryption applied before authenticationa.

A transport SA bundled inside a tunnel SA, with encryption applied before authenticationb.

A transport SA bundled inside a tunnel SA, with authentication applied before encryptionc.

16.4 The IPSec architecture document states that when two transport mode SA's are bundled to allow both AH 

and ESP protocols on the same end-to-end flow, only one ordering of security protocols seems 

appropriate: performing the ESP protocol before performing the AH protocol. Why is this approach 

recommended rather than authentication before encryption?
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16.5
Which of the ISAKMP Exchange Types (Table 16.4) corresponds to the aggressive Oakley key 

exchange (Figure 16.11)?

a.

For the Oakley aggressive key exchange, indicate which parameters in each message go in 

which ISAKMP payload types.

b.

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html
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Appendix 16A Internetworking and Internet Protocols

This appendix provides an overview of Internet protocols. We begin with a summary of the role of an internet protocol in providing 

internetworking. Then the two main internet protocols, IPv4 and IPv6, are introduced.

The Role of an Internet Protocol

An internet protocol (IP) provides the functionality for interconnecting end systems across multiple networks. For this purpose, IP is 

implemented in each end system and in routers, which are devices that provide connection between networks. Higher-level data at a 

source end system are encapsulated in an IP protocol data unit (PDU) for transmission. This PDU is then passed through one or more 

networks and connecting routers to reach the destination end system.

The router must be able to cope with a variety of differences among networks, including

Addressing schemes: The networks may use different schemes for assigning addresses to devices. For example, an IEEE 

802 LAN uses either 16-bit or 48-bit binary addresses for each attached device; an X.25 public packet-switching network uses 

12-digit decimal addresses (encoded as 4 bits per digit for a 48-bit address). Some form of global network addressing must be 

provided, as well as a directory service.

Maximum packet sizes: Packets from one network may have to be broken into smaller pieces to be transmitted on another 

network, a process known as fragmentation. For example, Ethernet imposes a maximum packet size of 1500 bytes; a 

maximum packet size of 1000 bytes is common on X.25 networks. A packet that is transmitted on an Ethernet system and 

picked up by a router for retransmission on an X.25 network may have to fragment the incoming packet into two smaller ones.

Interfaces: The hardware and software interfaces to various networks differ. The concept of a router must be independent of 

these differences.

Reliability: Various network services may provide anything from a reliable end-to-end virtual circuit to an unreliable service. 

The operation of the routers should not depend on an assumption of network reliability.

The operation of the router, as Figure 16.13 indicates, depends on an internet protocol. In this example, the Internet Protocol (IP) of the 

TCP/IP protocol suite performs that function. IP must be implemented in all end systems on all networks as well as on the routers. In 

addition, each end system must have compatible protocols above IP to communicate successfully. The intermediate routers need only 

have up through IP.
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Figure 16.13. Configuration for TCP/IP Example

[View full size image]



Consider the transfer of a block of data from end system X to end system Y in Figure 16.13. The IP layer at X receives blocks of data to be 

sent to Y from TCP in X. The IP layer attaches a header that specifies the global internet address of Y. That address is in two parts: network 

identifier and end system identifier. Let us refer to this block as the IP packet. Next, IP recognizes that the destination (Y) is on another 

subnetwork. So the first step is to send the packet to a router, in this case router 1. To accomplish this, IP hands its data unit down to LLC 

with the appropriate addressing information. LLC creates an LLC PDU, which is handed down to the MAC layer. The MAC layer constructs 

a MAC packet whose header contains the address of router 1.

Next, the packet travels through LAN to router 1. The router removes the packet and LLC headers and trailers and analyzes the IP header 

to determine the ultimate destination of the data, in this case Y. The router must now make a routing decision. There are two possibilities:

The destination end system Y is connected directly to one of the subnetworks to which the router is attached.1.

To reach the destination, one or more additional routers must be traversed.2.

In this example, the packet must be routed through router 2 before reaching the destination. So router 1 passes the IP packet to router 2 

via the intermediate network. For this purpose, the protocols of that network are used. For example, if the intermediate network is an 

X.25 network, the IP data unit is wrapped in an X.25 packet with appropriate addressing information to reach router 2. When this packet 

arrives at router 2, the packet header is stripped off. The router determines that this IP packet is destined for Y, which is connected directly 

to a subnetwork to which the router is attached. The router therefore creates a packet with a destination address of Y and sends it out onto 

the LAN. The data finally arrive at Y, where the packet, LLC, and internet headers and trailers can be stripped off.
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This service offered by IP is an unreliable one. That is, IP does not guarantee that all data will be delivered or that the data that are 

delivered will arrive in the proper order. It is the responsibility of the next higher layer, in this case TCP, to recover from any errors that 

occur. This approach provides for a great deal of flexibility. Because delivery is not guaranteed, there is no particular reliability requirement 

on any of the subnetworks. Thus, the protocol will work with any combination of subnetwork types. Because the sequence of delivery is not 

guaranteed, successive packets can follow different paths through the internet. This allows the protocol to react to congestion and failure 

in the internet by changing routes.



IPv4

For decades, the keystone of the TCP/IP protocol architecture has been the Internet Protocol (IP) version 4. Figure 16.14a shows the IP 

header format, which is a minimum of 20 octets, or 160 bits. The fields are as follows:

Version (4 bits): Indicates version number, to allow evolution of the protocol; the value is 4.

Internet Header Length (IHL) (4 bits): Length of header in 32-bit words. The minimum value is five, for a minimum header 

length of 20 octets.

DS/ECN (8 bits): Prior to the introduction of differentiated services, this field was referred to as the Type of Service field and 

specified reliability, precedence, delay, and throughput parameters. This interpretation has now been superseded. The first 6 

bits of the TOS field are now referred to as the DS (Differentiated Services) field. The remaining 2 bits are reserved for an ECN 

(Explicit Congestion Notification) field.

Total Length (16 bits): Total IP packet length, in octets.

Identification (16 bits): A sequence number that, together with the source address, destination address, and user protocol, is 

intended to identify a packet uniquely. Thus, this number should be unique for the packet's source address, destination 

address, and user protocol for the time during which the packet will remain in the internet.

Flags (3 bits): Only two of the bits are currently defined. When a packet is fragmented, the More bit indicates whether this is 

the last fragment in the original packet. The Don't Fragment bit prohibits fragmentation when set. This bit may be useful if it is 

known that the destination does not have the capability to reassemble fragments. However, if this bit is set, the packet will be 

discarded if it exceeds the maximum size of an en route subnetwork. Therefore, if the bit is set, it may be advisable to use 

source routing to avoid subnetworks with small maximum packet size.
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Fragment Offset (13 bits): Indicates where in the original packet this fragment belongs, measured in 64-bit units. This implies 

that fragments other than the last fragment must contain a data field that is a multiple of 64 bits in length.

Time to Live (8 bits): Specifies how long, in seconds, a packet is allowed to remain in the internet. Every router that processes 

a packet must decrease the TTL by at least one, so the TTL is somewhat similar to a hop count.

[Page 522]

Protocol (8 bits): Indicates the next higher level protocol, which is to receive the data field at the destination; thus, this 

field identifies the type of the next header in the packet after the IP header.

Header Checksum (16 bits): An error-detecting code applied to the header only. Because some header fields may change 

during transit (e.g., time to live, segmentation-related fields), this is reverified and recomputed at each router. The checksum 

field is the 16-bit one's complement addition of all 16-bit words in the header. For purposes of computation, the checksum field 

is itself initialized to a value of zero.

Source Address (32 bits): Coded to allow a variable allocation of bits to specify the network and the end system attached to 

the specified network (7 and 24 bits, 14 and 16 bits, or 21 and 8 bits).

Destination Address (32 bits): Same characteristics as source address.

Options (variable): Encodes the options requested by the sending user; these may include security label, source routing, 

record routing, and timestamping.

Padding (variable): Used to ensure that the packet header is a multiple of 32 bits in length.



Figure 16.14. IP Headers
(This item is displayed on page 521 in the print version )

[View full size image]
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When a user attempts to log on to a UNIX system, the user provides an ID and a password. The operating system uses the ID to index 

into the password file and retrieve the plaintext salt and the encrypted password. The salt and user-supplied password are used as input to 

the encryption routine. If the result matches the stored value, the password is accepted.

The encryption routine is designed to discourage guessing attacks. Software implementations of DES are slow compared to hardware 

versions, and the use of 25 iterations multiplies the time required by 25. However, since the original design of this algorithm, two changes 

have occurred. First, newer implementations of the algorithm itself have resulted in speedups. For example, the Internet worm described in 

Chapter 19 was able to do online password guessing of a few hundred passwords in a reasonably short time by using a more efficient 

encryption algorithm than the standard one stored on the UNIX systems that it attacked. Second, hardware performance continues to 

increase, so that any software algorithm executes more quickly.
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Thus, there are two threats to the UNIX password scheme. First, a user can gain access on a machine using a guest account or by some 

other means and then run a password guessing program, called a password cracker, on that machine. The attacker should be able to 

check hundreds and perhaps thousands of possible passwords with little resource consumption. In addition, if an opponent is able to 

obtain a copy of the password file, then a cracker program can be run on another machine at leisure. This enables the opponent to run 

through many thousands of possible passwords in a reasonable period.

As an example, a password cracker was reported on the Internet in August 1993 [MADS93]. Using a Thinking Machines Corporation 

parallel computer, a performance of 1560 encryptions per second per vector unit was achieved. With four vector units per processing node 

(a standard configuration), this works out to 800,000 encryptions per second on a 128-node machine (which is a modest size) and 6.4 

million encryptions per second on a 1024-node machine.

Even these stupendous guessing rates do not yet make it feasible for an attacker to use a dumb brute-force technique of trying all possible 

combinations of characters to discover a password. Instead, password crackers rely on the fact that some people choose easily guessable 

passwords.

Some users, when permitted to choose their own password, pick one that is absurdly short. The results of one study at Purdue University 

are shown in Table 18.3. The study observed password change choices on 54 machines, representing approximately 7000 user accounts. 

Almost 3% of the passwords were three characters or fewer in length. An attacker could begin the attack by exhaustively testing all 

possible passwords of length 3 or fewer. A simple remedy is for the system to reject any password choice of fewer than, say, six 

characters or even to require that all passwords be exactly eight characters in length. Most users would not complain about such a 

restriction.



Table 18.3. Observed Password Lengths [SPAF92a]

Length Number Fraction of Total

1 55 .004

2 87 .006

3 212 .02

4 449 .03

5 1260 .09

6 3035 .22

7 2917 .21

8 5772 .42

Total 13787 1.0

Password length is only part of the problem. Many people, when permitted to choose their own password, pick a password that is 

guessable, such as their own name, their street name, a common dictionary word, and so forth. This makes the job of password cracking 

straightforward. The cracker simply has to test the password file against lists of likely passwords. Because many people use guessable 

passwords, such a strategy should succeed on virtually all systems.
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One demonstration of the effectiveness of guessing is reported in [KLEI90]. From a variety of sources, the author collected UNIX 

password files, containing nearly 14,000 encrypted passwords. The result, which the author rightly characterizes as frightening, is shown in 

Table 18.4. In all, nearly one-fourth of the passwords were guessed. The following strategy was used:

Try the user's name, initials, account name, and other relevant personal information. In all, 130 different permutations for each 

user were tried.

1.

Try words from various dictionaries. The author compiled a dictionary of over 60,000 words, including the online dictionary on 

the system itself, and various other lists as shown.

2.

Try various permutations on the words from step 2. This included making the first letter uppercase or a control character, 

making the entire word uppercase, reversing the word, changing the letter "o" to the digit "zero," and so on. These 

permutations added another 1 million words to the list.

3.

Try various capitalization permutations on the words from step 2 that were not considered in step 3. This added almost 2 million 

additional words to the list.

4.



Table 18.4. Passwords Cracked from a Sample Set of 13,797 Accounts [KLEI90]
(This item is displayed on page 586 in the print version)

Type of Password Search Size Number of Matches

Percentage of 

Passwords Matched Cost/Benefit Ratio
[a]

User/account name 130 368 2.7% 2.830

Character sequences 866 22 0.2% 0.025

Numbers 427 9 0.1% 0.021

Chinese 392 56 0.4% 0.143

Place names 628 82 0.6% 0.131

Common names 2239 548 4.0% 0.245

Female names 4280 161 1.2% 0.038

Male names 2866 140 1.0% 0.049

Uncommon names 4955 130 0.9% 0.026

Myths & legends 1246 66 0.5% 0.053

Shakespearean 473 11 0.1% 0.023

Sports terms 238 32 0.2% 0.134

Science fiction 691 59 0.4% 0.085

Movies and actors 99 12 0.1% 0.121

Cartoons 92 9 0.1% 0.098

Famous people 290 55 0.4% 0.190

Phrases and patterns 933 253 1.8% 0.271

Surnames 33 9 0.1% 0.273

Biology 58 1 0.0% 0.017

System dictionary 19683 1027 7.4% 0.052

Machine names 9018 132 1.0% 0.015

Mnemonics 14 2 0.0% 0.143

King James bible 7525 83 0.6% 0.011

Miscellaneous words 3212 54 0.4% 0.017

Yiddish words 56 0 0.0% 0.000

Asteroids 2407 19 0.1% 0.007

TOTAL 62727 3340 24.2% 0.053

[a] Computed as the number of matches divided by the search size. The more words that needed to be tested for a 



match, the lower the cost/benefit ratio.

Thus, the test involved in the neighborhood of 3 million words. Using the fastest Thinking Machines implementation listed earlier, the time 

to encrypt all these words for all possible salt values is under an hour. Keep in mind that such a thorough search could produce a success 

rate of about 25%, whereas even a single hit may be enough to gain a wide range of privileges on a system.

Access Control

One way to thwart a password attack is to deny the opponent access to the password file. If the encrypted password portion of the file is 

accessible only by a privileged user, then the opponent cannot read it without already knowing the password of a privileged user. 

[SPAF92a] points out several flaws in this strategy:

Many systems, including most UNIX systems, are susceptible to unanticipated break-ins. Once an attacker has gained access 

by some means, he or she may wish to obtain a collection of passwords in order to use different accounts for different logon 

sessions to decrease the risk of detection. Or a user with an account may desire another user's account to access privileged 

data or to sabotage the system.

An accident of protection might render the password file readable, thus compromising all the accounts.

Some of the users have accounts on other machines in other protection domains, and they use the same password. Thus, if 

the passwords could be read by anyone on one machine, a machine in another location might be compromised.

Thus, a more effective strategy would be to force users to select passwords that are difficult to guess.

Password Selection Strategies

The lesson from the two experiments just described (Tables 18.3 and 18.4) is that, left to their own devices, many users choose a 

password that is too short or too easy to guess. At the other extreme, if users are assigned passwords consisting of eight randomly 

selected printable characters, password cracking is effectively impossible. But it would be almost as impossible for most users to 

remember their passwords. Fortunately, even if we limit the password universe to strings of characters that are reasonably memorable, the 

size of the universe is still too large to permit practical cracking. Our goal, then, is to eliminate guessable passwords while allowing the 

user to select a password that is memorable. Four basic techniques are in use:
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User education

Computer-generated passwords
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Reactive password checking

Proactive password checking

Users can be told the importance of using hard-to-guess passwords and can be provided with guidelines for selecting strong passwords. 



This user education strategy is unlikely to succeed at most installations, particularly where there is a large user population or a lot of 

turnover. Many users will simply ignore the guidelines. Others may not be good judges of what is a strong password. For example, many 

users (mistakenly) believe that reversing a word or capitalizing the last letter makes a password unguessable.

Computer-generated passwords also have problems. If the passwords are quite random in nature, users will not be able to remember 

them. Even if the password is pronounceable, the user may have difficulty remembering it and so be tempted to write it down. In general, 

computer-generated password schemes have a history of poor acceptance by users. FIPS PUB 181 defines one of the best-designed 

automated password generators. The standard includes not only a description of the approach but also a complete listing of the C source 

code of the algorithm. The algorithm generates words by forming pronounceable syllables and concatenating them to form a word. A 

random number generator produces a random stream of characters used to construct the syllables and words.

A reactive password checking strategy is one in which the system periodically runs its own password cracker to find guessable 

passwords. The system cancels any passwords that are guessed and notifies the user. This tactic has a number of drawbacks. First, it is 

resource intensive if the job is done right. Because a determined opponent who is able to steal a password file can devote full CPU time to 

the task for hours or even days, an effective reactive password checker is at a distinct disadvantage. Furthermore, any existing passwords 

remain vulnerable until the reactive password checker finds them.

The most promising approach to improved password security is a proactive password checker. In this scheme, a user is allowed to 

select his or her own password. However, at the time of selection, the system checks to see if the password is allowable and, if not, rejects 

it. Such checkers are based on the philosophy that, with sufficient guidance from the system, users can select memorable passwords from 

a fairly large password space that are not likely to be guessed in a dictionary attack.

The trick with a proactive password checker is to strike a balance between user acceptability and strength. If the system rejects too many 

passwords, users will complain that it is too hard to select a password. If the system uses some simple algorithm to define what is 

acceptable, this provides guidance to password crackers to refine their guessing technique. In the remainder of this subsection, we look at 

possible approaches to proactive password checking.

The first approach is a simple system for rule enforcement. For example, the following rules could be enforced:

All passwords must be at least eight characters long.

In the first eight characters, the passwords must include at least one each of uppercase, lowercase, numeric digits, and 

punctuation marks.

These rules could be coupled with advice to the user. Although this approach is superior to simply educating users, it may not be sufficient 

to thwart password crackers. This scheme alerts crackers as to which passwords not to try but may still make it possible to do password 

cracking.
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Another possible procedure is simply to compile a large dictionary of possible "bad" passwords. When a user selects a password, the 

system checks to make sure that it is not on the disapproved list. There are two problems with this approach:

Space: The dictionary must be very large to be effective. For example, the dictionary used in the Purdue study [SPAF92a] 

occupies more than 30 megabytes of storage.

Time: The time required to search a large dictionary may itself be large. In addition, to check for likely permutations of 

dictionary words, either those words most be included in the dictionary, making it truly huge, or each search must also involve 

considerable processing.

Two techniques for developing an effective and efficient proactive password checker that is based on rejecting words on a list show 

promise. One of these develops a Markov model for the generation of guessable passwords [DAVI93]. Figure 18.5 shows a simplified 

version of such a model. This model shows a language consisting of an alphabet of three characters. The state of the system at any time 

is the identity of the most recent letter. The value on the transition from one state to another represents the probability that one letter 

follows another. Thus, the probability that the next letter is b, given that the current letter is a, is 0.5.



Figure 18.5. An Example Markov Model
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In general, a Markov model is a quadruple [m, A, T, k], where m is the number of states in the model, A is the state space, T is the matrix of 

transition probabilities, and k is the order of the model. For a kth-order model, the probability of making a transition to a particular letter 

depends on the previous k letters that have been generated. Figure 18.5 shows a simple first-order model.

The authors report on the development and use of a second-order model. To begin, a dictionary of guessable passwords is constructed. 

Then the transition matrix is calculated as follows:

Determine the frequency matrix f, where f(i, j, k) is the number of occurrences of the trigram consisting of the ith, jth, and kth 

character. For example, the password parsnips yields the trigrams par, ars, rsn, sni, nip, and ips.

1.

For each bigram ij, calculate f(i, j, ) as the total number of trigrams beginning with ij. For example, f(a, b, ) would be the 

total number of trigrams of the form aba, abb, abc, and so on.

2.

Compute the entries of T as follows:3.



The result is a model that reflects the structure of the words in the dictionary. With this model, the question "Is this a bad password?" is 

transformed into the question "Was this string (password) generated by this Markov model?" For a given password, the transition 

probabilities of all its trigrams can be looked up. Some standard statistical tests can then be used to determine if the password is likely or 

unlikely for that model. Passwords that are likely to be generated by the model are rejected. The authors report good results for a 

second-order model. Their system catches virtually all the passwords in their dictionary and does not exclude so many potentially good 

passwords as to be user unfriendly.

A quite different approach has been reported by Spafford [SPAF92a, SPAF92b]. It is based on the use of a Bloom filter [BLOO70]. To 

begin, we explain the operation of the Bloom filter. A Bloom filter of order k consists of a set of k independent hash functions H1(x), 

H2(x),..., Hk(x), where each function maps a password into a hash value in the range 0 to N - 1 That is,

Hi(Xj) = y
1  i  k; 1  j  D; 0  y  N 1

where

Xj = jth word in password dictionary

D = number of words in password dictionary

The following procedure is then applied to the dictionary:

1 A hash table of N bits is defined, with all bits initially set to 0.

2 For each password, its k hash values are calculated, and the corresponding bits in the hash table are set to 1. 

Thus, if Hi(Xj) = 67 for some (i, j), then the sixty-seventh bit of the hash table is set to 1; if the bit already has the 

value 1, it remains at 1.
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When a new password is presented to the checker, its k hash values are calculated. If all the corresponding bits of the hash table are 

equal to 1, then the password is rejected. All passwords in the dictionary will be rejected. But there will also be some "false positives" (that 

is, passwords that are not in the dictionary but that produce a match in the hash table). To see this, consider a scheme with two hash 

functions. Suppose that the passwords undertaker and hulkhogan are in the dictionary, but xG%#jj98 is not. Further suppose that

H1(undertaker) = 25 H1(hulkhogan) = 83 H1(xG%#jj98) = 665

H2(undertaker) = 998 H2(hulkhogan) = 665 H2(xG%#jj98) = 998



If the password xG%#jj98 is presented to the system, it will be rejected even though it is not in the dictionary. If there are too many such 

false positives, it will be difficult for users to select passwords. Therefore, we would like to design the hash scheme to minimize false 

positives. It can be shown that the probability of a false positive can be approximated by

P  (1 - e
kD/N

)
k
 = (1 - e

k/R
)
k

or, equivalently,

where

k = number of hash functions

N = number of bits in hash table

D = number of words in dictionary

R = N/D, ratio of hash table size (bits) to dictionary size (words)

Figure 18.6 plots P as a function of R for various values of k. Suppose we have a dictionary of 1 million words and we wish to have a 0.01 

probability of rejecting a password not in the dictionary. If we choose six hash functions, the required ratio is R = 9.6. Therefore, we need a 

hash table of 9.6 x 10
6
 bits or about 1.2 MBytes of storage. In contrast, storage of the entire dictionary would require on the order of 8 

MBytes. Thus, we achieve a compression of almost a factor of 7. Furthermore, password checking involves the straightforward calculation 

of six hash functions and is independent of the size of the dictionary, whereas with the use of the full dictionary, there is substantial 

searching.
[2]

[2] Both the Markov model and the Bloom filter involve the use of probabilistic techniques. In the case of the Markov 

model, there is a small probability that some passwords in the dictionary will not be caught and a small probability 

that some passwords not in the dictionary will be rejected. In the case of the Bloom filter, there is a small probability 

that some passwords not in the dictionary will be rejected. Again we see that taking a probabilistic approach 

simplifies the solution (e.g., see footnote 1 in Chapter 15).
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Figure 18.6. Performance of Bloom Filter

[View full size image]
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18.4. Recommended Reading and Web Sites

Two thorough treatments of intrusion detection are [BACE00] and [PROC01]. A more concise but very worthwhile treatment is 

[BACE01]. Two short but useful survey articles on the subject are [KENT00] and [MCHU00]. [NING04] surveys recent advances in 

intrusion detection techniques. [HONE01] is the definitive account on honeypots and provides a detailed analysis of the tools and 

methods of hackers.

BACE00 Bace, R. Intrusion Detection. Indianapolis, IN: Macmillan Technical Publishing, 2000.

BACE01 Bace, R., and Mell, P. Intrusion Detection Systems. NIST Special Publication SP 800-31, November 

2000.

HONE01 The Honeynet Project. Know Your Enemy: Revealing the Security Tools, Tactics, and Motives of the 

Blackhat Community. Reading, MA: Addison-Wesley, 2001.

KENT00 Kent, S. "On the Trail of Intrusions into Information Systems." IEEE Spectrum, December 2000.

MCHU00 McHugh, J.; Christie, A.; and Allen, J. "The Role of Intrusion Detection Systems." IEEE Software, 

September/October 2000.

NING04 Ning, P., et al. "Techniques and Tools for Analyzing Intrusion Alerts." ACM Transactions on Information 

and System Security, May 2004.

PROC01 Proctor, P., The Practical Intrusion Detection Handbook. Upper Saddle River, NJ: Prentice Hall, 2001.
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Recommended Web Sites

CERT Coordination Center: The organization that grew from the computer emergency response team formed by the 

Defense Advanced Research Projects Agency. Site provides good information on Internet security threats, vulnerabilities, and 

attack statistics.

Honeynet Project: A research project studying the techniques of predatory hackers and developing honeypot products.

Honeypots: A good collection of research papers and technical articles.

Intrusion Detection Working Group: Includes all of the documents generated by this group.
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18.5. Key Terms, Review Questions, and Problems

Key Terms

audit record

Bayes' Theorem

base-rate fallacy

honeypot

intruder

intrusion detection

intrusion detection exchange format

password

rule-based intrusion detection

salt

statistical anomaly detection

Review Questions

18.1 List and briefly define three classes of intruders.

18.2 What are two common techniques used to protect a password file?

18.3 What are three benefits that can be provided by an intrusion detection system?

18.4 What is the difference between statistical anomaly detection and rule-based intrusion detection?



18.5 What metrics are useful for profile-based intrusion detection?

18.6 What is the difference between rule-based anomaly detection and rule-based penetration identification?

18.7 What is a honeypot?

18.8 What is a salt in the context of UNIX password management?

18.9 List and briefly define four techniques used to avoid guessable passwords.

Problems

18.1 A taxicab was involved in a fatal hit-and-run accident at night. Two cab companies, the Green and the Blue, 

operate in the city. You are told that

85% of the cabs in the city are Green and 15% are Blue.

A witness identified the cab as Blue.
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The court tested the reliability of the witness under the same circumstances that existed on the night of the 

accident and concluded that the witness was correct in identifying the color of the cab 80% of the time. What 

is the probability that the cab involved in the incident was Blue rather than Green?

18.2 Assume that passwords are selected from four-character combinations of 26 alphabetic characters. Assume 

that an adversary is able to attempt passwords at a rate of one per second.

Assuming no feedback to the adversary until each attempt has been completed, what is the 

expected time to discover the correct password?

a.

Assuming feedback to the adversary flagging an error as each incorrect character is entered, 

what is the expected time to discover the correct password?

b.

18.3 Assume that source elements of length k is mapped in some uniform fashion into a target elements of length 

p. If each digit can take on one of r values, then the number of source elements is r
k
 and the number of target 

elements is the smaller number r
p
 A particular source element xi is mapped to a particular target element yj.

What is the probability that the correct source element can be selected by an adversary on one 

try?

a.

What is the probability that a different source element xk(xi  xk) that results in the same 

target element, yj, could be produced by an adversary?

b.



What is the probability that the correct target element can be produced by an adversary on one 

try?

c.

18.4 A phonetic password generator picks two segments randomly for each six-letter password. The form of each 

segment is CVC (consonant, vowel, consonant), where V = <a, e, i, o, u> and 

What is the total password population?a.

What is the probability of an adversary guessing a password correctly?b.

18.5 Assume that passwords are limited to the use of the 95 printable ASCII characters and that all passwords are 

10 characters in length. Assume a password cracker with an encryption rate of 6.4 million encryptions per 

second. How long will it take to test exhaustively all possible passwords on a UNIX system?

18.6 Because of the known risks of the UNIX password system, the SunOS-4.0 documentation recommends that 

the password file be removed and replaced with a publicly readable file called /etc/publickey. An entry in the 

file for user A consists of a user's identifier IDA, the user's public key, PUa, and the corresponding private key 

PRa. This private key is encrypted using DES with a key derived from the user's login password Pa. When A 

logs in, the system decrypts E[Pa,PRa] to obtain PRa.

The system then verifies that Pa was correctly supplied. How?a.

How can an opponent attack this system?b.

18.7 The encryption scheme used for UNIX passwords is one way; it is not possible to reverse it. Therefore, would 

it be accurate to say that this is, in fact, a hash code rather than an encryption of the password?

18.8 It was stated that the inclusion of the salt in the UNIX password scheme increases the difficulty of guessing 

by a factor of 4096. But the salt is stored in plaintext in the same entry as the corresponding ciphertext 

password. Therefore, those two characters are known to the attacker and need not be guessed. Why is it 

asserted that the salt increases security?

18.9 Assuming that you have successfully answered the preceding problem and understand the significance of 

the salt, here is another question. Wouldn't it be possible to thwart completely all password crackers by 

dramatically increasing the salt size to, say, 24 or 48 bits?

18.10 Consider the Bloom filter discussed in Section 18.3. Define k = number of hash functions; N = number of bits 

in hash table; and D = number of words in dictionary.
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Show that the expected number of bits in the hash table that are equal to zero is expressed asa.

Show that the probability that an input word, not in the dictionary, will be falsely accepted as being 

in the dictionary is

b.



P = (1-f)
k

Show that the preceding expression can be approximated as

P  (1 - e
-KD/N

)
k

c.

18.11 Design a file access system to allow certain users read and write access to a file, depending on 

authorization set up by the system. The instructions should be of the format

READ (F, User A): attempt by User A to read file F

WRITE (F, User A): attempt by User A to store a possibly modified copy of F

Each file has a header record, which contains authorization privileges; that is, a list of users who can read 

and write. The file is to be encrypted by a key that is not shared by the users but known only to the system.

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html
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Appendix 18A The Base-Rate Fallacy

We begin with a review of important results from probability theory, then demonstrate the base-rate fallacy.

Conditional Probability and Independence

We often want to know a probability that is conditional on some event. The effect of the condition is to remove some of the outcomes from 

the sample space. For example, what is the probability of getting a sum of 8 on the roll of two dice, if we know that the face of at least one 

die is an even number? We can reason as follows. Because one die is even and the sum is even, the second die must show an even 

number. Thus, there are three equally likely successful outcomes: (2, 6), (4, 4) and (6, 2), out of a total set of possibilities of [36 - (number 

of events with both faces odd)] = 36 - 3 x 3 = 27. The resulting probability is 3/27 = 1/9.

Formally, the conditional probability of an event A assuming the event B has occurred, denoted by Pr[A|B]is defined as the ratio

where we assume Pr[B] is not zero.

In our example, A = {sum of 8} and B = {at least one die even}. The quantity Pr[AB] encompasses all of those outcomes in which the sum is 

8 and at least one die is even. As we have seen, there are three such outcomes. Thus, Pr[AB] = 3/36 = 1/12. A moment's thought should 

convince you that Pr[B] = 3/4. We can now calculate
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This agrees with our previous reasoning.

Two events A and B are called independent if Pr[AB] = Pr[A]Pr[B]. It can easily be seen that if A and B are independent, Pr[A|B] = Pr[A] and 

Pr[B|A] = Pr[B].



Bayes' Theorem

One of the most important results from probability theory is known as Bayes' theorem. First we need to state the total probability formula. 

Given a set of mutually exclusive events E1, E2,... En such that the union of these events covers all possible outcomes, and given an 

arbitrary event A, then it can be shown that

Equation 18-1 

Bayes' theorem may be stated as follows:

Equation 18-2 

Figure 18.7a illustrates the concepts of total probability and Bayes' theorem.

Figure 18.7. Illustration of Total Probability and Bayes' Theorem



Bayes' theorem is used to calculate "posterior odds," that is, the probability that something really is the case, given evidence in favor of it. 

For example, suppose we are transmitting a sequence of zeroes and ones over a noisy transmission line. Let S0 and S1 be the events a 

zero is sent at a given time and a one is sent, respectively, and R0 and R1 be the events that a zero is received and a one is received. 

Suppose we know the probabilities of the source, namely Pr[S1] = p and Pr[S0] = 1 p. Now the line is observed to determine how frequently 

an error occurs when a one is sent and when a zero is sent, and the following probabilities are calculated: Pr[R0|S1] = pa and Pr[R1|S0] = 

pb. If a zero is received, we can then calculate the conditional probability of an error, namely the conditional probability that a one was sent 

given that a zero was received, using Bayes' theorem:
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Figure 18.7b illustrates the preceding equation. In the figure, the sample space is represented by a unit square. Half of the square 

corresponds to S0 and half to S1, so Pr[S0] = Pr[S1] = 0.5. Similarly, half of the square corresponds to R0 and half to R1, so Pr[R0] = 

Pr[R1] = 0.5. Within the area representing S0, 1/4 of that area corresponds to R1, so Pr[R1/S0] = 0.25. Other conditional probabilities are 

similarly evident.

The Base-Rate Fallacy Demonstrated

Consider the following situation. A patient has a test for some disease that comes back positive (indicating he has the disease). You are 

told that

The accuracy of the test is 87% (i.e., if a patient has the disease, 87% of the time, the test yields the correct result, and if the 

patient does not have the disease, 87% of the time, the test yields the correct result).

The incidence of the disease in the population is 1%.

Given that the test is positive, how probable is it that the patient does not have the disease? That is, what is the probability that this is a 

false alarm? We need Bayes' theorem to get the correct answer:



Thus, in the vast majority of cases, when a disease condition is detected, it is a false alarm.

This problem, used in a study [PIAT91], was presented to a number of people. Most subjects gave the answer 13%. The vast majority, 

including many physicians, gave a number below 50%. Many physicians who guessed wrong lamented, "If you are right, there is no point 

in making clinical tests!" The reason most people get it wrong is that they do not take into account the basic rate of incidence (the base 

rate) when intuitively solving the problem. This error is known as the base-rate fallacy.

How could this problem be fixed? Suppose we could drive both of the correct result rates to 99.9%. That is, suppose we have 

Pr[positive/disease] = 0.999 and Pr[negative/well] = 0.999. Plugging these numbers into the Equation (18.2), we get Pr[well/positive] = 

0.09. Thus, if we can accurately detect disease and accurately detect lack of disease at a level of 99.9%, then the rate of false alarms will 

be 9%. This is much better, but still not ideal. Moreover, again assume 99.9% accuracy, but now suppose that the incidence of the disease 

in the population is only 1/10000 = 0.0001. We then end up with a rate of false alarms of 91%. In actual situations, [AXEL00] found that the 

probabilities associated with intrusion detection systems were such that the false alarm rate was unsatisfactory.
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What is the concept of defense: The parrying of a blow. What is its characteristic feature: Awaiting the blow.

On War, Carl Von Clausewitz

Key Points

Malicious software is software that is intentionally included or inserted in a system for a harmful purpose.

A virus is a piece of software that can "infect" other programs by modifying them; the modification includes a 

copy of the virus program, which can then go on to infect other programs.

A worm is a program that can replicate itself and send copies from computer to computer across network 

connections. Upon arrival, the worm may be activated to replicate and propagate again. In addition to 

propagation, the worm usually performs some unwanted function.

A denial of service (DoS) attack is an attempt to prevent legitimate users of a service from using that service.

A distributed denial of service attack is launched from multiple coordinated sources.

This chapter examines malicious software (malware), especially viruses and worms.
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19.1. Viruses and Related Threats

Perhaps the most sophisticated types of threats to computer systems are presented by programs that exploit vulnerabilities in computing 

systems. In this context, we are concerned with application programs as well as utility programs, such as editors and compilers.

We begin this section with an overview of the spectrum of such software threats. The remainder of the section is devoted to viruses and 

worms.

Malicious Programs

The terminology in this area presents problems because of a lack of universal agreement on all of the terms and because some of the 

categories overlap. Table 19.1, based principally on [SZOR05], is a useful guide.



Table 19.1. Terminology of Malicious Programs
(This item is displayed on page 600 in the print version)

Name Description

Virus Attaches itself to a program and propagates copies of itself to other programs

Worm Program that propagates copies of itself to other computers

Logic bomb Triggers action when condition occurs

Trojan horse Program that contains unexpected additional functionality

Backdoor (trapdoor) Program modification that allows unauthorized access to functionality

Exploits Code specific to a single vulnerability or set of vulnerabilities

Downloaders Program that installs other items on a machine that is under attack. Usually, a downloader is 

sent in an e-mail.

Auto-rooter Malicious hacker tools used to break into new machines remotely

Kit (virus generator) Set of tools for generating new viruses automatically

Spammer programs Used to send large volumes of unwanted e-mail

Flooders Used to attack networked computer systems with a large volume of traffic to carry out a denial 

of service (DoS) attack

Keyloggers Captures keystrokes on a compromised system

Rootkit Set of hacker tools used after attacker has broken into a computer system and gained 

root-level access

Zombie Program activated on an infected machine that is activated to launch attacks on other 

machines

Malicious software can be divided into two categories: those that need a host program, and those that are independent. The former are 

essentially fragments of programs that cannot exist independently of some actual application program, utility, or system program. Viruses, 

logic bombs, and backdoors are examples. The latter are self-contained programs that can be scheduled and run by the operating system. 

Worms and zombie programs are examples.
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We can also differentiate between those software threats that do not replicate and those that do. The former are programs or fragments 

of programs that are activated by a trigger. Examples are logic bombs, backdoors, and zombie programs. The latter consist of either a 

program fragment or an independent program that, when executed, may produce one or more copies of itself to be activated later on the 

same system or some other system. Viruses and worms are examples.

In the remainder of this subsection, we briefly survey some of the key categories of malicious software, with the exception of viruses and 

worms, which are covered in more detail later in this section.

Backdoor



A backdoor, also known as a trapdoor, is a secret entry point into a program that allows someone that is aware of the backdoor to gain 

access without going through the usual security access procedures. Programmers have used backdoors legitimately for many years to 

debug and test programs. This usually is done when the programmer is developing an application that has an authentication procedure, or 

a long setup, requiring the user to enter many different values to run the application. To debug the program, the developer may wish to 

gain special privileges or to avoid all the necessary setup and authentication. The programmer may also want to ensure that there is a 

method of activating the program should something be wrong with the authentication procedure that is being built into the application. The 

backdoor is code that recognizes some special sequence of input or is triggered by being run from a certain user ID or by an unlikely 

sequence of events.
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Backdoors become threats when unscrupulous programmers use them to gain unauthorized access. The backdoor was the basic idea 

for the vulnerability portrayed in the movie War Games. Another example is that during the development of Multics, penetration tests were 

conducted by an Air Force "tiger team" (simulating adversaries). One tactic employed was to send a bogus operating system update to a 

site running Multics. The update contained a Trojan horse (described later) that could be activated by a backdoor and that allowed the tiger 

team to gain access. The threat was so well implemented that the Multics developers could not find it, even after they were informed of its 

presence [ENGE80].

It is difficult to implement operating system controls for backdoors. Security measures must focus on the program development and 

software update activities.

Logic Bomb

One of the oldest types of program threat, predating viruses and worms, is the logic bomb. The logic bomb is code embedded in some 

legitimate program that is set to "explode" when certain conditions are met. Examples of conditions that can be used as triggers for a logic 

bomb are the presence or absence of certain files, a particular day of the week or date, or a particular user running the application. Once 

triggered, a bomb may alter or delete data or entire files, cause a machine halt, or do some other damage. A striking example of how logic 

bombs can be employed was the case of Tim Lloyd, who was convicted of setting a logic bomb that cost his employer, Omega 

Engineering, more than $10 million, derailed its corporate growth strategy, and eventually led to the layoff of 80 workers [GAUD00]. 

Ultimately, Lloyd was sentenced to 41 months in prison and ordered to pay $2 million in restitution.

Trojan Horses

A Trojan horse is a useful, or apparently useful, program or command procedure containing hidden code that, when invoked, performs 

some unwanted or harmful function.

Trojan horse programs can be used to accomplish functions indirectly that an unauthorized user could not accomplish directly. For 

example, to gain access to the files of another user on a shared system, a user could create a Trojan horse program that, when executed, 

changed the invoking user's file permissions so that the files are readable by any user. The author could then induce users to run the 

program by placing it in a common directory and naming it such that it appears to be a useful utility. An example is a program that 

ostensibly produces a listing of the user's files in a desirable format. After another user has run the program, the author can then access 

the information in the user's files. An example of a Trojan horse program that would be difficult to detect is a compiler that has been 

modified to insert additional code into certain programs as they are compiled, such as a system login program [THOM84]. The code 

creates a backdoor in the login program that permits the author to log on to the system using a special password. This Trojan horse can 

never be discovered by reading the source code of the login program.

Another common motivation for the Trojan horse is data destruction. The program appears to be performing a useful function (e.g., a 

calculator program), but it may also be quietly deleting the user's files. For example, a CBS executive was victimized by a Trojan horse 

that destroyed all information contained in his computer's memory [TIME90]. The Trojan horse was implanted in a graphics routine offered 

on an electronic bulletin board system.
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Zombie

A zombie is a program that secretly takes over another Internet-attached computer and then uses that computer to launch attacks that 

are difficult to trace to the zombie's creator. Zombies are used in denial-of-service attacks, typically against targeted Web sites. The 

zombie is planted on hundreds of computers belonging to unsuspecting third parties, and then used to overwhelm the target Web site by 

launching an overwhelming onslaught of Internet traffic. Section 19.3 discusses zombies in the context of denial of service attacks.

The Nature of Viruses

A virus is a piece of software that can "infect" other programs by modifying them; the modification includes a copy of the virus program, 

which can then go on to infect other programs.

Biological viruses are tiny scraps of genetic codeDNA or RNAthat can take over the machinery of a living cell and trick it into making 

thousands of flawless replicas of the original virus. Like its biological counterpart, a computer virus carries in its instructional code the 

recipe for making perfect copies of itself. The typical virus becomes embedded in a program on a computer. Then, whenever the infected 

computer comes into contact with an uninfected piece of software, a fresh copy of the virus passes into the new program. Thus, the 

infection can be spread from computer to computer by unsuspecting users who either swap disks or send programs to one another over a 

network. In a network environment, the ability to access applications and system services on other computers provides a perfect culture 

for the spread of a virus.

A virus can do anything that other programs do. The only difference is that it attaches itself to another program and executes secretly 

when the host program is run. Once a virus is executing, it can perform any function, such as erasing files and programs.

During its lifetime, a typical virus goes through the following four phases:

Dormant phase: The virus is idle. The virus will eventually be activated by some event, such as a date, the presence of 

another program or file, or the capacity of the disk exceeding some limit. Not all viruses have this stage.

Propagation phase: The virus places an identical copy of itself into other programs or into certain system areas on the disk. 

Each infected program will now contain a clone of the virus, which will itself enter a propagation phase.

Triggering phase: The virus is activated to perform the function for which it was intended. As with the dormant phase, the 

triggering phase can be caused by a variety of system events, including a count of the number of times that this copy of the 

virus has made copies of itself.

Execution phase: The function is performed. The function may be harmless, such as a message on the screen, or damaging, 

such as the destruction of programs and data files.

Most viruses carry out their work in a manner that is specific to a particular operating system and, in some cases, specific to a particular 

hardware platform. Thus, they are designed to take advantage of the details and weaknesses of particular systems.
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Virus Structure



A virus can be prepended or postpended to an executable program, or it can be embedded in some other fashion. The key to its 

operation is that the infected program, when invoked, will first execute the virus code and then execute the original code of the program.

A very general depiction of virus structure is shown in Figure 19.1 (based on [COHE94]. In this case, the virus code, V, is prepended to 

infected programs, and it is assumed that the entry point to the program, when invoked, is the first line of the program.

Figure 19.1. A Simple Virus



An infected program begins with the virus code and works as follows. The first line of code is a jump to the main virus program. The 

second line is a special marker that is used by the virus to determine whether or not a potential victim program has already been infected 

with this virus. When the program is invoked, control is immediately transferred to the main virus program. The virus program first seeks 

out uninfected executable files and infects them. Next, the virus may perform some action, usually detrimental to the system. This action 

could be performed every time the program is invoked, or it could be a logic bomb that triggers only under certain conditions. Finally, the 

virus transfers control to the original program. If the infection phase of the program is reasonably rapid, a user is unlikely to notice any 

difference between the execution of an infected and uninfected program.

A virus such as the one just described is easily detected because an infected version of a program is longer than the corresponding 

uninfected one. A way to thwart such a simple means of detecting a virus is to compress the executable file so that both the infected and 

uninfected versions are of identical length. Figure 19.2 [COHE94] shows in general terms the logic required. The key lines in this virus are 

numbered, and Figure 19.3 [COHE94] illustrates the operation. We assume that program P1 is infected with the virus CV. When this 

program is invoked, control passes to its virus, which performs the following steps:
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1. For each uninfected file P2 that is found, the virus first compresses that file to produce P'2, which is shorter than the original 

program by the size of the virus.

2. A copy of the virus is prepended to the compressed program.

3. The compressed version of the original infected program, P'1, is uncompressed.

4. The uncompressed original program is executed.

Figure 19.2. Logic for a Compression Virus



Figure 19.3. A Compression Virus

In this example, the virus does nothing other than propagate. As in the previous example, the virus may include a logic bomb.

Initial Infection

Once a virus has gained entry to a system by infecting a single program, it is in a position to infect some or all other executable files on that 

system when the infected program executes. Thus, viral infection can be completely prevented by preventing the virus from gaining 

entry in the first place. Unfortunately, prevention is extraordinarily difficult because a virus can be part of any program outside a system. 

Thus, unless one is content to take an absolutely bare piece of iron and write all one's own system and application programs, one is 

vulnerable.
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Types of Viruses

There has been a continuous arms race between virus writers and writers of antivirus software since viruses first appeared. As effective 

countermeasures have been developed for existing types of viruses, new types have been developed. [STEP93] suggests the following 

categories as being among the most significant types of viruses:

Parasitic virus: The traditional and still most common form of virus. A parasitic virus attaches itself to executable files and 

replicates, when the infected program is executed, by finding other executable files to infect.

Memory-resident virus: Lodges in main memory as part of a resident system program. From that point on, the virus infects 

every program that executes.

Boot sector virus: Infects a master boot record or boot record and spreads when a system is booted from the disk containing 

the virus.

Stealth virus: A form of virus explicitly designed to hide itself from detection by antivirus software.

Polymorphic virus: A virus that mutates with every infection, making detection by the "signature" of the virus impossible.

Metamorphic virus: As with a polymorphic virus, a metamorphic virus mutates with every infection. The difference is that a 

metamorphic virus rewrites itself completely at each iteration, increasing the difficulty of detection. Metamorphic viruses my 

change their behavior as well as their appearance.

One example of a stealth virus was discussed earlier: a virus that uses compression so that the infected program is exactly the same 

length as an uninfected version. Far more sophisticated techniques are possible. For example, a virus can place intercept logic in disk I/O 

routines, so that when there is an attempt to read suspected portions of the disk using these routines, the virus will present back the 

original, uninfected program. Thus, stealth is not a term that applies to a virus as such but, rather, is a technique used by a virus to evade 

detection.

A polymorphic virus creates copies during replication that are functionally equivalent but have distinctly different bit patterns. As with a 

stealth virus, the purpose is to defeat programs that scan for viruses. In this case, the "signature" of the virus will vary with each copy. To 

achieve this variation, the virus may randomly insert superfluous instructions or interchange the order of independent instructions. A more 

effective approach is to use encryption. A portion of the virus, generally called a mutation engine, creates a random encryption key to 

encrypt the remainder of the virus. The key is stored with the virus, and the mutation engine itself is altered. When an infected program is 

invoked, the virus uses the stored random key to decrypt the virus. When the virus replicates, a different random key is selected.
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Another weapon in the virus writers' armory is the virus-creation toolkit. Such a toolkit enables a relative novice to create quickly a 

number of different viruses. Although viruses created with toolkits tend to be less sophisticated than viruses designed from scratch, the 

sheer number of new viruses that can be generated creates a problem for antivirus schemes.

Macro Viruses

In the mid-1990s, macro viruses became by far the most prevalent type of virus. Macro viruses are particularly threatening for a number of 

reasons:

A macro virus is platform independent. Virtually all of the macro viruses infect Microsoft Word documents. Any hardware 

platform and operating system that supports Word can be infected.

1.

Macro viruses infect documents, not executable portions of code. Most of the information introduced onto a computer system is 

in the form of a document rather than a program.

2.



Macro viruses are easily spread. A very common method is by electronic mail.3.

Macro viruses take advantage of a feature found in Word and other office applications such as Microsoft Excel, namely the macro. In 

essence, a macro is an executable program embedded in a word processing document or other type of file. Typically, users employ 

macros to automate repetitive tasks and thereby save keystrokes. The macro language is usually some form of the Basic programming 

language. A user might define a sequence of keystrokes in a macro and set it up so that the macro is invoked when a function key or 

special short combination of keys is input.

Successive releases of Word provide increased protection against macro viruses. For example, Microsoft offers an optional Macro Virus 

Protection tool that detects suspicious Word files and alerts the customer to the potential risk of opening a file with macros. Various 

antivirus product vendors have also developed tools to detect and correct macro viruses. As in other types of viruses, the arms race 

continues in the field of macro viruses, but they no longer are the predominant virus threat.

E-mail Viruses

A more recent development in malicious software is the e-mail virus. The first rapidly spreading e-mail viruses, such as Melissa, made use 

of a Microsoft Word macro embedded in an attachment. If the recipient opens the e-mail attachment, the Word macro is activated. Then

The e-mail virus sends itself to everyone on the mailing list in the user's e-mail package.1.

The virus does local damage.2.

At the end of 1999, a more powerful version of the e-mail virus appeared. This newer version can be activated merely by opening an 

e-mail that contains the virus rather than opening an attachment. The virus uses the Visual Basic scripting language supported by the 

e-mail package.
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Thus we see a new generation of malware that arrives via e-mail and uses e-mail software features to replicate itself across the Internet. 

The virus propagates itself as soon as activated (either by opening an e-mail attachment of by opening the e-mail) to all of the e-mail 

addresses known to the infected host. As a result, whereas viruses used to take months or years to propagate, they now do so in hours. 

This makes it very difficult for antivirus software to respond before much damage is done. Ultimately, a greater degree of security must be 

built into Internet utility and application software on PCs to counter the growing threat.

Worms

A worm is a program that can replicate itself and send copies from computer to computer across network connections. Upon arrival, the 

worm may be activated to replicate and propagate again. In addition to propagation, the worm usually performs some unwanted function. 

An e-mail virus has some of the characteristics of a worm, because it propagates itself from system to system. However, we can still 

classify it as a virus because it requires a human to move it forward. A worm actively seeks out more machines to infect and each machine 

that is infected serves as an automated launching pad for attacks on other machines.

Network worm programs use network connections to spread from system to system. Once active within a system, a network worm can 

behave as a computer virus or bacteria, or it could implant Trojan horse programs or perform any number of disruptive or destructive 

actions.

To replicate itself, a network worm uses some sort of network vehicle. Examples include the following:

Electronic mail facility: A worm mails a copy of itself to other systems.

Remote execution capability: A worm executes a copy of itself on another system.



Remote login capability: A worm logs onto a remote system as a user and then uses commands to copy itself from one 

system to the other.

The new copy of the worm program is then run on the remote system where, in addition to any functions that it performs at that system, it 

continues to spread in the same fashion.

A network worm exhibits the same characteristics as a computer virus: a dormant phase, a propagation phase, a triggering phase, and an 

execution phase. The propagation phase generally performs the following functions:

1. Search for other systems to infect by examining host tables or similar repositories of remote system addresses.

2. Establish a connection with a remote system.

3. Copy itself to the remote system and cause the copy to be run.

The network worm may also attempt to determine whether a system has previously been infected before copying itself to the system. In a 

multiprogramming system, it may also disguise its presence by naming itself as a system process or using some other name that may not 

be noticed by a system operator.

As with viruses, network worms are difficult to counter.
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The Morris Worm

Until the current generation of worms, the best known was the worm released onto the Internet by Robert Morris in 1998. The Morris 

worm was designed to spread on UNIX systems and used a number of different techniques for propagation. When a copy began 

execution, its first task was to discover other hosts known to this host that would allow entry from this host. The worm performed this task 

by examining a variety of lists and tables, including system tables that declared which other machines were trusted by this host, users' mail 

forwarding files, tables by which users gave themselves permission for access to remote accounts, and from a program that reported the 

status of network connections. For each discovered host, the worm tried a number of methods for gaining access:

It attempted to log on to a remote host as a legitimate user. In this method, the worm first attempted to crack the local 

password file, and then used the discovered passwords and corresponding user IDs. The assumption was that many users 

would use the same password on different systems. To obtain the passwords, the worm ran a password-cracking program that 

tried

Each user's account name and simple permutations of ita.

A list of 432 built-in passwords that Morris thought to be likely candidatesb.

All the words in the local system directoryc.

1.

It exploited a bug in the finger protocol, which reports the whereabouts of a remote user.2.

It exploited a trapdoor in the debug option of the remote process that receives and sends mail.3.

If any of these attacks succeeded, the worm achieved communication with the operating system command interpreter. It then sent this 

interpreter a short bootstrap program, issued a command to execute that program, and then logged off. The bootstrap program then called 

back the parent program and downloaded the remainder of the worm. The new worm was then executed.



Recent Worm Attacks

The contemporary era of worm threats began with the release of the Code Red worm in July of 2001. Code Red exploits a security hole in 

the Microsoft Internet Information Server (IIS) to penetrate and spread. It also disables the system file checker in Windows. The worm 

probes random IP addresses to spread to other hosts. During a certain period of time, it only spreads. It then initiates a denial-of-service 

attack against a government Web site by flooding the site with packets from numerous hosts. The worm then suspends activities and 

reactivates periodically. In the second wave of attack, Code Red infected nearly 360,000 servers in 14 hours. In addition to the havoc it 

causes at the targeted server, Code Red can consume enormous amounts of Internet capacity, disrupting service.

Code Red II is a variant that targets Microsoft IISs. In addition, this newer worm installs a backdoor allowing a hacker to direct activities of 

victim computers.

In late 2001, a more versatile worm appeared, known as Nimda. Nimda spreads by multiple mechanisms:

from client to client via e-mail

from client to client via open network shares
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from Web server to client via browsing of compromised Web sites

from client to Web server via active scanning for and exploitation of various Microsoft IIS 4.0 / 5.0 directory traversal 

vulnerabilities

from client to Web server via scanning for the back doors left behind by the "Code Red II" worms

The worm modifies Web documents (e.g., .htm, .html, and .asp files) and certain executable files found on the systems it infects and 

creates numerous copies of itself under various filenames.

In early 2003, the SQL Slammer worm appeared. This worm exploited a buffer overflow vulnerability in Microsoft SQL server. The 

Slammer was extremely compact and spread rapidly, infecting 90% of vulnerable hosts within 10 minutes. Late 2003 saw the arrival of the 

Sobig.f worm, which exploited open proxy servers to turn infected machines into spam engines. At its peak, Sobig.f reportedly accounted 

for one in every 17 messages and produced more than one million copies of itself within the first 24 hours.

Mydoom is a mass-mailing e-mail worm that appeared in 2004. It followed a growing trend of installing a backdoor in infected computers, 

thereby enabling hackers to gain remote access to data such as passwords and credit card numbers. Mydoom replicated up to 1000 times 

per minute and reportedly flooded the Internet with 100 million infected messages in 36 hours.

State of Worm Technology

The state of the art in worm technology includes the following:

Multiplatform: Newer worms are not limited to Windows machines but can attack a variety of platforms, especially the popular 

varieties of UNIX.

Multiexploit: New worms penetrate systems in a variety of ways, using exploits against Web servers, browsers, e-mail, file 

sharing, and other network-based applications.

Ultrafast spreading: One technique to accelerate the spread of a worm is to conduct a prior Internet scan to accumulate 

Internet addresses of vulnerable machines.



Polymorphic: To evade detection, skip past filters, and foil real-time analysis, worms adopt the virus polymorphic technique. 

Each copy of the worm has new code generated on the fly using functionally equivalent instructions and encryption techniques.

Metamorphic: In addition to changing their appearance, metamorphic worms have a repertoire of behavior patterns that are 

unleashed at different stages of propagation.

Transport vehicles: Because worms can rapidly compromise a large number of systems, they are ideal for spreading other 

distributed attack tools, such as distributed denial of service zombies.

Zero-day exploit: To achieve maximum surprise and distribution, a worm should exploit an unknown vulnerability that is only 

discovered by the general network community when the worm is launched.
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19.2. Virus Countermeasures

Antivirus Approaches

The ideal solution to the threat of viruses is prevention: Do not allow a virus to get into the system in the first place. This goal is, in 

general, impossible to achieve, although prevention can reduce the number of successful viral attacks. The next best approach is to be 

able to do the following:

Detection: Once the infection has occurred, determine that it has occurred and locate the virus.

Identification: Once detection has been achieved, identify the specific virus that has infected a program.

Removal: Once the specific virus has been identified, remove all traces of the virus from the infected program and restore it to 

its original state. Remove the virus from all infected systems so that the disease cannot spread further.

If detection succeeds but either identification or removal is not possible, then the alternative is to discard the infected program and reload a 

clean backup version.

Advances in virus and antivirus technology go hand in hand. Early viruses were relatively simple code fragments and could be identified 

and purged with relatively simple antivirus software packages. As the virus arms race has evolved, both viruses and, necessarily, antivirus 

software have grown more complex and sophisticated.

[STEP93] identifies four generations of antivirus software:

First generation: simple scanners

Second generation: heuristic scanners

Third generation: activity traps

Fourth generation: full-featured protection

A first-generation scanner requires a virus signature to identify a virus. The virus may contain "wildcards" but has essentially the same 

structure and bit pattern in all copies. Such signature-specific scanners are limited to the detection of known viruses. Another type of 

first-generation scanner maintains a record of the length of programs and looks for changes in length.

A second-generation scanner does not rely on a specific signature. Rather, the scanner uses heuristic rules to search for probable virus 

infection. One class of such scanners looks for fragments of code that are often associated with viruses. For example, a scanner may look 

for the beginning of an encryption loop used in a polymorphic virus and discover the encryption key. Once the key is discovered, the 

scanner can decrypt the virus to identify it, then remove the infection and return the program to service.

Another second-generation approach is integrity checking. A checksum can be appended to each program. If a virus infects the program 

without changing the checksum, then an integrity check will catch the change. To counter a virus that is sophisticated enough to change 

the checksum when it infects a program, an encrypted hash function can be used. The encryption key is stored separately from the 

program so that the virus cannot generate a new hash code and encrypt that. By using a hash function rather than a simpler checksum, 

the virus is prevented from adjusting the program to produce the same hash code as before.
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Third-generation programs are memory-resident programs that identify a virus by its actions rather than its structure in an infected 

program. Such programs have the advantage that it is not necessary to develop signatures and heuristics for a wide array of viruses. 

Rather, it is necessary only to identify the small set of actions that indicate an infection is being attempted and then to intervene.

Fourth-generation products are packages consisting of a variety of antivirus techniques used in conjunction. These include scanning and 

activity trap components. In addition, such a package includes access control capability, which limits the ability of viruses to penetrate a 

system and then limits the ability of a virus to update files in order to pass on the infection.

The arms race continues. With fourth-generation packages, a more comprehensive defense strategy is employed, broadening the scope of 

defense to more general-purpose computer security measures.

Advanced Antivirus Techniques

More sophisticated antivirus approaches and products continue to appear. In this subsection, we highlight two of the most important.

Generic Decryption

Generic decryption (GD) technology enables the antivirus program to easily detect even the most complex polymorphic viruses, while 

maintaining fast scanning speeds [NACH97]. Recall that when a file containing a polymorphic virus is executed, the virus must decrypt 

itself to activate. In order to detect such a structure, executable files are run through a GD scanner, which contains the following elements:

CPU emulator: A software-based virtual computer. Instructions in an executable file are interpreted by the emulator rather than 

executed on the underlying processor. The emulator includes software versions of all registers and other processor hardware, 

so that the underlying processor is unaffected by programs interpreted on the emulator.

Virus signature scanner: A module that scans the target code looking for known virus signatures.

Emulation control module: Controls the execution of the target code.

At the start of each simulation, the emulator begins interpreting instructions in the target code, one at a time. Thus, if the code includes a 

decryption routine that decrypts and hence exposes the virus, that code is interpreted. In effect, the virus does the work for the antivirus 

program by exposing the virus. Periodically, the control module interrupts interpretation to scan the target code for virus signatures.

During interpretation, the target code can cause no damage to the actual personal computer environment, because it is being interpreted 

in a completely controlled environment.

The most difficult design issue with a GD scanner is to determine how long to run each interpretation. Typically, virus elements are 

activated soon after a program begins executing, but this need not be the case. The longer the scanner emulates a particular program, 

the more likely it is to catch any hidden viruses. However, the antivirus program can take up only a limited amount of time and resources 

before users complain.
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Digital Immune System



The digital immune system is a comprehensive approach to virus protection developed by IBM [KEPH97a, KEPH97b]. The motivation for 

this development has been the rising threat of Internet-based virus propagation. We first say a few words about this threat and then 

summarize IBM's approach.

Traditionally, the virus threat was characterized by the relatively slow spread of new viruses and new mutations. Antivirus software was 

typically updated on a monthly basis, and this has been sufficient to control the problem. Also traditionally, the Internet played a 

comparatively small role in the spread of viruses. But as [CHES97] points out, two major trends in Internet technology have had an 

increasing impact on the rate of virus propagation in recent years:

Integrated mail systems: Systems such as Lotus Notes and Microsoft Outlook make it very simple to send anything to anyone 

and to work with objects that are received.

Mobile-program systems: Capabilities such as Java and ActiveX allow programs to move on their own from one system to 

another.

In response to the threat posed by these Internet-based capabilities, IBM has developed a prototype digital immune system. This system 

expands on the use of program emulation discussed in the preceding subsection and provides a general-purpose emulation and 

virus-detection system. The objective of this system is to provide rapid response time so that viruses can be stamped out almost as soon 

as they are introduced. When a new virus enters an organization, the immune system automatically captures it, analyzes it, adds detection 

and shielding for it, removes it, and passes information about that virus to systems running IBM AntiVirus so that it can be detected before 

it is allowed to run elsewhere.

Figure 19.4 illustrates the typical steps in digital immune system operation:

1. A monitoring program on each PC uses a variety of heuristics based on system behavior, suspicious changes to programs, or 

family signature to infer that a virus may be present. The monitoring program forwards a copy of any program thought to be 

infected to an administrative machine within the organization.

2. The administrative machine encrypts the sample and sends it to a central virus analysis machine.

3. This machine creates an environment in which the infected program can be safely run for analysis. Techniques used for this 

purpose include emulation, or the creation of a protected environment within which the suspect program can be executed and 

monitored. The virus analysis machine then produces a prescription for identifying and removing the virus.

4. The resulting prescription is sent back to the administrative machine.

5. The administrative machine forwards the prescription to the infected client.

6. The prescription is also forwarded to other clients in the organization.

7. Subscribers around the world receive regular antivirus updates that protect them from the new virus.
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Figure 19.4. Digital Immune System

[View full size image]



The success of the digital immune system depends on the ability of the virus analysis machine to detect new and innovative virus strains. 

By constantly analyzing and monitoring the viruses found in the wild, it should be possible to continually update the digital immune 

software to keep up with the threat.

Behavior-Blocking Software

Unlike heuristics or fingerprint-based scanners, behavior-blocking software integrates with the operating system of a host computer and 

monitors program behavior in real-time for malicious actions. The behavior blocking software then blocks potentially malicious actions 

before they have a chance to affect the system. Monitored behaviors can include the following:

Attempts to open, view, delete, and/or modify files;

Attempts to format disk drives and other unrecoverable disk operations;

Modifications to the logic of executable files or macros;

Modification of critical system settings, such as start-up settings;

Scripting of e-mail and instant messaging clients to send executable content; and

Initiation of network communications.

If the behavior blocker detects that a program is initiating would-be malicious behaviors as it runs, it can block these behaviors in real-time 

and/or terminate the offending software. This gives it a fundamental advantage over such established antivirus detection techniques as 

fingerprinting or heuristics. While there are literally trillions of different ways to obfuscate and rearrange the instructions of a virus or worm, 

many of which will evade detection by a fingerprint scanner or heuristic, eventually malicious code must make a well-defined request to the 

operating system. Given that the behavior blocker can intercept all such requests, it can identify and block malicious actions regardless 

of how obfuscated the program logic appears to be.
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The ability to watch software as it runs in real time clearly confers a huge benefit to the behavior blocker; however, it also has drawbacks. 

Since the malicious code must actually run on the target machine before all its behaviors can be identified, it can cause a great deal of 

harm to the system before it has been detected and blocked by the behavior blocking system. For instance, a new virus might shuffle a 

number of seemingly unimportant files around the hard drive before infecting a single file and being blocked. Even though the actual 

infection was blocked, the user may be unable to locate their files, causing a loss to productivity or possibly worse.
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19.3. Distributed Denial of Service Attacks

Distributed denial of service (DDoS) attacks present a significant security threat to corporations, and the threat appears to be growing 

[VIJA02]. In one study, covering a three-week period in 2001, investigators observed more than 12,000 attacks against more than 5000 

distinct targets, ranging from well-known ecommerce companies such as Amazon and Hotmail to small foreign ISPs and dial-up 

connections [MOOR01]. DDoS attacks make computer systems inaccessible by flooding servers, networks, or even end user systems with 

useless traffic so that legitimate users can no longer gain access to those resources. In a typical DDoS attack, a large number of 

compromised hosts are amassed to send useless packets. In recent years, the attack methods and tools have become more 

sophisticated, effective, and more difficult to trace to the real attackers, while defense technologies have been unable to withstand 

large-scale attacks [CHAN02].

A denial of service (DoS) attack is an attempt to prevent legitimate users of a service from using that service. When this attack comes from 

a single host or network node, then it is simply referred to as a DoS attack. A more serious threat is posed by a DDoS attack. In a DDoS 

attack, an attacker is able to recruit a number of hosts throughout the Internet to simultaneously or in a coordinated fashion launch an 

attack upon the target. This section is concerned with DDoS attacks. First, we look at the nature and types of attacks. Next, we examine 

means by which an attacker is able to recruit a network of hosts for attack launch. Finally, this section looks at countermeasures.

DDoS Attack Description

A DDoS attack attempts to consume the target's resources so that it cannot provide service. One way to classify DDoS attacks is in terms 

of the type of resource that is consumed. Broadly speaking, the resource consumed is either an internal host resource on the target 

system or data transmission capacity in the local network to which the target is attacked.

A simple example of an internal resource attack is the SYN flood attack. Figure 19.5a shows the steps involved:

1. The attacker takes control of multiple hosts over the Internet, instructing them to contact the target Web server.

2. The slave hosts begin sending TCP/IP SYN (synchronize/initialization) packets, with erroneous return IP address information, to 

the target.
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3. Each SYN packet is a request to open a TCP connection. For each such packet, the Web server responds with a SYN/ACK 

(synchronize/acknowledge) packet, trying to establish a TCP connection with a TCP entity at a spurious IP address. The Web 

server maintains a data structure for each SYN request waiting for a response back and becomes bogged down as more traffic 

floods in. The result is that legitimate connections are denied while the victim machine is waiting to complete bogus "half-open" 

connections.

Figure 19.5. Examples of Simple DDoS Attacks
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The TCP state data structure is a popular internal resource target but by no means the only one. [CERT01] gives the following examples:

In many systems, a limited number of data structures are available to hold process information (process identifiers, process 

table entries, process slots, etc.). An intruder may be able to consume these data structures by writing a simple program or 

script that does nothing but repeatedly create copies of itself.

1.

An intruder may also attempt to consume disk space in other ways, including

generating excessive numbers of mail messages

intentionally generating errors that must be logged

placing files in anonymous ftp areas or network-shared areas

2.

Figure 19.5b illustrates an example of an attack that consumes data transmission resources. The following steps are involved:

The attacker takes control of multiple hosts over the Internet, instructing them to send ICMP ECHO packets
[1]

 with the target's 

spoofed IP address to a group of hosts that act as reflectors, as described subsequently.

[1] The Internet Control Message Protocol (ICMP) is an IP-level protocol for the exchange of control 

packets between a router and a host or between hosts. The ECHO packet requires the recipient to 

1.



respond with an echo reply to check that communication is possible between entities.

Nodes at the bounce site receive multiple spoofed requests and respond by sending echo reply packets to the target site.2.

The target's router is flooded with packets from the bounce site, leaving no data transmission capacity for legitimate traffic.3.

Another way to classify DDoS attacks is as either direct or reflector DDoS attacks. In a direct DDoS attack (Figure 19.6a), the attacker is 

able to implant zombie software on a number of sites distributed throughout the Internet. Often, the DDoS attack involves two levels of 

zombie machines: master zombies and slave zombies. The hosts of both machines have been infected with malicious code. The attacker 

coordinates and triggers the master zombies, which in turn coordinate and trigger the slave zombies. The use of two levels of zombies 

makes it more difficult to trace the attack back to its source and provides for a more resilient network of attackers.

Figure 19.6. Types of Flooding-Based DDoS Attacks
(This item is displayed on page 617 in the print version)
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A reflector DDoS attack adds another layer of machines (Figure 19.6b). In this type of attack, the slave zombies construct packets 

requiring a response that contain the target's IP address as the source IP address in the packet's IP header. These packets are sent to 

uninfected machines known as reflectors. The uninfected machines respond with packets directed at the target machine. A reflector DDoS 

attack can easily involve more machines and more traffic than a direct DDoS attack and hence be more damaging. Further, tracing back 



the attack or filtering out the attack packets is more difficult because the attack comes from widely dispersed uninfected machines.
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Constructing the Attack Network

The first step in a DDoS attack is for the attacker to infect a number of machines with zombie software that will ultimately be used to carry 

out the attack. The essential ingredients in this phase of the attack are the following:
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Software that can carry out the DDoS attack. The software must be able to run on a large number of machines, must be able 

to conceal its existence, must be able to communicate with the attacker or have some sort of time-triggered mechanism, and 

must be able to launch the intended attack toward the target.

1.

A vulnerability in a large number of systems. The attacker must become aware of a vulnerability that many system 

administrators and individual users have failed to patch and that enables the attacker to install the zombie software.

2.

A strategy for locating vulnerable machines, a process known as scanning.3.

In the scanning process, the attacker first seeks out a number of vulnerable machines and infects them. Then, typically, the zombie 

software that is installed in the infected machines repeats the same scanning process, until a large distributed network of infected 

machines is created. [MIRK04] lists the following types of scanning strategies:

Random: Each compromised host probes random addresses in the IP address space, using a different seed. This technique 

produces a high volume of Internet traffic, which may cause generalized disruption even before the actual attack is launched.

Hit-list: The attacker first compiles a long list of potential vulnerable machines. This can be a slow process done over a long 

period to avoid detection that an attack is underway. Once the list is compiled, the attacker begins infecting machines on the 

list. Each infected machine is provided with a portion of list to scan. This strategy results in a very short scanning period, which 

may make it difficult to detect that infection is taking place.

Topological: This method uses information contained on an infected victim machine to find more hosts to scan.

Local subnet: If a host can be infected behind a firewall, that host then looks for targets in its own local network. The host uses 

the subnet address structure to find other hosts that would otherwise be protected by the firewall.

DDoS Countermeasures

In general, there are three lines of defense against DDoS attacks [CHAN02]:

Attack prevention and preemption (before the attack): These mechanisms enable the victim to endure attack attempts 

without denying service to legitimate clients. Techniques include enforcing policies for resource consumption and providing 

backup resources available on demand. In addition, prevention mechanisms modify systems and protocols on the Internet to 

reduce the possibility of DDoS attacks.

Attack detection and filtering (during the attack): These mechanisms attempt to detect the attack as it begins and respond 

immediately. This minimizes the impact of the attack on the target. Detection involves looking for suspicious patterns of 



behavior. Response involves filtering out packets likely to be part of the attack.
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Attack source traceback and identification (during and after the attack): This is an attempt to identify the source of the 

attack as a first step in preventing future attacks. However, this method typically does not yield results fast enough, if at all, to 

mitigate an ongoing attack.

The challenge in coping with DDoS attacks is the sheer number of ways in which they can operate. Thus DDoS countermeasures must 

evolve with the threat.
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19.4. Recommended Reading and Web Sites

For a thorough understanding of viruses, the book to read is [SZOR05]. Another excellent treatment is [HARL01]. Good overview articles 

on viruses and worms are [CASS01], [FORR97], [KEPH97], and [NACH97]. [MEIN01] provides a good treatment of the Code Red 

worm.

[PATR04] is a worthwhile survey of DDoS attacks. [MIRK04] is a thorough description of the variety of DDoS attacks and 

countermeasures. [CHAN02] is a good examination of DDoS defense strategies.

CASS01 Cass, S. "Anatomy of Malice." IEEE Spectrum, November 2001.

CHAN02 Chang, R. "Defending Against Flooding-Based Distributed Denial-of-Service Attacks: A Tutorial." IEEE 

Communications Magazine, October 2002.

FORR97 Forrest, S.; Hofmeyr, S.; and Somayaji, A. "Computer Immunology." Communications of the ACM, 

October 1997.

HARL01 Harley, D.; Slade, R.; and Gattiker, U. Viruses Revealed. New York: Osborne/McGraw-Hill, 2001.

KEPH97 Kephart, J.; Sorkin, G.; Chess, D.; and White, S. "Fighting Computer Viruses." Scientific American, 

November 1997.

MEIN01 Meinel, C. "Code Red for the Web." Scientific American, October 2001.

MIRK04 Mirkovic, J., and Relher, P. "A Taxonomy of DDoS Attack and DDoS Defense Mechanisms." ACM 

SIGCOMM Computer Communications Review, April 2004.

NACH97 Nachenberg, C. "Computer Virus-Antivirus Coevolution." Communications of the ACM, January 1997.

PATR04 Patrikakis, C.; Masikos, M.; and Zouraraki, O. "Distributed Denial of Service Attacks." The Internet 

Protocol Journal, December 2004.

SZOR05 Szor, P., The Art of Computer Virus Research and Defense. Reading, MA: Addison-Wesley, 2005.

Recommended Web Sites

AntiVirus Online: IBM's site on virus information

Vmyths: Dedicated to exposing virus hoaxes and dispelling misconceptions about real viruses



DDoS Attacks/Tools: Extensive list of links and documents
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19.5. Key Terms, Review Questions, and Problems

Key Terms

auto-rooter

backdoor

digital immune system

direct DDoS attack

distributed denial of service (DDoS)

downloaders

e-mail virus

exploits

flooder

keylogger

kit

logic bomb

macro virus

malicious software (malware)

polymorphic virus

reflector DDoS attack

rootkit

spammer program

stealth virus



trapdoor

trojan horse

virus

worm

zombie

Review Questions

19.1 What is the role of compression in the operation of a virus?

19.2 What is the role of encryption in the operation of a virus?

19.3 What are typical phases of operation of a virus or worm?

19.4 In general terms, how does a worm propagate?

19.5 What is a digital immune system?

19.6 How does behavior-blocking software work?

19.7 What is a DDoS?

Problems

19.1 There is a flaw in the virus program of Figure 19.1. What is it?

19.2 The question arises as to whether it is possible to develop a program that can analyze a piece of software to 

determine if it is a virus. Consider that we have a program D that is supposed to be able to do that. That is, 

for any program P, if we run D(P), the result returned is TRUE (P is a virus) or FALSE (P is not a virus). Now 

consider the following program:

Program CV :=

  { . . .

  main-program :=

        {if D(CV) then goto next:

               else infect-executable;

        }

next:



  }

In the preceding program, infect-executable is a module that scans memory for executable programs and 

replicates itself in those programs. Determine if D can correctly decide whether CV is a virus.
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Chapter 20. Firewalls

20.1 Firewall Design Principles

Firewall Characteristics

Types of Firewalls

Firewall Configurations

20.2 Trusted Systems

Data Access Control

The Concept of Trusted Systems

Trojan Horse Defense

20.3 Common Criteria for Information Technology Security Evaluation

Requirements

Profiles and Targets

20.4 Recommended Reading and Web Sites
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The function of a strong position is to make the forces holding it practically unassailable.
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On War, Carl Von Clausewitz

On the day that you take up your command, block the frontier passes, destroy the official tallies, and stop the 

passage of all emissaries.

The Art of War, Sun Tzu

Key Points

A firewall forms a barrier through which the traffic going in each direction must pass. A firewall security 

policy dictates which traffic is authorized to pass in each direction.

A firewall may be designed to operate as a filter at the level of IP packets, or may operate at a higher 

protocol layer.

A trusted system is a computer and operating system that can be verified to implement a given security 

policy. Typically, the focus of a trusted system is access control. A policy is implemented that dictates what 

objects may be accessed by what subjects.

The common criteria for information technology security is an international standards initiative to define a 

common set of security requirements and a systematic means of evaluating products against those 

requirements.

Firewalls can be an effective means of protecting a local system or network of systems from network-based security threats while at the 

same time affording access to the outside world via wide area networks and the Internet.

We begin this chapter with an overview of the functionality and design principles of firewalls. Next, we address the issue of the security of 

the firewall itself and, in particular, the concept of a trusted system, or secure operating system.
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20.1. Firewall Design Principles

Information systems in corporations, government agencies, and other organizations have undergone a steady evolution:

Centralized data processing system, with a central mainframe supporting a number of directly connected terminals

Local area networks (LANs) interconnecting PCs and terminals to each other and the mainframe

Premises network, consisting of a number of LANs, interconnecting PCs, servers, and perhaps a mainframe or two
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Enterprise-wide network, consisting of multiple, geographically distributed premises networks interconnected by a private wide 

area network (WAN)

Internet connectivity, in which the various premises networks all hook into the Internet and may or may not also be connected 

by a private WAN

Internet connectivity is no longer optional for organizations. The information and services available are essential to the organization. 

Moreover, individual users within the organization want and need Internet access, and if this is not provided via their LAN, they will use 

dial-up capability from their PC to an Internet service provider (ISP). However, while Internet access provides benefits to the organization, 

it enables the outside world to reach and interact with local network assets. This creates a threat to the organization. While it is possible to 

equip each workstation and server on the premises network with strong security features, such as intrusion protection, this is not a 

practical approach. Consider a network with hundreds or even thousands of systems, running a mix of various versions of UNIX, plus 

Windows. When a security flaw is discovered, each potentially affected system must be upgraded to fix that flaw. The alternative, 

increasingly accepted, is the firewall. The firewall is inserted between the premises network and the Internet to establish a controlled link 

and to erect an outer security wall or perimeter. The aim of this perimeter is to protect the premises network from Internet-based attacks 

and to provide a single choke point where security and audit can be imposed. The firewall may be a single computer system or a set of two 

or more systems that cooperate to perform the firewall function.

In this section, we look first at the general characteristics of firewalls. Then we look at the types of firewalls currently in common use. 

Finally, we examine some of the most common firewall configurations.

Firewall Characteristics

[BELL94b] lists the following design goals for a firewall:

All traffic from inside to outside, and vice versa, must pass through the firewall. This is achieved by physically blocking all 

access to the local network except via the firewall. Various configurations are possible, as explained later in this section.

1.

Only authorized traffic, as defined by the local security policy, will be allowed to pass. Various types of firewalls are used, which 

implement various types of security policies, as explained later in this section.

2.

The firewall itself is immune to penetration. This implies that use of a trusted system with a secure operating system. This topic 

is discussed in Section 20.2.

3.



[SMIT97] lists four general techniques that firewalls use to control access and enforce the site's security policy. Originally, firewalls 

focused primarily on service control, but they have since evolved to provide all four:

Service control: Determines the types of Internet services that can be accessed, inbound or outbound. The firewall may filter 

traffic on the basis of IP address and TCP port number; may provide proxy software that receives and interprets each service 

request before passing it on; or may host the server software itself, such as a Web or mail service.
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Direction control: Determines the direction in which particular service requests may be initiated and allowed to flow through 

the firewall.

User control: Controls access to a service according to which user is attempting to access it. This feature is typically applied to 

users inside the firewall perimeter (local users). It may also be applied to incoming traffic from external users; the latter requires 

some form of secure authentication technology, such as is provided in IPSec (Chapter 16).

Behavior control: Controls how particular services are used. For example, the firewall may filter e-mail to eliminate spam, or it 

may enable external access to only a portion of the information on a local Web server.

Before proceeding to the details of firewall types and configurations, it is best to summarize what one can expect from a firewall. The 

following capabilities are within the scope of a firewall:

A firewall defines a single choke point that keeps unauthorized users out of the protected network, prohibits potentially 

vulnerable services from entering or leaving the network, and provides protection from various kinds of IP spoofing and routing 

attacks. The use of a single choke point simplifies security management because security capabilities are consolidated on a 

single system or set of systems.

1.

A firewall provides a location for monitoring security-related events. Audits and alarms can be implemented on the firewall 

system.

2.

A firewall is a convenient platform for several Internet functions that are not security related. These include a network address 

translator, which maps local addresses to Internet addresses, and a network management function that audits or logs Internet 

usage.

3.

A firewall can serve as the platform for IPSec. Using the tunnel mode capability described in Chapter 16, the firewall can be 

used to implement virtual private networks.

4.

Firewalls have their limitations, including the following:

The firewall cannot protect against attacks that bypass the firewall. Internal systems may have dial-out capability to connect to 

an ISP. An internal LAN may support a modem pool that provides dial-in capability for traveling employees and telecommuters.

1.

The firewall does not protect against internal threats, such as a disgruntled employee or an employee who unwittingly 

cooperates with an external attacker.

2.

The firewall cannot protect against the transfer of virus-infected programs or files. Because of the variety of operating systems 

and applications supported inside the perimeter, it would be impractical and perhaps impossible for the firewall to scan all 

incoming files, e-mail, and messages for viruses.

3.

Types of Firewalls

Figure 20.1 illustrates the three common types of firewalls: packet filters, application-level gateways, and circuit-level gateways. We 

examine each of these in turn.
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Figure 20.1. Firewall Types

[View full size image]



Packet-Filtering Router

A packet-filtering router applies a set of rules to each incoming and outgoing IP packet and then forwards or discards the packet. The 



router is typically configured to filter packets going in both directions (from and to the internal network). Filtering rules are based on 

information contained in a network packet:

Source IP address: The IP address of the system that originated the IP packet (e.g., 192.178.1.1)

Destination IP address: The IP address of the system the IP packet is trying to reach (e.g., 192.168.1.2)

Source and destination transport-level address: The transport level (e.g., TCP or UDP) port number, which defines 

applications such as SNMP or TELNET
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IP protocol field: Defines the transport protocol

Interface: For a router with three or more ports, which interface of the router the packet came from or which interface of the 

router the packet is destined for

The packet filter is typically set up as a list of rules based on matches to fields in the IP or TCP header. If there is a match to one of the 

rules, that rule is invoked to determine whether to forward or discard the packet. If there is no match to any rule, then a default action is 

taken. Two default policies are possible:

Default = discard: That which is not expressly permitted is prohibited.

Default = forward: That which is not expressly prohibited is permitted.

The default discard policy is more conservative. Initially, everything is blocked, and services must be added on a case-by-case basis. This 

policy is more visible to users, who are more likely to see the firewall as a hindrance. The default forward policy increases ease of use for 

end users but provides reduced security; the security administrator must, in essence, react to each new security threat as it becomes 

known.

Table 20.1, from [BELL94b], gives some examples of packet-filtering rule sets. In each set, the rules are applied top to bottom. The "*" in a 

field is a wildcard designator that matches everything. We assume that the default = discard policy is in force.



Table 20.1. Packet-Filtering Examples
(This item is displayed on page 627 in the print version)

A

action ourhost port theirhost port comment

block * * SPIGOT * we don't trust these people

allow OUR-GW 25 * * connection to our SMTP port

B
action ourhost port theirhost port comment

block * * * * default

C
action ourhost port theirhost port comment

allow * * * 25 connection to their SMTP port

D

action src port dest port flags comment

allow {our hosts} * * 25  our packets to their SMTP port

allow * 25 * * ACK their replies

E

action src port dest port flags comment

allow {our hosts} * * *  our outgoing calls

allow * * * * ACK replies to our calls

allow * * * >1024  traffic to nonservers

Inbound mail is allowed (port 25 is for SMTP incoming), but only to a gateway host. However, packets from a particular external 

host, SPIGOT, are blocked because that host has a history of sending massive files in e-mail messages.

A.

This is an explicit statement of the default policy. All rule sets include this rule implicitly as the last rule.B.

This rule set is intended to specify that any inside host can send mail to the outside. A TCP packet with a destination port of 25 

is routed to the SMTP server on the destination machine. The problem with this rule is that the use of port 25 for SMTP receipt 

is only a default; an outside machine could be configured to have some other application linked to port 25. As this rule is 

written, an attacker could gain access to internal machines by sending packets with a TCP source port number of 25.

C.

This rule set achieves the intended result that was not achieved in C. The rules take advantage of a feature of TCP 

connections. Once a connection is set up, the ACK flag of a TCP segment is set to acknowledge segments sent from the other 

side. Thus, this rule set states that it allows IP packets where the source IP address is one of a list of designated internal hosts 

and the destination TCP port number is 25. It also allows incoming packets with a source port number of 25 that include the 

ACK flag in the TCP segment. Note that we explicitly designate source and destination systems to define these rules explicitly.

D.

This rule set is one approach to handling FTP connections. With FTP, two TCP connections are used: a control connection to 

set up the file transfer and a data connection for the actual file transfer. The data connection uses a different port number that 

is dynamically assigned for the transfer. Most servers, and hence most attack targets, live on low-numbered ports; most 

outgoing calls tend to use a higher-numbered port, typically above 1023. Thus, this rule set allows
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Packets that originate internally

Reply packets to a connection initiated by an internal machine

Packets destined for a high-numbered port on an internal machine

E.



This scheme requires that the systems be configured so that only the appropriate port numbers are in use.

Rule set E points out the difficulty in dealing with applications at the packet-filtering level. Another way to deal with FTP and similar 

applications is an application-level gateway, described later in this section.

One advantage of a packet-filtering router is its simplicity. Also, packet filters typically are transparent to users and are very fast. [WACK02] 

lists the following weaknesses of packet filter firewalls:

Because packet filter firewalls do not examine upper-layer data, they cannot prevent attacks that employ application-specific 

vulnerabilities or functions. For example, a packet filter firewall cannot block specific application commands; if a packet filter 

firewall allows a given application, all functions available within that application will be permitted.

Because of the limited information available to the firewall, the logging functionality present in packet filter firewalls is limited. 

Packet filter logs normally contain the same information used to make access control decisions (source address, destination 

address, and traffic type).

Most packet filter firewalls do not support advanced user authentication schemes. Once again, this limitation is mostly due to 

the lack of upper-layer functionality by the firewall.

They are generally vulnerable to attacks and exploits that take advantage of problems within the TCP/IP specification and 

protocol stack, such as network layer address spoofing. Many packet filter firewalls cannot detect a network packet in which the 

OSI Layer 3 addressing information has been altered. Spoofing attacks are generally employed by intruders to bypass the 

security controls implemented in a firewall platform.

Finally, due to the small number of variables used in access control decisions, packet filter firewalls are susceptible to security 

breaches caused by improper configurations. In other words, it is easy to accidentally configure a packet filter firewall to allow 

traffic types, sources, and destinations that should be denied based on an organization's information security policy.

Some of the attacks that can be made on packet-filtering routers and the appropriate countermeasures are the following:

IP address spoofing: The intruder transmits packets from the outside with a source IP address field containing an address of 

an internal host. The attacker hopes that the use of a spoofed address will allow penetration of systems that employ simple 

source address security, in which packets from specific trusted internal hosts are accepted. The countermeasure is to discard 

packets with an inside source address if the packet arrives on an external interface.
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Source routing attacks: The source station specifies the route that a packet should take as it crosses the Internet, in the 

hopes that this will bypass security measures that do not analyze the source routing information. The countermeasure is to 

discard all packets that use this option.

Tiny fragment attacks: The intruder uses the IP fragmentation option to create extremely small fragments and force the TCP 

header information into a separate packet fragment. This attack is designed to circumvent filtering rules that depend on TCP 

header information. Typically, a packet filter will make a filtering decision on the first fragment of a packet. All subsequent 

fragments of that packet are filtered out solely on the basis that they are part of the packet whose first fragment was rejected. 

The attacker hopes that the filtering router examines only the first fragment and that the remaining fragments are passed 

through. A tiny fragment attack can be defeated by enforcing a rule that the first fragment of a packet must contain a 

predefined minimum amount of the transport header. If the first fragment is rejected, the filter can remember the packet and 

discard all subsequent fragments.

Stateful Inspection Firewalls

A traditional packet filter makes filtering decisions on an individual packet basis and does not take into consideration any higher layer 

context. To understand what is meant by context and why a traditional packet filter is limited with regard to context, a little background is 



needed. Most standardized applications that run on top of TCP follow a client/server model. For example, for the Simple Mail Transfer 

Protocol (SMTP), e-mail is transmitted from a client system to a server system. The client system generates new e-mail messages, 

typically from user input. The server system accepts incoming e-mail messages and places them in the appropriate user mailboxes. SMTP 

operates by setting up a TCP connection between client and server, in which the TCP server port number, which identifies the SMTP 

server application, is 25. The TCP port number for the SMTP client is a number between 1024 and 65535 that is generated by the SMTP 

client.

In general, when an application that uses TCP creates a session with a remote host, it creates a TCP connection in which the TCP port 

number for the remote (server) application is a number less than 1024 and the TCP port number for the local (client) application is a 

number between 1024 and 65535. The numbers less than 1024 are the "well-known" port numbers and are assigned permanently to 

particular applications (e.g., 25 for server SMTP). The numbers between 1024 and 65535 are generated dynamically and have temporary 

significance only for the lifetime of a TCP connection.

A simple packet-filtering firewall must permit inbound network traffic on all these high-numbered ports for TCP-based traffic to occur. This 

creates a vulnerability that can be exploited by unauthorized users.

A stateful inspection packet filter tightens up the rules for TCP traffic by creating a directory of outbound TCP connections, as shown in 

Table 20.2. There is an entry for each currently established connection. The packet filter will now allow incoming traffic to high-numbered 

ports only for those packets that fit the profile of one of the entries in this directory.

Table 20.2. Example Stateful Firewall Connection State Table [WACK02]
(This item is displayed on page 630 in the print version)

Source Address Source Port Destination Address Destination Port Connection State

192.168.1.100 1030 210.9.88.29 80 Established

192.168.1.102 1031 216.32.42.123 80 Established

192.168.1.101 1033 173.66.32.122 25 Established

192.168.1.106 1035 177.231.32.12 79 Established

223.43.21.231 1990 192.168.1.6 80 Established

219.22.123.32 2112 192.168.1.6 80 Established

210.99.212.18 3321 192.168.1.6 80 Established

24.102.32.23 1025 192.168.1.6 80 Established

223.212.212 1046 192.168.1.6 80 Established

Application-Level Gateway

An application-level gateway, also called a proxy server, acts as a relay of application-level traffic (Figure 20.1b). The user contacts the 

gateway using a TCP/IP application, such as Telnet or FTP, and the gateway asks the user for the name of the remote host to be 

accessed. When the user responds and provides a valid user ID and authentication information, the gateway contacts the application on 

the remote host and relays TCP segments containing the application data between the two endpoints. If the gateway does not implement 

the proxy code for a specific application, the service is not supported and cannot be forwarded across the firewall. Further, the gateway 

can be configured to support only specific features of an application that the network administrator considers acceptable while denying all 

other features.
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Application-level gateways tend to be more secure than packet filters. Rather than trying to deal with the numerous possible combinations 

that are to be allowed and forbidden at the TCP and IP level, the application-level gateway need only scrutinize a few allowable 

applications. In addition, it is easy to log and audit all incoming traffic at the application level.

A prime disadvantage of this type of gateway is the additional processing overhead on each connection. In effect, there are two spliced 

connections between the end users, with the gateway at the splice point, and the gateway must examine and forward all traffic in both 

directions.

Circuit-Level Gateway

A third type of firewall is the circuit-level gateway (Figure 20.1c). This can be a stand-alone system or it can be a specialized function 

performed by an application-level gateway for certain applications. A circuit-level gateway does not permit an end-to-end TCP connection; 

rather, the gateway sets up two TCP connections, one between itself and a TCP user on an inner host and one between itself and a TCP 

user on an outside host. Once the two connections are established, the gateway typically relays TCP segments from one connection to 

the other without examining the contents. The security function consists of determining which connections will be allowed.

A typical use of circuit-level gateways is a situation in which the system administrator trusts the internal users. The gateway can be 

configured to support application-level or proxy service on inbound connections and circuit-level functions for outbound connections. In this 

configuration, the gateway can incur the processing overhead of examining incoming application data for forbidden functions but does not 

incur that overhead on outgoing data.
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An example of a circuit-level gateway implementation is the SOCKS package [KOBL92]; version 5 of SOCKS is defined in RFC 1928. The 

RFC defines SOCKS in the following fashion:

The protocol described here is designed to provide a framework for client-server applications in both the TCP and 

UDP domains to conveniently and securely use the services of a network firewall. The protocol is conceptually a 

"shim-layer" between the application layer and the transport layer, and as such does not provide network-layer 

gateway services, such as forwarding of ICMP messages.

SOCKS consists of the following components:

The SOCKS server, which runs on a UNIX-based firewall.

The SOCKS client library, which runs on internal hosts protected by the firewall.

SOCKS-ified versions of several standard client programs such as FTP and TELNET. The implementation of the SOCKS 

protocol typically involves the recompilation or relinking of TCP-based client applications to use the appropriate encapsulation 

routines in the SOCKS library.

When a TCP-based client wishes to establish a connection to an object that is reachable only via a firewall (such determination is left up 

to the implementation), it must open a TCP connection to the appropriate SOCKS port on the SOCKS server system. The SOCKS service 

is located on TCP port 1080. If the connection request succeeds, the client enters a negotiation for the authentication method to be used, 

authenticates with the chosen method, and then sends a relay request. The SOCKS server evaluates the request and either establishes 

the appropriate connection or denies it. UDP exchanges are handled in a similar fashion. In essence, a TCP connection is opened to 

authenticate a user to send and receive UDP segments, and the UDP segments are forwarded as long as the TCP connection is open.



Bastion Host

A bastion host is a system identified by the firewall administrator as a critical strong point in the network's security. Typically, the bastion 

host serves as a platform for an application-level or circuit-level gateway. Common characteristics of a bastion host include the following:

The bastion host hardware platform executes a secure version of its operating system, making it a trusted system.

Only the services that the network administrator considers essential are installed on the bastion host. These include proxy 

applications such as Telnet, DNS, FTP, SMTP, and user authentication.

The bastion host may require additional authentication before a user is allowed access to the proxy services. In addition, each 

proxy service may require its own authentication before granting user access.

Each proxy is configured to support only a subset of the standard application's command set.
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Each proxy is configured to allow access only to specific host systems. This means that the limited command/feature set may 

be applied only to a subset of systems on the protected network.

Each proxy maintains detailed audit information by logging all traffic, each connection, and the duration of each connection. 

The audit log is an essential tool for discovering and terminating intruder attacks.

Each proxy module is a very small software package specifically designed for network security. Because of its relative 

simplicity, it is easier to check such modules for security flaws. For example, a typical UNIX mail application may contain over 

20,000 lines of code, while a mail proxy may contain fewer than 1000.

Each proxy is independent of other proxies on the bastion host. If there is a problem with the operation of any proxy, or if a 

future vulnerability is discovered, it can be uninstalled without affecting the operation of the other proxy applications. Also, if the 

user population requires support for a new service, the network administrator can easily install the required proxy on the 

bastion host.

A proxy generally performs no disk access other than to read its initial configuration file. This makes it difficult for an intruder to 

install Trojan horse sniffers or other dangerous files on the bastion host.

Each proxy runs as a nonprivileged user in a private and secured directory on the bastion host.

Firewall Configurations

In addition to the use of a simple configuration consisting of a single system, such as a single packet-filtering router or a single gateway 

(Figure 20.1), more complex configurations are possible and indeed more common. Figure 20.2 illustrates three common firewall 

configurations. We examine each of these in turn.

Figure 20.2. Firewall Configurations
(This item is displayed on page 633 in the print version)

[View full size image]



In the screened host firewall, single-homed bastion configuration (Figure 20.2a), the firewall consists of two systems: a packet-filtering 

router and a bastion host. Typically, the router is configured so that

For traffic from the Internet, only IP packets destined for the bastion host are allowed in.1.

For traffic from the internal network, only IP packets from the bastion host are allowed out.2.

The bastion host performs authentication and proxy functions. This configuration has greater security than simply a packet-filtering router 

or an application-level gateway alone, for two reasons. First, this configuration implements both packet-level and application-level filtering, 

allowing for considerable flexibility in defining security policy. Second, an intruder must generally penetrate two separate systems before 

the security of the internal network is compromised.

This configuration also affords flexibility in providing direct Internet access. For example, the internal network may include a public 



information server, such as a Web server, for which a high level of security is not required. In that case, the router can be configured to 

allow direct traffic between the information server and the Internet.
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In the single-homed configuration just described, if the packet-filtering router is completely compromised, traffic could flow directly through 

the router between the Internet and other hosts on the private network. The screened host firewall, dual-homed bastion configuration 

physically prevents such a security breach (Figure 20.2b). The advantages of dual layers of security that were present in the previous 

configuration are present here as well. Again, an information server or other hosts can be allowed direct communication with the router if 

this is in accord with the security policy.
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The screened subnet firewall configuration of Figure 20.2c is the most secure of those we have considered. In this configuration, two 

packet-filtering routers are used, one between the bastion host and the Internet and one between the bastion host and the internal 

network. This configuration creates an isolated subnetwork, which may consist of simply the bastion host but may also include one or more 

information servers and modems for dial-in capability. Typically, both the Internet and the internal network have access to hosts on the 

screened subnet, but traffic across the screened subnet is blocked. This configuration offers several advantages:

There are now three levels of defense to thwart intruders.

The outside router advertises only the existence of the screened subnet to the Internet; therefore, the internal network is 

invisible to the Internet.

Similarly, the inside router advertises only the existence of the screened subnet to the internal network; therefore, the systems 

on the inside network cannot construct direct routes to the Internet.
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20.2. Trusted Systems

One way to enhance the ability of a system to defend against intruders and malicious programs is to implement trusted system 

technology. This section provides a brief overview of this topic. We begin by looking at some basic concepts of data access control.

Data Access Control

Following successful logon, the user has been granted access to one or a set of hosts and applications. This is generally not sufficient for a 

system that includes sensitive data in its database. Through the user access control procedure, a user can be identified to the system. 

Associated with each user, there can be a profile that specifies permissible operations and file accesses. The operating system can then 

enforce rules based on the user profile. The database management system, however, must control access to specific records or even 

portions of records. For example, it may be permissible for anyone in administration to obtain a list of company personnel, but only 

selected individuals may have access to salary information. The issue is more than just one of level of detail. Whereas the operating 

system may grant a user permission to access a file or use an application, following which there are no further security checks, the 

database management system must make a decision on each individual access attempt. That decision will depend not only on the user's 

identity but also on the specific parts of the data being accessed and even on the information already divulged to the user.

A general model of access control as exercised by a file or database management system is that of an access matrix (Figure 20.3a). 

The basic elements of the model are as follows:

Subject: An entity capable of accessing objects. Generally, the concept of subject equates with that of process. Any user or 

application actually gains access to an object by means of a process that represents that user or application.
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Object: Anything to which access is controlled. Examples include files, portions of files, programs, and segments of memory.

Access right: The way in which an object is accessed by a subject. Examples are read, write, and execute.

Figure 20.3. Access Control Structure



One axis of the matrix consists of identified subjects that may attempt data access. Typically, this list will consist of individual users or user 

groups, although access could be controlled for terminals, hosts, or applications instead of or in addition to users. The other axis lists the 

objects that may be accessed. At the greatest level of detail, objects may be individual data fields. More aggregate groupings, such as 

records, files, or even the entire database, may also be objects in the matrix. Each entry in the matrix indicates the access rights of that 

subject for that object.

In practice, an access matrix is usually sparse and is implemented by decomposition in one of two ways. The matrix may be decomposed 

by columns, yielding access control lists (Figure 20.3b). Thus, for each object, an access control list lists users and their permitted 

access rights. The access control list may contain a default, or public, entry. This allows users that are not explicitly listed as having 

special rights to have a default set of rights. Elements of the list may include individual users as well as groups of users.
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Decomposition by rows yields capability tickets (Figure 20.3c). A capability ticket specifies authorized objects and operations for a user. 

Each user has a number of tickets and may be authorized to loan or give them to others. Because tickets may be dispersed around the 

system, they present a greater security problem than access control lists. In particular, the ticket must be unforgeable. One way to 

accomplish this is to have the operating system hold all tickets on behalf of users. These tickets would have to be held in a region of 



memory inaccessible to users.

The Concept of Trusted Systems

Much of what we have discussed so far has been concerned with protecting a given message or item from passive or active attacks by a 

given user. A somewhat different but widely applicable requirement is to protect data or resources on the basis of levels of security. This is 

commonly found in the military, where information is categorized as unclassified (U), confidential (C), secret (S), top secret (TS), or 

beyond. This concept is equally applicable in other areas, where information can be organized into gross categories and users can be 

granted clearances to access certain categories of data. For example, the highest level of security might be for strategic corporate 

planning documents and data, accessible by only corporate officers and their staff; next might come sensitive financial and personnel 

data, accessible only by administration personnel, corporate officers, and so on.

When multiple categories or levels of data are defined, the requirement is referred to as multilevel security. The general statement of the 

requirement for multilevel security is that a subject at a high level may not convey information to a subject at a lower or noncomparable 

level unless that flow accurately reflects the will of an authorized user. For implementation purposes, this requirement is in two parts and is 

simply stated. A multilevel secure system must enforce the following:

No read up: A subject can only read an object of less or equal security level. This is referred to in the literature as the Simple 

Security Property.

No write down: A subject can only write into an object of greater or equal security level. This is referred to in the literature as 

the *-Property
[1]

 (pronounced star property).

[1] The "*" does not stand for anything. No one could think of an appropriate name for the property during 

the writing of the first report on the model. The asterisk was a dummy character entered in the draft so 

that a text editor could rapidly find and replace all instances of its use once the property was named. No 

name was ever devised, and so the report was published with the "*" intact.

These two rules, if properly enforced, provide multilevel security. For a data processing system, the approach that has been taken, and 

has been the object of much research and development, is based on the reference monitor concept. This approach is depicted in Figure 

20.4. The reference monitor is a controlling element in the hardware and operating system of a computer that regulates the access of 

subjects to objects on the basis of security parameters of the subject and object. The reference monitor has access to a file, known as the 

security kernel database, that lists the access privileges (security clearance) of each subject and the protection attributes (classification 

level) of each object. The reference monitor enforces the security rules (no read up, no write down) and has the following properties:
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Complete mediation: The security rules are enforced on every access, not just, for example, when a file is opened.

Isolation: The reference monitor and database are protected from unauthorized modification.

Verifiability: The reference monitor's correctness must be provable. That is, it must be possible to demonstrate mathematically 

that the reference monitor enforces the security rules and provides complete mediation and isolation.

Figure 20.4. Reference Monitor Concept

[View full size image]



These are stiff requirements. The requirement for complete mediation means that every access to data within main memory and on disk 

and tape must be mediated. Pure software implementations impose too high a performance penalty to be practical; the solution must be at 

least partly in hardware. The requirement for isolation means that it must not be possible for an attacker, no matter how clever, to change 

the logic of the reference monitor or the contents of the security kernel database. Finally, the requirement for mathematical proof is 

formidable for something as complex as a general-purpose computer. A system that can provide such verification is referred to as a 

trusted system.

A final element illustrated in Figure 20.4 is an audit file. Important security events, such as detected security violations and authorized 

changes to the security kernel database, are stored in the audit file.
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In an effort to meet its own needs and as a service to the public, the U.S. Department of Defense in 1981 established the Computer 

Security Center within the National Security Agency (NSA) with the goal of encouraging the widespread availability of trusted computer 

systems. This goal is realized through the center's Commercial Product Evaluation Program. In essence, the center attempts to evaluate 

commercially available products as meeting the security requirements just outlined. The center classifies evaluated products according to 

the range of security features that they provide. These evaluations are needed for Department of Defense procurements but are published 

and freely available. Hence, they can serve as guidance to commercial customers for the purchase of commercially available, off-the-shelf 

equipment.



Trojan Horse Defense

One way to secure against Trojan horse attacks is the use of a secure, trusted operating system. Figure 20.5 illustrates an example. In this 

case, a Trojan horse is used to get around the standard security mechanism used by most file management and operating systems: the 

access control list. In this example, a user named Bob interacts through a program with a data file containing the critically sensitive 

character string "CPE170KS." User Bob has created the file with read/write permission provided only to programs executing on his own 

behalf: that is, only processes that are owned by Bob may access the file.

Figure 20.5. Trojan Horse and Secure Operating System
(This item is displayed on page 639 in the print version)

[View full size image]

The Trojan horse attack begins when a hostile user, named Alice, gains legitimate access to the system and installs both a Trojan horse 

program and a private file to be used in the attack as a "back pocket." Alice gives read/write permission to herself for this file and gives 

Bob write-only permission (Figure 20.5a). Alice now induces Bob to invoke the Trojan horse program, perhaps by advertising it as a useful 

utility. When the program detects that it is being executed by Bob, it reads the sensitive character string from Bob's file and copies it into 

Alice's back-pocket file (Figure 20.5b). Both the read and write operations satisfy the constraints imposed by access control lists. Alice then 

has only to access Bob's file at a later time to learn the value of the string.

Now consider the use of a secure operating system in this scenario (Figure 20.5c). Security levels are assigned to subjects at logon on the 



basis of criteria such as the terminal from which the computer is being accessed and the user involved, as identified by password/ID. In 

this example, there are two security levels, sensitive and public, ordered so that sensitive is higher than public. Processes owned by Bob 

and Bob's data file are assigned the security level sensitive. Alice's file and processes are restricted to public. If Bob invokes the Trojan 

horse program (Figure 20.5d), that program acquires Bob's security level. It is therefore able, under the simple security property, to 

observe the sensitive character string. When the program attempts to store the string in a public file (the back-pocket file), however, the is 

violated and the attempt is disallowed by the reference monitor. Thus, the attempt to write into the back-pocket file is denied even though 

the access control list permits it: The security policy takes precedence over the access control list mechanism.
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20.3. Common Criteria for Information Technology Security Evaluation

The work done by the National Security Agency and other U.S. government agencies to develop requirements and evaluation criteria 

for trusted systems is mirrored by similar work in other countries. The Common Criteria (CC) for Information Technology and Security 

Evaluation is an international initiative by standards bodies in a number of countries to develop international standards for specifying 

security requirements and defining evaluation criteria.

Requirements

The CC defines a common set of potential security requirements for use in evaluation. The term target of evaluation (TOE) refers to that 

part of the product or system that is subject to evaluation. The requirements fall in two categories:

Functional requirements: Define desired security behavior. CC documents establish a set of security functional components 

that provide a standard way of expressing the security functional requirements for a TOE.

Assurance requirements: The basis for gaining confidence that the claimed security measures are effective and implemented 

correctly. CC documents establish a set of assurance components that provide a standard way of expressing the assurance 

requirements for a TOE.

Both functional requirements and assurance requirements are organized into classes: A class is a collection of requirements that share a 

common focus or intent. Tables 20.3 and 20.4 briefly define the requirements classes for functional and assurance requirements. Each of 

these classes contains a number of families. The requirements within each family share security objectives, but differ in emphasis or rigor. 

For example, the audit class contains six families dealing with various aspects of auditing (e.g., audit data generation, audit analysis, and 

audit event storage). Each family, in turn, contains one or more components. A component describes a specific set of security 

requirements and is the smallest selectable set of security requirements for inclusion in the structures defined in the CC.



Table 20.3. CC Security Functional Requirements
(This item is displayed on page 641 in the print version)

Class Description

Audit Involves recognizing, recording, storing and analyzing information related to security activities. Audit 

records are produced by these activities, and can be examined to determine their security relevance.

Cryptographic support Used when the TOE implements cryptographic functions. These may be used, for example, to 

support communications, identification and authentication, or data separation.

Communications Provides two families concerned with non-repudiation by the originator and by the recipient of data.

User data protection Specifying requirements relating to the protection of user data within the TOE during import, export 

and storage, in addition to security attributes related to user data.

Identification and authentication Ensure the unambiguous identification of authorized users and the correct association of security 

attributes with users and subjects.

Security management Specifies the management of security attributes, data and functions.

Privacy Provides a user with protection against discovery and misuse of his or her identity by other users.

Protection of the TOE security 

functions

Focused on protection of TSF (TOE security functions) data, rather than of user data. The class 

relates to the integrity and management of the TSF mechanisms and data.

Resource utilization Supports the availability of required resources, such as processing capability and storage capacity. 

Includes requirements for fault tolerance, priority of service and resource allocation.

TOE access Specifies functional requirements, in addition to those specified for identification and authentication, 

for controlling the establishment of a user's session. The requirements for TOE access govern such 

things as limiting the number and scope of user sessions, displaying the access history and the 

modification of access parameters.

Trusted path/channels Concerned with trusted communications paths between the users and the TSF, and between TSFs.

Table 20.4. CC Security Assurance Requirements
(This item is displayed on page 642 in the print version)

Class Description

Configuration management Requires that the integrity of the TOE is adequately preserved. Specifically, configuration 

management provides confidence that the TOE and documentation used for evaluation are the ones 

prepared for distribution.

Delivery and operation Concerned with the measures, procedures and standards for secure delivery, installation and 

operational use of the TOE, to ensure that the security protection offered by the TOE is not 

compromised during these events.

Development Concerned with the refinement of the TSF from the specification defined in the ST to the 

implementation, and a mapping from the security requirements to the lowest level representation.

Guidance documents Concerned with the secure operational use of the TOE, by the users and administrators.

Life cycle support Concerned with the life-cycle of the TOE include lifecycle definition, tools and techniques, security of 

the development environment and the remediation of flaws found by TOE consumers.

Tests Concerned with demonstrating that the TOE meets its functional requirements. The families address 

coverage and depth of developer testing, and requirements for independent testing.



Class Description

Vulnerability assessment Defines requirements directed at the identification of exploitable vulnerabilities, which could be 

introduced by construction, operation, misuse or incorrect configuration of the TOE. The families 

identified here are concerned with identifying vulnerabilities through covert channel analysis, analysis 

of the configuration of the TOE, examining the strength of mechanisms of the security functions, and 

identifying flaws introduced during development of the TOE. The second family covers the security 

categorization of TOE components. The third and fourth cover the analysis of changes for security 

impact, and the provision of evidence that procedures are being followed. This class provides 

building blocks for the establishment of assurance maintenance schemes.

Assurance maintenance Provides requirements that are intended to be applied after a TOE has been certified against the CC. 

These requirements are aimed at assuring that the TOE will continue to meet its security target as 

changes are made to the TOE or its environment.

For example, the cryptographic support class of functional requirements includes two families: cryptographic key management and 

cryptographic operation. There are four components under the cryptographic key management family, which are used to specify: key 

generation algorithm and key size; key distribution method; key access method; and key destruction method. For each component, a 

standard may be referenced to define the requirement. Under the cryptographic operation family, there is a single component, which 

specifies an algorithm and key size based on a an assigned standard.

Sets of functional and assurance components may be grouped together into re-usable packages, which are known to be useful in meeting 

identified objectives. An example of such a package would be functional components required for Discretionary Access Controls.
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Profiles and Targets

The CC also defines two kinds of documents that can be generated using the CC-defined requirements.

Protection profiles (PPs): Define an implementation-independent set of security requirements and objectives for a category of 

products or systems that meet similar consumer needs for IT security. A PP is intended to be reusable and to define 

requirements that are known to be useful and effective in meeting the identified objectives. The PP concept has been 

developed to support the definition of functional standards, and as an aid to formulating procurement specifications. The PP 

reflects user security requirements

Security targets (STs): Contain the IT security objectives and requirements of a specific identified TOE and defines the 

functional and assurance measures offered by that TOE to meet stated requirements. The ST may claim conformance to one 

or more PPs, and forms the basis for an evaluation. The ST is supplied by a vendor or developer.
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Figure 20.6 illustrates the relationship between requirements on the one hand and profiles and targets on the other. For a PP, a user can 

select a number of components to define the requirements for the desired product. The user may also refer to predefined packages that 

assemble a number of requirements commonly grouped together within a product requirements document. Similarly, a vendor or designer 

can select a number of components and packages to define an ST.



Figure 20.6. Organization and Construction of Common Criteria Requirements
(This item is displayed on page 643 in the print version)

[View full size image]

Figure 20.7 shows what is referred to in the CC documents as the security functional requirements paradigm. In essence, this illustration is 

based on the reference monitor concept but makes use of the terminology and design philosophy of the CC.
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Figure 20.7. Security Functional Requirements Paradigm

[View full size image]
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20.4. Recommended Reading and Web Sites

A classic treatment of firewalls is [CHAP00]. Another classic, recently updated, is [CHES03]. [LODI98], [OPPL97], and [BELL94b] are 

good overview articles on the subject. [WACK02] is an excellent overview of firewall technology and firewall policies. [AUDI04] and 

[WILS05] provide useful discussions of firewalls.

[GASS88] provides a comprehensive study of trusted computer systems. [PFLE03] and [GOLL99] also provide coverage. [FELT03] and 

[OPPL05] provide useful discussions of trusted computing.
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AUDI04 Audin, G. "Next-Gen Firewalls: What to Expect." Business Communications Review, June 2004.

BELL94b Bellovin, S., and Cheswick, W. "Network Firewalls." IEEE Communications Magazine, September 

1994.

CHAP00 Chapman, D., and Zwicky, E. Building Internet Firewalls. Sebastopol, CA: O'Reilly, 2000.

CHES03 Cheswick, W., and Bellovin, S. Firewalls and Internet Security: Repelling the Wily Hacker. Reading, 

MA: Addison-Wesley, 2003.

FELT03 Felten, E. "Understanding Trusted Computing: Will Its Benefits Outweigh Its Drawbacks?" IEEE 

Security and Privacy, May/June 2003.

GASS88 Gasser, M. Building a Secure Computer System. New York: Van Nostrand Reinhold, 1988.

GOLL99 Gollmann, D. Computer Security. New York: Wiley, 1999.

LODI98 Lodin, S., and Schuba, C. "Firewalls Fend Off Invasions from the Net." IEEE Spectrum, February 1998.

OPPL97 Oppliger, R. "Internet Security: Firewalls and Beyond." Communications of the ACM, May 1997.

OPPL05 Oppliger, R., and Rytz, R. "Does Trusted Computing Remedy Computer Security Problems?" IEEE 

Security and Privacy, March/April 2005.

PFLE03 Pfleeger, C. Security in Computing. Upper Saddle River, NJ: Prentice Hall, 1997.

WACK02 Wack, J.; Cutler, K.; and Pole, J. Guidelines on Firewalls and Firewall Policy. NIST Special Publication 

SP 800-41, January 2002.

WILS05 Wilson, J. "The Future of the Firewall."Business Communications Review, May 2005.

Recommended Web Sites



Firewall.com: Numerous links to firewall references and software resources.

Trusted Computing Group: Vendor group involved in developing and promoting trusted computer standards. Site includes 

white papers, specifications, and vendor links.

Common Criteria Portal: Official Web site of the common criteria project.
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20.5. Key Terms, Review Questions, and Problems

Key Terms

access control list (ACL)

access matrix

access right

application-level gateway

bastion host

capability ticket

circuit-level gateway

common criteria (CC)

firewall

multilevel security

object

packet-filtering router

reference monitor

stateful inspection firewall

subject

trusted system

Review Questions



20.1 List three design goals for a firewall.

20.2 List four techniques used by firewalls to control access and enforce a security policy.

20.3 What information is used by a typical packet-filtering router?

20.4 What are some weaknesses of a packet-filtering router?

20.5 What is the difference between a packet-filtering router and a stateful inspection firewall?

20.6 What is an application-level gateway?

20.7 What is a circuit-level gateway?
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20.8 What are the differences among the three configurations of Figure 20.2?

20.9 In the context of access control, what is the difference between a subject and an object?

20.10 What is the difference between an access control list and a capability ticket?

20.11 What are the two rules that a reference monitor enforces?

20.12 What properties are required of a reference monitor?

20.13 What are the common criteria?

Problems

20.1 As was mentioned in Section 20.1, one approach to defeating the tiny fragment attack is to enforce a 

minimum length of the transport header that must be contained in the first fragment of an IP packet. If the first 

fragment is rejected, all subsequent fragments can be rejected. However, the nature of IP is such that 

fragments may arrive out of order. Thus, an intermediate fragment may pass through the filter before the 

initial fragment is rejected. How can this situation be handled?

20.2 In an IPv4 packet, the size of the payload in the first fragment, in octets, is equal to Total Length (4 x IHL). If

this value is less than the required minimum (8 octets for TCP), then this fragment and the entire packet are 

rejected. Suggest an alternative method of achieving the same result using only the Fragment Offset field.

20.3 RFC 791, the IPv4 protocol specification, describes a reassembly algorithm that results in new fragments 

overwriting any overlapped portions of previously received fragments. Given such a reassembly 



implementation, an attacker could construct a series of packets in which the lowest (zero-offset) fragment 

would contain innocuous data (and thereby be passed by administrative packet filters), and in which some 

subsequent packet having a nonzero offset would overlap TCP header information (destination port, for 

instance) and cause it to be modified. The second packet would be passed through most filter 

implementations because it does not have a zero fragment offset. Suggest a method that could be used by a 

packet filter to counter this attack.

20.4 The necessity of the "no read up" rule for a multilevel secure system is fairly obvious. What is the importance 

of the "no write down" rule?

20.5 In Figure 20.5 one link of the Trojan horse copy-and-observe-later chain is broken. There are two other 

possible angles of attack by Drake: Drake logging on and attempting to read the string directly, and Drake 

assigning a security level of sensitive to the back-pocket file. Does the reference monitor prevent these 

attacks?
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Appendix A. Standards and Standards-Setting 

Organizations

A.1 The Importance of Standards

A.2 Internet Standards and the Internet Society

The Internet Organizations and RFC Publication

The Standardization Process

Internet Standards Categories

Other RFC Types

A.3 National Institute of Standards and Technology

[Page 648]

There are some dogs who wouldn't debase what are to them sacred forms. A very fine, very serious 

German Shepherd I worked with, for instance, grumbled noisily at other dogs when they didn't obey. 

When training him to retrieve, at one point I set the dumbbell on its end for the fun of it. He glared 

disapprovingly at the dumbbell and at me, then pushed it carefully back into its proper position before 

picking it up and returning with it, rather sullenly.

Adam's Task: Calling Animals by Name, Vicki Hearne

An important concept that recurs frequently in this book is standards. This appendix provides some background on the nature and 

relevance of standards and looks at the key organizations involved in developing standards for networking and communications.
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A.1. The Importance of Standards

It has long been accepted in the telecommunications industry that standards are required to govern the physical, electrical, and 

procedural characteristics of communication equipment. In the past, this view has not been embraced by the computer industry. 

Whereas communication equipment vendors recognize that their equipment will generally interface to and communicate with other 

vendors' equipment, computer vendors have traditionally attempted to monopolize their customers. The proliferation of computers and 

distributed processing has made that an untenable position. Computers from different vendors must communicate with each other and, 

with the ongoing evolution of protocol standards, customers will no longer accept special-purpose protocol conversion software 

development. The result is that standards now permeate all the areas of technology discussed in this book.

There are a number of advantages and disadvantages to the standards-making process. The principal advantages of standards are as 

follows:

A standard assures that there will be a large market for a particular piece of equipment or software. This encourages mass 

production and, in some cases, the use of large-scale-integration (LSI) or very-large-scale-integration (VLSI) techniques, 

resulting in lower costs.

A standard allows products from multiple vendors to communicate, giving the purchaser more flexibility in equipment 

selection and use.

The principal disadvantages of standards are as follows:

A standard tends to freeze the technology. By the time a standard is developed, subjected to review and compromise, and 

promulgated, more efficient techniques are possible.

There are multiple standards for the same thing. This is not a disadvantage of standards per se, but of the current way things 

are done. Fortunately, in recent years the various standards-making organizations have begun to cooperate more closely. 

Nevertheless, there are still areas where multiple conflicting standards exist.
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A.2. Internet Standards and the Internet Society

Many of the protocols that make up the TCP/IP protocol suite have been standardized or are in the process of standardization. By 

universal agreement, an organization known as the Internet Society is responsible for the development and publication of these standards. 

The Internet Society is a professional membership organization that oversees a number of boards and task forces involved in Internet 

development and standardization.

This section provides a brief description of the way in which standards for the TCP/IP protocol suite are developed.

The Internet Organizations and RFC Publication

The Internet Society is the coordinating committee for Internet design, engineering, and management. Areas covered include the operation 

of the Internet itself and the standardization of protocols used by end systems on the Internet for interoperability. Three organizations 

under the Internet Society are responsible for the actual work of standards development and publication:

Internet Architecture Board (IAB): Responsible for defining the overall architecture of the Internet, providing guidance and 

broad direction to the IETF

Internet Engineering Task Force (IETF): The protocol engineering and development arm of the Internet

Internet Engineering Steering Group (IESG): Responsible for technical management of IETF activities and the Internet 

standards process

Working groups chartered by the IETF carry out the actual development of new standards and protocols for the Internet. Membership in a 

working group is voluntary; any interested party may participate. During the development of a specification, a working group will make a 

draft version of the document available as an Internet Draft, which is placed in the IETF's "Internet Drafts" online directory. The document 

may remain as an Internet Draft for up to six months, and interested parties may review and comment on the draft. During that time, the 

IESG may approve publication of the draft as an RFC (Request for Comment). If the draft has not progressed to the status of an RFC 

during the six-month period, it is withdrawn from the directory. The working group may subsequently publish a revised version of the draft.

The IETF is responsible for publishing the RFCs, with approval of the IESG. The RFCs are the working notes of the Internet research and 

development community. A document in this series may be on essentially any topic related to computer communications and may be 

anything from a meeting report to the specification of a standard.

The work of the IETF is divided into eight areas, each with an area director and each composed of numerous working groups. Table A.1

shows the IETF areas and their focus.
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Table A.1. IETF Areas
(This item is displayed on page 650 in the print version)

IETF Area Theme Example Working Groups

General IETF processes and procedures Policy Framework

Process for Organization of Internet 

Standards

Applications Internet applications Web-related protocols (HTTP)

EDI-Internet integration LDAP

Internet Internet infrastructure IPv6

PPP extensions

Operations and management Standards and definitions for network 

operations

SNMPv3 Remote Network Monitoring

Routing Protocols and management for routing 

information

Multicast routing

OSPF

QoS routing

Security Security protocols and technologies Kerberos

IPSec

X.509

S/MIME

TLS

Transport Transport layer protocols Differentiated services

IP telephony

NFS

RSVP

User services Methods to improve the quality of 

information available to users of the 

Internet

Responsible Use of the Internet 

User services 

FYI documents

The Standardization Process

The decision of which RFCs become Internet standards is made by the IESG, on the recommendation of the IETF. To become a standard, 

a specification must meet the following criteria:
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Be stable and well understood

Be technically competent

Have multiple, independent, and interoperable implementations with substantial operational experience

Enjoy significant public support

Be recognizably useful in some or all parts of the Internet

The key difference between these criteria and those used for international standards from ITU is the emphasis here on operational 

experience.

The left-hand side of Figure A.1 shows the series of steps, called the standards track, that a specification goes through to become a 

standard; this process is defined in RFC 2026. The steps involve increasing amounts of scrutiny and testing. At each step, the IETF must 

make a recommendation for advancement of the protocol, and the IESG must ratify it. The process begins when the IESG approves the 

publication of an Internet Draft document as an RFC with the status of Proposed Standard.

Figure A.1. Internet RFC Publication Process
(This item is displayed on page 651 in the print version)

The white boxes in the diagram represent temporary states, which should be occupied for the minimum practical time. However, a 

document must remain a Proposed Standard for at least six months and a Draft Standard for at least four months to allow time for review 



and comment. The gray boxes represent long-term states that may be occupied for years.
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For a specification to be advanced to Draft Standard status, there must be at least two independent and interoperable implementations 

from which adequate operational experience has been obtained.

After significant implementation and operational experience has been obtained, a specification may be elevated to Internet Standard. At 

this point, the Specification is assigned an STD number as well as an RFC number.

Finally, when a protocol becomes obsolete, it is assigned to the Historic state.

Internet Standards Categories

All Internet standards fall into one of two categories:

Technical specification (TS): A TS defines a protocol, service, procedure, convention, or format. The bulk of the Internet 

standards are TSs.

Applicability statement (AS): An AS specifies how, and under what circumstances, one or more TSs may be applied to 

support a particular Internet capability. An AS identifies one or more TSs that are relevant to the capability, and may specify 

values or ranges for particular parameters associated with a TS or functional subsets of a TS that are relevant for the capability.

Other RFC Types

There are numerous RFCs that are not destined to become Internet standards. Some RFCs standardize the results of community 

deliberations about statements of principle or conclusions about what is the best way to perform some operations or IETF process 

function. Such RFCs are designated as Best Current Practice (BCP). Approval of BCPs follows essentially the same process for approval 

of Proposed Standards. Unlike standards-track documents, there is not a three-stage process for BCPs; a BCP goes from Internet draft 

status to approved BCP in one step.
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A protocol or other specification that is not considered ready for standardization may be published as an Experimental RFC. After further 

work, the specification may be resubmitted. If the specification is generally stable, has resolved known design choices, is believed to be 

well understood, has received significant community review, and appears to enjoy enough community interest to be considered valuable, 

then the RFC will be designated a Proposed Standard.

Finally, an Informational Specification is published for the general information of the Internet community.
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A.3. National Institute of Standards and Technology

The National Institute of Standards and Technology (NIST), part of the U.S. Commerce Department, issues standards and guidelines for 

use by U.S. government departments and agencies. These standards and guidelines are issued in the form of Federal Information 

Processing Standards (FIPS). NIST develops FIPS when there are compelling federal government requirements such as for security and 

interoperability and there are no acceptable industry standards or solutions.

NIST announces the proposed FIPS in the Federal Register for public review and comment. At the same time that the 

proposed FIPS is announced in the Federal Register, it is also announced on NIST's Web site. The text and associated 

specifications, if applicable, of the proposed FIPS are posted on the NIST Web site.

A 90-day period is provided for review and for submission of comments on the proposed FIPS to NIST. The date by which 

comments must be submitted to NIST is specified in the Federal Register and in the other announcements.

Comments received in response to the Federal Register notice and to the other notices are reviewed by NIST to determine if 

modifications to the proposed FIPS are needed.

A detailed justification document is prepared, analyzing the comments received and explaining whether modifications were 

made, or explaining why recommended changes were not made.

NIST submits the recommended FIPS, the detailed justification document, and recommendations as to whether the standard 

should be compulsory and binding for Federal government use, to the Secretary of Commerce for approval.

A notice announcing approval of the FIPS by the Secretary of Commerce is published in the Federal Register, and on NIST's 

Web site.

Although NIST standards are developed for U.S. government use, many of them are widely used in industry. AES and DES are prime 

examples.
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Appendix B. Projects for Teaching Cryptography 

and Network Security

B.1 Research Projects

B.2 Programming Projects

B.3 Laboratory Exercises

B.4 Writing Assignments

B.5 Reading/Report Assignments
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Analysis and observation, theory and experience must never disdain or exclude each other; on the 

contrary, they support each other.

On War, Carl Von Clausewitz

Many instructors believe that research or implementation projects are crucial to the clear understanding of cryptography and network 

security. Without projects, it may be difficult for students to grasp some of the basic concepts and interactions among components. 

Projects reinforce the concepts introduced in the book, give the student a greater appreciation of how a cryptographic algorithm or 

protocol works, and can motivate students and give them confidence that they are capable of not only understanding but implementing 

the details of a security capability.

In this text, I have tried to present the concepts of cryptography and network security as clearly as possible and have provided numerous 

homework problems to reinforce those concepts. However, many instructors will wish to supplement this material with projects. This 

appendix provides some guidance in that regard and describes support material available in the instructor's supplement. The support 

material covers five types of projects:

Research projects

Programming projects

Laboratory exercises

Writing assignments

Reading/report assignments
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B.1. Research Projects

An effective way of reinforcing basic concepts from the course and for teaching students research skills is to assign a research project. 

Such a project could involve a literature search as well as an Internet search of vendor products, research lab activities, and 

standardization efforts. Projects could be assigned to teams or, for smaller projects, to individuals. In any case, it is best to require some 

sort of project proposal early in the term, giving the instructor time to evaluate the proposal for appropriate topic and appropriate level of 

effort. Student handouts for research projects should include

A format for the proposal

A format for the final report

A schedule with intermediate and final deadlines

A list of possible project topics

The students can select one of the listed topics or devise their own comparable project. The instructor's supplement includes a 

suggested format for the proposal and final report as well as a list of fifteen possible research topics.
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B.2. Programming Projects

The programming project is a useful pedagogical tool. There are several attractive features of stand-alone programming projects that are 

not part of an existing security facility:

The instructor can choose from a wide variety of cryptography and network security concepts to assign projects.1.

The projects can be programmed by the students on any available computer and in any appropriate language; they are 

platform and language independent.

2.

The instructor need not download, install, and configure any particular infrastructure for stand-alone projects.3.

There is also flexibility in the size of projects. Larger projects give students more a sense of achievement, but students with less ability or 

fewer organizational skills can be left behind. Larger projects usually elicit more overall effort from the best students. Smaller projects 

can have a higher concepts-to-code ratio, and because more of them can be assigned, the opportunity exists to address a variety of 

different areas.

Again, as with research projects, the students should first submit a proposal. The student handout should include the same elements 

listed in Section A.1. The instructor's manual includes a set of twelve possible programming projects.

The following individuals have supplied the research and programming projects suggested in the instructor's manual: Henning 

Schulzrinne of Columbia University; Cetin Kaya Koc of Oregon State University; and David M. Balenson of Trusted Information Systems 

and George Washington University.
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B.3. Laboratory Exercises

Professor Sanjay Rao and Ruben Torres of Purdue University have prepared a set of laboratory exercises that are part of the instructor's 

supplement. These are implementation projects designed to be programmed on Linux but could be adapted for any Unix environment. 

These laboratory exercises provide realistic experience in implementing security functions and applications.
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B.4. Writing Assignments

Writing assignments can have a powerful multiplier effect in the learning process in a technical discipline such as cryptography and 

network security. Adherents of the Writing Across the Curriculum (WAC) movement (http://wac.colostate.edu) report substantial 

benefits of writing assignments in facilitating learning. Writing assignments lead to more detailed and complete thinking about a particular 

topic. In addition, writing assignments help to overcome the tendency of students to pursue a subject with a minimum of personal 

engagement, just learning facts and problem-solving techniques without obtaining a deep understanding of the subject matter.
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The instructor's supplement contains a number of suggested writing assignments, organized by chapter. Instructors may ultimately find 

that this is the most important part of their approach to teaching the material. I would greatly appreciate any feedback on this area and 

any suggestions for additional writing assignments.

http://wac.colostate.edu
file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html


[Page 656 (continued)]

B.5. Reading/Report Assignments

Another excellent way to reinforce concepts from the course and to give students research experience is to assign papers from the 

literature to be read and analyzed. The instructor's supplement includes a suggested list of papers, one or two per chapter, to be 

assigned. All of the papers are readily available either via the Internet or in any good college technical library. The instructor's 

supplement also includes a suggested assignment wording.
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Glossary

In studying the Imperium, Arrakis, and the whole culture which produced Maud'Dib, many unfamiliar 

terms occur. To increase understanding is a laudable goal, hence the definitions and explanations given 

below.

Dune, Frank Herbert

Some of the terms in this glossary are from the Internet Security Glossary [RFC 2828]. These are indicated in the glossary by an asterisk.

asymmetric encryption

A form of cryptosystem in which encryption and decryption are performed using two different keys, one of which is referred to 

as the public key and one of which is referred to as the private key. Also known as public-key encryption.

authentication*

The process of verifying an identity claimed by or for a system entity.

authenticator

Additional information appended to a message to enable the receiver to verify that the message should be accepted as 

authentic. The authenticator may be functionally independent of the content of the message itself (e.g., a nonce or a source 

identifier) or it may be a function of the message contents (e.g., a hash value or a cryptographic checksum).

avalanche effect

A characteristic of an encryption algorithm in which a small change in the plaintext or key gives rise to a large change in the 

ciphertext. For a hash code, the avalanche effect is a characteristic in which a small change in the message gives rise to a 

large change in the message digest.



bacteria

Program that consumes system resources by replicating itself.

birthday attack

This cryptanalytic attack attempts to find two values in the domain of a function that map to the same value in its range

block chaining

A procedure used during symmetric block encryption that makes an output block dependent not only on the current plaintext 

input block and key, but also on earlier input and/or output. The effect of block chaining is that two instances of the same 

plaintext input block will produce different ciphertext blocks, making cryptanalysis more difficult.

block cipher

A symmetric encryption algorithm in which a block of plaintext bits (typically 64 or 128) is transformed as a whole into a 

ciphertext block of the same length.

byte

A sequence of eight bits. Also referred to as an octet.

cipher

An algorithm for encryption and decryption. A cipher replaces a piece of information (an element in plaintext) with another 

object, with the intent to conceal meaning. Typically, the replacement rule is governed by a secret key.

ciphertext



The output of an encryption algorithm; the encrypted form of a message or data.

code

An unvarying rule for replacing a piece of information (e.g., letter, word, phrase) with another object, not necessarily of the 

same sort. Generally, there is no intent to conceal meaning. Examples include the ASCII character code (each character is 

represented by 7 bits) and frequency-shift keying (each binary value is represented by a particular frequency).
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computationally secure

Secure because the time and/or cost of defeating the security are too high to be feasible.

confusion

A cryptographic technique that seeks to make the relationship between the statistics of the ciphertext and the value of the 

encryption key as complex as possible. This is achieved by the use of a complex scrambling algorithm that depends on the 

key and the input.

conventional encryption

Symmetric encryption.

covert channel

A communications channel that enables the transfer of information in a way unintended by the designers of the 

communications facility.

cryptanalysis



The branch of cryptology dealing with the breaking of a cipher to recover information, or forging encrypted information that will 

be accepted as authentic.

cryptographic checksum

An authenticator that is a cryptographic function of both the data to be authenticated and a secret key. Also referred to as a 

message authentication code (MAC).

cryptography

The branch of cryptology dealing with the design of algorithms for encryption and decryption, intended to ensure the secrecy 

and/or authenticity of messages.

cryptology

The study of secure communications, which encompasses both cryptography and cryptanalysis.

decryption

The translation of encrypted text or data (called ciphertext) into original text or data (called plaintext). Also called deciphering.

differential cryptanalysis

A technique in which chosen plaintexts with particular XOR difference patterns are encrypted. The difference patterns of the 

resulting ciphertext provide information that can be used to determine the encryption key.

diffusion

A cryptographic technique that seeks to obscure the statistical structure of the plaintext by spreading out the influence of each 

individual plaintext digit over many ciphertext digits.



digital signature

An authentication mechanism that enables the creator of a message to attach a code that acts as a signature. The signature 

is formed by taking the hash of the message and encrypting the message with the creator's private key. The signature 

guarantees the source and integrity of the message.

digram

A two-letter sequence. In English and other languages, the relative frequency of various digrams in plaintext can be used in 

the cryptanalysis of some ciphers. Also called digraph.

discretionary access control*

An access control service that enforces a security policy based on the identity of system entities and their authorizations to 

access system resources. (See: access control list, identity-based security policy, mandatory access control.) This service is 

termed "discretionary" because an entity might have access rights that permit the entity, by its own volition, to enable another 

entity to access some resource.

divisor

One integer is said to be a devisor of another integer if there is no remainder on division.

encryption

The conversion of plaintext or data into unintelligible form by means of a reversible translation, based on a translation table or 

algorithm. Also called enciphering.
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firewall



A dedicated computer that interfaces with computers outside a network and has special security precautions built into it in 

order to protect sensitive files on computers within the network. It is used to service outside network, especially Internet, 

connections and dial-in lines.

greatest common divisor

The greatest common divisor of two integers, a and b, is the largest positive integer that divides both a and b. One integer is 

said to divide another integer if there is no remainder on division.

hash function

A function that maps a variable-length data block or message into a fixed-length value called a hash code. The function is 

designed in such a way that, when protected, it provides an authenticator to the data or message. Also referred to as a 

message digest.

honeypot

A decoy system designed to lure a potential attacker away from critical systems. A form of intrusion detection.

initialization vector

A random block of data that is used to begin the encryption of multiple blocks of plaintext, when a block-chaining encryption 

technique is used. The IV serves to foil known-plaintext attacks.

intruder

An individual who gains, or attempts to gain, unauthorized access to a computer system or to gain unauthorized privileges on 

that system.



intrusion detection system

A set of automated tools designed to detect unauthorized access to a host system.

Kerberos

The name given to Project Athena's code authentication service.

key distribution center

A system that is authorized to transmit temporary session keys to principals. Each session key is transmitted in encrypted 

form, using a master key that the key distribution center shares with the target principal.

logic bomb

Logic embedded in a computer program that checks for a certain set of conditions to be present on the system. When these 

conditions are met, it executes some function resulting in unauthorized actions.

mandatory access control

A means of restricting access to objects based on fixed security attributes assigned to users and to files and other objects. 

The controls are mandatory in the sense that they cannot be modified by users or their programs.

man-in-the-middle attack

A form of active wiretapping attack in which the attacker intercepts and selectively modifies communicated data in order to 

masquerade as one or more of the entities involved in a communication.

master key

A long-lasting key that is used between a key distribution center and a principal for the purpose of encoding the transmission 



of session keys. Typically, the master keys are distributed by noncryptographic means. Also referred to as a key-encrypting 

key.

meet-in-the-middle attack

This is a cryptanaltytic attack that attempts to find a value in each of the range and domain of the composition of two functions 

such that the forward mapping of one through the first function is the same as the inverse image of the other through the 

second functionquite literally meeting in the middle of the composed function.

message authentication

A process used to verify the integrity of a message.

message authentication code (MAC)

Cryptographic checksum.
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message digest

Hash function.

modular arithmetic

A kind of integer arithmetic that reduces all numbers to one of a fixed set [0 ... n 1] for some number n. Any integer outside this 

range is reduced to one in this range by taking the remainder after division by n.

mode of operation



A technique for enhancing the effect of a cryptographic algorithm or adapting the algorithm for an application, such as 

applying a block cipher to a sequence of data blocks or a data stream.

multilevel security

A capability that enforces access control across multiple levels of classification of data.

multiple encryption

Repeated use of an encryption function, with different keys, to produce a more complex mapping from plaintext to ciphertext.

nibble

A sequence of four bits.

nonce

An identifier or number that is used only once.

one-way function

A function that is easily computed, but the calculation of its inverse is infeasible.

password*

A secret data value, usually a character string, that is used as authentication information. A password is usually matched with 

a user identifier that is explicitly presented in the authentication process, but in some cases the identity may be implicit.



plaintext

The input to an encryption function or the output of a decryption function.

primitive root

If r and n are relatively prime integers with n > 0. and if f(n) is the least positive exponent m such that r
m

  1 mod n, then r is 

called a primitive root modulo n.

private key

One of the two keys used in an asymmetric encryption system. For secure communication, the private key should only be 

known to its creator.

pseudorandom number generator

A function that deterministically produces a sequence of numbers that are apparently statistically random.

public key

One of the two keys used in an asymmetric encryption system. The public key is made public, to be used in conjunction with a 

corresponding private key.

public-key certificate

Consists of a public key plus a User ID of the key owner, with the whole block signed by a trusted third party. Typically, the 

third party is a certificate authority (CA) that is trusted by the user community, such as a government agency or a financial 

institution.

public-key encryption



Asymmetric encryption.

public-key infrastructure (PKI)

The set of hardware, software, people, policies, and procedures needed to create, manage, store, distribute, and revoke 

digital certificates based on asymmetric cryptography.

relatively prime

Two numbers are relatively prime if they have no prime factors in common; that is, their only common divisor is 1.

replay attacks

An attack in which a service already authorized and completed is forged by another "duplicate request" in an attempt to 

repeat authorized commands.
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residue

When the integer a is divided by the integer n, the remainder r is referred to as the residue. Equivalently, r = a mod n.

residue class

All the integers that have the same remainder when divided by n form a residue class (mod n). Thus, for a given remainder r, 

the residue class (mod n) to which it belongs consists of the integers r, r ± n, r ± 2n, ....

RSA algorithm

A public-key encryption algorithm based on exponentiation in modular arithmetic. It is the only algorithm generally accepted 



as practical and secure for public-key encryption.

secret key

The key used in a symmetric encryption system. Both participants must share the same key, and this key must remain secret 

to protect the communication.

security attack*

An assault on system security that derives from an intelligent threat; that is, an intelligent act that is a deliberate attempt 

(especially in the sense of a method or technique) to evade security services and violate the security policy of a system.

security mechanism

A process (or a device incorporating such a process) that is designed to detect, prevent, or recover from a security attack.

security service

A processing or communication service that enhances the security of the data processing systems and the information 

transfers of an organization. The services are intended to counter security attacks, and they make use of one or more security 

mechanisms to provide the service.

security threat*

A potential for violation of security, which exists when there is a circumstance, capability, action, or event that could breach 

security and cause harm. That is, a threat is a possible danger that might exploit a vulnerability.

session key

A temporary encryption key used between two principals.



steganography

Methods of hiding the existence of a message or other data. This is different than cryptography, which hides the meaning of a 

message but does not hide the message itself.

stream cipher

A symmetric encryption algorithm in which ciphertext output is produced bit-by-bit or byte-by-byte from a stream of plaintext 

input.

symmetric encryption

A form of cryptosystem in which encryption and decryption are performed using the same key. Also known as conventional 

encryption.

trapdoor

Secret undocumented entry point into a program, used to grant access without normal methods of access authentication.

trapdoor one-way function

A function that is easily computed, and the calculation of its inverse is infeasible unless certain privileged information is 

known.

Trojan horse*

A computer program that appears to have a useful function, but also has a hidden and potentially malicious function that 

evades security mechanisms, sometimes by exploiting legitimate authorizations of a system entity that invokes the program.



trusted system

A computer and operating system that can be verified to implement a given security policy.
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unconditionally secure

Secure even against an opponent with unlimited time and unlimited computing resources.

virtual private network

Consists of a set of computers that interconnect by means of a relatively unsecure network and that make use of encryption 

and special protocols to provide security.

virus

Code embedded within a program that causes a copy of itself to be inserted in one or more other programs. In addition to 

propagation, the virus usually performs some unwanted function.

worm

Program that can replicate itself and send copies from computer to computer across network connections. Upon arrival, the 

worm may be activated to replicate and propagate again. In addition to propagation, the worm usually performs some 

unwanted function.

zombie

A program that secretly takes over another Internet-attached computer and then uses that computer to launch attacks that are 

difficult to trace to the zombie's creator.
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References

In matters of this kind everyone feels he is justified in writing and publishing the first thing that comes 

into his head when he picks up a pen, and thinks his own idea as axiomatic as the fact that two and two 

make four. If critics would go to the trouble of thinking about the subject for years on end and testing 

each conclusion against the actual history of war, as I have done, they would undoubtedly be more careful 

of what they wrote.

On War, Carl von Clausewitz
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     algorithms, encryption and authentication

     authentication option

     format

     Information

     padding

     transport mode 2nd

     tunnel mode 2nd 3rd

Encapsulating Security Payload header

Encrypt-decrypt-encrypt (EDE) sequence

Encryption 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th [See also Block cipher, Data Encryption Standard 

(DES), Public-key encryption]



     algorithm 2nd 3rd

     application-layer

     authentication approaches

     block ciphers 2nd 3rd

     classical techniques

     computationally secure

     cryptanalysis 2nd

     cryptography 2nd

     cyclic

     Data Encryption Standard (DES) 2nd 3rd 4th

     elliptic curves

     end-to-end

     function, placement of

     IPSec

     Kerberos techniques

     key management

     link

     message

     multiple

     network-layer 2nd

     optimal assymetric encryption padding (OAEP)

     public-key 2nd

     public-key authentication approaches 2nd

     rotor machines

     S-AES 2nd

     SSL

     steganography

     stream ciphers

     substitution techniques

     symmetric 2nd 3rd 4th 5th

     transposition techniques

     unconditionally secure

End entity

End-to-end encryption

     basic approach

     placement of function

Enhanced security services 2nd

EnvelopedData 2nd

Euclidean algorithm

Euler's theorem 2nd

Euler's totient function

Exchanges, ISAKMP

Extension headers, IPv6

Extensions
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Family, defined

Fast software encryption/decryption

Federal Information Processing Standards (FIPS)

Feistel cipher

     confusion

     decryption algorithm

     diffusion

     motivation for

     structure

Fermat's theorem

Finished messages 2nd

Finite fields (F)

     Euclidean algorithm

     fields 2nd

     Galois field (GF)

     GF(2n), of the form of

     GF(p), of the form of

     groups

     importance of

     modular arithmetic

     polynomial arithmetic

     rings 2nd

Finite group

Firewalls 2nd

     characteristics

     Common Criteria (CC)

     configurations

     design principles

     trusted systems

     types of

Flags

Flow label

Fortezza scheme 2nd

Fragment header 2nd

Fragment Offset

Fragmentation, network



Front-end processor (FEP)

Function F, design of
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Galois field (GF)

Generators 2nd 3rd

     Blum Blum Shub (BBS)

     cryptographically secure pseudorandom bit (CSPRBG)

     linear congruential

     pseudorandom number (PRNGs) 2nd 3rd

     using

Generic decryption (GD)

GF(2m), elliptic curves over

GF(2n)

     addition

     computational considerations 2nd

     finite fields of the form of

     generator, using a

     modular polynomial arithmetic 2nd

     motivation

     multiplication

     multiplicative inverse, finding

GF(p)

     finite fields of order p

     finite fields of the form of

     multiplicative inverse in

Greatest common divisor 2nd

     Euclidean algorithm

     polynomial arithmetic

Groups (G) 2nd

Guaranteed avalanche (GA)
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Handshake Protocol

Hardware efficiency, CTR mode

Hash (HASH) payload 2nd

Hash code, defined

Hash functions 2nd 3rd 4th 5th 6th [See also HMAC, Secure Hash Algorithms (SHA)]

     algorithms 2nd

     birthday attacks 2nd

     block chaining techniques

     brute-force attacks

     cryptanalysis

     requirements for

     security of

     SHA

     simple

     use of

     Whirlpool

Header Checksum

Header, IPv6

Hierarchical key control

Hill cipher

 HMAC

     algorithm structure

     design objectives

     development of

     security of

Honeypots

Hop Limit

Hop-by-Hop Options header 2nd
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Identification

Identification (ID) payload 2nd

Identity Protection Exchange 2nd

Indeterminate variable (x)

Infinite group

Information access threats

Information Exchange 2nd

Information security

Initialization, PKIX

Integral domain

Integrity Check Value (ICV)

Interfaces, network

International-Telecommunication Union (ITU)

Internet Architecture Board (IAB) 2nd

Internet Engineering Steering Group (IESG)

Internet Engineering Task Force (IETF) 2nd 3rd

Internet Header Length (IHL)

Internet protocol (IP)

     IPv4

     IPv6

     protocol data unit (PDU)

     role of

     security (IPSec)

Internet protocol security (IPSec)

     applications of

     architecture

     Authentication Header (AH) 2nd 3rd

     benefits of

     documents

     Encapsulating Security Payload (ESP) 2nd 3rd 4th

     key management 2nd

     overview

     protocol mode

     routing applications

     security association (SA) 2nd

     services



     transport mode 2nd 3rd 4th 5th

     tunnel mode 2nd 3rd 4th 5th

Internet resources

Internet security

Internet Security Association and Key Management Protocol (ISAKMP) 2nd

     exchanges

     fields

     header formats

     payload types

Internet standards

     applicability statement (AS)

     categories

     organizations

     process of standardization

     Request for Comment (RFC) publication 2nd

     technical specifications (TS)

Intruders 2nd [See also Intrusion detection]

     base-rate fallacy 2nd

     clandestine error

     detection

     masquerader

     misfeasor

     password management

     techniques

 Intrusion detection

     audit records

     base-rate fallacy 2nd

     distributed

     exchange format

     Honeypots

     rule-based 2nd

     statistical anomaly 2nd

Inverse ciphers, equivalent

IP destination address

IPv4

IPv6

Irreducible polynomial

Issuer attributes 2nd

     alternative name

     name

     unique identifier

Iterated tunneling
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Kerberos 2nd

     authentication dialogue 2nd 3rd 4th

     development of

     differences between versions

     encryption techniques

     justification of elements, version 4

     message exchanges, version 4

     motivation

     principal

     realm 2nd

     ticket flags, version 5

     version 4 2nd

     version 5

Key distribution 2nd 3rd

     authentication 2nd

     center (KDC) 2nd

     controlling usage 2nd

     decentralized key control 2nd

     hierarchical key control

     scenario

     session key lifetime

     technique

     transparent key control 2nd

Key exchange (KE) 2nd 3rd

     Diffie-Hellman 2nd 3rd

     Fortezza

     methods, SSL

     payload 2nd

     RSA

Key expansion 2nd 3rd

     AES algorithm

     block cipher W

     S-AES algorithm

Key generation 2nd 3rd 4th 5th

     DES algorithm 2nd

     RSA algorithm 2nd



     S/MIME

Key ID 2nd

Key identifiers

Key legitimacy field

Key management 2nd 3rd

     automated

     distribution of 2nd

     Internet Security Association and Key Management Protocol (ISAKMP) 2nd

     IPSec 2nd

     manual

     Oakley key determination protocol 2nd

     public keys

     RSA algorithm

     secret keys

Key pair recovery

Key pair update

Key rings

Key schedule algorithm

Key size

Key usage

Keystream

Known-plaintext attack

KState
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Lifetime of This Security Association

Linear congruential generators

Linear cryptanalysis

Link encryption

Local area networks (LANs)

Logic bomb

Look-ahead buffer
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MAC [See Message authentication code (MAC)]

Macro virus

Mailing List Agent (MLA)

 Malicious software 2nd

     backdoor

     countermeasures 2nd

     distributed denial of service (DDoS) attacks

     introduction to 2nd

     logic bomb

     Trojan horses

     viruses 2nd

     worms

     zombie

Man-in-the-middle attack 2nd

Markov process model 2nd

Masquerade 2nd

Masquerader

Master key, defined

Master secret creation

Maximum distance separable (MDS)

Meet-in-the-middle attack 2nd

Memory-resident virus

Merchant authentication, SET

 Message authentication code (MAC) 2nd 3rd 4th 5th 6th 7th

     brute-force attacks

     cipher-based message authentication code (CMAC)

     cryptanalysis 2nd

     Data Authentication Algorithm

     DES, based on

     HMAC

     Internet standard (HMAC)

     requirements for

     security of

     SSL

     technique

     TLS



     use of

Message component

Message digest 2nd

Message encryption 2nd

     public key

     symmetric

Message integrity, SSl

Messages, PGP transmission and reception of 2nd

Metamorphic virus

Miller-Rabin algorithm

MIME [See Multipurpose Internet mail extensions (MIME)]

Misfeasor

MixColumns transformations 2nd 3rd 4th

Modification of messages

Modular arithmetic 2nd

     congruences, properties of

     divisors

     logarithms for

     operations

     properties of

Modulus, defined

Monic polynomial

Monoalphabetic cipher

Morris worm

Multiplicative inverse 2nd

 Multipurpose Internet mail extensions (MIME)

     canonical form

     content types

     multipart, example of

     overview of

     transfer encodings

Multivariate model

Mutual authentication

     public-key encryption approaches

     symmetric encryption approaches
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Name constraints

National Institute of Standards and Technology (NIST) 2nd 3rd 4th 5th

 Network security 2nd 3rd 4th 5th 6th 7th 8th

     applications, types of

     authentication applications

     electronic mail

     Internet protocol (IP)

     Kerberos 2nd

     model for

     projects for teaching

     public-key infrastructure (PKI)

     Web

     X.509

New European Schemes for Signatures, Integrity, and Encryption (NESSIE)

Next Header 2nd

Nibble substitution

Nonce 2nd

Nonce (NONCE) payload 2nd

Nonlinear layer SB

Nonrepudiation

Notification (N) payload 2nd

 Number theory

     Chinese remainder theorem (CRT)

     discrete logarithms

     distribution of primes

     Euler's theorem 2nd

     Euler's totient function

     Fermat's theorem

     Miller-Rabin algorithm

     primality, testing for

     prime numbers
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Oakley key determination protocol 2nd

     authentication methods

     cookie exchange

     exchange example

     features of

One-time pad

One-way authentication 2nd

     public-key encryption approaches

     symmetric encryption approaches

     X.509 service

One-way function

One-way property 2nd

Open Systems Interconnection (OSI) 2nd

     model

     security architecture

Operational model

Optimal assymetric encryption padding (OAEP)

Order

Output feedback (OFB) mode 2nd 3rd

Owner trust field
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Packet-filtering router

Padding 2nd 3rd 4th 5th 6th

     cryptographic computations

     ESP

     optimal assymetric encryption padding (OAEP)

     traffic

Parasitic virus

Passive attacks

Password management

     access control

     Bloom filter

     computer-generated

     Markov model

     proactive checker

     protection

     reactive checking

     selection strategies

     UNIX scheme

     user education

     vulnerability of passwords

Path MTU

Payload 2nd 3rd 4th 5th 6th

     Encapsulating Security (ESP) 2nd 3rd 4th

     ISAKMP types

     length

Payment, SET

     authorization

     capture

     processing

     purchase request

Peer entity authentication

Period of validity

Permutation 2nd 3rd 4th

     DES tables

     initial 2nd

     layer SC



PGP [See Pretty Good Privacy (PGP)]

Pin punctures

Plaintext 2nd 3rd

Playfair cipher

Policy constraints

Policy mappings

Polyalphabetic cipher

Polymorphic virus

Polynomial arithmetic 2nd 3rd

     coefficients in GF(28)

     coefficients in Zp

     greatest common divisor, finding

     MixColumns transformations

     modular

     multiplication by x

     ordinary

     polynomial ring

Ports, source and destination

Preoutput, defined

Preprocessing, CTR mode

 Pretty Good Privacy (PGP) 2nd 3rd 4th

     authentication 2nd

     compression

     confidentiality

     data compression

     e-mail compatibility

     key identifiers

     key rings

     keys and key rings, cryptographic 2nd

     messages, transmission and reception of 2nd

     notation

     operational description 2nd

     public-key management

     random number generation

     reassembly

     revoking public keys

     segmentation

     session key generation

     trust, use of

     use of

     ZIP, data compression using

Prime curve

Prime numbers 2nd

     determination of

     distribution of

     Miller-Rabin algorithm



     properties of

     testing for

Prime polynomial

Primitive root

Private key 2nd 3rd 4th

     encryption

     ring

     RSA, efficient operation using

     usage period

Proposal (P) payload 2nd

Protection profiles (PPs)

Protocols, authentication

Provable security, CTR mode

Pseudorandom function (PRF), TLS

Pseudorandom numbers 2nd 3rd 4th

     ANSI X9.17

     Blum Blum Shub (BBS) generator

     generators (PRNGs) 2nd 3rd 4th

     PGP, generation using

Public keys 2nd 3rd 4th 5th [See also Public-key cryptography, Public-key encryption]

     authority

     certificates

     cryptography

     directory of

     efficient operation of RSA using

     encryption 2nd 3rd 4th 5th

     management

     Pretty Good Privacy (PGP)

     public announcement of

     revoking

 Public-key cryptography

     authentication protocols

     digital signal standard (DSS)

     digital signatures

 Public-key encryption 2nd 3rd 4th 5th

     algorithm approaches 2nd

     cryptography

     cryptosystems 2nd

     Diffie-Hellman key exchange

     elliptic curve cryptography (ECC)

     key management

     message authentication

     number theory

     Oakley key determination protocol

     RSA algorithm 2nd

Public-key infrastructure (PKI)



     development of

     management functions

     management protocols

     X.509 (PKIX)

Public-key management 2nd

     approaches to, PGP

     cryptography for secret key distribution

     distribution

     Pretty Good Privacy (PGP)

     trust, use of

Public-key ring

Purchase request, SET
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Quoted-printable transfer encoding



Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z] 

Radix-64 conversion

Random access, CTR mode

Random delay

Random number generation 2nd 3rd

     ANSI X.9.17 PGP

     ANSI X.9.17 PRNG

     Blum Blum Shub (BBS) generator

     cryptographically

     cyclic encryption

     linear congruential generators

     output feedback (OFB) mode, DES

     Pretty Good Privacy (PGP)

     pseudorandom number generators (PRNGs) 2nd 3rd 4th

     randomness

     skew

     true random number generator (TRNG) 2nd

     unpredictability

     use of

RC4 algorithm

     development of

     initialization of S

     logic of

     stream generation

     strength of 2nd

Reader's guide

Receiver, role of

Record Protocol

Reflector DDoS

Registration authority (RA)

Registration request

Relatively prime

Release of message contents

Reliability, network

Replay

Replay attacks

Repository



Request for Comment (RFC) publication 2nd

Residue 2nd

Revocation request

RFC 822

Rijndael proposal 2nd

Rings (R) 2nd

 Rivest-Shamir-Adleman (RSA) algorithm 2nd

     chosen ciphertext attack (CCA)

     complexity of

     computational aspects of

     description of

     development of

     efficient operation of

     exponentiation on modular arithmetic

     factoring problem

     key generation

     optimal assymetric encryption padding (OAEP)

     proof of

     security of

     timing attacks

Root, polynomial

Rotor machines

Rounds 2nd 3rd 4th

     function of

     number of 2nd

     single, details of

Routing header 2nd

RSA algorithm [See Rivest-Shamir-Adleman (RSA) algorithm]

Rule-based intrusion detection 2nd
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S-AES [See Simplified Advanced Encryption Standard (S-AES)]

S-box 2nd 3rd 4th 5th

     AES

     design of

     role of 2nd

     S-AES

S/MIME [See Secure/Multipurpose Internet Mail Extension (S/MIME)]

Secret key 2nd

     authentication

     confidentiality

     distribution

     hybrid approach, IBM mainframe

     man-in-the-middle attack

Secure Electronic Transaction (SET)

     development of

     dual signature

     features of

     overview

     payment

     purchase request

     requirements

     system participants

     transaction types

 Secure Hash Algorithms (SHA)

     development of

     parameters

     SHA-512

     use of

Secure mailing lists

Secure Socket Layer (SSL)

     Alert Protocol

     architecture

     Change Cipher Spec Protocol

     connection 2nd

     cryptographic parameters, generation of

     Handshake Protocol



     master secret creation

     Record Protocol

     session

 Secure/Multipurpose Internet Mail Extension (S/MIME)

     certificate processing

     certificates-only message

     clear signing

     cryptographic algorithms

     development of

     enhanced security services 2nd

     envelopedData

     functionality

     functions

     limitations of

     Mailing List Agent (MLA)

     messages

     MIME entity, securing

     multipurpose Internet mail extensions (MIME)

     registration request

     RFC 822

     secure mailing lists

     security labels 2nd

     signed receipts

     signedData

     user-agent role

     VeriSign certificates 2nd

Security 2nd 3rd 4th 5th 6th [See also Authentication, Network security, System Security]

     attacks 2nd 3rd

     authentication

     brute-force attacks

     computer

     cryptanalysis

     elliptic curve cryptography (ECC)

     hash functions

     information

     internet

     introduction to

     mechanism 2nd 3rd

     message authentication code (MAC)

     network security 2nd 3rd

     OSI architecture

     RSA algorithm

     services 2nd 3rd

     system security

     trends

Security association (SA) 2nd 3rd 4th



     authentication plus confidentiality

     basic combinations, examples of

     combining protocols

     Internet protocol security (IPSec)

     iterated tunneling

     parameters

     payload 2nd

     selectors

     transport adjacency 2nd

     transport-tunnel bundle

Security labels 2nd

Security mechanisms 2nd 3rd

     security services, relationship with

     X.800

Security Parameters Index (SPI)

Security Police Database (SPD)

Security protocol identifier

Security services 2nd 3rd 4th

     access control

     authentication

     availability

     data confidentiality

     data integrity

     defined 2nd

     nonrepudiation

     security mechanisms, relationship with

     X.800

Security targets (STs)

Sender, role of

Sequence Counter Overflow

Sequence modification

Sequence Number Counter

Serial number

Service control

Service threats

Session key 2nd

Session key component

Session security model (SSM)

Session, SSL

SHA-512 algorithm

     logic

     processing steps

     round function

ShiftRows transformation 2nd 3rd

Signature 2nd 3rd 4th

     algorithm identifier



     component

     trust field

Signature (SIG) payload 2nd

Signed receipts

SignedData 2nd

Simplicity, CTR mode

 Simplified Advanced Encryption Standard (S-AES)

     add key function

     decryption 2nd

     development of

     encryption 2nd

     key expansion

     mix column function

     nibble substitution

     overview of

     S-box

     shift row function

     structure

     transformations

Single round, details of

Skew

Sliding history buffer

Software efficiency, CTR mode

Source IP Address 2nd 3rd

Source repudiation

Standards

     importance of

     Internet

     National Institute of Standards and Technology

State array

Stateful inspection firewalls

Statistical anomaly intrusion detection 2nd

Stealth virus

Steganography

Store-and-forward communications

Stream ciphers 2nd

     design considerations

     keystream

     RC4 algorithm

     structure

Stream generation

Strict avalanche criterion (SAC)

Strong collision resistance 2nd

Subject attributes 2nd

     alternative name

     directory attributes



     key identifier

     name

     public-key information

     unique identifier

Subkey generation algorithm

Substitute bytes (SubBytes) transformation 2nd

Substitution techniques 2nd

     Caesar cipher

     Hill cipher

     monoalphabetic cypher

     one-time pad

     Playfair cipher

     polyalphabetic cipher

Subtypes, MIME

SunOS system events, intrusion detection

Suppress-replay attacks

 Symmetric ciphers

     Advanced Encryption Standard (AES)

     block ciphers 2nd

     confidentiality

     Data Encryption Standard (DES) 2nd

     encryption techniques

     finite fields

     model

     multiple encryption and triple DES

     RC4

     stream ciphers

Symmetric encryption 2nd 3rd 4th 5th

     authentication approaches 2nd

     authentication function

     cipher model

     Oakley key determination protocol

 System security

     firewalls 2nd

     intruders 2nd

     malicious software 2nd
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Target of evaluation (TOE)

Technical specifications (TS)

Threats 2nd

Ticket flags

Ticket-granting server (TGS)

Time complexity

Time series model

Time to Live (TTL)

Timestamps 2nd 3rd

Timing attacks 2nd

Timing modification

Traffic analysis 2nd

Traffic confidentiality

Traffic padding

Transfer encodings, MIME

Transform (T) payload 2nd

Transformations 2nd 3rd 4th

     AddRoundKey

     AES 2nd

     equivalent inverse ciphers

     forward 2nd 3rd 4th

     interchanging AddRoundKey and InvMixColumns

     inverse 2nd 3rd 4th

     MixColumns transformations 2nd 3rd

     nibble substitution

     S-AES

     S-box 2nd

     ShiftRows transformation 2nd 3rd

     substitute bytes (SubBytes) 2nd

Transparent key control 2nd

Transport adjacency 2nd

Transport layer functionality (TCP)

Transport Layer Protocol

Transport Layer Security (TLS)

     alert codes

     certificate_verify message



     cipher suites

     client certificate types

     finished messages

     message authentication code

     pseudorandom function (PRF)

     version number

Transport mode 2nd 3rd 4th 5th

     AH

     ESP 2nd

     IPSec overview of 2nd

Transport-tunnel bundle

Transposition techniques

Triple EDS

Trojan horses 2nd

True random number generator (TRNG) 2nd

Trust

     example of

     flags 2nd

     key legitimacy field

     owner field

     PGP use of

     signature field

Trusted systems

     concept of

     data access control

     defined

     Trojan horse defense

Tunnel mode 2nd 3rd 4th 5th

     AH

     ESP 2nd 3rd

     IPSec overview of
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USENET newsgroups

User control

User ID 2nd 3rd

User-agent role

USTAT model actions, intrusion detection
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VeriSign certificates 2nd

Version 2nd 3rd

Version number, TLS

Vigenère cipher

 Viruses 2nd

     antivirus approaches

     behavior-blocking software

     countermeasures

     digital immune system

     e-mail virus

     generic decryption (GD)

     initial infection

     macro virus

     nature of

     phases

     structure

     types of
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Weak collision resistance 2nd

Web resources

Web security

     Alert Protocol

     Change Cipher Spec Protocol, considerations

     cryptographic computations

     Handshake Protocol

     Secure Electronic Transaction (SET)

     Secure Socket Layer (SSL)

     threats 2nd

     traffic approaches 2nd

     Transport Layer Security (TLS)

Whirlpool

     block cipher W

     development of

     drawbacks

     features

     hash structure

     performance of

     processing steps

 Worms

     Morris

     recent attacks

     technology, state of
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X.509 authentication service

     certificates

     certification path constraints

     development of

     key information

     one-way

     policy information

     procedures

     three-way

     two-way

     version 3

X.509, Public-Key Infrastructure (PKIX)

X.800, ITU-T recommendation 2nd
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ZIP

     compression algorithm

     data compression using

     decompression algorithm

Zombie

Zp 2nd

     coefficients in

     elliptic curves over
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