a2y | |
24 '-lpﬁ’}"
_ A e O
’ | " T - AT jI.-'
adll(l INCLWOUIL K

TNt i Fourth Edition

. ™
“"_JA Y j_,[r_/[k'!r;:ﬁ

!'_'.r'!.fpmgmp]qr Cryptography and Network Security Principles and Practices, Fourth Edition

and Network

Security "
| "

AI‘

By William Stallings

/ Publisher: Prentice Hall

Pub Date: November 16, 2005

¥
el il s

Print ISBN-10: 0-13-187316-4
Print ISBN-13: 978-0-13-187316-2

eText ISBN-10: 0-13-187319-9

[ale of Content eText ISBN-13: 978-0-13-187319-3

Pages: 592

In this age of viruses and hackers, of electronic eavesdropping and electronic fraud, security is paramount.

As the disciplines of cryptography and network security have matured, more practical, readily available
applications to enforce network security have developed. This text provides a practical survey of both the
principles and practice of cryptography and network security. First, the basic issues to be addressed by a
network security capability are explored through a tutorial and survey of cryptography and network security
technology. Then, the practice of network security is explored via practical applications that have been
implemented and are in use today.

=1

Cryptography and Network Security Principles and Practices, Fourth Edition
By William Stallings
Publisher: Prentice Hall
Pub Date: November 16, 2005
Print ISBN-10: 0-13-187316-4
Print ISBN-13: 978-0-13-187316-2

eText ISBN-10: 0-13-187319-9

Lable of Content eText ISBN-13; 978-0-13-187319-3

Pages: 592

Prefacd

ntended Audience

Plan of the BooMd

nternet Services for Instructors and Student

Projects for Teaching Cryptography and Network Securit

What's New in the Fourth Editioa

\cknowledgment:

hapter 0. Reader's Guid

ection 0.2. Roadma
ection 0.3. Internet and Web Resourceg
Ehaéter 1. Introduction

ection 1.1. Security Trendsl
ection 1.2. The OSI Security Architectur

Eection 1.3. Security Attack;

ection 1.4. Security Service

ection 1.5. Security Mechanismsl

Eection 1.6. A Model for Network Securit\j

ection 1.7. Recommended Reading and Web Sites!

ection 1.8. Key Terms, Review Questions, and Problemg
Fart One: Symmetric Ciphers

hapter 2. Classical Encryption Techni ﬁ
ection 2.1. Symmetric Cipher Mode

Eection 2.2. Substitution Technigueq

ection 2.4. Rotor Machine

Eection 2.5. Ste;anoéraéh;

ection 2.6. Recommended Reading and Web Sites!

ection 2.7. Key Terms, Review Questions, and Problenﬁ

hapter 3. Block Ciphers and the Data Encryption Standard
Eection 3.1. Block Cipher Principa

BRI TS TR IR IR IR IR IR 1R TR == R R ETE 1=

ection 3.2. The Data Encryption Standar
ection 3.3. The Strength of De!

Eection 3.4. Differential and Linear Crvptanalvsisl

ection 3.5. Block Cipher Design Principle
Eection 3.6. Recommended Readina
Eection 3.7. Key Terms, Review Questions, and Problemsl

%ter 4. Finite Field

ection 4.1. Groups, Rings, anm
Eection 4.2. Modular Arithmetid
Eection 4.3. The Euclidean Alaoritha

ection 4.4. Finite Fields of The Form GF(p
Eection 4.5. Polynomial Arithmetid

ection 4.6. Finite Fields Of the Form GF(Z_rli
ection 4.7. Recommended Reading and Web Sitesl

Eection 4.8. Key Terms, Review Questions, and Problemg
hapter 5. Advanced Encryption Standard

ia For AES

Bection 5.1. Evaluation Crite
Eection 5.2. The AES Ciphe
Eection 5.3._Recommended Reading and Web Sitgﬁ

ection 5.4. Key Terms, Review Questions, and Problemsl
Eggendix 5A Polynomials with Coefficients in GF(ZSI

endix 5B Simplified AE

hapter 6. More on Symmetric CM

Eection 6.1. Multiple Encryption and Triple DE§|
Section 6.2. Block Cipher Modes of Operatio

Section 6.3. Stream Ciphers and RC4

Eection 6.4. Recommended Reading and Web Sitel
ection 6.5. Key Terms, Review Questions, and Problemg
hapter 7. Confidentiality Using Symmetric Encryptiol

Eection 7.1. Placement of Encryption Functioa

ection 7.2. Traffic Confiden

ection 7.3. Key Distribution|

Eection 7.4. Random Number Generatiogl
Eection 7.5._Recommended Reading and Web Site;
ection 7.6. Key Terms, Review Questions, and Problemsl
Eart Two: Public-Key Encryption and Hash FM

hapter 8. Introduction 1o Number Theo

ection 8.1. Prime Number:

Eection 8.2. Fermat's and Euler's Theoremg

ection 8.3. Testlnq for Primali

ection 8.4. The Chinese Remainder Theoren’l

Eection 8.5. Discrete Loqarithmq

ection 8.7. Key Terms, Review Questions, and Problemsl

Eha;gter 9. Public-Key Cryptography and RSA

Eection 9.1_Principles of Public-Key ngtosgstem;
ection 9.2. The RSA Algorith

Eection 9.3. Recommended Reading and Web Siteg

Eection 9.4. Key Terms, Review Questions, and Problemsl
ppendix 9A Proof of the RSA AIqorithn‘I

Eection 8.6._Recommended Reading and Web Sitesl

EIE Ik Te 1 & E R & = 1B T 1k 1k E R IEE IR IR B RE IR BRI

o)
00

.
[|

0 N n N l's oy N N

J
Q0

I Q

Ef?endix 9B The Complexity of Alqorithmsl

hapter 10. Key Management; Otr‘er Public-Key Crygtosystemé
Eection 10.1. Keg Mana;emen‘
ection 10.2._Diffie-Hellman Key Exchan;a
ection 10.3. Elliptic Curve Arithmeti
Eection 10.4. Elliptic Curve Crygtogragh}]

ection 10.5. Recommended Reading and Web Site

ection 10.6. Key Terms, Review Questions, and Prob! emé

Eha;gter 11. Message Authentication and Hash Functiong

ection 11.1._Authentication Requirem
ection 11.2. Authentication Functiong

Eection 11.3. Messa;e Authentication Code;
ection 11.4. Hash Function
Eection 11.5. Securit; of Hash Functions and Macg
Eection 11.6. Recommended Reading
Eection 11.7. Key Terms, Review Questions, and Problemg
endix 11A Mathematical Basis of the Birthday Attac

Section 12.2. Whirlpoo

Section 12.3. HMA(Q

ection 12.4. CMA
ection 12.5. Recommended Reading and Web Sitesl

Eection 12.6. Key Terms, Review Questions, and Problemsl

hapter 13. Digital Signatures and Authentication Protocold

Bection 13.1. Digital Signatured
Section 13.2. Authentication Protocols
Section 13.3. Digital Signature Standard

Bection 13.4. Recommended Reading and Web Siteq

Eection 13.5. Key Terms, Review Questions, and ProbIemJ

IDart Three: Network Security Application
bhagter 14. Authentication Application
Eection 14.1. Kerberos

ection 14.2. X.509 Authentication Servic

ection 14.3. Public-Key Infrastructur

Eection 14.4. Recommended Reading and Web Siteg

ection 14.5. Key Terms, Review Questions, and Problesz
endix 14A Kerberos Encryption Technigue

hapter 15. Electronic Mail Security

ection 15.1. Pretty Good Privac
ection 15.2. S/MIM

Eection 15.3. Key Terms, Review Questions, and Problemsl

endix 15A Data Compression Using Zi
endix 15B Radix-64 Conversio

Igggendix 15C PGP Random Number Generatio;l

hapter 16. IP Securit

ection 16.1. IP Security Overvie

Section 16.2. IP Security Architecture)

Eection 16.3. Authentica_tion Headel
ection 16.4. Encapsulating Security. Pavloao‘

Q Q M

)
09

0 for N D =) D - 0 D =)

EIEIE I IE IR IR IR

EEIE]

GBI IE]
x 2

il =
1

Eection 16.5. Combining Security Associationsl

ection 16.6. Key Managemen

Eection 16.7. Recommended Reading and Web Sité
ection 16.8. Key Terms, Review Questions, and Problem:
Eggendix 16A Internetworking and Internet Protocolg
Ehaéter 17. Web Securit
ection 17.1. Web Security Considerm
ection 17.2. Secure Socket Layer and Transport Layer Securit)]
Eection 17.3. Secure Electronic Transaction
Eection 17.4. _Recommended Reading and Web Site
ection 17.5. Key Terms, Review Questions, and Problems]
Izart Four: System Securit)]
Eection 18.2. Intrusion Detectio;l
Eection 18.3. Password Managemenl
ection 18.4. Recommended Reading and Web Sitesl

Eection 18.5. Key Terms, Review Questions, and Problemé

Appendix 18A The Base-Rate Fallacy
hapter 19. Malicious Softwarg

ection 19.1. Viruses and Related Threa

ection 19.2. Virus Countermeasureg

ection 19.3. Distributed Denial of Service Attac

Eection 19.4. Recommended Reading and Web Siteg

ection 19.5. Key Terms, Review Questions, and Problemsl
hapter 20. Firewall

Eection 20.1. Firewall Design Princigleg

ection 20.2. Trust_ed System
ection 20.3. Common Criteria for Information Technology Security Evaluatiod

Eection 20.4. Recommended Reading and Web Siteq

Eection 20.5._Key Terms, Review Questions, and Problem:

lAppendix A. Standards and Standards-Setting Organizations

Eection A.l. The Iméortance of Standardd

Eection A.2. Internet Standards and the Internet Societ\j

ection A.3. National Institute of Standards and Technolomj

Eppendix B. Projects for Teaching Cryptography and Network Securit\j

Section B.1 Resegrch Projectd

Section B.2. Programming Projects

Section B.3. Laboratory Exerciseq

ection B.4. Writing Assignmen
ection B.5. Reading/Report Assignmentg
Elossar

Referenced

nside Front Cove

nside Back Cove

nde

T 12 110 10T 12 110 10T 12 1 10 127 10 10 127 17 1T 127 107 10T 127 117 10T 1T 11T I 1T 1[CT I ICT Il 1T e 1[I 1ICT IC™ IICT 1ICT I°T IICT 1[CT I°T 1[CT [T
®®U10'IU10'I|U'I"U'IIU'I"U‘I|J>J>-bl-bl-b"-b"wlN"NlNHl—‘HLOLDLO(OKOOO\I@@@@@-&OONNI—‘HI—‘OO

nsideFrontCove

nsideBackCove

" prey wEXT

Copyright

[Page ii]

Library of Congress Cataloging-in-Publication Data on File

Vice President and Editorial Director, ECS: Marcia J. Horton

Executive Editor: Tracy Dunkelberger

Editorial Assistant: Christianna Lee

Executive Managing Editor: Vince O'Brien

Managing Editor: Camille Trentacoste

Production Editor: Rose Kernan

Director of Creative Services: Paul Belfanti

Cover Designer: Bruce Kenselaar

Managing Editor, AV Management and Production: Patricia Burns

Art Editor: Gregory Dulles

Manufacturing Manager: Alexis Heydt-Long

Manufacturing Buyer: Lisa McDowell

Marketing Manager: Robin O'Brien

Marketing Assistant: Barrie Reinhold

© 2006 Pearson Education, Inc.
Pearson Prentice Hall

Pearson Education, Inc.

Upper Saddle River, NJ 07458

All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in writing from the
publisher.

Pearson Prentice Hall™ is a trademark of Pearson Education, Inc.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development,
research, and testing of the theories and programs to determine their effectiveness. The author and publisher make no warranty of any
kind, expressed or implied, with regard to these programs or the documentation contained in this book. The author and publisher shall
not be liable in any event for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or

use of these programs.
Printed in the United States of America

10987654321

Pearson Education Ltd., London

Pearson Education Australia Pty. Ltd., Sydney

Pearson Education Singapore, Pte. Ltd.

Pearson Education North Asia Ltd., Hong Kong

Pearson Education Canada, Inc., Toronto

Pearson Educacion de Mexico, S.A. de C.V.

Pearson EducationJapan, Tokyo

Pearson Education Malaysia, Pte. Ltd.

Pearson Education Inc., Upper Saddle River, New Jersey

Dedication

To Antigone never dull never boring always a Sage

[Page iii]

NEXT B

" prey wEXT

[Page xi]

Notation

Even the natives have difficulty mastering this peculiar vocabulary.

The Golden Bough, Sir James George Frazer

Symbol Expression Meaning

D, K DK, Y) Symmetric decryption of ciphertext Y using secret key K.

D, PRa D(PRa, Y) Asymmetric decryption of ciphertext Y using A's private keyPRa
D,PUa D(PUa, Y) Asymmetric decryption of ciphertext Y using A's public keyPUa
E, K E(K, X) Symmetric encryption of plaintext X using secret keyK.

E,PRa E(PRa, X) Asymmetric encryption of plaintext X using A's private keyPRa
E, PUa E(PUa, X) Asymmetric encryption of plaintext X using A's public keyPUa

K Secret key

PRa Private key of user A

PUa Public key of user A

C,K CK, X Message authentication code of messageX using secret key K.
GF(p) The finite field of order p, where p is prime. The field is defined as the

set Zp together with the arithmetic operations modulop.

GF2" The finite field of order 2".
Zn Set of nonnegative integers less thann
gcd gcd(, j) Greatest common divisor; the largest positive integer that divides bothi

and j with no remainder on division.

mod amodm Remainder after division of a by m.

mod, - aE b(mod m) amodm =bmodm

mod, $ a $ b(mod m) amodm ¢ b modm

dlog dloga,p(b) Discrete logarithm of the numberb for the basea (mod p)

f f(n) The number of positive integers less than n and relatively prime ton.

This is Euler's totient function.

al+az+..+an

n
a

=1

Symbol

Expression

Meaning

alxazx...xan

il

i divides j, which means that there is no remainder whenj is divided byi

Absolute value of a

la
X|ly X concatenated withy
- i i
o — y X is approximately equal toy

Exclusive-OR of x andy for single-bit variables; Bitwise exclusive-OR
of x andy for multiple-bit variables

L]

The largest integer less than or equal tox

XES

The elementx is contained in the set S.

IEEEEE

A (1,82,8K)

The integer A corresponds to the sequence of integers @1,a2, ...,ak)

MNEXT B

=3
[Page xiii]

Preface

"The tie, if | might suggest it, sir, a shade more tightly knotted. One aims at the perfect butterfly effect. If you will
permit me"

"What does it matter, Jeeves, at a time like this? Do you realize that Mr. Little's domestic happiness is hanging in
the scale?"

"There is no time, sir, at which ties do not matter."

Very Good, Jeeves!P. G. Wodehouse

In this age of universal electronic connectivity, of viruses and hackers, of electronic eavesdropping and electronic fraud, there is indeed
no time at which security does not matter. Two trends have come together to make the topic of this book of vital interest. First, the
explosive growth in computer systems and their interconnections via networks has increased the dependence of both organizations and
individuals on the information stored and communicated using these systems. This, in turn, has led to a heightened awareness of the
need to protect data and resources from disclosure, to guarantee the authenticity of data and messages, and to protect systems from
network-based attacks. Second, the disciplines of cryptography and network security have matured, leading to the development of
practical, readily available applications to enforce network security.

" prey wEXT

e prcy | NEXT

[Page xiii (continued)]

Objectives

It is the purpose of this book to provide a practical survey of both the principles and practice of cryptography and network security. In the
first two parts of the book, the basic issues to be addressed by a network security capability are explored by providing a tutorial and
survey of cryptography and network security technology. The latter part of the book deals with the practice of network security: practical
applications that have been implemented and are in use to provide network security.

The subject, and therefore this book, draws on a variety of disciplines. In particular, it is impossible to appreciate the significance of
some of the techniques discussed in this book without a basic understanding of number theory and some results from probability theory.
Nevertheless, an attempt has been made to make the book self-contained. The book presents not only the basic mathematical results
that are needed but provides the reader with an intuitive understanding of those results. Such background material is introduced as
needed. This approach helps to motivate the material that is introduced, and the author considers this preferable to simply presenting all
of the mathematical material in a lump at the beginning of the book.

e prey | NEXT

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

" prey wEXT

[Page xiii (continued)]

Intended Audience

The book is intended for both an academic and a professional audience. As a textbook, it is intended as a one-semester undergraduate
course in cryptography and network security for computer science, computer engineering, and electrical engineering majors. It covers the
material in IAS2 Security Mechanisms, a core area in the Information Technology body of knowledge; NET4 Security, another core area
in the Information Technology body of knowledge; and IT311, Cryptography, an advanced course; these subject areas are part of the
Draft ACM/IEEE Computer Society Computing Curricula 2005.

[Page xiv]

The book also serves as a basic reference volume and is suitable for self-study.

E=a wExT

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

NEXT B

[Page xiv (continued)]

Plan of the Book

The book is organized in four parts:

. Conventional Encryption: A detailed examination of conventional encryption algorithms and design
principles, including a discussion of the use of conventional encryption for confidentiality.

. Public-Key Encryption and Hash Functions:A detailed examination of public-key encryption
algorithms and design principles. This part also examines the use of message authentication codes and hash
functions, as well as digital signatures and public-key certificates.

. Network Security Practice: Covers important network security tools and applications, including
Kerberos, X.509v3 certificates, PGP, SIMIME, IP Security, SSL/TLS, and SET.

. System Security: Looks at system-level security issues, including the threat of and countermeasures
for intruders and viruses, and the use of firewalls and trusted systems.

In addition, the book includes an extensive glossary, a list of frequently used acronyms, and a bibliography. Each chapter includes
homework problems, review questions, a list of key words, suggestions for further reading, and recommended Web sites.

A more detailed, chapter-by-chapter summary of each part appears at the beginning of that part.

NEXT B

" prey wEXT

[Page xiv (continued)]

Internet Services for Instructors and Students

There is a Web site for this book that provides support for students and instructors. The site includes links to other relevant sites,
transparency masters of figures and tables in the book in PDF (Adobe Acrobat) format, and PowerPoint slides. The Web page is at
WilliamStallings.com/Crypto/Crypto4e.html. As soon as typos or other errors are discovered, an errata list for this book will be available
at WilliamStallings.com. In addition, the Computer Science Student Resource site, at WilliamStallings.com/StudentSupport.html,
provides documents, information, and useful links for computer science students and professionals.

e prey NExT

" prey wEXT

[Page xiv (continued)]

Projects for Teaching Cryptography and Network Security

For many instructors, an important component of a cryptography or security course is a project or set of projects by which the student
gets hands-on experience to reinforce concepts from the text. This book provides an unparalleled degree of support for including a
projects component in the course. The instructor's manual not only includes guidance on how to assign and structure the projects, but
also includes a set of suggested projects that covers a broad range of topics from the text:

[Page xv]
® Research projects: A series of research assignments that instruct the student to research a particular topic on the Internet
and write a report

® Programming projects: A series of programming projects that cover a broad range of topics and that can be implemented in
any suitable language on any platform

® | ab exercises: A series of projects that involve programming and experimenting with concepts from the book
® Writing assignments: A set of suggested writing assignments, by chapter

® Reading/report assignments: A list of papers in the literature, one for each chapter, that can be assigned for the student to
read and then write a short report

See for details.
KI==3 NEXT B

" prey wEXT

[Page xv (continued)]

What's New in the Fourth Edition

In the three years since the third edition of this book was published, the field has seen continued innovations and improvements. In this
new edition, | try to capture these changes while maintaining a broad and comprehensive coverage of the entire field. To begin this
process of revision, the third edition was extensively reviewed by a number of professors who teach the subject. In addition, a number of
professionals working in the field reviewed individual chapters. The result is that, in many places, the narrative has been clarified and
tightened, and illustrations have been improved. Also, a large number of new "field-tested" problems have been added.

Beyond these refinements to improve pedagogy and user friendliness, there have been major substantive changes throughout the book.
Highlights include the following:

® Simplified AES: This is an educational, simplified version of AES (Advanced Encryption Standard), which enables students
to grasp the essentials of AES more easily.

® \Whirlpool: This is an important new secure hash algorithm based on the use of a symmetric block cipher.

® CMAC: This is a new block cipher mode of operation. CMAC (cipher-based message authentication code) provides message
authentication based on the use of a symmetric block cipher.

® Public-key infrastructure (PKI): This important topic is treated in this new edition.
® Distributed denial of service (DDoS) attacks:DDoS attacks have assumed increasing significance in recent years.

® Common Criteria for Information Technology Security Evaluation: The Common Criteria have become the international
framework for expressing security requirements and evaluating products and implementations.

® Online appendices: Six appendices available at this book's Web site supplement the material in the text.

In addition, much of the other material in the book has been updated and revised.

e prey NExT

" prey wEXT

[Page xvi]

Acknowledgments

This new edition has benefited from review by a number of people, who gave generously of their time and expertise. The following
people reviewed all or a large part of the manuscript: Danny Krizanc (Wesleyan University), Breno de Medeiros (Florida State
University), Roger H. Brown (Rensselaer at Hartford), Cristina Nita-Rotarul (Purdue University), and Jimmy McGibney (Waterford
Institute of Technology).

Thanks also to the many people who provided detailed technical reviews of a single chapter: Richard Outerbridge, Jorge Nakahara,
Jeroen van de Graaf, Philip Moseley, Andre Correa, Brian Bowling, James Muir, Andrew Holt, Décio Luiz Gazzoni Filho, Lucas Ferreira,
Dr. Kemal Bicakci, Routo Terada, Anton Stiglic, Valery Pryamikov, and Yongge Wang.

Joan Daemen kindly reviewed the chapter on AES. Vincent Rijmen reviewed the material on Whirlpool. And Edward F. Schaefer
reviewed the material on simplified AES.

The following people contributed homework problems for the new edition: Joshua Brandon Holden (Rose-Hulman Institute if
Technology), Kris Gaj (George Mason University), and James Muir (University of Waterloo).

Sanjay Rao and Ruben Torres of Purdue developed the laboratory exercises that appear in the instructor's supplement. The following
people contributed project assignments that appear in the instructor's supplement: Henning Schulzrinne (Columbia University); Cetin
Kaya Koc (Oregon State University); and David Balenson (Trusted Information Systems and George Washington University).

Finally, | would like to thank the many people responsible for the publication of the book, all of whom did their usual excellent job. This
includes the staff at Prentice Hall, particularly production manager Rose Kernan; my supplements manager Sarah Parker; and my new
editor Tracy Dunkelberger. Also, Patricia M. Daly did the copy editing.

With all this assistance, little remains for which | can take full credit. However, | am proud to say that, with no help whatsoever, | selected
all of the quotations.

e prey NExT

" prey wEXT

[Page 1]

Chapter 0. Reader's Guide

b.l Outline of this Bookj

Subject Matte

b.3 Internet and Web Resources]

l/\leb Sites for This Bookj

Dther Web Siteg
lgSENET NewsgrougJ

[Page 2]

The art of war teaches us to rely not on the likelihood of the enemy's not coming, but on our own readiness to

receive him; not on the chance of his not attacking, but rather on the fact that we have made our position
unassailable.

The Art of War, Sun Tzu

This book, with its accompanying Web site, covers a lot of material. Here we give the reader an overview.

" prey wEXT

NEXT B

[Page 2 (continued)]

0.1. Qutline of this Book

Following an introductory chapter, the book is organized into four parts:

: Symmetric Ciphers: Provides a survey of symmetric encryption, including classical and modern
algorithms. The emphasis is on the two most important algorithms, the Data Encryption Standard (DES) and the
Advanced Encryption Standard (AES). This part also addresses message authentication and key management.

: Public-Key Encryption and Hash Functions: Provides a survey of public-key algorithms, including
RSA (Rivest-Shamir-Adelman) and elliptic curve. It also covers public-key applications, including digital signatures
and key exchange.

: Network Security Practice: Examines the use of cryptographic algorithms and security protocols to
provide security over networks and the Internet. Topics covered include user authentication, e-mail, IP security,
and Web security.

: System Security: Deals with security facilities designed to protect a computer system from security
threats, including intruders, viruses, and worms. This part also looks at firewall technology.

Many of the cryptographic algorithms and network security protocols and applications described in this book have been specified as
standards. The most important of these are Internet Standards, defined in Internet RFCs (Request for Comments), and Federal
Information Processing Standards (FIPS), issued by the National Institute of Standards and Technology (NIST). discusses
the standards-making process and lists the standards cited in this book.

NEXT B

NEXT B

0.2. Roadmap

Subject Matter

[Page 2 (continued)]

The material in this book is organized into three broad categories:

Cryptology: This is the study of techniques for ensuring the secrecy and/or authenticity of information. The two
main branches of cryptology are cryptography, which is the study of the design of such techniques; and
cryptanalysis, which deals with the defeating such techniques, to recover information, or forging information that

will be accepted as authentic.

[Page 3]

Network security: This area covers the use of cryptographic algorithms in network protocols and network

applications.

Computer security: In this book, we use this term to refer to the security of computers against intruders (e.g.,
hackers) and malicious software (e.g., viruses). Typically, the computer to be secured is attached to a network and

the bulk of the threats arise fro

m the network.

The first two parts of the book deal with two distinct cryptographic approaches: symmetric cryptographic algorithms and public-key, or
asymmetric, cryptographic algorithms. Symmetric algorithms make use of a single shared key shared by two parties. Public-key
algorithms make use of two keys: a private key known only to one party, and a public key, available to other parties.

Topic Ordering

This book covers a lot of material. For the instructor or reader who wishes a shorter treatment, there are a number of opportunities.

To thoroughly cover the material in the first two parpters should be read in sequence. With the exception of the Advanced

Encryption Standard (AES), none of the material in

necessary to have some understanding of finite_field
numbers and modular arithmetic. Accordingly,
on AES. Thus, if Chapter § is skipped, it is safe to skip

Chapter 4 cove

Part Ong requires any special mathematical background. To understand AES, it is
0 turn, an understanding of finite fields requires a basic background in

prime
all of these mathematical preliminaries just prior to their use i

hapter 4 as well.

introduces some concepts that are useful in later chapters o. However, for the reader whose sole interest is

contemporary cryptography, this_.chapter can be quickly skimmg

and AES, which are covered in [Chapters

andf, respectively.|

ed, The fwo most important symmetric cryptographic algorithms are DES
covers two other interesting algorithms, both of which enjoy

commercial use. This chapter can be safely skipped if these algorithms are not of interest.

For , the only additi

The reader who has skipped [Chapters 4 and

The two most widely used general-purpose public-key algorithms are RSA
The reader may wish to skip the material on elliptic curve cryptography in

and CMAC are of lesser importance.

atical background that is needed is in the area of number th@y, which is covered i.

should first review the material onSections 4.1 through

iptic curve, with RSA enjoying much wider acceptance.
, at least on a first reading. InChapter 14, Whirlpool

lDart Threel andlDart Founl are relati independent of each other and can be read in either order. Both parts assume a basic
understanding of the material in Parts Ong and [Twd.

" prev | NEXT

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

" prey wEXT

[Page 4]

0.3. Internet and Web Resources

There are a number of resources available on the Internet and the Web to support this book and to help one keep up with
developments in this field.

Web Sites for This Book

A special Web page has been set up for this book at lNiIIiamStal|inqs.com/Crvpto/Crypto4e.html. The site includes the following:

® Useful Web sites: There are links to other relevant Web sites, organized by chapter, including the sites listed in this section
and throughout this book.

® rrata sheet: An errata list for this book will intaj dated as needed. Please e-mail any errors that you spot to
me. Errata sheets for my other books are at WilliamStallings.co

® Figures: All of the figures in this book in PDF (Adobe Acrobat) format.
® Tables: All of the tables in this book in PDF format.
® Sjides: A set of PowerPoint slides, organized by chapter.

® Cryptography and network security courses: There are links to home pages for courses based on this book; these pages
may be useful to other instructors in providing ideas about how to structure their course.

| also maintain the Computer Science Student Resource Site, atlNiIIiamStaIIinqs.com/StudentSupport.html. The purpose of this site
is to provide documents, information, and links for computer science students and professionals. Links and documents are organized
into four categories:

® \ath: Includes a basic math refresher, a gueuing analysis primer, a number system primer, and links to numerous math sites

® ow-to: Advice and guidance for solving homework problems, writing technical reports, and preparing technical presentations

Research resources: Links to important collections of papers, technical reports, and bibliographies

Miscellaneous: A variety of other useful documents and links

Other Web Sites

There are numerous Web sites that provide information related to the topics of this book. In subsequent chapters, pointers to specific
Web sites can be found in the Recommended Reading and Web Sites section. Because the addresses for Web sites tend to change
frequently, | have not included URLs in the book. For all of the Web sites listed in the book, the appropriate link can be found at this
book's Web site. Other links not mentioned in this book will be added to the Web site over time.

http://WilliamStallings.com/Crypto/Crypto4e.html
http://WilliamStallings.com
http://WilliamStallings.com/StudentSupport.html

[Page 5]

USENET Newsgroups

A number of USENET newsgroups are devoted to some aspect of cryptography or network security. As with virtually all USENET
groups, there is a high noise-to-signal ratio, but it is worth experimenting to see if any meet your needs. The most relevant are

® sci.crypt.research: The best group to follow. This is a moderated newsgroup that deals with research topics; postings must
have some relationship to the technical aspects of cryptology.

® sci.crypt: A general discussion of cryptology and related topics.

® sci.crypt.random-numbers: A discussion of cryptographic-strength random number generators.
° alt.security: A general discussion of security topics.

® comp.security.misc: A general discussion of computer security topics.

® comp.security.firewalls: A discussion of firewall products and technology.

° comp.security.announce: News, announcements from CERT.

® comp.risks: A discussion of risks to the public from computers and users.

® comp.virus: A moderated discussion of computer viruses.

e Py wEXT

[Page 6]

Chapter 1. Introduction

Il.l Security. Trendsl

Il.Z The OSI Security Architecturel

Il.3 Security Attacks]

Passive Attackd

Active Attacks

h.4 Security Serviceg

h.S Security Mechanismg

Il.6 A Model for Network Securit\,l

h.? Recommended Reading and Web Sitesl

Il.8 Key Terms, Review Questions, and Problemsl

ey Termg

Review Questiong

Problemg

NEXT B

[Page 7]

The combination of space, time, and strength that must be considered as the basic elements of this theory
of defense makes this a fairly complicated matter. Consequently, it is not easy to find a fixed point of departure.

On War, Carl Von Clausewitz

Key Points

® The OSI (open systems interconnection) security architecture provides a systematic framework for defining
security attacks, mechanisms, and services.

® kecurity attackdare classified as either passive attacks, which include unauthorized reading of a message

of file and traffic analysis; and active attacks, such as modification of messages or files, and denial of
service.

® A Isecurity mechanisnl is any process (or a device incorporating such a process) that is designed to
detect, prevent, or recover from a security attack. Examples of mechanisms are encryption algorithms,
digital signatures, and authentication protocols.

® include authentication, access control, data confidentiality, data integrity,

nonrepudiation, and availability.

The requirements of information security within an organization have undergone two major changes in the last several decades.
Before the widespread use of data processing equipment, the security of information felt to be valuable to an organization was provided
primarily by physical and administrative means. An example of the former is the use of rugged filing cabinets with a combination lock for
storing sensitive documents. An example of the latter is personnel screening procedures used during the hiring process.

With the introduction of the computer, the need for automated tools for protecting files and other information stored on the computer
became evident. This is especially the case for a shared system, such as a time-sharing system, and the need is even more acute for
systems that can be accessed over a public telephone network, data network, or the Internet. The generic name for the collection of tools
designed to protect data and to thwart hackers is computer security.

The second major change that affected security is the introduction of distributed systems and the use of networks and communications
facilities for carrying data between terminal user and computer and between computer and computer. Network security measures are
needed to protect data during their transmission. In fact, the term network security is somewhat misleading, because virtually all
business, government, and academic organizations interconn their data processing equipment with a collection of interconnected

networks. Such a collection is often referred to as an internet, L and the terminternet security is used.

[we use the term internet, with a lowercase "i," to refer to any interconnected collection of networks. A corporate
intranet is an example of an internet. The Internet with a capital "I" may be one of the facilities used by an
organization to construct its internet.

[Page 8]

There are no clear boundaries between these two forms of security. For example, one of the most publicized types of attack on
information systems is the computer virus. A virus may be introduced into a system physically when it arrives on a diskette or optical disk
and is subsequently loaded onto a computer. Viruses may also arrive over an internet. In either case, once the virus is resident on a

computer system, internal computer security tools are needed to detect and recover from the virus.

This book focuses on internet security, which consists of measures to deter, prevent, detect, and correct security violations that involve
the transmission of information. That is a broad statement that covers a host of possibilities. To give you a feel for the areas covered in
this book, consider the following examples of security violations:

1. User A transmits a file to user B. The file contains sensitive information (e.g., payroll records) that is to be protected from
disclosure. User C, who is not authorized to read the file, is able to monitor the transmission and capture a copy of the file
during its transmission.

2. A network manager, D, transmits a message to a computer, E, under its management. The message instructs computer E to
update an authorization file to include the identities of a number of new users who are to be given access to that computer.
User F intercepts the message, alters its contents to add or delete entries, and then forwards the message to E, which
accepts the message as coming from manager D and updates its authorization file accordingly.

3. Rather than intercept a message, user F constructs its own message with the desired entries and transmits that message to E
as if it had come from manager D. Computer E accepts the message as coming from manager D and updates its
authorization file accordingly.

4. An employee is fired without warning. The personnel manager sends a message to a server system to invalidate the
employee's account. When the invalidation is accomplished, the server is to post a notice to the employee's file as
confirmation of the action. The employee is able to intercept the message and delay it long enough to make a final access to
the server to retrieve sensitive information. The message is then forwarded, the action taken, and the confirmation posted.
The employee's action may go unnoticed for some considerable time.

5. A message is sent from a customer to a stockbroker with instructions for various transactions. Subsequently, the investments
lose value and the customer denies sending the message.

Although this list by no means exhausts the possible types of security violations, it illustrates the range of concerns of network security.

[Page 9]
Internetwork security is both fascinating and complex. Some of the reasons follow:

1. Security involving communications and networks is not as simple as it might first appear to the novice. The requirements
seem to be straightforward; indeed, most of the major requirements for security services can be given self-explanatory
one-word labels: confidentiality, authentication, nonrepudiation, integrity. But the mechanisms used to meet those
requirements can be quite complex, and understanding them may involve rather subtle reasoning.

2. In developing a particular security mechanism or algorithm, one must always consider potential attacks on those security
features. In many cases, successful attacks are designed by looking at the problem in a completely different way, therefore
exploiting an unexpected weakness in the mechanism.

3. Because of point 2, the procedures used to provide particular services are often counterintuitive: It is not obvious from the
statement of a particular requirement that such elaborate measures are needed. It is only when the various countermeasures
are considered that the measures used make sense.

4. Having designed various security mechanisms, it is necessary to decide where to use them. This is true both in terms of
physical placement (e.g., at what points in a network are certain security mechanisms needed) and in a logical sense [e.g., at
what layer or layers of an architecture such as TCP/IP (Transmission Control Protocol/Internet Protocol) should mechanisms
be placed].

5. Security mechanisms usually involve more than a particular algorithm or protocol. They usually also require that participants
be in possession of some secret information (e.g., an encryption key), which raises questions about the creation, distribution,
and protection of that secret information. There is also a reliance on communications protocols whose behavior may
complicate the task of developing the security mechanism. For example, if the proper functioning of the security mechanism
requires setting time limits on the transit time of a message from sender to receiver, then any protocol or network that
introduces variable, unpredictable delays may render such time limits meaningless.

Thus, there is much to consider. This chapter provides a general overview of the subject matter that structures the material in the
remainder of the book. We begin with a general discussion of network security services and mechanisms and of the types of attacks they

are designed for. Then we develop a general overall model within which the security services and mechanisms can be viewed.

e Py wEXT

K==1 ExT

[Page 9 (continued)]

1.1. Security Trends

In 1994, the Internet Architecture Board (IAB) issued a report entitled "Security in the Internet Architecture" (RFC 1636). The report stated
the general consensus that the Internet needs more and better security, and it identified key areas for security mechanisms. Among these
were the need to secure the network infrastructure from unauthorized monitoring and control of network traffic and the need to secure
end-user-to-end-user traffic using authentication and encryption mechanisms.

[Page 10]

These concerns are fully justified. ?: ff?f'ffation, consider the trends reported by the Computer Emergency Response Team (CERT)
Coordination Center (CERT/CC). Eigure 1.1s| shows the trend in Internet-related vulnerabilities reported to CERT over a 10-year period.
These include security weaknesses in the 0] i stems of attached computers (e.g., Windows, Linux) as well as vulnerabilities in
Internet routers and other network devices. Fi:ure 1.13 shows the number of security-related incidents reported to CERT. These include
denial of service attacks; IP spoofing, in which intruders create packets with false IP addresses and exploit applications that use
authentication based on IP; and various forms of eavesdropping and packet sniffing, in which attackers read transmitted information,

including logon information and database contents.

[Page 11]

Figure 1.1. CERT Statistics
(This item is displayed on page 10 in the print version)

lView full size image|

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

45001

AN}

SO0

25(M)

200K}

1 50K}

1 KE

S(N)

1995 1996 1997 1998 1999 2000} 2001 2002 201003 2004
{a} Vulnerahilities reported

140,000
130,000
120,000
110000
LD
Q0,000
RO
TOLOO0
AL
50,000
40,000
30,000
20,000
10,000

. * L=
1995 1996 1997 1995 1999 2000 20001 2002 2003

(b} Incidents reported

Over time, the attacks on the Internet and Internet-attached systems have grown more sophisticated while the amount of skill and

knowledge required to mount an attack has declined (Eigure 1.4). Attacks have become more automated and can cause greater amounts
of damage.

" prey wEXT

[Page 49 (continued)]

2.3. Transposition Techniques

All the techniques examined so far involve the substitution of a ciphertext symbol for a plaintext symbol. A very different kind of mapping
is achieved by performing some sort of permutation on the plaintext letters. This technique is referred to as a transposition cipher.

The simplest such cipher is the rail fence technique, in which the plaintext is written down as a sequence of diagonals and then read off
as a sequence of rows. For example, to encipher the message "meet me after the toga party" with a rail fence of depth 2, we write the
following:

[Page 50]

mematrhtgpry
etefeteoaat

The encrypted message is

MEMATRHTGPRYETEFETEOAAT

This sort of thing would be trivial to cryptanalyze. A more complex scheme is to write the message in a rectangle, row by row, and read
the message off, column by column, but permute the order of the columns. The order of the columns then becomes the key to the
algorithm. For example,

Key: 4312567

Plaintext: attackp
ostpone
duntilt

woamxyz
Ciphertext: TTNAAPTMTSUOAODWCOIXKNLYPETZ

A pure transposition cipher is easily recognized because it has the same letter frequencies as the original plaintext. For the type of
columnar transposition just shown, cryptanalysis is fairly straightforward and involves laying out the ciphertext in a matrix and playing
around with column positions. Digram and trigram frequency tables can be useful.

The transposition cipher can be made significantly more secure by performing more than one stage of transposition. The result is a more
complex permutation that is not easily reconstructed. Thus, if the foregoing message is reencrypted using the same algorithm,

Key: 4312567
Input: ttnaapt
mtsuoao
dwcoixk
nlypetz
Output: NSCYAUOPTTWLTMDNAOIEPAXTTOKZ

To visualize the result of this double transposition, designate the letters in the original plaintext message by the numbers designating
their position. Thus, with 28 letters in the message, the original sequence of letters is

0102030405060708091011121314
1516 17 18 19 20 21 22 23 24 25 26 27 28

[Page 51]
After the first transposition we have

0310172404 1118250209 16 23 01 08
1522051219 26 06 13 20 27 07 14 21 28

which has a somewhat regular structure. But after the second transposition, we have

170905272416 12 07 10 02 22 20 03 25
151304231914 1101 26 21 18 08 06 28

This is a much less structured permutation and is much more difficult to cryptanalyze.

" prey wEXT

NEXT B

2.4. Rotor Machines

[Page 51 (continued)]

The example just given suggests that multiple stages of encryption can produce an algorithm that is significantly more difficult to

cryptanalyze. This is as true of substitution ciphers as it is of transposition ciphers. Before the introduction of@ES, the most important

application of the principle of multiple stages of encryption was a class of systems known as rotor machines:

The basic principle of the rotor machine is illustrated in . The machine consists of a set of independently rotating cylinders

B Machines based on the rotor principle were used by both Germany (Enigma) and Japan (Purple) in World War 1.

The breaking of both codes by the Allies was a significant factor in the war's outcome.

through which electrical pulses can flow. Each cylinder has 26 input pins and 26 output pins, with internal wiring that connects each input
pin to a unique output pin. For simplicity, only three of the internal connections in each cylinder are shown.

Figure 2.7. Three-Rotor Machine with Wiring Represented by Numbered Contacts
(This item is displayed on page 52 in the print version)

lView full size image|

Imrectiom of motkon

'

- A 24 21 2t 20 | g
= 25—t 3 | | 2 15
Sl] [15 - (13 i 26
131 I i | 4 4 1T
|2 1% 4 15 5 4—20
Fl3 L 5 i (1] jried
Cif4 14 4] 14 T 1
HIS =26 |7 —= 12| |& 3
s X0 b 4 23 L 13
17 i L 5 [} 10
K|# 16 4} 16 § 4
I.|% T 11 : 2]
LS R o] 12 ——22 13— i
o A 4 13 14 i4 24
i¥12 11 14 11 15 o
M3 5 15 18 3 12
14 jird 43 25 17 25
k|15 ol ha | 424 [z 18
S116 12] 13 i 1%

T 17 23 [= 1 i
upis I8 a0 i[1] 5| 15
Ll B 2 21 ’ s 21
W | 20 b da= 21) z
X|21 (1] 23 iy 9 T
Y|z w3 24 26 x5 |
£33 13 L] 17 s 14
Fasi molor Medivm rofor Sl podanr

{a) Imitial sating

=

Mo E D

[

R

- A
= B
-

¥

R e B Fal Rl -l S N

IHreciEon of mojsen

|

-

23— 13 |28 —20] |1 — &|A
24 4 | I | s 18| B
5= 3 > f £] 26
26 15 3 4 4 = T N =
I | 4 15 5 20| E
2 1% 5 i (] 22 F

i ml s 14 T 10| i

4 14 7 12 b A H

5 20 b 23 9 = 13] 1|

f 20 i I.-"'_" 5 [11 |

7 # 4] i [1] il 4] K

R’ It Il 4 i2 a3l 1

b T i2 22 K] 5 M
10 22 13 19 14 e Y
11 F 14 1 15 — O)
12 11 15 18 it 12 r
13 s| |1s || ~25] |17~ | 25w
14 i 17 24 I8 165 K
15 L] I8 13 1% 19 5
i3 1z 9 T a0]
17 23 aih =1 i =1 15 U
13 18 21 B 22 21 ¥
19 2 X2 21 23 2w
an | —2% 2 X | Tl x
a1 (] 4 26| |2 | I
3 eyl |2— 17| |35 14]
Fasi rotor Medinm roww Sl rodionr

(bl Senng sicr oms keysinode

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

If we associa ach input and output pin with a letter of the alphabet, then a single cylinder defines a monoalphabetic substitution. For
example, in , if an operator depresses the key for the letter A, an electric signal is applied to the first pin of the first cylinder and
flows through the internal connection to the twenty-fifth output pin.

Consider a machine with a single cylinder. After each input key is depressed, the cylinder rotates one position, so that the internal
connections are shifted accordingly. Thus, a different monoalphabetic substitution cipher is defined. After 26 letters of plaintext, the
cylinder would be back to the initial position. Thus, we have a polyalphabetic substitution algorithm with a period of 26.

A single-cylinder system is trivial and does not present a formidable cryptanalytic task. The power of the rotor machine is in the use of
multiple cylinders, in which the output pins of one cylinder are connected to the input pins of the next. shows a three-cylinder

system. The left half of the figure shows a position in which the input from the operator to the first pin (plaintext letter a) is routed through
the three cylinders to appear at the output of the second pin (ciphertext letter B).

With multiple cylinders, the one closest to the operator input rotates one pin position with each keystroke. The right half of
shows the system's configuration after a single keystroke. For every complete rotation of the inner cylinder, the middle cylinder rotates
one pin position. Finally, for every complete rotation of the middle cylinder, the outer cylinder rotates one pin position. This is the same
type of operation seen with an odometer. The result is that there are 26 x 26 x 26 = 17,576 different substitution alphabets used before the
system repeats. The addition of fourth and fifth rotars results in periods of 456,976 and 11,881,376 letters, respectively. As David Kahn
eloquently put it, referring to a five-rotor machine [KAHN9{, page 413]:

[Page 53]

A period of that length thwarts any practical possibility of a straightforward solution on the basis of letter frequency.
This general solution would need about 50 letters per cipher alphabet, meaning that all five rotors would have to go
through their combined cycle 50 times. The ciphertext would have to be as long as all the speeches made on the
floor of the Senate and the House of Representatives in three successive sessions of Congress. No cryptanalyst is
likely to bag that kind of trophy in his lifetime; even diplomats, who can be as verbose as politicians, rarely scale
those heights of loquacity.

The significance of the rotor_machine today is that it points the way to the most widely used cipher ever: the Data Encryption Standard
(DES). This we examine in Chapter 3.

& prcy | wexT

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

2.5. Steganography

NEXT B

[Page 53 (continued)]

We conclude with a discussion of a technique that is, strictly speaking, not encryption, namely, steganography.

A plaintext message may be hidden in one of two ways. The methods of steganography conceal the existence of

the methods of cryptography render the message unintelligible to outsiders by various transformations of the text

D
| —

A simple form of steganography, but one that is time-consuming to construct, is one in which an arrangement of words or letters within an

aI message. For example, the sequence of first letters of each word of the overall message
_i

apparently innocuous text spellg

spells out the hidden message. |
the hidden message.

ne message, whereas

Janographyl was an obsolete word that was revived by David Kahn and given the meaning it has today

gure 2.4 shows an example in which a subset of the words of the overall message is used to convey

Figure 2.8. A Puzzle for Inspector Morse

(This item is displayed on page 54 in the print version)

(From The Silent World of Nicholas Quinn,by Colin Dexter)

Ird March

Dear George,

Greetings o all 2+ Oxford. Many *hanks for your
letrer and for the Summer examination package.
All Entry Forms and Fees Forms should be ready
for final despatch +o +he Syndicate by Friday
20+h or at the very latest, 'm told. by the 115
Admin has improved herey, though Yhere's room
for improvement still; just give us all ¥wo or three
more yvears and we'll really show you! Please
don' et these wretched 16+ proposals destroy
your pasis O and A pattern. Certainly this

sort of change, if implemented immediately,
would bring chaos.

Sincerely yours.

Various other techniques have been used historically; some examples are the following [MYER91]:

® Character marking: Selected letters of printed or typewritten text are overwritten in pencil. The marks are ordinarily not
visible unless the paper is held at an angle to bright light.

® |hvisible ink: A number of substances can be used for writing but leave no visible trace until heat or some chemical is
applied to the paper.

[Page 54]
® pip punctures: Small pin punctures on selected letters are ordinarily not visible unless the paper is held up in front of a light.

° Typewriter correction ribbon: Used between lines typed with a black ribbon, the results of typing with the correction tape
are visible only under a strong light.

Although these techniques may seem archaic, they have contemporary equivalents. [WAYN93] proposes hiding a message by using the
least significant bits of frames on a CD. For example, the Kodak Photo CD format's maximum resolution is 2048 by 3072 pixels, with
each pixel containing 24 bits of RGB color information. The least significant bit of each 24-bit pixel can be changed without greatly
affecting the quality of the image. The result is that you can hide a 2.3-megabyte message in a single digital snapshot. There are now a
number of software packages available that take this type of approach to steganography.

Steganography has a number of drawbacks when compared to encryption. It requires a lot of overhead to hide a relatively few bits of
information, although using some scheme like that proposed in the preceding paragraph may make it more effective. Also, once the
system is discovered, it becomes virtually worthless. This problem, too, can be overcome if the insertion method depends on some sort

of key (e.g., see Problem 2.17). Alternatively, a message can be first encrypted and then hidden using steganography.

The advantage of steganography is that it can be employed by parties who have something to lose should the fact of their secret
communication (not necessarily the content) be discovered. Encryption flags traffic as important or secret or may identify the sender or
receiver as someone with something to hide.

e Py wEXT

" prey wEXT

[Page 55]

2.6. Recommended Reading and Web Sites

For anyone interested in the history of code making and code breaking, the book to read [KAHN9{]. Although it is concerned more with
the impact of cryptolo its technical development, it is an excellent introduction and makes for exciting reading. Another excellent
historical account is [ISINGQ .

A short treatment covering the techniques of this chapter, ref_@. There are many books that cover classical
cryptography in a more technical vein; one of the best is [SINK66]. [KORN9{] is a delightful book to read and contains a lengthy sectign
on classical techniques. Two cryptography books that contain a fair amount of technical material on classical techniques are]
and [NICH99]. For the truly interested reader, the two-volume [NICH9€] covers numerous classical ciphers in detail and provides many
ciphertexts to be cryptanalyzed, together with the solutions.

An excellent treatment of rotor machines, including a discussion of their cryptanalysis is found in [KUMA97].

[KATZ0(] provides a thorough treatment of steganography. Another good source is [WAYN9{].

ARD74 Gardner, M. Codes, Ciphers, and Secret Writing New York: Dover, 1972.

ARRO] Garrett, P.Making, Breaking Codes: An Introduction to Cryptology. Upper Saddle River, NJ: Prentice
Hall, 2001.

AHN9{ Kahn, D. The Codebreakers: The Story of Secret Writing. New York: Scribner, 1996.

ATZ0(Katzenbeisser, S., ed. Information Hiding Techniques for Steganography and Digital Watermarking.
Boston: Artech House, 2000.

Korner, T. The Pleasures of Counting. Cambridge, England: Cambridge University Press, 1996.
Kumar, I. Cryptology. Laguna Hills, CA: Aegean Park Press, 1997.

Nichols, R. Classical Cryptography Course. Laguna Hills, CA: Aegean Park Press, 1996.
Nichols, R. ed.ICSA Guide to Cryptography. New York: McGraw-Hill, 1999.

SING99 Singh, S.:The Code Book: The Science of Secrecy from Ancient Egypt to Quantum Cryptography.
New York: Anchor Books, 1999.

SINK64 Sinkov, A.Elementary Cryptanalysis: A Mathematical Approach. Washington, DC: The Mathematical
Association of America, 1966.

AYN9[Wayner, P. Disappearing Cryptography. Boston: AP Professional Books, 1996.

| Recommended Web Sites

® American Cryptogram Association: An association of amateur cryptographers. The Web site includes information and links
to sites concerned with classical cryptography.

[Page 56]
Crypto Corner: Simon Singh's Web site. Lots of good information, plus interactive tools for learning about cryptography.

L Steganography: Good collection of links and documents.

e Py wEXT

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

" prey wEXT

[Page 56 (continued)]

2.7. Key Terms, Review Questions, and Problems

Key Terms

block ciphe

prute-force attacl

aesar ciphe

phe

iphertex

l:omputationallv securel

I:onventional encrvptiorl

ryptanalysig

ryptographic syste!

ryptography

ryptolog

Peciphering

decryptio

Enciphering

Encryptio

ill ciphe

onoalphabetic ciphe

IEHHIHIHEI

pne-time pad

plaintex

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

Playfair ciphe!

Igolyalghabetic cigheJ

rail fence cipher

ingle-key encryptio

Steganography

mmetric encryptio

ransposition ciphe

anonditionally securel

igenere ciphel

Review Questions

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

What are the essential ingredients of a symmetric cipher?

What are the two basic functions used in encryption algorithms?

How many keys are required for two people to communicate via a cipher?

What is the difference between a block cipher and a stream cipher?

What are the two general approaches to attacking a cipher?

List and briefly define types of cryptanalytic attacks based on what is known to the attacker.

What is the difference between an unconditionally secure cipher and a computationally secure cipher?

Briefly define the Caesar cipher.

Briefly define the monoalphabetic cipher.

Briefly define the Playfair cipher.

What is the difference between a monoalphabetic cipher and a polyalphabetic cipher?

What are two problems with the one-time pad?

What is a transposition cipher?

2.14 What is steganography?

Problems

2.1 A generalization of the Caesar cipher, knows as the affine Caesar cipher, has the following form: For each
plaintext letter p, substitute the ciphertext letter C:

C = E([a, b], p) = (ap + b) mod 26

[Page 57]

A basic requirement of any encryption algorithm is that it be one-to-one. That is, if p i g, then E(, p) #
E(k, g). Otherwise, decryption is impossible, because more than one plaintext character maps into the same
ciphertext character. The affine Caesar cipher is not one-to-one for all values of a. For example, fora = 2 and
b =3, then E([a, b], 0) = E(fa, b], 13) = 3.

a. Are there any limitations on the value ofb? Explain why or why not.

b. Determine which values ofa are not allowed.

c. Provide a general statement of which values ofa are and are not allowed. Justify your statement.

2.2 How many one-to-one affine Caesar ciphers are there?

2.3 A ciphertext has been generated with an affine cipher. The most frequent letter of the ciphertext is 'B', and
the second most frequent letter of the ciphertext is 'U'. Break this code.

2.4 The following ciphertext was generated using a simple substitution algorithm:

o F | sosyesasaeyb rbeoswas] aneopssjon e |

ey 1 46889670y as5y5 | 2b(a056+2(5+- 088"

a069265))6 | &y Fradaggen1Choasoanasbrae | asiaaes | szesosres
o oaacbraaeybson 1005

Decrypt this message. Hints:

1. Asyou know, the most frequently occurring letter in English is e. Therefore, the first or second (or
perhaps third?) most common character in the message is likely to stand for e. Also, e is often
seen in pairs (e.g., meet, fleet, speed, seen, been, agree, etc.). Try to find a character in the
ciphertext that decodes to e.

2. The most common word in English is “the." Use this fact to guess the characters that stand for t

and h.
3. Decipher the rest of the message by deducing additional words.

Warning: The resulting message is in English but may not make much sense on a first reading.

25 One way to solve the key distribution problem is to use a line from a book that both the sender and the
receiver possess. Typically, at least in spy novels, the first sentence of a book serves as the key. The
particular scheme discussed in this problem is from one of the best suspense novels involving secret codes,
Talking to Strange Men, by Ruth Rendell. Work this problem without consulting that book!

Consider the following message:

SIDKHKDM AF HCRKIABIE SHIMC KD LFEAILA

This ciphertext was produced using the first sentence of The Other Side of Silence (a book about the spy
Kim Philby):

The snow lay thick on the steps and the snowflakes driven by the wind looked black in
the headlights of the cars.

A simple substitution cipher was used.
a. What is the encryption algorithm?
b. How secure is it?

c. To make the key distribution problem simple, both parties can agree to use the first or last
sentence of a book as the key. To change the key, they simply need to agree on a new book. The
use of the first sentence would be preferable to the use of the last. Why?

2.6 In one of his cases, Sherlock Holmes was confronted with the following message.

534 C21312736314172141
DOUGLAS 109 293 5 37 BIRLSTONE

26 BIRLSTONE 9 127 171

Although Watson was puzzled, Holmes was able immediately to deduce the type of cipher. Can you?

[Page 58]

2.7 This problen B i (public domain). A copy is
available at ftp://shell.shore.net/members/w/s/ws/Support/Crypto/FM-31-4.pd

a. Using the two keys (memory words) cryptographic and network security, encrypt the following
message:

Be at the third pillar from the left outside the lyceum theatre tonight at seven. If you are distrustful

ftp://shell.shore.net/members/w/s/ws/Support/Crypto/FM-31-4.pdf

2.8

2.9

2.10

bring two friends.

Make reasonable assumptions about how to treat redundant letters and excess letters in the
memory words and how to treat spaces and punctuation. Indicate what your assumptions are.
Note: The message is from the Sherlock Holmes novel,The Sign of Four.

b. Decrypt the ciphertext. Show your work.

c. Comment on when it would be appropriate to use this technique and what its advantages are.

A disadvantage of the general monoalphabetic cipher is that both sender and receiver must commit the
permuted cipher sequence to memory. A common technique for avoiding this is to use a keyword from which
the cipher sequence can be generated. For example, using the keyword CIPHER, write out the keyword
followed by unused letters in normal order and match this against the plaintext letters:

plain: abcdefghijklmnopqrstuvwxyz
cipher CIPHERABDFGJKLMNOQSTUVWXYZ

If it is felt that this process does not produce sufficient mixing, write the remaining letters on successive lines
and then generate the sequence by reading down the columns:

CIPHER
ABDFGJ
KLMNOQ
STUVWX
YZ

This yields the sequence

CAKSYIBLTZPDMUHFNVEGOWRJQX

Such a system is used in the example in (the one that begins "it was disclosed yesterday").
Determine the keyword.

When the PT-109 American patrol boat, under the command of Lieutenant John F. Kennedy, was sunk by a
Japanese destroyer, a message was received at an Australian wireless station in Playfair code:

KXJEY UREBE ZWEHE WRYTU HEYFS
KREHE GOYFI WTTTU OLKSY CAJPO
BOTEI ZONTX BYBNT GONEY CUZWR
GDSON SXBOU YWRHE BAAHY USEDQ

The key used wasroyal new zealand navy. Decrypt the message. Translate TT into tt.

a. Construct a Playfair matrix with the keylargest.

b. Construct a Playfair matrix with the key occurrence. Make a reasonable assumption about how to
treat redundant letters in the key.

211
a. Using this Playfair matrix

M F H 113 K

U N ¢} P Q

z \% w X Y

E L A R G

D S T B C
[Page 59]

encrypt this message:
Must see you over Cadogan West. Coming at once.

Note: The message is from the Sherlock Holmes story, The Adventure of the Bruce-Partington
Plans.

b. Repeat part (a) using the Playfair matrix from Problem 2.10a.

¢. How do you account for the results of this problem? Can you generalize your conclusion?

2.12
a. How many possible keys does the Playfair cipher have? Ignore the fact that some keys might

produce identical encryption results. Express your answer as an approximate power of 2.

b. Now take into account the fact that some Playfair keys produce the same encryption results. How
many effectively unique keys does the Playfair cipher have?

2.13 What substitution system results when we use a 25 x 1 Playfair matrix?

2.14
a. Decipher the message YITIP GWJOW FAQTQ XCSMA ETSQU SQAPU SQGKC PQTYJ using
A 1
the Hill cipher with the inverse key 2 ? . Show your calculations and the result.
b. Decipher the message MWALO LIAIW WTGBH JNTAK QZJKA ADAWS SKQKU AYARN
A)
CSODN IIAES OQKJY B using the Hill cipher with the inverse key 2 | ? . Show
your calculations and the result.
2.15

a. Encrypt the message "meet me at the usual place at ten rather than eight oclock” using the Hill

9 4
5

cipher with the key ™™ . Show your calculations and the result.

2.16

2.17

2.18

2.19

b. Show the calculations for the corresponding decryption of the ciphertext to recover the original
plaintext.

We have shown that the Hill cipher succumbs to a known plaintext attack if sufficient plaintext-ciphertext pairs
are provided. It is even easier to solve the Hill cipher if a chosen plaintext attack can be mounted. Describe
such an attack.

a b

It can be shown that the Hill cipher with the matrix ¢ ﬂr requires that (ad bc) is relatively prime to
26; that is the only common positive factor of (ad bc) and 26 is 1. Thus, if (ad bc) = 13 or is even, the matrix
is not allowed. Determine the number of different (good) keys there are for a 2 x 2 Hill cipher without counting
them one by one, using the following steps:

a. Find the number of matrices whose determinant is even because one or both rows are even. (A
row is "even" if both entries in the row are even.)

b. Find the number of matrices whose determinant is even because one or both columns are even.
(A column is "even" if both entries in the column are even.)

c. Find the number of matrices whose determinant is even because all of the entries are odd.
d. Taking into account overlaps, find the total number of matrices whose determinant is even.

e. Find the number of matrices whose determinant is a multiple of 13 because the first column is a
multiple of 13.

f. Find the number of matrices whose determinant is a multiple of 13 where the first column is not a
multiple of 13 but the second column is a multiple of the first modulo 13.

g. Find the total number of matrices whose determinant is a multiple of 13.

h. Find the number of matrices whose determinant is a multiple of 26 because they fit case (a) and
(e). (b) and (e). (c) and (e). (a) and (f). And so on ...

i. Find the total number of matrices whose determinant is neither a multiple of 2 nor a multiple of 13.

Using the Vigeneére cipher, encrypt the word "explanation" using the keyeg.

[Page 60]

This problem explores the use of a one-time pad version of the Vigenére cipher. In this scheme, the key is a
stream of random numbers between 0 and 26. For example, if the key is 3 19 5 ..., then the first letter of
plaintext is encrypted with a shift of 3 letters, the second with a shift of 19 letters, the third with a shift of 5
letters, and so on.

a. Encrypt the plaintext sendmoremoney with the key stream 9017 231521141111289.

b. Using the ciphertext produced in part a, find a key so that the cipher text decrypts to the plaintext

cashnotneeded.

2.20 What is the message embedded in?

2.21 In one of Dorothy Sayers's mysteries, Lord Peter is confronted with the message shown in . He
also discovers the key to the message, which is a sequence of integers:

787656543432112343456567878878765654

3432112343456567878878765654433211234

a. Decrypt the message. Hint: What is the largest integer value?
b. If the algorithm is known but not the key, how secure is the scheme?

c. Ifthe key is known but not the algorithm, how secure is the scheme?

Figure 2.9. A Puzzle for Lord Peter

| *hough+ +o see +the fairies in the
fields, but | saw only the evil elephants
with their plack packs. Woe! how that
sight awed me! The elves danced all
around and about while | heard voices
calling clearly. Ah! how | +ried +o
see=throw off the ugly cloud=-put no plind
eye of a mortal was permitred 1o spy
them. So then came minstrels, having gold
trumpets, harps and drums. These played
very loudly beside me, breaking that spells
So the dream vanished, whereat | thanked
Heaven. | shed many tears pefore the +hin
moon rose upy frail and faint as a sickle of
straw. Now though the Enchan¥er gnash
his +teetrh vainly, vet shall he reyurn as the
Spring rerurns. Ohy wretched man! Hell
gapesy Erepus now lies open. The mouths
of Death wai* on thy end.

Programming Problems

2.22

2.23

2.24

2.25

2.26

2.27

Write a program that can encrypt and decrypt using the general Caesar cipher, also known as an additive

cipher.

Write a program that can encrypt and decrypt using the affine cipher described i .

Write a program that can perform a letter frequency attack on an additive cipher without human intervention.
Your software should produce possible plaintexts in rough order of likelihood. It would be good if your user

interface allowed the user to specify "give me the top 10 possible plaintexts".

[Page 61]

Write a program that can perform a letter frequency attack on any monoalphabetic substitution cipher without
human intervention. Your software should produce possible plaintexts in rough order of likelihood. It would be

good if your user interface allowed the user to specify "give me the top 10 possible plaintexts".

Create software that can encrypt and decrypt using a 2 x 2 Hill cipher.

Create software that can perform a fast known plaintext attack on a Hill cipher, given the dimension m. How

fast are your algorithms, as a function of m?

MNEXT B

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

=3 NEXT B
[Page 62]

Chapter 3. Block Ciphers and the Data Encryption
Standard

lB.l Block Cipher Principles]

b.z The Data Encryption Standard

l3.3 The Strength of Desl

l3.4 Differential and Linear Cryptanalvsisl

b.s Block Cipher Design Princigleé

l3.6 Recommended Readinc]

l3.7 Key Terms, Review Questions, and Problemsl

[Page 63]

All the afternoon Mungo had been working on Stern's code, principally with the aid of the latest messages which
he had copied down at the Nevin Square drop. Stern was very confident. He must be well aware London Central
knew about that drop. It was obvious that they didn't care how often Mungo read their messages, so confident
were they in the impenetrability of the code.

Talking to Strange Men, Ruth Rendell

Key Points

e A is an encryption/decryption scheme in which a block of plaintext is treated as a whole and
used to produce a ciphertext block of equal length.

® Many block ciphers have a Feistel structure. Such a structure consists of a number of identical rounds of
processing. In each round, a substitution is performed on one half of the data being processed, followed by
a permutation that interchanges the two halves. The original key is expanded so that a different key is used
for each round.

® The Data Encryption Standard (DES) has been the most widely used encryption algorithm until recently. It
exhibits the classic Feistel structure. DES uses a 64-bit block and a 56-bit key.

® Two important methods of cryptanalysis are liifferential cryptanalysisl and linear cryptanalysis. DES has
been shown to be highly resistant to these two types of attack.

The objective of this chapter is to illustrate the principles of modern symmetric ciphers. For this purpose, we focus on the most widely
used symmetric cipher: the Data Encryption Standard (DES). Although numerous symmetric ciphers have been developed since the
introduction of DES, and although it is destined to be replaced by the Advanced Encryption Standard (AES), DES remains the most

important such algorithm. Further, a detailed study of DES provides an understanding of the principles used in other symmetric ciphers.
We examine other important symmetric ciphers, including AES, in andf.

This chapter begins with a discussion of the general principles of symmetric block ciphers, which are the type of symmetric ciphers
studied in this book (with the exception of the stream cipher RC4 in [Chapter). Next, we cover full DES. Following this look at a specific
algorithm, we return to a more general discussion of block cipher design.

Compared to public-key ciphers such as RSA, the structure of DES, and most symmetric ciphers, is very complex and cannot be
explained as easily as RSA and similar algorithms. Accordingly, the reader may with to begin with a simplified version of DES, which is
described in Appendix C. This version allows the reader to perform encryption and decryption by hand and gain a good understanding of
the wing of the algorithm details. Classroom experience indicates that a study of this simplified version enhances understanding of

DES. L

(1 However, you may safely skip Appendix C, at least on a first reading. If you get lost or bogged down in the
details of DES, then you can go back and start with simplified DES.

[Page 64]

e prey NExT

K==1 ExT

[Page 64 (continued)]

3.1. Block Cipher Principles

Most symmetric block encryption algorithms in current use are based on a structure referred to as a Feistel block cipher EEIS73]. For that
reason, it is important to examine the design principles of the Feistel cipher. We begin with a comparison of stream ciphers and block
ciphers. Then we discuss the motivation for the Feistel block cipher structure. Finally, we discuss some of its implications.

Stream Ciphers and Block Ciphers

A is one that encrypts a digital data stream one bit gr one byte at a time. Examples of classical stream ciphers are the
autokeyed Vigeneére cipher and the Vernam cipher. A is one in which a block of plaintext is treated as a whole and used to

produce a ciphertext block of equal length. Typically, a block size of 64 or 128 bits is used. Using some of the modes of operation
explained in ‘, a block cipher can be used to achieve the same effect as a stream cipher.

Far more effort has gone into analyzing block ciphers. In general, they seem applicable to a broader range of applications than stream
ciphers. The vast majority of network-based symmetric cryptographic applications make use of block ciphers. Accordingly, the concern in
this chapter, and in our discussions throughout the book of symmetric encryption, will focus on block ciphers.

Motivation for the Feistel Cipher Structure

A block cipher operates on a plaintext block of n bits to produce a ciphertext block ofn bits. There are Zn possible different plaintext blocks
and, for the encryption to be reversible (i.e., for decryption to be possible), each must produce a unique ciphertext block. Such a
transformation is called reversible, or nonsingular. The following examples illustrate nonsingular and singular transformation forn = 2.

Reversible Mapping

Plaintext Ciphertext
00 11
01 10
10 00

11 01

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

Irreversible Mapping

Plaintext Ciphertext
00 11
01 10
10 01
11 01

In the latter case, a ciphertext of 01 could have been produced by one of two plaintext blocks. So if we limit ourselves to reversible

mappings, the number of different transformations is 2",

[Page 65]

illustrates the logic of a general substitution cipher fom = 4. A 4-bit input produces one of 16 possible input states, which is
mapped by the substitution cipher into a unique one of 16 possible output states, each of which is represented by 4 ciphertext bits. The
encryption and decryption mappings can be defined by a tabulation, as shown in This is the most general form of block cipher
and can be used to define any reversible mapping between plaintext and ciphertext. Feistel refers to this as the ideal block cipher,
because it allows for the maximum number of possible encryption mappings from the plaintext block

[Page 66]

Figure 3.1. General n-bit-n-bit Block Substitution (shown with n = 4)
(This item is displayed on page 65 in the print version)

4-bit input

' l | !

4 to 16 decoder
o0 1 2 3 4 5 o6 7 B 9 10 11 12 13 14 15

P A R S Y Y L VI T e o I

EEEEERERENEREREE!

12 13 14 15

11

o 1 2 3 4 5 6 7 8 9 10

16 to 4 encoder

4-bit output

Table 3.1. Encryption and Decryption Tables for Substitution Cipher of Eiéure 3.4
(This item is displayed on page 65 in the print version)

Plaintext Ciphertext
0000 1110
0001 0100
0010 1101
0011 0001
0100 0010
0101 1111
0110 1011
0111 1000
1000 0011
1001 1010
1010 0110
1011 1100
1100 0101
1101 1001
1110 0000
1111 0111
0000 1110
0001 0011
0010 0100
0011 1000
0100 0001
0101 1100
0110 1010
0111 1111
1000 0111
1001 1101
1010 1001
1011 0110
1100 1011
1101 0010

1110 0000

But there is a practical problem with the ideal block cipher. If a small block size, such as n = 4, is used, then the system is equivalent to a
classical substitution cipher. Such systems, as we have seen, are vulnerable to a statistical analysis of the plaintext. This weakness is not
inherent in the use of a substitution cipher but rather results from the use of a small block size. If nis sufficiently large and an arbitrary
reversible substitution between plaintext and ciphertext is allowed, then the statistical characteristics of the source plaintext are masked to
such an extent that this type of cryptanalysis is infeasible.

An arbitrary reversible substitution cipher (the ideal block cipher) for a large block size is not practical, however, from an implementation
and performance point of view. For such a transformation, the mapping itself constitutes the key. Consider again w, which defines
one particular reversible mapping from plaintext to ciphertext for n = 4. The mapping can be defined by the entries in the second column,
which show the value of the ciphertext for each plaintext block. This, in essence, is the key that determines the specific mapping from
among all possible mappings. In this case, using this straightforward method of defining the key, the required key length is (4 bits) x (16

rows) = 64 bits. In general, for an n-bit ideal block cipher, the length of the key defined in this fashion isn x 2n bits. For a 64-bit block, which
. 64 _ 70 tmmp . 21

is a desirable length to thwart statistical attacks, the required key length is 64 x 2~ " =2 10 bits.

In considering these difficulties, Feistel points o Iflft ﬁhat is needed is an approximation to the ideal block cipher system for large n, built
up out of components that are easily realizable HFEIS? . But before turning to Feistel's approach, let us make one other observation. We
could use the general block substitution cipher but, to make its implementation tractable, confine ourselves to a subset of the possible

reversible mappings. For example, suppose we define the mapping in terms of a set of linear equations. In the case of n = 4, we have

y1 =Kk11x1+k12x2 + k13x3 + k14x4
y2 =k21x1 + k22x2 + k23x3 + k24x4
y3 =k31x1 + k32x2 + k33x3 + k34x4

y4 =Kk41x1 + k42x2 + ka3x3 + k44x4

where the xj are the four binary digits of the plaintext block, they;j are the four binary digits of the ciphertext block, thekij are the binary
coefficients, and arithmetic is mod 2. The key size is just n2, in this case 16 bits. The danger with this kind of formulation is that it may be

vulnerable to cryptanalysis by an attacker that is aware of the structure of the algorithm. In this_example, what we have is essentially the
Hill cipher discussed in , applied to binary data rather than characters. As we saw i , a simple linear system such as
this is quite vulnerable.

[Page 67]

The Feistel Cipher

Feistel proposed EEIS73] that we can approximate the ideal block cipher by utilizing the concept of aproduct cipher, which is the
execution of two or more simple ciphers in sequence in such a way that the final result or product is cryptographically stronger than any of
the component ciphers. The essence of the approach is to develop a block cipher with a key length of k bits and a block length ofn bits,

allowing a total of 2k possible transformations, rather than the ?! transformations available with the ideal block cipher.

proposal by Claude Shannon to develop a product cipher that alternates confusion and diffusion functions [EHAN4d]. We look next at
these concepts of diffusion and confusion and then present the Feistel cipher. But first, it is worth commenting on this remarkable fact: The
Feistel cipher structure, which dates back over a quarter century and which, in turn, is based on Shannon's proposal of 1945, is the
structure used by many significant symmetric block ciphers currently in use.

In particular, Feistel proposed the use of a cipher that alternates substitutions and permutations. In fact, thctical application of a

Diffusion and Confusion

The terms diﬁusiond confusion were introduced by Claude Shannon to capture the two basic building blocks for any cryptographic
2

system [.~ Shannon's concern was to thwart cryptanalysis based on statistical analysis. The reasoning is as follows. Assume
the attacker has some knowledge of the statistical characteristics of the plaintext. For example, in a human-readable message in some
language, the frequency distribution of the various letters may be known. Or there may be words or phrases likely to appear in the
message (probable words). If these statistics are in any way reflected in the ciphertext, the cryptanalyst may be able to deduce the
encryption key, or part of the key, or at least a set of keys likely to contain the exact key. In what Shannon refers to as a strongly ideal
cipher, all statistics of the ciphertext are independent of the particular key used. The arbitrary substitution cipher that we discussed
previously () is such a cipher, but as we have seen, is impractical.

2l Shannon's 1949 paper appeared originally as a classified report in 1945. Shannon enjoys an amazing and unique
position in the history of computer and information science. He not only developed the seminal ideas of modern
cryptography but is also responsible for inventing the discipline of information theory. In addition, he founded
another discipline, the application of Boolean algebra to the study of digital circuits; this last he managed to toss off
as a master's thesis.

Qther than recourse to ideal systems, Shannon suggests two methods for frustrating statistical cryptanalysis: diffusion and confusion. In
the statistical structure of the plaintext is dissipated into long-range statistics of the ciphertext. This is achieved by having each
plaintext digit affect the value of many ciphertext digits; generally this is equivalent to having each ciphertext digit be affected by many
plaintext digits. An example of diffusion is to encrypt a message M = m1, m2, m3,... of characters with an averaging operation:

k
Yo = | D m,4;) mod 26
=

adding k successive letters to get a ciphertext letteryn. One can show that the statistical structure of the plaintext has been dissipated.

Thus, the letter frequencies in the ciphertext will be more nearly equal than in the plaintext; the digram frequencies will also be more

nearly equal, and so on. In a binary block cipher, diffusion can be achieved by repeatedly performing some permutation on the data

followed by applying anction to that permutation; the effect is that bits from different positions in the original plaintext contribute to a
3

single bit of ciphertext.

Bl Some books on cryptography equate permutation with diffusion. This is incorrect. Permutationby itself, does not
change the statistics of the plaintext at the level of individual letters or permuted blocks. For example, in DES, the
permutation swaps two 32-bit blocks, so statistics of strings of 32 bits or less are preserved.

[Page 68]

Every block cipher involves a transformation of a block of plaintext into a block of ciphertext, where the transformation depends on the
key. The mechanism of diffusion seeks to make the statistical relationship between the plaintext and ciphertext as complex as possible in
order to thwart attempts to deduce the key. On the other hand, seeks to make the relationship between the statistics of the
ciphertext and the value of the encryption key as complex as possible, again to thwart attempts to discover the key. Thus, even if the
attacker can get some handle on the statistics of the ciphertext, the way in which the key was used to produce that ciphertext is so
complex as to make it difficult to deduce the key. This is achieved by the use of a complex substitution algorithm. In contrast, a simple
linear substitution function would add little confusion.

As [ROBS95H] points out, so successful are diffusion and confusion in capturing the essence of the desired attributes of a block cipher that
they have become the cornerstone of modern block cipher design.

Feistel Cipher Structure

depicts the structure proposed by Feistel. The inputs to the encryption algorithm are a plaintext block of length& bits and a key
K. The plaintext block is divided into two halves,Lg and RQ. The two halves of the data pass throughn rounds of processing and then

combine to produce the ciphertext block. Each round i has as inputsLi-1 and Rj-1, derived from the previous round, as well as a subkej,
derived from the overall K. In general, the subkeysK;| are different fromK and from each other.

Figure 3.2. Classical Feistel Network
(This item is displayed on page 69 in the print version)

Plaintext (2w bits)

Lo bits Y whits Ry

Round 1

Round §

Round n

Eu+ l

'."'ﬁ"l'] 4

Ciphertext (2w bits)

All rounds have the same structure. A substitution is performed on the left half of the data. This is done by applying around function F to
the right half of the data and then taking the exclusive-OR of the output of that function and the left half of the data. The round function has
the same general structure for each round but is parameterized by the round subkey Kj. Following this substitution, a permutation is

performed that consists of the interchange of the two halves of the data. 4 This structure is a particular form of the
substitution-permutation network (SPN) proposed by Shannon.

[l The final round is followed by an interchange that undoes the interchange that is part of the final round. One
could simply leave both interchanges out of the diagram, at the sacrifice of some consistency of presentation. In any
case, the effective lack of a swap in the final round is done to simplify the implementation of the decryption process,
as we shall see.

The exact realization of a Feistel network depends on the choice of the following parameters and design features:

® Bjock size: Larger block sizes mean greater security (all other things being equal) but reduced encryption/decryption speed for
a given algorithm. The greater security is achieved by greater diffusion Traditionally, a block size of 64 bits has ~ been
considered a reasonable tradeoff and was nearly universal in block cipher design. However, the new AES uses a 128-bit block

size.

[Page 69]

® Key size: Larger key size means greater security but may decrease encryption/decryption speed. The greater security is
achieved by greater resistance to brute-force attacks and greater confusion. Key sizes of 64 bits or less are now widely
considered to be inadequate, and 128 bits has become a common size.

® Number of rounds: The essence of the Feistel cipher is that a single round offers inadequate security but that multiple rounds
offer increasing security. A typical size is 16 rounds.

® gy bkey generation algorithm: Greater complexity in this algorithm should lead to greater difficulty of cryptanalysis.

[Page 70]

® Round function: Again, greater complexity generally means greater resistance to cryptanalysis.
There are two other considerations in the design of a Feistel cipher:

® ast software encryption/decryption: In many cases, encryption is embedded in applications or utility functions in such a
way as to preclude a hardware implementation. Accordingly, the speed of execution of the algorithm becomes a concern.

® Easeof analysis: Although we would like to make our algorithm as difficult as possible to cryptanalyze, there is great benefit in
making the algorithm easy to analyze. That is, if the algorithm can be concisely and clearly explained, it is easier to analyze that
algorithm for cryptanalytic vulnerabilities and therefore develop a higher level of assurance as to its strength. DES, for example,
does not have an easily analyzed functionality.

Feistel Decryption Algorithm

The process of decryption with a Feistel cipher is essentially the same as the encryption process. The rule is as follows: Use the ciphertext
as input to the algorithm, but use the subkeys Kj in reverse order. That is, use Kn in the first round, Kn-1 in the second round, and so on
until K1 is used in the last round. This is a nice feature because it means we need not implement two different algorithms, one for
encryption and one for decryption.

To see that the same algorithm with a reversed key order produces the correct result, consider , which shows the encryption
process going down the left-hand side and the decryption process going up the right-hand side for a 16-round algorithm (the result would
be the same for any number of rounds). For clarity, we use the notation LEj and RE;j for data traveling through the encryption algorithm and
LDi and RO for data traveling through the decryption algorithm. The diagram indicates that, at every round, the intermediate value of the
decryption process is equal to the corresponding value of the encryption process with the two halves of the value swapped. To put this
another way, let the output of the ith encryption round be LEj||RE; (Lj concatenated with Rj). Then the corresponding input to the (16i)th
decryption round is RE;j||LE;j or, equivalently, RD16-i||LD16-i.

Figure 3.3. Feistel Encryption and Decryption
(This item is displayed on page 71 in the print version)

Output (plaintext)

[nput (plaintext)

LE, K, RE;

REE f{z L'El Eﬂtﬁ = LE'| IIr1--'l-::|'l_"':- = RE[

| B

LD, = RE\, RD, = LE),

T
a
L
I.!

II.-'

P
L

A

LE“, RE”,

Lﬂ.” — RE”'; RIJH- = Lﬁ-ﬂ-.
Klﬁ

Input {ciphertext)

Output (ciphertext)

Let us walk through to demonstrate the validity of the preceding assertions After the last iteration of the encryption process,
the two halves of the output are swapped, so that the ciphertext is RE16||LE16. The output of that round is the ciphertext. Now take that
ciphertext and use it as input to the same algorithm. The input to the first round is RE16||LE16, which is equal to the 32-bit swap of the
output of the sixteenth round of the encryption process.

Bl 1o simplify the diagram, it is untwisted, not showing the swap that occurs at the end of each iteration. But please

note that the intermediate result at the end of the ith stage of the encryption process is the 2v-bit quantity formed by
concatenating LEj and RE;, and that the intermediate result at the end of thdth stage of the decryption process is the
2w-bit quantity formed by concatenatingLDj and RD.

[Page 71]

Now we would like to show that the output of the first round of the decryption process is equal to a 32-bit swap of the input to the sixteenth
round of the encryption process. First, consider the encryption process. We see that

LE16 = RE15

RE16 = LE15 x F(RE15, K16)

[Page 72]
On the decryption side,
LD1 =RD0=LE16 = RE15
RD1 = LDo x F(RDg, K16)
= RE16 x F(RE15, K16)
= [LE15 x F(RE15, K16)] x F(RE15, K16)
The XOR has the following properties:
[AxB] xC=Ax[BxC]
DxD=0
ExO0=E

Thus, we have LD1 = RE15 and RD1 = LE15. Therefore, the output of the first round of the decryption process is LE5||RE15, which is the
32-bit swap of the input to the sixteenth round of the encryption. This correspondence holds all the way through the 16 iterations, as is
easily shown. We can cast this process in general terms. For the ith iteration of the encryption algorithm,

LEj = REj-1
RE;j =LEj-1 x F(REi-1, Kj)
Rearranging terms,
REij-1 = LEj

LEi-1 = REj X F(REj-1, Ki2 = REj X F(LEj, Ki)

Thus, we have described the inputs to the ith iteration as a function of the outputs, and these equations confirm the assignments shown in

the right-hand side of .

Finally, we see that the output of the last round of the decryption process is REQ||LEQ. A 32-bit swap recovers the original plaintext,

demonstrating the validity of the Feistel decryption process.

Note that the derivation does not require that F be a reversible function. To see this, take a limiting case in which F produces a constant
output (e.g., all ones) regardless of the values of its two arguments. The equations still hold.

K==1 ExT

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

K==1 ExT

[Page 72 (continued)]

3.2. The Data Encryption Standard

The most widely used encryption scheme is based on the Data Encryption Standard (DES) adopted in 1977 by the National Bureau of
Standards, now the National Institute of Standards and Technology (NIST), aséederal Information Processing Standard 46 (FIPS PUB

46). The algorithm itself is referred to as the Data Encryption Algorithm (DEA).= For DES, data are encrypted in 64-bit blocks using a
56-bit key. The algorithm transforms 64-bit input in a series of steps into a 64-bit output. The same steps, with the same key, are used to
reverse the encryption.

61 The terminology is a bit confusing. Until recently, the termdES and DEA could be used interchangeably.
However, the most recent editiog ff Ilf E,ES document includes a specification of the DEA described here plus the
triple DEA (TDEA) described in Chapter §. Both DEA and TDEA are part of the Data Encryption Standard. Further,
until the recent adoption of the official term TDEA, the triple DEA algorithm was typically referred to adriple DES and
written as 3DES. For the sake of convenience, we use the term 3DES.

[Page 73]

The DES enjoys widespread use. It has also been the subject of much controversy concerning how secure the DES is. To appreciate the
nature of the controversy, let us quickly review the history of the DES.

In the late 1960s, IBM set up a research project in computer aphy led by Horst Feistel. The project concluded in 1971 with the
development of an algorithm with the designation LUCIFER [EEIS7J], which was sold to Lloyd's of London for use in a cash-dispensing
system, also developed by IBM. LUCIFER is a Feistel block cipher that operates on blocks of 64 bits, using a key size of 128 bits.
Because of the promising results produced by the LUCIFER project, IBM embarked on an effort to develop a marketable commercial
encryption product that ideally could be implemented on a single chip. The effort was headed by Walter Tuchman and Carl Meyer, and it
involved not only IBM researchers but also outside consultants and technical advice from NSA. The outcome of this effort was a refined
version of LUCIFER that was more resistant to cryptanalysis but that had a reduced key size of 56 bits, to fit on a single chip.

In 1973, the National Bureau of Standards (NBS) issued a request for proposals for a national cipher standard. IBM submitted the results
of its Tuchman-Meyer project. This was by far the best algorithm proposed and was adopted in 1977 as the Data Encryption Standard.

Before its adoption as a standard, the proposed DES was subjected to intense criticism, which has not subsided to this day. Two areas
drew the critics' fire. First, the key length in IBM's original LUCIFER algorithm was 128 bits, but that of the proposed system was only 56
bits, an enormous reduction in key size of 72 bits. Critics feared that this key length was too short to withstand brute-force attacks. The
second area of concern was that the design criteria for the internal structure of DES, the S-boxes, were classified. Thus, users could not
be sure that the internal structure of DES was free of any hidden weak points that would enable NSA to decipher messages without benefit
of the key. Subsequent events, particularly the recent work on differential cryptanalysis, seem to indicate that DES has a very strong
internal structure. Furthermore, according to IBM patrticipants, the only changes that were made to the proposal were changes to the
S-boxes, suggested by NSA, that removed vulnerabilities identified in the course of the evaluation process.

Whatever the merits of the case, DES has flourished and is widely used, especially in financial applications. In 1994, NIST reaffirmed DES
for federal use for another five years; NIST recommended the use of DES for applications other than the protection of classified
information. In 1999, NIST issued a new version of its standard (FIPS PUB 46-3) that indicated that DES should only be used for legacy
systems and that triple DES (which in essence involves repeating the DES algorithm three times on the plaintext using two or three
different keys to produce the ciphertext) be used. We study triple DES in . Because the underlying encryption and decryption
algorithms are the same for DES and triple DES, it remains important to understand the DES cipher.

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

DES Encryption

The overall scheme for DES encryption is illustrated in . As with any encryption scheme, there are two inputs to the encryn

function: the plaintext to be encrypted and the key. In this case, the plaintext must be 64 bits in length and the key is 56 bits in leng 7

7] Actually, the function expects a 64-bit key as input. However, only 56 of these bits are ever used; the other 8 bits
can be used as parity bits or simply set arbitrarily.

[Page 74]

Figure 3.4. General Depiction of DES Encryption Algorithm

Gd-bit plaintext G4-hit key

Initial permutation

Permuted choice 1

Permuted choee 2

Permuted choice 2 1 1eft circular shift

Round 16 Permuted choice 2 1 Left circular shift

32-bit swap

J;m hits

Inverse initial
permutation

B FFFFEEE

Y
4 -bit ciphertext

Looking at the left-hand side of the figure, we can see that the processing of the plaintext proceeds in three phases. First, the 64-bit
plaintext passes through an initial permutation (IP) that rearranges the bits to produce the permuted input. This is followed by a phase
consisting of 16 rounds of the same function, which involves both permutation and substitution functions. The output of the last (sixteenth)
round consists of 64 bits that are a function of the input plaintext and the key. The left and right halves of the output are swapped to

produce the preoutput. Finally, the preoutput is passed through a permutation (||51) that is the inverse of the initial permutation function, to
produce the 64-bit ciphertext. With the exception of the initial and final permutations, DES has the exact structure of a Feistel cipher, as

shown in Figure 3.4.

The right-hand portion of shows the way in which the 56-bit key is used. Initially, the key is passed through a permutation
function. Then, for each of the 16 rounds, a subkey (Ki) is produced by the combination of a left circular shift and a permutation. The

permutation function is the same for each round, but a different subkey is produced because of the repeated shifts of the key bits.

Initial Permutation

The initial permutation and its inverse are defined by tables, as shown in [Tables 3.2 and , respectively. The tables are to be
interpreted as follows. The input to a table consists of 64 bits numbered from 1 to 64. The 64 entries in the permutation table contain a
permutation of the numbers from 1 to 64. Each entry in the permutation table indicates the position of a numbered input bit in the output,

which also consists of 64 bits.

Table 3.2. Permutation Tables for DES

(This item is displayed on page 76 in the print version)

58

60

62

64

57

59

61

63

40

39

38

37

36

35

34

33

16

50

52

54

56

49

51

53

55

32

12

16

20

24

28

15

42

44

46

48

41

43

45

a7

48

47

46

45

44

43

42

41

13

17

21

25

29

20

23

(a) Initial Permutation (IP)

34 26
36 28
38 30
40 32
33 25
35 27
37 29
39 31

(b) Inverse Initial Permutation (IP])

16 56
15 55
14 54
13 53
12 52
11 51
10 50

9 49

(c) Expansion Permutation (E)

2 3
6 7
10 11
14 15
18 19
22 23
26 27
30 31

(d) Permutation Function (P)
21 29

26 5

18

20

22

24

17

19

21

23

24

23

22

21

20

19

18

17

12

16

20

24

28

32

12

18

10

12

14

16

11

13

15

64

63

62

61

60

59

58

57

13

17

21

25

29

28

31

32

31

30

29

28

27

26

25

17

10

(a) Initial Permutation (IP)

19 13 30 6 22 11 4 25

To see that these two permutation functions are indeed the inverse of each other, consider the following 64-bit input M:

M1 M2 M3 M4 M5 M6 M7 M8

M9 M10 M11 M12 M13 M14 M15 M16
M17 M18 M19 M20 M21 M22 M23 M24
M25 M26 M27 M28 M29 M30 M31 M32
M33 M34 M35 M36 M37 M38 M39 M40
M41 M42 M43 M44 M45 M46 M47 M4s8
M49 M50 Ms51 M52 Ms53 M54 M55 Ms56
M57 M58 Ms59 M60 M61 M62 M63 M64

where Mij is a binary digit. Then the permutationX = IP(M) is as follows:

M58 M50 M42 M34 M26 M18 M10 M2
M60 M52 Ma4q M36 M28 M20 M12 M4
M62 M54 M46 M38 M30 M22 M14 Me
M64 Ms56 M48 M40 M32 M24 M16 Mg
M57 M49 M41 M33 M25 M17 M9 M1
M59 M51 M43 M35 M27 M19 M11 M3
M61 Ms53 Mas5 M37 M29 M21 M13 M5
M63 M55 M47 M39 M31 M23 M15 M7

If we then take the inverse permutation Y = IP'l(X) = IP_l(IP(M)), it can be seen that the original ordering of the bits is restored.

Details of Single Round

shows the internal structure of a single round. Again, begin by focusing on the left-hand side of the diagram. The left and right
halves of each 64-bit intermediate value are treated as separate 32-bit quantities, labeled L (left) and R (right). As in any classic Feistel

cipher, the overall processing at each round can be summarized in the following formulas:

[Page 76]
Li = Rj-1

Ri = Li-1 X FRi-1, Ki)

[Page 77]

Figure 3.5. Single Round of DES Algorithm

lView full size image|

=— 31 hilz —= %— 17 hils —= — 78 hify —= — T8 hijls —=
L R Ci-1
________ _v' LR SR R T iR |
/Eapmaimn‘mrmlnliul\ Lttt shifti=) Left shifiis)
(E tahle)
am —L}
" .1||. Fermutation/contraction

B REUE Ze {Permuted cholce 2)
as

Substitutionfchoice

(S-box)

The round keyK; is 48 bits. The R input is 32 bits. ThisR input is first expanded to 48 bits by using a table that defines a permutation plus
able 3.2q). The resulting 48 bits are XORed withKj. This 48-bit result passes
through a substitution function that produces a 32-bit output, which is permuted as defined by [Table 3.2d.

an expansion that involves duplication of 16 of the R bits (

The role of the S-boxes in the function F is illustrated in . The substitution consists of a set of eight S-boxes, each of which

accepts 6 bits as input and produces 4 bits as output. These transformations are defined in , which is interpreted as follows: The
first and last bits of the input to box Sj form a 2-bit binary number to select one of four substitutions defined by the four rows in the table for
Si. The middle four bits select one of the sixteen columns. The decimal value in the cell selected by the row and column is then converted
to its 4-bit representation to produce the output. For example, in S1 for input 011001, the row is 01 (row 1) and the column is 1100 (column

12). The value in row 1, column 12 is 9, so the output is 1001.

Figure 3.6. Calculation of F(R, K)
(This item is displayed on page 78 in the print version)

| B (32 bits) |

| 48 bits | | K (48 bits)
I

F i

—®

() (s) (%) (s) (8) () (5] (s)

32 bits

Table 3.3. Definition of DES S-Boxes
(This item is displayed on page 79 in the print version)

iView full size imaqei

¥

3

S5

B

14 4 13 | 2 15 1 8 I 10 6 12 A 9 0
0 15 7 4 14 2 13 1 10 6 12 11 9 5 3

1 14 8 13 6 2 1 15 12 9 7 3 1] 0
15 12 b 2 4 9 I 7 5 i 1 4 10 0 i1 i3
15 | 5 14 6 11 3 4 4 7 2 13 12 0 5 [
3 13 4 7 15 2 5 14 12 0 1 10 i 9 11 5
o 14 F R 110 4 13 I 3 B 12 i 9 J 2 15
13 B 1 I 3 15 4 2 11 & T 12 i 3 14 9
10 0 9 14 6 3 15 5 113 12 7 1l 4 2 b
13 7] 3 4 f B 11 2 B 5 14 12 11 15 |
13 6 4 . 15 3 0 11 | 2 12 5 10 14 7
1 10 13 0 i g o] 7 4 15 14 3 11 5 2 12
T 13 14 3)] fh 10 | 2 2 5 11 12 4 15
13 B 11 3 i 15 i 3 4 7 2 12 | 10 14 Q
10 f 9 0 12 11 7T 13 15 1 I 14 3 2 5 4
5 15 0 6 10 1 13 8 9 4 5 1 12 7 2 14
Z 12 4 | 7 10 11 B B 5 3 15 13 0 4 9
14 11 2 12 4 7 13 | 5 0 15 10 3 0 8 f
4 2 I 11 10 12 7 B 15 0 12 & 3 0 14
11 B 12 7 | 14 2 13 6 15 1] L1 4 5 3
12 I 10 15 9 2 L B 0 13 i 4 14 7 5 11
w13 4 2 7 12 4 3 6 | 13 14 11 3 bt
9 14 15 5 2 § 12 3 7 0 4 10 1 13 1 f
4 3 2 12 0 § 15 10 11 14 1 7 f 0 E 13
4 11 2 14 15 i . 13 3 12 0 7 5 10 f |
13 0 11 7 4 8 I 10 14 3 b 12 2 13 B f
1 4 11 13 12 3 7 14 L] 15 & = L1 5 a9 2
6 11 13 8 l 4 10 7 9 5 0 15 14 2 I 12
13 2 8 4 6 15 11 1 10] 314 5 0o 12 7
1 15 13 B 10 3 T 4 12 5 & i1 i 14 9 2
7 1 4 l 9 12 14 2 0 b {1 13 15 3 5 5
2 I 14 7 4 0 5 13 15 12 o 0 3 5 il il

Each row of an S-box defines a general reversible substitution. may be useful in understanding the mapping. The figure shows
the substitution for row 0 of box S1.

The operation of the S-boxes is worth further comment. Ignore for the moment the contribution of the key (Kj). If you examine the
expansion table, you see that the 32 bits of input are split into groups of 4 bits, and then become groups of 6 bits by taking the outer bits
from the two adjacent groups. For example, if part of the input word is

[Page 78]
... efgh ijkl mnop ...
this becomes
... defghi hijklm Imnopq ...

The outer two bits of each group select one of four possible substitutions (one row of an S-box). Then a 4-bit output value is substituted for
the particular 4-bit input (the middle four input bits). The 32-bit output from the eight S-boxes is then permuted, so that on the next round
the output from each S-box immediately affects as many others as possible.

Key Generation

Returning to and @ we see that a 64-bit key is used as input to the algorithm. The bits of the key are numbered from 1
through 64; every eighth bit is ignored, as indicated py the lack of shading in The key is first subjected to a permutation
governed by a table labeled Permuted Choice One . The resulting 56-bit key is then treated as two 28-bit quantities, labeledCo
and Do. At each round, Cj-1 and Dj-1 are separately subjected to a circular left shift, or rotation, of 1 or 2 bits, as governed b.
These shifted values serve as input to the next round. They also serve as input to Permuted Choice Two (l able 3.4d), which produces a
48-bit output that serves as input to the function F(Ri-1, Ki).

[Page 80]

Round
number

Bits rotated

17

25

33

41

49

57

14

15

26

41

51

34

1

57

10

19

63

14

21

Table 3.4. DES Key Schedule Calculation

10

18

26

34

42

50

58

17

52

45

53

49

58

11

55

62

13

11

19

27

35

43

51

59

(b) Permuted Choice One (PC-1)

(c) Permuted Choice Two (PC-2)

11

21

16

31

33

46

41

50

59

47

54

61

(a) Input Key

4

12

20

28

36

44

52

60

24

10

37

48

42

33

42

51

60

39

46

53

28

13

21

29

37

45

53

61

23

27

47

a4

50

(d) Schedule of Left Shifts

25

34

43

52

31

38

45

20

10

14

22

30

38

46

54

62

19

20

55

49

36

11

17

26

35

44

23

30

37

12

12

15

23

31

39

47

55

63

12

13

30

39

29

13

18

27

36

15

22

29

14

16

24

32

40

48

56

64

28

40

56

32

15

16

DES Decryption

As with any Feistel cipher, decryption uses the same algorithm as encryption, except that the application of the subkeys is reversed.

The Avalanche Effect

A desirable property of any encryption algorithm is that a small change in either the plaintext or the key should produce a significant
change in the ciphertext. In particular, a change in one bit of the plaintext or one bit of the key should produce a change in many bits of the
ciphertext. If the change were small, this might provide a way to reduce the size of the plaintext or key space to be searched.

[Page 81]

DES exhibits a strong avalanche effect shows some results taken from kONH8:IJ]. In |'I'ab|e 3.5&1, two plaintexts that differ by one
bit were used:

00000000 00000000 00000000 00000000 00000000 0OO00000 00000000 00000000

10000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

with the key

0000001 1001011 0100100 1100010 0011100 0011000 0011100 0110010

Table 3.5. Avalanche Effect in DES

(a) Change in Plaintext (b) Change in Key
Round Number of bits that differ Round Number of bits that differ
0 1 0 0
1 6 1 2
2 21 2 14
3 35 3 28
4 39 4 32
5 34 5 30
6 32 6 32
7 31 7 35
8 29 8 34
9 42 9 40
10 44 10 38
11 32 11 31
12 30 12 33
13 30 13 28
14 26 14 26
15 29 15 34
16 34 16 35

The [Table 3.54 shows that after just three rounds, 21 bits differ between the two blocks. On completion, the two ciphertexts differ in 34 bit
positions.

able 3.5Hshows a similar test in which a single plaintext is input:

01101000 10000101 00101111 01111010 00010011 01110110 11101011 10100100
with two keys that differ in only one bit position:

1110010 1111011 1101111 0011000 0011101 0000100 0110001 11011100

0110010 1111011 1101111 0011000 0011101 0000100 0110001 11011100

Again, the results show that about half of the bits in the ciphertext differ and that the avalanche effect is pronounced after just a few rounds.

& prcy | wexT

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

" prey wEXT

[Page 82]

3.3. The Strength of Des

Since its adoption as a federal standard, there have been lingering concerns about the level of security provided by DES. These
concerns, by and large, fall into two areas: key size and the nature of the algorithm.

The Use of 56-Bit Keys

With a key length of 56 bits, there are 256 possible keys, which is approximately 7.2 x 1016. Thus, on the face of it, a brute-force attack
appears impractical. Assuming that, on average, half the key space has tq hed, a single machine performing one DES
encryption per microsecond would take more than a thousand years (see [Table 2.9) to break the cipher.

However, the assumption of one encryption per microsecond is overly conservative. As far back as 1977, Diffie and Hellman postulated
that the technoglogy existed to build a parallel machine with 1 million encryption devices, each of which could perform one encryption per
microsecond . This would bring the average search time down to about 10 hours. The authors estimated that the cost would be
about $20 million in 1977 dollars.

DES finally and definitively proved insecure in July 1998, when the Electronic Frontier Foundation (EFF) announced that it had broken a
DES encryption using a special-purpose "DES cracker" machine that was built for less than $250,000. The att k less than three
days. The EFF has published a detailed description of the machine, enabling others to build their own cracker [EFF94

{I. And, of course,
hardware prices will continue to drop as speeds increase, making DES virtually worthless.

It is important to note that there is more to a key-search attack than simply running through all possible keys. Unless known plaintext is
provided, the analyst must be able to recognize plaintext as plaintext. If the message is just plain text in English, then the result pops out
easily, although the task of recognizing English would have to be automated. If the text message has been compressed before
encryption, then recognition is more difficult. And if the message is some more general type of data, such as a numerical file, and this
has been compressed, the problem becomes even more difficult to automate. Thus, to supplement the brute-force approach, some
degree of knowledge about the expected plaintext is needed, and some means of automatically distinguishing plaintext from garble is
also needed. The EFF approach addresses this issue as well and introduces some automated techniques that would be effective in
many contexts.

Fortunately, there are a number of alternatives to DES, the most important of which are AES and triple DES, discussed in
and B respectively.

The Nature of the DES Algorithm

Another concern is the possibility that cryptanalysis is possible by exploiting the characteristics of the DES algorithm. The focus of
concern has been on the eight substitution tables, or S-boxes, that are used in each iteration. Because the design criteria for these
boxes, and indeed for the entire algorithm, were not made public, there is a suspicion that the boxes were constructed in such a way that
cryptanalysis is possible for an opponent who knows the weaknesses in the S-boxes. This assertion is tantalizing, and over the years
a number of regularities and unexpected behaviors of the Sxes have been discovered. Despite this, no one has so far succeeded in

discovering the supposed fatal weaknesses in the S-boxes.

(8] At least, no one has publicly acknowledged such a discovery.

[Page 83]

Timing Attacks

We discuss timing attacks in more detail in Part Two, as they relate to public-key algorithms. However, the issue may also be relevant for
symmetric ciphers. In essence, a timing attack is one in which information about the key or the plaintext is obtained by observing how
long it takes a given implementation to perform decryptions on various ciphertexts. A timing attack exploits the fact that an encryption or
decryption algorithm often takes slightly different amounts of time on different inputs. [HEVI99] reports on an approach that yields the
Hamming weight (number of bits equal to one) of the secret key. This is a long way from knowing the actual key, but it is an intriguing
first step. The authors conclude that DES appears to be fairly resistant to a successful timing attack but suggest some avenues to
explore. Although this is an interesting line of attack, it so far appears unlikely that this technique will ever be successful against DES or
more powerful symmetric ciphers such as triple DES and AES.

" prey NEXT

" prey wEXT

[Page 83 (continued)]

3.4. Differential and Linear Cryptanalysis

For most of its life, the prime concern with DES has been its vulnerability to brute-force attack because of its relatively short (56 bits) key
length. However, there has also been interest in finding cryptanalytic attacks on DES. With the increasing popularity of block ciphers with
longer key lengths, including triple DES, brute-force attacks have become increasingly impractical. Thus, there has been increased
emphasis on cryptanalytic attacks on DES and other symmetric block ciphers. In this section, we provide a brief overview of the two most
powerful and promising approaches: differential cryptanalysis and linear cryptanalysis.

Differential Cryptanalysis

One of the most significant advances in cryptanalysis in recent years is differential cryptanalysis. In this section, we discuss the technique
and its applicability to DES.

History

Differential cryptanalysis was not reported in the open literature until 1990. The first published effort appears to have been the cryptanalysis
of a block cipher called FEAL by Murphy [MURP9(]. This was followed by a number of papers by Biham an r, who demonstrated
this form of attack on a variety of encryption algorithms and hash functions; their results are summarized in [BIHA9J].

The most publicized results for this approach have been those that have application to DES. Differential cryptanalysis is the first published
. . . 55 . . -

attack that is capable of breaking DES in less than 27~ complexity. The scheme, as reported in BIHA93], can successfully cryptanalyze

DES with an effort on the order of 247 encryptions, requiring 247 chosen plaintexts. Although 247 is certainly significantly less than 255 the

need for the adversary to find 247 chosen plaintexts makes this attack of only theoretical interest.

[Page 84]

Although differential crypff fj is a powerful tool, it does not do very well against DES. The reason, according to a member of the IBM
team that designed DES [COPP94], is that differential cryptanalysis was known to the team as early as 1974. The need to strengthen DES
against attacks using differential cryptanalysis played a large part in the design of the S-boxes and the permutation P. As evidence of the
impact of these changes, consider these comparable results reported in [BIHA9J]. Differential cryptanalysis of an eight-round LUCIFER

algorithm requires only 256 chosen plaintexts, whereas an attack on an eight-round version of DES requires 214 chosen plaintexts.

Differential Cryptanalysis Attack

The differential cryptanalysis attack is complex; [BIHA9J] provides a complete description. The rationale behind differential cryptanalysis is

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

to observe the behavior of pairs of text blocks evolving along each round of the cipher, instead of observing the evolution of a single text
block. Here, we provide a brief overview so that you can get the flavor of the attack.

We begin with a change in notation for DES. Consider the original plaintext block m to consist of two halvesmo,m1. Each round of DES
maps the right-hand input into the left-hand output and sets the right-hand output to be a function of the left-hand input and the subkey for

this round. So, at each round, only one new 32-bit block is created. If we label each new block m1(2 == | == 17), then the intermediate
message halves are related as follows:

mij+1 = mj-1 $f(mi, Ki),i=1,2,..,16

In differential cryptanalysis, we start with two messages, m and m', with a known XOR differenceDm = m $ m', and consider the

diference between the intermediate message halves: mi = mi & mi Then e have:
Amiyy = My @ My
= |mi—y @ f(m;, K;)] ® [mi- @ t(m;, Kj)]
= Amy— @ [f(my, Ki) @ f(my, Ki))

Now, suppose that many pairs of inputs to f with the same difference yield the same output difference if the same subkey is used. To put
this more precisely, let us say that X may cause Y with probability p, if for a fractionp of the pairs in which the input XOR isX, the output
XOR equals Y. We want to suppose that there are a number of values o that have high probability of causing a particular output
difference. Therefore, if we know Dmij-1 and Dmj with high probability, then we knowDmij+1 with high probability. Furthermore, if a number
of such differences are determined, it is feasible to determine the subkey used in the function f.

The overall strategy of differential cryptanalysis is based on these considerations for a single round. The procedure is to begin with two
plaintext messages m and m' with a given difference and trace through a probable pattern of differences after each round to yield a
probable difference for the ciphertext. Actually, there are two probable patterns of differences for the two 32-bit halves: (Dm17||[m16). Next,
we submit m and m' for encryption to determine the actual difference under the unknown key and compare the result to the probable
difference. If there is a match,

E(K, m) $ E(K, m") = (Dm17||m16)

[Page 85]

then we suspect that all the probable patterns at all the intermediate rounds are correct. With that assumption, we can make some
deductions about the key bits. This procedure must be repeated many times to determine all the key bits.

, based on a figure in BIHA9Y], illustrates the propagation of differences through three rounds of DES. The probabilities shown on
the right refer to the probability that a given set of intermediate differences will appear as a function of the input differences. Overall, after
three rounds the probability that the output difference is as shown is equal to 0.25 x 1 x 0.25 = 0.0625.

Figure 3.7. Differential Propagation through Three Round of DES (numbers in hexadecimal)

Am; | Am; = 40 08 00 00 04 00 00 00 j

f(Am,) = 40 08 00 00 Am; = 04 00 00 00

3 - p = 0.25

W
f{Am;) = 0000 00 00 Am, o = 00000000
I - =10
e —————_
w

f(Am; ;) = 40 08 00 00 Am; ,» = 04 00 00 00
f | p =025

Amgy 3l Amyy2 = 4008 00 00 04 00 0000

Linear Cryptanalysis

A more recent development is linear cryptanalysis, described in [MATS9J]. This attack is based on finding linear approximations to describe

the transformations performed in DES. This method can find a DES key given 243 known plaintexts, as compared to 247 chosen plaintexts
for differential cryptanalysis. Although this is a minor improvement, because it may be easier to acquire known plaintext rather than
chosen plaintext, it still leaves linear cryptanalysis infeasible as an attack on DES. So far, little work has been done by other groups to

validate the linear cryptanalytic approach.

[Page 86]

We now give a brief summary of the principle on which linear cryptanalysis is based. For a cipher with n-bit plaintext and ciphertext blocks
and an m-bit key, let the plaintext block be labeled P[1], ... Pf], the cipher text block C[1], ... C[n], and the key K[1], ... Kfn]. Then define

Ali,j, ..., Kl = Ali] $A[j] $ $A[k]

The objective of linear cryptanalysis is to find an effectivelinear equation of the form:

Pla, a2, ..., ag] @ Clb1, b2, ..., b] = K[g1, 92, ..., gc]
N A

(where x=0o0r1; 1== g b == n 1 === c == m, and where thea, b and g terms represent fixed, unique bit locations) that holds with

probability p i 0.5. The furtherp is from 0.5, the more effective the equation. Once a proposed relation is determined, the procedure is to
compute the results of the left-hand side of the preceding equation for a large number of plaintext-ciphertext pairs. If the result is 0 more
than half the time, assume K[g1, g2, ..., gc] = 0. If it is 1 most of the time, assume Kd1, g2, ..., gc] = 1. This gives us a linear equation on the
key bits. Try to get more such relations so that we can solve for the key bits. Because we are dealing with linear equations, the problem can
be approached one round of the cipher at a time, with the results combined.

=2 wEXT

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

" prey wEXT

[Page 86 (continued)]

3.5. Block Cipher Design Principles

Although much progress has been made in designing block ciphers that are cryptographically strong, the basic principles have not
changed all that much since the work of Feistel and the DES design team in the early 1970s. It is useful to begin this discussion by
looking at the published design criteria used in the DES effort. Then we look at three critical aspects of block cipher design: the number
of rounds, design of the function F, and key scheduling.

DES Design Criteria

The criteria used in the design of DES, as reported in [COPP94], focused on the design of the S-boxes and on the P function that takes
the output of the S boxes (). The criteria for the S-boxes are as follows:

1. No output bit of any S-box should be too close a linear function of the input bits. Specifically, if we select any output bit and
any subset of the six input bits, the fraction of inputs for which this output bit equals the XOR of these input bits should not be
close to 0 or 1, but rather should be near 1/2.

2. Each row of an S-box (determined by a fixed value of the leftmost and rightmost input bits) should include all 16 possible
output bit combinations.

3. Iftwo inputs to an S-box differ in exactly one bit, the outputs must differ in at least two bits.

[Page 87]
4. If two inputs to an S-box differ in the two middle bits exactly, the outputs must differ in at least two bits.

5. If two inputs to an S-box differ in their first two bits and are identical in their last two bits, the two outputs must not be the
same.

6. For any nonzero 6-bit difference between inputs, no more than 8 of the 32 pairs of inputs exhibiting that difference may result
in the same output difference.

7. This is a criterion similar to the previous one, but for the case of three S-boxes.

Coppersmith pointed out that the first criterion in the preceding list was needed because the S-boxes are the only nonlinear part of DES.
If the S-boxes were linear (i.e., each output bit is a linear combination of the input bits), the entire algorithm would be linear and easily
broken. We have seen this phenomenon with the Hill cipher, which is linear. The remaining criteria were primarily aimed at thwarting
differential cryptanalysis and at providing good confusion properties.

The criteria for the permutation P are as follows:

1. The four output bits from each S-box at round i are distributed so that two of them affect (provide input for) "middle bits" of
round (i + 1) and the other two affect end bits. The two middle bits of input to an S-box are not shared with adjacent S-boxes.
The end bits are the two left-hand bits and the two right-hand bits, which are shared with adjacent S-boxes.

2. The four output bits from each S-box affect six different S-boxes on the next round, and no two affect the same S-box.

3. For two S-boxesj, k, if an output bit from § affects a middle bit of & on the next round, then an output bit from & cannot affect

a middle bit of Sj. This implies that forj = k, an output bit from § must not affect a middle bit of §

These criteria are intended to increase the diffusion of the algorithm.

Number of Rounds

The cryptographic strength of a Feistel cipher derives from three aspects of the design: the number of rounds, the function F, and the key
schedule algorithm. Let us look first at the choice of the number of rounds.

The greater the number of rounds, the more difficult it is to perform cryptanalysis, even for a relatively weak F. In general, the criterion
should be that the number of rounds is chosen so that known cryptanalytic efforis require greater effort than a simple brute-force key
search attack. This criterion was certainly used in the design of DES. Schneier [ECHN9{] observes that for 16-round DEE differential

cryptanalysis attack is slightly less efficient than brute force: the differential cryptanalysis attack requires 255'1 operations,— whereas

brute force requires 255. If DES had 15 or fewer rounds, differential cryptanalysis would require less effort than brute-force key search.

[Recall that differential cryptanalysis of DES requires 47 chosen plaintext. If all you have to work with is known
plaintext, then you must sort through a large quantity of known plaintext-ciphertext pairs looking for the useful

ones. This brings the level of effort up to 2551,

This criterion is attractive because it makes it easy to judge the strength of an algorithm and to compare different algorithms. In the
absence of a cryptanalytic breakthrough, the strength of any algorithm that satisfies the criterion can be judged solely on key length.

[Page 88]

Design of Function F

The heart of a Feistel block cipher is the function F. As we have seen, in DES, this function relies on the use of S-boxes. This is also the
case for most other symmetric block ciphers, as we shall see in . However, we can make some general comments about the
criteria for designing F. After that, we look specifically at S-box design.

Design Criteria for F

The function F provides the element of confusion in a Feistel cipher. Thus, it must be difficult to "unscramble" the substitution performed
by F. One obvious criterion is that F be nonlinear, as we discussed previously. The more nonlinear F, the more difficult any type of
cryptanalysis will be. There are several measures of nonlinearity, which are beyond the scope of this book. In rough terms, the more
difficult it is to approximate F by a set of linear equations, the more nonlinear F is.

Several other criteria should be considered in designing F. We would like the algorithm to have good avalanche properties. Recall that, in
general, this means that a change in one bit of the input should produce a change in many bits of the output. A more stringent version of
this is the strict avalanche criterion (SAC) , which states that any output bif of an S-box should change with probability 1/2
when any single input bit i is inverted for alli, j. Although SAC is expressed in terms of S-boxes, a similar criterion could be applied to F
as a whole. This is important when considering designs that do not include S-boxes.

Another criterion proposed in [WEBS8] is the bit independence criterion (BIC), which states that output bit§ and k should change

independently when any single input bit i is inverted, for alli, j, and k. The SAC and BIC criteria appear to strengthen the effectiveness of
the confusion function.

S-Box Design

One of the most inte areas of research in the field of symmetric block ciphers is that of S-box design. The papers are almost too

numerous to count. Here we mention some general principles. In essence, we would like any change to the input vector to an S-box

to result in random-looking changes to the output. The relationship should be nonlinear and difficult to approximate with linear functions.
[10] o good summary of S-box design studies through early 1996 can be found inBCHN94].

One obvious ristic of the S-box is its size. An n x m S-box has n input bits andm output bits. DES has 6 x 4 S-boxes. Blowfish,
described in Eha;ter g, has 8 x 32 S-boxes. Larger S-boxes, by and large, are more resistant to differential and linear cryptanalysis
. On the other hand, the larger the dimensiom, the (exponentially) larger the lookup table. Thus, for practical reasons, a limit ofi
equal to about 8 to 10 is usually imposed. Another practical consideration is that the larger the S-box, the more difficult it is to design it
properly.

S-boxes are typically organized in a different manner than used in DES. An n x m S-box typically consists of 7" rows of m bits each. The
n bits of input select one of the rows of the S-box, and them bits in that row are the output. For example, in an 8 x 32 S-box, if the input is
00001001, the output consists of the 32 bits in row 9 (the first row is labeled row 0).

[Page 89]

Mister and Adams I propose a number of criteria for S-box design. Among these are that the S-box should satisfy both SAC
and BIC. They also suggest that all linear combinations of S-box columns shauld be bent. Bent functions are a special class of Boolean
functions that are highly nonlinear according to certain mathematical criteria E There has been increasing interest in designing
and analyzing S-boxes using bent functions.

A related criterion for S-boxes is proposed and analyzed in [HEYS95]. The authors define the guaranteed avalanche (GA) criterion as
follows: An S-box satisfies GA of order p if, for a 1-bit input change, at leasp output bits change. The authors conclude that a GA in the
range of order 2 to order 5 provides strong diffusion characteristics for the overall encryption algorithm.

For larger S-boxes, such as 8 x 32, the question arises as to the best method of selecting the S-box entries in order to meet the type of

criteria we have been discussing. Nyberg, who has written a lot about the theory and practice of S-box design, suggests the following
approaches (quoted in [ROBS95H)):

® Random: Use some pseudorandom number generation or some table of random digits to generate the entries in the
S-boxes. This may lead to boxes with undesirable characteristics for small sizes (e.g., 6 x 4) but should be acceptable for
large S-boxes (e.g., 8 x 32).

® Random with testing: Choose S-box entries randomly, then test the results against various criteria, and throw away those
that do not pass.

® Human-made: This is a more or less manual approach with only simple mathematics to support it. It is apparently the
technique used in the DES design. This approach is difficult to carry through for large S-boxes.

® \ath-made: Generate S-boxes according to mathematical principles. By using mathematical construction, S-boxes can be
constructed that offer proven security against linear and differential cryptanalysis, together with good diffusion.

A variation op the first technique is to use S-boxes that are both random and key dependent. An example of this approach is Blowfish,
described in , which starts with S-boxes filled with pseudorandom digits and then alters the contents using the key. A

tremendous advantage of key-dependent S-boxes is that, because they are not fixed, it is impossible to analyze the S-boxes ahead of
time to look for weaknesses.

Key Schedule Algorithm

A final area of block cipher design, and one that has received less attention than S-box design, is the key schedule algorithm. With any
Feistel block cipher, the key is used to generate one subkey for each round. In general, we would like to select subkeys to maximize the
difficulty of deducing individual subkeys and the difficulty of working back to the main key. No general principles for this have yet been
promulgated.

Hall suggests [ADAM94] that, at minimum, the key schedule should guarantee key/ciphertext Strict Avalanche Criterion and Bit
Independence Criterion.

e prey | NEXT B

" prey wEXT

[Page 90]

3.6. Recommended Reading

There is a wealth of information on symmetric encryption. Some of the more worthwhile references are listed here. An essential
reference work is [ECHNO9€]. This remarkable work contains descriptions of virtually every cryptographic algorithm and protocol
published up to the time of the writing of the book. The author pulls together results from journals, conference proceedings, government
publications, and standards documents and organizes these into a comprehensive and comprehensible survey. Another worthwhile and
detailed survey is . A rigorous mathematical treatment is [STINOZ].

The foregoing references provide coverage of public-key as well as symmetric encryption.

Perhaps the most detai iption of DES is [SIMO94]; the book also contains an extensive discussion of differential and linear
cryptanalysis of DES. 91]] provides a readable and interesting analysis of the ire of DES and of potential cryptanalytic
approaches to DES. [EEF9{] details the most effective brute-force attack on DES. [COPP94] looks at the inherent strength of DES and

its ability to stand up to cryptanalysis.

BARKO91| Barker, W. Introduction to the Analysis of the Data Encryption Standard (DES). Laguna Hills, CA:
Aegean Park Press, 1991.

OPP94 Coppersmith, D. "The Data Encryption Standard (DES) and Its Strength Against Attacks.'|BM Journal
of Research and Development, May 1994.

Electronic Frontier Foundation.Cracking DES: Secrets of Encryption Research, Wiretap Politics, and
Chip Design. Sebastopol, CA: O'Reilly, 1998

ENE97 Menezes, A.; van Oorschot, P.; and Vanstone, S.Handbook of Applied Cryptography. Boca Raton,
FL: CRC Press, 1997.

SCHN94 Schneier, B. Applied Cryptography. New York: Wiley, 1996.

SIMO9§ Simovits, M. The DES: An Extensive Documentation and Evaluation. Laguna Hills, CA: Aegean Park
Press, 1995.

STINOZ Stinson, D. Cryptography: Theory and Practice. Boca Raton, FL: CRC Press, 2002.

e Py wEXT

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

NEXT B

[Page 90 (continued)]

3.7. Key Terms, Review Questions, and Problems

Key Terms

pvalanche effec
lock ciphe

onfusio

IData Encryption Standard (DESJ

ifferential cryptanalysi

Hiffusio

eistel ciphe

rreversible mappind

inear cryptanalysig

permutatio

eversible mappind

ound functio

o o
o
S g 5 E1l
x~ =] 8
a
@ o
Qe
[=X
5
=
[0}

Bubstitutio

[Page 91]

Review Questions

3.1 Why is it important to study the Feistel cipher?

3.2 What is the difference between a block cipher and a stream cipher?

3.3 Why is it not practical to use an arbitrary reversible substitution cipher of the kind shown i’?
3.4 What is a product cipher?

35 What is the difference between diffusion and confusion?

3.6 Which parameters and design choices determine the actual algorithm of a Feistel cipher?

3.7 What is the purpose of the S-boxes in DES?

3.8 Explain the avalanche effect.

3.9 What is the difference between differential and linear cryptanalysis?

Problems

3.1
a In , under the subsection on the motivation for the Feistel cipher structure, it was

stated that, for a block of n bits, the number of different reversible mappings for the ideal block
cipher is 2n!. Justify.

b. Inthat same discussion, it was stated that for the ideal block cipher, which allows all possible
reversible mappings, the size of the key is n x Zn bits. But, if there are 5‘! possible mappings, it

should take log2 Zn! bits to discriminate among the different mappings, and so the key length

should be log2 2n!. However, log2 Zn! <n X 2n. Explain the discrepancy.

3.2 Consider a Feistel cipher composed of 16 rounds with block length 128 bits and key length 128 bits. Suppose
that, for a given k, the key scheduling algorithm determines values for the first 8 round keysk1, k2, ..., k8, and
then sets

ko = kg, k10 = k7, k11 = kK8, ..., k16 = k1

Suppose you have a ciphertext c. Explain how, with access to an encryption oracle, you can decryptc and
determine m using just a single oracle query. This shows that such a cipher is vulnerable to a chosen
plaintext attack. (An encryption oracle can be thought of as a device that, when given a plaintext, returns the
corresponding ciphertext. The internal details of the device are not known to you and you cannot break open

3.3

3.4

3.5

3.6

the device. You can only gain information from the oracle by making queries to it and observing its
responses.)

Consider a block encryption algorithm that encrypts blocks of length n, and letN = 2n. Say we havet
plaintext-ciphertext pairs Pj, Ct = E(K, Pj), where we assume that the keyK selects one of the N! possible
mappings. Imagine that we wish to find K by exhaustive search. We could generate keyK' and test whetherC

= E(K', Pj) for 1 ii i t. IfK" encrypts eachPj to its proper Cj then we have evidence thatk = K'. However,
it may be the case that the mappings E(K, -) and E(K', -) exactly agree on thet plaintext-ciphertext pairs Pj, Cj

and agree on no other pairs.
a. What is the probability that EK, -) and E(K', -) are in fact distinct mappings?

b. What is the probability that E(K, -) and E(K', -) agree on anothert' plaintext-ciphertext pairs where 0

F Fn o

Let p be a permutation of the integers 0, 1, 2, ... (? - 1) such thatp(m) gives the permuted value of m, 0 i

m E 2" put another way,p maps the set of n-bit integers into itself and no two integers map into the same
integer. DES is such a permutation for 64-bit integers. We say that p has a fixed point atm if p(m) = m. That
is, if p is an encryption mapping, then a fixed point corresponds to a message that encrypts to itself. We are
interested in the probability that p has no fixed points. Show the somewhat unexpected result that over 60%
of mappings will have at least one fixed point.

[Page 92]

Consider the substitution defined by row 1 of S-box S1 in . Show a block diagram similar to

that corresponds to this substitution.

Compute the bits number 1, 16, 33, and 48 at the output of the first round of the DES decryption, assuming
that the ciphertext block is composed of all ones and the external key is composed of all ones.

3.7 Suppose the DES F function mapped every 32-bit input R, regardless of the value of the input K, to
a. 32-bit string of ones,
b. bitwise complement of R.
Hint: Use the following properties of the XOR operation:
1. What function would DES then compute?

2. What would the decryption look like?

(A®B)®C=A®(B®c)
A®A=O
A®O=A

A® 1 = bitwise complement ofA
where
A, B, Care n-bit strings of bits
0 is an n-bit string of zeros

1is an n-bit string of one

3.8 This problem provides a numerical example of encryption using a one-round version of DES. We start with
the same bit pattern for the key K and the plaintext, namely:
in hexadecimal notation: 0123456789ABCDEF
in binary notation: 0000 0001 0010 0011 0100 0101 0110 0111

1000 1001 1010 1011 0100 1101 1110 1111

a. Derive K1, the first-round subkey.
b. Derive L0, RO.

c. Expand RQto get E[RQ], where E[] is the expansion function of Figure 3.8.

d. Calculate A=E[RQ] @ K1.

e. Group the 48-bit result of (d) into sets of 6 bits and evaluate the corresponding S-box
substitutions.

f. Concatenate the results of (e) to get a 32-bit result, B.

g. Apply the permutation to get P(B).

h. Calculate R1 = P(B) @ Lo.

i. Write down the ciphertext.

3.9 Show that DES decryption is, in fact, the inverse of DES encryption.

3.10 The 32-bit swap after the sixteenth iteration of the DES algorithm is needed to make the encryption process
invertible by simply running the ciphertext back through the algorithm with the key order reversed. This was
demonstrated in Problem 3.7. However, it still may not be entirely clear why the 32-bit swap is needed. To
demonstrate why, solve the following exercises. First, some notation:

A||B = the concatenation of the bit stringsA and B

Ti(R||L) = the transformation defined by the ith iteration of the encryption algorithm, for 1

FF

TDi(R||L) = the transformation defined by the ith iteration of the decryption algorithm, for 1

FiF

T17(R|IL) = LJ||R. This transformation occurs after the sixteenth iteration of the encryption
algorithm.

[Page 93]

a. Show that the composition TD1(IP(IP-l(T17(T16(L15|IR15))))) is equivalent to the transformation
that interchanges the 32-bit halves, L15 and R15. That is, show that

TDAIP(P L (T17(T16(L15|IR15)))) = R15]|L15

b. Now suppose that we did away with the final 32-bit swap in the encryption algorithm. Then we
would want the following equality to hold:

TD1IP(P L (T16(L15/IR15)) = R15(IL15

Does it?

3.11 Compare the initial permutation table ([Table 3.2 with the permuted choice one table {Table 3.4H). Are the

structures similar? If so, describe the similarities. What conclusions can you draw from this analysis?

3.12 When using the DES algorithm for dec
Therefore, the right-hand side of figure 3
appropriate shift schedule (analogous to

ption, the 16 keys (K1, K2, ..., K16) are used in reverse order.
3 is no longer valid. Design a key-generation scheme with the
able 3.4d) for the decryption process.

3.13
a. Let X be the bitwise complement ofX. Prove that if the complement of the plaintext block is taken

and the complement of an encryption key is taken, then the result of DES encryption with these
values is the complement of the original ciphertext. That is,

IFY=E®K, %

ThenY'= E(K, X
Hint: Begin by showing that for any two bit strings of equal lengthh and B, (A® B) = A® X B.

b. It has been said that a brute-force attack on DES requires searching a key space of 256keys.
Does the result of part (a) change that?

3.14 Show that in DES the first 24 bits of each subkey come from the same subset of 28 bits of the initial key and
that the second 24 bits of each subkey come from a disjoint subset of 28 bits of the initial key.

3.15 For any block cipher, the fact that it is a nonlinear function is crucial to its security. To see this, suppose that
we have a linear block cipher EL that encrypts 128-bit blocks of plaintext into 128-bit blocks of ciphertext. Let
EL(k, m) denote the encryption of a 128-bit messagem under a keyk (the actual bit length ofk is irrelevant).
Thus

EL(k, [m1® m2]) = EL(k, m1) @ EL(k, m1) for all 128-bit patternsm1, m2

Describe how, with 128 chosen ciphertexts, an adversary can decrypt any ciphertext without knowledge of
the secret key k. (A "chosen ciphertext" means that an adversary has the ability to choose a ciphertext and
then obtain its decryption. Here, you have 128 plaintext/ciphertext pairs to work with and you have the ability
to chose the value of the ciphertexts.)

Note: The following problems refer to simplified DES, described in Appendix C.

3.16 Refer to Figure C.2, which depicts key generation for S-DES.
a. How important is the initial P10 permutation function?

b. How important are the two LS-1 shift functions?

3.17 The equations for the variables g andr for S-DES are defined in the section on S-DES analysis. Provide the
equations for s and t.

[Page 94]

3.18 Using S-DES, decrypt the string (10100010) using the key (0111111101) by hand. Show intermediate results

after each function (IP, Fk, SW, Fk, IP'l). Then decode the first 4 bits of the plaintext string to a letter and the
second 4 bits to another letter where we encode A through P in base 2 (i.e., A= 0000, B = 0001,..., P =
1111).

Hint: As a midway check, after the application of SW, the string should be (00010011).

Programming Problems

3.19 Create software that can encrypt and decrypt using a general substitution block cipher.

3.20 C re that can encrypt and decrypt using S-DES. Test data: Use plaintext, ciphertext, and key of
Problem 3.1,

E=a wExT

" prey wEXT

[Page 95]

Chapter 4. Finite Fields

|4.1 Groups, Rings, and Fieldsl

h.z Modular Arithmeti(J

L1.3 The Euclidean Alqorithnl

Ll.4 Finite Fields of the Form GFm

Ll.S Polynomial Arithmeticl

Ll.G Finite Fields of the Form GF(%

Ll.? Recommended Reading and Web Sitesl

Ll.8 Key Terms, Review Questions, and ProblemJ

[Page 96]

The next morning at daybreak, Star flew indoors, seemingly keen for a lesson. | said, "Tap eight." She did a
brilliant exhibition, first tapping it in 4, 4, then giving me a hasty glance and doing itin 2, 2, 2, 2, before coming for
her nut.

It is astonishing that Star learned to count up to 8 with no difficulty, and of her own accord discovered that each
number could be given with various different divisions, this leaving no doubt that she was consciously thinking
each number. In fact, she did mental arithmetic, although unable, like humans, to name the numbers. But she
learned to recognize their spoken names almost immediately and was able to remember the sounds of the
names. Star is unique as a wild bird, who of her own free will pursued the science of numbers with keen interest
and astonishing intelligence.

Living with Birds, Len Howard

Key Points

® A field is a set of elements on which two arithmetic operations (addition and multiplication) have been
defined and which has the properties of ordinary arithmetic, such as closure, associativity, commutativity,
distributivity, and having both additive and multiplicative inverses.

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

® \odular arithmetic is a kind of integer arithmetic that reduces all numbers to one of a fixed set [0..n 1] for
some number n. Any integer outside this range is reduced to one in this range by taking the remainder after
division by n.

® The greatest common divisor of two integers is the largest positive integer that exactly divides both integers.

® rinite fields are important in several areas of cryptography. A finite field is simply a field with a finite number
of elements. It can be shown that the order of a finite field (number of elements in the field) must be a power

) n . L
of a prime p , where n is a positive integer.

® rinite fields of order p can be defined using arithmetic modp.

® [inite fields of order pn, for n > 1 can be defined using arithmetic over polynomials.

Finite fields have become increasingly important in cryptography. A number of cryptographic algorithms rely heavily on properties of finite
fields, notably the Advanced Encryption Standard (AES) and elliptic curve cryptography.

The chapter begins with a brief overview of the concepts of group, ring, and field. This section is somewhat abstract; the reader may
prefer to quickly skim this section on a first reading. Next, we need some elementary background in modular arithmetic and the
Euclidean algorithm. We are then ready to discuss finite fields of the form GFp), where pis a prime number. Next, we need some

additional background, this time in polynomial arithmetic. The chapter concludes with a discussion of finite fields of the form GF(?)
where n is a positive integer.

[Page 97]

[he concepts and techniques of number theory are quite abstract, and it is often difficult to grasp them intuitively without examples
UBI97]. Accordingly, this chapter an include a number of examples, each of which is highlighted in a shaded box.

e prey NExT

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

K==1 ExT

[Page 97 (continued)]

4.1. Groups, Rings, and Fields

Groups, rings, and fields are the fundamental elements of a branch of mathematics known as abstract algebra, or modern algebra. In
abstract algebra, we are concerned with sets on whose elements we can operate algebraically; that is, we can combine two elements of
the set, perhaps in several ways, to obtain a third element of the set. These operations are subject to specific rules, which define the
nature of the set. By convention, the notation for the two principal classes of operations on set elements is usually the same as the
notation for addition and multiplication on ordinary numbers. However, it is important to note that, in abstract algebra, we are not limited to
ordinary arithmetical operations. All this should become clear as we proceed.

Groups

A group G, sometimes denoted by {G, ‘} is a set of elements with a binary operatioenoted by -, that associates to each ordered paig(

b) of elements in G an element (a - b) in G, such that the following axioms are obeyed .1

M The operator - is generic and can refer to addition, multiplication, or some other mathematical operation.

(A1) Closure: Ifaandb belong to G, thena -bis also in G.

(A2) Associative: a-(b-c)=(a-b)-cforalla,b,cinG.

(A3) Identity element: There is an element e inG such thata-e=e-a=aforallainG.
(A4) Inverse element: For eachain G there is an elementa’ inG such thata-a' =a' -a=-e.

Let Nn denote a set ofn distinct symbols that, for convenience, we represent as {1,2,..n}. A permutation of n distinct
symbols is a one-to-one mapping from Np to Nn. Define Sh to be the set of all permutations of n distinct symbols. Each
element of Sn is represented by a permutation of the integers in {1,2,..}. It is easy to demonstrate that $ is a group:

[Page 98]

Al: Ifp,r ESn, then the composite mappingp - r is formed by permuting the elements ofr according to the
permutation p. For example, {3,2,1} - {1,3,2} = {2,3,1}. Clearlyp - r ESn.

A2: The composition of mappings is also easily seen to be associative.

A3: The identity mapping is the permutation that does not alter the order of the n elements. For Sp, the
identity element is {1,2,...,n}.

A4: Forany pESn, the mapping that undoes the permutation defined byp is the inverse element forp. There
will always be such an inverse. For example {2,3,1} - {3,1,2} = {1,2,3}

If a group has a finite number of elements, it is referred to as a finite group, and the order of the group is equal to the number of
elements in the group. Otherwise, the group is an infinite group.

A group is said to be abelian if it satisfies the following additional condition:

(A5) Commutative: a-b=b-aforalla, binG.

The set of integers (positive, negative, and 0) under addition is an abelian group. The set of nonzero real numbers under
multiplication is an abelian group. The set Sp from the preceding example is a group but not an abelian group fon > 2.

When the group operation is addition, the identity elementis O; the inverse element of ais a; and subtraction is defined with the following
rule: ab=a+ (b).

Cyclic Group

We define exponentiation within a group as repeated application of the group operator, so that a3 =a-a-a. Further, we define a0 =e, the

identity element; and a_n = (a')n. A groupG is cyclic if every element of G is a power ak (k is an integer) of a fixed eIementaE G. The
element ais said to generate the group G, or to be a generator of G. A cyclic groupis always abelian, and may be finite or infinite.

The additive group of integers is an infinite cyclic group generated by the element 1. In this case, powers are interpreted
additively, so that n is the nth power of 1.

Rings

A ring R, sometimes denoted by {R, +, x}, is a set of elements with two binary operations, calledaddition and multiplication,= such that for

all a, b, c in R the following axioms are obeyed:

2] Generally, we do not use the multiplication symbol, x, but denote multiplication by the concatenation of two
elements.

(A1-A5) R is an abelian group with respect to addition; that is,R satisfies axioms Al through A5. For the case of an additive group, we
denote the identity element as 0 and the inverse of aasa.

(M1) Closure under multiplication: Ifaandb belong to R, thenab is also in R.
(M2) Associativity of multiplication: a(bc) = (ab)c for alla, b, cinR.
(M3) Distributive laws: a(b+c)=ab +acforalla b, cinR.

(a+b)c=ac+bcforalla b, cinR.

[Page 99]

In essence, a ring is a set in which we can do addition, subtractiond b = a + (-b)], and multiplication without leaving the set.

With respect to addition and multiplication, the set of alln-square matrices over the real numbers is a ring.

Aring is said to be commutative if it satisfies the following additional condition:

(M4) Commutativity of multiplication: ab =baforalla, binR.

Let S be the set of even integers (positive, negative, and 0) under the usual operations of addition and multiplicatiors is a
commutative ring. The set of all n-square matrices defined in the preceding example is not a commutative ring.

Next, we define an integral domain, which is a commutative ring that obeys the following axioms:

(M5) Multiplicative identity: There is an element 1 inR such thatal = la=afor allainR.

(M6) No zero divisors: Ifa,binR andab =0, then eithera=0 orb=0.

Let S be the set of integers, positive, negative, and 0, under the usual operations of addition and multiplicationS is an
integral domain.

Fields

A field F, sometimes denoted by {F, +, X}, is a set of elements with two binary operations, callecaddition and multiplication, such that for all
a, b, ¢ in F the following axioms are obeyed:
(A1MS6) F is an integral domain; that is,F satisfies axioms Al through A5 and M1 through M6.

(M7) Multiplicative inverse: For eachain F, except 0, there is an elementa L in F such thataa™* = (a-l)a =1.

In essence, a field is a set in which we can do addition, subtraction, multiplication, and division without leaving the set. Division is defined

with the following rule: a/b = a(b_l).

Familiar examples of fields are the rational numbers, the real numbers, and the complex numbers. Note that the set of all
integers is not a field, because not every element of the set has a multiplicative inverse; in fact, only the elements 1 and
-1 have multiplicative inverses in the integers.

summarizes the axioms that define groups, rings, and fields.

[Page 100]

Figure 4.1. Group, Ring, and Field

iViEW full size imaqei

Figled

Imtegral domain
A

LALT Clesure ursdor addilion:
[AT feesiaalivaly of aeklition
[AT Adklitive klenniny:

Group

1A Auddative anverse:

Abelian group

Rimg

LAS) Comnmtativity of addilion
M1 Ol mnder muliiplication:
[(MI} Sesociatrvity of mmbiphcation:
(M) Cristriburive lows:

Commutative rimg

I M Comrmrmbalan'ily o iollgdalion
(M) Mubplicative (dentiny:

[M} Mo oo divisors

[T Multiplicsiive inverse:

I v o s bl 1o 5, thon @ = s alsem 3
g+ i+ =+ &)+ o all g, de con S
There i amalemen] in & sk fha
d+0=0+¢=glorallaint

For esickd b Y doene i an ebsimen —a WS
such st v + {—a) = [—@) + @ = 1

a+ b=+ eforall @ bim §

H o omed & belong to 8, then ab s also mn £
i) = (bl forall o, b, cim §

el v =@h e foralle, b cin §

{i# + 0 = ¢ -+ D B allar, & Cin 5

al = by Boroall @, e ¥

I ks aieekeimEnl ey sich that
dl=ln=aloralamst

o, B in & mmd e =), them eitker
a=lerp =0

I o bedorigs to S amd a0, thare is &n
oo im S sachthat oo™ =57 la = ||

=2

[Page 101]

4.2. Modular Arithmetic

Given any positive integern and any nonnegative integera, if we divide a by n, we get an integer quotientg and an integer remainderr
that obey the following relationship:

Equation 4-1

a=gn+r O=r<nqg=|an|

where I.xJ is the largest integer less than or equal tax.

demonstrates that, givena and positive n, it is always possible to findg andr that satisfy the preceding relationship. Represent
the integers on the number line; a will fall somewhere on that line (positivea is shown, a similar demonstration can be made for negativea).

Starting at 0, proceed to n, 2n, up to gn such thatgn i: aand (g + 1)n> a. The distance fromgn to ais r, and we have found the unique
values of g andr. The remainderr is often referred to as a fesidug

Figure 4.2. The Relationship a=qgn +r, 0E r<n

}View full size imaqei

M
n Zn 2] 4A a g+ 1A

a=11; n=7, 11=1x7 +4; r=4 q=1

a=-11; n=7; 11=(-2)x7+3; r=3 q=-2

If ais an integer andn is a positive integer, we definea mod n to be the remainder whena is divided byn. The integern is called the
modulus. Thus, for any integera, we can always write:

a=|.a/nJ X n+ (amodn)

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

11 mod 7 = 4;

-11mod7=3

Two integers a and b are said to be congruent modulo n, if (@ mod n) = (b mod n). This is written asa = b (mod n).

Blwe have just used the operator mod in two different ways: first as a binary operator that produces a remainder, as

in the expression a mod b; second as a congruence relation that shows the equivalence of two integers, as in the

expression To distinguish the two uses, the mod term is enclosed in parentheses for a congruence relation; this is
common but not universal in the literature. See Appendix D for a further discussion.

73 =4 (mod 23);

21 = -9 (mod 10)

[Page 102]

Divisors

We say that a nonzerob divides a if a = mb for somem, where a, b, and m are integers. T
division. The notation is commonly used to mean b divides a. Also, if bja, we say thatb is a

at is. b divides a if there is no remainder on
of a.

The positive divisors of 24 are 1, 2, 3, 4, 6, 8, 12, and 24.

The following relations hold:

® all, thena=+1.

® |f a)b and bla, thena = +b.

® Anyb P2 0 divides o.

® blg and bjh, thenb|(mg + nh) for arbitrary integersm and n.

To see this last point, note that

If bjg, theng is of the form g = b x g1 for some integersgi.
If blh, thenh is of the form h = b x h1 for some integershi.
So

mg + nh = mbgi + nbh1 = b x (mg1 + nh1)

and therefore b divides mg + nh.

7|14 and

We have

b=7;g=

14;,h=63;m=3;n=2.
7163. To show: 7|(3 x 14 + 2 x 63)

(Bx14+2x63)=73x2+2x9)

And it is obvious that 7|(7(3 x 2 + 2 x 9))

Note that if a = 0 (modn), then n|a.

Properties of Congruences

Congruences have the following properties:

1. a== b (modn)ifnjab).

2.

3.

a = b (mod n) implies b = a (modn)..

a = b (mod n) and b = ¢ (mod n) imply a = ¢ (mod n).

To demonstrate the first point, if n|(ab), then (ab) = kn for somek. So we can writea = b + kn. Therefore, (a modn) = (reminder when b + kn
is divided by n) = (reminder when b is divided byn) = (b mod n)

23 = 8 (mod 5) because 238=15=53
11 = 5(mod 9) because 115=16=8x (2)
81 = 0 (mod 27) because 810=81=27x3

The remaining points are as easily proved.

[Page 103]

Modular Arithmetic Operations

Note that,
Canwe p

by definition , the (mod n) operator maps all integers into the set of integers {0, 1,... § 1)}. This sugg
rform arithmetic operations within the confines of this set? It turns out that we can; this technique is known as

prithmetid.

Modular arithmetic exhibits the following properties:

1

2.

[(@modn) + (b modn)] modn = (a+ b) modn

[(a modn) (b modn)] modn = (ab) modn

Eodular

juestion:

3. [(@modn) x (b modn)] modn = (axb) modn

We demonstrate the first property. Define (a modn) = rg and (b modn) = rp. Then we can writea = rg + jn for some integerj andb = rp + kn
for some integer k. Then

(a+b)modn=(ra+jn+rp+kn) modn
=(ra+rb(k+j)n) modn

= (ra+rb) modn

= [(amodn] + (b modn)] mod n

The remaining properties are as easily proved. Here are examples of the three properties:

11mod8=3;15mod8=7

[(11 mod 8) + (15 mod 8)] mod 8 = 10 mod 8 = 2
(11 + 15) mod 8 = 26 mod 8 = 2

[(11 mod 8) (15mod 8)]mod 8 = 4mod 8 = 4
(11 15)mod 8 = 4mod 8 = 4

[(21 mod 8) x (15 mod 8)] mod 8 =21 mod 8 =5
(11 x15) mod 8 =165mod 8 =5

Exponentiation is performed by repeated multiplication, as in ordinary arithmetic. (We have more to say about exponentiation in
)

To find 117 mod 13, we can proceed as follows:

11°=121= 4 (mod 13)

220= 2=

11%= 119° = 2= 3 (mod 13)

1=

11 11 x 4 x 3= 132 == 2 (mod 13)

Thus, the rules for ordinary arithmetic involving addition, subtraction, and multiplication carry over into modular arithmetic.

[Page 104]

provides an illustration of modular addition and multiplication modulo 8. Looking at addition, the results are straightforward
and there is a regular pattern to the matrix. Both matrices are symmetric about the main diagonal, in conformance to the commutative
property of addition and multiplication. As in ordinary addition, there is an additive inverse, or negative, to each integer in modular
arithmetic. In this case, the negative of an integer x is the integery such that (x + y) mod 8 = 0. To find the additive inverse of an
integer in the left-hand column, scan across the corresponding row of the matrix to find the value 0; the integer at the top of that
column is the additive inverse; thus (2 + 6) mod 8 = 0. Similarly, the entries in the multiplication table are straightforward. In ordinary
arithmetic, there is a multiplicative inverse, or reciprocal, to each integer. In modular arithmetic mod 8, the multiplicative inverse of x is

the integer y such that (x x y) mod 8 = 1 mod 8. Now, to find the multiplicative inverse of an integer from the multiplication table, scan
across the matrix in the row for that integer to find the value 1; the integer at the top of that column is the multiplicative inverse; thus (3
x 3) mod 8 = 1. Note that not all integers mod 8 have a multiplicative inverse; more about that later.

Table 4.1. Arithmetic Modulo 8

IView full size image|

+ 0 1 2 3 + 5 (4] 7

| 1 2 3 4 5 i 7 0

2 . 3 - 5 [7 0 1

3 3 4 5 G 7 0 I 2

4 4 5 (i 7 0 | 2 3

5 5 G T L | 2 3 4

L i 7 L1 | 2 3 4 5

7 7 0 i 2 3 4 3 6

(a) Addition modulo 8

¥] | 2 3 4 5 f 7 i —w Wl

il 0 i 0 0 i 0 {0 L1 ¥

1 0 | 2 3 4 5 &5 7 i 7 I

2 0 2 4 (i 0 2 4 i 2 i —

3] 3 i | 4 7 2 5 3 5 3

4] 4 1] 4 0 4 0 4 4 4 —

5 0 5 2) 4 1 & 3 3 A 3

6 i} 6 1 2 0 6 4 |2 [2 —

7 0 7 (Y 5 4 3 2 1 7 l 7

(b) Muluplication modulo 8 (c) Addiive and muluplicative
inverses modulo 8§
[Page 105]

Properties of Modular Arithmetic

Define the set Zn as the set of nonnegative integers less tham:

Zn=1{0, 1,...(n 1)}

This is referred to as the set of residues, or modulo n. To be more precise, each integer in A represents a residue class.
We can label the residue classes modulo n as [0], [1], [2],...,h 1], where

[r] ={a:ais an integer, a = (mod n)}

The residue classes modulo 4 are
[0]={...,16,12,8,4,0, 4,8, 12, 16,... }
[={..1511,7,3,1,5,9,13,17,...}
[21={..., 14, 10,6, 2, 2, 6, 10, 14, 18,... }

[B1={..,13,9,5,1,3,7,11,15,19,... }

Of all the integers in a residue class, the smallest nonnegative integer is the one usually used to represent the residue class. Finding the
smallest nonnegative integer to which k is congruent modulon is called reducing k modulo n.

If we perform modular arithmetic within Zn, the properties shown in hold for integers in Zy. Thus, Zn is a commutative ring with a
multiplicative identity element “Fi;ure 4])

Table 4.2. Properties of Modular Arithmetic for Integers in Z,

Property Expression

Commutative laws (w +x) modn = (x +w) modn
(w xx) modn=(xxw) modn

Associative laws [(w +x) +y] modn = [w + (x +y)] modn
[(w xx) xy] modn = [w X (x xy)] modn

Distributive laws [w+ (x+y)] modn=[(wxXx) + (w xy)] modn
[w+ (xxy)] modn=[(w +x) X (w+y)] modn

Identities (0 + w) modn=w modn
(1 +w) modn=w modn

Additive inverse (w) For eachw € Zp, there exists az such thatw + z = 0 modn

There is one peculiarity of modular arithmetic that sets it apart from ordinary arithmetic. First, observe that, as in ordinary arithmetic, we
can write the following:

Equation 4-2

if(a + b)=(a+c¢)(modn) then b =c(modn)

(5 + 23) = (5 + 7)(mod 8}; 23= 7 (mod 8)

[Page 106]

is consistent with the existence of an additive inverse. Adding the additive inverse ofa to both sides of , we

have:
(&) +a+b) = (@ +a+c)(mod n)
b = ¢ (mod n)

However, the following statement is true only with the attached condition:

Equation 4-3

ifla X b)=(axc)modn)thenb = ¢ (mod n) ifais relatively prime to n

where the term relativel ime | fined as follows: two integers are[elatively prima if their only common positive integer factor is 1.
Similar to the case of quation (4.2], we can say tha Jation (4.3] is consistent with the existence of a multiplicative inverse. Applying the
multiplicative inverse of a to both sides onguation (4.2, we have:

(@hab) = (@hac)mod n)

b = ¢ (mod n)

To see this, consider an example in which the condition of does not hold. The integers 6 and 8 are not
relatively prime, since they have the common factor 2. We have the following:

6x3=18= 2 (mod 8)

6x7=422= 2 (mod 8)

Yet 3 ¥ 7 (mod 8).

The reason for this strange result is that for any general modulus n, a multipliera that is applied in turn to the integers 0 through £ 1) will fail
to produce a complete set of residues if a and n have any factors in common.

Witha=6 andn =38,

Z8 0 1 2 3 4 5 6 7
Multiply by 6 0 6 12 18 24 30 36 42
Residues 0 6 4 2 0 6 4 2

Because we do not have a complete set of residues when multiplying by 6, more than one integer in Zg maps into the
same residue. Specifically, 6 x 0 mod 8 =6 x 4 mod 8; 6 x 1 mod 8 = 6 x 5 mod 8; and so on. Because this is a
many-to-one mapping, there is not a unique inverse to the multiply operation.

However, if we takea =5 andn = 8, whose only common factor is 1,

Z8 0 1 2 3 4 5 6 7
Multiply by 6 0 5 10 15 20 25 30 35
Residues 0 5 2 7 4 1 6 3

The line of residues contains all the integers in 2, in a different order.

[Page 107]

In general, an integer has a multiplicative inverse in Zy if that integer is relatively prime ton. [Table 4.1d shows that the integers 1, 3, 5,

and 7 have a multiplicative inverse in Zg, but 2, 4, and 6 do not.

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

" prey wEXT

[Page 107 (continued)]

4.3. The Euclidean Algorithm

One of the basic techniques of number theory is the Euclidean algorithm, which is a simple procedure for determining the greatest
common divisor of two positive integers.

Greatest Common Divisor

Recall that nQnzero b is defined o be a divisor ofa if a= mb for somem, where a, b, and m are integers. We will use the notation gcdé, b)
to mean the [of aand b. The positive integerc is said to be the greatest common divisor ofa and b if

1. cisadivisor ofaand ofb;
2. any divisor of aandb is a divisor ofc.
An equivalent definition is the following:
gcd(a, b) = max[k, such thatk|a and k|b]
Because we require that the greatest common divisor be positive, gcd(a, b) = gcd(a, b) = gcd(a, b) = ged(a, b). In general, gcd(a, b) =

ged(lal, [b])-

gcd(60, 24) = ged(60, 24) = 12

Also, because all nonzero integers divide 0, we have gcd(a, 0) = 4.
We stated that two integers a and b are relatively prime if their only common positive integer factor is 1. This is equivalent to saying thaa

and b are relatively prime if gcdé, b) = 1

8 and 15 are relatively prime because the positive divisors of 8 are 1, 2, 4, and 8, and the positive divisors of 15 are 1, 3, 5, and 15, so
1 is the only integer on both lists.

Finding the Greatest Common Divisor

The Euclidean algorithm is based on the following theorem: For any nonnegative integer a and any positive integerb,

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

Equation 4-4

ged(a, b) = ged(b, amod b)

gcd(55, 22) = gcd(22, 55 mod 22) = gcd(22, 11) =11

[Page 108]

To see that works, letd = gcd(a, b). Then, by the definition of gcd,d|a and d|b. For any positive integerb, a can be expressed
in the form

a:kb+rEr(modb)

amodb=r

with k, r integers. Therefore, (a mod b) = a kb for some integerk. But because d|b, it also divides kb. We also have dja. Therefore, d|(a mod
b). This shows thatd is a common divisor of b and (a mod b). Conversely, if d is a common divisor of b and (a modb), then d|kb and thus
d|[kb + (a mod b)], which is equivalent tod|a. Thus, the set of common divisors of a and b is equal to the set of common divisors ofb and (a
mod b). Therefore, the gcd of one pair is the same as the gcd of the other pair, proving the theorem.

can be used repetitively to determine the greatest common divisor.

ged(18, 12) = ged(12, 6) = ged(6, 0) = 6

gcd(11, 10) = gcd(10, 1) =ged(1,0) =1

The Euclidean algorithm makes repeated use of to determine the greatest common divisor, as follows. The algorithm
assumes a>b > 0. It is acceptable to restrict the algorithm to positive integers because gcdé, b) = gcd(|al, [b]).

EUCLID(a, b)

At=—aBt0p

if B=0 return A=gcd(a, b)
R=AmodB

A¥t=—pB

B#—R

goto 2

o g s wN R

The algorithm has the following progression:

A|:B1KDL+R1
e o

vl

A, =B, x(Q, + R,

[

&
|

B X Q; + Ry

Vs
Il

B, X Q, + R,

[Page 109]

To find gcd(1970, 1066)

1970 =1x 1066 + 904 gcd(1066, 904)
1066 =1x904 + 162 gcd(904, 162)
904 =5x162+94 gcd(162, 94)
162 =1x94+68 gcd(94, 68)
94 =1x68+26 gcd(68, 26)
68 =2x26+16 gcd(26, 16)
26 =1x16+10 gcd(16, 10)
16 =1x10+6 gcd(10, 6)

10 =1x6+4 ged(6, 4)
6 =1x4+2 gcd(4, 2)
4 =2x2+0 gcd(2, 0)

Therefore, gcd(1970, 1066) = 2

The alert reader may ask how we can be sure that this process terminates. That is, how can we be sure that at some point B divides A?
If not, we would get an endless sequence of positive integers, each one strictly smaller than the one before, and this is clearly
impossible.

=2 wEXT

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

=2

[Page 109 (continued)]

4.4. Finite Fields of The Form GF(p)

In , we defined a field as a set that obeys all of the axioms and gave some examples of infinite fields. Infinite fields

are not of particular interest in the context of cryptography. However, finite fields play a crucial role in many cryptographic algorithms. It

can be shown that the order of a finite field (number of elements in the field) must be a power of a prime pn, where nis a positive integer.
We discuss prime numbers in detail in Chapter §. Here, we need only say that a prime number is an integer whose only positive integer
factors are itself and 1. That is, the only positive integers that are divisors of parep and 1.

The finite field of order pn is generally written GF(on); stands for Galois field, in honor of the mathematician who first studied finite fields.
Two special cases are of interest for our purposes. For n = 1, we have the finite field GF(p); this finite field has a different structure than that

for finite fields with n > 1 and is studied in this section. I, we look at finite fields of the form GF(Zn).

Finite Fields of Order p

For a given prime, p, the finite field of order p, GF(p) is defined as the set Zp of integers {0, 1,...,p 1}, together with the arithmetic operations
modulo p.

Recall that we showed in that the set Zn of integers {0,1,...,n 1}, together with the arithmetic operations modulon, is a
commutative ring (. We further observed that any integer in 4 has a multiplicative inverse if and only if that integer is relatively

prime to n [see discussion of . Ifnis prime, then all of the nonzero integers in 4 are relatively prime ton, and therefore
there exists a multiplicative inverse for all of the nonzero integers in Zn. Thus, we can add the following properties to those listed i m

for Zp:

[l As stated in the discussion o, two integers arerelatively prime if their only common positive integer

factor is 1.

[Page 110]

e 1
Multiplicative inverse (w") For eachw I Zp, w i 0, there exists a
z EZp such thatw x z = (modp)

Because w is relatively prime top, if we multiply all the elements of % by w, the resulting residues are all of the elements of 2 permuted.
Thus, exactly one of the residues has the value 1. Therefore, there is some integer Zp in that, when multiplied byw, yields the residue 1.

That integer is the multiplicative inverse of w, designated wl. Therefore, Zp is in fact a finite field. Further, is consistent with
the existence of a multiplicative inverse and can be rewritten without the condition:

Equation 4-5

if (a X b) = (a X ¢)(mod p) then b = ¢ (mod p)

Multiplying both sides of by the multiplicative inverse ofa, we have:

((al) x axc)(mod p)

((al) x axh)

b ¢ (mod p)

The simplest finite field is GF(2). Its arithmetic operations are easily summarized:

w|—w w
0] 0 —
1 1 1

|.[:'|+
—

Addition Multiplication Inverses

In this case, addition is equivalent to the exclusive-OR (XOR) operation, and multiplication is equivalent to the logical
AND operation.

shows GE his is a field of order 7 using modular grithmetic modulo 7. As can be seen, it satisfies all of the properties
required of a field (. Compare this table With‘. In the latter case, we see that the set & using modular arithmetic
modulo 8, is not a field. Later in this chapter, we show how to define addition and multiplication operations on Zg in such a way as to
form a finite field.

Table 4.3. Arithmetic in GF(7)

(This item is displayed on page 111 in the print version)

IView full size image|

+ 0 1 2 3 4 5 6
) L 1 2 3 4 5 i
| | 2 3 4 3 i) 0
2 2 3 1 5 6 0
3 3 4 5 6 0 | 2
4 i 5 s 0 1 2 3
3 = B (] 1 2 3 4
6 6 0 1 2 4 2
(a) Addition modulo 7

; L 1 2 3 4 3]
0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 1 (4] | 3 5
3 0 3 & 2 5 1 4
4 0 1 I 5 2 6 3
o 0 h] 3 1 b 4 2
o 0 b 5 4 3 2 1

(b) Multiplication modulo 7

=
=

=
B3 | | s frm O | S
|

- LT IF S
e |t

i¢) Additive and multiplicative
inverses modulo 7

Finding the Multiplicative Inverse in GF(p)

Itis easy
shown in

o find the

ultiplicative inverse of an element in GF(p) for small values of p. You simply construct a multiplication table, such as

Table 4.3

, and the desired result can be read directly. However, for large values op, this approach is not practical.

If gcd(m, b) = 1, then b has a multiplicative inverse modulom. That is, for positive integerb < m, there exists ab1 <m such thatbb1 =1mod
m. The Euclidean algorithm can be extended so that, in addition to finding gcdf, b), if the gcd is 1, the algorithm returns the multiplicative
inverse of b.

EXTENDED EUCLID(m, b)
1. (A1, A2, A3) ¥ (1,0, m); (B1, B2, B3) ¥ (0, 1, b)
2.if B3 =0 return A3 = gcd(m, b); no inverse

3.if B3 =1 return B3 =gcd(m, b); B2 = bl mod m

[Page 111]

o= |22
. B3

5.(T1, T2, T3) ¥ (A1 QB1, A2 QB2, A3 QB3)
6. (Al, A2, A3) ¥ (B1, B2, B3)

7.(B1, B2, B3) ¥ (T1, T2, T3)

8.goto 2

Throughout the computation, the following relationships hold:

mT1+bT2=T3 mA1 + bA2 = A3 mB1 + bB2 = B3

To see that this algorithm correctly returns gcd(m, b), note that if we equate A and B in the Euclidean algorithm with A3 and B3 in the
extended Euclidean algorithm, then the treatment of the two variables is identical. At each iteration of the Euclidean algorithm, A is set
equal to the previous value of B and B is set equal to the previous value of A mod B. Similarly, at each step of the extended Euclidean
algorithm, A3 is set equal to the previous value of B3, and B3 is set equal to the previous value of A3 minus the integer quotient of A3
multiplied by B3. This latter value is simply the remainder of A3 divided by B3, which is A3 mod B3.

[Page 112]

Note also that if gcd(m, b) = 1, then on the final step we would have B3 = 0 and A3 = 1. Therefore, on the preceding step, B3 = 1. But if B3
=1, then we can say the following:

mB1 + bB2 = B3
mB1 + bB2 = 1
bB2 = 1 mB1

bB2 = 1 (mod m)

And B2 is the multiplicative inverse of b, modulom.

is an example of the execution of the algorithm. It shows that gcd(1759, 550) = 1 and that the multiplicative
inverse of 550 is 355; that is, 550 x 335 == 1 (mod 1759).

Table 4.4. Finding the Multiplicative Inverse of 550 in GF(1759)

Q Al A2 A3 B1 B2 B3

1 0 1759 0 1 550

3 0 1 550 1 3 109
5 1 3 109 5 16 5
21 5 16 5 106 339 4
1 106 339 4 111 355 1

For a more detailed proof of this algorithm, see KNUT97]].

Summary

In this section, we have shown how to construct a finite field of order p, where p is prime. Specifically, we defined GF{) with the following

properties:

1. GF(p) consists of p elements.

2. The binary operations + and x are defined over the set. The operations of addition, subtraction, multiplication, and division can

be performed without leaving the set. Each element of the set other than 0 has a multiplicative inverse.

We have shown that the elements of GF(p) are the integers {0, 1

p.

p} and that the arithmetic operations are addition and multiplication mod

=2

[Page 113]

4.5. Polynomial Arithmetic

Before pursuing our discussion of finite fields, we need to introduce the interesting subject of polynomial arithmetic. We are
concerned with polynomials in a single variable x, and we can distinguish three classes of polynomial arithmetic:

® Ordinary polynomial arithmetic, using the basic rules of algebra
® Polynomial arithmetic in which the arithmetic on the coefficients is performed modulo p; that is, the coefficients are in GFp)

® Polynomial arithmetic in which the coefficients are in GF(p), and the polynomials are defined modulo a polynomiam(x) whose
highest power is some integer n

This section examines the first two classes, and the next section covers the last class.

Ordinary Polynomial Arithmetic

=

A polynomial of degree n (integer n == 0) is an expression of the form

M
fix) =apx" + ap_x" '+ o+ ax +ag = > an
f=1

where the aj are elements of some designated set of numbersS, called the coefficient set, andan i 0. We say that such polynomials
are defined over the coefficient set S.

A zeroth-degree polynomial is called a constant polynomial and is simply an element of the set of coefficients. Annth-degree polynomial
is said to be a monic polynomialifan = 1.

In the context of abstract algebra, we are usually not interested in evaluating a polynomial for a particular value of x [e.g., f(7)]. To
emphasize this point, the variable x is sometimes referred to as theindeterminate.

Polynomial arithmetic includes the operations of addition, subtraction, and multiplication. These operations are defined in a natural way as
though the variable x was an element of S. Division is similarly defined, but requires thatS be a field. Examples of fields include the real
numbers, rational numbers, and Zp for p prime. Note that the set of all integers is not a field and does not support polynomial division.

Addition and subtraction are performed by adding or subtracting corresponding coefficients. Thus, if

m

fix) = iﬂe-x"; g(x) = D bx'y n=m
=0

i={)

then addition is defined as

i i

flx) + glx) = D(a; + b)x' + 3 an'

i=[) i=m+1

[Page 114]
and multiplication is defined as

mt+m

flx) X glx) = %f,-x"

where
Ck = apbk1 + aibk1 + ... + ak1b1 + akbo

In the last formula, we treat aj as zero fori > n and bj as zero fori > m. Note that the degree of the product is equal to the sum of the
degrees of the two polynomials.

As an example, let f(x) = x3 + x2 + 2 andg(x) = x2 x + 1, where S is the set of integers. Then
f(x) + g(x) = x3 + 2x2x +3

_.3
fx) gx)=x" +x+1

f(x) x g(x) = x5 + 3x22x +2

through show the manual calculations. We comment on division subsequently.

Figure 4.3. Examples of Polynomial Arithmetic

248 + 2 T+ + 2

+ (& —x+1) — (P —-x+1)

O+2— x + 3 344 L s i L

(a) Addition (b) Subtraction

042 + 2 xr + 2

X (—x+1) JL‘:—,I-:+1/,IH+.';'3 + 2

2+ - 2 X =x + x
—xt = — 2 2 x + 2

© + 2 + 240 232 — Ty 42

¥ +3° — 2+ 2 X

(c) Multiplication (d) Division

Polynomial Arithmetic with Coefficients in Zp

Let us now consider polynomials in which the coefficients are elements of some field F. We refer to this as a polynomial over the field F. In
that case, it is easy to show that the set of such polynomials is a ringferred to as a polynomial ring. That is, if we consider each

distinct polynomial to be an element of the set, then that set is a ring. 2

51y fact, the set of polynomials whose coefficients are elements of a commutative ring forms a polynomial ring, but
that is of no interest in the present context.

[Page 115]

When polynomial arithmetic is performed on polynomials over a field, then division is possible. Note that this does not mean that exact
division is possible. Let us clarify this distinction. Within a field, given two elements and b, the quotienta/b is also an element of the field.
However, given a ring R that is not a field, in general division will result in both a quotient and a remainder; this is not exact division.

Consider the division 5/3 within a set S. If S is the set of rational numbers, which is a field, then the result is simp
expressed as 5/3 and is an element of S. Now suppose thatS is the field Z7. In this case, we calculate (usingTable 4.34):
5/3:(5x3])mod7:(5x5)m0d7=4

which is an exact solution. Finally, suppose that S is the set of integers, which is a ring but not a field. Then 5/3 produces
a quotient of 1 and a remainder of 2:

5/3=1+2/3
5=1x3+2

Thus, division is not exact over the set of integers.

Now, if we attempt to perform polynomial division over a coefficient set that is not a field, we find that division is not always defined.

If the coefficient set is the integers, then (5x%/(3x) does not have a solution, because it would require a coefficient with a
value of 5/3, which is not in the coefficient set. Suppose that we perform the same polynomial division over Z7. Then we

have (5x2)/(3x) = 4x which is a valid polynomial over 7.

However, as we demonstrate presently, even if the coefficient set is a field, polynomial division is not necessarily exact. In general,
division will produce a quotient and a remainder:

Equation 4-6

flx) _ r(x)
e glx) + }

glx
flx) = q(x)g(x) + r(x)

If the degree of f(x) is n and the degree ofg(x) is m, (m == n), then the degree of the quotientg(x) m nis and the degree of the remainder
is at most m - 1. With the understanding that remainders are allowed, we can say that polynomial division is possible if the coefficient set
is a field.

In an analogy to integer arithmetic, we can write f(x) mod g(x) for the remainderr(x) in . That is, r(x) = f(x) mod g(x). If there
is no remainder [i.e., r(x) = 0], then we can sayg(x) divides f(x), written asg(x)|f(x); equivalently, we can say thatg(x) is a factor of f(x) or
g(x) is adivisor of f(x).

[Page 116]

For the preceding example and_[f(x) = x3 + x2 + 2 andg(x) = x2x + 1], f(x)/g(x) produces a quotient ofg(x) = x + 2 and a
remainder r(x) = x as shown infigure 4.3d. This is easily verified by noting that

a(x)g(x) + r(x) = (x + 2)(x2x +1)+x= (x3+x2x +2)+Xx

=x3+x2+2=f(x)

For our purposes, polynomials over GF(2) are of most interest. Recall from that in GF(2), addition is equivalent to the XOR
operation, and multiplication is equivalent to the logical AND operation. Further, addition and subtraction are equivalentmod 2: 1 +1=11
=0;1+0=10=1;0+1=01=1.

shows an example of polynomial arithmetic over GF(2). Forf(x) = (x7 + x5 + x4 + x3 +x + 1) andg(x) = (x3 + X
+ 1), the figure shows f(x) + g(x); f(x) 9(x); f(x) x g(x); and f(x)/g(x). Note that g(x)|f(x)

Figure 4.4. Examples of Polynomial Arithmetic over GF(2)

x! + 2+ + X + x + 1
+ (X + x4+ 1)
5 + 2 + ¥

(a) Addition

X + X+ 0+ 3 + x + 1

e + x + 1)

X + X + x
(b) Subtraction

x' Fo a1t + x4 1
% (2 + x4+ 1)
% + X+t +) + x + 1
i + 2%+ F +x + X+ x
e + 2%+ 2"+ a0 + 24 + 7
£ S + x + 1

(¢) Multiplication

v+ 1
x3+_r+1/x? + X+ 4+ 1 + x + 1
x’ + ¥ 4+

x 3 e e |

X + x + 1

(d) Division

[Page 117]

A polynomial f(x) over a fieldF is called irreducible if and only iff(x) cannot be expressed as a product of two polynomials, both ovef,
and both of degree lower than that of f(x). By analogy to integers, an irreducible polynomial is also called a prime polynomial.

The ponnomiaI@ f(x) = x4 + 1 over GF(2) is reducible, becausex4 +1=(x+ 1)(x3 + x2 +x+1)

8] | the remainder of this chapter, unless otherwise noted, all examples are of polynomials over GF(2).

Consider the polynomial f(x) = x3 +x + 1. Itis clear by inspection thatx is not a factor off(x). We easily show thatx + 1 is
not a factor of f(x):

X+ x
x+]/x3 o 5 sl
x>+ x?
¥+ x
¥+ ox

Thus f(x) has no factors of degree 1. But it is clear by inspection that iff(x) is reducible, it must have one factor of degree
2 and one factor of degree 1. Therefore, f(x) is irreducible.

Finding the Greatest Common Divisor

We can extend the analogy between polynomial arithmetic over a field and integer arithmetic by defining the greatest common divisor as
follows. The polynomial c(x) is said to be the greatest common divisor of a(x) and b(x) if

1. c(x) divides both a(x) and b(x);
2. any divisor of a(x) and b(x) is a divisor of c(x).
An equivalent definition is the following: gcd[a(x), b(x)] is the polynomial of maximum degree that divides botha(x) and b(x).

We can adapt the Euclidean algorithm to compute the greatest common divisor of two polynomials. The equality in can be
rewritten as the following theorem:

Equation 4-7

ocd[a(x), b{x)] = gcd[b{x), a(x) mod b(x)]

[Page 118]

The Euclidean algorithm for polynomials can be stated as follows. The algorithm assumes that the degree of a(x) is greater than the
degree of b(x). Then, to find gcdfa(x), b(x)],

EUCLID[a(x), b(x)]

1. AX) = a(x); B(x) = b(x)

2.if B(x) = 0return A(x) = gcd[a(x), b(x)]
3. R(x) = A(x) mod B(x)

4. AX) == B(x)

5. B(x) ¥ R(X)

6.goto 2

Find gcd[a(x), b(x)] for a(x) = x6 + x5 +x4 + x3 + x2 +x + 1 andb(x) = x4 + x2 +x+ 1.

A(X) = a(x); B(x) = b(x)

¥+ x
e+ x+1 P+ x4+
% +xt + x4+ i
> + x + 1
x’ +x3 +x2 +x

4+ x2 + 1

R(X) = A(x) mod BK) = x© + x> + 1
AK) = X+ xP X+ 1 BO) =X+ X+ 1
x+1
2+ 22+ 1y + x>+ x + 1
Pl i

-y
o

2+ x + 1
X2 + x° + 1

R(x) = A(x) mod B(x) =0

ged[a(x), b(x)] = A(x) = x3 + x2 +1

Summary

We began this section with a discussion of arithmetic with ordinary polynomials. In ordinary polynomial arithmetic, the variable is not
evaluated; that is, we do not plug a value in for the variable of the polynomials. Instead, arithmetic operations are performed on
polynomials (addition, subtraction, multiplication, division) using the ordinary rules of algebra. Polynomial division is not allowed unless the
coefficients are elements of a field.

[Page 119]

Next, we discussed polynomial arithmetic in which the coefficients are elements of GHg). In this case, polynomial addition, subtraction,
multiplication, and division are allowed. However, division is not exact; that is, in general division results in a quotient and a remainder.

Finally, we showed that the Euclidean algorithm can be extended to find the greatest common divisor of two polynomials whose
coefficients are elements of a field.

All of the material in this section provides a foundation for the following section, in which polynomials are used to define finite fields of

order pn.

=2

=2

[Page 119 (continued)]

4.6. Finite Fields Of the Form GF(2")

arlier in this chapter, we mentioned that the order of a finite field must be of the form pn where pis a prime andn is a positive integer. In
Bection 4.4, we looked at the special case of finite fields with orderp. We found that, using modular arithmetic in 2, all of the axioms for a

field are satisfied. For polynomials overpn, withn > 1, operations modulo pn do not produce a field. In this section, we show

what structure satisfies the axioms for a field in a set with pn elements, and concentrate on GF(Zn).

Motivation

Virtually all encryption algorithms, both symmetric and public key, involve arithmetic operations on integers. If one of the operations that is
used in the algorithm is division, then we need to work in arithmetic defined over a field. For convenience and for implementation
efficiency, we would also like to work with integers that fit exactly into a given number of bits, with no wasted bit patterns. That is, we wish

to work with integers in the range 0 through 2" 1, which fit into ann-bit word.

Suppose we wish to define a conventional encryption algorithm that operates on data 8 bits at a time and we wish to
perform division. With 8 bits, we can represent integers in the range 0 through 255. However, 256 is not a prime number,
so that if arithmetic is performed in Z256 (arithmetic modulo 256), this set of integers will not be a field. The closest prime
number less than 256 is 251. Thus, the set Z251, using arithmetic modulo 251, is a field. However, in this case the 8-bit

patterns representing the integers 251 through 255 would not be used, resulting in inefficient use of storage.

As the preceding example points out, if all arithmetic operations are to be used, and we wish to represent a full range of integers inn bits,

then arithmetic modulo will not work; equivalently, the set of integers modulo 2n, forn> 1, is not a field. Furthermore, even if the encryption
algorithm uses only addition and multiplication, but not division, the use of the set Z2" is questionable, as the following example illustrates.

[Page 120]

Suppose we wish to use 3-bit blocks in our encryption algorithm, and use only the operations of addition and multiplication. Then
arithmetic modulo 8 is well defined, as shown in . However, note that in the multiplication table, the nonzero integers do not
appear an equal number of times. For example, there are only four occurrences of 3, but twelve occurrences of 4. On the other hand,

as was mentioned, there are finite fields of the form GF(2') so there is in particular a finite field of order 2?’ = 8. Arithmetic for this field
is shown in [Table 4.5. In this case, the number of occurrences of the nonzero integers is uniform for multiplication. To summarize,

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

Integer 1 2 3 4 5 6 7

Occurrences in Z8 4 8 4 12 4 8 4

Occurrences in GF(23)

Table 4.5. Arithmetic in GF(23)
(This item is displayed on page 121 in the print version)

IVieW full size image|

000 001 00 o1t 10 101 1Ee 111

+ 0 | 2 3 < 5 G 7
(MH) LI 1 1 2 3 4 5 o T
1 1 | 0 3 2 5 4 7 f
oia 2 2 3 0 | L 7 4 h]
011 3 3 2 1 L] 7 i)] 4
[(K] 4 4 3 3] 7] 1 2 i
11K b i 4 T Li] | 0 3 2
110 L] i T 4 5 3 L 1
111 7 7 & 5 4 3 2 | i
{ay Addition
M 001 010 1 1 110 1o 111
x 0 1 2 31 4 5 & 1 w_-w w
(K] L 1] 0 0 0 il i 0 L1 U) —
(] | 0 I 2 3 4 L (3] 7 1 1 |
010 2 0 2 4 G 3 | 7 5 2 i 3
011 3 0 3 5] 5 7 4 I g 3 3 L]
1(H} 4 0 4 3 7 0 Z 5 1 4 4 7
11 5 0 5 4 2 7 £ 6 5 5 2
1o 6 0 & 7 | 5 3 2 4 6 & 3
111 7 o B 2 | 6 4 3 v M 4
(h) Multiplication (c) Additive and multiplicative
INVErses

For the moment, let us set aside the question of how the matrices of were constructed and instead make some observations.

1. The addition and multiplication tables are symmetric about the main diagonal, in conformance to the commutative property
of addition and multiplication. This property is also exhibited in [Table 4.1, which uses mod 8 arithmetic.

2. All the nonzero elements defined by have a multiplicative inverse, unlike the case witl .

3. The scheme defined by satisfies all the requirements for a finite field. Thus, we can refer to this scheme as GF(%.

4. For convenience, we show the 3-bit assignment used for each of the elements of GF(%).

Intuitively, it would seem that an algorithm that maps the integers unevenly onto themselves might be cryptographically weaker than one

that provides a uniform mapping. Thus, the finite fields of the form GF(Zn) are attractive for cryptographic algorithms.

To summarize, we are looking for a set consisting of 2 elements, together with a definition of addition and multiplication over the set that

define a field. We can assign a unique integer in the range 0 through 2n 1 to each element of the set. Keep in mind that we will not use
modular arithmetic, as we have seen that this does not result in a field. Instead, we will show how polynomial arithmetic provides a means
for constructing the desired field.

Modular Polynomial Arithmetic

Consider the set S of all polynomials of degree n 1 or less over the field 4. Thus, each polynomial has the form
n—1

fx) = @ x" @ "+ o+ ax +oag = D agx
=0

where each aj takes on a value in the set {0, 1,...p 1}. There are a total ofpn different polynomials inS.

[Page 121]

Forp=3andn=2, the 32 =9 polynomials in the set are

0 X 2x

1 X+1 2x+1

2 X+ 2 2X+2
Forp=2andn=3, the 23 = 8 the polynomials in the set are

0 x+1

X +X
1 x2 x2 +x+1
X X +1

With the appropriate definition of arithmetic operations, each such set S is a finite field. The definition consists of the following elements:

1. Arithmetic follows the ordinary rules of polynomial arithmetic using the basic rules of algebra, with the following two
refinements.

2. Arithmetic on the coefficients is performed modulo p. That is, we use the rules of arithmetic for the finite field 2.

[Page 122]

3. If multiplication results in a polynomial of degree greater than n 1, then the polynomial is reduced modulo some irreducible
polynomial m(x) of degree n. That is, we divide bym(x) and keep the remainder. For a polynomialf(x), the remainder is
expressed as r(x) = f(x) mod m(x).

The Advanced Encryption Standard (AES) uses arithmetic in the finite field GF(28), with the irreducible polynomialm(x) = x8 + x4 x3 +

x + 1. Consider the two polynomialsf(x) = x6 + x4 + x2 +x+1andg(x) = x7 +x+ 1. Then
f(x)+g(x)=x6+x4x2+x+1+x7+x+1

f(x) x g(x) = x13 + xl:L + x9 + x8 + x7 +

x7+x5+x3+x2+x+

6 4 2
X +X +X +x+1

:X13+X11+X9+X8+X6+X5+X4+X3+1
4 xt
P I S T P L T L i S el S S S S Sl e T R S |
x> + 10 + xF + x% + X
xll + 1+
xil + x7 + X8 + 1! + X
x! + x8 + 1

Therefore, f(x) x g(x) mod m(x) = x7 + x6 +1.

As with ordinary modular arithmetic, we have the notion of a set of residues in modular polynomial arithmetic. The set of residues modulo

) . n . n .
m(x), an nth-degree polynomial, consists ofp elements. Each of these elements is represented by one of thep polynomials of degree m <
n.

The residue class [x + 1], modulo m(x), consists of all polynomials a(x) such that a(x) E (x + 1) (mod m(x)). Equivalently,
the residue class [x + 1] consists of all polynomials a(x) that satisfy the equalitya(x) mod m(x) = x + 1.

It can be shown that the set of all polynomials modulo an irreducible nth-degree polynomial m(x) satisfies the axioms in, and
thus forms a finite field. Furthermore, all finite fields of a given order are isomorphic; that is, any two finite-field structures of a given order
have the same structure, but the representation, or labels, of the elements may be different.

[Page 123]

To construct the finite field GF(?), we need to choose an irreducible polynomial of degree 3. There are only two such polynomials:
(x3 + x2 + 1) and (x3 + x + 1). Using the latter, shows the addition and multiplication tables for GF(E). Note that this set of
tables has the identical structure to those of . Thus, we have succeeded in finding a way to define a field of order 5

Table 4.6. Polynomial Arithmetic Modulo (x3 +x +1)
(This item is displayed on page 124 in the print version)

}View full size imaqei

LLK]} L] [LBL LU (L1 LL1a} (L] 1]

+ 0 I i i | r? o | ik K E+r+l
LLL] i a I X x+ 1 o o | e+ x a4+l
L] | 1] x4+ 1 L o+ | X T o+
ol T X x+1 i i 4 X 4 x s & x|
ol L o# | X 1 0 i o | . ' % | N
1 ¥ 5 o] b g ey [1 X row
§H ok B | ™+ | r o+ g] oty] 1 N+l £
LREL rta T+ P ratl i W41] i+l 1] I
11 o+ x# PR | o+ 1 o+ 1 o ¥+ 1 | 1 i

1) Additon
LIE] LI R[] LU (L1 1N (R 1] (1]

b i} i X T+ | rt o+ 1 ™4 x Pl |
) 0 Q o [1] 0 0] 0
(] i 1] [N r o+ | ' ol | g oo |
aln T 1] X x W o o+ 1 oozl T
all o+ (1] c# 4 iy el | S P E R | S] i
10 & & . i+ et o b P e + | [
1 e | . a] |}1.|) 1) |? X) ! o+ oy ¥ +1 |}'|_|. |
(RET] T+ 1] 1.\.::..:1. i r + 1+ .| | |: + 1 K+ Il L] i
i e | &) frx+d o+ 0 r i r+a r x+1

ok Mutiplicatiss

Finding the Multiplicative Inverse

Just as the Euclidean algorithm can be adapted to find the greatest common divisor of two polynomials, the extended Euclidean algorithm
can be adapted to find the multiplicative inverse of a polynomial. Specifically, the algorithm will find the multiplicative inverse of b(x)
modulo m(x) if the degree of b(x) is less than the degree ofm(x) and gcd[m(x), b(x)] = 1. If m(x) is an irreducible polynomial, then it has no
factor other than itself or 1, so that gcd[m(x), b(x)] = 1. The algorithm is as follows:

EXTENDED EUCLID[m(X), b(x)]

1. [AL(x), A2(x), A3(X)] — [1, 0, m(x)]; [B1(x), B2(x),
B3(x)] ¥ [0, 1, b(x)]

2.if B3(x) =0 return A3(x) = gcd[m(x), b(x)]; no
inverse

3.if B3(x) =1 return B3(x) = gcd[m(x), b(X)];
B2(x) = b(x) L mod m(x)

4. Q(x) = quotient of A3(x)/B3(x)

5. [T1(x), T2(x), T3(x)] o [A1(x) Q(X)B1(x), A2(x)
QX)B2(x), A3(x) QB3(x)]

6. [AL(X), A2(x), A3(x)] ¥ [B1(X), B2(x), B3(X)]

7. [B1(x), B2(x), B3(x)] ¥ [T1(x), T2(x), T3(X)]

8.goto 2

shows the calculation of the multiplicative inverse of (x7 +x + 1) mod (x8 + x4 + x3 +x + 1). The result is that

o +x+ = (). Thatis, (¢ +x+ 1)(x') = 1 (mod 6+ x* +xC + x + 1)).

Table 4.7. Extended Euclid [(x& +x* +x% +x + 1), & +x + 1)]

(This item is displayed on page 125 in the print version)

Initialization ALK) = 1: A2() = 0: A3() = x& + X + 3 +x + 1
B1(x) = 0; B2(x) = 1; B3(x) = x7 +x+1
Iteration 1 Q(x) = x
Al(x) = 0; A2(x) = 1; A3(x) = x7 +x+1
B1(x) = 1; B2(x) = x; B3(x) = x4 + x3 + x2 +1
Iteration 2 Q) = X3 . XZ 1
Al(x) =1; A2(x) = x; A3(X) = x4 + x3 + x2 +1
B1(x) = x3+ x2 +1; B2(x) = x4+ x3 +x + 1; B3(x) = x
Iteration 3 QW) = X3 . X2 +x
Al(x) = x3 + x2 +1; A2(x) = x4 + x3 +x + 1; A3(x) = x
B1(x) = x6 + x2 +x+1; B2(x) = x7; B3(x) =1
Iteration 4

B3(x) = gcd[(x7 +x+ 1), (x8 + x4 + x3 +x+1)]=1

BZ(X)Z(X7+X+1)1m0d (x8+x4+x3+x+1)=x7

Computational Considerations

A polynomial f(x) in GF(Zn)

n—1
fixy=a,.x" ' +a,_ "%+ - +ax+ay= Eﬂix‘
i=0

can be uniquely represented by its n binary coefficients (an1an2...a0). Thus, every polynomial in GF(i]) can be represented by an n-bit

number.

[Page 125]

and@ show the addition and multiplication tables for GF(E) modulo m(x) = (x3 +x+1). uses the

binary representation, and [Table 4.4 uses the polynomial representation.

Addition

We have seen that addition of polynomials is performed by adding corresponding coefficients, and, in the case of polynomials over 22

addition is just the XOR operation. So, addition of two polynomials in GF(Zn) corresponds to a bitwise XOR operation.

Consider the two polynomials in GF(28) from our earlier example:f(x) = x6 + x4 + x2 +x+ 1landg(x) = x7 +x+ 1.

(x6 el ex+ 1)+ (x7+ X+ 1) O A S B (polynomial notation)
(01010111) $ (10000011) =(11010100) (binary notation)
{57} @ {83} = (b4 (hexadecimal notation

[7] A basic refresher on number systems (decimal, binary, hexadecimal) can be found at the
Computer Science Student Resource Site at lNiIIiamStaIIinqs.com/StudentSupport.htm . Here each

http://WilliamStallings.com/StudentSupport.html

of two groups of 4 bits in a byte is denoted by a single hexadecimal character, the two characters
enclosed in brackets.

Multiplication

There is no simple XOR operation that will accomplish multiplication in GF(Zn) However, a reasonably straightforward, easily implemented
technique is available. We will discuss the technique with reference to GF(28) using m(x) = x8 + x4 + x3 + x + 1, which is the finite field

used in AES. The technique readily generalizes to GF(Zn).

The technique is based on the observation that

Equation 4-8

x*modm(x) = [m(x) = x¥]=(x*+ x>+ x + 1)

[Page 126]

A moment's thought should convince you that is true; if not, divide it out. In general, in GF(?) with an nth-degree polynomial
p(x), we have x" mod p(x) = [p(x) x"J.

Now, consider a polynomial in GF(28), which has the formf(x) = b7x7 + bex6 + b5x5 + b4x4 + b3x3 + b2x2 + b1x + bo. If we multiply byx, we
have

Equation 4-9

x X flx) = (bpx® + bex” + bsx® + by + byt +
bsx® + bix® + bgx) mod m(x)

If b7 = 0, then the result is a polynomial of degree less than 8, which is already in reduced form, and no further computation is necessary. If

b7 =1, then reduction modulom(x) is achieved using Equation (4.8]:

x X f(x) = (bex7 + b5x6 + b4x5 + b3x4 + b2x3 +

b1x2+b0x)+(x4+x3+x+1)

It follows that multiplication by x (i.e., 00000010) can be implemented as a 1-bit left shift followed by a conditional bitwise XOR with

(00011011), which represents (x4 + x3 +x + 1). To summarize,

Equation 4-10

(bﬁbﬁbqf]gbgblbu{}} lrb;r = ()

-K b —
x X fix) (bsbsbybsbabiby0) @ (00011011) if by

I
—_—

Multiplication by a higher power of x can be achieved by repeated application o. By adding intermediate results,

multiplication by any constant in GF(28) can be achieved.

In an earlier example, we showed that for f(x) = x6 + x4 + x2 +x+1,9(x) = x7 +x+ 1, and m(x) = x8 + x4 + x3 +x+1,

f(x) x g(x) mod m(x) = x7 + x6 + 1. Redoing this in binary arithmetic, we need to compute (01010111) x (10000011). First,
we determine the results of multiplication by powers of x:

(01010111) x (00000001) = (10101110)

(01010111) x (00000100) = (01011100) $ (00011011) = (01000111)

(01010111) x (00001000) = (10001110)

(01010111) x (00010000) = (00011100) $ (00011011) = (00000111)
(01010111) x (00100000) = (00001110)

(01010111) x (01000000) = (00011100)

(01010111) x (10000000) = (00111000)

So,

(01010111) x (10000011) = (01010111) x [(00000001) x (00000010) x (10000000)]

= (01010111) $ (10101110) $ (00111000) = (11000001)

which is equivalent tox7 + x6 +1.

[Page 127]

Using a Generator

An equivalent technique for defining a finite field of the form GF(?) using the same irreducible polynomial, is sometimes more
convenient. To begin, we need two definitions: A generator g of a finite field F of order g (contains g elements) is an element whose firstq 1

powers generate all the nonzero elements of F. That is, the elements of F consist of 0, go, gl,..., ng. Consider a field F defined by a

polynomial f(x). An elementb contained in F is called aroot of the polynomial iff(b) = 0. Finally, it can be shown that a rootg of an
irreducible polynomial is a generator of the finite field defined on that polynomial.

Let us consider the finite field GF(23), defined over the irreducible polynomialx3 +x + 1, discussed previously. Thus, the generatorg

must satisfy f(x) = 93 +g+ 1=0.Keepin mind, as discussed previously, that we need not find a numerical solution to this equality.
Rather, we deal with polynomial arithmetic in which arithmetic on the coefficients is performed modulo 2. Therefore, the solution to the

preceding equality is 93 =g1=g+ 1. We now show that g in fact generates all of the polynomials of degree less than 3. We have the
following:

' =a=ag+ =g’ +g
9529(94)=9(92+g)=g3+92=92+9+1

P =o® g+ =g +g’+g=g’rgrgrizgi+1
g7:g(ge)=g(92+1)=g3+g=g+g+1=1=90

mod

Ve see that the powers of g generate all the nonzero polynomials in GF(E). Also, it should be clear thatgk = gk 7for any integerk.

‘ shows the power representation, as well as the polynomial and binary representations.

Table 4.8. Generator for GF(23) using xS 4x + 1

Power Representation Polynomial Representation Binary Representation Decimal (Hex)
Representation
0 0 000 0
0 7 1 001 1
g (=9)
1 010 2
g g
2 2 100 4
g g
3 g+1 011 3
g
4 2 110 6
g g *+g
5 2 111 7
g g +tg+1
6 2 101 5
g g +1

This power representation makes multiplication easy. To multiply in the power notation, add exponents modulo 7. For example, g4 X 96
= g(lo mod 7)= g3 =g+ 1. The same result is achieved using polynomial arithmetic, as follows: we havc-:g4 = g2 +gand g6 = 92 +1.

Then, (g2 +g) X (g2 +1)= g4 + 93 + 92 + 1. Next, we need to determine (g4 + 93 + 92 + 1) mod (g3 + g+ 1) by division:

[Page 129]

g hgtr Ulghok ghub gt g
g+ g +g

33

g3+ g+ 1

g+ 1

We get a result ofg + 1, which agrees with the result obtained using the power representation.

shows the addition and multiplication tables for GF(E) using the power represenation. Note that this yields the identical
results to the polynomial representation |b with some of the rows and columns interchanged.

Table 4.9. GF(23) Arithmetic Using Generator for the Polynomial)(3 +X +1)
(This item is displayed on page 128 in the print version)

}View full size imaqei

N LLLI| o [LL1 1 1o 111 1M

*] 1 £ s £ g £ £

{0 Ll 1] 1 5 & £+1 il ol 4 ge+p+1 g #1

w1 i 0 g+ g+ 0 ¢ £Erg+d [[
My e g £+] g+] g (ol gl

g e o ok (1] g | s g | i
mr g gl ¢ 1 el i g | r "l |
10y 0 t'!"ru u:'r:1| u' g u"l-l (4] | g+ |

m g Frg+l i i e+ 1 £+ 1 'S 1] ¢

e g [g+l e gFAgsl 1] g+ 1 g ii

{n) Addition

[LER] il 00 L1 Ml 10 111 10

o l g s ' g '3 g

LT L] 1] i 4] L] 1l 5]]]
0 i 0] % 7 x + | i g gl | e el

1] v 1] ¢ u'l e u'.-r '!::-‘"ul'l u".-] |

g i £ g+ g+ g+ g+ 2+ I 2

o g i £+1 g cagel el i 0 s
e g 0 e e e | £+ i [[3 K+l
i ' 1} g Pl | i 'y g g+l e
101 g 1] Bl 1 v I g+l P e hgE]

ibk Multiplication

In general, for GF(Zn) with irreducible polynomial f(x), determine gn =1f(x) gn. Then calculate all of the powers ofg from gn+1 through 92n2'

The elements of the field correspond to the powers of g from through g2n2‘ plus the value 0. For multiplication of two elements in the field,

use the equality gk = gk mod (2] 1 for any integerk.

Summary

In this section, we have shown how to construct a finite field of order 5 Specifically, we defined GF(?) with the following properties:

1 GF(Zn) consists of 2" elements.

2. The binary operations + and x are defined over the set. The operations of addition, subtraction, multiplication, and division can
be performed without leaving the set. Each element of the set other than 0 has a multiplicative inverse.

We have shown that the elements of GF(2n) can be defined as the set of all polynomials of degreen 1 or less with binary coefficients. Each
such polynomial can be represented by a unique n-bit value. Arithmetic is defined as polynomial arithmetic modulo some irreducible

polynomial of degree n. We have also seen that an equivalent definition of a finite field GF(E) makes use of a generator and that arithmetic
is defined using powers of the generator.

=2

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

" prey wEXT

[Page 129 (continued)]

4.7. Recommended Reading and Web Sites

IHERSZH], still in print, is the classic treatment of abstract algebra; it is readable and rigorous;[DESK92] is another good resource.
[KNUT9g]] provides good coverage of polynomial arithmetic.

[Page 130]

One of the best treatments of the topics ha, er IMI still in print. [GARRO1]] also has extensive coverage. A thorough

and rigorous treatment of finite fields is [LIDL94]]. [HORO71]] is a good overview of the topics of this chapter.

BERL 84 Berlekamp, E.Algebraic Coding Theory. Laguna Hills, CA: Aegean Park Press, 1984.
DESK94 Deskins, W. Abstract Algebra. New York: Dover, 1992.

ARRO] Garrett, P.Making, Breaking Codes: An Introduction to Cryptology. Upper Saddle River, NJ: Prentice
Hall, 2001.

ERS74H Herstein, |. Topics in Algebra. New York: Wiley, 1975.

ORO71 Horowitz, E. "Modular Arithmetic and Finite Field Theory: A Tutorial.Proceedings of the Second ACM
Symposium and Symbolic and Algebraic Manipulation, March 1971.

NUT9{ Knuth, D. The Art of Computer Programming, Volume 2: Seminumerical Algorithms. Reading, MA:
Addison-Wesley, 1998.

IDL94] Lidl, R., and Niederreiter, H.Introduction to Finite Fields and Their Applications. Cambridge: Cambridge
University Press, 1994.

Recommended Web Sites

® pascGalois Project: Contains a clever set of examples and projects to aid in giving students a visual understanding of key
concepts in abstract algebra

e prey | NEXT B

" prey wEXT

[Page 130 (continued)]

4.8. Key Terms, Review Questions, and Problems

Key Terms

pbelian grouq
pssociativg
oefficient se
ommutativeg
ommutative ring

clic groug
fiviso

uclidean algorith

inite groug

finite ring

inite field

penerato

reatest common divisol

jroug

dentity elemen

||-[||

nfinite groug

infinite ring

nfinite field

ntegral domai
nverse elemen

|rreducib|e polynomial

odular arithmetig

Inodular polynomial arithmetid

odulug

onic polynomial

polynomia

elatively primg

o) (@] @) [1 (@]) 3
% S = =3 =2 =3 = 3
s 3 El < ® a
I o ® 3 3 S c
S S o o o 5
c 3 3 E o
3 =) [[S
o
@ 5 2 i}
(] ":" 9(
3
D
=
1o

=
o

[Page 131]

Review Questions

4.1. Briefly define a group.
4.2. Briefly define a ring.
4.3. Briefly define a field.

4.4. What does it mean to say thatb is a divisor ofa?

4.5.

4.6.

Problems

4.1

4.2

4.3

4.4

4.5

4.6

What is the difference between modular arithmetic and ordinary arithmetic?

List three classes of polynomial arithmetic.

For the group Sn of all permutations of n distinct symbols,
a. What is the number of elements inSn?

b. Show that Spis not abelian forn > 2.

Does the set of residue classes modulo 3 form a group
a. with respect to addition?

b. with respect to multiplication?

Consider the set S = {a, b} with addition and multiplication defined by the tables:

o=

b X]
a
b

== [==
==l]
e}

o
o
e
=
=

Is S a ring? Justify your answer.

Reformulate , removing the restriction thata is a nonnegative integer. That is, leta be any

integer.
Draw a figure similar to fora<o.

Find integersx such that
a 5x == 4 (mod3)
b. 7x == 6 (mod 5)

c. 99X = 8 (mod 7)

4.7 In this text we assume that the modulus is a positive integer. But the definition of the expression a mod n also
makes perfect sense if n is negative. Determine the following:

a 5mod3
b. 5mod3
c. 5mod3
d. 5mod3

4.8 A modulus of 0 does not fit the definition, but is defined by convention as follows: a mod 0 =a. With this

definition in mind, what does the following expression mean: a = b (mod 0)?

4.9 In , we define the congruence relationship as follows: Two integersa and b are said to be

congruent modulo n, if (a mod n) = (b mod n). We then proved thata == b (mod n) if n|(a b). Some texts on
number theory use this latter relationship as the definition of congruence: Two integers a and b are said to be
congruent modulo n, if n|(a b). Using this latter definition as the starting point, prove that iff mod n) = (b mod
n), then n divides (a b).

4.10 'l.".: 'ﬂ:

What is the smallest positive integer that has exactlyk divisors, for 1 === k === 6?

4.11 Prove the following:
a a = b (mod n) implies b = a (mod n)

b. a=b (mod n) and b =. (mod n) imply a = (mod n)

4.12 Prove the following:
a. [(@modn) (b modn)] modn = (ab) modn

b. [(@modn) x (b modn)] modn = (axb) modn

[Page 132]

4.13 Find the multiplicative inverse of each nonzero element in &.

4.14 Show that an integer N is congruent modulo 9 to the sum of its decimal digits. For example, 47'== 4+ 7 + 5

= 16 = 1+ 6 == 7 (mod 9). This is the basis for the familiar procedure of "casting out 9's" when
checking computations in arithmetic.

4.15
a. Determine gcd(24140, 16762).

b. Determine gcd(4655, 12075).

4.16 The purpose of this problem is to set an upper bound on the number of iterations of the Euclidean algorithm.

a. Suppose thatm =qn +r withq> 0 and O == r < n. Show thatm/2 > r.

b. Let At be the value of A in the Euclidean algorithm after theith iteration. Show that

A.

i
i
I"‘z .2

c. Show thatif m, n, andN are integers with 1==m, n, 5 ZN, then the Euclidean algorithm takes
at most 2N steps to find gcd(m, n).

4.17 The Euclidean algorithm has been known for over 2000 years and has always been a favorite among number
theorists. After these many years, there is now a potential competitor, invented by J. Stein in 1961. Stein's

algorithms is as follows. Determine gcd(A, B) with A, B == 1.

STEP 1 SetA1=AB1=B,C1=1

STEP n
1. If An=Bnstop. gcd@, B) = AnCn

2. If Anand Bn are both even, setAn+1 = An/2, Bn+1 = Bn/2, Cn+1 = 2Cn
3. IfAnis even andBnis odd, setAn+1 = An/2, Bn+1 =Bn, Cn+1 =Cn
4. IfAnis odd andBnis even, setAn+1 = An, Bn+1 = Bn/2, Cn+1 =Cn

5. If An and B are both odd, setAn+1 = |An Bn|, Bn + 1 = minBn, An), Cn+1 = Cn

Continue to stepn + 1.

a. To get a feel for the two algorithms, compute gcd(2152, 764) using both the Euclidean and
Stein's algorithm.

b. What is the apparent advantage of Stein's algorithm over the Euclidean algorithm?

4.18
a. Show that if Stein's algorithm does not stop before the nth step, then

Cn+1 x gcd(An+1, Bn+1) = Cn x gcd(An, Bn)
b. Show that if the algorithm does not stop before step (n 1), then
A.II'BH

"q.r.l+:-lBr;'+E - 9

Cc. Showthatif 1l == A B === 2N, then Stein's algorithm takes at most N steps to find gcd(m, n).

4.19

4.20

4.21

4.22

4.23

4.24

4.25

Thus, Stein's algorithm works in roughly the same number of steps as the Euclidean algorithm.

d. Demonstrate that Stein's algorithm does indeed return gcd@, B).

Using the extended Euclidean algorithm, find the multiplicative inverse of
a. 1234 mod 4321
b. 24140 mod 40902

c. 550 mod 1769

Develop a set of tables similar t0 for GF(5).

Demonstrate that the set of polynomials whose coefficients form a field is a ring.

Demonstrate whether each of these statements is true or false for polynomials over a field:
a. The product of monic polynomials is monic.
b. The product of polynomials of degrees m and n has degree m +n

c. The sum of polynomials of degrees m and n has degree max|m, n].

[Page 133]
For polynomial arithmetic with coefficients in 10, perform the following calculations:
2
a (Ix+2)(x"+5)

b. (6x2+x+3)x(5x2+2)

Determine which of the following are reducible over GF(2):
a. x3 +1
b. x3 + x2 +1

C. x4 + 1 (be careful)

Determine the gcd of the following pairs of polynomials:
3 2
a. X +x+landx +x+1over GF(2)
3 2
b. x x+1landx + 1 over GF(3)

C. x5+x4+x3x2x+ 1 andx3+x2+x+ 1 over GF(3)

5

d. x +88x4+ 73x3

+ 83><2 +51x + 67 and x3 + 97><2 + 40x + 38 over GF(101)

4.26 Develop a set of tables similar to for GF(4) withm(x) = x4 +x+1.

421 Determine the multiplicative inverse of x3 +x+1in GF(24), with m(x) = x4 +x+ 1.

4.28 Develop a table similar to for GF(24) with m(x) = x4 +x+ 1.

Programming Problems

4.29 Write a simple four-function calculator in GF(24). You may use table lookups for the multiplicative inverses.

4.30 Write a simple four-function calculator in GF(?). You should compute the multiplicative inverses on the fly.

e prey | NEXT B

" prey wEXT

[Page 134]

Chapter 5. Advanced Encryption Standard

lS.l Evaluation Criteria For AESI

he Origins of AEY
AES Evaluatio

E.Z The AES Cighe[l
Eubstitute Bytes Transformatior_‘l

EhiftRows Transformatiorl

l\/lixCqumns Transformatior{

lAddRoundKev Transformatior{

AES Key Expansio

lEquivaIent Inverse Ciphel

lmglementation AsgectJ

lS.3 Recommended Reading and Web Sites’

l5.4 Key Terms, Review Questions, and Problemd

ey Termg
Review Questiond
Problemg

IAppendix 5A Polynomials With Coefficients In GF(m

i\/lixCqumns Transformatiorl

ultiplication b !

lAppendix 5B Simplified AEé

Dvervie

E-AES Encryption and Decryptiorl

S-AES Structurg

[Page 135]
"It seems very simple."
"It is very simple. But if you don't know what the key is it's virtually indecipherable."

Talking to Strange Men, Ruth Rendell

Key Points

® AES s ablock cipher intended to replace DES for commercial applications. It uses a 128-bit block size and
a key size of 128, 192, or 256 bits.

® AES does not use a Feistel structure. Instead, each full round consists of four separate functions: byte
substitution, permutation, arithmetic operations over a finite field, and XOR with a key.

The Advanced Encryption Standard (AES)was published by NIST (National Institute of Standards and Technology in 2001. AES is a
symmetric block cipher that is intended to replace DES as the approved standard for a wide range of applications. In this chapter, we first
look at the evaluation criteria used by NIST to select a candidate for AES and then examine the cipher itself.

Compared to public-key ciphers such as RSA, the structure of AES, and most symmetric ciphers, is very complex and cannot be

explained as easily as RSA and similar algorithms. Accordingly, the reader may with to begin with a simplified version of AES, which is

described in . This version allows the reader to perform encryption and decryption by hand and gain a good understanding

of thorking of the algorithm details. Classroom experience indicates that a study of this simplified version enhances understanding of
1

AES.

(1 However, you may safely skip, at least on a first reading. If you get lost or bogged down in the
details of AES, then you can go back and start with simplified AES.

e Py wEXT

" prey wEXT

[Page 135 (continued)]

5.1. Evaluation Criteria For AES

The Origins of AES

We mentioned in that in 1999, NIST issued a new version of its DES standard (FIPS PUB 46-3) that indicated that DES should
only be used for legacy systems and that triple DES (3DES) be used. We describe 3DES in . 3DES has two attractions that
assure its widespread use over the next few years. First, with its 168-bit key length, it overcomes the vulnerability to brute-force attack of
DES. Second, the underlying encryption algorithm in 3DES is the same as in DES. This algorithm has been subjected to more scrutiny
than any other encryption algorithm over a longer period of time, and no effective cryptanalytic attack based on the algorithm rather than

brute force has been found. Accordingly, there is a high level of confidence that 3DES is very resistant to cryptanalysis. If security were
the only consideration, then 3DES would be an appropriate choice for a standardized encryption algorithm for decades to come.

[Page 136]

The principal drawback of 3DES is that the algorithm is relatively sluggish in software. The original DES was designed for mid-1970s
hardware implementation and does not produce efficient software code. 3DES, which has three times as many rounds as DES, is
correspondingly slower. A secondary drawback is that both DES and 3DES use a 64-bit block size. For reasons of both efficiency and
security, a larger block size is desirable.

Because of these drawbacks, 3DES is not a reasonable candidate for long-term use. As a replacement, NIST in 1997 issued a call for
proposals for a new Advanced Encryption Standard (AES), which should have a security strength equal to or better than 3DES and
significantly improved efficiency. In addition to these general requirements, NIST specified that AES must be a symmetric block cipher
with a block length of 128 bits and support for key lengths of 128, 192, and 256 bits.

In a first round of evaluation, 15 proposed algorithms were accepted. A second round narrowed the field to 5 algorithms. NIST completed
its evaluation process and published a final standard (FIPS PUB 197) in November of 2001. NIST selected Rijndael as the proposed
AES algorithm. The two researchers who developed and submitted Rijndael for the AES are both cryptographers from Belgium: Dr. Joan
Daemen and Dr. Vincent Rijmen.

Ultimately, AES is intended to replace 3DES, but this process will take a number of years. NIST anticipates that 3DES will remain an
approved algorithm (for U.S. government use) for the foreseeable future.

AES Evaluation

It is worth examining the criteria used by NIST to evaluate potential candidates. These criteria span the range of concerns for the
practical application of modern symmetric block ciphers. In fact, two set of criteria evolved. When NIST issued its original request for
candidate algorithm nominations in 1997 , the request stated that candidate algorithms would be compared based on the factors
shown in w‘ (ranked in descending order of relative importance). The three categories of criteria were as follows:

® Security: This refers to the effort required to cryptanalyze an algorithm. The emphasis in the evaluation was on the

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

practicality of the attack. Because the minimum key size for AES is 128 bits, brute-force attacks with current and projected
technology were considered impractical. Therefore, the emphasis, with respect to this point, is cryptanalysis other than a
brute-force attack.

Cost: NIST intends AES to be practical in a wide range of applications. Accordingly, AES must have high computational
efficiency, so as to be usable in high-speed applications, such as broadband links.

[Page 137]

Algorithm and implementation characteristics: This category includes a variety of considerations, including flexibility;
suitability for a variety of hardware and software implementations; and simplicity, which will make an analysis of security more
straightforward.

Table 5.1. NIST Evaluation Criteria for AES (September 12, 1997)

SECURITY

® Actual security: compared to other submitted algorithms (at the same key and block size).
® Randomness: the extent to which the algorithm output is indistinguishable from a random permutation on the input block.
® Soundness: of the mathematical basis for the algorithm's security.

® Other security factors: raised by the public during the evaluation process, including any attacks which demonstrate that
the actual security of the algorithm is less than the strength claimed by the submitter.

COST

® Licensing requirements: NIST intends that when the AES is issued, the algorithm(s) specified in the AES shall be
available on a worldwide, non-exclusive, royalty-free basis.

® Computational efficiency: The evaluation of computational efficiency will be applicable to both hardware and software
implementations. Round 1 analysis by NIST will focus primarily on software implementations and specifically on one
key-block size combination (128-128); more attention will be paid to hardware implementations and other supported
key-block size combinations during Round 2 analysis. Computational efficiency essentially refers to the speed of the
algorithm. Public comments on each algorithm's efficiency (particularly for various platforms and applications) will also be
taken into consideration by NIST.

® Memory requirements: The memory required to implement a candidate algorithmfor both hardware and software
implementations of the algorithmwill also be considered during the evaluation process. Round 1 analysis by NIST will
focus primarily on software implementations; more attention will be paid to hardware implementations during Round 2.
Memory requirements will include such factors as gate counts for hardware implementations, and code size and RAM
requirements for software implementations.

ALGORITHM AND IMPLEMENTATION CHARACTERISTICS

® [lexibility: Candidate algorithms with greater flexibility will meet the needs of more users than less flexible ones, and
therefore, inter alia, are preferable. However, some extremes of functionality are of little practical application (e.g.,
extremely short key lengths); for those cases, preference will not be given. Some examples of flexibility may include (but
are not limited to) the following:

a. The algorithm can accommodate additional key- and block-sizes (e.g., 64-bit block sizes, key sizes other than
those specified in the Minimum Acceptability Requirements section, [e.g., keys between 128 and 256 that are
multiples of 32 bits, etc.])

b. The algorithm can be implemented securely and efficiently in a wide variety of platforms and applications (e.g.,
8-bit processors, ATM networks, voice & satellite communications, HDTV, B-ISDN, etc.).

c. The algorithm can be implemented as a stream cipher, message authentication code (MAC) generator,
pseudorandom number generator, hashing algorithm, etc.

® Hardware and software suitability: A candidate algorithm shall not be restrictive in the sense that it can only be
implemented in hardware. If one can also implement the algorithm efficiently in firmware, then this will be an advantage in
the area of flexibility.

® Simplicity: A candidate algorithm shall be judged according to relative simplicity of design.

[Page 138]

Using these criteria, the initial field of 21 candidate algorithms was reduced fi 0 15 candidates and then to 5 candidates. By the time
“-ECHO

that a final evaluation had been done the evaluation criteria, as described in ||

, had evolved. The following criteria were used in

the final evaluation:

General security: To assess general security, NIST relied on the public security analysis conducted by the cryptographic
community. During the course of the three-year evaluation process, a number of cryptographers published their analyses of
the strengths and weaknesses of the various candidates. There was particular emphasis on analyzing the candidates with
respect to known attacks, such as differential and linear cryptanalysis. However, compared to the analysis of DES, the
amount of time and the number of cryptographers devoted to analyzing Rijndael are quite limited. Now that a single AES
cipher has been chosen, we can expect to see a more extensive security analysis by the cryptographic community.

Software implementations: The principal concerns in this category are execution speed, performance across a variety of
platforms, and variation of speed with key size.

Restricted-space environments: In some applications, such as smart cards, relatively small amounts of random-access
memory (RAM) and/or read-only memory (ROM) are available for such purposes as code storage (generally in ROM);
representation of data objects such as S-boxes (which could be stored in ROM or RAM, depending on whether
pre-computation or Boolean representation is used); and subkey storage (in RAM).

Hardware implementations: Like software, hardware implementations can be optimized for speed or for size. However, in
the case of hardware, size translates much more directly into cost than is usually the case for software implementations.
Doubling the size of an encryption program may make little difference on a general-purpose computer with a large memory,
but doubling the area used in a hardware device typically more than doubles the cost of the device.

Attacks on implementations: The criterion of general security, discussed in the first bullet, is concerned with cryptanalytic
attacks that exploit mathematical properties of the algorithms. There is another class of attacks that use physical
measurements conducted during algorithm execution to gather information about quantities such as keys. Such attacks
exploit a combination of intrinsic algorithm characteristics and implemeptation-dependent features. Examples of such attacks
are timing attacks and power analysis. Timing attacks are described inChapter 3. The basic idea behind power analysis
ﬂKOCH9§, ‘ is the observation that the power consumed by a smart card at any particular time during the
cryptographic operation is related to the instruction being executed and to the data being processed. For example,
multiplication consumes more power than addition, and writing 1s consumes more power than writing 0s.

Encryption versus decryption: This criterion deals with several issues related to considerations of both encryption and
decryption. If the encryption and decryption algorithms differ, then extra space is needed for the decryption. Also, whether the
two algorithms are the same or not, there may be timing differences between encryption and decryption.

[Page 139]

Key agility: Key agility refers to the ability to change keys quickly and with a minimum of resources. This includes both
subkey computation and the ability to switch between different ongoing security associations when subkeys may already be
available.

Other versatility and flexibility: [NECHO(] indicates two areas that fall into this category. Parameter flexibility includes ease
of support for other key and block sizes and ease of increasing the number of rounds in order to cope with newly discovered
attacks. Implementation flexibility refers to the possibility of optimizing cipher elements for particular environments.

Potential for instruction-level parallelism: This criterion refers to the ability to exploit ILP features in current and future
processors.

shows the assessment that NIST provided for Rijndael based on these criteria.

Table 5.2. Final NIST Evaluation of Rijndael (October 2, 2000)

[Page 140]
General Security
Rijndael has no known security attacks. Rijndael uses S-boxes as nonlinear components. Rijndael appears to have an adequate

security margin, but has received some criticism suggesting that its mathematical structure may lead to attacks. On the other hand,
the simple structure may have facilitated its security analysis during the timeframe of the AES development process.

Software Implementations

Rijndael performs encryption and decryption very well across a variety of platforms, including 8-bit and 64-bit platforms, and DSPs.
However, there is a decrease in performance with the higher key sizes because of the increased number of rounds that are
performed. Rijndael's high inherent parallelism facilitates the efficient use of processor resources, resulting in very good software
performance even when implemented in a mode not capable of interleaving. Rijndael's key setup time is fast.

Restricted-Space Environments

In general, Rijndael is very well suited for restricted-space environments where either encryption or decryption is implemented (but not
both). It has very low RAM and ROM requirements. A drawback is that ROM requirements will increase if both encryption and
decryption are implemented simultaneously, although it appears to remain suitable for these environments. The key schedule for
decryption is separate from encryption.

Hardware Implementations

Rijndael has the highest throughput of any of the finalists for feedback modes and second highest for non-feedback modes. For the
192 and 256-bit key sizes, throughput falls in standard and unrolled implementations because of the additional number of rounds. For
fully pipelined implementations, the area requirement increases, but the throughput is unaffected.

Attacks on Implementations

The operations used by Rijndael are among the easiest to defend against power and timing attacks. The use of masking techniques
to provide Rijndael with some defense against these attacks does not cause significant performance degradation relative to the other
finalists, and its RAM requirement remains reasonable. Rijndael appears to gain a major speed advantage over its competitors when
such protections are considered.

Encryption vs. Decryption

The encryption and decryption functions in Rijndael differ. One FPGA study reports that the implementation of both encryption and
decryption takes about 60% more space than the implementation of encryption alone. Rijndael's speed does not vary significantly
between encryption and decryption, although the key setup performance is slower for decryption than for encryption.

Key Agility

Rijndael supports on-the-fly subkey computation for encryption. Rijndael requires a one-time execution of the key schedule to
generate all subkeys prior to the first decryption with a specific key. This places a slight resource burden on the key agility of Rijndael.

Other Versatility and Flexibility

Rijndael fully supports block sizes and key sizes of 128 bits, 192 bits and 256 bits, in any combination. In principle, the Rijndael
structure can accommodate any block sizes and key sizes that are multiples of 32, as well as changes in the number of rounds that
are specified.

Potential for Instruction-Level Parallelism

Rijndael has an excellent potential for parallelism for a single block encryption.

NEXT B

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

[Page 140]

5.2. The AES Cipher

21 Much of the material in this section originally appeared ingTALOZ.

NEXT B+

The Rijndael proposal for AES defined a cipher in which the block length and the key length can be independently specified to be 128,
192, or 256 bits. The AES specificatio, same three key size alternatives but limits the block length to 128 bits. A number of AES
I-able 5.

parameters depend on the key length (|
be the one most commonly implemented.

Table 5.3. AES Parameters

Key size (words/bytes/bits)
Plaintext block size (words/bytes/bits)

Number of rounds
Round key size (words/bytes/bits)

Expanded key size (words/bytes)

Rijndael was designed to have the following characteristics:

® Resistance against all known attacks

4/16/128

4/16/128

10

4/16/128

44/176

® Speed and code compactness on a wide range of platforms

® Design simplicity

6/24/192

4/16/128

12

4/16/128

52/208

). In the description of this section, we assume a key length of 128 bits, which is likely to

8/32/256

4/16/128

14

4/16/128

60/240

shows the overall structure of AES. The input to the encryption and decryption algorithms is a single 128-bit block. In FIPS PUB

197, this block is depicted as a square matrix of bytes. This block is copied into the State array, which is modified
encryption or decryption. After the final stage, State is copied to an output matrix. These operations are depicted i

the 128-bit key is depicted as a square matrix of bytes. This key
bytes and the total key schedule is 44 words for the 128-bit key

s then exp

igure 5.2

at each stage of
[reszd Smilarly,

anded into an array of key schedule words; each word is four
). Note that the ordering of bytes within a matrix is by column.

So, for example, the first four bytes of a 128-bit plaintext input to the encryption cipher occupy the first column of the in matrix, the second

four bytes occupy the second column, and so on. Similarly, the first four bytes of the expanded key, which form a word, occupy the first

column of the w matrix.

[Page 141]

Figure 5.1. AES Encryption and Decryption

IVieW full size imagel

Flaintext

Addd roumd key -—

-

Achd roumd key

| Shiftrows |

—
- o
—
wid40, 43] ————a] Add round key

Ciphertext Ciphwertext
(&) Encryption {b) Decryption

:

[Page 142]

Figure 5.2. AES Data Structures

}View full size imaqei

g | iy [ing| ing: S | Teq | ®g | Fp | Tay | S| fen S oty S cAiTy
fay | g | dmg | s #o | Fu [EE | s Eip | 0 | Az ‘ul | vy |l | o g
dg | ing | Mgy | in S| 5 | e | s M. CT R T R I oy | oo [autyp| onny
fmy | o | | e TR T Fin | T | Ez| ma ety | onry |y o
Lal Iopui, staie armoy, and oot
N. . .,
LT ST T)
= (e | v [Tun CRCR 1og | vua

£ | Fa g

o B e

by By amd expansked key

[Page 143]
Before delving into details, we can make several comments about the overall AES structure:

1. One noteworthy feature of this structure is that it is not a Feistel structure. Recall that in the classic Feistel structure, half of the
data block is used to modify the other half of the data block, and then the halves are swapped. Two of the AES finalists,
including Rijndael, do not use a Feistel structure but process the entire data block in parallel during each round using
substitutions and permutation.

2. The key that is provided as input is expanded into an array of forty-four 32-bit words, w[i]. Four distinct words (128 bits) serve as
a round key for each round; these are indicated in figure 5.1.

3. Four different stages are used, one of permutation and three of substitution:
O substitute bytes: Uses an S-box to perform a byte-by-byte substitution of the block

O shiftRows: A simple permutation

O MixColumns: A substitution that makes use of arithmetic over GF(§)
O Add RoundKey: A simple bitwise XOR of the current block with a portion of the expanded key

El The structure is quite simple. For both encryption and decryption, the cipher begins with & ndKey stage, followed by
nine rounds that each includes all four stages, followed by a tenth round of three stages. fFigure 5.3 depicts the structure of a full
encryption round.

Figure 5.3. AES Encryption Round
(This item is displayed on page 144 in the print version)

}View full size imaqei

10.

Subiytes =] |[s 5 E 5 E s| |s E s| |s

Hul:'nll.mm! \\er f/ \ u1|/ \ 1 ur|/ \\|lr W /
T T e O el s Yl e Sl B s
vy BB DD DB D DD DD BB B

Only the AddRoundKey stage makes use of the key. For this reason, the cipher begins and ends with an AddRoundKey stage.
Any other stage, applied at the beginning or end, is reversible without knowledge of the key and so would add no security.

The AddRoundKey stage is, in effect, a form of Vernam cipher and by itself would not be formidable. The other three stages
together provide confusion, diffusion, and nonlinearity, but by themselves would provide no security because they do not use
the key. We can view the cipher as alternating operations of XOR encryption (AddRoundKey) of a block, followed by scrambling
of the block (the other three stages), followed by XOR encryption, and so on. This scheme is both efficient and highly secure.

Each stage is easily reversible. For the Substitute Byte, ShiftRows, and MixColumns stages, an inverse function is used in the
decryption algorithm. For the AddRoundKey stage, the inverse is achieved by XORing the same round key to the block, using

the result that A A B =B.

As with most block ciphers, the decryption algorithm makes use of the expanded key in reverse order. However, the decryption
algorithm is not identical to the encryption algorithm. This is a consequence of the particular structure of AES.

Once it is established that all four stages are reversible, it is easy to verify that decryption does recover the plaintext.
lays out encryption and decryption going in opposite vertical directions. At each horizontal point (e.g., the dashed line in
the figure), State is the same for both encryption and decryption.

[Page 145]

The final round of both encryption and decryption consists of only three stages. Again, this is a consequence of the particular
structure of AES and is required to make the cipher reversible.

We now turn to a discussion of each of the four stages used in AES. For each stage, we describe the forward (encryption) algorithm, the
inverse (decryption) algorithm, and the rationale for the stage. This is followed by a discussion of key expansion.

As was mentioned in , AES uses arithmetic in the finite field GF(f), with the irreducible polynomia m(x) = xEax x4 1.
The developers of Rijndael give as their motivation for selecting this one of the 30 possible irreducible polynomials of degree 8 that it is the
first one on the list given in [LIDL94].

1311 the remainder of this discussion, references to GF(2) refer to the finite field defined with this polynomial.

Substitute Bytes Transformation

Forward and Inverse Transformations

The forward substitute byte transformation, called SubBytes, is a simple table lookup). AES defines a 16 x 16 matrix of
byte values, called an S-box ,, that contains a permutation of all possible 256 8-bit values. Each individual byte obtate is
mapped into a new byte in the following way: The leftmost 4 bits of the byte are used as a row value and the rightmost 4 bits are used as a
column value. Throw and column values serve as indexes into the S-box to select a unique 8-bit output value. For example, the

hexadecimal value
into the value {2A}.

4 {95} references row 9, column 5 of the S-box, which contains the value {2A}. Accordingly, the value {95} is mapped

“lin FIPS PUB 197, a hexadecimal number is indicated by enclosing it in curly brackets. We use that convention in
this chapter.

[Page 147]

Figure 5.4. AES Byte-Level Operations
(This item is displayed on page 145 in the print version)

IView full size imagel

S-box

(a) Substitute byie transformation

i BN | By | WA | Wy =

(b) Add Round Key Transformation

Table 5.4. AES S-Boxes
(This item is displayed on page 146 in the print version)

Iyiew full size imagel

@) S-hax

L 1 z 3 4 5 i 7T b 9 A B|C|D|E|F

L 63 | C | 7| Bl F2| 6B | 6F | C5]) 0] M a7 | 2B | FE | D7 | AB | 76

1 |CA| 82| 0| 7D | FA | 39 | 47 | FO | AD| Dd | A2 | AF | 9C | Ad | 72 | O

2 BT | FIX| 93 | 26 | 36 | JF | FT | OC | M | AS | E5S | FI 71 | D& | 3l 15

3 | M| 7)) 23| C3)| 18| % | O5|9A | 07| 12 | %0 | E2|EB| 27 | B2 | 75

4 | 83|20 |1A|1B|6E |S5A)| AD| 52 | 3B | D6 | B3 | 29 | E3 | 2F | &4

L S53 1D 00 |EID| 20 | FC | Bl | SB | 6A | CB | BE | 39 | 4A | 4C | 58 | CF

i DO EF|AA| FB | 43 | 4D | 33 | 85 | &5 | PR | 02 | TF | 30 | 3C | 9F | AR

x T |5 | A 40 | 8F | 92 (9D | 28 | F5S | BC | Bs | DA | 21 0 | FF | F3 | D2

& |CD|] 13 | EC| 5F | 97 | 44 17 | C4|AT|TE | 3D | o4 | 5D 19| 73

4 6 | &l dF | D) 22 [2A | 90 | 88 | 46 | EE| BS | 14 | DE| 5E | OB | DB

A BV 32 |3A|0A] 42| 06| 24 [SC|C2IDIJAC] 62| 9 | 95| E4 | M

B | ET| C8)| 37 |eD | 8D | D5 | 4E | A9 | 6C | 56 | F4 | EA| 65 | 7TA | AE | (8

C | BA) T8 25 | 2E | 1C | A6 | B4 | OC6 | EB | DD | T4 IF | 48 | BID | BB | BA

I J0 | 3E| B5 | 66 | 48 | O3 Fa | OF | 41 BT | BB C)ID]| 9E

E |El| FB| 98 | 11 | &0 | DO | BE| ™4 | 9B | IE| & | E9 | CE| 55 | 28 | DF

F |8C | Al | 89 |0D | BF | E6 | 42 | 68 | 41 | 99 | 2D | OF | B0 | 54 | BB | 16

() Imverse 5-box

] 1 " | 3 4 5 b 7 B 0 A B|C|D| E F

L 52 00 | 6A | D5 30 | 36 | AS| 3% | BF | 40 | A3 | 9E | Bl K3 | 7 | FB

i TC|E3| W | 82|98 | 2F | FFF| 87 | 34 | BE | 43 4 | C4 | DE| B9 | CB

2 | M |TB| W 2| A8 C2| B|3D|EE|4C | 9 | DB | 42 | FA | O3 | 4E

3 08 | ZE| A1 | 66 | 28 | DO | 24 | B2 | T8 | 5B | A2 | 49 | 6D | BB | D | 25

+ 12 Fe | Fo | 4 | &% | 68 | 98 1o | D4 | A4 | 5C | CC| 5D | 65 | Bo | 92

£ G | Th | 48 | 50 | FD | ED | B9 | DA | SE | 15 | 46 | 57 | AT | 8D | 9D | &4

6 | 0 | DE|AB| 0 | 8C [BC | D3| 0A | F7 | E4 | 58 | 05 | BE | B3 | 45 | 0o

x 7 DOy 2C | IE| 8F | CA | 3F | OF | 02 | C1 | AF| BD | 03 | O 13 | BA | 6B

| 3a | W 11 41 | 4F | 67 |DC)EA| 97 | F2 | CF | CE| FO | B4 | E6 | 73

9 96 | AC|) 4| 22 | ET |AD| 35| 85 | E2 | PO | 37T | EE | LC | 75 | DF | 6E

A |47 | FIL 1A 71 | ID) 29 | C5) 82 | 6F | B7 | 62 | OE | AA| I8 | BE | 1B

B |FC| 56 | 3E | 4B | Ce (D2 | 79| 20 | 9A DB | C0 | FE| 78 | CD | 5A | F4

[IF | DD AR | 33 | & | 07 | C7] 31 Bl 12 10 | 3% | 27 | 80 | BC | 5F

I &0 | 51 TF | A9 19 | BS | 4A | OD | 2D | E5 | TA | 9F | 93 | 9 | ©C | EF

E |AO| ED| 3B | 4D |AE| 2A | F5 | BO | OB | EB | BB | 3C | 83 | 53 | 99 | &l

F 17| 26| 04 | TE | BA | 77 | De | 26 | E1 | 69 14 [63 | 55| 21 | OC | 7D

Here is an example of the SubBytes transformation:

EA | 04 | 65 | 85 87 | F2 | 4D | 97
83 | 45 | 5D | 96 i g EC | 6E | 4C | 90
5C | 33 | 98 | BO 4A | C3 | 46 | ET
Cin AT AT S (e ™0 ne A

| Vo ELy | s oA | | - | o] | |

The S-box is constructed in the following fashion:

1. |Initialize the S-box with the byte values in ascending sequence row by row. The first row contains {00}, {01}, {02},.... {OF}; the
second row contains {10}, {11}, etc.; and so on. Thus, the value of the byte at row x, columny is {xy}.

2. Map each byte in the S-box to its multiplicative inverse in the finite field GF(28); the value {00} is mapped to itself.

3. Consider that each byte in the S-box consists of 8 bits labeled (b7, bg, bs, ba, bz, bz, b1, bo). Apply the following transformation to
each bit of each byte in the S-box:

Equation 5-1

bi = b;® h{:‘+4} mod 8 & hlli+5] mod 8 & IIr:]'I:!'+|[~-]| mod &8 & 'hll!"*'f} mod 8 & €

where cjis the ith bit of byte ¢ with the value {63}; that is, €7cecscac3cacico) = (01100011). The prime (') indicates that the
variable is to be updated by the value on the right. The AES standard depicts this transformation in matrix form as follows:

Equation 5-2

byl [1 0 0 0 1 1 1][by] [1]
b' 1 1 0 0 0 1 1|]| b 1
bl 1 110 0 0 1 1]||b, 0
byl _|1 1 1100 0 1|[by|, [0
b, 1 1 1 1 1 0 0 0}|b, 0
bt 01 1 1 1 1 0 0}]bs 1
bl 0 01 1 1 1 1 0f]bs 1
(b5l [0 0O 0O 1 1 1 1 1]|lb]| |[O]

[Page 148]

has to be interpreted carefully. In ordinary matrix multiplication each element in the product matrix is the sum of products
of the elements or one row and one column. In this case, eac| in the product matrix is the bitwise XOR of products of elements of
one row and one column. Further, the final addition shown in Equation (5.2] is a bitwise XOR.

5] For a brief review of the rules of matrix and vector multiplication, see the Math Refresher document and the

Computer Science Student Resource site at ll\/iIIiamstalIinqs.com/StudentSupport.html.

As an example, consider the input value {95}. The multiplicative inverse in GF(28) is {95}1 = {8A}, which is 10001010 in binary. Using

Equation (5.2],

ERS R RE BRI NEIE]

http://williamstallings.com/StudentSupport.html

The result is {2A}, which should appear in row {09} column {05} of the S-box. This is verified by checking [Table 5.44.

()

R R TR RN S TR

e R e R

O

0
0

0

=0 =t

=
e

i S s R e S e B

The inverse substitute byte transformation, called InvSubBytes, makes use of the inverse S-box shown inTable 5.44. Note, for
example, that the input {2A} produces the output {95} and the input {95} to the S-box produces {2A}. The inverse S-box is constructed by

applying the inverse of the transformation in followed by taking the multiplicative inverse in GF(f). The inverse
transformation is:

b = + 2) mod 8 e b + 5) mod 8 $b(i+7)moda $di

where byte d = {05}, or 00000101. We can depict this transformation as follows:

0

by
b
b;
b3
by
bs
bg
b7

0

= = O O =g

Ll == e B = R

0
1

= =

e R e

0

[l s B e A

1
0
0
1

il
L

o = O

i = B e S o B o B =

o e O O e D e

To see that InvSubBytes is the inverse of SubBytes, label the matrices in SubBytes and InvSubBytes as X and Y, respectively, and the

vector versions of constants ¢ and d as C and D, respectively. For some 8-bit vectorB, becomesB' =XB

C. We need to

show that Y(XB C) D = B. Multiply out, we must showYXB YC D =B. This becomes
[Page 149]
0 01 001 0 1][1t 00 0 1 1 1 1][8]
1 001 001 01 1 000 1 1 1[]H
c 1 00 1 0 0 1|1 1 1 0 0 0 1 1||8&
1 ¢ 1 0010 011 111 00 € 1|1b8s]_
010100101 111100 o0l[6|®
0 4 1 01 0 O 1|0 1 1 1 1 1 4 Of]bs

00 1 00 1 0 1] I

1 0 01 0 0 1 0|0 0

001 00 1 0 0 1]]1 1

1 01 0 0 1 0 0|0 0

o1 01001 0|/lo|®Ple]”

00 1 0 1 0 0 11 0

1 0 01 0 1 0 0]]1 0

o1 0 0 1 0 1 0]lo] [o0]

1 0 0 0 0 0 0 O][b] [1] 1] [be]
001 000 0 0 0|k 0 0 by
001 00 0 0 0llb | | bs
D001 0 0 0 0|k 0 0 bs
D{][}EiDDDm@U@D=m
000 0 0 1 0 0f]bs 0 0 bs
00 0 0 0 0 1 0ffb (0 0 b
0 00 00 0 0 1]k [0] [0O] [&

We have demonstrated that YX equals the identity matrix, and theYC = D, so thatYC @ D equals the null vector.

Rationale

The S-box is designed to be resistant to known cryptanalytic attacks. Specifically, the Rijndael developers sought a design that has a low

correlation_between input bits and output bits, y that the output cannot be described as a simple mathematical function of
the input [DAEMO1]]. In addition, the constant infguation (5.1] was chosen so that the S-box has no fixed points [S-box§) = a] and no

"opposite fixed points" [S-box(a) = H], where d is the bitwise complement ofa.

Of course, the S-box must be invertible, that is, IS-box[S-box(a)] = a. However, the S-box is not self-inverse in the sense that it is not true
that S-box(a) = 1S-box(a). For example, [S-box({95}) = {2A}, but I1S-box({95}) = {AD}.

[Page 150]

ShiftRows Transformation

Forward and Inverse Transformations

The forward shift row transformation, called ShiftRows, is depicted in. The first row of State is not altered. For the second

row, a 1-byte circular left shift is performed. For the third row, a 2-byte circular left shift is performed. For the fourth row, a 3-byte circular
left shift is performed. The following is an example of ShiftRows:

87 | F2 | 4D | 97 oSN O o B 1
EC | 6E | 4C | 90 e 6E | 4C | 90 | EC
4A | C3 | 46 | E7 46 | E7 | 4A | C3
8C | D8 | 95 | Ab A6 | 8C | DB | 95

Figure 5.5. AES Row and Column Operations

}View full size imaqei

Soo | 0.1 | %02 | S0.3 m So0 | S0 | 502 | 50,3

S1ol| S| 512] 514 —r T — |y 512|813 S10

=4

Sag | S21 | S2z2|S2a|=—>| | | | [|—>|=s

It
b
-
wd
i
-
bd
]
=Y
-]
==

oSSR — . O —

. o (0 W |
A B U | 5

11123

i3 1 12
Yy v 4
¥ L] 1 [
Son [Sog | So2 | Sos So0 [S0 | So2 | S03
S1o fL1] %12 1913 S S0 | Y12 | %13
r 1 1 I
Sao (S| ¥z | 423 Sa0 [820 | S22 | 823
L] (] 1 T
S0 [831 ¥3.2 | 833 S0 [OR1 | 532 933

(b} Mix column transformation

The inverse shift row transformation, called InvShiftRows, performs the circular shifts in the opposite direction for each of the last three
rows, with a one-byte circular right shift for the second row, and so on.

Rationale

The shift row transformation is more substantial than it may first appear. This is because the State, as well as the cipher input and output,
is treated as an array of four 4-byte columns. Thus, on encryption, the first 4 bytes of the plaintext are copied to the first column of State,
and so on. Further, as will be seen, the round key is applied to State column by column. Thus, a row shift moves an individual byte from
one column to another, which is a linear distance of a multiple of 4 bytes. Also note that the transformation ensures that the 4 bytes of one
column are spread out to four different columns. Eigure 5.3 illustrates the effect.

[Page 151]

MixColumns Transformation

Forward and Inverse Transformations

The forward mix column transformation , called MixColumns, operates on each column individually. Each byte of a column is
mapped into a new value that is a function of all four bytes in that column. The transformation can be defined by the following matrix
multiplication on State (Eigure 5.5b):

Equation 5-3

(1 (ANS) American National Standard: Financial Institution Key Management (Wholesale). From its title, X9.17
appears to be a somewhat obscure standard. Yet a number of techniques specified in this standard have been
adopted for use in other standards and applications, as we shall see throughout this book.

Currently, there are no practical cryptanalytic attacks on 3DES. Coppersmith [COPP94] notes that the cost of a brute-force key search on
P
3DES is on the order of 2112 = (5x 1033) and estimates that the cost of differential cryptanalysis suffers an exponential growth,

compared to single DES, exceeding 102,

It is worth looking at several proposed attacks on 3DES that, although not practical, give a flavor for the types of attacks that have been
considered and that could form the basis for more successful future attacks.

[Page 179]

The first serious proposal came from Merkle and Hellman MERK81]]. Their plan involves finding plaintext values that produce a first
intermediate value of A=0 and then using the meet-in-the-middle attack to determine the two keys. The level of effort is rd
but the technique requires 256 chosen plaintext-ciphertext pairs, a number unlikely to be provided by the holder of the keys.

A known-plaintext attack is outlined in . This method is an improvement over the chosen-plaintext approach but requires more
effort. The attack is based on the observation that if we know A and C (, then the problem reduces to that of an attack on
double DES. Of course, the attacker does not know A, even if P and C are known, as long as the two keys are unknown. However, the
attacker can choose a potential value of A and then try to find a known P, C) pair that produces A. The attack proceeds as follows:

1. Obtain n (P, C) pairs. This is the known plaintext. Place these in a table sorted on the values of P | .

Figure 6.2. Known-Plaintext Attack on Triple DES

B,

(a) Two-key triple encryption with candidate pair of keys

P C

(b) Table of n known {c) Table of intermediate

plaintext-ciphertext values and candidate
pairs, sorted on P keys

2. Pick an arbitrary value a for A, and create a second table with entries defined in the following fashion. For each of

the 2% possible keysKj =i, calculate the plaintext valueP;j that produces a:

Pi=D(, &)
[Page 180]
For each Pjthat matches an entry in[Table 1}, create an entry in consisting of the K1 value and the value ofB that is
produced for the (P, C) pair from , assuming that value ofKj:
B =D(, C)

At the end of this step, sort on the values of B.

3. We now have a number of candidate values of K1 in and are in a position to search for a value oKz. For each of the 26
possible keys Ko = j, calculate the second intermediate value for our chosen value ofa:

Bj=D(, @

At each step, look up Bjin . If there is a match, then the corresponding key from plus this value ofj are candidate
values for the unknown keys (K1, K2). Why? Because we have found a pair of keysi(j) that produce a known (P, C) pair (Eigure
.

4. Test each candidate pair of keys (i, j) on a few other plaintext-ciphertext pairs. If a pair of keys produces the desired ciphertext,
the task is complete. If no pair succeeds, repeat from step 1 with a new value of a.

For a given known (P, C), the probability of selecting the unique value ofa that leads to success is P4, Thus, givenn (P, C) pairs, the

probability of success for a single selected value of ais n/2%%. A basic result from probability theory is that the expected number of draws
required to draw one red ball out of a bin containing n red balls andN n green balls is (N + 1)/(n + 1) if the balls are not replaced. So the
expected number of values of a that must be tried is, for largen,

2(:!4 + 1 N 2'&4

n+1 n

Thus, the expected running time of the attack is on the order of
264
Il

25(‘! _Z ZIED—Ioggu

Triple DES with Three Keys

Although the attacks just described appear impractical, anyone using two-key 3DES may feel some concern. Thus, many researchers now
feel that three-key 3DES is the preferred alternative (e.g., [KALI964)]). Three-key 3DES has an effective key length of 168 bits and is
defined as follows:

C = E(K3, D2, E(K1, P)))

Backward compatibility with DES is provided by putting K3 = K2 or K1 = Ka.

A number of Internet-based applications have adopted three-key 3DES, including PGP and S/MIME, both discussed .

K==a nExT

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

NEXT B

6.2. Block Cipher Modes

[Page 181]

of Operation

A block cipher algorithm is a basic building block for providing data security. To apply a block cipher in a variety of applications, four
"modes of operation” have been defined by NIST (FIPS 81). In essence, a mode of operation is a technique for enhancing the effect of a
cryptographic algorithm or adapting the algorithm for an application, such as applying a block cipher to a sequence of data blocks or a
data stream. The four modes are intended to cover virtually all the possible applications of encryption for which a block cipher could be
used. As new applications and requirements have appeared, NIST has expanded the list of recommended modes to five in Special
Publication 800-38A. These modes are intended for use with any symmetric block cipher, including triple DES and AES. The modes are

summarized in [Table 6.1 and described briefly

Table 6.1. Block Cipher Modes of Operation

in the remainder of this section.

Mode

Description

Typical Application

Electronic Codebook (ECB)

Each block of 64 plaintext bits is encoded
independently using the same key.

Secure transmission of single
values (e.g., an encryption key)

Cipher Block Chaining (CBC)

The input to the encryption algorithm is the
XOR of the next 64 bits of plaintext and the
preceding 64 bits of ciphertext.

General-purpose block-oriented
transmission

Authentication

Cipher Feedback (CFB)

Input is processed j bits at a time. Preceding
ciphertext is used as input to the encryption
algorithm to produce pseudorandom output,
which is XORed with plaintext to produce
next unit of ciphertext.

General-purpose
stream-oriented transmission

Authentication

Output Feedback (OFB)

Similar to CFB, except that the input to the
encryption algorithm is the preceding DES
output.

Stream-oriented transmission
over noisy channel (e.g.,
satellite communication)

Counter (CTR)

Each block of plaintext is XORed with an
encrypted counter. The counter is
incremented for each subsequent block.

General-purpose block-oriented
transmission

Useful for high-speed
requirements

Electronic Codebook Mode

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

The simplest mode is the electroni ook (ECB) mode, in which plaintext is handled one block at a time and each block of plaintext is
encrypted using the same key (Ei:ure 6.3& The term codebook is used because, for a given key, there is a unique ciphertext for ever-bit
block of plaintext. Therefore, we can imagine a gigantic codebook in which there is an entry for every possible b-bit plaintext pattern
showing its corresponding ciphertext.

[Page 182]

Figure 6.3. Electronic Codebook (ECB) Mode

iView full size imaqei
Time = 1 Tirme = 2 Timie = N

|
|

P;
K i Encrypt B Encrypt I . w .F‘.'—bl Encryp I
s L,

{a) Encryplion

Cy

L
R ——1 Decrypt AN ——1 Decrypt S .E'—DI Decrypt I

Py P,
ib) Decryplion

bit blocks, padding the last block if necessary.
, the plaintext (padded as necessary) consists of a

For a message longer than b bits, the procedure is simply to break the message intob
Decryption is performed one block at a time, always using the same key. In
sequence of b-bit blocks, P1, P2,..., PN; the corresponding sequence of ciphertext blocks is C1, C2,..., CN.

The ECB method is ideal for a short amount of data, such as an encryption key. Thus, if you want to transmit a DES key securely, ECB is
the appropriate mode to use.

The most significant characteristic of ECB is that the same b-bit block of plaintext, if it appears more than once in the message, always
produces the same ciphertext.

For lengthy messages, the ECB mode may not be secure. If the message is highly structured, it may be possible for a cryptanalyst to

exploit these regularities. For example, if it is known that the message always starts out with certain predefined fields, then the
cryptanalyst may have a number of known plaintext-ciphertext pairs to work with. If the message has repetitive elements, with a period of
repetition a multiple of b bits, then these elements can be identified by the analyst. This may help in the analysis or may provide an
opportunity for substituting or rearranging blocks.

[Page 183]

Cipher Block Chaining Mode

To overcome the security deficiencies of ECB, we would like a technique in which the same plaintext block, |f repeated, produces
different ciphertext blocks. A simple way to satisfy this requirement is the cipher block chaining (CBC) mode ,. In this scheme,
the input to the encryption algorithm is the XOR of the current plaintext block and the preceding ciphertext block; the same key is used for
each block. In effect, we have chained together the processing of the sequence of plaintext blocks. The input to the encryption function for
each plaintext block bears no fixed relationship to the plaintext block. Therefore, repeating patterns of b bits are not exposed.

Figure 6.4. Cipher Block Chaining (CBC) Mode

lView full size image|

Time = 1 Time =2 Time: = N
IV P P, Py
Y
3 Cr-1
L |

K Encrypt K — Encrypt e K —~ Encrypt

Cy Ca Cw
ia} Encryption

& 5 7

K —= Deerypt K — [cryp LR R K — Decrypt

v Cr-1

(b} Deeryplion

For decryption, each cipher block is passed through the decryption algorithm. The result is XORed with the preceding ciphertext block to
produce the plaintext block. To see that this works, we can write

Cj=E(K, [Cj-1 $Pj])

Then

D(K, Cj) = D(K, E(K, [Cj-1 $Pj]))

DK, Cj) = Cj-1 $Pj
Cj-1 $D(K, Cjp=Cj1 $ Cj-1 $ Pj = Pj

[Page 184]

To produce the first block of ciphertext, an initialization vector (IV) is XORed with the first block of plaintext. On decryption, the IV is
XORed with the output of the decryption algorithm to recover the first block of plaintext. The IV is a data block that is that same size as the
cipher block.

The IV must be known to both the sender and receiver but be unpredictable by a third party. For maximum security, the 1V should be
protected against unauthorized changes. This could be done by sending the IV using ECB encryption. One reason for protecting the IV is
as follows: If an opponent is able to fool the receiver into using a different value for 1V, then the opponent is able to invert selected bits in
the first block of plaintext. To see this, consider the following:

C1=E(K, [IV $P1])
P1=1V $D(K, C1)

Now use the notation that X[i] denotes theith bit of the b-bit quantity X. Then

P1i] = IV[i] @D(K. C1)Ii]

Then, using the properties of XOR, we can state

P1[i]' = IV[i] $D(K, Ca)Ii]

where the prime notation denotes bit complementation. This means that if an opponent can predictably change bits in 1V, the
corresponding bits of the received value of P1 can be changed.

For other possible attacks based on knowledge of IV, see [VOYD83].
In conclusion, because of the chaining mechanism of CBC, it is an appropriate mode for encrypting messages of length greater thanb bits.

In addition to its use to achieve confidentiality, the CBC mode can be used for authentication. This use is described in.

Cipher Feedback Mode

The DES scheme is essentially a block cipher technique that uses b-bit blocks. However, it is possible to convert DES into a stream cipher,
using either the cipher feedback (CFB) or the output feedback mode. A stream cipher eliminates the need to pad a message to be an
integral number of blocks. It also can operate in real time. Thus, if a character stream is being transmitted, each character can be
encrypted and transmitted immediately using a character-oriented stream cipher.

One desirable property of a stream cipher is that the ciphertext be of the same length as the plaintext. Thus, if 8-bit characters are being
transmitted, each character should be encrypted to produce a cipher text output of 8 bits. If more than 8 bits are produced, transmission

capacity is wasted.

depicts the CFB scheme. In the figure, it is assumed that the unit of transmission is bits; a common value iss = 8. As with CBC,
the units of plaintext are chained together, so that the ciphertext of any plaintext unit is a function of all the preceding plaintext. In this case,
rather than units of b bits, the plaintext is divided into segments of s bits.

[Page 185]

Figure 6.5. s-bit Cipher Feedback (CFB) Mode

lView full size image|

w E 4,
| Shillt régaski | | Shin regrdn
B—shilz | s hi—shils | & aes
il [
k —={ Encrypt] k —={ Encrypt |
= i
Selea | Meacaid | Selsn Liscaid |
rhilx | B -1 hits shit | - vhi=
F 5 B, 5
k | ¥
o il | L ,:_3
o
w ¥ L}
C, Cy
|41 Bty
v S Ua——
| Shift rezaster | Shifl rezester
B shits | 5 hwes h-shils ™ | rhaes
A4 A
el] < T
il il
Harkegt [hieazard Mol | RICTRTHI
hiis I — 3 itz 2 hilx fr — 3 hil=
5 L]
1 ¥ ¥
o] : 15 i :
e L =Y L2

(b Decreption

Crn
—

Shifl regskin
R i - I 11

il

« —> [

il

r
Sels I Nsad
shix | B —rhis

Py g

L

R

Cig

-
i —
Shif register
b—shis " | shis

il

Lisazand
i — 5 iz

[Page 186]

First, consider encryption. The input to the encryption function is ab-bit shift register that is initially set to some initialization vector (V).

The leftmost (most significant) s bits of the output of the encryption function are XORed with the first segment of plaintexP1 to produce the
first unit of ciphertext C1, which is then transmitted. In addition, the contents of the shift register are shifted left bg bits andC1 is placed in
the rightmost (least significant) s bits of the shift register. This process continues until all plaintext units have been encrypted.

For decryption, the same scheme is used, except that the received ciphertext unit is XORed with the output of the encryption function to
produce the plaintext unit. Note that it is the ‘ function that is used, not the decryption function. This is easily explained. LeSs(X)

be defined as the most significant s bits of X. Then

Cl =P1 @Ss[E(K, |V)]

Therefore,

P1=C1 @SS[E(K, V)]

The same reasoning holds for subsequent steps in the process.

Output Feedback Mode

The output feedback (OFB) mode is similar in structure to that of CFB, as illustrated in . As can be seen, it is the output of the
encryption function that is fed back to the shift register in OFB, whereas in CFB the ciphertext unit is fed back to the shift register.

Figure 6.6. s-bit Output Feedback (OFB) Mode
(This item is displayed on page 187 in the print version)

lView full size image|

Thy
IV p * ,‘ ‘L
Shill regisier Sl regisicr Shilt regisicr
b-yhilx " | xbilx fo—rhits © | b sy | 5 birg
=3} el &l
k —>{Enerypt | K K
& At A4
L T
Saler Lriscard Sedeol Lyiscard Sedeol e ard
£ bgla | - Il v s I o — w bl % hyls I b — r bala
I ; Fa ki Py ;
| I E} i | i E‘_,_:' 5
L
L, Ls Ly
| b Encryplioi
Thy g
I . * : l
Skl regisier Shult regisier Shilt regisier
b btz | iz b rbigs | biis b rhits | 1 bits
=2 (223 ol
i i A _..I"l!'l-l-
- 3 +
Saleit Liiscard Seleol Discard Sedeot Dz ard
ibits | -5 hila £hits | s ahits | b i hees
Fi i ¥

S—— o, G——c.

il Diiripism

One advantage of the OFB method is that bit errors in transmission do not propagate. For example, if a bit error occurs @1 only the
recovered value of is P1 affected; subsequent plaintext units are not corrupted. With CFB,C1 also serves as input to the shift register and
therefore causes additional corruption downstream.

The disadvantage of OFB is that it is more vulnerable to a message stream modification attack than is CFB. Consider that complementing
a bit in the ciphertext complements the corresponding bit in the recovered plaintext. Thus, controlled changes to the recovered plaintext
can be made. This may make it possible for an opponent, by making the necessary changes to the checksum portion of the message as
well data portion, to alter the ciphertext in such a way that it is not detected by an error-correcting code. For a further discussion,
see [VOYD8Y].

Counter Mode

Although interest in the counter mode (CTR) has increased recently, with applications to ATM (asynchronous transfer mode) network
security and IPSec (IP security), this mode was proposed early on (e.g., [DIEE79]).

depicts the CTR mode. A counter, equal to the plaintext block size is used. The only requirement stated in SP 800-38A is that
the counter value must be different for each plaintext block that is encrypted. Typically, the counter is initialized to some value and then

incremented by 1 for each subsequent block (modulo 2b where b is the block size). For encryption, the counter is encrypted and then
XORed with the plaintext block to produce the ciphertext block; there is no chaining. For decryption, the same sequence of counter
values is used, with each encrypted counter XORed with a ciphertext block to recover the corresponding plaintext block.

[Page 188]

Figure 6.7. Counter (CTR) Mode

lView full size image|

Comnler Ciomnier -+ 1

l l

K—> Encrypt f—| Enceypt

Ciognier + & — 1

l

K—s Encrypt

::ll ;:I:I L} - PII".
O Oy C
(ak Encryplion
Cownter Conmter + Conmter + & — 1
K ——= Encrypt K— Encrypt Koe— Enerypl
1r L ¥

P e

Py

(b} Decryption

[LIPMO(] lists the following advantages of CTR mode:

® Hardware efficiency: Unlike the three chaining modes, encryption (or decryption) in CTR mode can be done in parallel on
multiple blocks of plaintext or ciphertext. For the chaining modes, the algorithm must complete the computation on one block
before beginning on the next block. This limits the maximum throughput of the algorithm to the reciprocal of the time for one
execution of block encryption or decryption. In CTR mode, the throughput is only limited by the amount of parallelism that is

achieved.

® Software efficiency: Similarly, because of the opportunities for parallel execution in CTR mode, processors that support
parallel features, such as aggressive pipelining, multiple instruction dispatch per clock cycle, a large number of registers, and

SIMD instructions, can be effectively utilized.

® Preprocessing: The execution of the underlying encryption algorithm does not depend on input of the plaintext or ciphertext.

Therefore, if sufficient memory is available and secur]

ty is mai

tained, preprocessing can be used to prepare the output of the

encryption boxes that feed into the XOR functions in

Figure 6.7

. When the plaintext or ciphertext input is presented, then the

only computation is a series of XORs. Such a strategy greatly enhances throughput.

[Page 189]

® Random access: The ith block of plaintext or ciphertext can be processed in random-access fashion. With the chaining
modes, block Cj cannot be computed until thei - 1 prior block are computed. There may be applications in which a ciphertext is
stored and it is desired to decrypt just one block; for such applications, the random access feature is attractive.

® provable security: It can be shown that CTR is at least as secure as the other modes discussed in this section.

® Simplicity: Unlike ECB and CBC modes, CTR mode requires only the implementation of the encryption algorithm and not the
decryption algorithm. This matters most when the decryption algorithm differs substantially from the encryption algorithm, as it
does for AES. In addition, the decryption key scheduling need not be implemented.

k=1 EXT

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

K==1 ExT

[Page 189 (continued)]

6.3. Stream Ciphers and RC4

In this section we look at perhaps the most popular symmetric stream cipher, RC4. We begin with an overview of stream cipher structure,
and then examine RC4.

Stream Cipher Structure

A typical stream cipher encrypts plaintext one byte at a time, although a stream cipher may be designed to operate on one bit at a time or
on units larger than a byte at a time.is a representative diagram of stream cipher structure. In this structure a key is input to a
pseudorandom_bi rator that produces a stream of 8-bit numbers that are apparently random. We discuss pseudorandom number
generators in Ehagter 1. For now, we simply say that a pseudorandom stream is one that is unpredictable without knowledge of the input
key. The output of the generator, called a keystream, is combined one byte at a time with the plaintext stream using the bitwise
exclusive-OR (XOR) operation. For example, if the next byte generated by the generator is 01101100 and the next plaintext byte is
11001100, then the resulting ciphertext byte is

[Page 190]
11001100 plaintext
& 01101100 key stream
10100000 ciphertext

Decryption requires the use of the same pseudorandom sequence:
10100000 ciphertext

@ 01101100 key streamn
100 S (B A 4 plaintext

Figure 6.8. Stream Cipher Diagram
(This item is displayed on page 189 in the print version)

iView full size imaqei

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

Foew Ky
K K
w
Pyewcdoramdom by Paendorandom byre
EEneratee Leneraios

(key stream generator)

i ke strewm generator]

4 * k
Platiexs e f1||'||'||."|‘lu:t.l_ 2 Plamiexn
byl siream Tl " byte stream LA " hyle siream
M ENCEYPTICN C DECEYPTICN M

The stream cipher is similar to the one-time pad discussed in . The difference is that a one-time pad uses a genuine random
number stream, whereas a stream cipher uses a pseudorandom number stream.

IKUMAQ1] lists the following important design considerations for a stream cipher:

1. The encryption sequence should have a large period. A pseudorandom number generator uses a function that produces a
deterministic stream of bits that eventually repeats. The longer the period of repeat the more difficult it will be to do
cryptanalysis. This is essentially the same consideration that was discussed with reference to the Vigenére cipher, namely that
the longer the keyword the more difficult the cryptanalysis.

2. The keystream should approximate the properties of a true random number stream as close as possible. For example, there
should be an approximately equal number of 1s and 0s. If the keystream is treated as a stream of bytes, then all of the 256
possible byte values should appear approximately equally often. The more random-appearing the keystream is, the more
randomized the ciphertext is, making cryptanalysis more difficult.

3. Note from that the output of the pseudorandom number generator is conditioned on the value of the input key. To
guard against brute-force attacks, the key needs to be sufficiently long. The same considerations as apply for block ciphers are
valid here. Thus, with current technology, a key length of at least 128 bits is desirable.

With a properly designed pseudorandom number generator, a stream cipher can be as secure as block cipher of comparable key length.
The primary advantage of a stream cipher is that stream ciphers are almost always faster and use far less code than do block ciphers. The
example in this section, RC4, can be implemented in just a few lines of code. [Table 6.4, using data from , compares execution
times of RC4 with three well-known symmetric block ciphers. The advantage of a block cipher is that you can reuse keys. However, if
two plaintexts are encrypted with the same key using a stream cipher, then cryptanalysis is often quite simple]. If the two
ciphertext streams are XORed together, the result is the XOR of the original plaintexts. If the plaintexts are text strings, credit card
numbers, or other byte streams with known properties, then cryptanalysis may be successful.

[Page 191]

Table 6.2. Speed Comparisons of Symmetric Ciphers on a Pentium |l

Cipher Key Length Speed (Mbps)
DES 56 9
3DES 168 3
RC2 variable 0.9
RC4 variable 45

For applications that require encryption/decryption of a stream of data, such as over a data communications channel or a browser/Web
link, a stream cipher might be the better alternative. For applications that deal with blocks of data, such as file transfer, e-mail, and
database, block ciphers may be more appropriate. However, either type of cipher can be used in virtually any application.

The RC4 Algorithm

RC4 is a stream cipher designed in 1987 by Ron Rivest for RSA Security. It is a variable key-size stream cipher with byte-oriented
operations. The algorithm is based on the use of a random permutation. Analysis shows that the period of the cipher is overwhelmingly

likely to be greater than 10100 . Eight to sixteen machine operations are required per output byte, and the cipher can be
expected to run very quickly in software. RC4 is used in the SSL/TLS (Secure Sockets Layer/Transport Layer Security) standards that
have been defined for communication between Web browsers and servers. It is also used in the WEP (Wired Equivalent Privacy) protocol
and the newer WiFi Protected Access (WPA) protocol that are part of the IEEE 802.11 wireless LAN standard. RC4 was kept as a trade
secret by RSA Security. In September 1994, the RC4 algorithm was anonymously posted on the Internet on the Cypherpunks anonymous
remailers list.

The RC4 algorithm is remarkably simply and quite easy to explain. A variable-length key of from 1 to 256 bytes (8 to 2048 bits) is used to
initialize a 256-byte state vector S, with elements S[0], S[1]. At all times, S contains a permutation of all 8-bit numbers from 0
through 255. For encryption and decryption, a byte k (see is generated from S by selecting one of the 255 entries in a
systematic fashion. As each value of k is generated, the entries in S are once again permuted.

Initialization of S

To begin, the entries of S are set equal to the values from 0 through 255 in ascending order; that is; S[0] = 0, S[1] = 1,..., S[255] = 255. A
temporary vector, T, is also created. If the length of the key K is 256 bytes, then K is transferred to T. Otherwise, for a key of length keylen
bytes, the first keylen elements of T are copied from K and then K is repeated as many times as necessary to fill out T. These preliminary
operations can be summarized as follows:

[Page 192]

/*Initialization */
for i=0to 255 do
Sl =1i;

T[i] = K[i mod keylen];

Next we use T to produce the initial permutation of S. This involves starting with S[0] and going through to S[255], and, for each SJi],
swapping S[i] with another byte in S according to a scheme dictated by T[i]:

/*Initial Permutation of S*/
j=0;
for i=0to 255 do
j=(+ S[i] + T[i)) mod 256;
Swap (SIi], S[i]);

Because the only operation on S is a swap, the only effect is a permutation. S still contains all the numbers from 0 through 255.

Stream Generation

Once the S vector is initialized, the input key is no longer used. Stream generation involves cycling through all the elements of S[i], and, for
each SJi], swapping S[i] with another byte in S according to a scheme dictated by the current configuration of S. After S[255] is reached,
the process continues, starting over again at S[0]:

/* Stream Generation */

i,j=0;

while (true)
i=(i+1)mod 256;
j=(+ SJ[i)) mod 256;
Swap (SIi, SIi);
t = (SJi] + S[j]) mod 256;
k = S[t];

To encrypt, XOR the value k with the next byte of plaintext. To decrypt, XOR the valuek with the next byte of ciphertext.

illustrates the RC4 logic.

Figure 6.9. RC4
(This item is displayed on page 193 in the print version)

iViEW full size imaqei

- kevlen >
. -
n 0 I I T T I
T @ E -i-| | - R .
{a) Invital acate of 5 and T
T Ty T[ﬂﬁ EE |
= 1=+ s[il + T(il S
LS BB S‘ﬁ] & H]] 'EL] |
= 1 = Toun
(b Imitaal permutaticn of 5
j=j + S[il
5 LR 5{]]—1. LER] .5["] LR] a[t] L
= L= S[il + 5[] .

(2] Slreaam 2aeieralse

Strength of RC4

A number of papers have been published analyzing methods of attacking RC4 [e.g.,kNUng , i_/IISng , ELUHOd , MANTOJ). None of

these approaches is practical against RC4 with a reasonable key length, such as 128 bits. A more serious problem is reported in
FLUHOZ]. The authors demonstrate that the WEP protocol, intended to provide confidentiality on 802.11 wireless LAN networks, is
vulnerable to a particular attack approach. In essence, the problem is not with RC4 itself but the way in which keys are generated for use
as input to RC4. This particular problem does not appear to be relevant to other applications using RC4 and can be remedied in WEP by
changing the way in which keys are generated. This problem points out the difficulty in designing a secure system that involves both
cryptographic functions and protocols that make use of them.

[Page 194]

k=1 wexT

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

" prey wEXT

[Page 194 (continued)]

6.4. Recommended Reading and Web Site

[ECHNO9{] provides details on numerous symmetric block ciphers as well as some stream ciphers|[ROBS95H] is an interesting and

worthwhile examination of many design issues related to symmetric block ciphers.

is éUEPQJ

(]

n@_us_a.uja[;cellent and lengthy discussion of stream cipher design principles. Another good treatment, quite mathematical,
ROBS954] is an interesting and worthwhile examination of many design issues related to stream ciphers.

UMA97 Kumar, I. Cryptology. Laguna Hills, CA: Aegean Park Press, 1997.

mmﬂmjrs. RSA Laboratories Technical Report TR-701, July 1995.
http://www.rsasecurity.com/rsalab
mﬁ RSA Laboratories Technical Report TR-601, August 1995.
http://www.rsasecurity.com/rsalab

Rueppel, T. "Stream Ciphers." In .

SCHN9{ Schneier, B. Applied Cryptography. New York: Wiley, 1996.

SIMM92 Simmons, G., ed. Contemporary Cryptology: The Science of Information Integrity. Piscataway, NJ:
IEEE Press, 1992.

Recommended Web Site

® Biock cipher modes of operation: NIST page with full information on NIST-approved modes of operation

e prey NExT

http://www.rsasecurity.com/rsalabs
http://www.rsasecurity.com/rsalabs

[Page 194 (continued)]

6.5. Key Terms, Review Questions, and Problems

Key Terms

|3lock cipher modes of operatioA

l:ipher block chaining mode (CBC{

Ligher feedback mode (CFBI

lneet-in-the-middle attacll

Eounter mode (CTR{

Islectronic codebook mode (ECB{

l)utput feedback mode (OFBJ
riple DES (3DES

[Page 195]

Review Questions

6.1 What is triple encryption?

6.2 What is a meet-in-the-middle attack?

6.3 How many keys are used in triple encryption?

6.4 Why is the middle portion of 3DES a decryption rather than an encryption?
6.5 List important design considerations for a stream cipher.

6.6 Why is it not desirable to reuse a stream cipher key?

6.7 What primitive operations are used in RC4?

6.8 Why do some block cipher modes of operation only use encryption while others use both encryption and decryption?

Problems

6.1 You want to build a hardware device to do block encryption in the cipher block chaining (CBC) mode using an algorithm
stronger than DES. 3DES is a good candidate. shows two possibilities, both of which follow from the definition

of CBC. Which of the two would you choose:

a. For security?

b. For performance?

Figure 6.10. Use of Triple DES in CBC Mode

K|. KE_F" EDE Kl —p | E

G A,
v DB
(b) One-loop CBC % <
K, —= D
B,
crr—]
K_: — E
C,

6.2

6.3

6.4

6.5

6.6

6.7

6.8

(b) Three-loop CBC

[Page 196]

Can you suggest a security improvement to either option in , using only three DES chips and some number of
XOR functions? Assume you are still limited to two keys.

The Merkle-Hellman attack on 3DES begins by assuming a value A = 0 of (. Then, for each of the 26 possible
values of K1, the plaintext P that produces A = 0 is determined. Describe the rest of the algorithm.

With the ECB mode of DES, if there is an error in a block of the transmitted ciphertext, only the corresponding plai
block is affected. However, in the CBC mode, this error propagates. For example, an error in the transmitted C1 (Eigure 6.
obviously corrupts P1 and P2.

a. Are any blocks beyond P2 affected?

b. Suppose that there is a bit error in the source version of P1. Through how many ciphertext blocks is this error
propagated? What is the effect at the receiver?

If a bit error occurs in the transmission of a ciphertext character in 8-bit CFB mode, how far does the error propagate?

Fill in the remainder of this table:

Mode Encrypt Decrypt
ECB GCj=EKP)j=1,.N Pi=D(K, C)j=1,.,N
CBC ¢ =EK s $IV]) P1 = DK, cl)$ Y%

Ci= E(K, [Pj®cj.1])j =2,.,N Pj= DK, C) @ Ci1j=2,...,N
CFB
OFB
CTR

CBC-Pad is a block cipher mode of operation used in the RC5 block cipher, but it could be used in any block cipher.
CBC-Pad handles plaintext of any length. The ciphertext is longer then the plaintext by at most the size of a single block.
Padding is used to assure that the plaintext input is a multiple of the block length. It is assumed that the original plaintext is
an integer number of bytes. This plaintext is padded at the end by from 1 to bb bytes, where bb equals the block size in
bytes. The pad bytes are all the same and set to a byte that represents the number of bytes of padding. For example, if
there are 8 bytes of padding, each byte has the bit pattern 00001000. Why not allow zero bytes of padding? That is, if the
original plaintext is an integer multiple of the block size, why not refrain from padding?

Padding may not always be appropriate. For example, one might wish to store the encrypted data in the same memory
buffer that originally contained the plaintext. In that case, the ciphertext must be the same length as the original plaintext. A
mode for that purpose is the ciphertext stealing (CTS) mode. figure 6.114 shows an implementation of this mode.

a. Explain how it works.

b. Describe how to decryptCn-1 and Cn

6.9 shows an alternative to CTS for producing ciphertext of equal length to the plaintext when the plaintext is not
an integer multiple of the block size.

a. Explain the algorithm.

b. Explain why CTS is preferable to this approach illustrated i .

Figure 6.11. Block Cipher Modes for Plaintext not a Multiple of Block Size
(This item is displayed on page 197 in the print version)

IVieW full size imagel

o Gl x] [T]

Ll Cipheretest siealing mde

Pus Py .'rl."'
T (e hiis) [) 1 ity
r
—=(D
select
e o t‘:ﬂml
__J'1h':u.
r
[Cr_z | I Cy
{ b bats) (e hits) [Bits) (ji hits}

(b Adlermative mothod

6.10 What RC4 key value will leave S unchanged during initialization? That is, after the initial permutation of S, the entries of S
will be equal to the values from 0 through 255 in ascending order.
[Page 197]
6.11

RC4 has a secret internal state which is a permutation of all the possible values of the vecto8 and the two indicesi and j.

a. Using a straightforward scheme to store the internal state, how many bits are used?

b. Suppose we think of it from the point of view of how much information is represented by the state. In that case, we
need to determine how may different states there are, than take the log to the base 2 to find out how many bits of
information this represents. Using this approach, how many bits would be needed to represent the state?

6.12 Alice and Bob agree to communicate privately via email using a scheme based on RC4, but want to avoid using a new
secret key for each transmission. Alice and Bob privately agree on a 128-bit key k. To encrypt a messagem, consisting of a
string of bits, the following procedure is used:

1. Choose a random 80-hit valuev

2. Generate the ciphertextc = RC4(v || k)$ m
3. Send the bit string (/|| C)

a. Suppose Alice uses this procedure to send a message m to Bob. Describe how Bob can recover the messagem

from (v || C) using k.

b. If an adversary observes several values (v1 || C1), (v2 || C2), ... transmitted between Alice and Bob, how can

he/she determine when the same key stream has been used to encrypt two messages?

[Page 198]

c. Approximately how many messages can Alice expect to send be, ey stream will be used twice? Use
the result from the birthday paradox described in [IE uation (11.7).

d. What does this imply about the lifetime of the keyk (i.e., the number of messages that can be encrypted using)?

Programming Problems

6.13

6.14

6.15

6.16

Create software that can encrypt and decrypt in Cipher Block Chaining mode using one of the following ciphers: affine
modulo 256, Hill modulo 256, S-DES, DES. Test data for S-DES: using a binary initialization vector of 1010 1010, a
binary plaintext of 0000 0001 0010 0011 encrypted with a binary key of 01111 11101 should give a binary plaintext of
1111 0100 0000 1011. Decryption should work correspondingly.

Create software that can encrypt and decrypt in 4-bit Cipher Feedback mode using one of the following ciphers:
additive modulo 256, affine modulo 256, S-DES;

or

8-bit Cipher Feedback mode using one of the following ciphers: 2 x 2 Hill modulo 256. Test data for S-DES: using a
binary initialization vector of 1010 1011, a binary plaintext of 0001 0010 0011 0100 encrypted with a binary key of
01111 11101 should give a binary plaintext of 1110 1100 1111 1010. Decryption should work correspondingly.

Create software that can encrypt and decrypt in 4-bit Output Feedback mode using one of the following ciphers:
additive modulo 256, affine modulo 256, S-DES;

or

8-bit Output Feedback mode using one of the following ciphers: 2 x 2 Hill modulo 256,

Create software that can encrypt and decrypt in Counter mode using one of the following ciphers: affine modulo 256,
Hill modulo 256, S-DES.

Test data for S-DES: using a counter starting at 0000 0000, a binary plaintext of 0000 0001 0000 0010 0000 0100
encrypted with a binary key of 01111 11101 should give a binary plaintext of 0011 1000 0100 1111 0011 0010.
Decryption should work correspondingly.

6.17 Implement a differential cryptanalysis attack on 3-round S-DES.

=2

" prey wEXT

[Page 199]

Chapter 7. Confidentiality Using Symmetric
Encryption

|7.1 Placement of Encryption Functiorl

lDOtential Locations for Confidentiality Attacksl

Link versus End-to-End Encrvptior{

|7.2 Traffic Confidentialit\I

Link Encryption Approacl{

iEnd-to-End Encryption Approacll

|7.3 Key Distributiorl

Ig Key Distribution Scenarigl

l—lierarchical Key Control

Eession Key Lifetimel

IATransparent Key Control Schemel

becentralized Key Control

bontrolling Key Usagd

|7.4 Random Number Generatior‘l

hhe Use of Random Numbersl

bseudorandom Number Generators (PRNGSJ

Linear Congruential Generatorsl

hryptoqraphically Generated Random Numbersl

l3|um Blum Shub Generatorl

h’rue Random Number Generatorsl

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

Ske

|7.5 Recommended Reading and Web Sitesl

|7.6 Key Terms, Review Questions, and ProblemJ

ey Termg
Review Questiong
Problems

[Page 200]

Amongst the tribes of Central Australia every man, woman, and child has a secret or sacred name which is
bestowed by the older men upon him or her soon after birth, and which is known to none but the fully initiated
members of the group. This secret name is never mentioned except upon the most solemn occasions; to utter it in
the hearing of men of another group would be a most serious breach of tribal custom. When mentioned at all, the
name is spoken only in a whisper, and not until the most elaborate precautions have been taken that it shall be
heard by no one but members of the group. The native thinks that a stranger knowing his secret name would have
special power to work him ill by means of magic.

The Golden Bough, Sir James George Frazer

John wrote the letters of the alphabet under the letters in its first lines and tried it against the message.
Immediately he knew that once more he had broken the code. It was extraordinary the feeling of triumph he had.
He felt on top of the world. For not only had he done it, had he broken the July code, but he now had the key to
every future coded message, since instructions as to the source of the next one must of necessity appear in the
current one at the end of each month.

Talking to Strange Men, Ruth Rendell

Key Points

In a distributed environment, encryption devices can be placed to support either link encryption or
end-to-end encryption. With link encryption, each vulnerable communications link is equipped on both ends
with an encryption device. With end-to-end encryption, the encryption process is carried out at the two end
systems.

Even if all traffic between users is encrypted, a traffic analysis may yield information of value to an
opponent. An effective countermeasure is traffic padding which involves sending random bits during
periods when no encrypted data are available for transmission.

Key distribution is the function that delivers a key to two parties who wish to exchange secure encrypted
data. Some sort of mechanism or protocol is needed to provide for the secure distribution of keys.

® Key distribution often involves the use of master keys, which are infrequently used and are long lasting, and
session keys, which are generated and distributed for temporary use between two parties.

A capability with application to a number of cryptographic functions is random or pseudorandom number
generation. The principle requirement for this capability is that the generated number stream be
unpredictable.

[Page 201]

Historically, the focus of cryptology has been on the use of symmetric encryption to provide confidentiality. It is only in the last
several decades that other considerations, such as authentication, integrity, digital signatures, and the use of public-key encryption, have
been included in the theory and practice of cryptology.

Before examining some of these more recent topics, we concentrate in this chapter on the use of symmetric encryption to provide
confidentiality. This topic remains important in itself. In addition, an understanding of the issues involved here helps to motivate the
development of public-key encryption and clarifies the issues involved in other applications of encryption, such as authentication.

We begin with a discussion of the location of encryption logic; the main choice here is between what are known as link encryption and
end-to-end encryption. Next, we look at the use of encryption to counter traffic analysis attacks. Then we discuss the difficult problem of
key distribution. Finally, we discuss the principles underlying an important tool in providing a confidentiality facility: random number
generation.

e prey | NEXT B

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

K==1 ExT

[Page 201 (continued)]

7.1. Placement of Encryption Function

If encryption is to be used to counter attacks on confidentiality, we need to decide what to encrypt and where the encryption function
should be located. To begin, this section examines the potential locations of security attacks and then looks at the two major approaches
to encryption placement: link and end to end.

Potential Locations for Confidentiality Attacks

As an example, consider a user workstation in a typical business organization. suggests the types of communications facilities
that might be employed by such a workstation and therefore gives an indication of the points of vulnerability.

Figure 7.1. Points of Vulnerability

Workstation

[Page 202]

In most organizations, workstations are attached to local area networks (LANS). Typically, the user can reach other workstations, hosts,
and servers directly on the LAN or on other LANs in the same building that are interconnected with bridges and routers. Here, then, is the
first point of vulnerability. In this case, the main concern is eavesdropping by another employee. Typically, a LAN is a broadcast network:
Transmission from any station to any other station is visible on the LAN medium to all stations. Data are transmitted in the form of frames,
with each frame containing the source and destination address. An eavesdropper can monitor the traffic on the LAN and capture any traffic
desired on the basis of source and destination addresses. If part or all of the LAN is wireless, then the potential for eavesdropping is
greater.

Furthermore, the eavesdropper need not necessarily be an employee in the building. If the LAN, through a communications server or one
of the hosts on the LAN, offers a dial-in capability, then it is possible for an intruder to gain access to the LAN and monitor traffic.

Access to the outside world from the LAN is almost always available in the form of a router that connects to the Internet, a bank of dial-out
modems, or some other type of communications server. From the communications server, there is a line leading to a wiring closet. The
wiring closet serves as a patch panel for interconnecting internal data and phone lines and for providing a staging point for external
communications.

The wiring closet itself is vulnerable. If an intruder can penetrate to the closet, he or she can tap into each wire to determine which are
used for data transmission. After isolating one or more lines, the intruder can attach a low-power radio transmitter. The resulting signals
can be picked up from a nearby location (e.g., a parked van or a nearby building).

Several routes out of the wiring closet are possible. A standard configuration provides access to the nearest central office of the local
telephone company. Wires in the closet are gathered into a cable, which is usually consolidated with other cables in the basement of the
building. From there, a larger cable runs underground to the central office.

In addition, the wiring closet may provide a link to a microwave antenna, either an earth station for a satellite link or a point-to-point
terrestrial microwave link. The antenna link can be part of a private network, or it can be a local bypass to hook in to a long-distance
carrier.

The wiring closet may also provide a link to a node of a packet-switching network. This link can be a leased line, a direct private line, or a
switched connection through a public telecommunications network. Inside the network, data pass through a number of nodes and links
between nodes until the data arrive at the node to which the destination end system is connected.

An attack can take place on any of the communications links. For active attacks, the attacker needs to gain physical control of a portion of
the link and be able to insert and capture transmissions. For a passive attack, the attacker merely needs to be able to observe
transmissions. The communications links involved can be cable (telephone twisted pair, coaxial cable, or optical fiber), microwave links, or
satellite channels. Twisted pair and coaxial cable can be attacked using either invasive taps or inductive devices that monitor
electromagnetic emanations. Invasive taps allow both active and passive attacks, whereas inductive taps are useful for passive attacks.
Neither type of tap is as effective with optical fiber, which is one of the advantages of this medium. The fiber does not generate
electromagnetic emanations and hence is not vulnerable to inductive taps. Physically breaking the cable seriously degrades signal quality
and is therefore detectable. Microwave and satellite transmissions can be intercepted with little risk to the attacker. This is especially true
of satellite transmissions, which cover a broad geographic area. Active attacks on microwave and satellite are also possible, although they
are more difficult technically and can be quite expensive.

[Page 203]

In addition to the potential vulnerability of the various communications links, the various processors along the path are themselves subject
to attack. An attack can take the form of attempts to modify the hardware or software, to gain access to the memory of the processor, or to
monitor the electromagnetic emanations. These attacks are less likely than those involving communications links but are nevertheless a
source of risk.

Thus, there are a large number of locations at which an attack can occur. Furthermore, for wide area communications, many of these
locations are not under the physical control of the end user. Even in the case of local area networks, in which physical security measures
are possible, there is always the threat of the disgruntled employee.

Link versus End-to-End Encryption

The most powerful and most common approach to securing the points of vulnerability highlighted in the preceding section is encryption. If
encryption is to be used to counter these attacks, then we need to decide what to encrypt and where the encryption gear should be
located. As indicates, there are two fundamental alternatives: link encryption and end-to-end encryption.

Figure 7.2. Encryption Across a Packet-Switching Network
(This item is displayed on page 204 in the print version)

iView full size imaqei

. = enul-bo-end encryption device

O link encryplion device

FaM = packel-swilching nade

Basic Approaches

With link encryption, each vulnerable communications link is equipped on both ends with an encryption device. Thus, all traffic over all
communications links is secured. Although this recourse requires a lot of encryption devices in a large network, its value is clear. One of its
disadvantages is that the message must be decrypted each time it enters a switch (such as a frame relay switch) because the switch must
read the address (logical connection number) in the packet header in order to route the frame. Thus, the message is vulnerable at each
switch. If working with a public network, the user has no control over the security of the nodes.

Several implications of link encryption should be noted. For this strategy to be effective, all the potential links in a path from source to
destination must use link encryption. Each pair of nodes that share a link should share a unique key, with a different key used on each link.
Thus, many keys must be provided.

With end-to-end encryption, the encryption process is carried out at the two end systems. The source host or terminal encrypts the data.

The data in encrypted form are then transmitted unaltered across the network to the destination terminal or host. The destination shares a
key with the source and so is able to decrypt the data. This plan seems to secure the transmission against attacks on the network links or
switches. Thus, end-to-end encryption relieves the end user of concerns about the degree of security of networks and links that support
the communication. There is, however, still a weak spot.

Consider the following situation. A host connects to a frame relay or ATM network, sets up a logical connection to another host, and is
prepared to transfer data to that other host by using end-to-end encryption. Data are transmitted over such a network in the form of
packets that consist of a header and some user data. What part of each packet will the host encrypt? Suppose that the host encrypts the
entire packet, including the header. This will not work because, remember, only the other host can perform the decryption. The frame
relay or ATM switch will receive an encrypted packet and be unable to read the header. Therefore, it will not be able to route the packet. It
follows that the host may encrypt only the user data portion of the packet and must leave the header in the clear.

[Page 205]

Thus, with end-to-end encryption, the user data are secure. However, the traffic pattern is not, because packet headers are transmitted in
the clear. On the other hand, end-to-end encryption does provide a degree of authentication. If two end systems share an encryption key,
then a recipient is assured that any message that it receives comes from the alleged sender, because only that sender shares the relevant
key. Such authentication is not inherent in a link encryption scheme.

To achieve greater security, both link and end-to-end encryption are needed, as is shown in . When both forms of encryption are
employed, the host encrypts the user data portion of a packet using an end-to-end encryption key. The entire packet is then encrypted
using a link encryption key. As the packet traverses the network, each switch decrypts the packet, using a link encryption key to read the
header, and then encrypts the entire packet again for sending it out on the next link. Now the entire packet is secure except for the time
that the packet is actually in the memory of a packet switch, at which time the packet header is in the clear.

summarizes the key characteristics of the two encryption strategies.

Table 7.1. Characteristics of Link and End-to-End Encryption [PELEO

Link Encryption End-to-End Encryption

Security within End Systems and Intermediate Systems
Message exposed in sending host Message encrypted in sending host
Message exposed in intermediate nodes Message encrypted in intermediate nodes

Role of User

Applied by sending host Applied by sending process

Transparent to user User applies encryption

Host maintains encryption facility User must determine algorithm

One facility for all users Users selects encryption scheme

Can be done in hardware Software implementation

All or no messages encrypted User chooses to encrypt, or not, for each message

Implementation Concerns

Requires one key per (host-intermediate node) pair and Requires one key per user pair
(intermediate node-intermediate node) pair

Provides host authentication Provides user authentication

Logical Placement of End-to-End Encryption Function

With link encryption, the encryption function is performed at a low level of the communications hierarchy. In terms of the Open Systems
Interconnection (OSI) model, link encryption occurs at either the physical or link layers.

[Page 206]

For end-to-end encryption, several choices are possible for the logical placement of the encryption function. At the lowest practical level,
the encryption function could be performed at the network layer. Thus, for example, encryption could be associated with the frame relay or
ATM protocol, so that the user data portion of all frames or ATM cells is encrypted.

With network-layer encryption, the number of identifiable and separately protected entities corresponds to the number of end systems in
the network. Each end system can engage in an encrypted exchange with another end system if the two share a secret key. All the user
processes and applications within each end system would employ the same encryption scheme with the same key to reach a particular
target end system. With this arrangement, it might be desirable to off-load the encryption function to some sort of front-end processor
(typically a communications board in the end system).

shows the encryption function of the front-end processor (FEP). On the host side, FEP accepts packets. The user data

portion of the packet is encrypted, while the packet header bypasses the encryption process. L The resulting packet is delivered to the
network. In the opposite direction, for packets arriving from the network, the user data portion is decrypted and the entire packet is
delivered to the host. If the transport layer functionality (e.g., TCP) is implemented in the front end, then the transport-layer header would
also be left in the clear and the user data portion of the transport protocol data unit is encrypted.

[The terms red and black are frequently used. Red data are sensitive or classified data in the clear. Black data are
encrypted data.

Figure 7.3. Front-End Processor Function

iView full size imaqei

Hencker Hendber
Data Crata
- = === == = ———— =

To/from host To/from network

Deployment of encryption services on end-to-end protocols, such as a network-layer frame relay or TCP, provides end-to-end security for
traffic within a fully integrated internetwork. However, such a scheme cannot deliver the necessary service for traffic that crosses
internetwork boundaries, such as electronic mail, electronic data interchange (EDI), and file transfers.

illustrates the issues involved. In this example, an electronic I gateway is used to interconnect an internetwork that uses an

OSl-based architecture with one that uses a TCP/IP-based architectur.2 In such a configuration, there is no end-to-end protocol below
the application layer. The transport and network connections from each end system terminate at the mail gateway, which sets up new
transport and network connections to link to the other end system. Furthermore, such a scenario is not limited to the case of a gateway
between two different architectures. Even if both end systems use TCP/IP or OSlI, there are plenty of instances in actual configurations in
which mail gateways sit between otherwise isolated internetworks. Thus, for applications like electronic mail that have a store-and-forward
capability, the only place to achieve end-to-end encryption is at the application layer.

2l Appendix H provides a brief overview of the OSI and TCP/IP protocol architectures.

[Page 207]

Figure 7.4. Encryption Coverage Implications of Store-and-Forward Communications

iView full size imaqei

ST emd . TCPAF end
:,i , - .
Ay&bem fail guieway Sysbem
el s el 12 e e ey I ke o e - _
E-mail E-mail
Presentadion Presentation
Seszion Session

Transport [=== ==========g] Transpor

ﬁe[w“k o o o e o xl’.‘mm IP’ il - IP'

Drata link Diata ik Data link [ata link

Physical Physzical Plyysical Physical
Intemetwork

-:é'rcup-.: of link-level
encTyption

'.‘-erp.: of ead-to-end encryplion below application layver &

-
-

L}

Scope of application-layer end-to-end encryption

A drawback of application-layer encryption is that the number of entities to consider increases dramatically. A network that supports
hundreds of hosts may support thousands of users and processes. Thus, many more secret keys need to be generated and distributed.

An interesting way of viewi
but it is more secure. Eigure 7.5

gateway refers to a store-and-forward device that operates at the application level. 3

e alternatives is to note that as we move up the communications hierarchy, less information is encrypted

| highlights this point, using the TCP/IP architecture an example. In the figure, an application-level

3] Unfortunately, most TCP/IP documents use the termgateway to refer to what is more commonly referred to as a

router.
[Page 208]
Figure 7.5. Relationship between Encryption and Protocol Levels
lView full size image|
Link-H | Net-H IP-H | TCP-H Data Link-T
(a2} Application-level encrvption (on links and at routers and gateways)
Link-H | Net-H IP-H | TCP-H Data Link-T
On links and at routers
Link-H | Net-H IP-H | TCP-H Data Link-T
In gateways
(b TCP-lewel encryplion
Link-H | Net-H IP-H | TCP-H Data Link-T
On links
Link-H | Net-H IP-H | TCP-H Data Link-T

Shading indicates encryption, TCP-H

In routers and gateways

() Link=level encrvplion

= TCP header
IP-H - IP header
NMeli-H = Metwark-level header (e, X.25 packet header, LLL header)
Link-H = Deata link control protocol header

Link-T Diaia link control protocol wailer

With application-level encryption), only the user data portion of a TCP segment is encrypted. The TCP, |P, network-level, and
link-level headers and link-level trailer are in the clear. By contrast, if encryption is performed at the TCP level), then, on a
single end-to-end connection, the user data and the TCP header are encrypted. The IP header remains in the clear because it is needed
by routers to route the IP datagram from source to destination. Note, however, that if a message passes through a gateway, the TCP
connection is terminated and a new transport connection is opened for the next hop. Furthermore, the gateway is treated as a destination
by the underlying IP. Thus, the encrypted portions of the data unit are decrypted at the gateway. If the next hop is over a TCP/IP network,
then the user data and TCP header are encrypted a fi Efff transmission. However, in the gateway itself the data unit is buffered
entirely in the clear. Finally, for link-level encryption aFi ure 7.5q), the entireta unit except for the link header and trailer is encrypted on

each link, but the entire data unit is in the clear at each router and gateway. 4

4 The figure actually shows but one alternative. It is also possible to encrypt part or even all of the link header and
trailer except for the starting and ending frame flags.

K==1

K==1 ExT

[Page 209]

7.2. Traffic Confidentiality

We mentioned in that, in some cases, users are concerned about security from traffic analysis. Knowledge about the number
and length of messages between nodes may enable an opponent to determine who is talking to whom. This can have obvious implications
ina military conflict. Even in commercial applications, traffic analysis may yield information that the traffic generators would like to conceal.
MUFET8Y] lists the following types of information that can be derived from a traffic analysis attack:

® |dentities of partners
® How frequently the partners are communicating
e Message pattern, message length, or quantity of messages that suggest important information is being exchanged

® The events that correlate with special conversations between particular partners

Another concern related to traffic is the use of traffic patterns to create a . A covert channel is a means of communication
in a fashion unintended by the designers of the communications facility. Typically, the channel is used to transfer information in a way that
violates a security policy. For example, an employee may wish to communicate information to an outsider in a way that is not detected by
management and that requires simple eavesdropping on the part of the outsider. The two participants could set up a code in which an
apparently legitimate message of a less than a certain length represents binary zero, whereas a longer message represents a binary one.
Other such schemes are possible.

Link Encryption Approach

With the use of link encryption, network-layer headers (e.g., frame or cell header) are encrypted, reducing the opportunity for traffic
analysis. However, it is still possible in those circumstances for an attacker to assess the amount of traffic on a network and to observe the
@ount of traffic entering and leaving each end system. An effective countermeasure to this attack is traffic padding, illustrated in

Figure 7.6. Traffic-Padding Encryption Device

Key

'

Discontinuous __ »| Encryption » Continuous
plaintext input 5{ algorithm ciphertext output

Continuous
random data
g&[]l.‘.‘!l"dlﬂl‘

[Page 210]

Traffic padding produces ciphertext output continuously, even in the absence of plaintext. A continuous random data stream is
generated. When plaintext is available, it is encrypted and transmitted. When input plaintext is not present, random data are encrypted and
transmitted. This makes it impossible for an attacker to distinguish between true data flow and padding and therefore impossible to deduce
the amount of traffic.

End-to-End Encryption Approach

Traffic padding is essentially a link encryption function. If only end-to-end encryption is employed, then the measures available to the
defender are more limited. For example, if encryption is implemented at the application layer, then an opponent can determine which
transport entities are engaged in dialogue. If encryption techniques are housed at the transport layer, then network-layer addresses and
traffic patterns remain accessible.

One technique that might prove useful is to pad out data units to a uniform length at either the transport or application level. In addition, null
messages can be inserted randomly into the stream. These tactics deny an opponent knowledge about the amount of data exchanged
between end users and obscure the underlying traffic pattern.

K==1

K==1 ExT

[Page 210 (continued)]

7.3. Key Distribution

For symmetric encryption to work, the two parties to an exchange must share the same key, and that key must be protected from access
by others. Furthermore, frequent key changes are usually desirable to limit the amount of data compromised if an attacker learns the key.
Therefore, the strength of any cryptographic system rests with the key distribution technique, a term that refers to the means of delivering
a key to two parties who wish to exchange data, without allowing others to see the key. For two parties A and B, key distribution can be
achieved in a number of ways, as follows:

1. Acan select a key and physically deliver it to B.
2. Athird party can select the key and physically deliver it to A and B.

3. If Aand B have previously and recently used a key, one party can transmit the new key to the other, encrypted using the old
key.

4. If A and B each has an encrypted connection to a third party C, C can deliver a key on the encrypted links to A and B.

Options 1 and 2 call for manual delivery of a key. For link encryption, this is a reasonable requirement, because each link encryption
device is going to be exchanging data only with its partner on the other end of the link. However, for end-to-end encryption, manual
delivery is awkward. In a distributed system, any given host or terminal may need to engage in exchanges with many other hosts and
terminals over time. Thus, each device needs a number of keys supplied dynamically. The problem is especially difficult in a wide area
distributed system.

The scale of the problem depends on the number of communicating pairs that must be supported. If end-to-end encryption is done at a
network or IP level, then a key is needed for each pair of hosts on the network that wish to communicate. Thus, if there are N hosts, the
number of required keys is [N(N 1)]/2. If encryption is done at the application level, then a key is needed for every pair of use|

processes that require communication. Thus, a network may have hundreds oosts but thousands of users and processes. ‘Fi;ure 7.}

illustrates the magnitude of the key distribution task for end-to-end encryption. 5 A network using node-level encryption with 1000 nodes
would conceivably need to distribute as many as half a million keys. If that same network supported 10,000 applications, then as many as

50 million keys may be required for application-level encryption.

I Note that this figure uses a log-log scale, so that a linear graph indicates exponential growth. A basic review of
og scales is in the math refresher document at the Computer Science Student Resource Site at

WilliamStallings.com/StudentSu pport.html.

[Page 211]

Figure 7.7. Number of Keys Required to Support Arbitrary Connections between Endpoints

iViEW full size imaqei

http://WilliamStallings.com/StudentSupport.html

10° s e s - S e

T TTTTFA

srrree——r

108

5
UELRRR |

srrr—rrrere

MNumber of k

srrmrrm——r

|11 SE— e e e 11 1t et e 1 et e 1 :
= f ! !

= i i

L. 1 1.1 L L L 1 L1 1§ 1 1 1 1 L4 4

5 6 7809 2 1 4 5 6 TESY 2 i1 4 5 6 789
k] 4
I0r {1y I

Number of endpoints

Returning to our list, option 3 is a possibility for either link encryption or end-to-end encryption, but if an attacker ever succeeds in gaining
access to one key, then all subsequent keys will be revealed. Furthermore, the initial distribution of potentially millions of keys must still be
made.

For end-to-end encryption, some variation on option 4 has been widely adopted. In this scheme, a key distribution center is responsible for
distributing keys to pairs of users (hosts, processes, applications) as needed. Each user must share a unique key with the key distribution
center for purposes of key distribution.

[Page 212]

The use of a key distribution center is based on the use of a hierarchy of keys. At a minimum, teys are use.
Fession keyl.

Communication between end systems is encrypted using a temporary key, often referred to as a Typically, the session key

is used for the duration of a logical connection, such as a frame relay connection or transport connection, and then discarded. Each

session key is obtained from the key distribution center over the same networking facilities used for end-user communication. Accordingly,
session keys are transmitted in encrypted form, using a naster keyjthat is shared by the key distribution center and an end system or user.

Figure 7.8. The Use of a Key Hierarchy

f’fﬂ# T
e e N .
Lrata _:* v Cryplographic
. ' protection
e PR R
‘-""'-..________,.--"'H
#_,.——-n-.__ﬁ‘. -
Session keys i AR, Cryptographic
1 wfy
k‘*-.. EILL protection
Master keys , "'E'|' E“-.. Non-cryptographic
Ygm ol protection

For each end system or user, there is a unique master key that it shares with the key distribution center. Of course, these master keys
must be distributed in some fashion. However, the scale of the problem is vastly reduced. If there are N entities that wish to communicate
in pairs, then, as was mentioned, as many as [N(N 1)]/2 session keys are needed at any one time. However, onlyN master keys are
required, one for each entity. Thus, master keys can be distributed in some noncryptographic way, such as physical delivery.

A Key Distribution Scenario

The key

jstributi

n concept can be deployed in a number of ways. A typical scenario is illustrated in , which is based on a

figure in ||

POPE7

. The scenario assumes that each user shares a unique master key with thekey distribution center (KDC).

Figure 7.9. Key Distribution Scenario
(This item is displayed on page 213 in the print version)

iViEW full size imaqei

KE}’-
distributios
ri

Y FD D LN,

Key distribation
sheps

(Y ECK,. [K, 0D, 0D 1 N B, [K,. 10,0

(3) E(Ky, [K, 010, \\A

- Respo
i) EiK,, M

(50 B K. TN
Autheniicariom :

sheps

Let us assume that user A wishes to establish a logical connection with B and requires a one-time session key to protect the data
transmitted over the connection. A has a master key, Ka, known only to itself and the KDC; similarly, B shares the master keXp with the
KDC. The following steps occur:

1. A issues a request to the KDC for a session key to protect a logical connection@B. The message includes the identity of A and

B and a unique identifier, N1, for this transaction, which we refer to as .
a random number; the minimum requirement is that it differs with each request. Also, to prevent masquerade, it should be
difficult for an opponent to guess the nonce. Thus, a random number is a good choice for a nonce.

The nonce may be a timestamp, a counter, or

61 The following definitions are useful in understanding the purpose of the nonce componentNonce: The
present or particular occasion. Nonce word: A word occurring, invented, or used just for a particular
occasion. From the American Heritage Dictionary of the English Language, 3rd ed.

[Page 213]

2. The KDC responds with a message encrypted using Ka Thus, A is the only one who can successfully read the message, and A
knows that it originated at the KDC. The message includes two items intended for A:
® The one-time session key, Ks, to be used for the session

® The original request message, including the nonce, to enable A to match this response with the appropriate request

Thus, A can verify that its original request was not altered before reception by the KDC and, because of the nonce, that this is
not a replay of some previous request.

In addition, the message includes two items intended for B:

® The one-time session key, Ks to be used for the session
® Anidentifier of A (e.g., its network address), IDA

These last two items are encrypted withKp (the master key that the KDC shares with B). They are to be sent to B to establish the
connection and prove A's identity.

[Page 214]

3. A stores the session key for use in the upcoming session and forwards to B the information that originated at the KDC for B,
namely, E(Kb, [Ks || IDA]). Because this information is encrypted withKp, it is protected from eavesdropping. B now knows the
session key (Ks), knows that the other party is A (fromIDA), and knows that the information originated at the KDC (because it is
encrypted using Kp).

At this point, a session key has been securely delivered to A and B, and they may begin their protected exchange. However, two
additional steps are desirable:

4. Using the newly minted session key for encryption, B sends a nonce2, to A.

5. Also using Ks, A responds with f(N2), where f is a function that performs some transformation orN2 (e.g., adding one).

These steps assure B that the original message it received (step 3) was not a replay.

Note that the actual key distribution involves only steps 1 through 3 but that steps 4 and 5, as well as 3, perform an authentication function.

Hierarchical Key Control

It is not necessary to limit the key distribution function to a single KDC. Indeed, for very large networks, it may not be practical to do so. As
an alternative, a hierarchy of KDCs can be established. For example, there can be local KDCs, each responsible for a small domain of the
overall internetwork, such as a single LAN or a single building. For communication among entities within the same local domain, the local
KDC is responsible for key distribution. If two entities in different domains desire a shared key, then the corresponding local KDCs can
communicate through a global KDC. In this case, any one of the three KDCs involved can actually select the key. The hierarchical concept
can be extended to three or even more layers, depending on the size of the user population and the geographic scope of the internetwork.

A hierarchical scheme minimizes the effort involved in master key distribution, because most master keys are those shared by a local KDC
with its local entities. Furthermore, such a scheme limits the damage of a faulty or subverted KDC to its local area only.

Session Key Lifetime

The more frequently session keys are exchanged, the more secure they are, because the opponent has less ciphertext to work with for
any given session key. On the other hand, the distribution of session keys delays the start of any exchange and places a burden on
network capacity. A security manager must try to balance these competing considerations in determining the lifetime of a particular
session key.

For connection-oriented protocols, one obvious choice is to use the same session key for the length of time that the connection is open,
using a new session key for each new session. If a logical connection has a very long lifetime, then it would be prudent to change the
session key periodically, perhaps every time the PDU (protocol data unit) sequence number cycles.

For a connectionless protocol, such as a transaction-oriented protocol, there is no explicit connection initiation or termination. Thus, it is
not obvious how often one needs to change the session key. The most secure approach is to use a new session key for each
exchange. However, this negates one of the principal benefits of connectionless protocols, which is minimum overhead and delay for each
transaction. A better strategy is to use a given session key for a certain fixed period only or for a certain number of transactions.

[Page 215]

A Transparent Key Control Scheme

The approach suggested in has many variations, one of which is described in this subsection. The scheme) is useful
for providing end-to-end encryption at a network or transport level in a way that is transparent to the end users. The approach assumes
that communication makes use of a connection-oriented end-to-end protocol, such as TCP. The noteworthy element of this approach is a
session security module (SSM), which may consists of functionality at one protocol layer, that performs end-to-end encryption and obtains
session keys on behalf of its host or terminal.

Figure 7.10. Automatic Key Distribution for Connection-Oriented Protocol
(This item is displayed on page 216 in the print version)

iViEW full size imaqei

key
i Tk e ik : . distribution
st sends packet requesting conmection,
2, Security service baflens packet; asks Ccenter

KD for session key,
3, KDC distmibaies session key 1o both hosis,
4, Bulfered packet transmitied.

I i
o)

: Security

| STV

-

The steps involved in establishing a connection are shown in the figure. When one host wishes to set up a connection to another host, it
transmits a connection-request packet (step 1). The SSM saves that packet and applies to the KDC for permission to establish the
connection (step 2). The communication between the SSM and the KDC is encrypted using a master key shared only by this SSM and the

KDC. If the KDC approves the connection request, it generates the session key and delivers it to the two appropriate SSMs, using a
unique permanent key for each SSM (step 3). The requesting SSM can now release the connection request packet, and a connection is
set up between the two end systems (step 4). All user data exchanged between the two end systems are encrypted by their respective
SSMs using the one-time session key.

The automated key distribution approach provides the flexibility and dynamic characteristics needed to allow a number of terminal users to
access a number of hosts and for the hosts to exchange data with each other.

Decentralized Key Control

The use of a key distribution center imposes the requirement that the KDC be trusted and be protected from subversion. This requirement
can be avoided if key distribution is fully decentralized. Although full decentralization is not practical for larger networks using symmetric
encryption only, it may be useful within a local context.

A decentralized approach requires that each end system be able to communicate in a secure manner with all potential partner end
systems for purposes of session key distribution. Thus, there may need to be as many as [n(n 1)]/2 master keys for a configuration withn
end systems.

A session key may be established with the following sequence of steps (:

1. A issues a request to B for a session key and includes a noncelN1

2. B responds with a message that is encrypted using the shared master key. The response includes the session key selected by
B, an identifier of B, the value f(N1), and another nonce, N2.

3. Using the new session key, A returns f(N2) to B.

[Page 217]

Figure 7.11. Decentralized Key Distribution

lView full size image|

//——'_“”H_Ni."ﬂ, x\‘

{; Initiat {Rﬁipnnd
N A B
(2) EIMK,.., [K, 1D 10 D LGN, 0N —/

(3 E(K,. lIN:1)

Thus, although each node must maintain at most fi 1) master keys, as many session keys as required may be generated and used.
Because the messages transferred using the master key are short, cryptanalysis is difficult. As before, session keys are used for only a
limited time to protect them.

Controlling Key Usage

The concept of a key hierarchy and the use of automated key distribution techniques greatly reduce the number of keys that must be
manually managed and distributed. It may also be desirable to impose some control on the way in which automatically distributed keys are
used. For example, in addition to separating master keys from session keys, we may wish to define different types of session keys on the
basis of use, such as

® Data-encrypting key, for general communication across a network
® PIN-encrypting key, for personal identification numbers (PINs) used in electronic funds transfer and point-of-sale applications

® File-encrypting key, for encrypting files stored in publicly accessible locations

To illustrate the value of separating keys by type, consider the risk that a master key is imported as a data-encrypting key into a device.
Normally, the master key is physically secured within the cryptographic hardware of the key distribution center and of the end systems.
Session keys encrypted with this master key are available to application programs, as are the data encrypted with such session keys.
However, if a master key is treated as a session key, it may be possible for an unauthorized application to obtain plaintext of session keys
encrypted with that master key.

Thus, it may be desirable to institute controls in systems that limit the . a hich keys . ed, based on characteristics associated
with those keys. One simple plan is to associate a tag with each key (; see also AVI8 1). The proposed technique is for use
with DES and makes use of the extra 8 bits in each 64-bit DES key. That is, the 8 nonkey bits ordinarily reserved for parity checking form
the key tag. The bits have the following interpretation:

® One bit indicates whether the key is a session key or a master key.
® One bit indicates whether the key can be used for encryption.
® One bit indicates whether the key can be used for decryption.

® The remaining bits are spares for future use.

[Page 218]

Because the tag is embedded in the key, it is encrypted along with the key when that key is distributed, thus providing protection. The
drawbacks of this scheme are that (1) the tag length is limited to 8 bits, limiting its flexibility and functionality; and (2) because the tag is not
transmitted in clear form, it can be used only at the point of decryption, limiting the ways in which key use can be controlled.

A more flexible scheme, referred to as the control vector, is described in [[MATY914 andﬂ]. In this scheme, each session key has an
associated control vector consisting of a number of fields that specify the uses and restrictions for that session key. The length of the
control vector may vary.

The control vector is cryptographically coupled with the key at the time of key generation at the KDC. The coupling and decoupling
processes are illustrated in . As a first step, the control vector is passed thyg hash function that produces a value whose
length is equal to the encryption key length. Hash functions are discussed in detail in ‘.
from a larger range into a smaller range, with a reasonably uniform spread. Thus, for example, if numbers in the range 1 to 100 are
hashed into numbers in the range 1 to 10, approximately 10% of the source values should map into each of the target values.

In essence, a hash function maps values

Figure 7.12. Control Vector Encryption and Decryption
(This item is displayed on page 219 in the print version)

iView full size imaqei

Control Master Session Control Master Encrypied
veclor key key veclor key session key
Hashing Hashing
function function

®
®

Key Plaintex Key Cipheriext
inpus inpan input input
Encryption Decryption
function fumction
Encrypted Session key

session key

{a) Comirol Verior Encrvption (b Control Vector Decrypion

The hash value is then XORed with the master key to produce an output that is used as the key input for encrypting the session key. Thus,

Hash value = H = h(CV)
Key input = Km $H

Ciphertext = E(Km $H], Ks)

where Km is the master key andKs is the session key. The session key is recovered in plaintext by the reverse operation:

D([Km $H], E(Km $ H], Ks))

When a session key is delivered to a user from the KDC, it is accompanied by the control vector in clear form. The session key can be
recovered only by using both the master key that the user shares with the KDC and the control vector. Thus, the linkage between the
session key and its control vector is maintained.

Use of the control vector has two advantages over use of an 8-bit tag. First, there is no restriction on length of the control vector, which
enables arbitrarily complex controls to be imposed on key use. Second, the control vector is available in clear form at all stages of
operation. Thus, control of key use can be exercised in multiple locations.

K==1

" prey wEXT

[Page 218 (continued)]

7.4. Random Number Generation

Random numbers play an important role in the use of encryption for various network security applications. In this section, we provide a
brief overview of the use of random numbers in network security and then look at some approaches to generating random numbers.

[Page 220]

The Use of Random Numbers

A number of network security algorithms based on cryptography make use of random numbers. For example,

L4 Reciprocal authentication schemes, such as illustrated in and . In both of these key distribution scenarios,
nonces are used for handshaking to prevent replay attacks. The use of random numbers for the nonces frustrates opponents'

efforts to determine or guess the nonce.
® Session key generation, whether done by a key distribution center or by one of the principals.

® Generation of keys for the RSA public-key encryption algorithm (described in).

These applications give rise to two distinct and not necessarily compatible requirements for a sequence of random numbers: randomness
and unpredictability.

Randomness

Traditionally, the concern in the generation of a sequence of allegedly random numbers has been that the sequence of numbers be
random in some well-defined statistical sense. The following two criteria are used to validate that a sequence of numbers is random:

® yniform distribution: The distribution of numbers in the sequence should be uniform; that is, the frequency of occurrence of
each of the numbers should be approximately the same.

® Independence: No one value in the sequence can be inferred from the others.

Although there are well-defined tests for determining that a sequence of numbers matches a particular distribution, such as the uniform
distribution, there is no such test to "prove" independence. Rather, a number of tests can be applied to demonstrate if a sequence does
not exhibit independence. The general strategy is to apply a number of such tests until the confidence that independence exists is
sufficiently strong.

In the context of our discussion, the use of a sequence of numbers that appear statistically random often occurs in the design of
F i related to cryptography. For example, a fundamental requirement of the RSA public-key encryption scheme discussed in
Chapter d is the ability to generate prime numbers. In general, it is difficult to determine if a given large numbeN is prime. A brute-force

—
approach would be to divide N by every odd integer less thar J""-f -'h"'l . IfN is on the order, say, of 10150. a not uncommon occurrence in

public-key cryptography, such a brute-force approach is beyond the reach of human analysts and their computers. However, a number of
effective algorithms exist that test the primality of a number by using a sequence of randomly chosen integers as input to relatively simple
i

150}
computations. If the sequence is sufficiently long (but far, far less than -\"-'f 1 ﬂ .), the primality of a number can be determined with
near certainty. This type of approach, known as randomization, crops up frequently in the design of algorithms. In essence, if a problem is
too hard or time-consuming to solve exactly, a simpler, shorter approach based on randomization is used to provide an answer with any
desired level of confidence.

Unpredictability

In applications such as reciprocal authentication and session key generation, the requirement is not so much that the sequence of
numbers be statistically random but that the successive members of the sequence are unpredictable. With “true" random sequences,
each number is statistically independent of other numbers in the sequence and therefore unpredictable. However, as is discussed shortly,
true random numbers are seldom used; rather, sequences of numbers that appear to be random are generated by some algorithm. In this
latter case, care must be taken that an opponent not be able to predict future elements of the sequence on the basis of earlier elements.

[Page 221]

Pseudorandom Number Generators (PRNGS)

Cryptographic applications typically make use of algorithmic techniques for random number generation. These algorithms are
deterministic and therefore produce sequences of numbers that are not statistically random. However, if the algorithm is good, the
resulting sequences will pass many reasonable tests of randomness. Such numbers are referred to as pseudorandom numbers.

You may be somewhat uneasy about the concept of using numbers generated by a deterministic algorithm as if they were random
numbers, Despite what might be called philosophical objections to such a practice, it generally works. As one expert on probability theory
puts it [HAMMO1]]:

For practical purposes we are forced to accept the awkward concept of "relatively random" meaning that with
regard to the proposed use we can see no reason why they will not perform as if they were random (as the theory
usually requires). This is highly subjective and is not very palatable to purists, but it is what statisticians regularly
appeal to when they take "a random sample"they hope that any results they use will have approximately the same
properties as a complete counting of the whole sample space that occurs in their theory.

Linear Congruential Generators

By far, the most widely used technique for pseudorandom number generation is an algorithm first proposed by Lehmer LEHM51]], which
is known as the linear congruentialmethod. The algorithm is parameterized with four numbers, as follows:

m the modulus m>0
a the multiplier O<a<m
c the increment

O==c<m

X0 the starting value, or seed 'l::
0= Xo<m

The sequence of random numbers {Xn} is obtained via the following iterative equation:

Xn+1 = (aXn +c) mod m

If m, a, ¢, and X are integers, then this technique will produce a sequence of integers with each integer in the range == Xn < m.

The selection of values for a, ¢, and m is critical in developing a good random number generator. For example, consider, =c¢ = 1. The
sequence produced is obviously not satisfactory. Now consider the values a= 7, ¢ =0, m = 32, and X0 = 1. This generates the sequence
{7,117, 23, 1, 7, etc.}, which is also clearly unsatisfactory. Of the 32 possible values, only 4 are used; thus, the sequence is said to have a
period of 4. If, instead, we change the value of ato 5, then the sequence is {5, 25, 29, 17, 21, 9, 13, 1, 5, etc.}, which increases the period
to 8.

[Page 222]

We would like m to be very large, so that there is the potential for producing a long series of distinct random numbers. A common criterion
is that m be nearly equal to the maximum representable nonnegative integer for a given computer. Thus, a value ah near to or equal to

2?’l is typically chosen.

IPARKS8Y] proposes three tests to be used in evaluating a random number generator:

T1: The function should be a full-period generating function. That is, the function should generate all the numbers
between 0 and m before repeating.

T2: The generated sequence should appear random. Because it is generated deterministically, the sequence is not
random. There is a variety of statistical tests that can be used to assess the degree to which a sequence exhibits
randomness.

T3: The function should implement efficiently with 32-bit arithmetic.

With appropriate values of a, ¢, and m, these three tests can be passed. With respect to T it can be shown that ifm is prime andc = 0,
then for certain values of a, the period of the generating function ism 1, with only the value 0 missing. For 32-bit arithmetic, a convenient

prime value of m is 231 1. Thus, the generating function becomes
Xn+1 = (aXn) mod(2°L 1)

Of the more than 2 billion possible choices for a, only a handful of multipliers pass all three tests. One such value isa = 75 = 16807, which
was originally designed for use in the IBM 360 family of computers [LEWI6Y]. This generator is widely used and has been sub. a
more thorough testing than any other PRNG. It is frequently recommended for statistical and simulation work (e.g., [JAIN9]]], ‘SAUES).

The strength of the linear congruential algorithm is that if the multiplier and modulus are properly chosen, the resulting sequence of
numbers will be statistically indistinguishable from a sequence drawn at random (but without replacement) from the set 1, 2,...,m 1. But
there is nothing random at all about the algorithm, apart from the choice of the initial value X0. Once that value is chosen, the remaining
numbers in the sequence follow deterministically. This has implications for cryptanalysis.

If an opponent knows that the linear congruential algorithm is being used and if the parameters are known (e.g., a =75, c=0,m= 231 1),
then once a single number is discovered, all subsequent numbers are known. Even if the opponent knows only that a linear congruential
algorithm is being used, knowledge of a small part of the sequence is sufficient to determine the parameters of the algorithm. Suppose

that the opponent is able to determine values for X0, X1, X2 and X3 Then

X1 =(aXp+c) modm

X2 =(aX1+c) modm

X3 =(aX2+c) modm

These equations can be solved for a, ¢, andm.

[Page 223]

Thus, although it is nice to be able to use a good PRNG, it is desirable to make the actual sequence used nonreproducible, so that
knowledge of part of the sequence on the part of an opponent is insufficient to determine future elements of the sequence. This goal can
be achieved in a number of ways. For example,] suggests using an internal system clock to modify the random number stream.
One way to use the clock would be to restart the sequence after every N numbers using the current clock value (modm) as the new seed.
Another way would be simply to add the current clock value to each random number (mod m).

Cryptographically Generated Random Numbers

For cryptographic applications, it makes some sense to take advantage of the encryption logic available to produce random numbers. A
number of means have been used, and in this subsection we look at three representative examples.

Cyclic Encryption

illustrates an approach suggested in MEYE8]. In this case, the procedure is used to generate session keys from a master
key. A counter with period N provides input to the encryption logic. For example, if 56-bit DES keys are to be produced, then a counter

with period 256 can be used. After each key is produced, the counter is incremented by one. Thus, the pseudorandom numbers produced
by this scheme cycle through a full period: Each of the outputs X0, X1,... XN1 is based on a different counter value and thereforeXo i

X1 i i XN1. Because the master key is protected, it is not computationally feasible to deduce any of the session keys (random
numbers) through knowledge of one or more earlier session keys.

Figure 7.13. Pseudorandom Number Generation from a Counter

Counter with
Period N

T

C+1

Master key
Ky =

Encryption
algorithm

X; =E[K,, C + 1]

[Page 224]

To strengthen the algorithm further, the input could be the output of a full-period PRNG rather than a simple counter.

DES Output Feedback Mode

The output feedback (OFB) mode of DES, illustrated in , can be used for key generation as well as for stream encryption. Notice
that the output of each stage of operation is a 64-bit value, of which the s leftmost bits are fed back for encryption. Successive 64-bit
outputs constitute a sequence of pseudorandom numbers with good statistical properties. Again, as with the approach suggested in the
preceding subsection, the use of a protected master key protects the generated session keys.

ANSI X9.17 PRNG

One of the strongest (cryptographically speaking) PRNGs is specified in ANSI X9.17. A number of applications employ this technique,
including financial security applications and PGP (the latter described in .

illustrates the algorithm, which makes use of triple DES for encryption. The ingredients are as follows:

® Input: Two pseudorandom inputs drive the generator. One is a 64-bit representation of the current date and time, which is
updated on each number generation. The other is a 64-bit seed value; this is initialized to some arbitrary value and is updated
during the generation process.

® Keys: The generator makes use of three triple DES encryption modules. All three make use of the same pair of 56-bit keys,
which must be kept secret and are used only for pseudorandom number generation.

® Output: The output consists of a 64-bit pseudorandom number and a 64-bit seed value.

Define the following quantities:

DTj Date/time value at the beginning of ith generation stage

Vi Seed value at the beginning of ith generation stage
Rj Pseudorandom number produced by theith generation stage
K1, K2 DES keys used for each stage

Figure 7.14. ANSI X9.17 Pseudorandom Number Generator

o

DT, —+| EDE

@ > EDE >V,

[Page 225]

Then
Ri = EDE([K1, K2], [Vi $ EDE([K1, K2], DTi)])

Vi+1 = EDE([K1, K2], [Ri $ EDE([K1, K2], DTi)])
where EDE([K1,K2], X) refers to the sequence encrypt-decrypt-encrypt using two-key triple DES to encrypiX.

Several factors contribute to the cryptographic strength of this method. The technique involves a 112-bit key and three EDE encryptions

for a total of nine DES encryptions. The scheme is driven by two pseudorandom inputs, the date and time value, and a seed produced by
the generator that is distinct from the pseudorandom number produced by the generator. Thus, the amount of material that must be
compromised by an opponent is overwhelming. Even if a pseudorandom number Rj were compromised, it would be impossible to deduce
the Vi+1 from the Rj because an additional EDE operation is used to produce the ¥41.

Blum Blum Shub Generator

A popular a {0 generating secure pseudorandom number is known as the Blum, Blum, Shub (BBS) generator, named for its
developers [BLUMS84]. It has perhaps the strongest public proof of its cryptographic strength. The procedure is as follows. First, choose
two large prime numbers, p and g, that both have a remainder of 3 when divided by 4. That is,

quE3(mod4)

This notation, explained more fully in , simply means that (p mod 4) = (g mod 4) = 3. For example, the prime numbers 7 and 11

satisfy 7 == 11 == 3 (mod 4). Letn = p x g. Next, choose a random numbers, such thats is relatively prime ton; this is equivalent to
saying that neither p nor q is a factor of s. Then the BBS generator produces a sequence of bits Baccording to the following algorithm:

X0= 52 mod n

fori=1to &
Xj = (Xil)2 mod n
Bi = Xj mod 2

Thus, the least significant bit is taken at each iteration. , shows an example of BBS operation. Here,n = 192649 = 383 x 503 and
the seed s = 101355.

Table 7.2. Example Operation of BBS Generator
(This item is displayed on page 226 in the print version)

i Xi Bi

0 20749
1 143135 1
2 177671 1
3 97048 0
4 89992 0
5 174051 1
6 80649 1
7 45663 1
8 69442 0
9 186894 0
10 177046 0
11 137922 0
12 123175 1
13 8630 0
14 114386 0
15 14863 1
16 133015 1
17 106065 1
18 45870 0
19 137171 1
20 48060 0

The BBS is referred to as a cryptographically secure pseydorandom bit generator (CSPRBG). A CSPRBG is defined as one that
passes the next-bit test, which, in turn, iefined as follows MENE91]: A pseudorandom bit generator is said to pass the next-bit test if

there is not a polynomial-time algorithm L that, on input of the firstk bits of an output sequence, can predict the k + 1)8t bit with probability
significantly greater than 1/2. In other words, given the first k bits of the sequence, there is not a practical algorithm that can even allow
you to state that the next bit will be 1 (or 0) with probability greater than 1/2. For all practical purposes, the sequence is unpredictable.
The security of BBS is based on the difficulty of factoring n. That is, givenn, we need to determine its two prime factorsp and g.

U polynomial-time algorithm of orderk is one whose running time is bounded by a polynomial of orderk.

[Page 226]

True Random Number Generators

A true random number generator (TRNG) uses a nondeterministic source to produce randomness. Most operate by measuring
unpredictable natural processes, such as pulse detectors of ionizing radiation events, gas discharge tubes, and leaky capacitors. Intel has
developed a commercially available chip that samples thermal noise by amplifying the voltage measured across undriven resistors
. A group at Bell Labs has developed a technique that uses the variations in the response time of raw read requests for one disk
sector of a hard disk _. LavaRnd is an open source project for creating truly random numbers using inexpensive cameras, open

source code, and inexpensive hardware. The system uses a saturated CCD in a light-tight can as a chaotic source to produce the seed.
Software processes the result into truly random numbers in a variety of formats.

There are problems both with the randomness and the precision of such numbers , to say nothing of the clumsy requirement of
attaching one of these devices {q eye tem in an internetwork. Another alternative is to dip into a published collection of good-quality
random numbers (e.g.,,). However, these collections provide a very limited source of numbers compared to the
potential requirements of a sizable network security application. Furthermore, although the numbers in these books do indeed exhibit
statistical randomness, they are predictable, because an opponent who knows that the book is in use can obtain a copy.

Skew

A true random number generator may produce an output that is biased in some way, such as having more ones than zeros or vice versa.
Various methods of modifying a bit stream to reduce or eliminate the bias have been developed. These are referred to as deskewing
algorithms. One approach to deskew is to pass the bit stream through a hash function such as MD5 or SHA-1 (described). The

hash function produces an n-bit output from an input of arbitrary length. For deskewing, blocks of m input bits, withm #=== n can be
passed through the hash function.

[Page 227]

=2 wEXT

NEXT B

[Page 227 (continued)]

7.5. Recommended Reading and Web Sites

[EUMY9J] is a good survey of key management principles.

Perhaps the best treatment of PRNGs is found in ||
linear recurrence algorithm, is explained in some detail in

|ternati the standard linear congruential algorithm, known as the
BRIG79]. [EZENG91]] assesses various PRNG algorithms for use in generating

variable-length keys for Vernam types of ciphers.

An excellent survey of PRNGs, with an extensive bibliography, is [RITT91]. [MENEQ7] also provides a good discussions of secure

PRNGs. Another good treafment, with an emphasis on practical implementation issues, is RFC 1750. This RFC also describes a number
of deskewing techniques. d ELS9{] is a good survey of secure PRNG techniques and cryptanalytic attacks on them.

BRIG79 Bright, H., and Enison, R. "Quasi-Random Number Sequences from Long-Period TLP Generator with
Remarks on Application to Cryptography." Computing Surveys, December 1979.

UMY93 Fumy, S., and Landrock, P. "Principles of Key Management."IEEE Journal on Selected Areas in

Communications, June 1993.

ELS99 Kelsey, J.; Schneier, B.; and Hall, C. fummmwmmmmber Generators."
Proceedings, Fast Software Encryption, 1998. http://www.schneier.com/paper-prngs.html|

NUT94 Knuth, D. The Art of Computer Programming, Volume 2: Seminumerical Algorithms. Reading, MA:

Addison-Wesley, 1998.

ENE97 Menezes, A.; Oorshcot, P.; and Vanstone, S.Handbook of Applied Cryptography. Boca Raton, FL:

CRC Press, 1997.

ITT9
1991. http://www.ciphersbyritter.com/ARTS/CRNG2ART.HT

fusion Sequences."Cryptologia, vol. 15 no. 2,

VENG9] Zeng. K.; Yang, C.; Wei, D.; and Rao, T. "Pseudorandom Bit Generators in Stream-Cipher

Cryptography." Computer, February 1991.

.. Recommended Web Sites

® \|ST Random Number Generation Technical Working Group: Contains documents and tests developed by NIST that
related to PRNGs for cryptographic applications. Also has useful set of links.

http://www.schneier.com/paper-prngs.html
http://www.ciphersbyritter.com/ARTS/CRNG2ART.HTM

[Page 228]

® | avaRnd: LavaRnd is an open source project that uses a chaotic source to generate truly random numbers. The site also
has background information on random numbers in general.

® A Million Random Digits: Compiled by the RAND Corporation.

E=a wExT

E==a nexT

[Page 228 (continued)]

7.6. Key Terms, Review Questions, and Problems

Key Terms

lBIum, Blum, Shub qeneratol

overt channe

Heskewing

land-to-end encrvptior{

ey distributio

inear congruentia

ink encryptio

aster ke

oncy

seudorandom number generator (PRNG

Bession key

raffic paddind

rue random number generato

U)
x)
5 2
. o
wn
=1
o
C
=
o
5
(@]
)
5
=1
(0]
o)
—
=
o
A
O |

iring close

Review Questions

7.1 For a user workstation in a typical business environment, list potential locations for confidentiality attacks.

7.2 What is the difference between link and end-to-end encryption?

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

7.3

7.4

7.5

7.6

7.7

7.8

7.9

Problems

7.1 Electronic mail systems differ in the manner in which multiple recipients are handled. In some systems, the originating
mail-handler makes all the necessary copies, and these are sent out independently. An alternative approach is to
determine the route for each destination first. Then a single message is sent out on a common portion of the route, and
copies are made only when the routes diverge; this process is referred to as mail bagging.

7.2 describes the use of message length as a means of constructing a covert channel. Describe three additional

What types of information might be derived from a traffic analysis attack?

What is traffic padding and what is its purpose?

List ways in which secret keys can be distributed to two communicating parties.

What is the difference between a session key and a master key?

What is a nonce?

What is a key distribution center?

What is the difference between statistical randomness and unpredictability?

a. Leaving aside considerations of security, discuss the relative advantages and disadvantages of the two methods.

b. Discuss the security requirements and implications of the two methods.

schemes for using traffic patterns to construct a covert channel.

7.3 One local area network vendor provides a key distribution facility, as illustrated in .

a. Describe the scheme.

b. Compare this scheme to that of . What are the pros and cons?

[Page 229]

Figure 7.15. Figure for Problem 7.3

}View full size imaqei

7.4

Key
distributi
nter (

(2 A E(K, NLVBE(K,. N

(3) B(Kg, [K ANl EOK, (KL BN T

/_- (1) A, E(K;. N,) —\

B L A

) E(K,. [K. B.N.]}

"We are under great pressure, Holmes." Detective Lestrade looked nervous. "We have learned that copies of sensitive
government documents are stored in computers of one foreign embassy here in London. Normally these documents exist
in electronic form only on a selected few government computers that satisfy the most stringent security requirements.
However, sometimes they must be sent through the network connecting all government computers. But all messages in
this network are encrypted using a top secret encryption algorithm certified by our best crypto experts. Even the NSA and
the KGB are unable to break it. And now these documents have appeared in hands of diplomats of a small, otherwise
insignificant, country. And we have no idea how it could happen."”

"But you do have some suspicion who did it, do you?" asked Holmes.

"Yes, we did some routine investigation. There is a man who has legal access to one of the government computers and
has frequent contacts with diplomats from the embassy. But the computer he has access to is not one of the trusted ones
where these documents are normally stored. He is the suspect, but we have no idea how he could obtain copies of the
documents. Even if he could obtain a copy of an encrypted document, he couldn't decrypt it."

"Hmm, please describe the communication protocol used on the network." Holmes opened his eyes, thus proving that he
had followed Lestrade's talk with an attention that contrasted with his sleepy look.

"Well, the protocaol is as follows. Each node N of the network has been assigned a unique secret key Kn. This key is used
to secure communication between the node and a trusted server. That is, all the keys are stored also on the server. User
A, wishing to send a secret message M to user B, initiates the following protocol:

1. A generates a random number R and sends to the server his name A, destination B, and Ba, R).

2. Server responds by sending to E(Kp, R) to A.

3. Asends E(R, M) together with E(Kp, R) to B.

4. B knows Kp, thus decrypts EKp, R) to get R and will subsequently useR to decrypt E(R, M) to get M.

You see that a random key is generated every time a message has to be sent. | admit the man could intercept messages
sent between the top secret trusted nodes, but | see no way he could decrypt them."

[Page 230]

"Well, | think you have your man, Lestrade. The protocol isn't secure because the server doesn't authenticate users who
send him a request. Apparently designers of the protocol have believed that sending E(Kx, R) implicitly authenticates user
X as the sender, as only X (and the server) knows Ky But you know that E(Kx, R) can be intercepted and later replayed.

7.5

7.6

7.7

7.8

7.9

7.10

Once you understand where the hole is, you will be able to obtain enough evidence by monitoring the man's use of the
computer he has access to. Most likely he works as follows. After intercepting E(Ka, R) and E(R, M) (see steps 1 and 3 of
the protocol), the man, let's denote him as Z, will continue by pretending to be A and ...

Finish the sentence for Holmes.

If we take the linear congruential algorithm with an additive component of O:

Xn+1 = (aXn) mod m

then it can be shown that if m is prime, and if a given value ofa produces the maximum period of m 1, then awill also
produce the maximum period, provided that k is less thanm and thatm 1 is not divisible byk. Demonstrate this by usingXo

=1 and m = 31 and producing the sequences fora = 3, 3,2, 33, and 3.

a. What is the maximum period obtainable from the following generator?
Xn+1 = (aXn) mod *
b. What should be the value ofa?

c. What restrictions are required on the seed?

You may wonder why the modulus m = 2%1 1 was chosen for the linear congruential method instead of simply fl, because

this latter number can be represented with no additional bits and the mod operation should be easier to perform. In

general, the modulus X1is preferable to X Why is this so?

With the linear congruential algorithm, a choice of parameters that provides a full period does not necessarily provide a
good randomization. For example, consider the following two generators:

Xn+1 = (6Xn) mod 13

Xn+1 = (7Xn) mod 13

Write out the two sequences to show that both are full period. Which one appears more random to you?

In any use of pseudorandom numbers, whether for encryption, simulation, or statistical design, it is dgngerous to trust
blindly the random number generator that happens to be available in your computer's system Iibrary. found that
many contemporary textbooks and programming packages make use of flawed algorithms for pseudorandom number
generation. This exercise will enable you to test your system.

The test is based on a theorem attributed to Ernesto Cesaro (see [KNUT9§] for a proof), which states the following: Given

two randomly chosen integers, x andy, the probability that gcdk, y) = 1 is G/pz. Use this theorem in a program to determine
statistically the value of p. The main program should call three subprograms: the random number generator from the
system library to generate the random integers; a subprogram to calculate the greatest common divisor of two integers
using Euclid's Algorithm; and a subprogram that calculates square roots. If these latter two programs are not available, you
will have to write them as well. The main program should loop through a large number of random numbers to give an
estimate of the aforementioned probability. From this, it is a simple matter to solve for your estimate of p.

If the result is close to 3.14, congratulations! If not, then the result is probably low, usually a value of around 2.7. Why
would such an inferior result be obtained?

Suppose you have a true random bit generator where each bit in the generated stream has the same probability of being a
0 or 1 as any other bit in the stream and that the bits are not correlated; that is the bits are generated from identical

independent distribution. However, the bit stream is biased. The probability of a 1 is 0.5 + and the probability of a 0 is

0.5 5 where 0 < 'a < 0.5. A simple deskewing algorithm is as follows: Examine the bit stream as a sequence of
non-overlapping pairs. Discard all 00 and 11 pairs. Replace each 01 pair with 0 and each 10 pair with 1.

[Page 231]
a. What is the probability of occurrence of each pair in the original sequence?
b. What is the probability of occurrence of 0 and 1 in the modified sequence?
c. What is the expected number of input bits to producex output bits?

d. Suppose that the algorithm uses overlapping successive bit pairs instead of nonoverlapping successive bit pairs.
That is, the first output bit is based on input bits 1 and 2, the second output bit is based on input bits 2 and 3, and
so on. What can you say about the output bit stream?

7.11 Another approach to deskewing is to consider the bit stream as a sequence of non-overlapping groups of n bits each and
the output the parity of each group. That is, if a group contains an odd number of ones, the output is 1; otherwise the
output is 0.

a. Express this operation in terms of a basic Boolean function.

b. Assume, as in the preceding problem, that the probability of a 1 is 0.5 + a . If each group consists of 2 bits, what
is the probability of an output of 1?

c. If each group consists of 4 bits, what is the probability of an output of 1?

d. Generalize the result to find the probability of an output of 1 for input groups of bits.

7.12 Suppose that someone suggests the following way to confirm that the two of you are both in possession of the same
secret key. You create a random bit string the length of the key, XOR it with the key, and send the result over the channel.
Your partner XORs the incoming block with the key (which should be the same as your key) and sends it back. You check,
and if what you receive is your original random string, you have verified that your partner has the same secret key, yet
neither of you has ever transmitted the key. Is there a flaw in this scheme?

E==a wexT

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

" prey wEXT

[Page 232]

Part Two: Public-Key Encryption and Hash
Functions

For practical reasons, it is desirable to use different encryption and decryption keys in a
crypto-system. Such asymmetric systems allow the encryption key to be made available to
anyone while preserving confidence that only people who hold the decryption key can
decipher the information.

Computers at Risk: Safe Computing in the Information Age, National Research Council,
1991

After symmetric encryption, the other major form of encryption is public-key encryption, which has revolutionized
communications security. A related cryptographic area is that of cryptographic hash functions. Hash functions are
used in conjunction with symmetric ciphers for digital signatures. In addition, hash functions are used for message
entication. Symmetric ciphers are also used for key management. All of these areas are discussed in Part

wd

Road Map for Part Two

: Introduction to Number Theory

Most public-key schemes are based on number theory. While the reader can take the number
heoretic results on faith, it is useful to have a basic grasp of the concepts of number theory.
Chapter § provides an overview and numerous examples to clarify the concepts.

: Public-Key Cryptography and RSA

introduces public-key cryptography and concentrates on its use to provide
confidentiality. This chapter also examines the most widely used public-key cipher, the
Rivest-Shamir-Adleman (RSA) algorithm.

[Page 233]

: Key Management; Other Public-Key Cryptosystems

revisits the issue of key management in light of the capabilities of symmetric ciphers.
The chapter also covers the widely used Diffie-Hellman key exchange technique and looks at a
more recent public-key approach based on elliptic curves.

: Message Authentication and Hash Functions

Of equal importance to confidentiality as a security measure is authentication. At a minimum,
message authentication assures that a message comes from the alleged source. In addition,

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

thentication can include protection against modification, delay, replay, and reordering.
ﬂ begins with an analysis of the requirements for authentication and then provides a systematic
presentation of approaches to authentication. A key element of authentication schemes is the use
of an authenticator, usually either a message authentication code (MAC) or a hash function.
Design considerations for both of these types of algorithms are examined, and several specific
examples are analyzed.

: Hash and MAC Algorithms

extends the discussion of the preceding chapter to discuss two of the most important
cryptographic hash functions (SHA and Whirlpool) and two of the most important MACs (HMAC)
and CMAC.

: Digital Signatures and Authentication Protocols

An important type of authentication is the digital signature. examines the techniques
used to construct digital signatures and looks at an important standard, the Digital Signature
Standard (DSS).

The various authentication techniques based on digital signatures are building blocks in putting

together authentication algorithms. The design of such algorithms involves the analysis of subtle
ﬂaeks that can defeat many apparently secure protocols. This issue is also addressed in

NEXT B

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

Chapter 8. Introduction to Number Theory

l%.l Prime Numbersl

Ia.z Fermat's and Euler's Theoremsl

ermat's Theore

Euler‘s Totient Functior_‘l

la.3 Testing for Primalityl

l\/liller-Rabin Alqorithn{

IA Deterministic Primality Alqorithnl

bistribution of Primesl

b.4 The Chinese Remainder Theorenl

l3.5 Discrete Loqarithmsl

h’he Powers of an Integer, Modulo”

Loqarithms for Modular ArithmetiJ

balculation of Discrete Logarithmé

b.ﬁ Recommended Reading and Web Sitel

b.7 Key Terms, Review Questions, and Problemd

ey Termg
Review Questiong
Problems

[Page 234]

NEXT B

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

[Page 235]

The Devil said to Daniel Webster: "Set me a task | can't carry out, and I'll give you anything in the world you ask
for."

Daniel Webster: "Fair enough. Prove that for n greater than 2, the equation an + bn = cn has no non-trivial solution
in the integers."

They agreed on a three-day period for the labor, and the Devil disappeared.

At the end of three days, the Devil presented himself, haggard, jumpy, biting his lip. Daniel Webster said to him,
"Well, how did you do at my task? Did you prove the theorem?"

"Eh? No ... no, | haven't proved it."
"Then | can have whatever | ask for? Money? The Presidency?"
"What? Oh, thatof course. But listen! If we could just prove the following two lemmas"

The Mathematical Magpie, Clifton Fadiman

Key Points

® A prime number is an integer that can only be divided without remainder by positive and negative values of
itself and 1. Prime numbers play a critical role both in number theory and in cryptography.

® Two theorems that play important roles in public-key cryptography are Fermat's theorem and Euler's theorem

® An important requirement in a number of cryptographic algorithms is the ability to choose a large prime
number. An area of ongoing research is the development of efficient algorithms for determining if a
randomly chosen large integer is a prime number.

® Discrete logarithms are fundamental to a number of public-key algorithms. Discrete logarithms are
analogous to ordinary logarithms, but operate over modular arithmetic.

A number of concepts from number theory are essential in the design of public-key cryptographic algorithms. This chapter provides an
overview of the concepts referred to in other chapters. The reader familiar with these topics can safely skip this chapter.

As With this chapter includes a number of examples, each of which is highlighted in a shaded box.

e prey | NEXT B

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

NEXT B

[Page 236]

8.1. Prime Numbers

(1]

would introduce no essential differences.

IBE9H]). In this section we provide an overview relevant to the concerns of this book.

In this section, unless otherwise noted, we deal only with the nonnegative integers. The use of negative integers

al concern of number theory is the study of prime numbers. Indeed, whole books have been written on the subject (e.g., CRANOT],

An integer p > 1 is a prime number if and only if its only divisor are = 1 and #p. Prime numbers play a critical role in number theory and in
the techniques discussed in this chapter. shows the primes less than 2000. Note the way the primes are distributed. In particular,

note the number of primes in each range of 100 numbers.

2 Recall from that integera is said to be a divisor of integerb if there is no remainder on division.

Equivalently, we say that a divides b.

Table 8.1. Primes under 2000

(This item is displayed on page 237 in the print version)

l‘\/iew full size imaqei

T [1o] 20] %7 | a0 | w5 [eon | 1] mm | 0] vooe | s | 1200 | 10 | aee | 1si1 | veor | arer | amn | 1e01
T T N T T N T T I T T e T N T T T
3 | w7 | 27 | 5is | 4w | 52 | ean | e | &0 | w19 | vore | o7 | a7 | 007 | 1427 | 15u | e | 07 | aR3 | 1ein
7 | i | ze | a7 | 42 | 52 | 637 | 727 | men | wee | wodn | anas | 0223 | ooee | naze | 4543 | 0613 | 0733 | asm | dem
10 | 113 | 235 | 33 | 401 | s | 1w | 7an | g2 | 57 | wooa | 0020 | 1209 | un | v | 1549 | bero | 74l | 1e47 | e |
10 | 127 | 2w | 107 | 4an | sa7 | o | Tve | #20 | ean | boxy | 005h | 0380 | K537 | 04w | 4583 | 1631 | 0747 | Bsl | deee
17 | am | | ur |4 | 87 | eh | 7aa | om0 | euz | e | s [aowr e | ovam | asse | venr [orsa | eer | nem
19 | iw | 21 | 1o | an | sav | eas | 750 | msn | a3 | woao | need | 02ee | 1067 | sasi | se | 1ew | w7 | 4TI | wom
2 | 1w | 257 | an | 4 | see [e | msr | ms7 | ser | wos | oume | n2se | waes | vasa | asm | sest | arm [ema | e
(29 | 140 | 28 | 50 | 487 | 571 |6 | pon | ms | o0 | eont | aisi | 427 | Wes | vase | 0w | bead | ives | wsme | b |
ETH T T S T I T T T I I T I) T s e T
W | 17 | ani | wvs | e | s | eel | 7a | s07 | emn | woee | dien | damy 141 | 1590 | 1669 | 1ve | wes | 1
s |||l | sm|en|m|m]| | e 1289 148 Ve)
W | 1w | 20 | s | 4 | S | 637 | T | ey | w7 | W 1291 1487 [

W | m | | w | w0 ! w1 W 1207 ™ 16

THEERE AR il W T

THET 109 14

THET

o | .

| W

EEE

4

w

=

w

Any integer a> 1 can be factored in a unique way as

Equation 8-1

il i,

a = pips...ps

where pl <p2 < ... < pt are prime numbers and where each is a positive integer. This is known as the fundamental theorem of arithmetic; a

proof can be found in any text on number theory.

91 =7x13
3600 _ 24 X 32 X 52
11011 _ 7x 112 x 13

It is useful for what follows to express this another way. If P is the set of all prime numbers, then any positive integer a can be written
uniquely in the following form:

a= J[p% whereeacha, =0
p=P

The right-hand side is the product over all possible prime numbers p; for any particular value ofa, most of the exponentsap will be 0.

The value of any given positive integer can be specified by simply listing all the nonzero exponents in the foregoing formulation.

The integer 12 is represented by {a2 = 2, a3 = 1}.
The integer 18 is represented by a2 = 1, a3 = 2}.

The integer 91 is represented by {a7 = 2, a13 = 1}.

a = Hp”.l:‘ {-} e, HP'I]."'

S _Ir_ll:]’ !;ICI’
Multiplication of two numbers is equivalent to adding the corresponding exponents. Given a
k=TIpr"
— 2
Define k = ab We know that the integer k can be expressed as the product of powers of primes: I el . It follows thatkp =

ap + bp for aIIpE P.

[Page 238]

k=12x18=(22x3)x(2x:g)=216

k2=2+1=3;k3=1+2=3

216223X33=8X27

What does it mean, in terms of the prime factors of a and b, to say thata divides b? Any integer of the form can be divided only by an

<

integer that is of a lesser or equal power of the same prime number, pl with | === n. Thus, we can say the following:

a = Hprr,_ b = HPF:-I,

1 _
Given J':'El , I'I:"=I Ifalb, thenap 5 bp then for allp.

a =12;b=236;12|36

120 2y336=2x7F
a2 =2=h
a3

:152:b3

Thus, the inequality ap === bp is satisfied for all prime numbers.

It is easy to determine the greatest common diviso! of two positive integers if we express each integer as the product of primes.

Bl Recall from that the greatest common divisor of integersa and b, expressed gcd(, b), is an integerc
that divides both a and b without remainder and that any divisor ofa and b is a divisor ofc.

300 =22X31x52

18 &

gcd(18:300) _ 1 .1 O0_ .

The following relationship always holds:
Itk = gcd(a,b) then kp = min(ap, bp) for all p

Determining the prime factors of a large number is no easy task, so the preceding relationship does not directly lead to a practical method
of calculating the greatest common divisor.

K==1 wexT

" prey wEXT

[Page 238 (continued)]

8.2. Fermat's and Euler's Theorems

Two theorems that play important roles in public-key cryptography are Fermat's theorem and Euler's theorem.

[Page 239]

Fermat's Theorem

[This is sometimes referred to as Fermat's little theorem.

Fermat's theorem states the following: If p is prime and a is a positive integer not divisible byp, then

Equation 8-2

a’ " = 1{mod p)

Proof: Consider the set of positive integers less thanp:{1,2,..., p 1} and multiply each element bya, modulo p, to get the set X = {a mod p,
2amodp, . .. (0 1)amod p}. None of the elements of X is equal to zero becausep does not divide a. Furthermore no two of the integers inX

are equal. To see this, assume that ja == ka(mod p) where 1 == j < k == p 1. Because a is relatively prim to p, we can eliminate a

from both sides of the equation [see | resulting in:j == k(mode p). This last equality is impossible becausej and k are both
positive integers less than p. Therefore, we know that the (1) elements of X are all positive integers, with no two elements equal. We can
conclude the X consists of the set of integers {1,2,...,p 1} in some order. Multiplying the numbers in both sets and taking the result mog
yields

Bl Recall from that two numbers are relatively prime if they have no prime factors in common; that is,
their only common divisor is 1. This is equivalent to saying that two numbers are relatively prime if their greatest
common divisor is 1.

ax2ax..x(p1l) = [x2x...x P 1)](mode p)

PPV (5 1y(modp)

We can cancel the (p 1)! term because it is relatively prime top [see . This yields.

a=7,p=19

-2 = 11(mod 19)

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

4=

7 = 121 = 7(mod 19)
8 —

7 2= 490 = 7(mod 19)

748 = 121 = 7(mod 19)

=718 718 2= 74 112 1mod 19)

An alternative form of Fermat's theorem is also useful: If p is prime and a is a positive integer, then

Equation 8-3

a’ = a(mod p)

Note that the first form of the theorem | requires thata be relatively prime top, but this form does not.

p=5a=3 ap = 35 =243 = 3(mod 5) = a(mod p)

p=512a=10 aP = 10° = 100000 = 10(mod 5) = 0(mod 5) = a(mod p)

[Page 240]

Euler's Totient Function

Before presenting Euler's theorem, we need to introduce an important quantity in number theory, referred to as Euler's totient function
and written f(n), defined as the number of positive integers less tham and relatively prime ton. By convention, f(1) = 1.

Determine f(37) and f(35).

Because 37 is prime, all of the positive integers from 1 through 36 are relatively prime to 37. Thu§37) = 36.
To determinef(35), we list all of the positive integers less than 35 that are relatively prime to it:
1,2,3,4,6,8,9, 11, 12, 13, 16, 17, 18,

19, 22, 23, 24, 26, 27, 29, 31, 32, 33, 34.

There are 24 numbers on the list, sof(35) = 24.

lists the first 30 values off(n). The value f(1) is without meaning but is defined to have the value 1.

Table 8.2. Some Values of Euler's Totient Function f(n)

n f(n)
1 1
2 1
3 2
4 2
5 4
6 2
7 6
8 4
9 6
10 4
11 10
12 4
13 12
14 6
15 8
16 8
17 16
18 6
19 18
20 8
21 12
22 10
23 22
24 8
25 20
26 12
27 18
28 12
29 28
30 8

It should be clear that for a prime number p,

fl)=p1

Now suppose that we have two prime numbers p and g, with p ¢ g. Then we can show that forn = pq,

f(n) = f(pa) = f(p) x f(a) = (p 1) x @x 1)

To see that f(n) = f(p) x f(q), consider that the set of positive integers less tham is the set {1,..., (g 1)}. The integers in this set that are not
relatively prime to n are the set {p,2 p,..., (q 1)p} and the set {g,2q,..., (p 1)q} Accordingly,

[Page 241]
f(n)=(pa 1) [@1) +(p 1)
=pq(p+qg)+1
=Px@l)

= f(p) x f(a)

f(21) =f(3) xf(7) = (3 1) x (7 1) =2 x 6 = 12

where the 12 integers are {1,2,4,5,8,10,11,13,16,17,19,20}

Euler's Theorem

Euler's theorem states that for every a and n that are relatively prime:

Equation 8-4

a®™ = 1(mod n)

a=3;n=10;f10)=4 af(n) _ 34= 81 = 1(mod 10) = 1 (modn)

a=2n=1L1(11) =10 a™ =210 = 1024 =5 1(mod 11) = 1 (modn)

Proof: is true if nis prime, because in that casef(n) = (n 1) and Fermat's theorem holds. However, it also holds for any
integer n. Recall thatf(n) is the number of positive integers less thann that are relatively prime ton. Consider the set of such integers,
labeled as follows:

R {X1, X2,..., Xf(n)}

S = {(ax1 modn), (ax2 mod n)

That is, each element xj of R is a unique positive integer less tham with gcd(xi, n) = 1. Now multiply each element bya, modulo n:
..... (axf(n) mod n)}

The set S is a permutation of R, by the following line of reasoning:
1

Because a is relatively prime ton and xj is relatively prime ton, axj must also be relatively prime ton. Thus, all the members of
S are integers that are less tham and that are relatively prime ton.

2. There are no duplicates inS. Refer to Ifaxi mod n = axj mod n thenxj = xj
Therefore,

din) b(n)
H{m:i mod n) =]___[Jfr
i=1

i=1
Pl)

dh(i)
[[axi=]~ (modn)
[=

i=1

[Page 242]
il ol 1)
ﬂ:h-, ") % H X;| = H X; E mod n :|
i=1 i=1
Hr,f:[rr]

=1 (modn)

of the theorem is also useful:

Equation 8-5

This is the same line of reasoning applied to the proof of Fermat's theorem. As is the case for Fermat's theorem, an alternative form

a®™ 7l = g(mod n)

but this form does not.

Again, similar to the case with Fermat's theorem, the first form of Euler's theorem [requires thata be relatively prime ton,

NEXT B

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

" prey wEXT

[Page 242 (continued)]

8.3. Testing for Primality

For many cryptographic algorithms, it is necessary to select one or more very large prime numbers at random. Thus we are faced with
the task of determining whether a given large number is prime. There is no simple yet efficient means of accomplishing this task.

In this section, we present one attractive and popular algorithm. You may be surprised to learn that this algorithm yields a number that is
not necessarily a prime. However, the algorithm can yield a number that is almost certainly a prime. This will be explained presently. We
also make reference to a deterministic algorithm for finding primes. The section closes with a discussion concerning the distribution of
primes.

B

Miller-Rabin Algorithm

6] Also referred to in the literature as the Rabin-Miller algorithm, or the Rabin-Miller test, or the Miller-Rabin test.

The algorithm due to Miller and Rabin [MILL75, RABI8(] is typically used to test a large number for primality. Before explaining the

algorithm, we need some background. First, any positive odd integer n === 3 can be expressed as follows:

nlzé(qwithk>0,q0dd

To see this, note that (n 1) is an even integer. Then, divide f 1) by 2 until the result is an odd numbeiq, for a total ofk divisions. Ifn is
expressed as a binary number, then the result is achieved by shifting the number to the right until the rightmost digit is a 1, for a total ofk
shifts. We now develop two properties of prime numbers that we will need.

Two Properties of Prime Numbers

The first property is stated as follows: Ifp is prime and a is a positive integer less thanp, then a2 modp =1 if and only if eitheramodp = 1
or amod p= 1 mode p = p 1. By the rules of modular arithmetic (@ mode p) (a mode p) = a2 mod p. Thus if eitheramode p=1 oramodp =

1, then a2 modp = 1. Conversely, if a2 modp = 1, then (amod p)2 =1, which is true only foramodp =1 oramodp = 1.

[Page 243]

The second property is stated as follows: Letp be a prime number greater than 2. We can then writep 1 = £<q, withk > 0q odd. Leta be
any integer in the range 1 < a<p 1. Then one of the two following conditions is true:

1 aq is congruent to 1 modulop. That is, aq modp = 1, or equivalently, aq == 1 (modp).

k-1
aq, azq, a4q,.. 2

2. One of the numbers L a is congruent to 1 modulop. That is, there is some numberj in the range (1 == j ==

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

Zj'lq

i pp—
k) such that a modp =1 modp = p 1, or equivalently, a 1= 1 (modp).

Proof: Fermat's theorem states thatanl = 1 (modn) if nis prime. We havep 1 = }q. Thus, we know thatap1 modp =

K
a2 q modp = 1. Thus, if we look at the sequence of numbers

Equation 8-6

4y an

=1 [
a’mod p,a* " mod p,a* mod p,...,a°> “modp,a”9modp

we know that the last number in the list has value 1. Further, each number in the list is the square of the previous number. Therefore,
one of the following possibilities must be true:

1. The first number on the list, and therefore all subsequent numbers on the list, equals 1.

2. Some number on the list does not equal 1, but its square mod p does equal 1. By virtue of the first property of prime numbers
defined above, we know that the only number that satisfies this condition p 1 is So, in this case, the list contains an element
equaltopl.

This completes the proof.

Details of the Algorithm

These considerations lead to the conclusion that if nis prime, then either the first element in the list of residues, or remainders,a(q, azq,...,

k-1 k
a2 q’ a2 q) modulo n equals 1, or some element in the list equalsif 1); otherwise n is composite (i.e., not a prime). On the other hand, if
the condition is met, that does not necessarily mean that n is prime. For example, ifn = 2047 = 23 x 89, thenn 1 = 2 x 1023. Compulting,

21023 mod 2047 = 1, so that 2047 meets the condition but is not prime.

We can use the preceding property to devise a test for primality. The procedure TEST takes a candidate integer n as input and returns
the result composite if n is definitely not a prime, and the resulinconclusive if n may or may not be a prime.

TEST (n)
1. Find integers k, g, with k > 0, g odd, so that (n 1
k

=270);
2. Select arandom integera, 1<a<n 1;
3. ifa9mod n=1then return(“inconclusive");
4. forj=0tok 1do

jol ——

5. ifa2 modn==n 1then return(“inconclusive");
6. return("composite");

[Page 244]

Let us apply the test to the prime numbem = 29. We have (h 1) = 28 = 22(7) = 2kq. First, let us trya = 10. We compute

107 mod 29 = 17, which is neither 1 nor 28, so we continue the test. The next calculation finds that (ZDZ mod 29 = 28,
and the test returns inconclusive (i.e., 29 may be prime). Let's try again witha = 2. We have the following calculations:

27 mod 29 = 12;214 mod 29 = 28; and the test again returnsinconclusive. If we perform the test for all integersa in the
range 1 through 28, we get the same inconclusive result, which is compatible with n being a prime number.

Now let us apply the test to the composite numbern =13 x 17 = 221. Then (0 1) = 220 = 22(55) = 2kq. Letustrya=5.

Then we have 555 mod 221 = 112, which is neither 1 nor 220; (%5)2 mod 221 = 168. Because we have used all values
of j (i.e.,j =0 and = 1) in line 4 of the TEST algorithm, the test returncomposite, indicating that 221 is definitely a

composite number. But suppose we had selected a = 21. Then we have 2155 mod 221 = 200; (2?5)2 mod 221 = 220;
and the test returns inconclusive, indicating that 221 may be prime. In fact, of the 218 integers from 2 through 219,
four of these will return an inconclusive result, namely 21, 47, 174, and 200.

Repeated Use of the Miller-Rabin Algorithm

How cap we use the Miller-Rabin algorithm to determine with a high degree of confidence whether or not an integer is prime? It can be
shown [KNUT9{] that given an odd numbern that is not prime and a randomly chosen integer,a with 1 <a < n 1, the probability that TEST
will returninconclusive (i.e., fail to detect thatn is not prime) is less than 1/4. Thus, ift different values of a are chosen, the probability that

all of them will pass TEST (return inconclusive) for nis less than (1/4)t For example, fort = 10, the probability that a nonprime number will

pass all ten tests is less than 106. Thus, for a sufficiently large value oft, we can be confident thatn is prime if Miller's test always returns
inconclusive.

This gives us a basis for determining whether an odd integer n is prime with a reasonable degree of confidence. The procedure is as
follows: Repeatedly invoke TEST (n) using randomly chosen values fora. If, at any point, TEST returnscomposite, thenn is determined
to be nonprime. If TEST continues to return inconclusive fort tests, for a sufficiently large value oft, assume thatn is prime.

A Deterministic Primality Algorithm

Prior to 2002, there was no known method of efficiently proving the primality of very large numbers. All of the algorithms in use, including
the most popular (Miller-Rabin), produced a probabilistic result. In 2002, Agrawal, Kayal, and Saxena , developed a relatively
simple deterministic algorithm that efficiently determines whether a given large number is a prime. The algorithm, known as the AKS
algorithm, does not appear to be as efficient as the Miller-Rabin algorithm. Thus far, it has not supplanted this older, probabilistic
technique

[Page 245]

Distribution of Primes

It is worth noting how many numbers are likely to be rejected before a prime number is found using the Miller-Rabin test, or any other

test for primality. A result from number theory, known as the prime number theorem, states that the primes nearn are spaced on the
average one every (In n) integers. Thus, on average, one would have to test on the order of In) integers before a prime is found.
Because all even integers can be immediately rejected, the correct figure is 0.5 In(n). For example, if a prime on the order of magnitude

of 2200 were sought, then about 0.5 In(f"oo) = 69 trials would be needed to find a prime. However, this figure is just an average. In some
places along the number line, primes are closely packed, and in other places there are large gaps.

The two consecutive odd integers 1,000,000,000,061 and 1,000,000,000,063 are both prime. On the other hand, 1001!
+2,1001! + 3,..., 1001! + 1000, 1001! + 1001 is a sequence of 1000 consecutive composite integers.

E=a wExT

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

K==1 ExT

[Page 245 (continued)]

8.4. The Chinese Remainder Theorem

One of the most useful results of number theory is the Chinese remainder theorem (CRT). In essence, the CRT says it is possible to
reconstruct integers in a certain range from their residues modulo a set of pairwise relatively prime moduli.

[The CRT is so called because it is believed to have been discovered by the Chinese mathematician Sun-Tsu in
around 100 A.D.

The 10 integers in Z10, that is the integers 0 through 9, can be reconstructed from their two residues modulo 2 and 5
(the relatively prime factors of 10). Say the known residues of a decimal digitx arer2 = 0 andrs = 3; that is, x mod 2 =0
and x mod 5 = 3. Therefore,x is an even integer in Z10 whose remainder, on division by 5, is 3. The unique solution isx =
8.

The CRT can be stated in several ways. We present here a formulation that is most useful from the point of view of this text. An alternative
formulation is explored in Problem 8.17. Let

k
M = H”If

i=1

where the mj are pairwise relatively prime; that is, gcdfii, mj) = 1 for 1 5 i] 5 k, andi ij. We can represent any integerA in ZNI by a
k-tuple whose elements are in Znj using the following correspondence:

Equation 8-7

A l:":'r]ﬁﬂz?"'?ﬂk]

where AE ZM, ai E Zmi and aj = A mod mij for 1 5 i 5 k. The CRT makes two assertions.

[Page 246]

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

1. The mapping of is a one-to-one correspondence (called abijection) between ZM and the Cartesian product

Zm1XZm2X ... XZmk. That is, for every integerA such that O == A < M there is a uniquek-tuple (a1, a2,..., ak) with 0 == aj <
mj that represents it, and for every suchk-tuple (a1, a2,..., ak) there is a unique integerAin Z\.

2. Operations performed on the elements of Z\ can be equivalently performed on the correspondingk-tuples by performing the
operation independently in each coordinate position in the appropriate system.

Let us demonstrate the first assertion. The transformation fromA to (ag, a1,..., ak) is obviously unique; that is, eachaj is uniquely

calculated as aj = A mod mj. Computing A from (a1, ai,..., ak) can be done as follows. LetMj = M/mj for 1 i: i ':—: k. Note thatMj = m1 x

M2 X ... XMj-1 X Mj+1 X ... X Mk so thatMj == 0(mod mj) for all j ii. Then let

Equation 8-8

¢ =M X (M 'modm;) forl=i=k

By the definition of Mj it is relatively prime tomj and therefore has a unique multiplicative inverse modmj So is well defined
and produces a unique value cj. We can now compute:

Equation 8-9

k
A= Ea,.—:!- (mod M)

i=1

<. <

To show that the value of A produced by is correct, we must show thataj = A mod mj for 1 === | == k. Note thatc;j = M;j

= O(mod mj) if j ii and thatcij = 1(mod mij). It follows thataj = A mod mij.

The second assertion of the CRT, concerning arithmetic operations, follows from the rules for modular arithmetic. That is, the second
assertion can be stated as follows: If

A |:ﬂ|.,ﬁg.....,ﬂk}
B «—— I:bhb;_'-.....?bkj

then

(A+ Bmod M «—— ((a; + by mod my,.....(a; + b)) mod my)
(A—Bmod M «<— ((a; — by) mod my,.....(a, — b;) mod my)
(A X Bimod M «—— ((a; X by) mod my,.....[a; X b)) mod m;)

One of the useful features of the Chinese remainder theorem is that it provides a way to manipulate (potentially very large) numbers mod
M in terms of tuples of smaller numbers. This can be useful whenM is 150 digits or more. However, note that it is necessary to know
beforehand the factorization of M.

[Page 247]

To represent 973 mod 1813 as a pair of numbers mod 37 and 49, defi
m1 =237
m2 =49
M =1813

A=973

1
We also have M1 = 49 and M2 = 37. Using the extended Euclidean algorithm, we compute Jw 1l =34mod m1 and

by M7
el = 4 modm2. (Note that we only need to compute eachMj and each I once.) Taking residues modulo 37
and 49, our representation of 973 is (11, 42), because 973 mod 37 = 11 and 973 mod 49 = 42.

Now suppose we want to add 678 to 973. What do we do to (11, 42)? First we compute (678) *~* (678 mod 37, 678
mod 49) = (12, 41). Then we add the tuples element-wise and reduce (11 + 12 mod 37, 42 + 41 mod 49) = (23, 34). To
verify that this has the correct effect, we compute

| 1
(23,34) T alMllw 1+ om0 JME mod M
=[(23)(49)(34) + (34)(37)(4)] mod 1813
= 43350 mod 1813

=1651

|
and check that it is equal to (973 + 678) mod 1813 = 1651. Remember that in the above derivation, ’w I isthe

multiplicative inverse of M1 modulo m1, and { 2 is the multiplicative inverse of M2 modulo m2.

Suppose we want to multiply 1651 (mod 1813) by 73. We multiply (23, 34) by 73 and reduce to get (23 x 73 mod 37, 34 x
73 mod 49) = (14,32). It is easily verified that

(32,14) = [(14)(49)(34) + (32)(37)(4)] mod 1813
=865

= 1651 x 73 mod 1813

8] This example was provided by Professor Ken Calvert of Georgia Tech.

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

NEXT B

K==1 ExT

[Page 247 (continued)]

8.5. Discrete Logarithms

Discrete logarithms are fundamental to a number of public-key algorithms, including Diffie-Hellman key exchange and the digital signature
algorithm (DSA). This sectjon provides @ brief overview of discrete logarithms. For the interested reader, more detailed developments of
this topic can be found in [ORE67] and LEVEQ(].

[Page 248]

The Powers of an Integer, Modulo n

Recall from Euler's theorem that, for everya and n that are relatively prime:

af(n) = 1(mod n)

where f(n), Euler's totient function, is the number of positive integers less tham and relatively prime ton. Now consider the more general
expression:

Equation 8-10

a” = 1{mod n)

ere is at least one integem that satisfies Equation (8.10), namely, m = f(n). The least positive

holds is referred to in several ways:

If aand n are relativel
exponent m for which

prime. then th
® the order of a (mod n)

® ihe exponent to which a belongs (mod n)

® ihe length of the period generated by a

To see this last point, consider the powers of 7, modulo 19:

A = 7(mod 19)

72 =49=2x19+11 = 11(mod 19)

B =343-18x19+ 1= 1(mod 19)
A =2401=126x19+7= 7(mod 19)

2 =16807=884x19 +11= 11(mod 19)

There is no point in continuing because the sequence is repeating. This can be proven by noting that 73 == 1(mod 19)
oKk o 7(mod 19), and hence any two powers of 7 whose exponents differ by 3 (or a multiple of
3) are congruent to each other (mod 19). In other words, the sequence is periodic, and the length of the period is the

and therefore 7

smallest positive exponent m such that 7' == 1(mod 19).

shows all the powers of a, modulo 19 for all positivea < 19. The length of the sequence for each base value is indicated by

shading. Note the following:
1. Allsequences end in 1. This is consistent with the reasoning of the preceding few paragraphs.
2.

3.

nonzero integers modulo 19. Each such integer is called a primitive root of the modulus 19.

[Page 249]

Table 8.3. Powers of Integers, Modulo 19

lView full size image|

The length of a sequence divides f(19) = 18. That is, an integral number of sequences occur in each row of the table.

Some of the sequences are of length 18. In this case, it is said that the base integer a generates (via powers) the set of

a a? & o' dF At AT b AT oW g At g aM g g 7

.T.‘I | I 1 1 I 1 1 1 1 1 | 1 | | | 1
1 4 8 1t 13 T 4 L]] 17 1% 11 3 [i2 141 1
3 b & 5 15 7 2 [I8 3 10 11 14 12 17 13 |
4 16 T 17 1 & 5 1 4] 7 G 17 1} 3 5 i
3 (] 1} 17 9 T [4 1 5 f] 17 L 7 it 4 i
B 17 T 4 5 11 9 1] 1 i 17 7 4 5 1} ¥ I 1
7 11 | I 7 1 | T 1 1 T I | 7 11 | 7 11 |
B T 18 14 12 | |] T I8 11 12 1] 7 18 11 12 1
9 5 7 6 1 1N 4 17 1] 0 5 7 & 16 N 4 17 1
I 5 12 [] 11 15 17 I8 a9 14 T 13 16 8 4 2 |
Il ¥ I I 11 7 | [} T 1 11 7 1 I 7 I 11 7 1
1z 11 18 & |] 12 11 I8 T 1 12 11 (3 7 1 |
1% 17 14 11 [l ([% f 2 7 15 5 H L 3 1
14 [\ K i § 1 T 3 & 15 5 13 11 2 i 12 16 15 1
15 1 12 L s I 13 5 (] & i 7 (1] 17 K [14 1
[% I 5 Ll T 17 1] 1 I] 11 5 L r 17 f 1
17 4 11 & i T 5 0 1 17 4 11]} T 5 i} 1
i& 1 J 1= 1 15 | [} 1 Is 1 15 1].3 1 1.3 1 18 1

[Page 250]

More generally,
itis referred to as a

1t the highest possible exponent to which a number can belong (moa) is f(n). If a number is of this order,

of n. The importance of this notion is that ifa is a primitive root of n, then its powers

a, a2,..., af(n)

are distinct (mod n) and are all relatively prime ton. In particular, for a prime numberp, if a is a primitive root of p, then

are distinct (mod p). For the prime number 19, its primitive roots are 2, 3, 10, 13, 14, and 15.

Not all integers have primitive roots. In fact, the only integers with primitive roots are those of the form 2, 4, pa, and 2% where p is any odd
prime and a is a positive integer. The proof is not simple but can be found in many number theory books, includin

Logarithms for Modular Arithmetic

With ordinary positive real numbers, the logarithm function is the inverse of exponentiation. An analogous function exists for modular
arithmetic.

Let us briefly review the properties of ordinary logarithms. The logarithm of a number is defined to be the power to which some positive
base (except 1) must be raised in order to equal the number. That is, for base x and for a valuey:

_ Jogx(y)

The properties of logarithms include the following:

logx(1) =0

logx(x) =1

Equation 8-11

log,(yz) = log,(y) + log,(z)

Equation 8-12

log,(¥") = r X log,(y)

Consider a primitive root a for some prime numberp (the argument can be developed for nonprimes as well). Then we know that the
powers of a from 1 through (p 1) produce each integer from 1 through p 1) exactly once. We also know that any integerb satisfies

b = r(mod p) for somer, where 0 == r == (p 1)

by the definition of modular arithmetic. It follows that for any integer b and a primitive roota of prime number p, we can find a unique
exponent i such that

b = ai(mod p) where 0 i: i ':—: (p1)

[Page 251]
This exponenti is referred to as the discrete logarithm of the number b for the basea (mod p). We denote this value as dlogi,p(b).@

ol Many texts refer to the discrete logarithm as theindex. There is no generally agreed notation for this concept,
much less an agreed name.

Note the following:
Equation 8-13

dlog, (1) = 0, because a"modp = I mod p = 1

Equation 8-14

dlog,,(a) = 1, because a'modp = a

Here is an example using a nonprime modulus, n = 9. Here f(n) = 6 anda = 2 is a primitive root. We compute the various
powers of a and find

-1 * = 7(mod 9)
D) 2° == 5(mod 9)
P-4 2= 1(mod 9)
B-3g

This gives us the following table of the numbers with given discrete logarithms (mod 9) for the roca = 2:

Logarithm 0 1 2 3 4 5

Number 1 2 4 8 7 5

To make it easy to obtain the discrete logarithms of a given number, we rearrange the table:

Number 1 2 4 5 7 8

Logarithm 0 1 2 5 4 3

Now consider

X _ adloga,p(x) _ adloga,p(y)

mod p y = mod p

xy o diogap(y) og

Using the rules of modular multiplication,

xymod p = [(x mod p) (v mod p)] mod p

a19%.(Y) mod p = a9 (%) ad p a2 %) mod p mod p

But now consider Euler's theorem, which states that, for every a and n that are relatively prime:

af(n) 1(mod n)

[Page 253]

Any positive integerz can be expressed in the formz = g + kf(n), with O g < f(n). Therefore, by Euler's theorem,

alZ aq(mod n)ifz g mod f(n)

Applying this to the foregoing equality, we have
dloga,p(xy) [dloga,p(x) + dloga,p(y)] (mod f(p))

and generalizing,

r
dloga,p(y)

“] wur] e ot - ot

My =x+x+1

Now, consider the set of points E(a, b) consisting of all of the points , y) that satisfy Equation (10.1) together with the elementO. Using a
different value of the pair (a, b) results in a different set E@, b). Using this terminology, the two curves i depict the sets E(1,0)
and E(1, 1), respectively.

Geometric Description of Addition

It can be shown that a group can be defined based on the set E(a, b) for specific values of aandb in , provided the
following condition is met:

Equation 10-2

da’ + 27H2 £ 0

o define the group, we must define an operation, called addition and denoted by +, for the set E(a, b), where a and b satisfy
10.2). In geometric terms, the rules for addition can be stated as follows: If three points on an elliptic curve lie on a straight line, their sum is
O. From this definition, we can define the rules of addition over an elliptic curve:

1. O serves as the additive identity. ThusO = O; for any pointP on the elliptic curve, P + O = P. In what follows, we assume P ¢

OandQ #o.

[Page 304]

2. The negative of a point P is the point with the samex coordinate but the negative of they coordinate; that is, ifP = (x, y), thenP =
(X, y). Note that these two points can be joined by a vertical line. Note tha® + (P) = PP = O.

3. To add two points P and Q with different x coordinates, draw a straight line between them and find the third point of intersection
R. It is easily seen that there is a unique poinR that is the point of intersection (unless the line is tangent to the curve at eitheiP
or Q, in which case we takeR = P or R = Q, respectively). To form a group structure, we need to define addition on these three

points as follows: P + Q = R. That is, we defineP + Q to be the mirror image (with respect to thex axis) of the third point of
intersection. . illustrates this construction.

[Page 305]

4. The geometric interpretation of the preceding item also applies to two points,P and P, with the samex coordinate. The
points are joined by a vertical line, which can be viewed as also intersecting the curve at the infinity point. We therefore have P
+ (P) = O, consistent with item (2).

5. To double a point Q, draw the tangent line and find the other point of intersectiorS. ThenQ + Q =2Q = S.

With the preceding list of rules, it can be shown that the set E(a, b) is an abelian group.

Algebraic Description of Addition

For two distinct pointsP = (xp, YP)
and Q = (xQ, yQ) that are not negatives of each other, the slope of the liné that joins them isD = (yQ yp). There is exactly one other point

In this subsection we present some results that enable calculation of additions over elliptic curves.

where | intersects the elliptic curve, and that is the negative of the sum of and Q. After some algebraic manipulation, we can express the
sum R =P + Q as follows:

4 For derivations of these results, see KOBL94] or other mathematical treatments of elliptic curves.

Equation 10-3

g

_T_II'{ - ﬁ‘- o .rp T .I'”

Y=y AR XR)

We also need to be able to add a point to itself: P + P = 2P = R. Whenyp io, the expressions are

Equation 10-4

3k + a2
Xp = T — 2xp
= 31’% + a B o
YR = N (xp — xg) — yp
e

Elliptic Curves over Z,

Elliptic curve cryptography makes use of elliptic curves in which the variables and coefficients are all restricted to elements of a finite field.

Two families of elliptic curves are used in cryptographic applications: prime curves over Zp and binary curves over GF(én). For a prime
curve over Zp, we use a cubic equation in which the variables and coefficients all take on values in the set of integers from 0 through 1 and

in which calculations are performed modulo p. For a binary curve defined over GF(fn), the variables and coefficients all take on values in

GF(Zn) and in calculations are performed over GF(E). [EERN99] points out that prime curves are best for software applications, because
the extended bit-fiddling operations needed by binary curves are not required; and that binary curves are best for hardware applications,

where it takes remarkably few logic gates to create a powerful, fast cryptosystem. We examine these two families in this section and the
next.

There is no obvious geometric interpretation of elliptic curve arithmetic over finite fields. The algebraic interpretation used for elliptic curve
arithmetic over real numbers does readily carry over, and this is the approach we take.

[Page 306]

For elliptic curves over Zp, as with real numbers, we limit ourselves to equations of the form ofquation (10.1), but in this case with
coefficients and variables limited to Zp:

Equation 10-5

yvimodp = (x + ax + b) mod p

For example, is satisfied fora=1,b=1,x=9,y=9,y=7,p=23:

72 mod 23 = (93+ 9+ 1) mod 23
49 mod 23 =739 mod 23

3 =3

Now consider the set Ep (a, b) consisting of all pairs of integers , y) that satisfy , together with a point at infinityO. The

coefficients a and b and the variablesx andy are all elements of Z.

%ii fff?? E let p = 23 and consider the elliptic curvey2 = x3 +x + 1. In this case,a = b = 1. Note that this equation is the same as that of
FFigure 10.94. The figure shows a continuous curve with all of the real points that satisfy the equation. For the set £3(1, 1), we are only
interested in the nonnegative integers in the quadrant from (0, 0) through (p 1, p 1) that satisfy the equation modp lists the
points (other than O) that are part of E23(1,1). plots the points of E23(1,1); note that the points, with one exception, are
symmetric abouty = 11.5.

Table 10.1. Points on the Elliptic Curve Ey3(1,1)

©, 1) (6, 4) (12, 19)
©, 22) (6, 19) (13,7)
€7 (7, 11) (13, 16)
(1, 16) (7. 12) 17, 3)
@3, 10) ©9,7) (17, 20)
3, 13) (9, 16) (18, 3)

(4,0) (11, 3) (18, 20)

(5, 4) (11, 20) (19, 5)

(5, 19) (12, 4) (19, 18)

Figure 10.10. The Elliptic Curve E»3(1,1)
(This item is displayed on page 307 in the print version)

10

e N PR SRR e N R R -

¢ 1 2 3 4 5 6 7 8 9 1011121314 151617 18 19 20 21 22
x

It can be shown that a finite abelian group can be defined based on the set Ep(a, b) provided that (x3 + ax + b) mod p has no repeated
factors. This is equivalent to the condition

Equation 10-6

(4a” + 276*) mod p # 0 mod p

Note that Equation (10.6) has the same form asfgquation (10.2).

The rules for addition over Ep(a, b) correspond to the algebraic technique described for elliptic curves defined over real number. For all
points P, Q E Ep(a, b);

1. P+O=P.

2. If P=(xp,yP) thenP + (xpP, yP) = O. The point (xpP, yP) is the negative of P, denoted asP. For example, in 23(1,1), for P =
(13,7), we have P = (13, 7). But 7 mod 23 = 16. Therefore,P = (13, 16), which is also in E23(1,1).

[Page 307]
3. IfP=(xP,yQ) and Q = (xQ, yQ) with P i Q, thenR =P + Q = (XR, YR) is determined by the following rules:

XR = (I2 XP XQ) mod p

YR = (I(xP xR) yP) mod p

where
4
Yo — ¥p .
o il modp ifFP #0
IEI = IP
A= 5
3xp + a -
—— modp P =0
\ 2yp

4. Multiplication is defined as repeated addition; for example, 4P =P +P + P + P.

For example, let P = (3,10) and Q = (9,7) inE23(1,1). Then

7 — -3 —
A= r‘; mod 23 = ? mod 23 = T] mod 23 = 11

XR = (112 3 9) mod 23 = 17

YR = (11(3 17) 10) mod 23 = 164 mod 23 = 20

[Page 308]

So P + Q= (17, 20). To find 2P,

B 3[.‘-12]+1 . 5 7 - 1 5
s Wmﬂd 3 = Enmd_.— Em{:d 3=6

The last step in the preceding equation involves taking the multiplicative inverse of 4 in Z23. This can be done using the extended
Euclidean algorithm defined in . To confirm, note that (6 x 4) mod 23 = 24 mod 23 = 1.

XR =(6233) mod 23 =30 mod 23 =7
YR = (6(3 7) 10) mod 23 = (34) mod 23 = 12
and 2P = (7, 12).

For determining the security of various elliptic curve ciphers, it is of some interest to know the number the number of points in a finite
abelian group defined over an elliptic curve. In the case of the finite group Ep(a,b), the number of pointsN is bounded by

p+1-2Vp=N=p+1+2Vp

Note that the number of points in Ep(a, b) is approximately equal to the number of elements in Z, namely p elements.

Elliptic Curves over GF(Zm)

Recall from that a finite field GF(fn) consists of 2" elements, together with addition and multiplication operations that can be
defined over polynomials. For elliptic curves over GF(Zm), we use a cubic equation in which the variables and coefficients all take on

values in GF(Zm), for some numberm, and in which calculations are performed using the rules of arithmetic in GF(@).

It turns out that the form of cubic equation appropriate for cryptographic applications for elliptic curves is somewhat different for GF(Zm)
than for Zp. The form is

Equation 10-7

yV+xy=x+ax*+b

where it is understood that the variables x andy and the coefficientsa and b are elements of GF({n) of and that calculations are performed

in GF2™M).

Now consider the set E2™(a, b) consisting of all pairs of integers , y) that satisfy , together with a point at infinityO.

For example, let us use the finite field GF(24) with the irreducible polynomialf(x) = x4 + x + 1. This yields a generator that satisfiesf(g) = 0,

with a value of g4 =g+ 1, or in binary 0010. We can develop the powers ofg as follows:

¢° = 0001 o' = 0011
91 =0010 95 =0110
92 = 0100 g6 =1100
g3 =1000 g7 =1011

For example, g5 = (g4)(g) = 92 +g=0110.

®=o0101 g2 = 1111
g = 1010 g% = 1101
910 =0111 gl4 =1001
g = 1110 o™® = o001

Now consider the elliptic curve y2 +Xy = x3 + g4x2 + 1.

@+ (@@ = @+ @D+ 1

6, 8_ 15 14
g +g =g +g +1

1100 + 0101 = 0001 + 1001 + 0001

1001 = 1001

[Page 309]

In this casea = g4 andb = go = 1. One point that satisfies this equation is g5, g3):

able 10.4 lists the points (other thanO) that are part of E24(g4, 1). plots the points of E24(g4, 1).

Table 10.2. Points on the Elliptic Curve Ex* (g4, 1)

0.1

@)
)
@

(93, 913)

(95, 93)
&g
gG’ 98)
@ g™

(99, 910)

(99, 913)

@™, 9

(910, 98)

(6*2.0)

12 12

(g7.9)

Figure 10.11. The Elliptic Curve E24(g4, 1)

0o O Qo Do 09
S = P W o

m"ﬂ

s I - =

Uﬁﬁﬂ'ﬁ oy

th

el

l:}':I-Fl-

WM Wm

8
1

1 g gl 33 g-l .Sﬁ gﬁ ._E'T gﬂ gﬁl glﬂgllgligligm 0
X

It can be shown that a finite abelian group can be defined based on the set E2m(a, b), provided thatb #O. The rules for addition can be
stated as follows. For all points P, Q E E2"(a, b):

1

2.

P+0=P.

If P=(xP, yP), thenP + (xP, xp + yP) = O. The point (xP, XP + yP) is the negative of P, denoted asP.

[Page 310]
IfP = (xP, yP) and Q = (xQ, yQ) with P # QandP #Q, thenR =P + Q = (XR, YR) is determined by the following rules:

XR=12+1+xp+xQ+a

YR =I(XP + XR) + XR +yP

where

_Yg T)r
Xp + Xp

A

4.

If = (xP, yP) then R = 2P = (XR, YR) is determined by the following rules:

.T;-=3;2‘|':"1+H

%

yr = xp + (A + 1)xg

where
Yr
..l:'l. - _l'r} +
Ap

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

K==1 ExT

[Page 310 (continued)]

10.4. Elliptic Curve Cryptography

The addition operation in ECC is the counterpart of modular multiplication in RSA, and multiple addition is the counterpart of modular
exponentiation. To form a cryptographic system using elliptic curves, we need to find a "hard problem" corresponding to factoring the
product of two primes or taking the discrete logarithm.

Consider the equation Q = kP where Q, P E Ep(a, b) and k < p. It is relatively easy to calculateQ givenk and P, but it is relatively hard to
determine k given Q and P. This is called the discrete logarithm problem for elliptic curves.

We give an example taken from the Certicom Web site (llvww.certicom.corrl). Consider the group E23(9, 17). This is the group defined by

the equation y2 mod 23 = (x3 + 9x + 17) mod 23. What is the discrete logarithmk of Q = (4, 5) to the baseP = (16.5)? The brute-force
method is to compute multiples of P until Q is found.

Thus
P = (16, 5); 2P = (20, 20); 3P = (14, 14); 4P = (19, 20); 5P = (13, 10); 6P = (7, 3); P = (8, 7); & (12, 17); 9P = (4, 5).

Because 9P = (4, 5) =Q, the discrete logarithm Q = (4, 5) to the baseP = (16, 5) isk = 9. In a real application,k would be so large as to
make the brute-force approach infeasible.

In the remainder of this section, we show two approaches to ECC that give the flavor of this technique.

Analog of Diffie-Hellman Key Exchange

Key exchange using elliptic curves can be done in the following manner. First pick a large integer g, which is either a prime numberp or an
integer of the form M and elliptic curve parametersa and b forEguation (10.5* orEguation (10.7*. This defines the elliptic group of points

Eq(a, b). Next, pick abase point G = (x1, y1) in Ep(a, b) whose order is a very large valuen. The order n of a pointG on an elliptic curve is
the smallest positive integer n such thatnG = O. Eq(a, b) and G are parameters of the cryptosystem known to all participants.

[Page 311]

A key exchange between users A and B can be accomplished as follows):

1. A selects an integer nA less thann. This is A's private key. A then generates a public keyPA = nA x G; the public key is a point in
Eq(a, b).

2. B similarly selects a private key ng and computes a public keyPB.

3. A generates the secret key K = nA x PB. B generates the secret keyK = nB x PA.

Figure 10.12. ECC Diffie-Hellman Key Exchange

http://www.certicom.com

The two calculations in step 3 produce the same result because
NAXPB=nAX (NBXxG)=nBx (NAXG)=nBxPA

To break this scheme, an attacker would need to be able to compute k given G and kG, which is assumed hard.

[Page 312]

As an example take p = 211; Bp(0, 4), which is equivalent to the curvey2 = x3 4; and G = (2, 2). One can calculate that 24@G = O. A's
private key is nA = 121, so A's public key isPA = 121(2, 2) = (115, 48). B's private key isnB = 203, so B's public key is 203(2, 2) = (130,
203). The shared secret key is 121(130, 203) = 203(115, 48) = (161, 69).

BI provided by Ed Schaefer of Santa Clara University.

Note that the secret key is a pair of numbers. If this key is to be used as a session key for conventional encryption, then a single number
must be generated. We could simply use the x coordinates or some simple function of thex coordinate.

Elliptic Curve Encryption/Decryption

Several approaches to encryption/decryption using elliptic curves have been analyzed in the literature. In this subsection we look at
perhaps the simplest. The first task in this system is to encode the plaintext message m to be sent as anx-y point Pm. It is the pointPm
that will be encrypted as a ciphertext and subsequently decrypted. Note that we cannot simply encode the message as the x ory
coordinate of a point, because not all such coordinates are in Eqg(a, b); for example, see. Again, there are several approaches
to this encoding, which we will not address here, but suffice it to say that there are relatively straightforward techniques that can be used.

As with the key exchange system, an encryption/decryption system requires a point G and an elliptic group Ej(a, b) as parameters. Each
user A selects a private key nA and generates a public keyPA = nA x G.

To encrypt and send a message Pm to B, A chooses a random positive integeik and produces the ciphertextCm consisting of the pair of
points:

Cm = {kG, Pm + kPB}

Note that A has used B's public key PB. To decrypt the ciphertext, B multiplies the first point in the pair by B's secret key and subtracts the
result from the second point:

Pm + kPB nB(kG) = Pm + k(nBG) nB(kG) = Pm

A has masked the message Pm by adding kPB to it. Nobody but A knows the value ofk, so even thoughPB is a public key, nobody can
remove the mask kPB. However, A also includes a “clue," which is enough to remove the mask if one knows the private keyB. For an
attacker to recover the message, the attacker would have to compute k given G and kG, which is assumed hard.

As an example of the encryption process (taken from [), take p = 751; Ep(1, 188), which is equivalent to the curvey2 = x3 X +188;
and G = (0, 376). Suppose that A wishes to send a message to B that is encoded in the elliptic poifim = (562, 201) and that A selects the
random number k = 386. B's public key isPB = (201, 5). We have 386(0, 376) = (676, 558), and (562, 201) + 386(201, 5) = (385, 328).
Thus A sends the cipher text {(676, 558), (385, 328)}.

Security of Elliptic Curve Cryptography

The security of ECC depends on how difficult it is to determine k given kP and P. This is referred to as the elliptic curve logarithm problem.
The fastest known technique for taking the elliptic curve logarithm is known as the Pollard rho method. compares various
algorithms by showing comparable key sizes in terms of computational effort for cryptanalysis. As can be seen, a considerably smaller key
size can be ysed for ECC compared to RSA. Furthermore, for equal key lengths, the computational effort required for ECC and RSA is
comparable [. Thus, there is a computational advantage to using ECC with a shorter key length than a comparably secure RSA.

[Page 313]

Table 10.3. Comparable Key Sizes in Terms of Computational Effort for Cryptanalysis

Symmetric Scheme (key size in bits)

ECC-Based Scheme (size of n in bits)

RSA/DSA (modulus size in bits)

56

80

112

128

92

256

Source: Certicom

112

160

224

256

384

512

512

1024

2048

3072

7680

15360

NEXT B

" prey wEXT

[Page 313 (continued)]

10.5. Recommended Reading and Web Sites

A quite readable trﬂof elliptic curve cryptography is [ROSI99]; the emphasis is on software implementation. Another readable, but

ri ook is [IHANKO . Two other good treatments, both of whi tain_ some rather stiff mathematics, argBLAK99] and
ENGEQEE. Therﬂo goocre concise descriptions in [KUMA9{], [ETINOZ], and [KOBL94]. Two interesting survey

treatments are dFERNQ and [PURI9T.

BLAK9Y Blake, |.; Seroussi, G.; and Smart, N.Elliptic Curves in Cryptography. Cambridge: Cambridge
University Press, 1999.

NGE99 Enge, A. Elliptic Curves and Their Applications to Cryptography. Norwell, MA: Kluwer Academic
Publishers, 1999.

ERN99 Fernandes, A. "Elliptic Curve Cryptography."Dr. Dobb's Journal, December 1999.

ANKO04 Hankerson, D.; Menezes, A.; and Vanstone, S.Guide to Elliptic Curve Cryptography. New York:
Springer, 2004.

URI97 Jurisic, A., and Menezes, A. "Elliptic Curves and Cryptography.'Dr. Dobb's Journal, April 1997.
OBL94 Koblitz, N. A Course in Number Theory and Cryptography New York: Springer-Verlag, 1994.

UMA98 Kumanduri, R., and Romero, C.Number Theory with Computer Applications. Upper Saddle River, NJ:
Prentice Hall, 1998.

ROSI99 Rosing, M. Implementing Elliptic Curve Cryptography. Greeenwich, CT: Manning Publications, 1999.

STINOZ Stinson, D. Cryptography: Theory and Practice. Boca Raton, FL: CRC Press, 2002.

[Page 314]

§ Recommended Web Site

® Certicom: Extensive collection of technical material on elliptic curve cryptography and other topics in cryptography

e Py wEXT

" prey wEXT

[Page 314 (continued)]

10.6. Key Terms, Review Questions, and Problems

Key Terms

pbelian groug

=.
=]
o
o
[
=
5

ubic equatio

IDiffie—HeIIman key exchanqel

Hiscrete logarith

plliptic curvg

lelliptic curve arithmetic]

lliptic curve cryptograph

inite field

ey distributio

€y managemen

U}

ER
>
5
,L,
>0
)
3
S
[=
@
o
=
I
(o]
=

< = - = =
2 c [y =2 =
o =3 = El 3
5 Q o g (]
Q. = = Q
E) D @ c
—
o o
o o
= ® =
o =
=
Q =
5|k
> T

Review Questions

10.1 What are two different uses of public-key cryptography related to key distribution?
10.2 List four general categories of schemes for the distribution of public keys.

10.3 What are the essential ingredients of a public-key directory?

10.4 What is a public-key certificate?

10.5 What are the requirements for the use of a public-key certificate scheme?

10.6 Briefly explain Diffie-Hellman key exchange.

10.7 What is an elliptic curve?

10.8 What is the zero point of an elliptic curve?

10.9 What is the sum of three points on an elliptic curve that lie on a straight line?

Problems

10.1 Users A and B use the Diffie-Hellman key exchange technique with a common prime g = 71 and a primitive
roota=7.

a. If user A has private keyXA = 5, what is A's public key YA?
b. If user B has private keyXB = 12, what is B's public key YB?

c. What is the shared secret key?

10.2 Consider a Diffie-Hellman scheme with a common primeq = 11 and a primitive roota = 2.
a. Show that 2 is a primitive root of 11.
b. If user A has public keyYA = 9, what is A's private key XA?

c. Ifuser B has public keyYB = 3, what is the shared secret keyK, shared with A?

10.3

10.4

10.5

10.6

10.7

e X
In the Diffie-Hellman protocol, each participant selects a secret number x and sends the other participanta

mod g for some public numbera. What would happen if the participants sent each otherxa for some public
number a instead? Give at least one method Alice and Bob could use to agree on a key. Can Eve break your
system without finding the secret numbers? Can Eve find the secret numbers?

[Page 315]

This problem illustrates the point that the Diffie-Hellman protocol is not secure without the step where you
take the modulus; i.e. the "Indiscrete Log Problem" is not a hard problem! You are Eve, and have captured
Alice and Bob and imprisoned them. You overhear the following dialog.

Bob: Oh, let's not bother with the prime in the Diffie-Hellman protocol, it will make things easier.
Alice: Okay, but we still need a base to raise things to. How about g = 3?

Bob: All right, then my result is 27.

Alice: And mine is 243.

What is Bob's secret XB and Alice's secret XA? What is their secret combined key? (Don't forget to show your
work.)

describes a man-in-the-middle attack on the Diffie-Hellman key exchange protocol in which the
adversary generates two public-private key pairs for the attack. Could the same attack be accomplished with
one pair? Explain.

In 1985, T. ElIGamal announced a public-key scheme based on discrete logarithms, closely related to the
Diffie-Hellman technique. As with Diffie-Hellman, the global elements of the EIGamal scheme are a prime
number g and a, a primitive root of g. A user A selects a private keyXA and calculates a public keyYA as in
Diffie-Hellman. User A encrypts a plaintext M < q intended for user B as follows:

1. Choose a random integerk such that 1 === Kk == q 1.

2. ComputeK = (YB)k mod g.

3. Encrypt M as the pair of integers C1, C2) where

C1=ak modq C2=KM modq

User B recovers the plaintext as follows:
XB
1. ComputeK=(C1)" "~ modgq.

2. Compute M = (CzK]) mod g.

Show that the system works; that is, show that the decryption process does recover the plaintext.

Consider an EIGamal scheme with a common primeq = 71 and a primitive roota = 7
a. If B has public keyYB = 3 and A chose the random integekk = 2, what is the ciphertext of M = 30?

b. If Anow chooses a different value of k, so that the encoding ofM =30 is C = (59, C2), what is the
integer C27?

10.8

10.9

10.10

10.11

10.12

10.13

10.14

10.15

10.16

10.17

Rule (5) for doing arithmetic in elliptic curves over real numbers states that to double a point Q, draw the
tangent line and find the other point of intersection S. ThenQ + Q = 2Q = S. If the tangent line is not vertical,
there will be exactly one point of intersection. However, suppose the tangent line is vertical? In that case,
what is the value 2Q? What is the value 3Q7?

Demonstrate that the two elliptic curves of each satisfy the conditions for a group over the real
numbers.

Is (4,7) a point on the elliptic CUTVQ/Z = x3 5x + 5 over real numbers?

On the elliptic curve over the real numbergl2 = x3 36x, letP = (3.5, 9.5) and Q = (2.5, 8.5). FindP + Q and 2P.
. . 2_ 3 .

Does the elliptic curve equationy” =x~ + 10x + 5 define a group over 477

Consider the elliptic curve E11(1, 6); that is, the curve is defined bwz = x3 + X + 6 with a modulus ofp = 11.
Determine all of the points in E11(1, 6). Hint: Start by calculating the right-hand side of the equation for all
values of x.

What are the negatives of the following elliptic curve points over 27? P = (5, 8); Q = (3, 0); R = (0, 6).

For E11(1, 6), consider the pointG = (2, 7). Compute the multiples ofG from 2G through 13G.

[Page 316]

This problem performs elliptic curve encryption/decryption using the scheme outlined in . The
cryptosystem parameters are E11(1, 6) andG = (2, 7). B's secret key isng = 7.

a. Find B's public keyPB.

b. A wishes to encrypt the message Pm = (10, 9) and chooses the random valuek = 3. Determine
the ciphertext Cm.

c. Show the calculation by which B recoversPm from Cm.

The following is a first attempt at an Elliptic Curve signature scheme. We have a global elliptic curve, prime p,
and "generator" G. Alice picks a private signing keyXA and forms the public verifying keyYA = XAG. To sign a
message M:

® Alice picks a valuek.
® Alice sends BobM, k and the signature S = M kXAG.

® Bopb verifies thatM = S + kYA

a. Show that this scheme works. That is, show that the verification process produces an equality if
the signature is valid.

b. Show that the scheme is unacceptable by describing a simple technique for forging a user's
signature on an arbitrary message.

10.18 Here is an improved version of the scheme given in the previous problem. As before, we have a global
elliptic curve, prime p, and "generator" G. Alice picks a private signing keyXA and forms the public verifying
key YA = XAG. To sign a messageM,

® oD picks a valuek.
® Bop sends AliceC1 = kG.

® Alice sends BobM and the signature S = M XAC1-

® Bop verifies thatM = S + kYA

a. Show that this scheme works. That is, show that the verification process produces an equality if
the signature is valid.

b. Show that forging a message in this scheme is as hard as breaking (ElGamal) Elliptic Curve
Cryptography. (Or find an easier way to forge a message?)

c. This scheme has an extra "pass" compared to other cryptosystems and signature schemes we
have looked at. What are some drawbacks to this?

e prey NExT

" prey wEXT

[Page 317]

Chapter 11. Message Authentication and Hash
Functions

Ill.l Authentication Requirementsl

hl.z Authentication Functiong

Message Encrygtio;l
&Iessage Authentication Codé

Ill.3 Message Authentication Codesl

hequirements for MACSI

l\/lessaqe Authentication Code Based on DESI

I11.4 Hash Functionsl

hequirements for a Hash FunctioA

Eimgle Hash FunctionJ
Birthday Attacks

block Chaining Techniques’

Ill.5 Security of Hash Functions and MACsI

Brute-Force Attacks

ryptanalysig

h1.6 Recommended Readind

Ill.? Key Terms, Review Questions, and Problems]

ey Termg

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

Review Questiong
Problems

lAppendix 11A Mathematical Basis of the Birthday Attackl

|The Birthday Parado>l
|! he General Case of Duglicationg
bverlag between Two Setg

[Page 318]

At cats' green on the Sunday he took the message from the inside of the pillar and added Peter Moran's name to
the two names already printed there in the "Brontosaur" code. The message now read: "Leviathan to Dragon:
Martin Hillman, Trevor Allan, Peter Moran: observe and tail." What was the good of it John hardly knew. He felt
better, he felt that at last he had made an attack on Peter Moran instead of waiting passively and effecting no
retaliation. Besides, what was the use of being in possession of the key to the codes if he never took advantage of
it

-~

Talking to Strange Men, Ruth Rendell

Key Points

® Message authentication is a mechanism or service used to verify the integrity of a message. Message
authentication assures that data received are exactly as sent by (i.e., contain no modification, insertion,
deletion, or replay) and that the purported identity of the sender is valid.

L4 Symmetric encryption provides authentication among those who share the secret key. Encryption of a
message by a sender's private key also provides a form of authentication.

® The two most common cryptographic technigues for message authentication are a message authentication
code (MAC) and a secure hash function.

® AMACIsan algorithm that requires the use of a secret key. A MAC takes a variable-length message and a
secret key as input and produces an authentication code. A recipient in possession of the secret key can
generate an authentication code to verify the integrity of the message.

® A hash function maps a variable-length message into a fixed length hash value, or message digest. For
message authentication, a secure hash function must be combined in some fashion with a secret key.

Perhaps the most confusing area of network security is that of message authentication and the related topic of digital signatures. The
attacks and countermeasures become so convoluted that practitioners in this area begin to remind one of the astronomers of old, who
built epicycles on top of epicycles in an attempt to account for all contingencies. Fortunately, it appears that today's designers of
cryptographic protocols, unlike those long-forgotten astronomers, are working from a fundamentally sound model.

It would be impossible, in anything less than book length, to exhaust all the cryptographic functions and protocols that have been
proposed or implemented for message authentication and digital signatures. Instead, the purpose of this chapter and the next two is to
provide a broad overview of the subject and to develop a systematic means of describing the various approaches.

[Page 319]

This chapter begins with an introduction to the requirements for authentication and digital signature and the types of attacks to be
countered. Then the basic approaches are surveyed, including the increasingly important area of secure hash functions. Specific hash
functions are examined in

E=a wExT

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

" prey wEXT

[Page 319 (continued)]

11.1. Authentication Requirements

In the context of communications across a network, the following attacks can be identified:
1. Disclosure: Release of message contents to any person or process not possessing the appropriate cryptographic key.

2. Traffic analysis: Discovery of the pattern of traffic between parties. In a connection-oriented application, the frequency and
duration of connections could be determined. In either a connection-oriented or connectionless environment, the number and
length of messages between parties could be determined.

3. Masquerade: Insertion of messages into the network from a fraudulent source. This includes the creation of messages by an
opponent that are purported to come from an authorized entity. Also included are fraudulent acknowledgments of message
receipt or nonreceipt by someone other than the message recipient.

4. Content modification: Changes to the contents of a message, including insertion, deletion, transposition, and modification.

5. Sequence modification: Any modification to a sequence of messages between parties, including insertion, deletion, and
reordering.

6. Timing modification: Delay or replay of messages. In a connection-oriented application, an entire session or sequence of
messages could be a replay of some previous valid session, or individual messages in the sequence could be delayed or
replayed. In a connectionless application, an individual message (e.g., datagram) could be delayed or replayed.

7. Source repudiation: Denial of transmission of message by source.
8. Destination repudiation: Denial of receipt of message by destination.

Measures to deal with the first two attacks are in the realm of message confidentiality and are dealt with in Part One. Measures to deal
with items 3 through 6 in the foregoing list are generally regarded as message authentication. Mechanisms for dealing specifically with
item 7 come under the heading of digital signatures. Generally, a digital signature technique will also counter some or all of the attacks
listed under items 3 through 6. Dealing with item 8 may require a combination of the use of digital signatures and a protocol designed to
counter this attack.

In summary, message authentication is a procedure to verify that received messages come from the alleged source and have not been
altered. Message authentication may also verify sequencing and timeliness. A digital signature is an authentication technique that also
includes measures to counter repudiation by the source.

" prey wEXT

K==1 ExT

[Page 320]

11.2. Authentication Functions

Any message authentication or digital signature mechanism has two levels of functionality. At the lower level, there must be some
sort of function that produces an authenticator: a value to be used to authenticate a message. This lower-level function is then used as a
primitive in a higher-level authentication protocol that enables a receiver to verify the authenticity of a message.

This section is concerned with the types of functions that may be used to produce an authenticator. These may be grouped into three
classes, as follows:

® \essage encryption: The ciphertext of the entire message serves as its authenticator

® l\/lessaqe authentication code (MAC{: A function of the message and a secret key that produces a fixed-length value that
serves as the authenticator

L] A function that maps a message of any length into a fixed-length hash value, which serves as the authenticator

We now briefly examine each of these topics; MACs and hash functions are then examined in greater detail in and .

Message Encryption

Message encryption by itself can provide a measure of authentication. The analysis differs for symmetric and public-key encryption
schemes.

Symmetric Encryption

Consider the straightforward use of symmetric encryption). A message M transmitted from source A to destination B is
encrypted using a secret key K shared by A and B. If no other party knows the key, then confidentiality is provided: No other party can
recover the plaintext of the message.

Figure 11.1. Basic Uses of Message Encryption
(This item is displayed on page 321 in the print version)

lView full size image|

- Source A ——» <«—— Destination B ——

- D - M

E(K, M) K

{a) Symmetric encryption: conbidentiality and authentication

M :—@ - D = M

(b) Public-key encryption: confidentiality

M E - (B - M

PR, E(PRa. M) PU,

(¢) Public-key encryption: authentication and signature

PR, E(PRa, M) Pl E(PL, E(PRa, M}) PR, E(PRa, M) PU,

(d) Public-key encryphion: confidentiality, authentication, and signature

In addition, we may say that B is assured that the message was generated by A. Why? The message must have come from A because A
is the only other party that possesses K and therefore the only other party with the information necessary to construct ciphertext that can
be decrypted with K. Furthermore, ifM is recovered, B knows that none of the bits ofM have been altered, because an opponent that does
not know K would not know how to alter bits in the ciphertext to produce desired changes in the plaintext.

So we may say that symmetric encryption provides authentication as well as confidentiality. However, this flat statement needs to be
qualified. Consider exactly what is happening at B. Given a decryption function D and a secret key K, the destination will acceptany input X
and produce output Y = D(K, X). If X is the ciphertext of a legitimate messageM produced by the corresponding encryption function, thenY
is some plaintext message M. Otherwise, Y will likely be a meaningless sequence of bits. There may need to be some automated means
of determining at B whether Y is legitimate plaintext and therefore must have come from A.

The implications of the line of reasoning in the preceding paragraph are profound from the point of view of authentication. Suppose the
message M can be any arbitrary bit pattern. In that case, there is no way to determine automatically, at the destination, whether an
incoming message is the ciphertext of a legitimate message. This conclusion is incontrovertible: If M can be any bit pattern, then
regardless of the value of X, the value Y = D(K, X) is some bit pattern and therefore must be accepted as authentic plaintext.

[Page 321]

Thus, in general, we require that only a small subset of all possible bit patterns be considered legitimate plaintext. In that case, any
spurious ciphertext is unlikely to produce legitimate plaintext. For example, suppose that only one bit pattern in 106 is legitimate plaintext.

Then the probability that any randomly chosen bit pattern, treated as ciphertext, will produce a legitimate plaintext message is only 10_6.

For a number of applications and encryption schemes, the desired conditions prevail as a matter of course. For example, suppose that we
are transmitting English-language messages using a Caesar cipher with a shift of one (K = 1). A sends the following legitimate ciphertext:

nbsftfbupbutboeepftfbupbutboemjuumfmbnctfbujwz

B decrypts to produce the following plaintext:

mareseatoatsanddoeseatoatsandlittlelambseativy

[Page 322]

A simple frequency analysis confirms that this message has the profile of ordinary English. On the other hand, if an opponent generates
the following random sequence of letters:

zuvrsoevgqxlzwigamdvnmhpmeccexiuureosfbcebtgxsxq

this decrypts to:

ytugrndufpwkyvhfzlcumlgolbbwhttgdnreabdaspwrwp

which does not fit the profile of ordinary English.

It may be difficult to determine automatically if incoming ciphertext decrypts to intelligible plaintext. If the plaintext is, say, a binary object
file or digitized X-rays, determination of properly formed and therefore authentic plaintext may be difficult. Thus, an opponent could
achieve a certain level of disruption simply by issuing messages with random content purporting to come from a legitimate user.

One solution to this problem is to force the plaintext to have some structure that is easily recognized but that cannot be replicated without
recourse to the encryption function. We could, for example, append an error-detecting code, also known as a frame check sequence
(FCS) or checksum, to each message before encryption, as illustrated in fFigure 11.2g. A prepares a plaintext messageM and then
provides this as input to a function F that produces an FCS. The FCS is appended to M and the entire block is then encrypted. At the
destination, B decrypts the incoming block and treats the results as a message with an appended FCS. B applies the same function F to
attempt to reproduce the FCS. If the calculated FCS is equal to the incoming FCS, then the message is considered authentic. It is unlikely
that any random sequence of bits would exhibit the desired relationship.

Figure 11.2. Internal and External Error Control

iView full size imaqei

- Source A —» = Destination B ———

; ~(F)
M "I M M — 4
[T (FIAT Coavpare
K ELE, [M (M) K —| 1
(a) Intemal error contral
: &
E(K, M)
K gy
-
= [}
M i)

E(K. M) ! Compare

’
;
FiE(K, M) 4

b} Extermnal error conirol

[Page 323]

e fiaure 11.2d s

). With internal error

Note that the order in which the FCS and encryption functions are performed is critical. The sequence jllu
referred to in [as internal error control, which the authors contrast with external error controll
control, authentication is provided because an opponent would have difficulty generating ciphertext that, when decrypted, would have valid
error control bits. If instead the FCS is the outer code, an opponent can construct messages with valid error-control codes. Although the
opponent cannot know what the decrypted plaintext will be, he or she can still hope to create confusion and disrupt operations.

An error-control code is just one example; in fact, any sort of structuring added to the transmitted message serves to strengthen the
authentication capability. Such structure is provided by the use of a communications architecture isting of layered protocols. As an
example, consider the structure of messages transmitted using the TCP/IP protocol architecture. Ei:ure 11.3 shows the format of a TCP
segment, illustrating the TCP header. Now suppose that each pair of hosts shared a unique secret key, so that all exchanges between a
] ts used the same key, regardless of application. Then we could simply encrypt all of the datagram except the IP header (see
Eigure 7.9). Again, if an opponent substituted some arbitrary bit pattern for the encrypted TCP segment, the resulting plaintext would not
include a meaningful header. In this case, the header includes not only a checksum (which covers the header) but also other useful
information, such as the sequence number. Because successive TCP segments on a given connection are numbered sequentially,
encryption assures that an opponent does not delay, misorder, or delete any segments.

Figure 11.3. TCP Segment

Bit: 0 4 10 16 31

Source port Destination port

Sequence number

Acknowledgment number

20 octets

Reserved Flaes Window

Data

.t

OITSer | I 52
Checksum Urgent pointer

Options + padding

Application data

Public-Key Encryption

The straightforward use of public-key encryption) provides confidentiality but not authentication. The source (A) uses the
public key PUp of the destination (B) to encrypt M. Because only B has the corresponding private keyPRb, only B can decrypt the
message. This scheme provides no authentication because any opponent could also use B's public key to encrypt a message, claiming to
be A.

[Page 324]

To provide authentication, A uses its private key to encrypt the message, and B uses A's public key to decryp). This
provides authentication using the same type of reasoning as in the symmetric encryption case: The message must have come from A
because A is the only party that possesses PRa and therefore the only party with the information necessary to construct ciphertext that can
be decrypted with PUa. Again, the same reasoning as before applies: There must be some internal structure to the plaintext so that the
receiver can distinguish between well-formed plaintext and random bits.

Assumingere is such structure, then the scheme of does provide authentication. It also provides what is known as digital

signature. L Only A could have constructed the ciphertext because only A possessed?Ra. Not even B, the recipient, could have
constructed the ciphertext. Therefore, if B is in possession of the ciphertext, B has the means to prove that the message must have come
from A. In effect, A has "signed" the message by using its private key to encrypt. Note that this scheme does not provide confidentiality.

Anyone in possession of A's public key can decrypt the ciphertext.
W This is not the way in which digital signatures are constructed, as we shall see, but the principle is the same.

To provide both confidentiality and authentication, A can encrypt M first using its private key, which provides the digital signature, and then
using B's public key, which provides confidentiality (). The disadvantage of this approach is that the public-key algorithm,
which is complex, must be exercised four times rather than two in each communication.

able 11.1f summarizes the confidentiality and authentication implications of these various approaches to message encryption.

11.
(This item is displayed on page 325 in the print version)

Table 11.1. Confidentiality and Authenticatiolications of Message Encryption (see

A—} B:E(K, M)

*Provides confidentiality

Only A and B shareK

*Provides a degree of authentication

Could come only from A
Has not been altered in transit

Requires some formatting/redundancy
«Does not provide signature

Receiver could forge message

Sender could deny message

(a) Symmetric encryption
A —} B:E(PUp, M)

« Provides confidentiality

Only B hasPRp to decrypt

« Provides no authentication

Any party could use PUp to encrypt message and claim to be A

(b) Public-key (asymmetric) encryption: confidentiality
A —} B:E(PRa, M)

« Provides authentication and signature

Only A hasPRp to encrypt
Has not been altered in transit

Requires some formatting/redundancy

Any party can use PUg to verify signature

A — B:E(PUb, E(PRa, M))
« Provides confidentiality because of PUp
« Provides authentication and signature because ofPRa

(d) Public-key encryption: confidentiality, authentication, and signature

Message Authentication Code

An alternative authentication technique involves the use of a secret key to generate a small fixed-size block of data, known as a
cryptographic checksum or MAC that is appended to the message. This technique assumes that two communicating parties, say A and B,
share a common secret key K. When A has a message to send to B, it calculates the MAC as a function of the message and the key:MAC
= C(K, M), where

M =input message
C = MAC function

K = shared secret key

MAC = message authentication code

The message plus MAC are transmitted to the intended recipient. The recipient performs the same calculatio] ived message,
using the same secret key, to generate a new MAC. The received MAC is compared to the calculated MAC (Eigure 11.44). If we assume
that only the receiver and the sender know the identity of the secret key, and if the received MAC matches the calculated MAC, then

1. The receiver is assured that the message has not been altered. If an attacker alters the message but does not alter the MAC,
then the receiver's calculation of the MAC will differ from the received MAC. Because the attacker is assumed notto know the
secret key, the attacker cannot alter the MAC to correspond to the alterations in the message.

[Page 325]

2. The receiver is assured that the message is from the alleged sender. Because no one else knows the secret key, no one else
could prepare a message with a proper MAC.

3. If the message includes a sequence number (such as is used with HDLC, X.25, and TCP), then the receiver can be assured of
the proper sequence because an attacker cannot successfully alter the sequence number.

[Page 326]

Figure 11.4. Basic Uses of Message Authentication Code (MAC)

iViEW full size imaqei

- Spurce A —» <——— Destination B ——=
__ fn
M {qy' o M 5
k.
K - K Compare
J‘r 1
LK, M)

() Message authentication

={C}
M M \-f) I'
Compare
B, MO ML) K : t
F)
CiK . M)
(bh Message authentication and confidentiality; mahentication tied to plainext
E(K., M)
LY
A = [
i ’
K ‘
: 3 Compare ks
’ Ki +

Ciky. BiKs M)

{c) Message authentication and confidentiality: suthemtication tied to cipheriexi

A MAC function is similar to encryption. One difference is that the MAC algorithm need not be reversible, as it must for decryption. In
general, the MAC function is a many-to-one function. The domain of the function consists of messages of some arbitrary length, whereas

the range consists of all possible MACs and all possible keys. If an n-bit MAC is used, then there are 5' possible MACs, whereas there are

N possible messages withN >> 7 Furthermore, with ak-bit key, there are é(possible keys.

For example, suppose that we are using 100-bit messages and a 10-bit MAC. Then, there are a total of 2lOO different messages but only

%00/210

210 different MACs. So, on average, each MAC value is generated by a total of = 290 different messages. If a 5-bit key is used,

then there are 25 = 32 different mappings from the set of messages to the set of MAC values.

It turns out that because of the mathematical properties of the authentication function, it is less vulnerable to being broken than encryption.

The process depicted in provides authentication but not confidentiality, because the message asansmitted in the

clear. Confidentiality can be provided by performing message encryption either after (gigure 11.44) or before (Eigure 11.44d) the MAC
algorithm. In both these cases, two separate keys are needed, each of which is shared by the sender and the receiver. In the first case,
the MAC is calculated with the message as input and is then concatenated to the message. The entire block is then encrypted. In the
second case, the message is encrypted first. Then the MAC is calculated using the resulting ciphertext and is concatenated to the
ciphertext to form the transmitted block. Typically, it is preferable to tie the authentication directly to the plaintext, so the method of
[11.41 is used.

[Page 327]

Because symmetric encryption will provide authentication and | e it is widely used with readily available products, why not simply
use this instead of a separate message authentication code? [DAVI8Y] suggests three situations in which a message authentication code
is used:

1. There are a number of applications in which the same message is broadcast to a number of destinations. Examples are
notification to users that the network is now unavailable or an alarm signal in a military control center. It is cheaper and more
reliable to have only one destination responsible for monitoring authenticity. Thus, the message must be broadcast in plaintext
with an associated message authentication code. The responsible system has the secret key and performs authentication. If a
violation occurs, the other destination systems are alerted by a general alarm.

2. Another possible scenario is an exchange in which one side has a heavy load and cannot afford the time to decrypt all
incoming messages. Authentication is carried out on a selective basis, messages being chosen at random for checking.

3. Authentication of a computer program in plaintext is an attractive service. The computer program can be executed without
having to decrypt it every time, which would be wasteful of processor resources. However, if a message authentication code
were attached to the program, it could be checked whenever assurance was required of the integrity of the program.

Three other rationales may be added, as follows:

4. For some applications, it may not be of concern to keep messages secret, but it is important to authenticate messages. An
example is the Simple Network Management Protocol Version 3 (SNMPv3), which separates the functions of confidentiality and
authentication. For this application, it is usually important for a managed system to authenticate incoming SNMP messages,
particularly if the message contains a command to change parameters at the managed system. On the other hand, it may not
be necessary to conceal the SNMP traffic.

5. Separation of authentication and confidentiality functions affords architectural flexibility. For example, it may be desired to
perform authentication at the application level but to provide confidentiality at a lower level, such as the transport layer.

6. A user may wish to prolong the period of protection beyond the time of reception and yet allow processing of message
contents. With message encryption, the protection is lost when the message is decrypted, so the message is protected against
fraudulent modifications only in transit but not within the target system.

Finally, note that the MAC does not provide a digital signature because both sender and receiver share the same key.

able 11.94 summarizes the confidentiality and authentication implications of the approaches illustrated i.

[Page 328]

Table 11.2. Basic Uses of Message Authentication Code C (see)
A — B:M||C(K, M)

*Provides authentication

Only A and B shareK

(a) Message authentication
A — B:E(K2, M|IC(K, M)])

« Provides authentication

Only A and B shareK1

* Provides confidentiality

Only A and B share K2

(b) Message authentication and confidentiality: authentication tied to plaintext

A= B:E(K2, M)||C(K1, E(K2, M))

* Provides authentication

Using K1

« Provides confidentiality

Using K2

(c) Message authentication and confidentiality: authentication tied to ciphertext

Hash Function

A variation on the message authentication code is the one-way hash function. As with the message authentication code, a hash function
accepts a variable-size message M as input and produces a fixed-size output, referred to as ahash code H(%f LJ? Ef f fﬁ a hash
code does not use a key but is a function only of the input message. The hash code is also referred to as a fnessage digesfor hash
value. The hash code is a function of all the bits of the message and provides an error-detection capability: A change to any bit or bits in
the message results in a change to the hash code.

illustrates a variety of ways in which a hash code can be used to provide message authentication, as follows:

The message plus concatenated hash code is encrypted using symmetric encryption. This is identical in structure to the
internal error control strategy shown in ‘. The same line of reasoning applies: Because only A and B share the
secret key, the message must have come from A and has not been altered. The hash code provides the structure or
redundancy required to achieve authentication. Because encryption is applied to the entire message plus hash code,
confidentiality is also provided.

Only the hash code is encrypted, using symmetric encryption. This reduces the processing burden for those applications that
do not require confidentiality.

[Page 330]

Note that the combination of hashing and encryption results in an overall function that is, in fact, a MAC l . That s,
E(K, H(M)) is a function of a variable-length messageM and a secret keyK, and it produces a fixed-size output that is secure
against an opponent who does not know the secret key.

Only the hash code is encrypted, using public-key encryption and using the sender's private key. As with (b), this provides
authentication. It also provides a digital signature, because only the sender could have produced the encrypted hash code. In
fact, this is the essence of the digital signature technique.

If confidentiality as well as a digital signature is desired, then the message plus the private-key-encrypted hash code can be
encrypted using a symmetric secret key. This is a common technique.

It is possible to use a hash function but no encryption for message authentication. The technique assumes that the two
communicating parties share a common secret value S. A computes the hash value over the concatenation ofM and S and
appends the resulting hash value to M. Because B possessesS, it can recompute the hash value to verify. Because the secret
value itself is not sent, an opponent cannot modify an intercepted message and cannot generate a false message.

Confidentiality can be added to the approach of (e) by encrypting the entire message plus the hash code.

Figure 11.5. Basic Uses of Hash Function
(This item is displayed on page 329 in the print version)

lView full size image|

Source A

-t [Destination B ———»

LY L] E - =1 M @ I
. f— (Coampare
K E(K, [M Il HIM K ,"
)
HiM)
(a)
(11}
= A =t
F
L] K Compan:
;"
Fl
Ei&. H{M})
(k)
~{1}
- .1.." lI'-|_-'|I
i Fir, Compare
; 3 1
F
E(PR,,, HIM)) D}
(c)

)

E(K, [M 1| E(PR,,. HIMWT

M

(D) M
T &
K y

£
&

E(PR,, H(M))

—*@ﬁ

PU, Compare

(el
Ll <O
‘_F Compane
£
£
HiM 05
[ch
M [5 —lD—=(H)
i Cormpan
EiK, [MIHMES)) K P
#
HiM 11 5)
i
When confidentiality is not required, methods (b) and (c) have an advantage over those that encrypt the entire message jn that less
en growing interest in techniques that avoid encryption (gigure 11.5¢). Several

computation is required. Nevertheless, there has b

reasons for this interest are pointed out in [TSUD92:

® Encryption software is relatively slow. Even though the amount of data to be encrypted per message is small, there may be a

steady stream of messages into and out of a system.

Encryption hardware costs are not negligible. Low-cost chip implementations of DES are available, but the cost adds up if all
nodes in a network must have this capability.

® Encryption hardware is optimized toward large data sizes. For small blocks of data, a high proportion of the time is spent in

initialization/invocation overhead.

licensed, adding a cost.

Encryption algorithms may be covered by patents. For example, until the patent expired, RSA was patented and had to be

able 11.9 summarizes the confidentiality and authentication implications of the approaches illustrated i. We next examine

MACs and hash codes in more detail.

[Page 331]

Table 11.3. Basic Uses of Hash Function H (see

A= B:EK, M|IH(M)])

 Provides confidentiality

Only A and B shareK

« Provides authentication

H(M) is cryptographically protected

(a) Encrypt message plus hash code
A i B: M||E(K, HM))

* Provides authentication

H(M) is cryptographically protected

(b) Encrypt hash codeshared secret key
A i B: M||E(PRa, HM))

« Provides authentication and digital signature

H(M) is cryptographically protected

Only A could create EPRa, HM))

A) B: EK, M||E(PRa, HM))])
* Provides authentication and digital signature

* Provides confidentiality

Only A and B shareK

(d) Encrypt result of (c)shared secret key
A i B: M||H(M]|S)

* Provides authentication

Only A and B shareS

(e) Compute hash code of message plus secret value
A) B: EK, [M[[H(M[|S])

» Provides authentication

Only A and B shareS

* Provides confidentiality

Only A and B shareK

(c) Encrypt hash codesender's private key (f) Encrypt result of (e)

& prcy | wexT

K==1 ExT

[Page 331 (continued)]

11.3. Message Authentication Codes

A MAC, also known as a cryptographic checksum, is generated by a function C of the form
MAC = C(K, M)

where M is a variable-length message,K is a secret key shared only by sender and receiver, and G, M) is the fixed-length authenticator.
The MAC is appended to the message at the source at a time when the message is assumed or known to be correct. The receiver
authenticates that message by recomputing the MAC.

n this sectjon, we review the requirements for the function C and then examine a specific example. Other examples are discussed in

Chapter 14.

Requirements for MACs

When an entire message is encrypted for confidentiality, using either symmetric or asymmetric encryption, the security of the scheme
generally depends on the bit length of the key. Barring some weakness in the algorithm, the opponent must resort to a brute-force attack

using all possible keys. On average, such an attack will require 2(k-1) attempts for ak-bit key. In particular, for a ciphertext-only attack, the
opponent, given ciphertext C, would performPj = D(K|, C) for all possible key valuesK;j until a Pj was produced that matched the form of

acceptable plaintext.

[Page 332]

In the case of a MAC, the considerations are entirely different. In general, the MAC function is a many-to-one function, due to the
many-to-one nature of the function. Using brute-force methods, how would an opponent attempt to discover a key? If confidentiality is not
employed, the opponent has access to plaintext messages and their associated MACs. Suppose k > n; that is, suppose that the key size is
greater than the MAC size. Then, given a known M1 and MAC1, with MAC1 = C(K, M1), the cryptanalyst can perform MACj = C(Kj, M1) for

all possible key values Kj. At least one key is guaranteed to produce a match oMACj = MAC1. Note that a total of é(MACs will be

produced, but there are only 2"< 2k different MAC values. Thus, a number of keys will produce the correct MAC and the opponent has no

way of knowing which is the correct key. On average, a total of 2k/2n = 2(k-n) keys will produce a match. Thus, the opponent must iterate

the attack:
® Round1

Given: M1, MAC1 = C(K, M1)

Compute MACj = C(Ki, M) for all Zk keys
—

— (k1)

Number of matches

® Round?2

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

Given: M2, MAC2 = C(K, M2)
o ; (k-n))
Compute MACj = C(Kj, M2) for the 2 keys resulting from Round 1

—
Number of matches == 2(k-2X)

and so on. On average, a rounds will be needed ifk = a x n. For example, if an 80-bit key is used and the MAC is 32 bits long, then the first
round will produce about 248 possible keys. The second round will narrow the possible keys to about %6 possibilities. The third round

should produce only a single key, which must be the one used by the sender.

If the key length is less than or equal to the MAC length, then it is likely that a first round will produce a single match. It is possible that
more than one key will produce such a match, in which case the opponent would need to perform the same test on a new (message,
MAC) pair.

Thus, a brute-force attempt to discover the authentication key is no less effort and may be more effort than that required to discover a
decryption key of the same length. However, other attacks that do not require the discovery of the key are possible.

Consider the following MAC algorithm. Let M = (X1]|X2||...||Xm) be a message that is treated as a concatenation of 64-bit blocksXj. Then
define

o DD D,

C(K, M =E(K, D(M))

where $is the exclusive-OR (XOR) operation and the encryption algorithm is DES in electronic codebook mode. Thus, the key length

is 56 bits and the MAC length is 64 bits. If an opponent observes {M||C(K, M)}, a brute-force attempt to determineK will require at least 256
encryptions. But the opponent can attack the system by replacingX1 through Xm-1 with any desired valuesY1 through Ym-1 and
replacing Xm with Ym where Ym is calculated as follows:

[Page 333]

Ym=Y1 @Yz @ $Ym1 @D(M)

The opponent can now concatenate the new message, which consists of Y1 through Ym, with the original MAC to form a message that will
be accepted as authentic by the receiver. With this tactic, any message of length 64 x (m 1) bits can be fraudulently inserted.

Thus, in assessing the security of a MAC function, we need to consider the types of attacks that may be mounted against it. With that in
mind, let us state the requirements for the function. Assume that an opponent knows the MAC function C but does not know K. Then the
MAC function should satisfy the following requirements:

1. If an opponent observes M and C(K, M), it should be computationally infeasible for the opponent to construct a messagé/' such
that C(K, M") = C(K, M).

2. C(K, M) should be uniformly distributed in the sense that for randomly chosen messagesM and M', the probability that CK, M) =

CK, M) is Zn, where n is the number of bits in the MAC.

3. LetM' be equal to some known transformation onM. That is, M' = f(M). For example, f may involve inverting one or more

specific bits. In that case, Pr[C(K, M) = C(K, M")] = 2n.

The first requirement speaks to the earlier example, in which an opponent is able to construct a new message to match a given MAC, even
though the opponent does not know and does not learn the key. The second requirement deals with the need to thwart a brute-force attack

based on chosen plaintext. That is, if we assume that the opponent does not know K but does have access to the MAC function and can
present messages for MAC generation, then the opponent could try various messages until finding one that matches a given MAC. If the

()

MAC function exhibits uniform distribution, then a brute-force method would require, on average, attempts before finding a message

that fits a given MAC.

The final requirement dictates that the authentication algorithm should not be weaker with respect to certain parts or bits of the message
than others. If this were not the case, then an opponent who had M and CK, M) could attempt variations on M at the known "weak spots"
with a likelihood of early success at producing a new message that matched the old MAC.

Message Authentication Code Based on DES

The Data Authentication Algorithm, based on DES, has been one of the most widely used MACs for a number of years. The algorithm is
both a FIPS publication (FIPS PUB 113) and an ANSI standard (X9.17). However, as we discuss in Chapter 13, security weaknesses in
this algorithm have been discovered and it is being replaced by newer and stronger algorithms.

The algorithm can be defined as using the cipher block chaining (CBC) mode of operation of DES with an initialization vector
of zero. The data (e.g., message, record, file, or program) to be authenticated are grouped into contiguous 64-bit blocks: D1, D2,..., DN. If
necessary, the final block is padded on the right with zeroes to form a full 64-bit block. Using the DES encryption algorithm, E, and a

secret key, K, a data authentication code (DAC) is calculated as follows[figure 11.6):

[Page 334]

01 = E(K,D1)
2 = E(K, D2 ea'om

(@)
: = (K, D3 GE'.'oz])

(@]
N = E(K, DN $ONJJ)

Figure 11.6. Data Authentication Algorithm (FIPS PUB 113)

iView full size imaqei

Time = 1 Time = 2 Time =N —1 Time = &

i,
(64 hils) D; Dy-1 Dy

L}

K 138

156 hiis) C"'"""D A
¥ 3 I ¥]
). [

[Mrhlm s - -1 Un
'4-...—..1.,..—\..-'
D"

(16 1o 64 bits)

<

The DAC consists of either the entire block ON or the leftmostM bits of the block, with 16 ':—: M === 64,

K==1 EXT

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

K==1 ExT

[Page 334 (continued)]

11.4. Hash Functions

A hash value h is generated by a function H of the form
h=H(M)

where M is a variable-length message and Hi{1) is the fixed-length hash value. The hash value is appended to the message at the source
at a time when the message is assumed or known to be correct. The receiver authenticates that message by recompulti hash value.
Because the hash function itself is not considered to be secret, some means is required to protect the hash value (lFi ure 11.5).

We begin by examining the requirements for a hash function to be used for message authentication. Because hash functions are typically
quite complex, itis useful to examine some very simple hash functions to get a feel for the issues involved. We then look at several
approaches to hash function design.

[Page 335]

Requirements for a Hash Function

The purpose of a hash function is to produce a "fingerprint" of a file, message, or other block of data, To be useful for message
authentication, a hash function H must have the following properties (adapted from a list in [NECH93)):

1. Hcan be applied to a block of data of any size.
2. H produces a fixed-length output.
3. H(x) is relatively easy to compute for any givenx, making both hardware and software implementations practical.

4. For any given value h, it is computationally infeasible to findx such that Hf) = h. This is sometimes referred to in the literature
as the one-way property.

5. For any given block x, it is computationally infeasible to findy i x such that Hfy) = H(x). This is sometimes referred to as
weak collision resistance
6. lItis compuonally infeasible to find any pair (X, y) such that Hx) = H(y). This is sometimes referred to as strong collision
) 2
resistance.
2l Unfortunately, these terms are not used consistently. Alternate terms used in the literature include
one-way hash function: (properties 4 and 5);collision-resistant hash function: (properties 4, 5, and 6);

weak one-way hash function: (properties 4 and 5);strong one-way hash function: (properties 4, 5, and 6).
The reader must take care in reading the literature to determine the meaning of the particular terms used.

The first three properties are requirements for the practical application of a hash function to message authentication.

ossible {0 generate a
message given a code. This property is important if the authentication technique involves the use of a secret value _). The
secret value itself is not sent; however, if the hash function is not one way, an attacker can easily discover the secret value: If the attacker

The fourth property, the one-way property, states that it is easy to generate a code given a message but virtually im

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

can observe or intercept a transmission, the attacker obtains the message M and the hash codeC = H(SAB||M). The attacker then inverts

the hash function to obtain SAB||M = Hl(C). Because the attacker now has bothM and SAB||M, it is a trivial matter to recover SAB.

The fifth property guarantees that an alternative_me e hashing to the same value as a given message cannot be found. This prevents
forgery when an encrypted hash code is used 1 andfl). For these cases, the opponent can read the message and therefore
generate its hash code. However, because the opponent does not have the secret key, the opponent should not be able to alter the
message without detection. If this property were not true, an attacker would be capable of the following sequence: First, observe or
intercept a message plus its encrypted hash code; second, generate an unencrypted hash code from the message; third, generate an
alternate message with the same hash code.

The sixth property refers to how resistant the hash function is to a type of attack known as the birthday attack, which we examine shortly.

[Page 336]

Simple Hash Functions

All hash functions operate using the following general principles. The input (message, file, etc.) is viewed as a sequence af-bit blocks. The
input is processed one block at a time in an iterative fashion to produce an n-bit hash function.

One of the simplest hash functions is the bit-by-bit exclusive-OR (XOR) of every block. This can be expressed as follows:

Ci=hj1 $bi1 $ @ bim

where

Ci o < <

= ith bit of the hash code, 1==| == n

m = number of n-bit blocks in the input

bijj = ith bit injth block

@ = XOR operation

This operation produces a simple parity for each bit position and is known as a longitudinal redundancy check. It is reasonably effective for
random data as a data integrity check. Each n-bit hash value is equally likely. Thus, the probability that a data error will result in an

unchanged hash value is 2n. With more predictably formatted data, the function is less effective. For example, in most normal text files, the

high-order bit of each octet is always zero. So if a 128-bit hash value is used, instead of an effectiveness of 2128, the hash function on this

type of data has an effectiveness of 2112.

A simple way to improve matters is to perform a one-bit circular shift, or rotation, on the hash value after each block is processed. The
procedure can be summarized as follows:

1. Initially set the n-bit hash value to zero.

2. Process each successive n-bit block of data as follows:
a. Rotate the current hash value to the left by one bit.
b. XOR the block into the hash value.

This has the effect of "randomizing" the input more completely and overcoming any regularities that appear in the input.

illustrates these two types of hash functions for 16-bit hash values.

Figure 11.7. Two Simple Hash Functions
(This item is displayed on page 337 in the print version)

'

16 bits

v

k)

L/
V]
o

S

3N RN
R T

..-"..'"..-"/.-" "
- b I
R g
N i 4
4
o
i i I
rA T .
. a
i
j..l"..l"rl"
B
A A
4
=
~
___.-"
_.__.-"

IEEEEEEEEEEEEEER
XOR with 1-bit rotation to the right XOR of every 16-bit block

Although the second procedure provides a good measure of daja integrity, it is virtually useless for data security when an encrypted hash
code is used with a plaintext message, as in Eigures 11.54 andd. Given a message, it is an easy matter to produce a new message that
yields that hash code: Simply prepare the desired alternate message and then append an n-bit block that forces the new message plus

block to yield the desired hash code.

Although a simple XOR or rotated XOR (RXOR) is insufficient if only the hash code is_encrypted, you may still feel that such a simple
function could be useful when the message as well as the hash code are encrypted . But you must be careful. A technique
originally proposed by the National Bureau of Standards used the simple XOR applied to 64-bit blocks of the message and then an
encryption of the entire message that used the cipher block chaining (CBC) mode. We can define the scheme as follows: Given a
message consisting of a sequence of 64-bit blocks X1, X2,..., XN, define the hash codeC as the block-by-block XOR of all blocks and
append the hash code as the final block:

[Page 337]

C=XN+1=X1 $X2 $ $XN

Next, encrypt the entire message plus hash code, using CBC mode to produce the encrypted message Y1, Y2,..., YN+1. [JUEN85] points

out several ways in which the ciphertext of this message can be manipulated in such a way that it is not detectable by the hash code. For
example, by the definition of CBC (), we have

X Y, $D(K, Y1)
X =Yi1 $D(K, Yi)

XN+1 $
= YN D(K, YN+1)

[Page 338]

But XN+1 is the hash code:

wa €, D By,
=[v $D(K, Y1)] $ [Y1 $D(K, Y2)] @ $ [YN1 @ $ D (K, YN)]

Because the terms in the preceding equation can be XORed in any order, it follows that the hash code would not change if the ciphertext
blocks were permuted.

Birthday Attacks

this_is quite secure. For example, if an encrypted hash code C is transmitted
or‘), then an opponent would need to find anM' such that HM") = H(M)

ht think tha
to substitute another message and fool the receiver. On average, the o
matches the hash code of the intercepted message [see

Suppose that a 64-bit hash code is used. One mi
with the corresponding unencrypted message M j

ponent would have to try about 263 messages to find one that
, Equation (11.1)].

a different sort of attack is possible, based on the birthday paradox . Yuval proposed the following strategy
|

yuvard)

1. The source, A, is prepared o "sign" a message by appending the appropriate m-bit hash code and encrypting that hash code

with A's private key).

2. The opponent generates 2m/2 variations on the message, all of which convey essentially the same meaning. The opponent
prepares an equal number of messages, all of which are variations on the fraudulent message to be substituted for the real one.

3. The two sets of messages are compared to find a pair of messages that produces the same hash code. The probability of
success, by the birthday paradox, is greater than 0.5. If no match is found, additional valid and fraudulent messages are
generated until a match is made.

4. The opponent offers the valid variation to A for signature. This signature can then be attached to the fraudulent variation for
transmission to the intended recipient. Because the two variations have the same hash code, they will produce the same
signature; the opponent is assured of success even though the encryption key is not known.

Thus, if a 64-bit hash code is used, the level of effort required is only on the order of 232 [see Igggendix 115], Eguation (11.7i .

The generation of many variations that convey the same meaning is not difficult. For example, the opponent could insert a number of

"space-space-backspace” character pairs between words throughout the document. Variations could then be generated by substituting

" -backspace-space" in selected instances. Alternatively, the opponent could simply reword the message but retain the meaning.
igure 11.4 [DAVI8Y] provides an example.

Figure 11.8. A Letter in 237 Variations [DAVI8Y]

(This item is displayed on page 339 in the print version)

lView full size image|

Dear Antheony,

This letter is} . you r.n} {Hr.} {P.}
I am writing Lo introduce to you £ Alfred L

new r.'hief} + = {-:mr
Barton, the {nawly -n.ppnintad} {aar.l".n:r: jewellery buyer for tha

A S Eutﬂ'Pea.n} {diall'ezli } o { will take} T { r:-h.e }

Europe VviE10T has taken
respongibilicty for { il our interests in watches and jewellery
po ¥ the whale of jewallery and watches
. area aifard} BVErY } may nead
in the {:'-l:rg:i.q-n » Please { give him nll the help he needs
seak ¢u:} madern } 3 { Lop } .
ko '[Find the most i talAskE lines for the high end of che

empowerad

a.uthc-rized} to recelve on our behalf { s I.IEE]' of the

market, He is [
Specimeans

lutest} waktch and jewellery} = { } { limik }
: products, aub]ect to a .

newest Jewellery and watch M 1mim
of ten thousand dollars. He will {“r”} a signed copy of this { latter }
hold document
: : ; . : i ded
f of identity. A {“WEH
as proof of identity. An order with his signature, which is S ERehad
authorizaes ; above
a1 chas you to charge the cost to this company at the haad of Fice
full lavel F i
addre=ss. We { __}"} expact that our unlﬁu of arders will increase in

follewin = k
{ g} year and { e } that the new appointment will {

next hope prove

advantageous

an advantage} to both our companies.

The conclusion to be drawn from this is that the length of the hash code should be substantial. We discuss this further in .

[Page 339]

Block Chaining Techniques

A number of proposals have been made for hash functions based on using a cipher block chaining technique, but without the secret key.
One of the first such proposals was that of Rabin [RABI7d]. Divide a messageM into fixed-size blocks M1, M2,..., MN and use a symmetric
encryption system such as DES to compute the hash code G as follows:

Ho = initial value
Hj = E(Mj, Hi, Hi1)

G =HN

[Page 340]

This is similar to the CBC technique, but in this case there is no secret key. As with any hash code, this scheme is subject to the
birthday attack, and if the encryption algorithm is DES and only a 64-bit hash code is produced, then the system is vulnerable.

Furthermore, another version of the birthday attack can be used even if the opponent has access to only one message and its valid
signature and cannot obtain multiple signings. Here is the scenario; we assume that the opponent intercepts a message with a signature in
the form of an encrypted hash code and that the unencrypted hash code is m bits long:

1. Use the algorithm defined at the beginning of this subsection to calculate the unencrypted hash codes.

2. Construct any desired message in the formQ1, Q2,..., QN2.
3. Compute forHj = E(Qj, Hi1) for 1 E i i: (N 2).

4. Generate 2m/2 random blocks; for each block X, compute EK, HN2). Generate an additional in/Z random blocks; for each
block Y, compute D(Y, G), where D is the decryption function corresponding to E.

5. Based on the birthday paradox, with high probability there will be anX and Y such that E(X, HN2) = D(Y, G).

6. Form the message Q1, Q2,..., QN2, X, Y. This message has the hash codeG and therefore can be used with the intercepted
encrypted signature.

This form of attack is known as a lneet-in-the-middle attack]. A number of researchers have proposed refinements intended to
strengthen the basic block chaining approach. For example, Davies and Price [DAVI89] describe the following variation:

Hi = E(Mi, Hi1) $Hi1
Another variation, proposed in MEYE8{],
Hi = E(Hi1, Mi) $Mi

However, both of these schemes have been shown to be vulnerable to a variety of attacks [. More generally, it can be shown that
some form of birthday attack will succeed against any hash scheme involving the use of cipher block chaining without a secret key
provided that either the resulting hash code is small enough (e.g., 64 bits or less) or that a larger hash code can be decomposed into
independent subcodes [m.

Thus, atfention has been directed at finding other approaches to hashing. Many of these have also been shown to have weaknesses
d ITC99]. We examine two strong hash functions i# hapter 134.

& prcy | wexT

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

[Page 340 (continued)]

11.5. Security of Hash Functions and Macs

NEXT B

Just as with symmetric and public-key encryption, we can group attacks on hash functions and MACs into two categories: brute-force

attacks and cryptanalysis.

[Page 341]

Brute-Force Attacks

The nature of brute-force attacks differs somewhat for hash functions and MACs.

Hash Functions

The strength of a hash function against brute-force attacks depends solely on the length of the hash code produced by the algorithm.

Recall from our discussion of hash functions that there are three desirable properties:

® One-way: For any given codeh, it is computationally infeasible to findx such that Hk) = h.

® \weak collision resistance: For any given blockx, it is computationally infeasible to findy i x with Hfy) = H(x).

® Strong collision resistance: It is computationally infeasible to find any pair k&, y) such that H) = H(y).

For a hash code of length n, the level of effort required, as we have seen is proportional to the following:

One way
Weak collision resistance

Strong collision resistance

If strong collision resistance is required (and this is desirable for a general-p
strength of the hash code against brute-force attacks. Oorschot and Wiener

rpose S

2n/2

cure hash code), then the value 2n/2 determines the

VANO9

| presented a design for a $10 million collision

search machine for MD5, which has a 128-bit hash length, that could find a collision in 24 days. Thus a 128-bit code may be viewed as
inadequate. The next step up, if a hash code is treated as a sequence of 32 bits, is a 160-bit hash length. With a hash length of 160 bits,
the same search ma require over four thousand years to find a collision. However, even 160 bits is now considered weak. We

return to this topic in [Chapter 13.

Message Authentication Codes

A brute-force attack on a MAC is a more difficult undertaking because it requires known message-MAC pairs. Let us see why this is so. To
attack a hash code, we can proceed in the following way. Given a fixed message x with n-bit hash codeh = H(x), a brute-force method of
finding a collision is to pick a random bit string y and check if Hy) = H(x). The attacker can do this repeatedly off line. Whether an off-line
attack can be used on a MAC algorithm depends on the relative size of the key and the MAC.

To proceed, we need to state the desired security property of a MAC algorithm, which can be expressed as follows:

® Computation resistance: Given one or more text-MAC pairs i, C(K, Xij)], it is computationally infeasible to compute any

text-MAC pair [x, C(K, x)] for any new inputx # Xi.

In other words, the attacker would like to come up with the valid MAC code for a given message x. There are two lines of attack possible:
Attack the key space and attack the MAC value. We examine each of these in turn.

[Page 342]

If an attacker can determine the MAC key, then it is possible to generate a valid MAC value for any input Suppose the key size isk bits
and that the attacker has one known text-MAC pair. Then the attacker can compute the n-bit MAC on the known text for all possible keys.
At least one key is guaranteed to produce the correct MAC, namely, the valid key that was initially used to produce the known text-MAC

)) . k . .)
pair. This phase of the attack takes a level of effort proportional to 2" (that is, one operation for each of the 5 possible key values).
However, as was described earlier, because the MAC is a many-to-one mapping, there may be other keys that produce the correct value.
Thus, if more than one key is found to produce the correct value, additional text-MAC pairs must be tested. It can be shown that the level

of effort drops off rapidly with each additional text-MAC pair and that the overall level of effort is roughly 2k IMENEQY].
An attacker can also work on the MAC value without attempting to recover the key. Here, the objective is to generate a valid MAC value for
a given message or to find a message that matches a given MAC value. In either case, the level of effort is comparable to that for attacking

the one-way or weak collision resistant property of a hash code, or 2n. In the case of the MAC, the attack cannot be conducted off line
without further input; the attacker will require chosen text-MAC pairs or knowledge of the key.

To summarize, the level of effort for brute-force attack on a MAC algorithm can be expressed as min(2k, 2n). The assessment of strength
is similar to that for symmetric encryption algorithms. It would appear reasonable to require that the key length and MAC length satisfy a

relationship such as min(k, n) === N, where N is perhaps in the range of 128 bits.

Cryptanalysis

As with encryption algorithms, cryptanalytic attacks on hash functions and MAC algorithms seek to exploit some property of the algorithm
to perform some attack other than an exhaustive search. The way to measure the resistance of a hash or MAC algorithm to cryptanalysis
is to compare its strength to the effort required for a brute-force attack. That is, an ideal hash or MAC algorithm will require a cryptanalytic
effort greater than or equal to the brute-force effort.

Hash Functions

In recent years, there has been considerable effort, and some successes, in developing cryptanalytic attacks on hash functions. To
. This structure,

understand these, we need to look at the overall structure of a typr'ﬁalg_ﬁu‘ hash function, indicated in
referred to as an iterated hash function, was proposed by Merkle [MERK79, MERK8Y] and is the structure of most hash functions in use

today, including SHA and Whirlpool, which are discussed in[Chapter 14. The hash function takes an input message and partitions it intd
fixed-sized blocks of b bits each. If necessary, the final block is padded tob bits. The final block also includes the value of the total length of
the input to the hash function. The inclusion of the length makes the job of the opponent more difficult. Either the opponent must find two
messages of equal length that hash to the same value or two messages of differing lengths that, together with their length values, hash to

the same value.

[Page 343]

Figure 11.9. General Structure of Secure Hash Code

iViEW full size imaqei
¥y Y; ¥ia

b i]

LY & —ﬂ-i'—h- H = “« & @ —r—|
CVy CV, V4
IV = Initial value . = Number of input blocks
CV, = Chaining variable n = Length of hash code
¥, = ith input Mock fr = Length of input block
f = Compression algorithm

The hash algorithm involves repeated use of a compression function, f, that takes two inputs (am-bit input from the previous step, called
the chaining variable, and ab-bit block) and produces ann-bit output. At the start of hashing, the chaining variable has an initial value that
is specified as part of the algorithm. The final value of the chaining variable is the hash value. Often, b > n; hence the term compression.

The hash function can be summarized as follows:
CVp =1V =initial n-bit value

=f(CVi1, Yi1) 1 i:i 5 L

HM) =CVL

where the input to the hash function is a message M consisting of the blocks Yo, Y1,..., YL1.

The motivation for this iterative structure stems from the observation by Merkle [MERK8Y] and Damgard PAMG89] that if the compression

function is collision resistant, then so is the resultant iterated hash function. Therefore, the structure can be used to produce a secure
hash function to operate on a message of any length. The problem of designing a secure hash function reduces to that of designing a
collision-resistant compression function that operates on inputs of some fixed size.

BBl The converse is not necessarily true.

Cryptanalysis of hash functions focuses on the internal structure of f and is based on attempts to find efficient techniques for producing
collisions for a single execution of f. Once that is done, the attack must take into account the fixed value of IV. The attack on f depends on
exploiting its internal structure. Typically, as with symmetric block ciphers, f consists of a series of rounds of processing, so that the attack
involves analysis of the pattern of bit changes from round to round.

Keep in mind that for any hash function there must exist collisions, because we are mapping a message of length at least equal to twice

the block size b (because we must append a length field) into a hash code of lengtn, where b === n. What is required is that it is
computationally infeasible to find collisions.

[Page 344]

acks that have been mounted on hash functions are rather complex and beyond our scope here. For the interested reader,
OBBQEh and BELL91Y] are recommended.

Message Authentication Codes

There is much more variety in the structure of MACs than in hash functions, so it is difficult to generalize about the cryptanalysis of MACs.
Further, far less work has been done on developing such attacks. A useful recent survey of some methods for specific MACs is [PREN9{].

& prcy | wexT

" prey wEXT

[Page 344 (continued)]

11.6. Recommended Reading

IJUENBQ and bUENSZl provide a good background on message authentication, with a focus on ptographic MACs and hash
STINOZ ENE9

functions. Solid treatments of hash functions and message authentication codes are found in | and | . A good recent
survey is [PREN9Y.

UEN84 Jueneman, R.; Matyas, S.; and Meyer, C. "Message Authentication.'|EEE Communications Magazine,
September 1988.

UEN87 Jueneman, R. "Electronic Document Authentication."IEEE Network Magazine, April 1987.

ENE97 Menezes, A.; Oorshcot, P.; and Vanstone, S.Handbook of Applied Cryptography. Boca Raton, FL:
CRC Press, 1997.

PREN9Y Preneel, B. "The State of Cryptographic Hash Functions." Proceedings, EUROCRYPT '96, 1996;
published by Springer-Verlag.

STINOZ Stinson, D. Cryptography: Theory and Practice. Boca Raton, FL: CRC Press, 2002.

NEXT B

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

" prey wEXT

[Page 344 (continued)]

11.7. Key Terms, Review Questions, and Problems

Key Terms

Lrygtograghic checksur_rl

ash codg

ash functio

ash valug

Inessaqe authenticatiorl

Inessaqe authentication code (MAC{

essage diges

l)ne-wav hash functior{

Istronq collision resistancd

lﬂeak collision resistancé

Review Questions

111 What types of attacks are addressed by message authentication?

11.2
11.3

11.4

115
11.6
11.7
11.8
11.9
11.10

1111

Problems

111

11.2

11.3

What two levels of functionality comprise a message authentication or digital signature mechanism?

What are some approaches to producing message authentication?

When a combination of symmetric encryption and an error control code is used for message authentication,
in what order must the two functions be performed?

[Page 345]
What is a message authentication code?
What is the difference between a message authentication code and a one-way hash function?
In what ways can a hash value be secured so as to provide message authentication?
Is it necessary to recover the secret key in order to attack a MAC algorithm?
What characteristics are needed in a secure hash function?
What is the difference between weak and strong collision resistance?

What is the role of a compression function in a hash function?

If F is an error-detection function, either internal or external use will provide error-detection
capability. If any bit of the transmitted message is altered, this will be reflected in a mismatch of the received
FCS and the calculated FCS, whether the FCS function is performed inside or outside the encryption
function. Some codes also provide an error-correction capability. Depending on the nature of the function, if
one or a small number of bits is altered in transit, the error-correction code contains sufficient redundant
information to determine the errored bit or bits and correct them. Clearly, an error-correction code will provide
error correction capability when used external to the encryption function. Will it also provide this capability if
used internal to the encryption function?

The data authentication algorithm, described in , can be defined as using the cipher block
chaining (CBC) mode of operation of DES with an initialization vector of zero 1 . Show that the
same result can be produced using the cipher feedback mode.

The high-speed transport protocol XTP (Xpress Transfer Protocol) uses g_32-bit checksum function defined
as the concatenation of two_16-bit functions: XOR and RXOR, defined in Bection 11.4 as "two simple hash
functions" and illustrated in .

a. Wil this checksum detect all errors caused by an odd number of error bits? Explain.

11.4

115

11.6

11.7

b. Wil this checksum detect all errors caused by an even number of error bits? If not, characterize
the error patterns that will cause the checksum to fail.

c. Comment on the effectiveness of this function for use as a hash function for authentication.

a. Consider the Davies and Price hash code scheme described in and assume that
DES is used as the encryption algorithm:

Hi = Hi1 $ E(Mi, Hi1)

and recall the complementarity property of DES (Problem 3.14): If Y = E(K, X), thenY' = E(K, X').
Use this property to show how a message consisting of blocks M1, M2,..., MN can be altered
without altering its hash code.

b. Show that a similar attack will succeed against the scheme proposed inyIEYE8Y]:

Hi = Mj @ E(Hil, Mi)

a. Consider the following hash function. Messages are in the form of a sequence of decimal
numbers, M = (a1, a2,..., aj). The hash value h is calculated as

')
> a, |mod n
i=1

, for some predefi Does this hash function satisfy any of
the requirements for a hash function listed in [Section 11.4? Explain your answer.

[Page 346]

i
h = E{ﬁ,-jl mod n

b. Repeat part (a) for the hash function i=1

c. Calculate the hash function of part (b) forM = (189, 632, 900, 722, 349) anch = 989.

It is possible to use a hash function to construct a block cipher with a structure similar to DES. Because a
hash function is one way and a block cipher must be reversible (to decrypt), how is it possible?

Now consider the opposite problem: using an encryption algorithm to construct a one-way hash function.
Consider using RSA with a known key. Then process a message consisting of a sequence of blocks as
follows: Encrypt the first block, XOR the result with the second block and encrypt again, etc. Show that this
scheme is not secure by solving the following problem. Given a two-block message B1, B2, and its hash

RSAH(B1, B2) = RSA(RSA (Bl)$ B2)

Given an arbitrary block C1, choose C2 so that RSAH(C1, C2) = RSAH(B1, B2). Thus, the hash function
does not satisfy weak collision resistance.

11.8 Suppose H(m) is a collision resistant hash function that maps a message of arbitrary bit length into an-bit

hash value. Is it true that, for all messages x, x' withx i X', we have H) ¢ H(x)? Explain your answer.

e prey | NEXT B

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

K==1 ExT

[Page 346 (continued)]

Appendix 11A Mathematical Basis of the Birthday Attack

In this appendix, we derive the mathematical justification for the birthday attack. We begin with a related problem and then look at the
problem from which the name "birthday attack" is derived.

Related Problem

A general problem relating to hash functions is the following. Given a hash function H, with n possible outputs and a specific value H), if H
is applied to k random inputs, what must be the value ofk so that the probability that at least one inpuy satisfies H(y) = H(x) is 0.5?

For a single value of y, the probability that Hf) = H(x) is just 1/n. Conversely, the probability that Hy) iH(x) is [1 (1/n)]. If we generatek
random values of y, then the probability that none of them match is just the product of the probabilities that each individual value does not

match, or [1 (]Jn)]k. Thus, the probability that there is at least one match is 1 [1 (]d)]k.
The binomial theorem can be stated as follows:
k(k — 1) k(k — 1) (k — 2)

|:] —Eil':lj':Z'l — ka +T£IE— 21 i,
Fa r.

For very small values of a, this can be approximated as (1ka). Thus, the probability of at least one match is approximated as 1 [1 (:Inl)]k
P
Wt [1 (k/n)] = k/n. For a probability of 0.5, we havek = n/2.

In particular, for an m-bit hash code, the number of possible codes is 51 and the value ofk that produces a probability of one-half is

Equation 11-1

= A {m—1)

)

[Page 347]

The Birthday Paradox

The birthday paradox is often presented in elementary probability courses to demonstrate that probability results are sometimes
counterintuitive. The problem can be stated as follows: What is the minimum value of k such that the probability is greater than 0.5 that at
least two people in a group of k people have the same birthday? Ignore February 29 and assume that each birthday is equally likely. To
answer, let us define

P(n, k) = Pr[at least one duplicate ink items, with each item able to take on one of equally likely values between 1
and n]

Thus, we are looking for the smallest value of k such that P(365,k) === 0.5. It is easier first to derive the probability that there are no

=

duplicates, which we designate as Q(365, k). If k === 365, then it is impossible for all values to be different. So we assumek === 365. Now
consider the number of different ways, N, that we can havek values with no duplicates. We may choose any of the 365 values for the first
item, any of the remaining 364 numbers for the second item, and so on. Hence, the number of different ways is

Equation 11-2

N=27365 %364 X ...(365 -k + 1)

If we remove the restriction that there are no duplicates, then each item can be any of 365 values, and the total number of possibilities is

365k. So the probability of no duplicates is simply the fraction of sets of values that have no duplicates out of all possible sets of values:

3651/(365 — k)! 365!
Q(365, k) = { 7 A : ==
(365) (365 — k)1(365)F

and

Equation 11-3

365!
(365 — k)!(365)*

This function is plotted in . The probabilities may seem surprisingly large to anyone who has not considered the problem
before. Many people would guess that to have a probability greater than 0.5 that there is at least one duplicate, the number of people in
the group would have to be about 100. In fact, the number is 23, with P(365, 23) = 0.5073. For k = 100, the probability of at least one
duplicate is 0.9999997.

Figure 11.10. The Birthday Paradox
(This item is displayed on page 348 in the print version)

1.0 ——

0.9

0.8

0.7
0.6 /
0.5

.4

P(365, k)

0.3

0.2

0.1

0.0

Perhaps the reason that the result seems so surprising is that if you consider a particular person in a group, the probability that some other
person in the group has the same birthday is small. But the probability that we are concerned with is the probability thatany pair of people
in the group has the same birthday. In a group of 23, there are (23(23 1))/2 = 253 different pairs of people. Hence the high probabilities.

Useful Inequality

Before developing a generalization of the birthday problem, we derive an inequality that will be needed:

Equation 11-4

[L)yt forallx = 0

[Page 348]

illustrates the inequality. To see that the inequality holds, note that the lower line is the tangent toxeat x = 0. at The slope of

that line is just the derivative of ex atx=0;

fix) =™

Figure 11.11. A Useful Inequality

1.0

0.8

0.6

0.4

0.0 (1.2 0.4 0.6 (L8 1.0}

[Page 349]

The tangent is a straight line of the formax + b, witha = 1, and the tangent atx = 0 must equal e0 Thus, the tangent is the function (1x),

Pt
confirming the inequality of Equation (11.4). Further, note that for smallx, we have (1x) L eX.

The General Case of Duplications

The birthday problem can be generalized to the following problem: Given a random variable that is an integer with uniform distribution

between 1 and n and a selection ofk instances (k 5 n) of the random variable, what is the probability, P(, k), that there is at least one

duplicate? The bi is just the special case with n = 365. By the same reasoning as before, we have the following
generalization of Equation (11.3):

Equation 11-5

P(n,k) =1 —

We can rewrite as

nXxn—1)X ... XxX(hn—k+1)
H
n—-1 n-—2 n—k+l]
=1 — 4 oy
| A n n

Using the inequality of :
F[ﬂ,k} == 1 s [[ﬂ—'ll_r“:l % [ﬂ—z.l,-'uj - {ﬂ_ik_l]';“]l]

] = e L) +(in)+. . +((k-1)/n)]

o E—{k}il;.f;—l]],-“lu

Now let us pose the question: What value of k is required such that P, k) E 0.5? To satisfy the requirement, we have
rllllzz - 1 _ E:—{k.}{l::k—l::l:ll."?_rr
7 = CII.I!;H{.I'{—] 1)/2n
kX (k—1)

2n

In2 =

For large k, we can replacek x (k 1) bykz, and we get

Equation 11-6

k=V2(In2)n = 1.18Vn = Va

As a reality check, for n= 365, we get-lif = 1 s I 8 ::'{ ﬁ"'-"'r 36;1 = 2254 which is very close to the correct answer of 23.

We can now state the basis of the birthday attack in the following terms. Suppose we have a function H, with Zm possible outputs (i.e., an
m-bit output). If H is applied tok random inputs, what must be so that there is the probability of at least one duplicate [i.e.,
H(X) = H(y) for some inputsx, y)]? Using the approximation inEquation (11.6):

[Page 350]

Equation 11-7

k= ﬁ,lﬁ.-fﬁ — E"".-"l

Overlap between Two Sets

There is a problem related to the general case of duplications that is also of relevance for our discussions. The problem is this: Given an

integer random variable with uniform distribution between 1 and n and two sets ofk instances (k === n) of the random variable, what is the
probability, R(n, k), that the two sets are not disjoint; that is, what is the probability that there is at least one value found in both sets?

Let us call the two sets X and Y, with elements {x1, x2,..., Xk} and {y1, y2,..., Yk}, respectively. Given the value ofx1, the probability thaty] =
x1 is just 1/n, and therefore probability that does not matchxy is [1 (1/n)]. If we generate thek random values inY, the probability that none of

these values is equal to is [1 (1/n)]k. Thus, the probability that there is at least one match tox1 is 1 [1 (1/h)]k.

To proceed, let us make the assumption that all the elements of X are distinct. Ifn is large and ifk is also large (e.g., on the order of ,"”Iﬁ
), then this is a good approximation. In fact, there may be a few duplications, but most of the values will be distinct. With that assumption,
we can make the following derivation:

Pr[nomatchinYtox;]=|1——

"
1 kN k 1 |
Pr[no match in ¥ to X] = (1 i) = (] - =

NN ny 7 h e J

—
|

R(n, k) = Pr[at least one match in ¥Yto X] = 1

Using the inequality of Equation (11.4

R, k) > 1 (el/n)kz

R, K) > 1 (€2

Let us pose the question: What value ofk is required such that Rg, k) > 0.5? To satisfy the requirement, we have
b}
i Ep K-/
1/2 =1 — (e™*/)
2 = etin

In(2) = s

Equation 11-8

k= V{(In(2))n = 0.83Vn = va

We can state this in terms related to birthday attacks as follows. Suppose we have a function H, with 2m possible outputs (i.e., anm-bit
output). Apply H to k random inputs to produce the set X and again tok additional random inputs to produce the set Y. What must be the
value of k so that there is the probability of at least 0.5 that there is a match between the two sets (i.e., k{ = H(y) for some inputsx &= X,y

guation (11.8):

E Y)? Using the approximation i

M~ YR

k=1 ExT

" prey wEXT

[Page 351]

Chapter 12. Hash and MAC Algorithms

|12.1 Secure Hash Alqorithnl

SHA-512 Logid

EHA-SlZ Round Functior{

[12.2 Whirlpool

ll\lhirlpool Hash Structurd

Block Cipher

l:’erformance of Whirlpool

EMAC Design Ob'ectiveg
MAC Algorith
Security of HMAQ

h2.5 Recommended Reading and Web Sitesl

I12.6 Key Terms, Review Questions, and Problemsj

ey Termg
Review Questiong
Problemg

[Page 352]

Each of the messages, like each one he had ever read of Stern's commands, began with a number and ended
with a number or row of numbers. No efforts on the part of Mungo or any of his experts had been able to break
Stern's code, nor was there any clue as to what the preliminary number and those ultimate numbers signified.

Talking to Strange Men, Ruth Rendell

The Douglas Squirrel has a distinctive eating habit. It usually eats pine cones from the bottom end up. Partially
eaten cones can indicate the presence of these squirrels if they have been attacked from the bottom first. If,
instead, the cone has been eaten from the top end down, it is more likely to have been a crossbill finch that has
been doing the dining.

Squirrels: A Wildlife Handbook, Kim Long

Key Points

® \virtually all secure hash algorithms have the general structure shown i.

® The compression function used in secure hash algorithms falls into one of two categories: a function
specifically designed for the hash function or a symmetric block cipher. SHA and Whirlpool are examples of
these two approaches, respectively.

° Message authentication codes also fall into two categories; those based on the use of a secure hash
algorithm and those based on the use of a symmetric block cipher. HMAC and CMAC are examples of
these two approaches, respectively.

In this chapter, we look at important examples of both secure | ithms and message authentication codes (MACs). Most
important modern hash functions follow the basic structure of figure 11.9. This has proved to be a fundamentally sound structure, and
newer designs simply refine the structure and add to the hash code length. Within this basic structure, two approaches have been

followed in the design of the compression function, which is the basic building block of the hash function. Traditionally, most hash
functions that have achieved widespread use rely on a compression function specifically designed for the hash function. Typically, the
compression function makes use of modular arithmetic and logical binary operations. Another approach is to use a symmetric block
cipher as the compression function. In this chapter, we examine perhaps the most important example of each approach: the Secure
Hash Algorithm (SHA) and Whirlpool.

MACs also conveniently fall into two categories based on their fundamental building block. One popular approach is to use a hash
algorithm such as SHA as the core of the MAC algorithm. Another approach is to use a symmetric block cipher in a cipher block
chaining mode. Again, we look at perhaps the most important example of each approach: HMAC and CMAC.

[Page 353]

E=a wExT

12.1. Secure Hash Algorithm

[Page 353 (continued)]

NEXT B

The Secure Hash Algorithm (SHA) was developed by the National Institute of Standards and Technology (NIST) and published as a
federal information processing standard (FIPS 180) in 1993; a revised version was issued as FIPS 180-1 in 1995 and is generally referred
to as SHA-1. The actual standards document is entitled Secure Hash Standard. SHA is based on the hash functionMD4 and its design
closely models MD4. SHA-1 is also specified in RFC 3174, which essentially duplicates the material in FIPS 180-1, but adds a C code

implementation.

SHA-1 produces a hash value of 160 bits. In 2002, NIST produced a revised version of the standard, FIPS 180-2, t
versions of SHA, with hash value lengths of 256, 384, and 512 bits, known as SHA-256, SHA-384, and SHA-512 (|

hat defined three new

able 12.1). These new

versions have the same underlying structure and use the same types of modular arithmetic and logical binary operations as SHA-1. In
2005, NIST announced the intention to phase out approval of SHA-1 and move to a reliance on the other SHA versions by 2010. Shortly
thereafter, a research team described an attack in which two separate messages could be found that deliver the same SHA-1 hash using

269 operations, far fewer than the 90 operations previously thought needed to find a collision with an SHA-1 hashfVANGO0Y]. This result

should hasten the transition to the other versions of SHA.

Table 12.1. Comparison of SHA Parameters

SHA-1 SHA-256 SHA-384 SHA-512
Message digest size 160 256 384 512
Message size <264 <264 <2128 <2128
Block size 512 512 1024 1024
Word size 32 32 64 64
Number of steps 80 64 80 80
Security 80 128 192 256

Notes: 1. All sizes are measured in bits.

2n/2

2. Security refers to the fact that a birthday attack on a message digest of size n produces a collision with a workfactor of approximately

In this section, we provide a description of SHA-512. The other versions are quite similar.

SHA-512 Logic

The algorithm takes as input a message with a maximum length of less than 2128 bits and produces as output a 512-bit message digest.

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

The input is processed in 1024-bit blocks. depicts the overall processing of a message to produce a digest.

[Page 354]

Figure 12.1. Message Digest Generation Using SHA-512

iView full size imaqei

N o= 1024 bk
= L bitg - | 28 hits =
Message 1CH. .03 L
||] ||
I |] 1 I
1 1] 1]
1 1 1 1 i
1]]]]
I]]]]
|] I]]
|] I]]
1 1] 1 I
i i i i i
1 1 i 1 i
1 1] 1]
ba—— 1024 bitg ———slbe—— 1024 bilgy ——d :q— 1034 bats ——d
M, M: - My
124 24 124

H,

_ 512 Hy
[V = 2 _ g .
| F + F + » —_| F -
H[| O E'"L_J T e ”N -

hash
[t L

+ = wond-by-word addition mod 2

This follows the general structure depicted in. The processing consists of the following steps:

® Step 1: Append padding bits. The message is padded so that its length is congruent to 896 modulo 1024 [IengtfE 896
(mod 1024)]. Padding is always added, even if the message is already of the desired length. Thus, the number of padding bits
is in the range of 1 to 1024. The padding consists of a single 1-bit followed by the necessary number of 0-bits.

® Step 2: Append length. A block of 128 bits is appended to the message. This block is treated as an unsigned 128-bit integer
(most significant byte first) and contains the length of the original message (before the padding).

The outcome of the first two steps yields a message that is an integer multiple of 1024 bits in length. I, the
expanded message is represented as the sequence of 1024-bit blocks M1, M2,..., MN, so that the total length of the expanded
message is N x 1024 bits.

® Step 3: Initialize hash buffer. A 512-bit buffer is used to hold intermediate and final results of the hash function. The buffer
can be represented as eight 64-bit registers (a, b, c, d, e, f, g, h). These registers are initialized to the following 64-bit integers
(hexadecimal values):

a = 6A09E667F3BCC908

b = BB67AE8584CAA73B

¢ = 3C6EF372FE94F82B

¢ = AS4FF53A5F1D36F1

e = 510E527FADEG682D1

f=9B05688C2B3EGC1F

g = 1F83D9ABFB41BD6B

h = 5BEOCDI9137E2179

[Page 355]
These values are stored in big-endian format, which is the most significant byte of a word in the low-address (leftmost) byte
position. These words were obtained by taking the first sixty-four bits of the fractional parts of the square roots of the first eight
prime numbers.

Step 4: Process message_in 1024-bit (128-word) blocks. The_heart of the algorithm is a module that consists of 80 rounds;
this module is labeled F in Eigure 12.1. The logic is illustrated in

Figure 12.2. SHA-512 Processing of a Single 1024-Bit Block

*"‘ifr' Hi
Message
64
schedute | [@ | 4| . f ‘i:l hi
W K
- Round L

Fr i v Ty
EEEELER

w.' Kr
—h-[Round ¢

FA i Ty
T I A A

L

Wag Rg

Round 79

- +
-
- -
-
-
-
-
-+

)

Each round takes as input the 512-bit buffer value abcdefgh, and updates the contents of the buffer. At input to the first round,
the buffer has the value of the intermediate hash value, Hj-1. Each roundt makes use of a 64-bit valueWt derived from the
current 1024-bit block being processed (Mj) These values are derived using a message schedule described subsequently.

Each round also makes use of an additive constant Kt where O E t == 79 indicates one of the 80 rounds. These words
represent the first sixty-four bits of the fractional parts of the cube roots of the first eighty prime numbers. The constants provide
a "randomized" set of 64-bit patterns, which should eliminate any regularities in the input data.

The output of the eightieth round is added to the input to the first round Klj-1)to produce Hj. The addition is done independently

for each of the eight words in the buffer with each of the corresponding words in Hj-1 using addition modulo 264.

[Page 356]
® Step 5: Output. After all N 1024-bit blocks have been processed, the output from theNth stage is the 512-bit message digest.

We can summarize the behavior of SHA-512 as follows:

Ho =1V

Hi = SUMe4(Hi-1, abcdefghi)

MD =HN
where
v = initial value of the abcdefgh buffer, defined in step 3
abcdefghi = the output of the last round of processing of theith message block
N = the number of blocks in the message (including padding and length fields)
SUMe4

= Addition modulo 264 performed separately on each word of the pair of inputs

MD = final message digest value

SHA-512 Round Function

Let us look in more detail at the logic in each of the 80 steps of the processing of one 512-bit block (. Each round is defined by
the following set of equations:

512

T, =h+ Chle,f,g) + (D, ¢) + W + K,

v
|

(S°%a) + Maj(a, b, c)
- L+

— i1

= b

S i

=d + T

[

!
g

m e e m R TR
I

where
t
=step number; O ===t === 79
Ch(e, f,
(ef9 = (e AND) $(NOTe AND g) the conditional function: If ethenf else g
Maj(a, b,
3@.b.c) = (@AND b) $(a AND c) $ (b AND c) the function is true only of the majority (two or three) of the
arguments are true.
512 3 — o | e A0
(3:%) = ROTR*(a) ® ROTR*(a) ® ROTR®(a)

[Page 357]

($2%) = ROTRY(e) @ ROTR¥(e) @ ROTR*(¢)

- '

ROTRn(X) = circular right shift (rotation) of the 64-bit argumentx by n bits
Wt = a 64-bit word derived from the current 512-bit input block

Kt = a 64-bit additive constant

+ 64

= addition modulo 2

Figure 12.3. Elementary SHA-512 Operation (single round)

[a b c d €

Mayj

&)

-

L

-

P M S T e

T
d e
512 bils

-
B
-

|

=
)
L3

g h

&

Y

It remains to indicate how the 64-bit word values Wt are derived from the 1024-bit message. illustrates the mapping. The first
16 values of Wt are taken directly from the 16 words of the current block. The remaining values are defined as follows:

W, = a33(W_s) + W7 + o (Wi_is) + Wi_ys

o (x) = ROTR'(x) @ ROTR®(x) @ SHR'(x)
i “(x) = ROTR"(x) ® ROTR"{x) @ SHR"(x)

ROTRn(x) = circular right shift (rotation) of the 64-bit argumentx by n bits

SHRn(X) = left shift of the 64-bit argument x by n bits with paddingby zeros on the right

Figure 12.4. Creation of 80-word Input Sequence for SHA-512 Processing of Single Block
(This item is displayed on page 358 in the print version)

iViEW full size imaqei
- 1024 bits ——————= Wo W, W, Wy, Wi g Wi1s Wi Wi_a
| - |

Thus, in the first 16 steps of processing, the value of Wt is equal to the corresponding word in the message block. For the remaining 64
steps, the value of Wt consists of the circular left shift by one bit of the XOR of four of the preceding values of W, with two of those
values subjected to shift and rotate operations. This introduces a great deal of redundancy and interdependence into the message blocks
that are compressed, which complicates the task of finding a different message block that maps to the same compression function output.

[Page 358]

K==1 ExT

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

K==a wExT

[Page 358 (continued)]

12.2. Whirlpool

[Most of the material in this section originally appeared inBTAL Of].

In this section, we examine the hash function Whirlpool [BARROJ], one of whose designers is also co-inventor of Rijndael, adopted as the
Advanced Encryption Standard (AES) _\Whirlpool is one of only two hash functions endorsed by NESSIE (New European Schemes for

Signatures, Integrity, and Encryption). 2 The NESSIE project is a European Unionsponsored effort to put forward a portfolio of strong
cryptographic primitives of various types.

2 The other endorsed scheme consists of three variants of SHA: SHA-256, SHA-384, and SHA-512.

Whirlpool is based on the use of a block cipher for the compression function. As was mentioned in , there has traditionally been
little interest in the use of block-cipher-based hash functions because of the demonstrated security vulnerabilities of the structure. The
following are potential drawbacks:

1. Block ciphers do not possess the properties of randomizing functions. For example, they are invertible. This lack of randomness
may lead to weaknesses that can be exploited.

2. Block ciphers typically exhibit other regularities or weaknesses. For example, [MIYA9(] demonstrates how to compromise many
hash schemes based on properties of the underlying block cipher.

3. Typically, block-cipher-based hash functions are significantly slower than hash functions based on a compression function
specifically designed for the hash function.

4. A principal measure of the strength of a hash function is the length of the hash code in bits. For block-cipher-based hash codes,
proposed designs have a hash code length equal to either the cipher block length or twice the cipher block length.
Traditionally, cipher block length has been limited to 64 bits (e.g., DES, triple DES), resulting in a hash code of questionable
strength.

[Page 359]

However, since the adoption of AES, there has been renewed interested in developing a secure hash function based on a strong block
cipher and exhibiting good performance. Whirlpool is a block-cipher-based hash function intended to provide security and performance
that is comparable, if not better, than that found in non-block-cipher based hash functions, such as SHA. Whirlpool has the following
features:

1. The hash code length is 512 bits, equaling the longest hash code available with SHA.

2. The overall structure of the hash function is one that has been shown to be resistant to the usual attacks on block-cipher-based
hash codes.

3. The underlying block cipher is based on AES and is designed to provide for implementation in both software and hardware that
is both compact and exhibits good performance.

The design of Whirlpool sets the following security goals: Assume we take as hash result the value of any n-bit substring of the full
Whirlpool output.

® The expected workload of generating a collision is of the order of 2n/2 executions of Whirlpool.

® Given an n-bit value, the expected workload of finding a message that hashes to that value is of the order of 2executions of

file:///C:/DOCUME~1/antonio/IMPOST~1/Temp/Prentice.Hall.Cryptography.and.Network.Security.4th.Edition.Nov.2005.chm/0131873164/6991536.html

Whirlpool.

® Givena message and its n-bit hash result, the expected workload of finding a second message that hashes to the same value is

of the order of 2" executions of Whirlpool.

® |t is infeasible to detect systematic correlations between any linear combination of input bits and any linear combination of bits of
the hash result, or to predict what bits of the hash result will change value when certain input bits are flipped (this means
resistance against linear and differential attacks).

The designers assert their confidence that these goals have been met with a considerable safety margin. However, the goals are not
susceptible to a formal proof.

We begin with a discussion of the structure of the overall hash function, and then examine the block cipher used as the basic building
block.

Whirlpool Hash Structure

Background

The general iterated hash structure proposed by Merkle (is used in virtually all secure hash functions. However, as was
pointed out, there ifficulties in designing a truly secure iterated hash function when the compression function is a block ciphe,

Pre eel PREN933 performed a systematic analysis of block-cipher-based hash functions, using the model depicted i
i‘ In this model, the hash code length equals the cipher block length. Additional security problems are introduced and the analysis is
more difficult if the hash code length exceeds the cipher block length. Preneel devised 64 possibl