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Preface

Database management has evolved from a specialized computer application to a
central component of a modern computing environment, and, as a result, knowl-
edge about database systems has become an essential part of an education in com-
puter science. In this text, we present the fundamental concepts of database manage-
ment. These concepts include aspects of database design, database languages, and
database-system implementation.

This text is intended for a first course in databases at the junior or senior under-
graduate, or first-year graduate, level. In addition to basic material for a first course,
the text contains advanced material that can be used for course supplements, or as
introductory material for an advanced course.

We assume only a familiarity with basic data structures, computer organization,
and a high-level programming language such as Java, C, or Pascal. We present con-
cepts as intuitive descriptions, many of which are based on our running example of
a bank enterprise. Important theoretical results are covered, but formal proofs are
omitted. The bibliographical notes contain pointers to research papers in which re-
sults were first presented and proved, as well as references to material for further
reading. In place of proofs, figures and examples are used to suggest why a result is
true.

The fundamental concepts and algorithms covered in the book are often based
on those used in existing commercial or experimental database systems. Our aim is
to present these concepts and algorithms in a general setting that is not tied to one
particular database system. Details of particular commercial database systems are
discussed in Part 8, “Case Studies.”

In this fourth edition of Database System Concepts, we have retained the overall style
of the first three editions, while addressing the evolution of database management.
Several new chapters have been added to cover new technologies. Every chapter has
been edited, and most have been modified extensively. We shall describe the changes
in detail shortly.

Xv
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Organization

The text is organized in eight major parts, plus three appendices:

e Overview (Chapter 1). Chapter 1 provides a general overview of the nature

and purpose of database systems. We explain how the concept of a database
system has developed, what the common features of database systems are,
what a database system does for the user, and how a database system inter-
faces with operating systems. We also introduce an example database applica-
tion: a banking enterprise consisting of multiple bank branches. This example
is used as a running example throughout the book. This chapter is motiva-
tional, historical, and explanatory in nature.

Data models (Chapters 2 and 3). Chapter 2 presents the entity-relationship
model. This model provides a high-level view of the issues in database design,
and of the problems that we encounter in capturing the semantics of realistic
applications within the constraints of a data model. Chapter 3 focuses on the
relational data model, covering the relevant relational algebra and relational
calculus.

Relational databases (Chapters 4 through 7). Chapter 4 focuses on the most
influential of the user-oriented relational languages: SQL. Chapter 5 covers
two other relational languages, QBE and Datalog. These two chapters describe
data manipulation: queries, updates, insertions, and deletions. Algorithms
and design issues are deferred to later chapters. Thus, these chapters are suit-
able for introductory courses or those individuals who want to learn the basics
of database systems, without getting into the details of the internal algorithms
and structure.

Chapter 6 presents constraints from the standpoint of database integrity
and security; Chapter 7 shows how constraints can be used in the design of
a relational database. Referential integrity; mechanisms for integrity mainte-
nance, such as triggers and assertions; and authorization mechanisms are pre-
sented in Chapter 6. The theme of this chapter is the protection of the database
from accidental and intentional damage.

Chapter 7 introduces the theory of relational database design. The theory
of functional dependencies and normalization is covered, with emphasis on
the motivation and intuitive understanding of each normal form. The overall
process of database design is also described in detail.

Object-based databases and XML (Chapters 8 through 10). Chapter 8 covers
object-oriented databases. It introduces the concepts of object-oriented pro-
gramming, and shows how these concepts form the basis for a data model.
No prior knowledge of object-oriented languages is assumed. Chapter 9 cov-
ers object-relational databases, and shows how the SQL:1999 standard extends
the relational data model to include object-oriented features, such as inheri-
tance, complex types, and object identity.
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Chapter 10 covers the XML standard for data representation, which is see-
ing increasing use in data communication and in the storage of complex data
types. The chapter also describes query languages for XML.

Data storage and querying (Chapters 11 through 14). Chapter 11 deals with
disk, file, and file-system structure, and with the mapping of relational and
object data to a file system. A variety of data-access techniques are presented
in Chapter 12, including hashing, B*-tree indices, and grid file indices. Chap-
ters 13 and 14 address query-evaluation algorithms, and query optimization
based on equivalence-preserving query transformations.

These chapters provide an understanding of the internals of the storage and
retrieval components of a database.

Transaction management (Chapters 15 through 17). Chapter 15 focuses on
the fundamentals of a transaction-processing system, including transaction
atomicity, consistency, isolation, and durability, as well as the notion of serial-
izability.

Chapter 16 focuses on concurrency control and presents several techniques
for ensuring serializability, including locking, timestamping, and optimistic
(validation) techniques. The chapter also covers deadlock issues. Chapter 17
covers the primary techniques for ensuring correct transaction execution de-
spite system crashes and disk failures. These techniques include logs, shadow
pages, checkpoints, and database dumps.

Database system architecture (Chapters 18 through 20). Chapter 18 covers
computer-system architecture, and describes the influence of the underlying
computer system on the database system. We discuss centralized systems,
client—server systems, parallel and distributed architectures, and network
types in this chapter. Chapter 19 covers distributed database systems, revis-
iting the issues of database design, transaction management, and query eval-
uation and optimization, in the context of distributed databases. The chap-
ter also covers issues of system availability during failures and describes the
LDAP directory system.

Chapter 20, on parallel databases explores a variety of parallelization tech-
niques, including I/0 parallelism, interquery and intraquery parallelism, and
interoperation and intraoperation parallelism. The chapter also describes
parallel-system design.

Other topics (Chapters 21 through 24). Chapter 21 covers database appli-
cation development and administration. Topics include database interfaces,
particularly Web interfaces, performance tuning, performance benchmarks,
standardization, and database issues in e-commerce. Chapter 22 covers query-
ing techniques, including decision support systems, and information retrieval.
Topics covered in the area of decision support include online analytical pro-
cessing (OLAP) techniques, SQL:1999 support for OLAP, data mining, and data
warehousing. The chapter also describes information retrieval techniques for
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querying textual data, including hyperlink-based techniques used in Web
search engines.

Chapter 23 covers advanced data types and new applications, including
temporal data, spatial and geographic data, multimedia data, and issues in the
management of mobile and personal databases. Finally, Chapter 24 deals with
advanced transaction processing. We discuss transaction-processing monitors,
high-performance transaction systems, real-time transaction systems, and
transactional workflows.

o Case studies (Chapters 25 through 27). In this part we present case studies of
three leading commercial database systems, including Oracle, IBM DB2, and
Microsoft SQL Server. These chapters outline unique features of each of these
products, and describe their internal structure. They provide a wealth of in-
teresting information about the respective products, and help you see how the
various implementation techniques described in earlier parts are used in real
systems. They also cover several interesting practical aspects in the design of
real systems.

e Online appendices. Although most new database applications use either the
relational model or the object-oriented model, the network and hierarchical
data models are still in use. For the benefit of readers who wish to learn about
these data models, we provide appendices describing the network and hier-
archical data models, in Appendices A and B respectively; the appendices are
available only online (http://www.bell-labs.com/topic/books/db-book).

Appendix C describes advanced relational database design, including the
theory of multivalued dependencies, join dependencies, and the project-join
and domain-key normal forms. This appendix is for the benefit of individuals
who wish to cover the theory of relational database design in more detail, and
instructors who wish to do so in their courses. This appendix, too, is available
only online, on the Web page of the book.

The Fourth Edition

The production of this fourth edition has been guided by the many comments and
suggestions we received concerning the earlier editions, by our own observations
while teaching at IIT Bombay, and by our analysis of the directions in which database
technology is evolving.

Our basic procedure was to rewrite the material in each chapter, bringing the older
material up to date, adding discussions on recent developments in database technol-
ogy, and improving descriptions of topics that students found difficult to understand.
Each chapter now has a list of review terms, which can help you review key topics
covered in the chapter. We have also added a tools section at the end of most chap-
ters, which provide information on software tools related to the topic of the chapter.
We have also added new exercises, and updated references.

We have added a new chapter covering XML, and three case study chapters cov-
ering the leading commercial database systems, including Oracle, IBM DB2, and Mi-
crosoft SQL Server.
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We have organized the chapters into several parts, and reorganized the contents
of several chapters. For the benefit of those readers familiar with the third edition,
we explain the main changes here:

o Entity-relationship model. We have improved our coverage of the entity-

relationship (E-R) model. More examples have been added, and some changed,
to give better intuition to the reader. A summary of alternative E-R notations
has been added, along with a new section on UML.

Relational databases. Our coverage of SQL in Chapter 4 now references the
SQL:1999 standard, which was approved after publication of the third edition.
SQL coverage has been significantly expanded to include the with clause, ex-
panded coverage of embedded SQL, and coverage of ODBC and JDBC whose
usage has increased greatly in the past few years. Coverage of Quel has been
dropped from Chapter 5, since it is no longer in wide use. Coverage of QBE
has been revised to remove some ambiguities and to add coverage of the QBE
version used in the Microsoft Access database.

Chapter 6 now covers integrity constraints and security. Coverage of se-
curity has been moved to Chapter 6 from its third-edition position of Chap-
ter 19. Chapter 6 also covers triggers. Chapter 7 covers relational-database
design and normal forms. Discussion of functional dependencies has been
moved into Chapter 7 from its third-edition position of Chapter 6. Chapter
7 has been significantly rewritten, providing several short-cut algorithms for
dealing with functional dependencies and extended coverage of the overall
database design process. Axioms for multivalued dependency inference, PJNF
and DKNF, have been moved into an appendix.

Object-based databases. Coverage of object orientation in Chapter 8 has been
improved, and the discussion of ODMG updated. Object-relational coverage in
Chapter 9 has been updated, and in particular the SQL:1999 standard replaces
the extended SQL used in the third edition.

XML. Chapter 10, covering XML, is a new chapter in the fourth edition.

Storage, indexing, and query processing. Coverage of storage and file struc-
tures, in Chapter 11, has been updated; this chapter was Chapter 10 in the
third edition. Many characteristics of disk drives and other storage mecha-
nisms have changed greatly in the past few years, and our coverage has been
correspondingly updated. Coverage of RAID has been updated to reflect tech-
nology trends. Coverage of data dictionaries (catalogs) has been extended.

Chapter 12, on indexing, now includes coverage of bitmap indices; this
chapter was Chapter 11 in the third edition. The B"-tree insertion algorithm
has been simplified, and pseudocode has been provided for search. Parti-
tioned hashing has been dropped, since it is not in significant use.

Our treatment of query processing has been reorganized, with the earlier
chapter (Chapter 12 in the third edition) split into two chapters, one on query
processing (Chapter 13) and another on query optimization (Chapter 14). All
details regarding cost estimation and query optimization have been moved
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to Chapter 14, allowing Chapter 13 to concentrate on query processing algo-
rithms. We have dropped several detailed (and tedious) formulae for calcu-
lating the exact number of I/O operations for different operations. Chapter 14
now has pseudocode for optimization algorithms, and new sections on opti-
mization of nested subqueries and on materialized views.

Transaction processing. Chapter 15, which provides an introduction to trans-
actions, has been updated; this chapter was numbered Chapter 13 in the third
edition. Tests for view serializability have been dropped.

Chapter 16, on concurrency control, includes a new section on implemen-
tation of lock managers, and a section on weak levels of consistency, which
was in Chapter 20 of the third edition. Concurrency control of index structures
has been expanded, providing details of the crabbing protocol, which is a sim-
pler alternative to the B-link protocol, and next-key locking to avoid the phan-
tom problem. Chapter 17, on recovery, now includes coverage of the ARIES
recovery algorithm. This chapter also covers remote backup systems for pro-
viding high availability despite failures, an increasingly important feature in
“24 x 77 applications.

As in the third edition, instructors can choose between just introducing
transaction-processing concepts (by covering only Chapter 15), or offering de-
tailed coverage (based on Chapters 15 through 17).

Database system architectures. Chapter 18, which provides an overview of
database system architectures, has been updated to cover current technology;
this was Chapter 16 in the third edition. The order of the parallel database
chapter and the distributed database chapters has been flipped. While the cov-
erage of parallel database query processing techniques in Chapter 20
(which was Chapter 16 in the third edition) is mainly of interest to those who
wish to learn about database internals, distributed databases, now covered in
Chapter 19, is a topic that is more fundamental; it is one that anyone dealing
with databases should be familiar with.

Chapter 19 on distributed databases has been significantly rewritten, to re-
duce the emphasis on naming and transparency and to increase coverage of
operation during failures, including concurrency control techniques to pro-
vide high availability. Coverage of three-phase commit protocol has been ab-
breviated, as has distributed detection of global deadlocks, since neither is
used much in practice. Coverage of query processing issues in heterogeneous
databases has been moved up from Chapter 20 of the third edition. There is
a new section on directory systems, in particular LDAP, since these are quite
widely used as a mechanism for making information available in a distributed
setting.

Other topics. Although we have modified and updated the entire text, we
concentrated our presentation of material pertaining to ongoing database re-
search and new database applications in four new chapters, from Chapter 21
to Chapter 24.
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Chapter 21 is new in the fourth edition and covers application develop-
ment and administration. The description of how to build Web interfaces to
databases, including servlets and other mechanisms for server-side scripting,
is new. The section on performance tuning, which was earlier in Chapter 19,
has new material on the famous 5-minute rule and the 1-minute rule, as well
as some new examples. Coverage of materialized view selection is also new.
Coverage of benchmarks and standards has been updated. There is a new sec-
tion on e-commerce, focusing on database issues in e-commerce, and a new
section on dealing with legacy systems.

Chapter 22, which covers advanced querying and information retrieval,
includes new material on OLAP, particulary on SQL:1999 extensions for data
analysis. Coverage of data warehousing and data mining has also been ex-
tended greatly. Coverage of information retrieval has been significantly ex-
tended, particulary in the area of Web searching. Earlier versions of this ma-
terial were in Chapter 21 of the third edition.

Chapter 23, which covers advanced data types and new applications, has
material on temporal data, spatial data, multimedia data, and mobile data-
bases. This material is an updated version of material that was in Chapter 21
of the third edition. Chapter 24, which covers advanced transaction process-
ing, contains updated versions of sections on TP monitors, workflow systems,
main-memory and real-time databases, long-duration transactions, and trans-
action management in multidatabases, which appeared in Chapter 20 of the
third edition.

Case studies. The case studies covering Oracle, IBM DB2 and Microsoft SQL
Server are new to the fourth edition. These chapters outline unique features
of each of these products, and describe their internal structure.

Instructor’s Note

The book contains both basic and advanced material, which might not be covered in
a single semester. We have marked several sections as advanced, using the symbol
“xx”. These sections may be omitted if so desired, without a loss of continuity.

It is possible to design courses by using various subsets of the chapters. We outline
some of the possibilities here:

e Chapter 5 can be omitted if students will not be using QBE or Datalog as part

of the course.

o If object orientation is to be covered in a separate advanced course, Chapters

8 and 9, and Section 11.9, can be omitted. Alternatively, they could constitute
the foundation of an advanced course in object databases.

e Chapter 10 (XML) and Chapter 14 (query optimization) can be omitted from

an introductory course.

e Both our coverage of transaction processing (Chapters 15 through 17) and our

coverage of database-system architecture (Chapters 18 through 20) consist of
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an overview chapter (Chapters 15 and 18, respectively), followed by chap-
ters with details. You might choose to use Chapters 15 and 18, while omitting
Chapters 16, 17, 19, and 20, if you defer these latter chapters to an advanced
course.

e Chapters 21 through 24 are suitable for an advanced course or for self-study
by students, although Section 21.1 may be covered in a first database course.

Model course syllabi, based on the text, can be found on the Web home page of the
book (see the following section).

Web Page and Teaching Supplements

A Web home page for the book is available at the URL:
http://www.bell-labs.com/topic/books/db-book

The Web page contains:

Slides covering all the chapters of the book

e Answers to selected exercises

The three appendices

An up-to-date errata list

e Supplementary material contributed by users of the book

A complete solution manual will be made available only to faculty. For more infor-
mation about how to get a copy of the solution manual, please send electronic mail to
customer.service@mcgraw-hill.com. In the United States, you may call 800-338-3987.
The McGraw-Hill Web page for this book is

http://www.mhhe.com/silberschatz

Contacting Us and Other Users

We provide a mailing list through which users of our book can communicate among
themselves and with us. If you wish to be on the list, please send a message to
db-book @research.bell-labs.com, include your name, affiliation, title, and electronic
mail address.

We have endeavored to eliminate typos, bugs, and the like from the text. But, as in
new releases of software, bugs probably remain; an up-to-date errata list is accessible
from the book’s home page. We would appreciate it if you would notify us of any
errors or omissions in the book that are not on the current list of errata.

We would be glad to receive suggestions on improvements to the books. We also
welcome any contributions to the book Web page that could be of use to other read-
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ers, such as programming exercises, project suggestions, online labs and tutorials,
and teaching tips.

E-mail should be addressed to db-book@research.bell-labs.com. Any other cor-
respondence should be sent to Avi Silberschatz, Bell Laboratories, Room 2T-310, 600
Mountain Avenue, Murray Hill, NJ 07974, USA.
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Introduction

A database-management system (DBMS) is a collection of interrelated data and a
set of programs to access those data. The collection of data, usually referred to as the
database, contains information relevant to an enterprise. The primary goal of a DBMS
is to provide a way to store and retrieve database information that is both convenient
and efficient.

Database systems are designed to manage large bodies of information. Manage-
ment of data involves both defining structures for storage of information and pro-
viding mechanisms for the manipulation of information. In addition, the database
system must ensure the safety of the information stored, despite system crashes or
attempts at unauthorized access. If data are to be shared among several users, the
system must avoid possible anomalous results.

Because information is so important in most organizations, computer scientists
have developed a large body of concepts and techniques for managing data. These
concepts and technique form the focus of this book. This chapter briefly introduces
the principles of database systems.

1.1 Database System Applications

Databases are widely used. Here are some representative applications:

e Banking: For customer information, accounts, and loans, and banking transac-
tions.

o Airlines: For reservations and schedule information. Airlines were among the
first to use databases in a geographically distributed manner—terminals sit-
uated around the world accessed the central database system through phone
lines and other data networks.

o Universities: For student information, course registrations, and grades.
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o Credit card transactions: For purchases on credit cards and generation of month-
ly statements.

o Telecommunication: For keeping records of calls made, generating monthly bills,
maintaining balances on prepaid calling cards, and storing information about
the communication networks.

e Finance: For storing information about holdings, sales, and purchases of finan-
cial instruments such as stocks and bonds.

e Sales: For customer, product, and purchase information.

o Manufacturing: For management of supply chain and for tracking production
of items in factories, inventories of items in warehouses/stores, and orders for
items.

e Human resources: For information about employees, salaries, payroll taxes and
benefits, and for generation of paychecks.

As the list illustrates, databases form an essential part of almost all enterprises today.

Over the course of the last four decades of the twentieth century, use of databases
grew in all enterprises. In the early days, very few people interacted directly with
database systems, although without realizing it they interacted with databases in-
directly —through printed reports such as credit card statements, or through agents
such as bank tellers and airline reservation agents. Then automated teller machines
came along and let users interact directly with databases. Phone interfaces to com-
puters (interactive voice response systems) also allowed users to deal directly with
databases—a caller could dial a number, and press phone keys to enter information
or to select alternative options, to find flight arrival /departure times, for example, or
to register for courses in a university.

The internet revolution of the late 1990s sharply increased direct user access to
databases. Organizations converted many of their phone interfaces to databases into
Web interfaces, and made a variety of services and information available online. For
instance, when you access an online bookstore and browse a book or music collec-
tion, you are accessing data stored in a database. When you enter an order online,
your order is stored in a database. When you access a bank Web site and retrieve
your bank balance and transaction information, the information is retrieved from the
bank’s database system. When you access a Web site, information about you may be
retrieved from a database, to select which advertisements should be shown to you.
Furthermore, data about your Web accesses may be stored in a database.

Thus, although user interfaces hide details of access to a database, and most people
are not even aware they are dealing with a database, accessing databases forms an
essential part of almost everyone’s life today.

The importance of database systems can be judged in another way—today, data-
base system vendors like Oracle are among the largest software companies in the
world, and database systems form an important part of the product line of more
diversified companies like Microsoft and IBM.
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1.2 Database Systems versus File Systems

Consider part of a savings-bank enterprise that keeps information about all cus-
tomers and savings accounts. One way to keep the information on a computer is
to store it in operating system files. To allow users to manipulate the information, the
system has a number of application programs that manipulate the files, including

e A program to debit or credit an account
e A program to add a new account
e A program to find the balance of an account

e A program to generate monthly statements

System programmers wrote these application programs to meet the needs of the
bank.

New application programs are added to the system as the need arises. For exam-
ple, suppose that the savings bank decides to offer checking accounts. As a result,
the bank creates new permanent files that contain information about all the checking
accounts maintained in the bank, and it may have to write new application programs
to deal with situations that do not arise in savings accounts, such as overdrafts. Thus,
as time goes by, the system acquires more files and more application programs.

This typical file-processing system is supported by a conventional operating sys-
tem. The system stores permanent records in various files, and it needs different
application programs to extract records from, and add records to, the appropriate
files. Before database management systems (DBMSs) came along, organizations usu-
ally stored information in such systems.

Keeping organizational information in a file-processing system has a number of
major disadvantages:

e Data redundancy and inconsistency. Since different programmers create the
files and application programs over a long period, the various files are likely
to have different formats and the programs may be written in several pro-
gramming languages. Moreover, the same information may be duplicated in
several places (files). For example, the address and telephone number of a par-
ticular customer may appear in a file that consists of savings-account records
and in a file that consists of checking-account records. This redundancy leads
to higher storage and access cost. In addition, it may lead to data inconsis-
tency; that is, the various copies of the same data may no longer agree. For
example, a changed customer address may be reflected in savings-account
records but not elsewhere in the system.

o Difficulty in accessing data. Suppose that one of the bank officers needs to
find out the names of all customers who live within a particular postal-code
area. The officer asks the data-processing department to generate such a list.
Because the designers of the original system did not anticipate this request,
there is no application program on hand to meet it. There is, however, an ap-
plication program to generate the list of all customers. The bank officer has
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now two choices: either obtain the list of all customers and extract the needed
information manually or ask a system programmer to write the necessary
application program. Both alternatives are obviously unsatisfactory. Suppose
that such a program is written, and that, several days later, the same officer
needs to trim that list to include only those customers who have an account
balance of $10,000 or more. As expected, a program to generate such a list does
not exist. Again, the officer has the preceding two options, neither of which is
satisfactory.

The point here is that conventional file-processing environments do not al-
low needed data to be retrieved in a convenient and efficient manner. More
responsive data-retrieval systems are required for general use.

Data isolation. Because data are scattered in various files, and files may be in
different formats, writing new application programs to retrieve the appropri-
ate data is difficult.

Integrity problems. The data values stored in the database must satisfy cer-
tain types of consistency constraints. For example, the balance of a bank ac-
count may never fall below a prescribed amount (say, $25). Developers enforce
these constraints in the system by adding appropriate code in the various ap-
plication programs. However, when new constraints are added, it is difficult
to change the programs to enforce them. The problem is compounded when
constraints involve several data items from different files.

Atomicity problems. A computer system, like any other mechanical or elec-
trical device, is subject to failure. In many applications, it is crucial that, if a
failure occurs, the data be restored to the consistent state that existed prior to
the failure. Consider a program to transfer $50 from account A to account B.
If a system failure occurs during the execution of the program, it is possible
that the $50 was removed from account A but was not credited to account B,
resulting in an inconsistent database state. Clearly, it is essential to database
consistency that either both the credit and debit occur, or that neither occur.
That is, the funds transfer must be atomic—it must happen in its entirety or
not at all. It is difficult to ensure atomicity in a conventional file-processing
system.

Concurrent-access anomalies. For the sake of overall performance of the sys-
tem and faster response, many systems allow multiple users to update the
data simultaneously. In such an environment, interaction of concurrent up-
dates may result in inconsistent data. Consider bank account A, containing
$500. If two customers withdraw funds (say $50 and $100 respectively) from
account A at about the same time, the result of the concurrent executions may
leave the account in an incorrect (or inconsistent) state. Suppose that the pro-
grams executing on behalf of each withdrawal read the old balance, reduce
that value by the amount being withdrawn, and write the result back. If the
two programs run concurrently, they may both read the value $500, and write
back $450 and $400, respectively. Depending on which one writes the value
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last, the account may contain either $450 or $400, rather than the correct value
of $350. To guard against this possibility, the system must maintain some form
of supervision. But supervision is difficult to provide because data may be
accessed by many different application programs that have not been coordi-
nated previously.

e Security problems. Not every user of the database system should be able to
access all the data. For example, in a banking system, payroll personnel need
to see only that part of the database that has information about the various
bank employees. They do not need access to information about customer ac-
counts. But, since application programs are added to the system in an ad hoc
mannet, enforcing such security constraints is difficult.

These difficulties, among others, prompted the development of database systems.
In what follows, we shall see the concepts and algorithms that enable database sys-
tems to solve the problems with file-processing systems. In most of this book, we
use a bank enterprise as a running example of a typical data-processing application
found in a corporation.

1.3 View of Data

A database system is a collection of interrelated files and a set of programs that allow
users to access and modify these files. A major purpose of a database system is to
provide users with an abstract view of the data. That is, the system hides certain
details of how the data are stored and maintained.

1.3.1 Data Abstraction

For the system to be usable, it must retrieve data efficiently. The need for efficiency
has led designers to use complex data structures to represent data in the database.
Since many database-systems users are not computer trained, developers hide the
complexity from users through several levels of abstraction, to simplify users” inter-
actions with the system:

e Physical level. The lowest level of abstraction describes how the data are actu-
ally stored. The physical level describes complex low-level data structures in
detail.

e Logical level. The next-higher level of abstraction describes what data are
stored in the database, and what relationships exist among those data. The
logical level thus describes the entire database in terms of a small number
of relatively simple structures. Although implementation of the simple struc-
tures at the logical level may involve complex physical-level structures, the
user of the logical level does not need to be aware of this complexity. Database
administrators, who must decide what information to keep in the database,
use the logical level of abstraction.
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e View level. The highest level of abstraction describes only part of the entire
database. Even though the logical level uses simpler structures, complexity
remains because of the variety of information stored in a large database. Many
users of the database system do not need all this information; instead, they
need to access only a part of the database. The view level of abstraction exists
to simplify their interaction with the system. The system may provide many
views for the same database.

Figure 1.1 shows the relationship among the three levels of abstraction.

An analogy to the concept of data types in programming languages may clarify
the distinction among levels of abstraction. Most high-level programming languages
support the notion of a record type. For example, in a Pascal-like language, we may
declare a record as follows:

type customer = record
customer-id : string;
customer-name : string;
customer-street : string;
customer-city : string;
end;

This code defines a new record type called customer with four fields. Each field has
a name and a type associated with it. A banking enterprise may have several such
record types, including

e account, with fields account-number and balance

o employee, with fields employee-name and salary

At the physical level, a customer, account, or employee record can be described as a
block of consecutive storage locations (for example, words or bytes). The language

view level

view 1 view 2 cee view n

logical
level
|
physical
level

Figure 1.1 The three levels of data abstraction.
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compiler hides this level of detail from programmers. Similarly, the database system
hides many of the lowest-level storage details from database programmers. Database
administrators, on the other hand, may be aware of certain details of the physical
organization of the data.

At the logical level, each such record is described by a type definition, as in the
previous code segment, and the interrelationship of these record types is defined as
well. Programmers using a programming language work at this level of abstraction.
Similarly, database administrators usually work at this level of abstraction.

Finally, at the view level, computer users see a set of application programs that
hide details of the data types. Similarly, at the view level, several views of the database
are defined, and database users see these views. In addition to hiding details of the
logical level of the database, the views also provide a security mechanism to prevent
users from accessing certain parts of the database. For example, tellers in a bank see
only that part of the database that has information on customer accounts; they cannot
access information about salaries of employees.

1.3.2 Instances and Schemas

Databases change over time as information is inserted and deleted. The collection of
information stored in the database at a particular moment is called an instance of the
database. The overall design of the database is called the database schema. Schemas
are changed infrequently, if at all.

The concept of database schemas and instances can be understood by analogy to
a program written in a programming language. A database schema corresponds to
the variable declarations (along with associated type definitions) in a program. Each
variable has a particular value at a given instant. The values of the variables in a
program at a point in time correspond to an instance of a database schema.

Database systems have several schemas, partitioned according to the levels of ab-
straction. The physical schema describes the database design at the physical level,
while the logical schema describes the database design at the logical level. A database
may also have several schemas at the view level, sometimes called subschemas, that
describe different views of the database.

Of these, the logical schema is by far the most important, in terms of its effect on
application programs, since programmers construct applications by using the logical
schema. The physical schema is hidden beneath the logical schema, and can usually
be changed easily without affecting application programs. Application programs are
said to exhibit physical data independence if they do not depend on the physical
schema, and thus need not be rewritten if the physical schema changes.

We study languages for describing schemas, after introducing the notion of data
models in the next section.

1.4 Data Models

Underlying the structure of a database is the data model: a collection of conceptual
tools for describing data, data relationships, data semantics, and consistency con-
straints. To illustrate the concept of a data model, we outline two data models in this
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section: the entity-relationship model and the relational model. Both provide a way
to describe the design of a database at the logical level.

1.4.1 The Entity-Relationship Model

The entity-relationship (E-R) data model is based on a perception of a real world that
consists of a collection of basic objects, called entities, and of relationships among these
objects. An entity is a “thing” or “object” in the real world that is distinguishable
from other objects. For example, each person is an entity, and bank accounts can be
considered as entities.

Entities are described in a database by a set of attributes. For example, the at-
tributes account-number and balance may describe one particular account in a bank,
and they form attributes of the account entity set. Similarly, attributes customer-name,
customer-street address and customer-city may describe a customer entity.

An extra attribute customer-id is used to uniquely identify customers (since it may
be possible to have two customers with the same name, street address, and city).
A unique customer identifier must be assigned to each customer. In the United States,
many enterprises use the social-security number of a person (a unique number the
U.S. government assigns to every person in the United States) as a customer
identifier.

A relationship is an association among several entities. For example, a depositor
relationship associates a customer with each account that she has. The set of all enti-
ties of the same type and the set of all relationships of the same type are termed an
entity set and relationship set, respectively.

The overall logical structure (schema) of a database can be expressed graphically
by an E-R diagram, which is built up from the following components:

o Rectangles, which represent entity sets

Ellipses, which represent attributes
e Diamonds, which represent relationships among entity sets

e Lines, which link attributes to entity sets and entity sets to relationships

Each component is labeled with the entity or relationship that it represents.

As an illustration, consider part of a database banking system consisting of
customers and of the accounts that these customers have. Figure 1.2 shows the cor-
responding E-R diagram. The E-R diagram indicates that there are two entity sets,
customer and account, with attributes as outlined earlier. The diagram also shows a
relationship depositor between customer and account.

In addition to entities and relationships, the E-R model represents certain con-
straints to which the contents of a database must conform. One important constraint
is mapping cardinalities, which express the number of entities to which another en-
tity can be associated via a relationship set. For example, if each account must belong
to only one customer, the E-R model can express that constraint.

The entity-relationship model is widely used in database design, and Chapter 2
explores it in detail.
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customer depositor account

customer-name) (customer-street

Figure1.2 A sample E-R diagram.

1.4.2 Relational Model

The relational model uses a collection of tables to represent both data and the rela-
tionships among those data. Each table has multiple columns, and each column has
a unique name. Figure 1.3 presents a sample relational database comprising three ta-
bles: One shows details of bank customers, the second shows accounts, and the third
shows which accounts belong to which customers.

The first table, the customer table, shows, for example, that the customer identified
by customer-id 192-83-7465 is named Johnson and lives at 12 Alma St. in Palo Alto.
The second table, account, shows, for example, that account A-101 has a balance of
$500, and A-201 has a balance of $900.

The third table shows which accounts belong to which customers. For example,
account number A-101 belongs to the customer whose customer-id is 192-83-7465,
namely Johnson, and customers 192-83-7465 (Johnson) and 019-28-3746 (Smith) share
account number A-201 (they may share a business venture).

The relational model is an example of a record-based model. Record-based mod-
els are so named because the database is structured in fixed-format records of several
types. Each table contains records of a particular type. Each record type defines a
fixed number of fields, or attributes. The columns of the table correspond to the at-
tributes of the record type.

It is not hard to see how tables may be stored in files. For instance, a special
character (such as a comma) may be used to delimit the different attributes of a
record, and another special character (such as a newline character) may be used to
delimit records. The relational model hides such low-level implementation details
from database developers and users.

The relational data model is the most widely used data model, and a vast majority
of current database systems are based on the relational model. Chapters 3 through 7
cover the relational model in detail.

The relational model is at a lower level of abstraction than the E-R model. Database
designs are often carried out in the E-R model, and then translated to the relational
model; Chapter 2 describes the translation process. For example, it is easy to see that
the tables customer and account correspond to the entity sets of the same name, while
the table depositor corresponds to the relationship set depositor.

We also note that it is possible to create schemas in the relational model that have
problems such as unnecessarily duplicated information. For example, suppose we
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| customer-id | customer-name | customer-street | customer-city |

192-83-7465 Johnson 12 Alma St. Palo Alto
019-28-3746 Smith 4 North St. Rye

677-89-9011 Hayes 3 Main St. Harrison
182-73-6091 Turner 123 Putnam Ave. Stamford
321-12-3123 Jones 100 Main St. Harrison
336-66-9999 Lindsay 175 Park Ave. Pittsfield
019-28-3746 Smith 72 North St. Rye

(a) The customer table

| account-number | balance |

A-101 500
A-215 700
A-102 400
A-305 350
A-201 900
A-217 750
A-222 700
(b) The account table

customer-id | account-number |

192-83-7465 A-101
192-83-7465 A-201
019-28-3746 A-215
677-89-9011 A-102
182-73-6091 A-305
321-12-3123 A-217
336-66-9999 A-222
019-28-3746 A-201

(c) The depositor table

Figure 1.3 A sample relational database.

store account-number as an attribute of the customer record. Then, to represent the fact
that accounts A-101 and A-201 both belong to customer Johnson (with customer-id
192-83-7465), we would need to store two rows in the customer table. The values for
customer-name, customer-street, and customer-city for Johnson would get unneces-
sarily duplicated in the two rows. In Chapter 7, we shall study how to distinguish
good schema designs from bad schema designs.

1.4.3 Other Data Models

The object-oriented data model is another data model that has seen increasing atten-
tion. The object-oriented model can be seen as extending the E-R model with notions
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of encapsulation, methods (functions), and object identity. Chapter 8 examines the
object-oriented data model.

The object-relational data model combines features of the object-oriented data
model and relational data model. Chapter 9 examines it.

Semistructured data models permit the specification of data where individual data
items of the same type may have different sets of attributes. This is in contrast with
the data models mentioned earlier, where every data item of a particular type must
have the same set of attributes. The extensible markup language (XML) is widely
used to represent semistructured data. Chapter 10 covers it.

Historically, two other data models, the network data model and the hierarchical
data model, preceded the relational data model. These models were tied closely to
the underlying implementation, and complicated the task of modeling data. As a
result they are little used now, except in old database code that is still in service in
some places. They are outlined in Appendices A and B, for interested readers.

1.5 Database Languages

A database system provides a data definition language to specify the database sche-
ma and a data manipulation language to express database queries and updates. In
practice, the data definition and data manipulation languages are not two separate
languages; instead they simply form parts of a single database language, such as the
widely used SQL language.

1.5.1 Data-Definition Language

We specify a database schema by a set of definitions expressed by a special language
called a data-definition language (DDL).
For instance, the following statement in the SQL language defines the account table:

create table account
(account-number char(10),
balance integer)

Execution of the above DDL statement creates the account table. In addition, it up-
dates a special set of tables called the data dictionary or data directory.

A data dictionary contains metadata—that is, data about data. The schema of a ta-
ble is an example of metadata. A database system consults the data dictionary before
reading or modifying actual data.

We specify the storage structure and access methods used by the database system
by a set of statements in a special type of DDL called a data storage and definition lan-
guage. These statements define the implementation details of the database schemas,
which are usually hidden from the users.

The data values stored in the database must satisfy certain consistency constraints.

For example, suppose the balance on an account should not fall below $100. The DDL
provides facilities to specify such constraints. The database systems check these con-
straints every time the database is updated.
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1.5.2 Data-Manipulation Language

Data manipulation is

e The retrieval of information stored in the database
e The insertion of new information into the database
e The deletion of information from the database

e The modification of information stored in the database

A data-manipulation language (DML) is a language that enables users to access
or manipulate data as organized by the appropriate data model. There are basically
two types:

e Procedural DMLs require a user to specify what data are needed and how to
get those data.

e Declarative DMLs (also referred to as nonprocedural DMLs) require a user to
specify what data are needed without specifying how to get those data.

Declarative DMLs are usually easier to learn and use than are procedural DMLs.
However, since a user does not have to specify how to get the data, the database
system has to figure out an efficient means of accessing data. The DML component of
the SQL language is nonprocedural.

A query is a statement requesting the retrieval of information. The portion of a
DML that involves information retrieval is called a query language. Although tech-
nically incorrect, it is common practice to use the terms query language and data-
manipulation language synonymously.

This query in the SQL language finds the name of the customer whose customer-id
is 192-83-7465:

select customer.customer-name
from customer
where customer.customer-id = 192-83-7465

The query specifies that those rows from the table customer where the customer-id is
192-83-7465 must be retrieved, and the customer-name attribute of these rows must be
displayed. If the query were run on the table in Figure 1.3, the name Johnson would
be displayed.

Queries may involve information from more than one table. For instance, the fol-
lowing query finds the balance of all accounts owned by the customer with customer-
id 192-83-7465.

select account.balance

from depositor, account

where depositor.customer-id = 192-83-7465 and
depositor.account-number = account.account-number
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If the above query were run on the tables in Figure 1.3, the system would find that
the two accounts numbered A-101 and A-201 are owned by customer 192-83-7465
and would print out the balances of the two accounts, namely 500 and 900.

There are a number of database query languages in use, either commercially or
experimentally. We study the most widely used query language, SQL, in Chapter 4.
We also study some other query languages in Chapter 5.

The levels of abstraction that we discussed in Section 1.3 apply not only to defining
or structuring data, but also to manipulating data. At the physical level, we must
define algorithms that allow efficient access to data. At higher levels of abstraction,
we emphasize ease of use. The goal is to allow humans to interact efficiently with the
system. The query processor component of the database system (which we study in
Chapters 13 and 14) translates DML queries into sequences of actions at the physical
level of the database system.

1.5.3 Database Access from Application Programs

Application programs are programs that are used to interact with the database. Ap-
plication programs are usually written in a host language, such as Cobol, C, C++, or
Java. Examples in a banking system are programs that generate payroll checks, debit
accounts, credit accounts, or transfer funds between accounts.

To access the database, DML statements need to be executed from the host lan-
guage. There are two ways to do this:

e By providing an application program interface (set of procedures) that can
be used to send DML and DDL statements to the database, and retrieve the
results.

The Open Database Connectivity (ODBC) standard defined by Microsoft
for use with the C language is a commonly used application program inter-
face standard. The Java Database Connectivity (JDBC) standard provides cor-
responding features to the Java language.

e By extending the host language syntax to embed DML calls within the host
language program. Usually, a special character prefaces DML calls, and a pre-
processor, called the DML precompiler, converts the DML statements to nor-
mal procedure calls in the host language.

1.6 Database Users and Administrators

A primary goal of a database system is to retrieve information from and store new
information in the database. People who work with a database can be categorized as
database users or database administrators.

1.6.1 Database Users and User Interfaces

There are four different types of database-system users, differentiated by the way
they expect to interact with the system. Different types of user interfaces have been
designed for the different types of users.
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Naive users are unsophisticated users who interact with the system by invok-
ing one of the application programs that have been written previously. For
example, a bank teller who needs to transfer $50 from account A to account B
invokes a program called transfer. This program asks the teller for the amount
of money to be transferred, the account from which the money is to be trans-
ferred, and the account to which the money is to be transferred.

As another example, consider a user who wishes to find her account bal-
ance over the World Wide Web. Such a user may access a form, where she
enters her account number. An application program at the Web server then
retrieves the account balance, using the given account number, and passes
this information back to the user.

The typical user interface for naive users is a forms interface, where the
user can fill in appropriate fields of the form. Naive users may also simply
read reports generated from the database.

Application programmers are computer professionals who write application
programs. Application programmers can choose from many tools to develop
user interfaces. Rapid application development (RAD) tools are tools that en-
able an application programmer to construct forms and reports without writ-
ing a program. There are also special types of programming languages that
combine imperative control structures (for example, for loops, while loops
and if-then-else statements) with statements of the data manipulation lan-
guage. These languages, sometimes called fourth-generation languages, often
include special features to facilitate the generation of forms and the display of
data on the screen. Most major commercial database systems include a fourth-
generation language.

Sophisticated users interact with the system without writing programs. In-
stead, they form their requests in a database query language. They submit
each such query to a query processor, whose function is to break down DML
statements into instructions that the storage manager understands. Analysts
who submit queries to explore data in the database fall in this category.

Online analytical processing (OLAP) tools simplify analysts’ tasks by let-
ting them view summaries of data in different ways. For instance, an analyst
can see total sales by region (for example, North, South, East, and West), or by
product, or by a combination of region and product (that is, total sales of each
product in each region). The tools also permit the analyst to select specific re-
gions, look at data in more detail (for example, sales by city within a region)
or look at the data in less detail (for example, aggregate products together by
category).

Another class of tools for analysts is data mining tools, which help them
find certain kinds of patterns in data.

We study OLAP tools and data mining in Chapter 22.

Specialized users are sophisticated users who write specialized database
applications that do not fit into the traditional data-processing framework.
Among these applications are computer-aided design systems, knowledge-
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base and expert systems, systems that store data with complex data types (for
example, graphics data and audio data), and environment-modeling systems.
Chapters 8 and 9 cover several of these applications.

1.6.2 Database Administrator

One of the main reasons for using DBMSs is to have central control of both the data
and the programs that access those data. A person who has such central control over
the system is called a database administrator (DBA). The functions of a DBA include:

e Schema definition. The DBA creates the original database schema by execut-
ing a set of data definition statements in the DDL.

e Storage structure and access-method definition.

e Schema and physical-organization modification. The DBA carries out chang-
es to the schema and physical organization to reflect the changing needs of the
organization, or to alter the physical organization to improve performance.

e Granting of authorization for data access. By granting different types of
authorization, the database administrator can regulate which parts of the data-
base various users can access. The authorization information is kept in a
special system structure that the database system consults whenever some-
one attempts to access the data in the system.

e Routine maintenance. Examples of the database administrator’s routine
maintenance activities are:

O Periodically backing up the database, either onto tapes or onto remote
servers, to prevent loss of data in case of disasters such as flooding.

O Ensuring that enough free disk space is available for normal operations,
and upgrading disk space as required.

00 Monitoring jobs running on the database and ensuring that performance
is not degraded by very expensive tasks submitted by some users.

1.7 Transaction Management

Often, several operations on the database form a single logical unit of work. An ex-
ample is a funds transfer, as in Section 1.2, in which one account (say A) is debited and
another account (say B) is credited. Clearly, it is essential that either both the credit
and debit occur, or that neither occur. That is, the funds transfer must happen in its
entirety or not at all. This all-or-none requirement is called atomicity. In addition, it
is essential that the execution of the funds transfer preserve the consistency of the
database. That is, the value of the sum A + B must be preserved. This correctness
requirement is called consistency. Finally, after the successful execution of a funds
transfer, the new values of accounts A and B must persist, despite the possibility of
system failure. This persistence requirement is called durability.

A transaction is a collection of operations that performs a single logical function
in a database application. Each transaction is a unit of both atomicity and consis-
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tency. Thus, we require that transactions do not violate any database-consistency
constraints. That is, if the database was consistent when a transaction started, the
database must be consistent when the transaction successfully terminates. However,
during the execution of a transaction, it may be necessary temporarily to allow incon-
sistency, since either the debit of A or the credit of B must be done before the other.
This temporary inconsistency, although necessary, may lead to difficulty if a failure
occurs.

It is the programmer’s responsibility to define properly the various transactions,
so that each preserves the consistency of the database. For example, the transaction to
transfer funds from account A to account B could be defined to be composed of two
separate programs: one that debits account A, and another that credits account B. The
execution of these two programs one after the other will indeed preserve consistency.
However, each program by itself does not transform the database from a consistent
state to a new consistent state. Thus, those programs are not transactions.

Ensuring the atomicity and durability properties is the responsibility of the data-
base system itself —specifically, of the transaction-management component. In the
absence of failures, all transactions complete successfully, and atomicity is achieved
easily. However, because of various types of failure, a transaction may not always
complete its execution successfully. If we are to ensure the atomicity property, a failed
transaction must have no effect on the state of the database. Thus, the database must
be restored to the state in which it was before the transaction in question started exe-
cuting. The database system must therefore perform failure recovery, that is, detect
system failures and restore the database to the state that existed prior to the occur-
rence of the failure.

Finally, when several transactions update the database concurrently, the consis-
tency of data may no longer be preserved, even though each individual transac-
tion is correct. It is the responsibility of the concurrency-control manager to control
the interaction among the concurrent transactions, to ensure the consistency of the
database.

Database systems designed for use on small personal computers may not have
all these features. For example, many small systems allow only one user to access
the database at a time. Others do not offer backup and recovery, leaving that to the
user. These restrictions allow for a smaller data manager, with fewer requirements for
physical resources—especially main memory. Although such a low-cost, low-feature
approach is adequate for small personal databases, it is inadequate for a medium- to
large-scale enterprise.

1.8 Database System Structure

A database system is partitioned into modules that deal with each of the responsi-
bilites of the overall system. The functional components of a database system can be
broadly divided into the storage manager and the query processor components.

The storage manager is important because databases typically require a large
amount of storage space. Corporate databases range in size from hundreds of gi-
gabytes to, for the largest databases, terabytes of data. A gigabyte is 1000 megabytes
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(1 billion bytes), and a terabyte is 1 million megabytes (1 trillion bytes). Since the
main memory of computers cannot store this much information, the information is
stored on disks. Data are moved between disk storage and main memory as needed.
Since the movement of data to and from disk is slow relative to the speed of the cen-
tral processing unit, it is imperative that the database system structure the data so as
to minimize the need to move data between disk and main memory.

The query processor is important because it helps the database system simplify
and facilitate access to data. High-level views help to achieve this goal; with them,
users of the system are not be burdened unnecessarily with the physical details of the
implementation of the system. However, quick processing of updates and queries
is important. It is the job of the database system to translate updates and queries
written in a nonprocedural language, at the logical level, into an efficient sequence of
operations at the physical level.

1.8.1 Storage Manager

A storage manager is a program module that provides the interface between the low-
level data stored in the database and the application programs and queries submit-
ted to the system. The storage manager is responsible for the interaction with the file
manager. The raw data are stored on the disk using the file system, which is usu-
ally provided by a conventional operating system. The storage manager translates
the various DML statements into low-level file-system commands. Thus, the storage
manager is responsible for storing, retrieving, and updating data in the database.
The storage manager components include:

e Authorization and integrity manager, which tests for the satisfaction of in-
tegrity constraints and checks the authority of users to access data.

e Transaction manager, which ensures that the database remains in a consistent
(correct) state despite system failures, and that concurrent transaction execu-
tions proceed without conflicting.

¢ File manager, which manages the allocation of space on disk storage and the
data structures used to represent information stored on disk.

e Buffer manager, which is responsible for fetching data from disk storage into
main memory, and deciding what data to cache in main memory. The buffer
manager is a critical part of the database system, since it enables the database
to handle data sizes that are much larger than the size of main memory.

The storage manager implements several data structures as part of the physical
system implementation:

e Data files, which store the database itself.

e Data dictionary, which stores metadata about the structure of the database, in
particular the schema of the database.

e Indices, which provide fast access to data items that hold particular values.
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1.8.2 The Query Processor

The query processor components include

e DDL interpreter, which interprets DDL statements and records the definitions
in the data dictionary.

e DML compiler, which translates DML statements in a query language into an
evaluation plan consisting of low-level instructions that the query evaluation
engine understands.

A query can usually be translated into any of a number of alternative eval-
uation plans that all give the same result. The DML compiler also performs
query optimization, that is, it picks the lowest cost evaluation plan from amo-
ng the alternatives.

e Query evaluation engine, which executes low-level instructions generated by
the DML compiler.

Figure 1.4 shows these components and the connections among them.

1.9 Application Architectures

Most users of a database system today are not present at the site of the database
system, but connect to it through a network. We can therefore differentiate between
client machines, on which remote database users work, and server machines, on
which the database system runs.

Database applications are usually partitioned into two or three parts, as in Fig-
ure 1.5. In a two-tier architecture, the application is partitioned into a component
that resides at the client machine, which invokes database system functionality at the
server machine through query language statements. Application program interface
standards like ODBC and JDBC are used for interaction between the client and the
server.

In contrast, in a three-tier architecture, the client machine acts as merely a front
end and does not contain any direct database calls. Instead, the client end communi-
cates with an application server, usually through a forms interface. The application
server in turn communicates with a database system to access data. The business
logic of the application, which says what actions to carry out under what conditions,
is embedded in the application server, instead of being distributed across multiple
clients. Three-tier applications are more appropriate for large applications, and for
applications that run on the World Wide Web.

1.10 History of Database Systems

Data processing drives the growth of computers, as it has from the earliest days of
commercial computers. In fact, automation of data processing tasks predates com-
puters. Punched cards, invented by Hollerith, were used at the very beginning of the
twentieth century to record U.S. census data, and mechanical systems were used to
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process the cards and tabulate results. Punched cards were later widely used as a
means of entering data into computers.
Techniques for data storage and processing have evolved over the years:

e 1950s and early 1960s: Magnetic tapes were developed for data storage. Data
processing tasks such as payroll were automated, with data stored on tapes.
Processing of data consisted of reading data from one or more tapes and
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writing data to a new tape. Data could also be input from punched card decks,
and output to printers. For example, salary raises were processed by entering
the raises on punched cards and reading the punched card deck in synchro-
nization with a tape containing the master salary details. The records had to
be in the same sorted order. The salary raises would be added to the salary
read from the master tape, and written to a new tape; the new tape would
become the new master tape.

Tapes (and card decks) could be read only sequentially, and data sizes were
much larger than main memory; thus, data processing programs were forced
to process data in a particular order, by reading and merging data from tapes
and card decks.

Late 1960s and 1970s: Widespread use of hard disks in the late 1960s changed
the scenario for data processing greatly, since hard disks allowed direct access
to data. The position of data on disk was immaterial, since any location on disk
could be accessed in just tens of milliseconds. Data were thus freed from the
tyranny of sequentiality. With disks, network and hierarchical databases could
be created that allowed data structures such as lists and trees to be stored on
disk. Programmers could construct and manipulate these data structures.

A landmark paper by Codd [1970] defined the relational model, and non-
procedural ways of querying data in the relational model, and relational
databases were born. The simplicity of the relational model and the possibil-
ity of hiding implementation details completely from the programmer were
enticing indeed. Codd later won the prestigious Association of Computing
Machinery Turing Award for his work.
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e 1980s: Although academically interesting, the relational model was not used

1.1

in practice initially, because of its perceived performance disadvantages; re-
lational databases could not match the performance of existing network and
hierarchical databases. That changed with System R, a groundbreaking project
at IBM Research that developed techniques for the construction of an efficient
relational database system. Excellent overviews of System R are provided by
Astrahan et al. [1976] and Chamberlin et al. [1981]. The fully functional Sys-
tem R prototype led to IBM’s first relational database product, SQL/DS. Initial
commercial relational database systems, such as IBM DB2, Oracle, Ingres, and
DEC Rdb, played a major role in advancing techniques for efficient process-
ing of declarative queries. By the early 1980s, relational databases had become
competitive with network and hierarchical database systems even in the area
of performance. Relational databases were so easy to use that they eventually
replaced network /hierarchical databases; programmers using such databases
were forced to deal with many low-level implementation details, and had to
code their queries in a procedural fashion. Most importantly, they had to keep
efficiency in mind when designing their programs, which involved a lot of
effort. In contrast, in a relational database, almost all these low-level tasks
are carried out automatically by the database, leaving the programmer free to
work at a logical level. Since attaining dominance in the 1980s, the relational
model has reigned supreme among data models.

The 1980s also saw much research on parallel and distributed databases, as
well as initial work on object-oriented databases.

Early 1990s: The SQL language was designed primarily for decision support
applications, which are query intensive, yet the mainstay of databases in the
1980s was transaction processing applications, which are update intensive.
Decision support and querying re-emerged as a major application area for
databases. Tools for analyzing large amounts of data saw large growths in
usage.

Many database vendors introduced parallel database products in this pe-
riod. Database vendors also began to add object-relational support to their
databases.

Late 1990s: The major event was the explosive growth of the World Wide Web.
Databases were deployed much more extensively than ever before. Database
systems now had to support very high transaction processing rates, as well as
very high reliability and 24 x 7 availability (availability 24 hours a day, 7 days a
week, meaning no downtime for scheduled maintenance activities). Database
systems also had to support Web interfaces to data.

Summary

A database-management system (DBMS) consists of a collection of interre-
lated data and a collection of programs to access that data. The data describe
one particular enterprise.
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The primary goal of a DBMS is to provide an environment that is both conve-
nient and efficient for people to use in retrieving and storing information.

Database systems are ubiquitous today, and most people interact, either di-
rectly or indirectly, with databases many times every day.

Database systems are designed to store large bodies of information. The man-
agement of data involves both the definition of structures for the storage of
information and the provision of mechanisms for the manipulation of infor-
mation. In addition, the database system must provide for the safety of the
information stored, in the face of system crashes or attempts at unauthorized
access. If data are to be shared among several users, the system must avoid
possible anomalous results.

A major purpose of a database system is to provide users with an abstract
view of the data. That is, the system hides certain details of how the data are
stored and maintained.

Underlying the structure of a database is the data model: a collection of con-
ceptual tools for describing data, data relationships, data semantics, and data
constraints. The entity-relationship (E-R) data model is a widely used data
model, and it provides a convenient graphical representation to view data, re-
lationships and constraints. The relational data model is widely used to store
data in databases. Other data models are the object-oriented model, the object-
relational model, and semistructured data models.

The overall design of the database is called the database schema. A database
schema is specified by a set of definitions that are expressed using a data-
definition language (DDL).

A data-manipulation language (DML) is a language that enables users to ac-
cess or manipulate data. Nonprocedural DMLs, which require a user to specify
only what data are needed, without specifying exactly how to get those data,
are widely used today.

Database users can be categorized into several classes, and each class of users
usually uses a different type of interface to the database.

A database system has several subsystems.

O The transaction manager subsystem is responsible for ensuring that the
database remains in a consistent (correct) state despite system failures.
The transaction manager also ensures that concurrent transaction execu-
tions proceed without conflicting.

O The query processor subsystem compiles and executes DDL and DML
statements.

O The storage manager subsystem provides the interface between the low-
level data stored in the database and the application programs and queries
submitted to the system.
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e Database applications are typically broken up into a front-end part that runs at

client machines and a part that runs at the back end. In two-tier architectures,
the front-end directly communicates with a database running at the back end.
In three-tier architectures, the back end part is itself broken up into an appli-

cation server and a database server.

Review Terms

e Database management

system
(DBMS)

e Database systems applications
o File systems

e Data inconsistency

e Consistency constraints

e Data views

e Data abstraction

e Database instance

e Schema

[0 Database schema
O Physical schema
O Logical schema

e Physical data independence
e Data models

Exercises

1.1
1.2

1.3
1.4

O Entity-relationship model

O Relational data model

O Object-oriented data model
O Object-relational data model

Database languages
O Data definition language
O Data manipulation language
O Query language
Data dictionary
Metadata
Application program
Database administrator (DBA)
Transactions
Concurrency

Client and server machines

List four significant differences between a file-processing system and a DBMS.

This chapter has described several major advantages of a database system. What

are two disadvantages?

Explain the difference between physical and logical data independence.

List five responsibilities of a database management system. For each responsi-
bility, explain the problems that would arise if the responsibility were not dis-

charged.

1.5 What are five main functions of a database administrator?

1.6

1.7

List seven programming languages that are procedural and two that are non-
procedural. Which group is easier to learn and use? Explain your answer.

List six major steps that you would take in setting up a database for a particular

enterprise.
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1.8 Consider a two-dimensional integer array of size n x m that is to be used in
your favorite programming language. Using the array as an example, illustrate
the difference (a) between the three levels of data abstraction, and (b) between
a schema and instances.
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Data Models

A data model is a collection of conceptual tools for describing data, data relation-
ships, data semantics, and consistency constraints. In this part, we study two data
models—the entity-relationship model and the relational model.

The entity—relationship (E-R) model is a high-level data model. It is based on a
perception of a real world that consists of a collection of basic objects, called entities,
and of relationships among these objects.

The relational model is a lower-level model. It uses a collection of tables to repre-
sent both data and the relationships among those data. Its conceptual simplicity has
led to its widespread adoption; today a vast majority of database products are based
on the relational model. Designers often formulate database schema design by first
modeling data at a high level, using the E-R model, and then translating it into the
the relational model.

We shall study other data models later in the book. The object-oriented data model,
for example, extends the representation of entities by adding notions of encapsula-
tion, methods (functions), and object identity. The object-relational data model com-
bines features of the object-oriented data model and the relational data model. Chap-
ters 8 and 9, respectively, cover these two data models.
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Entity-Relationship Model

The entity-relationship (E-R) data model perceives the real world as consisting of
basic objects, called entities, and relationships among these objects. It was developed
to facilitate database design by allowing specification of an enterprise schema, which
represents the overall logical structure of a database. The E-R data model is one of sev-
eral semantic data models; the semantic aspect of the model lies in its representation
of the meaning of the data. The E-R model is very useful in mapping the meanings
and interactions of real-world enterprises onto a conceptual schema. Because of this
usefulness, many database-design tools draw on concepts from the E-R model.

2.1 Basic Concepts

The E-R data model employs three basic notions: entity sets, relationship sets, and
attributes.

2.1.1 Entity Sets

An entity is a “thing” or “object” in the real world that is distinguishable from all
other objects. For example, each person in an enterprise is an entity. An entity has a
set of properties, and the values for some set of properties may uniquely identify an
entity. For instance, a person may have a person-id property whose value uniquely
identifies that person. Thus, the value 677-89-9011 for person-id would uniquely iden-
tify one particular person in the enterprise. Similarly, loans can be thought of as enti-
ties, and loan number L-15 at the Perryridge branch uniquely identifies a loan entity.
An entity may be concrete, such as a person or a book, or it may be abstract, such as
a loan, or a holiday, or a concept.

An entity set is a set of entities of the same type that share the same properties, or
attributes. The set of all persons who are customers at a given bank, for example, can
be defined as the entity set customer. Similarly, the entity set loan might represent the

27
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set of all loans awarded by a particular bank. The individual entities that constitute a
set are said to be the extension of the entity set. Thus, all the individual bank customers
are the extension of the entity set customer.

Entity sets do not need to be disjoint. For example, it is possible to define the entity
set of all employees of a bank (employee) and the entity set of all customers of the bank
(customer). A person entity may be an employee entity, a customer entity, both, or neither.

An entity is represented by a set of attributes. Attributes are descriptive proper-
ties possessed by each member of an entity set. The designation of an attribute for an
entity set expresses that the database stores similar information concerning each en-
tity in the entity set; however, each entity may have its own value for each attribute.
Possible attributes of the customer entity set are customer-id, customer-name, customer-
street, and customer-city. In real life, there would be further attributes, such as street
number, apartment number, state, postal code, and country, but we omit them to
keep our examples simple. Possible attributes of the loan entity set are loan-number
and amount.

Each entity has a value for each of its attributes. For instance, a particular customer
entity may have the value 321-12-3123 for customer-id, the value Jones for customer-
name, the value Main for customer-street, and the value Harrison for customer-city.

The customer-id attribute is used to uniquely identify customers, since there may
be more than one customer with the same name, street, and city. In the United States,
many enterprises find it convenient to use the social-security number of a person!
as an attribute whose value uniquely identifies the person. In general the enterprise
would have to create and assign a unique identifier for each customer.

For each attribute, there is a set of permitted values, called the domain, or value
set, of that attribute. The domain of attribute customer-name might be the set of all
text strings of a certain length. Similarly, the domain of attribute loan-number might
be the set of all strings of the form “L-n” where n is a positive integer.

A database thus includes a collection of entity sets, each of which contains any
number of entities of the same type. Figure 2.1 shows part of a bank database that
consists of two entity sets: customer and loan.

Formally, an attribute of an entity setis a function that maps from the entity set into
a domain. Since an entity set may have several attributes, each entity can be described
by a set of (attribute, data value) pairs, one pair for each attribute of the entity set. For
example, a particular customer entity may be described by the set {(customer-id, 677-
89-9011), (customer-name, Hayes), (customer-street, Main), (customer-city, Harrison)},
meaning that the entity describes a person named Hayes whose customer identifier
is 677-89-9011 and who resides at Main Street in Harrison. We can see, at this point,
an integration of the abstract schema with the actual enterprise being modeled. The
attribute values describing an entity will constitute a significant portion of the data
stored in the database.

An attribute, as used in the E-R model, can be characterized by the following at-
tribute types.

1. In the United States, the government assigns to each person in the country a unique number, called a
social-security number, to identify that person uniquely. Each person is supposed to have only one social-
security number, and no two people are supposed to have the same social-security number.
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321-12-3123 |Jones Main | Harrison L-171000
019-28-3746 [Smith North |Rye L-23| 2000
677-89-9011 [Hayes | Main |Harrison |
555-55-5555 |Jackson | Dupont|Woodside L-14 | 1500
244-66-8800 |Curry | North |Rye L-19| 500
963-96-3963| Williams| Nassau | Princeton | L-11| 900
335-57-7991 |Adams | Spring |Pittsfield L-16 | 1300
customer loan

Figure 2.1 Entity sets customer and loan.

e Simple and composite attributes. In our examples thus far, the attributes have

been simple; that is, they are not divided into subparts. Composite attributes,
on the other hand, can be divided into subparts (that is, other attributes). For
example, an attribute name could be structured as a composite attribute con-
sisting of first-name, middle-initial, and last-name. Using composite attributes in
a design schema is a good choice if a user will wish to refer to an entire at-
tribute on some occasions, and to only a component of the attribute on other
occasions. Suppose we were to substitute for the customer entity-set attributes
customer-street and customer-city the composite attribute address with the at-
tributes street, city, state, and zip-code.> Composite attributes help us to group
together related attributes, making the modeling cleaner.

Note also that a composite attribute may appear as a hierarchy. In the com-
posite attribute address, its component attribute street can be further divided
into street-number, street-name, and apartment-number. Figure 2.2 depicts these
examples of composite attributes for the customer entity set.

Single-valued and multivalued attributes. The attributes in our examples all
have a single value for a particular entity. For instance, the loan-number at-
tribute for a specific loan entity refers to only one loan number. Such attributes
are said to be single valued. There may be instances where an attribute has
a set of values for a specific entity. Consider an employee entity set with the
attribute phone-number. An employee may have zero, one, or several phone
numbers, and different employees may have different numbers of phones.
This type of attribute is said to be multivalued. As another example, an at-

2. We assume the address format used in the United States, which includes a numeric postal code called
a zip code.
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Composite name address
Attributes
first-name middle-initial last-name street city state postal-code

Component
Attributes

street-number street-name apartment-number
Figure 2.2 Composite attributes customer-name and customer-address.

tribute dependent-name of the employee entity set would be multivalued, since
any particular employee may have zero, one, or more dependent(s).

Where appropriate, upper and lower bounds may be placed on the number
of values in a multivalued attribute. For example, a bank may limit the num-
ber of phone numbers recorded for a single customer to two. Placing bounds
in this case expresses that the phone-number attribute of the customer entity set
may have between zero and two values.

e Derived attribute. The value for this type of attribute can be derived from
the values of other related attributes or entities. For instance, let us say that
the customer entity set has an attribute loans-held, which represents how many
loans a customer has from the bank. We can derive the value for this attribute
by counting the number of loan entities associated with that customer.

As another example, suppose that the customer entity set has an attribute
age, which indicates the customer’s age. If the customer entity set also has an
attribute date-of-birth, we can calculate age from date-of-birth and the current
date. Thus, age is a derived attribute. In this case, date-of-birth may be referred
to as a base attribute, or a stored attribute. The value of a derived attribute is
not stored, but is computed when required.

An attribute takes a null value when an entity does not have a value for it. The
null value may indicate “not applicable” —that is, that the value does not exist for the
entity. For example, one may have no middle name. Null can also designate that an
attribute value is unknown. An unknown value may be either missing (the value does
exist, but we do not have that information) or not known (we do not know whether or
not the value actually exists).

For instance, if the name value for a particular customer is null, we assume that
the value is missing, since every customer must have a name. A null value for the
apartment-number attribute could mean that the address does not include an apart-
ment number (not applicable), that an apartment number exists but we do not know
what it is (missing), or that we do not know whether or not an apartment number is
part of the customer’s address (unknown).

A database for a banking enterprise may include a number of different entity sets.
For example, in addition to keeping track of customers and loans, the bank also
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provides accounts, which are represented by the entity set account with attributes
account-number and balance. Also, if the bank has a number of different branches, then
we may keep information about all the branches of the bank. Each branch entity set
may be described by the attributes branch-name, branch-city, and assets.

2.1.2 Relationship Sets

A relationship is an association among several entities. For example, we can define
a relationship that associates customer Hayes with loan L-15. This relationship spec-
ifies that Hayes is a customer with loan number L-15.

A relationship set is a set of relationships of the same type. Formally, it is a math-
ematical relation on n > 2 (possibly nondistinct) entity sets. If £y, E»,..., E, are
entity sets, then a relationship set R is a subset of

{(e1,€2,...,en) | €1 € Ei,ea € Ea,...,e, € E,}
where (e, €2, . .., €,) is a relationship.

Consider the two entity sets customer and loan in Figure 2.1. We define the rela-
tionship set borrower to denote the association between customers and the bank loans
that the customers have. Figure 2.3 depicts this association.

As another example, consider the two entity sets loan and branch. We can define
the relationship set loan-branch to denote the association between a bank loan and the
branch in which that loan is maintained.

321-12-3123 | Jones Main Harrison L-17 | 1000
019-28-3746 | Smith North | Rye L-23 | 2000
677-89-9011 | Hayes Main | Harrison / L-15 | 1500
555-55-5555 | Jackson | Dupont| Woodside \/ L-14 | 1500
244-66-8800 | Curry North | Rye / \ L-19 | 500
963-96-3963 | Williams| Nassau | Princeton (| ™ L-11 | 900
335-57-7991 | Adams | Spring | Pittsfield L-16 | 1300
customer loan

Figure 2.3 Relationship set borrower.
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The association between entity sets is referred to as participation; that is, the entity
sets Ey, Ls,..., I, participate in relationship set R. A relationship instance in an
E-R schema represents an association between the named entities in the real-world
enterprise that is being modeled. As an illustration, the individual customer entity
Hayes, who has customer identifier 677-89-9011, and the loan entity L-15 participate
in a relationship instance of borrower. This relationship instance represents that, in the
real-world enterprise, the person called Hayes who holds customer-id 677-89-9011 has
taken the loan that is numbered L-15.

The function that an entity plays in a relationship is called that entity’s role. Since
entity sets participating in a relationship set are generally distinct, roles are implicit
and are not usually specified. However, they are useful when the meaning of a re-
lationship needs clarification. Such is the case when the entity sets of a relationship
set are not distinct; that is, the same entity set participates in a relationship set more
than once, in different roles. In this type of relationship set, sometimes called a re-
cursive relationship set, explicit role names are necessary to specify how an entity
participates in a relationship instance. For example, consider an entity set employee
that records information about all the employees of the bank. We may have a rela-
tionship set works-for that is modeled by ordered pairs of employee entities. The first
employee of a pair takes the role of worker, whereas the second takes the role of man-
ager. In this way;, all relationships of works-for are characterized by (worker, manager)
pairs; (manager, worker) pairs are excluded.

A relationship may also have attributes called descriptive attributes. Consider a
relationship set depositor with entity sets customer and account. We could associate the
attribute access-date to that relationship to specify the most recent date on which a
customer accessed an account. The depositor relationship among the entities corre-
sponding to customer Jones and account A-217 has the value “23 May 2001” for at-
tribute access-date, which means that the most recent date that Jones accessed account
A-217 was 23 May 2001.

As another example of descriptive attributes for relationships, suppose we have
entity sets student and course which participate in a relationship set registered-for. We
may wish to store a descriptive attribute for-credit with the relationship, to record
whether a student has taken the course for credit, or is auditing (or sitting in on) the
course.

A relationship instance in a given relationship set must be uniquely identifiable
from its participating entities, without using the descriptive attributes. To understand
this point, suppose we want to model all the dates when a customer accessed an
account. The single-valued attribute access-date can store a single access date only . We
cannot represent multiple access dates by multiple relationship instances between the
same customer and account, since the relationship instances would not be uniquely
identifiable using only the participating entities. The right way to handle this case is
to create a multivalued attribute access-dates, which can store all the access dates.

However, there can be more than one relationship set involving the same entity
sets. In our example the customer and loan entity sets participate in the relationship
set borrower. Additionally, suppose each loan must have another customer who serves
as a guarantor for the loan. Then the customer and loan entity sets may participate in
another relationship set, guarantor.
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The relationship sets borrower and loan-branch provide an example of a binary rela-
tionship set—that is, one that involves two entity sets. Most of the relationship sets in
a database system are binary. Occasionally, however, relationship sets involve more
than two entity sets.

As an example, consider the entity sets employee, branch, and job. Examples of job
entities could include manager, teller, auditor, and so on. Job entities may have the at-
tributes title and level. The relationship set works-on among employee, branch, and job is
an example of a ternary relationship. A ternary relationship among Jones, Perryridge,
and manager indicates that Jones acts as a manager at the Perryridge branch. Jones
could also act as auditor at the Downtown branch, which would be represented by
another relationship. Yet another relationship could be between Smith, Downtown,
and teller, indicating Smith acts as a teller at the Downtown branch.

The number of entity sets that participate in a relationship set is also the degree of
the relationship set. A binary relationship set is of degree 2; a ternary relationship set
is of degree 3.

2.2 Constraints

An E-R enterprise schema may define certain constraints to which the contents of a
database must conform. In this section, we examine mapping cardinalities and par-
ticipation constraints, which are two of the most important types of constraints.

2.2.1 Mapping Cardindlities

Mapping cardinalities, or cardinality ratios, express the number of entities to which
another entity can be associated via a relationship set.

Mapping cardinalities are most useful in describing binary relationship sets, al-
though they can contribute to the description of relationship sets that involve more
than two entity sets. In this section, we shall concentrate on only binary relationship
sets.

For a binary relationship set R between entity sets A and B, the mapping cardinal-
ity must be one of the following:

e One to one. An entity in A is associated with at most one entity in B, and an
entity in B is associated with at most one entity in A. (See Figure 2.4a.)

e One to many. An entity in A is associated with any number (zero or more) of
entities in B. An entity in B, however, can be associated with at most one entity
in A. (See Figure 2.4b.)

e Many to one. An entity in A is associated with at most one entity in B. An
entity in B, however, can be associated with any number (zero or more) of
entities in A. (See Figure 2.5a.)

e Many to many. An entity in A is associated with any number (zero or more) of
entities in B, and an entity in B is associated with any number (zero or more)
of entities in A. (See Figure 2.5b.)
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Figure 2.4 Mapping cardinalities. (a) One to one. (b) One to many.

The appropriate mapping cardinality for a particular relationship set obviously de-
pends on the real-world situation that the relationship set is modeling.

As an illustration, consider the borrower relationship set. If, in a particular bank, a
loan can belong to only one customer, and a customer can have several loans, then
the relationship set from customer to loan is one to many. If a loan can belong to several
customers (as can loans taken jointly by several business partners), the relationship
set is many to many. Figure 2.3 depicts this type of relationship.

2.2.2 Participation Constraints

The participation of an entity set ¥ in a relationship set R is said to be total if every
entity in £ participates in at least one relationship in R. If only some entities in £
participate in relationships in R, the participation of entity set £ in relationship R is
said to be partial. For example, we expect every loan entity to be related to at least
one customer through the borrower relationship. Therefore the participation of loan in

Figure 2.5 Mapping cardinalities. (a) Many to one. (b) Many to many.
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the relationship set borrower is total. In contrast, an individual can be a bank customer
whether or not she has a loan with the bank. Hence, it is possible that only some of
the customer entities are related to the loan entity set through the borrower relationship,
and the participation of customer in the borrower relationship set is therefore partial.

2.3 Keys

We must have a way to specify how entities within a given entity set are distin-
guished. Conceptually, individual entities are distinct; from a database perspective,
however, the difference among them must be expressed in terms of their attributes.

Therefore, the values of the attribute values of an entity must be such that they can
uniquely identify the entity. In other words, no two entities in an entity set are allowed
to have exactly the same value for all attributes.

A key allows us to identify a set of attributes that suffice to distinguish entities
from each other. Keys also help uniquely identify relationships, and thus distinguish
relationships from each other.

2.3.1 Entity Sets

A superkey is a set of one or more attributes that, taken collectively, allow us to iden-
tify uniquely an entity in the entity set. For example, the customer-id attribute of the
entity set customer is sufficient to distinguish one customer entity from another. Thus,
customer-id is a superkey. Similarly, the combination of customer-name and customer-id
is a superkey for the entity set customer. The customer-name attribute of customer is not
a superkey, because several people might have the same name.

The concept of a superkey is not sufficient for our purposes, since, as we saw, a
superkey may contain extraneous attributes. If K is a superkey, then so is any superset
of K. We are often interested in superkeys for which no proper subset is a superkey.
Such minimal superkeys are called candidate keys.

It is possible that several distinct sets of attributes could serve as a candidate key.
Suppose that a combination of customer-name and customer-street is sufficient to dis-
tinguish among members of the customer entity set. Then, both {customer-id} and
{customer-name, customer-street} are candidate keys. Although the attributes customer-
id and customer-name together can distinguish customer entities, their combination
does not form a candidate key, since the attribute customer-id alone is a candidate
key.

We shall use the term primary key to denote a candidate key that is chosen by
the database designer as the principal means of identifying entities within an entity
set. A key (primary, candidate, and super) is a property of the entity set, rather than
of the individual entities. Any two individual entities in the set are prohibited from
having the same value on the key attributes at the same time. The designation of a
key represents a constraint in the real-world enterprise being modeled.

Candidate keys must be chosen with care. As we noted, the name of a person is
obviously not sufficient, because there may be many people with the same name.
In the United States, the social-security number attribute of a person would be a
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candidate key. Since non-U.S. residents usually do not have social-security numbers,
international enterprises must generate their own unique identifiers. An alternative
is to use some unique combination of other attributes as a key.

The primary key should be chosen such that its attributes are never, or very rarely,
changed. For instance, the address field of a person should not be part of the primary
key, since it is likely to change. Social-security numbers, on the other hand, are guar-
anteed to never change. Unique identifiers generated by enterprises generally do not
change, except if two enterprises merge; in such a case the same identifier may have
been issued by both enterprises, and a reallocation of identifiers may be required to
make sure they are unique.

2.3.2 Relationship Sets

The primary key of an entity set allows us to distinguish among the various entities of
the set. We need a similar mechanism to distinguish among the various relationships
of a relationship set.

Let R be a relationship set involving entity sets Ey, Es, ..., E,. Let primary-key(E;)
denote the set of attributes that forms the primary key for entity set I;. Assume
for now that the attribute names of all primary keys are unique, and each entity set
participates only once in the relationship. The composition of the primary key for
a relationship set depends on the set of attributes associated with the relationship
set R.

If the relationship set R has no attributes associated with it, then the set of at-
tributes

primary-key(E) U primary-key(E2) U - - - U primary-key(E,,)

describes an individual relationship in set R.
If the relationship set R has attributes a4, as, - - - , a,, associated with it, then the set
of attributes

primary-key(E1) U primary-key(E2) U - - - U primary-key(E,) U {a1,az,...,am}

describes an individual relationship in set R.
In both of the above cases, the set of attributes

primary-key(E) U primary-key(E2) U - - - U primary-key(E,,)

forms a superkey for the relationship set.

In case the attribute names of primary keys are not unique across entity sets, the
attributes are renamed to distinguish them; the name of the entity set combined with
the name of the attribute would form a unique name. In case an entity set participates
more than once in a relationship set (as in the works-for relationship in Section 2.1.2),
the role name is used instead of the name of the entity set, to form a unique attribute
name.
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The structure of the primary key for the relationship set depends on the map-
ping cardinality of the relationship set. As an illustration, consider the entity sets
customer and account, and the relationship set depositor, with attribute access-date, in
Section 2.1.2. Suppose that the relationship set is many to many. Then the primary
key of depositor consists of the union of the primary keys of customer and account.
However, if a customer can have only one account—that is, if the depositor relation-
ship is many to one from customer to account—then the primary key of depositor is
simply the primary key of customer. Similarly, if the relationship is many to one from
account to customer—that is, each account is owned by at most one customer—then
the primary key of depositor is simply the primary key of account. For one-to-one re-
lationships either primary key can be used.

For nonbinary relationships, if no cardinality constraints are present then the su-
perkey formed as described earlier in this section is the only candidate key, and it
is chosen as the primary key. The choice of the primary key is more complicated if
cardinality constraints are present. Since we have not discussed how to specify cardi-
nality constraints on nonbinary relations, we do not discuss this issue further in this
chapter. We consider the issue in more detail in Section 7.3.

2.4 Design Issues

The notions of an entity set and a relationship set are not precise, and it is possible
to define a set of entities and the relationships among them in a number of differ-
ent ways. In this section, we examine basic issues in the design of an E-R database
schema. Section 2.7.4 covers the design process in further detail.

2.4.1 Use of Entity Sets versus Attributes

Consider the entity set employee with attributes employee-name and telephone-number.
It can easily be argued that a telephone is an entity in its own right with attributes
telephone-number and location (the office where the telephone is located). If we take
this point of view, we must redefine the employee entity set as:

o The employee entity set with attribute employee-name
o The telephone entity set with attributes telephone-number and location

o The relationship set emp-telephone, which denotes the association between em-
ployees and the telephones that they have

What, then, is the main difference between these two definitions of an employee?
Treating a telephone as an attribute telephone-number implies that employees have
precisely one telephone number each. Treating a telephone as an entity telephone per-
mits employees to have several telephone numbers (including zero) associated with
them. However, we could instead easily define telephone-number as a multivalued at-
tribute to allow multiple telephones per employee.

The main difference then is that treating a telephone as an entity better models a
situation where one may want to keep extra information about a telephone, such as
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its location, or its type (mobile, video phone, or plain old telephone), or who all share
the telephone. Thus, treating telephone as an entity is more general than treating it
as an attribute and is appropriate when the generality may be useful.

In contrast, it would not be appropriate to treat the attribute employee-name as an
entity; it is difficult to argue that employee-name is an entity in its own right (in contrast
to the telephone). Thus, it is appropriate to have employee-name as an attribute of the
employee entity set.

Two natural questions thus arise: What constitutes an attribute, and what con-
stitutes an entity set? Unfortunately, there are no simple answers. The distinctions
mainly depend on the structure of the real-world enterprise being modeled, and on
the semantics associated with the attribute in question.

A common mistake is to use the primary key of an entity set as an attribute of an-
other entity set, instead of using a relationship. For example, it is incorrect to model
customer-id as an attribute of loan even if each loan had only one customer. The re-
lationship borrower is the correct way to represent the connection between loans and
customers, since it makes their connection explicit, rather than implicit via an at-
tribute.

Another related mistake that people sometimes make is to designate the primary
key attributes of the related entity sets as attributes of the relationship set. This should
not be done, since the primary key attributes are already implicit in the relationship.

2.4.2 Use of Entity Sets versus Relationship Sets

It is not always clear whether an object is best expressed by an entity set or a rela-
tionship set. In Section 2.1.1, we assumed that a bank loan is modeled as an entity.
An alternative is to model a loan not as an entity, but rather as a relationship between
customers and branches, with loan-number and amount as descriptive attributes. Each
loan is represented by a relationship between a customer and a branch.

If every loan is held by exactly one customer and is associated with exactly one
branch, we may find satisfactory the design where a loan is represented as a rela-
tionship. However, with this design, we cannot represent conveniently a situation in
which several customers hold a loan jointly. To handle such a situation, we must de-
fine a separate relationship for each holder of the joint loan. Then, we must replicate
the values for the descriptive attributes loan-number and amount in each such relation-
ship. Each such relationship must, of course, have the same value for the descriptive
attributes loan-number and amount.

Two problems arise as a result of the replication: (1) the data are stored multiple
times, wasting storage space, and (2) updates potentially leave the data in an incon-
sistent state, where the values differ in two relationships for attributes that are sup-
posed to have the same value. The issue of how to avoid such replication is treated
formally by normalization theory, discussed in Chapter 7.

The problem of replication of the attributes loan-number and amount is absent in
the original design of Section 2.1.1, because there loan is an entity set.

One possible guideline in determining whether to use an entity set or a relation-
ship set is to designate a relationship set to describe an action that occurs between
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entities. This approach can also be useful in deciding whether certain attributes may
be more appropriately expressed as relationships.

2.4.3 Binary versus n-ary Relationship Sets

Relationships in databases are often binary. Some relationships that appear to be
nonbinary could actually be better represented by several binary relationships. For
instance, one could create a ternary relationship parent, relating a child to his/her
mother and father. However, such a relationship could also be represented by two
binary relationships, mother and father, relating a child to his/her mother and father
separately. Using the two relationships mother and father allows us record a child’s
mother, even if we are not aware of the father’s identity; a null value would be
required if the ternary relationship parent is used. Using binary relationship sets is
preferable in this case.

In fact, it is always possible to replace a nonbinary (n-ary, for n > 2) relationship
set by a number of distinct binary relationship sets. For simplicity, consider the ab-
stract ternary (n = 3) relationship set R, relating entity sets A, B, and C'. We replace
the relationship set R by an entity set E, and create three relationship sets:

e R4, relating E'and A
e Rp, relating F and B
e R, relating £ and C

If the relationship set R had any attributes, these are assigned to entity set £; further,
a special identifying attribute is created for £ (since it must be possible to distinguish
different entities in an entity set on the basis of their attribute values). For each rela-
tionship (a;, b;, ¢;) in the relationship set R, we create a new entity e; in the entity set
E.Then, in each of the three new relationship sets, we insert a relationship as follows:

[ ) (ez—, ai) il’l RA
e (e;,b;)in Rp
° (ei7 Ci) in RC
We can generalize this process in a straightforward manner to n-ary relationship

sets. Thus, conceptually, we can restrict the E-R model to include only binary rela-
tionship sets. However, this restriction is not always desirable.

¢ An identifying attribute may have to be created for the entity set created to
represent the relationship set. This attribute, along with the extra relationship
sets required, increases the complexity of the design and (as we shall see in
Section 2.9) overall storage requirements.

o A n-ary relationship set shows more clearly that several entities participate in
a single relationship.
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e There may not be a way to translate constraints on the ternary relationship
into constraints on the binary relationships. For example, consider a constraint
that says that R is many-to-one from A, B to C; that is, each pair of entities
from A and B is associated with at most one C' entity. This constraint cannot
be expressed by using cardinality constraints on the relationship sets R4, Rp,
and Rc.

Consider the relationship set works-on in Section 2.1.2, relating employee, branch,
and job. We cannot directly split works-on into binary relationships between employee
and branch and between employee and job. If we did so, we would be able to record
that Jones is a manager and an auditor and that Jones works at Perryridge and Down-
town; however, we would not be able to record that Jones is a manager at Perryridge
and an auditor at Downtown, but is not an auditor at Perryridge or a manager at
Downtown.

The relationship set works-on can be split into binary relationships by creating a
new entity set as described above. However, doing so would not be very natural.

2.4.4 Placement of Relationship Attributes

The cardinality ratio of a relationship can affect the placement of relationship at-
tributes. Thus, attributes of one-to-one or one-to-many relationship sets can be as-
sociated with one of the participating entity sets, rather than with the relationship
set. For instance, let us specify that depositor is a one-to-many relationship set such
that one customer may have several accounts, but each account is held by only one
customer. In this case, the attribute access-date, which specifies when the customer last
accessed that account, could be associated with the account entity set, as Figure 2.6 de-
picts; to keep the figure simple, only some of the attributes of the two entity sets are
shown. Since each account entity participates in a relationship with at most one in-
stance of customer, making this attribute designation would have the same meaning

account (account-number, access-date)

customer (customer-name)
WA A-101] 24 May 199 |
— A-215| 3June 1996 |
— A-102| 10 June 1996 |
— A-305| 28 May 1996 |
~ A-201| 17 June 1996 |

Jones ><_| A-222| 24 June 1996 |
Lind
indsay —{ A-217 | 23 May 1996 |

Figure 2.6  Access-date as attribute of the account entity set.
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as would placing access-date with the depositor relationship set. Attributes of a one-to-
many relationship set can be repositioned to only the entity set on the “many” side of
the relationship. For one-to-one relationship sets, on the other hand, the relationship
attribute can be associated with either one of the participating entities.

The design decision of where to place descriptive attributes in such cases—as a
relationship or entity attribute—should reflect the characteristics of the enterprise
being modeled. The designer may choose to retain access-date as an attribute of depos-
itor to express explicitly that an access occurs at the point of interaction between the
customer and account entity sets.

The choice of attribute placement is more clear-cut for many-to-many relationship
sets. Returning to our example, let us specify the perhaps more realistic case that
depositor is a many-to-many relationship set expressing that a customer may have
one or more accounts, and that an account can be held by one or more customers.
If we are to express the date on which a specific customer last accessed a specific
account, access-date must be an attribute of the depositor relationship set, rather than
either one of the participating entities. If access-date were an attribute of account, for
instance, we could not determine which customer made the most recent access to a
joint account. When an attribute is determined by the combination of participating
entity sets, rather than by either entity separately, that attribute must be associated
with the many-to-many relationship set. Figure 2.7 depicts the placement of access-
date as a relationship attribute; again, to keep the figure simple, only some of the
attributes of the two entity sets are shown.

depositor(access-date)

account(account-number)

customer(customer-name) 24 May 1996

3 June 1996

21 June 1996

10 June 1996
Hayes

‘é’?
e
(@]
=)

17 June 1996
Turner
— 28 May 1996 =
, 28 May 1996 A2
Lindsay YT

24 June 1996

23 May 1996

Figure 2.7  Access-date as attribute of the depositor relationship set.
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2.5 Entity-Relationship Diagram

As we saw briefly in Section 1.4, an E-R diagram can express the overall logical struc-
ture of a database graphically. E-R diagrams are simple and clear—qualities that may
well account in large part for the widespread use of the E-R model. Such a diagram
consists of the following major components:

e Rectangles, which represent entity sets

o Ellipses, which represent attributes

e Diamonds, which represent relationship sets

e Lines, which link attributes to entity sets and entity sets to relationship sets
e Double ellipses, which represent multivalued attributes

e Dashed ellipses, which denote derived attributes

e Double lines, which indicate total participation of an entity in a relation-
ship set

e Double rectangles, which represent weak entity sets (described later, in Sec-
tion 2.6.)

Consider the entity-relationship diagram in Figure 2.8, which consists of two en-
tity sets, customer and loan, related through a binary relationship set borrower. The at-
tributes associated with customer are customer-id, customer-name, customer-street, and
customer-city. The attributes associated with loan are loan-number and amount. In Fig-
ure 2.8, attributes of an entity set that are members of the primary key are underlined.

The relationship set borrower may be many-to-many, one-to-many, many-to-one,
or one-to-one. To distinguish among these types, we draw either a directed line (—)
or an undirected line (—) between the relationship set and the entity set in question.

e A directed line from the relationship set borrower to the entity set loan speci-
fies that borrower is either a one-to-one or many-to-one relationship set, from
customer to loan; borrower cannot be a many-to-many or a one-to-many rela-
tionship set from customer to loan.

customer-name) (customer-street
customer-id

customer borrower loan

loan-number @

Figure 2.8 E-R diagram corresponding to customers and loans.
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e An undirected line from the relationship set borrower to the entity set loan spec-
ifies that borrower is either a many-to-many or one-to-many relationship set
from customer to loan.

Returning to the E-R diagram of Figure 2.8, we see that the relationship set borrower
is many-to-many. If the relationship set borrower were one-to-many, from customer to
loan, then the line from borrower to customer would be directed, with an arrow point-
ing to the customer entity set (Figure 2.9a). Similarly, if the relationship set borrower
were many-to-one from customer to loan, then the line from borrower to loan would
have an arrow pointing to the loan entity set (Figure 2.9b). Finally, if the relation-
ship set borrower were one-to-one, then both lines from borrower would have arrows:

customer-name (customer-streef loan-number @
customer-id

customer borrower loan

(a)

Customer-name loan-number @

customer-id

customer borrower loan

customer-stree

(b)

customer-name loan-number @

customer-id

customer borrower loan

customer-stree

()

Figure 2.9 Relationships. (a) one to many. (b) many to one. (c) one-to-one.
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access-date

customer-name account-number balance

customer-id

customer

customer-street

depositor account

Figure 2.10 E-R diagram with an attribute attached to a relationship set.

one pointing to the loan entity set and one pointing to the customer entity set (Fig-
ure 2.9¢).

If a relationship set has also some attributes associated with it, then we link these
attributes to that relationship set. For example, in Figure 2.10, we have the access-
date descriptive attribute attached to the relationship set depositor to specify the most
recent date on which a customer accessed that account.

Figure 2.11 shows how composite attributes can be represented in the E-R notation.
Here, a composite attribute name, with component attributes first-name, middle-initial,
and last-name replaces the simple attribute customer-name of customer. Also, a compos-
ite attribute address, whose component attributes are street, city, state, and zip-code re-
places the attributes customer-street and customer-city of customer. The attribute street is
itself a composite attribute whose component attributes are street-number, street-name,
and apartment number.

Figure 2.11 also illustrates a multivalued attribute phone-number, depicted by a
double ellipse, and a derived attribute age, depicted by a dashed ellipse.

street-name

Figure 2.11 E-R diagram with composite, multivalued, and derived attributes.
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employee-id telephone-number
manager
employee works-for
worker

Figure 2.12 E-R diagram with role indicators.

We indicate roles in E-R diagrams by labeling the lines that connect diamonds
to rectangles. Figure 2.12 shows the role indicators manager and worker between the
employee entity set and the works-for relationship set.

Nonbinary relationship sets can be specified easily in an E-R diagram. Figure 2.13
consists of the three entity sets employee, job, and branch, related through the relation-
ship set works-on.

We can specify some types of many-to-one relationships in the case of nonbinary
relationship sets. Suppose an employee can have at most one job in each branch (for
example, Jones cannot be a manager and an auditor at the same branch). This con-
straint can be specified by an arrow pointing to job on the edge from works-on.

We permit at most one arrow out of a relationship set, since an E-R diagram with
two or more arrows out of a nonbinary relationship set can be interpreted in two
ways. Suppose there is a relationship set R between entity sets A;, Ao, ..., A,,, and the
only arrows are on the edges to entity sets A;;1, Aiyo, ..., Ay,. Then, the two possible
interpretations are:

1. A particular combination of entities from A;, A,, ..., A; can be associated with
at most one combination of entities from A;;1, Ao, ..., A,. Thus, the pri-
mary key for the relationship R can be constructed by the union of the primary
keys of Al, Ag, ey AL

G
employee-id

employee

Figure 2.13 E-R diagram with a ternary relationship.
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loan-number
: amount
customer-id @ C—)

customer borrower loan

Figure 2.14 Total participation of an entity set in a relationship set.

2. For each entity set Ay, i < k < n, each combination of the entities from the
other entity sets can be associated with at most one entity from A;. Each set
{A1, A9, ..., Ak—1, Agga, ..., An}, for i < k < n, then forms a candidate key.

Each of these interpretations has been used in different books and systems. To avoid
confusion, we permit only one arrow out of a relationship set, in which case the two
interpretations are equivalent. In Chapter 7 (Section 7.3) we study the notion of furnc-
tional dependencies, which allow either of these interpretations to be specified in an
unambiguous manner.

Double lines are used in an E-R diagram to indicate that the participation of an
entity set in a relationship set is total; that is, each entity in the entity set occurs in at
least one relationship in that relationship set. For instance, consider the relationship
borrower between customers and loans. A double line from loan to borrower, as in
Figure 2.14, indicates that each loan must have at least one associated customer.

E-R diagrams also provide a way to indicate more complex constraints on the num-
ber of times each entity participates in relationships in a relationship set. An edge
between an entity set and a binary relationship set can have an associated minimum
and maximum cardinality, shown in the form [..h, where [ is the minimum and 5
the maximum cardinality. A minimum value of 1 indicates total participation of the
entity set in the relationship set. A maximum value of 1 indicates that the entity par-
ticipates in at most one relationship, while a maximum value * indicates no limit.
Note that a label 1..x on an edge is equivalent to a double line.

For example, consider Figure 2.15. The edge between loan and borrower has a car-
dinality constraint of 1..1, meaning the minimum and the maximum cardinality are
both 1. That is, each loan must have exactly one associated customer. The limit 0..x
on the edge from customer to borrower indicates that a customer can have zero or
more loans. Thus, the relationship borrower is one to many from customer to loan, and
further the participation of loan in borrower is total.

It is easy to misinterpret the 0..x on the edge between customer and borrower, and
think that the relationship borrower is many to one from customer to loan—this is
exactly the reverse of the correct interpretation.

If both edges from a binary relationship have a maximum value of 1, the relation-
ship is one to one. If we had specified a cardinality limit of 1..x on the edge between
customer and borrower, we would be saying that each customer must have at least one
loan.



‘ Silberschatz-Korth-Sudarshan: | 1. Data Models 2. Entity-Relationship © The McGraw-Hill

Database System

Model Companies, 2001

Concepts, Fourth Edition

2.6 Weak Entity Sets 47

customer-name customer-street

customer-id

loan-number amount

loan

borrower

customer

Figure 2.15 Cardinality limits on relationship sets.

2.6 Weak Entity Sets

An entity set may not have sufficient attributes to form a primary key. Such an entity
setis termed a weak entity set. An entity set that has a primary key is termed a strong
entity set.

As an illustration, consider the entity set payment, which has the three attributes:
payment-number, payment-date, and payment-amount. Payment numbers are typically
sequential numbers, starting from 1, generated separately for each loan. Thus, al-
though each payment entity is distinct, payments for different loans may share the
same payment number. Thus, this entity set does not have a primary key; it is a weak
entity set.

For a weak entity set to be meaningful, it must be associated with another entity
set, called the identifying or owner entity set. Every weak entity must be associated
with an identifying entity; that is, the weak entity set is said to be existence depen-
dent on the identifying entity set. The identifying entity set is said to own the weak
entity set that it identifies. The relationship associating the weak entity set with the
identifying entity set is called the identifying relationship. The identifying relation-
ship is many to one from the weak entity set to the identifying entity set, and the
participation of the weak entity set in the relationship is total.

In our example, the identifying entity set for payment is loan, and a relationship
loan-payment that associates payment entities with their corresponding loan entities is
the identifying relationship.

Although a weak entity set does not have a primary key, we nevertheless need a
means of distinguishing among all those entities in the weak entity set that depend
on one particular strong entity. The discriminator of a weak entity set is a set of at-
tributes that allows this distinction to be made. For example, the discriminator of the
weak entity set payment is the attribute payment-number, since, for each loan, a pay-
ment number uniquely identifies one single payment for that loan. The discriminator
of a weak entity set is also called the partial key of the entity set.

The primary key of a weak entity set is formed by the primary key of the iden-
tifying entity set, plus the weak entity set’s discriminator. In the case of the entity
set payment, its primary key is {loan-number, payment-number}, where loan-number is
the primary key of the identifying entity set, namely loan, and payment-number dis-
tinguishes payment entities within the same loan.
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The identifying relationship set should have no descriptive attributes, since any
required attributes can be associated with the weak entity set (see the discussion of
moving relationship-set attributes to participating entity sets in Section 2.2.1).

A weak entity set can participate in relationships other than the identifying re-
lationship. For instance, the payment entity could participate in a relationship with
the account entity set, identifying the account from which the payment was made. A
weak entity set may participate as owner in an identifying relationship with another
weak entity set. It is also possible to have a weak entity set with more than one iden-
tifying entity set. A particular weak entity would then be identified by a combination
of entities, one from each identifying entity set. The primary key of the weak entity
set would consist of the union of the primary keys of the identifying entity sets, plus
the discriminator of the weak entity set.

In E-R diagrams, a doubly outlined box indicates a weak entity set, and a dou-
bly outlined diamond indicates the corresponding identifying relationship. In Fig-
ure 2.16, the weak entity set payment depends on the strong entity set loan via the
relationship set loan-payment.

The figure also illustrates the use of double lines to indicate total participation—the
participation of the (weak) entity set payment in the relationship loan-payment is total,
meaning that every payment must be related via loan-payment to some loan. Finally,
the arrow from loan-payment to loan indicates that each payment is for a single loan.
The discriminator of a weak entity set also is underlined, but with a dashed, rather
than a solid, line.

In some cases, the database designer may choose to express a weak entity set as
a multivalued composite attribute of the owner entity set. In our example, this alter-
native would require that the entity set loan have a multivalued, composite attribute
payment, consisting of payment-number, payment-date, and payment-amount. A weak
entity set may be more appropriately modeled as an attribute if it participates in only
the identifying relationship, and if it has few attributes. Conversely, a weak-entity-
set representation will more aptly model a situation where the set participates in
relationships other than the identifying relationship, and where the weak entity set
has several attributes.

payment-date
payment-amount

loan loan-payment payment

Figure 2.16 E-R diagram with a weak entity set.
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As another example of an entity set that can be modeled as a weak entity set,
consider offerings of a course at a university. The same course may be offered in
different semesters, and within a semester there may be several sections for the same
course. Thus we can create a weak entity set course-offering, existence dependent on
course; different offerings of the same course are identified by a semester and a section-
number, which form a discriminator but not a primary key.

2.7 Extended E-R Features

Although the basic E-R concepts can model most database features, some aspects of a
database may be more aptly expressed by certain extensions to the basic E-R model.
In this section, we discuss the extended E-R features of specialization, generalization,
higher- and lower-level entity sets, attribute inheritance, and aggregation.

2.7.1 Specialization

An entity set may include subgroupings of entities that are distinct in some way
from other entities in the set. For instance, a subset of entities within an entity set
may have attributes that are not shared by all the entities in the entity set. The E-R
model provides a means for representing these distinctive entity groupings.

Consider an entity set person, with attributes name, street, and city. A person may
be further classified as one of the following;:

e customer

o employee

Each of these person types is described by a set of attributes that includes all the at-
tributes of entity set person plus possibly additional attributes. For example, customer
entities may be described further by the attribute customer-id, whereas employee enti-
ties may be described further by the attributes employee-id and salary. The process of
designating subgroupings within an entity set is called specialization. The special-
ization of person allows us to distinguish among persons according to whether they
are employees or customers.

As another example, suppose the bank wishes to divide accounts into two cat-
egories, checking account and savings account. Savings accounts need a minimum
balance, but the bank may set interest rates differently for different customers, offer-
ing better rates to favored customers. Checking accounts have a fixed interest rate,
but offer an overdraft facility; the overdraft amount on a checking account must be
recorded.

The bank could then create two specializations of account, namely savings-account
and checking-account. As we saw earlier, account entities are described by the at-
tributes account-number and balance. The entity set savings-account would have all the
attributes of account and an additional attribute interest-rate. The entity set checking-
account would have all the attributes of account, and an additional attribute overdraft-
amount.
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We can apply specialization repeatedly to refine a design scheme. For instance,
bank employees may be further classified as one of the following:

o officer

o teller

e secretary

Each of these employee types is described by a set of attributes that includes all the
attributes of entity set employee plus additional attributes. For example, officer entities
may be described further by the attribute office-number, teller entities by the attributes
station-number and hours-per-week, and secretary entities by the attribute hours-per-
week. Further, secretary entities may participate in a relationship secretary-for, which
identifies which employees are assisted by a secretary.

An entity set may be specialized by more than one distinguishing feature. In our
example, the distinguishing feature among employee entities is the job the employee
performs. Another, coexistent, specialization could be based on whether the person
is a temporary (limited-term) employee or a permanent employee, resulting in the
entity sets temporary-employee and permanent-employee. When more than one special-
ization is formed on an entity set, a particular entity may belong to multiple spe-
cializations. For instance, a given employee may be a temporary employee who is a
secretary:.

In terms of an E-R diagram, specialization is depicted by a triangle component
labeled ISA, as Figure 2.17 shows. The label ISA stands for “is a” and represents, for
example, that a customer “is a” person. The ISA relationship may also be referred to as
a superclass-subclass relationship. Higher- and lower-level entity sets are depicted
as regular entity sets—that is, as rectangles containing the name of the entity set.

2.7.2 Generalization

The refinement from an initial entity set into successive levels of entity subgroupings
represents a top-down design process in which distinctions are made explicit. The
design process may also proceed in a bottom-up manner, in which multiple entity
sets are synthesized into a higher-level entity set on the basis of common features. The
database designer may have first identified a customer entity set with the attributes
name, street, city, and customer-id, and an employee entity set with the attributes name,
street, city, employee-id, and salary.

There are similarities between the customer entity set and the employee entity set
in the sense that they have several attributes in common. This commonality can be
expressed by generalization, which is a containment relationship that exists between
a higher-level entity set and one or more lower-level entity sets. In our example, person
is the higher-level entity set and customer and employee are lower-level entity sets.
Higher- and lower-level entity sets also may be designated by the terms superclass
and subclass, respectively. The person entity set is the superclass of the customer and
employee subclasses.

For all practical purposes, generalization is a simple inversion of specialization.
We will apply both processes, in combination, in the course of designing the E-R
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person
ISA
employee customer
ISA
officer teller secretary

Figure 2.17 Specialization and generalization.

schema for an enterprise. In terms of the E-R diagram itself, we do not distinguish be-
tween specialization and generalization. New levels of entity representation will be
distinguished (specialization) or synthesized (generalization) as the design schema
comes to express fully the database application and the user requirements of the
database. Differences in the two approaches may be characterized by their starting
point and overall goal.

Specialization stems from a single entity set; it emphasizes differences among enti-
ties within the set by creating distinct lower-level entity sets. These lower-level entity
sets may have attributes, or may participate in relationships, that do not apply to all
the entities in the higher-level entity set. Indeed, the reason a designer applies special-
ization is to represent such distinctive features. If customer and employee neither have
attributes that person entities do not have nor participate in different relationships
than those in which person entities participate, there would be no need to specialize
the person entity set.

Generalization proceeds from the recognition that a number of entity sets share
some common features (namely, they are described by the same attributes and par-
ticipate in the same relationship sets). On the basis of their commonalities, generaliza-
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tion synthesizes these entity sets into a single, higher-level entity set. Generalization
is used to emphasize the similarities among lower-level entity sets and to hide the
differences; it also permits an economy of representation in that shared attributes are
not repeated.

2.7.3 Attribute Inheritance

A crucial property of the higher- and lower-level entities created by specialization
and generalization is attribute inheritance. The attributes of the higher-level entity
sets are said to be inherited by the lower-level entity sets. For example, customer and
employee inherit the attributes of person. Thus, customer is described by its name, street,
and city attributes, and additionally a customer-id attribute; employee is described by
its name, street, and city attributes, and additionally employee-id and salary attributes.

A lower-level entity set (or subclass) also inherits participation in the relationship
sets in which its higher-level entity (or superclass) participates. The officer, teller, and
secretary entity sets can participate in the works-for relationship set, since the super-
class employee participates in the works-for relationship. Attribute inheritance applies
through all tiers of lower-level entity sets. The above entity sets can participate in any
relationships in which the person entity set participates.

Whether a given portion of an E-R model was arrived at by specialization or gen-
eralization, the outcome is basically the same:

o A higher-level entity set with attributes and relationships that apply to all of
its lower-level entity sets

o Lower-level entity sets with distinctive features that apply only within a par-
ticular lower-level entity set

In what follows, although we often refer to only generalization, the properties that
we discuss belong fully to both processes.

Figure 2.17 depicts a hierarchy of entity sets. In the figure, employee is a lower-level
entity set of person and a higher-level entity set of the officer, teller, and secretary entity
sets. In a hierarchy, a given entity set may be involved as a lower-level entity set in
only one ISA relationship; that is, entity sets in this diagram have only single inher-
itance. If an entity set is a lower-level entity set in more than one ISA relationship,
then the entity set has multiple inheritance, and the resulting structure is said to be
a lattice.

2.7.4 Constraints on Generalizations

To model an enterprise more accurately, the database designer may choose to place
certain constraints on a particular generalization. One type of constraint involves
determining which entities can be members of a given lower-level entity set. Such
membership may be one of the following:

e Condition-defined. In condition-defined lower-level entity sets, membership
is evaluated on the basis of whether or not an entity satisfies an explicit con-
dition or predicate. For example, assume that the higher-level entity set ac-
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count has the attribute account-type. All account entities are evaluated on the
defining account-type attribute. Only those entities that satisfy the condition
account-type = “savings account” are allowed to belong to the lower-level en-
tity set person. All entities that satisfy the condition account-type = “checking
account” are included in checking account. Since all the lower-level entities are
evaluated on the basis of the same attribute (in this case, on account-type), this
type of generalization is said to be attribute-defined.

User-defined. User-defined lower-level entity sets are not constrained by a
membership condition; rather, the database user assigns entities to a given en-
tity set. For instance, let us assume that, after 3 months of employment, bank
employees are assigned to one of four work teams. We therefore represent the
teams as four lower-level entity sets of the higher-level employee entity set. A
given employee is not assigned to a specific team entity automatically on the
basis of an explicit defining condition. Instead, the user in charge of this de-
cision makes the team assignment on an individual basis. The assignment is
implemented by an operation that adds an entity to an entity set.

A second type of constraint relates to whether or not entities may belong to more

than one lower-level entity set within a single generalization. The lower-level entity
sets may be one of the following:

e Disjoint. A disjointness constraint requires that an entity belong to no more

than one lower-level entity set. In our example, an account entity can satisfy
only one condition for the account-type attribute; an entity can be either a sav-
ings account or a checking account, but cannot be both.

Overlapping. In overlapping generalizations, the same entity may belong to
more than one lower-level entity set within a single generalization. For an
illustration, consider the employee work team example, and assume that cer-
tain managers participate in more than one work team. A given employee may
therefore appear in more than one of the team entity sets that are lower-level
entity sets of employee. Thus, the generalization is overlapping.

As another example, suppose generalization applied to entity sets customer
and employee leads to a higher-level entity set person. The generalization is
overlapping if an employee can also be a customer.

Lower-level entity overlap is the default case; a disjointness constraint must be placed
explicitly on a generalization (or specialization). We can note a disjointedness con-
straint in an E-R diagram by adding the word disjoint next to the triangle symbol.

A final constraint, the completeness constraint on a generalization or specializa-

tion, specifies whether or not an entity in the higher-level entity set must belong to at
least one of the lower-level entity sets within the generalization/specialization. This
constraint may be one of the following;:

o Total generalization or specialization. Each higher-level entity must belong

to a lower-level entity set.
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o Partial generalization or specialization. Some higher-level entities may not
belong to any lower-level entity set.

Partial generalization is the default. We can specify total generalization in an E-R dia-
gram by using a double line to connect the box representing the higher-level entity set
to the triangle symbol. (This notation is similar to the notation for total participation
in a relationship.)

The account generalization is total: All account entities must be either a savings
account or a checking account. Because the higher-level entity set arrived at through
generalization is generally composed of only those entities in the lower-level entity
sets, the completeness constraint for a generalized higher-level entity set is usually
total. When the generalization is partial, a higher-level entity is not constrained to
appear in a lower-level entity set. The work team entity sets illustrate a partial spe-
cialization. Since employees are assigned to a team only after 3 months on the job,
some employee entities may not be members of any of the lower-level team entity sets.

We may characterize the team entity sets more fully as a partial, overlapping spe-
cialization of employee. The generalization of checking-account and savings-account into
account is a total, disjoint generalization. The completeness and disjointness con-
straints, however, do not depend on each other. Constraint patterns may also be
partial-disjoint and total-overlapping.

We can see that certain insertion and deletion requirements follow from the con-
straints that apply to a given generalization or specialization. For instance, when a
total completeness constraint is in place, an entity inserted into a higher-level en-
tity set must also be inserted into at least one of the lower-level entity sets. With a
condition-defined constraint, all higher-level entities that satisfy the condition must
be inserted into that lower-level entity set. Finally, an entity that is deleted from a
higher-level entity set also is deleted from all the associated lower-level entity sets to
which it belongs.

2.7.5 Aggregation

One limitation of the E-R model is that it cannot express relationships among rela-
tionships. To illustrate the need for such a construct, consider the ternary relationship
works-on, which we saw earlier, between a employee, branch, and job (see Figure 2.13).
Now, suppose we want to record managers for tasks performed by an employee at a
branch; that is, we want to record managers for (employee, branch, job) combinations.
Let us assume that there is an entity set manager.

One alternative for representing this relationship is to create a quaternary relation-
ship manages between employee, branch, job, and manager. (A quaternary relationship is
required—a binary relationship between manager and employee would not permit us
to represent which (branch, job) combinations of an employee are managed by which
manager.) Using the basic E-R modeling constructs, we obtain the E-R diagram of
Figure 2.18. (We have omitted the attributes of the entity sets, for simplicity.)

It appears that the relationship sets works-on and manages can be combined into
one single relationship set. Nevertheless, we should not combine them into a single
relationship, since some employee, branch, job combinations many not have a manager.
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job

employee branch

manages

manager

Figure 2.18 E-R diagram with redundant relationships.

There is redundant information in the resultant figure, however, since every em-
ployee, branch, job combination in manages is also in works-on. If the manager were a
value rather than an manager entity, we could instead make manager a multivalued at-
tribute of the relationship works-on. But doing so makes it more difficult (logically as
well as in execution cost) to find, for example, employee-branch-job triples for which
a manager is responsible. Since the manager is a manager entity, this alternative is
ruled out in any case.

The best way to model a situation such as the one just described is to use aggrega-
tion. Aggregation is an abstraction through which relationships are treated as higher-
level entities. Thus, for our example, we regard the relationship set works-on (relating
the entity sets employee, branch, and job) as a higher-level entity set called works-on.
Such an entity set is treated in the same manner as is any other entity set. We can
then create a binary relationship manages between works-on and manager to represent
who manages what tasks. Figure 2.19 shows a notation for aggregation commonly
used to represent the above situation.

2.7.6 Alternative E-R Notations

Figure 2.20 summarizes the set of symbols we have used in E-R diagrams. There is
no universal standard for E-R diagram notation, and different books and E-R diagram
software use different notations; Figure 2.21 indicates some of the alternative nota-
tions that are widely used. An entity set may be represented as a box with the name
outside, and the attributes listed one below the other within the box. The primary
key attributes are indicated by listing them at the top, with a line separating them
from the other attributes.
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employee branch

manages

manager

Figure 2.19 E-R diagram with aggregation.

Cardinality constraints can be indicated in several different ways, as Figure 2.21
shows. The labels * and 1 on the edges out of the relationship are sometimes used for
depicting many-to-many, one-to-one, and many-to-one relationships, as the figure
shows. The case of one-to-many is symmetric to many-to-one, and is not shown. In
another alternative notation in the figure, relationship sets are represented by lines
between entity sets, without diamonds; only binary relationships can be modeled
thus. Cardinality constraints in such a notation are shown by “crow’s foot” notation,
as in the figure.

2.8 Design of an E-R Database Schema

The E-R data model gives us much flexibility in designing a database schema to
model a given enterprise. In this section, we consider how a database designer may
select from the wide range of alternatives. Among the designer’s decisions are:

e Whether to use an attribute or an entity set to represent an object (discussed
earlier in Section 2.2.1)

o Whether a real-world concept is expressed more accurately by an entity set or
by a relationship set (Section 2.2.2)

o Whether to use a ternary relationship or a pair of binary relationships (Sec-
tion 2.2.3)
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Figure 2.20 Symbols used in the E-R notation.

<

<

o Whether to use a strong or a weak entity set (Section 2.6); a strong entity set
and its dependent weak entity sets may be regarded as a single “object” in the
database, since weak entities are existence dependent on a strong entity

o Whether using generalization (Section 2.7.2) is appropriate; generalization, or
a hierarchy of ISA relationships, contributes to modularity by allowing com-
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relationship
many-to-one * 1 R

relationship

Figure 2.21 Alternative E-R notations.

mon attributes of similar entity sets to be represented in one place in an E-R
diagram

o Whether using aggregation (Section 2.7.5) is appropriate; aggregation groups
a part of an E-R diagram into a single entity set, allowing us to treat the ag-
gregate entity set as a single unit without concern for the details of its internal
structure.

We shall see that the database designer needs a good understanding of the enterprise
being modeled to make these decisions.

2.8.1 Design Phases

A high-level data model serves the database designer by providing a conceptual
framework in which to specify, in a systematic fashion, what the data requirements
of the database users are, and how the database will be structured to fulfill these
requirements. The initial phase of database design, then, is to characterize fully the
data needs of the prospective database users. The database designer needs to interact
extensively with domain experts and users to carry out this task. The outcome of this
phase is a specification of user requirements.

Next, the designer chooses a data model, and by applying the concepts of the
chosen data model, translates these requirements into a conceptual schema of the
database. The schema developed at this conceptual-design phase provides a detailed
overview of the enterprise. Since we have studied only the E-R model so far, we shall
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use it to develop the conceptual schema. Stated in terms of the E-R model, the schema
specifies all entity sets, relationship sets, attributes, and mapping constraints. The de-
signer reviews the schema to confirm that all data requirements are indeed satisfied
and are not in conflict with one another. She can also examine the design to remove
any redundant features. Her focus at this point is describing the data and their rela-
tionships, rather than on specifying physical storage details.

A fully developed conceptual schema will also indicate the functional require-
ments of the enterprise. In a specification of functional requirements, users describe
the kinds of operations (or transactions) that will be performed on the data. Example
operations include modifying or updating data, searching for and retrieving specific
data, and deleting data. At this stage of conceptual design, the designer can review
the schema to ensure it meets functional requirements.

The process of moving from an abstract data model to the implementation of the
database proceeds in two final design phases. In the logical-design phase, the de-
signer maps the high-level conceptual schema onto the implementation data model
of the database system that will be used. The designer uses the resulting system-
specific database schema in the subsequent physical-design phase, in which the
physical features of the database are specified. These features include the form of file
organization and the internal storage structures; they are discussed in Chapter 11.

In this chapter, we cover only the concepts of the E-R model as used in the concep-
tual-schema-design phase. We have presented a brief overview of the database-design
process to provide a context for the discussion of the E-R data model. Database design
receives a full treatment in Chapter 7.

In Section 2.8.2, we apply the two initial database-design phases to our banking-
enterprise example. We employ the E-R data model to translate user requirements
into a conceptual design schema that is depicted as an E-R diagram.

2.8.2 Database Design for Banking Enterprise

We now look at the database-design requirements of a banking enterprise in more
detail, and develop a more realistic, but also more complicated, design than what
we have seen in our earlier examples. However, we do not attempt to model every
aspect of the database-design for a bank; we consider only a few aspects, in order to
illustrate the process of database design.

2.8.2.1 Data Requirements

The initial specification of user requirements may be based on interviews with the
database users, and on the designer’s own analysis of the enterprise. The description
that arises from this design phase serves as the basis for specifying the conceptual
structure of the database. Here are the major characteristics of the banking enterprise.

e The bank is organized into branches. Each branch is located in a particular
city and is identified by a unique name. The bank monitors the assets of each
branch.
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Bank customers are identified by their customer-id values. The bank stores each
customer’s name, and the street and city where the customer lives. Customers
may have accounts and can take out loans. A customer may be associated with
a particular banker, who may act as a loan officer or personal banker for that
customer.

Bank employees are identified by their employee-id values. The bank adminis-
tration stores the name and telephone number of each employee, the names
of the employee’s dependents, and the employee-id number of the employee’s
manager. The bank also keeps track of the employee’s start date and, thus,
length of employment.

The bank offers two types of accounts—savings and checking accounts. Ac-
counts can be held by more than one customer, and a customer can have more
than one account. Each account is assigned a unique account number. The
bank maintains a record of each account’s balance, and the most recent date on
which the account was accessed by each customer holding the account. In ad-
dition, each savings account has an interest rate, and overdrafts are recorded
for each checking account.

A loan originates at a particular branch and can be held by one or more cus-
tomers. A loan is identified by a unique loan number. For each loan, the bank
keeps track of the loan amount and the loan payments. Although a loan-
payment number does not uniquely identify a particular payment among
those for all the bank’s loans, a payment number does identify a particular
payment for a specific loan. The date and amount are recorded for each pay-
ment.

In a real banking enterprise, the bank would keep track of deposits and with-
drawals from savings and checking accounts, just as it keeps track of payments to
loan accounts. Since the modeling requirements for that tracking are similar, and we
would like to keep our example application small, we do not keep track of such de-
posits and withdrawals in our model.

2.8.2.2 Entity Sets Designation

Our specification of data requirements serves as the starting point for constructing a
conceptual schema for the database. From the characteristics listed in Section 2.8.2.1,
we begin to identify entity sets and their attributes:

o The branch entity set, with attributes branch-name, branch-city, and assets.

o The customer entity set, with attributes customer-id, customer-name, customer-

street; and customer-city. A possible additional attribute is banker-name.

o The employee entity set, with attributes employee-id, employee-name, telephone-

number, salary, and manager. Additional descriptive features are the multival-
ued attribute dependent-name, the base attribute start-date, and the derived at-
tribute employment-length.
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Two account entity sets—savings-account and checking-account—with the com-
mon attributes of account-number and balance; in addition, savings-account has
the attribute interest-rate and checking-account has the attribute overdraft-amount.

The loan entity set, with the attributes loan-number, amount, and originating-
branch.

The weak entity set loan-payment, with attributes payment-number, payment-
date, and payment-amount.

2.8.2.3 Relationship Sets Designation

We now return to the rudimentary design scheme of Section 2.8.2.2 and specify the
following relationship sets and mapping cardinalities. In the process, we also refine
some of the decisions we made earlier regarding attributes of entity sets.

borrower, a many-to-many relationship set between customer and loan.

loan-branch, a many-to-one relationship set that indicates in which branch a
loan originated. Note that this relationship set replaces the attribute originating-
branch of the entity set loan.

loan-payment, a one-to-many relationship from loan to payment, which docu-
ments that a payment is made on a loan.

depositor, with relationship attribute access-date, a many-to-many relationship
set between customer and account, indicating that a customer owns an account.

cust-banker, with relationship attribute type, a many-to-one relationship set ex-
pressing that a customer can be advised by a bank employee, and that a bank
employee can advise one or more customers. Note that this relationship set
has replaced the attribute banker-name of the entity set customer.

works-for, a relationship set between employee entities with role indicators man-
ager and worker; the mapping cardinalities express that an employee works
for only one manager and that a manager supervises one or more employees.
Note that this relationship set has replaced the manager attribute of employee.

2.8.2.4 E-R Diagram

Drawing on the discussions in Section 2.8.2.3, we now present the completed E-R di-
agram for our example banking enterprise. Figure 2.22 depicts the full representation
of a conceptual model of a bank, expressed in terms of E-R concepts. The diagram in-
cludes the entity sets, attributes, relationship sets, and mapping cardinalities arrived
at through the design processes of Sections 2.8.2.1 and 2.8.2.2, and refined in Section

2.8.2.3.
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Figure 2.22 E-R diagram for a banking enterprise.

2.9 Reduction of an E-R Schema to Tables

We can represent a database that conforms to an E-R database schema by a collection
of tables. For each entity set and for each relationship set in the database, there is a
unique table to which we assign the name of the corresponding entity set or relation-
ship set. Each table has multiple columns, each of which has a unique name.

Both the E-R model and the relational-database model are abstract, logical rep-
resentations of real-world enterprises. Because the two models employ similar de-
sign principles, we can convert an E-R design into a relational design. Converting a
database representation from an E-R diagram to a table format is the way we arrive
at a relational-database design from an E-R diagram. Although important differences
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exist between a relation and a table, informally, a relation can be considered to be a
table of values.

In this section, we describe how an E-R schema can be represented by tables; and
in Chapter 3, we show how to generate a relational-database schema from an E-R
schema.

The constraints specified in an E-R diagram, such as primary keys and cardinality
constraints, are mapped to constraints on the tables generated from the E-R diagram.
We provide more details about this mapping in Chapter 6 after describing how to
specify constraints on tables.

2.9.1 Tabular Representation of Strong Entity Sets

Let E be a strong entity set with descriptive attributes a;, as,...,a,. We represent
this entity by a table called E with n distinct columns, each of which corresponds to
one of the attributes of E. Each row in this table corresponds to one entity of the entity
set E.

As an illustration, consider the entity set loan of the E-R diagram in Figure 2.8. This
entity set has two attributes: loan-number and amount. We represent this entity set by
a table called loan, with two columns, as in Figure 2.23. The row

(L-17, 1000)

in the loan table means that loan number L-17 has a loan amount of $1000. We can
add a new entity to the database by inserting a row into a table. We can also delete or
modify rows.

Let D; denote the set of all loan numbers, and let Dy denote the set of all balances.
Any row of the loan table must consist of a 2-tuple (vi, v2), where v; is a loan (that
is, vy is in set D;) and v, is an amount (that is, v, is in set D5). In general, the loan
table will contain only a subset of the set of all possible rows. We refer to the set of all
possible rows of loan as the Cartesian product of Dy and D, denoted by

D1XD2

In general, if we have a table of n columns, we denote the Cartesian product of
D17 DQ?"’;Dnby
Dy x Dy x --- x D,_1 x D,

| loan-number | amount |

L-11 900
L-14 1500
L-15 1500
L-16 1300
L-17 1000
L-23 2000
L-93 500

Figure 2.23  The loan table.
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| customer-id | customer-name | customer-street | customer-city |

019-28-3746 Smith North Rye

182-73-6091 Turner Putnam Stamford
192-83-7465 Johnson Alma Palo Alto
244-66-8800 Curry North Rye

321-12-3123 Jones Main Harrison
335-57-7991 Adams Spring Pittsfield
336-66-9999 Lindsay Park Pittsfield
677-89-9011 Hayes Main Harrison
963-96-3963 Williams Nassau Princeton

Figure 2.24  The customer table.

As another example, consider the entity set customer of the E-R diagram in Fig-
ure 2.8. This entity set has the attributes customer-id, customer-name, customer-street,
and customer-city. The table corresponding to customer has four columns, as in Fig-
ure 2.24.

2.9.2 Tabular Representation of Weak Entity Sets

Let A be a weak entity set with attributes a;, aq, ..., a,,. Let B be the strong entity set
on which A depends. Let the primary key of B consist of attributes by, b, ..., b,. We
represent the entity set A by a table called A with one column for each attribute of
the set:

{al,ag, .. .,am} U {bl,bg, .. .,b”}

As an illustration, consider the entity set payment in the E-R diagram of Figure 2.16.
This entity set has three attributes: payment-number, payment-date, and payment-amount.
The primary key of the loan entity set, on which payment depends, is loan-number.
Thus, we represent payment by a table with four columns labeled loan-number, payment-
number, payment-date, and payment-amount, as in Figure 2.25.

2.9.3 Tabular Representation of Relationship Sets

Let R be a relationship set, let a;, as, ..., a, be the set of attributes formed by the
union of the primary keys of each of the entity sets participating in R, and let the
descriptive attributes (if any) of R be by, b, .. ., b,. We represent this relationship set
by a table called R with one column for each attribute of the set:

{al,ag,...,am} U {bl,bg,...,bn}

As an illustration, consider the relationship set borrower in the E-R diagram of Fig-
ure 2.8. This relationship set involves the following two entity sets:

o customer, with the primary key customer-id

o Joan, with the primary key loan-number
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| loan-number | payment-number | payment-date | payment-amount

L-11 53 7 June 2001 125
L-14 69 28 May 2001 500
L-15 22 23 May 2001 300
L-16 58 18 June 2001 135
L-17 5 10 May 2001 50
L-17 6 7 June 2001 50
L-17 7 17 June 2001 100
L-23 11 17 May 2001 75
L-93 103 3 June 2001 900
L-93 104 13 June 2001 200

Figure 2.25 The payment table.

Since the relationship set has no attributes, the borrower table has two columns, la-
beled customer-id and loan-number, as shown in Figure 2.26.

2.9.3.1 Redundancy of Tables

A relationship set linking a weak entity set to the corresponding strong entity set is
treated specially. As we noted in Section 2.6, these relationships are many-to-one and
have no descriptive attributes. Furthermore, the primary key of a weak entity set in-
cludes the primary key of the strong entity set. In the E-R diagram of Figure 2.16, the
weak entity set payment is dependent on the strong entity set loan via the relation-
ship set loan-payment. The primary key of payment is {loan-number, payment-number},
and the primary key of loan is {loan-number}. Since loan-payment has no descriptive
attributes, the loan-payment table would have two columns, loan-number and payment-
number. The table for the entity set payment has four columns, loan-number, payment-
number, payment-date, and payment-amount. Every (loan-number, payment-number) com-
bination in loan-payment would also be present in the payment table, and vice versa.
Thus, the loan-payment table is redundant. In general, the table for the relationship set

customer-id | loan-number |

019-28-3746 L-11
019-28-3746 L-23
244-66-8800 L-93
321-12-3123 L-17
335-57-7991 L-16
555-55-5555 L-14
677-89-9011 L-15
963-96-3963 L-17

Figure 2.26  The borrower table.
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linking a weak entity set to its corresponding strong entity set is redundant and does
not need to be present in a tabular representation of an E-R diagram.

2.9.3.2 Combination of Tables

Consider a many-to-one relationship set AB from entity set A to entity set B. Using
our table-construction scheme outlined previously, we get three tables: A, B, and AB.
Suppose further that the participation of A in the relationship is total; that is, every
entity a in the entity set A must participate in the relationship AB. Then we can
combine the tables A and AB to form a single table consisting of the union of columns
of both tables.

As an illustration, consider the E-R diagram of Figure 2.27. The double line in the
E-R diagram indicates that the participation of account in the account-branch is total.
Hence, an account cannot exist without being associated with a particular branch.
Further, the relationship set account-branch is many to one from account to branch.
Therefore, we can combine the table for account-branch with the table for account and
require only the following two tables:

e account, with attributes account-number, balance, and branch-name

e branch, with attributes branch-name, branch-city, and assets

2.9.4 Composite Attributes

We handle composite attributes by creating a separate attribute for each of the com-
ponent attributes; we do not create a separate column for the composite attribute
itself. Suppose address is a composite attribute of entity set customer, and the com-
ponents of address are street and city. The table generated from customer would then
contain columns address-street and address-city; there is no separate column for address.

2.9.5 Multivalued Attributes

We have seen that attributes in an E-R diagram generally map directly into columns
for the appropriate tables. Multivalued attributes, however, are an exception; new
tables are created for these attributes.

branch-name
account-number @

account-
branch

account

Figure 2.27 E-R diagram.
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For a multivalued attribute M, we create a table T with a column C that corre-
sponds to M and columns corresponding to the primary key of the entity set or rela-
tionship set of which M is an attribute. As an illustration, consider the E-R diagram
in Figure 2.22. The diagram includes the multivalued attribute dependent-name. For
this multivalued attribute, we create a table dependent-name, with columns dname, re-
ferring to the dependent-name attribute of employee, and employee-id, representing the
primary key of the entity set employee. Each dependent of an employee is represented
as a unique row in the table.

2.9.6 Tabular Representation of Generalization

There are two different methods for transforming to a tabular form an E-R diagram
that includes generalization. Although we refer to the generalization in Figure 2.17
in this discussion, we simplify it by including only the first tier of lower-level entity
sets—that is, savings-account and checking-account.

1. Create a table for the higher-level entity set. For each lower-level entity set,
create a table that includes a column for each of the attributes of that entity set
plus a column for each attribute of the primary key of the higher-level entity
set. Thus, for the E-R diagram of Figure 2.17, we have three tables:

e account, with attributes account-number and balance
e savings-account, with attributes account-number and interest-rate
o checking-account, with attributes account-number and overdraft-amount

2. An alternative representation is possible, if the generalization is disjoint and
complete—that is, if no entity is a member of two lower-level entity sets di-
rectly below a higher-level entity set, and if every entity in the higher level
entity set is also a member of one of the lower-level entity sets. Here, do not
create a table for the higher-level entity set. Instead, for each lower-level en-
tity set, create a table that includes a column for each of the attributes of that
entity set plus a column for each attribute of the higher-level entity set. Then,
for the E-R diagram of Figure 2.17, we have two tables.

e savings-account, with attributes account-number, balance, and interest-rate
e checking-account, with attributes account-number, balance, and overdraft-
amount

The savings-account and checking-account relations corresponding to these
tables both have account-number as the primary key.

If the second method were used for an overlapping generalization, some values
such as balance would be stored twice unnecessarily. Similarly, if the generalization
were not complete—that is, if some accounts were neither savings nor checking
accounts—then such accounts could not be represented with the second method.

2.9.7 Tabular Representation of Aggregation

Transforming an E-R diagram containing aggregation to a tabular form is straight-
forward. Consider the diagram of Figure 2.19. The table for the relationship set
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manages between the aggregation of works-on and the entity set manager includes a
column for each attribute in the primary keys of the entity set manager and the rela-
tionship set works-on. It would also include a column for any descriptive attributes,
if they exist, of the relationship set manages. We then transform the relationship sets
and entity sets within the aggregated entity.

2.10 The Unified Modeling Language UML xx

Entity-relationship diagrams help model the data representation component of a soft-
ware system. Data representation, however, forms only one part of an overall system
design. Other components include models of user interactions with the system, spec-
ification of functional modules of the system and their interaction, etc. The Unified
Modeling Language (UML), is a proposed standard for creating specifications of var-
ious components of a software system. Some of the parts of UML are:

e Class diagram. A class diagram is similar to an E-R diagram. Later in this
section we illustrate a few features of class diagrams and how they relate to
E-R diagrams.

e Use case diagram. Use case diagrams show the interaction between users and
the system, in particular the steps of tasks that users perform (such as with-
drawing money or registering for a course).

o Activity diagram. Activity diagrams depict the flow of tasks between various
components of a system.

e Implementation diagram. Implementation diagrams show the system com-
ponents and their interconnections, both at the software component level and
the hardware component level.

We do not attempt to provide detailed coverage of the different parts of UML here.
See the bibliographic notes for references on UML. Instead we illustrate some features
of UML through examples.

Figure 2.28 shows several E-R diagram constructs and their equivalent UML class
diagram constructs. We describe these constructs below. UML shows entity sets as
boxes and, unlike E-R, shows attributes within the box rather than as separate el-
lipses. UML actually models objects, whereas E-R models entities. Objects are like
entities, and have attributes, but additionally provide a set of functions (called meth-
ods) that can be invoked to compute values on the basis of attributes of the objects,
or to update the object itself. Class diagrams can depict methods in addition to at-
tributes. We cover objects in Chapter 8.

We represent binary relationship sets in UML by just drawing a line connecting
the entity sets. We write the relationship set name adjacent to the line. We may also
specify the role played by an entity set in a relationship set by writing the role name
on the line, adjacent to the entity set. Alternatively, we may write the relationship set
name in a box, along with attributes of the relationship set, and connect the box by a
dotted line to the line depicting the relationship set. This box can then be treated as
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E-R diagram class diagram in UML

Figure 2.28 Symbols used in the UML class diagram notation.

an entity set, in the same way as an aggregation in E-R diagrams and can participate
in relationships with other entity sets.

Nonbinary relationships cannot be directly represented in UML—they have to
be converted to binary relationships by the technique we have seen earlier in Sec-

tion 2.4.3.
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Cardinality constraints are specified in UML in the same way as in E-R diagrams, in
the form [..h, where [ denotes the minimum and h the maximum number of relation-
ships an entity can participate in. However, you should be aware that the positioning
of the constraints is exactly the reverse of the positioning of constraints in E-R dia-
grams, as shown in Figure 2.28. The constraint 0..x on the £2 side and 0..1 on the E1
side means that each E2 entity can participate in at most one relationship, whereas
each E1 entity can participate in many relationships; in other words, the relationship
is many to one from E2 to E1.

Single values such as 1 or * may be written on edges; the single value 1 on an edge
is treated as equivalent to 1..1, while * is equivalent to 0..x.

We represent generalization and specialization in UML by connecting entity sets
by a line with a triangle at the end corresponding to the more general entity set.
For instance, the entity set person is a generalization of customer and employee. UML
diagrams can also represent explicitly the constraints of disjoint/overlapping on gen-
eralizations. Figure 2.28 shows disjoint and overlapping generalizations of customer
and employee to person. Recall that if the customer /employee to person generalization is
disjoint, it means that no one can be both a customer and an employee. An overlapping
generalization allows a person to be both a customer and an employee.

2.11 Summary

e The entity-relationship (E-R) data model is based on a perception of a real
world that consists of a set of basic objects called entities, and of relationships
among these objects.

e The model is intended primarily for the database-design process. It was de-
veloped to facilitate database design by allowing the specification of an en-
terprise schema. Such a schema represents the overall logical structure of the
database. This overall structure can be expressed graphically by an E-R dia-
gram.

e An entity is an object that exists in the real world and is distinguishable from
other objects. We express the distinction by associating with each entity a set
of attributes that describes the object.

o A relationship is an association among several entities. The collection of all
entities of the same type is an entity set, and the collection of all relationships
of the same type is a relationship set.

e Mapping cardinalities express the number of entities to which another entity
can be associated via a relationship set.

o A superkey of an entity set is a set of one or more attributes that, taken collec-
tively, allows us to identify uniquely an entity in the entity set. We choose a
minimal superkey for each entity set from among its superkeys; the minimal
superkey is termed the entity set’s primary key. Similarly, a relationship set
is a set of one or more attributes that, taken collectively, allows us to identify
uniquely a relationship in the relationship set. Likewise, we choose a mini-
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mal superkey for each relationship set from among its superkeys; this is the
relationship set’s primary key.

An entity set that does not have sufficient attributes to form a primary key
is termed a weak entity set. An entity set that has a primary key is termed a
strong entity set.

Specialization and generalization define a containment relationship between
a higher-level entity set and one or more lower-level entity sets. Specialization
is the result of taking a subset of a higher-level entity set to form a lower-
level entity set. Generalization is the result of taking the union of two or more
disjoint (lower-level) entity sets to produce a higher-level entity set. The at-
tributes of higher-level entity sets are inherited by lower-level entity sets.

Aggregation is an abstraction in which relationship sets (along with their as-
sociated entity sets) are treated as higher-level entity sets, and can participate
in relationships.

The various features of the E-R model offer the database designer numerous
choices in how to best represent the enterprise being modeled. Concepts and
objects may, in certain cases, be represented by entities, relationships, or at-
tributes. Aspects of the overall structure of the enterprise may be best de-
scribed by using weak entity sets, generalization, specialization, or aggrega-
tion. Often, the designer must weigh the merits of a simple, compact model
versus those of a more precise, but more complex, one.

A database that conforms to an E-R diagram can be represented by a collection
of tables. For each entity set and for each relationship set in the database, there
is a unique table that is assigned the name of the corresponding entity set or
relationship set. Each table has a number of columns, each of which has a
unique name. Converting database representation from an E-R diagram to a
table format is the basis for deriving a relational-database design from an E-R
diagram.

The unified modeling language (UML) provides a graphical means of model-
ing various components of a software system. The class diagram component
of UML is based on E-R diagrams. However, there are some differences be-
tween the two that one must beware of.

Review Terms

Entity-relationship data model

Single-valued and multivalued at-

Entity tributes

Entity set e Null value

Attributes e Derived attribute

Domain e Relationship, and relationship set

Simple and composite attributes e Role
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e Recursive relationship set
e Descriptive attributes

e Binary relationship set

e Participation
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O Discriminator attributes
O Identifying relationship

e Specialization and generalization

O Superclass and subclass

e Degree of relationship set O Attribute inheritance

e Mapping cardinality: O Single and multiple inheri-
O One-to-one relationship tance
O One-to-many relationship OO Condition-defined and user-
O Many-to-one relationship defined membership

O Disjoint and overlapping gen-

O Many-to-many relationship
eralization

O Total participation e Completeness constraint

O Partial participation O Total and partial generaliza-
e Superkey, candidate key, and pri- tion .
mary key e Aggregation
e Weak entity sets and strong entity e ER diagram
sets e Unified Modeling Language (UML)
Exercises

2.1

2.2

2.3

24

2.5

Explain the distinctions among the terms primary key, candidate key, and su-
perkey.

Construct an E-R diagram for a car-insurance company whose customers own
one or more cars each. Each car has associated with it zero to any number of
recorded accidents.

Construct an E-R diagram for a hospital with a set of patients and a set of medi-
cal doctors. Associate with each patient a log of the various tests and examina-
tions conducted.

A university registrar’s office maintains data about the following entities: (a)
courses, including number, title, credits, syllabus, and prerequisites; (b) course
offerings, including course number, year, semester, section number, instructor(s),
timings, and classroom; (c) students, including student-id, name, and program;
and (d) instructors, including identification number, name, department, and ti-
tle. Further, the enrollment of students in courses and grades awarded to stu-
dents in each course they are enrolled for must be appropriately modeled.

Construct an E-R diagram for the registrar’s office. Document all assumptions
that you make about the mapping constraints.

Consider a database used to record the marks that students get in different ex-
ams of different course offerings.

a. Construct an E-R diagram that models exams as entities, and uses a ternary
relationship, for the above database.
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b. Construct an alternative E-R diagram that uses only a binary relationship
between students and course-offerings. Make sure that only one relationship
exists between a particular student and course-offering pair, yet you can
represent the marks that a student gets in different exams of a course offer-

ing.
Construct appropriate tables for each of the E-R diagrams in Exercises 2.2 to 2.4.

Design an E-R diagram for keeping track of the exploits of your favourite sports
team. You should store the matches played, the scores in each match, the players
in each match and individual player statistics for each match. Summary statis-
tics should be modeled as derived attributes

Extend the E-R diagram of the previous question to track the same information
for all teams in a league.

Explain the difference between a weak and a strong entity set.

We can convert any weak entity set to a strong entity set by simply adding ap-
propriate attributes. Why, then, do we have weak entity sets?

Define the concept of aggregation. Give two examples of where this concept is
useful.

Consider the E-R diagram in Figure 2.29, which models an online bookstore.

a. List the entity sets and their primary keys.

b. Suppose the bookstore adds music cassettes and compact disks to its col-
lection. The same music item may be present in cassette or compact disk
format, with differing prices. Extend the E-R diagram to model this addi-
tion, ignoring the effect on shopping baskets.

c. Now extend the E-R diagram, using generalization, to model the case where
a shopping basket may contain any combination of books, music cassettes,
or compact disks.

Consider an E-R diagram in which the same entity set appears several times.
Why is allowing this redundancy a bad practice that one should avoid whenever
possible?

Consider a university database for the scheduling of classrooms for final exams.
This database could be modeled as the single entity set exam, with attributes
course-name, section-number, room-number, and time. Alternatively, one or more
additional entity sets could be defined, along with relationship sets to replace
some of the attributes of the exam entity set, as

o course with attributes name, department, and c-number

e section with attributes s-number and enrollment, and dependent as a weak
entity set on course

e room with attributes r-number, capacity, and building

a. Show an E-R diagram illustrating the use of all three additional entity sets
listed.
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Figure 2.29 E-R diagram for Exercise 2.12.

b. Explain what application characteristics would influence a decision to in-
clude or not to include each of the additional entity sets.

2.15 When designing an E-R diagram for a particular enterprise, you have several
alternatives from which to choose.

a. What criteria should you consider in making the appropriate choice?

b. Design three alternative E-R diagrams to represent the university registrar’s
office of Exercise 2.4. List the merits of each. Argue in favor of one of the
alternatives.

2.16 AnE-R diagram can be viewed as a graph. What do the following mean in terms
of the structure of an enterprise schema?

a. The graph is disconnected.
b. The graph is acyclic.

2.17 In Section 2.4.3, we represented a ternary relationship (Figure 2.30a) using bi-
nary relationships, as shown in Figure 2.30b. Consider the alternative shown in
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Figure 2.30 E-R diagram for Exercise 2.17 (attributes not shown).

Figure 2.30c. Discuss the relative merits of these two alternative representations
of a ternary relationship by binary relationships.

Consider the representation of a ternary relationship using binary relationships
as described in Section 2.4.3 (shown in Figure 2.30b.)

a. Show a simple instance of £, A, B,C, Ra, Rp, and R¢ that cannot corre-
spond to any instance of A, B,C, and R.

b. Modify the E-R diagram of Figure 2.30b to introduce constraints that will
guarantee that any instance of £, A, B,C, R4, Rp, and R¢ that satisfies the
constraints will correspond to an instance of A, B, C, and R.

¢. Modify the translation above to handle total participation constraints on the
ternary relationship.

d. The above representation requires that we create a primary key attribute for
E. Show how to treat E as a weak entity set so that a primary key attribute
is not required.

A weak entity set can always be made into a strong entity set by adding to its
attributes the primary key attributes of its identifying entity set. Outline what
sort of redundancy will result if we do so.

Design a generalization—specialization hierarchy for a motor-vehicle sales com-
pany. The company sells motorcycles, passenger cars, vans, and buses. Justify
your placement of attributes at each level of the hierarchy. Explain why they
should not be placed at a higher or lower level.
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Explain the distinction between condition-defined and user-defined constraints.
Which of these constraints can the system check automatically? Explain your
answer.

Explain the distinction between disjoint and overlapping constraints.
Explain the distinction between total and partial constraints.

Figure 2.31 shows a lattice structure of generalization and specialization. For
entity sets A, B, and C, explain how attributes are inherited from the higher-
level entity sets X and Y. Discuss how to handle a case where an attribute of X
has the same name as some attribute of Y.

Draw the UML equivalents of the E-R diagrams of Figures 2.9¢, 2.10, 2.12, 2.13
and 2.17.

Consider two separate banks that decide to merge. Assume that both banks
use exactly the same E-R database schema—the one in Figure 2.22. (This as-
sumption is, of course, highly unrealistic; we consider the more realistic case in
Section 19.8.) If the merged bank is to have a single database, there are several
potential problems:

e The possibility that the two original banks have branches with the same
name

e The possibility that some customers are customers of both original banks

e The possibility that some loan or account numbers were used at both origi-
nal banks (for different loans or accounts, of course)

For each of these potential problems, describe why there is indeed a potential
for difficulties. Propose a solution to the problem. For your solution, explain any
changes that would have to be made and describe what their effect would be on
the schema and the data.

Reconsider the situation described for Exercise 2.26 under the assumption that
one bank is in the United States and the other is in Canada. As before, the
banks use the schema of Figure 2.22, except that the Canadian bank uses the
social-insurance number assigned by the Canadian government, whereas the U.S.
bank uses the social-security number to identify customers. What problems (be-

Figure 2.31 E-R diagram for Exercise 2.24 (attributes not shown).
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yond those identified in Exercise 2.24) might occur in this multinational case?
How would you resolve them? Be sure to consider both the scheme and the
actual data values in constructing your answer.

Bibliographical Notes

The E-R data model was introduced by Chen [1976]. A logical design methodology for
relational databases using the extended E-R model is presented by Teorey et al. [1986].
Mapping from extended E-R models to the relational model is discussed by Lyngbaek
and Vianu [1987] and Markowitz and Shoshani [1992]. Various data-manipulation
languages for the E-R model have been proposed: GERM (Benneworth et al. [1981]),
GORDAS (Elmasri and Wiederhold [1981]), and ERROL (Markowitz and Raz [1983]). A
graphical query language for the E-R database was proposed by Zhang and Mendel-
zon [1983] and Elmasri and Larson [1985].

Smith and Smith [1977] introduced the concepts of generalization, specialization,
and aggregation and Hammer and McLeod [1980] expanded them. Lenzerini and
Santucci [1983] used the concepts in defining cardinality constraints in the E-R model.

Thalheim [2000] provides a detailed textbook coverage of research in E-R mod-
eling. Basic textbook discussions are offered by Batini et al. [1992] and Elmasri and
Navathe [2000]. Davis et al. [1983] provide a collection of papers on the E-R model.

Tools

Many database systems provide tools for database design that support E-R diagrams.
These tools help a designer create E-R diagrams, and they can automatically cre-
ate corresponding tables in a database. See bibliographic notes of Chapter 1 for
references to database system vendor’s Web sites. There are also some database-
independent data modeling tools that support E-R diagrams and UML class diagrams.
These include Rational Rose (www.rational.com/products/rose), Visio Enterprise (see
www.visio.com), and ERwin (search for ERwin at the site www.cai.com/products).
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The relational model is today the primary data model for commercial data-processing
applications. It has attained its primary position because of its simplicity, which eases
the job of the programmer, as compared to earlier data models such as the network
model or the hierarchical model.

In this chapter, we first study the fundamentals of the relational model, which pro-
vides a very simple yet powerful way of representing data. We then describe three
formal query languages; query languages are used to specify requests for informa-
tion. The three we cover in this chapter are not user-friendly, but instead serve as
the formal basis for user-friendly query languages that we study later. We cover the
first query language, relational algebra, in great detail. The relational algebra forms
the basis of the widely used SQL query language. We then provide overviews of the
other two formal languages, the tuple relational calculus and the domain relational
calculus, which are declarative query languages based on mathematical logic. The
domain relational calculus is the basis of the QBE query language.

A substantial theory exists for relational databases. We study the part of this theory
dealing with queries in this chapter. In Chapter 7 we shall examine aspects of rela-
tional database theory that help in the design of relational database schemas, while in
Chapters 13 and 14 we discuss aspects of the theory dealing with efficient processing
of queries.

3.1 Structure of Relational Databases

A relational database consists of a collection of tables, each of which is assigned a
unique name. Each table has a structure similar to that presented in Chapter 2, where
we represented E-R databases by tables. A row in a table represents a relationship
among a set of values. Since a table is a collection of such relationships, there is a
close correspondence between the concept of table and the mathematical concept of

79
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relation, from which the relational data model takes its name. In what follows, we
introduce the concept of relation.

In this chapter, we shall be using a number of different relations to illustrate the
various concepts underlying the relational data model. These relations represent part
of a banking enterprise. They differ slightly from the tables that were used in Chap-
ter 2, so that we can simplify our presentation. We shall discuss criteria for the ap-
propriateness of relational structures in great detail in Chapter 7.

3.1.1 Basic Structure

Consider the account table of Figure 3.1. It has three column headers: account-number,
branch-name, and balance. Following the terminology of the relational model, we refer
to these headers as attributes (as we did for the E-R model in Chapter 2). For each
attribute, there is a set of permitted values, called the domain of that attribute. For
the attribute branch-name, for example, the domain is the set of all branch names. Let
D denote the set of all account numbers, D, the set of all branch names, and D;
the set of all balances. As we saw in Chapter 2, any row of account must consist of
a 3-tuple (vi, v2, v3), where v; is an account number (that is, v; is in domain D),
vg is a branch name (that is, vs is in domain D5), and v3 is a balance (that is, v3 is in
domain D3). In general, account will contain only a subset of the set of all possible
rows. Therefore, account is a subset of

D1 X Dg X D3
In general, a table of 1 attributes must be a subset of
Dy x Dy x --- x D,_1 x D,

Mathematicians define a relation to be a subset of a Cartesian product of a list of
domains. This definition corresponds almost exactly with our definition of table. The
only difference is that we have assigned names to attributes, whereas mathematicians
rely on numeric “names,” using the integer 1 to denote the attribute whose domain
appears first in the list of domains, 2 for the attribute whose domain appears second,
and so on. Because tables are essentially relations, we shall use the mathematical

| account-number | branch-name | balance |

A-101 Downtown 500
A-102 Perryridge 400
A-201 Brighton 900
A-215 Mianus 700
A-217 Brighton 750
A-222 Redwood 700
A-305 Round Hill 350

Figure 3.1 The account relation.
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| account-number | branch-name | balance |

A-101 Downtown 500
A-215 Mianus 700
A-102 Perryridge 400
A-305 Round Hill 350
A-201 Brighton 900
A-222 Redwood 700
A-217 Brighton 750

Figure 3.2  The account relation with unordered tuples.

terms relation and tuple in place of the terms table and row. A tuple variable is a
variable that stands for a tuple; in other words, a tuple variable is a variable whose
domain is the set of all tuples.

In the account relation of Figure 3.1, there are seven tuples. Let the tuple variable ¢
refer to the first tuple of the relation. We use the notation t[account-number] to denote
the value of t on the account-number attribute. Thus, t{account-number] = “A-101,” and
t[branch-name] = “Downtown”. Alternatively, we may write {[1] to denote the value
of tuple t on the first attribute (account-number), t[2] to denote branch-name, and so on.
Since a relation is a set of tuples, we use the mathematical notation of ¢ € r to denote
that tuple ¢ is in relation 7.

The order in which tuples appear in a relation is irrelevant, since a relation is a
set of tuples. Thus, whether the tuples of a relation are listed in sorted order, as in
Figure 3.1, or are unsorted, as in Figure 3.2, does not matter; the relations in the two
figures above are the same, since both contain the same set of tuples.

We require that, for all relations r, the domains of all attributes of r be atomic. A
domain is atomic if elements of the domain are considered to be indivisible units.
For example, the set of integers is an atomic domain, but the set of all sets of integers
is a nonatomic domain. The distinction is that we do not normally consider inte-
gers to have subparts, but we consider sets of integers to have subparts—namely,
the integers composing the set. The important issue is not what the domain itself is,
but rather how we use domain elements in our database. The domain of all integers
would be nonatomic if we considered each integer to be an ordered list of digits. In
all our examples, we shall assume atomic domains. In Chapter 9, we shall discuss
extensions to the relational data model to permit nonatomic domains.

It is possible for several attributes to have the same domain. For example, sup-
pose that we have a relation customer that has the three attributes customer-name,
customer-street, and customer-city, and a relation employee that includes the attribute
employee-name. It is possible that the attributes customer-name and employee-name will
have the same domain: the set of all person names, which at the physical level is
the set of all character strings. The domains of balance and branch-name, on the other
hand, certainly ought to be distinct. It is perhaps less clear whether customer-name
and branch-name should have the same domain. At the physical level, both customer
names and branch names are character strings. However, at the logical level, we may
want customer-name and branch-name to have distinct domains.
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One domain value that is a member of any possible domain is the null value,
which signifies that the value is unknown or does not exist. For example, suppose
that we include the attribute telephone-number in the customer relation. It may be that
a customer does not have a telephone number, or that the telephone number is un-
listed. We would then have to resort to null values to signify that the value is un-
known or does not exist. We shall see later that null values cause a number of diffi-
culties when we access or update the database, and thus should be eliminated if at
all possible. We shall assume null values are absent initially, and in Section 3.3.4, we
describe the effect of nulls on different operations.

3.1.2 Database Schema

When we talk about a database, we must differentiate between the database schema,
which is the logical design of the database, and a database instance, which is a snap-
shot of the data in the database at a given instant in time.

The concept of a relation corresponds to the programming-language notion of a
variable. The concept of a relation schema corresponds to the programming-language
notion of type definition.

It is convenient to give a name to a relation schema, just as we give names to type
definitions in programming languages. We adopt the convention of using lower-
case names for relations, and names beginning with an uppercase letter for rela-
tion schemas. Following this notation, we use Account-schema to denote the relation
schema for relation account. Thus,

Account-schema = (account-number, branch-name, balance)
We denote the fact that account is a relation on Account-schema by
account(Account-schema)

In general, a relation schema consists of a list of attributes and their corresponding
domains. We shall not be concerned about the precise definition of the domain of
each attribute until we discuss the SQL language in Chapter 4.

The concept of a relation instance corresponds to the programming language no-
tion of a value of a variable. The value of a given variable may change with time;
similarly the contents of a relation instance may change with time as the relation is
updated. However, we often simply say “relation” when we actually mean “relation
instance.”

As an example of a relation instance, consider the branch relation of Figure 3.3. The
schema for that relation is

Branch-schema = (branch-name, branch-city, assets)

Note that the attribute branch-name appears in both Branch-schema and Account-
schema. This duplication is not a coincidence. Rather, using common attributes in
relation schemas is one way of relating tuples of distinct relations. For example, sup-
pose we wish to find the information about all of the accounts maintained in branches



Silberschatz-Korth-Sudarshan:

Database System

Concepts, Fourth Edition

1. Data Models

3. Relational Model

© The McGraw-Hill
Companies, 2001

3.1 Structure of Relational Databases

| branch-name | branch-city | assets |
Brighton Brooklyn 7100000
Downtown | Brooklyn 9000000
Mianus Horseneck | 400000
North Town | Rye 3700000
Perryridge | Horseneck | 1700000
Pownal Bennington | 300000
Redwood Palo Alto 2100000
Round Hill | Horseneck | 8000000

83

Figure 3.3 The branch relation.

located in Brooklyn. We look first at the branch relation to find the names of all the
branches located in Brooklyn. Then, for each such branch, we would look in the ac-
count relation to find the information about the accounts maintained at that branch.
This is not surprising—recall that the primary key attributes of a strong entity set
appear in the table created to represent the entity set, as well as in the tables created
to represent relationships that the entity set participates in.

Let us continue our banking example. We need a relation to describe information
about customers. The relation schema is

Customer-schema = (customer-name, customer-street, customer-city)

Figure 3.4 shows a sample relation customer (Customer-schema). Note that we have
omitted the customer-id attribute, which we used Chapter 2, because now we want to
have smaller relation schemas in our running example of a bank database. We assume
that the customer name uniquely identifies a customer—obviously this may not be
true in the real world, but the assumption makes our examples much easier to read.

| customer-name | customer-street | customer-city |

Adams Spring Pittsfield
Brooks Senator Brooklyn
Curry North Rye
Glenn Sand Hill Woodside
Green Walnut Stamford
Hayes Main Harrison
Johnson Alma Palo Alto
Jones Main Harrison
Lindsay Park Pittsfield
Smith North Rye
Turner Putnam Stamford
Williams Nassau Princeton

Figure 3.4 The customer relation.
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In a real-world database, the customer-id (which could be a social-security number, or
an identifier generated by the bank) would serve to uniquely identify customers.

We also need a relation to describe the association between customers and ac-
counts. The relation schema to describe this association is

Depositor-schema = (customer-name, account-number)

Figure 3.5 shows a sample relation depositor (Depositor-schema).

It would appear that, for our banking example, we could have just one relation
schema, rather than several. That is, it may be easier for a user to think in terms of
one relation schema, rather than in terms of several. Suppose that we used only one
relation for our example, with schema

(branch-name, branch-city, assets, customer-name, customer-street
customer-city, account-number, balance)

Observe that, if a customer has several accounts, we must list her address once for
each account. That is, we must repeat certain information several times. This repeti-
tion is wasteful and is avoided by the use of several relations, as in our example.

In addition, if a branch has no accounts (a newly created branch, say, that has no
customers yet), we cannot construct a complete tuple on the preceding single rela-
tion, because no data concerning customer and account are available yet. To represent
incomplete tuples, we must use null values that signify that the value is unknown or
does not exist. Thus, in our example, the values for customer-name, customer-street, and
so on must be null. By using several relations, we can represent the branch informa-
tion for a bank with no customers without using null values. We simply use a tuple
on Branch-schema to represent the information about the branch, and create tuples on
the other schemas only when the appropriate information becomes available.

In Chapter 7, we shall study criteria to help us decide when one set of relation
schemas is more appropriate than another, in terms of information repetition and
the existence of null values. For now, we shall assume that the relation schemas are
given.

We include two additional relations to describe data about loans maintained in the
various branches in the bank:

| customer-name | account-number |

Hayes A-102
Johnson A-101
Johnson A-201
Jones A-217
Lindsay A-222
Smith A-215
Turner A-305

Figure 3.5 The depositor relation.
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| loan-number | branch-name | amount |

L-11 Round Hill 900
L-14 Downtown 1500
L-15 Perryridge 1500
L-16 Perryridge 1300
L-17 Downtown 1000
L-23 Redwood 2000
L-93 Mianus 500

Figure 3.6 The loan relation.

Loan-schema = (loan-number, branch-name, amount)
Borrower-schema = (customer-name, loan-number)

Figures 3.6 and 3.7, respectively, show the sample relations loan (Loan-schema) and
borrower (Borrower-schema).

The E-R diagram in Figure 3.8 depicts the banking enterprise that we have just
described. The relation schemas correspond to the set of tables that we might gener-
ate by the method outlined in Section 2.9. Note that the tables for account-branch and
loan-branch have been combined into the tables for account and loan respectively. Such
combining is possible since the relationships are many to one from account and loan,
respectively, to branch, and, further, the participation of account and loan in the corre-
sponding relationships is total, as the double lines in the figure indicate. Finally, we
note that the customer relation may contain information about customers who have
neither an account nor a loan at the bank.

The banking enterprise described here will serve as our primary example in this
chapter and in subsequent ones. On occasion, we shall need to introduce additional
relation schemas to illustrate particular points.

3.1.3 Keys

The notions of superkey, candidate key, and primary key, as discussed in Chapter 2,
are also applicable to the relational model. For example, in Branch-schema, {branch-

| customer-name | loan-number |

Adams L-16
Curry L-93
Hayes L-15
Jackson L-14
Jones L-17
Smith L-11
Smith L-23
Williams L-17

Figure 3.7 The borrower relation.
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branch-name assets

account-number balance

account account-branch branch
depositor loan-branch
customer borrower loan

Figure 3.8 E-R diagram for the banking enterprise.

name} and {branch-name, branch-city} are both superkeys. {branch-name, branch-city}
is not a candidate key, because {branch-name} is a subset of {branch-name, branch-
city} and {branch-name} itself is a superkey. However, {branch-name} is a candidate
key, and for our purpose also will serve as a primary key. The attribute branch-city is
not a superkey, since two branches in the same city may have different names (and
different asset figures).

Let R be a relation schema. If we say that a subset K of R is a superkey for R, we
are restricting consideration to relations r(R) in which no two distinct tuples have
the same values on all attributes in K. That is, if t; and t5 are in r and t; # t5, then
t1[ K] # to K.

If a relational database schema is based on tables derived from an E-R schema, it
is possible to determine the primary key for a relation schema from the primary keys
of the entity or relationship sets from which the schema is derived:

e Strong entity set. The primary key of the entity set becomes the primary key
of the relation.

o Weak entity set. The table, and thus the relation, corresponding to a weak
entity set includes
O The attributes of the weak entity set
O The primary key of the strong entity set on which the weak entity set
depends
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The primary key of the relation consists of the union of the primary key of the
strong entity set and the discriminator of the weak entity set.

o Relationship set. The union of the primary keys of the related entity sets be-
comes a superkey of the relation. If the relationship is many-to-many, this su-
perkey is also the primary key. Section 2.4.2 describes how to determine the
primary keys in other cases. Recall from Section 2.9.3 that no table is gener-
ated for relationship sets linking a weak entity set to the corresponding strong
entity set.

e Combined tables. Recall from Section 2.9.3 that a binary many-to-one rela-
tionship set from A to B can be represented by a table consisting of the at-
tributes of A and attributes (if any exist) of the relationship set. The primary
key of the “many” entity set becomes the primary key of the relation (that is,
if the relationship set is many to one from A to B, the primary key of A is
the primary key of the relation). For one-to-one relationship sets, the relation
is constructed like that for a many-to-one relationship set. However, we can
choose either entity set’s primary key as the primary key of the relation, since
both are candidate keys.

e Multivalued attributes. Recall from Section 2.9.5 that a multivalued attribute
M is represented by a table consisting of the primary key of the entity set or
relationship set of which M is an attribute plus a column C holding an indi-
vidual value of M. The primary key of the entity or relationship set, together
with the attribute C, becomes the primary key for the relation.

From the preceding list, we see that a relation schema, say r1, derived from an E-R
schema may include among its attributes the primary key of another relation schema,
say 72. This attribute is called a foreign key from r;, referencing r,. The relation 7
is also called the referencing relation of the foreign key dependency, and r3 is called
the referenced relation of the foreign key. For example, the attribute branch-name in
Account-schema is a foreign key from Account-schema referencing Branch-schema, since
branch-name is the primary key of Branch-schema. In any database instance, given any
tuple, say t,, from the account relation, there must be some tuple, say t, in the branch
relation such that the value of the branch-name attribute of ¢, is the same as the value
of the primary key, branch-name, of t,,.

It is customary to list the primary key attributes of a relation schema before the
other attributes; for example, the branch-name attribute of Branch-schema is listed first,
since it is the primary key.

3.1.4 Schema Diagram

A database schema, along with primary key and foreign key dependencies, can be
depicted pictorially by schema diagrams. Figure 3.9 shows the schema diagram for
our banking enterprise. Each relation appears as a box, with the attributes listed in-
side it and the relation name above it. If there are primary key attributes, a horizontal
line crosses the box, with the primary key attributes listed above the line. Foreign
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branch—-name {—\_ account—number 4—‘_ customer—nange
branch—city branch-name account—number

assets balance

customer—street
customer—city

borrower

4—\— customer—name

loan—number

loan

loan—number
branch-name
amount

Figure 3.9 Schema diagram for the banking enterprise.

key dependencies appear as arrows from the foreign key attributes of the referencing
relation to the primary key of the referenced relation.

Do not confuse a schema diagram with an E-R diagram. In particular, E-R diagrams
do not show foreign key attributes explicitly, whereas schema diagrams show them
explicity.

Many database systems provide design tools with a graphical user interface for
creating schema diagrams.

3.1.5 Query Languages

A query language is a language in which a user requests information from the data-
base. These languages are usually on a level higher than that of a standard program-
ming language. Query languages can be categorized as either procedural or non-
procedural. In a procedural language, the user instructs the system to perform a
sequence of operations on the database to compute the desired result. In a nonproce-
dural language, the user describes the desired information without giving a specific
procedure for obtaining that information.

Most commercial relational-database systems offer a query language that includes
elements of both the procedural and the nonprocedural approaches. We shall study
the very widely used query language SQL in Chapter 4. Chapter 5 covers the query
languages QBE and Datalog, the latter a query language that resembles the Prolog
programming language.

In this chapter, we examine “pure” languages: The relational algebra is procedu-
ral, whereas the tuple relational calculus and domain relational calculus are nonpro-
cedural. These query languages are terse and formal, lacking the “syntactic sugar” of
commercial languages, but they illustrate the fundamental techniques for extracting
data from the database.

Although we shall be concerned with only queries initially, a complete data-
manipulation language includes not only a query language, but also a language for
database modification. Such languages include commands to insert and delete tuples,



Silberschatz-Korth-Sudarshan: | 1. Data Models 3. Relational Model © The McGraw-Hill ‘ e
Database System Companies, 2001
Concepts, Fourth Edition

3.2 The Relational Algebra 89

as well as commands to modify parts of existing tuples. We shall examine database
modification after we complete our discussion of queries.

3.2 The Relational Algebra

The relational algebra is a procedural query language. It consists of a set of operations
that take one or two relations as input and produce a new relation as their result. The
fundamental operations in the relational algebra are select, project, union, set difference,
Cartesian product, and rename. In addition to the fundamental operations, there are
several other operations—namely, set intersection, natural join, division, and assign-
ment. We will define these operations in terms of the fundamental operations.

3.2.1 Fundamental Operations

The select, project, and rename operations are called unary operations, because they
operate on one relation. The other three operations operate on pairs of relations and
are, therefore, called binary operations.

3.2.1.1 The Select Operation

The select operation selects tuples that satisfy a given predicate. We use the lowercase
Greek letter sigma (o) to denote selection. The predicate appears as a subscript to o.
The argument relation is in parentheses after the 0. Thus, to select those tuples of the
loan relation where the branch is “Perryridge,” we write

Obranch-name = “Perryridge” (lOan)

If the loan relation is as shown in Figure 3.6, then the relation that results from the
preceding query is as shown in Figure 3.10.
We can find all tuples in which the amount lent is more than $1200 by writing

0 amount>1200 (loan)

In general, we allow comparisons using =, #, <, <, >, > in the selection predicate.
Furthermore, we can combine several predicates into a larger predicate by using the
connectives and (A), or (V), and not (). Thus, to find those tuples pertaining to loans
of more than $1200 made by the Perryridge branch, we write

Obranch-name = “Perryridge” A amount>1200 (loamn)

| loan-number | branch-name | amount |

L-15 Perryridge | 1500
L-16 Perryridge | 1300

Figure 3.10 Result of Obranch-name = “Perryridge” (loan).
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The selection predicate may include comparisons between two attributes. To illus-
trate, consider the relation loan-officer that consists of three attributes: customer-name,
banker-name, and loan-number, which specifies that a particular banker is the loan of-
ficer for a loan that belongs to some customer. To find all customers who have the
same name as their loan officer, we can write

O customer-name = banker-name (lOG/I’L-OﬁC@’)“)

3.2.1.2 The Project Operation

Suppose we want to list all loan numbers and the amount of the loans, but do not
care about the branch name. The project operation allows us to produce this relation.
The project operation is a unary operation that returns its argument relation, with
certain attributes left out. Since a relation is a set, any duplicate rows are eliminated.
Projection is denoted by the uppercase Greek letter pi (II). We list those attributes that
we wish to appear in the result as a subscript to II. The argument relation follows in
parentheses. Thus, we write the query to list all loan numbers and the amount of the
loan as

Hloan—mnn,ber7 amount (loan)

Figure 3.11 shows the relation that results from this query.

3.2.1.3 Composition of Relational Operations

The fact that the result of a relational operation is itself a relation is important. Con-
sider the more complicated query “Find those customers who live in Harrison.” We
write:

I ustomer-name (Ucustomer-city = “Harrison” (customer))

Notice that, instead of giving the name of a relation as the argument of the projection
operation, we give an expression that evaluates to a relation.

In general, since the result of a relational-algebra operation is of the same type
(relation) as its inputs, relational-algebra operations can be composed together into

| loan-number | amount |

L-11 900
L-14 1500
L-15 1500
L-16 1300
L-17 1000
L-23 2000
L-93 500

Figure 3.11 Loan number and the amount of the loan.
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a relational-algebra expression. Composing relational-algebra operations into rela-
tional-algebra expressions is just like composing arithmetic operations (such as +, —,
*, and =) into arithmetic expressions. We study the formal definition of relational-
algebra expressions in Section 3.2.2.

3.2.1.4 The Union Operation

Consider a query to find the names of all bank customers who have either an account
or a loan or both. Note that the customer relation does not contain the information,
since a customer does not need to have either an account or a loan at the bank. To
answer this query, we need the information in the depositor relation (Figure 3.5) and
in the borrower relation (Figure 3.7). We know how to find the names of all customers
with a loan in the bank:

II customer-name ( borrower)

We also know how to find the names of all customers with an account in the bank:

chstomer—name (dGPOSitOT)

To answer the query, we need the union of these two sets; that is, we need all cus-
tomer names that appear in either or both of the two relations. We find these data by
the binary operation union, denoted, as in set theory, by U. So the expression needed
is

chstomer-name (bO’I“T’OU)@T') U chstomer-name (depOSitor)

The result relation for this query appears in Figure 3.12. Notice that there are 10 tuples
in the result, even though there are seven distinct borrowers and six depositors. This
apparent discrepancy occurs because Smith, Jones, and Hayes are borrowers as well
as depositors. Since relations are sets, duplicate values are eliminated.

customer-name

Adams
Curry
Hayes
Jackson
Jones
Smith
Williams
Lindsay
Johnson
Turner

Figure 3.12 Names of all customers who have either a loan or an account.
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Observe that, in our example, we took the union of two sets, both of which con-
sisted of customer-name values. In general, we must ensure that unions are taken be-
tween compatible relations. For example, it would not make sense to take the union of
the loan relation and the borrower relation. The former is a relation of three attributes;
the latter is a relation of two. Furthermore, consider a union of a set of customer
names and a set of cities. Such a union would not make sense in most situations.
Therefore, for a union operation » U s to be valid, we require that two conditions
hold:

1. The relations r and s must be of the same arity. That is, they must have the
same number of attributes.

2. The domains of the ith attribute of  and the ith attribute of s must be the same,
for all 4.

Note that r and s can be, in general, temporary relations that are the result of relational-
algebra expressions.

3.2.1.5 The Set Difference Operation

The set-difference operation, denoted by —, allows us to find tuples that are in one
relation but are not in another. The expression r — s produces a relation containing
those tuples in r but not in s.

We can find all customers of the bank who have an account but not a loan by
writing

chstomer-name (depOSitOT) - chstomer-name (bO’I“T’OU)@T')

The result relation for this query appears in Figure 3.13.

As with the union operation, we must ensure that set differences are taken be-
tween compatible relations. Therefore, for a set difference operation  — s to be valid,
we require that the relations r and s be of the same arity, and that the domains of the
ith attribute of » and the ith attribute of s be the same.

3.2.1.6 The Cartesian-Product Operation

The Cartesian-product operation, denoted by a cross (x), allows us to combine in-
formation from any two relations. We write the Cartesian product of relations y and
roasry X Ta.

customer-name
Johnson
Lindsay
Turner

Figure 3.13 Customers with an account but no loan.
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Recall that a relation is by definition a subset of a Cartesian product of a set of
domains. From that definition, we should already have an intuition about the defi-
nition of the Cartesian-product operation. However, since the same attribute name
may appear in both r; and 73, we need to devise a naming schema to distinguish
between these attributes. We do so here by attaching to an attribute the name of the
relation from which the attribute originally came. For example, the relation schema
forr = borrower x loan is

(borrower.customer-name, borrower.loan-number, loan.loan-number,
loan.branch-name, loan.amount)

With this schema, we can distinguish borrower.loan-number from loan.loan-number. For
those attributes that appear in only one of the two schemas, we shall usually drop
the relation-name prefix. This simplification does not lead to any ambiguity. We can
then write the relation schema for r as

(customer-name, borrower.loan-number, loan.loan-number,
branch-name, amount)

This naming convention requires that the relations that are the arguments of the
Cartesian-product operation have distinct names. This requirement causes problems
in some cases, such as when the Cartesian product of a relation with itself is desired.
A similar problem arises if we use the result of a relational-algebra expression in a
Cartesian product, since we shall need a name for the relation so that we can refer
to the relation’s attributes. In Section 3.2.1.7, we see how to avoid these problems by
using a rename operation.

Now that we know the relation schema for r = borrower x loan, what tuples ap-
pear in r? As you may suspect, we construct a tuple of r out of each possible pair of
tuples: one from the borrower relation and one from the loan relation. Thus, r is a large
relation, as you can see from Figure 3.14, which includes only a portion of the tuples
that make up 7.

Assume that we have n; tuples in borrower and ns tuples in loan. Then, there are
ny * ng ways of choosing a pair of tuples—one tuple from each relation; so there
are n; * ng tuples in r. In particular, note that for some tuples f in r, it may be that
t[borrower.loan-number] # t[loan.loan-number].

In general, if we have relations 1 (R ) and r2(Rs), then 1 x r3 is a relation whose
schema is the concatenation of R; and R,. Relation R contains all tuples t for which
there is a tuple ¢; in r; and a tuple ¢; in 75 for which ¢[Ri] = ti[Ri] and t[Ry] =
ta[Ra).

Suppose that we want to find the names of all customers who have a loan at the
Perryridge branch. We need the information in both the loan relation and the borrower
relation to do so. If we write

Obranch-name = “Perryridge” ( borrower X loan)

then the result is the relation in Figure 3.15. We have a relation that pertains to only
the Perryridge branch. However, the customer-name column may contain customers
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borrower. loan.
customer-name | loan-number | loan-number | branch-name | amount
Adams L-16 L-11 Round Hill 900
Adams L-16 L-14 Downtown 1500
Adams L-16 L-15 Perryridge 1500
Adams L-16 L-16 Perryridge 1300
Adams L-16 L-17 Downtown 1000
Adams L-16 L-23 Redwood 2000
Adams L-16 L-93 Mianus 500
Curry L-93 L-11 Round Hill 900
Curry L-93 L-14 Downtown 1500
Curry L-93 L-15 Perryridge 1500
Curry L-93 L-16 Perryridge 1300
Curry L-93 L-17 Downtown 1000
Curry L-93 L-23 Redwood 2000
Curry L-93 L-93 Mianus 500
Hayes L-15 L-11 900
Hayes L-15 L-14 1500
Hayes L-15 L-15 1500
Hayes L-15 L-16 1300
Hayes L-15 L-17 1000
Hayes L-15 L-23 2000
Hayes L-15 L-93 500
Smith L-23 L-11 Round Hill 900
Smith L-23 L-14 Downtown 1500
Smith L-23 L-15 Perryridge 1500
Smith L-23 L-16 Perryridge 1300
Smith L-23 L-17 Downtown 1000
Smith L-23 L-23 Redwood 2000
Smith L-23 L-93 Mianus 500
Williams L-17 L-11 Round Hill 900
Williams L-17 L-14 Downtown 1500
Williams L-17 L-15 Perryridge 1500
Williams L-17 L-16 Perryridge 1300
Williams L-17 L-17 Downtown 1000
Williams L-17 L-23 Redwood 2000
Williams L-17 L-93 Mianus 500

Figure 3.14

Result of borrower x loan.
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borrower. loan.
customer-name | loan-number | loan-number | branch-name | amount
Adams L-16 L-15 Perryridge 1500
Adams L-16 L-16 Perryridge 1300
Curry L-93 L-15 Perryridge 1500
Curry L-93 L-16 Perryridge 1300
Hayes L-15 L-15 Perryridge 1500
Hayes L-15 L-16 Perryridge 1300
Jackson L-14 L-15 Perryridge 1500
Jackson L-14 L-16 Perryridge 1300
Jones L-17 L-15 Perryridge 1500
Jones L-17 L-16 Perryridge 1300
Smith L-11 L-15 Perryridge 1500
Smith L-11 L-16 Perryridge 1300
Smith L-23 L-15 Perryridge 1500
Smith L-23 L-16 Perryridge 1300
Williams L-17 L-15 Perryridge 1500
Williams L-17 L-16 Perryridge 1300

Figure 3.15  Result of 0yrunch-name = “Perryridge” (borrower x loan).

who do not have a loan at the Perryridge branch. (If you do not see why that is true,
recall that the Cartesian product takes all possible pairings of one tuple from borrower
with one tuple of loan.)

Since the Cartesian-product operation associates every tuple of loan with every tu-
ple of borrower, we know that, if a customer has a loan in the Perryridge branch, then
there is some tuple in borrower x loan that contains his name, and borrower.loan-number
= loan.loan-number. So, if we write

Oborrower.loan-number = loan.loan-number
(Ub7'an(:}1,-7La7ne = “Perryridge”(borrower X loan))

we get only those tuples of borrower x loan that pertain to customers who have a
loan at the Perryridge branch.
Finally, since we want only customer-name, we do a projection:

chstomcr—name (Uborrower.loan—number = loan.loan-number
(Tbranch-name = “Perryridge” (borrower x loan)))

The result of this expression, shown in Figure 3.16, is the correct answer to our query.

3.2.1.7 The Rename Operation

Unlike relations in the database, the results of relational-algebra expressions do not
have a name that we can use to refer to them. It is useful to be able to give them
names; the rename operator, denoted by the lowercase Greek letter rho (p), lets us do
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customer-name

Adams
Hayes

Figure 3.16  Result of IT.ysi0mer-name

(Uborrower.loan—number = loan.loan-number
(mench-name = “Perryridge” (borrower X loan)))

this. Given a relational-algebra expression E, the expression

pz (E)

returns the result of expression E under the name x.

A relation r by itself is considered a (trivial) relational-algebra expression. Thus,
we can also apply the rename operation to a relation r to get the same relation under
anew name.

A second form of the rename operation is as follows. Assume that a relational-
algebra expression E has arity n. Then, the expression

p{L’(Al,AQ,‘.,,An) (E)

returns the result of expression E under the name x, and with the attributes renamed
to Al,AQ, ce ,An.

To illustrate renaming a relation, we consider the query “Find the largest account
balance in the bank.” Our strategy is to (1) compute first a temporary relation consist-
ing of those balances that are not the largest and (2) take the set difference between
the relation Ilpiance (account) and the temporary relation just computed, to obtain
the result.

Step 1: To compute the temporary relation, we need to compare the values of
all account balances. We do this comparison by computing the Cartesian product
account X account and forming a selection to compare the value of any two balances
appearing in one tuple. First, we need to devise a mechanism to distinguish between
the two balance attributes. We shall use the rename operation to rename one reference
to the account relation; thus we can reference the relation twice without ambiguity.

500
400
700
750
350

Figure 3.17 Result of the subexpression
Haccount.balance (Uaccount.balance < d.balance (account X Pd (CLCCOUTLt))).
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Figure 3.18 Largest account balance in the bank.

We can now write the temporary relation that consists of the balances that are not
the largest:

Haccount.balance (Uaccount.balance < d.balance (account X Pd (account)))

This expression gives those balances in the account relation for which a larger balance
appears somewhere in the account relation (renamed as d). The result contains all
balances except the largest one. Figure 3.17 shows this relation.

Step 2: The query to find the largest account balance in the bank can be written as:

Mpatance (account) —
Haccount.balance (Uaccount.balance < d.balance (account X Pd ((lCCOU’ﬂf,)))

Figure 3.18 shows the result of this query.

As one more example of the rename operation, consider the query “Find the names
of all customers who live on the same street and in the same city as Smith.” We can
obtain Smith’s street and city by writing

chstomer—street, customer-city (Ucustomer—name = “Smith” (customer))

However, in order to find other customers with this street and city, we must refer-
ence the customer relation a second time. In the following query, we use the rename
operation on the preceding expression to give its result the name smith-addr, and to
rename its attributes to street and city, instead of customer-street and customer-city:

chstomer.custome'r—name
(Ucustomer.customer-street=smith—add7".st7"eet A customer.customer-city=smith-addr.city
(customer X Psmith-addr(street,city)
(H customer-street, customer-city (Ucustomer'—name = “Smith”(cu*StomeT)))))

The result of this query, when we apply it to the customer relation of Figure 3.4, ap-
pears in Figure 3.19.

The rename operation is not strictly required, since it is possible to use a positional
notation for attributes. We can name attributes of a relation implicitly by using a po-
sitional notation, where $1, $2, . . . refer to the first attribute, the second attribute, and
so on. The positional notation also applies to results of relational-algebra operations.

customer-name

Curry
Smith

Figure3.19 Customers who live on the same street and in the same city as Smith.
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The following relational-algebra expression illustrates the use of positional notation
with the unary operator o:

oga—g3(R X R)

If a binary operation needs to distinguish between its two operand relations, a similar
positional notation can be used for relation names as well. For example, $R1 could
refer to the first operand, and $R2 could refer to the second operand. However, the
positional notation is inconvenient for humans, since the position of the attribute is a
number, rather than an easy-to-remember attribute name. Hence, we do not use the
positional notation in this textbook.

3.2.2 Formal Definition of the Relational Algebra

The operations in Section 3.2.1 allow us to give a complete definition of an expression
in the relational algebra. A basic expression in the relational algebra consists of either
one of the following:

e A relation in the database

e A constant relation

A constant relation is written by listing its tuples within { }, for example { (A-101,
Downtown, 500) (A-215, Mianus, 700) }.

A general expression in relational algebra is constructed out of smaller subexpres-
sions. Let E; and E; be relational-algebra expressions. Then, these are all relational-
algebra expressions:

L] E1 @] E2
[ ] El - E2
[ E1 X E2
e op(E,), where P is a predicate on attributes in £

o IIg(E1), where S is a list consisting of some of the attributes in E;

e p, (E1), where x is the new name for the result of F;

3.2.3 Additional Operations

The fundamental operations of the relational algebra are sufficient to express any
relational-algebra query.! However, if we restrict ourselves to just the fundamental
operations, certain common queries are lengthy to express. Therefore, we define ad-
ditional operations that do not add any power to the algebra, but simplify common
queries. For each new operation, we give an equivalent expression that uses only the
fundamental operations.

1. In Section 3.3, we introduce operations that extend the power of the relational algebra, to handle null
and aggregate values.
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3.2.3.1 The Set-Intersection Operation

The first additional-relational algebra operation that we shall define is set intersec-
tion (N). Suppose that we wish to find all customers who have both a loan and an
account. Using set intersection, we can write

chstomer—name (bom‘ower) N chstomcr—name (depos’it()?")

The result relation for this query appears in Figure 3.20.

Note that we can rewrite any relational algebra expression that uses set intersec-
tion by replacing the intersection operation with a pair of set-difference operations
as:

rNs=r—(r—s)

Thus, set intersection is not a fundamental operation and does not add any power
to the relational algebra. It is simply more convenient to write » N s than to write
r — (r — s).

3.2.3.2 The Natural-Join Operation

It is often desirable to simplify certain queries that require a Cartesian product. Usu-
ally, a query that involves a Cartesian product includes a selection operation on the
result of the Cartesian product. Consider the query “Find the names of all customers
who have a loan at the bank, along with the loan number and the loan amount.” We
first form the Cartesian product of the borrower and loan relations. Then, we select
those tuples that pertain to only the same loan-number, followed by the projection of
the resulting customer-name, loan-number, and amount:

chstomer-namc, loan.loan-number, amount
(Uborrower.loan-numberzloan.loan-number (bormwer X loan))

The natural join is a binary operation that allows us to combine certain selections and
a Cartesian product into one operation. It is denoted by the “join” symbol X. The
natural-join operation forms a Cartesian product of its two arguments, performs a
selection forcing equality on those attributes that appear in both relation schemas,
and finally removes duplicate attributes.

Although the definition of natural join is complicated, the operation is easy to
apply. As anillustration, consider again the example “Find the names of all customers
who have a loan at the bank, and find the amount of the loan.” We express this query

customer-name

Hayes
Jones
Smith

Figure 3.20 Customers with both an account and a loan at the bank.
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| customer-name | loan-number | amount |

Adams L-16 1300
Curry L-93 500
Hayes L-15 1500
Jackson L-14 1500
Jones L-17 1000
Smith L-23 2000
Smith L-11 900
Williams L-17 1000

Figure 3.21 Result of I ustomer-name, loan-number, amount (borrower X loan).

by using the natural join as follows:

chstomer—name, loan-number, amount (bO?”T’OU)ET X loan)

Since the schemas for borrower and loan (that is, Borrower-schema and Loan-schema)
have the attribute loan-number in common, the natural-join operation considers only
pairs of tuples that have the same value on loan-number. It combines each such pair
of tuples into a single tuple on the union of the two schemas (that is, customer-name,
branch-name, loan-number, amount). After performing the projection, we obtain the re-
lation in Figure 3.21.

Consider two relation schemas R and S—which are, of course, lists of attribute
names. If we consider the schemas to be sets, rather than lists, we can denote those
attribute names that appear in both R and S by R N S, and denote those attribute
names that appear in R, in S, or in both by R U S. Similarly, those attribute names that
appear in R but not S are denoted by R — S, whereas S — R denotes those attribute
names that appear in S but not in R. Note that the union, intersection, and difference
operations here are on sets of attributes, rather than on relations.

We are now ready for a formal definition of the natural join. Consider two relations
r(R) and s(5). The natural join of r and s, denoted by r X s, is a relation on schema
R U S formally defined as follows:

rX s = HRU S (UT.A1:S.A1 AT Ay =s5As AN... AT Ay =5.A, T X 5)

where RNS={A;, As,..., An}.
Because the natural join is central to much of relational-database theory and prac-
tice, we give several examples of its use.

branch-name

Brighton
Perryridge

Figure 3.22 Result of
Hbranch—name (Ucustomer—city = “Harrison” (CUStOTIL@T X account X deposz'tor)).
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e Find the names of all branches with customers who have an account in the

bank and who live in Harrison.

Hbranch—name
(O customer-city = “Harrison” (customer X account X depositor))

The result relation for this query appears in Figure 3.22.

Notice that we wrote customer X account X depositor without inserting
parentheses to specify the order in which the natural-join operations on the
three relations should be executed. In the preceding case, there are two possi-
bilities:

O (customer X account) X depositor
O customer X (account MW depositor)

We did not specify which expression we intended, because the two are equiv-
alent. That is, the natural join is associative.

Find all customers who have both a loan and an account at the bank.
ITeustomer-name (borm’wer X dGPOSZ'tOT')

Note that in Section 3.2.3.1 we wrote an expression for this query by using set
intersection. We repeat this expression here.

chstomer—name (bOT’T’O?UGT’) N chstomer—name (depos’itor)

The result relation for this query appeared earlier in Figure 3.20. This example
illustrates a general fact about the relational algebra: It is possible to write
several equivalent relational-algebra expressions that are quite different from
one another.

Let r(R) and s(S) be relations without any attributes in common; that is,
R N S = 0. (0 denotes the empty set.) Then, r X s = r x s.

The theta join operation is an extension to the natural-join operation that allows
us to combine a selection and a Cartesian product into a single operation. Consider
relations r(R) and s(.5), and let 6 be a predicate on attributes in the schema R U S.
The theta join operation r Xy s is defined as follows:

rMgs = og(r x s)

3.2.3.3 The Division Operation

The division operation, denoted by +, is suited to queries that include the phrase
“for all.” Suppose that we wish to find all customers who have an account at all the
branches located in Brooklyn. We can obtain all branches in Brooklyn by the expres-

sion

1 = pranch-name (mench-city:“Brooklyn” (branch))

The result relation for this expression appears in Figure 3.23.
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branch-name

Brighton
Downtown

Figure 3.23 Result of pranch-name (Ubranch—city = “Brooklyn” (bmnch).

We can find all (customer-name, branch-name) pairs for which the customer has an
account at a branch by writing

o = chstomer-nmne, branch-name (deposztor ol account)

Figure 3.24 shows the result relation for this expression.

Now, we need to find customers who appear in 7, with every branch name in
r1. The operation that provides exactly those customers is the divide operation. We
formulate the query by writing

1_-[customer-name7 branch-name (depOSitOT ol account)
- Hbranch—name (Ubranch—city = “Brooklyn” (branCh))
The result of this expression is a relation that has the schema (customer-name) and that
contains the tuple (Johnson).

Formally, let r(R) and s(S) be relations, and let S C R; that is, every attribute of
schema S is also in schema R. The relation » + s is a relation on schema R — S (that
is, on the schema containing all attributes of schema R that are not in schema 5). A
tuple tis inr =+ sif and only if both of two conditions hold:

1. tisin HR_S(T')

2. For every tuple ¢, in s, there is a tuple ¢, in r satisfying both of the following;:
a. t,[S] = t,[5]
b. t,[R — 5] =t

It may surprise you to discover that, given a division operation and the schemas of
the relations, we can, in fact, define the division operation in terms of the fundamen-
tal operations. Let r(R) and s(S) be given, with S C R:

r+s=1r_g(r) — Hp_g (IIp_s (r) x ) — llp_g,5(r))

| customer-name | branch-name |

Hayes Perryridge
Johnson Downtown
Johnson Brighton
Jones Brighton
Lindsay Redwood
Smith Mianus
Turner Round Hill

Figure 3.24 Result of I ystomer-name. branch-name (depositor X account).
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To see that this expression is true, we observe that IIz_g (r) gives us all tuples t that
satisfy the first condition of the definition of division. The expression on the right
side of the set difference operator

Hp—s (Hg-s (r) x s) — Ilr-ss(r))

serves to eliminate those tuples that fail to satisfy the second condition of the defini-
tion of division. Let us see how it does so. Consider IIg_g (r) x s. This relation is
on schema R, and pairs every tuple in IIz_ g (r) with every tuple in s. The expression
IIr_g,s(r) merely reorders the attributes of r.

Thus, (IIgr—g (r) x s) — IIr_g s(r) gives us those pairs of tuples from IIz_g (r)
and s that do not appear in r. If a tuple ¢; is in

Hpr_s (Hr—g (r) x s) — Hr_g,s(r))

then there is some tuple ¢, in s that does not combine with tuple ¢; to form a tuple in
r. Thus, t; holds a value for attributes R — S that does not appear in r + s. It is these
values that we eliminate from ITg_g (7).

3.2.3.4 The Assignment Operation

It is convenient at times to write a relational-algebra expression by assigning parts of
it to temporary relation variables. The assignment operation, denoted by «, works
like assignment in a programming language. To illustrate this operation, consider the
definition of division in Section 3.2.3.3. We could write r + s as

templ «— Ilg_g (1)
temp2 — Igr_g ((templ x s) — Ir_g,s(r))
result = templ — temp2

The evaluation of an assignment does not result in any relation being displayed to
the user. Rather, the result of the expression to the right of the « is assigned to the
relation variable on the left of the <. This relation variable may be used in subsequent
expressions.

With the assignment operation, a query can be written as a sequential program
consisting of a series of assignments followed by an expression whose value is dis-
played as the result of the query. For relational-algebra queries, assignment must
always be made to a temporary relation variable. Assignments to permanent rela-
tions constitute a database modification. We discuss this issue in Section 3.4. Note
that the assignment operation does not provide any additional power to the algebra.
It is, however, a convenient way to express complex queries.

3.3 Extended Relational-Algebra Operations

The basic relational-algebra operations have been extended in several ways. A simple
extension is to allow arithmetic operations as part of projection. An important exten-
sion is to allow aggregate operations such as computing the sum of the elements of a
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| customer-name | limit | credit-balance |

Curry 2000 1750
Hayes 1500 1500
Jones 6000 700
Smith 2000 400

Figure 3.25 The credit-info relation.

set, or their average. Another important extension is the outer-join operation, which
allows relational-algebra expressions to deal with null values, which model missing
information.

3.3.1 Generalized Projection

The generalized-projection operation extends the projection operation by allowing
arithmetic functions to be used in the projection list. The generalized projection op-
eration has the form

Ur, p,,..F, (E)

where F is any relational-algebra expression, and each of F}, F5, ..., F, is an arith-
metic expression involving constants and attributes in the schema of E. As a special
case, the arithmetic expression may be simply an attribute or a constant.

For example, suppose we have a relation credit-info, as in Figure 3.25, which lists
the credit limit and expenses so far (the credit-balance on the account). If we want to
find how much more each person can spend, we can write the following expression:

chstomer-nmne, limit — credit-balance (CT’Edil’-iTlfO)

The attribute resulting from the expression limit — credit-balance does not have a
name. We can apply the rename operation to the result of generalized projection in
order to give it a name. As a notational convenience, renaming of attributes can be
combined with generalized projection as illustrated below:

chstomer-name, (limit — credit-balance) as credit-available (CT"Edlt—lVlfO)

The second attribute of this generalized projection has been given the name credit-
available. Figure 3.26 shows the result of applying this expression to the relation in
Figure 3.25.

3.3.2 Aggregate Functions

Aggregate functions take a collection of values and return a single value as a result.
For example, the aggregate function sum takes a collection of values and returns the
sum of the values. Thus, the function sum applied on the collection

{1,1,3,4,4,11}
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| customer-name | credit-available |

Curry 250
Jones 5300
Smith 1600
Hayes 0

Flgure 3.26 The result of chstomcr—namc, (limit — credit-balance) as credit-available
(credit-info).

returns the value 24. The aggregate function avg returns the average of the values.
When applied to the preceding collection, it returns the value 4. The aggregate func-
tion count returns the number of the elements in the collection, and returns 6 on
the preceding collection. Other common aggregate functions include min and max,
which return the minimum and maximum values in a collection; they return 1 and
11, respectively, on the preceding collection.

The collections on which aggregate functions operate can have multiple occur-
rences of a value; the order in which the values appear is not relevant. Such collec-
tions are called multisets. Sets are a special case of multisets where there is only one
copy of each element.

To illustrate the concept of aggregation, we shall use the pt-works relation in Fig-
ure 3.27, for part-time employees. Suppose that we want to find out the total sum of
salaries of all the part-time employees in the bank. The relational-algebra expression
for this query is:

gsum(sala'r‘y) (pt-UJOTk'S)

The symbol G is the letter G in calligraphic font; read it as “calligraphic G.” The
relational-algebra operation G signifies that aggregation is to be applied, and its sub-
script specifies the aggregate operation to be applied. The result of the expression
above is a relation with a single attribute, containing a single row with a numerical
value corresponding to the sum of all the salaries of all employees working part-time
in the bank.

| employee-name | branch-name | salary |

Adams Perryridge 1500
Brown Perryridge 1300
Gopal Perryridge | 5300
Johnson Downtown | 1500
Loreena Downtown | 1300
Peterson Downtown | 2500
Rao Austin 1500
Sato Austin 1600
Figure 3.27 The pt-works relation.
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There are cases where we must eliminate multiple occurrences of a value before
computing an aggregate function. If we do want to eliminate duplicates, we use the
same function names as before, with the addition of the hyphenated string “distinct”
appended to the end of the function name (for example, count-distinct). An example
arises in the query “Find the number of branches appearing in the pt-works relation.”
In this case, a branch name counts only once, regardless of the number of employees
working that branch. We write this query as follows:

gcount—distinct(branch-name) (pt—’UJOTk‘S)

For the relation in Figure 3.27, the result of this query is a single row containing the
value 3.

Suppose we want to find the total salary sum of all part-time employees at each
branch of the bank separately, rather than the sum for the entire bank. To do so, we
need to partition the relation pt-works into groups based on the branch, and to apply
the aggregate function on each group.

The following expression using the aggregation operator G achieves the desired
result:

branch-name gsum(salary) (pt'U)OTkS)

In the expression, the attribute branch-name in the left-hand subscript of G indicates
that the input relation pt-works must be divided into groups based on the value of
branch-name. Figure 3.28 shows the resulting groups. The expression sum(salary) in
the right-hand subscript of G indicates that for each group of tuples (that is, each
branch), the aggregation function sum must be applied on the collection of values of
the salary attribute. The output relation consists of tuples with the branch name, and
the sum of the salaries for the branch, as shown in Figure 3.29.
The general form of the aggregation operation G is as follows:

G1,G2,--~7GngF1(A1)7 Fa(Az),..., Fm(Am)(E)

where £ is any relational-algebra expression; G1,Go, ..., G, constitute a list of at-
tributes on which to group; each F; is an aggregate function; and each A; is an at-

" employee-name | branch-name | salary |

Rao Austin 1500
Sato Austin 1600
Johnson Downtown | 1500
Loreena Downtown | 1300
Peterson Downtown | 2500
Adams Perryridge | 1500
Brown Perryridge | 1300
Gopal Perryridge | 5300

Figure 3.28 The pt-works relation after grouping.
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| branch-name | sum of salary |

Austin 3100
Downtown 5300
Perryridge 8100

Figure 3.29  Result of yranch-nameGsum(salary) (Pt-works).

tribute name. The meaning of the operation is as follows. The tuples in the result of
expression F are partitioned into groups in such a way that

1. All tuples in a group have the same values for G1,Ga, ..., Gy.

2. Tuples in different groups have different values for G, Gs, ..., Gy.

Thus, the groups can be identified by the values of attributes G, Gs, . . ., G,,. For each
group (g1, g2, - - ., gn), the result has a tuple (g1, g2, ..., gn,a1,a2,...,a,) where, for
each i, a; is the result of applying the aggregate function F; on the multiset of values
for attribute A; in the group.

As a special case of the aggregate operation, the list of attributes Gy, G, ..., G,, can
be empty, in which case there is a single group containing all tuples in the relation.
This corresponds to aggregation without grouping.

Going back to our earlier example, if we want to find the maximum salary for
part-time employees at each branch, in addition to the sum of the salaries, we write
the expression

branch-name gsum(salary) ,max(salary) (pt'works)
As in generalized projection, the result of an aggregation operation does not have a
name. We can apply a rename operation to the result in order to give it a name. As

a notational convenience, attributes of an aggregation operation can be renamed as
illustrated below:

branch-name gsum(salary) as sum-salary,max(salary) as maz-salary (pt-U)O?”kS)

Figure 3.30 shows the result of the expression.

| branch-name | sum-salary | max-salary |

Austin 3100 1600
Downtown 5300 2500
Perryridge 8100 5300

Figure 3.30 Result of

bmnch—namegsum(salar'y) as sum-salary,max(salary) as maz-salary (pt—works).
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| employee-name | street | city |
Coyote Toon Hollywood
Rabbit Tunnel | Carrotville
Smith Revolver | Death Valley
Williams | Seaview | Seattle

| employee-name | branch-name | salary |

Coyote Mesa 1500

Rabbit Mesa 1300

Gates Redmond | 5300

Williams Redmond | 1500
Figure 3.31 The employee and ft-works relations.

3.3.3 Outer Join

The outer-join operation is an extension of the join operation to deal with missing
information. Suppose that we have the relations with the following schemas, which
contain data on full-time employees:

employee (employee-name, street, city)
ft-works (employee-name, branch-name, salary)

Consider the employee and ft-works relations in Figure 3.31. Suppose that we want
to generate a single relation with all the information (street, city, branch name, and
salary) about full-time employees. A possible approach would be to use the natural-
join operation as follows:

employee X ft-works

The result of this expression appears in Figure 3.32. Notice that we have lost the street
and city information about Smith, since the tuple describing Smith is absent from
the ft-works relation; similarly, we have lost the branch name and salary information
about Gates, since the tuple describing Gates is absent from the employee relation.
We can use the outer-join operation to avoid this loss of information. There are
actually three forms of the operation: left outer join, denoted 7X; right outer join, de-
noted X; and full outer join, denoted . All three forms of outer join compute the
join, and add extra tuples to the result of the join. The results of the expressions

| employee-name |  street | city | branch-name | salary |
Coyote Toon Hollywood | Mesa 1500
Rabbit Tunnel Carrotville Mesa 1300
Williams Seaview | Seattle Redmond 1500

Figure 3.32 The result of employee X ft-works.
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| employee-name | street | city | branch-name | salary |
Coyote Toon Hollywood Mesa 1500
Rabbit Tunnel Carrotville Mesa 1300
Williams Seaview Seattle Redmond 1500
Smith Revolver | Death Valley null null

Figure 3.33 Result of employee K ft-works.

employee N ft-works,, employee XC ft-works, and employee DT ft-works appear in
Figures 3.33, 3.34, and 3.35, respectively.

The left outer join (IX) takes all tuples in the left relation that did not match with
any tuple in the right relation, pads the tuples with null values for all other attributes
from the right relation, and adds them to the result of the natural join. In Figure 3.33,
tuple (Smith, Revolver, Death Valley, null, null) is such a tuple. All information from
the left relation is present in the result of the left outer join.

The right outer join (XC) is symmetric with the left outer join: It pads tuples from
the right relation that did not match any from the left relation with nulls and adds
them to the result of the natural join. In Figure 3.34, tuple (Gates, null, null, Redmond,
5300) is such a tuple. Thus, all information from the right relation is present in the
result of the right outer join.

The full outer join(2X) does both of those operations, padding tuples from the
left relation that did not match any from the right relation, as well as tuples from the
right relation that did not match any from the left relation, and adding them to the
result of the join. Figure 3.35 shows the result of a full outer join.

Since outer join operations may generate results containing null values, we need
to specify how the different relational-algebra operations deal with null values. Sec-
tion 3.3.4 deals with this issue.

It is interesting to note that the outer join operations can be expressed by the basic
relational-algebra operations. For instance, the left outer join operation, r 1X s, can
be written as

(rXs)U(r—Tg(rXs)) x {(null,..., null)}

where the constant relation {(null, ..., null)} is on the schema S — R.

| employee-name | street | city | branch-name | salary |
Coyote Toon Hollywood | Mesa 1500
Rabbit Tunnel Carrotville Mesa 1300
Williams Seaview | Seattle Redmond 1500
Gates null null Redmond 5300

Figure 3.34 Result of employee XC ft-works.
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| employee-name | street | city | branch-name | salary |
Coyote Toon Hollywood Mesa 1500
Rabbit Tunnel Carrotville Mesa 1300
Williams Seaview | Seattle Redmond 1500
Smith Revolver | Death Valley | null null
Gates null null Redmond 5300

Figure 3.35 Result of employee XL ft-works.

3.3.4 Null Valuesxx

In this section, we define how the various relational algebra operations deal with null
values and complications that arise when a null value participates in an arithmetic
operation or in a comparison. As we shall see, there is often more than one possible
way of dealing with null values, and as a result our definitions can sometimes be
arbitrary. Operations and comparisons on null values should therefore be avoided,
where possible.

Since the special value null indicates “value unknown or nonexistent,” any arith-
metic operations (such as +, —, *, /) involving null values must return a null result.

Similarly, any comparisons (such as <, <=, >, >=, #) involving a null value eval-
uate to special value unknown; we cannot say for sure whether the result of the
comparison is true or false, so we say that the result is the new truth value unknown.

Comparisons involving nulls may occur inside Boolean expressions involving the
and, or, and not operations. We must therefore define how the three Boolean opera-
tions deal with the truth value unknown.

e and: (true and unknown) = unknown; (false and unknown) = false; (unknown and
unknown) = unknown.

e or: (true or unknown) = true; (false or unknown) = unknown; (unknown or un-
known) = unknown.

e not: (not unknown) = unknown.

We are now in a position to outline how the different relational operations deal
with null values. Our definitions follow those used in the SQL language.

o select: The selection operation evaluates predicate P in op(E) on each tuple ¢
in E. If the predicate returns the value true, t is added to the result. Otherwise,
if the predicate returns unknown or false, t is not added to the result.

e join: Joins can be expressed as a cross product followed by a selection. Thus,
the definition of how selection handles nulls also defines how join operations
handle nulls.

In a natural join, say r X s, we can see from the above definition that if two
tuples, ¢, € r and ts € s, both have a null value in a common attribute, then
the tuples do not match.
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e projection: The projection operation treats nulls just like any other value when

eliminating duplicates. Thus, if two tuples in the projection result are exactly
the same, and both have nulls in the same fields, they are treated as duplicates.

The decision is a little arbitrary since, without knowing the actual value,
we do not know if the two instances of null are duplicates or not.

union, intersection, difference: These operations treat nulls just as the projec-
tion operation does; they treat tuples that have the same values on all fields as
duplicates even if some of the fields have null values in both tuples.

The behavior is rather arbitrary, especially in the case of intersection and
difference, since we do not know if the actual values (if any) represented by
the nulls are the same.

generalized projection: We outlined how nulls are handled in expressions
at the beginning of Section 3.3.4. Duplicate tuples containing null values are
handled as in the projection operation.

aggregate: When nulls occur in grouping attributes, the aggregate operation
treats them just as in projection: If two tuples are the same on all grouping
attributes, the operation places them in the same group, even if some of their
attribute values are null.

When nulls occur in aggregated attributes, the operation deletes null values
at the outset, before applying aggregation. If the resultant multiset is empty,
the aggregate result is null.

Note that the treatment of nulls here is different from that in ordinary arith-
metic expressions; we could have defined the result of an aggregate operation
as null if even one of the aggregated values is null. However, this would mean
a single unknown value in a large group could make the aggregate result on
the group to be null, and we would lose a lot of useful information.

outer join: Outer join operations behave just like join operations, except on
tuples that do not occur in the join result. Such tuples may be added to the
result (depending on whether the operation is IX, >, or ), padded with
nulls.

3.4 Modification of the Database

We have limited our attention until now to the extraction of information from the
database. In this section, we address how to add, remove, or change information in
the database.

We express database modifications by using the assignment operation. We make
assignments to actual database relations by using the same notation as that described
in Section 3.2.3 for assignment.

3.4.1 Deletion

We express a delete request in much the same way as a query. However, instead of
displaying tuples to the user, we remove the selected tuples from the database. We



‘ Silberschatz-Korth-Sudarshan: | 1. Data Models 3. Relational Model © The McGraw-Hill
Database System Companies, 2001
Concepts, Fourth Edition

112 Chapter 3 Relational Model

can delete only whole tuples; we cannot delete values on only particular attributes.
In relational algebra a deletion is expressed by

r«—r—F

where r is a relation and E is a relational-algebra query.
Here are several examples of relational-algebra delete requests:

e Delete all of Smith’s account records.
depositor «— depositor — 0O customer-name = “Smith> (depositor)
e Delete all loans with amount in the range 0 to 50.

loan «— loan — O amount>0 and amount<50 (loan)

e Delete all accounts at branches located in Needham.

r < Ubranch-city:“Needham” (account b branCh)

Ty — Hbranch—name, account-number, balance (Tl)
account <« account — 1o

Note that, in the final example, we simplified our expression by using assign-
ment to temporary relations (r; and r5).

3.4.2 Insertion

To insert data into a relation, we either specify a tuple to be inserted or write a query
whose result is a set of tuples to be inserted. Obviously, the attribute values for in-
serted tuples must be members of the attribute’s domain. Similarly, tuples inserted
must be of the correct arity. The relational algebra expresses an insertion by

r—rUk

where 7 is a relation and E is a relational-algebra expression. We express the insertion
of a single tuple by letting E be a constant relation containing one tuple.

Suppose that we wish to insert the fact that Smith has $1200 in account A-973 at
the Perryridge branch. We write

account «— account U {(A-973, “Perryridge”, 1200)}
depositor «— depositor U {(“Smith”, A-973)}

More generally, we might want to insert tuples on the basis of the result of a query.
Suppose that we want to provide as a gift for all loan customers of the Perryridge
branch a new $200 savings account. Let the loan number serve as the account number
for this savings account. We write

L (mench-namez“Perryridge" (borrower X loan))
To < IIlou,n—nuﬁ’Lber7 branch-name (Tl)

account «— account U (ro x {(200)})

dePOSitOT’ A dEPOSitor U M customer-name, loan-number (Tl)
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Instead of specifying a tuple as we did earlier, we specify a set of tuples that is in-
serted into both the account and depositor relation. Each tuple in the account relation
has an account-number (which is the same as the loan number), a branch-name (Per-
ryridge), and the initial balance of the new account ($200). Each tuple in the depositor
relation has as customer-name the name of the loan customer who is being given the
new account and the same account number as the corresponding account tuple.

3.4.3 Updating

In certain situations, we may wish to change a value in a tuple without changing all
values in the tuple. We can use the generalized-projection operator to do this task:

r— Up g, 5, (7)

where each Fj is either the ith attribute of r, if the ith attribute is not updated, or, if
the attribute is to be updated, F; is an expression, involving only constants and the
attributes of r, that gives the new value for the attribute.

If we want to select some tuples from r and to update only them, we can use
the following expression; here, P denotes the selection condition that chooses which
tuples to update:

r = p.p, k5 (0p(r) U (r —op(r))

To illustrate the use of the update operation, suppose that interest payments are

being made, and that all balances are to be increased by 5 percent. We write

account < Huccount—number, branch-name, balance x1.05 (CLCCO’UTlt)

Now suppose that accounts with balances over $10,000 receive 6 percent interest,
whereas all others receive 5 percent. We write

account «— I AN BN, balance #1.06 (Tbalance>10000 (account))
U AN, BN balance #1.05 (Tbalance<i0000 (account))

where the abbreviations AN and BN stand for account-number and branch-name, re-
spectively.

3.5 Views

In our examples up to this point, we have operated at the logical-model level. That
is, we have assumed that the relations in thecollection we are given are the actual
relations stored in the database.

It is not desirable for all users to see the entire logical model. Security consider-
ations may require that certain data be hidden from users. Consider a person who
needs to know a customer’s loan number and branch name, but has no need to see
the loan amount. This person should see a relation described, in the relational alge-
bra, by

IIcustomer-name7 loan-number, branch-name (bO’f’?”O’U/@?" X loan)

Aside from security concerns, we may wish to create a personalized collection of
relations that is better matched to a certain user’s intuition than is the logical model.



@ ‘ Silberschatz-Korth-Sudarshan: | 1. Data Models 3. Relational Model © The McGraw-Hill

Database System

Companies, 2001

Concepts, Fourth Edition

14 Chapter 3 Relational Model

An employee in the advertising department, for example, might like to see a relation
consisting of the customers who have either an account or a loan at the bank, and
the branches with which they do business. The relation that we would create for that
employee is

Hbranch-name, customer-name (depOSitOT ol account)
U Hbranch—name, customer-name (bO’I”?"OUJ@T’ X loan)

Any relation that is not part of the logical model, but is made visible to a user as a
virtual relation, is called a view. It is possible to support a large number of views on
top of any given set of actual relations.

3.5.1 View Definition

We define a view by using the create view statement. To define a view, we must give
the view a name, and must state the query that computes the view. The form of the
create view statement is

create view v as <query expression>

where <query expression> is any legal relational-algebra query expression. The view
name is represented by v.

As an example, consider the view consisting of branches and their customers. We
wish this view to be called all-customer. We define this view as follows:

create view all-customer as
Hbranch—mzme, customer-name (depOSitOT X account)
U Hbranch—name, customer-name (bO’f’?”O’U/@?" X loan)

Once we have defined a view, we can use the view name to refer to the virtual re-
lation that the view generates. Using the view all-customer, we can find all customers
of the Perryridge branch by writing

M eustomer-name (mench-name:“Perryridge” (all-customer))

Recall that we wrote the same query in Section 3.2.1 without using views.

View names may appear in any place where a relation name may appear, so long
as no update operations are executed on the views. We study the issue of update
operations on views in Section 3.5.2.

View definition differs from the relational-algebra assignment operation. Suppose
that we define relation r1 as follows:

rl «— Hbranch—name, customer-name (depositor b account)
U 1_[branch—name7 customer—name(borrower M loan)

We evaluate the assignment operation once, and r1 does not change when we up-
date the relations depositor, account, loan, or borrower. In contrast, any modification
we make to these relations changes the set of tuples in the view all-customer as well.
Intuitively, at any given time, the set of tuples in the view relation is the result of
evaluation of the query expression that defines the view at that time.
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Thus, if a view relation is computed and stored, it may become out of date if the
relations used to define it are modified. To avoid this, views are usually implemented
as follows. When we define a view, the database system stores the definition of the
view itself, rather than the result of evaluation of the relational-algebra expression
that defines the view. Wherever a view relation appears in a query, it is replaced by
the stored query expression. Thus, whenever we evaluate the query, the view relation
gets recomputed.

Certain database systems allow view relations to be stored, but they make sure
that, if the actual relations used in the view definition change, the view is kept up
to date. Such views are called materialized views. The process of keeping the view
up to date is called view maintenance, covered in Section 14.5. Applications that use
a view frequently benefit from the use of materialized views, as do applications that
demand fast response to certain view-based queries. Of course, the benefits to queries
from the materialization of a view must be weighed against the storage costs and the
added overhead for updates.

3.5.2 Updates through Views and Null Values

Although views are a useful tool for queries, they present serious problems if we ex-
press updates, insertions, or deletions with them. The difficulty is that a modification
to the database expressed in terms of a view must be translated to a modification to
the actual relations in the logical model of the database.

To illustrate the problem, consider a clerk who needs to see all loan data in the loan
relation, except loan-amount. Let loan-branch be the view given to the clerk. We define
this view as

create view loan-branch as
1_1loan—mun,ber7 branch-name (loan)

Since we allow a view name to appear wherever a relation name is allowed, the clerk
can write:

loan-branch «— loan-branch U {(L-37, “Perryridge”)}

This insertion must be represented by an insertion into the relation loan, since loan is
the actual relation from which the database system constructs the view loan-branch.
However, to insert a tuple into loan, we must have some value for amount. There are
two reasonable approaches to dealing with this insertion:

e Reject the insertion, and return an error message to the user.

e Insert a tuple (L-37, “Perryridge”, null) into the loan relation.

Another problem with modification of the database through views occurs with a
view such as

create view loan-info as
chstomer—name, amount(borrower Ul loan)
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| loan-number | branch-name | amount |

L-11 Round Hill 900
L-14 Downtown | 1500
L-15 Perryridge | 1500
L-16 Perryridge | 1300
L-17 Downtown 1000
L-23 Redwood 2000
L-93 Mianus 500
null null 1900

| customer-name | loan-number |

Adams L-16
Curry L-93
Hayes L-15
Jackson L-14
Jones L-17
Smith L-11
Smith L-23
Williams L-17
Johnson null

Figure 3.36 Tuples inserted into loan and borrower.

This view lists the loan amount for each loan that any customer of the bank has.
Consider the following insertion through this view:

loan-info «— loan-info U {(“Johnson”, 1900)}

The only possible method of inserting tuples into the borrower and loan relations is to
insert (“Johnson”, null) into borrower and (null, null, 1900) into loan. Then, we obtain
the relations shown in Figure 3.36. However, this update does not have the desired
effect, since the view relation loan-info still does not include the tuple (“Johnson”,
1900). Thus, there is no way to update the relations borrower and loan by using nulls
to get the desired update on loan-info.

Because of problems such as these, modifications are generally not permitted on
view relations, except in limited cases. Different database systems specify different
conditions under which they permit updates on view relations; see the database
system manuals for details. The general problem of database modification through
views has been the subject of substantial research, and the bibliographic notes pro-
vide pointers to some of this research.

3.5.3 Views Defined by Using Other Views

In Section 3.5.1 we mentioned that view relations may appear in any place that a
relation name may appear, except for restrictions on the use of views in update ex-
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pressions. Thus, one view may be used in the expression defining another view. For
example, we can define the view perryridge-customer as follows:

create view perryridge-customer as
Heustomer-name (Tbranch-name = “Perryridge” (all-customer))

where all-customer is itself a view relation.

View expansion is one way to define the meaning of views defined in terms of
other views. The procedure assumes that view definitions are not recursive; that is,
no view is used in its own definition, whether directly, or indirectly through other
view definitions. For example, if v1 is used in the definition of v2, v2 is used in the
definition of v3, and v3 is used in the definition of v1, then each of v1, v2, and v3
is recursive. Recursive view definitions are useful in some situations, and we revisit
them in the context of the Datalog language, in Section 5.2.

Let view v; be defined by an expression e; that may itself contain uses of view
relations. A view relation stands for the expression defining the view, and therefore
a view relation can be replaced by the expression that defines it. If we modify an ex-
pression by replacing a view relation by the latter’s definition, the resultant expres-
sion may still contain other view relations. Hence, view expansion of an expression
repeats the replacement step as follows:

repeat

Find any view relation v; in e;

Replace the view relation v; by the expression defining v;
until no more view relations are present in e;

As long as the view definitions are not recursive, this loop will terminate. Thus, an
expression e containing view relations can be understood as the expression resulting
from view expansion of e, which does not contain any view relations.

As an illustration of view expansion, consider the following expression:

O customer-name="John” ( perryridge- customer)

The view-expansion procedure initially generates

O customer-name="John” (H customer-name (mench—name = “Perryridge”
(all-customer)))

It then generates

O customer-name="John” (chstomeT-name (mench-name=“Perryridge"
(Hbranch-name, customer-name (deposztor X account)

U I_Ibranch—na'me7 customer-name (bO?"’I”O’LU@?” al locm))))

There are no more uses of view relations, and view expansion terminates.
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3.6 The Tuple Relational Calculus

When we write a relational-algebra expression, we provide a sequence of procedures
that generates the answer to our query. The tuple relational calculus, by contrast, is a
nonprocedural query language. It describes the desired information without giving
a specific procedure for obtaining that information.

A query in the tuple relational calculus is expressed as

{t1 P}

that is, it is the set of all tuples ¢ such that predicate P is true for t. Following our
earlier notation, we use t[A] to denote the value of tuple t on attribute A, and we use
t € r to denote that tuple ¢ is in relation r.

Before we give a formal definition of the tuple relational calculus, we return to
some of the queries for which we wrote relational-algebra expressions in Section 3.2.

3.6.1 Example Queries

Say that we want to find the branch-name, loan-number, and amount for loans of over
$1200:

{t|t € loan A tlamount] > 1200}

Suppose that we want only the loan-number attribute, rather than all attributes of the
loan relation. To write this query in the tuple relational calculus, we need to write
an expression for a relation on the schema (loan-number). We need those tuples on
(loan-number) such that there is a tuple in loan with the amount attribute > 1200. To
express this request, we need the construct “there exists” from mathematical logic.
The notation

dt € r(Q(1))

means “there exists a tuple ¢ in relation r such that predicate Q(t) is true.”
Using this notation, we can write the query “Find the loan number for each loan
of an amount greater than $1200” as

{t|3s € loan (t[loan-number] = s[loan-number)
A slamount] > 1200)}

In English, we read the preceding expression as “The set of all tuples t such that there
exists a tuple s in relation loan for which the values of ¢ and s for the loan-number
attribute are equal, and the value of s for the amount attribute is greater than $1200.”

Tuple variable ¢ is defined on only the loan-number attribute, since that is the only
attribute having a condition specified for t. Thus, the result is a relation on (loan-
number).

Consider the query “Find the names of all customers who have a loan from the
Perryridge branch.” This query is slightly more complex than the previous queries,
since it involves two relations: borrower and loan. As we shall see, however, all it
requires is that we have two “there exists” clauses in our tuple-relational-calculus
expression, connected by and (A). We write the query as follows:
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{t|3s € borrower (t[customer-name] = s[customer-name]
AJu € loan (u[loan-number] = s[loan-number]
A ulbranch-name] = “Perryridge”))}

In English, this expression is “The set of all (customer-name) tuples for which the cus-
tomer has a loan that is at the Perryridge branch.” Tuple variable u ensures that the
customer is a borrower at the Perryridge branch. Tuple variable s is restricted to per-
tain to the same loan number as s. Figure 3.37 shows the result of this query.

To find all customers who have a loan, an account, or both at the bank, we used
the union operation in the relational algebra. In the tuple relational calculus, we shall
need two “there exists” clauses, connected by or (V):

{t|3s € borrower (t[customer-name| = s[customer-name))
V Ju € depositor (t[customer-name] = u[customer-name])}

This expression gives us the set of all customer-name tuples for which at least one of
the following holds:

o The customer-name appears in some tuple of the borrower relation as a borrower
from the bank.

o The customer-name appears in some tuple of the depositor relation as a deposi-
tor of the bank.

If some customer has both a loan and an account at the bank, that customer appears
only once in the result, because the mathematical definition of a set does not allow
duplicate members. The result of this query appeared earlier in Figure 3.12.

If we now want only those customers who have both an account and a loan at the
bank, all we need to do is to change the or (V) to and (A) in the preceding expression.

{t|3s € borrower (t[customer-name| = s[customer-name))
A Ju € depositor (t[customer-name] = u[customer-name])}

The result of this query appeared in Figure 3.20.

Now consider the query “Find all customers who have an account at the bank but
do not have a loan from the bank.” The tuple-relational-calculus expression for this
query is similar to the expressions that we have just seen, except for the use of the not
(—) symbol:

{t|3u € depositor (t[customer-name] = ulcustomer-name))
A= 3 s € borrower (t[customer-name] = s[customer-name])}

customer-name
Adams
Hayes

Figure 3.37 Names of all customers who have a loan at the Perryridge branch.
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This tuple-relational-calculus expression uses the 3 w € depositor (...) clause to
require that the customer have an account at the bank, and it uses the -~ 3 s €
borrower (. ..) clause to eliminate those customers who appear in some tuple of the
borrower relation as having a loan from the bank. The result of this query appeared in
Figure 3.13.

The query that we shall consider next uses implication, denoted by =. The formula
P = @ means “P implies Q”; that is, “if P is true, then Q must be true.” Note that
P = Qislogically equivalent to =P V Q. The use of implication rather than not and
or often suggests a more intuitive interpretation of a query in English.

Consider the query that we used in Section 3.2.3 to illustrate the division opera-
tion: “Find all customers who have an account at all branches located in Brooklyn.” To
write this query in the tuple relational calculus, we introduce the “for all” construct,
denoted by V. The notation

Vit e r(Q(t))

means “Q is true for all tuples ¢ in relation r.”
We write the expression for our query as follows:

{t|3r € customer (r[customer-name] = t[customer-name]) A
(Yu € branch (ulbranch-city] = “Brooklyn” =
Js € depositor (t[customer-name] = s[customer-name)]
AJw € account (wlaccount-number] = s[account-number]
A w[branch-name] = u[branch-name]))))}

In English, we interpret this expression as “The set of all customers (that is, (customer-
name) tuples t) such that, for all tuples u in the branch relation, if the value of 1 on at-
tribute branch-city is Brooklyn, then the customer has an account at the branch whose
name appears in the branch-name attribute of u.”

Note that there is a subtlety in the above query: If there is no branch in Brooklyn,
all customer names satisfy the condition. The first line of the query expression is crit-
ical in this case—without the condition

Ir € customer (r[customer-name| = t[customer-name))
if there is no branch in Brooklyn, any value of ¢ (including values that are not cus-
tomer names in the depositor relation) would qualify.

3.6.2 Formal Definition

We are now ready for a formal definition. A tuple-relational-calculus expression is of
the form

{t1 P}

where P is a formula. Several tuple variables may appear in a formula. A tuple vari-
able is said to be a free variable unless it is quantified by a 3 or V. Thus, in

t € loan N 3s € customer(t[branch-name] = s[branch-name])

t is a free variable. Tuple variable s is said to be a bound variable.
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A tuple-relational-calculus formula is built up out of atoms. An atom has one of
the following forms:

e s c r, where s is a tuple variable and r is a relation (we do not allow use of the
¢ operator)

e s[x] © uly], where s and u are tuple variables, x is an attribute on which s is
defined, y is an attribute on which u is defined, and © is a comparison operator
(<, <, =, #, >, >); we require that attributes x and y have domains whose
members can be compared by ©

e s[x] © ¢, where s is a tuple variable, x is an attribute on which s is defined, © is
a comparison operator, and c is a constant in the domain of attribute x

We build up formulae from atoms by using the following rules:

e An atom is a formula.

If P is a formula, then so are —=P; and (Py).

If P, and P, are formulae, thensoare P, V P, P, AN Py, and P, = P.

If P, (s) is a formula containing a free tuple variable s, and r is a relation, then
ds € r(Pi(s)) and Vs € r (Pi(s))

are also formulae.

As we could for the relational algebra, we can write equivalent expressions that
are not identical in appearance. In the tuple relational calculus, these equivalences
include the following three rules:

1. P, A Pyisequivalentto — (=(P;) V —(P2)).
2.Vt € r(Pi(t))isequivalentto -~ 3¢t € r (=Pi(t)).
3. P, = Pisequivalentto —~(P;) V P.

3.6.3 Safety of Expressions

There is one final issue to be addressed. A tuple-relational-calculus expression may
generate an infinite relation. Suppose that we write the expression

{t |- (t € loan)}

There are infinitely many tuples that are not in loan. Most of these tuples contain
values that do not even appear in the database! Clearly, we do not wish to allow such
expressions.

To help us define a restriction of the tuple relational calculus, we introduce the
concept of the domain of a tuple relational formula, P. Intuitively, the domain of
P, denoted dom(P), is the set of all values referenced by P. They include values
mentioned in P itself, as well as values that appear in a tuple of a relation men-
tioned in P. Thus, the domain of P is the set of all values that appear explicitly in
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P or that appear in one or more relations whose names appear in P. For example,
dom(t € loan A tlamount] > 1200) is the set containing 1200 as well as the set of all
values appearing in loan. Also, dom(— (t € loan)) is the set of all values appearing
in loan, since the relation loan is mentioned in the expression.

We say that an expression {¢ | P(t)} is safe if all values that appear in the result
are values from dom(P). The expression {t |- (t € loan)} is not safe. Note that
dom(— (t € loan)) is the set of all values appearing in loan. However, it is possible
to have a tuple t not in loan that contains values that do not appear in loan. The other
examples of tuple-relational-calculus expressions that we have written in this section
are safe.

3.6.4 Expressive Power of Languages

The tuple relational calculus restricted to safe expressions is equivalent in expressive
power to the basic relational algebra (with the operators U, —, x, o, and p, but without
the extended relational operators such as generalized projection G and the outer-join
operations) Thus, for every relational-algebra expression using only the basic opera-
tions, there is an equivalent expression in the tuple relational calculus, and for every
tuple-relational-calculus expression, there is an equivalent relational-algebra expres-
sion. We will not prove this assertion here; the bibliographic notes contain references
to the proof. Some parts of the proof are included in the exercises. We note that the
tuple relational calculus does not have any equivalent of the aggregate operation, but
it can be extended to support aggregation. Extending the tuple relational calculus to
handle arithmetic expressions is straightforward.

3.7 The Domain Relational Calculusxx

A second form of relational calculus, called domain relational calculus, uses domain
variables that take on values from an attributes domain, rather than values for an
entire tuple. The domain relational calculus, however, is closely related to the tuple
relational calculus.

Domain relational calculus serves as the theoretical basis of the widely used QBE
language, just as relational algebra serves as the basis for the SQL language.

3.7.1 Formal Definition
An expression in the domain relational calculus is of the form
{< @1, 22y ..., 20 > | P(x1, Tay...,2p)}
where 21, xs,...,z, represent domain variables. P represents a formula composed
of atoms, as was the case in the tuple relational calculus. An atom in the domain

relational calculus has one of the following forms:

e < I, xg,...,xTy > € T, Where ris a relation on n attributes and =1, xs,..., 2,
are domain variables or domain constants.
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e x © y, where x and y are domain variables and © is a comparison operator
(<, <, =, #, >, >). We require that attributes x and y have domains that can
be compared by ©.

e x O ¢, where x is a domain variable, © is a comparison operator, and c is a
constant in the domain of the attribute for which x is a domain variable.

We build up formulae from atoms by using the following rules:

e An atom is a formula.
e If P is a formula, then so are =P, and ().
e If P, and P, are formulae, thensoare P, V P, PL A Py, and P, = Ps.
e If P,(z) is a formula in x, where x is a domain variable, then
Jz (Pi(z)) and V z (P (z))

are also formulae.
As a notational shorthand, we write
Ja,b,c(P(a,b,c))
for
Fa (3b(Fc(P(a,b,c))))

3.7.2 Example Queries

We now give domain-relational-calculus queries for the examples that we consid-
ered earlier. Note the similarity of these expressions and the corresponding tuple-
relational-calculus expressions.

e Find the loan number, branch name, and amount for loans of over $1200:
{<lL,byja> | <l,b,a>€ loan N a > 1200}
e Find all loan numbers for loans with an amount greater than $1200:

{<I>|3ba(<,bya>¢€ loan N a > 1200)}

Although the second query appears similar to the one that we wrote for the tuple
relational calculus, there is an important difference. In the tuple calculus, when we
write 3 s for some tuple variable s, we bind it immediately to a relation by writing
ds € r. However, when we write 3 b in the domain calculus, b refers not to a tuple,
but rather to a domain value. Thus, the domain of variable b is unconstrained until
the subformula < [,b,a > € loan constrains b to branch names that appear in the
loan relation. For example,

e Find the names of all customers who have a loan from the Perryridge branch
and find the loan amount:
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{<ca> |31 (<el>€ borrower
ATb(<l,bya>€ loan N b = “Perryridge”))}

e Find the names of all customers who have a loan, an account, or both at the
Perryridge branch:

{<e> |3l(< ¢l >€ borrower
A3b,a(<l,b,a>¢€ loan A b = “Perryridge”))
Vda(<c¢,a>€ depositor
A3b,n(< a,b,n>€ account N b = “Perryridge”))}

e Find the names of all customers who have an account at all the branches lo-
cated in Brooklyn:

{<ec> |In(<ce,n>e€ customer) A
Va,y,z (< x,y,2 > € branch N y = “Brooklyn” =
Ja,b(<a,z,b>€ account N < c,a > € depositor))}

In English, we interpret this expression as “The set of all (customer-name) tu-
ples ¢ such that, for all (branch-name, branch-city, assets) tuples, x,y, z, if the
branch city is Brooklyn, then the following is true”:

O There exists a tuple in the relation account with account number a and
branch name x.

O There exists a tuple in the relation depositor with customer ¢ and account
number a.”

3.7.3 Safety of Expressions

We noted that, in the tuple relational calculus (Section 3.6), it is possible to write ex-
pressions that may generate an infinite relation. That led us to define safety for tuple-
relational-calculus expressions. A similar situation arises for the domain relational
calculus. An expression such as

{<lbja> | =(<l,b,a> € loan)}

is unsafe, because it allows values in the result that are not in the domain of the
expression.

For the domain relational calculus, we must be concerned also about the form of
formulae within “there exists” and “for all” clauses. Consider the expression

{<z>|Jy(<z,y>er) AN Jz(~(<z, 2> 1) A P(z,2))}

where P is some formula involving = and z. We can test the first part of the formula,
Jy (< @, y > € r), by considering only the values in r. However, to test the second
part of the formula, 3z (= (< z, z > € r) A P(x,z)), we must consider values for
z that do not appear in r. Since all relations are finite, an infinite number of values
do not appear in r. Thus, it is not possible, in general, to test the second part of the
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formula, without considering an infinite number of potential values for z. Instead,
we add restrictions to prohibit expressions such as the preceding one.

In the tuple relational calculus, we restricted any existentially quantified variable
to range over a specific relation. Since we did not do so in the domain calculus, we
add rules to the definition of safety to deal with cases like our example. We say that
an expression

{< 1, 2y yxn > | P21, T2,...,%0)}
is safe if all of the following hold:

1. All values that appear in tuples of the expression are values from dom(P).

2. For every “there exists” subformula of the form 3 z (P (x)), the subformula is
true if and only if there is a value x in dom (P ) such that P, () is true.

3. For every “for all” subformula of the form Va (P;(z)), the subformula is true
if and only if P;(z) is true for all values x from dom(Py).

The purpose of the additional rules is to ensure that we can test “for all” and “there
exists” subformulae without having to test infinitely many possibilities. Consider the
second rule in the definition of safety. For 3 = (P;(x)) to be true, we need to find only
one x for which P, () is true. In general, there would be infinitely many values to
test. However, if the expression is safe, we know that we can restrict our attention to
values from dom(P;). This restriction reduces to a finite number the tuples we must
consider.

The situation for subformulae of the form Vx (P;(z)) is similar. To assert that
Vo (Pi(x)) is true, we must, in general, test all possible values, so we must exam-
ine infinitely many values. As before, if we know that the expression is safe, it is
sufficient for us to test P (x) for those values taken from dom(P;).

All the domain-relational-calculus expressions that we have written in the exam-
ple queries of this section are safe.

3.7.4 Expressive Power of Languages

When the domain relational calculus is restricted to safe expressions, it is equivalent
in expressive power to the tuple relational calculus restricted to safe expressions.
Since we noted earlier that the restricted tuple relational calculus is equivalent to the
relational algebra, all three of the following are equivalent:

e The basic relational algebra (without the extended relational algebra opera-
tions)

o The tuple relational calculus restricted to safe expressions

e The domain relational calculus restricted to safe expressions



‘ Silberschatz-Korth-Sudarshan: | 1. Data Models 3. Relational Model © The McGraw-Hill
Database System
Concepts, Fourth Edition

126

Chapter 3

Companies, 2001

Relational Model

We note that the domain relational calculus also does not have any equivalent of the
aggregate operation, but it can be extended to support aggregation, and extending it
to handle arithmatic expressions is straightforward.

3.8

Summary

The relational data model is based on a collection of tables. The user of the
database system may query these tables, insert new tuples, delete tuples, and
update (modify) tuples. There are several languages for expressing these op-
erations.

The relational algebra defines a set of algebraic operations that operate on
tables, and output tables as their results. These operations can be combined
to get expressions that express desired queries. The algebra defines the basic
operations used within relational query languages.

The operations in relational algebra can be divided into

[ Basic operations

[0 Additional operations that can be expressed in terms of the basic opera-
tions

O Extended operations, some of which add further expressive power to re-
lational algebra

Databases can be modified by insertion, deletion, or update of tuples. We
used the relational algebra with the assignment operator to express these
modifications.

Different users of a shared database may benefit from individualized views of
the database. Views are “virtual relations” defined by a query expression. We
evaluate queries involving views by replacing the view with the expression
that defines the view.

Views are useful mechanisms for simplifying database queries, but modifica-
tion of the database through views may cause problems. Therefore, database
systems severely restrict updates through views.

For reasons of query-processing efficiency, a view may be materialized —that
is, the query is evaluated and the result stored physically. When database re-
lations are updated, the materialized view must be correspondingly updated.

The tuple relational calculus and the domain relational calculus are non-
procedural languages that represent the basic power required in a relational
query language. The basic relational algebra is a procedural language that is
equivalent in power to both forms of the relational calculus when they are
restricted to safe expressions.

The relational algebra and the relational calculi are terse, formal languages
that are inappropriate for casual users of a database system. Commercial data-
base systems, therefore, use languages with more “syntactic sugar.” In Chap-
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ters 4 and 5, we shall consider the three most influential languages: SQL,
which is based on relational algebra, and QBE and Datalog, which are based

on domain relational calculus.

Review Terms

e Table

e Relation

e Tuple variable

e Atomic domain
e Null value

e Database schema
e Database instance
e Relation schema
e Relation instance
o Keys

e Foreign key

O Referencing relation
O Referenced relation

e Schema diagram

e Query language

e Procedural language

e Nonprocedural language

e Relational algebra

e Relational algebra operations

O Select o
O Project IT
O Union U
O Set difference —
O Cartesian product x
O Rename p
e Additional operations

O Set-intersection N

Exercises

O Natural-join X
O Division /
Assignment operation

Extended relational-algebra
operations

O Generalized projection 11
O Outer join
— Left outer join 4
— Right outer join XC
— Full outer join X
[0 Aggregation G
Multisets
Grouping
Null values
Modification of the database

O Deletion

O Insertion

O Updating
Views
View definition
Materialized views
View update
View expansion
Recursive views
Tuple relational calculus
Domain relational calculus
Safety of expressions
Expressive power of languages

3.1 Design a relational database for a university registrar’s office. The office main-
tains data about each class, including the instructor, the number of students
enrolled, and the time and place of the class meetings. For each student-class

pair, a grade is recorded.
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address

person

report-number
accident

driver participated

damage-amount

Figure 3.38 E-R diagram.

3.2 Describe the differences in meaning between the terms relation and relation schema.
Illustrate your answer by referring to your solution to Exercise 3.1.

3.3 Design a relational database corresponding to the E-R diagram of Figure 3.38.

3.4 In Chapter 2, we saw how to represent many-to-many, many-to-one, one-to-
many, and one-to-one relationship sets. Explain how primary keys help us to
represent such relationship sets in the relational model.

3.5 Consider the relational database of Figure 3.39, where the primary keys are un-
derlined. Give an expression in the relational algebra to express each of the fol-
lowing queries:

a. Find the names of all employees who work for First Bank Corporation.

b. Find the names and cities of residence of all employees who work for First
Bank Corporation.

c. Find the names, street address, and cities of residence of all employees who
work for First Bank Corporation and earn more than $10,000 per annum.

d. Find the names of all employees in this database who live in the same city
as the company for which they work.

e. Find the names of all employees who live in the same city and on the same
street as do their managers.

f. Find the names of all employees in this database who do not work for First
Bank Corporation.

g. Find the names of all employees who earn more than every employee of
Small Bank Corporation.

h. Assume the companies may be located in several cities. Find all companies
located in every city in which Small Bank Corporation is located.

3.6 Consider the relation of Figure 3.21, which shows the result of the query “Find
the names of all customers who have a loan at the bank.” Rewrite the query
to include not only the name, but also the city of residence for each customer.
Observe that now customer Jackson no longer appears in the result, even though
Jackson does in fact have a loan from the bank.
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employee (person-name, street, city)

works (person-name, company-name, salary)
company (company-name, city)

manages (person-name, manager-name)

Figure 3.39 Relational database for Exercises 3.5, 3.8 and 3.10.

a. Explain why Jackson does not appear in the result.

b. Suppose that you want Jackson to appear in the result. How would you
modify the database to achieve this effect?

c. Again, suppose that you want Jackson to appear in the result. Write a query
using an outer join that accomplishes this desire without your having to
modify the database.

3.7 The outer-join operations extend the natural-join operation so that tuples from
the participating relations are not lost in the result of the join. Describe how the
theta join operation can be extended so that tuples from the left, right, or both
relations are not lost from the result of a theta join.

3.8 Consider the relational database of Figure 3.39. Give an expression in the rela-
tional algebra for each request:

Modify the database so that Jones now lives in Newtown.

Give all employees of First Bank Corporation a 10 percent salary raise.
Give all managers in this database a 10 percent salary raise.

Give all managers in this database a 10 percent salary raise, unless the salary
would be greater than $100,000. In such cases, give only a 3 percent raise.
e. Delete all tuples in the works relation for employees of Small Bank Corpora-
tion.

an T

3.9 Using the bank example, write relational-algebra queries to find the accounts
held by more than two customers in the following ways:

a. Using an aggregate function.
b. Without using any aggregate functions.
3.10 Consider the relational database of Figure 3.39. Give a relational-algebra expres-
sion for each of the following queries:

a. Find the company with the most employees.

b. Find the company with the smallest payroll.

c. Find those companies whose employees earn a higher salary, on average,
than the average salary at First Bank Corporation.

3.11 List two reasons why we may choose to define a view.

3.12 List two major problems with processing update operations expressed in terms
of views.

3.13 Let the following relation schemas be given:

R =(A,B,C)
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S =(D,E,F)

Let relations r(R) and 5(S) be given. Give an expression in the tuple relational
calculus that is equivalent to each of the following:

a. HA (7‘)

b. OB =17 (’I”)

. r X s

d. HA,F (UC:D(T' X 8))

Let R = (A, B, C), and let r; and 72 both be relations on schema R. Give
an expression in the domain relational calculus that is equivalent to each of the
following:

- a(ry)

- OB=17 (7”1)

. T U T2

. T n T2

.1 — T2

04 (1) X g c(ra)

- 0 & T o

Repeat Exercise 3.5 using the tuple relational calculus and the domain relational
calculus.

Let R = (A, B)and S = (A4, C), and let r(R) and s(S) be relations. Write
relational-algebra expressions equivalent to the following domain-relational-
calculus expressions:

a. {<a>|3Fb(<ab>e r Ab=17)}

b. {<a,b,c> | <a,b>€ rA <a,c>€ s}

c {<a>|3b(<ab>€r)VVe(Td(<dc>€ s) =<a,c>€ s)}

d {<a> |Fec(<ac>€ s AN Fb,by (< a,by >€ r A < ¢ by >
6T/\b1>b2))}

Let R = (A, B)and S = (A4, C), and let 7(R) and s(S) be relations. Using
the special constant null, write tuple-relational-calculus expressions equivalent
to each of the following:

a. rXCs
b. r 2>Cs
c. r AHs

List two reasons why null values might be introduced into the database.

Certain systems allow marked nulls. A marked null 1; is equal to itself, but if
i # j,then L; # L;. One application of marked nulls is to allow certain updates
through views. Consider the view loan-info (Section 3.5). Show how you can use
marked nulls to allow the insertion of the tuple (“Johnson”, 1900) through loan-

info.
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and Chamberlin et al. [1981]. Ingres is discussed in Stonebraker [1980], Stonebraker
[1986b], and Stonebraker et al. [1976]. Query-by-example is described in Zloof [1977].
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the relational algebra (the RM/T model), as well as outer joins, are in Codd [1979].
Codd [1990] is a compendium of E. F. Codd’s papers on the relational model. Outer
joins are also discussed in Date [1993b]. The problem of updating relational databases
through views is addressed by Bancilhon and Spyratos [1981], Cosmadakis and Pa-
padimitriou [1984], Dayal and Bernstein [1978], and Langerak [1990]. Section 14.5
covers materialized view maintenance, and references to literature on view mainte-
nance can be found at the end of that chapter.
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A relational database is a shared repository of data. To make data from a relational
database available to users, we have to address several issues. One is how users spec-
ify requests for data: Which of the various query languages do they use? Chapter 4
covers the SQL language, which is the most widely used query language today. Chap-
ter 5 covers two other query languages, OBE and Datalog, which offer alternative
approaches to querying relational data.

Another issue is data integrity and security; databases need to protect data from
damage by user actions, whether unintentional or intentional. The integrity main-
tenance component of a database ensures that updates do not violate integrity con-
straints that have been specified on the data. The security component of a database
includes authentication of users, and access control, to restrict the permissible actions
for each user. Chapter 6 covers integrity and security issues. Security and integrity
issues are present regardless of the data model, but for concreteness we study them
in the context of the relational model. Integrity constraints form the basis of relational
database design, which we study in Chapter 7.

Relational database design—the design of the relational schema—is the first step
in building a database application. Schema design was covered informally in ear-
lier chapters. There are, however, principles that can be used to distinguish good
database designs from bad ones. These are formalized by means of several “normal
forms,” which offer different tradeoffs between the possibility of inconsistencies and
the efficiency of certain queries. Chapter 7 describes the formal design of relational
schemas.
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The formal languages described in Chapter 3 provide a concise notation for repre-
senting queries. However, commercial database systems require a query language
that is more user friendly. In this chapter, we study SQL, the most influential commer-
cially marketed query language, SQL. SQL uses a combination of relational-algebra
and relational-calculus constructs.

Although we refer to the SQL language as a “query language,” it can do much
more than just query a database. It can define the structure of the data, modify data
in the database, and specify security constraints.

It is not our intention to provide a complete users” guide for SQL. Rather, we
present SQL’s fundamental constructs and concepts. Individual implementations of
SQL may differ in details, or may support only a subset of the full language.

4.1 Background

IBM developed the original version of SQL at its San Jose Research Laboratory (now
the Almaden Research Center). IBM implemented the language, originally called Se-
quel, as part of the System R project in the early 1970s. The Sequel language has
evolved since then, and its name has changed to SQL (Structured Query Language).
Many products now support the SQL language. SQL has clearly established itself as
the standard relational-database language.

In 1986, the American National Standards Institute (ANSI) and the International
Organization for Standardization (ISO) published an SQL standard, called SQL-86.
IBM published its own corporate SQL standard, the Systems Application Architec-
ture Database Interface (SAA-SQL) in 1987. ANSI published an extended standard for
SQL, SQL-89, in 1989. The next version of the standard was SQL-92 standard, and the
most recent version is SQL:1999. The bibliographic notes provide references to these
standards.

135
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In this chapter, we present a survey of SQL, based mainly on the widely imple-
mented SQL-92 standard. The SQL:1999 standard is a superset of the SQL-92 standard;
we cover some features of SQL:1999 in this chapter, and provide more detailed cov-
erage in Chapter 9. Many database systems support some of the new constructs in
SQL:1999, although currently no database system supports all the new constructs. You
should also be aware that some database systems do not even support all the fea-
tures of SQL-92, and that many databases provide nonstandard features that we do
not cover here.

The SQL language has several parts:

e Data-definition language (DDL). The SQL DDL provides commands for defin-
ing relation schemas, deleting relations, and modifying relation schemas.

o Interactive data-manipulation language (DML). The SQL DML includes a
query language based on both the relational algebra and the tuple relational
calculus. It includes also commands to insert tuples into, delete tuples from,
and modify tuples in the database.

e View definition. The SQL DDL includes commands for defining views.

e Transaction control. SQL includes commands for specifying the beginning
and ending of transactions.

e Embedded SQL and dynamic SQL. Embedded and dynamic SQL define how
SQL statements can be embedded within general-purpose programming lan-
guages, such as C, C++, Java, PL/I, Cobol, Pascal, and Fortran.

e Integrity. The SQL DDL includes commands for specifying integrity constraints
that the data stored in the database must satisfy. Updates that violate integrity
constraints are disallowed.

o Authorization. The SQL DDL includes commands for specifying access rights
to relations and views.

In this chapter, we cover the DML and the basic DDL features of SQL. We also
briefly outline embedded and dynamic SQL, including the ODBC and JDBC standards
for interacting with a database from programs written in the C and Java languages.
SQL features supporting integrity and authorization are described in Chapter 6, while
Chapter 9 outlines object-oriented extensions to SQL.

The enterprise that we use in the examples in this chapter, and later chapters, is a
banking enterprise with the following relation schemas:

Branch-schema = (branch-name, branch-city, assets)
Customer-schema = (customer-name, customer-street, customer-city)
Loan-schema = (loan-number, branch-name, amount)
Borrower-schema = (customer-name, loan-number)

Account-schema = (account-number, branch-name, balance)
Depositor-schema = (customer-name, account-number)



Silberschatz-Korth-Sudarshan: | Il. Relational Databases 4.80L © The McGraw-Hill

Database System

Companies, 2001

Concepts, Fourth Edition

4.2 Basic Structure 137

Note that in this chapter, as elsewhere in the text, we use hyphenated names for
schema, relations, and attributes for ease of reading. In actual SQL systems, however,
hyphens are not valid parts of a name (they are treated as the minus operator). A
simple way of translating the names we use to valid SQL names is to replace all hy-

phens by the underscore symbol (“_”). For example, we use branch_name in place of
branch-name.

4.2 Basic Structure

A relational database consists of a collection of relations, each of which is assigned
a unique name. Each relation has a structure similar to that presented in Chapter 3.
SQL allows the use of null values to indicate that the value either is unknown or does
not exist. It allows a user to specify which attributes cannot be assigned null values,
as we shall discuss in Section 4.11.

The basic structure of an SQL expression consists of three clauses: select, from, and
where.

o The select clause corresponds to the projection operation of the relational al-
gebra. It is used to list the attributes desired in the result of a query.

e The from clause corresponds to the Cartesian-product operation of the rela-
tional algebra. It lists the relations to be scanned in the evaluation of the ex-
pression.

o The where clause corresponds to the selection predicate of the relational alge-
bra. It consists of a predicate involving attributes of the relations that appear
in the from clause.

That the term select has different meaning in SQL than in the relational algebra is an
unfortunate historical fact. We emphasize the different interpretations here to mini-
mize potential confusion.

A typical SQL query has the form

select A;, As,..., A,
fromry, ro,..., 7T
where P

Each A; represents an attribute, and each r; a relation. P is a predicate. The query is
equivalent to the relational-algebra expression

HAl,Ag,..‘,An(O'P(rl X rg X -+ X T‘m))

If the where clause is omitted, the predicate P is true. However, unlike the result of a
relational-algebra expression, the result of the SQL query may contain multiple copies
of some tuples; we shall return to this issue in Section 4.2.8.

SQL forms the Cartesian product of the relations named in the from clause,
performs a relational-algebra selection using the where clause predicate, and then
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projects the result onto the attributes of the select clause. In practice, SQL may con-
vert the expression into an equivalent form that can be processed more efficiently.
However, we shall defer concerns about efficiency to Chapters 13 and 14.

4.2.1 The select Clause

The result of an SQL query is, of course, a relation. Let us consider a simple query
using our banking example, “Find the names of all branches in the loan relation”:

select branch-name
from loan

The result is a relation consisting of a single attribute with the heading branch-name.

Formal query languages are based on the mathematical notion of a relation being
a set. Thus, duplicate tuples never appear in relations. In practice, duplicate elimina-
tion is time-consuming. Therefore, SQL (like most other commercial query languages)
allows duplicates in relations as well as in the results of SQL expressions. Thus, the
preceding query will list each branch-name once for every tuple in which it appears in
the loan relation.

In those cases where we want to force the elimination of duplicates, we insert the
keyword distinct after select. We can rewrite the preceding query as

select distinct branch-name
from loan

if we want duplicates removed.
SQL allows us to use the keyword all to specify explicitly that duplicates are not
removed:

select all branch-name
from loan

Since duplicate retention is the default, we will not use all in our examples. To ensure
the elimination of duplicates in the results of our example queries, we will use dis-
tinct whenever it is necessary. In most queries where distinct is not used, the exact
number of duplicate copies of each tuple present in the query result is not important.
However, the number is important in certain applications; we return to this issue in
Section 4.2.8.

The asterisk symbol “ * ” can be used to denote “all attributes.” Thus, the use of
loan.* in the preceding select clause would indicate that all attributes of loan are to be
selected. A select clause of the form select * indicates that all attributes of all relations
appearing in the from clause are selected.

The select clause may also contain arithmetic expressions involving the operators
+, —, %, and / operating on constants or attributes of tuples. For example, the query

select loan-number, branch-name, amount * 100
from loan
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will return a relation that is the same as the loan relation, except that the attribute
amount is multiplied by 100.

SQL also provides special data types, such as various forms of the date type, and
allows several arithmetic functions to operate on these types.

4.2.2 The where Clause

Let us illustrate the use of the where clause in SQL. Consider the query “Find all loan
numbers for loans made at the Perryridge branch with loan amounts greater that
$1200.” This query can be written in SQL as:

select loan-number
from loan
where branch-name = "Perryridge” and amount > 1200

SQL uses the logical connectives and, or, and not—rather than the mathematical
symbols A, V, and = —in the where clause. The operands of the logical connectives
can be expressions involving the comparison operators <, <=, >, >=, =, and <>.
SQL allows us to use the comparison operators to compare strings and arithmetic
expressions, as well as special types, such as date types.

SQL includes a between comparison operator to simplify where clauses that spec-
ify that a value be less than or equal to some value and greater than or equal to some
other value. If we wish to find the loan number of those loans with loan amounts
between $90,000 and $100,000, we can use the between comparison to write

select loan-number
from loan
where amount between 90000 and 100000

instead of

select loan-number
from loan
where amount <= 100000 and amount >= 90000

Similarly, we can use the not between comparison operator.

4.2.3 The from Clause

Finally, let us discuss the use of the from clause. The from clause by itself defines a
Cartesian product of the relations in the clause. Since the natural join is defined in
terms of a Cartesian product, a selection, and a projection, it is a relatively simple
matter to write an SQL expression for the natural join.

We write the relational-algebra expression

chstomer-name,loan-numben amount (bOTT’OU)@T ol loan)

for the query “For all customers who have a loan from the bank, find their names,
loan numbers and loan amount.” In SQL, this query can be written as
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select customer-name, borrower.loan-number, amount
from borrower, loan
where borrower.loan-number = loan.loan-number

Notice that SQL uses the notation relation-name.attribute-name, as does the relational
algebra, to avoid ambiguity in cases where an attribute appears in the schema of more
than one relation. We could have written borrower.customer-name instead of customer-
name in the select clause. However, since the attribute customer-name appears in only
one of the relations named in the from clause, there is no ambiguity when we write
customer-name.

We can extend the preceding query and consider a more complicated case in which
we require also that the loan be from the Perryridge branch: “Find the customer
names, loan numbers, and loan amounts for all loans at the Perryridge branch.” To
write this query, we need to state two constraints in the where clause, connected by
the logical connective and:

select customer-name, borrower.loan-number, amount

from borrower, loan

where borrower.loan-number = loan.loan-number and
branch-name = 'Perryridge’

SQL includes extensions to perform natural joins and outer joins in the from clause.
We discuss these extensions in Section 4.10.

4.2.4 The Rename Operation

SQL provides a mechanism for renaming both relations and attributes. It uses the as
clause, taking the form:

old-name as new-name

The as clause can appear in both the select and from clauses.
Consider again the query that we used earlier:

select customer-name, borrower.loan-number, amount
from borrower, loan
where borrower.loan-number = loan.loan-number

The result of this query is a relation with the following attributes:
customer-name, loan-number, amount.

The names of the attributes in the result are derived from the names of the attributes
in the relations in the from clause.

We cannot, however, always derive names in this way, for several reasons: First,
two relations in the from clause may have attributes with the same name, in which
case an attribute name is duplicated in the result. Second, if we used an arithmetic
expression in the select clause, the resultant attribute does not have a name. Third,
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even if an attribute name can be derived from the base relations as in the preced-
ing example, we may want to change the attribute name in the result. Hence, SQL
provides a way of renaming the attributes of a result relation.

For example, if we want the attribute name loan-number to be replaced with the
name loan-id, we can rewrite the preceding query as

select customer-name, borrower.loan-number as loan-id, amount
from borrower, loan
where borrower.loan-number = loan.loan-number

4.2.5 Tuple Variables

The as clause is particularly useful in defining the notion of tuple variables, as is
done in the tuple relational calculus. A tuple variable in SQL must be associated with
a particular relation. Tuple variables are defined in the from clause by way of the as
clause. To illustrate, we rewrite the query “For all customers who have a loan from
the bank, find their names, loan numbers, and loan amount” as

select customer-name, T.loan-number, S.amount
from borrower as T, loan as S
where T.loan-number = S.loan-number

Note that we define a tuple variable in the from clause by placing it after the name of
the relation with which it is associated, with the keyword as in between (the keyword
as is optional). When we write expressions of the form relation-name.attribute-name,
the relation name is, in effect, an implicitly defined tuple variable.

Tuple variables are most useful for comparing two tuples in the same relation.
Recall that, in such cases, we could use the rename operation in the relational algebra.
Suppose that we want the query “Find the names of all branches that have assets
greater than at least one branch located in Brooklyn.” We can write the SQL expression

select distinct T.branch-name
from branch as T, branch as S
where T.assets > S.assets and S.branch-city = 'Brooklyn’

Observe that we could not use the notation branch.asset, since it would not be clear
which reference to branch is intended.

SQL permits us to use the notation (vy, v, ..., v,) to denote a tuple of arity n con-
taining values vy, v, ..., v,. The comparison operators can be used on tuples, and
the ordering is defined lexicographically. For example, (a1, a2) <= (b1, b2) is true if
ap < by, or (a1 = by) A (a2 <= by); similarly, the two tuples are equal if all their
attributes are equal.

4.2.6 String Operations

SQL specifies strings by enclosing them in single quotes, for example, 'Perryridge’,
as we saw earlier. A single quote character that is part of a string can be specified by
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using two single quote characters; for example the string “It’s right” can be specified
by ‘It”s right’.

The most commonly used operation on strings is pattern matching using the op-
erator like. We describe patterns by using two special characters:

e Percent (%): The % character matches any substring.

e Underscore (-): The _ character matches any character.

Patterns are case sensitive; that is, uppercase characters do not match lowercase char-
acters, or vice versa. To illustrate pattern matching, we consider the following exam-
ples:

e 'Perry%’ matches any string beginning with “Perry”.

e "%idge%’ matches any string containing “idge” as a substring, for example,
"Perryridge’, 'Rock Ridge’, "Mianus Bridge’, and 'Ridgeway’.

7

e '__ _ matches any string of exactly three characters.

7

e '__ %’ matches any string of at least three characters.

SQL expresses patterns by using the like comparison operator. Consider the query

“Find the names of all customers whose street address includes the substring "‘Main’.
This query can be written as

select customer-name
from customer
where customer-street like "% Main%’

For patterns to include the special pattern characters (that is, % and _), SQL allows
the specification of an escape character. The escape character is used immediately
before a special pattern character to indicate that the special pattern character is to be
treated like a normal character. We define the escape character for a like comparison
using the escape keyword. To illustrate, consider the following patterns, which use a
backslash (\) as the escape character:

e like “ab\%cd%’ escape "\" matches all strings beginning with “ab%cd”.

o like ‘ab\\cd%’ escape "\" matches all strings beginning with “ab\cd”.

SQL allows us to search for mismatches instead of matches by using the not like
comparison operator.

SQL also permits a variety of functions on character strings, such as concatenat-
ing (using “||”), extracting substrings, finding the length of strings, converting be-
tween uppercase and lowercase, and so on. SQL:1999 also offers a similar to opera-
tion, which provides more powerful pattern matching than the like operation; the
syntax for specifying patterns is similar to that used in Unix regular expressions.
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4.2.7 Ordering the Display of Tuples

SQL offers the user some control over the order in which tuples in a relation are dis-
played. The order by clause causes the tuples in the result of a query to appear in
sorted order. To list in alphabetic order all customers who have a loan at the Per-
ryridge branch, we write

select distinct customer-name

from borrower, loan

where borrower.loan-number = loan.loan-number and
branch-name = 'Perryridge’

order by customer-name

By default, the order by clause lists items in ascending order. To specify the sort order,
we may specify desc for descending order or asc for ascending order. Furthermore,
ordering can be performed on multiple attributes. Suppose that we wish to list the
entire loan relation in descending order of amount. If several loans have the same
amount, we order them in ascending order by loan number. We express this query in
SQL as follows:

select *
from loan
order by amount desc, loan-number asc

To fulfill an order by request, SQL must perform a sort. Since sorting a large num-
ber of tuples may be costly, it should be done only when necessary.

4.2.8 Duplicates

Using relations with duplicates offers advantages in several situations. Accordingly,
SQL formally defines not only what tuples are in the result of a query, but also how
many copies of each of those tuples appear in the result. We can define the duplicate
semantics of an SQL query using multiset versions of the relational operators. Here,
we define the multiset versions of several of the relational-algebra operators. Given
multiset relations 1 and 9,

1. If there are ¢; copies of tuple ¢; in 1, and ¢; satisfies selection oy, then there
are ¢, copies of ¢ in og(rq).

2. For each copy of tuple ¢; in 7, there is a copy of tuple IT4(¢1) in IT4(r1), where
IT4(t1) denotes the projection of the single tuple ¢;.

3. If there are ¢; copies of tuple ¢; in 7 and ¢ copies of tuple 3 in ry, there are
c1 * ¢ copies of the tuple ¢1.to inr; X ro.

For example, suppose that relations r; with schema (A, B) and r, with schema (C)
are the following multisets:

r = {(l,a), (270')} r2 = {(2)7 (3) (3)}
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Then I15(r1) would be {(a), (a)}, whereas IIz(r1) x r2 would be
{(a,2),(a,2),(a,3),(a,3), (a,3), (a,3)}

We can now define how many copies of each tuple occur in the result of an SQL
query. An SQL query of the form

select A1, As,.... A,
fromry, ro, ..., 7
where P

is equivalent to the relational-algebra expression

Ha,, As,a,(0p(r1 X ro X 200 X 1))

using the multiset versions of the relational operators o, 11, and x.

4.3 Set Operations

The SQL operations union, intersect, and except operate on relations and correspond
to the relational-algebra operations U, N, and —. Like union, intersection, and set
difference in relational algebra, the relations participating in the operations must be
compatible; that is, they must have the same set of attributes.

Let us demonstrate how several of the example queries that we considered in
Chapter 3 can be written in SQL. We shall now construct queries involving the union,
intersect, and except operations of two sets: the set of all customers who have an
account at the bank, which can be derived by

select customer-name
from depositor

and the set of customers who have a loan at the bank, which can be derived by

select customer-name
from borrower

We shall refer to the relations obtained as the result of the preceding queries as
d and b, respectively.

4.3.1 The Union Operation

To find all customers having a loan, an account, or both at the bank, we write

(select customer-name
from depositor)
union

(select customer-name
from borrower)
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The union operation automatically eliminates duplicates, unlike the select clause.
Thus, in the preceding query, if a customer—say, Jones—has several accounts or
loans (or both) at the bank, then Jones will appear only once in the result.

If we want to retain all duplicates, we must write union all in place of union:

(select customer-name
from depositor)
union all

(select customer-name
from borrower)

The number of duplicate tuples in the result is equal to the total number of duplicates
that appear in both d and b. Thus, if Jones has three accounts and two loans at the
bank, then there will be five tuples with the name Jones in the result.

4.3.2 The Intersect Operation

To find all customers who have both a loan and an account at the bank, we write

(select distinct customer-name
from depositor)

intersect

(select distinct customer-name
from borrower)

The intersect operation automatically eliminates duplicates. Thus, in the preceding
query, if a customer—say, Jones—has several accounts and loans at the bank, then
Jones will appear only once in the result.

If we want to retain all duplicates, we must write intersect all in place of intersect:

(select customer-name
from depositor)
intersect all

(select customer-name
from borrower)

The number of duplicate tuples that appear in the result is equal to the minimum
number of duplicates in both d and b. Thus, if Jones has three accounts and two loans
at the bank, then there will be two tuples with the name Jones in the result.

4.3.3 The Except Operation

To find all customers who have an account but no loan at the bank, we write
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(select distinct customer-name
from depositor)

except

(select customer-name

from borrower)

The except operation automatically eliminates duplicates. Thus, in the preceding
query, a tuple with customer name Jones will appear (exactly once) in the result only
if Jones has an account at the bank, but has no loan at the bank.

If we want to retain all duplicates, we must write except all in place of except:

(select customer-name
from depositor)
except all

(select customer-name
from borrower)

The number of duplicate copies of a tuple in the result is equal to the number of
duplicate copies of the tuple in d minus the number of duplicate copies of the tuple
in b, provided that the difference is positive. Thus, if Jones has three accounts and
one loan at the bank, then there will be two tuples with the name Jones in the result.
If, instead, this customer has two accounts and three loans at the bank, there will be
no tuple with the name Jones in the result.

4.4 Aggregate Functions

Aggregate functions are functions that take a collection (a set or multiset) of values as
input and return a single value. SQL offers five built-in aggregate functions:

e Average: avg

e Minimum: min
e Maximum: max
e Total: sum

e Count: count

The input to sum and avg must be a collection of numbers, but the other operators
can operate on collections of nonnumeric data types, such as strings, as well.

As an illustration, consider the query “Find the average account balance at the
Perryridge branch.” We write this query as follows:

select avg (balance)
from account
where branch-name = 'Perryridge’
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The result of this query is a relation with a single attribute, containing a single tu-
ple with a numerical value corresponding to the average balance at the Perryridge
branch. Optionally, we can give a name to the attribute of the result relation by using
the as clause.

There are circumstances where we would like to apply the aggregate function not
only to a single set of tuples, but also to a group of sets of tuples; we specify this wish
in SQL using the group by clause. The attribute or attributes given in the group by
clause are used to form groups. Tuples with the same value on all attributes in the
group by clause are placed in one group.

As an illustration, consider the query “Find the average account balance at each
branch.” We write this query as follows:

select branch-name, avg (balance)
from account
group by branch-name

Retaining duplicates is important in computing an average. Suppose that the ac-
count balances at the (small) Brighton branch are $1000, $3000, $2000, and $1000. The
average balance is $7000/4 = $1750.00. If duplicates were eliminated, we would ob-
tain the wrong answer ($6000/3 = $2000).

There are cases where we must eliminate duplicates before computing an aggre-
gate function. If we do want to eliminate duplicates, we use the keyword distinct in
the aggregate expression. An example arises in the query “Find the number of de-
positors for each branch.” In this case, a depositor counts only once, regardless of the
number of accounts that depositor may have. We write this query as follows:

select branch-name, count (distinct customer-name)

from depositor, account

where depositor.account-number = account.account-number
group by branch-name

At times, it is useful to state a condition that applies to groups rather than to tu-
ples. For example, we might be interested in only those branches where the average
account balance is more than $1200. This condition does not apply to a single tuple;
rather, it applies to each group constructed by the group by clause. To express such a
query, we use the having clause of SQL. SQL applies predicates in the having clause
after groups have been formed, so aggregate functions may be used. We express this
query in SQL as follows:

select branch-name, avg (balance)
from account

group by branch-name

having avg (balance) > 1200

At times, we wish to treat the entire relation as a single group. In such cases, we
do not use a group by clause. Consider the query “Find the average balance for all
accounts.” We write this query as follows:
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select avg (balance)
from account

We use the aggregate function count frequently to count the number of tuples in
a relation. The notation for this function in SQL is count (*). Thus, to find the number
of tuples in the customer relation, we write

select count (*)
from customer

SQL does not allow the use of distinct with count(*). It is legal to use distinct with
max and min, even though the result does not change. We can use the keyword all
in place of distinct to specify duplicate retention, but, since all is the default, there is
no need to do so.

If a where clause and a having clause appear in the same query, SQL applies the
predicate in the where clause first. Tuples satisfying the where predicate are then
placed into groups by the group by clause. SQL then applies the having clause, if it
is present, to each group; it removes the groups that do not satisfy the having clause
predicate. The select clause uses the remaining groups to generate tuples of the result
of the query.

To illustrate the use of both a having clause and a where clause in the same query,
we consider the query “Find the average balance for each customer who lives in
Harrison and has at least three accounts.”

select depositor.customer-name, avg (balance)

from depositor, account, customer

where depositor.account-number = account.account-number and
depositor.customer-name = customer.customer-name and
customer-city = "Harrison’

group by depositor.customer-name

having count (distinct depositor.account-number) >= 3

4.5 Null Values

SQL allows the use of null values to indicate absence of information about the value
of an attribute.

We can use the special keyword null in a predicate to test for a null value. Thus,
to find all loan numbers that appear in the loan relation with null values for amount,
we write

select loan-number
from loan
where amount is null

The predicate is not null tests for the absence of a null value.

The use of a null value in arithmetic and comparison operations causes several
complications. In Section 3.3.4 we saw how null values are handled in the relational
algebra. We now outline how SQL handles null values.
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The result of an arithmetic expression (involving, for example +, —, % or /) is null
if any of the input values is null. SQL treats as unknown the result of any comparison
involving a null value (other than is null and is not null).

Since the predicate in a where clause can involve Boolean operations such as and,
or, and not on the results of comparisons, the definitions of the Boolean operations
are extended to deal with the value unknown, as outlined in Section 3.3.4.

e and: The result of true and unknown is unknown, false and unknown is false,
while unknown and unknown is unknown.

e or: The result of true or unknown is true, false or unknown is unknown, while
unknown or unknown is unknown.

e not: The result of not unknown is unknown.
SQL defines the result of an SQL statement of the form
select ... from Ry, -+, R, where P

to contain (projections of) tuples in Ry x --- x R,, for which predicate P evaluates to
true. If the predicate evaluates to either false or unknown for a tuplein Ry x - -- x R,,
(the projection of) the tuple is not added to the result.

SQL also allows us to test whether the result of a comparison is unknown, rather
than true or false, by using the clauses is unknown and is not unknown.

Null values, when they exist, also complicate the processing of aggregate opera-
tors. For example, assume that some tuples in the loan relation have a null value for
amount. Consider the following query to total all loan amounts:

select sum (amount)
from loan

The values to be summed in the preceding query include null values, since some
tuples have a null value for amount. Rather than say that the overall sum is itself null,
the SQL standard says that the sum operator should ignore null values in its input.

In general, aggregate functions treat nulls according to the following rule: All ag-
gregate functions except count(*) ignore null values in their input collection. As a
result of null values being ignored, the collection of values may be empty. The count
of an empty collection is defined to be 0, and all other aggregate operations return a
value of null when applied on an empty collection. The effect of null values on some
of the more complicated SQL constructs can be subtle.

A boolean type data, which can take values true, false, and unknown, was in-
troduced in SQL:1999. The aggregate functions some and every, which mean exactly
what you would intuitively expect, can be applied on a collection of Boolean values.

4.6 Nested Subqueries

SQL provides a mechanism for nesting subqueries. A subquery is a select-from-
where expression that is nested within another query. A common use of subqueries
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is to perform tests for set membership, make set comparisons, and determine set car-
dinality. We shall study these uses in subsequent sections.

4.6.1 Set Membership

SQL draws on the relational calculus for operations that allow testing tuples for mem-
bership in a relation. The in connective tests for set membership, where the set is a
collection of values produced by a select clause. The not in connective tests for the
absence of set membership. As an illustration, reconsider the query “Find all cus-
tomers who have both a loan and an account at the bank.” Earlier, we wrote such a
query by intersecting two sets: the set of depositors at the bank, and the set of bor-
rowers from the bank. We can take the alternative approach of finding all account
holders at the bank who are members of the set of borrowers from the bank. Clearly,
this formulation generates the same results as the previous one did, but it leads us
to write our query using the in connective of SQL. We begin by finding all account
holders, and we write the subquery

(select customer-name
from depositor)

We then need to find those customers who are borrowers from the bank and who
appear in the list of account holders obtained in the subquery. We do so by nesting
the subquery in an outer select. The resulting query is

select distinct customer-name

from borrower

where customer-name in (select customer-name
from depositor)

This example shows that it is possible to write the same query several ways in
SQL. This flexibility is beneficial, since it allows a user to think about the query in
the way that seems most natural. We shall see that there is a substantial amount of
redundancy in SQL.

In the preceding example, we tested membership in a one-attribute relation. It is
also possible to test for membership in an arbitrary relation in SQL. We can thus write
the query “Find all customers who have both an account and a loan at the Perryridge
branch” in yet another way:

select distinct customer-name
from borrower, loan
where borrower.loan-number = loan.loan-number and
branch-name = "Perryridge” and
(branch-name, customer-name) in
(select branch-name, customer-name
from depositor, account
where depositor.account-number = account.account-number)
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We use the not in construct in a similar way. For example, to find all customers
who do have a loan at the bank, but do not have an account at the bank, we can write

select distinct customer-name

from borrower

where customer-name not in (select customer-name
from depositor)

The in and not in operators can also be used on enumerated sets. The following
query selects the names of customers who have a loan at the bank, and whose names
are neither Smith nor Jones.

select distinct customer-name
from borrower
where customer-name not in ("Smith’, ‘Jones”)

4.6.2 Set Comparison

As an example of the ability of a nested subquery to compare sets, consider the query
“Find the names of all branches that have assets greater than those of at least one
branch located in Brooklyn.” In Section 4.2.5, we wrote this query as follows:

select distinct T.branch-name
from branch as T, branch as S
where T.assets > S.assets and S.branch-city = 'Brooklyn’

SQL does, however, offer an alternative style for writing the preceding query. The
phrase “greater than at least one” is represented in SQL by > some. This construct
allows us to rewrite the query in a form that resembles closely our formulation of the
query in English.

select branch-name
from branch
where assets > some (select assets
from branch
where branch-city = ‘Brooklyn’)

The subquery

(select assets
from branch
where branch-city = ‘Brooklyn’)

generates the set of all asset values for all branches in Brooklyn. The > some
comparison in the where clause of the outer select is true if the assets value of the
tuple is greater than at least one member of the set of all asset values for branches in
Brooklyn.
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SQL also allows < some, <= some, >= some, = some, and <> some comparisons.
As an exercise, verify that = some is identical to in, whereas <> some is not the same
as not in. The keyword any is synonymous to some in SQL. Early versions of SQL
allowed only any. Later versions added the alternative some to avoid the linguistic
ambiguity of the word any in English.

Now we modify our query slightly. Let us find the names of all branches that
have an asset value greater than that of each branch in Brooklyn. The construct > all
corresponds to the phrase “greater than all.” Using this construct, we write the query
as follows:

select branch-name
from branch
where assets > all (select assets
from branch
where branch-city = 'Brooklyn’)

As it does for some, SQL also allows < all, <= all, >= all, = all, and <> all compar-
isons. As an exercise, verify that <> all is identical to not in.

As another example of set comparisons, consider the query “Find the branch that
has the highest average balance.” Aggregate functions cannot be composed in SQL.
Thus, we cannot use max (avg (...)). Instead, we can follow this strategy: We begin
by writing a query to find all average balances, and then nest it as a subquery of a
larger query that finds those branches for which the average balance is greater than
or equal to all average balances:

select branch-name

from account

group by branch-name

having avg (balance) >= all (select avg (balance)
from account
group by branch-name)

4.6.3 Test for Empty Relations

SQL includes a feature for testing whether a subquery has any tuples in its result. The
exists construct returns the value true if the argument subquery is nonempty. Using
the exists construct, we can write the query “Find all customers who have both an
account and a loan at the bank” in still another way:

select customer-name
from borrower
where exists (select *
from depositor
where depositor.customer-name = borrower.customer-name)

We can test for the nonexistence of tuples in a subquery by using the not ex-
ists construct. We can use the not exists construct to simulate the set containment
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(that is, superset) operation: We can write “relation A contains relation B” as “not
exists (B except A).” (Although it is not part of the SQL-92 and SQL:1999 standards,
the contains operator was present in some early relational systems.) To illustrate the
not exists operator, consider again the query “Find all customers who have an ac-
count at all the branches located in Brooklyn.” For each customer, we need to see
whether the set of all branches at which that customer has an account contains the
set of all branches in Brooklyn. Using the except construct, we can write the query as
follows:

select distinct S.customer-name
from depositor as S
where not exists ((select branch-name
from branch
where branch-city = 'Brooklyn’)
except
(select R.branch-name
from depositor as T, account as R
where T.account-number = R.account-number and
S.customer-name = T.customer-name))

Here, the subquery

(select branch-name
from branch
where branch-city = 'Brooklyn’)

finds all the branches in Brooklyn. The subquery

(select R.branch-name

from depositor as T, account as R

where T.account-number = R.account-number and
S.customer-name = T.customer-name)

finds all the branches at which customer S.customer-name has an account. Thus, the
outer select takes each customer and tests whether the set of all branches at which
that customer has an account contains the set of all branches located in Brooklyn.

In queries that contain subqueries, a scoping rule applies for tuple variables. In
a subquery, according to the rule, it is legal to use only tuple variables defined in
the subquery itself or in any query that contains the subquery. If a tuple variable
is defined both locally in a subquery and globally in a containing query, the local
definition applies. This rule is analogous to the usual scoping rules used for variables
in programming languages.

4.6.4 Test for the Absence of Duplicate Tuples

SQL includes a feature for testing whether a subquery has any duplicate tuples in its
result. The unique construct returns the value true if the argument subquery contains
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no duplicate tuples. Using the unique construct, we can write the query “Find all
customers who have at most one account at the Perryridge branch” as follows:

select T.customer-name
from depositor as T
where unique (select R.customer-name
from account, depositor as R
where T.customer-name = R.customer-name and
R.account-number = account.account-number and
account.branch-name = 'Perryridge’)

We can test for the existence of duplicate tuples in a subquery by using the not
unique construct. To illustrate this construct, consider the query “Find all customers
who have at least two accounts at the Perryridge branch,” which we write as

select distinct T.customer-name
from depositor T
where not unique (select R.customer-name
from account, depositor as R
where T.customer-name = R.customer-name and
R.account-number = account.account-number and
account.branch-name = 'Perryridge’)

Formally, the unique test on a relation is defined to fail if and only if the relation
contains two tuples ¢; and ¢, such that ¢; = ¢,. Since the test t; = ¢ fails if any of the
fields of ¢; or t5 are null, it is possible for unique to be true even if there are multiple
copies of a tuple, as long as at least one of the attributes of the tuple is null.

4.7 Views

We define a view in SQL by using the create view command. To define a view, we
must give the view a name and must state the query that computes the view. The
form of the create view command is

create view v as <query expression>

where <query expression> is any legal query expression. The view name is repre-
sented by v. Observe that the notation that we used for view definition in the rela-
tional algebra (see Chapter 3) is based on that of SQL.

As an example, consider the view consisting of branch names and the names of
customers who have either an account or a loan at that branch. Assume that we want
this view to be called all-customer. We define this view as follows:
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create view all-customer as
(select branch-name, customer-name
from depositor, account
where depositor.account-number = account.account-number)
union
(select branch-name, customer-name
from borrower, loan
where borrower.loan-number = loan.loan-number)

The attribute names of a view can be specified explicitly as follows:

create view branch-total-loan(branch-name, total-loan) as
select branch-name, sum(amount)

from loan

groupby branch-name

The preceding view gives for each branch the sum of the amounts of all the loans
at the branch. Since the expression sum(amount) does not have a name, the attribute
name is specified explicitly in the view definition.

View names may appear in any place that a relation name may appear. Using the
view all-customer, we can find all customers of the Perryridge branch by writing

select customer-name
from all-customer
where branch-name = 'Perryridge’

4.8 Complex Queries

Complex queries are often hard or impossible to write as a single SQL block or a
union/intersection/difference of SQL blocks. (An SQL block consists of a single select
from where statement, possibly with groupby and having clauses.) We study here
two ways of composing multiple SQL blocks to express a complex query: derived
relations and the with clause.

4.8.1 Derived Relations

SQL allows a subquery expression to be used in the from clause. If we use such an
expression, then we must give the result relation a name, and we can rename the
attributes. We do this renaming by using the as clause. For example, consider the
subquery

(select branch-name, avg (balance)
from account

group by branch-name)

as result (branch-name, avg-balance)
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This subquery generates a relation consisting of the names of all branches and their
corresponding average account balances. The subquery result is named result, with
the attributes branch-name and avg-balance.

To illustrate the use of a subquery expression in the from clause, consider the
query “Find the average account balance of those branches where the average ac-
count balance is greater than $1200.” We wrote this query in Section 4.4 by using the
having clause. We can now rewrite this query, without using the having clause, as
follows:

select branch-name, avg-balance
from (select branch-name, avg (balance)

from account

group by branch-name)

as branch-avg (branch-name, avg-balance)
where avg-balance > 1200

Note that we do not need to use the having clause, since the subquery in the from
clause computes the average balance, and its result is named as branch-avg; we can
use the attributes of branch-avg directly in the where clause.

As another example, suppose we wish to find the maximum across all branches of
the total balance at each branch. The having clause does not help us in this task, but
we can write this query easily by using a subquery in the from clause, as follows:

select max(tot-balance)
from (select branch-name, sum(balance)
from account
group by branch-name) as branch-total (branch-name, tot-balance)

4.8.2 The with Clause

Complex queries are much easier to write and to understand if we structure them
by breaking them into smaller views that we then combine, just as we structure pro-
grams by breaking their task into procedures. However, unlike a procedure defini-
tion, a create view clause creates a view definition in the database, and the view
definition stays in the database until a command drop view view-name is executed.

The with clause provides a way of defining a temporary view whose definition is
available only to the query in which the with clause occurs. Consider the following
query, which selects accounts with the maximum balance; if there are many accounts
with the same maximum balance, all of them are selected.

with max-balance (value) as
select max(balance)
from account
select account-number
from account, max-balance
where account.balance = max-balance.value
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The with clause introduced in SQL:1999, is currently supported only by some data-
bases.

We could have written the above query by using a nested subquery in either the
from clause or the where clause. However, using nested subqueries would have
made the query harder to read and understand. The with clause makes the query
logic clearer; it also permits a view definition to be used in multiple places within a
query.

For example, suppose we want to find all branches where the total account deposit
is less than the average of the total account deposits at all branches. We can write the
query using the with clause as follows.

with branch-total (branch-name, value) as
select branch-name, sum(balance)
from account
group by branch-name
with branch-total-avg(value) as
select avg(value)
from branch-total
select branch-name
from branch-total, branch-total-avg
where branch-total.value >= branch-total-avg.value

We can, of course, create an equivalent query without the with clause, but it would
be more complicated and harder to understand. You can write the equivalent query
as an exercise.

4.9 Modification of the Database

We have restricted our attention until now to the extraction of information from the
database. Now, we show how to add, remove, or change information with SQL.

4.9.1 Deletion

A delete request is expressed in much the same way as a query. We can delete only
whole tuples; we cannot delete values on only particular attributes. SQL expresses a
deletion by

delete from r
where P

where P represents a predicate and r represents a relation. The delete statement first
finds all tuples t in r for which P(¢) is true, and then deletes them from r. The where
clause can be omitted, in which case all tuples in r are deleted.

Note that a delete command operates on only one relation. If we want to delete
tuples from several relations, we must use one delete command for each relation.
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The predicate in the where clause may be as complex as a select command’s where
clause. At the other extreme, the where clause may be empty. The request

delete from loan

deletes all tuples from the loan relation. (Well-designed systems will seek confirma-
tion from the user before executing such a devastating request.)
Here are examples of SQL delete requests:

e Delete all account tuples in the Perryridge branch.

delete from account
where branch-name = 'Perryridge’

e Delete all loans with loan amounts between $1300 and $1500.

delete from loan
where amount between 1300 and 1500

e Delete all account tuples at every branch located in Needham.

delete from account
where branch-name in (select branch-name
from branch
where branch-city = 'Needham”)

This delete request first finds all branches in Needham, and then deletes all
account tuples pertaining to those branches.

Note that, although we may delete tuples from only one relation at a time, we may
reference any number of relations in a select-from-where nested in the where clause
of a delete. The delete request can contain a nested select that references the relation
from which tuples are to be deleted. For example, suppose that we want to delete the
records of all accounts with balances below the average at the bank. We could write

delete from account
where balance < (select avg (balance)
from account)

The delete statement first tests each tuple in the relation account to check whether the
account has a balance less than the average at the bank. Then, all tuples that fail the
test—that is, represent an account with a lower-than-average balance—are deleted.
Performing all the tests before performing any deletion is important—if some tuples
are deleted before other tuples have been tested, the average balance may change,
and the final result of the delete would depend on the order in which the tuples were
processed!
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4.9.2 Insertion

To insert data into a relation, we either specify a tuple to be inserted or write a query
whose result is a set of tuples to be inserted. Obviously, the attribute values for in-
serted tuples must be members of the attribute’s domain. Similarly, tuples inserted
must be of the correct arity.

The simplest insert statement is a request to insert one tuple. Suppose that we
wish to insert the fact that there is an account A-9732 at the Perryridge branch and
that is has a balance of $1200. We write

insert into account
values ("A-9732’, 'Perryridge’, 1200)

In this example, the values are specified in the order in which the corresponding
attributes are listed in the relation schema. For the benefit of users who may not
remember the order of the attributes, SQL allows the attributes to be specified as part
of the insert statement. For example, the following SQL insert statements are identical
in function to the preceding one:

insert into account (account-number, branch-name, balance)
values ("A-9732’, 'Perryridge’, 1200)

insert into account (branch-name, account-number, balance)
values ('Perryridge’, "A-9732’, 1200)

More generally, we might want to insert tuples on the basis of the result of a query.
Suppose that we want to present a new $200 savings acocunt as a gift to all loan
customers of the Perryridge branch, for each loan they have. Let the loan number
serve as the account number for the savings account. We write

insert into account
select loan-number, branch-name, 200
from loan
where branch-name = 'Perryridge’

Instead of specifying a tuple as we did earlier in this section, we use a select to specify
a set of tuples. SQL evaluates the select statement first, giving a set of tuples that is
then inserted into the account relation. Each tuple has a loan-number (which serves as
the account number for the new account), a branch-name (Perryridge), and an initial
balance of the new account ($200).

We also need to add tuples to the depositor relation; we do so by writing

insert into depositor
select customer-name, loan-number
from borrower, loan
where borrower.loan-number = loan.loan-number and
branch-name = 'Perryridge’
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This query inserts a tuple (customer-name, loan-number) into the depositor relation for
each customer-name who has a loan in the Perryridge branch with loan number loan-
number.

It is important that we evaluate the select statement fully before we carry out
any insertions. If we carry out some insertions even as the select statement is being
evaluated, a request such as

insert into account
select *
from account

might insert an infinite number of tuples! The request would insert the first tuple in
account again, creating a second copy of the tuple. Since this second copy is part of
account now, the select statement may find it, and a third copy would be inserted into
account. The select statement may then find this third copy and insert a fourth copy,
and so on, forever. Evaluating the select statement completely before performing
insertions avoids such problems.

Our discussion of the insert statement considered only examples in which a value
is given for every attribute in inserted tuples. It is possible, as we saw in Chapter 3,
for inserted tuples to be given values on only some attributes of the schema. The
remaining attributes are assigned a null value denoted by null. Consider the request

insert into account
values ("A-401’, null, 1200)

We know that account A-401 has $1200, but the branch name is not known. Consider
the query

select account-number
from account
where branch-name = 'Perryridge’

Since the branch at which account A-401 is maintained is not known, we cannot de-
termine whether it is equal to “Perryridge”.

We can prohibit the insertion of null values on specified attributes by using the
SQL DDL, which we discuss in Section 4.11.

4.9.3 Updates

In certain situations, we may wish to change a value in a tuple without changing all
values in the tuple. For this purpose, the update statement can be used. As we could
for insert and delete, we can choose the tuples to be updated by using a query.

Suppose that annual interest payments are being made, and all balances are to be
increased by 5 percent. We write

update account
set balance = balance * 1.05
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The preceding update statement is applied once to each of the tuples in account rela-
tion.

If interest is to be paid only to accounts with a balance of $1000 or more, we can
write

update account
set balance = balance * 1.05
where balance >= 1000

In general, the where clause of the update statement may contain any construct
legal in the where clause of the select statement (including nested selects). As with
insert and delete, a nested select within an update statement may reference the re-
lation that is being updated. As before, SQL first tests all tuples in the relation to see
whether they should be updated, and carries out the updates afterward. For exam-
ple, we can write the request “Pay 5 percent interest on accounts whose balance is
greater than average” as follows:

update account

set balance = balance * 1.05

where balance > select avg (balance)
from account

Let us now suppose that all accounts with balances over $10,000 receive 6 percent
interest, whereas all others receive 5 percent. We could write two update statements:

update account
set balance = balance * 1.06
where balance > 10000

update account
set balance = balance * 1.05
where balance <= 10000

Note that, as we saw in Chapter 3, the order of the two update statements is impor-
tant. If we changed the order of the two statements, an account with a balance just
under $10,000 would receive 11.3 percent interest.

SQL provides a case construct, which we can use to perform both the updates with
a single update statement, avoiding the problem with order of updates.

update account
set balance = case
when balance <= 10000 then balance * 1.05
else balance * 1.06
end

The general form of the case statement is as follows.
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case
when pred, then result;
when pred, then results

when pred,, then result,,
else result
end

The operation returns result;, where i is the first of pred,, pred,, ..., pred,, that is sat-
isfied; if none of the predicates is satisfied, the operation returns result,. Case state-
ments can be used in any place where a value is expected.

4.9.4 Update of a View

The view-update anomaly that we discussed in Chapter 3 exists also in SQL. As an
illustration, consider the following view definition:

create view loan-branch as
select branch-name, loan-number
from loan

Since SQL allows a view name to appear wherever a relation name is allowed, we can
write

insert into loan-branch
values ('Perryridge’, 'L-307")

SQL represents this insertion by an insertion into the relation loan, since loan is the
actual relation from which the view loan-branch is constructed. We must, therefore,
have some value for amount. This value is a null value. Thus, the preceding insert
results in the insertion of the tuple

('L-307’, 'Perryridge’, null)

into the loan relation.

As we saw in Chapter 3, the view-update anomaly becomes more difficult to han-
dle when a view is defined in terms of several relations. As a result, many SQL-based
database systems impose the following constraint on modifications allowed through
views:

e A modification is permitted through a view only if the view in question is
defined in terms of one relation of the actual relational database—that is, of
the logical-level database.

Under this constraint, the update, insert, and delete operations would be forbidden
on the example view all-customer that we defined previously.
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4.9.5 Transactions

A transaction consists of a sequence of query and/or update statements. The SQL
standard specifies that a transaction begins implicitly when an SQL statement is exe-
cuted. One of the following SQL statements must end the transaction:

e Commit work commits the current transaction; that is, it makes the updates
performed by the transaction become permanent in the database. After the
transaction is committed, a new transaction is automatically started.

e Rollback work causes the current transaction to be rolled back; that is, it un-
does all the updates performed by the SQL statements in the transaction. Thus,
the database state is restored to what it was before the first statement of the
transaction was executed.

The keyword work is optional in both the statements.

Transaction rollback is useful if some error condition is detected during execution
of a transaction. Commit is similar, in a sense, to saving changes to a document that
is being edited, while rollback is similar to quitting the edit session without saving
changes. Once a transaction has executed commit work, its effects can no longer be
undone by rollback work. The database system guarantees that in the event of some
failure, such as an error in one of the SQL statements, a power outage, or a system
crash, a transaction’s effects will be rolled back if it has not yet executed commit
work. In the case of power outage or other system crash, the rollback occurs when
the system restarts.

For instance, to transfer money from one account to another we need to update
two account balances. The two update statements would form a transaction. An error
while a transaction executes one of its statements would result in undoing of the
effects of the earlier statements of the transaction, so that the database is not left in a
partially updated state. We study further properties of transactions in Chapter 15.

If a program terminates without executing either of these commands, the updates
are either committed or rolled back. The standard does not specify which of the two
happens, and the choice is implementation dependent. In many SQL implementa-
tions, by default each SQL statement is taken to be a transaction on its own, and gets
committed as soon as it is executed. Automatic commit of individual SQL statements
must be turned off if a transaction consisting of multiple SQL statements needs to be
executed. How to turn off automatic commit depends on the specific SQL implemen-
tation.

A better alternative, which is part of the SQL:1999 standard (but supported by only
some SQL implementations currently), is to allow multiple SQL statements to be en-
closed between the keywords begin atomic ... end. All the statements between the
keywords then form a single transaction.

4.10 Joined Relations:xx

SQL provides not only the basic Cartesian-product mechanism for joining tuples of
relations found in its earlier versions, but, SQL also provides various other mecha-
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| loan-number | branch-name | amount | | customer-name | loan-number |
L-170 Downtown 3000 Jones L-170
L-230 Redwood 4000 Smith L-230
L-260 Perryridge 1700 Hayes L-155
loan borrower

Figure 4.1 The loan and borrower relations.

nisms for joining relations, including condition joins and natural joins, as well as var-
ious forms of outer joins. These additional operations are typically used as subquery
expressions in the from clause.

4.10.1 Examples

We illustrate the various join operations by using the relations loan and borrower in
Figure 4.1. We start with a simple example of inner joins. Figure 4.2 shows the result
of the expression

loan inner join borrower on loan.loan-number = borrower.loan-number

The expression computes the theta join of the loan and the borrower relations, with the
join condition being loan.loan-number = borrower.loan-number. The attributes of the
result consist of the attributes of the left-hand-side relation followed by the attributes
of the right-hand-side relation.

Note that the attribute loan-number appears twice in the figure—the first occur-
rence is from loan, and the second is from borrower. The SQL standard does not require
attribute names in such results to be unique. An as clause should be used to assign
unique names to attributes in query and subquery results.

We rename the result relation of a join and the attributes of the result relation by
using an as clause, as illustrated here:

loan inner join borrower on loan.loan-number = borrower.loan-number
as Ib(loan-number, branch, amount, cust, cust-loan-num)

We rename the second occurrence of loan-number to cust-loan-num. The ordering of
the attributes in the result of the join is important for the renaming.
Next, we consider an example of the left outer join operation:

loan left outer join borrower on loan.loan-number = borrower.loan-number

| loan-number | branch-name | amount | customer-name | loan-number |

L-170 Downtown 3000 Jones L-170
L-230 Redwood 4000 Smith L-230

Figure 4.2 The result of loan inner join borrower on
loan.loan-number = borrower.loan-number.
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loan-number | branch-name | amount | customer-name | loan-number |

L-170 Downtown 3000 Jones L-170
L-230 Redwood 4000 Smith L-230
L-260 Perryridge 1700 null null

Figure 4.3 The result of loan left outer join borrower on
loan.loan-number = borrower.loan-number.

We can compute the left outer join operation logically as follows. First, compute the
result of the inner join as before. Then, for every tuple ¢ in the left-hand-side relation
loan that does not match any tuple in the right-hand-side relation borrower in the inner
join, add a tuple r to the result of the join: The attributes of tuple r that are derived
from the left-hand-side relation are filled in with the values from tuple ¢, and the
remaining attributes of r are filled with null values. Figure 4.3 shows the resultant
relation. The tuples (L-170, Downtown, 3000) and (L-230, Redwood, 4000) join with
tuples from borrower and appear in the result of the inner join, and hence in the result
of the left outer join. On the other hand, the tuple (L-260, Perryridge, 1700) did not
match any tuple from borrower in the inner join, and hence a tuple (L-260, Perryridge,
1700, null, null) is present in the result of the left outer join.
Finally, we consider an example of the natural join operation:

loan natural inner join borrower

This expression computes the natural join of the two relations. The only attribute
name common to loan and borrower is loan-number. Figure 4.4 shows the result of the
expression. The result is similar to the result of the inner join with the on condition in
Figure 4.2, since they have, in effect, the same join condition. However, the attribute
loan-number appears only once in the result of the natural join, whereas it appears
twice in the result of the join with the on condition.

4.10.2 Join Types and Conditions

In Section 4.10.1, we saw examples of the join operations permitted in SQL. Join op-
erations take two relations and return another relation as the result. Although outer-
join expressions are typically used in the from clause, they can be used anywhere
that a relation can be used.

Each of the variants of the join operations in SQL consists of a join type and a join
condition. The join condition defines which tuples in the two relations match and what
attributes are present in the result of the join. The join type defines how tuples in each

| loan-number | branch-name | amount | customer-name |

L-170 3000
L-230 4000

Downtown
Redwood

Jones
Smith

Figure 4.4 The result of loan natural inner join borrower.
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Join types Join Conditions
inner join natural

left outer join on < predicate>
right outer join using (A1, Ay, ..., Ay)
full outer join

Figure 4.5 Join types and join conditions.

relation that do not match any tuple in the other relation (based on the join condition)
are treated. Figure 4.5 shows some of the allowed join types and join conditions. The
first join type is the inner join, and the other three are the outer joins. Of the three join
conditions, we have seen the natural join and the on condition before, and we shall
discuss the using condition, later in this section.

The use of a join condition is mandatory for outer joins, but is optional for inner
joins (if it is omitted, a Cartesian product results). Syntactically, the keyword natural
appears before the join type, as illustrated earlier, whereas the on and using con-
ditions appear at the end of the join expression. The keywords inner and outer are
optional, since the rest of the join type enables us to deduce whether the join is an
inner join or an outer join.

The meaning of the join condition natural, in terms of which tuples from the two
relations match, is straightforward. The ordering of the attributes in the result of a
natural join is as follows. The join attributes (that is, the attributes common to both
relations) appear first, in the order in which they appear in the left-hand-side relation.
Next come all nonjoin attributes of the left-hand-side relation, and finally all nonjoin
attributes of the right-hand-side relation.

The right outer join is symmetric to the left outer join. Tuples from the right-hand-
side relation that do not match any tuple in the left-hand-side relation are padded
with nulls and are added to the result of the right outer join.

Here is an example of combining the natural join condition with the right outer
join type:

loan natural right outer join borrower

Figure 4.6 shows the result of this expression. The attributes of the result are defined
by the join type, which is a natural join; hence, loan-number appears only once. The
first two tuples in the result are from the inner natural join of loan and borrower. The
tuple (Hayes, L-155) from the right-hand-side relation does not match any tuple from
the left-hand-side relation loan in the natural inner join. Hence, the tuple (L-155, null,
null, Hayes) appears in the join result.

The join condition using(A;, Ao, ..., A,) is similar to the natural join condition, ex-
cept that the join attributes are the attributes A;, Ao, ..., A,, rather than all attributes
that are common to both relations. The attributes A, As, . .., A,, must consist of only
attributes that are common to both relations, and they appear only once in the result
of the join.

The full outer join is a combination of the left and right outer-join types. After
the operation computes the result of the inner join, it extends with nulls tuples from
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| loan-number | branch-name | amount | customer-name |

L-170 Downtown 3000 Jones
L-230 Redwood 4000 Smith
L-155 null null Hayes

Figure 4.6 The result of loan natural right outer join borrower.

the left-hand-side relation that did not match with any from the right-hand-side, and
adds them to the result. Similarly, it extends with nulls tuples from the right-hand-
side relation that did not match with any tuples from the left-hand-side relation and
adds them to the result.

For example, Figure 4.7 shows the result of the expression
loan full outer join borrower using (loan-number)

As another example of the use of the outer-join operation, we can write the query
“Find all customers who have an account but no loan at the bank” as

select -CN
from (depositor left outer join borrower
on depositor.customer-name = borrower.customer-name)
as dbl (d-CN, account-number, b-CN, loan-number)
where b-CN is null

Similarly, we can write the query “Find all customers who have either an account
or a loan (but not both) at the bank,” with natural full outer joins as:

select customer-name
from (depositor natural full outer join borrower)
where account-number is null or loan-number is null

SQL-92 also provides two other join types, called cross join and union join. The
first is equivalent to an inner join without a join condition; the second is equivalent
to a full outer join on the “false” condition—that is, where the inner join is empty.

| loan-number | branch-name | amount | customer-name |

L-170 Downtown 3000 Jones
L-230 Redwood 4000 Smith
L-260 Perryridge 1700 null
L-155 null null Hayes

Figure 4.7 The result of loan full outer join borrower using(loan-number).
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4.11 Data-Definition Language

In most of our discussions of SQL and relational databases, we have accepted a set of
relations as given. Of course, the set of relations in a database must be specified to
the system by means of a data definition language (DDL).
The SQL DDL allows specification of not only a set of relations, but also information
about each relation, including
e The schema for each relation
e The domain of values associated with each attribute

e The integrity constraints

The set of indices to be maintained for each relation

The security and authorization information for each relation

The physical storage structure of each relation on disk

We discuss here schema definition and domain values; we defer discussion of the
other SQL DDL features to Chapter 6.

4.11.1 Domain Types in SQL

The SQL standard supports a variety of built-in domain types, including:

e char(n): A fixed-length character string with user-specified length n. The full
form, character, can be used instead.

e varchar(n): A variable-length character string with user-specified maximum
length n. The full form, character varying, is equivalent.

e int: An integer (a finite subset of the integers that is machine dependent). The
full form, integer, is equivalent.

e smallint: A small integer (a machine-dependent subset of the integer domain
type).

e numeric(p, d): A fixed-point number with user-specified precision. The num-
ber consists of p digits (plus a sign), and d of the p digits are to the right of the

decimal point. Thus, numeric(3,1) allows 44.5 to be stored exactly, but neither
444.5 or 0.32 can be stored exactly in a field of this type.

e real, double precision: Floating-point and double-precision floating-point
numbers with machine-dependent precision.

o float(n): A floating-point number, with precision of at least n digits.

e date: A calendar date containing a (four-digit) year, month, and day of the
month.
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o time: The time of day, in hours, minutes, and seconds. A variant, time(p), can
be used to specify the number of fractional digits for seconds (the default be-
ing 0). It is also possible to store time zone information along with the time.

e timestamp: A combination of date and time. A variant, timestamp(p), can be
used to specify the number of fractional digits for seconds (the default here
being 6).

Date and time values can be specified like this:

date '2001-04-25
time "09:30:00’
timestamp "2001-04-25 10:29:01.45’

Dates must be specified in the format year followed by month followed by day, as
shown. The seconds field of time or timestamp can have a fractional part, as in the
timestamp above. We can use an expression of the form cast ¢ as t to convert a char-
acter string (or string valued expression) ¢ to the type t, where ¢ is one of date, time,
or timestamp. The string must be in the appropriate format as illustrated at the be-
ginning of this paragraph.

To extract individual fields of a date or time value d, we can use extract (field from
d), where field can be one of year, month, day, hour, minute, or second.

SQL allows comparison operations on all the domains listed here, and it allows
both arithmetic and comparison operations on the various numeric domains. SQL
also provides a data type called interval, and it allows computations based on dates
and times and on intervals. For example, if x and y are of type date, then = — y is an
interval whose value is the number of days from date x to date y. Similarly, adding
or subtracting an interval to a date or time gives back a date or time, respectively.

It is often useful to compare values from compatible domains. For example, since
every small integer is an integer, a comparison < y, where x is a small integer and
y is an integer (or vice versa), makes sense. We make such a comparison by casting
small integer x as an integer. A transformation of this sort is called a type coercion.
Type coercion is used routinely in common programming languages, as well as in
database systems.

As an illustration, suppose that the domain of customer-name is a character string
of length 20, and the domain of branch-name is a character string of length 15. Al-
though the string lengths might differ, standard SQL will consider the two domains
compatible.

As we discussed in Chapter 3, the null value is a member of all domains. For cer-
tain attributes, however, null values may be inappropriate. Consider a tuple in the
customer relation where customer-name is null. Such a tuple gives a street and city for
an anonymous customer; thus, it does not contain useful information. In cases such
as this, we wish to forbid null values, and we do so by restricting the domain of
customer-name to exclude null values.

SQL allows the domain declaration of an attribute to include the specification not
null and thus prohibits the insertion of a null value for this attribute. Any database
modification that would cause a null to be inserted in a not null domain generates
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an error diagnostic. There are many situations where we want to avoid null values.
In particular, it is essential to prohibit null values in the primary key of a relation
schema. Thus, in our bank example, in the customer relation, we must prohibit a null
value for the attribute customer-name, which is the primary key for customer.

4.11.2 Schema Definition in SQL

We define an SQL relation by using the create table command:

create table (A1 Dy, As D>, ..., A, Dy,
(integrity-constraint, ),

c
(integrity-constraint, ))

where 7 is the name of the relation, each A; is the name of an attribute in the schema
of relation r, and D; is the domain type of values in the domain of attribute A;. The
allowed integrity constraints include

e primary key (A4,,,A4,,,...,4;, ): The primary key specification says that at-
tributes A;,, Aj,,..., A;, form the primary key for the relation. The primary
key attributes are required to be non-null and unique; that is, no tuple can have
a null value for a primary key attribute, and no two tuples in the relation can
be equal on all the primary-key attributes.! Although the primary key specifi-
cation is optional, it is generally a good idea to specify a primary key for each
relation.

o check(P): The check clause specifies a predicate P that must be satisfied by
every tuple in the relation.

The create table command also includes other integrity constraints, which we shall
discuss in Chapter 6.

Figure 4.8 presents a partial SQL DDL definition of our bank database. Note that,
as in earlier chapters, we do not attempt to model precisely the real world in the
bank-database example. In the real world, multiple people may have the same name,
so customer-name would not be a primary key customer; a customer-id would more
likely be used as a primary key. We use customer-name as a primary key to keep our
database schema simple and short.

If a newly inserted or modified tuple in a relation has null values for any primary-
key attribute, or if the tuple has the same value on the primary-key attributes as does
another tuple in the relation, SQL flags an error and prevents the update. Similarly, it
flags an error and prevents the update if the check condition on the tuple fails.

By default null is a legal value for every attribute in SQL, unless the attribute is
specifically stated to be not null. An attribute can be declared to be not null in the
following way:

account-number char(10) not null

1. In SQL-89, primary-key attributes were not implicitly declared to be not null; an explicit not null
declaration was required.
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create table customer
(customer-name  char(20),
customer-street  char(30),
customer-city char(30),
primary key (customer-name))

create table branch

(branch-name char(15),
branch-city char(30),
assets integer,

primary key (branch-name),
check (assets >= 0))

create table account
(account-number char(10),
branch-name char(15),
balance integer,
primary key (account-number),
check (balance >= 0))

create table depositor
(customer-name  char(20),
account-number char(10),
primary key (customer-name, account-number))

Figure 4.8 SQL data definition for part of the bank database.

SQL also supports an integrity constraint
unique (A;,, A4;,,...,4;.)

The unique specification says that attributes A4;,, A;,,..., 4,  form a candidate key;
that is, no two tuples in the relation can be equal on all the primary-key attributes.
However, candidate key attributes are permitted to be null unless they have explicitly
been declared to be not null. Recall that a null value does not equal any other value.
The treatment of nulls here is the same as that of the unique construct defined in
Section 4.6.4.

A common use of the check clause is to ensure that attribute values satisfy spec-
ified conditions, in effect creating a powerful type system. For instance, the check
clause in the create table command for relation branch checks that the value of assets
is nonnegative. As another example, consider the following:

create table student
(name char(15) not null,
student-id char(10),
degree-level char(15),
primary key (student-id),
check (degree-level in ('Bachelors’, "Masters’, "Doctorate”)))
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Here, we use the check clause to simulate an enumerated type, by specifying that
degree-level must be one of ‘Bachelors’, "Masters’, or 'Doctorate’. We consider more
general forms of check conditions, as well as a class of constraints called referential
integrity constraints, in Chapter 6.

A newly created relation is empty initially. We can use the insert command to load
data into the relation. Many relational-database products have special bulk loader
utilities to load an initial set of tuples into a relation.

To remove a relation from an SQL database, we use the drop table command. The
drop table command deletes all information about the dropped relation from the
database. The command

drop table r
is a more drastic action than
delete from r

The latter retains relation r, but deletes all tuples in r. The former deletes not only all
tuples of r, but also the schema for r. After r is dropped, no tuples can be inserted
into r unless it is re-created with the create table command.

We use the alter table command to add attributes to an existing relation. All tuples
in the relation are assigned null as the value for the new attribute. The form of the
alter table command is

alter table radd A D

where 7 is the name of an existing relation, A is the name of the attribute to be added,
and D is the domain of the added attribute. We can drop attributes from a relation by
the command

alter table r drop A

where r is the name of an existing relation, and A is the name of an attribute of the
relation. Many database systems do not support dropping of attributes, although
they will allow an entire table to be dropped.

412 Embedded SQL

SQL provides a powerful declarative query language. Writing queries in SQL is usu-
ally much easier than coding the same queries in a general-purpose programming
language. However, a programmer must have access to a database from a general-
purpose programming language for at least two reasons:

1. Not all queries can be expressed in SQL, since SQL does not provide the full
expressive power of a general-purpose language. That is, there exist queries
that can be expressed in a language such as C, Java, or Cobol that cannot be
expressed in SQL. To write such queries, we can embed SQL within a more
powerful language.
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SQL is designed so that queries written in it can be optimized automatically
and executed efficiently—and providing the full power of a programming
language makes automatic optimization exceedingly difficult.

2. Nondeclarative actions—such as printing a report, interacting with a user, or
sending the results of a query to a graphical user interface—cannot be done
from within SQL. Applications usually have several components, and query-
ing or updating data is only one component; other components are written in
general-purpose programming languages. For an integrated application, the
programs written in the programming language must be able to access the
database.

The SQL standard defines embeddings of SQL in a variety of programming lan-
guages, such as C, Cobol, Pascal, Java, PL/I, and Fortran. A language in which SQL
queries are embedded is referred to as a host language, and the SQL structures per-
mitted in the host language constitute embedded SQL.

Programs written in the host language can use the embedded SQL syntax to ac-
cess and update data stored in a database. This embedded form of SQL extends the
programmer’s ability to manipulate the database even further. In embedded SQL, all
query processing is performed by the database system, which then makes the result
of the query available to the program one tuple (record) at a time.

An embedded SQL program must be processed by a special preprocessor prior to
compilation. The preprocessor replaces embedded SQL requests with host-language
declarations and procedure calls that allow run-time execution of the database ac-
cesses. Then, the resulting program is compiled by the host-language compiler. To
identify embedded SQL requests to the preprocessor, we use the EXEC SQL statement;
it has the form

EXEC SQL <embedded SQL statement > END-EXEC

The exact syntax for embedded SQL requests depends on the language in which
SQL is embedded. For instance, a semicolon is used instead of END-EXEC when SQL
is embedded in C. The Java embedding of SQL (called SQLJ) uses the syntax

#SQL { <embedded SQL statement > };

We place the statement SQL INCLUDE in the program to identify the place where
the preprocessor should insert the special variables used for communication between
the program and the database system. Variables of the host language can be used
within embedded SQL statements, but they must be preceded by a colon (:) to distin-
guish them from SQL variables.

Embedded SQL statements are similar in form to the SQL statements that we de-
scribed in this chapter. There are, however, several important differences, as we note
here.

To write a relational query, we use the declare cursor statement. The result of the
query is not yet computed. Rather, the program must use the open and fetch com-
mands (discussed later in this section) to obtain the result tuples.
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Consider the banking schema that we have used in this chapter. Assume that we
have a host-language variable amount, and that we wish to find the names and cities
of residence of customers who have more than amount dollars in any account. We can
write this query as follows:

EXEC SQL
declare c cursor for
select customer-name, customer-city
from depositor, customer, account
where depositor.customer-name = customer.customer-name and
account.account-number = depositor.account-number and
account.balance > :amount
END-EXEC

The variable c in the preceding expression is called a cursor for the query. We use
this variable to identify the query in the open statement, which causes the query to
be evaluated, and in the fetch statement, which causes the values of one tuple to be
placed in host-language variables.

The open statement for our sample query is as follows:

EXEC SQL open ¢ END-EXEC

This statement causes the database system to execute the query and to save the results
within a temporary relation. The query has a host-language variable (:amount); the
query uses the value of the variable at the time the open statement was executed.

If the SQL query results in an error, the database system stores an error diagnostic
in the SQL communication-area (SQLCA) variables, whose declarations are inserted
by the SQL INCLUDE statement.

An embedded SQL program executes a series of fetch statements to retrieve tuples
of the result. The fetch statement requires one host-language variable for each at-
tribute of the result relation. For our example query, we need one variable to hold the
customer-name value and another to hold the customer-city value. Suppose that those
variables are cn and cc, respectively. Then the statement:

EXEC SQL fetch c into :cn, :cc END-EXEC

produces a tuple of the result relation. The program can then manipulate the vari-
ables cn and cc by using the features of the host programming language.

A single fetch request returns only one tuple. To obtain all tuples of the result,
the program must contain a loop to iterate over all tuples. Embedded SQL assists the
programmer in managing this iteration. Although a relation is conceptually a set, the
tuples of the result of a query are in some fixed physical order. When the program
executes an open statement on a cursor, the cursor is set to point to the first tuple
of the result. Each time it executes a fetch statement, the cursor is updated to point
to the next tuple of the result. When no further tuples remain to be processed, the
variable SQLSTATE in the SQLCA is set to ‘02000” (meaning “no data”). Thus, we can
use a while loop (or equivalent loop) to process each tuple of the result.
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We must use the close statement to tell the database system to delete the tempo-
rary relation that held the result of the query. For our example, this statement takes
the form

EXEC SQL close ¢ END-EXEC

SQLJ, the Java embedding of SQL, provides a variation of the above scheme, where
Java iterators are used in place of cursors. SQLJ associates the results of a query with
an iterator, and the next() method of the Java iterator interface can be used to step
through the result tuples, just as the preceding examples use fetch on the cursor.

Embedded SQL expressions for database modification (update, insert, and delete)
do not return a result. Thus, they are somewhat simpler to express. A database-
modification request takes the form

EXEC SQL < any valid update, insert, or delete>> END-EXEC

Host-language variables, preceded by a colon, may appear in the SQL database-
modification expression. If an error condition arises in the execution of the statement,
a diagnostic is set in the SQLCA.

Database relations can also be updated through cursors. For example, if we want
to add 100 to the balance attribute of every account where the branch name is “Per-
ryridge”, we could declare a cursor as follows.

declare c cursor for

select *

from account

where branch-name = ‘Perryridge’
for update

We then iterate through the tuples by performing fetch operations on the cursor (as
illustrated earlier), and after fetching each tuple we execute the following code

update account
set balance = balance + 100
where current of ¢

Embedded SQL allows a host-language program to access the database, but it pro-
vides no assistance in presenting results to the user or in generating reports. Most
commercial database products include tools to assist application programmers in
creating user interfaces and formatted reports. We discuss such tools in Chapter 5
(Section 5.3).

4.13 Dynamic SQL

The dynamic SQL component of SQL allows programs to construct and submit SQL
queries at run time. In contrast, embedded SQL statements must be completely present
at compile time; they are compiled by the embedded SQL preprocessor. Using dy-
namic SQL, programs can create SQL queries as strings at run time (perhaps based on
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input from the user) and can either have them executed immediately or have them
prepared for subsequent use. Preparing a dynamic SQL statement compiles it, and
subsequent uses of the prepared statement use the compiled version.

SQL defines standards for embedding dynamic SQL calls in a host language, such
as C, as in the following example.

char * sqlprog = “update account set balance = balance x1.05
where account-number = 7"

EXEC SQL prepare dynprog from :sqlprog;

char account[10] = "A-101";

EXEC SQL execute dynprog using :account;

The dynamic SQL program contains a ?, which is a place holder for a value that is
provided when the SQL program is executed.

However, the syntax above requires extensions to the language or a preprocessor
for the extended language. An alternative that is very widely used is to use an appli-
cation program interface to send SQL queries or updates to a database system, and
not make any changes in the programming language itself.

In the rest of this section, we look at two standards for connecting to an SQL
database and performing queries and updates. One, ODBC, is an application pro-
gram interface for the C language, while the other, JDBC, is an application program
interface for the Java language.

To understand these standards, we need to understand the concept of SQL ses-
sions. The user or application connects to an SQL server, establishing a session; exe-
cutes a series of statements; and finally disconnects the session. Thus, all activities of
the user or application are in the context of an SQL session. In addition to the normal
SQL commands, a session can also contain commands to commit the work carried out
in the session, or to rollback the work carried out in the session.

4.13.1 ODBCxx

The Open DataBase Connectivity (ODBC) standard defines a way for an application
program to communicate with a database server. ODBC defines an application pro-
gram interface (API) that applications can use to open a connection with a database,
send queries and updates, and get back results. Applications such as graphical user
interfaces, statistics packages, and spreadsheets can make use of the same ODBC API
to connect to any database server that supports ODBC.

Each database system supporting ODBC provides a library that must be linked
with the client program. When the client program makes an ODBC API call, the code
in the library communicates with the server to carry out the requested action, and
fetch results.

Figure 4.9 shows an example of C code using the ODBC APL The first step in using
ODBC to communicate with a server is to set up a connection with the server. To do
so, the program first allocates an SQL environment, then a database connection han-
dle. ODBC defines the types HENV, HDBC, and RETCODE. The program then opens
the database connection by using SQLConnect. This call takes several parameters, in-



Silberschatz-Korth-Sudarshan: | Il. Relational Databases 4.80L © The McGraw-Hill ‘ @
Database System Companies, 2001
Concepts, Fourth Edition

413 Dynamic SQL 177

int ODBCexample()
{
RETCODE error;
HENV env; /* environment */
HDBC conn; /* database connection */

SQLAllocEnv(&env);

SQLAllocConnect(env, &conn);

SQLConnect(conn, "aura.bell-labs.com”, SQL_NTS, "avi”, SQL_NTS,
"avipasswd”, SQL_NTS);

{

char branchname[80];
float balance;

int lenOut1, lenOut2;
HSTMT stmt;

SQLAllocstmt(conn, &stmt);
char * sqglquery = "select branch_name, sum (balance)
from account
group by branch_name”;
error = SQLExecDirect(stmt, sqlquery, SQL NTS);
if (error == SQL_SUCCESS) {
SQLBindCol(stmt, 1, SQL_.C_CHAR, branchname , 80, &lenOut1);
SQLBindCol(stmt, 2, SQL_C_FLOAT, &balance, 0, &lenOut2);
while (SQLFetch(stmt) >= SQL_SUCCESS) {
printf (* %s %g\n”, branchname, balance);
}

}
¥
SQLFreeStmt(stmt, SQL_.DROP);
SQLDisconnect(conn);
SQLFreeConnect(conn);
SQLFreeEnv(env);

Figure 4.9 ODBC code example.

cluding the connection handle, the server to which to connect, the user identifier,
and the password for the database. The constant SQL_NTS denotes that the previous
argument is a null-terminated string.

Once the connection is set up, the program can send SQL commands to the database
by using SQLExecDirect C language variables can be bound to attributes of the query
result, so that when a result tuple is fetched using SQLFetch, its attribute values are
stored in corresponding C variables. The SQLBindCol function does this task; the sec-
ond argument identifies the position of the attribute in the query result, and the third
argument indicates the type conversion required from SQL to C. The next argument
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gives the address of the variable. For variable-length types like character arrays, the
last two arguments give the maximum length of the variable and a location where
the actual length is to be stored when a tuple is fetched. A negative value returned
for the length field indicates that the value is null.

The SQLFetch statement is in a while loop that gets executed until SQLFetch re-
turns a value other than SQL_.SUCCESS. On each fetch, the program stores the values
in C variables as specified by the calls on SQLBindCol and prints out these values.

At the end of the session, the program frees the statement handle, disconnects
from the database, and frees up the connection and SQL environment handles. Good
programming style requires that the result of every function call must be checked to
make sure there are no errors; we have omitted most of these checks for brevity.

It is possible to create an SQL statement with parameters; for example, consider
the statement insert into account values(?,?,?). The question marks are placeholders
for values which will be supplied later. The above statement can be “prepared,” that
is, compiled at the database, and repeatedly executed by providing actual values for
the placeholders—in this case, by providing an account number, branch name, and
balance for the relation account.

ODBC defines functions for a variety of tasks, such as finding all the relations in the
database and finding the names and types of columns of a query result or a relation
in the database.

By default, each SQL statement is treated as a separate transaction that is commit-
ted automatically. The call SQLSetConnectOption(conn, SQL_ AUTOCOMMIT, 0) turns
off automatic commit on connection conn, and transactions must then be committed
explicitly by SQLTransact(conn, SQL_.COMMIT) or rolled back by SQLTransact(conn,
SQL_ROLLBACK).

The more recent versions of the ODBC standard add new functionality. Each ver-
sion defines conformance levels, which specify subsets of the functionality defined by
the standard. An ODBC implementation may provide only core level features, or it
may provide more advanced (level 1 or level 2) features. Level 1 requires support
for fetching information about the catalog, such as information about what relations
are present and the types of their attributes. Level 2 requires further features, such as
ability to send and retrieve arrays of parameter values and to retrieve more detailed
catalog information.

The more recent SQL standards (SQL-92 and SQL:1999) define a call level interface
(CLI) that is similar to the ODBC interface, but with some minor differences.

4.13.2 JDBCxx

The JDBC standard defines an API that Java programs can use to connect to database
servers. (The word JDBC was originally an abbreviation for “Java Database Connec-
tivity”, but the full form is no longer used.) Figure 4.10 shows an example Java pro-
gram that uses the JDBC interface. The program must first open a connection to a
database, and can then execute SQL statements, but before opening a connection,
it loads the appropriate drivers for the database by using Class.forName. The first
parameter to the getConnection call specifies the machine name where the server
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public static void JDBCexample(String dbid, String userid, String passwd)
{

try

{

Class.forName ("oracle.jdbc.driver.OracleDriver”);

Connection conn = DriverManager.getConnection(
”jdbc:oracle:thin: @aura.bell-labs.com:2000:bankdb”,
userid, passwd);

Statement stmt = conn.createStatement();

try {

stmt.executeUpdate(
"insert into account values('A-9732’, 'Perryridge’, 1200)”);

} catch (SQLException sqle)

{
}

ResultSet rset = stmt.executeQuery(
"select branch_name, avg (balance)
from account
group by branch_name”);
while (rset.next()) {
System.out.printin(rset.getString("branch_name”) + ” 7 +
rset.getFloat(2));

System.out.printin("Could not insert tuple. ” + sqle);

}

stmt.close();
conn.close();

}

catch (SQLException sqle)
{

}

System.out.printin("SQLException : ” + sqle);

Figure 4.10 An example of JDBC code.

runs (in our example, aura.bell-labs.com), the port number it uses for communica-
tion (in our example, 2000). The parameter also specifies which schema on the server
is to be used (in our example, bankdb), since a database server may support multiple
schemas. The first parameter also specifies the protocol to be used to communicate
with the database (in our example, jdbc:oracle:thin:). Note that JDBC specifies only
the API, not the communication protocol. A JDBC driver may support multiple pro-
tocols, and we must specify one supported by both the database and the driver. The
other two arguments to getConnection are a user identifier and a password.

The program then creates a statement handle on the connection and uses it to
execute an SQL statement and get back results. In our example, stmt.executeUpdate
executes an update statement. The try { ... } catch { ... } construct permits us to
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PreparedStatement pStmt = conn.prepareStatement(
"insert into account values(?,?,?)”);

pStmt.setString(1, "A-97327);

pStmt.setString(2, "Perryridge”);

pStmt.setint(3, 1200);

pStmt.executeUpdate();

pStmt.setString(1, "A-9733”);

pStmt.executeUpdate();

Figure 4.11 Prepared statements in JDBC code.

catch any exceptions (error conditions) that arise when JDBC calls are made, and print
an appropriate message to the user.

The program can execute a query by using stmt.executeQuery. It can retrieve the
set of rows in the result into a ResultSet and fetch them one tuple at a time using the
next() function on the result set. Figure 4.10 shows two ways of retrieving the values
of attributes in a tuple: using the name of the attribute (branch-name) and using the
position of the attribute (2, to denote the second attribute).

We can also create a prepared statement in which some values are replaced by “?”,
thereby specifying that actual values will be provided later. We can then provide the
values by using setString(). The database can compile the query when it is prepared,
and each time it is executed (with new values), the database can reuse the previously
compiled form of the query. The code fragment in Figure 4.11 shows how prepared
statements can be used.

JDBC provides a number of other features, such as updatable result sets. It can
create an updatable result set from a query that performs a selection and/or a pro-
jection on a database relation. An update to a tuple in the result set then results in
an update to the corresponding tuple of the database relation. JDBC also provides an
API to examine database schemas and to find the types of attributes of a result set.

For more information about JDBC, refer to the bibliographic information at the end
of the chapter.

4.14 Other SQL Features *x

The SQL language has grown over the past two decades from a simple language with
a few features to a rather complex language with features to satisfy many different
types of users. We covered the basics of SQL earlier in this chapter. In this section we
introduce the reader to some of the more complex features of SQL.

4.14.1 Schemas, Catalogs, and Environments

To understand the motivation for schemas and catalogs, consider how files are named
in a file system. Early file systems were flat; that is, all files were stored in a single
directory. Current generation file systems of course have a directory structure, with
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files stored within subdirectories. To name a file uniquely, we must specify the full
path name of the file, for example, /users/avi/db-book/chapter4.tex.

Like early file systems, early database systems also had a single name space for all
relations. Users had to coordinate to make sure they did not try to use the same name
for different relations. Contemporary database systems provide a three-level hierar-
chy for naming relations. The top level of the hierarchy consists of catalogs, each of
which can contain schemas. SQL objects such as relations and views are contained
within a schema.

In order to perform any actions on a database, a user (or a program) must first
connect to the database. The user must provide the user name and usually, a secret
password for verifying the identity of the user, as we saw in the ODBC and JDBC
examples in Sections 4.13.1 and 4.13.2. Each user has a default catalog and schema,
and the combination is unique to the user. When a user connects to a database system,
the default catalog and schema are set up for for the connection; this corresponds to
the current directory being set to the user’s home directory when the user logs into
an operating system.

To identify a relation uniquely, a three-part name must be used, for example,

catalog5.bank-schema.account

We may omit the catalog component, in which case the catalog part of the name is
considered to be the default catalog for the connection. Thus if catalog5 is the default
catalog, we can use bank-schema.account to identify the same relation uniquely. Fur-
ther, we may also omit the schema name, and the schema part of the name is again
considered to be the default schema for the connection. Thus we can use just account
if the default catalog is catalog5 and the default schema is bank-schema.

With multiple catalogs and schemas available, different applications and differ-
ent users can work independently without worrying about name clashes. Moreover,
multiple versions of an application—one a production version, other test versions—
can run on the same database system.

The default catalog and schema are part of an SQL environment that is set up
for each connection. The environment additionally contains the user identifier (also
referred to as the authorization identifier). All the usual SQL statements, including the
DDL and DML statements, operate in the context of a schema. We can create and
drop schemas by means of create schema and drop schema statements. Creation and
dropping of catalogs is implementation dependent and not part of the SQL standard.

4.14.2 Procedural Extensions and Stored Procedures

SQL provides a module language, which allows procedures to be defined in SQL.
A module typically contains multiple SQL procedures. Each procedure has a name,
optional arguments, and an SQL statement. An extension of the SQL-92 standard lan-
guage also permits procedural constructs, such as for, while, and if-then-else, and
compound SQL statements (multiple SQL statements between a begin and an end).
We can store procedures in the database and then execute them by using the call
statement. Such procedures are also called stored procedures. Stored procedures
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are particularly useful because they permit operations on the database to be made
available to external applications, without exposing any of the internal details of the
database.

Chapter 9 covers procedural extensions of SQL as well as many other new features
of SQL:1999.

4.15 Summary

Commercial database systems do not use the terse, formal query languages
covered in Chapter 3. The widely used SQL language, which we studied in
this chapter, is based on the formal relational algebra, but includes much “syn-
tactic sugar.”

SQL includes a variety of language constructs for queries on the database. All
the relational-algebra operations, including the extended relational-algebra
operations, can be expressed by SQL. SQL also allows ordering of query re-
sults by sorting on specified attributes.

View relations can be defined as relations containing the result of queries.
Views are useful for hiding unneeded information, and for collecting together
information from more than one relation into a single view.

Temporary views defined by using the with clause are also useful for breaking
up complex queries into smaller and easier-to-understand parts.

SQL provides constructs for updating, inserting, and deleting information. A
transaction consists of a sequence of operations, which must appear to be
atomic. That is, all the operations are carried out successfully, or none is car-
ried out. In practice, if a transaction cannot complete successfully, any partial
actions it carried out are undone.

Modifications to the database may lead to the generation of null values in
tuples. We discussed how nulls can be introduced, and how the SQL query
language handles queries on relations containing null values.

The SQL data definition language is used to create relations with specified
schemas. The SQL DDL supports a number of types including date and time
types. Further details on the SQL DDL, in particular its support for integrity
constraints, appear in Chapter 6.

SQL queries can be invoked from host languages, via embedded and dynamic
SQL. The ODBC and JDBC standards define application program interfaces to
access SQL databases from C and Java language programs. Increasingly, pro-
grammers use these APIs to access databases.

We also saw a brief overview of some advanced features of SQL, such as pro-
cedural extensions, catalogs, schemas and stored procedures.
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Views

Derived relations (in from clause)
with clause

Database modification

O delete, insert, update
O View update

Join types
O Inner and outer join

O left, right and full outer join
O natural, using, and on

Transaction
Atomicity
Index

Schema
Domains
Embedded SQL
Dynamic SQL
ODBC

JDBC

e Catalog

Stored procedures

4.1 Consider the insurance database of Figure 4.12, where the primary keys are un-

derlined. Construct the following SQL queries for this relational database.

a. Find the total number of people who owned cars that were involved in ac-

cidents in 1989.

b. Find the number of accidents in which the cars belonging to “John Smith”

were involved.

c. Add a new accident to the database; assume any values for required at-

tributes.

d. Delete the Mazda belonging to “John Smith”.
e. Update the damage amount for the car with license number “AABB2000” in
the accident with report number “AR2197” to $3000.

4.2 Consider the employee database of Figure 4.13, where the primary keys are un-

derlined. Give an expression in SQL for each of the following queries.

a. Find the names of all employees who work for First Bank Corporation.
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person (driver-id#, name, address)

car (license, model, year)

accident (report-number, date, location)

owns (driver-id#, license)

participated (driver-id, car, report-number, damage-amount)

Figure 4.12 Insurance database.

employee (employee-name, street, city)

works (employee-name, company-name, salary)
company (company-name, city)

manages (employee-name, manager-narmne)

Figure 4.13 Employee database.

. Find the names and cities of residence of all employees who work for First

Bank Corporation.

. Find the names, street addresses, and cities of residence of all employees

who work for First Bank Corporation and earn more than $10,000.

. Find all employees in the database who live in the same cities as the com-

panies for which they work.

. Find all employees in the database who live in the same cities and on the

same streets as do their managers.

. Find all employees in the database who do not work for First Bank Corpo-

ration.

. Find all employees in the database who earn more than each employee of

Small Bank Corporation.

. Assume that the companies may be located in several cities. Find all com-

panies located in every city in which Small Bank Corporation is located.

. Find all employees who earn more than the average salary of all employees

of their company.

. Find the company that has the most employees.
. Find the company that has the smallest payroll.
. Find those companies whose employees earn a higher salary, on average,

than the average salary at First Bank Corporation.

4.3 Consider the relational database of Figure 4.13. Give an expression in SQL for
each of the following queries.

o n T o

. Modify the database so that Jones now lives in Newtown.

. Give all employees of First Bank Corporation a 10 percent raise.

. Give all managers of First Bank Corporation a 10 percent raise.

. Give all managers of First Bank Corporation a 10 percent raise unless the

salary becomes greater than $100,000; in such cases, give only a 3 percent
raise.

. Delete all tuples in the works relation for employees of Small Bank Corpora-

tion.
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4.4 Let the following relation schemas be given:

R=(A,B,C)
S =(D,E,F)

Let relations 7(R) and s(S) be given. Give an expression in SQL that is equivalent
to each of the following queries.
a. II A (7‘)

b. OB =17 (’I“)
C. r X s

d. Ilar(cc=n(r x s))

45 Let R = (A,B,C), and let r; and r, both be relations on schema R. Give an
expression in SQL that is equivalent to each of the following queries.
a. r; U rg
b. 71 N ry
C. 11 — Tg
d. HAB(Tl) X HBc(’I”Q)

46 Let R = (A,B)and S = (A,C), and let r(R) and s(S) be relations. Write an
expression in SQL for each of the queries below:
a. {<a> |3b(<a,b>e r ANb =17}
b. {<a,b,c> | <a,b>€ rA <a,c>E€ s}
e {<a>|Fe(<a,e>€ s ANIby,ba (<a,by >€ r A <ec,bg>€r Ab >

b2))}

4.7 Show that, in SQL, <> all is identical to not in.

4.8 Consider the relational database of Figure 4.13. Using SQL, define a view con-
sisting of manager-name and the average salary of all employees who work for
that manager. Explain why the database system should not allow updates to be
expressed in terms of this view.

4.9 Consider the SQL query

select p.al
fromp, r1, r2
where p.al =rl.al or p.al = r2.al

Under what conditions does the preceding query select values of p.al that are
either in r1 or in 72? Examine carefully the cases where one of r1 or 2 may be

empty.
410 Write an SQL query, without using a with clause, to find all branches where

the total account deposit is less than the average total account deposit at all
branches,

a. Using a nested query in the from clauser.
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b. Using a nested query in a having clause.

4.11 Suppose that we have a relation marks(student-id, score) and we wish to assign
grades to students based on the score as follows: grade F if score < 40, grade C
if 40 < score < 60, grade B if 60 < score < 80, and grade A if 80 < score. Write
SQL queries to do the following:

a. Display the grade for each student, based on the marks relation.
b. Find the number of students with each grade.

4.12 SQL-92 provides an n-ary operation called coalesce, which is defined as follows:
coalesce(Aq, A, ..., A,) returns the first nonnull A; in the list Ay, Ao, ..., A,,
and returns null if all of A4;, A, ..., A,, are null. Show how to express the coa-
lesce operation using the case operation.

4.13 Let a and b be relations with the schemas A(name, address, title) and B(name, ad-
dress, salary), respectively. Show how to express a natural full outer join b using
the full outer join operation with an on condition and the coalesce operation.
Make sure that the result relation does not contain two copies of the attributes
name and address, and that the solution is correct even if some tuples in a and b
have null values for attributes name or address.

4.14 Give an SQL schema definition for the employee database of Figure 4.13. Choose
an appropriate domain for each attribute and an appropriate primary key for
each relation schema.

4.15 Write check conditions for the schema you defined in Exercise 4.14 to ensure
that:

a. Every employee works for a company located in the same city as the city in
which the employee lives.
b. No employee earns a salary higher than that of his manager.

4.16 Describe the circumstances in which you would choose to use embedded SQL
rather than SQL alone or only a general-purpose programming language.
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published as a sequence of five ISO/IEC standards documents, with several more
parts describing various extensions under development. Part 1 (SQL/Framework),
gives an overview of the other parts. Part 2 (SQL/Foundation) outlines the basics of
the language. Part 3 (SQL/CLI) describes the Call-Level Interface. Part 4 (SQL/PSM)
describes Persistent Stored Modules, and Part 5 (SQL/Bindings) describes host lan-
guage bindings. The standard is useful to database implementers but is very hard
to read. If you need them, you can purchase them electronically from the Web site
http://webstore.ansi.org.

Many database products support SQL features beyond those specified in the stan-
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these features may be found in the SQL user manuals of the respective products.
http://java.sun.com/docs/books/tutorial is an excellent source for more (and up-to-
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discussed in Chapters 13 and 14. Bibliographic references on these matters appear in
that chapter.
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Other Relational Languages

In Chapter 4, we described SQL— the most influential commercial relational-database
language. In this chapter, we study two more languages: QBE and Datalog. Unlike
SQL, QBE is a graphical language, where queries look like tables. QBE and its variants
are widely used in database systems on personal computers. Datalog has a syntax
modeled after the Prolog language. Although not used commercially at present, Dat-
alog has been used in several research database systems.

Here, we present fundamental constructs and concepts rather than a complete
users’ guide for these languages. Keep in mind that individual implementations of a
language may differ in details, or may support only a subset of the full language.

In this chapter, we also study forms interfaces and tools for generating reports and
analyzing data. While these are not strictly speaking languages, they form the main
interface to a database for many users. In fact, most users do not perform explicit
querying with a query language at all, and access data only via forms, reports, and
other data analysis tools.

5.1 Query-by-Example

Query-by-Example (QBE) is the name of both a data-manipulation language and an
early database system that included this language. The QBE database system was
developed at IBM’s T. ]. Watson Research Center in the early 1970s. The QBE data-
manipulation language was later used in IBM’s Query Management Facility (QMF).
Today, many database systems for personal computers support variants of QBE lan-
guage. In this section, we consider only the data-manipulation language. It has two
distinctive features:

1. Unlike most query languages and programming languages, QBE has a two-
dimensional syntax: Queries look like tables. A query in a one-dimensional

189
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language (for example, SQL) can be written in one (possibly long) line. A two-
dimensional language requires two dimensions for its expression. (There is a
one-dimensional version of QBE, but we shall not consider it in our discus-
sion).

2. QBE queries are expressed “by example.” Instead of giving a procedure for
obtaining the desired answer, the user gives an example of what is desired.
The system generalizes this example to compute the answer to the query.

Despite these unusual features, there is a close correspondence between QBE and the
domain relational calculus.

We express queries in QBE by skeleton tables. These tables show the relation
schema, as in Figure 5.1. Rather than clutter the display with all skeletons, the user se-
lects those skeletons needed for a given query and fills in the skeletons with example
rows. An example row consists of constants and example elements, which are domain
variables. To avoid confusion between the two, QBE uses an underscore character (_)
before domain variables, as in _x, and lets constants appear without any qualification.

branch | branch-name | branch-city | assets |
| |
customer | customer-name | customer-street |  customer-city |
| | | |
loan | loan-number | branch-name | amount |
| | |
borrower | customer-name | loan-number |
| |
account | account-number |  branch-name | balance |
| | |
depositor | customer-name | account-number |

Figure 5.1 QBE skeleton tables for the bank example.
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This convention is in contrast to those in most other languages, in which constants
are quoted and variables appear without any qualification.

5.1.1 Queries on One Relation

Returning to our ongoing bank example, to find all loan numbers at the Perryridge
branch, we bring up the skeleton for the loan relation, and fill it in as follows:

loan | loan-number | branch-name | amount |

| P._x | Perryridge | |

This query tells the system to look for tuples in loan that have “Perryridge” as the
value for the branch-name attribute. For each such tuple, the system assigns the value
of the loan-number attribute to the variable x. It “prints” (actually, displays) the value
of the variable x, because the command P. appears in the loan-number column next to
the variable x. Observe that this result is similar to what would be done to answer
the domain-relational-calculus query

{(z) |3 b,a((x,b,a) € loan N b = “Perryridge”)}

QBE assumes that a blank position in a row contains a unique variable. As a result,
if a variable does not appear more than once in a query, it may be omitted. Our
previous query could thus be rewritten as

loan | loan-number | branch-name | amount |

| P. | Perryridge | |

QBE (unlike SQL) performs duplicate elimination automatically. To suppress du-
plicate elimination, we insert the command ALL. after the P. command:

loan | loan-number | branch-name | amount |
| PALL. | Perryridge | |

To display the entire loan relation, we can create a single row consisting of P. in
every field. Alternatively, we can use a shorthand notation by placing a single P. in
the column headed by the relation name:

loan | loan-number | branch-name | amount |
P | | |

QBE allows queries that involve arithmetic comparisons (for example, >), rather
than equality comparisons, as in “Find the loan numbers of all loans with a loan
amount of more than $700”:

loan | loan-number |  branch-name | amount |
| P, | [ >700 |
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Comparisons can involve only one arithmetic expression on the right-hand side of
the comparison operation (for example, > (_x +_y — 20)). The expression can include
both variables and constants. The space on the left-hand side of the comparison op-
eration must be blank. The arithmetic operations that QBE supports are =, <, <, >,
>, and —.

Note that requiring the left-hand side to be blank implies that we cannot compare
two distinct named variables. We shall deal with this difficulty shortly.

As yet another example, consider the query “Find the names of all branches that
are not located in Brooklyn.” This query can be written as follows:

branch | branch-name |  branch-city | assets |
‘ P | —Brooklyn | |

The primary purpose of variables in QBE is to force values of certain tuples to have
the same value on certain attributes. Consider the query “Find the loan numbers of
all loans made jointly to Smith and Jones™:

borrower | customer-name | loan-number |
“Smith” P_x
“Jones” X

To execute this query, the system finds all pairs of tuples in borrower that agree on
the loan-number attribute, where the value for the customer-name attribute is “Smith”
for one tuple and “Jones” for the other. The system then displays the value of the
loan-number attribute.

In the domain relational calculus, the query would be written as

{{) | Tz ((x,1) € borrower A x = “Smith”)

Nz (<$,l> € borrower N x = “]Ones”)}

As another example, consider the query “Find all customers who live in the same
city as Jones™

customer | customer-name | customer-street |  customer-city |
P_x -y
Jones -y

5.1.2 Queries on Several Relations

QBE allows queries that span several different relations (analogous to Cartesian prod-
uct or natural join in the relational algebra). The connections among the various rela-
tions are achieved through variables that force certain tuples to have the same value
on certain attributes. As an illustration, suppose that we want to find the names of all
customers who have a loan from the Perryridge branch. This query can be written as
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loan | loan-number | branch-name | amount |
\ X | Perryridge | |
borrower | customer-name | loan-number |
| Py | -x |

To evaluate the preceding query, the system finds tuples in loan with “Perryridge”
as the value for the branch-name attribute. For each such tuple, the system finds tu-
ples in borrower with the same value for the loan-number attribute as the loan tuple. It
displays the values for the customer-name attribute.

We can use a technique similar to the preceding one to write the query “Find the
names of all customers who have both an account and a loan at the bank™:

depositor | customer-name | account-number |
— x| |

borrower | customer-name | loan-number |

| -x | |

Now consider the query “Find the names of all customers who have an account
at the bank, but who do not have a loan from the bank.” We express queries that
involve negation in QBE by placing a not sign (—) under the relation name and next
to an example row:

depositor | customer-name | account-number |
x| |
borrower | customer-name | loan-number |
- -x | |

Compare the preceding query with our earlier query “Find the names of all cus-
tomers who have both an account and a loan at the bank.” The only difference is the -
appearing next to the example row in the borrower skeleton. This difference, however,
has a major effect on the processing of the query. QBE finds all x values for which

1. There is a tuple in the depositor relation whose customer-name is the domain
variable x.

2. There is no tuple in the borrower relation whose customer-name is the same as
in the domain variable x.

The — can be read as “there does not exist.”

The fact that we placed the — under the relation name, rather than under an at-
tribute name, is important. A — under an attribute name is shorthand for #. Thus, to
find all customers who have at least two accounts, we write
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depositor | customer-name | account-number |
P _x y
_X U

In English, the preceding query reads “Display all customer-name values that ap-
pear in at least two tuples, with the second tuple having an account-number different
from the first.”

5.1.3 The Condition Box

At times, it is either inconvenient or impossible to express all the constraints on the
domain variables within the skeleton tables. To overcome this difficulty, QBE includes
a condition box feature that allows the expression of general constraints over any of
the domain variables. QBE allows logical expressions to appear in a condition box.
The logical operators are the words and and or, or the symbols “&” and “|”.

For example, the query “Find the loan numbers of all loans made to Smith, to Jones
(or to both jointly)” can be written as

borrower | customer-name | loan-number |
| n | P_x |
| conditions |

| _n=Smithor _n=Jones |

It is possible to express the above query without using a condition box, by using
P. in multiple rows. However, queries with P. in multiple rows are sometimes hard to
understand, and are best avoided.

As yet another example, suppose that we modify the final query in Section 5.1.2
to be “Find all customers who are not named ‘Jones’ and who have at least two ac-
counts.” We want to include an “x # Jones” constraint in this query. We do that by
bringing up the condition box and entering the constraint “x - = Jones™:

| conditions |
| x—=Jones |

Turning to another example, to find all account numbers with a balance between
$1300 and $1500, we write

account | account-number |  branch-name | balance ]
| P | o]
_x = 1300

_x <1500
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As another example, consider the query “Find all branches that have assets greater
than those of at least one branch located in Brooklyn.” This query can be written as

branch | branch-name | branch-city | assets |
P_x y
Brooklyn 4
y> .z

QBE allows complex arithmetic expressions to appear in a condition box. We can
write the query “Find all branches that have assets that are at least twice as large as
the assets of one of the branches located in Brooklyn” much as we did in the preced-
ing query, by modifying the condition box to

| conditions |
y=z2*_z

To find all account numbers of account with a balance between $1300 and $2000,
but not exactly $1500, we write

account | account-number | branch-name | balance |
| P | E

| conditions |
| -x = (21300 and <2000 and —1500) |

QBE uses the or construct in an unconventional way to allow comparison with a set
of constant values. To find all branches that are located in either Brooklyn or Queens,
we write

branch | branch-name | branch-city | assets |
| P | -x | |

| conditions |

| _x=(Brooklyn or Queens) |

5.1.4 The Result Relation

The queries that we have written thus far have one characteristic in common: The
results to be displayed appear in a single relation schema. If the result of a query
includes attributes from several relation schemas, we need a mechanism to display
the desired result in a single table. For this purpose, we can declare a temporary result
relation that includes all the attributes of the result of the query. We print the desired
result by including the command P. in only the result skeleton table.
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As anillustration, consider the query “Find the customer-name, account-number, and
balance for all accounts at the Perryridge branch.” In relational algebra, we would
construct this query as follows:

1. Join depositor and account.
2. Project customer-name, account-number, and balance.
To construct the same query in QBE, we proceed as follows:

1. Create a skeleton table, called result, with attributes customer-name, account-
number, and balance. The name of the newly created skeleton table (that is,
result) must be different from any of the previously existing database relation
names.

2. Write the query.

The resulting query is

account | account-number |  branch-name | balance |
| y | Perryridge | Z |

depositor | customer-name | account-number |

| x | Y |
result | customer-name | account-number | balance |
P -x | Y =]

5.1.5 Ordering of the Display of Tuples

QBE offers the user control over the order in which tuples in a relation are displayed.
We gain this control by inserting either the command AO. (ascending order) or the
command DO. (descending order) in the appropriate column. Thus, to list in ascend-
ing alphabetic order all customers who have an account at the bank, we write

depositor | customer-name | account-number |
| PAO. | |

QBE provides a mechanism for sorting and displaying data in multiple columns.
We specify the order in which the sorting should be carried out by including, with
each sort operator (AO or DO), an integer surrounded by parentheses. Thus, to list all
account numbers at the Perryridge branch in ascending alphabetic order with their
respective account balances in descending order, we write

account | account-number | branch-name |  balance |
| PAO(1). |  Perryridge | PDO(2). |
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The command P.AO(1). specifies that the account number should be sorted first;
the command P.DO(2). specifies that the balances for each account should then be
sorted.

5.1.6 Aggregate Operations

QBE includes the aggregate operators AVG, MAX, MIN, SUM, and CNT. We must post-
fix these operators with ALL. to create a multiset on which the aggregate operation is
evaluated. The ALL. operator ensures that duplicates are not eliminated. Thus, to find
the total balance of all the accounts maintained at the Perryridge branch, we write

account | account-number |  branch-name | balance |
| | Perryridge | PSUMALL. |

We use the operator UNQ to specify that we want duplicates eliminated. Thus, to
find the total number of customers who have an account at the bank, we write

depositor | customer-name | account-number |
|  PCNTUNQ. | |

QBE also offers the ability to compute functions on groups of tuples using the G.
operator, which is analogous to SQL’s group by construct. Thus, to find the average
balance at each branch, we can write

account | account-number | branch-name | balance |
| \ PG. | PAVGALL.x |

The average balance is computed on a branch-by-branch basis. The keyword ALL.
in the PAVG.ALL. entry in the balance column ensures that all the balances are consid-
ered. If we wish to display the branch names in ascending order, we replace P.G. by
PAO.G.

To find the average account balance at only those branches where the average
account balance is more than $1200, we add the following condition box:

| conditions |
| AVG.ALL_x>1200 |

As another example, consider the query “Find all customers who have accounts at
each of the branches located in Brooklyn:
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depositor | customer-name | account-number |
| PG. x | Y |

account | account-number |  branch-name | balance |
| y | z | |

branch | branch-name | branch-city | assets |

-z Brooklyn
-w Brooklyn

| conditions |

CNT.UNQ._z =
CNT.UNQ..w

The domain variable w can hold the value of names of branches located in Brook-
lyn. Thus, CNT.UNQ._w is the number of distinct branches in Brooklyn. The domain
variable z can hold the value of branches in such a way that both of the following
hold:

e The branch is located in Brooklyn.

e The customer whose name is x has an account at the branch.

Thus, CNT.UNQ._z is the number of distinct branches in Brooklyn at which customer x
has an account. If CNT.UNQ._z = CNT.UNQ._w, then customer x must have an account
at all of the branches located in Brooklyn. In such a case, the displayed result includes
x (because of the P).

5.1.7 Modification of the Database

In this section, we show how to add, remove, or change information in QBE.

5.1.7.1 Deletion

Deletion of tuples from a relation is expressed in much the same way as a query. The
major difference is the use of D. in place of P. QBE (unlike SQL), lets us delete whole
tuples, as well as values in selected columns. When we delete information in only
some of the columns, null values, specified by —, are inserted.

We note that a D. command operates on only one relation. If we want to delete
tuples from several relations, we must use one D. operator for each relation.

Here are some examples of QBE delete requests:

e Delete customer Smith.

customer | customer-name | customer-street | customer-city |
D. | Smith | | |
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o Delete the branch-city value of the branch whose name is “Perryridge.”

branch | branch-name | branch-city | assets |

Perryridge D.

Thus, if before the delete operation the branch relation contains the tuple
(Perryridge, Brooklyn, 50000), the delete results in the replacement of the pre-
ceding tuple with the tuple (Perryridge, —, 50000).

e Delete all loans with a loan amount between $1300 and $1500.

loan | loan-number | branch-name | amount |
b1 v EE
borrower | customer-name | loan-number |
D. | | y |
\ conditions |

| _x=(=1300 and <1500) |

Note that to delete loans we must delete tuples from both the loan and bor-
rower relations.

e Delete all accounts at all branches located in Brooklyn.

account | account-number |  branch-name | balance |
R |
depositor | customer-name | account-number |
D. | | Y |
branch | branch-name | branch-city | assets |
‘ X | Brooklyn ‘ |

Note that, in expressing a deletion, we can reference relations other than those from
which we are deleting information.

5.1.7.2 Insertion

To insert data into a relation, we either specify a tuple to be inserted or write a query
whose result is a set of tuples to be inserted. We do the insertion by placing the I
operator in the query expression. Obviously, the attribute values for inserted tuples
must be members of the attribute’s domain.

The simplest insert is a request to insert one tuple. Suppose that we wish to insert
the fact that account A-9732 at the Perryridge branch has a balance of $700. We write
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account | account-number |  branch-name balance |
I ‘ A-9732 | Perryridge ‘ 700 |

We can also insert a tuple that contains only partial information. To insert infor-
mation into the branch relation about a new branch with name “Capital” and city
“Queens,” but with a null asset value, we write

branch | branch-name | branch-city | assets |

L | Capital | Queens | \

More generally, we might want to insert tuples on the basis of the result of a query.
Consider again the situation where we want to provide as a gift, for all loan cus-
tomers of the Perryridge branch, a new $200 savings account for every loan account
that they have, with the loan number serving as the account number for the savings
account. We write

account | account-number |  branch-name | balance |
L | _x | Perryridge | 200 |
depositor | customer-name | account-number
L] Y | -x |
loan | loan-number | branch-name | amount |
| X |  Perryridge | |
borrower | customer-name |  loan-number |
| y | X |

To execute the preceding insertion request, the system must get the appropriate
information from the borrower relation, then must use that information to insert the
appropriate new tuple in the depositor and account relations.

5.1.7.3 Updates

There are situations in which we wish to change one value in a tuple without chang-
ing all values in the tuple. For this purpose, we use the U. operator. As we could
for insert and delete, we can choose the tuples to be updated by using a query. QBE,
however, does not allow users to update the primary key fields.

Suppose that we want to update the asset value of the of the Perryridge branch to
$10,000,000. This update is expressed as

branch | branch-name | branch-city | assets |
| Perryridge | | U.10000000 |
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The blank field of attribute branch-city implies that no updating of that value is
required.

The preceding query updates the assets of the Perryridge branch to $10,000,000,
regardless of the old value. There are circumstances, however, where we need to
update a value by using the previous value. Suppose that interest payments are being
made, and all balances are to be increased by 5 percent. We write

account | account-number |  branch-name | balance |
| | | U.x*1.05 |

This query specifies that we retrieve one tuple at a time from the account relation,
determine the balance x, and update that balance to x * 1.05.

5.1.8 QBE in Microsoft Access

In this section, we survey the QBE version supported by Microsoft Access. While
the original QBE was designed for a text-based display environment, Access QBE is
designed for a graphical display environment, and accordingly is called graphical
query-by-example (GQBE).

@, Microsoft Access
” File Edit Wiew Insert Qwery Tools Window Help
— ) 5
[z = NS AR o e = R B 2 - LTI - P e
g=? Perryridge-info - Select Query -
cuskamer-name
branch-narne account-nurmber
balance
KN
R stomer-name = | account-number balance branch-narne
Table: | depositar account account account
Sort:
S [
Criteria: "Permyridge” ]
or:
|
-
1| | 13
Ready [T [ |

Figure 5.2 An example query in Microsoft Access QBE.
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Figure 5.2 shows a sample GQBE query. The query can be described in English as
“Find the customer-name, account-number, and balance for all accounts at the Perryridge
branch.” Section 5.1.4 showed how it is expressed in QBE.

A minor difference in the GQBE version is that the attributes of a table are writ-
ten one below the other, instead of horizontally. A more significant difference is that
the graphical version of QBE uses a line linking attributes of two tables, instead of a
shared variable, to specify a join condition.

An interesting feature of QBE in Access is that links between tables are created
automatically, on the basis of the attribute name. In the example in Figure 5.2, the two
tables account and depositor were added to the query. The attribute account-number is
shared between the two selected tables, and the system automatically inserts a link
between the two tables. In other words, a natural join condition is imposed by default
between the tables; the link can be deleted if it is not desired. The link can also be
specified to denote a natural outer-join, instead of a natural join.

Another minor difference in Access QBE is that it specifies attributes to be printed
in a separate box, called the design grid, instead of using a P. in the table. It also
specifies selections on attribute values in the design grid.

Queries involving group by and aggregation can be created in Access as shown in
Figure 5.3. The query in the figure finds the name, street, and city of all customers
who have more than one account at the bank; we saw the QBE version of the query
earlier in Section 5.1.6. The group by attributes as well as the aggregate functions

&, Microsoft Access H=] 3

” File Edit View Insert Query Tools Window Help

=Rl = e el = o i =) o - e

g=f multiple-accts - Select Query !E[E!
s

cuzhamer

B

—

ustomer-name
custarmer-skrest
customer-city

customer-name
account-nunmber

[«| | _>I_I
S stomes-name = | customer-street customer-city account-number =
Table: | custorner custamer custamer depozitor |
Total: | Group By Group By Group By Count
Sart:
Show: [
Criteria: #1 e
ar: il
4 | o]~
Kl | »
Ready I ) I "
Figure 5.3 An aggregation query in Microsoft Access QBE.
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are noted in the design grid. If an attribute is to be printed, it must appear in the
design grid, and must be specified in the “Total” row to be either a group by, or
have an aggregate function applied to it. SQL has a similar requirement. Attributes
that participate in selection conditions but are not to be printed can alternatively be
marked as “Where” in the row “Total”, indicating that the attribute is neither a group
by attribute, nor one to be aggregated on.

Queries are created through a graphical user interface, by first selecting tables.
Attributes can then be added to the design grid by dragging and dropping them
from the tables. Selection conditions, grouping and aggregation can then be specified
on the attributes in the design grid. Access QBE supports a number of other features
too, including queries to modify the database through insertion, deletion, or update.

5.2 Datalog

Datalog is a nonprocedural query language based on the logic-programming lan-
guage Prolog. As in the relational calculus, a user describes the information desired
without giving a specific procedure for obtaining that information. The syntax of Dat-
alog resembles that of Prolog. However, the meaning of Datalog programs is defined
in a purely declarative manner, unlike the more procedural semantics of Prolog, so
Datalog simplifies writing simple queries and makes query optimization easier.

5.2.1 Basic Structure

A Datalog program consists of a set of rules. Before presenting a formal definition
of Datalog rules and their formal meaning, we consider examples. Consider a Dat-
alog rule to define a view relation v1 containing account numbers and balances for
accounts at the Perryridge branch with a balance of over $700:

v1(A, B) —account(A, “Perryridge”, B), B > 700

Datalog rules define views; the preceding rule uses the relation account, and de-
fines the view relation v1. The symbol :- is read as “if,” and the comma separating
the “account(A, “Perryridge”, B)” from “B > 700” is read as “and.” Intuitively, the
rule is understood as follows:

forall A, B
if (A, “Perryridge”, B) € account and B > 700
then (A, B) e vl

Suppose that the relation account is as shown in Figure 5.4. Then, the view relation
v1 contains the tuples in Figure 5.5.

To retrieve the balance of account number A-217 in the view relation v1, we can
write the following query:

?v1(“A-217”, B)
The answer to the query is

(A-217, 750)
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| account-number |  branch-name | balance |
A-101 Downtown 500
A-215 Mianus 700
A-102 Perryridge 400
A-305 Round Hill 350
A-201 Perryridge 900
A-222 Redwood 700
A-217 Perryridge 750

Figure 5.4 The account relation.

To get the account number and balance of all accounts in relation v1, where the bal-
ance is greater than 800, we can write

?v1(A, B), B > 800
The answer to this query is
(A-201, 900)

In general, we need more than one rule to define a view relation. Each rule defines
a set of tuples that the view relation must contain. The set of tuples in the view re-
lation is then defined as the union of all these sets of tuples. The following Datalog
program specifies the interest rates for accounts:

interest-rate(A, 5) —account(A, N, B), B < 10000
interest-rate(A, 6) —account(A, N, B), B >= 10000

The program has two rules defining a view relation interest-rate, whose attributes are
the account number and the interest rate. The rules say that, if the balance is less than
$10000, then the interest rate is 5 percent, and if the balance is greater than or equal
to $10000, the interest rate is 6 percent.

Datalog rules can also use negation. The following rules define a view relation c

that contains the names of all customers who have a deposit, but have no loan, at the
bank:

¢(N) :—depositor(N,A), not is-borrower(N)
is-borrower(N) :— borrower(N, L),

Prolog and most Datalog implementations recognize attributes of a relation by po-
sition and omit attribute names. Thus, Datalog rules are compact, compared to SQL

| account-number | balance |

A-201 900
A-217 750

Figure5.5 The v1 relation.
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queries. However, when relations have a large number of attributes, or the order or
number of attributes of relations may change, the positional notation can be cum-
bersome and error prone. It is not hard to create a variant of Datalog syntax using
named attributes, rather than positional attributes. In such a system, the Datalog rule
defining v1 can be written as

vl(account-number A, balance B) —
account(account-number A, branch-name “Perryridge”, balance B),
B > 700

Translation between the two forms can be done without significant effort, given the
relation schema.

5.2.2 Syntax of Datalog Rules

Now that we have informally explained rules and queries, we can formally define
their syntax; we discuss their meaning in Section 5.2.3. We use the same conventions
as in the relational algebra for denoting relation names, attribute names, and con-
stants (such as numbers or quoted strings). We use uppercase (capital) letters and
words starting with uppercase letters to denote variable names, and lowercase let-
ters and words starting with lowercase letters to denote relation names and attribute
names. Examples of constants are 4, which is a number, and “John,” which is a string;
X and Name are variables. A positive literal has the form

p(t17t27~-~7tn)

where p is the name of a relation with n attributes, and ¢;, %2, ... t, are either con-
stants or variables. A negative literal has the form

not p(tl, tg, AN ,tn)
where relation p has n attributes. Here is an example of a literal:

account(A, “Perryridge”, B)

Literals involving arithmetic operations are treated specially. For example, the lit-
eral B > 700, although not in the syntax just described, can be conceptually un-
derstood to stand for > (B, 700), which is in the required syntax, and where > is a
relation.

But what does this notation mean for arithmetic operations such as “>"? The re-
lation > (conceptually) contains tuples of the form (z,y) for every possible pair of
values z,y such that > y. Thus, (2,1) and (5, —33) are both tuples in >. Clearly,
the (conceptual) relation > is infinite. Other arithmetic operations (such as >, =, +
or —) are also treated conceptually as relations. For example, A = B + C stands con-
ceptually for +(B, C, A), where the relation + contains every tuple (x,y, z) such that
Z=x+Y.
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A fact is written in the form

P(”UlaUza . -;Un)

and denotes that the tuple (vy,vs, ..., v,) is in relation p. A set of facts for a relation
can also be written in the usual tabular notation. A set of facts for the relations in a
database schema is equivalent to an instance of the database schema. Rules are built
out of literals and have the form

p(t17t27"'7tn) :_L17L27~~~7Ln

where each L; is a (positive or negative) literal. The literal p(t1,ta, ..., t,) is referred
to as the head of the rule, and the rest of the literals in the rule constitute the body of
the rule.

A Datalog program consists of a set of rules; the order in which the rules are writ-
ten has no significance. As mentioned earlier, there may be several rules defining a
relation.

Figure 5.6 shows a Datalog program that defines the interest on each account in
the Perryridge branch. The first rule of the program defines a view relation interest,
whose attributes are the account number and the interest earned on the account. It
uses the relation account and the view relation interest-rate. The last two rules of the
program are rules that we saw earlier.

A view relation v; is said to depend directly on a view relation v, if vy is used
in the expression defining v;. In the above program, view relation interest depends
directly on relations interest-rate and account. Relation interest-rate in turn depends
directly on account.

A view relation v; is said to depend indirectly on view relation v, if there is a
sequence of intermedjiate relations i1, i2, . . ., i, for some n, such that v; depends di-
rectly on i1, i; depends directly on is, and so on till ¢,,_; depends on i,,.

In the example in Figure 5.6, since we have a chain of dependencies from interest
to interest-rate to account, relation interest also depends indirectly on account.

Finally, a view relation v; is said to depend on view relation v, if v; either depends
directly or indirectly on v,.

A view relation v is said to be recursive if it depends on itself. A view relation that
is not recursive is said to be nonrecursive.

Consider the program in Figure 5.7. Here, the view relation empl depends on itself
(becasue of the second rule), and is therefore recursive. In contrast, the program in
Figure 5.6 is nonrecursive.

interest(A, I) :—account(A, “Perryridge”, B),
interest-rate(A, R), I = B x R/100.

interest-rate(A, 5) —account(A, N, B), B < 10000.

interest-rate(A, 6) —account(A, N, B), B >= 10000.

Figure 5.6 Datalog program that defines interest on Perryridge accounts.
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empl(X,Y) —manager(X,Y).
empl(X,Y) —manager(X, Z), empl(Z,Y').

Figure 5.7 Recursive Datalog program.

5.2.3 Semantics of Nonrecursive Datalog

We consider the formal semantics of Datalog programs. For now, we consider only
programs that are nonrecursive. The semantics of recursive programs is somewhat
more complicated; it is discussed in Section 5.2.6. We define the semantics of a pro-
gram by starting with the semantics of a single rule.

5.2.3.1 Semantics of a Rule

A ground instantiation of a rule is the result of replacing each variable in the rule
by some constant. If a variable occurs multiple times in a rule, all occurrences of
the variable must be replaced by the same constant. Ground instantiations are often
simply called instantiations.

Our example rule defining v1, and an instantiation of the rule, are:

v1(A, B) —account(A, “Perryridge”, B), B > 700
v1(“A-2177, 750) :—account(*A-217", “Perryridge”, 750), 750 > 700

Here, variable A was replaced by “A-217,” and variable B by 750.

A rule usually has many possible instantiations. These instantiations correspond
to the various ways of assigning values to each variable in the rule.

Suppose that we are given a rule R,

p(tl,tg,...,tn) I—Ll,LQ,...,Ln

and a set of facts I for the relations used in the rule (I can also be thought of as a
database instance). Consider any instantiation R’ of rule R:

p(Ul,UQ, .. .,’Un) :_llal27 . -7ln
where each literal /; is either of the form ¢;(v; 1,v1.2, ..., v; n,) Or of the form not ¢; (v; 1,
V1,2, - - -, Vi n, ), and where each v; and each v; ; is a constant.

We say that the body of rule instantiation R’ is satisfied in I if

1. For each positive literal ¢;(v; 1, ..., v »,) in the body of R/, the set of facts I
contains the fact ¢(v; 1,. .., vin,).

2. For each negative literal not q;(vj 1, . . ., v; ;) in the body of R’, the set of facts
I does not contain the fact q; (v 1, ..., Vjn;)-
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| account-number | balance |

A-201 900
A-217 750

Figure 5.8 Result of infer(R, I).

We define the set of facts that can be inferred from a given set of facts I using rule
Ras

infer(R,I) = {p(t1,...,tn,;) | there is an instantiation R’ of R,
where p(ty,...,t,,) is the head of R/, and
the body of R’ is satisfied in I'}.

Given a set of rules R = { Ry, Ro, ..., R, }, we define
infer(R,I) = infer(Ry,I) U infer(Rz,I)U...Uinfer(R,,I)

Suppose that we are given a set of facts I containing the tuples for relation account
in Figure 5.4. One possible instantiation of our running-example rule R is

v1(“A-2177,750) :—account(“A-217”, “Perryridge”, 750), 750 > 700.

The fact account(“A-217”, “Perryridge”, 750) is in the set of facts I. Further, 750 is
greater than 700, and hence conceptually (750, 700) is in the relation “>”. Hence, the
body of the rule instantiation is satisfied in I. There are other possible instantiations
of R, and using them we find that infer(R, I) has exactly the set of facts for v1 that
appears in Figure 5.8.

5.2.3.2 Semantics of a Program

When a view relation is defined in terms of another view relation, the set of facts in
the first view depends on the set of facts in the second one. We have assumed, in this
section, that the definition is nonrecursive; that is, no view relation depends (directly
or indirectly) on itself. Hence, we can layer the view relations in the following way,
and can use the layering to define the semantics of the program:

e A relation is in layer 1 if all relations used in the bodies of rules defining it are
stored in the database.

e A relation is in layer 2 if all relations used in the bodies of rules defining it
either are stored in the database or are in layer 1.

e In general, a relation p is in layer 7 + 1 if (1) it is not in layers 1,2, ...,4, and
(2) all relations used in the bodies of rules defining p either are stored in the
database or are in layers 1,2, ..., 1.

Consider the program in Figure 5.6. The layering of view relations in the program
appears in Figure 5.9. The relation account is in the database. Relation interest-rate is
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layer 2 interest

interest-rate

layer 1 ;
perryridge-account

database account

Figure 5.9 Layering of view relations.

in level 1, since all the relations used in the two rules defining it are in the database.
Relation perryridge-account is similarly in layer 1. Finally, relation interest is in layer
2, since it is not in layer 1 and all the relations used in the rule defining it are in the
database or in layers lower than 2.

We can now define the semantics of a Datalog program in terms of the layering of
view relations. Let the layers in a given program be 1,2, ..., n. Let R; denote the set
of all rules defining view relations in layer «.

o We define I to be the set of facts stored in the database, and define I; as
I = Iy Uinfer(Rq, Iy)

e We proceed in a similar fashion, defining /5 in terms of /; and R, and so on,
using the following definition:

Ly =1;U infer(Ri+1, Iz)

o Finally, the set of facts in the view relations defined by the program (also called
the semantics of the program) is given by the set of facts I,, corresponding to
the highest layer n.

For the program in Figure 5.6, I is the set of facts in the database, and I; is the set
of facts in the database along with all facts that we can infer from I, using the rules for
relations interest-rate and perryridge-account. Finally, I, contains the facts in [; along
with the facts for relation interest that we can infer from the facts in /; by the rule
defining interest. The semantics of the program—that is, the set of those facts that are
in each of the view relations—is defined as the set of facts I».

Recall that, in Section 3.5.3, we saw how to define the meaning of nonrecursive
relational-algebra views by a technique known as view expansion. View expansion
can be used with nonrecursive Datalog views as well; conversely, the layering tech-
nique described here can also be used with relational-algebra views.
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5.2.4 Safety

It is possible to write rules that generate an infinite number of answers. Consider the
rule

gHX,Y) =X >Y

Since the relation defining > is infinite, this rule would generate an infinite number
of facts for the relation gt, which calculation would, correspondingly, take an infinite
amount of time and space.

The use of negation can also cause similar problems. Consider the rule:

not-in-loan(L, B, A) —not loan(L, B, A)

The idea is that a tuple (loan-number, branch-name, amount) is in view relation not-in-
loan if the tuple is not present in the loan relation. However, if the set of possible ac-
count numbers, branch-names, and balances is infinite, the relation not-in-loan would
be infinite as well.

Finally, if we have a variable in the head that does not appear in the body, we may
get an infinite number of facts where the variable is instantiated to different values.

So that these possibilities are avoided, Datalog rules are required to satisfy the
following safety conditions:

1. Every variable that appears in the head of the rule also appears in a nonarith-
metic positive literal in the body of the rule.

2. Every variable appearing in a negative literal in the body of the rule also ap-
pears in some positive literal in the body of the rule.

If all the rules in a nonrecursive Datalog program satisfy the preceding safety con-
ditions, then all the view relations defined in the program can be shown to be finite,
as long as all the database relations are finite. The conditions can be weakened some-
what to allow variables in the head to appear only in an arithmetic literal in the body
in some cases. For example, in the rule

p(4) —q(B),A=B+1

we can see that if relation g is finite, then so is p, according to the properties of addi-
tion, even though variable A appears in only an arithmetic literal.

5.2.5 Relational Operations in Datalog

Nonrecursive Datalog expressions without arithmetic operations are equivalent in
expressive power to expressions using the basic operations in relational algebra (U, —,
x, 0, Il and p). We shall not formally prove this assertion here. Rather, we shall show
through examples how the various relational-algebra operations can be expressed in
Datalog. In all cases, we define a view relation called guery to illustrate the operations.
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We have already seen how to do selection by using Datalog rules. We perform
projections simply by using only the required attributes in the head of the rule. To
project attribute account-name from account, we use

query(A) —account(A, N, B)

We can obtain the Cartesian product of two relations r; and r in Datalog as fol-
lows:

query(Xl,XQ, s aXnaYh}/Qa e aYm> = Tl(leXQa e 'aXn)vT'Z(Yl;Yéa . -;Kn)

where ry is of arity n, and 7 is of arity m, and the X1, Xo,..., X,,,Y1,Ys,...,Y,, are
all distinct variable names.
We form the union of two relations r; and rs (both of arity #) in this way:

query(Xy, Xoy ..o, Xp) =11 (X1, Xoy ..., X5)
query(Xl,XQ, .. ,Xn) - ’I”Q(Xl,XQ, Ce 7Xn)

We form the set difference of two relations r; and 7 in this way:
query(XhXQ, . 7Xn) — Tl(Xl,XQ, . ,)(n)7 not TQ(Xl, XQ, . 7Xn)

Finally, we note that with the positional notation used in Datalog, the renaming oper-
ator p is not needed. A relation can occur more than once in the rule body, but instead
of renaming to give distinct names to the relation occurrences, we can use different
variable names in the different occurrences.

It is possible to show that we can express any nonrecursive Datalog query without
arithmetic by using the relational-algebra operations. We leave this demonstration
as an exercise for you to carry out. You can thus establish the equivalence of the
basic operations of relational algebra and nonrecursive Datalog without arithmetic
operations.

Certain extensions to Datalog support the extended relational update operations
of insertion, deletion, and update. The syntax for such operations varies from imple-
mentation to implementation. Some systems allow the use of + or — in rule heads to
denote relational insertion and deletion. For example, we can move all accounts at
the Perryridge branch to the Johnstown branch by executing

+ account(A, “Johnstown”, B) :—account(A, “Perryridge”, B)
— account(A, “Perryridge”, B) :—account(A, “Perryridge”, B)

Some implementations of Datalog also support the aggregation operation of ex-
tended relational algebra. Again, there is no standard syntax for this operation.

5.2.6 Recursion in Datalog

Several database applications deal with structures that are similar to tree data struc-
tures. For example, consider employees in an organization. Some of the employees
are managers. Each manager manages a set of people who report to him or her. But
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procedure Datalog-Fixpoint
I = set of facts in the database
repeat
Old.I=1
I =1Uinfer(R,I)
until 7 = Old_T

Figure 5.10 Datalog-Fixpoint procedure.

each of these people may in turn be managers, and they in turn may have other peo-
ple who report to them. Thus employees may be organized in a structure similar to a
tree.

Suppose that we have a relation schema

Manager-schema = (employee-name, manager-name)

Let manager be a relation on the preceding schema.

Suppose now that we want to find out which employees are supervised, directly
or indirectly by a given manager—say, Jones. Thus, if the manager of Alon is Barin-
sky, and the manager of Barinsky is Estovar, and the manager of Estovar is Jones,
then Alon, Barinsky, and Estovar are the employees controlled by Jones. People of-
ten write programs to manipulate tree data structures by recursion. Using the idea
of recursion, we can define the set of employees controlled by Jones as follows. The
people supervised by Jones are (1) people whose manager is Jones and (2) people
whose manager is supervised by Jones. Note that case (2) is recursive.

We can encode the preceding recursive definition as a recursive Datalog view,
called empl-jones:

empl-jones(X) :—manager(X, “Jones”)
empl-jones(X) —manager(X,Y"), empl-jones(Y’)

The first rule corresponds to case (1); the second rule corresponds to case (2). The
view empl-jones depends on itself because of the second rule; hence, the preceding
Datalog program is recursive. We assume that recursive Datalog programs contain no
rules with negative literals. The reason will become clear later. The bibliographical

employee-name | manager-name

Alon Barinsky
Barinsky Estovar
Corbin Duarte
Duarte Jones
Estovar Jones

Jones Klinger
Rensal Klinger

Figure 5.11 The manager relation.
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Iteration number Tuples in empl-jones
0
1 (Duarte), (Estovar)
2 (Duarte), (Estovar), (Barinsky), (Corbin)
3 (Duarte), (Estovar), (Barinsky), (Corbin), (Alon)
4 (Duarte), (Estovar), (Barinsky), (Corbin), (Alon)

Figure 5.12 Employees of Jones in iterations of procedure Datalog-Fixpoint.

notes refer to papers that describe where negation can be used in recursive Datalog
programs.

The view relations of a recursive program that contains a set of rules R are defined
to contain exactly the set of facts I computed by the iterative procedure Datalog-
Fixpoint in Figure 5.10. The recursion in the Datalog program has been turned into
an iteration in the procedure. At the end of the procedure, infer(R,I) = I, and I is
called a fixed point of the program.

Consider the program defining empl-jones, with the relation manager, as in Fig-
ure 5.11. The set of facts computed for the view relation empl-jones in each iteration
appears in Figure 5.12. In each iteration, the program computes one more level of
employees under Jones and adds it to the set empl-jones. The procedure terminates
when there is no change to the set empl-jones, which the system detects by finding
I = Old_I. Such a termination point must be reached, since the set of managers and
employees is finite. On the given manager relation, the procedure Datalog-Fixpoint
terminates after iteration 4, when it detects that no new facts have been inferred.

You should verify that, at the end of the iteration, the view relation empl-jones
contains exactly those employees who work under Jones. To print out the names of
the employees supervised by Jones defined by the view, you can use the query

? empl-jones(N)

To understand procedure Datalog-Fixpoint, we recall that a rule infers new facts
from a given set of facts. Iteration starts with a set of facts I set to the facts in the
database. These facts are all known to be true, but there may be other facts that are
true as well.! Next, the set of rules R in the given Datalog program is used to infer
what facts are true, given that facts in I are true. The inferred facts are added to I,
and the rules are used again to make further inferences. This process is repeated until
no new facts can be inferred.

For safe Datalog programs, we can show that there will be some point where no
more new facts can be derived; that is, for some k, I;,41 = I;. At this point, then, we
have the final set of true facts. Further, given a Datalog program and a database, the
fixed-point procedure infers all the facts that can be inferred to be true.

1. The word “fact” is used in a technical sense to note membership of a tuple in a relation. Thus, in the
Datalog sense of “fact,” a fact may be true (the tuple is indeed in the relation) or false (the tuple is not in
the relation).
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If a recursive program contains a rule with a negative literal, the following prob-
lem can arise. Recall that when we make an inference by using a ground instantiation
of a rule, for each negative literal notq in the rule body we check that ¢ is not present
in the set of facts I. This test assumes that ¢ cannot be inferred later. However, in
the fixed-point iteration, the set of facts / grows in each iteration, and even if g is
not present in [ at one iteration, it may appear in [ later. Thus, we may have made
an inference in one iteration that can no longer be made at an earlier iteration, and
the inference was incorrect. We require that a recursive program should not contain
negative literals, in order to avoid such problems.

Instead of creating a view for the employees supervised by a specific manager
Jones, we can create a more general view relation empl that contains every tuple
(X,Y) such that X is directly or indirectly managed by Y, using the following pro-
gram (also shown in Figure 5.7):

empl(X,Y) —manager(X,Y)
empl(X,Y) —manager(X, Z), empl(Z,Y)

To find the direct and indirect subordinates of Jones, we simply use the query
? empl(X, “Jones”)

which gives the same set of values for X as the view empl-jones. Most Datalog imple-
mentations have sophisticated query optimizers and evaluation engines that can run
the preceding query at about the same speed they could evaluate the view empl-jones.

The view empl defined previously is called the transitive closure of the relation
manager. If the relation manager were replaced by any other binary relation R, the
preceding program would define the transitive closure of R.

5.2.7 The Power of Recursion

Datalog with recursion has more expressive power than Datalog without recursion.
In other words, there are queries on the database that we can answer by using recur-
sion, but cannot answer without using it. For example, we cannot express transitive
closure in Datalog without using recursion (or for that matter, in SQL or QBE without
recursion). Consider the transitive closure of the relation manager. Intuitively, a fixed
number of joins can find only those employees that are some (other) fixed number of
levels down from any manager (we will not attempt to prove this result here). Since
any given nonrecursive query has a fixed number of joins, there is a limit on how
many levels of employees the query can find. If the number of levels of employees
in the manager relation is more than the limit of the query, the query will miss some
levels of employees. Thus, a nonrecursive Datalog program cannot express transitive
closure.

An alternative to recursion is to use an external mechanism, such as embedded
SQL, to iterate on a nonrecursive query. The iteration in effect implements the fixed-
point loop of Figure 5.10. In fact, that is how such queries are implemented on data-
base systems that do not support recursion. However, writing such queries by iter-
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ation is more complicated than using recursion, and evaluation by recursion can be
optimized to run faster than evaluation by iteration.

The expressive power provided by recursion must be used with care. It is relatively
easy to write recursive programs that will generate an infinite number of facts, as this
program illustrates:

number(0)
number(A) :—number(B), A= B + 1

The program generates number(n) for all positive integers n, which is clearly infinite,
and will not terminate. The second rule of the program does not satisfy the safety
condition in Section 5.2.4. Programs that satisfy the safety condition will terminate,
even if they are recursive, provided that all database relations are finite. For such
programs, tuples in view relations can contain only constants from the database, and
hence the view relations must be finite. The converse is not true; that is, there are
programs that do not satisfy the safety conditions, but that do terminate.

5.2.8 Recursion in Other Languages

The SQL:1999 standard supports a limited form of recursion, using the with recursive
clause. Suppose the relation manager has attributes emp and mgr. We can find every
pair (X,Y) such that X is directly or indirectly managed by Y, using this SQL:1999

query:

with recursive empl(emp, mgr) as (
select emp, mgr
from manager
union
select emp, empl.mgr
from manager, empl
where manager.mgr = empl.emp
)
select
from empl

Recall that the with clause is used to define a temporary view whose definition is
available only to the query where it is defined. The additional keyword recursive
specifies that the view is recursive. The SQL definition of the view empl above is
equivalent to the Datalog version we saw in Section 5.2.6.

The procedure Datalog-Fixpoint iteratively uses the function infer(R,I) to com-
pute what facts are true, given a recursive Datalog program. Although we consid-
ered only the case of Datalog programs without negative literals, the procedure can
also be used on views defined in other languages, such as SQL or relational algebra,
provided that the views satisfy the conditions described next. Regardless of the lan-
guage used to define a view V, the view can be thought of as being defined by an
expression Ey that, given a set of facts I, returns a set of facts Ey/ (1) for the view rela-
tion V. Given a set of view definitions R (in any language), we can define a function
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infer(R, I) that returns I U |Jy, .5 Ev(I). The preceding function has the same form
as the infer function for Datalog.

A view V is said to be monotonic if, given any two sets of facts I; and I, such
that Iy C I, then Ey(I1) C Ey(I2), where Ey is the expression used to define V.
Similarly, the function infer is said to be monotonic if

Iy C Iy = infer(R, 1) Cinfer(R,I2)

Thus, if infer is monotonic, given a set of facts I that is a subset of the true facts, we
can be sure that all facts in infer(R, Iy) are also true. Using the same reasoning as in
Section 5.2.6, we can then show that procedure Datalog-Fixpoint is sound (that is, it
computes only true facts), provided that the function infer is monotonic.

Relational-algebra expressions that use only the operators II, o, x, X, U, N, or p are
monotonic. Recursive views can be defined by using such expressions.

However, relational expressions that use the operator — are not monotonic. For ex-
ample, let manager, and manager, be relations with the same schema as the manager
relation. Let

I = { manager,(“Alon”, “Barinsky”), manager, (“Barinsky”, “Estovar”),
manager,(“Alon”, “Barinsky”) }

and let

I = { manager,(“Alon”, “Barinsky”), manager, (“Barinsky”, “Estovar”),
manager,(“Alon”, “Barinsky”), manager,(“Barinsky”, “Estovar”)}

Consider the expression manager, — manager,. Now the result of the preceding ex-
pression on [ is (“Barinsky”, “Estovar”), whereas the result of the expression on I; is
the empty relation. But I; C I5; hence, the expression is not monotonic. Expressions
using the grouping operation of extended relational algebra are also nonmonotonic.

The fixed-point technique does not work on recursive views defined with non-
monotonic expressions. However, there are instances where such views are useful,
particularly for defining aggregates on “part—subpart” relationships. Such relation-
ships define what subparts make up each part. Subparts themselves may have further
subparts, and so on; hence, the relationships, like the manager relationship, have a
natural recursive structure. An example of an aggregate query on such a structure
would be to compute the total number of subparts of each part. Writing this query in
Datalog or in SQL (without procedural extensions) would require the use of a recur-
sive view on a nonmonotonic expression. The bibliographic notes provide references
to research on defining such views.

It is possible to define some kinds of recursive queries without using views. For
example, extended relational operations have been proposed to define transitive clo-
sure, and extensions to the SQL syntax to specify (generalized) transitive closure have
been proposed. However, recursive view definitions provide more expressive power
than do the other forms of recursive queries.
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5.3 User Interfaces and Tools

Although many people interact with databases, few people use a query language to
directly interact with a database system. Most people interact with a database system
through one of the following means:

1. Forms and graphical user interfaces allow users to enter values that com-
plete predefined queries. The system executes the queries and appropriately
formats and displays the results to the user. Graphical user interfaces provide
an easy-to-use way to interact with the database system.

2. Report generators permit predefined reports to be generated on the current
database contents. Analysts or managers view such reports in order to make
business decisions.

3. Data analysis tools permit users to interactively browse and analyze data.

It is worth noting that such interfaces use query languages to communicate with
database systems.

In this section, we provide an overview of forms, graphical user interfaces, and
report generators. Chapter 22 covers data analysis tools in more detail. Unfortunately,
there are no standards for user interfaces, and each database system usually provides
its own user interface. In this section, we describe the basic concepts, without going
into the details of any particular user interface product.

5.3.1 Forms and Graphical User Interfaces

Forms interfaces are widely used to enter data into databases, and extract informa-
tion from databases, via predefined queries. For example, World Wide Web search
engines provide forms that are used to enter key words. Hitting a “submit” button
causes the search engine to execute a query using the entered key words and display
the result to the user.

As a more database-oriented example, you may connect to a university registra-
tion system, where you are asked to fill in your roll number and password into a
form. The system uses this information to verify your identity, as well as to extract
information, such as your name and the courses you have registered for, from the
database and display it. There may be further links on the Web page that let you
search for courses and find further information about courses such as the syllabus
and the instructor.

Web browsers supporting HTML constitute the most widely used forms and graph-
ical user interface today. Most database system vendors also provide proprietary
forms interfaces that offer facilities beyond those present in HTML forms.

Programmers can create forms and graphical user interfaces by using HTML or
programming languages such as C or Java. Most database system vendors also pro-
vide tools that simplify the creation of graphical user interfaces and forms. These
tools allow application developers to create forms in an easy declarative fashion, us-
ing form-editor programs. Users can define the type, size, and format of each field in
a form by using the form editor. System actions can be associated with user actions,
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such as filling in a field, hitting a function key on the keyboard, or submitting a form.
For instance, the execution of a query to fill in name and address fields may be asso-
ciated with filling in a roll number field, and execution of an update statement may
be associated with submitting a form.

Simple error checks can be performed by defining constraints on the fields in
the form.? For example, a constraint on the course number field may check that the
course number typed in by the user corresponds to an actual course. Although such
constraints can be checked when the transaction is executed, detecting errors early
helps the user to correct errors quickly. Menus that indicate the valid values that can
be entered in a field can help eliminate the possibility of many types of errors. Sys-
tem developers find that the ability to control such features declaratively with the
help of a user interface development tool, instead of creating a form directly by using
a scripting or programming language, makes their job much easier.

5.3.2 Report Generators

Report generators are tools to generate human-readable summary reports from a
database. They integrate querying the database with the creation of formatted text
and summary charts (such as bar or pie charts). For example, a report may show the
total sales in each of the past two months for each sales region.

The application developer can specify report formats by using the formatting fa-
cilities of the report generator. Variables can be used to store parameters such as the
month and the year and to define fields in the report. Tables, graphs, bar charts, or
other graphics can be defined via queries on the database. The query definitions can
make use of the parameter values stored in the variables.

Once we have defined a report structure on a report-generator facility, we can
store it, and can execute it at any time to generate a report. Report-generator systems
provide a variety of facilities for structuring tabular output, such as defining table
and column headers, displaying subtotals for each group in a table, automatically
splitting long tables into multiple pages, and displaying subtotals at the end of each
page.

Figure 5.13 is an example of a formatted report. The data in the report are gener-
ated by aggregation on information about orders.

The Microsoft Office suite provides a convenient way of embedding formatted
query results from a database, such as MS Access, into a document created with a
text editor, such as MS Word. The query results can be formatted in a tabular fashion
or graphically (as charts) by the report generator facility of MS Access. A feature
called OLE (Object Linking and Embedding) links the resulting structure into a text
document.

The collections of application-development tools provided by database systems,
such as forms packages and report generator, used to be referred to as fourth-generation
languages (4GLs). The name emphasizes that these tools offer a programming para-
digm that is different from the imperative programming paradigm offered by third-

2. These are called “form triggers” in Oracle, but in this book we use the term “trigger” in a different
sense, which we cover in Chapter 6.
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Acme Supply Company Inc.
Quarterly Sales Report

Period: Jan. 1 to March 31, 2001

Region Category Sales Subtotal
North Computer Hardware 1,000,000

Computer Software 500,000

All categories 1,500,000
South Computer Hardware 200,000

Computer Software 400,000

All categories 600,000

Total Sales 2,100,000

Figure 5.13 A formatted report.

generation programming languages, such as Pascal and C. However, this term is less
relevant today, since forms and report generators are typically created with graphical
tools, rather than with programming languages.

5.4 Summary

e We have considered two query languages: OBE, and Datalog.
e QBE is based on a visual paradigm: The queries look much like tables.

e QBE and its variants have become popular with nonexpert database users be-

cause of the intuitive simplicity of the visual paradigm. The widely used Mi-
crosoft Access database system supports a graphical version of QBE, called
GQBE.

Datalog is derived from Prolog, but unlike Prolog, it has a declarative seman-
tics, making simple queries easier to write and query evaluation easier to op-
timize.

Defining views is particularly easy in Datalog, and the recursive views that
Datalog supports makes it possible to write queries, such as transitive-closure
queries, that cannot be written without recursion or iteration. However, no
accepted standards exist for important features, such as grouping and aggre-
gation, in Datalog. Datalog remains mainly a research language.

Most users interact with databases via forms and graphical user interfaces,
and there are numerous tools to simplify the construction of such interfaces.
Report generators are tools that help create human-readable reports from the
contents of the database.
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e Rules
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Exercises

5.1 Consider the insurance database of Figure 5.14, where the primary keys are un-
derlined. Construct the following QBE queries for this relational-database.

a.

b.

Find the total number of people who owned cars that were involved in ac-
cidents in 1989.
Find the number of accidents in which the cars belonging to “John Smith”
were involved.

. Add a new accident to the database; assume any values for required at-

tributes.

. Delete the Mazda belonging to “John Smith.”
. Update the damage amount for the car with license number “AABB2000” in

the accident with report number “AR2197” to $3000.

5.2 Consider the employee database of Figure 5.15. Give expressions in QBE, and
Datalog for each of the following queries:

a.
b.

Find the names of all employees who work for First Bank Corporation.
Find the names and cities of residence of all employees who work for First
Bank Corporation.
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person (driver-id#, name, address)

car (license, model, year)

accident (report-number, date, location)

owns (driver-id#, license)

participated (driver-id, car, report-number, damage-amount)

Figure 5.14 Insurance database.

Find the names, street addresses, and cities of residence of all employees
who work for First Bank Corporation and earn more than $10,000 per an-
num.

Find all employees who live in the same city as the company for which they
work is located.

Find all employees who live in the same city and on the same street as their
managers.

Find all employees in the database who do not work for First Bank Corpo-
ration.

Find all employees who earn more than every employee of Small Bank Cor-
poration.

Assume that the companies may be located in several cities. Find all com-
panies located in every city in which Small Bank Corporation is located.

5.3 Consider the relational database of Figure 5.15. where the primary keys are un-
derlined. Give expressions in QBE for each of the following queries:

a.

b.
c.

d.

Find all employees who earn more than the average salary of all employees
of their company.

Find the company that has the most employees.

Find the company that has the smallest payroll.

Find those companies whose employees earn a higher salary, on average,
than the average salary at First Bank Corporation.

5.4 Consider the relational database of Figure 5.15. Give expressions in QBE for each
of the following queries:

a

b
c
d

Modify the database so that Jones now lives in Newtown.

Give all employees of First Bank Corporation a 10 percent raise.

Give all managers in the database a 10 percent raise.

Give all managers in the database a 10 percent raise, unless the salary would
be greater than $100,000. In such cases, give only a 3 percent raise.

employee (person-name, street, city)

works (person-name, company-name, salary)
company (company-name, city)

manages (person-name, manager-name)

Figure5.15 Employee database.
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e. Delete all tuples in the works relation for employees of Small Bank Corpora-
tion.

5.5 Let the following relation schemas be given:

Let relations r(R) and s(S) be given. Give expressions in QBE, and Datalog equiv-
alent to each of the following queries:

. HA(T)

op=17 (1)

r X S

Iy (UC:D(T X 8))

&N T

5.6 Let R = (A, B, (), and let r; and r3 both be relations on schema R. Give expres-
sions in QBE, and Datalog equivalent to each of the following queries:

.11 U re
. T n )
.1 — T2
. ap(ri) X Opc(rs)

o n T

5.7 Let R = (A, B)and S = (A, C), and let r(R) and s(5) be relations. Write expres-
sions in QBE and Datalog for each of the following queries:

a. {<a>|3b(<a,b>er ANb=17)}
b. {<a,b,c> | <a,b>€ rA <a,c>E€ s}
¢ {<a>|Jc(<a,e>€ s ANIb,by(<a,by>€ rN\ <c,bg>€ 1 ANb >

b))}

5.8 Consider the relational database of Figure 5.15. Write a Datalog program for
each of the following queries:

a. Find all employees who work (directly or indirectly) under the manager
“Jones”.

b. Find all cities of residence of all employees who work (directly or indirectly)
under the manager “Jones”.

c. Find all pairs of employees who have a (direct or indirect) manager in com-
mon.

d. Find all pairs of employees who have a (direct or indirect) manager in com-
mon, and are at the same number of levels of supervision below the com-
mon manager.

5.9 Write an extended relational-algebra view equivalent to the Datalog rule

p(A,C,D)—ql(A,B), ¢2(B,C), ¢3(4,B), D=B+1.
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5.10 Describe how an arbitrary Datalog rule can be expressed as an extended relation-
al algebra view.

Bibliographical Notes

The experimental version of Query-by-Example is described in Zloof [1977]; the com-
mercial version is described in IBM [1978]. Numerous database systems—in partic-
ular, database systems that run on personal computers—implement QBE or variants.
Examples are Microsoft Access and Borland Paradox.

Implementations of Datalog include LDL system (described in Tsur and Zaniolo
[1986] and Naqvi and Tsur [1988]), Nail! (described in Derr et al. [1993]), and Coral
(described in Ramakrishnan et al. [1992b] and Ramakrishnan et al. [1993]). Early dis-
cussions concerning logic databases were presented in Gallaire and Minker [1978]
and Gallaire et al. [1984]. Ullman [1988] and Ullman [1989] provide extensive text-
book discussions of logic query languages and implementation techniques. Ramakr-
ishnan and Ullman [1995] provides a more recent survey on deductive databases.

Datalog programs that have both recursion and negation can be assigned a simple
semantics if the negation is “stratified” —that is, if there is no recursion through nega-
tion. Chandra and Harel [1982] and Apt and Pugin [1987] discuss stratified negation.
An important extension, called the modular-stratification semantics, which handles a
class of recursive programs with negative literals, is discussed in Ross [1990]; an eval-
uation technique for such programs is described by Ramakrishnan et al. [1992a].

Tools

The Microsoft Access QBE is probably the most widely used implementation of QBE.
IBM DB2 QMF and Borland Paradox also support QBE.

The Coral system from the University of Wisconsin—Madison is a widely used
implementation of Datalog (see (http://www.cs.wisc.edu/coral). The XSB system from
the State University of New York (SUNY) Stony Brook (http://xsb.sourceforge.net) is
a widely used Prolog implementation that supports database querying; recall that
Datalog is a nonprocedural subset of Prolog.
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Integrity constraints ensure that changes made to the database by authorized users
do not result in a loss of data consistency. Thus, integrity constraints guard against
accidental damage to the database.

We have already seen two forms of integrity constraints for the E-R model in Chap-
ter 2:

o Key declarations—the stipulation that certain attributes form a candidate key
for a given entity set.

e Form of a relationship—many to many, one to many, one to one.

In general, an integrity constraint can be an arbitrary predicate pertaining to the
database. However, arbitrary predicates may be costly to test. Thus, we concentrate
on integrity constraints that can be tested with minimal overhead. We study some
such forms of integrity constraints in Sections 6.1 and 6.2, and cover a more complex
form in Section 6.3. In Chapter 7 we study another form of integrity constraint, called
“functional dependency,” which is primarily used in the process of schema design.

In Section 6.4 we study triggers, which are statements that are executed automati-
cally by the system as a side effect of a modification to the database. Triggers are used
to ensure some types of integrity.

In addition to protecting against accidental introduction of inconsistency, the data
stored in the database need to be protected from unauthorized access and malicious
destruction or alteration. In Sections 6.5 through 6.7, we examine ways in which data
may be misused or intentionally made inconsistent, and present security mechanisms
to guard against such occurrences.

6.1 Domain Constraints

We have seen that a domain of possible values must be associated with every at-
tribute. In Chapter 4, we saw a number of standard domain types, such as integer

225
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types, character types, and date/time types defined in SQL. Declaring an attribute to
be of a particular domain acts as a constraint on the values that it can take. Domain
constraints are the most elementary form of integrity constraint. They are tested eas-
ily by the system whenever a new data item is entered into the database.

It is possible for several attributes to have the same domain. For example, the at-
tributes customer-name and employee-name might have the same domain: the set of all
person names. However, the domains of balance and branch-name certainly ought to be
distinct. It is perhaps less clear whether customer-name and branch-name should have
the same domain. At the implementation level, both customer names and branch
names are character strings. However, we would normally not consider the query
“Find all customers who have the same name as a branch” to be a meaningful query.
Thus, if we view the database at the conceptual, rather than the physical, level,
customer-name and branch-name should have distinct domains.

From the above discussion, we can see that a proper definition of domain con-
straints not only allows us to test values inserted in the database, but also permits
us to test queries to ensure that the comparisons made make sense. The principle be-
hind attribute domains is similar to that behind typing of variables in programming
languages. Strongly typed programming languages allow the compiler to check the
program in greater detail.

The create domain clause can be used to define new domains. For example, the
statements:

create domain Dollars numeric(12,2)
create domain Pounds numeric(12,2)

define the domains Dollars and Pounds to be decimal numbers with a total of 12 digits,
two of which are placed after the decimal point. An attempt to assign a value of type
Dollars to a variable of type Pounds would result in a syntax error, although both are of
the same numeric type. Such an assignment is likely to be due to a programmer error,
where the programmer forgot about the differences in currency. Declaring different
domains for different currencies helps catch such errors.

Values of one domain can be cast (that is, converted) to another domain. If the
attribute A or relation r is of type Dollars, we can convert it to Pounds by writing

cast .A as Pounds

In a real application we would of course multiply 7.A by a currency conversion factor
before casting it to pounds. SQL also provides drop domain and alter domain clauses
to drop or modify domains that have been created earlier.

The check clause in SQL permits domains to be restricted in powerful ways that
most programming language type systems do not permit. Specifically, the check
clause permits the schema designer to specify a predicate that must be satisfied by
any value assigned to a variable whose type is the domain. For instance, a check
clause can ensure that an hourly wage domain allows only values greater than a
specified value (such as the minimum wage):
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create domain HourlyWage numeric(5,2)
constraint wage-value-test check(value >= 4.00)

The domain HourlyWage has a constraint that ensures that the hourly wage is greater
than 4.00. The clause constraint wage-value-test is optional, and is used to give the
name wage-value-test to the constraint. The name is used to indicate which constraint
an update violated.

The check clause can also be used to restrict a domain to not contain any null
values:

create domain AccountNumber char(10)
constraint account-number-null-test check(value not null )

As another example, the domain can be restricted to contain only a specified set of
values by using the in clause:

create domain AccountType char(10)
constraint account-type-test
check(value in ('Checking’, ‘Saving’))

The preceding check conditions can be tested quite easily, when a tuple is inserted
or modified. However, in general, the check conditions can be more complex (and
harder to check), since subqueries that refer to other relations are permitted in the
check condition. For example, this constraint could be specified on the relation de-
posit:

check (branch-name in (select branch-name from branch))

The check condition verifies that the branch-name in each tuple in the deposit relation
is actually the name of a branch in the branch relation. Thus, the condition has to be
checked not only when a tuple is inserted or modified in deposit, but also when the
relation branch changes (in this case, when a tuple is deleted or modified in relation
branch).

The preceding constraint is actually an example of a class of constraints called
referential-integrity constraints. We discuss such constraints, along with a simpler way
of specifying them in SQL, in Section 6.2.

Complex check conditions can be useful when we want to ensure integrity of data,
but we should use them with care, since they may be costly to test.

6.2 Referential Integrity

Often, we wish to ensure that a value that appears in one relation for a given set of
attributes also appears for a certain set of attributes in another relation. This condition
is called referential integrity.
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6.2.1 Basic Concepts

Consider a pair of relations r(R) and s(.5), and the natural join r X s. There may be a
tuple ¢, in r that does not join with any tuple in s. That is, there is no ¢, in s such that
tr[RNS] = t;[RN S]. Such tuples are called dangling tuples. Depending on the entity
set or relationship set being modeled, dangling tuples may or may not be acceptable.
In Section 3.3.3, we considered a modified form of join—the outer join—to operate
on relations containing dangling tuples. Here, our concern is not with queries, but
rather with when we should permit dangling tuples to exist in the database.

Suppose there is a tuple ¢; in the account relation with ¢ [branch-name] = “Lu-
nartown,” but there is no tuple in the branch relation for the Lunartown branch. This
situation would be undesirable. We expect the branch relation to list all bank branches.
Therefore, tuple ¢, would refer to an account at a branch that does not exist. Clearly,
we would like to have an integrity constraint that prohibits dangling tuples of this
sort.

Not all instances of dangling tuples are undesirable, however. Assume that there
is a tuple ¢5 in the branch relation with t;[branch-name] = “Mokan,” but there is no
tuple in the account relation for the Mokan branch. In this case, a branch exists that
has no accounts. Although this situation is not common, it may arise when a branch
is opened or is about to close. Thus, we do not want to prohibit this situation.

The distinction between these two examples arises from two facts:

e The attribute branch-name in Account-schema is a foreign key referencing the
primary key of Branch-schema.

e The attribute branch-name in Branch-schema is not a foreign key.

(Recall from Section 3.1.3 that a foreign key is a set of attributes in a relation schema
that forms a primary key for another schema.)

In the Lunartown example, tuple ¢; in account has a value on the foreign key
branch-name that does not appear in branch. In the Mokan-branch example, tuple t; in
branch has a value on branch-name that does not appear in account, but branch-name is
not a foreign key. Thus, the distinction between our two examples of dangling tuples
is the presence of a foreign key.

Let r1(R1) and r2(R2) be relations with primary keys K and K5, respectively. We
say that a subset a of R; is a foreign key referencing K, in relation r; if it is required
that, for every ¢, in 75, there must be a tuple ¢; in r; such that ¢;[K1] = t3]a]. Re-
quirements of this form are called referential integrity constraints, or subset depen-
dencies. The latter term arises because the preceding referential-integrity constraint
can be written as I, (r2) C Ilk, (71). Note that, for a referential-integrity constraint
to make sense, either oo must be equal to K, or o and K; must be compatible sets of
attributes.

6.2.2 Referential Integrity and the E-R Model

Referential-integrity constraints arise frequently. If we derive our relational-database
schema by constructing tables from E-R diagrams, as we did in Chapter 2, then every
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Figure 6.1 An n-ary relationship set.

relation arising from a relationship set has referential-integrity constraints. Figure 6.1
shows an n-ary relationship set R, relating entity sets £y, E»,..., E,. Let K; denote
the primary key of E;. The attributes of the relation schema for relationship set R
include K1 U Ky U --- U K,. The following referential integrity constraints are
then present: For each 4, K; in the schema for R is a foreign key referencing K; in the
relation schema generated from entity set ;

Another source of referential-integrity constraints is weak entity sets. Recall from
Chapter 2 that the relation schema for a weak entity set must include the primary
key of the entity set on which the weak entity set depends. Thus, the relation schema
for each weak entity set includes a foreign key that leads to a referential-integrity
constraint.

6.2.3 Database Modification

Database modifications can cause violations of referential integrity. We list here the
test that we must make for each type of database modification to preserve the follow-
ing referential-integrity constraint:

I, (re) € g (1)
o Insert. If a tuple ¢, is inserted into 73, the system must ensure that there is a
tuple ¢; in ry such that ¢1[K] = ¢3[a]. Thatis,
tQ[OZ} S HK (7“1)
e Delete. If a tuple t; is deleted from ry, the system must compute the set of
tuples in r; that reference ¢;:
Oa = t;[K] (12)

If this set is not empty, either the delete command is rejected as an error, or the
tuples that reference ¢; must themselves be deleted. The latter solution may
lead to cascading deletions, since tuples may reference tuples that reference
t1, and so on.
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e Update. We must consider two cases for update: updates to the referencing
relation (r2), and updates to the referenced relation (r1).

O If a tuple ¢, is updated in relation 3, and the update modifies values for
the foreign key «, then a test similar to the insert case is made. Let 5’
denote the new value of tuple ¢3. The system must ensure that

tgl[a] S HK (7”1)

O If a tuple ¢, is updated in 1, and the update modifies values for the pri-
mary key (K), then a test similar to the delete case is made. The system
must compute

Oa = t,[K] (r2)
using the old value of ¢; (the value before the update is applied). If this set

is not empty, the update is rejected as an error, or the update is cascaded
in a manner similar to delete.

6.2.4 Referential Integrity in SQL

Foreign keys can be specified as part of the SQL create table statement by using the
foreign key clause. We illustrate foreign-key declarations by using the SQL DDL def-
inition of part of our bank database, shown in Figure 6.2.

By default, a foreign key references the primary key attributes of the referenced
table. SQL also supports a version of the references clause where a list of attributes of
the referenced relation can be specified explicitly. The specified list of attributes must
be declared as a candidate key of the referenced relation.

We can use the following short form as part of an attribute definition to declare
that the attribute forms a foreign key:

branch-name char(15) references branch

When a referential-integrity constraint is violated, the normal procedure is to reject
the action that caused the violation. However, a foreign key clause can specify that
if a delete or update action on the referenced relation violates the constraint, then,
instead of rejecting the action, the system must take steps to change the tuple in the
referencing relation to restore the constraint. Consider this definition of an integrity
constraint on the relation account:

create table account
(...
foreign key (branch-name) references branch
on delete cascade
on update cascade,

-)

Because of the clause on delete cascade associated with the foreign-key declaration,
if a delete of a tuple in branch results in this referential-integrity constraint being vi-
olated, the system does not reject the delete. Instead, the delete “cascades” to the
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create table customer
(customer-name  char(20),
customer-street  char(30),
customer-city char(30),
primary key (customer-name))

create table branch

(branch-name char(15),
branch-city char(30),
assets integer,

primary key (branch-name),
check (assets >= 0))

create table account
(account-number char(10),
branch-name char(15),
balance integer,
primary key (account-number),
foreign key (branch-name) references branch,
check (balance >= 0))

create table depositor
(customer-name  char(20),
account-number char(10),
primary key (customer-name, account-number),
foreign key (customer-name) references customer,
foreign key (account-number) references account)

Figure 6.2 SQL data definition for part of the bank database.

account relation, deleting the tuple that refers to the branch that was deleted. Simi-
larly, the system does not reject an update to a field referenced by the constraint if it
violates the constraint; instead, the system updates the field branch-name in the ref-
erencing tuples in account to the new value as well. SQL also allows the foreign key
clause to specify actions other than cascade, if the constraint is violated: The referenc-
ing field (here, branch-name) can be set to null (by using set null in place of cascade),
or to the default value for the domain (by using set default).

If there is a chain of foreign-key dependencies across multiple relations, a deletion
or update at one end of the chain can propagate across the entire chain. An interest-
ing case where the foreign key constraint on a relation references the same relation
appears in Exercise 6.4. If a cascading update or delete causes a constraint violation
that cannot be handled by a further cascading operation, the system aborts the trans-
action. As a result, all the changes caused by the transaction and its cascading actions
are undone.

Null values complicate the semantics of referential integrity constraints in SQL.
Attributes of foreign keys are allowed to be null, provided that they have not other-
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wise been declared to be non-null. If all the columns of a foreign key are non-null in
a given tuple, the usual definition of foreign-key constraints is used for that tuple. If
any of the foreign-key columns is null, the tuple is defined automatically to satisfy
the constraint.

This definition may not always be the right choice, so SQL also provides constructs
that allow you to change the behavior with null values; we do not discuss the con-
structs here. To avoid such complexity;, it is best to ensure that all columns of a foreign
key specification are declared to be non-null.

Transactions may consist of several steps, and integrity constraints may be vio-
lated temporarily after one step, but a later step may remove the violation. For in-
stance, suppose we have a relation marriedperson with primary key name, and an at-
tribute spouse, and suppose that spouse is a foreign key on marriedperson. That is, the
constraint says that the spouse attribute must contain a name that is present in the per-
son table. Suppose we wish to note the fact that John and Mary are married to each
other by inserting two tuples, one for John and one for Mary, in the above relation.
The insertion of the first tuple would violate the foreign key constraint, regardless of
which of the two tuples is inserted first. After the second tuple is inserted the foreign
key constraint would hold again.

To handle such situations, integrity constraints are checked at the end of a trans-
action, and not at intermediate steps.'

6.3 Assertions

An assertion is a predicate expressing a condition that we wish the database always
to satisfy. Domain constraints and referential-integrity constraints are special forms
of assertions. We have paid substantial attention to these forms of assertion because
they are easily tested and apply to a wide range of database applications. However,
there are many constraints that we cannot express by using only these special forms.
Two examples of such constraints are:

e The sum of all loan amounts for each branch must be less than the sum of all
account balances at the branch.

e Every loan has at least one customer who maintains an account with a mini-
mum balance of $1000.00.
An assertion in SQL takes the form

create assertion <assertion-name> check <predicate>

Here is how the two examples of constraints can be written. Since SQL does not
provide a “for all X, P(X)” construct (where P is a predicate), we are forced to im-

1. We can work around the problem in the above example in another way, if the spouse attribute can be
set to null: We set the spouse attributes to null when inserting the tuples for John and Mary, and we update
them later. However, this technique is rather messy, and does not work if the attributes cannot be set to
null.
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plement the construct by the equivalent “not exists X such that not P(X)” construct,
which can be written in SQL. We write

create assertion sum-constraint check
(not exists (select * from branch
where (select sum(amount) from loan
where loan.branch-name = branch.branch-name)
>= (select sum(balance) from account
where account.branch-name = branch.branch-name)))

create assertion balance-constraint check
(not exists (select * from loan
where not exists ( select *

from borrower, depositor, account

where loan.loan-number = borrower.loan-number
and borrower.customer-name = depositor.customer-name
and depositor.account-number = account.account-number
and account.balance >= 1000)))

When an assertion is created, the system tests it for validity. If the assertion is valid,
then any future modification to the database is allowed only if it does not cause that
assertion to be violated. This testing may introduce a significant amount of overhead
if complex assertions have been made. Hence, assertions should be used with great
care. The high overhead of testing and maintaining assertions has led some system
developers to omit support for general assertions, or to provide specialized forms of
assertions that are easier to test.

6.4 Triggers

A trigger is a statement that the system executes automatically as a side effect of
a modification to the database. To design a trigger mechanism, we must meet two
requirements:

1. Specify when a trigger is to be executed. This is broken up into an event that
causes the trigger to be checked and a condition that must be satisfied for trig-
ger execution to proceed.

2. Specify the actions to be taken when the trigger executes.

The above model of triggers is referred to as the event-condition-action model for
triggers.

The database stores triggers just as if they were regular data, so that they are per-
sistent and are accessible to all database operations. Once we enter a trigger into the
database, the database system takes on the responsibility of executing it whenever
the specified event occurs and the corresponding condition is satisfied.
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6.4.1 Need for Triggers

Triggers are useful mechanisms for alerting humans or for starting certain tasks au-
tomatically when certain conditions are met. As an illustration, suppose that, instead
of allowing negative account balances, the bank deals with overdrafts by setting the
account balance to zero, and creating a loan in the amount of the overdraft. The bank
gives this loan a loan number identical to the account number of the overdrawn ac-
count. For this example, the condition for executing the trigger is an update to the ac-
count relation that results in a negative balance value. Suppose that Jones” withdrawal
of some money from an account made the account balance negative. Let ¢ denote the
account tuple with a negative balance value. The actions to be taken are:

e Insert a new tuple s in the loan relation with

s[loan-number] = tlaccount-number]
s[branch-name] = t[branch-name]
slamount] = —t[balance]

(Note that, since t[balance] is negative, we negate t[balance] to get the loan
amount—a positive number.)

o Insert a new tuple u in the borrower relation with

ulcustomer-name] = “Jones”
u[loan-number| = t[account-number)

e Set t[balance] to 0.

As another example of the use of triggers, suppose a warehouse wishes to main-
tain a minimum inventory of each item; when the inventory level of an item falls
below the minimum level, an order should be placed automatically. This is how the
business rule can be implemented by triggers: On an update of the inventory level
of an item, the trigger should compare the level with the minimum inventory level
for the item, and if the level is at or below the minimum, a new order is added to an
orders relation.

Note that trigger systems cannot usually perform updates outside the database,
and hence in the inventory replenishment example, we cannot use a trigger to di-
rectly place an order in the external world. Instead, we add an order to the orders re-
lation as in the inventory example. We must create a separate permanently running
system process that periodically scans the orders relation and places orders. This sys-
tem process would also note which tuples in the orders relation have been processed
and when each order was placed. The process would also track deliveries of orders,
and alert managers in case of exceptional conditions such as delays in deliveries.

6.4.2 Triggers in SQL

SQL-based database systems use triggers widely, although before SQL:1999 they were
not part of the SQL standard. Unfortunately, each database system implemented its
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create trigger overdraft-trigger after update on account
referencing new row as nrow
for each row
when nrow.balance < 0
begin atomic
insert into borrower
(select customer-name, account-number
from depositor
where nrow.account-number = depositor.account-number);
insert into loan values
(nrow.account-number, nrow.branch-name, — nrow.balance);
update account set balance = 0
where account.account-number = nrow.account-number
end

Figure 6.3 Example of SQL:1999 syntax for triggers.

own syntax for triggers, leading to incompatibilities. We outline in Figure 6.3 the
SQL:1999 syntax for triggers (which is similar to the syntax in the IBM DB2 and Oracle
database systems).

This trigger definition specifies that the trigger is initiated after any update of the
relation account is executed. An SQL update statement could update multiple tuples
of the relation, and the for each row clause in the trigger code would then explicitly
iterate over each updated row. The referencing new row as clause creates a variable
nrow (called a transition variable), which stores the value of an updated row after
the update.

The when statement specifies a condition, namely nrow.balance < 0. The system
executes the rest of the trigger body only for tuples that satisfy the condition. The
begin atomic ... end clause serves to collect multiple SQL statements into a single
compound statement. The two insert statements with the begin ... end structure
carry out the specific tasks of creating new tuples in the borrower and loan relations to
represent the new loan. The update statement serves to set the account balance back
to 0 from its earlier negative value.

The triggering event and actions can take many forms:

o The triggering event can be insert or delete, instead of update.

For example, the action on delete of an account could be to check if the
holders of the account have any remaining accounts, and if they do not, to
delete them from the depositor relation. You can define this trigger as an exer-
cise (Exercise 6.7).

As another example, if a new depositor is inserted, the triggered action could
be to send a welcome letter to the depositor. Obviously a trigger cannot di-
rectly cause such an action outside the database, but could instead add a tu-
ple to a relation storing addresses to which welcome letters need to be sent. A
separate process would go over this table, and print out letters to be sent.
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e For updates, the trigger can specify columns whose update causes the trigger

to execute. For instance if the first line of the overdraft trigger were replaced
by

create trigger overdraft-trigger after update of balance on account

then the trigger would be executed only on updates to balance; updates to
other attributes would not cause it to be executed.

The referencing old row as clause can be used to create a variable storing the
old value of an updated or deleted row. The referencing new row as clause
can be used with inserts in addition to updates.

Triggers can be activated before the event (insert/delete/update) instead of
after the event.

Such triggers can serve as extra constraints that can prevent invalid up-
dates. For instance, if we wish not to permit overdrafts, we can create a before
trigger that rolls back the transaction if the new balance is negative.

As another example, suppose the value in a phone number field of an in-
serted tuple is blank, which indicates absence of a phone number. We can
define a trigger that replaces the value by the null value. The set statement
can be used to carry out such modifications.

create trigger setnull-trigger before update on r
referencing new row as nrow

for each row

when nrow.phone-number ="’

set nrow.phone-number = null

Instead of carrying out an action for each affected row, we can carry out a sin-
gle action for the entire SQL statement that caused the insert/delete/update.
To do so, we use the for each statement clause instead of the for each row
clause.

The clauses referencing old table as or referencing new table as can then
be used to refer to temporary tables (called transition tables) containing all the
affected rows. Transition tables cannot be used with before triggers, but can
be used with after triggers, regardless of whether they are statement triggers
or row triggers.

A single SQL statement can then be used to carry out multiple actions on
the basis of the transition tables.

Returning to our warehouse inventory example, suppose we have the following
relations:

o inventory(item, level), which notes the current amount (number/weight/vol-

ume) of the item in the warehouse
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create trigger reorder-trigger after update of amount on inventory
referencing old row as orow, new row as nrow
for each row
when nrow.level <= (select level
from minlevel
where minlevel.item = orow.item)
and orow.level > (select level
from minlevel
where minlevel.item = orow.itemn)
begin
insert into orders
(select item, amount
from reorder
where reorder.item = orow.item)
end

Figure 6.4 Example of trigger for reordering an item.

o minlevel(item, level), which notes the minimum amount of the item to be main-
tained

o reorder(item, amount), which notes the amount of the item to be ordered when
its level falls below the minimum

e orders(item, amount), which notes the amount of the item to be ordered.

We can then use the trigger shown in Figure 6.4 for reordering the item.

Note that we have been careful to place an order only when the amount falls from
above the minimum level to below the minimum level. If we only check that the
new value after an update is below the minimum level, we may place an order erro-
neously when the item has already been reordered.

Many database systems provide nonstandard trigger implementations, or imple-
ment only some of the trigger features. For instance, many database systems do not
implement the before clause, and the keyword on is used instead of after. They may
not implement the referencing clause. Instead, they may specify transition tables by
using the keywords inserted or deleted. Figure 6.5 illustrates how the overdraft trig-
ger would be written in MS-SQLServer. Read the user manual for the database system
you use for more information about the trigger features it supports.

6.4.3 When Not to Use Triggers

There are many good uses for triggers, such as those we have just seen in Section 6.4.2,
but some uses are best handled by alternative techniques. For example, in the past,
system designers used triggers to maintain summary data. For instance, they used
triggers on insert/delete/update of a employee relation containing salary and dept at-
tributes to maintain the total salary of each department. However, many database
systems today support materialized views (see Section 3.5.1), which provide a much
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create trigger overdraft-trigger on account
for update
as
if nrow.balance < 0
begin
insert into borrower
(select customer-name, account-number
from depositor, inserted
where inserted.account-number = depositor.account-number)
insert into loan values
(inserted.account-number, inserted.branch-name, — inserted.balance)
update account set balance = 0
from account, inserted
where account.account-number = inserted.account-number
end

Figure 6.5 Example of trigger in MS-SQL server syntax

easier way to maintain summary data. Designers also used triggers extensively for
replicating databases; they used triggers on insert/delete /update of each relation to
record the changes in relations called change or delta relations. A separate process
copied over the changes to the replica (copy) of the database, and the system executed
the changes on the replica. Modern database systems, however, provide built-in fa-
cilities for database replication, making triggers unnecessary for replication in most
cases.

In fact, many trigger applications, including our example overdraft trigger, can be
substituted by “encapsulation” features being introduced in SQL:1999. Encapsulation
can be used to ensure that updates to the balance attribute of account are done only
through a special procedure. That procedure would in turn check for negative bal-
ance, and carry out the actions of the overdraft trigger. Encapsulations can replace
the reorder trigger in a similar manner.

Triggers should be written with great care, since a trigger error detected at run
time causes the failure of the insert/delete/update statement that set off the trigger.
Furthermore, the action of one trigger can set off another trigger. In the worst case,
this could even lead to an infinite chain of triggering. For example, suppose an insert
trigger on a relation has an action that causes another (new) insert on the same rela-
tion. The insert action then triggers yet another insert action, and so on ad infinitum.
Database systems typically limit the length of such chains of triggers (for example to
16 or 32), and consider longer chains of triggering an error.

Triggers are occasionally called rules, or active rules, but should not be confused
with Datalog rules (see Section 5.2), which are really view definitions.

6.5 Security and Authorization

The data stored in the database need protection from unauthorized access and mali-
cious destruction or alteration, in addition to the protection against accidental intro-
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duction of inconsistency that integrity constraints provide. In this section, we exam-
ine the ways in which data may be misused or intentionally made inconsistent. We
then present mechanisms to guard against such occurrences.

6.5.1 Security Violations

Among the forms of malicious access are:

e Unauthorized reading of data (theft of information)
e Unauthorized modification of data

e Unauthorized destruction of data

Database security refers to protection from malicious access. Absolute protection
of the database from malicious abuse is not possible, but the cost to the perpetrator
can be made high enough to deter most if not all attempts to access the database
without proper authority.

To protect the database, we must take security measures at several levels:

e Database system. Some database-system users may be authorized to access
only a limited portion of the database. Other users may be allowed to issue
queries, but may be forbidden to modify the data. It is the responsibility of
the database system to ensure that these authorization restrictions are not vi-
olated.

e Operating system. No matter how secure the database system is, weakness in
operating-system security may serve as a means of unauthorized access to the
database.

e Network. Since almost all database systems allow remote access through ter-
minals or networks, software-level security within the network software is as
important as physical security, both on the Internet and in private networks.

e Physical. Sites with computer systems must be physically secured against
armed or surreptitious entry by intruders.

e Human. Users must be authorized carefully to reduce the chance of any user
giving access to an intruder in exchange for a bribe or other favors.

Security at all these levels must be maintained if database security is to be ensured.
A weakness at a low level of security (physical or human) allows circumvention of
strict high-level (database) security measures.

In the remainder of this section, we shall address security at the database-system
level. Security at the physical and human levels, although important, is beyond the
scope of this text.

Security within the operating system is implemented at several levels, ranging
from passwords for access to the system to the isolation of concurrent processes run-
ning within the system. The file system also provides some degree of protection. The
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bibliographical notes reference coverage of these topics in operating-system texts.
Finally, network-level security has gained widespread recognition as the Internet
has evolved from an academic research platform to the basis of international elec-
tronic commerce. The bibliographic notes list textbook coverage of the basic princi-
ples of network security. We shall present our discussion of security in terms of the
relational-data model, although the concepts of this chapter are equally applicable to
all data models.

6.5.2 Authorization

We may assign a user several forms of authorization on parts of the database. For
example,

e Read authorization allows reading, but not modification, of data.

Insert authorization allows insertion of new data, but not modification of ex-
isting data.

Update authorization allows modification, but not deletion, of data.

e Delete authorization allows deletion of data.

We may assign the user all, none, or a combination of these types of authorization.
In addition to these forms of authorization for access to data, we may grant a user
authorization to modify the database schema:

e Index authorization allows the creation and deletion of indices.
e Resource authorization allows the creation of new relations.

e Alteration authorization allows the addition or deletion of attributes in a re-
lation.

e Drop authorization allows the deletion of relations.

The drop and delete authorization differ in that delete authorization allows dele-
tion of tuples only. If a user deletes all tuples of a relation, the relation still exists, but
it is empty. If a relation is dropped, it no longer exists.

We regulate the ability to create new relations through resource authorization. A
user with resource authorization who creates a new relation is given all privileges on
that relation automatically.

Index authorization may appear unnecessary, since the creation or deletion of an
index does not alter data in relations. Rather, indices are a structure for performance
enhancements. However, indices also consume space, and all database modifications
are required to update indices. If index authorization were granted to all users, those
who performed updates would be tempted to delete indices, whereas those who is-
sued queries would be tempted to create numerous indices. To allow the database
administrator to regulate the use of system resources, it is necessary to treat index
creation as a privilege.
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The ultimate form of authority is that given to the database administrator. The
database administrator may authorize new users, restructure the database, and so
on. This form of authorization is analogous to that of a superuser or operator for an
operating system.

6.5.3 Authorization and Views

In Chapter 3, we introduced the concept of views as a means of providing a user
with a personalized model of the database. A view can hide data that a user does
not need to see. The ability of views to hide data serves both to simplify usage of the
system and to enhance security. Views simplify system usage because they restrict
the user’s attention to the data of interest. Although a user may be denied direct
access to a relation, that user may be allowed to access part of that relation through a
view. Thus, a combination of relational-level security and view-level security limits a
user’s access to precisely the data that the user needs.

In our banking example, consider a clerk who needs to know the names of all
customers who have a loan at each branch. This clerk is not authorized to see infor-
mation regarding specific loans that the customer may have. Thus, the clerk must be
denied direct access to the loan relation. But, if she is to have access to the information
needed, the clerk must be granted access to the view cust-loan, which consists of only
the names of customers and the branches at which they have a loan. This view can
be defined in SQL as follows:

create view cust-loan as
(select branch-name, customer-name
from borrower, loan
where borrower.loan-number = loan.loan-number)

Suppose that the clerk issues the following SQL query:

select *
from cust-loan

Clearly, the clerk is authorized to see the result of this query. However, when the
query processor translates it into a query on the actual relations in the database, it
produces a query on borrower and loan. Thus, the system must check authorization
on the clerk’s query before it begins query processing.

Creation of a view does not require resource authorization. A user who creates a
view does not necessarily receive all privileges on that view. She receives only those
privileges that provide no additional authorization beyond those that she already
had. For example, a user cannot be given update authorization on a view without
having update authorization on the relations used to define the view. If a user creates
a view on which no authorization can be granted, the system will deny the view
creation request. In our cust-loan view example, the creator of the view must have
read authorization on both the borrower and loan relations.
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6.5.4 Granting of Privileges

A user who has been granted some form of authorization may be allowed to pass
on this authorization to other users. However, we must be careful how authorization
may be passed among users, to ensure that such authorization can be revoked at
some future time.

Consider, as an example, the granting of update authorization on the loan rela-
tion of the bank database. Assume that, initially, the database administrator grants
update authorization on loan to users Uy, U, and Us, who may in turn pass on this
authorization to other users. The passing of authorization from one user to another
can be represented by an authorization graph. The nodes of this graph are the users.
The graph includes an edge U; — Uj if user U; grants update authorization on loan
to U;. The root of the graph is the database administrator. In the sample graph in
Figure 6.6, observe that user Us is granted authorization by both U; and Us; U, is
granted authorization by only U;.

A user has an authorization if and only if there is a path from the root of the autho-
rization graph (namely, the node representing the database administrator) down to
the node representing the user.

Suppose that the database administrator decides to revoke the authorization of
user U;. Since U, has authorization from U;, that authorization should be revoked as
well. However, Us was granted authorization by both U; and Us,. Since the database
administrator did not revoke update authorization on loan from Us, Us retains update
authorization on loan. If U, eventually revokes authorization from Us, then Us loses
the authorization.

A pair of devious users might attempt to defeat the rules for revocation of
authorization by granting authorization to each other, as shown in Figure 6.7a. If
the database administrator revokes authorization from U,, U, retains authorization
through Us, as in Figure 6.7b. If authorization is revoked subsequently from Us, Us
appears to retain authorization through U,, as in Figure 6.7c. However, when the
database administrator revokes authorization from Us, the edges from Us to U; and
from U to U3 are no longer part of a path starting with the database administrator.

Uy ——>Uu,

DBA U, Us

Us

Figure 6.6 Authorization-grant graph.
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DBA
U, u, ‘/\__/\ U,
(a)
DBA DBA
ul uz C U, ul uz U
(b) (c)

Figure 6.7 Attempt to defeat authorization revocation.

We require that all edges in an authorization graph be part of some path originating
with the database administrator. The edges between U, and Us are deleted, and the
resulting authorization graph is as in Figure 6.8.

6.5.5 Notion of Roles

Consider a bank where there are many tellers. Each teller must have the same types
of authorizations to the same set of relations. Whenever a new teller is appointed, she
will have to be given all these authorizations individually.

A better scheme would be to specify the authorizations that every teller is to be
given, and to separately identify which database users are tellers. The system can use
these two pieces of information to determine the authorizations of each person who
is a teller. When a new person is hired as a teller, a user identifier must be allocated
to him, and he must be identified as a teller. Individual permissions given to tellers
need not be specified again.

The notion of roles captures this scheme. A set of roles is created in the database.
Authorizations can be granted to roles, in exactly the same fashion as they are granted
to individual users. Each database user is granted a set of roles (which may be empty)
that he or she is authorized to perform.

DBA
u, u, u,

Figure 6.8 Authorization graph.
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In our bank database, examples of roles could include teller, branch-manager, audi-
tor, and system-administrator.

A less preferable alternative would be to create a teller userid, and permit each
teller to connect to the database using the teller userid. The problem with this scheme
is that it would not be possible to identify exactly which teller carried out a transac-
tion, leading to security risks. The use of roles has the benefit of requiring users to
connect to the database with their own userid.

Any authorization that can be granted to a user can be granted to a role. Roles
are granted to users just as authorizations are. And like other authorizations, a user
may also be granted authorization to grant a particular role to others. Thus, branch
managers may be granted authorization to grant the teller role.

6.5.6 Audit Trails

Many secure database applications require an audit trail be maintained. An audit
trail is a log of all changes (inserts/deletes/updates) to the database, along with in-
formation such as which user performed the change and when the change was per-
formed.

The audit trail aids security in several ways. For instance, if the balance on an
account is found to be incorrect, the bank may wish to trace all the updates performed
on the account, to find out incorrect (or fraudulent) updates, as well as the persons
who carried out the updates. The bank could then also use the audit trail to trace all
the updates performed by these persons, in order to find other incorrect or fraudulent
updates.

It is possible to create an audit trail by defining appropriate triggers on relation
updates (using system-defined variables that identify the user name and time). How-
ever, many database systems provide built-in mechanisms to create audit trails, which
are much more convenient to use. Details of how to create audit trails vary across
database systems, and you should refer the database system manuals for details.

6.6 Authorization in SQL

The SQL language offers a fairly powerful mechanism for defining authorizations.
We describe these mechanisms, as well as their limitations, in this section.

6.6.1 Privileges in SQL

The SQL standard includes the privileges delete, insert, select, and update. The select
privilege corresponds to the read privilege. SQL also includes a references privilege
that permits a user/role to declare foreign keys when creating relations. If the relation
to be created includes a foreign key that references attributes of another relation,
the user/role must have been granted references privilege on those attributes. The
reason that the references privilege is a useful feature is somewhat subtle; we explain
the reason later in this section.



Silberschatz-Korth-Sudarshan: | Il. Relational Databases 6. Integrity and Security © The McGraw-Hill

Database System

Companies, 2001

Concepts, Fourth Edition

6.6 Authorization in SQL 245

The SQL data-definition language includes commands to grant and revoke priv-
ileges. The grant statement is used to confer authorization. The basic form of this
statement is:

grant <privilege list> on <relation name or view name> to <user/role list>

The privilege list allows the granting of several privileges in one command.
The following grant statement grants users U;, Us, and Us select authorization on
the account relation:

grant select on account to Uy, Us, Us

The update authorization may be given either on all attributes of the relation or
on only some. If update authorization is included in a grant statement, the list of at-
tributes on which update authorization is to be granted optionally appears in paren-
theses immediately after the update keyword. If the list of attributes is omitted, the
update privilege will be granted on all attributes of the relation.

This grant statement gives users Uy, U, and Uz update authorization on the amount
attribute of the loan relation:

grant update (amount) on loan to Uy, Us, Us

The insert privilege may also specify a list of attributes; any inserts to the relation
must specify only these attributes, and the system either gives each of the remaining
attributes default values (if a default is defined for the attribute) or sets them to null.
The SQL references privilege is granted on specific attributes in a manner like
that for the update privilege. The following grant statement allows user U; to create
relations that reference the key branch-name of the branch relation as a foreign key:

grant references (branch-name) on branch to U,

Initially, it may appear that there is no reason ever to prevent users from creating for-
eign keys referencing another relation. However, recall from Section 6.2 that foreign-
key constraints restrict deletion and update operations on the referenced relation.
In the preceding example, if U; creates a foreign key in a relation r referencing the
branch-name attribute of the branch relation, and then inserts a tuple into r pertaining
to the Perryridge branch, it is no longer possible to delete the Perryridge branch from
the branch relation without also modifying relation r. Thus, the definition of a foreign
key by U restricts future activity by other users; therefore, there is a need for the
references privilege.

The privilege all privileges can be used as a short form for all the allowable priv-
ileges. Similarly, the user name public refers to all current and future users of the
system. SQL also includes a usage privilege that authorizes a user to use a specified
domain (recall that a domain corresponds to the programming-language notion of a
type, and may be user defined).
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6.6.2 Roles

Roles can be created in SQL:1999 as follows
create role teller

Roles can then be granted privileges just as the users can, as illustrated in this state-
ment:

grant select on account
to teller

Roles can be asigned to the users, as well as to some other roles, as these statements
show.

grant teller to john
create role manager
grant teller to manager
grant manager to mary

Thus the privileges of a user or a role consist of

o All privileges directly granted to the user/role

o All privileges granted to roles that have been granted to the user/role

Note that there can be a chain of roles; for example, the role employee may be granted
to all tellers. In turn the role teller is granted to all managers. Thus, the manager role in-
herits all privileges granted to the roles employee and to teller in addition to privileges
granted directly to manager.

6.6.3 The Privilege to Grant Privileges

By default, a user/role that is granted a privilege is not authorized to grant that priv-
ilege to another user/role. If we wish to grant a privilege and to allow the recipient
to pass the privilege on to other users, we append the with grant option clause to the
appropriate grant command. For example, if we wish to allow U; the select privilege
on branch and allow U to grant this privilege to others, we write

grant select on branch to U; with grant option

To revoke an authorization, we use the revoke statement. It takes a form almost
identical to that of grant:

revoke <privilege list> on <relation name or view name>
from <user/role list> [restrict | cascade]

Thus, to revoke the privileges that we granted previously, we write
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revoke select on branch from Uy, U,, Us
revoke update (amount) on loan from Uy, Us, Us
revoke references (branch-name) on branch from U

As we saw in Section 6.5.4, the revocation of a privilege from a user/role may cause
other users/roles also to lose that privilege. This behavior is called cascading of the
revoke. In most database systems, cascading is the default behavior; the keyword cas-
cade can thus be omitted, as we have done in the preceding examples. The revoke
statement may alternatively specify restrict:

revoke select on branch from U,, Us, Us restrict

In this case, the system returns an error if there are any cascading revokes, and does
not carry out the revoke action. The following revoke statement revokes only the
grant option, rather than the actual select privilege:

revoke grant option for select on branch from U,

6.6.4 Other Features

The creator of an object (relation/view /role) gets all privileges on the object, includ-
ing the privilege to grant privileges to others.

The SQL standard specifies a primitive authorization mechanism for the database
schema: Only the owner of the schema can carry out any modification to the schema.
Thus, schema modifications—such as creating or deleting relations, adding or drop-
ping attributes of relations, and adding or dropping indices—may be executed by
only the owner of the schema. Several database implementations have more power-
ful authorization mechanisms for database schemas, similar to those discussed ear-
lier, but these mechanisms are nonstandard.

6.6.5 Limitations of SQL Authorization

The current SQL standards for authorization have some shortcomings. For instance,
suppose you want all students to be able to see their own grades, but not the grades
of anyone else. Authorization must then be at the level of individual tuples, which is
not possible in the SQL standards for authorization.

Furthermore, with the growth in the Web, database accesses come primarily from
Web application servers. The end users may not have individual user identifiers on
the database, and indeed there may only be a single user identifier in the database
corresponding to all users of an application server.

The task of authorization then falls on the application server; the entire authoriza-
tion scheme of SQL is bypassed. The benefit is that fine-grained authorizations, such
as those to individual tuples, can be implemented by the application. The problems
are these:

e The code for checking authorization becomes intermixed with the rest of the
application code.
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e Implementing authorization through application code, rather than specifying
it declaratively in SQL, makes it hard to ensure the absence of loopholes. Be-
cause of an oversight, one of the application programs may not check for au-
thorization, allowing unauthorized users access to confidential data. Verifying
that all application programs make all required authorization checks involves
reading through all the application server code, a formidable task in a large
system.

6.7 Encryption and Authentication

The various provisions that a database system may make for authorization may still
not provide sufficient protection for highly sensitive data. In such cases, data may
be stored in encrypted form. It is not possible for encrypted data to be read unless
the reader knows how to decipher (decrypt) them. Encryption also forms the basis of
good schemes for authenticating users to a database.

6.7.1 Encryption Techniques

There are a vast number of techniques for the encryption of data. Simple encryption
techniques may not provide adequate security, since it may be easy for an unautho-
rized user to break the code. As an example of a weak encryption technique, consider
the substitution of each character with the next character in the alphabet. Thus,

Perryridge
becomes
Qfsszsjehf

If an unauthorized user sees only “Qfsszsjehf,” she probably has insufficient infor-
mation to break the code. However, if the intruder sees a large number of encrypted
branch names, she could use statistical data regarding the relative frequency of char-
acters to guess what substitution is being made (for example, E is the most common
letter in English text, followed by T, A, O, N, I and so on).

A good encryption technique has the following properties:

e It is relatively simple for authorized users to encrypt and decrypt data.

o It depends not on the secrecy of the algorithm, but rather on a parameter of
the algorithm called the encryption key.

e Its encryption key is extremely difficult for an intruder to determine.

One approach, the Data Encryption Standard (DES), issued in 1977, does both a
substitution of characters and a rearrangement of their order on the basis of an en-
cryption key. For this scheme to work, the authorized users must be provided with
the encryption key via a secure mechanism. This requirement is a major weakness,
since the scheme is no more secure than the security of the mechanism by which
the encryption key is transmitted. The DES standard was reaffirmed in 1983, 1987,
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and again in 1993. However, weakness in DES was recongnized in 1993 as reaching a
point where a new standard to be called the Advanced Encryption Standard (AES),
needed to be selected. In 2000, the Rijndael algorithm (named for the inventors
V. Rijmen and J. Daemen), was selected to be the AES. The Rijndael algorithm was
chosen for its significantly stronger level of security and its relative ease of imple-
mentation on current computer systems as well as such devices as smart cards. Like
the DES standard, the Rijndael algorithm is a shared-key (or, symmetric key) algo-
rithm in which the authorized users share a key.

Public-key encryption is an alternative scheme that avoids some of the problems
that we face with the DES. It is based on two keys; a public key and a private key. Each
user U; has a public key F; and a private key D;. All public keys are published: They
can be seen by anyone. Each private key is known to only the one user to whom the
key belongs. If user U; wants to store encrypted data, U; encrypts them using public
key E;. Decryption requires the private key D;.

Because the encryption key for each user is public, it is possible to exchange infor-
mation securely by this scheme. If user U; wants to share data with Us, U; encrypts
the data using E», the public key of Us,. Since only user U; knows how to decrypt the
data, information is transferred securely.

For public-key encryption to work, there must be a scheme for encryption that
can be made public without making it easy for people to figure out the scheme for
decryption. In other words, it must be hard to deduce the private key, given the public
key. Such a scheme does exist and is based on these conditions:

o There is an efficient algorithm for testing whether or not a number is prime.
e No efficient algorithm is known for finding the prime factors of a number.

For purposes of this scheme, data are treated as a collection of integers. We create
a public key by computing the product of two large prime numbers: P; and P,. The
private key consists of the pair (P, P»). The decryption algorithm cannot be used
successfully if only the product P; P, is known; it needs the individual values P; and
P,. Since all that is published is the product P; P, an unauthorized user would need
to be able to factor P; P to steal data. By choosing P and P to be sufficiently large
(over 100 digits), we can make the cost of factoring P; P, prohibitively high (on the
order of years of computation time, on even the fastest computers).

The details of public-key encryption and the mathematical justification of this tech-
nique’s properties are referenced in the bibliographic notes.

Although public-key encryption by this scheme is secure, it is also computation-
ally expensive. A hybrid scheme used for secure communication is as follows: DES
keys are exchanged via a public-key—encryption scheme, and DES encryption is used
on the data transmitted subsequently.

6.7.2 Authentication

Authentication refers to the task of verifying the identity of a person/software con-
necting to a database. The simplest form of authentication consists of a secret pass-
word which must be presented when a connection is opened to a database.
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Password-based authentication is used widely by operating systems as well as
databases. However, the use of passwords has some drawbacks, especially over a
network. If an eavesdropper is able to “sniff” the data being sent over the network,
she may be able to find the password as it is being sent across the network. Once
the eavesdropper has a user name and password, she can connect to the database,
pretending to be the legitimate user.

A more secure scheme involves a challenge-response system. The database sys-
tem sends a challenge string to the user. The user encrypts the challenge string using
a secret password as encryption key, and then returns the result. The database system
can verify the authenticity of the user by decrypting the string with the same secret
password, and checking the result with the original challenge string. This scheme
ensures that no passwords travel across the network.

Public-key systems can be used for encryption in challenge—response systems.
The database system encrypts a challenge string using the user’s public key and
sends it to the user. The user decrypts the string using her private key, and returns
the result to the database system. The database system then checks the response.
This scheme has the added benefit of not storing the secret password in the database,
where it could potentially be seen by system administrators.

Another interesting application of public-key encryption is in digital signatures
to verify authenticity of data; digital signatures play the electronic role of physical
signatures on documents. The private key is used to sign data, and the signed data
can be made public. Anyone can verify them by the public key, but no one could have
generated the signed data without having the private key. Thus, we can authenticate
the data; that is, we can verify that the data were indeed created by the person who
claims to have created them.

Furthermore, digital signatures also serve to ensure nonrepudiation. That is, in
case the person who created the data later claims she did not create it (the electronic
equivalent of claiming not to have signed the check), we can prove that that person
must have created the data (unless her private key was leaked to others).

6.8 Summary

o Integrity constraints ensure that changes made to the database by authorized
users do not result in a loss of data consistency.

e In earlier chapters, we considered several forms of constraints, including key
declarations and the declaration of the form of a relationship (many to many,
many to one, one to one). In this chapter, we considered several additional
forms of constraints, and discussed mechanisms for ensuring the maintenance
of these constraints.

e Domain constraints specify the set of possible values that may be associated
with an attribute. Such constraints may also prohibit the use of null values for
particular attributes.
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Referential-integrity constraints ensure that a value that appears in one rela-
tion for a given set of attributes also appears for a certain set of attributes in
another relation.

Domain constraints, and referential-integrity constraints are relatively easy to
test. Use of more complex constraints may lead to substantial overhead. We
saw two ways to express more general constraints. Assertions are declarative
expressions that state predicates that we require always to be true.

Triggers define actions to be executed automatically when certain events oc-
cur and corresponding conditions are satisfied. Triggers have many uses, such
as implementing business rules, audit logging, and even carrying out actions
outside the database system. Although triggers were added only lately to the
SQL standard as part of SQL:1999, most database systems have long imple-
mented triggers.

The data stored in the database need to be protected from unauthorized ac-
cess, malicious destruction or alteration, and accidental introduction of incon-
sistency.

It is easier to protect against accidental loss of data consistency than to protect
against malicious access to the database. Absolute protection of the database
from malicious abuse is not possible, but the cost to the perpetrator can be
made sufficiently high to deter most, if not all, attempts to access the database
without proper authority.

A user may have several forms of authorization on parts of the database. Au-
thorization is a means by which the database system can be protected against
malicious or unauthorized access.

A user who has been granted some form of authority may be allowed to pass
on this authority to other users. However, we must be careful about how au-
thorization can be passed among users if we are to ensure that such autho-
rization can be revoked at some future time.

Roles help to assign a set of privileges to a user according to on the role that
the user plays in the organization.

The various authorization provisions in a database system may not provide
sufficient protection for highly sensitive data. In such cases, data can be en-
crypted. Only a user who knows how to decipher (decrypt) the encrypted data
can read them. Encryption also forms the basis for secure authentication of
users.

Review Terms

e Domain constraints e Primary key constraint
o Check clause e Unique constraint

e Referential integrity e Foreign key constraint
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Exercises

6.1 Complete the SQL DDL definition of the bank database of Figure 6.2 to include
the relations loan and borrower.

6.2 Consider the following relational database:

employee (employee-name, street, city)

works (employee-name, company-name, salary)
company (company-name, city)

manages (employee-name, manager-narme)

Give an SQL DDL definition of this database. Identify referential-integrity con-
straints that should hold, and include them in the DDL definition.

6.3 Referential-integrity constraints as defined in this chapter involve exactly two
relations. Consider a database that includes the following relations:

salaried-worker (name, office, phone, salary)
hourly-worker (name, hourly-wage)
address (name, street, city)

Suppose that we wish to require that every name that appears in address appear
in either salaried-worker or hourly-worker, but not necessarily in both.

a. Propose a syntax for expressing such constraints.
b. Discuss the actions that the system must take to enforce a constraint of this
form.
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6.4 SQL allows a foreign-key dependency to refer to the same relation, as in the
following example:

create table manager
(employee-name  char(20) not null
manager-name  char(20) not null,
primary key employee-name,
foreign key (manager-name) references manager
on delete cascade )

Here, employee-name is a key to the table manager, meaning that each employee
has at most one manager. The foreign-key clause requires that every manager
also be an employee. Explain exactly what happens when a tuple in the relation
manager is deleted.

6.5 Suppose there are two relations r and s, such that the foreign key B of r refer-
ences the primary key A of s. Describe how the trigger mechanism can be used
to implement the on delete cascade option, when a tuple is deleted from s.

6.6 Write an assertion for the bank database to ensure that the assets value for the
Perryridge branch is equal to the sum of all the amounts lent by the Perryridge
branch.

6.7 Write an SQL trigger to carry out the following action: On delete of an account,
for each owner of the account, check if the owner has any remaining accounts,
and if she does not, delete her from the depositor relation.

6.8 Consider a view branch-cust defined as follows:

create view branch-cust as
select branch-name, customer-name
from depositor, account
where depositor.account-number = account.account-number

Suppose that the view is materialized, that is, the view is computed and stored.
Write active rules to maintain the view, that is, to keep it up to date on insertions
to and deletions from depositor or account. Do not bother about updates.

6.9 Make a list of security concerns for a bank. For each item on your list, state
whether this concern relates to physical security, human security, operating-
system security, or database security.

6.10 Using the relations of our sample bank database, write an SQL expression to
define the following views:

a. A view containing the account numbers and customer names (but not the
balances) for all accounts at the Deer Park branch.
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b. A view containing the names and addresses of all customers who have an
account with the bank, but do not have a loan.

c. Aview containing the name and average account balance of every customer
of the Rock Ridge branch.

6.11 For each of the views that you defined in Exercise 6.10, explain how updates
would be performed (if they should be allowed at all). Hint: See the discussion
of views in Chapter 3.

6.12 In Chapter 3, we described the use of views to simplify access to the database
by users who need to see only part of the database. In this chapter, we described
the use of views as a security mechanism. Do these two purposes for views ever
conflict? Explain your answer.

6.13 What is the purpose of having separate categories for index authorization and
resource authorization?

6.14 Database systems that store each relation in a separate operating-system file
may use the operating system’s security and authorization scheme, instead of
defining a special scheme themselves. Discuss an advantage and a disadvantage
of such an approach.

6.15 What are two advantages of encrypting data stored in the database?

6.16 Perhaps the most important data items in any database system are the pass-
words that control access to the database. Suggest a scheme for the secure stor-
age of passwords. Be sure that your scheme allows the system to test passwords
supplied by users who are attempting to log into the system.

Bibliographical Notes
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This chapter continues our discussion of design issues in relational databases. In gen-
eral, the goal of a relational-database design is to generate a set of relation schemas
that allows us to store information without unnecessary redundancy, yet also allows
us to retrieve information easily. One approach is to design schemas that are in an
appropriate normal form. To determine whether a relation schema is in one of the
desirable normal forms, we need additional information about the real-world enter-
prise that we are modeling with the database. In this chapter, we introduce the notion
of functional dependencies. We then define normal forms in terms of functional de-
pendencies and other types of data dependencies.

7.1 First Normal Form

The first of the normal forms that we study, first normal form, imposes a very basic
requirement on relations; unlike the other normal forms, it does not require addi-
tional information such as functional dependencies.

A domain is atomic if elements of the domain are considered to be indivisible
units. We say that a relation schema R is in first normal form (1NF) if the domains of
all attributes of R are atomic.

A set of names is an example of a nonatomic value. For example, if the schema of
a relation employee included an attribute children whose domain elements are sets of
names, the schema would not be in first normal form.

Composite attributes, such as an attribute address with component attributes street
and city, also have nonatomic domains.

Integers are assumed to be atomic, so the set of integers is an atomic domain; the
set of all sets of integers is a nonatomic domain. The distinction is that we do not
normally consider integers to have subparts, but we consider sets of integers to have
subparts—namely, the integers making up the set. But the important issue is not
what the domain itself is, but rather how we use domain elements in our database.

257
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The domain of all integers would be nonatomic if we considered each integer to be
an ordered list of digits.

As a practical illustration of the above point, consider an organization that as-
signs employees identification numbers of the following form: The first two letters
specify the department and the remaining four digits are a unique number within
the department for the employee. Examples of such numbers would be C'S0012 and
FE FE1127.Such identification numbers can be divided into smaller units, and are there-
fore nonatomic. If a relation schema had an attribute whose domain consists of iden-
tification numbers encoded as above, the schema would not be in first normal form.

When such identification numbers are used, the department of an employee can
be found by writing code that breaks up the structure of an identification number.
Doing so requires extra programming, and information gets encoded in the applica-
tion program rather than in the database. Further problems arise if such identification
numbers are used as primary keys: When an employee changes department, the em-
ployee’s identification number must be changed everywhere it occurs, which can be
a difficult task, or the code that interprets the number would give a wrong result.

The use of set valued attributes can lead to designs with redundant storage of data,
which in turn can result in inconsistencies. For instance, instead of the relationship
between accounts and customers being represented as a separate relation depositor,
a database designer may be tempted to store a set of owners with each account, and
a set of accounts with each customer. Whenever an account is created, or the set of
owners of an account is updated, the update has to be performed at two places; fail-
ure to perform both updates can leave the database in an inconsistent state. Keeping
only one of these sets would avoid repeated information, but would complicate some
queries. Set valued attributes are also more complicated to write queries with, and
more complicated to reason about.

In this chapter we consider only atomic domains, and assume that relations are in
first normal form. Although we have not mentioned first normal form earlier, when
we introduced the relational model in Chapter 3 we stated that attribute values must
be atomic.

Some types of nonatomic values can be useful, although they should be used with
care. For example, composite valued attributes are often useful, and set valued at-
tributes are also useful in many cases, which is why both are supported in the E-R
model. In many domains where entities have a complex structure, forcing a first nor-
mal form representation represents an unnecessary burden on the application pro-
grammer, who has to write code to convert data into atomic form. There is also a run-
time overhead of converting data back and forth from the atomic form. Support for
nonatomic values can thus be very useful in such domains. In fact, modern database
systems do support many types of nonatomic values, as we will see in Chapters 8
and 9. However, in this chapter we restrict ourselves to relations in first normal form.

7.2 Pitfalls in Relational-Database Design

Before we continue our discussion of normal forms, let us look at what can go wrong
in a bad database design. Among the undesirable properties that a bad design may
have are:
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e Repetition of information

e Inability to represent certain information

We shall discuss these problems with the help of a modified database design for our
banking example: In contrast to the relation schema used in Chapters 3 to 6, sup-
pose the information concerning loans is kept in one single relation, lending, which is
defined over the relation schema

Lending-schema = (branch-name, branch-city, assets, customer-name,
loan-number, amount)

Figure 7.1 shows an instance of the relation lending (Lending-schema). A tuple t in the
lending relation has the following intuitive meaning:

o t[assets] is the asset figure for the branch named ¢[branch-name].
o t[branch-city] is the city in which the branch named t[branch-name] is located.

~

[
[
[loan-number] is the number assigned to a loan made by the branch named
[branch-name] to the customer named t[customer-name].

[

o t[amount] is the amount of the loan whose number is t[loan-number].

Suppose that we wish to add a new loan to our database. Say that the loan is made
by the Perryridge branch to Adams in the amount of $1500. Let the loan-number be
L-31. In our design, we need a tuple with values on all the attributes of Lending-
schema. Thus, we must repeat the asset and city data for the Perryridge branch, and
must add the tuple

(Perryridge, Horseneck, 1700000, Adams, L-31, 1500)

customer- | loan-
branch-name | branch-city assets narme number | amount
Downtown | Brooklyn 9000000 | Jones L-17 1000
Redwood Palo Alto 2100000 | Smith L-23 2000
Perryridge Horseneck | 1700000 | Hayes L-15 1500
Downtown | Brooklyn 9000000 | Jackson L-14 1500
Mianus Horseneck 400000 | Jones L-93 500
Round Hill Horseneck | 8000000 | Turner L-11 900
Pownal Bennington 300000 | Williams L-29 1200
North Town | Rye 3700000 | Hayes L-16 1300
Downtown | Brooklyn 9000000 | Johnson L-18 2000
Perryridge Horseneck | 1700000 | Glenn L-25 2500
Brighton Brooklyn 7100000 | Brooks L-10 2200
Figure 7.1 Sample lending relation.



Silberschatz-Korth-Sudarshan: | Il. Relational Databases 1. Relational-Database © The McGraw-Hill

Database System

Design Companies, 2001

Concepts, Fourth Edition

260 Chapter 7 Relational-Database Design

to the lending relation. In general, the asset and city data for a branch must appear
once for each loan made by that branch.

The repetition of information in our alternative design is undesirable. Repeating
information wastes space. Furthermore, it complicates updating the database. Sup-
pose, for example, that the assets of the Perryridge branch change from 1700000
to 1900000. Under our original design, one tuple of the branch relation needs to be
changed. Under our alternative design, many tuples of the lending relation need to be
changed. Thus, updates are more costly under the alternative design than under the
original design. When we perform the update in the alternative database, we must
ensure that every tuple pertaining to the Perryridge branch is updated, or else our
database will show two different asset values for the Perryridge branch.

That observation is central to understanding why the alternative design is bad. We
know that a bank branch has a unique value of assets, so given a branch name we can
uniquely identify the assets value. On the other hand, we know that a branch may
make many loans, so given a branch name, we cannot uniquely determine a loan
number. In other words, we say that the functional dependency

branch-name — assets

holds on Lending-schema, but we do not expect the functional dependency branch-
name — loan-number to hold. The fact that a branch has a particular value of assets,
and the fact that a branch makes a loan are independent, and, as we have seen, these
facts are best represented in separate relations. We shall see that we can use functional
dependencies to specify formally when a database design is good.

Another problem with the Lending-schema design is that we cannot represent di-
rectly the information concerning a branch (branch-name, branch-city, assets) unless
there exists at least one loan at the branch. This is because tuples in the lending rela-
tion require values for loan-number, amount, and customer-name.

One solution to this problem is to introduce null values, as we did to handle up-
dates through views. Recall, however, that null values are difficult to handle, as we
saw in Section 3.3.4. If we are not willing to deal with null values, then we can create
the branch information only when the first loan application at that branch is made.
Worse, we would have to delete this information when all the loans have been paid.
Clearly, this situation is undesirable, since, under our original database design, the
branch information would be available regardless of whether or not loans are cur-
rently maintained in the branch, and without resorting to null values.

7.3 Functional Dependencies

Functional dependencies play a key role in differentiating good database designs
from bad database designs. A functional dependency is a type of constraint that is a
generalization of the notion of key, as discussed in Chapters 2 and 3.

7.3.1 Basic Concepts

Functional dependencies are constraints on the set of legal relations. They allow us
to express facts about the enterprise that we are modeling with our database.



‘ Silberschatz-Korth-Sudarshan: | Il. Relational Databases 1. Relational-Database © The McGraw-Hill

Database System

Design Companies, 2001

Concepts, Fourth Edition

7.3 Functional Dependencies 261

In Chapter 2, we defined the notion of a superkey as follows. Let R be a relation
schema. A subset K of R is a superkey of R if, in any legal relation r(R), for all pairs
t1 and ¢, of tuples in r such that ¢; # ¢, then t1[K| # t3[K]. Thatis, no two tuples
in any legal relation r(R) may have the same value on attribute set K.

The notion of functional dependency generalizes the notion of superkey. Consider
a relation schema R, and let &« C R and 3 C R. The functional dependency

a—f

holds on schema R if, in any legal relation r(R), for all pairs of tuples ¢t; and t5 in r
such that ¢1[a] = t2[a], itis also the case that t1[3] = t2[F].

Using the functional-dependency notation, we say that K is a superkey of R if K
— R. That is, K is a superkey if, whenever t;[K] = t,[K], it is also the case that
t1[R] = to[R] (thatis, t; = t,).

Functional dependencies allow us to express constraints that we cannot express
with superkeys. Consider the schema

Loan-info-schema = (loan-number, branch-name, customer-name, amount)

which is simplification of the Lending-schema that we saw earlier. The set of functional
dependencies that we expect to hold on this relation schema is

loan-number — amount
loan-number — branch-name

We would not, however, expect the functional dependency
loan-number — customer-name

to hold, since, in general, a given loan can be made to more than one customer (for
example, to both members of a husband —wife pair).
We shall use functional dependencies in two ways:

1. To test relations to see whether they are legal under a given set of functional
dependencies. If a relation r is legal under a set F of functional dependencies,
we say that r satisfies F.

2. To specify constraints on the set of legal relations. We shall thus concern our-
selves with only those relations that satisfy a given set of functional dependen-
cies. If we wish to constrain ourselves to relations on schema R that satisfy a
set F of functional dependencies, we say that F holds on R.

Let us consider the relation r of Figure 7.2, to see which functional dependencies
are satisfied. Observe that A — C is satisfied. There are two tuples that have an A
value of a;. These tuples have the same C value—namely, c;. Similarly, the two tu-
ples with an A value of a; have the same C value, ¢;. There are no other pairs of
distinct tuples that have the same A value. The functional dependency C — A is not
satisfied, however. To see that it is not, consider the tuples t; = (a2, b3, c2, ds) and
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Figure 7.2 Sample relation r.

to = (as,bs, c2,ds). These two tuples have the same C values, ¢z, but they have dif-
ferent A values, as and a3, respectively. Thus, we have found a pair of tuples ¢; and
to such that tq [C] = 19 [C}, but tl[A] 7& tg[A]

Many other functional dependencies are satisfied by 7, including, for example, the
functional dependency AB — D. Note that we use AB as a shorthand for {A,B}, to
conform with standard practice. Observe that there is no pair of distinct tuples ¢; and
to such that t1[AB] = t2[AB]. Therefore, if t;[AB] = t32[AB], it mustbe thatt; = ¢,
and, thus, t;[D] = t3[D]. So, r satisfies AB — D.

Some functional dependencies are said to be trivial because they are satisfied by
all relations. For example, A — A is satisfied by all relations involving attribute A.
Reading the definition of functional dependency literally, we see that, for all tuples t;
and ¢ such that ¢1[A] = t9[A], it is the case that t1[A] = t3[A]. Similarly, AB — A
is satisfied by all relations involving attribute A. In general, a functional dependency
of the form o — [ is trivial if 5 C «.

To distinguish between the concepts of a relation satisfying a dependency and a
dependency holding on a schema, we return to the banking example. If we consider
the customer relation (on Customer-schema) in Figure 7.3, we see that customer-street
— customer-city is satistied. However, we believe that, in the real world, two cities

| customer-name | customer-street | customer-city |

Jones Main Harrison
Smith North Rye
Hayes Main Harrison
Curry North Rye
Lindsay Park Pittsfield
Turner Putnam Stamford
Williams Nassau Princeton
Adams Spring Pittsfield
Johnson Alma Palo Alto
Glenn Sand Hill Woodside
Brooks Senator Brooklyn
Green Walnut Stamford

Figure 7.3

The customer relation.
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| loan-number | branch-name | amount |

L-17 Downtown 1000
L-23 Redwood 2000
L-15 Perryridge 1500
L-14 Downtown 1500
L-93 Mianus 500
L-11 Round Hill 900
L-29 Pownal 1200
L-16 North Town | 1300
L-18 Downtown 2000
L-25 Perryridge 2500
L-10 Brighton 2200

Figure 7.4 The loan relation.

can have streets with the same name. Thus, it is possible, at some time, to have an
instance of the customer relation in which customer-street — customer-city is not satis-
fied. So, we would not include customer-street — customer-city in the set of functional
dependencies that hold on Customer-schema.

In the loan relation (on Loan-schema) of Figure 7.4, we see that the dependency loan-
number — amount is satisfied. In contrast to the case of customer-city and customer-
street in Customer-schema, we do believe that the real-world enterprise that we are
modeling requires each loan to have only one amount. Therefore, we want to require
that loan-number — amount be satistied by the loan relation at all times. In other words,
we require that the constraint loan-number — amount hold on Loan-schema.

In the branch relation of Figure 7.5, we see that branch-name — assets is satisfied,
as is assets — branch-name. We want to require that branch-name — assets hold on
Branch-schema. However, we do not wish to require that assets — branch-name hold,
since it is possible to have several branches that have the same asset value.

In what follows, we assume that, when we design a relational database, we first
list those functional dependencies that must always hold. In the banking example,
our list of dependencies includes the following:

| branch-name | branch-city | assets |

Downtown | Brooklyn 9000000
Redwood Palo Alto 2100000
Perryridge | Horseneck | 1700000
Mianus Horseneck | 400000
Round Hill | Horseneck | 8000000
Pownal Bennington | 300000
North Town | Rye 3700000
Brighton Brooklyn 7100000

Figure 7.5 The branch relation.
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On Branch-schema:

branch-name — branch-city
branch-name — assets

On Customer-schema:

customer-name — customer-city
customer-name — customer-street

On Loan-schema:

loan-number — amount
loan-number — branch-name

On Borrower-schema:

No functional dependencies

On Account-schema:

account-number — branch-name
account-number — balance

On Depositor-schema:

No functional dependencies

7.3.2 Closure of a Set of Functional Dependencies

It is not sufficient to consider the given set of functional dependencies. Rather, we
need to consider all functional dependencies that hold. We shall see that, given a set F
of functional dependencies, we can prove that certain other functional dependencies
hold. We say that such functional dependencies are “logically implied” by F.

More formally, given a relational schema R, a functional dependency f on Ris log-
ically implied by a set of functional dependencies F' on R if every relation instance
r(R) that satisfies F' also satisfies f.

Suppose we are given a relation schema R = (4, B, C, G, H, I) and the set of
functional dependencies

A—B
A—C
CG—H
CG—1
B—H

The functional dependency
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is logically implied. That is, we can show that, whenever our given set of functional
dependencies holds on a relation, A — H must also hold on the relation. Suppose that
t1 and ¢, are tuples such that

ti[A] = t2[4]

Since we are given that A — B, it follows from the definition of functional dependency
that

t1[B] = t2[B]

Then, since we are given that B — H, it follows from the definition of functional
dependency that
t1[H] = t2[H]

Therefore, we have shown that, whenever t; and ¢, are tuples such that ¢, [A] = t3[A4],
it must be that ¢t,[H] = to[H]. But that is exactly the definition of A — H.

Let F be a set of functional dependencies. The closure of F, denoted by F'*, is the
set of all functional dependencies logically implied by F. Given F, we can compute
F* directly from the formal definition of functional dependency. If F were large, this
process would be lengthy and difficult. Such a computation of F* requires argu-
ments of the type just used to show that A — H is in the closure of our example set
of dependencies.

Axioms, or rules of inference, provide a simpler technique for reasoning about
functional dependencies. In the rules that follow, we use Greek letters (o, 3, v, ... )
for sets of attributes, and uppercase Roman letters from the beginning of the alphabet
for individual attributes. We use a3 to denote o« U (3.

We can use the following three rules to find logically implied functional dependen-
cies. By applying these rules repeatedly, we can find all of F'*, given F. This collection
of rules is called Armstrong’s axioms in honor of the person who first proposed it.

o Reflexivity rule. If a is a set of attributes and 8 C «, then o — 3 holds.

e Augmentation rule. If « — [ holdsand v is aset of attributes, thenyav — (3
holds.

e Transitivity rule. If « — 3 holds and 8 — v holds, then a — ~ holds.

Armstrong’s axioms are sound, because they do not generate any incorrect func-
tional dependencies. They are complete, because, for a given set F of functional de-
pendencies, they allow us to generate all F'*. The bibliographical notes provide ref-
erences for proofs of soundness and completeness.

Although Armstrong’s axioms are complete, it is tiresome to use them directly for
the computation of F'*. To simplify matters further, we list additional rules. It is pos-
sible to use Armstrong’s axioms to prove that these rules are correct (see Exercises 7.8,
7.9, and 7.10).

e Union rule. If « — 8 holds and «a — ~ holds, then o« — 3~ holds.
e Decomposition rule. If « — v holds, then & — 5 holds and a — ~ holds.
e Pseudotransitivity rule. If « — 3 holds and 73 — ¢ holds, then ay — ¢ holds.
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Let us apply our rules to the example of schema R = (4, B, C, G, H, I) and the
set F of functional dependencies {A — B, A — C, CG — H, CG — I, B — H}. We
list several members of F'* here:

e A — H.Since A — Band B — H hold, we apply the transitivity rule. Observe
that it was much easier to use Armstrong’s axioms to show that A — H holds
than it was to argue directly from the definitions, as we did earlier in this
section.

e CG — HI.Since CG — H and CG — I, the union rule implies that CG' — HI.

e AG — I.Since A — C and CG — I, the pseudotransitivity rule implies that
AG — I holds.
Another way of finding that AG — I holds is as follows. We use the aug-
mentation rule on A — C' to infer AG — CG. Applying the transitivity rule to
this dependency and CG — I, we infer AG — 1.

Figure 7.6 shows a procedure that demonstrates formally how to use Armstrong’s
axioms to compute '+, In this procedure, when a functional dependency is added to
F, it may be already present, and in that case there is no change to F'*. We will also
see an alternative way of computing F'* in Section 7.3.3.

The left-hand and right-hand sides of a functional dependency are both subsets
of R. Since a set of size n has 2" subsets, there are a total of 2 x 2" = 2"*! possible
functional dependencies, where 7 is the number of attributes in R. Each iteration of
the repeat loop of the procedure, except the last iteration, adds at least one functional
dependency to F'*. Thus, the procedure is guaranteed to terminate.

7.3.3 Closure of Attribute Sets

To test whether a set a is a superkey, we must devise an algorithm for computing the
set of attributes functionally determined by «. One way of doing this is to compute
F, take all functional dependencies with « as the left-hand side, and take the union
of the right-hand sides of all such dependencies. However, doing so can be expensive,
since F'* can be large.

Ft=F
repeat
for each functional dependency f in F*
apply reflexivity and augmentation rules on f
add the resulting functional dependencies to F'*
for each pair of functional dependencies f; and f> in F*
if fi and f> can be combined using transitivity
add the resulting functional dependency to F'*
until F* does not change any further

Figure 7.6 A procedure to compute F't.
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An efficient algorithm for computing the set of attributes functionally determined
by « is useful not only for testing whether « is a superkey, but also for several other
tasks, as we will see later in this section.

Let « be a set of attributes. We call the set of all attributes functionally determined
by « under a set F of functional dependencies the closure of o under F; we denote
it by at. Figure 7.7 shows an algorithm, written in pseudocode, to compute a™. The
input is a set F of functional dependencies and the set « of attributes. The output is
stored in the variable result.

To illustrate how the algorithm works, we shall use it to compute (AG)™" with the
functional dependencies defined in Section 7.3.2. We start with result = AG. The first
time that we execute the while loop to test each functional dependency, we find that

e A — B causes us to include B in result. To see this fact, we observe that A — B
isin F, A C result (which is AG), so result := result U B.

e A — C causes result to become ABCG.
e CG — H causes result to become ABCGH.
e CG — I causes result to become ABCGHI.

The second time that we execute the while loop, no new attributes are added to result,
and the algorithm terminates.

Let us see why the algorithm of Figure 7.7 is correct. The first step is correct, since
o — o always holds (by the reflexivity rule). We claim that, for any subset 3 of result,
a — f3. Since we start the while loop with a — result being true, we can add  to result
only if 5 C result and 3 — ~. But then result — [ by the reflexivity rule, so & — § by
transitivity. Another application of transitivity shows that o — v (using o — 5 and
8 — 7). The union rule implies that o — result U , so « functionally determines any
new result generated in the while loop. Thus, any attribute returned by the algorithm
isina®.

It is easy to see that the algorithm finds all a. If there is an attribute in o™ that
is not yet in result, then there must be a functional dependency 5 — ~ for which 5 C
result, and at least one attribute in v is not in result.

It turns out that, in the worst case, this algorithm may take an amount of time
quadratic in the size of F. There is a faster (although slightly more complex) algo-
rithm that runs in time linear in the size of F; that algorithm is presented as part of
Exercise 7.14.

result == «;
while (changes to result) do
for each functional dependency 5 — v in F do
begin
if 5 C result then result := result U ~;
end

Figure 7.7 An algorithm to compute ot, the closure of o under F.
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There are several uses of the attribute closure algorithm:

e To test if « is a superkey, we compute o, and check if a™ contains all at-
tributes of R.

e We can check if a functional dependency a — [ holds (or, in other words,
is in F't), by checking if 3 C a. That is, we compute a™ by using attribute
closure, and then check if it contains (. This test is particularly useful, as we
will see later in this chapter.

e It gives us an alternative way to compute F7: For each v C R, we find the
closure 4+, and for each S C 4, we output a functional dependency v — S.

7.3.4 Canonical Cover

Suppose that we have a set of functional dependencies /" on a relation schema. When-
ever a user performs an update on the relation, the database system must ensure that
the update does not violate any functional dependencies, that is, all the functional
dependencies in F are satisfied in the new database state.

The system must roll back the update if it violates any functional dependencies in
the set .

We can reduce the effort spent in checking for violations by testing a simplified set
of functional dependencies that has the same closure as the given set. Any database
that satisfies the simplified set of functional dependencies will also satisfy the origi-
nal set, and vice versa, since the two sets have the same closure. However, the sim-
plified set is easier to test. We shall see how the simplified set can be constructed in a
moment. First, we need some definitions.

An attribute of a functional dependency is said to be extraneous if we can remove
it without changing the closure of the set of functional dependencies. The formal
definition of extraneous attributes is as follows. Consider a set F of functional de-
pendencies and the functional dependency oo — Jin F.

o Attribute A is extraneous in o if A € «, and F logically implies (F — {a —
A1) U (e —A4) — 5}

o Attribute A is extraneousin fif A € (3, and the set of functional dependencies
(F—{a—phHUu{a — (B — A)}logically implies F.

For example, suppose we have the functional dependencies AB — C'and A — C
in F. Then, B is extraneous in AB — C. As another example, suppose we have the
functional dependencies AB — CD and A — C in F. Then C would be extraneous
in the right-hand side of AB — CD.

Beware of the direction of the implications when using the definition of extraneous
attributes: If you exchange the left-hand side with right-hand side, the implication
will always hold. That is, (F — {a — }) U {(a — A) — B} always logically implies
F, and also F always logically implies (F — {a — f}) U{a — (8 — A)}
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Here is how we can test efficiently if an attribute is extraneous. Let R be the rela-
tion schema, and let F' be the given set of functional dependencies that hold on R.
Consider an attribute 4 in a dependency o — .

e If A € 3, to check if A is extraneous consider the set
F'=(F —{a—=phu{a — (8 — 4)}
and check if & — A can be inferred from F”. To do so, compute o (the closure
of o) under F”; if o™ includes A, then A is extraneous in 3.

e If A € q, to check if A is extraneous, let v = a — {A}, and check if v —
can be inferred from F'. To do so, compute " (the closure of v) under F; if v+
includes all attributes in (3, then A is extraneous in «.

For example, suppose F' contains AB — CD, A — E, and E — C. To check
if C is extraneous in AB — CD, we compute the attribute closure of AB under
F'"={AB — D, A — E,and E — C}. The closure is ABC DE, which includes CD,
so we infer that C' is extraneous.

A canonical cover F, for F is a set of dependencies such that F logically implies all
dependencies in F,, and F logically implies all dependencies in F. Furthermore, F.
must have the following properties:

e No functional dependency in F, contains an extraneous attribute.

e Each left side of a functional dependency in F¢ is unique. That is, there are no
two dependencies o; — (1 and ay — s in F, such that oy = as.

A canonical cover for a set of functional dependencies F can be computed as de-
picted in Figure 7.8. It is important to note that when checking if an attribute is extra-
neous, the check uses the dependencies in the current value of F,, and not the depen-
dencies in F. If a functional dependency contains only one attribute in its right-hand
side, for example A — C, and that attribute is found to be extraneous, we would get a
functional dependency with an empty right-hand side. Such functional dependencies
should be deleted.

The canonical cover of F, F,, can be shown to have the same closure as F'; hence,
testing whether £ is satisfied is equivalent to testing whether F is satisfied. However,
F, is minimal in a certain sense—it does not contain extraneous attributes, and it

F.=F
repeat
Use the union rule to replace any dependencies in F, of the form
a; — frand a; — fowitha; — f; fo.
Find a functional dependency o — 3 in F, with an extraneous
attribute either in « or in 3.
/* Note: the test for extraneous attributes is done using F,, not £ */
If an extraneous attribute is found, delete it from o — .
until F, does not change.

Figure 7.8 Computing canonical cover
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combines functional dependencies with the same left side. It is cheaper to test I,
than it is to test F itself.
Consider the following set F of functional dependencies on schema (A, B, C):

A — BC
B—C
A—B
AB — C

Let us compute the canonical cover for F.

e There are two functional dependencies with the same set of attributes on the
left side of the arrow:

A — BC
A— B

We combine these functional dependencies into A — BC.

e Ais extraneous in AB — C because F logically implies (F — {AB — C}) U
{B — C1}. This assertion is true because B — C is already in our set of func-
tional dependencies.

e Cis extraneous in A — BC, since A — BC is logically implied by A — B and
B—C.

Thus, our canonical cover is

A—B
B—C

Given a set F of functional dependencies, it may be that an entire functional de-
pendency in the set is extraneous, in the sense that dropping it does not change the
closure of I'. We can show that a canonical cover F,. of F' contains no such extraneous
functional dependency. Suppose that, to the contrary, there were such an extraneous
functional dependency in F.. The right-side attributes of the dependency would then
be extraneous, which is not possible by the definition of canonical covers.

A canonical cover might not be unique. For instance, consider the set of functional
dependencies F' = {A — BC, B — AC, and C — AB}. If we apply the extraneity
test to A — BC, we find that both B and C are extraneous under F. However, it is
incorrect to delete both! The algorithm for finding the canonical cover picks one of
the two, and deletes it. Then,

1. If C is deleted, we get the set F/ = {A — B, B — AC, and C — AB}. Now,
B is not extraneous in the righthand side of A — B under F’. Continuing the
algorithm, we find A and B are extraneous in the right-hand side of C — AB,
leading to two canonical covers

F.={A— B,B— (C,and C — A}, and
F.={A— B,B— AC,and C — B}.
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2. If B is deleted, we get the set {A — C, B — AC, and C — AB}. This case is
symmetrical to the previous case, leading to the canonical covers

F.={A—C,C — B,and B — A}, and
F.={A—-C,B—C,and C — AB}.

As an exercise, can you find one more canonical cover for F'?

7.4 Decomposition

The bad design of Section 7.2 suggests that we should decompose a relation schema
that has many attributes into several schemas with fewer attributes. Careless decom-
position, however, may lead to another form of bad design.

Consider an alternative design in which we decompose Lending-schema into the
following two schemas:

Branch-customer-schema = (branch-name, branch-city, assets, customer-name)
Customer-loan-schema = (customer-name, loan-number, amount)

Using the lending relation of Figure 7.1, we construct our new relations branch-customer
(Branch-customer) and customer-loan (Customer-loan-schema):

branch-customer = Hbranch-name, branch-city, assets, customer-name (lendlng)
customer-loan = chstomer-name, loan-number, amount (lendlng)

Figures 7.9 and 7.10, respectively, show the resulting branch-customer and customer-
name relations.

Of course, there are cases in which we need to reconstruct the loan relation. For
example, suppose that we wish to find all branches that have loans with amounts
less than $1000. No relation in our alternative database contains these data. We need
to reconstruct the lending relation. It appears that we can do so by writing

branch-customer X customer-loan

| branch-name | branch-city | assets | customer-name |
Downtown Brooklyn 9000000 Jones
Redwood Palo Alto 2100000 Smith
Perryridge Horseneck 1700000 Hayes
Downtown Brooklyn 9000000 Jackson
Mianus Horseneck 400000 Jones
Round Hill Horseneck 8000000 Turner
Pownal Bennington 300000 Williams
North Town | Rye 3700000 Hayes
Downtown Brooklyn 9000000 Johnson
Perryridge Horseneck 1700000 Glenn
Brighton Brooklyn 7100000 Brooks

Figure 7.9 The relation branch-customer.
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| customer-name | loan-number | amount |

Jones L-17 1000
Smith L-23 2000
Hayes L-15 1500
Jackson L-14 1500
Jones L-93 500
Turner L-11 900
Williams L-29 1200
Hayes L-16 1300
Johnson L-18 2000
Glenn L-25 2500
Brooks L-10 2200

Figure 7.10  The relation customer-loan.

Figure 7.11 shows the result of computing branch-customer X customer-loan. When
we compare this relation and the lending relation with which we started (Figure 7.1),
we notice a difference: Although every tuple that appears in the lending relation ap-
pears in branch-customer X customer-loan, there are tuples in branch-customer X
customer-loan that are not in lending. In our example, branch-customer X customer-loan
has the following additional tuples:

(Downtown, Brooklyn, 9000000, Jones, L-93, 500)
(Perryridge, Horseneck, 1700000, Hayes, L-16, 1300)
(Mianus, Horseneck, 400000, Jones, L-17, 1000)
(North Town, Rye, 3700000, Hayes, L-15, 1500)

Consider the query, “Find all bank branches that have made a loan in an amount less
than $1000.” If we look back at Figure 7.1, we see that the only branches with loan
amounts less than $1000 are Mianus and Round Hill. However, when we apply the
expression

yranch-name (Tamount < 1000 (branch-customer X customer-loan))

we obtain three branch names: Mianus, Round Hill, and Downtown.

A closer examination of this example shows why. If a customer happens to have
several loans from different branches, we cannot tell which loan belongs to which
branch. Thus, when we join branch-customer and customer-loan, we obtain not only
the tuples we had originally in lending, but also several additional tuples. Although
we have more tuples in branch-customer X customer-loan, we actually have less in-
formation. We are no longer able, in general, to represent in the database information
about which customers are borrowers from which branch. Because of this loss of in-
formation, we call the decomposition of Lending-schema into Branch-customer-schema
and customer-loan-schema a lossy decomposition, or a lossy-join decomposition. A
decomposition that is not a lossy-join decomposition is a lossless-join decomposi-
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customer- | loan-
branch-name | branch-city assets name number | amount
Downtown | Brooklyn 9000000 | Jones L-17 1000
Downtown | Brooklyn 9000000 | Jones L-93 500
Redwood Palo Alto 2100000 | Smith L-23 2000
Perryridge Horseneck | 1700000 | Hayes L-15 1500
Perryridge Horseneck | 1700000 | Hayes L-16 1300
Downtown | Brooklyn 9000000 | Jackson L-14 1500
Mianus Horseneck 400000 | Jones L-17 1000
Mianus Horseneck 400000 | Jones L-93 500
Round Hill | Horseneck | 8000000 | Turner L-11 900
Pownal Bennington | 300000 | Williams L-29 1200
North Town | Rye 3700000 | Hayes L-15 1500
North Town | Rye 3700000 | Hayes L-16 1300
Downtown | Brooklyn 9000000 | Johnson L-18 2000
Perryridge Horseneck | 1700000 | Glenn L-25 2500
Brighton Brooklyn 7100000 | Brooks L-10 2200
Figure 7.11 The relation branch-customer X customer-loan.

tion. It should be clear from our example that a lossy-join decomposition is, in gen-
eral, a bad database design.

Why is the decomposition lossy? There is one attribute in common between Branch-
customer-schema and Customer-loan-schema:

Branch-customer-schema N Customer-loan-schema = {customer-name}

The only way that we can represent a relationship between, for example, loan-number
and branch-name is through customer-name. This representation is not adequate be-
cause a customer may have several loans, yet these loans are not necessarily obtained
from the same branch.

Let us consider another alternative design, in which we decompose Lending-schema
into the following two schemas:

Branch-schema = (branch-name, branch-city, assets)
Loan-info-schema = (branch-name, customer-name, loan-number, amount)

There is one attribute in common between these two schemas:
Branch-loan-schema N Customer-loan-schema = {branch-name}

Thus, the only way that we can represent a relationship between, for example,
customer-name and assets is through branch-name. The difference between this exam-
ple and the preceding one is that the assets of a branch are the same, regardless
of the customer to which we are referring, whereas the lending branch associated
with a certain loan amount does depend on the customer to which we are referring.
For a given branch-name, there is exactly one assets value and exactly one branch-city;



Silberschatz-Korth-Sudarshan: | Il. Relational Databases 1. Relational-Database © The McGraw-Hill
Database System Design Companies, 2001
Concepts, Fourth Edition

274  Chapter 7  Relational-Database Design

whereas a similar statement cannot be made for customer-name. That is, the functional
dependency

branch-name — assets branch-city

holds, but customer-name does not functionally determine loan-number.

The notion of lossless joins is central to much of relational-database design. There-
fore, we restate the preceding examples more concisely and more formally. Let R be
a relation schema. A set of relation schemas {R;, Ra, ..., R,} is a decomposition of
Rif

R=R URyU---UR,
That is, {Ri1, Ra,...,R,} is a decomposition of R if, for i = 1,2,...,n, each R; is a
subset of R, and every attribute in R appears in at least one R;.

Let 7 be a relation on schema R, and let r; = Ilg,(r) fori = 1,2,...,n. That is,
{r1, ro,...,r,}is the database that results from decomposing R into { Ry, Ra, ..., R,}.
It is always the case that

rCorp Mg Mo Moy,

To see that this assertion is true, consider a tuple t in relation r. When we compute the
relations r1, 7o, ..., 7y, the tuple t gives rise to one tuple ¢; in each r;, i = 1,2,...,n.
These 1 tuples combine to regenerate t when we computer; X rp M ... X r,. The
details are left for you to complete as an exercise. Therefore, every tuple in r appears
inrl X org M - X 1,

In general, r # r1 X 1y M .- X r,. As an illustration, consider our earlier
example, in which

o =2

e R = Lending-schema.

e Ry = Branch-customer-schema.

e Ry = Customer-loan-schema.

e r = the relation shown in Figure 7.1.

e 1 = the relation shown in Figure 7.9.
e 75 = the relation shown in Figure 7.10.

e 71 X ry = the relation shown in Figure 7.11.

Note that the relations in Figures 7.1 and 7.11 are not the same.

To have a lossless-join decomposition, we need to impose constraints on the set of
possible relations. We found that the decomposition of Lending-schema into Branch-
schema and Loan-info-schema is lossless because the functional dependency

branch-name — branch-city assets

holds on Branch-schema.
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Later in this chapter, we shall introduce constraints other than functional depen-
dencies. We say that a relation is legal if it satisfies all rules, or constraints, that we
impose on our database.

Let C represent a set of constraints on the database, and let R be a relation schema.
A decomposition {R1, R, ..., R,} of R is a lossless-join decomposition if, for all
relations r on schema R that are legal under C,

r = Tlg, () X T, (r) W - X g, ()

We shall show how to test whether a decomposition is a lossless-join decomposi-
tion in the next few sections. A major part of this chapter deals with the questions of
how to specify constraints on the database, and how to obtain lossless-join decom-
positions that avoid the pitfalls represented by the examples of bad database designs
that we have seen in this section.

7.5 Desirable Properties of Decomposition

We can use a given set of functional dependencies in designing a relational database
in which most of the undesirable properties discussed in Section 7.2 do not occur.
When we design such systems, it may become necessary to decompose a relation
into several smaller relations.

In this section, we outline the desirable properties of a decomposition of a rela-
tional schema. In later sections, we outline specific ways of decomposing a relational
schema to get the properties we desire. We illustrate our concepts with the Lending-
schema schema of Section 7.2:

Lending-schema = (branch-name, branch-city, assets, customer-name,
loan-number, amount)

The set F of functional dependencies that we require to hold on Lending-schema are

branch-name — branch-city assets
loan-number — amount branch-name

As we discussed in Section 7.2, Lending-schema is an example of a bad database
design. Assume that we decompose it to the following three relations:

Branch-schema = (branch-name, branch-city, assets)
Loan-schema = (loan-number, branch-name, amount)
Borrower-schema = (customer-name, loan-number)

We claim that this decomposition has several desirable properties, which we discuss
next. Note that these three relation schemas are precisely the ones that we used pre-
viously, in Chapters 3 through 5.

7.5.1 Lossless-Join Decomposition

In Section 7.2, we argued that, when we decompose a relation into a number of
smaller relations, it is crucial that the decomposition be lossless. We claim that the
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decomposition in Section 7.5 is indeed lossless. To demonstrate our claim, we must
first present a criterion for determining whether a decomposition is lossy.

Let R be a relation schema, and let F be a set of functional dependencies on R. Let
R, and R form a decomposition of R. This decomposition is a lossless-join decom-
position of R if at least one of the following functional dependencies is in F'*:

[ ] RlﬁR2—>R1
e RiNRy — Ry

In other words, if R N Ry forms a superkey of either R; or R», the decomposition of
R is a lossless-join decomposition. We can use attribute closure to efficiently test for
superkeys, as we have seen earlier.

We now demonstrate that our decomposition of Lending-schema is a lossless-join
decomposition by showing a sequence of steps that generate the decomposition. We
begin by decomposing Lending-schema into two schemas:

Branch-schema = (branch-name, branch-city, assets)
Loan-info-schema = (branch-name, customer-name, loan-number, amount)

Since branch-name — branch-city assets, the augmentation rule for functional depen-
dencies (Section 7.3.2) implies that

branch-name — branch-name branch-city assets

Since Branch-schema N Loan-info-schema = {branch-name}, it follows that our initial
decomposition is a lossless-join decomposition.
Next, we decompose Loan-info-schema into

Loan-schema = (loan-number, branch-name, amount)
Borrower-schema = (customer-name, loan-number)

This step results in a lossless-join decomposition, since loan-number is a common at-
tribute and loan-number — amount branch-name.

For the general case of decomposition of a relation into multiple parts at once, the
test for lossless join decomposition is more complicated. See the bibliographical notes
for references on the topic.

While the test for binary decomposition is clearly a sufficient condition for lossless
join, it is a necessary condition only if all constraints are functional dependencies.
We shall see other types of constraints later (in particular, a type of constraint called
multivalued dependencies), that can ensure that a decomposition is lossless join even
if no functional dependencies are present.

7.5.2 Dependency Preservation

There is another goal in relational-database design: dependency preservation. When an
update is made to the database, the system should be able to check that the update
will not create an illegal relation—that is, one that does not satisfy all the given
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functional dependencies. If we are to check updates efficiently, we should design
relational-database schemas that allow update validation without the computation
of joins.

To decide whether joins must be computed to check an update, we need to deter-
mine what functional dependencies can be tested by checking each relation individ-
ually. Let F be a set of functional dependencies on a schema R, and let Ry, R», ..., R,
be a decomposition of R. The restriction of F to R; is the set F; of all functional depen-
dencies in F'* that include only attributes of R;. Since all functional dependencies in
a restriction involve attributes of only one relation schema, it is possible to test such
a dependency for satisfaction by checking only one relation.

Note that the definition of restriction uses all dependencies in F'*, not just those in
F. For instance, suppose F' = {A — B, B — ('}, and we have a decomposition into
AC and AB. The restriction of F to AC is then A — C, since A — C'is in F't, even
though it is not in F.

The set of restrictions Fi, Fy, ..., F), is the set of dependencies that can be checked
efficiently. We now must ask whether testing only the restrictions is sufficient. Let
F' = F, U F, U --- U F,. F'isaset of functional dependencies on schema R, but,
in general, I’ # F. However, even if F’ # F, it may be that F'* = F*.If the latter is
true, then every dependency in F is logically implied by F’, and, if we verify that F”
is satisfied, we have verified that F is satisfied. We say that a decomposition having
the property F't = F'* is a dependency-preserving decomposition.

Figure 7.12 shows an algorithm for testing dependency preservation. The input
isasetD = {R1, Ra,...,R,} of decomposed relation schemas, and a set F of func-
tional dependencies. This algorithm is expensive since it requires computation of F't;
we will describe another algorithm that is more efficient after giving an example of
testing for dependency preservation.

We can now show that our decomposition of Lending-schema is dependency pre-
serving. Instead of applying the algorithm of Figure 7.12, we consider an easier al-
ternative: We consider each member of the set F of functional dependencies that we

compute F;
for each schema R; in D do

begin
F; : = the restriction of F'* to R;;
end
F =0
for each restriction F; do
begin
F' = F'UF,
end

compute F'*;
if (F/* = F'T) then return (true)
else return (false);

Figure 7.12  Testing for dependency preservation.
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require to hold on Lending-schema, and show that each one can be tested in at least
one relation in the decomposition.

e We can test the functional dependency: branch-name — branch-city assets using
Branch-schema = (branch-name, branch-city, assets).

e We can test the functional dependency: loan-number — amount branch-name
using Loan-schema = (branch-name, loan-number, amount).

If each member of F can be tested on one of the relations of the decomposition, then
the decomposition is dependency preserving. However, there are cases where, even
though the decomposition is dependency preserving, there is a dependency in F that
cannot be tested in any one relation in the decomposition. The alternative test can
therefore be used as a sufficient condition that is easy to check; if it fails we cannot
conclude that the decomposition is not dependency preserving, instead we will have
to apply the general test.

We now give a more efficient test for dependency preservation, which avoids com-
puting F'*. The idea is to test each functional dependency o — 3 in F by using a
modified form of attribute closure to see if it is preserved by the decomposition. We
apply the following procedure to each « — Fin F.

result = a
while (changes to result) do
for each R; in the decomposition
t = (result NR;))T N R;
result = result U t

The attribute closure is with respect to the functional dependencies in F. If result
contains all attributes in 3, then the functional dependency ov — [ is preserved. The
decomposition is dependency preserving if and only if all the dependencies in F' are
preserved.

Note that instead of precomputing the restriction of /" on R; and using it for com-
puting the attribute closure of result, we use attribute closure on (result NR;) with
respect to F', and then intersect it with R;, to get an equivalent result. This procedure
takes polynomial time, instead of the exponential time required to compute F'*.

7.5.3 Repetition of Information

The decomposition of Lending-schema does not suffer from the problem of repetition
of information that we discussed in Section 7.2. In Lending-schema, it was necessary
to repeat the city and assets of a branch for each loan. The decomposition separates
branch and loan data into distinct relations, thereby eliminating this redundancy.
Similarly, observe that, if a single loan is made to several customers, we must repeat
the amount of the loan once for each customer (as well as the city and assets of the
branch) in lending-schema. In the decomposition, the relation on schema Borrower-
schema contains the loan-number, customer-name relationship, and no other schema
does. Therefore, we have one tuple for each customer for a loan in only the relation
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on Borrower-schema. In the other relations involving loan-number (those on schemas
Loan-schema and Borrower-schema), only one tuple per loan needs to appear.

Clearly, the lack of redundancy in our decomposition is desirable. The degree to
which we can achieve this lack of redundancy is represented by several normal forms,
which we shall discuss in the remainder of this chapter.

7.6 Boyce—Codd Normal Form

Using functional dependencies, we can define several normal forms that represent
“good” database designs. In this section we cover BCNF (defined below), and later, in
Section 7.7, we cover 3NF.

7.6.1 Definition

One of the more desirable normal forms that we can obtain is Boyce—Codd normal
form (BCNF). A relation schema R is in BCNF with respect to a set F of functional
dependencies if, for all functional dependencies in F'* of the form o — 3, where o C
Rand § C R, at least one of the following holds:

e « — (s a trivial functional dependency (thatis, 5 C «).

e «is a superkey for schema R.

A database design is in BCNF if each member of the set of relation schemas that con-
stitutes the design is in BCNF.

As an illustration, consider the following relation schemas and their respective
functional dependencies:

o Customer-schema = (customer-name, customer-street, customer-city)
customer-name — customer-street customer-city

e Branch-schema = (branch-name, assets, branch-city)
branch-name — assets branch-city

o Loan-info-schema = (branch-name, customer-name, loan-number, amount)
loan-number — amount branch-name

We claim that Customer-schema is in BCNF. We note that a candidate key for the
schema is customer-name. The only nontrivial functional dependencies that hold on
Customer-schema have customer-name on the left side of the arrow. Since customer-name
is a candidate key, functional dependencies with customer-name on the left side do
not violate the definition of BCNF. Similarly, it can be shown easily that the relation
schema Branch-schema is in BCNF.

The schema Loan-info-schema, however, is not in BCNF. First, note that loan-number
is not a superkey for Loan-info-schema, since we could have a pair of tuples represent-
ing a single loan made to two people—for example,

(Downtown, John Bell, L-44, 1000)
(Downtown, Jane Bell, L-44, 1000)
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Because we did not list functional dependencies that rule out the preceding case, loan-
number is not a candidate key. However, the functional dependency loan-number —
amount is nontrivial. Therefore, Loan-info-schema does not satisfy the definition of
BCNEF.

We claim that Loan-info-schema is not in a desirable form, since it suffers from the
problem of repetition of information that we described in Section 7.2. We observe that,
if there are several customer names associated with a loan, in a relation on Loan-info-
schema, then we are forced to repeat the branch name and the amount once for each
customer. We can eliminate this redundancy by redesigning our database such that
all schemas are in BCNF. One approach to this problem is to take the existing non-
BCNF design as a starting point, and to decompose those schemas that are not in
BCNF. Consider the decomposition of Loan-info-schema into two schemas:

Loan-schema = (loan-number, branch-name, amount)
Borrower-schema = (customer-name, loan-number)

This decomposition is a lossless-join decomposition.
To determine whether these schemas are in BCNF, we need to determine what
functional dependencies apply to them. In this example, it is easy to see that

loan-number — amount branch-name

applies to the Loan-schema, and that only trivial functional dependencies apply to
Borrower-schema. Although loan-number is not a superkey for Loan-info-schema, it is a
candidate key for Loan-schema. Thus, both schemas of our decomposition are in BCNF.

It is now possible to avoid redundancy in the case where there are several cus-
tomers associated with a loan. There is exactly one tuple for each loan in the rela-
tion on Loan-schema, and one tuple for each customer of each loan in the relation on
Borrower-schema. Thus, we do not have to repeat the branch name and the amount
once for each customer associated with a loan.

Often testing of a relation to see if it satisfies BCNF can be simplified:

e To check if a nontrivial dependency a@ — 3 causes a violation of BCNF, com-
pute o™ (the attribute closure of «), and verify that it includes all attributes of
R; that is, it is a superkey of R.

o To check if a relation schema R is in BCNF, it suffices to check only the depen-
dencies in the given set I for violation of BCNF, rather than check all depen-
dencies in F'*.

We can show that if none of the dependencies in F' causes a violation of
BCNF, then none of the dependencies in F* will cause a violation of BCNF
either.

Unfortunately, the latter procedure does not work when a relation is decomposed.
That is, it does not suffice to use F' when we test a relation R;, in a decomposition
of R, for violation of BCNF. For example, consider relation schema R (A, B,C, D, E),
with functional dependencies I’ containing A — B and BC' — D. Suppose this were
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decomposed into R1(A, B) and R2(A, C, D, E). Now, neither of the dependencies in
F contains only attributes from (A, C, D, E) so we might be misled into thinking R2
satisfies BCNF. In fact, there is a dependency AC' — D in F7 (which can be inferred
using the pseudotransitivity rule from the two dependencies in F'), which shows that
R2 is not in BCNF. Thus, we may need a dependency that is in F't, but is not in F', to
show that a decomposed relation is not in BCNF.

An alternative BCNF test is sometimes easier than computing every dependency
in F*. To check if a relation R; in a decomposition of R is in BCNF, we apply this test:

e For every subset « of attributes in R;, check that a™ (the attribute closure of «
under F) either includes no attribute of R; — «, or includes all attributes of R;.

If the condition is violated by some set of attributes « in R;, consider the following
functional dependency, which can be shown to be present in F'*:

a— (aT —a)NR;.
The above dependency shows that R; violates BCNF, and is a “witness” for the viola-
tion. The BCNF decomposition algorithm, which we shall see in Section 7.6.2, makes
use of the witness.

7.6.2 Decomposition Algorithm

We are now able to state a general method to decompose a relation schema so as to
satisfy BCNF. Figure 7.13 shows an algorithm for this task. If R is not in BCNF, we
can decompose R into a collection of BCNF schemas Ry, R, ..., R, by the algorithm.
The algorithm uses dependencies (“witnesses”) that demonstrate violation of BCNF
to perform the decomposition.

The decomposition that the algorithm generates is not only in BCNF, but is also
a lossless-join decomposition. To see why our algorithm generates only lossless-join
decompositions, we note that, when we replace a schema R; with (R; — ) and («, (),
the dependency oo — g holds, and (R; — ) N («, ) = .

result := {R};
done := false;
compute F;
while (not done) do
if (there is a schema R; in result that is not in BCNF)
then begin
let « — [ be a nontrivial functional dependency that holds
on R; such that « — R;isnotin F™,andanN B =0;
result := (result — R;) U(R; — B) U («, 8);
end
else done := true;

Figure 7.13 BCNF decomposition algorithm.
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We apply the BCNF decomposition algorithm to the Lending-schema schema that
we used in Section 7.2 as an example of a poor database design:

Lending-schema = (branch-name, branch-city, assets, customer-name,
loan-number, amount)

The set of functional dependencies that we require to hold on Lending-schema are

branch-name — assets branch-city
loan-number — amount branch-name

A candidate key for this schema is {loan-number, customer-name}.
We can apply the algorithm of Figure 7.13 to the Lending-schema example as fol-
lows:

e The functional dependency
branch-name — assets branch-city

holds on Lending-schema, but branch-name is not a superkey. Thus, Lending-
schema is not in BCNF. We replace Lending-schema by

Branch-schema = (branch-name, branch-city, assets)
Loan-info-schema = (branch-name, customer-name, loan-number, amount)

e The only nontrivial functional dependencies that hold on Branch-schema in-
clude branch-name on the left side of the arrow. Since branch-name is a key for
Branch-schema, the relation Branch-schema is in BCNF.

e The functional dependency
loan-number — amount branch-name

holds on Loan-info-schema, but loan-number is not a key for Loan-info-schema.
We replace Loan-info-schema by

Loan-schema = (loan-number, branch-name, amount)
Borrower-schema = (customer-name, loan-number)

e Loan-schema and Borrower-schema are in BCNF.

Thus, the decomposition of Lending-schema results in the three relation schemas Branch-
schema, Loan-schema, and Borrower-schema, each of which is in BCNF. These relation
schemas are the same as those in Section 7.5, where we demonstrated that the result-
ing decomposition is both a lossless-join decomposition and a dependency-preserving
decomposition.

The BCNF decomposition algorithm takes time exponential in the size of the initial
schema, since the algorithm for checking if a relation in the decomposition satisfies
BCNF can take exponential time. The bibliographical notes provide references to an
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algorithm that can compute a BCNF decomposition in polynomial time. However, the
algorithm may “overnormalize,” that is, decompose a relation unnecessarily.

7.6.3 Dependency Preservation

Not every BCNF decomposition is dependency preserving. As an illustration, con-
sider the relation schema

Banker-schema = (branch-name, customer-name, banker-name)

which indicates that a customer has a “personal banker” in a particular branch. The
set F of functional dependencies that we require to hold on the Banker-schema is

banker-name — branch-name
branch-name customer-name — banker-name

Clearly, Banker-schema is not in BCNF since banker-name is not a superkey.
If we apply the algorithm of Figure 7.13, we obtain the following BCNF decompo-
sition:

Banker-branch-schema = (banker-name, branch-name)
Customer-banker-schema = (customer-name, banker-name)

The decomposed schemas preserve only banker-name —  branch-name (and trivial
dependencies), but the closure of {banker-name — branch-name} does not include
customer-name branch-name — banker-name. The violation of this dependency cannot
be detected unless a join is computed.

To see why the decomposition of Banker-schema into the schemas Banker-branch-
schema and Customer-banker-schema is not dependency preserving, we apply the al-
gorithm of Figure 7.12. We find that the restrictions F; and F5 of F to each schema
are:

Fy = {banker-name — branch-name}
F5 = 0 (only trivial dependencies hold on Customer-banker-schema)

(For brevity, we do not show trivial functional dependencies.) It is easy to see that
the dependency customer-name branch-name — banker-name is not in (Fy U F>)* even
though it is in F'*. Therefore, (F} U F»)™ # F'*, and the decomposition is not depen-
dency preserving.

This example demonstrates that not every BCNF decomposition is dependency
preserving. Moreover, it is easy to see that any BCNF decomposition of Banker-schema
must fail to preserve customer-name branch-name — banker-name. Thus, the example
shows that we cannot always satisfy all three design goals:

1. Lossless join
2. BCNF

3. Dependency preservation
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Recall that lossless join is an essential condition for a decomposition, to avoid loss
of information. We are therefore forced to give up either BCNF or dependency preser-
vation. In Section 7.7 we present an alternative normal form, called third normal
form, which is a small relaxation of BCNF; the motivation for using third normal
form is that there is always a dependency preserving decomposition into third nor-
mal form.

There are situations where there is more than one way to decompose a schema
into BCNF. Some of these decompositions may be dependency preserving, while oth-
ers may not. For instance, suppose we have a relation schema R(A, B, C) with the
functional dependencies A — B and B — C. From this set we can derive the further
dependency A — C'. If we used the dependency A — B (or equivalently, A — C)
to decompose R, we would end up with two relations R1(A, B) and R2(A, C); the
dependency B — C would not be preserved.

If instead we used the dependency B — C' to decompose R, we would end up with
two relations R1(A, B) and R2(B, C), which are in BCNF, and the decomposition is
also dependency preserving. Clearly the decomposition into R1(A, B) and R2(B, C)
is preferable. In general, the database designer should therefore look at alternative
decompositions, and pick a dependency preserving decomposition where possible.

7.7 Third Normal Form

As we saw earlier, there are relational schemas where a BCNF decomposition cannot
be dependency preserving. For such schemas, we have two alternatives if we wish to
check if an update violates any functional dependencies:

e Pay the extra cost of computing joins to test for violations.

e Use an alternative decomposition, third normal form (3NF), which we present
below, which makes testing of updates cheaper. Unlike BCNF, 3NF decompo-
sitions may contain some redundancy in the decomposed schema.

We shall see that it is always possible to find a lossless-join, dependency-preserving
decomposition that is in 3NF. Which of the two alternatives to choose is a design
decision to be made by the database designer on the basis of the application require-
ments.

7.7.1 Definition

BCNF requires that all nontrivial dependencies be of the form o — [, where « is a
superkey. 3NF relaxes this constraint slightly by allowing nontrivial functional de-
pendencies whose left side is not a superkey.

A relation schema R is in third normal form (3NF) with respect to a set F of func-
tional dependencies if, for all functional dependencies in F* of the form o — §3,
where o C R and  C R, at least one of the following holds:

e a — (s a trivial functional dependency.

e «is a superkey for R.
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e Each attribute A in 8 — « is contained in a candidate key for R.

Note that the third condition above does not say that a single candidate key should
contain all the attributes in 8 — «; each attribute A in 8 — « may be contained in a
different candidate key.

The first two alternatives are the same as the two alternatives in the definition of
BCNEF. The third alternative of the 3NF definition seems rather unintuitive, and it is
not obvious why it is useful. It represents, in some sense, a minimal relaxation of the
BCNF conditions that helps ensure that every schema has a dependency-preserving
decomposition into 3NF. Its purpose will become more clear later, when we study
decomposition into 3NF.

Observe that any schema that satisfies BCNF also satisfies 3NF, since each of its
functional dependencies would satisfy one of the first two alternatives. BCNF is there-
fore a more restrictive constraint than is 3NF.

The definition of 3NF allows certain functional dependencies that are not allowed
in BCNF. A dependency o — (3 that satisfies only the third alternative of the 3NF
definition is not allowed in BCNF, but is allowed in 3NF.!

Let us return to our Banker-schema example (Section 7.6). We have shown that this
relation schema does not have a dependency-preserving, lossless-join decomposition
into BCNF. This schema, however, turns out to be in 3NF. To see that it is, we note
that {customer-name, branch-name} is a candidate key for Banker-schema, so the only
attribute not contained in a candidate key for Banker-schema is banker-name. The only
nontrivial functional dependencies of the form

o — banker-name

include {customer-name, branch-name} as part of «.. Since {customer-name, branch-name}
is a candidate key, these dependencies do not violate the definition of 3NF.

As an optimization when testing for 3NF, we can consider only functional depen-
dencies in the given set F, rather than in F'*. Also, we can decompose the dependen-
cies in ' so that their right-hand side consists of only single attributes, and use the
resultant set in place of F.

Given a dependency a@ — (3, we can use the same attribute-closure—based tech-
nique that we used for BCNF to check if « is a superkey. If « is not a superkey, we
have to verify whether each attribute in § is contained in a candidate key of R; this
test is rather more expensive, since it involves finding candidate keys. In fact, test-
ing for 3NF has been shown to be NP-hard; thus, it is very unlikely that there is a
polynomial time complexity algorithm for the task.

7.7.2 Decomposition Algorithm

Figure 7.14 shows an algorithm for finding a dependency-preserving, lossless-join
decomposition into 3NF. The set of dependencies F. used in the algorithm is a canoni-

1. These dependencies are examples of transitive dependencies (see Exercise 7.25). The original defi-
nition of 3NF was in terms of transitive dependencies. The definition we use is equivalent but easier to
understand.
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let F,. be a canonical cover for F;

i:=0;
for each functional dependency o — 3in F,, do
if none of the schemas R;,j = 1,2,...,4 contains a
then begin
ii=i+1;
R;:=af;
end
if none of the schemas R;,j = 1,2, ..., contains a candidate key for R
then begin
1:=1+1;
R; := any candidate key for R;
end

return (R, Ry, ..., R;)

Figure 7.14 Dependency-preserving, lossless-join decomposition into 3NF.

cal cover for F. Note that the algorithm considers the set of schemas R;,j = 1,2,...,4;
initially 4 = 0, and in this case the set is empty.

To illustrate the algorithm of Figure 7.14, consider the following extension to the
Banker-schema in Section 7.6:

Banker-info-schema = (branch-name, customer-name, banker-name,
office-number)

The main difference here is that we include the banker’s office number as part of the
information. The functional dependencies for this relation schema are

banker-name — branch-name office-number
customer-name branch-name — banker-name

The for loop in the algorithm causes us to include the following schemas in our
decomposition:

Banker-office-schema = (banker-name, branch-name, office-number)
Banker-schema = (customer-name, branch-name, banker-name)

Since Banker-schema contains a candidate key for Banker-info-schema, we are finished
with the decomposition process.

The algorithm ensures the preservation of dependencies by explicitly building a
schema for each dependency in a canonical cover. It ensures that the decomposition
is a lossless-join decomposition by guaranteeing that at least one schema contains a
candidate key for the schema being decomposed. Exercise 7.19 provides some insight
into the proof that this suffices to guarantee a lossless join.

This algorithm is also called the 3NF synthesis algorithm, since it takes a set of de-
pendencies and adds one schema at a time, instead of decomposing the initial schema
repeatedly. The result is not uniquely defined, since a set of functional dependencies

o
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can have more than one canonical cover, and, further, in some cases the result of the
algorithm depends on the order in which it considers the dependencies in Fr.

If a relation R; is in the decomposition generated by the synthesis algorithm, then
R; is in 3NF. Recall that when we test for 3NF, it suffices to consider functional de-
pendencies whose right-hand side is a single attribute. Therefore, to see that R; is in
3NF, you must convince yourself that any functional dependency v — B that holds
on R; satisfies the definition of 3NF. Assume that the dependency that generated R;
in the synthesis algorithm is « — 3. Now, B must be in « or 3, since B is in R; and
o — (3 generated R;. Let us consider the three possible cases:

e Bisinboth a and §. In this case, the dependency oo — 3 would not have been
in F, since B would be extraneous in 3. Thus, this case cannot hold.

e Bisin 3 but not a. Consider two cases:
O « is a superkey. The second condition of 3NF is satisfied.

O v is not a superkey. Then o must contain some attribute not in . Now,
since v — Bisin F't, it must be derivable from F, by using the attribute
closure algorithm on +. The derivation could not have used o — f—
if it had been used, o must be contained in the attribute closure of =,
which is not possible, since we assumed ~ is not a superkey. Now, us-
ing o — (8 —{B}) and v — B, we can derive o« — B (since v C a3, and
cannot contain B because v — B is nontrivial). This would imply that B
is extraneous in the right-hand side of o — 3, which is not possible since
«a — [ is in the canonical cover F,.. Thus, if B is in 3, then v must be a
superkey, and the second condition of 3NF must be satisfied.

e Bisin a butnot 8.
Since « is a candidate key, the third alternative in the definition of 3NF is
satisfied.

Interestingly, the algorithm we described for decomposition into 3NF can be imple-
mented in polynomial time, even though testing a given relation to see if it satisfies
3NF is NP-hard.

7.7.3 Comparison of BCNF and 3NF

Of the two normal forms for relational-database schemas, 3NF and BCNF, there are
advantages to 3NF in that we know that it is always possible to obtain a 3NF design
without sacrificing a lossless join or dependency preservation. Nevertheless, there are
disadvantages to 3NF: If we do not eliminate all transitive relations schema depen-
dencies, we may have to use null values to represent some of the possible meaningful
relationships among data items, and there is the problem of repetition of information.

As an illustration of the null value problem, consider again the Banker-schema and
its associated functional dependencies. Since banker-name — branch-name, we may
want to represent relationships between values for banker-name and values for branch-
name in our database. If we are to do so, however, either there must be a correspond-
ing value for customer-name, or we must use a null value for the attribute customer-
name.
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| customer-name | banker-name | branch-name

Jones Johnson Perryridge
Smith Johnson Perryridge
Hayes Johnson Perryridge
Jackson Johnson Perryridge
Curry Johnson Perryridge
Turner Johnson Perryridge

Figure 7.15 An instance of Banker-schema.

As an illustration of the repetition of information problem, consider the instance
of Banker-schema in Figure 7.15. Notice that the information indicating that Johnson
is working at the Perryridge branch is repeated.

Recall that our goals of database design with functional dependencies are:

1. BCNF
2. Lossless join

3. Dependency preservation

Since it is not always possible to satisfy all three, we may be forced to choose between
BCNF and dependency preservation with 3NF.

It is worth noting that SQL does not provide a way of specifying functional depen-
dencies, except for the special case of declaring superkeys by using the primary key
or unique constraints. It is possible, although a little complicated, to write assertions
that enforce a functional dependency (see Exercise 7.15); unfortunately, testing the
assertions would be very expensive in most database systems. Thus even if we had
a dependency-preserving decomposition, if we use standard SQL we would not be
able to efficiently test a functional dependency whose left-hand side is not a key.

Although testing functional dependencies may involve a join if the decomposition
is not dependency preserving, we can reduce the cost by using materialized views,
which many database systems support. Given a BCNF decomposition that is not de-
pendency preserving, we consider each dependency in a minimum cover F, that is
not preserved in the decomposition. For each such dependency o — 3, we define
a materialized view that computes a join of all relations in the decomposition, and
projects the result on 5. The functional dependency can be easily tested on the ma-
terialized view, by means of a constraint unique («). On the negative side, there is a
space and time overhead due to the materialized view, but on the positive side, the
application programmer need not worry about writing code to keep redundant data
consistent on updates; it is the job of the database system to maintain the material-
ized view, that is, keep up up to date when the database is updated. (Later in the
book, in Section 14.5, we outline how a database system can perform materialized
view maintenance efficiently.)

Thus, in case we are not able to get a dependency-preserving BCNF decomposition,
it is generally preferable to opt for BCNF, and use techniques such as materialized
views to reduce the cost of checking functional dependencies.
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7.8 Fourth Normal Form

Some relation schemas, even though they are in BCNF, do not seem to be sufficiently
normalized, in the sense that they still suffer from the problem of repetition of infor-
mation. Consider again our banking example. Assume that, in an alternative design
for the bank database schema, we have the schema

BC-schema = (loan-number, customer-name, customer-street, customer-city)

The astute reader will recognize this schema as a non-BCNF schema because of the
functional dependency

customer-name — customer-street customer-city

that we asserted earlier, and because customer-name is not a key for BC-schema. How-
ever, assume that our bank is attracting wealthy customers who have several ad-
dresses (say, a winter home and a summer home). Then, we no longer wish to en-
force the functional dependency customer-name — customer-street customer-city. If we
remove this functional dependency, we find BC-schema to be in BCNF with respect to
our modified set of functional dependencies. Yet, even though BC-schema is now in
BCNF, we still have the problem of repetition of information that we had earlier.

To deal with this problem, we must define a new form of constraint, called a mul-
tivalued dependency. As we did for functional dependencies, we shall use multivalued
dependencies to define a normal form for relation schemas. This normal form, called
fourth normal form (4NF), is more restrictive than BCNF. We shall see that every 4NF
schema is also in BCNF, but there are BCNF schemas that are not in 4NF.

7.8.1 Multivalued Dependencies

Functional dependencies rule out certain tuples from being in a relation. If A — B,
then we cannot have two tuples with the same A value but different B values. Mul-
tivalued dependencies, on the other hand, do not rule out the existence of certain
tuples. Instead, they require that other tuples of a certain form be present in the rela-
tion. For this reason, functional dependencies sometimes are referred to as equality-
generating dependencies, and multivalued dependencies are referred to as tuple-
generating dependencies.

Let R be a relation schema and let « C R and 3 C R. The multivalued dependency

a— 3

holds on R if, in any legal relation r(R), for all pairs of tuples t; and ¢, in r such that
t1[a] = t2]a], there exist tuples t3 and ¢4 in r such that

tia] = ta]a] = ts[a] = ty|a]
t3[8] = t1[A]

t3[R— 0] = t2[ R — ]

ta[0] = t2[0]

ta[R — f] = t1[R - ]
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o B R-o-p
t1 | a1...aq; Qiyq.--4; Q1. Ay
tz aj...a; bl‘+1...b]' b]'Jrl...bn
t3 aj...a; ai+1...a]- bj+l"'bn
t4 aj...a; bi+1"‘bj aj+1...an

Figure 7.16  Tabular representation of o — (.

This definition is less complicated than it appears to be. Figure 7.16 gives a tabular
picture of ¢y, t, t3, and ¢4. Intuitively, the multivalued dependency o — 3 says that
the relationship between « and f3 is independent of the relationship between « and
R — 3. If the multivalued dependency o —— [ is satisfied by all relations on schema
R, then o — @ is a trivial multivalued dependency on schema R. Thus, o — 3 is
trivial if 3 Caor fUa = R.

To illustrate the difference between functional and multivalued dependencies, we
consider the BC-schema again, and the relation bc (BC-schema) of Figure 7.17. We must
repeat the loan number once for each address a customer has, and we must repeat
the address for each loan a customer has. This repetition is unnecessary, since the
relationship between a customer and his address is independent of the relationship
between that customer and a loan. If a customer (say, Smith) has a loan (say, loan
number L-23), we want that loan to be associated with all Smith’s addresses. Thus,
the relation of Figure 7.18 is illegal. To make this relation legal, we need to add the
tuples (L-23, Smith, Main, Manchester) and (L-27, Smith, North, Rye) to the bc relation
of Figure 7.18.

Comparing the preceding example with our definition of multivalued dependency,
we see that we want the multivalued dependency

customer-name —— customer-street customer-city

to hold. (The multivalued dependency customer-name —— loan-number will do as well.
We shall soon see that they are equivalent.)
As with functional dependencies, we shall use multivalued dependencies in two
ways:
1. To test relations to determine whether they are legal under a given set of func-
tional and multivalued dependencies

2. To specify constraints on the set of legal relations; we shall thus concern our-
selves with only those relations that satisfy a given set of functional and mul-
tivalued dependencies

| loan-number | customer-name | customer-street | customer-city |

L-23 Smith North Rye
L-23 Smith Main Manchester
L-93 Curry Lake Horseneck

Figure 7.17 Relation bc: An example of redundancy in a BCNF relation.
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| loan-number | customer-name | customer-street | customer-city |

L-23 Smith North Rye
L-27 Smith Main Manchester

Figure 7.18 An illegal bc relation.

Note that, if a relation r fails to satisfy a given multivalued dependency, we can con-
struct a relation ' that does satisfy the multivalued dependency by adding tuples
tor.

Let D denote a set of functional and multivalued dependencies. The closure D"
of D is the set of all functional and multivalued dependencies logically implied by D.
As we did for functional dependencies, we can compute D from D, using the formal
definitions of functional dependencies and multivalued dependencies. We can man-
age with such reasoning for very simple multivalued dependencies. Luckily, multi-
valued dependencies that occur in practice appear to be quite simple. For complex
dependencies, it is better to reason about sets of dependencies by using a system of
inference rules. (Section C.1.1 of the appendix outlines a system of inference rules for
multivalued dependencies.)

From the definition of multivalued dependency, we can derive the following rule:

o If« — 3, then o — [3.

In other words, every functional dependency is also a multivalued dependency.

7.8.2 Definition of Fourth Normal Form

Consider again our BC-schema example in which the multivalued dependency
customer-name —— customer-street customer-city holds, but no nontrivial functional de-
pendencies hold. We saw in the opening paragraphs of Section 7.8 that, although BC-
schema is in BCNF, the design is not ideal, since we must repeat a customer’s address
information for each loan. We shall see that we can use the given multivalued de-
pendency to improve the database design, by decomposing BC-schema into a fourth
normal form decomposition.

A relation schema R is in fourth normal form (4NF) with respect to a set D of
functional and multivalued dependencies if, for all multivalued dependencies in D™
of the form o — 3, where & C R and 5 C R, at least one of the following holds

e a —— (1is a trivial multivalued dependency.

e «is a superkey for schema R.

A database design is in 4NF if each member of the set of relation schemas that consti-
tutes the design is in 4NF.

Note that the definition of 4NF differs from the definition of BCNF in only the use
of multivalued dependencies instead of functional dependencies. Every 4NF schema
is in BCNF. To see this fact, we note that, if a schema R is not in BCNF, then there is
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result := {R};
done := false;
compute DT; Given schema R;, let D; denote the restriction of D to R;
while (not done) do
if (there is a schema R; in result that is not in 4NF w.r.t. D;)
then begin
let « — (3 be a nontrivial multivalued dependency that holds
on R; suchthata — R;isnotin D;,anda N 3 = 0;
result := (result — R;) U (R, — 5) U (o, B);
end
else done := true;

Figure 7.19 4NF decomposition algorithm.

a nontrivial functional dependency a — 8 holding on R, where « is not a superkey.
Since o — (3 implies & — (3, R cannot be in 4NF.

Let R be a relation schema, and let Ry, Rs, ..., R, be a decomposition of R. To
check if each relation schema R; in the decomposition is in 4NF, we need to find
what multivalued dependencies hold on each R;. Recall that, for a set F of functional
dependencies, the restriction F; of F to R; is all functional dependencies in F* that
include only attributes of R;. Now consider a set D of both functional and multivalued
dependencies. The restriction of D to R; is the set D; consisting of

1. All functional dependencies in D that include only attributes of R;

2. All multivalued dependencies of the form
o —— ﬁ N Rl

where a C R; and o — (B isin DT.

7.8.3 Decomposition Algorithm

The analogy between 4NF and BCNF applies to the algorithm for decomposing a
schema into 4NF. Figure 7.19 shows the 4NF decomposition algorithm. It is identical
to the BCNF decomposition algorithm of Figure 7.13, except that it uses multivalued,
instead of functional, dependencies and uses the restriction of D" to R;.

If we apply the algorithm of Figure 7.19 to BC-schema, we find that customer-name
—= loan-number is a nontrivial multivalued dependency, and customer-name is not
a superkey for BC-schema. Following the algorithm, we replace BC-schema by two
schemas:

Borrower-schema = (customer-name, loan-number)
Customer-schema = (customer-name, customer-street, customer—city).

This pair of schemas, which is in 4NF, eliminates the problem we encountered earlier
with the redundancy of BC-schema.
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As was the case when we were dealing solely with functional dependencies, we
are interested in decompositions that are lossless-join decompositions and that pre-
serve dependencies. The following fact about multivalued dependencies and lossless
joins shows that the algorithm of Figure 7.19 generates only lossless-join decomposi-
tions:

e Let R be a relation schema, and let D be a set of functional and multivalued
dependencies on R. Let R; and R, form a decomposition of R. This decom-
position is a lossless-join decomposition of R if and only if at least one of the
following multivalued dependencies is in D

RlﬂRQHﬂRl
Ri N Ry — Ry

Recall that we stated in Section 7.5.1 that, if Ry N Ry — R; or R; N Ry — Rs, then
Ry and R; are a lossless-join decomposition of R. The preceding fact about multival-
ued dependencies is a more general statement about lossless joins. It says that, for
every lossless-join decomposition of R into two schemas R; and Rs, one of the two
dependencies Ry N Ry — Ry or Ry N Ry — Ry must hold.

The issue of dependency preservation when we decompose a relation becomes
more complicated in the presence of multivalued dependencies. Section C.1.2 of the
appendix pursues this topic.

7.9 More Normal Forms

The fourth normal form is by no means the “ultimate” normal form. As we saw ear-
lier, multivalued dependencies help us understand and tackle some forms of rep-
etition of information that cannot be understood in terms of functional dependen-
cies. There are types of constraints called join dependencies that generalize multi-
valued dependencies, and lead to another normal form called project-join normal
form (PJNF) (PJNF is called fifth normal form in some books). There is a class of even
more general constraints, which leads to a normal form called domain-key normal
form.

A practical problem with the use of these generalized constraints is that they are
not only hard to reason with, but there is also no set of sound and complete inference
rules for reasoning about the constraints. Hence PJNF and domain-key normal form
are used quite rarely. Appendix C provides more details about these normal forms.

Conspicuous by its absence from our discussion of normal forms is second nor-
mal form (2NF). We have not discussed it, because it is of historical interest only. We
simply define it, and let you experiment with it in Exercise 7.26.

7.10 Overdall Database Design Process

So far we have looked at detailed issues about normal forms and normalization. In
this section we study how normalization fits into the overall database design process.

Earlier in the chapter, starting in Section 7.4, we assumed that a relation schema
R is given, and proceeded to normalize it. There are several ways in which we could
have come up with the schema R:
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1. R could have been generated when converting a E-R diagram to a set of tables.

2. Rcould have been a single relation containing all attributes that are of interest.
The normalization process then breaks up R into smaller relations.

3. R could have been the result of some ad hoc design of relations, which we
then test to verify that it satisfies a desired normal form.

In the rest of this section we examine the implications of these approaches. We also
examine some practical issues in database design, including denormalization for per-
formance and examples of bad design that are not detected by normalization.

7.10.1 E-R Model and Normalization

When we carefully define an E-R diagram, identifying all entities correctly, the tables
generated from the E-R diagram should not need further normalization. However,
there can be functional dependencies between attributes of an entity. For instance,
suppose an employee entity had attributes department-number and department-address,
and there is a functional dependency department-number — department-address. We
would then need to normalize the relation generated from employee.

Most examples of such dependencies arise out of poor E-R diagram design. In the
above example, if we did the E-R diagram correctly, we would have created a depart-
ment entity with attribute department-address and a relationship between employee and
department. Similarly, a relationship involving more than two entities may not be in a
desirable normal form. Since most relationships are binary, such cases are relatively
rare. (In fact, some E-R diagram variants actually make it difficult or impossible to
specify nonbinary relations.)

Functional dependencies can help us detect poor E-R design. If the generated re-
lations are not in desired normal form, the problem can be fixed in the E-R diagram.
That is, normalization can be done formally as part of data modeling. Alternatively,
normalization can be left to the designer’s intuition during E-R modeling, and can be
done formally on the relations generated from the E-R model.

7.10.2 The Universal Relation Approach

The second approach to database design is to start with a single relation schema
containing all attributes of interest, and decompose it. One of our goals in choosing a
decomposition was that it be a lossless-join decomposition. To consider losslessness,
we assumed that it is valid to talk about the join of all the relations of the decomposed
database.

Consider the database of Figure 7.20, showing a decomposition of the loan-info re-
lation. The figure depicts a situation in which we have not yet determined the amount
of loan L-58, but wish to record the remainder of the data on the loan. If we compute
the natural join of these relations, we discover that all tuples referring to loan L-58
disappear. In other words, there is no loan-info relation corresponding to the relations
of Figure 7.20. Tuples that disappear when we compute the join are dangling tuples
(see Section 6.2.1). Formally, let r1(R1), r2(Rs2),...,r,(R,) be a set of relations. A
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branch-name | loan-number
Round Hill L-58

loan-number amount \

loan-number | customer-name
L-58 Johnson

Figure 7.20 Decomposition of loan-info.

tuple t of relation r; is a dangling tuple if ¢ is not in the relation
]'_‘[Ri (T’l X T2 MXo..oo X ’f'n)

Dangling tuples may occur in practical database applications. They represent in-
complete information, as they do in our example, where we wish to store data about a
loan that is still in the process of being negotiated. The relationr; X 7o X - X 7, is
called a universal relation, since it involves all the attributes in the universe defined
ble URyU---UR,.

The only way that we can write a universal relation for the example of Figure 7.20
is to include null values in the universal relation. We saw in Chapter 3 that null values
present several difficulties. Because of them, it may be better to view the relations
of the decomposed design as representing the database, rather than as the univer-
sal relation whose schema we decomposed during the normalization process. (The
bibliographical notes discuss research on null values and universal relations.)

Note that we cannot enter all incomplete information into the database of Fig-
ure 7.20 without resorting to null values. For example, we cannot enter a loan number
unless we know at least one of the following:

e The customer name
e The branch name
e The amount of the loan

Thus, a particular decomposition defines a restricted form of incomplete information
that is acceptable in our database.

The normal forms that we have defined generate good database designs from the
point of view of representation of incomplete information. Returning again to the
example of Figure 7.20, we would not want to allow storage of the following fact:
“There is a loan (whose number is unknown) to Jones in the amount of $100.” This is
because

loan-number — customer-name amount

and therefore the only way that we can relate customer-name and amount is through
loan-number. If we do not know the loan number, we cannot distinguish this loan
from other loans with unknown numbers.
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In other words, we do not want to store data for which the key attributes are un-
known. Observe that the normal forms that we have defined do not allow us to store
that type of information unless we use null values. Thus, our normal forms allow
representation of acceptable incomplete information via dangling tuples, while pro-
hibiting the storage of undesirable incomplete information.

Another consequence of the universal relation approach to database design is that
attribute names must be unique in the universal relation. We cannot use name to refer
to both customer-name and to branch-name. It is generally preferable to use unique
names, as we have done. Nevertheless, if we defined our relation schemas directly,
rather than in terms of a universal relation, we could obtain relations on schemas
such as the following for our banking example:

branch-loan (name, number)
loan-customer (number, name)
amt (number, amount)

Observe that, with the preceding relations, expressions such as branch-loan X loan-
customer are meaningless. Indeed, the expression branch-loan X loan-customer finds
loans made by branches to customers who have the same name as the name of the
branch.

In a language such as SQL, however, a query involving branch-loan and loan-custom-
er must remove ambiguity in references to name by prefixing the relation name. In
such environments, the multiple roles for name (as branch name and as customer
name) are less troublesome and may be simpler to use.

We believe that using the unique-role assumption—that each attribute name has
a unique meaning in the database—is generally preferable to reusing of the same
name in multiple roles. When the unique-role assumption is not made, the database
designer must be especially careful when constructing a normalized relational-data-
base design.

7.10.3 Denormalization for Performance

Occasionally database designers choose a schema that has redundant information;
that is, it is not normalized. They use the redundancy to improve performance for
specific applications. The penalty paid for not using a normalized schema is the extra
work (in terms of coding time and execution time) to keep redundant data consistent.

For instance, suppose that the name of an account holder has to be displayed along
with the account number and balance, every time the account is accessed. In our
normalized schema, this requires a join of account with depositor.

One alternative to computing the join on the fly is to store a relation containing all
the attributes of account and depositor. This makes displaying the account information
faster. However, the balance information for an account is repeated for every person
who owns the account, and all copies must be updated by the application, when-
ever the account balance is updated. The process of taking a normalized schema and
making it non-normalized is called denormalization, and designers use it to tune
performance of systems to support time-critical operations.
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A better alternative, supported by many database systems today; is to use the nor-
malized schema, and additionally store the join or account and depositor as a materi-
alized view. (Recall that a materialized view is a view whose result is stored in the
database, and brought up to date when the relations used in the view are updated.)
Like denormalization, using materialized view does have space and time overheads;
however, it has the advantage that keeping the view up to date is the job of the
database system, not the application programmer.

7.10.4 Other Design Issues

There are some aspects of database design that are not addressed by normalization,
and can thus lead to bad database design. We give examples here; obviously, such
designs should be avoided.

Consider a company database, where we want to store earnings of companies in
different years. A relation earnings(company-id, year, amount) could be used to store the
earnings information. The only functional dependency on this relation is company-id,
year — amount, and the relation is in BCNF.

An alternative design is to use multiple relations, each storing the earnings for a
different year. Let us say the years of interest are 2000, 2001, and 2002; we would then
have relations of the form earnings-2000, earnings-2001, earnings-2002, all of which are
on the schema (company-id, earnings). The only functional dependency here on each
relation would be company-id — earnings, so these relations are also in BCNF.

However, this alternative design is clearly a bad idea—we would have to create
a new relation every year, and would also have to write new queries every year, to
take each new relation into account. Queries would also be more complicated since
they may have to refer to many relations.

Yet another way of representing the same data is to have a single relation company-
year(company-id, earnings-2000, earnings-2001, earnings-2002). Here the only functional
dependencies are from company-id to the other attributes, and again the relation is
in BCNF. This design is also a bad idea since it has problems similar to the previous
design—namely we would have to modify the relation schema and write new queries,
every year. Queries would also be more complicated, since they may have to refer to
many attributes.

Representations such as those in the company-year relation, with one column for
each value of an attribute, are called crosstabs; they are widely used in spreadsheets
and reports and in data analysis tools. While such representations are useful for dis-
play to users, for the reasons just given, they are not desirable in a database design.
SQL extensions have been proposed to convert data from a normal relational repre-
sentation to a crosstab, for display.

7.11 Summary

o We showed pitfalls in database design, and how to systematically design a
database schema that avoids the pitfalls. The pitfalls included repeated infor-
mation and inability to represent some information.
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We introduced the concept of functional dependencies, and showed how to
reason with functional dependencies. We laid special emphasis on what de-
pendencies are logically implied by a set of dependencies. We also defined the
notion of a canonical cover, which is a minimal set of functional dependencies
equivalent to a given set of functional dependencies.

We introduced the concept of decomposition, and showed that decomposi-
tions must be lossless-join decompositions, and should preferably be depen-
dency preserving.

If the decomposition is dependency preserving, given a database update, all
functional dependencies can be verifiable from individual relations, without
computing a join of relations in the decomposition.

We then presented Boyce—Codd Normal Form (BCNF); relations in BCNF are
free from the pitfalls outlined earlier. We outlined an algorithm for decompos-
ing relations into BCNF. There are relations for which there is no dependency-
preserving BCNF decomposition.

We used the canonical covers to decompose a relation into 3NF, which is a
small relaxation of the BCNF condition. Relations in 3NF may have some re-
dundancy, but there is always a dependency-preserving decomposition into
3NF.

We presented the notion of multivalued dependencies, which specify con-
straints that cannot be specified with functional dependencies alone. We de-
fined fourth normal form (4NF) with multivalued dependencies. Section C.1.1
of the appendix gives details on reasoning about multivalued dependencies.

Other normal forms, such as PJNF and DKNF, eliminate more subtle forms
of redundancy. However, these are hard to work with and are rarely used.
Appendix C gives details on these normal forms.

In reviewing the issues in this chapter, note that the reason we could define
rigorous approaches to relational-database design is that the relational data
model rests on a firm mathematical foundation. That is one of the primary
advantages of the relational model compared with the other data models that
we have studied.

Review Terms

Atomic domains Fholdson R

First normal form R satisfies F

Pitfalls in relational-database
design

Trivial functional dependencies

Closure of a set of functional
Functional dependencies dependencies

Superkey

Armstrong’s axioms
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o Closure of attribute sets e 3NF decomposition algorithm
e Decomposition e Multivalued dependencies

e Lossless-join decomposition e Fourth normal form

o Legal relations e restriction of a multivalued

e Dependency preservation dependency

e Restriction of F to R; e Project-join normal form (PJNF)
e Boyce—Codd normal form

e Domain-key normal form
(BCNF)

e BCNF decomposition algorithm * E-R model and normalization

. e Universal relation
e Canonical cover Universal relatio

e Extraneous attributes e Unique-role assumption
e Third normal form e Denormalization
Exercises

7.1 Explain what is meant by repetition of information and inability to represent in-
formation. Explain why each of these properties may indicate a bad relational-
database design.

7.2 Suppose that we decompose the schema R = (4, B, C, D, E) into

(A4, B,C)
(A, D, E)

Show that this decomposition is a lossless-join decomposition if the following
set F of functional dependencies holds:

A — BC
CD — E
B— D
E—A

7.3 Why are certain functional dependencies called trivial functional dependencies?

7.4 List all functional dependencies satisfied by the relation of Figure 7.21.

(A[B]C

ap | by | o
ap | bi|
a | by | ¢
a | bi] e

Figure 7.21 Relation of Exercise 7.4.
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7.5

7.6

7.7

7.8

7.9
7.10
711

7.12
7.13

7.14

7.15

7.16
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Use the definition of functional dependency to argue that each of Armstrong’s
axioms (reflexivity, augmentation, and transitivity) is sound.

Explain how functional dependencies can be used to indicate the following:

e A one-to-one relationship set exists between entity sets account and customer.
e A many-to-one relationship set exists between entity sets account and cus-
tomer.

Consider the following proposed rule for functional dependencies: If « — (3 and
~v — (3, then o — ~. Prove that this rule is not sound by showing a relation r that
satisfies « — (3 and v — [, but does not satisfy a — .

Use Armstrong’s axioms to prove the soundness of the union rule. (Hint: Use the
augmentation rule to show that, if « — 3, then a — /3. Apply the augmentation
rule again, using & — +, and then apply the transitivity rule.)

Use Armstrong’s axioms to prove the soundness of the decomposition rule.
Use Armstrong’s axioms to prove the soundness of the pseudotransitivity rule.

Compute the closure of the following set F of functional dependencies for rela-
tionschema R = (A, B, C, D, E).

A — BC
CD — E
B—D
E—A

List the candidate keys for R.
Using the functional dependencies of Exercise 7.11, compute B™*.

Using the functional dependencies of Exercise 7.11, compute the canonical
cover F..

Consider the algorithm in Figure 7.22 to compute a ™. Show that this algorithm
is more efficient than the one presented in Figure 7.7 (Section 7.3.3) and that it
computes a™ correctly.

Given the database schema R(a, b, ¢), and a relation r on the schema R, write an
SQL query to test whether the functional dependency b — ¢ holds on relation
r. Also write an SQL assertion that enforces the functional dependency. Assume
that no null values are present.

Show that the following decomposition of the schema R of Exercise 7.2 is not a
lossless-join decomposition:

(A, B, C)
(C,D, E)

Hint: Give an example of a relation r on schema R such that

HA,B,C (7) X HC’,D,E (T) 7& r
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result := ();

/* fdcount is an array whose ith element contains the number
of attributes on the left side of the ith FD that are
not yet known to be in a™ */

fori := 1to|F|do
begin

let 3 — ~ denote the ith FD;
fdcount [i] = |5];
end

/* appears is an array with one entry for each attribute. The
entry for attribute A is a list of integers. Each integer
i on the list indicates that A appears on the left side
of the ith FD */

for each attribute A do
begin

appears [A] := NIL;
fori := 1to|F|do
begin
let 3 — ~ denote the ith FD;
if A € [ then add i to appears [A];
end
end
addin («);
return (result);

procedure addin («);
for each attribute A in o do

begin
if A ¢ result then
begin
result := result U {A};
for each element i of appears[A] do
begin
fdcount [i] := fdcount [i] — 1;
if fdcount [i] := 0 then
begin
let 3 — ~ denote the ith FD;
addin (v);
end
end
end
end

Figure 7.22  An algorithm to compute a.
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7.18

7.19

7.20

7.21

7.22

7.23
7.24

7.25

7.26

7.27
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Let Ri1, Rs,..., R, be a decomposition of schema U. Let u(U) be a relation, and
letr; = IIg,(u). Show that

u Cory Moy Mo Moy,

Show that the decomposition in Exercise 7.2 is not a dependency-preserving
decomposition.

Show that it is possible to ensure that a dependency-preserving decomposi-
tion into 3NF is a lossless-join decomposition by guaranteeing that at least one
schema contains a candidate key for the schema being decomposed. (Hint: Show
that the join of all the projections onto the schemas of the decomposition cannot
have more tuples than the original relation.)

List the three design goals for relational databases, and explain why each is
desirable.

Give a lossless-join decomposition into BCNF of schema R of Exercise 7.2.

Give an example of a relation schema R’ and set " of functional dependencies
such that there are at least three distinct lossless-join decompositions of R into
BCNF.

In designing a relational database, why might we choose a non-BCNF design?

Give a lossless-join, dependency-preserving decomposition into 3NF of schema
R of Exercise 7.2.

Let a prime attribute be one that appears in at least one candidate key. Let « and
0 be sets of attributes such that « — 3 holds, but § — « does not hold. Let A be
an attribute that is not in ¢, is not in 3, and for which 3 — A holds. We say that
A is transitively dependent on . We can restate our definition of 3NF as follows:
A relation schema R is in 3NF with respect to a set F of functional dependencies
if there are no nonprime attributes A in R for which A is transitively dependent
on a key for R.
Show that this new definition is equivalent to the original one.

A functional dependency « — (3 is called a partial dependency if there is a
proper subset v of a such that v — (. We say that 3 is partially dependent on o.. A
relation schema R is in second normal form (2NF) if each attribute A in R meets
one of the following criteria:

e It appears in a candidate key.

e Itis not partially dependent on a candidate key.

Show that every 3NF schema is in 2NF. (Hint: Show that every partial depen-
dency is a transitive dependency.)

Given the three goals of relational-database design, is there any reason to design
a database schema that is in 2NF, but is in no higher-order normal form? (See
Exercise 7.26 for the definition of 2NF.)
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7.28 Give an example of a relation schema R and a set of dependencies such that R is
in BCNF, but is not in 4NF.

7.29 Explain why 4NF is a normal form more desirable than BCNF.
7.30 Explain how dangling tuples may arise. Explain problems that they may cause.

Bibliographical Notes

The first discussion of relational-database design theory appeared in an early paper
by Codd [1970]. In that paper, Codd also introduced functional dependencies, and
first, second, and third normal forms.

Armstrong’s axioms were introduced in Armstrong [1974]. Ullman [1988] is an
easily accessible source of proofs of soundness and completeness of Armstrong’s ax-
ioms. Ullman [1988] also provides an algorithm for testing for lossless-join decompo-
sition for general (nonbinary) decompositions, and many other algorithms, theorems,
and proofs concerning dependency theory. Maier [1983] discusses the theory of func-
tional dependencies.Graham et al. [1986] discusses formal aspects of the concept of a
legal relation.

BCNF was introduced in Codd [1972]. The desirability of BCNF is discussed in
Bernstein et al. [1980a]. A polynomial-time algorithm for BCNF decomposition ap-
pears in Tsou and Fischer [1982], and can also be found in Ullman [1988]. Biskup et al.
[1979] gives the algorithm we used to find a lossless-join dependency-preserving de-
composition into 3NF. Fundamental results on the lossless-join property appear in
Aho et al. [1979a].

Multivalued dependencies are discussed in Zaniolo [1976]. Beeri et al. [1977] gives
a set of axioms for multivalued dependencies, and proves that the authors axioms
are sound and complete. Our axiomatization is based on theirs. The notions of 4NF,
PJNF, and DKNF are from Fagin [1977], Fagin [1979], and Fagin [1981], respectively.

Maier [1983] presents the design theory of relational databases in detail. Ullman
[1988] and Abiteboul et al. [1995] present a more theoretic coverage of many of the
dependencies and normal forms presented here. See the bibliographical notes of Ap-
pendix C for further references to literature on normalization.
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Object-based Databases
and XML

Several application areas for database systems are limited by the restrictions of the
relational data model. As a result, researchers have developed several data models to
deal with these application domains. In this part, we study the object-oriented data
model and the object-relational data model. In addition, we study XML, a language
that can represent data that is less structured than that of the other data models.

The object-oriented data model, described in Chapter 8, is based on the object-
oriented-programming language paradigm, which is now in wide use. Inheritance,
object-identity, and encapsulation (information hiding), with methods to provide an
interface to objects, are among the key concepts of object-oriented programming that
have found applications in data modeling. The object-oriented data model also sup-
ports a rich type system, including structured and collection types. While inheritance
and, to some extent, complex types are also present in the E-R model, encapsulation
and object-identity distinguish the object-oriented data model from the E-R model.

The object-relational model, described in Chapter 9, combines features of the re-
lational and object-oriented models. This model provides the rich type system of
object-oriented databases, combined with relations as the basis for storage of data.
It applies inheritance to relations, not just to types. The object-relational data model
provides a smooth migration path from relational databases, which is attractive to
relational database vendors. As a result, the SQL:1999 standard includes a number
of object-oriented features in its type system, while continuing to use the relational
model as the underlying model.

The XML language was initially designed as a way of adding markup informa-
tion to text documents, but has become important because of its applications in data
exchange. XML provides a way to represent data that have nested structure, and fur-
thermore allows a great deal of flexibility in structuring of data, which is important
for certain kinds of nontraditional data. Chapter 10 describes the XML language, and
then presents different ways of expressing queries on data represented in XML, and
transforming XML data from one form to another.
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Case Studies

This part describes how different database systems integrate the various concepts
described earlier in the book. Specifically, three widely used database systems—IBM
DB2, Oracle, and Microsoft SQL Server—are covered in Chapters 25, 26, and 27. These
three represent three of the most widely used database systems.

Each of these chapters highlights unique features of each database system: tools,
SQL variations and extensions, and system architecture, including storage organiza-
tion, query processing, concurrency control and recovery, and replication.

The chapters cover only key aspects of the database products they describe, and
therefore should not be regarded as a comprehensive coverage of the product. Fur-
thermore, since products are enhanced regularly, details of the product may change.
When using a particular product version, be sure to consult the user manuals for
specific details.

Keep in mind that the chapters in this part use industrial rather than academic
terminology. For instance, they use table instead of relation, row instead of tuple,
and column instead of attribute.
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Oracle

Hakan Jakobsson
Oracle Corporation

When Oracle was founded in 1977 as Software Development Laboratories by Larry
Ellison, Bob Miner, and Ed Oates, there were no commercial relational database prod-
ucts. The company, which was later renamed Oracle, set out to build a relational
database management system as a commercial product, and was the first to reach the
market. Since then, Oracle has held a leading position in the relational database mar-
ket, but over the years its product and service offerings have grown beyond the rela-
tional database server. In addition to tools directly related to database development
and management, Oracle sells business intelligence tools, including a multidimen-
sional database management system (Oracle Express), query and analysis tools, data-
mining products, and an application server with close integration to the database
server.

In addition to database-related servers and tools, the company also offers appli-
cation software for enterprise resource planning and customer-relationship manage-
ment, including areas such as financials, human resources, manufacturing, market-
ing, sales, and supply chain management. Oracle’s Business OnLine unit offers ser-
vices in these areas as an application service provider.

This chapter surveys a subset of the features, options, and functionality of Oracle
products. New versions of the products are being developed continually, so all prod-
uct descriptions are subject to change. The feature set described here is based on the
first release of Oracle9i.

25.1 Database Design and Querying Tools

Oracle provides a variety of tools for database design, querying, report generation
and data analysis, including OLAP.

921
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25.1.1 Database Design Tools

Most of Oracle’s design tools are included in the Oracle Internet Development Suite.
This is a suite of tools for various aspects of application development, including tools
for forms development, data modeling, reporting, and querying. The suite supports
the UML standard (see Section 2.10) for development modeling. It provides class
modeling to generate code for the business components for Java framework as well
as activity modeling for general-purpose control flow modeling. The suite also sup-
ports XML for data exchange with other UML tools.

The major database design tool in the suite is Oracle Designer, which translates
business logic and data flows into a schema definitions and procedural scripts for
application logic. It supports such modeling techniques as E-R diagrams, information
engineering, and object analysis and design. Oracle Designer stores the design in
Oracle Repository, which serves as a single point of metadata for the application.
The metadata can then be used to generate forms and reports. Oracle Repository
provides configuration management for database objects, forms applications, Java
classes, XML files, and other types of files.

The suite also contains application development tools for generating forms, re-
ports, and tools for various aspects of Java and XML-based development. The busi-
ness intelligence component provides JavaBeans for analytic functionality such as
data visualization, querying, and analytic calculations.

Oracle also has an application development tool for data warehousing, Oracle
Warehouse Builder. Warehouse Builder is a tool for design and deployment of all as-
pects of a data warehouse, including schema design, data mapping and transforma-
tions, data load processing, and metadata management. Oracle Warehouse Builder
supports both 3NF and star schemas and can also import designs from Oracle De-
signer.

25.1.2 Querying Tools

Oracle provides tools for ad-hoc querying, report generation and data analysis, in-
cluding OLAP.

Oracle Discoverer is a Web-based, ad hoc query, reporting, analysis and Web pub-
lishing tool for end users and data analysts. It allows users to drill up and down on
result sets, pivot data, and store calculations as reports that can be published in a
variety of formats such as spreadsheets or HTML. Discoverer has wizards to help end
users visualize data as graphs. Oracle9i has supports a rich set of analytical func-
tions, such as ranking and moving aggregation in SQL. Discoverer’s ad hoc query
interface can generate SQL that takes advantage of this functionality and can pro-
vide end users with rich analytical functionality. Since the processing takes place in
the relational database management system, Discoverer does not require a complex
client-side calculation engine and there is a version of Discoverer that is browser
based.

Oracle Express Server is a multidimensional database server. It supports a wide
variety of analytical queries as well as forecasting, modeling, and scenario manage-
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ment. It can use the relational database management system as a back end for storage
or use its own multidimensional storage of the data.

With the introduction of OLAP services in Oracle9i, Oracle is moving away from
supporting a separate storage engine and moving most of the calculations into SQL.
The result is a model where all the data reside in the relational database management
system and where any remaining calculations that cannot be performed in SQL are
done in a calculation engine running on the database server. The model also provides
a Java OLAP application programmer interface.

There are many reasons for moving away from a separate multidimensional stor-
age engine:

o A relational engine can scale to much larger data sets.

e A common security model can be used for the analytical applications and the
data warehouse.

e Multidimensional modeling can be integrated with data warehouse modeling.

o The relational database management system has a larger set of features and
functionality in many areas such as high availability, backup and recovery,
and third-party tool support.

e There is no need to train database administrators for two database engines.

The main challenge with moving away from a separate multidimensional database
engine is to provide the same performance. A multidimensional database manage-
ment system that materializes all or large parts of a data cube can offer very fast
response times for many calculations. Oracle has approached this problem in two
ways.

e Oracle has added SQL support for a wide range of analytical functions, in-
cluding cube, rollup, grouping sets, ranks, moving aggregation, lead and lag
functions, histogram buckets, linear regression, and standard deviation, along
with the ability to optimize the execution of such functions in the database en-
gine.

e Oracle has extended materialized views to permit analytical functions, in par-
ticular grouping sets. The ability to materialize parts or all of the cube is key
to the performance of a multidimensional database management system and
materialized views give a relational database management system the ability
to do the same thing.

25.2 SQL Variations and Extensions

Oracle9i supports all core SQL:1999 features fully or partially, with some minor ex-
ceptions such as distinct data types. In addition, Oracle supports a large number of
other language constructs, some of which conform with SQL:1999, while others are
Oracle-specific in syntax or functionality. For example, Oracle supports the OLAP
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operations described in Section 22.2, including ranking, moving aggregation, cube,
and rollup.
A few examples of Oracle SQL extensions are:

25.2.

connect by, which is a form of tree traversal that allows transitive closure-
style calculations in a single SQL statement. It is an Oracle-specific syntax for
a feature that Oracle has had since the 1980s.

Upsert and multitable inserts. The upsert operation combines update and in-
sert, and is useful for merging new data with old data in data warehousing
applications. If a new row has the same key value as an old row, the old row is
updated (for example by adding the measure values from the new row), oth-
erwise the new row is inserted into the table. Multitable inserts allow multiple
tables to be updated based on a single scan of new data.

with clause, which is described in Section 4.8.2.

1 Object-Relational Features

Oracle has extensive support for object-relational constructs, including;:

Object types. A single-inheritance model is supported for type hierarchies.

Collection types. Oracle supports varrays which are variable length arrays,
and nested tables.

Object tables. These are used to store objects while providing a relational
view of the attributes of the objects.

Table functions. These are functions that produce sets of rows as output, and
can be used in the from clause of a query. Table functions in Oracle can be
nested. If a table function is used to express some form of data transformation,
nesting multiple functions allows multiple transformations to be expressed in
a single statement.

Object views. These provide a virtual object table view of data stored in a
regular relational table. They allow data to be accessed or viewed in an object-
oriented style even if the data are really stored in a traditional relational for-
mat.

Methods. These can be written in PL/SQL, Java, or C.

User-defined aggregate functions. These can be used in SQL statements in the
same way as built-in functions such as sum and count.

XML data types. These can be used to store and index XML documents.

Oracle has two main procedural languages, PL/SQL and Java. PL/SQL was Oracle’s
original language for stored procedures and it has syntax similar to that used in the
Ada language. Java is supported through a Java virtual machine inside the database
engine. Oracle provides a package to encapsulate related procedures, functions, and
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variables into single units. Oracle supports SQLJ (SQL embedded in Java) and JDBC,
and provides a tool to generate Java class definitions corresponding to user-defined
database types.

25.2.2 Triggers

Oracle provides several types of triggers and several options for when and how they
are invoked. (See Section 6.4 for an introduction to triggers in SQL.) Triggers can be
written in PL/SQL or Java or as C callouts.

For triggers that execute on DML statements such as insert, update, and delete,
Oracle supports row triggers and statement triggers. Row triggers execute once for
every row that is affected (updated or deleted, for example) by the DML operation.
A statement trigger is executed just once per statement. In each case, the trigger can
be defined as either a before or after trigger, depending on whether it is to be invoked
before or after the DML operation is carried out.

Oracle allows the creation of instead of triggers for views that cannot be subject
to DML operations. Depending on the view definition, it may not be possible for Or-
acle to translate a DML statement on a view to modifications of the underlying base
tables unambiguously. Hence, DML operations on views are subject to numerous re-
strictions. A user can create an instead of trigger on a view to specify manually what
operations on the base tables are to occur in response to the DML operation on the
view. Oracle executes the trigger instead of the DML operation and therefore pro-
vides a mechanism to circumvent the restrictions on DML operations against views.

Oracle also has triggers that execute on a variety of other events, like database
startup or shutdown, server error messages, user logon or logoff, and DDL statements
such as create, alter and drop statements.

25.3 Storage and Indexing

In Oracle parlance, a database consists of information stored in files and is accessed
through an instance, which is a shared memory area and a set of processes that inter-
act with the data in the files.

25.3.1 Table Spaces

A database consists of one or more logical storage units called table spaces. Each
table space, in turn, consists of one or more physical structures called data files. These
may be either files managed by the operating system or raw devices.

Usually, an Oracle database will have the following table spaces:

e The system table space, which is always created. It contains the data dictio-
nary tables and storage for triggers and stored procedures.

o Table spaces created to store user data. While user data can be stored in the
system table space, it is often desirable to separate the user data from the sys-
tem data. Usually, the decision about what other table spaces should be cre-
ated is based on performance, availability, maintainability, and ease of admin-
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istration. For example, having multiple table spaces can be useful for partial
backup and recovery operations.

e Temporary table spaces. Many database operations require sorting the data,
and the sort routine may have to store data temporarily on disk if the sort
cannot be done in memory. Temporary table spaces are allocated for sorting,
to make the space management operations involved in spilling to disk more
efficient.

Table spaces can also be used as a means of moving data between databases. For
example, it is common to move data from a transactional system to a data warehouse
at regular intervals. Oracle allows moving all the data in a table space from one sys-
tem to the other by simply copying the files and exporting and importing a small
amount of data dictionary metadata. These operations can be much faster than un-
loading the data from one database and then using a loader to insert it into the other.
A requirement for this feature is that both systems use the same operating system.

25.3.2 Segments

The space in a table space is divided into units, called segments, that each contain
data for a specific data structure. There are four types of segments.

e Data segments. Each table in a table space has its own data segment where
the table data are stored unless the table is partitioned; if so, there is one data
segment per partition. (Partitioning in Oracle is described in Section 25.3.10.)

o Index segments. Each index in a table space has its own index segment, except
for partitioned indices, which have one index segment per partition.

o Temporary segments. These are segments used when a sort operation needs
to write data to disk or when data are inserted into a temporary table.

e Rollback segments. These segments contain undo information so that an un-
committed transaction can be rolled back. They also play an important roll in
Oracle’s concurrency control model and for database recovery, described in
Sections 25.5.1 and 25.5.2.

Below the level of segment, space is allocated at a level of granularity called extent.
Each extent consists of a set of contiguous database blocks. A database block is the
lowest level of granularity at which Oracle performs disk I/O. A database block does
not have to be the same as an operating system block in size, but should be a multiple
thereof.

Oracle provides storage parameters that allow for detailed control of how space is
allocated and managed, parameters such as:

o The size of a new extent that is to be allocated to provide room for rows that
are inserted into a table.
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o The percentage of space utilization at which a database block is considered full
and at which no more rows will be inserted into that block. (Leaving some free
space in a block can allow the existing rows to grow in size through updates,
without running out of space in the block.)

25.3.3 Tables

A standard table in Oracle is heap organized; that is, the storage location of a row in
a table is not based on the values contained in the row, and is fixed when the row
is inserted. However, if the table is partitioned, the content of the row affects the
partition in which it is stored. There are several features and variations.

Oracle supports nested tables; that is, a table can have a column whose data type
is another table. The nested table is not stored in line in the parent table, but is stored
in a separate table.

Oracle supports temporary tables where the duration of the data is either the trans-
action in which the data are inserted, or the user session. The data are private to the
session and are automatically removed at the end of its duration.

A cluster is another form of organization for table data (see Section 11.7). The
concept, in this context, should not be confused with other meanings of the word
cluster, such as those relating to hardware architecture. In a cluster, rows from dif-
ferent tables are stored together in the same block on the basis of some common
columns. For example, a department table and an employee table could be clustered
so that each row in the department table is stored together with all the employee
rows for those employees who work in that department. The primary key/foreign
key values are used to determine the storage location. This organization gives per-
formance benefits when the two tables are joined, but without the space penalty of a
denormalized schema, since the values in the department table are not repeated for
each employee. As a tradeoff, a query involving only the department table may have
to involve a substantially larger number of blocks than if that table had been stored
on its own.

The cluster organization implies that a row belongs in a specific place; for example,
a new employee row must be inserted with the other rows for the same department.
Therefore, an index on the clustering column is mandatory. An alternative organiza-
tion is a hash cluster. Here, Oracle computes the location of a row by applying a hash
function to the value for the cluster column. The hash function maps the row to a
specific block in the hash cluster. Since no index traversal is needed to access a row
according to its cluster column value, this organization can save significant amounts
of disk I/O. However, the number of hash buckets and other storage parameters must
be set carefully to avoid performance problems due to too many collisions or space
wastage due to empty hash buckets.

Both the hash cluster and regular cluster organization can be applied to a single
table. Storing a table as a hash cluster with the primary key column as the cluster key
can allow an access based on a primary key value with a single disk I/O provided
that there is no overflow for that data block.
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25.3.4 Index-Organized Tables

In an index organized table, records are stored in an Oracle B-tree index instead of in a
heap. An index-organized table requires that a unique key be identified for use as the
index key. While an entry in a regular index contains the key value and row-id of the
indexed row, an index-organized table replaces the row-id with the column values
for the remaining columns of the row. Compared to storing the data in a regular heap
table and creating an index on the key columns, index-organized table can improve
both performance and space utilization. Consider looking up all the column values
of a row, given its primary key value. For a heap table, that would require an index
probe followed by a table access by row-id. For an index-organized table, only the
index probe is necessary.

Secondary indices on nonkey columns of an index-organized table are different
from indices on a regular heap table. In a heap table, each row has a fixed row-id
that does not change. However, a B-tree is reorganized as it grows or shrinks when
entries are inserted or deleted, and there is no guarantee that a row will stay in a
fixed place inside an index-organized table. Hence, a secondary index on an index-
organized table contains not normal row-ids, but logical row-ids instead. A logical
row-id consists of two parts: a physical row-id corresponding to where the row was
when the index was created or last rebuilt and a value for the unique key. The phys-
ical row-id is referred to as a “guess” since it could be incorrect if the row has been
moved. If so, the other part of a logical row-id, the key value for the row, is used to
access the row; however, this access is slower than if the guess had been correct, since
it involves a traversal of the B-tree for the index-organized table from the root all the
way to the leaf nodes, potentially incurring several disk I/Os. However, if a table is
highly volatile and a large percentage of the guesses are likely to be wrong, it can be
better to create the secondary index with only key values, since using an incorrect
guess may result in a wasted disk I/O.

25.3.5 Indices

Oracle supports several different types of indices. The most commonly used type is a
B-tree index, created on one or multiple columns. (Note: in the terminology of Oracle
(as also in several other database systems) a B-tree index is what is referred to as a
B*-tree index in Chapter 12.) Index entries have the following format: For an index
on columns coly, cols, and cols, each row in the table where at least one of the columns
has a nonnull value would result in the index entry

< coly >< coly >< cols >< row-id >

where < col; > denotes the value for column i and < row-id > is the row-id for
the row. Oracle can optionally compress the prefix of the entry to save space. For
example, if there are many repeated combinations of < col; >< coly > values, the
representation of each distinct < col; >< coly > prefix can be shared between the
entries that have that combination of values, rather than stored explicitly for each
such entry. Prefix compression can lead to substantial space savings.
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25.3.6 Bitmap Indices

Bitmap indices (described in Section 12.9.4) use a bitmap representation for index
entries, which can lead to substantial space saving (and therefore disk I/O savings),
when the indexed column has a moderate number of distinct values. Bitmap indices
in Oracle use the same kind of B-tree structure to store the entries as a regular in-
dex. However, where a regular index on a column would have entries of the form
< coly >< row-id >, a bitmap index entry has the form

< coly >< startrow-id >< endrow-id >< compressedbitmap >

The bitmap conceptually represents the space of all possible rows in the table be-
tween the start and end row-id. The number of such possible rows in a block depends
on how many rows can fit into a block, which is a function of the number of columns
in the table and their data types. Each bit in the bitmap represents one such possible
row in a block. If the column value of that row is that of the index entry, the bit is set
to 1. If the row has some other value, or the row does not actually exist in the table,
the bit is set to 0. (It is possible that the row does not actually exist because a table
block may well have a smaller number of rows than the number that was calculated
as the maximum possible.) If the difference is large, the result may be long strings
of consecutive zeros in the bitmap, but the compression algorithm deals with such
strings of zeros, so the negative effect is limited.

The compression algorithm is a variation of a compression technique called Byte-
Aligned Bitmap Compression (BBC). Essentially, a section of the bitmap where the
distance between two consecutive ones is small enough is stored as verbatim bitmaps.
If the distance between two ones is sufficiently large—that is, there is a sufficient
number of adjacent zeros between them—a runlength of zeros, that is the number of
zeros, is stored.

Bitmap indices allow multiple indices on the same table to be combined in the
same access path if there are multiple conditions on indexed columns in the where
clause of a query. For example, for the condition

(coly = 1 or coly = 2) and coly > 5 and cols <> 10

Oracle would be able to calculate which rows match the condition by performing
Boolean operations on bitmaps from indices on the three columns. In this case, these
operations would take place for each index:

e For the index on col;, the bitmaps for key values 1 and 2 would be ored.

e For the index on coly, all the bitmaps for key values > 5 would be merged in
an operation that corresponds to a logical or.

e For the index on cols, the bitmaps for key values 10 and null would be re-
trieved. Then, a Boolean and would be performed on the results from the first
two indices, followed by two Boolean minuses of the bitmaps for values 10
and null for cols.
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All operations are performed directly on the compressed representation of the bit-
maps—no decompression is necessary—and the resulting (compressed) bitmap rep-
resents those rows that match all the logical conditions.

The ability to use the Boolean operations to combine multiple indices is not lim-
ited to bitmap indices. Oracle can convert row-ids to the compressed bitmap repre-
sentation, so it can use a regular B-tree index anywhere in a Boolean tree of bitmap
operation simply by putting a row-id-to-bitmap operator on top of the index access
in the execution plan.

As a rule of thumb, bitmap indices tend to be more space efficient than regular
B-tree indices if the number of distinct key values is less than half the number of
rows in the table. For example, in a table with 1 million rows, an index on a column
with less than 500,000 distinct values would probably be smaller if it were created as
a bitmap index. For columns with a very small number of distinct values—for ex-
ample, columns referring to properties such as country, state, gender, marital status,
and various status flags—a bitmap index might require only a small fraction of the
space of a regular B-tree index. Any such space advantage can also give rise to corre-
sponding performance advantages in the form of fewer disk I/Os when the index is
scanned.

25.3.7 Function-Based Indices

In addition to creating indices on one or multiple columns of a table, Oracle allows
indices to be created on expressions that involve one or more columns, such as col; +
coly %5. For example, by creating an index on the expression upper(name), where upper
is a function that returns the uppercase version of a string, and name is a column, it is
possible to do case-insensitive searches on the name column. In order to find all rows
with name “van Gogh” efficiently, the condition

upper(name) = "VAN GOGH’

would be used in the where clause of the query. Oracle then matches the condition
with the index definition and concludes that the index can be used to retrieve all the
rows matching “van Gogh” regardless of how the name was capitalized when it was
stored in the database. A function-based index can be created as either a bitmap or a
B-tree index.

25.3.8 Join Indices

A join index is an index where the key columns are not in the table that is referenced
by the row-ids in the index. Oracle supports bitmap join indices primarily for use
with star schemas (see Section 22.4.2). For example, if there is a column for product
names in a product dimension table, a bitmap join index on the fact table with this key
column could be used to retrieve the fact table rows that correspond to a product with
a specific name, although the name is not stored in the fact table. How the rows in
the fact and dimension tables correspond is based on a join condition that is specified
when the index is created, and becomes part of the index metadata. When a query is
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processed, the optimizer will look for the same join condition in the where clause of
the query in order to determine if the join index is applicable.

Oracle allows bitmap join indices to have more than one key column and these
columns can be in different tables. In all cases, the join conditions between the fact
table on which the index is built and the dimension tables must refer to unique keys
in the dimension tables; that is, an indexed row in the fact table must correspond to
a unique row in each of the dimension tables.

Oracle can combine a bitmap join index on a fact table with other indices on the
same table—whether join indices or not—Dby using the operators for Boolean bitmap
operations. For example, consider a schema with a fact table for sales, and dimension
tables for customers, products, and time. Suppose a query requests information about
sales to customers in a certain zip code who bought products in a certain product cat-
egory during a certain time period. If a multicolumn bitmap join index exists where
the key columns are the constrained dimension table columns (zip code, product cat-
egory and time), Oracle can use the join index to find rows in the fact table that match
the constraining conditions. However, if individual, single-column indices exist for
the key columns (or a subset of them), Oracle can retrieve bitmaps for fact table rows
that match each individual condition, and use the Boolean and operation to generate
a fact table bitmap for those rows that satisfy all the conditions. If the query contains
conditions on some columns of the fact table, indices on those columns could be in-
cluded in the same access path, even if they were regular B-tree indices or domain
indices (domain indices are described below in Section 25.3.9).

25.3.9 Domain Indices

Oracle allows tables to be indexed by index structures that are not native to Oracle.
This extensibility feature of the Oracle server allows software vendors to develop
so-called cartridges with functionality for specific application domains, such as text,
spatial data, and images, with indexing functionality beyond that provided by the
standard Oracle index types. In implementing the logic for creating, maintaining,
and searching the index, the index designer must ensure that it adheres to a specific
protocol in its interaction with the Oracle server.

A domain index must be registered in the data dictionary, together with the oper-
ators it supports. Oracle’s optimizer considers domain indices as one of the possible
access paths for a table. Oracle allows cost functions to be registered with the opera-
tors so that the optimizer can compare the cost of using the domain index to those of
other access paths.

For example, a domain index for advanced text searches may support an operator
contains. Once this operator has been registered, the domain index will be considered
as an access path for a query like

select *
from employees
where contains(resume, "LINUX")
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where resume is a text column in the employee table. The domain index can be stored
in either an external data file or inside an Oracle index-organized table.

A domain index can be combined with other (bitmap or B-tree) indices in the same
access path by converting between the row-id and bitmap representation and using
Boolean bitmap operations.

25.3.10 Partitioning

Oracle supports various kinds of horizontal partitioning of tables and indices, and
this feature plays a major role in Oracle’s ability to support very large databases. The
ability to partition a table or index has advantages in many areas.

e Backup and recovery are easier and faster, since they can be done on individ-
ual partitions rather than on the table as a whole.

e Loading operations in a data warehousing environment are less intrusive:
data can be added to a partition, and then the partition added to a table, which
is an instantaneous operation. Likewise, dropping a partition with obsolete
data from a table is very easy in a data warehouse that maintains a rolling
window of historical data.

e Query performance benefits substantially, since the optimizer can recognize
that only a subset of the partitions of a table need to be accessed in order to
resolve a query (partition pruning). Also, the optimizer can recognize that in
a join, it is not necessary to try to match all rows in one table with all rows in
the other, but that the joins need to be done only between matching pairs of
partitions (partitionwise join).

Each row in a partitioned table is associated with a specific partition. This associa-
tion is based on the partitioning column or columns that are part of the definition of a
partitioned table. There are several ways to map column values to partitions, giving
rise to several types of partitioning, each with different characteristics: range, hash,
composite, and list partitioning.

25.3.10.1 Range Partitioning

In range partitioning, the partitioning criteria are ranges of values. This type of par-
titioning is especially well suited to date columns, in which case all rows in the same
date range, say a day or a month, belong in the same partition. In a data warehouse
where data are loaded from the transactional systems at regular intervals, range par-
titioning can be used to implement a rolling window of historical data efficiently.
Each data load gets its own new partition, making the loading process faster and
more efficient. The system actually loads the data into a separate table with the same
column definition as the partitioned table. It can then check the data for consistency,
cleanse them, and index them. After that, the system can make the separate table a
new partition of the partitioned table, by a simple change to the metadata in the data
dictionary—a nearly instantaneous operation.
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Up until the metadata change, the loading process does not affect the existing
data in the partitioned table in any way. There is no need to do any maintenance
of existing indices as part of the loading. Old data can be removed from a table by
simply dropping its partition; this operation does not affect the other partitions.

In addition, queries in a data warehousing environment often contain conditions
that restrict them to a certain time period, such as a quarter or month. If date range
partitioning is used, the query optimizer can restrict the data access to those parti-
tions that are relevant to the query, and avoid a scan of the entire table.

25.3.10.2 Hash Partitioning

In hash partitioning, a hash function maps rows to partitions according to the values
in the partitioning columns. This type of partitioning is primarily useful when it is
important to distribute the rows evenly among partitions or when partitionwise joins
are important for query performance.

25.3.10.3 Composite Partitioning

In composite partitioning, the table is range partitioned, but each partition is subpar-
titioned by using hash partitioning. This type of partitioning combines the advan-
tages of range partitioning and hash partitioning.

25.3.10.4 List Partitioning

In list partitioning, the values associated with a particular partition are stated in a
list. This type of partitioning is useful if the data in the partitioning column have a
relatively small set of discrete values. For instance, a table with a state column can be
implicitly partitioned by geographical region if each partition list has the states that
belong in the same region.

25.3.11 Materialized Views

The materialized view feature (see Section 3.5.1) allows the result of an SQL query to
be stored in a table and used for later query processing. In addition, Oracle maintains
the materialized result, updating it when the tables that were referenced in the query
are updated. Materialized views are used in data warehousing to speed up query
processing, but the technology is also used for replication in distributed and mobile
environments.

In data warehousing, a common usage for materialized views is to summarize
data. For example, a common type of query asks for “the sum of sales for each quarter
during the last 2 years.” Precomputing the result, or some partial result, of such a
query can speed up query processing dramatically compared to computing it from
scratch by aggregating all detail-level sales records.

Oracle supports automatic query rewrites that take advantage of any useful mate-
rialized view when resolving a query. The rewrite consists of changing the query to
use the materialized view instead of the original tables in the query. In addition, the
rewrite may add additional joins or aggregate processing as may be required to get
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the correct result. For example, if a query needs sales by quarter, the rewrite can take
advantage of a view that materializes sales by month, by adding additional aggre-
gation to roll up the months to quarters. Oracle has a type of metadata object called
dimension that allows hierarchical relationships in tables to be defined. For example,
for a time dimension table in a star schema, Oracle can define a dimension metadata
object to specify how days roll up to months, months to quarters, quarters to years,
and so forth. Likewise, hierarchical properties relating to geography can be specified
—for example, how sales districts roll up to regions. The query rewrite logic looks at
these relationships since they allow a materialized view to be used for wider classes
of queries.

The container object for a materialized view is a table, which means that a mate-
rialized view can be indexed, partitioned, or subjected to other controls, to improve
query performance.

When there are changes to the data in the tables referenced in the query that de-
fines a materialized view, the materialized view must be refreshed to reflect those
changes. Oracle supports both full refresh of a materialized view and fast, incremen-
tal refresh. In a full refresh, Oracle recomputes the materialized view from scratch,
which may be the best option if the underlying tables have had significant changes,
for example, changes due to a bulk load. In an incremental refresh, Oracle updates
the view using the records that were changed in the underlying tables; the refresh to
the view is immediate, that is, it is executed as part of the transaction that changed
the underlying tables. Incremental refresh may be better if the number of rows that
were changed is low. There are some restrictions on the classes of queries for which
a materialized view can be incrementally refreshed (and others for when a material-
ized view can be created at all).

A materialized view is similar to an index in the sense that, while it can improve
query performance, it uses up space, and creating and maintaining it consumes re-
sources. To help resolve this tradeoff, Oracle provides a package that can advise a
user of the most cost-effective materialized views, given a particular query workload
as input.

25.4 Query Processing and Optimization

Oracle supports a large variety of processing techniques in its query processing en-
gine. Some of the more important ones are described here briefly.

25.4.1 Execution Methods

Data can be accessed through a variety of access methods:

e Full table scan. The query processor scans the entire table by getting infor-
mation about the blocks that make up the table from the extent map, and
scanning those blocks.

e Index scan. The processor creates a start and/or stop key from conditions
in the query and uses it to scan to a relevant part of the index. If there are
columns that need to be retrieved, that are not part of the index, the index
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scan would be followed by a table access by index row-id. If no start or stop
key is available, the scan would be a full index scan.

o Index fast full scan. The processor scans the extents the same way as the table
extent in a full table scan. If the index contains all the columns that are needed
in the index, and there are no good start/stop keys that would significantly
reduce that portion of the index that would be scanned in a regular index scan,
this method may be the fastest way to access the data. This is because the fast
full scan can take full advantage of multiblock disk I/0. However, unlike a
regular full scan, which traverses the index leaf blocks in order, a fast full scan
does not guarantee that the output preserves the sort order of the index.

e Index join. If a query needs only a small subset of the columns of a wide
table, but no single index contains all those columns, the processor can use an
index join to generate the relevant information without accessing the table, by
joining several indices that together contain the needed columns. It performs
the joins as hash joins on the row-ids from the different indices.

e Cluster and hash cluster access. The processor accesses the data by using the
cluster key.

Oracle has several ways to combine information from multiple indices in a single
access path. This ability allows multiple where-clause conditions to be used together
to compute the result set as efficiently as possible. The functionality includes the
ability to perform Boolean operations and, or, and minus on bitmaps representing
row-ids. There are also operators that map a list of row-ids into bitmaps and vice
versa, which allows regular B-tree indices and bitmap indices to be used together in
the same access path. In addition, for many queries involving count(*) on selections
on a table, the result can be computed by just counting the bits that are set in the
bitmap generated by applying the where clause conditions, without accessing the
table.

Oracle supports several types of joins in the execution engine: inner joins, outer
joins, semijoins, and antijoins. (An antijoin in Oracle returns rows from the left-hand
side input that do not match any row in the right-hand side input; this operation is
called anti-semijoin in other literature.) It evaluates each type of join by one of three
methods: hash join, sort-merge join, or nested-loop join.

25.4.2 Optimization

In Chapter 14, we discussed the general topic of query optimization. Here, we discuss
optimization in the context of Oracle.

25.4.2.1 Query Transformations

Oracle does query optimization in several stages. Most of the techniques relating to
query transformations and rewrites take place before access path selection, but Or-
acle also supports several types of cost-based query transformations that generate a
complete plan and return a cost estimate for both a standard version of the query and
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one that has been subjected to advanced transformations. Not all query transforma-
tion techniques are guaranteed to be beneficial for every query, but by generating a
cost estimate for the best plan with and without the transformation applied, Oracle
is able to make an intelligent decision.

Some of the major types of transformations and rewrites supported by Oracle are
as follows:

View merging. A view reference in a query is replaced by the view definition.
This transformation is not applicable to all views.

Complex view merging. Oracle offers this feature for certain classes of views
that are not subject to regular view merging because they have a group by or
select distinct in the view definition. If such a view is joined to other tables,
Oracle can commute the joins and the sort operation used for the group by or
distinct.

Subquery flattening. Oracle has a variety of transformations that convert var-
ious classes of subqueries into joins, semijoins, or antijoins.

Materialized view rewrite. Oracle has the ability to rewrite a query automati-
cally to take advantage of materialized views. If some part of the query can be
matched up with an existing materialized view, Oracle can replace that part
of the query with a reference to the table in which the view is materialized.
If need be, Oracle adds join conditions or group by operations to preserve
the semantics of the query. If multiple materialized views are applicable, Ora-
cle picks the one that gives the greatest advantage in reducing the amount of
data that has to be processed. In addition, Oracle subjects both the rewritten
query and the original version to the full optimization process producing an
execution plan and an associated cost estimate for each. Oracle then decides
whether to execute the rewritten or the original version of the query on the
basis of the cost estimates.

Star transformation. Oracle supports a technique for evaluating queries against
star schemas, known as the star transformation. When a query contains a join
of a fact table with dimension tables, and selections on attributes from the
dimension tables, the query is transformed by deleting the join condition be-
tween the fact table and the dimension tables, and replacing the selection con-
dition on each dimension table by a subquery of the form:

fact_table.fk; in
(select pk from dimension_table;
where <conditions on dimension_table; >)

One such subquery is generated for each dimension that has some constrain-
ing predicate. If the dimension has a snow-flake schema (see Section 22.4), the
subquery will contain a join of the applicable tables that make up the dimen-
sion.
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Oracle uses the values that are returned from each subquery to probe an
index on the corresponding fact table column, getting a bitmap as a result.
The bitmaps generated from different subqueries are combined by a bitmap
and operation. The resultant bitmap can be used to access matching fact table
rows. Hence, only those rows in the fact table that simultaneously match the
conditions on the constrained dimensions will be accessed.

Both the decision on whether the use of a subquery for a particular dimen-
sion is cost-effective, and the decision on whether the rewritten query is better
than the original, are based on the optimizer’s cost estimates.

25.4.2.2 Access Path Selection

Oracle has a cost-based optimizer that determines join order, join methods, and ac-
cess paths. Each operation that the optimizer considers has an associated cost func-
tion, and the optimizer tries to generate the combination of operations that has the
lowest overall cost.

In estimating the cost of an operation, the optimizer relies on statistics that have
been computed for schema objects such as tables and indices. The statistics contain
information about the size of the object, the cardinality, data distribution of table
columns, and so forth. For column statistics, Oracle supports height-balanced and
frequency histograms. To facilitate the collection of optimizer statistics, Oracle can
monitor modification activity on tables and keep track of those tables that have been
subject to enough changes that recalculating the statistics may be appropriate. Oracle
also tracks what columns are used in where clauses of queries, which make them po-
tential candidates for histogram creation. With a single command, a user can tell Or-
acle to refresh the statistics for those tables that were marked as sufficiently changed.
Oracle uses sampling to speed up the process of gathering the new statistics and
automatically chooses the smallest adequate sample percentage. It also determines
whether the distribution of the marked columns merit the creation of histograms; if
the distribution is close to uniform, Oracle uses a simpler representation of the col-
umn statistics.

Oracle uses both CPU cost and disk I/Os in the optimizer cost model. To balance
the two components, it stores measures about CPU speed and disk I/O performance
as part of the optimizer statistics. Oracle’s package for gathering optimizer statistics
computes these measures.

For queries involving a nontrivial number of joins, the search space is an issue for a
query optimizer. Oracle addresses this issue in several ways. The optimizer generates
an initial join order and then decides on the best join methods and access paths for
that join order. It then changes the order of the tables and determines the best join
methods and access paths for the new join order and so forth, while keeping the best
plan that has been found so far. Oracle cuts the optimization short if the number of
different join orders that have been considered becomes so large that the time spent
in the optimizer may be noticeable compared to the time it would take to execute
the best plan found so far. Since this cutoff depends on the cost estimate for the best
plan found so far, finding a good plan early is important so that the optimization can
be stopped after a smaller number of join orders, resulting in better response time.
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Oracle uses several initial ordering heuristics to increase the likelihood that the first
join order considered is a good one.

For each join order that is considered, the optimizer may make additional passes
over the tables to decide join methods and access paths. Such additional passes would
target specific global side effects of the access path selection. For instance, a specific
combination of join methods and access paths may eliminate the need to perform an
order by sort. Since such a global side effect may not be obvious when the costs of
the different join methods and access paths are considered locally, a separate pass
targeting a specific side effect is used to find a possible execution plan with a better
overall cost.

25.4.2.3 Partition Pruning

For partitioned tables, the optimizer tries to match conditions in the where clause
of a query with the partitioning criteria for the table, in order to avoid accessing
partitions that are not needed for the result. For example, if a table is partitioned
by date range and the query is constrained to data between two specific dates, the
optimizer determines which partitions contain data between the specified dates and
ensures that only those partitions are accessed. This scenario is very common, and
the speedup can be dramatic if only a small subset of the partitions are needed.

25.4.3 Parallel Execution

Oracle allows the execution of a single SQL statement to be parallelized by dividing
the work between multiple processes on a multiprocessor computer. This feature is
especially useful for computationally intensive operations that would otherwise take
an unacceptably long time to perform. Representative examples are decision support
queries that need to process large amounts of data, data loads in a data warehouse,
and index creation or rebuild.

In order to achieve good speedup through parallelism, it is important that the
work involved in executing the statement be divided into granules that can be pro-
cessed independently by the different parallel processors. Depending on the type of
operation, Oracle has several ways to split up the work.

For operations that access base objects (tables and indices), Oracle can divide the
work by horizontal slices of the data. For some operations, such as a full table scan,
each such slice can be a range of blocks—each parallel query process scans the table
from the block at the start of the range to the block at the end. For other operations on
a partitioned table, like update and delete, the slice would be a partition. For inserts
into a nonpartitioned table, the data to be inserted are randomly divided across the
parallel processes.

Joins can be parallelized in several different ways. One way is to divide one of the
inputs to the join between parallel processes and let each process join its slice with
the other input to the join; this is the asymmetric fragment-and-replicate method
of Section 20.5.2.2. For example, if a large table is joined to a small one by a hash
join, Oracle divides the large table among the processes and broadcasts a copy of the
small table to each process, which then joins its slice with the smaller table. If both
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tables are large, it would be prohibitively expensive to broadcast one of them to all
processes. In that case, Oracle achieves parallelism by partitioning the data among
processes by hashing on the values of the join columns (the partitioned hash-join
method of Section 20.5.2.1). Each table is scanned in parallel by a set of processes and
each row in the output is passed on to one of a set of processes that are to perform
the join. Which one of these processes gets the row is determined by a hash function
on the values of the join column. Hence, each join process gets only rows that could
potentially match, and no rows that could match could end up in different processes.

Oracle parallelizes sort operations by value ranges of the column on which the
sort is performed (that is, using the range-partitioning sort of Section 20.5.1). Each
process participating in the sort is sent rows with values in its range, and it sorts the
rows in its range. To maximize the benefits of parallelism, the rows need to be divided
as evenly as possible among the parallel processes, and the problem of determining
range boundaries that generates a good distribution then arises. Oracle solves the
problem by dynamically sampling a subset of the rows in the input to the sort before
deciding on the range boundaries.

25.4.3.1 Process Structure

The processes involved in the parallel execution of an SQL statement consist of a
coordinator process and a number of parallel server processes. The coordinator is
responsible for assigning work to the parallel servers and for collecting and returning
data to the user process that issued the statement. The degree of parallelism is the
number of parallel server processes that are assigned to execute a primitive operation
as part of the statement. The degree of parallelism is determined by the optimizer, but
can be throttled back dynamically if the load on the system increases.

The parallel servers operate on a producer/consumer model. When a sequence of
operations is needed to process a statement, the producer set of servers performs the
first operation and passes the resulting data to the consumer set. For example, if a full
table scan is followed by a sort and the degree of parallelism is 12, there would be
12 producer servers performing the table scan and passing the result to 12 consumer
servers that perform the sort. If a subsequent operation is needed, like another sort,
the roles of the two sets of servers switch. The servers that originally performed the
table scan take on the role of consumers of the output produced by the the first sort
and use it to perform the second sort. Hence, a sequence of operations proceeds by
passing data back and forth between two sets of servers that alternate in their roles as
producers and consumers. The servers communicate with each other through mem-
ory buffers on shared-memory hardware and through high-speed network connec-
tions on MPP (shared nothing) configurations and clustered (shared disk) systems.

For shared nothing systems, the cost of accessing data on disk is not uniform
among processes. A process running on a node that has direct access to a device
is able to process data on that device faster than a process that has to retrieve the
data over a network. Oracle uses knowledge about device-to-node and device-to-
process affinity—that is, the ability to access devices directly—when distributing
work among parallel execution servers.
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25.5 Concurrency Control and Recovery

Oracle supports concurrency control and recovery techniques that provide a number
of useful features.

25.5.1 Concurrency Control

Oracle’s multiversion concurrency control differs from the concurrency mechanisms
used by most other database vendors. Read-only queries are given a read-consistent
snapshot, which is a view of the database as it existed at a specific point in time,
containing all updates that were committed by that point in time, and not containing
any updates that were not committed at that point in time. Thus, read locks are not
used and read-only queries do not interfere with other database activity in terms of
locking. (This is basically the multiversion two-phase locking protocol described in
Section 16.5.2.)

Oracle supports both statement and transaction level read consistency: At the be-
ginning of the execution of either a statement or a transaction (depending on what
level of consistency is used), Oracle determines the current system change number
(SCN). The SCN essentially acts as a timestamp, where the time is measured in terms
of transaction commits instead of wall-clock time.

If in the course of a query a data block is found that has a higher SCN than the one
being associated with the query, it is evident that the data block has been modified
after the time of the original query’s SCN by some other transaction that may or may
not have committed. Hence, the data in the block cannot be included in a consistent
view of the database as it existed at the time of the query’s SCN. Instead, an older
version of the data in the block must be used; specifically, the one that has the highest
SCN that does not exceed the SCN of the query. Oracle retrieves that version of the
data from the rollback segment (rollback segments are described in Section 25.5.2).
Hence, provided that the rollback segment is sufficiently large, Oracle can return
a consistent result of the query even if the data items have been modified several
times since the query started execution. Should the block with the desired SCN no
longer exist in the rollback segment, the query will return an error. It would be an
indication that the rollback segment has not been properly sized, given the activity
on the system.

In the Oracle concurrency model, read operations do not block write operations
and write operations do not block read operations, a property that allows a high
degree of concurrency. In particular, the scheme allows for long-running queries (for
example, reporting queries) to run on a system with a large amount of transactional
activity. This kind of scenario is often problematic for database systems where queries
use read locks, since the query may either fail to acquire them or lock large amounts
of data for a long time, thereby preventing transactional activity against that data
and reducing concurrency. (An alternative that is used in some systems is to use a
lower degree of consistency, such as degree-two consistency, but that could result in
inconsistent query results.)

Oracle’s concurrency model is used as a basis for the Flashback Query feature. This
feature allows a user to set a certain SCN number or wall-clock time in his session and
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perform queries on the data that existed at that point in time (provided that the data
still exist in the rollback segment). Normally in a database system, once a change
has been committed, there is no way to get back to the previous state of the data
other than performing point-in-time recovery from backups. However, recovery of a
very large database can be very costly, especially if the goal is just to retrieve some
data item that had been inadvertently deleted by a user. The Flashback Query feature
provides a much simpler mechanism to deal with user errors.

Oracle supports two ANSI/ISO isolation levels, “read committed” and “serializ-
able”. There is no support for dirty reads since it is not needed. The two isolation
levels correspond to whether statement-level or transaction-level read consistency is
used. The level can be set for a session or an individual transaction. Statement-level
read consistency is the default.

Oracle uses row-level locking. Updates to different rows do not conflict. If two
writers attempt to modify the same row, one waits until the other either commits or
is rolled back, and then it can either return a write-conflict error or go ahead and
modify the row. Locks are held for the duration of a transaction.

In addition to row-level locks that prevent inconsistencies due to DML activity,
Oracle uses table locks that prevent inconsistencies due to DDL activity. These locks
prevent one user from, say, dropping a table while another user has an uncommitted
transaction that is accessing that table. Oracle does not use lock escalation to convert
row locks to table locks for the purpose of its regular concurrency control.

Oracle detects deadlocks automatically and resolves them by rolling back one of
the transactions involved in the deadlock.

Oracle supports autonomous transactions, which are independent transactions
generated within other transactions. When Oracle invokes an autonomous transac-
tion, it generates a new transaction in a separate context. The new transaction can
be either committed or rolled back before control returns to the calling transaction.
Oracle supports multiple levels of nesting of autonomous transactions.

25.5.2 Basic Structures for Recovery

In order to understand how Oracle recovers from a failure, such as a disk crash, it
is important to understand the basic structures that are involved. In addition to the
data files that contain tables and indices, there are control files, redo logs, archived
redo logs, and rollback segments.

The control file contains various metadata that are needed to operate the database,
including information about backups.

Oracle records any transactional modification of a database buffer in the redo log,
which consists of two or more files. It logs the modification as part of the operation
that causes it and regardless of whether the transaction eventually commits. It logs
changes to indices and rollback segments as well as changes to table data. As the redo
logs fill up, they are archived by one or several background processes (if the database
is running in archivelog mode).

The rollback segment contains information about older versions of the data (that
is, undo information). In addition to its role in Oracle’s consistency model, the infor-
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mation is used to restore the old version of data items when a transaction that has
modified the data items is rolled back.

To be able to recover from a storage failure, the data files and control files should be
backed up regularly. The frequency of the backup determines the worst-case recovery
time, since it takes longer to recover if the backup is old. Oracle supports hot backups
—backups performed on an online database that is subject to transactional activity.

During recovery from a backup, Oracle performs two steps to reach a consistent
state of the database as it existed just prior to the failure. First, Oracle rolls forward
by applying the (archived) redo logs to the backup. This action takes the database
to a state that existed at the time of the failure, but not necessarily a consistent state
since the redo logs include uncommitted data. Second, Oracle rolls back uncommit-
ted transactions by using the rollback segment. The database is now in a consistent
state.

Recovery on a database that has been subject to heavy transactional activity since
the last backup can be time consuming. Oracle supports parallel recovery in which
several processes are used to apply redo information simultaneously. Oracle provides
a GUI tool, Recovery Manager, which automates most tasks associated with backup
and recovery.

25.5.3 Managed Standby Databases

To ensure high availability, Oracle provides a managed standby database feature.
(This feature is the same as remote backups, described in Section 17.10.) A standby
database is a copy of the regular database that is installed on a separate system. If
a catastrophic failure occurs on the primary system, the standby system is activated
and takes over, thereby minimizing the effect of the failure on availability. Oracle
keeps the standby database up to date by constantly applying archived redo logs
that are shipped from the primary database. The backup database can be brought
online in read-only mode and used for reporting and decision support queries.

25.6 System Architecture

Whenever an database application executes an SQL statement, there is an operating
system process that executes code in the database server. Oracle can be configured
so that the operating system process is dedicated exclusively to the statement it is
processing or so that the process can be shared among multiple statements. The latter
configuration, known as the multithreaded server, has somewhat different properties
with regard to the process and memory architecture. We shall discuss the dedicated
server architecture first and the multithreaded server architecture later.

25.6.1 Dedicated Server: Memory Structures

The memory used by Oracle falls mainly into three categories: software code areas,
the system global area (SGA), and the program global area (PGA).

The system code areas are the parts of the memory where the Oracle server code
resides. A PGA is allocated for each process to hold its local data and control informa-
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tion. This area contains stack space for various session data and the private memory
for the SQL statement that it is executing. It also contains memory for sorting and
hashing operations that may occur during the evaluation of the statement.

The SGA is a memory area for structures that are shared among users. It is made
up by several major structures, including:

o The buffer cache. This cache keeps frequently accessed data blocks (from ta-
bles as well as indices) in memory to reduce the need to perform physical
disk I/0. A least recently used replacement policy is used except for blocks ac-
cessed during a full table scan. However, Oracle allows multiple buffer pools
to be created that have different criteria for aging out data. Some Oracle oper-
ations bypass the buffer cache and read data directly from disk.

o The redo log buffer. This buffer contains the part of the redo log that has not
yet been written to disk.

e The shared pool. Oracle seeks to maximize the number of users that can
use the database concurrently by minimizing the amount of memory that is
needed for each user. One important concept in this context is the ability to
share the internal representation of SQL statements and procedural code writ-
ten in PL/SQL. When multiple users execute the same SQL statement, they can
share most data structures that represent the execution plan for the statement.
Only data that is local to each specific invocation of the statement needs to be
kept in private memory.

The sharable parts of the data structures representing the SQL statement are
stored in the shared pool, including the text of the statement. The caching of
SQL statements in the shared pool also saves compilation time, since a new in-
vocation of a statement that is already cached does not have to go through the
complete compilation process. The determination of whether an SQL state-
ment is the same as one existing in the shared pool is based on exact text
matching and the setting of certain session parameters. Oracle can automati-
cally replace constants in an SQL statement with bind variables; future queries
that are the same except for the values of constants will then match the earlier
query in the shared pool. The shared pool also contains caches for dictionary
information and various control structures.

25.6.2 Dedicated Server: Process Structures

There are two types of processes that execute Oracle server code: server processes
that process SQL statements and background processes that perform various admin-
istrative and performance-related tasks. Some of these processes are optional, and in
some cases, multiple processes of the same type can be used for performance reasons.
Some of the most important types of background processes are:

e Database writer. When a buffer is removed from the buffer cache, it must be
written back to disk if it has been modified since it entered the cache. This task
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is performed by the database writer processes, which help the performance of
the system by freeing up space in the buffer cache.

o Log writer. The log writer process writes entries in the redo log buffer to the
redo log file on disk. It also writes a commit record to disk whenever a trans-
action commits.

o Checkpoint. The checkpoint process updates the headers of the data file when
a checkpoint occurs.

e System monitor. This process performs crash recovery if needed. It is also
performs some space management to reclaim unused space in temporary seg-
ments.

e Process monitor. This process performs process recovery for server processes
that fail, releasing resources and performing various cleanup operations.

e Recoverer. The recoverer process resolves failures and conducts cleanup for
distributed transactions.

o Archiver. The archiver copies the online redo log file to an archived redo log
every time the online log file fills up.

25.6.3 Multithreaded Server

The multithreaded server configuration increases the number of users that a given
number of server processes can support by sharing server processes among state-
ments. It differs from the dedicated server architecture in these major aspects:

o A background dispatch process routes user requests to the next available ser-
ver process. In doing so, it uses a request queue and a response queue in the
SGA. The dispatcher puts a new request in the request queue where it will
be picked up by a server process. As a server process completes a request, it
puts the result in the response queue to be picked up by the dispatcher and
returned to the user.

e Since a server process is shared among multiple SQL statements, Oracle does
not keep private data in the PGA. Instead, it stores the session-specific data in
the SGA.

25.6.4 Oracle9: Real Application Clusters

Oracle9i Real Application Clusters is a feature that allows multiple instances of Ora-
cle to run against the same database. (Recall that, in Oracle terminology, an instance
is the combination of background processes and memory areas.) This feature enables
Oracle to run on clustered and MPP (shared disk and shared nothing) hardware ar-
chitectures. This feature was called Oracle Parallel Server in earlier versions of Or-
acle. The ability to cluster multiple nodes has important benefits for scalability and
availability that are useful in both OLTP and data warehousing environments.
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The scalability benefits of the feature are obvious, since more nodes mean more
processing power. Oracle further optimizes the use of the hardware through features
such as affinity and partitionwise joins.

Oracle9i Real Application Clusters can also be used to achieve high availability. If
one node fails, the remaining ones are still available to the application accessing the
database. The remaining instances will automatically roll back uncommitted trans-
actions that were being processed on the failed node in order to prevent them from
blocking activity on the remaining nodes.

Having multiple instances run against the same database gives rise to some tech-
nical issues that do not exist on a single instance. While it is sometimes possible to
partition an application among nodes so that nodes rarely access the same data, there
is always the possibility of overlaps, which affects locking and cache management.
To address this, Oracle supports a distributed lock manager and the cache fusion fea-
ture, which allows data blocks to flow directly among caches on different instances
using the interconnect, without being written to disk.

25.7 Replication, Distribution, and External Data

Oracle provides support for replication and distributed transactions with two-phase
commit.

25.7.1 Replication

Oracle supports several types of replication. (See Section 19.2.1 for an introduction
to replication.) In its simplest form, data in a master site are replicated to other sites
in the form of snapshots. (The term “snapshot” in this context should not be con-
fused with the concept of a read-consistent snapshot in the context of the concurrency
model.) A snapshot does not have to contain all the master data—it can, for example,
exclude certain columns from a table for security reasons. Oracle supports two types
of snapshots: read-only and updatable. An updatable snapshot can be modified at a
slave site and the modifications propagated to the master table. However, read-only
snapshots allow for a wider range of snapshot definitions. For instance, a read-only
snapshot can be defined in terms of set operations on tables at the master site.

Oracle also supports multiple master sites for the same data, where all master
sites act as peers. A replicated table can be updated at any of the master sites and
the update is propagated to the other sites. The updates can be propagated either
asynchronously or synchronously.

For asynchronous replication, the update information is sent in batches to the other
master sites and applied. Since the same data could be subject to conflicting modi-
fications at different sites, conflict resolution based on some business rules might be
needed. Oracle provides a number of of built-in conflict resolution methods and al-
lows users to write their own if need be.

With synchronous replication, an update to one master site is propagated imme-
diately to all other sites. If the update transaction fails at any master site, the update
is rolled back at all sites.
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25.7.2 Distributed Databases

Oracle supports queries and transactions spanning multiple databases on different
systems. With the use of gateways, the remote systems can include non-Oracle data-
bases. Oracle has built-in capability to optimize a query that includes tables at differ-
ent sites, retrieve the relevant data, and return the result as if it had been a normal,
local query. Oracle also transparently supports transactions spanning multiple sites
by a built-in two-phase-commit protocol.

25.7.3 External Data Sources

Oracle has several mechanisms for supporting external data sources. The most com-
mon usage is in data warehousing when large amounts of data are regularly loaded
from a transactional system.

25.7.3.1 SQL*Loader

Oracle has a direct load utility, SQL*Loader, that supports fast parallel loads of large
amounts of data from external files. It supports a variety of data formats and it can
perform various filtering operations on the data being loaded.

25.7.3.2 External Tables

Oracle allows external data sources, such as flat files, to be referenced in the from
clause of a query as if they were regular tables. An external table is defined by meta-
data that describe the Oracle column types and the mapping of the external data into
those columns. An access driver is also needed to access the external data. Oracle
provides a default driver for flat files.

The external table feature is primarily intended for extraction, transformation, and
loading (ETL) operations in a data warehousing environment. Data can be loaded into
the data warehouse from a flat file using

create table table as
select ... from < external table >
where ...

By adding operations on the data in either the select list or where clause, trans-
formations and filtering can be done as part of the same SQL statement. Since these
operations can be expressed either in native SQL or in functions written in PL/SQL or
Java, the external table feature provides a very powerful mechanism for expressing
all kinds of data transformation and filtering operations. For scalability, the access to
the external table can be parallelized by Oracle’s parallel execution feature.

25.8 Database Administration Tools

Oracle provides users a number of tools for system management and application
development.
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25.8.1 Oracle Enterprise Manager

Oracle Enterprise Manager is Oracle’s main tool for database systems management.
It provides an easy-to-use graphical user interface (GUI) and a variety of wizards for
schema management, security management, instance management, storage manage-
ment, and job scheduling. It also provides performance monitoring and tools to help
an administrator tune application SQL, access paths, and instance and data storage
parameters. For example, it includes a wizard that can suggest what indices are the
most cost-effective to create under a given workload.

25.8.2 Database Resource Management

A database administrator needs to be able to control how the processing power of
the hardware is divided among users or groups of users. Some groups may execute
interactive queries where response time is critical; others may execute long-running
reports that can be run as batch jobs in the background when the system load is low.
It is also important to be able to prevent a user from inadvertently submitting an
extremely expensive ad hoc query that will unduly delay other users.

Oracle’s Database Resource Management feature allows the database administra-
tor to divide users into resource consumer groups with different priorities and prop-
erties. For example, a group of high-priority, interactive users may be guaranteed at
least 60 percent of the CPU. The remainder, plus any part of the 60 percent not used
up by the high-priority group, would be allocated among resource consumer groups
with lower priority. A really low-priority group could get assigned 0 percent, which
would mean that queries issued by this group would run only when there are spare
CPU cycles available. Limits for the degree of parallelism for parallel execution can
be set for each group. The database administrator can also set time limits for how
long an SQL statement is allowed to run for each group. When a users submits a
statement, the Resource Manager estimates how long it would take to execute it and
returns an error if the statement violates the limit. The resource manager can also
limit the number of user sessions that can be active concurrently for each resource
consumer group.
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Persistent programming languages add persistence and other database features to ex-
isting programming languages by using an existing object-oriented type system. In
contrast, object-relational data models extend the relational data model by providing a
richer type system including complex data types and object orientation. Relational
query languages, in particular SQL, need to be correspondingly extended to deal
with the richer type system. Such extensions attempt to preserve the relational foun-
dations—in particular, the declarative access to data—while extending the model-
ing power. Object-relational database systems (that is, database systems based on
the object-relation model) provide a convenient migration path for users of relational
databases who wish to use object-oriented features.

We first present the motivation for the nested relational model, which allows rela-
tions that are not in first normal form, and allows direct representation of hierarchical
structures. We then show how to extend SQL by adding a variety of object-relational
features. Our discussion is based on the SQL:1999 standard.

Finally, we discuss differences between persistent programming languages and
object-relational systems, and mention criteria for choosing between them.

9.1 Nested Relations

In Chapter 7, we defined first normal form (INF), which requires that all attributes
have atomic domains. Recall that a domain is atomic if elements of the domain are
considered to be indivisible units.

The assumption of INF is a natural one in the bank examples we have considered.
However, not all applications are best modeled by INF relations. For example, rather
than view a database as a set of records, users of certain applications view it as a set of
objects (or entities). These objects may require several records for their representation.
We shall see that a simple, easy-to-use interface requires a one-to-one correspondence
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title author-set publisher keyword-set
(name, branch)
Compilers | {Smith, Jones} | (McGraw-Hill, New York) | {parsing, analysis}
Networks | {Jones, Frick} (Oxford, London) {Internet, Web}

Figure 9.1 Non-1NF books relation, books.

between the user’s intuitive notion of an object and the database system’s notion of
a data item.

The nested relational model is an extension of the relational model in which do-
mains may be either atomic or relation valued. Thus, the value of a tuple on an at-
tribute may be a relation, and relations may be contained within relations. A complex
object thus can be represented by a single tuple of a nested relation. If we view a tu-
ple of a nested relation as a data item, we have a one-to-one correspondence between
data items and objects in the user’s view of the database.

We illustrate nested relations by an example from a library. Suppose we store for
each book the following information:

e Book title
e Set of authors
e Publisher

e Set of keywords

We can see that, if we define a relation for the preceding information, several domains
will be nonatomic.

e Authors. A book may have a set of authors. Nevertheless, we may want to
find all books of which Jones was one of the authors. Thus, we are interested
in a subpart of the domain element “set of authors.”

o Keywords. If we store a set of keywords for a book, we expect to be able to
retrieve all books whose keywords include one or more keywords. Thus, we
view the domain of the set of keywords as nonatomic.

e Publisher. Unlike keywords and authors, publisher does not have a set-valued
domain. However, we may view publisher as consisting of the subfields name
and branch. This view makes the domain of publisher nonatomic.

Figure 9.1 shows an example relation, books. The books relation can be represented
in INF, as in Figure 9.2. Since we must have atomic domains in 1NF, yet want ac-
cess to individual authors and to individual keywords, we need one tuple for each
(keyword, author) pair. The publisher attribute is replaced in the INF version by two
attributes: one for each subfield of publisher.
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\ title | author | pub-name | pub-branch | keyword |

Compilers Smith McGraw-Hill New York parsing
Compilers | Jones McGraw-Hill New York parsing
Compilers | Smith McGraw-Hill New York analysis
Compilers | Jones McGraw-Hill New York analysis

Networks Jones Oxford London Internet
Networks Frick Oxford London Internet
Networks Jones Oxford London Web
Networks Frick Oxford London Web

Figure 9.2  flat-books, a INF version of non-1NF relation books.

Much of the awkwardness of the flat-books relation in Figure 9.2 disappears if we
assume that the following multivalued dependencies hold:

e title — author
o title — keyword

o title — pub-name, pub-branch
Then, we can decompose the relation into 4NF using the schemas:

o authors(title, author)
o keywords(title, keyword)

o books4(title, pub-name, pub-branch)

Figure 9.3 shows the projection of the relation flat-books of Figure 9.2 onto the preced-
ing decomposition.

Although our example book database can be adequately expressed without using
nested relations, the use of nested relations leads to an easier-to-understand model:
The typical user of an information-retrieval system thinks of the database in terms of
books having sets of authors, as the non-1NF design models. The 4NF design would
require users to include joins in their queries, thereby complicating interaction with
the system.

We could define a non-nested relational view (whose contents are identical to flat-
books) that eliminates the need for users to write joins in their query. In such a view,
however, we lose the one-to-one correspondence between tuples and books.

9.2 Complex Types

Nested relations are just one example of extensions to the basic relational model;
other nonatomic data types, such as nested records, have also proved useful. The
object-oriented data model has caused a need for features such as inheritance and
references to objects. With complex type systems and object orientation, we can rep-
resent E-R model concepts, such as identity of entities, multivalued attributes, and
generalization and specialization directly, without a complex translation to the rela-
tional model.
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| title
Compilers
Compilers
Networks
Networks
authors

| author |
Smith
Jones
Jones
Frick

| title
Compilers
Compilers
Networks | Internet
Networks | Web
keywords

| keyword |
parsing
analysis

title

pub-name

| pub-branch |

Compilers
Networks

McGraw-Hill
Oxford

New York
London

books4
Figure 9.3 4NF version of the relation flat-books of Figure 9.2.

In this section, we describe extensions to SQL to allow complex types, includ-
ing nested relations, and object-oriented features. Our presentation is based on the
SQL:1999 standard, but we also outline features that are not currently in the standard
but may be introduced in future versions of SQL standards.

9.2.1 Collection and Large Object Types

Consider this fragment of code.
create table books (

keyword-set setof(varchar(20))

)

This table definition differs from table definitions in ordinary relational databases,
since it allows attributes that are sets, thereby permitting multivalued attributes of
E-R diagrams to be represented directly.

Sets are an instance of collection types. Other instances of collection types include
arrays and multisets (that is, unordered collections, where an element may occur
multiple times). The following attribute definitions illustrate the declaration of an
array:

author-array varchar(20) array [10]
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Here, author-array is an array of up to 10 author names. We can access elements of an
array by specifying the array index, for example author-array[1].

Arrays are the only collection type supported by SQL:1999; the syntax used is as
in the preceding declaration. SQL:1999 does not support unordered sets or multisets,
although they may appear in future versions of SQL.!

Many current-generation database applications need to store attributes that can
be large (of the order of many kilobytes), such as a photograph of a person, or very
large (of the order of many megabytes or even gigabytes), such as a high-resolution
medical image or video clip. SQL:1999 therefore provides new large-object data types
for character data (clob) and binary data (blob). The letters “lob” in these data types
stand for “Large OBject”. For example, we may declare attributes

book-review clob(10KB)
image blob(10MB)
movie blob(2GB))

Large objects are typically used in external applications, and it makes little sense to
retrieve them in their entirety by SQL. Instead, an application would usually retrieve
a “locator” for a large object and then use the locator to manipulate the object from
the host language. For instance, JDBC permits the programmer to fetch a large object
in small pieces, rather than all at once, much like fetching data from an operating
system file.

9.2.2 Structured Types

Structured types can be declared and used in SQL:1999 as in the following example:

create type Publisher as
(name varchar(20),
branch varchar(20))
create type Book as
(title varchar(20),
author-array varchar(20) array [10],
pub-date date,
publisher Publisher,
keyword-set setof(varchar(20)))
create table books of Book

The first statement defines a type called Publisher, which has two components: a name
and a branch. The second statement defines a structured type Book, which contains
a title, an author-array, which is an array of authors, a publication date, a publisher
(of type Publisher), and a set of keywords. (The declaration of keyword-set as a set
uses our extended syntax, and is not supported by the SQL:1999 standard.) The types
illustrated above are called structured types in SQL:1999.

1. The Oracle 8 database system supports nested relations, but uses a syntax different from that in this
chapter.
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Finally, a table books containing tuples of type Book is created. The table is similar
to the nested relation books in Figure 9.1, except we have decided to create an array
of author names instead of a set of author names. The array permits us to record the
order of author names.

Structured types allow composite attributes of E-R diagrams to be represented
directly. Unnamed row types can also be used in SQL:1999 to define composite at-
tributes. For instance, we could have defined an attribute publisher1 as

publisher]l row (name varchar(20),
branch varchar(20))

instead of creating a named type Publisher.
We can of course create tables without creating an intermediate type for the table.
For example, the table books could also be defined as follows:

create table books
(title varchar(20),
author-array varchar(20) array[10],
pub-date date,
publisher Publisher,
keyword-set setof(varchar(20)))

With the above declaration, there is no explicit type for rows of the table. 2
A structured type can have methods defined on it. We declare methods as part of
the type definition of a structured type:

create type Employee as (
name varchar(20),
salary integer )
method giveraise (percent integer)

We create the method body separately:

create method giveraise (percent integer) for Employee
begin

set self.salary = self.salary + (self.salary * percent) / 100;
end

The variable self refers to the structured type instance on which the method is in-
voked. The body of the method can contain procedural statements, which we shall
study in Section 9.6.

2. In Oracle PL/SQL, given a table t, t%rowtype denotes the type of the rows of the table. Similarly,
t.a%type denotes the type of attribute a of table f.
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9.2.3 Creation of Values of Complex Types

In SQL:1999 constructor functions are used to create values of structured types. A
function with the same name as a structured type is a constructor function for the
structured type. For instance, we could declare a constructor for the type Publisher
like this:

create function Publisher (n varchar(20), b varchar(20))
returns Publisher
begin
set name = n;
set branch = b;
end

We can then use Publisher('McGraw-Hill’, 'New York’) to create a value of the type
Publisher.

SQL:1999 also supports functions other than constructors, as we shall see in Sec-
tion 9.6; the names of such functions must be different from the name of any struc-
tured type.

Note that in SQL:1999, unlike in object-oriented databases, a constructor creates a
value of the type, not an object of the type. That is, the value the constructor creates
has no object identity. In SQL:1999 objects correspond to tuples of a relation, and are
created by inserting a tuple in a relation.

By default every structured type has a constructor with no arguments, which sets
the attributes to their default values. Any other constructors have to be created explic-
itly. There can be more than one constructor for the same structured type; although
they have the same name, they must be distinguishable by the number of arguments
and types of their arguments.

An array of values can be created in SQL:1999 in this way:

array|’Silberschatz’, ‘Korth’, ‘Sudarshan’]

We can construct a row value by listing its attributes within parentheses. For instance,
if we declare an attribute publisher] as a row type (as in Section 9.2.2), we can con-
struct this value for it:

('McGraw-Hill’, 'New York”")

without using a constructor.

We create set-valued attributes, such as keyword-set, by enumerating their elements
within parentheses following the keyword set. We can create multiset values just like
set values, by replacing set by multiset.’

Thus, we can create a tuple of the type defined by the books relation as:

('Compilers’, array['Smith’, ‘Jones’], Publisher('McGraw-Hill’, 'New York’),
set('parsing’, “analysis’))

3. Although sets and multisets are not part of the SQL:1999 standard, the other constructs shown in this
section are part of the standard. Future versions of SQL are likely to support sets and multisets.



‘ Silberschatz-Korth-Sudarshan: | I1ll. Object-Based 9. Object-Relational © The McGraw-Hill
Database System Databases and XML Databases Companies, 2001
Concepts, Fourth Edition

342 Chapter 9 Object-Relational Databases

Here we have created a value for the attribute Publisher by invoking a constructor
function for Publisher with appropriate arguments.

If we want to insert the preceding tuple into the relation books, we could execute
the statement

insert into books

values

('Compilers’, array['Smith’, “Jones’], Publisher('McGraw-Hill’, 'New York’),
set('parsing’, ‘analysis’))

9.3 Inheritance

Inheritance can be at the level of types, or at the level of tables. We first consider
inheritance of types, then inheritance at the level of tables.

9.3.1 Type Inheritance
Suppose that we have the following type definition for people:

create type Person
(name varchar(20),
address varchar(20))

We may want to store extra information in the database about people who are stu-
dents, and about people who are teachers. Since students and teachers are also peo-
ple, we can use inheritance to define the student and teacher types in SQL:1999:

create type Student
under Person
(degree varchar(20),
department varchar(20))
create type Teacher
under Person
(salary integer,
department varchar(20))

Both Student and Teacher inherit the attributes of Person—namely, name and address.
Student and Teacher are said to be subtypes of Person, and Person is a supertype of
Student, as well as of Teacher.

Methods of a structured type are inherited by its subtypes, just as attributes are.
However, a subtype can redefine the effect of a method by declaring the method
again, using overriding method in place of method in the method declaration.

Now suppose that we want to store information about teaching assistants, who
are simultaneously students and teachers, perhaps even in different departments.
We can do this by using multiple inheritance, which we studied in Chapter 8. The
SQL:1999 standard does not support multiple inheritance. However, draft versions
of the SQL:1999 standard provided for multiple inheritance, and although the final
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SQL:1999 omitted it, future versions of the SQL standard may introduce it. We base
our discussion on the draft versions of the SQL:1999 standard.

For instance, if our type system supports multiple inheritance, we can define a
type for teaching assistant as follows:

create type TeachingAssistant
under Student, Teacher

TeachingAssistant would inherit all the attributes of Student and Teacher. There is a
problem, however, since the attributes name, address, and department are present in
Student, as well as in Teacher.

The attributes name and address are actually inherited from a common source, Per-
son. So there is no conflict caused by inheriting them from Student as well as Teacher.
However, the attribute department is defined separately in Student and Teacher. In fact,
a teaching assistant may be a student of one department and a teacher in another
department. To avoid a conflict between the two occurrences of department, we can
rename them by using an as clause, as in this definition of the type TeachingAssistant:

create type TeachingAssistant
under Student with (department as student-dept),
Teacher with (department as teacher-dept)

We note that SQL:1999 supports only single inheritance— that is, a type can inherit
from only a single type; the syntax used is as in our earlier examples. Multiple inher-
itance as in the TeachingAssistant example is not supported in SQL:1999. The SQL:1999
standard also requires an extra field at the end of the type definition, whose value
is either final or not final. The keyword final says that subtypes may not be created
from the given type, while not final says that subtypes may be created.

In SQL as in most other languages, a value of a structured type must have exactly
one “most-specific type.” That is, each value must be associated with one specific
type, called its most-specific type, when it is created. By means of inheritance, it
is also associated with each of the supertypes of its most specific type. For example,
suppose that an entity has the type Person, as well as the type Student. Then, the most-
specific type of the entity is Student, since Student is a subtype of Person. However, an
entity cannot have the type Student, as well as the type Teacher, unless it has a type,
such as TeachingAssistant, that is a subtype of Teacher, as well as of Student.

9.3.2 Table Inheritance

Subtables in SQL:1999 correspond to the E-R notion of specialization/generalization.
For instance, suppose we define the people table as follows:

create table people of Person

We can then define tables 