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Preface

Database management has evolved from a specialized computer application to a
central component of a modern computing environment, and, as a result, knowl-
edge about database systems has become an essential part of an education in com-
puter science. In this text, we present the fundamental concepts of database manage-
ment. These concepts include aspects of database design, database languages, and
database-system implementation.

This text is intended for a first course in databases at the junior or senior under-
graduate, or first-year graduate, level. In addition to basic material for a first course,
the text contains advanced material that can be used for course supplements, or as
introductory material for an advanced course.

We assume only a familiarity with basic data structures, computer organization,
and a high-level programming language such as Java, C, or Pascal. We present con-
cepts as intuitive descriptions, many of which are based on our running example of
a bank enterprise. Important theoretical results are covered, but formal proofs are
omitted. The bibliographical notes contain pointers to research papers in which re-
sults were first presented and proved, as well as references to material for further
reading. In place of proofs, figures and examples are used to suggest why a result is
true.

The fundamental concepts and algorithms covered in the book are often based
on those used in existing commercial or experimental database systems. Our aim is
to present these concepts and algorithms in a general setting that is not tied to one
particular database system. Details of particular commercial database systems are
discussed in Part 8, “Case Studies.”

In this fourth edition of Database System Concepts, we have retained the overall style
of the first three editions, while addressing the evolution of database management.
Several new chapters have been added to cover new technologies. Every chapter has
been edited, and most have been modified extensively. We shall describe the changes
in detail shortly.

xv
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Organization
The text is organized in eight major parts, plus three appendices:

• Overview (Chapter 1). Chapter 1 provides a general overview of the nature
and purpose of database systems. We explain how the concept of a database
system has developed, what the common features of database systems are,
what a database system does for the user, and how a database system inter-
faces with operating systems. We also introduce an example database applica-
tion: a banking enterprise consisting of multiple bank branches. This example
is used as a running example throughout the book. This chapter is motiva-
tional, historical, and explanatory in nature.

• Data models (Chapters 2 and 3). Chapter 2 presents the entity-relationship
model. This model provides a high-level view of the issues in database design,
and of the problems that we encounter in capturing the semantics of realistic
applications within the constraints of a data model. Chapter 3 focuses on the
relational data model, covering the relevant relational algebra and relational
calculus.

• Relational databases (Chapters 4 through 7). Chapter 4 focuses on the most
influential of the user-oriented relational languages: SQL. Chapter 5 covers
two other relational languages, QBE and Datalog. These two chapters describe
data manipulation: queries, updates, insertions, and deletions. Algorithms
and design issues are deferred to later chapters. Thus, these chapters are suit-
able for introductory courses or those individuals who want to learn the basics
of database systems, without getting into the details of the internal algorithms
and structure.

Chapter 6 presents constraints from the standpoint of database integrity
and security; Chapter 7 shows how constraints can be used in the design of
a relational database. Referential integrity; mechanisms for integrity mainte-
nance, such as triggers and assertions; and authorization mechanisms are pre-
sented in Chapter 6. The theme of this chapter is the protection of the database
from accidental and intentional damage.

Chapter 7 introduces the theory of relational database design. The theory
of functional dependencies and normalization is covered, with emphasis on
the motivation and intuitive understanding of each normal form. The overall
process of database design is also described in detail.

• Object-based databases and XML (Chapters 8 through 10). Chapter 8 covers
object-oriented databases. It introduces the concepts of object-oriented pro-
gramming, and shows how these concepts form the basis for a data model.
No prior knowledge of object-oriented languages is assumed. Chapter 9 cov-
ers object-relational databases, and shows how the SQL:1999 standard extends
the relational data model to include object-oriented features, such as inheri-
tance, complex types, and object identity.
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Chapter 10 covers the XML standard for data representation, which is see-
ing increasing use in data communication and in the storage of complex data
types. The chapter also describes query languages for XML.

• Data storage and querying (Chapters 11 through 14). Chapter 11 deals with
disk, file, and file-system structure, and with the mapping of relational and
object data to a file system. A variety of data-access techniques are presented
in Chapter 12, including hashing, B+-tree indices, and grid file indices. Chap-
ters 13 and 14 address query-evaluation algorithms, and query optimization
based on equivalence-preserving query transformations.

These chapters provide an understanding of the internals of the storage and
retrieval components of a database.

• Transaction management (Chapters 15 through 17). Chapter 15 focuses on
the fundamentals of a transaction-processing system, including transaction
atomicity, consistency, isolation, and durability, as well as the notion of serial-
izability.

Chapter 16 focuses on concurrency control and presents several techniques
for ensuring serializability, including locking, timestamping, and optimistic
(validation) techniques. The chapter also covers deadlock issues. Chapter 17
covers the primary techniques for ensuring correct transaction execution de-
spite system crashes and disk failures. These techniques include logs, shadow
pages, checkpoints, and database dumps.

• Database system architecture (Chapters 18 through 20). Chapter 18 covers
computer-system architecture, and describes the influence of the underlying
computer system on the database system. We discuss centralized systems,
client–server systems, parallel and distributed architectures, and network
types in this chapter. Chapter 19 covers distributed database systems, revis-
iting the issues of database design, transaction management, and query eval-
uation and optimization, in the context of distributed databases. The chap-
ter also covers issues of system availability during failures and describes the
LDAP directory system.

Chapter 20, on parallel databases explores a variety of parallelization tech-
niques, including I/O parallelism, interquery and intraquery parallelism, and
interoperation and intraoperation parallelism. The chapter also describes
parallel-system design.

• Other topics (Chapters 21 through 24). Chapter 21 covers database appli-
cation development and administration. Topics include database interfaces,
particularly Web interfaces, performance tuning, performance benchmarks,
standardization, and database issues in e-commerce. Chapter 22 covers query-
ing techniques, including decision support systems, and information retrieval.
Topics covered in the area of decision support include online analytical pro-
cessing (OLAP) techniques, SQL:1999 support for OLAP, data mining, and data
warehousing. The chapter also describes information retrieval techniques for
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querying textual data, including hyperlink-based techniques used in Web
search engines.

Chapter 23 covers advanced data types and new applications, including
temporal data, spatial and geographic data, multimedia data, and issues in the
management of mobile and personal databases. Finally, Chapter 24 deals with
advanced transaction processing. We discuss transaction-processing monitors,
high-performance transaction systems, real-time transaction systems, and
transactional workflows.

• Case studies (Chapters 25 through 27). In this part we present case studies of
three leading commercial database systems, including Oracle, IBM DB2, and
Microsoft SQL Server. These chapters outline unique features of each of these
products, and describe their internal structure. They provide a wealth of in-
teresting information about the respective products, and help you see how the
various implementation techniques described in earlier parts are used in real
systems. They also cover several interesting practical aspects in the design of
real systems.

• Online appendices. Although most new database applications use either the
relational model or the object-oriented model, the network and hierarchical
data models are still in use. For the benefit of readers who wish to learn about
these data models, we provide appendices describing the network and hier-
archical data models, in Appendices A and B respectively; the appendices are
available only online (http://www.bell-labs.com/topic/books/db-book).

Appendix C describes advanced relational database design, including the
theory of multivalued dependencies, join dependencies, and the project-join
and domain-key normal forms. This appendix is for the benefit of individuals
who wish to cover the theory of relational database design in more detail, and
instructors who wish to do so in their courses. This appendix, too, is available
only online, on the Web page of the book.

The Fourth Edition
The production of this fourth edition has been guided by the many comments and
suggestions we received concerning the earlier editions, by our own observations
while teaching at IIT Bombay, and by our analysis of the directions in which database
technology is evolving.

Our basic procedure was to rewrite the material in each chapter, bringing the older
material up to date, adding discussions on recent developments in database technol-
ogy, and improving descriptions of topics that students found difficult to understand.
Each chapter now has a list of review terms, which can help you review key topics
covered in the chapter. We have also added a tools section at the end of most chap-
ters, which provide information on software tools related to the topic of the chapter.
We have also added new exercises, and updated references.

We have added a new chapter covering XML, and three case study chapters cov-
ering the leading commercial database systems, including Oracle, IBM DB2, and Mi-
crosoft SQL Server.
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We have organized the chapters into several parts, and reorganized the contents
of several chapters. For the benefit of those readers familiar with the third edition,
we explain the main changes here:

• Entity-relationship model. We have improved our coverage of the entity-
relationship (E-R) model. More examples have been added, and some changed,
to give better intuition to the reader. A summary of alternative E-R notations
has been added, along with a new section on UML.

• Relational databases. Our coverage of SQL in Chapter 4 now references the
SQL:1999 standard, which was approved after publication of the third edition.
SQL coverage has been significantly expanded to include the with clause, ex-
panded coverage of embedded SQL, and coverage of ODBC and JDBC whose
usage has increased greatly in the past few years. Coverage of Quel has been
dropped from Chapter 5, since it is no longer in wide use. Coverage of QBE
has been revised to remove some ambiguities and to add coverage of the QBE
version used in the Microsoft Access database.

Chapter 6 now covers integrity constraints and security. Coverage of se-
curity has been moved to Chapter 6 from its third-edition position of Chap-
ter 19. Chapter 6 also covers triggers. Chapter 7 covers relational-database
design and normal forms. Discussion of functional dependencies has been
moved into Chapter 7 from its third-edition position of Chapter 6. Chapter
7 has been significantly rewritten, providing several short-cut algorithms for
dealing with functional dependencies and extended coverage of the overall
database design process. Axioms for multivalued dependency inference, PJNF
and DKNF, have been moved into an appendix.

• Object-based databases. Coverage of object orientation in Chapter 8 has been
improved, and the discussion of ODMG updated. Object-relational coverage in
Chapter 9 has been updated, and in particular the SQL:1999 standard replaces
the extended SQL used in the third edition.

• XML. Chapter 10, covering XML, is a new chapter in the fourth edition.

• Storage, indexing, and query processing. Coverage of storage and file struc-
tures, in Chapter 11, has been updated; this chapter was Chapter 10 in the
third edition. Many characteristics of disk drives and other storage mecha-
nisms have changed greatly in the past few years, and our coverage has been
correspondingly updated. Coverage of RAID has been updated to reflect tech-
nology trends. Coverage of data dictionaries (catalogs) has been extended.

Chapter 12, on indexing, now includes coverage of bitmap indices; this
chapter was Chapter 11 in the third edition. The B+-tree insertion algorithm
has been simplified, and pseudocode has been provided for search. Parti-
tioned hashing has been dropped, since it is not in significant use.

Our treatment of query processing has been reorganized, with the earlier
chapter (Chapter 12 in the third edition) split into two chapters, one on query
processing (Chapter 13) and another on query optimization (Chapter 14). All
details regarding cost estimation and query optimization have been moved
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to Chapter 14, allowing Chapter 13 to concentrate on query processing algo-
rithms. We have dropped several detailed (and tedious) formulae for calcu-
lating the exact number of I/O operations for different operations. Chapter 14
now has pseudocode for optimization algorithms, and new sections on opti-
mization of nested subqueries and on materialized views.

• Transaction processing. Chapter 15, which provides an introduction to trans-
actions, has been updated; this chapter was numbered Chapter 13 in the third
edition. Tests for view serializability have been dropped.

Chapter 16, on concurrency control, includes a new section on implemen-
tation of lock managers, and a section on weak levels of consistency, which
was in Chapter 20 of the third edition. Concurrency control of index structures
has been expanded, providing details of the crabbing protocol, which is a sim-
pler alternative to the B-link protocol, and next-key locking to avoid the phan-
tom problem. Chapter 17, on recovery, now includes coverage of the ARIES
recovery algorithm. This chapter also covers remote backup systems for pro-
viding high availability despite failures, an increasingly important feature in
“24 × 7” applications.

As in the third edition, instructors can choose between just introducing
transaction-processing concepts (by covering only Chapter 15), or offering de-
tailed coverage (based on Chapters 15 through 17).

• Database system architectures. Chapter 18, which provides an overview of
database system architectures, has been updated to cover current technology;
this was Chapter 16 in the third edition. The order of the parallel database
chapter and the distributed database chapters has been flipped. While the cov-
erage of parallel database query processing techniques in Chapter 20
(which was Chapter 16 in the third edition) is mainly of interest to those who
wish to learn about database internals, distributed databases, now covered in
Chapter 19, is a topic that is more fundamental; it is one that anyone dealing
with databases should be familiar with.

Chapter 19 on distributed databases has been significantly rewritten, to re-
duce the emphasis on naming and transparency and to increase coverage of
operation during failures, including concurrency control techniques to pro-
vide high availability. Coverage of three-phase commit protocol has been ab-
breviated, as has distributed detection of global deadlocks, since neither is
used much in practice. Coverage of query processing issues in heterogeneous
databases has been moved up from Chapter 20 of the third edition. There is
a new section on directory systems, in particular LDAP, since these are quite
widely used as a mechanism for making information available in a distributed
setting.

• Other topics. Although we have modified and updated the entire text, we
concentrated our presentation of material pertaining to ongoing database re-
search and new database applications in four new chapters, from Chapter 21
to Chapter 24.
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Chapter 21 is new in the fourth edition and covers application develop-
ment and administration. The description of how to build Web interfaces to
databases, including servlets and other mechanisms for server-side scripting,
is new. The section on performance tuning, which was earlier in Chapter 19,
has new material on the famous 5-minute rule and the 1-minute rule, as well
as some new examples. Coverage of materialized view selection is also new.
Coverage of benchmarks and standards has been updated. There is a new sec-
tion on e-commerce, focusing on database issues in e-commerce, and a new
section on dealing with legacy systems.

Chapter 22, which covers advanced querying and information retrieval,
includes new material on OLAP, particulary on SQL:1999 extensions for data
analysis. Coverage of data warehousing and data mining has also been ex-
tended greatly. Coverage of information retrieval has been significantly ex-
tended, particulary in the area of Web searching. Earlier versions of this ma-
terial were in Chapter 21 of the third edition.

Chapter 23, which covers advanced data types and new applications, has
material on temporal data, spatial data, multimedia data, and mobile data-
bases. This material is an updated version of material that was in Chapter 21
of the third edition. Chapter 24, which covers advanced transaction process-
ing, contains updated versions of sections on TP monitors, workflow systems,
main-memory and real-time databases, long-duration transactions, and trans-
action management in multidatabases, which appeared in Chapter 20 of the
third edition.

• Case studies. The case studies covering Oracle, IBM DB2 and Microsoft SQL
Server are new to the fourth edition. These chapters outline unique features
of each of these products, and describe their internal structure.

Instructor’s Note
The book contains both basic and advanced material, which might not be covered in
a single semester. We have marked several sections as advanced, using the symbol
“∗∗”. These sections may be omitted if so desired, without a loss of continuity.

It is possible to design courses by using various subsets of the chapters. We outline
some of the possibilities here:

• Chapter 5 can be omitted if students will not be using QBE or Datalog as part
of the course.

• If object orientation is to be covered in a separate advanced course, Chapters
8 and 9, and Section 11.9, can be omitted. Alternatively, they could constitute
the foundation of an advanced course in object databases.

• Chapter 10 (XML) and Chapter 14 (query optimization) can be omitted from
an introductory course.

• Both our coverage of transaction processing (Chapters 15 through 17) and our
coverage of database-system architecture (Chapters 18 through 20) consist of
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an overview chapter (Chapters 15 and 18, respectively), followed by chap-
ters with details. You might choose to use Chapters 15 and 18, while omitting
Chapters 16, 17, 19, and 20, if you defer these latter chapters to an advanced
course.

• Chapters 21 through 24 are suitable for an advanced course or for self-study
by students, although Section 21.1 may be covered in a first database course.

Model course syllabi, based on the text, can be found on the Web home page of the
book (see the following section).

Web Page and Teaching Supplements
A Web home page for the book is available at the URL:

http://www.bell-labs.com/topic/books/db-book

The Web page contains:

• Slides covering all the chapters of the book

• Answers to selected exercises

• The three appendices

• An up-to-date errata list

• Supplementary material contributed by users of the book

A complete solution manual will be made available only to faculty. For more infor-
mation about how to get a copy of the solution manual, please send electronic mail to
customer.service@mcgraw-hill.com. In the United States, you may call 800-338-3987.
The McGraw-Hill Web page for this book is

http://www.mhhe.com/silberschatz

Contacting Us and Other Users
We provide a mailing list through which users of our book can communicate among
themselves and with us. If you wish to be on the list, please send a message to
db-book@research.bell-labs.com, include your name, affiliation, title, and electronic
mail address.

We have endeavored to eliminate typos, bugs, and the like from the text. But, as in
new releases of software, bugs probably remain; an up-to-date errata list is accessible
from the book’s home page. We would appreciate it if you would notify us of any
errors or omissions in the book that are not on the current list of errata.

We would be glad to receive suggestions on improvements to the books. We also
welcome any contributions to the book Web page that could be of use to other read-
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ers, such as programming exercises, project suggestions, online labs and tutorials,
and teaching tips.

E-mail should be addressed to db-book@research.bell-labs.com. Any other cor-
respondence should be sent to Avi Silberschatz, Bell Laboratories, Room 2T-310, 600
Mountain Avenue, Murray Hill, NJ 07974, USA.
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C H A P T E R 1

Introduction

A database-management system (DBMS) is a collection of interrelated data and a
set of programs to access those data. The collection of data, usually referred to as the
database, contains information relevant to an enterprise. The primary goal of a DBMS
is to provide a way to store and retrieve database information that is both convenient
and efficient.

Database systems are designed to manage large bodies of information. Manage-
ment of data involves both defining structures for storage of information and pro-
viding mechanisms for the manipulation of information. In addition, the database
system must ensure the safety of the information stored, despite system crashes or
attempts at unauthorized access. If data are to be shared among several users, the
system must avoid possible anomalous results.

Because information is so important in most organizations, computer scientists
have developed a large body of concepts and techniques for managing data. These
concepts and technique form the focus of this book. This chapter briefly introduces
the principles of database systems.

1.1 Database System Applications
Databases are widely used. Here are some representative applications:

• Banking: For customer information, accounts, and loans, and banking transac-
tions.

• Airlines: For reservations and schedule information. Airlines were among the
first to use databases in a geographically distributed manner—terminals sit-
uated around the world accessed the central database system through phone
lines and other data networks.

• Universities: For student information, course registrations, and grades.

1
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• Credit card transactions: For purchases on credit cards and generation of month-
ly statements.

• Telecommunication: For keeping records of calls made, generating monthly bills,
maintaining balances on prepaid calling cards, and storing information about
the communication networks.

• Finance: For storing information about holdings, sales, and purchases of finan-
cial instruments such as stocks and bonds.

• Sales: For customer, product, and purchase information.

• Manufacturing: For management of supply chain and for tracking production
of items in factories, inventories of items in warehouses/stores, and orders for
items.

• Human resources: For information about employees, salaries, payroll taxes and
benefits, and for generation of paychecks.

As the list illustrates, databases form an essential part of almost all enterprises today.
Over the course of the last four decades of the twentieth century, use of databases

grew in all enterprises. In the early days, very few people interacted directly with
database systems, although without realizing it they interacted with databases in-
directly—through printed reports such as credit card statements, or through agents
such as bank tellers and airline reservation agents. Then automated teller machines
came along and let users interact directly with databases. Phone interfaces to com-
puters (interactive voice response systems) also allowed users to deal directly with
databases—a caller could dial a number, and press phone keys to enter information
or to select alternative options, to find flight arrival/departure times, for example, or
to register for courses in a university.

The internet revolution of the late 1990s sharply increased direct user access to
databases. Organizations converted many of their phone interfaces to databases into
Web interfaces, and made a variety of services and information available online. For
instance, when you access an online bookstore and browse a book or music collec-
tion, you are accessing data stored in a database. When you enter an order online,
your order is stored in a database. When you access a bank Web site and retrieve
your bank balance and transaction information, the information is retrieved from the
bank’s database system. When you access a Web site, information about you may be
retrieved from a database, to select which advertisements should be shown to you.
Furthermore, data about your Web accesses may be stored in a database.

Thus, although user interfaces hide details of access to a database, and most people
are not even aware they are dealing with a database, accessing databases forms an
essential part of almost everyone’s life today.

The importance of database systems can be judged in another way—today, data-
base system vendors like Oracle are among the largest software companies in the
world, and database systems form an important part of the product line of more
diversified companies like Microsoft and IBM.
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1.2 Database Systems versus File Systems
Consider part of a savings-bank enterprise that keeps information about all cus-
tomers and savings accounts. One way to keep the information on a computer is
to store it in operating system files. To allow users to manipulate the information, the
system has a number of application programs that manipulate the files, including

• A program to debit or credit an account

• A program to add a new account

• A program to find the balance of an account

• A program to generate monthly statements

System programmers wrote these application programs to meet the needs of the
bank.

New application programs are added to the system as the need arises. For exam-
ple, suppose that the savings bank decides to offer checking accounts. As a result,
the bank creates new permanent files that contain information about all the checking
accounts maintained in the bank, and it may have to write new application programs
to deal with situations that do not arise in savings accounts, such as overdrafts. Thus,
as time goes by, the system acquires more files and more application programs.

This typical file-processing system is supported by a conventional operating sys-
tem. The system stores permanent records in various files, and it needs different
application programs to extract records from, and add records to, the appropriate
files. Before database management systems (DBMSs) came along, organizations usu-
ally stored information in such systems.

Keeping organizational information in a file-processing system has a number of
major disadvantages:

• Data redundancy and inconsistency. Since different programmers create the
files and application programs over a long period, the various files are likely
to have different formats and the programs may be written in several pro-
gramming languages. Moreover, the same information may be duplicated in
several places (files). For example, the address and telephone number of a par-
ticular customer may appear in a file that consists of savings-account records
and in a file that consists of checking-account records. This redundancy leads
to higher storage and access cost. In addition, it may lead to data inconsis-
tency; that is, the various copies of the same data may no longer agree. For
example, a changed customer address may be reflected in savings-account
records but not elsewhere in the system.

• Difficulty in accessing data. Suppose that one of the bank officers needs to
find out the names of all customers who live within a particular postal-code
area. The officer asks the data-processing department to generate such a list.
Because the designers of the original system did not anticipate this request,
there is no application program on hand to meet it. There is, however, an ap-
plication program to generate the list of all customers. The bank officer has
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now two choices: either obtain the list of all customers and extract the needed
information manually or ask a system programmer to write the necessary
application program. Both alternatives are obviously unsatisfactory. Suppose
that such a program is written, and that, several days later, the same officer
needs to trim that list to include only those customers who have an account
balance of $10,000 or more. As expected, a program to generate such a list does
not exist. Again, the officer has the preceding two options, neither of which is
satisfactory.

The point here is that conventional file-processing environments do not al-
low needed data to be retrieved in a convenient and efficient manner. More
responsive data-retrieval systems are required for general use.

• Data isolation. Because data are scattered in various files, and files may be in
different formats, writing new application programs to retrieve the appropri-
ate data is difficult.

• Integrity problems. The data values stored in the database must satisfy cer-
tain types of consistency constraints. For example, the balance of a bank ac-
count may never fall below a prescribed amount (say, $25). Developers enforce
these constraints in the system by adding appropriate code in the various ap-
plication programs. However, when new constraints are added, it is difficult
to change the programs to enforce them. The problem is compounded when
constraints involve several data items from different files.

• Atomicity problems. A computer system, like any other mechanical or elec-
trical device, is subject to failure. In many applications, it is crucial that, if a
failure occurs, the data be restored to the consistent state that existed prior to
the failure. Consider a program to transfer $50 from account A to account B.
If a system failure occurs during the execution of the program, it is possible
that the $50 was removed from account A but was not credited to account B,
resulting in an inconsistent database state. Clearly, it is essential to database
consistency that either both the credit and debit occur, or that neither occur.
That is, the funds transfer must be atomic—it must happen in its entirety or
not at all. It is difficult to ensure atomicity in a conventional file-processing
system.

• Concurrent-access anomalies. For the sake of overall performance of the sys-
tem and faster response, many systems allow multiple users to update the
data simultaneously. In such an environment, interaction of concurrent up-
dates may result in inconsistent data. Consider bank account A, containing
$500. If two customers withdraw funds (say $50 and $100 respectively) from
account A at about the same time, the result of the concurrent executions may
leave the account in an incorrect (or inconsistent) state. Suppose that the pro-
grams executing on behalf of each withdrawal read the old balance, reduce
that value by the amount being withdrawn, and write the result back. If the
two programs run concurrently, they may both read the value $500, and write
back $450 and $400, respectively. Depending on which one writes the value
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last, the account may contain either $450 or $400, rather than the correct value
of $350. To guard against this possibility, the system must maintain some form
of supervision. But supervision is difficult to provide because data may be
accessed by many different application programs that have not been coordi-
nated previously.

• Security problems. Not every user of the database system should be able to
access all the data. For example, in a banking system, payroll personnel need
to see only that part of the database that has information about the various
bank employees. They do not need access to information about customer ac-
counts. But, since application programs are added to the system in an ad hoc
manner, enforcing such security constraints is difficult.

These difficulties, among others, prompted the development of database systems.
In what follows, we shall see the concepts and algorithms that enable database sys-
tems to solve the problems with file-processing systems. In most of this book, we
use a bank enterprise as a running example of a typical data-processing application
found in a corporation.

1.3 View of Data
A database system is a collection of interrelated files and a set of programs that allow
users to access and modify these files. A major purpose of a database system is to
provide users with an abstract view of the data. That is, the system hides certain
details of how the data are stored and maintained.

1.3.1 Data Abstraction
For the system to be usable, it must retrieve data efficiently. The need for efficiency
has led designers to use complex data structures to represent data in the database.
Since many database-systems users are not computer trained, developers hide the
complexity from users through several levels of abstraction, to simplify users’ inter-
actions with the system:

• Physical level. The lowest level of abstraction describes how the data are actu-
ally stored. The physical level describes complex low-level data structures in
detail.

• Logical level. The next-higher level of abstraction describes what data are
stored in the database, and what relationships exist among those data. The
logical level thus describes the entire database in terms of a small number
of relatively simple structures. Although implementation of the simple struc-
tures at the logical level may involve complex physical-level structures, the
user of the logical level does not need to be aware of this complexity. Database
administrators, who must decide what information to keep in the database,
use the logical level of abstraction.
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• View level. The highest level of abstraction describes only part of the entire
database. Even though the logical level uses simpler structures, complexity
remains because of the variety of information stored in a large database. Many
users of the database system do not need all this information; instead, they
need to access only a part of the database. The view level of abstraction exists
to simplify their interaction with the system. The system may provide many
views for the same database.

Figure 1.1 shows the relationship among the three levels of abstraction.
An analogy to the concept of data types in programming languages may clarify

the distinction among levels of abstraction. Most high-level programming languages
support the notion of a record type. For example, in a Pascal-like language, we may
declare a record as follows:

type customer = record
customer-id : string;
customer-name : string;
customer-street : string;
customer-city : string;

end;

This code defines a new record type called customer with four fields. Each field has
a name and a type associated with it. A banking enterprise may have several such
record types, including

• account, with fields account-number and balance

• employee, with fields employee-name and salary

At the physical level, a customer, account, or employee record can be described as a
block of consecutive storage locations (for example, words or bytes). The language

view 1 view 2

logical
level

physical
level

view n…

view level

Figure 1.1 The three levels of data abstraction.
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compiler hides this level of detail from programmers. Similarly, the database system
hides many of the lowest-level storage details from database programmers. Database
administrators, on the other hand, may be aware of certain details of the physical
organization of the data.

At the logical level, each such record is described by a type definition, as in the
previous code segment, and the interrelationship of these record types is defined as
well. Programmers using a programming language work at this level of abstraction.
Similarly, database administrators usually work at this level of abstraction.

Finally, at the view level, computer users see a set of application programs that
hide details of the data types. Similarly, at the view level, several views of the database
are defined, and database users see these views. In addition to hiding details of the
logical level of the database, the views also provide a security mechanism to prevent
users from accessing certain parts of the database. For example, tellers in a bank see
only that part of the database that has information on customer accounts; they cannot
access information about salaries of employees.

1.3.2 Instances and Schemas
Databases change over time as information is inserted and deleted. The collection of
information stored in the database at a particular moment is called an instance of the
database. The overall design of the database is called the database schema. Schemas
are changed infrequently, if at all.

The concept of database schemas and instances can be understood by analogy to
a program written in a programming language. A database schema corresponds to
the variable declarations (along with associated type definitions) in a program. Each
variable has a particular value at a given instant. The values of the variables in a
program at a point in time correspond to an instance of a database schema.

Database systems have several schemas, partitioned according to the levels of ab-
straction. The physical schema describes the database design at the physical level,
while the logical schema describes the database design at the logical level. A database
may also have several schemas at the view level, sometimes called subschemas, that
describe different views of the database.

Of these, the logical schema is by far the most important, in terms of its effect on
application programs, since programmers construct applications by using the logical
schema. The physical schema is hidden beneath the logical schema, and can usually
be changed easily without affecting application programs. Application programs are
said to exhibit physical data independence if they do not depend on the physical
schema, and thus need not be rewritten if the physical schema changes.

We study languages for describing schemas, after introducing the notion of data
models in the next section.

1.4 Data Models
Underlying the structure of a database is the data model: a collection of conceptual
tools for describing data, data relationships, data semantics, and consistency con-
straints. To illustrate the concept of a data model, we outline two data models in this
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section: the entity-relationship model and the relational model. Both provide a way
to describe the design of a database at the logical level.

1.4.1 The Entity-Relationship Model
The entity-relationship (E-R) data model is based on a perception of a real world that
consists of a collection of basic objects, called entities, and of relationships among these
objects. An entity is a “thing” or “object” in the real world that is distinguishable
from other objects. For example, each person is an entity, and bank accounts can be
considered as entities.

Entities are described in a database by a set of attributes. For example, the at-
tributes account-number and balance may describe one particular account in a bank,
and they form attributes of the account entity set. Similarly, attributes customer-name,
customer-street address and customer-city may describe a customer entity.

An extra attribute customer-id is used to uniquely identify customers (since it may
be possible to have two customers with the same name, street address, and city).
A unique customer identifier must be assigned to each customer. In the United States,
many enterprises use the social-security number of a person (a unique number the
U.S. government assigns to every person in the United States) as a customer
identifier.

A relationship is an association among several entities. For example, a depositor
relationship associates a customer with each account that she has. The set of all enti-
ties of the same type and the set of all relationships of the same type are termed an
entity set and relationship set, respectively.

The overall logical structure (schema) of a database can be expressed graphically
by an E-R diagram, which is built up from the following components:

• Rectangles, which represent entity sets

• Ellipses, which represent attributes

• Diamonds, which represent relationships among entity sets

• Lines, which link attributes to entity sets and entity sets to relationships

Each component is labeled with the entity or relationship that it represents.
As an illustration, consider part of a database banking system consisting of

customers and of the accounts that these customers have. Figure 1.2 shows the cor-
responding E-R diagram. The E-R diagram indicates that there are two entity sets,
customer and account, with attributes as outlined earlier. The diagram also shows a
relationship depositor between customer and account.

In addition to entities and relationships, the E-R model represents certain con-
straints to which the contents of a database must conform. One important constraint
is mapping cardinalities, which express the number of entities to which another en-
tity can be associated via a relationship set. For example, if each account must belong
to only one customer, the E-R model can express that constraint.

The entity-relationship model is widely used in database design, and Chapter 2
explores it in detail.
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customer-name customer-street

customer-id customer-city

customer

balance

accountdepositor

account-number

Figure 1.2 A sample E-R diagram.

1.4.2 Relational Model
The relational model uses a collection of tables to represent both data and the rela-
tionships among those data. Each table has multiple columns, and each column has
a unique name. Figure 1.3 presents a sample relational database comprising three ta-
bles: One shows details of bank customers, the second shows accounts, and the third
shows which accounts belong to which customers.

The first table, the customer table, shows, for example, that the customer identified
by customer-id 192-83-7465 is named Johnson and lives at 12 Alma St. in Palo Alto.
The second table, account, shows, for example, that account A-101 has a balance of
$500, and A-201 has a balance of $900.

The third table shows which accounts belong to which customers. For example,
account number A-101 belongs to the customer whose customer-id is 192-83-7465,
namely Johnson, and customers 192-83-7465 (Johnson) and 019-28-3746 (Smith) share
account number A-201 (they may share a business venture).

The relational model is an example of a record-based model. Record-based mod-
els are so named because the database is structured in fixed-format records of several
types. Each table contains records of a particular type. Each record type defines a
fixed number of fields, or attributes. The columns of the table correspond to the at-
tributes of the record type.

It is not hard to see how tables may be stored in files. For instance, a special
character (such as a comma) may be used to delimit the different attributes of a
record, and another special character (such as a newline character) may be used to
delimit records. The relational model hides such low-level implementation details
from database developers and users.

The relational data model is the most widely used data model, and a vast majority
of current database systems are based on the relational model. Chapters 3 through 7
cover the relational model in detail.

The relational model is at a lower level of abstraction than the E-R model. Database
designs are often carried out in the E-R model, and then translated to the relational
model; Chapter 2 describes the translation process. For example, it is easy to see that
the tables customer and account correspond to the entity sets of the same name, while
the table depositor corresponds to the relationship set depositor.

We also note that it is possible to create schemas in the relational model that have
problems such as unnecessarily duplicated information. For example, suppose we
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customer-id customer-name customer-street customer-city
192-83-7465 Johnson 12 Alma St. Palo Alto
019-28-3746 Smith 4 North St. Rye
677-89-9011 Hayes 3 Main St. Harrison
182-73-6091 Turner 123 Putnam Ave. Stamford
321-12-3123 Jones 100 Main St. Harrison
336-66-9999 Lindsay 175 Park Ave. Pittsfield
019-28-3746 Smith 72 North St. Rye

(a) The customer table

account-number balance
A-101 500
A-215 700
A-102 400
A-305 350
A-201 900
A-217 750
A-222 700

(b) The account table

customer-id account-number
192-83-7465 A-101
192-83-7465 A-201
019-28-3746 A-215
677-89-9011 A-102
182-73-6091 A-305
321-12-3123 A-217
336-66-9999 A-222
019-28-3746 A-201

(c) The depositor table

Figure 1.3 A sample relational database.

store account-number as an attribute of the customer record. Then, to represent the fact
that accounts A-101 and A-201 both belong to customer Johnson (with customer-id
192-83-7465), we would need to store two rows in the customer table. The values for
customer-name, customer-street, and customer-city for Johnson would get unneces-
sarily duplicated in the two rows. In Chapter 7, we shall study how to distinguish
good schema designs from bad schema designs.

1.4.3 Other Data Models
The object-oriented data model is another data model that has seen increasing atten-
tion. The object-oriented model can be seen as extending the E-R model with notions
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of encapsulation, methods (functions), and object identity. Chapter 8 examines the
object-oriented data model.

The object-relational data model combines features of the object-oriented data
model and relational data model. Chapter 9 examines it.

Semistructured data models permit the specification of data where individual data
items of the same type may have different sets of attributes. This is in contrast with
the data models mentioned earlier, where every data item of a particular type must
have the same set of attributes. The extensible markup language (XML) is widely
used to represent semistructured data. Chapter 10 covers it.

Historically, two other data models, the network data model and the hierarchical
data model, preceded the relational data model. These models were tied closely to
the underlying implementation, and complicated the task of modeling data. As a
result they are little used now, except in old database code that is still in service in
some places. They are outlined in Appendices A and B, for interested readers.

1.5 Database Languages
A database system provides a data definition language to specify the database sche-
ma and a data manipulation language to express database queries and updates. In
practice, the data definition and data manipulation languages are not two separate
languages; instead they simply form parts of a single database language, such as the
widely used SQL language.

1.5.1 Data-Definition Language
We specify a database schema by a set of definitions expressed by a special language
called a data-definition language (DDL).

For instance, the following statement in the SQL language defines the account table:

create table account
(account-number char(10),
balance integer)

Execution of the above DDL statement creates the account table. In addition, it up-
dates a special set of tables called the data dictionary or data directory.

A data dictionary contains metadata—that is, data about data. The schema of a ta-
ble is an example of metadata. A database system consults the data dictionary before
reading or modifying actual data.

We specify the storage structure and access methods used by the database system
by a set of statements in a special type of DDL called a data storage and definition lan-
guage. These statements define the implementation details of the database schemas,
which are usually hidden from the users.

The data values stored in the database must satisfy certain consistency constraints.
For example, suppose the balance on an account should not fall below $100. The DDL
provides facilities to specify such constraints. The database systems check these con-
straints every time the database is updated.
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1.5.2 Data-Manipulation Language
Data manipulation is

• The retrieval of information stored in the database

• The insertion of new information into the database

• The deletion of information from the database

• The modification of information stored in the database

A data-manipulation language (DML) is a language that enables users to access
or manipulate data as organized by the appropriate data model. There are basically
two types:

• Procedural DMLs require a user to specify what data are needed and how to
get those data.

• Declarative DMLs (also referred to as nonprocedural DMLs) require a user to
specify what data are needed without specifying how to get those data.

Declarative DMLs are usually easier to learn and use than are procedural DMLs.
However, since a user does not have to specify how to get the data, the database
system has to figure out an efficient means of accessing data. The DML component of
the SQL language is nonprocedural.

A query is a statement requesting the retrieval of information. The portion of a
DML that involves information retrieval is called a query language. Although tech-
nically incorrect, it is common practice to use the terms query language and data-
manipulation language synonymously.

This query in the SQL language finds the name of the customer whose customer-id
is 192-83-7465:

select customer.customer-name
from customer
where customer.customer-id = 192-83-7465

The query specifies that those rows from the table customer where the customer-id is
192-83-7465 must be retrieved, and the customer-name attribute of these rows must be
displayed. If the query were run on the table in Figure 1.3, the name Johnson would
be displayed.

Queries may involve information from more than one table. For instance, the fol-
lowing query finds the balance of all accounts owned by the customer with customer-
id 192-83-7465.

select account.balance
from depositor, account
where depositor.customer-id = 192-83-7465 and

depositor.account-number = account.account-number
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If the above query were run on the tables in Figure 1.3, the system would find that
the two accounts numbered A-101 and A-201 are owned by customer 192-83-7465
and would print out the balances of the two accounts, namely 500 and 900.

There are a number of database query languages in use, either commercially or
experimentally. We study the most widely used query language, SQL, in Chapter 4.
We also study some other query languages in Chapter 5.

The levels of abstraction that we discussed in Section 1.3 apply not only to defining
or structuring data, but also to manipulating data. At the physical level, we must
define algorithms that allow efficient access to data. At higher levels of abstraction,
we emphasize ease of use. The goal is to allow humans to interact efficiently with the
system. The query processor component of the database system (which we study in
Chapters 13 and 14) translates DML queries into sequences of actions at the physical
level of the database system.

1.5.3 Database Access from Application Programs
Application programs are programs that are used to interact with the database. Ap-
plication programs are usually written in a host language, such as Cobol, C, C++, or
Java. Examples in a banking system are programs that generate payroll checks, debit
accounts, credit accounts, or transfer funds between accounts.

To access the database, DML statements need to be executed from the host lan-
guage. There are two ways to do this:

• By providing an application program interface (set of procedures) that can
be used to send DML and DDL statements to the database, and retrieve the
results.

The Open Database Connectivity (ODBC) standard defined by Microsoft
for use with the C language is a commonly used application program inter-
face standard. The Java Database Connectivity (JDBC) standard provides cor-
responding features to the Java language.

• By extending the host language syntax to embed DML calls within the host
language program. Usually, a special character prefaces DML calls, and a pre-
processor, called the DML precompiler, converts the DML statements to nor-
mal procedure calls in the host language.

1.6 Database Users and Administrators
A primary goal of a database system is to retrieve information from and store new
information in the database. People who work with a database can be categorized as
database users or database administrators.

1.6.1 Database Users and User Interfaces
There are four different types of database-system users, differentiated by the way
they expect to interact with the system. Different types of user interfaces have been
designed for the different types of users.



Silberschatz−Korth−Sudarshan: 
Database System 
Concepts, Fourth Edition

1. Introduction Text24 © The McGraw−Hill 
Companies, 2001

14 Chapter 1 Introduction

• Naive users are unsophisticated users who interact with the system by invok-
ing one of the application programs that have been written previously. For
example, a bank teller who needs to transfer $50 from account A to account B
invokes a program called transfer. This program asks the teller for the amount
of money to be transferred, the account from which the money is to be trans-
ferred, and the account to which the money is to be transferred.

As another example, consider a user who wishes to find her account bal-
ance over the World Wide Web. Such a user may access a form, where she
enters her account number. An application program at the Web server then
retrieves the account balance, using the given account number, and passes
this information back to the user.

The typical user interface for naive users is a forms interface, where the
user can fill in appropriate fields of the form. Naive users may also simply
read reports generated from the database.

• Application programmers are computer professionals who write application
programs. Application programmers can choose from many tools to develop
user interfaces. Rapid application development (RAD) tools are tools that en-
able an application programmer to construct forms and reports without writ-
ing a program. There are also special types of programming languages that
combine imperative control structures (for example, for loops, while loops
and if-then-else statements) with statements of the data manipulation lan-
guage. These languages, sometimes called fourth-generation languages, often
include special features to facilitate the generation of forms and the display of
data on the screen. Most major commercial database systems include a fourth-
generation language.

• Sophisticated users interact with the system without writing programs. In-
stead, they form their requests in a database query language. They submit
each such query to a query processor, whose function is to break down DML
statements into instructions that the storage manager understands. Analysts
who submit queries to explore data in the database fall in this category.

Online analytical processing (OLAP) tools simplify analysts’ tasks by let-
ting them view summaries of data in different ways. For instance, an analyst
can see total sales by region (for example, North, South, East, and West), or by
product, or by a combination of region and product (that is, total sales of each
product in each region). The tools also permit the analyst to select specific re-
gions, look at data in more detail (for example, sales by city within a region)
or look at the data in less detail (for example, aggregate products together by
category).

Another class of tools for analysts is data mining tools, which help them
find certain kinds of patterns in data.

We study OLAP tools and data mining in Chapter 22.

• Specialized users are sophisticated users who write specialized database
applications that do not fit into the traditional data-processing framework.
Among these applications are computer-aided design systems, knowledge-
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base and expert systems, systems that store data with complex data types (for
example, graphics data and audio data), and environment-modeling systems.
Chapters 8 and 9 cover several of these applications.

1.6.2 Database Administrator
One of the main reasons for using DBMSs is to have central control of both the data
and the programs that access those data. A person who has such central control over
the system is called a database administrator (DBA). The functions of a DBA include:

• Schema definition. The DBA creates the original database schema by execut-
ing a set of data definition statements in the DDL.

• Storage structure and access-method definition.

• Schema and physical-organization modification. The DBA carries out chang-
es to the schema and physical organization to reflect the changing needs of the
organization, or to alter the physical organization to improve performance.

• Granting of authorization for data access. By granting different types of
authorization, the database administrator can regulate which parts of the data-
base various users can access. The authorization information is kept in a
special system structure that the database system consults whenever some-
one attempts to access the data in the system.

• Routine maintenance. Examples of the database administrator’s routine
maintenance activities are:
� Periodically backing up the database, either onto tapes or onto remote

servers, to prevent loss of data in case of disasters such as flooding.
� Ensuring that enough free disk space is available for normal operations,

and upgrading disk space as required.
� Monitoring jobs running on the database and ensuring that performance

is not degraded by very expensive tasks submitted by some users.

1.7 Transaction Management
Often, several operations on the database form a single logical unit of work. An ex-
ample is a funds transfer, as in Section 1.2, in which one account (say A) is debited and
another account (say B) is credited. Clearly, it is essential that either both the credit
and debit occur, or that neither occur. That is, the funds transfer must happen in its
entirety or not at all. This all-or-none requirement is called atomicity. In addition, it
is essential that the execution of the funds transfer preserve the consistency of the
database. That is, the value of the sum A + B must be preserved. This correctness
requirement is called consistency. Finally, after the successful execution of a funds
transfer, the new values of accounts A and B must persist, despite the possibility of
system failure. This persistence requirement is called durability.

A transaction is a collection of operations that performs a single logical function
in a database application. Each transaction is a unit of both atomicity and consis-
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tency. Thus, we require that transactions do not violate any database-consistency
constraints. That is, if the database was consistent when a transaction started, the
database must be consistent when the transaction successfully terminates. However,
during the execution of a transaction, it may be necessary temporarily to allow incon-
sistency, since either the debit of A or the credit of B must be done before the other.
This temporary inconsistency, although necessary, may lead to difficulty if a failure
occurs.

It is the programmer’s responsibility to define properly the various transactions,
so that each preserves the consistency of the database. For example, the transaction to
transfer funds from account A to account B could be defined to be composed of two
separate programs: one that debits account A, and another that credits account B. The
execution of these two programs one after the other will indeed preserve consistency.
However, each program by itself does not transform the database from a consistent
state to a new consistent state. Thus, those programs are not transactions.

Ensuring the atomicity and durability properties is the responsibility of the data-
base system itself—specifically, of the transaction-management component. In the
absence of failures, all transactions complete successfully, and atomicity is achieved
easily. However, because of various types of failure, a transaction may not always
complete its execution successfully. If we are to ensure the atomicity property, a failed
transaction must have no effect on the state of the database. Thus, the database must
be restored to the state in which it was before the transaction in question started exe-
cuting. The database system must therefore perform failure recovery, that is, detect
system failures and restore the database to the state that existed prior to the occur-
rence of the failure.

Finally, when several transactions update the database concurrently, the consis-
tency of data may no longer be preserved, even though each individual transac-
tion is correct. It is the responsibility of the concurrency-control manager to control
the interaction among the concurrent transactions, to ensure the consistency of the
database.

Database systems designed for use on small personal computers may not have
all these features. For example, many small systems allow only one user to access
the database at a time. Others do not offer backup and recovery, leaving that to the
user. These restrictions allow for a smaller data manager, with fewer requirements for
physical resources—especially main memory. Although such a low-cost, low-feature
approach is adequate for small personal databases, it is inadequate for a medium- to
large-scale enterprise.

1.8 Database System Structure
A database system is partitioned into modules that deal with each of the responsi-
bilites of the overall system. The functional components of a database system can be
broadly divided into the storage manager and the query processor components.

The storage manager is important because databases typically require a large
amount of storage space. Corporate databases range in size from hundreds of gi-
gabytes to, for the largest databases, terabytes of data. A gigabyte is 1000 megabytes
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(1 billion bytes), and a terabyte is 1 million megabytes (1 trillion bytes). Since the
main memory of computers cannot store this much information, the information is
stored on disks. Data are moved between disk storage and main memory as needed.
Since the movement of data to and from disk is slow relative to the speed of the cen-
tral processing unit, it is imperative that the database system structure the data so as
to minimize the need to move data between disk and main memory.

The query processor is important because it helps the database system simplify
and facilitate access to data. High-level views help to achieve this goal; with them,
users of the system are not be burdened unnecessarily with the physical details of the
implementation of the system. However, quick processing of updates and queries
is important. It is the job of the database system to translate updates and queries
written in a nonprocedural language, at the logical level, into an efficient sequence of
operations at the physical level.

1.8.1 Storage Manager
A storage manager is a program module that provides the interface between the low-
level data stored in the database and the application programs and queries submit-
ted to the system. The storage manager is responsible for the interaction with the file
manager. The raw data are stored on the disk using the file system, which is usu-
ally provided by a conventional operating system. The storage manager translates
the various DML statements into low-level file-system commands. Thus, the storage
manager is responsible for storing, retrieving, and updating data in the database.

The storage manager components include:

• Authorization and integrity manager, which tests for the satisfaction of in-
tegrity constraints and checks the authority of users to access data.

• Transaction manager, which ensures that the database remains in a consistent
(correct) state despite system failures, and that concurrent transaction execu-
tions proceed without conflicting.

• File manager, which manages the allocation of space on disk storage and the
data structures used to represent information stored on disk.

• Buffer manager, which is responsible for fetching data from disk storage into
main memory, and deciding what data to cache in main memory. The buffer
manager is a critical part of the database system, since it enables the database
to handle data sizes that are much larger than the size of main memory.

The storage manager implements several data structures as part of the physical
system implementation:

• Data files, which store the database itself.

• Data dictionary, which stores metadata about the structure of the database, in
particular the schema of the database.

• Indices, which provide fast access to data items that hold particular values.
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1.8.2 The Query Processor
The query processor components include

• DDL interpreter, which interprets DDL statements and records the definitions
in the data dictionary.

• DML compiler, which translates DML statements in a query language into an
evaluation plan consisting of low-level instructions that the query evaluation
engine understands.

A query can usually be translated into any of a number of alternative eval-
uation plans that all give the same result. The DML compiler also performs
query optimization, that is, it picks the lowest cost evaluation plan from amo-
ng the alternatives.

• Query evaluation engine, which executes low-level instructions generated by
the DML compiler.

Figure 1.4 shows these components and the connections among them.

1.9 Application Architectures
Most users of a database system today are not present at the site of the database
system, but connect to it through a network. We can therefore differentiate between
client machines, on which remote database users work, and server machines, on
which the database system runs.

Database applications are usually partitioned into two or three parts, as in Fig-
ure 1.5. In a two-tier architecture, the application is partitioned into a component
that resides at the client machine, which invokes database system functionality at the
server machine through query language statements. Application program interface
standards like ODBC and JDBC are used for interaction between the client and the
server.

In contrast, in a three-tier architecture, the client machine acts as merely a front
end and does not contain any direct database calls. Instead, the client end communi-
cates with an application server, usually through a forms interface. The application
server in turn communicates with a database system to access data. The business
logic of the application, which says what actions to carry out under what conditions,
is embedded in the application server, instead of being distributed across multiple
clients. Three-tier applications are more appropriate for large applications, and for
applications that run on the World Wide Web.

1.10 History of Database Systems
Data processing drives the growth of computers, as it has from the earliest days of
commercial computers. In fact, automation of data processing tasks predates com-
puters. Punched cards, invented by Hollerith, were used at the very beginning of the
twentieth century to record U.S. census data, and mechanical systems were used to
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process the cards and tabulate results. Punched cards were later widely used as a
means of entering data into computers.

Techniques for data storage and processing have evolved over the years:

• 1950s and early 1960s: Magnetic tapes were developed for data storage. Data
processing tasks such as payroll were automated, with data stored on tapes.
Processing of data consisted of reading data from one or more tapes and
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writing data to a new tape. Data could also be input from punched card decks,
and output to printers. For example, salary raises were processed by entering
the raises on punched cards and reading the punched card deck in synchro-
nization with a tape containing the master salary details. The records had to
be in the same sorted order. The salary raises would be added to the salary
read from the master tape, and written to a new tape; the new tape would
become the new master tape.

Tapes (and card decks) could be read only sequentially, and data sizes were
much larger than main memory; thus, data processing programs were forced
to process data in a particular order, by reading and merging data from tapes
and card decks.

• Late 1960s and 1970s: Widespread use of hard disks in the late 1960s changed
the scenario for data processing greatly, since hard disks allowed direct access
to data. The position of data on disk was immaterial, since any location on disk
could be accessed in just tens of milliseconds. Data were thus freed from the
tyranny of sequentiality. With disks, network and hierarchical databases could
be created that allowed data structures such as lists and trees to be stored on
disk. Programmers could construct and manipulate these data structures.

A landmark paper by Codd [1970] defined the relational model, and non-
procedural ways of querying data in the relational model, and relational
databases were born. The simplicity of the relational model and the possibil-
ity of hiding implementation details completely from the programmer were
enticing indeed. Codd later won the prestigious Association of Computing
Machinery Turing Award for his work.
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• 1980s: Although academically interesting, the relational model was not used
in practice initially, because of its perceived performance disadvantages; re-
lational databases could not match the performance of existing network and
hierarchical databases. That changed with System R, a groundbreaking project
at IBM Research that developed techniques for the construction of an efficient
relational database system. Excellent overviews of System R are provided by
Astrahan et al. [1976] and Chamberlin et al. [1981]. The fully functional Sys-
tem R prototype led to IBM’s first relational database product, SQL/DS. Initial
commercial relational database systems, such as IBM DB2, Oracle, Ingres, and
DEC Rdb, played a major role in advancing techniques for efficient process-
ing of declarative queries. By the early 1980s, relational databases had become
competitive with network and hierarchical database systems even in the area
of performance. Relational databases were so easy to use that they eventually
replaced network/hierarchical databases; programmers using such databases
were forced to deal with many low-level implementation details, and had to
code their queries in a procedural fashion. Most importantly, they had to keep
efficiency in mind when designing their programs, which involved a lot of
effort. In contrast, in a relational database, almost all these low-level tasks
are carried out automatically by the database, leaving the programmer free to
work at a logical level. Since attaining dominance in the 1980s, the relational
model has reigned supreme among data models.

The 1980s also saw much research on parallel and distributed databases, as
well as initial work on object-oriented databases.

• Early 1990s: The SQL language was designed primarily for decision support
applications, which are query intensive, yet the mainstay of databases in the
1980s was transaction processing applications, which are update intensive.
Decision support and querying re-emerged as a major application area for
databases. Tools for analyzing large amounts of data saw large growths in
usage.

Many database vendors introduced parallel database products in this pe-
riod. Database vendors also began to add object-relational support to their
databases.

• Late 1990s: The major event was the explosive growth of the World Wide Web.
Databases were deployed much more extensively than ever before. Database
systems now had to support very high transaction processing rates, as well as
very high reliability and 24×7 availability (availability 24 hours a day, 7 days a
week, meaning no downtime for scheduled maintenance activities). Database
systems also had to support Web interfaces to data.

1.11 Summary
• A database-management system (DBMS) consists of a collection of interre-

lated data and a collection of programs to access that data. The data describe
one particular enterprise.
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• The primary goal of a DBMS is to provide an environment that is both conve-
nient and efficient for people to use in retrieving and storing information.

• Database systems are ubiquitous today, and most people interact, either di-
rectly or indirectly, with databases many times every day.

• Database systems are designed to store large bodies of information. The man-
agement of data involves both the definition of structures for the storage of
information and the provision of mechanisms for the manipulation of infor-
mation. In addition, the database system must provide for the safety of the
information stored, in the face of system crashes or attempts at unauthorized
access. If data are to be shared among several users, the system must avoid
possible anomalous results.

• A major purpose of a database system is to provide users with an abstract
view of the data. That is, the system hides certain details of how the data are
stored and maintained.

• Underlying the structure of a database is the data model: a collection of con-
ceptual tools for describing data, data relationships, data semantics, and data
constraints. The entity-relationship (E-R) data model is a widely used data
model, and it provides a convenient graphical representation to view data, re-
lationships and constraints. The relational data model is widely used to store
data in databases. Other data models are the object-oriented model, the object-
relational model, and semistructured data models.

• The overall design of the database is called the database schema. A database
schema is specified by a set of definitions that are expressed using a data-
definition language (DDL).

• A data-manipulation language (DML) is a language that enables users to ac-
cess or manipulate data. Nonprocedural DMLs, which require a user to specify
only what data are needed, without specifying exactly how to get those data,
are widely used today.

• Database users can be categorized into several classes, and each class of users
usually uses a different type of interface to the database.

• A database system has several subsystems.
� The transaction manager subsystem is responsible for ensuring that the

database remains in a consistent (correct) state despite system failures.
The transaction manager also ensures that concurrent transaction execu-
tions proceed without conflicting.

� The query processor subsystem compiles and executes DDL and DML
statements.

� The storage manager subsystem provides the interface between the low-
level data stored in the database and the application programs and queries
submitted to the system.
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• Database applications are typically broken up into a front-end part that runs at
client machines and a part that runs at the back end. In two-tier architectures,
the front-end directly communicates with a database running at the back end.
In three-tier architectures, the back end part is itself broken up into an appli-
cation server and a database server.

Review Terms

• Database management system
(DBMS)

• Database systems applications
• File systems
• Data inconsistency
• Consistency constraints
• Data views
• Data abstraction
• Database instance
• Schema
� Database schema
� Physical schema
� Logical schema

• Physical data independence
• Data models

� Entity-relationship model
� Relational data model
� Object-oriented data model
� Object-relational data model

• Database languages
� Data definition language
� Data manipulation language
� Query language

• Data dictionary

• Metadata

• Application program

• Database administrator (DBA)

• Transactions

• Concurrency

• Client and server machines

Exercises
1.1 List four significant differences between a file-processing system and a DBMS.

1.2 This chapter has described several major advantages of a database system. What
are two disadvantages?

1.3 Explain the difference between physical and logical data independence.

1.4 List five responsibilities of a database management system. For each responsi-
bility, explain the problems that would arise if the responsibility were not dis-
charged.

1.5 What are five main functions of a database administrator?

1.6 List seven programming languages that are procedural and two that are non-
procedural. Which group is easier to learn and use? Explain your answer.

1.7 List six major steps that you would take in setting up a database for a particular
enterprise.
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1.8 Consider a two-dimensional integer array of size n × m that is to be used in
your favorite programming language. Using the array as an example, illustrate
the difference (a) between the three levels of data abstraction, and (b) between
a schema and instances.
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Data Models

A data model is a collection of conceptual tools for describing data, data relation-
ships, data semantics, and consistency constraints. In this part, we study two data
models—the entity–relationship model and the relational model.

The entity–relationship (E-R) model is a high-level data model. It is based on a
perception of a real world that consists of a collection of basic objects, called entities,
and of relationships among these objects.

The relational model is a lower-level model. It uses a collection of tables to repre-
sent both data and the relationships among those data. Its conceptual simplicity has
led to its widespread adoption; today a vast majority of database products are based
on the relational model. Designers often formulate database schema design by first
modeling data at a high level, using the E-R model, and then translating it into the
the relational model.

We shall study other data models later in the book. The object-oriented data model,
for example, extends the representation of entities by adding notions of encapsula-
tion, methods (functions), and object identity. The object-relational data model com-
bines features of the object-oriented data model and the relational data model. Chap-
ters 8 and 9, respectively, cover these two data models.
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Entity-Relationship Model

The entity-relationship (E-R) data model perceives the real world as consisting of
basic objects, called entities, and relationships among these objects. It was developed
to facilitate database design by allowing specification of an enterprise schema, which
represents the overall logical structure of a database. The E-R data model is one of sev-
eral semantic data models; the semantic aspect of the model lies in its representation
of the meaning of the data. The E-R model is very useful in mapping the meanings
and interactions of real-world enterprises onto a conceptual schema. Because of this
usefulness, many database-design tools draw on concepts from the E-R model.

2.1 Basic Concepts
The E-R data model employs three basic notions: entity sets, relationship sets, and
attributes.

2.1.1 Entity Sets
An entity is a “thing” or “object” in the real world that is distinguishable from all
other objects. For example, each person in an enterprise is an entity. An entity has a
set of properties, and the values for some set of properties may uniquely identify an
entity. For instance, a person may have a person-id property whose value uniquely
identifies that person. Thus, the value 677-89-9011 for person-id would uniquely iden-
tify one particular person in the enterprise. Similarly, loans can be thought of as enti-
ties, and loan number L-15 at the Perryridge branch uniquely identifies a loan entity.
An entity may be concrete, such as a person or a book, or it may be abstract, such as
a loan, or a holiday, or a concept.

An entity set is a set of entities of the same type that share the same properties, or
attributes. The set of all persons who are customers at a given bank, for example, can
be defined as the entity set customer. Similarly, the entity set loan might represent the

27
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set of all loans awarded by a particular bank. The individual entities that constitute a
set are said to be the extension of the entity set. Thus, all the individual bank customers
are the extension of the entity set customer.

Entity sets do not need to be disjoint. For example, it is possible to define the entity
set of all employees of a bank (employee) and the entity set of all customers of the bank
(customer). A person entity may be an employee entity, a customer entity, both, or neither.

An entity is represented by a set of attributes. Attributes are descriptive proper-
ties possessed by each member of an entity set. The designation of an attribute for an
entity set expresses that the database stores similar information concerning each en-
tity in the entity set; however, each entity may have its own value for each attribute.
Possible attributes of the customer entity set are customer-id, customer-name, customer-
street, and customer-city. In real life, there would be further attributes, such as street
number, apartment number, state, postal code, and country, but we omit them to
keep our examples simple. Possible attributes of the loan entity set are loan-number
and amount.

Each entity has a value for each of its attributes. For instance, a particular customer
entity may have the value 321-12-3123 for customer-id, the value Jones for customer-
name, the value Main for customer-street, and the value Harrison for customer-city.

The customer-id attribute is used to uniquely identify customers, since there may
be more than one customer with the same name, street, and city. In the United States,
many enterprises find it convenient to use the social-security number of a person1

as an attribute whose value uniquely identifies the person. In general the enterprise
would have to create and assign a unique identifier for each customer.

For each attribute, there is a set of permitted values, called the domain, or value
set, of that attribute. The domain of attribute customer-name might be the set of all
text strings of a certain length. Similarly, the domain of attribute loan-number might
be the set of all strings of the form “L-n” where n is a positive integer.

A database thus includes a collection of entity sets, each of which contains any
number of entities of the same type. Figure 2.1 shows part of a bank database that
consists of two entity sets: customer and loan.

Formally, an attribute of an entity set is a function that maps from the entity set into
a domain. Since an entity set may have several attributes, each entity can be described
by a set of (attribute, data value) pairs, one pair for each attribute of the entity set. For
example, a particular customer entity may be described by the set {(customer-id, 677-
89-9011), (customer-name, Hayes), (customer-street, Main), (customer-city, Harrison)},
meaning that the entity describes a person named Hayes whose customer identifier
is 677-89-9011 and who resides at Main Street in Harrison. We can see, at this point,
an integration of the abstract schema with the actual enterprise being modeled. The
attribute values describing an entity will constitute a significant portion of the data
stored in the database.

An attribute, as used in the E-R model, can be characterized by the following at-
tribute types.

1. In the United States, the government assigns to each person in the country a unique number, called a
social-security number, to identify that person uniquely. Each person is supposed to have only one social-
security number, and no two people are supposed to have the same social-security number.
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321-12-3123  Jones         Main       Harrison

019-28-3746 Smith        North     Rye

677-89-9011 Hayes       Main      Harrison
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L-11     900

loancustomer

Figure 2.1 Entity sets customer and loan.

• Simple and composite attributes. In our examples thus far, the attributes have
been simple; that is, they are not divided into subparts. Composite attributes,
on the other hand, can be divided into subparts (that is, other attributes). For
example, an attribute name could be structured as a composite attribute con-
sisting of first-name, middle-initial, and last-name. Using composite attributes in
a design schema is a good choice if a user will wish to refer to an entire at-
tribute on some occasions, and to only a component of the attribute on other
occasions. Suppose we were to substitute for the customer entity-set attributes
customer-street and customer-city the composite attribute address with the at-
tributes street, city, state, and zip-code.2 Composite attributes help us to group
together related attributes, making the modeling cleaner.

Note also that a composite attribute may appear as a hierarchy. In the com-
posite attribute address, its component attribute street can be further divided
into street-number, street-name, and apartment-number. Figure 2.2 depicts these
examples of composite attributes for the customer entity set.

• Single-valued and multivalued attributes. The attributes in our examples all
have a single value for a particular entity. For instance, the loan-number at-
tribute for a specific loan entity refers to only one loan number. Such attributes
are said to be single valued. There may be instances where an attribute has
a set of values for a specific entity. Consider an employee entity set with the
attribute phone-number. An employee may have zero, one, or several phone
numbers, and different employees may have different numbers of phones.
This type of attribute is said to be multivalued. As another example, an at-

2. We assume the address format used in the United States, which includes a numeric postal code called
a zip code.
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name address

Figure 2.2 Composite attributes customer-name and customer-address.

tribute dependent-name of the employee entity set would be multivalued, since
any particular employee may have zero, one, or more dependent(s).

Where appropriate, upper and lower bounds may be placed on the number
of values in a multivalued attribute. For example, a bank may limit the num-
ber of phone numbers recorded for a single customer to two. Placing bounds
in this case expresses that the phone-number attribute of the customer entity set
may have between zero and two values.

• Derived attribute. The value for this type of attribute can be derived from
the values of other related attributes or entities. For instance, let us say that
the customer entity set has an attribute loans-held, which represents how many
loans a customer has from the bank. We can derive the value for this attribute
by counting the number of loan entities associated with that customer.

As another example, suppose that the customer entity set has an attribute
age, which indicates the customer’s age. If the customer entity set also has an
attribute date-of-birth, we can calculate age from date-of-birth and the current
date. Thus, age is a derived attribute. In this case, date-of-birth may be referred
to as a base attribute, or a stored attribute. The value of a derived attribute is
not stored, but is computed when required.

An attribute takes a null value when an entity does not have a value for it. The
null value may indicate “not applicable”—that is, that the value does not exist for the
entity. For example, one may have no middle name. Null can also designate that an
attribute value is unknown. An unknown value may be either missing (the value does
exist, but we do not have that information) or not known (we do not know whether or
not the value actually exists).

For instance, if the name value for a particular customer is null, we assume that
the value is missing, since every customer must have a name. A null value for the
apartment-number attribute could mean that the address does not include an apart-
ment number (not applicable), that an apartment number exists but we do not know
what it is (missing), or that we do not know whether or not an apartment number is
part of the customer’s address (unknown).

A database for a banking enterprise may include a number of different entity sets.
For example, in addition to keeping track of customers and loans, the bank also
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provides accounts, which are represented by the entity set account with attributes
account-number and balance. Also, if the bank has a number of different branches, then
we may keep information about all the branches of the bank. Each branch entity set
may be described by the attributes branch-name, branch-city, and assets.

2.1.2 Relationship Sets
A relationship is an association among several entities. For example, we can define
a relationship that associates customer Hayes with loan L-15. This relationship spec-
ifies that Hayes is a customer with loan number L-15.

A relationship set is a set of relationships of the same type. Formally, it is a math-
ematical relation on n ≥ 2 (possibly nondistinct) entity sets. If E1, E2, . . . , En are
entity sets, then a relationship set R is a subset of

{(e1, e2, . . . , en) | e1 ∈ E1, e2 ∈ E2, . . . , en ∈ En}

where (e1, e2, . . . , en) is a relationship.
Consider the two entity sets customer and loan in Figure 2.1. We define the rela-

tionship set borrower to denote the association between customers and the bank loans
that the customers have. Figure 2.3 depicts this association.

As another example, consider the two entity sets loan and branch. We can define
the relationship set loan-branch to denote the association between a bank loan and the
branch in which that loan is maintained.

555-55-5555 Jackson      Dupont    Woodside

321-12-3123 Jones          Main        Harrison

019-28-3746  Smith         North       Rye

677-89-9011 Hayes        Main        Harrison

244-66-8800 Curry         North       Rye

963-96-3963  Williams    Nassau    Princeton

335-57-7991 Adams       Spring     Pittsfield

L-17   1000

L-15   1500

L-14   1500

L-16   1300

L-23   2000

L-19     500

L-11     900

loancustomer

Figure 2.3 Relationship set borrower.
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The association between entity sets is referred to as participation; that is, the entity
sets E1, E2, . . . , En participate in relationship set R. A relationship instance in an
E-R schema represents an association between the named entities in the real-world
enterprise that is being modeled. As an illustration, the individual customer entity
Hayes, who has customer identifier 677-89-9011, and the loan entity L-15 participate
in a relationship instance of borrower. This relationship instance represents that, in the
real-world enterprise, the person called Hayes who holds customer-id 677-89-9011 has
taken the loan that is numbered L-15.

The function that an entity plays in a relationship is called that entity’s role. Since
entity sets participating in a relationship set are generally distinct, roles are implicit
and are not usually specified. However, they are useful when the meaning of a re-
lationship needs clarification. Such is the case when the entity sets of a relationship
set are not distinct; that is, the same entity set participates in a relationship set more
than once, in different roles. In this type of relationship set, sometimes called a re-
cursive relationship set, explicit role names are necessary to specify how an entity
participates in a relationship instance. For example, consider an entity set employee
that records information about all the employees of the bank. We may have a rela-
tionship set works-for that is modeled by ordered pairs of employee entities. The first
employee of a pair takes the role of worker, whereas the second takes the role of man-
ager. In this way, all relationships of works-for are characterized by (worker, manager)
pairs; (manager, worker) pairs are excluded.

A relationship may also have attributes called descriptive attributes. Consider a
relationship set depositor with entity sets customer and account. We could associate the
attribute access-date to that relationship to specify the most recent date on which a
customer accessed an account. The depositor relationship among the entities corre-
sponding to customer Jones and account A-217 has the value “23 May 2001” for at-
tribute access-date, which means that the most recent date that Jones accessed account
A-217 was 23 May 2001.

As another example of descriptive attributes for relationships, suppose we have
entity sets student and course which participate in a relationship set registered-for. We
may wish to store a descriptive attribute for-credit with the relationship, to record
whether a student has taken the course for credit, or is auditing (or sitting in on) the
course.

A relationship instance in a given relationship set must be uniquely identifiable
from its participating entities, without using the descriptive attributes. To understand
this point, suppose we want to model all the dates when a customer accessed an
account. The single-valued attribute access-date can store a single access date only . We
cannot represent multiple access dates by multiple relationship instances between the
same customer and account, since the relationship instances would not be uniquely
identifiable using only the participating entities. The right way to handle this case is
to create a multivalued attribute access-dates, which can store all the access dates.

However, there can be more than one relationship set involving the same entity
sets. In our example the customer and loan entity sets participate in the relationship
set borrower. Additionally, suppose each loan must have another customer who serves
as a guarantor for the loan. Then the customer and loan entity sets may participate in
another relationship set, guarantor.
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The relationship sets borrower and loan-branch provide an example of a binary rela-
tionship set—that is, one that involves two entity sets. Most of the relationship sets in
a database system are binary. Occasionally, however, relationship sets involve more
than two entity sets.

As an example, consider the entity sets employee, branch, and job. Examples of job
entities could include manager, teller, auditor, and so on. Job entities may have the at-
tributes title and level. The relationship set works-on among employee, branch, and job is
an example of a ternary relationship. A ternary relationship among Jones, Perryridge,
and manager indicates that Jones acts as a manager at the Perryridge branch. Jones
could also act as auditor at the Downtown branch, which would be represented by
another relationship. Yet another relationship could be between Smith, Downtown,
and teller, indicating Smith acts as a teller at the Downtown branch.

The number of entity sets that participate in a relationship set is also the degree of
the relationship set. A binary relationship set is of degree 2; a ternary relationship set
is of degree 3.

2.2 Constraints
An E-R enterprise schema may define certain constraints to which the contents of a
database must conform. In this section, we examine mapping cardinalities and par-
ticipation constraints, which are two of the most important types of constraints.

2.2.1 Mapping Cardinalities
Mapping cardinalities, or cardinality ratios, express the number of entities to which
another entity can be associated via a relationship set.

Mapping cardinalities are most useful in describing binary relationship sets, al-
though they can contribute to the description of relationship sets that involve more
than two entity sets. In this section, we shall concentrate on only binary relationship
sets.

For a binary relationship set R between entity sets A and B, the mapping cardinal-
ity must be one of the following:

• One to one. An entity in A is associated with at most one entity in B, and an
entity in B is associated with at most one entity in A. (See Figure 2.4a.)

• One to many. An entity in A is associated with any number (zero or more) of
entities in B. An entity in B, however, can be associated with at most one entity
in A. (See Figure 2.4b.)

• Many to one. An entity in A is associated with at most one entity in B. An
entity in B, however, can be associated with any number (zero or more) of
entities in A. (See Figure 2.5a.)

• Many to many. An entity in A is associated with any number (zero or more) of
entities in B, and an entity in B is associated with any number (zero or more)
of entities in A. (See Figure 2.5b.)
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A                      B

a1

a2

a3

b1

b2

b3

b4

b5

A                      B

Figure 2.4 Mapping cardinalities. (a) One to one. (b) One to many.

The appropriate mapping cardinality for a particular relationship set obviously de-
pends on the real-world situation that the relationship set is modeling.

As an illustration, consider the borrower relationship set. If, in a particular bank, a
loan can belong to only one customer, and a customer can have several loans, then
the relationship set from customer to loan is one to many. If a loan can belong to several
customers (as can loans taken jointly by several business partners), the relationship
set is many to many. Figure 2.3 depicts this type of relationship.

2.2.2 Participation Constraints
The participation of an entity set E in a relationship set R is said to be total if every
entity in E participates in at least one relationship in R. If only some entities in E
participate in relationships in R, the participation of entity set E in relationship R is
said to be partial. For example, we expect every loan entity to be related to at least
one customer through the borrower relationship. Therefore the participation of loan in
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a3

a4

b1

b2

b3

(a) (b)

A                      B A                       B

a5
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a3

a4
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Figure 2.5 Mapping cardinalities. (a) Many to one. (b) Many to many.
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the relationship set borrower is total. In contrast, an individual can be a bank customer
whether or not she has a loan with the bank. Hence, it is possible that only some of
the customer entities are related to the loan entity set through the borrower relationship,
and the participation of customer in the borrower relationship set is therefore partial.

2.3 Keys
We must have a way to specify how entities within a given entity set are distin-
guished. Conceptually, individual entities are distinct; from a database perspective,
however, the difference among them must be expressed in terms of their attributes.

Therefore, the values of the attribute values of an entity must be such that they can
uniquely identify the entity. In other words, no two entities in an entity set are allowed
to have exactly the same value for all attributes.

A key allows us to identify a set of attributes that suffice to distinguish entities
from each other. Keys also help uniquely identify relationships, and thus distinguish
relationships from each other.

2.3.1 Entity Sets
A superkey is a set of one or more attributes that, taken collectively, allow us to iden-
tify uniquely an entity in the entity set. For example, the customer-id attribute of the
entity set customer is sufficient to distinguish one customer entity from another. Thus,
customer-id is a superkey. Similarly, the combination of customer-name and customer-id
is a superkey for the entity set customer. The customer-name attribute of customer is not
a superkey, because several people might have the same name.

The concept of a superkey is not sufficient for our purposes, since, as we saw, a
superkey may contain extraneous attributes. If K is a superkey, then so is any superset
of K. We are often interested in superkeys for which no proper subset is a superkey.
Such minimal superkeys are called candidate keys.

It is possible that several distinct sets of attributes could serve as a candidate key.
Suppose that a combination of customer-name and customer-street is sufficient to dis-
tinguish among members of the customer entity set. Then, both {customer-id} and
{customer-name, customer-street} are candidate keys. Although the attributes customer-
id and customer-name together can distinguish customer entities, their combination
does not form a candidate key, since the attribute customer-id alone is a candidate
key.

We shall use the term primary key to denote a candidate key that is chosen by
the database designer as the principal means of identifying entities within an entity
set. A key (primary, candidate, and super) is a property of the entity set, rather than
of the individual entities. Any two individual entities in the set are prohibited from
having the same value on the key attributes at the same time. The designation of a
key represents a constraint in the real-world enterprise being modeled.

Candidate keys must be chosen with care. As we noted, the name of a person is
obviously not sufficient, because there may be many people with the same name.
In the United States, the social-security number attribute of a person would be a
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candidate key. Since non-U.S. residents usually do not have social-security numbers,
international enterprises must generate their own unique identifiers. An alternative
is to use some unique combination of other attributes as a key.

The primary key should be chosen such that its attributes are never, or very rarely,
changed. For instance, the address field of a person should not be part of the primary
key, since it is likely to change. Social-security numbers, on the other hand, are guar-
anteed to never change. Unique identifiers generated by enterprises generally do not
change, except if two enterprises merge; in such a case the same identifier may have
been issued by both enterprises, and a reallocation of identifiers may be required to
make sure they are unique.

2.3.2 Relationship Sets
The primary key of an entity set allows us to distinguish among the various entities of
the set. We need a similar mechanism to distinguish among the various relationships
of a relationship set.

Let R be a relationship set involving entity sets E1, E2, . . . , En. Let primary-key(Ei)
denote the set of attributes that forms the primary key for entity set Ei. Assume
for now that the attribute names of all primary keys are unique, and each entity set
participates only once in the relationship. The composition of the primary key for
a relationship set depends on the set of attributes associated with the relationship
set R.

If the relationship set R has no attributes associated with it, then the set of at-
tributes

primary-key(E1) ∪ primary-key(E2) ∪ · · · ∪ primary-key(En)

describes an individual relationship in set R.
If the relationship set R has attributes a1, a2, · · · , am associated with it, then the set

of attributes

primary-key(E1) ∪ primary-key(E2) ∪ · · · ∪ primary-key(En) ∪ {a1, a2, . . . , am}

describes an individual relationship in set R.
In both of the above cases, the set of attributes

primary-key(E1) ∪ primary-key(E2) ∪ · · · ∪ primary-key(En)

forms a superkey for the relationship set.
In case the attribute names of primary keys are not unique across entity sets, the

attributes are renamed to distinguish them; the name of the entity set combined with
the name of the attribute would form a unique name. In case an entity set participates
more than once in a relationship set (as in the works-for relationship in Section 2.1.2),
the role name is used instead of the name of the entity set, to form a unique attribute
name.
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The structure of the primary key for the relationship set depends on the map-
ping cardinality of the relationship set. As an illustration, consider the entity sets
customer and account, and the relationship set depositor, with attribute access-date, in
Section 2.1.2. Suppose that the relationship set is many to many. Then the primary
key of depositor consists of the union of the primary keys of customer and account.
However, if a customer can have only one account—that is, if the depositor relation-
ship is many to one from customer to account—then the primary key of depositor is
simply the primary key of customer. Similarly, if the relationship is many to one from
account to customer—that is, each account is owned by at most one customer—then
the primary key of depositor is simply the primary key of account. For one-to-one re-
lationships either primary key can be used.

For nonbinary relationships, if no cardinality constraints are present then the su-
perkey formed as described earlier in this section is the only candidate key, and it
is chosen as the primary key. The choice of the primary key is more complicated if
cardinality constraints are present. Since we have not discussed how to specify cardi-
nality constraints on nonbinary relations, we do not discuss this issue further in this
chapter. We consider the issue in more detail in Section 7.3.

2.4 Design Issues
The notions of an entity set and a relationship set are not precise, and it is possible
to define a set of entities and the relationships among them in a number of differ-
ent ways. In this section, we examine basic issues in the design of an E-R database
schema. Section 2.7.4 covers the design process in further detail.

2.4.1 Use of Entity Sets versus Attributes
Consider the entity set employee with attributes employee-name and telephone-number.
It can easily be argued that a telephone is an entity in its own right with attributes
telephone-number and location (the office where the telephone is located). If we take
this point of view, we must redefine the employee entity set as:

• The employee entity set with attribute employee-name

• The telephone entity set with attributes telephone-number and location

• The relationship set emp-telephone, which denotes the association between em-
ployees and the telephones that they have

What, then, is the main difference between these two definitions of an employee?
Treating a telephone as an attribute telephone-number implies that employees have
precisely one telephone number each. Treating a telephone as an entity telephone per-
mits employees to have several telephone numbers (including zero) associated with
them. However, we could instead easily define telephone-number as a multivalued at-
tribute to allow multiple telephones per employee.

The main difference then is that treating a telephone as an entity better models a
situation where one may want to keep extra information about a telephone, such as



Silberschatz−Korth−Sudarshan: 
Database System 
Concepts, Fourth Edition

I. Data Models 2. Entity−Relationship 
Model

47© The McGraw−Hill 
Companies, 2001

38 Chapter 2 Entity-Relationship Model

its location, or its type (mobile, video phone, or plain old telephone), or who all share
the telephone. Thus, treating telephone as an entity is more general than treating it
as an attribute and is appropriate when the generality may be useful.

In contrast, it would not be appropriate to treat the attribute employee-name as an
entity; it is difficult to argue that employee-name is an entity in its own right (in contrast
to the telephone). Thus, it is appropriate to have employee-name as an attribute of the
employee entity set.

Two natural questions thus arise: What constitutes an attribute, and what con-
stitutes an entity set? Unfortunately, there are no simple answers. The distinctions
mainly depend on the structure of the real-world enterprise being modeled, and on
the semantics associated with the attribute in question.

A common mistake is to use the primary key of an entity set as an attribute of an-
other entity set, instead of using a relationship. For example, it is incorrect to model
customer-id as an attribute of loan even if each loan had only one customer. The re-
lationship borrower is the correct way to represent the connection between loans and
customers, since it makes their connection explicit, rather than implicit via an at-
tribute.

Another related mistake that people sometimes make is to designate the primary
key attributes of the related entity sets as attributes of the relationship set. This should
not be done, since the primary key attributes are already implicit in the relationship.

2.4.2 Use of Entity Sets versus Relationship Sets
It is not always clear whether an object is best expressed by an entity set or a rela-
tionship set. In Section 2.1.1, we assumed that a bank loan is modeled as an entity.
An alternative is to model a loan not as an entity, but rather as a relationship between
customers and branches, with loan-number and amount as descriptive attributes. Each
loan is represented by a relationship between a customer and a branch.

If every loan is held by exactly one customer and is associated with exactly one
branch, we may find satisfactory the design where a loan is represented as a rela-
tionship. However, with this design, we cannot represent conveniently a situation in
which several customers hold a loan jointly. To handle such a situation, we must de-
fine a separate relationship for each holder of the joint loan. Then, we must replicate
the values for the descriptive attributes loan-number and amount in each such relation-
ship. Each such relationship must, of course, have the same value for the descriptive
attributes loan-number and amount.

Two problems arise as a result of the replication: (1) the data are stored multiple
times, wasting storage space, and (2) updates potentially leave the data in an incon-
sistent state, where the values differ in two relationships for attributes that are sup-
posed to have the same value. The issue of how to avoid such replication is treated
formally by normalization theory, discussed in Chapter 7.

The problem of replication of the attributes loan-number and amount is absent in
the original design of Section 2.1.1, because there loan is an entity set.

One possible guideline in determining whether to use an entity set or a relation-
ship set is to designate a relationship set to describe an action that occurs between
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entities. This approach can also be useful in deciding whether certain attributes may
be more appropriately expressed as relationships.

2.4.3 Binary versus n-ary Relationship Sets
Relationships in databases are often binary. Some relationships that appear to be
nonbinary could actually be better represented by several binary relationships. For
instance, one could create a ternary relationship parent, relating a child to his/her
mother and father. However, such a relationship could also be represented by two
binary relationships, mother and father, relating a child to his/her mother and father
separately. Using the two relationships mother and father allows us record a child’s
mother, even if we are not aware of the father’s identity; a null value would be
required if the ternary relationship parent is used. Using binary relationship sets is
preferable in this case.

In fact, it is always possible to replace a nonbinary (n-ary, for n > 2) relationship
set by a number of distinct binary relationship sets. For simplicity, consider the ab-
stract ternary (n = 3) relationship set R, relating entity sets A, B, and C. We replace
the relationship set R by an entity set E, and create three relationship sets:

• RA, relating E and A

• RB , relating E and B

• RC , relating E and C

If the relationship set R had any attributes, these are assigned to entity set E; further,
a special identifying attribute is created for E (since it must be possible to distinguish
different entities in an entity set on the basis of their attribute values). For each rela-
tionship (ai, bi, ci) in the relationship set R, we create a new entity ei in the entity set
E. Then, in each of the three new relationship sets, we insert a relationship as follows:

• (ei, ai) in RA

• (ei, bi) in RB

• (ei, ci) in RC

We can generalize this process in a straightforward manner to n-ary relationship
sets. Thus, conceptually, we can restrict the E-R model to include only binary rela-
tionship sets. However, this restriction is not always desirable.

• An identifying attribute may have to be created for the entity set created to
represent the relationship set. This attribute, along with the extra relationship
sets required, increases the complexity of the design and (as we shall see in
Section 2.9) overall storage requirements.

• A n-ary relationship set shows more clearly that several entities participate in
a single relationship.
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• There may not be a way to translate constraints on the ternary relationship
into constraints on the binary relationships. For example, consider a constraint
that says that R is many-to-one from A, B to C; that is, each pair of entities
from A and B is associated with at most one C entity. This constraint cannot
be expressed by using cardinality constraints on the relationship sets RA, RB ,
and RC .

Consider the relationship set works-on in Section 2.1.2, relating employee, branch,
and job. We cannot directly split works-on into binary relationships between employee
and branch and between employee and job. If we did so, we would be able to record
that Jones is a manager and an auditor and that Jones works at Perryridge and Down-
town; however, we would not be able to record that Jones is a manager at Perryridge
and an auditor at Downtown, but is not an auditor at Perryridge or a manager at
Downtown.

The relationship set works-on can be split into binary relationships by creating a
new entity set as described above. However, doing so would not be very natural.

2.4.4 Placement of Relationship Attributes
The cardinality ratio of a relationship can affect the placement of relationship at-
tributes. Thus, attributes of one-to-one or one-to-many relationship sets can be as-
sociated with one of the participating entity sets, rather than with the relationship
set. For instance, let us specify that depositor is a one-to-many relationship set such
that one customer may have several accounts, but each account is held by only one
customer. In this case, the attribute access-date, which specifies when the customer last
accessed that account, could be associated with the account entity set, as Figure 2.6 de-
picts; to keep the figure simple, only some of the attributes of the two entity sets are
shown. Since each account entity participates in a relationship with at most one in-
stance of customer, making this attribute designation would have the same meaning

A-101    24 May 1996

A-215     3 June 1996

A-102    10 June 1996

A-305    28 May 1996

A-201    17 June 1996

A-222    24 June 1996

A-217    23 May 1996

customer (customer-name)
account (account-number, access-date)

depositor
Johnson

Smith

Hayes

Turner

Jones

Lindsay

Figure 2.6 Access-date as attribute of the account entity set.
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as would placing access-date with the depositor relationship set. Attributes of a one-to-
many relationship set can be repositioned to only the entity set on the “many” side of
the relationship. For one-to-one relationship sets, on the other hand, the relationship
attribute can be associated with either one of the participating entities.

The design decision of where to place descriptive attributes in such cases—as a
relationship or entity attribute—should reflect the characteristics of the enterprise
being modeled. The designer may choose to retain access-date as an attribute of depos-
itor to express explicitly that an access occurs at the point of interaction between the
customer and account entity sets.

The choice of attribute placement is more clear-cut for many-to-many relationship
sets. Returning to our example, let us specify the perhaps more realistic case that
depositor is a many-to-many relationship set expressing that a customer may have
one or more accounts, and that an account can be held by one or more customers.
If we are to express the date on which a specific customer last accessed a specific
account, access-date must be an attribute of the depositor relationship set, rather than
either one of the participating entities. If access-date were an attribute of account, for
instance, we could not determine which customer made the most recent access to a
joint account. When an attribute is determined by the combination of participating
entity sets, rather than by either entity separately, that attribute must be associated
with the many-to-many relationship set. Figure 2.7 depicts the placement of access-
date as a relationship attribute; again, to keep the figure simple, only some of the
attributes of the two entity sets are shown.

Johnson

Smith

Hayes

Turner

Jones

Lindsay

A-101    

A-215  

A-102   

A-305    

A-201    

A-222    

A-217   

customer(customer-name)
account(account-number)

depositor(access-date)

24 May 1996

  3 June 1996

21 June 1996

10 June 1996

17 June 1996

28 May 1996

28 May 1996

24 June 1996

23 May 1996

Figure 2.7 Access-date as attribute of the depositor relationship set.
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2.5 Entity-Relationship Diagram
As we saw briefly in Section 1.4, an E-R diagram can express the overall logical struc-
ture of a database graphically. E-R diagrams are simple and clear—qualities that may
well account in large part for the widespread use of the E-R model. Such a diagram
consists of the following major components:

• Rectangles, which represent entity sets

• Ellipses, which represent attributes

• Diamonds, which represent relationship sets

• Lines, which link attributes to entity sets and entity sets to relationship sets

• Double ellipses, which represent multivalued attributes

• Dashed ellipses, which denote derived attributes

• Double lines, which indicate total participation of an entity in a relation-
ship set

• Double rectangles, which represent weak entity sets (described later, in Sec-
tion 2.6.)

Consider the entity-relationship diagram in Figure 2.8, which consists of two en-
tity sets, customer and loan, related through a binary relationship set borrower. The at-
tributes associated with customer are customer-id, customer-name, customer-street, and
customer-city. The attributes associated with loan are loan-number and amount. In Fig-
ure 2.8, attributes of an entity set that are members of the primary key are underlined.

The relationship set borrower may be many-to-many, one-to-many, many-to-one,
or one-to-one. To distinguish among these types, we draw either a directed line (→)
or an undirected line (—) between the relationship set and the entity set in question.

• A directed line from the relationship set borrower to the entity set loan speci-
fies that borrower is either a one-to-one or many-to-one relationship set, from
customer to loan; borrower cannot be a many-to-many or a one-to-many rela-
tionship set from customer to loan.

customer-name customer-street

customer-id customer-city

customer

loan-number amount

loanborrower

Figure 2.8 E-R diagram corresponding to customers and loans.
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• An undirected line from the relationship set borrower to the entity set loan spec-
ifies that borrower is either a many-to-many or one-to-many relationship set
from customer to loan.

Returning to the E-R diagram of Figure 2.8, we see that the relationship set borrower
is many-to-many. If the relationship set borrower were one-to-many, from customer to
loan, then the line from borrower to customer would be directed, with an arrow point-
ing to the customer entity set (Figure 2.9a). Similarly, if the relationship set borrower
were many-to-one from customer to loan, then the line from borrower to loan would
have an arrow pointing to the loan entity set (Figure 2.9b). Finally, if the relation-
ship set borrower were one-to-one, then both lines from borrower would have arrows:

customer-name customer-street

customer-id customer-city

customer

loan-number amount

loanborrower

(a)

customer-name customer-street

customer-id customer-city

customer

loan-number amount

loanborrower

(b)

customer-name customer-street

customer-id customer-city

customer

loan-number amount

loanborrower

(c)

Figure 2.9 Relationships. (a) one to many. (b) many to one. (c) one-to-one.
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customer-name customer-street

customer-id customer-city

customer

balance

accountdepositor

access-date
account-number

Figure 2.10 E-R diagram with an attribute attached to a relationship set.

one pointing to the loan entity set and one pointing to the customer entity set (Fig-
ure 2.9c).

If a relationship set has also some attributes associated with it, then we link these
attributes to that relationship set. For example, in Figure 2.10, we have the access-
date descriptive attribute attached to the relationship set depositor to specify the most
recent date on which a customer accessed that account.

Figure 2.11 shows how composite attributes can be represented in the E-R notation.
Here, a composite attribute name, with component attributes first-name, middle-initial,
and last-name replaces the simple attribute customer-name of customer. Also, a compos-
ite attribute address, whose component attributes are street, city, state, and zip-code re-
places the attributes customer-street and customer-city of customer. The attribute street is
itself a composite attribute whose component attributes are street-number, street-name,
and apartment number.

Figure 2.11 also illustrates a multivalued attribute phone-number, depicted by a
double ellipse, and a derived attribute age, depicted by a dashed ellipse.

city

zip-code

street

state

name

customer
customer-id

middle-initial

last-namefirst-name

street-number

street-name

apartment-number

address

phone-number date-of-birth age

Figure 2.11 E-R diagram with composite, multivalued, and derived attributes.
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employee-id

employee-name

telephone-number

employee works-for
manager

worker

Figure 2.12 E-R diagram with role indicators.

We indicate roles in E-R diagrams by labeling the lines that connect diamonds
to rectangles. Figure 2.12 shows the role indicators manager and worker between the
employee entity set and the works-for relationship set.

Nonbinary relationship sets can be specified easily in an E-R diagram. Figure 2.13
consists of the three entity sets employee, job, and branch, related through the relation-
ship set works-on.

We can specify some types of many-to-one relationships in the case of nonbinary
relationship sets. Suppose an employee can have at most one job in each branch (for
example, Jones cannot be a manager and an auditor at the same branch). This con-
straint can be specified by an arrow pointing to job on the edge from works-on.

We permit at most one arrow out of a relationship set, since an E-R diagram with
two or more arrows out of a nonbinary relationship set can be interpreted in two
ways. Suppose there is a relationship set R between entity sets A1, A2, . . . , An, and the
only arrows are on the edges to entity sets Ai+1, Ai+2, . . . , An. Then, the two possible
interpretations are:

1. A particular combination of entities from A1, A2, . . . , Ai can be associated with
at most one combination of entities from Ai+1, Ai+2, . . . , An. Thus, the pri-
mary key for the relationship R can be constructed by the union of the primary
keys of A1, A2, . . . , Ai.

branch

branch-city
branch-name assetsemployee-id

title level

street

city

employee-name

employee

job

works-on

Figure 2.13 E-R diagram with a ternary relationship.
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borrower

amount
loan-number

loan

customer-citycustomer-id

customer-name customer-street

customer

Figure 2.14 Total participation of an entity set in a relationship set.

2. For each entity set Ak, i < k ≤ n, each combination of the entities from the
other entity sets can be associated with at most one entity from Ak. Each set
{A1, A2, . . . , Ak−1, Ak+1, . . . , An}, for i < k ≤ n, then forms a candidate key.

Each of these interpretations has been used in different books and systems. To avoid
confusion, we permit only one arrow out of a relationship set, in which case the two
interpretations are equivalent. In Chapter 7 (Section 7.3) we study the notion of func-
tional dependencies, which allow either of these interpretations to be specified in an
unambiguous manner.

Double lines are used in an E-R diagram to indicate that the participation of an
entity set in a relationship set is total; that is, each entity in the entity set occurs in at
least one relationship in that relationship set. For instance, consider the relationship
borrower between customers and loans. A double line from loan to borrower, as in
Figure 2.14, indicates that each loan must have at least one associated customer.

E-R diagrams also provide a way to indicate more complex constraints on the num-
ber of times each entity participates in relationships in a relationship set. An edge
between an entity set and a binary relationship set can have an associated minimum
and maximum cardinality, shown in the form l..h, where l is the minimum and h
the maximum cardinality. A minimum value of 1 indicates total participation of the
entity set in the relationship set. A maximum value of 1 indicates that the entity par-
ticipates in at most one relationship, while a maximum value ∗ indicates no limit.
Note that a label 1..∗ on an edge is equivalent to a double line.

For example, consider Figure 2.15. The edge between loan and borrower has a car-
dinality constraint of 1..1, meaning the minimum and the maximum cardinality are
both 1. That is, each loan must have exactly one associated customer. The limit 0..∗
on the edge from customer to borrower indicates that a customer can have zero or
more loans. Thus, the relationship borrower is one to many from customer to loan, and
further the participation of loan in borrower is total.

It is easy to misinterpret the 0..∗ on the edge between customer and borrower, and
think that the relationship borrower is many to one from customer to loan—this is
exactly the reverse of the correct interpretation.

If both edges from a binary relationship have a maximum value of 1, the relation-
ship is one to one. If we had specified a cardinality limit of 1..∗ on the edge between
customer and borrower, we would be saying that each customer must have at least one
loan.
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borrower

amountloan-number

loan

customer-city

customer-street

customer
0..* 1..1

customer-name

customer-id

Figure 2.15 Cardinality limits on relationship sets.

2.6 Weak Entity Sets
An entity set may not have sufficient attributes to form a primary key. Such an entity
set is termed a weak entity set. An entity set that has a primary key is termed a strong
entity set.

As an illustration, consider the entity set payment, which has the three attributes:
payment-number, payment-date, and payment-amount. Payment numbers are typically
sequential numbers, starting from 1, generated separately for each loan. Thus, al-
though each payment entity is distinct, payments for different loans may share the
same payment number. Thus, this entity set does not have a primary key; it is a weak
entity set.

For a weak entity set to be meaningful, it must be associated with another entity
set, called the identifying or owner entity set. Every weak entity must be associated
with an identifying entity; that is, the weak entity set is said to be existence depen-
dent on the identifying entity set. The identifying entity set is said to own the weak
entity set that it identifies. The relationship associating the weak entity set with the
identifying entity set is called the identifying relationship. The identifying relation-
ship is many to one from the weak entity set to the identifying entity set, and the
participation of the weak entity set in the relationship is total.

In our example, the identifying entity set for payment is loan, and a relationship
loan-payment that associates payment entities with their corresponding loan entities is
the identifying relationship.

Although a weak entity set does not have a primary key, we nevertheless need a
means of distinguishing among all those entities in the weak entity set that depend
on one particular strong entity. The discriminator of a weak entity set is a set of at-
tributes that allows this distinction to be made. For example, the discriminator of the
weak entity set payment is the attribute payment-number, since, for each loan, a pay-
ment number uniquely identifies one single payment for that loan. The discriminator
of a weak entity set is also called the partial key of the entity set.

The primary key of a weak entity set is formed by the primary key of the iden-
tifying entity set, plus the weak entity set’s discriminator. In the case of the entity
set payment, its primary key is {loan-number, payment-number}, where loan-number is
the primary key of the identifying entity set, namely loan, and payment-number dis-
tinguishes payment entities within the same loan.
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The identifying relationship set should have no descriptive attributes, since any
required attributes can be associated with the weak entity set (see the discussion of
moving relationship-set attributes to participating entity sets in Section 2.2.1).

A weak entity set can participate in relationships other than the identifying re-
lationship. For instance, the payment entity could participate in a relationship with
the account entity set, identifying the account from which the payment was made. A
weak entity set may participate as owner in an identifying relationship with another
weak entity set. It is also possible to have a weak entity set with more than one iden-
tifying entity set. A particular weak entity would then be identified by a combination
of entities, one from each identifying entity set. The primary key of the weak entity
set would consist of the union of the primary keys of the identifying entity sets, plus
the discriminator of the weak entity set.

In E-R diagrams, a doubly outlined box indicates a weak entity set, and a dou-
bly outlined diamond indicates the corresponding identifying relationship. In Fig-
ure 2.16, the weak entity set payment depends on the strong entity set loan via the
relationship set loan-payment.

The figure also illustrates the use of double lines to indicate total participation—the
participation of the (weak) entity set payment in the relationship loan-payment is total,
meaning that every payment must be related via loan-payment to some loan. Finally,
the arrow from loan-payment to loan indicates that each payment is for a single loan.
The discriminator of a weak entity set also is underlined, but with a dashed, rather
than a solid, line.

In some cases, the database designer may choose to express a weak entity set as
a multivalued composite attribute of the owner entity set. In our example, this alter-
native would require that the entity set loan have a multivalued, composite attribute
payment, consisting of payment-number, payment-date, and payment-amount. A weak
entity set may be more appropriately modeled as an attribute if it participates in only
the identifying relationship, and if it has few attributes. Conversely, a weak-entity-
set representation will more aptly model a situation where the set participates in
relationships other than the identifying relationship, and where the weak entity set
has several attributes.

loan-number amount

loan

payment-number payment-amount

paymentloan-payment

payment-date

Figure 2.16 E-R diagram with a weak entity set.
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As another example of an entity set that can be modeled as a weak entity set,
consider offerings of a course at a university. The same course may be offered in
different semesters, and within a semester there may be several sections for the same
course. Thus we can create a weak entity set course-offering, existence dependent on
course; different offerings of the same course are identified by a semester and a section-
number, which form a discriminator but not a primary key.

2.7 Extended E-R Features
Although the basic E-R concepts can model most database features, some aspects of a
database may be more aptly expressed by certain extensions to the basic E-R model.
In this section, we discuss the extended E-R features of specialization, generalization,
higher- and lower-level entity sets, attribute inheritance, and aggregation.

2.7.1 Specialization
An entity set may include subgroupings of entities that are distinct in some way
from other entities in the set. For instance, a subset of entities within an entity set
may have attributes that are not shared by all the entities in the entity set. The E-R
model provides a means for representing these distinctive entity groupings.

Consider an entity set person, with attributes name, street, and city. A person may
be further classified as one of the following:

• customer

• employee

Each of these person types is described by a set of attributes that includes all the at-
tributes of entity set person plus possibly additional attributes. For example, customer
entities may be described further by the attribute customer-id, whereas employee enti-
ties may be described further by the attributes employee-id and salary. The process of
designating subgroupings within an entity set is called specialization. The special-
ization of person allows us to distinguish among persons according to whether they
are employees or customers.

As another example, suppose the bank wishes to divide accounts into two cat-
egories, checking account and savings account. Savings accounts need a minimum
balance, but the bank may set interest rates differently for different customers, offer-
ing better rates to favored customers. Checking accounts have a fixed interest rate,
but offer an overdraft facility; the overdraft amount on a checking account must be
recorded.

The bank could then create two specializations of account, namely savings-account
and checking-account. As we saw earlier, account entities are described by the at-
tributes account-number and balance. The entity set savings-account would have all the
attributes of account and an additional attribute interest-rate. The entity set checking-
account would have all the attributes of account, and an additional attribute overdraft-
amount.
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We can apply specialization repeatedly to refine a design scheme. For instance,
bank employees may be further classified as one of the following:

• officer

• teller

• secretary

Each of these employee types is described by a set of attributes that includes all the
attributes of entity set employee plus additional attributes. For example, officer entities
may be described further by the attribute office-number, teller entities by the attributes
station-number and hours-per-week, and secretary entities by the attribute hours-per-
week. Further, secretary entities may participate in a relationship secretary-for, which
identifies which employees are assisted by a secretary.

An entity set may be specialized by more than one distinguishing feature. In our
example, the distinguishing feature among employee entities is the job the employee
performs. Another, coexistent, specialization could be based on whether the person
is a temporary (limited-term) employee or a permanent employee, resulting in the
entity sets temporary-employee and permanent-employee. When more than one special-
ization is formed on an entity set, a particular entity may belong to multiple spe-
cializations. For instance, a given employee may be a temporary employee who is a
secretary.

In terms of an E-R diagram, specialization is depicted by a triangle component
labeled ISA, as Figure 2.17 shows. The label ISA stands for “is a” and represents, for
example, that a customer “is a” person. The ISA relationship may also be referred to as
a superclass-subclass relationship. Higher- and lower-level entity sets are depicted
as regular entity sets—that is, as rectangles containing the name of the entity set.

2.7.2 Generalization
The refinement from an initial entity set into successive levels of entity subgroupings
represents a top-down design process in which distinctions are made explicit. The
design process may also proceed in a bottom-up manner, in which multiple entity
sets are synthesized into a higher-level entity set on the basis of common features. The
database designer may have first identified a customer entity set with the attributes
name, street, city, and customer-id, and an employee entity set with the attributes name,
street, city, employee-id, and salary.

There are similarities between the customer entity set and the employee entity set
in the sense that they have several attributes in common. This commonality can be
expressed by generalization, which is a containment relationship that exists between
a higher-level entity set and one or more lower-level entity sets. In our example, person
is the higher-level entity set and customer and employee are lower-level entity sets.
Higher- and lower-level entity sets also may be designated by the terms superclass
and subclass, respectively. The person entity set is the superclass of the customer and
employee subclasses.

For all practical purposes, generalization is a simple inversion of specialization.
We will apply both processes, in combination, in the course of designing the E-R
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street

employee customer

officer teller secretary

ISA

ISA

person

name city

hours-workedoffice-number

hours-workedstation-number

credit-ratingsalary

Figure 2.17 Specialization and generalization.

schema for an enterprise. In terms of the E-R diagram itself, we do not distinguish be-
tween specialization and generalization. New levels of entity representation will be
distinguished (specialization) or synthesized (generalization) as the design schema
comes to express fully the database application and the user requirements of the
database. Differences in the two approaches may be characterized by their starting
point and overall goal.

Specialization stems from a single entity set; it emphasizes differences among enti-
ties within the set by creating distinct lower-level entity sets. These lower-level entity
sets may have attributes, or may participate in relationships, that do not apply to all
the entities in the higher-level entity set. Indeed, the reason a designer applies special-
ization is to represent such distinctive features. If customer and employee neither have
attributes that person entities do not have nor participate in different relationships
than those in which person entities participate, there would be no need to specialize
the person entity set.

Generalization proceeds from the recognition that a number of entity sets share
some common features (namely, they are described by the same attributes and par-
ticipate in the same relationship sets). On the basis of their commonalities, generaliza-
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tion synthesizes these entity sets into a single, higher-level entity set. Generalization
is used to emphasize the similarities among lower-level entity sets and to hide the
differences; it also permits an economy of representation in that shared attributes are
not repeated.

2.7.3 Attribute Inheritance
A crucial property of the higher- and lower-level entities created by specialization
and generalization is attribute inheritance. The attributes of the higher-level entity
sets are said to be inherited by the lower-level entity sets. For example, customer and
employee inherit the attributes of person. Thus, customer is described by its name, street,
and city attributes, and additionally a customer-id attribute; employee is described by
its name, street, and city attributes, and additionally employee-id and salary attributes.

A lower-level entity set (or subclass) also inherits participation in the relationship
sets in which its higher-level entity (or superclass) participates. The officer, teller, and
secretary entity sets can participate in the works-for relationship set, since the super-
class employee participates in the works-for relationship. Attribute inheritance applies
through all tiers of lower-level entity sets. The above entity sets can participate in any
relationships in which the person entity set participates.

Whether a given portion of an E-R model was arrived at by specialization or gen-
eralization, the outcome is basically the same:

• A higher-level entity set with attributes and relationships that apply to all of
its lower-level entity sets

• Lower-level entity sets with distinctive features that apply only within a par-
ticular lower-level entity set

In what follows, although we often refer to only generalization, the properties that
we discuss belong fully to both processes.

Figure 2.17 depicts a hierarchy of entity sets. In the figure, employee is a lower-level
entity set of person and a higher-level entity set of the officer, teller, and secretary entity
sets. In a hierarchy, a given entity set may be involved as a lower-level entity set in
only one ISA relationship; that is, entity sets in this diagram have only single inher-
itance. If an entity set is a lower-level entity set in more than one ISA relationship,
then the entity set has multiple inheritance, and the resulting structure is said to be
a lattice.

2.7.4 Constraints on Generalizations
To model an enterprise more accurately, the database designer may choose to place
certain constraints on a particular generalization. One type of constraint involves
determining which entities can be members of a given lower-level entity set. Such
membership may be one of the following:

• Condition-defined. In condition-defined lower-level entity sets, membership
is evaluated on the basis of whether or not an entity satisfies an explicit con-
dition or predicate. For example, assume that the higher-level entity set ac-
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count has the attribute account-type. All account entities are evaluated on the
defining account-type attribute. Only those entities that satisfy the condition
account-type = “savings account” are allowed to belong to the lower-level en-
tity set person. All entities that satisfy the condition account-type = “checking
account” are included in checking account. Since all the lower-level entities are
evaluated on the basis of the same attribute (in this case, on account-type), this
type of generalization is said to be attribute-defined.

• User-defined. User-defined lower-level entity sets are not constrained by a
membership condition; rather, the database user assigns entities to a given en-
tity set. For instance, let us assume that, after 3 months of employment, bank
employees are assigned to one of four work teams. We therefore represent the
teams as four lower-level entity sets of the higher-level employee entity set. A
given employee is not assigned to a specific team entity automatically on the
basis of an explicit defining condition. Instead, the user in charge of this de-
cision makes the team assignment on an individual basis. The assignment is
implemented by an operation that adds an entity to an entity set.

A second type of constraint relates to whether or not entities may belong to more
than one lower-level entity set within a single generalization. The lower-level entity
sets may be one of the following:

• Disjoint. A disjointness constraint requires that an entity belong to no more
than one lower-level entity set. In our example, an account entity can satisfy
only one condition for the account-type attribute; an entity can be either a sav-
ings account or a checking account, but cannot be both.

• Overlapping. In overlapping generalizations, the same entity may belong to
more than one lower-level entity set within a single generalization. For an
illustration, consider the employee work team example, and assume that cer-
tain managers participate in more than one work team. A given employee may
therefore appear in more than one of the team entity sets that are lower-level
entity sets of employee. Thus, the generalization is overlapping.

As another example, suppose generalization applied to entity sets customer
and employee leads to a higher-level entity set person. The generalization is
overlapping if an employee can also be a customer.

Lower-level entity overlap is the default case; a disjointness constraint must be placed
explicitly on a generalization (or specialization). We can note a disjointedness con-
straint in an E-R diagram by adding the word disjoint next to the triangle symbol.

A final constraint, the completeness constraint on a generalization or specializa-
tion, specifies whether or not an entity in the higher-level entity set must belong to at
least one of the lower-level entity sets within the generalization/specialization. This
constraint may be one of the following:

• Total generalization or specialization. Each higher-level entity must belong
to a lower-level entity set.
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• Partial generalization or specialization. Some higher-level entities may not
belong to any lower-level entity set.

Partial generalization is the default. We can specify total generalization in an E-R dia-
gram by using a double line to connect the box representing the higher-level entity set
to the triangle symbol. (This notation is similar to the notation for total participation
in a relationship.)

The account generalization is total: All account entities must be either a savings
account or a checking account. Because the higher-level entity set arrived at through
generalization is generally composed of only those entities in the lower-level entity
sets, the completeness constraint for a generalized higher-level entity set is usually
total. When the generalization is partial, a higher-level entity is not constrained to
appear in a lower-level entity set. The work team entity sets illustrate a partial spe-
cialization. Since employees are assigned to a team only after 3 months on the job,
some employee entities may not be members of any of the lower-level team entity sets.

We may characterize the team entity sets more fully as a partial, overlapping spe-
cialization of employee. The generalization of checking-account and savings-account into
account is a total, disjoint generalization. The completeness and disjointness con-
straints, however, do not depend on each other. Constraint patterns may also be
partial-disjoint and total-overlapping.

We can see that certain insertion and deletion requirements follow from the con-
straints that apply to a given generalization or specialization. For instance, when a
total completeness constraint is in place, an entity inserted into a higher-level en-
tity set must also be inserted into at least one of the lower-level entity sets. With a
condition-defined constraint, all higher-level entities that satisfy the condition must
be inserted into that lower-level entity set. Finally, an entity that is deleted from a
higher-level entity set also is deleted from all the associated lower-level entity sets to
which it belongs.

2.7.5 Aggregation
One limitation of the E-R model is that it cannot express relationships among rela-
tionships. To illustrate the need for such a construct, consider the ternary relationship
works-on, which we saw earlier, between a employee, branch, and job (see Figure 2.13).
Now, suppose we want to record managers for tasks performed by an employee at a
branch; that is, we want to record managers for (employee, branch, job) combinations.
Let us assume that there is an entity set manager.

One alternative for representing this relationship is to create a quaternary relation-
ship manages between employee, branch, job, and manager. (A quaternary relationship is
required—a binary relationship between manager and employee would not permit us
to represent which (branch, job) combinations of an employee are managed by which
manager.) Using the basic E-R modeling constructs, we obtain the E-R diagram of
Figure 2.18. (We have omitted the attributes of the entity sets, for simplicity.)

It appears that the relationship sets works-on and manages can be combined into
one single relationship set. Nevertheless, we should not combine them into a single
relationship, since some employee, branch, job combinations many not have a manager.
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employee branch

manages

manager

job

works-on

Figure 2.18 E-R diagram with redundant relationships.

There is redundant information in the resultant figure, however, since every em-
ployee, branch, job combination in manages is also in works-on. If the manager were a
value rather than an manager entity, we could instead make manager a multivalued at-
tribute of the relationship works-on. But doing so makes it more difficult (logically as
well as in execution cost) to find, for example, employee-branch-job triples for which
a manager is responsible. Since the manager is a manager entity, this alternative is
ruled out in any case.

The best way to model a situation such as the one just described is to use aggrega-
tion. Aggregation is an abstraction through which relationships are treated as higher-
level entities. Thus, for our example, we regard the relationship set works-on (relating
the entity sets employee, branch, and job) as a higher-level entity set called works-on.
Such an entity set is treated in the same manner as is any other entity set. We can
then create a binary relationship manages between works-on and manager to represent
who manages what tasks. Figure 2.19 shows a notation for aggregation commonly
used to represent the above situation.

2.7.6 Alternative E-R Notations
Figure 2.20 summarizes the set of symbols we have used in E-R diagrams. There is
no universal standard for E-R diagram notation, and different books and E-R diagram
software use different notations; Figure 2.21 indicates some of the alternative nota-
tions that are widely used. An entity set may be represented as a box with the name
outside, and the attributes listed one below the other within the box. The primary
key attributes are indicated by listing them at the top, with a line separating them
from the other attributes.
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branchemployee

manages

manager

works-on

job

Figure 2.19 E-R diagram with aggregation.

Cardinality constraints can be indicated in several different ways, as Figure 2.21
shows. The labels ∗ and 1 on the edges out of the relationship are sometimes used for
depicting many-to-many, one-to-one, and many-to-one relationships, as the figure
shows. The case of one-to-many is symmetric to many-to-one, and is not shown. In
another alternative notation in the figure, relationship sets are represented by lines
between entity sets, without diamonds; only binary relationships can be modeled
thus. Cardinality constraints in such a notation are shown by “crow’s foot” notation,
as in the figure.

2.8 Design of an E-R Database Schema
The E-R data model gives us much flexibility in designing a database schema to
model a given enterprise. In this section, we consider how a database designer may
select from the wide range of alternatives. Among the designer’s decisions are:

• Whether to use an attribute or an entity set to represent an object (discussed
earlier in Section 2.2.1)

• Whether a real-world concept is expressed more accurately by an entity set or
by a relationship set (Section 2.2.2)

• Whether to use a ternary relationship or a pair of binary relationships (Sec-
tion 2.2.3)
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Figure 2.20 Symbols used in the E-R notation.

• Whether to use a strong or a weak entity set (Section 2.6); a strong entity set
and its dependent weak entity sets may be regarded as a single “object” in the
database, since weak entities are existence dependent on a strong entity

• Whether using generalization (Section 2.7.2) is appropriate; generalization, or
a hierarchy of ISA relationships, contributes to modularity by allowing com-
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Figure 2.21 Alternative E-R notations.

mon attributes of similar entity sets to be represented in one place in an E-R
diagram

• Whether using aggregation (Section 2.7.5) is appropriate; aggregation groups
a part of an E-R diagram into a single entity set, allowing us to treat the ag-
gregate entity set as a single unit without concern for the details of its internal
structure.

We shall see that the database designer needs a good understanding of the enterprise
being modeled to make these decisions.

2.8.1 Design Phases
A high-level data model serves the database designer by providing a conceptual
framework in which to specify, in a systematic fashion, what the data requirements
of the database users are, and how the database will be structured to fulfill these
requirements. The initial phase of database design, then, is to characterize fully the
data needs of the prospective database users. The database designer needs to interact
extensively with domain experts and users to carry out this task. The outcome of this
phase is a specification of user requirements.

Next, the designer chooses a data model, and by applying the concepts of the
chosen data model, translates these requirements into a conceptual schema of the
database. The schema developed at this conceptual-design phase provides a detailed
overview of the enterprise. Since we have studied only the E-R model so far, we shall
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use it to develop the conceptual schema. Stated in terms of the E-R model, the schema
specifies all entity sets, relationship sets, attributes, and mapping constraints. The de-
signer reviews the schema to confirm that all data requirements are indeed satisfied
and are not in conflict with one another. She can also examine the design to remove
any redundant features. Her focus at this point is describing the data and their rela-
tionships, rather than on specifying physical storage details.

A fully developed conceptual schema will also indicate the functional require-
ments of the enterprise. In a specification of functional requirements, users describe
the kinds of operations (or transactions) that will be performed on the data. Example
operations include modifying or updating data, searching for and retrieving specific
data, and deleting data. At this stage of conceptual design, the designer can review
the schema to ensure it meets functional requirements.

The process of moving from an abstract data model to the implementation of the
database proceeds in two final design phases. In the logical-design phase, the de-
signer maps the high-level conceptual schema onto the implementation data model
of the database system that will be used. The designer uses the resulting system-
specific database schema in the subsequent physical-design phase, in which the
physical features of the database are specified. These features include the form of file
organization and the internal storage structures; they are discussed in Chapter 11.

In this chapter, we cover only the concepts of the E-R model as used in the concep-
tual-schema-design phase. We have presented a brief overview of the database-design
process to provide a context for the discussion of the E-R data model. Database design
receives a full treatment in Chapter 7.

In Section 2.8.2, we apply the two initial database-design phases to our banking-
enterprise example. We employ the E-R data model to translate user requirements
into a conceptual design schema that is depicted as an E-R diagram.

2.8.2 Database Design for Banking Enterprise
We now look at the database-design requirements of a banking enterprise in more
detail, and develop a more realistic, but also more complicated, design than what
we have seen in our earlier examples. However, we do not attempt to model every
aspect of the database-design for a bank; we consider only a few aspects, in order to
illustrate the process of database design.

2.8.2.1 Data Requirements
The initial specification of user requirements may be based on interviews with the
database users, and on the designer’s own analysis of the enterprise. The description
that arises from this design phase serves as the basis for specifying the conceptual
structure of the database. Here are the major characteristics of the banking enterprise.

• The bank is organized into branches. Each branch is located in a particular
city and is identified by a unique name. The bank monitors the assets of each
branch.
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• Bank customers are identified by their customer-id values. The bank stores each
customer’s name, and the street and city where the customer lives. Customers
may have accounts and can take out loans. A customer may be associated with
a particular banker, who may act as a loan officer or personal banker for that
customer.

• Bank employees are identified by their employee-id values. The bank adminis-
tration stores the name and telephone number of each employee, the names
of the employee’s dependents, and the employee-id number of the employee’s
manager. The bank also keeps track of the employee’s start date and, thus,
length of employment.

• The bank offers two types of accounts—savings and checking accounts. Ac-
counts can be held by more than one customer, and a customer can have more
than one account. Each account is assigned a unique account number. The
bank maintains a record of each account’s balance, and the most recent date on
which the account was accessed by each customer holding the account. In ad-
dition, each savings account has an interest rate, and overdrafts are recorded
for each checking account.

• A loan originates at a particular branch and can be held by one or more cus-
tomers. A loan is identified by a unique loan number. For each loan, the bank
keeps track of the loan amount and the loan payments. Although a loan-
payment number does not uniquely identify a particular payment among
those for all the bank’s loans, a payment number does identify a particular
payment for a specific loan. The date and amount are recorded for each pay-
ment.

In a real banking enterprise, the bank would keep track of deposits and with-
drawals from savings and checking accounts, just as it keeps track of payments to
loan accounts. Since the modeling requirements for that tracking are similar, and we
would like to keep our example application small, we do not keep track of such de-
posits and withdrawals in our model.

2.8.2.2 Entity Sets Designation
Our specification of data requirements serves as the starting point for constructing a
conceptual schema for the database. From the characteristics listed in Section 2.8.2.1,
we begin to identify entity sets and their attributes:

• The branch entity set, with attributes branch-name, branch-city, and assets.

• The customer entity set, with attributes customer-id, customer-name, customer-
street; and customer-city. A possible additional attribute is banker-name.

• The employee entity set, with attributes employee-id, employee-name, telephone-
number, salary, and manager. Additional descriptive features are the multival-
ued attribute dependent-name, the base attribute start-date, and the derived at-
tribute employment-length.
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• Two account entity sets—savings-account and checking-account—with the com-
mon attributes of account-number and balance; in addition, savings-account has
the attribute interest-rate and checking-account has the attribute overdraft-amount.

• The loan entity set, with the attributes loan-number, amount, and originating-
branch.

• The weak entity set loan-payment, with attributes payment-number, payment-
date, and payment-amount.

2.8.2.3 Relationship Sets Designation
We now return to the rudimentary design scheme of Section 2.8.2.2 and specify the
following relationship sets and mapping cardinalities. In the process, we also refine
some of the decisions we made earlier regarding attributes of entity sets.

• borrower, a many-to-many relationship set between customer and loan.

• loan-branch, a many-to-one relationship set that indicates in which branch a
loan originated. Note that this relationship set replaces the attribute originating-
branch of the entity set loan.

• loan-payment, a one-to-many relationship from loan to payment, which docu-
ments that a payment is made on a loan.

• depositor, with relationship attribute access-date, a many-to-many relationship
set between customer and account, indicating that a customer owns an account.

• cust-banker, with relationship attribute type, a many-to-one relationship set ex-
pressing that a customer can be advised by a bank employee, and that a bank
employee can advise one or more customers. Note that this relationship set
has replaced the attribute banker-name of the entity set customer.

• works-for, a relationship set between employee entities with role indicators man-
ager and worker; the mapping cardinalities express that an employee works
for only one manager and that a manager supervises one or more employees.
Note that this relationship set has replaced the manager attribute of employee.

2.8.2.4 E-R Diagram
Drawing on the discussions in Section 2.8.2.3, we now present the completed E-R di-
agram for our example banking enterprise. Figure 2.22 depicts the full representation
of a conceptual model of a bank, expressed in terms of E-R concepts. The diagram in-
cludes the entity sets, attributes, relationship sets, and mapping cardinalities arrived
at through the design processes of Sections 2.8.2.1 and 2.8.2.2, and refined in Section
2.8.2.3.
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Figure 2.22 E-R diagram for a banking enterprise.

2.9 Reduction of an E-R Schema to Tables
We can represent a database that conforms to an E-R database schema by a collection
of tables. For each entity set and for each relationship set in the database, there is a
unique table to which we assign the name of the corresponding entity set or relation-
ship set. Each table has multiple columns, each of which has a unique name.

Both the E-R model and the relational-database model are abstract, logical rep-
resentations of real-world enterprises. Because the two models employ similar de-
sign principles, we can convert an E-R design into a relational design. Converting a
database representation from an E-R diagram to a table format is the way we arrive
at a relational-database design from an E-R diagram. Although important differences
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exist between a relation and a table, informally, a relation can be considered to be a
table of values.

In this section, we describe how an E-R schema can be represented by tables; and
in Chapter 3, we show how to generate a relational-database schema from an E-R
schema.

The constraints specified in an E-R diagram, such as primary keys and cardinality
constraints, are mapped to constraints on the tables generated from the E-R diagram.
We provide more details about this mapping in Chapter 6 after describing how to
specify constraints on tables.

2.9.1 Tabular Representation of Strong Entity Sets
Let E be a strong entity set with descriptive attributes a1, a2, . . . , an. We represent
this entity by a table called E with n distinct columns, each of which corresponds to
one of the attributes of E. Each row in this table corresponds to one entity of the entity
set E.

As an illustration, consider the entity set loan of the E-R diagram in Figure 2.8. This
entity set has two attributes: loan-number and amount. We represent this entity set by
a table called loan, with two columns, as in Figure 2.23. The row

(L-17, 1000)

in the loan table means that loan number L-17 has a loan amount of $1000. We can
add a new entity to the database by inserting a row into a table. We can also delete or
modify rows.

Let D1 denote the set of all loan numbers, and let D2 denote the set of all balances.
Any row of the loan table must consist of a 2-tuple (v1, v2), where v1 is a loan (that
is, v1 is in set D1) and v2 is an amount (that is, v2 is in set D2). In general, the loan
table will contain only a subset of the set of all possible rows. We refer to the set of all
possible rows of loan as the Cartesian product of D1 and D2, denoted by

D1 × D2

In general, if we have a table of n columns, we denote the Cartesian product of
D1, D2, · · · , Dn by

D1 × D2 × · · · × Dn−1 × Dn

loan-number amount
L-11 900
L-14 1500
L-15 1500
L-16 1300
L-17 1000
L-23 2000
L-93 500

Figure 2.23 The loan table.
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customer-id customer-name customer-street customer-city
019-28-3746
182-73-6091
192-83-7465
244-66-8800
321-12-3123
335-57-7991
336-66-9999
677-89-9011
963-96-3963

Smith
Turner
Johnson
Curry
Jones
Adams
Lindsay
Hayes
Williams

North
Putnam
Alma
North
Main
Spring
Park
Main
Nassau

Rye
Stamford
Palo Alto
Rye
Harrison
Pittsfield
Pittsfield
Harrison
Princeton

Figure 2.24 The customer table.

As another example, consider the entity set customer of the E-R diagram in Fig-
ure 2.8. This entity set has the attributes customer-id, customer-name, customer-street,
and customer-city. The table corresponding to customer has four columns, as in Fig-
ure 2.24.

2.9.2 Tabular Representation of Weak Entity Sets
Let A be a weak entity set with attributes a1, a2, . . . , am. Let B be the strong entity set
on which A depends. Let the primary key of B consist of attributes b1, b2, . . . , bn. We
represent the entity set A by a table called A with one column for each attribute of
the set:

{a1, a2, . . . , am} ∪ {b1, b2, . . . , bn}
As an illustration, consider the entity set payment in the E-R diagram of Figure 2.16.

This entity set has three attributes: payment-number, payment-date, and payment-amount.
The primary key of the loan entity set, on which payment depends, is loan-number.
Thus, we represent payment by a table with four columns labeled loan-number, payment-
number, payment-date, and payment-amount, as in Figure 2.25.

2.9.3 Tabular Representation of Relationship Sets
Let R be a relationship set, let a1, a2, . . . , am be the set of attributes formed by the
union of the primary keys of each of the entity sets participating in R, and let the
descriptive attributes (if any) of R be b1, b2, . . . , bn. We represent this relationship set
by a table called R with one column for each attribute of the set:

{a1, a2, . . . , am} ∪ {b1, b2, . . . , bn}
As an illustration, consider the relationship set borrower in the E-R diagram of Fig-

ure 2.8. This relationship set involves the following two entity sets:

• customer, with the primary key customer-id

• loan, with the primary key loan-number
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loan-number payment-number payment-date payment-amount
L-11 53 7 June 2001 125
L-14 69 28 May 2001 500
L-15 22 23 May 2001 300
L-16 58 18 June 2001 135
L-17 5 10 May 2001 50
L-17 6 7 June 2001 50
L-17 7 17 June 2001 100
L-23 11 17 May 2001 75
L-93 103 3 June 2001 900
L-93 104 13 June 2001 200

Figure 2.25 The payment table.

Since the relationship set has no attributes, the borrower table has two columns, la-
beled customer-id and loan-number, as shown in Figure 2.26.

2.9.3.1 Redundancy of Tables
A relationship set linking a weak entity set to the corresponding strong entity set is
treated specially. As we noted in Section 2.6, these relationships are many-to-one and
have no descriptive attributes. Furthermore, the primary key of a weak entity set in-
cludes the primary key of the strong entity set. In the E-R diagram of Figure 2.16, the
weak entity set payment is dependent on the strong entity set loan via the relation-
ship set loan-payment. The primary key of payment is {loan-number, payment-number},
and the primary key of loan is {loan-number}. Since loan-payment has no descriptive
attributes, the loan-payment table would have two columns, loan-number and payment-
number. The table for the entity set payment has four columns, loan-number, payment-
number, payment-date, and payment-amount. Every (loan-number, payment-number) com-
bination in loan-payment would also be present in the payment table, and vice versa.
Thus, the loan-payment table is redundant. In general, the table for the relationship set

customer-id loan-number
019-28-3746 L-11
019-28-3746 L-23
244-66-8800 L-93
321-12-3123 L-17
335-57-7991 L-16
555-55-5555 L-14
677-89-9011 L-15
963-96-3963 L-17

Figure 2.26 The borrower table.
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linking a weak entity set to its corresponding strong entity set is redundant and does
not need to be present in a tabular representation of an E-R diagram.

2.9.3.2 Combination of Tables
Consider a many-to-one relationship set AB from entity set A to entity set B. Using
our table-construction scheme outlined previously, we get three tables: A, B, and AB.
Suppose further that the participation of A in the relationship is total; that is, every
entity a in the entity set A must participate in the relationship AB. Then we can
combine the tables A and AB to form a single table consisting of the union of columns
of both tables.

As an illustration, consider the E-R diagram of Figure 2.27. The double line in the
E-R diagram indicates that the participation of account in the account-branch is total.
Hence, an account cannot exist without being associated with a particular branch.
Further, the relationship set account-branch is many to one from account to branch.
Therefore, we can combine the table for account-branch with the table for account and
require only the following two tables:

• account, with attributes account-number, balance, and branch-name

• branch, with attributes branch-name, branch-city, and assets

2.9.4 Composite Attributes
We handle composite attributes by creating a separate attribute for each of the com-
ponent attributes; we do not create a separate column for the composite attribute
itself. Suppose address is a composite attribute of entity set customer, and the com-
ponents of address are street and city. The table generated from customer would then
contain columns address-street and address-city; there is no separate column for address.

2.9.5 Multivalued Attributes
We have seen that attributes in an E-R diagram generally map directly into columns
for the appropriate tables. Multivalued attributes, however, are an exception; new
tables are created for these attributes.

account-number balance

account

branch-name branch-city

branchaccount-
branch

assets

Figure 2.27 E-R diagram.
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For a multivalued attribute M, we create a table T with a column C that corre-
sponds to M and columns corresponding to the primary key of the entity set or rela-
tionship set of which M is an attribute. As an illustration, consider the E-R diagram
in Figure 2.22. The diagram includes the multivalued attribute dependent-name. For
this multivalued attribute, we create a table dependent-name, with columns dname, re-
ferring to the dependent-name attribute of employee, and employee-id, representing the
primary key of the entity set employee. Each dependent of an employee is represented
as a unique row in the table.

2.9.6 Tabular Representation of Generalization
There are two different methods for transforming to a tabular form an E-R diagram
that includes generalization. Although we refer to the generalization in Figure 2.17
in this discussion, we simplify it by including only the first tier of lower-level entity
sets—that is, savings-account and checking-account.

1. Create a table for the higher-level entity set. For each lower-level entity set,
create a table that includes a column for each of the attributes of that entity set
plus a column for each attribute of the primary key of the higher-level entity
set. Thus, for the E-R diagram of Figure 2.17, we have three tables:
• account, with attributes account-number and balance
• savings-account, with attributes account-number and interest-rate
• checking-account, with attributes account-number and overdraft-amount

2. An alternative representation is possible, if the generalization is disjoint and
complete—that is, if no entity is a member of two lower-level entity sets di-
rectly below a higher-level entity set, and if every entity in the higher level
entity set is also a member of one of the lower-level entity sets. Here, do not
create a table for the higher-level entity set. Instead, for each lower-level en-
tity set, create a table that includes a column for each of the attributes of that
entity set plus a column for each attribute of the higher-level entity set. Then,
for the E-R diagram of Figure 2.17, we have two tables.
• savings-account, with attributes account-number, balance, and interest-rate
• checking-account, with attributes account-number, balance, and overdraft-

amount

The savings-account and checking-account relations corresponding to these
tables both have account-number as the primary key.

If the second method were used for an overlapping generalization, some values
such as balance would be stored twice unnecessarily. Similarly, if the generalization
were not complete—that is, if some accounts were neither savings nor checking
accounts—then such accounts could not be represented with the second method.

2.9.7 Tabular Representation of Aggregation
Transforming an E-R diagram containing aggregation to a tabular form is straight-
forward. Consider the diagram of Figure 2.19. The table for the relationship set
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manages between the aggregation of works-on and the entity set manager includes a
column for each attribute in the primary keys of the entity set manager and the rela-
tionship set works-on. It would also include a column for any descriptive attributes,
if they exist, of the relationship set manages. We then transform the relationship sets
and entity sets within the aggregated entity.

2.10 The Unified Modeling Language UML∗∗
Entity-relationship diagrams help model the data representation component of a soft-
ware system. Data representation, however, forms only one part of an overall system
design. Other components include models of user interactions with the system, spec-
ification of functional modules of the system and their interaction, etc. The Unified
Modeling Language (UML), is a proposed standard for creating specifications of var-
ious components of a software system. Some of the parts of UML are:

• Class diagram. A class diagram is similar to an E-R diagram. Later in this
section we illustrate a few features of class diagrams and how they relate to
E-R diagrams.

• Use case diagram. Use case diagrams show the interaction between users and
the system, in particular the steps of tasks that users perform (such as with-
drawing money or registering for a course).

• Activity diagram. Activity diagrams depict the flow of tasks between various
components of a system.

• Implementation diagram. Implementation diagrams show the system com-
ponents and their interconnections, both at the software component level and
the hardware component level.

We do not attempt to provide detailed coverage of the different parts of UML here.
See the bibliographic notes for references on UML. Instead we illustrate some features
of UML through examples.

Figure 2.28 shows several E-R diagram constructs and their equivalent UML class
diagram constructs. We describe these constructs below. UML shows entity sets as
boxes and, unlike E-R, shows attributes within the box rather than as separate el-
lipses. UML actually models objects, whereas E-R models entities. Objects are like
entities, and have attributes, but additionally provide a set of functions (called meth-
ods) that can be invoked to compute values on the basis of attributes of the objects,
or to update the object itself. Class diagrams can depict methods in addition to at-
tributes. We cover objects in Chapter 8.

We represent binary relationship sets in UML by just drawing a line connecting
the entity sets. We write the relationship set name adjacent to the line. We may also
specify the role played by an entity set in a relationship set by writing the role name
on the line, adjacent to the entity set. Alternatively, we may write the relationship set
name in a box, along with attributes of the relationship set, and connect the box by a
dotted line to the line depicting the relationship set. This box can then be treated as
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customer employee
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customer employee

1. entity sets
    and attributes customer-id

customer-name
customer-street
customer-city

customer

customer-city

customer-street
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a1

role1 role2

a1
a2

R

R

3. cardinality
    constraints R

0..1

RE1 E2

E1

E1 E2

E2

role1 role2

role1 role2

4. generalization and
    specialization

class diagram in UMLE-R diagram

R 0..*0..* 0..1

customer-name

customer-id

(overlapping 
generalization)

(disjoint 
generalization)

a2

E1

E1

Figure 2.28 Symbols used in the UML class diagram notation.

an entity set, in the same way as an aggregation in E-R diagrams and can participate
in relationships with other entity sets.

Nonbinary relationships cannot be directly represented in UML—they have to
be converted to binary relationships by the technique we have seen earlier in Sec-
tion 2.4.3.
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Cardinality constraints are specified in UML in the same way as in E-R diagrams, in
the form l..h, where l denotes the minimum and h the maximum number of relation-
ships an entity can participate in. However, you should be aware that the positioning
of the constraints is exactly the reverse of the positioning of constraints in E-R dia-
grams, as shown in Figure 2.28. The constraint 0..∗ on the E2 side and 0..1 on the E1
side means that each E2 entity can participate in at most one relationship, whereas
each E1 entity can participate in many relationships; in other words, the relationship
is many to one from E2 to E1.

Single values such as 1 or ∗ may be written on edges; the single value 1 on an edge
is treated as equivalent to 1..1, while ∗ is equivalent to 0..∗.

We represent generalization and specialization in UML by connecting entity sets
by a line with a triangle at the end corresponding to the more general entity set.
For instance, the entity set person is a generalization of customer and employee. UML
diagrams can also represent explicitly the constraints of disjoint/overlapping on gen-
eralizations. Figure 2.28 shows disjoint and overlapping generalizations of customer
and employee to person. Recall that if the customer/employee to person generalization is
disjoint, it means that no one can be both a customer and an employee. An overlapping
generalization allows a person to be both a customer and an employee.

2.11 Summary
• The entity-relationship (E-R) data model is based on a perception of a real

world that consists of a set of basic objects called entities, and of relationships
among these objects.

• The model is intended primarily for the database-design process. It was de-
veloped to facilitate database design by allowing the specification of an en-
terprise schema. Such a schema represents the overall logical structure of the
database. This overall structure can be expressed graphically by an E-R dia-
gram.

• An entity is an object that exists in the real world and is distinguishable from
other objects. We express the distinction by associating with each entity a set
of attributes that describes the object.

• A relationship is an association among several entities. The collection of all
entities of the same type is an entity set, and the collection of all relationships
of the same type is a relationship set.

• Mapping cardinalities express the number of entities to which another entity
can be associated via a relationship set.

• A superkey of an entity set is a set of one or more attributes that, taken collec-
tively, allows us to identify uniquely an entity in the entity set. We choose a
minimal superkey for each entity set from among its superkeys; the minimal
superkey is termed the entity set’s primary key. Similarly, a relationship set
is a set of one or more attributes that, taken collectively, allows us to identify
uniquely a relationship in the relationship set. Likewise, we choose a mini-
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mal superkey for each relationship set from among its superkeys; this is the
relationship set’s primary key.

• An entity set that does not have sufficient attributes to form a primary key
is termed a weak entity set. An entity set that has a primary key is termed a
strong entity set.

• Specialization and generalization define a containment relationship between
a higher-level entity set and one or more lower-level entity sets. Specialization
is the result of taking a subset of a higher-level entity set to form a lower-
level entity set. Generalization is the result of taking the union of two or more
disjoint (lower-level) entity sets to produce a higher-level entity set. The at-
tributes of higher-level entity sets are inherited by lower-level entity sets.

• Aggregation is an abstraction in which relationship sets (along with their as-
sociated entity sets) are treated as higher-level entity sets, and can participate
in relationships.

• The various features of the E-R model offer the database designer numerous
choices in how to best represent the enterprise being modeled. Concepts and
objects may, in certain cases, be represented by entities, relationships, or at-
tributes. Aspects of the overall structure of the enterprise may be best de-
scribed by using weak entity sets, generalization, specialization, or aggrega-
tion. Often, the designer must weigh the merits of a simple, compact model
versus those of a more precise, but more complex, one.

• A database that conforms to an E-R diagram can be represented by a collection
of tables. For each entity set and for each relationship set in the database, there
is a unique table that is assigned the name of the corresponding entity set or
relationship set. Each table has a number of columns, each of which has a
unique name. Converting database representation from an E-R diagram to a
table format is the basis for deriving a relational-database design from an E-R
diagram.

• The unified modeling language (UML) provides a graphical means of model-
ing various components of a software system. The class diagram component
of UML is based on E-R diagrams. However, there are some differences be-
tween the two that one must beware of.

Review Terms
• Entity-relationship data model

• Entity

• Entity set

• Attributes

• Domain

• Simple and composite attributes

• Single-valued and multivalued at-
tributes

• Null value

• Derived attribute

• Relationship, and relationship set

• Role
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• Recursive relationship set

• Descriptive attributes

• Binary relationship set

• Degree of relationship set

• Mapping cardinality:
� One-to-one relationship
� One-to-many relationship
� Many-to-one relationship
� Many-to-many relationship

• Participation
� Total participation
� Partial participation

• Superkey, candidate key, and pri-
mary key

• Weak entity sets and strong entity
sets

� Discriminator attributes
� Identifying relationship

• Specialization and generalization
� Superclass and subclass
� Attribute inheritance
� Single and multiple inheri-

tance
� Condition-defined and user-

defined membership
� Disjoint and overlapping gen-

eralization
• Completeness constraint
� Total and partial generaliza-

tion
• Aggregation
• E-R diagram
• Unified Modeling Language (UML)

Exercises
2.1 Explain the distinctions among the terms primary key, candidate key, and su-

perkey.

2.2 Construct an E-R diagram for a car-insurance company whose customers own
one or more cars each. Each car has associated with it zero to any number of
recorded accidents.

2.3 Construct an E-R diagram for a hospital with a set of patients and a set of medi-
cal doctors. Associate with each patient a log of the various tests and examina-
tions conducted.

2.4 A university registrar’s office maintains data about the following entities: (a)
courses, including number, title, credits, syllabus, and prerequisites; (b) course
offerings, including course number, year, semester, section number, instructor(s),
timings, and classroom; (c) students, including student-id, name, and program;
and (d) instructors, including identification number, name, department, and ti-
tle. Further, the enrollment of students in courses and grades awarded to stu-
dents in each course they are enrolled for must be appropriately modeled.

Construct an E-R diagram for the registrar’s office. Document all assumptions
that you make about the mapping constraints.

2.5 Consider a database used to record the marks that students get in different ex-
ams of different course offerings.

a. Construct an E-R diagram that models exams as entities, and uses a ternary
relationship, for the above database.
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b. Construct an alternative E-R diagram that uses only a binary relationship
between students and course-offerings. Make sure that only one relationship
exists between a particular student and course-offering pair, yet you can
represent the marks that a student gets in different exams of a course offer-
ing.

2.6 Construct appropriate tables for each of the E-R diagrams in Exercises 2.2 to 2.4.

2.7 Design an E-R diagram for keeping track of the exploits of your favourite sports
team. You should store the matches played, the scores in each match, the players
in each match and individual player statistics for each match. Summary statis-
tics should be modeled as derived attributes

2.8 Extend the E-R diagram of the previous question to track the same information
for all teams in a league.

2.9 Explain the difference between a weak and a strong entity set.

2.10 We can convert any weak entity set to a strong entity set by simply adding ap-
propriate attributes. Why, then, do we have weak entity sets?

2.11 Define the concept of aggregation. Give two examples of where this concept is
useful.

2.12 Consider the E-R diagram in Figure 2.29, which models an online bookstore.
a. List the entity sets and their primary keys.
b. Suppose the bookstore adds music cassettes and compact disks to its col-

lection. The same music item may be present in cassette or compact disk
format, with differing prices. Extend the E-R diagram to model this addi-
tion, ignoring the effect on shopping baskets.

c. Now extend the E-R diagram, using generalization, to model the case where
a shopping basket may contain any combination of books, music cassettes,
or compact disks.

2.13 Consider an E-R diagram in which the same entity set appears several times.
Why is allowing this redundancy a bad practice that one should avoid whenever
possible?

2.14 Consider a university database for the scheduling of classrooms for final exams.
This database could be modeled as the single entity set exam, with attributes
course-name, section-number, room-number, and time. Alternatively, one or more
additional entity sets could be defined, along with relationship sets to replace
some of the attributes of the exam entity set, as
• course with attributes name, department, and c-number
• section with attributes s-number and enrollment, and dependent as a weak

entity set on course
• room with attributes r-number, capacity, and building

a. Show an E-R diagram illustrating the use of all three additional entity sets
listed.
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basketID
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basket-of

ISBN
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name

URL
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name address phone

URL
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published-bywritten-by

title
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number

book
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stocks warehouse
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number

author

year

shopping-basket

Figure 2.29 E-R diagram for Exercise 2.12.

b. Explain what application characteristics would influence a decision to in-
clude or not to include each of the additional entity sets.

2.15 When designing an E-R diagram for a particular enterprise, you have several
alternatives from which to choose.

a. What criteria should you consider in making the appropriate choice?
b. Design three alternative E-R diagrams to represent the university registrar’s

office of Exercise 2.4. List the merits of each. Argue in favor of one of the
alternatives.

2.16 An E-R diagram can be viewed as a graph. What do the following mean in terms
of the structure of an enterprise schema?

a. The graph is disconnected.
b. The graph is acyclic.

2.17 In Section 2.4.3, we represented a ternary relationship (Figure 2.30a) using bi-
nary relationships, as shown in Figure 2.30b. Consider the alternative shown in
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Figure 2.30 E-R diagram for Exercise 2.17 (attributes not shown).

Figure 2.30c. Discuss the relative merits of these two alternative representations
of a ternary relationship by binary relationships.

2.18 Consider the representation of a ternary relationship using binary relationships
as described in Section 2.4.3 (shown in Figure 2.30b.)

a. Show a simple instance of E, A, B, C, RA, RB , and RC that cannot corre-
spond to any instance of A, B, C, and R.

b. Modify the E-R diagram of Figure 2.30b to introduce constraints that will
guarantee that any instance of E, A, B, C, RA, RB , and RC that satisfies the
constraints will correspond to an instance of A, B, C, and R.

c. Modify the translation above to handle total participation constraints on the
ternary relationship.

d. The above representation requires that we create a primary key attribute for
E. Show how to treat E as a weak entity set so that a primary key attribute
is not required.

2.19 A weak entity set can always be made into a strong entity set by adding to its
attributes the primary key attributes of its identifying entity set. Outline what
sort of redundancy will result if we do so.

2.20 Design a generalization–specialization hierarchy for a motor-vehicle sales com-
pany. The company sells motorcycles, passenger cars, vans, and buses. Justify
your placement of attributes at each level of the hierarchy. Explain why they
should not be placed at a higher or lower level.



Silberschatz−Korth−Sudarshan: 
Database System 
Concepts, Fourth Edition

I. Data Models 2. Entity−Relationship 
Model

85© The McGraw−Hill 
Companies, 2001

76 Chapter 2 Entity-Relationship Model

2.21 Explain the distinction between condition-defined and user-defined constraints.
Which of these constraints can the system check automatically? Explain your
answer.

2.22 Explain the distinction between disjoint and overlapping constraints.

2.23 Explain the distinction between total and partial constraints.

2.24 Figure 2.31 shows a lattice structure of generalization and specialization. For
entity sets A, B, and C, explain how attributes are inherited from the higher-
level entity sets X and Y . Discuss how to handle a case where an attribute of X
has the same name as some attribute of Y .

2.25 Draw the UML equivalents of the E-R diagrams of Figures 2.9c, 2.10, 2.12, 2.13
and 2.17.

2.26 Consider two separate banks that decide to merge. Assume that both banks
use exactly the same E-R database schema—the one in Figure 2.22. (This as-
sumption is, of course, highly unrealistic; we consider the more realistic case in
Section 19.8.) If the merged bank is to have a single database, there are several
potential problems:
• The possibility that the two original banks have branches with the same

name
• The possibility that some customers are customers of both original banks
• The possibility that some loan or account numbers were used at both origi-

nal banks (for different loans or accounts, of course)
For each of these potential problems, describe why there is indeed a potential
for difficulties. Propose a solution to the problem. For your solution, explain any
changes that would have to be made and describe what their effect would be on
the schema and the data.

2.27 Reconsider the situation described for Exercise 2.26 under the assumption that
one bank is in the United States and the other is in Canada. As before, the
banks use the schema of Figure 2.22, except that the Canadian bank uses the
social-insurance number assigned by the Canadian government, whereas the U.S.
bank uses the social-security number to identify customers. What problems (be-

X

B

Y

A C

ISA ISA

Figure 2.31 E-R diagram for Exercise 2.24 (attributes not shown).
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yond those identified in Exercise 2.24) might occur in this multinational case?
How would you resolve them? Be sure to consider both the scheme and the
actual data values in constructing your answer.

Bibliographical Notes
The E-R data model was introduced by Chen [1976]. A logical design methodology for
relational databases using the extended E-R model is presented by Teorey et al. [1986].
Mapping from extended E-R models to the relational model is discussed by Lyngbaek
and Vianu [1987] and Markowitz and Shoshani [1992]. Various data-manipulation
languages for the E-R model have been proposed: GERM (Benneworth et al. [1981]),
GORDAS (Elmasri and Wiederhold [1981]), and ERROL (Markowitz and Raz [1983]). A
graphical query language for the E-R database was proposed by Zhang and Mendel-
zon [1983] and Elmasri and Larson [1985].

Smith and Smith [1977] introduced the concepts of generalization, specialization,
and aggregation and Hammer and McLeod [1980] expanded them. Lenzerini and
Santucci [1983] used the concepts in defining cardinality constraints in the E-R model.

Thalheim [2000] provides a detailed textbook coverage of research in E-R mod-
eling. Basic textbook discussions are offered by Batini et al. [1992] and Elmasri and
Navathe [2000]. Davis et al. [1983] provide a collection of papers on the E-R model.

Tools
Many database systems provide tools for database design that support E-R diagrams.
These tools help a designer create E-R diagrams, and they can automatically cre-
ate corresponding tables in a database. See bibliographic notes of Chapter 1 for
references to database system vendor’s Web sites. There are also some database-
independent data modeling tools that support E-R diagrams and UML class diagrams.
These include Rational Rose (www.rational.com/products/rose), Visio Enterprise (see
www.visio.com), and ERwin (search for ERwin at the site www.cai.com/products).
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Relational Model

The relational model is today the primary data model for commercial data-processing
applications. It has attained its primary position because of its simplicity, which eases
the job of the programmer, as compared to earlier data models such as the network
model or the hierarchical model.

In this chapter, we first study the fundamentals of the relational model, which pro-
vides a very simple yet powerful way of representing data. We then describe three
formal query languages; query languages are used to specify requests for informa-
tion. The three we cover in this chapter are not user-friendly, but instead serve as
the formal basis for user-friendly query languages that we study later. We cover the
first query language, relational algebra, in great detail. The relational algebra forms
the basis of the widely used SQL query language. We then provide overviews of the
other two formal languages, the tuple relational calculus and the domain relational
calculus, which are declarative query languages based on mathematical logic. The
domain relational calculus is the basis of the QBE query language.

A substantial theory exists for relational databases. We study the part of this theory
dealing with queries in this chapter. In Chapter 7 we shall examine aspects of rela-
tional database theory that help in the design of relational database schemas, while in
Chapters 13 and 14 we discuss aspects of the theory dealing with efficient processing
of queries.

3.1 Structure of Relational Databases
A relational database consists of a collection of tables, each of which is assigned a
unique name. Each table has a structure similar to that presented in Chapter 2, where
we represented E-R databases by tables. A row in a table represents a relationship
among a set of values. Since a table is a collection of such relationships, there is a
close correspondence between the concept of table and the mathematical concept of

79
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relation, from which the relational data model takes its name. In what follows, we
introduce the concept of relation.

In this chapter, we shall be using a number of different relations to illustrate the
various concepts underlying the relational data model. These relations represent part
of a banking enterprise. They differ slightly from the tables that were used in Chap-
ter 2, so that we can simplify our presentation. We shall discuss criteria for the ap-
propriateness of relational structures in great detail in Chapter 7.

3.1.1 Basic Structure
Consider the account table of Figure 3.1. It has three column headers: account-number,
branch-name, and balance. Following the terminology of the relational model, we refer
to these headers as attributes (as we did for the E-R model in Chapter 2). For each
attribute, there is a set of permitted values, called the domain of that attribute. For
the attribute branch-name, for example, the domain is the set of all branch names. Let
D1 denote the set of all account numbers, D2 the set of all branch names, and D3

the set of all balances. As we saw in Chapter 2, any row of account must consist of
a 3-tuple (v1, v2, v3), where v1 is an account number (that is, v1 is in domain D1),
v2 is a branch name (that is, v2 is in domain D2), and v3 is a balance (that is, v3 is in
domain D3). In general, account will contain only a subset of the set of all possible
rows. Therefore, account is a subset of

D1 × D2 × D3

In general, a table of n attributes must be a subset of

D1 × D2 × · · · × Dn−1 × Dn

Mathematicians define a relation to be a subset of a Cartesian product of a list of
domains. This definition corresponds almost exactly with our definition of table. The
only difference is that we have assigned names to attributes, whereas mathematicians
rely on numeric “names,” using the integer 1 to denote the attribute whose domain
appears first in the list of domains, 2 for the attribute whose domain appears second,
and so on. Because tables are essentially relations, we shall use the mathematical

account-number branch-name balance
A-101 Downtown 500
A-102 Perryridge 400
A-201 Brighton 900
A-215 Mianus 700
A-217 Brighton 750
A-222 Redwood 700
A-305 Round Hill 350

Figure 3.1 The account relation.
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account-number branch-name balance
A-101 Downtown 500
A-215 Mianus 700
A-102 Perryridge 400
A-305 Round Hill 350
A-201 Brighton 900
A-222 Redwood 700
A-217 Brighton 750

Figure 3.2 The account relation with unordered tuples.

terms relation and tuple in place of the terms table and row. A tuple variable is a
variable that stands for a tuple; in other words, a tuple variable is a variable whose
domain is the set of all tuples.

In the account relation of Figure 3.1, there are seven tuples. Let the tuple variable t
refer to the first tuple of the relation. We use the notation t[account-number] to denote
the value of t on the account-number attribute. Thus, t[account-number] = “A-101,” and
t[branch-name] = “Downtown”. Alternatively, we may write t[1] to denote the value
of tuple t on the first attribute (account-number), t[2] to denote branch-name, and so on.
Since a relation is a set of tuples, we use the mathematical notation of t ∈ r to denote
that tuple t is in relation r.

The order in which tuples appear in a relation is irrelevant, since a relation is a
set of tuples. Thus, whether the tuples of a relation are listed in sorted order, as in
Figure 3.1, or are unsorted, as in Figure 3.2, does not matter; the relations in the two
figures above are the same, since both contain the same set of tuples.

We require that, for all relations r, the domains of all attributes of r be atomic. A
domain is atomic if elements of the domain are considered to be indivisible units.
For example, the set of integers is an atomic domain, but the set of all sets of integers
is a nonatomic domain. The distinction is that we do not normally consider inte-
gers to have subparts, but we consider sets of integers to have subparts—namely,
the integers composing the set. The important issue is not what the domain itself is,
but rather how we use domain elements in our database. The domain of all integers
would be nonatomic if we considered each integer to be an ordered list of digits. In
all our examples, we shall assume atomic domains. In Chapter 9, we shall discuss
extensions to the relational data model to permit nonatomic domains.

It is possible for several attributes to have the same domain. For example, sup-
pose that we have a relation customer that has the three attributes customer-name,
customer-street, and customer-city, and a relation employee that includes the attribute
employee-name. It is possible that the attributes customer-name and employee-name will
have the same domain: the set of all person names, which at the physical level is
the set of all character strings. The domains of balance and branch-name, on the other
hand, certainly ought to be distinct. It is perhaps less clear whether customer-name
and branch-name should have the same domain. At the physical level, both customer
names and branch names are character strings. However, at the logical level, we may
want customer-name and branch-name to have distinct domains.
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One domain value that is a member of any possible domain is the null value,
which signifies that the value is unknown or does not exist. For example, suppose
that we include the attribute telephone-number in the customer relation. It may be that
a customer does not have a telephone number, or that the telephone number is un-
listed. We would then have to resort to null values to signify that the value is un-
known or does not exist. We shall see later that null values cause a number of diffi-
culties when we access or update the database, and thus should be eliminated if at
all possible. We shall assume null values are absent initially, and in Section 3.3.4, we
describe the effect of nulls on different operations.

3.1.2 Database Schema
When we talk about a database, we must differentiate between the database schema,
which is the logical design of the database, and a database instance, which is a snap-
shot of the data in the database at a given instant in time.

The concept of a relation corresponds to the programming-language notion of a
variable. The concept of a relation schema corresponds to the programming-language
notion of type definition.

It is convenient to give a name to a relation schema, just as we give names to type
definitions in programming languages. We adopt the convention of using lower-
case names for relations, and names beginning with an uppercase letter for rela-
tion schemas. Following this notation, we use Account-schema to denote the relation
schema for relation account. Thus,

Account-schema = (account-number, branch-name, balance)

We denote the fact that account is a relation on Account-schema by

account(Account-schema)

In general, a relation schema consists of a list of attributes and their corresponding
domains. We shall not be concerned about the precise definition of the domain of
each attribute until we discuss the SQL language in Chapter 4.

The concept of a relation instance corresponds to the programming language no-
tion of a value of a variable. The value of a given variable may change with time;
similarly the contents of a relation instance may change with time as the relation is
updated. However, we often simply say “relation” when we actually mean “relation
instance.”

As an example of a relation instance, consider the branch relation of Figure 3.3. The
schema for that relation is

Branch-schema = (branch-name, branch-city, assets)

Note that the attribute branch-name appears in both Branch-schema and Account-
schema. This duplication is not a coincidence. Rather, using common attributes in
relation schemas is one way of relating tuples of distinct relations. For example, sup-
pose we wish to find the information about all of the accounts maintained in branches
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branch-name branch-city assets
Brighton Brooklyn 7100000
Downtown Brooklyn 9000000
Mianus Horseneck 400000
North Town Rye 3700000
Perryridge Horseneck 1700000
Pownal Bennington 300000
Redwood Palo Alto 2100000
Round Hill Horseneck 8000000

Figure 3.3 The branch relation.

located in Brooklyn. We look first at the branch relation to find the names of all the
branches located in Brooklyn. Then, for each such branch, we would look in the ac-
count relation to find the information about the accounts maintained at that branch.
This is not surprising—recall that the primary key attributes of a strong entity set
appear in the table created to represent the entity set, as well as in the tables created
to represent relationships that the entity set participates in.

Let us continue our banking example. We need a relation to describe information
about customers. The relation schema is

Customer -schema = (customer-name, customer-street, customer-city)

Figure 3.4 shows a sample relation customer (Customer-schema). Note that we have
omitted the customer-id attribute, which we used Chapter 2, because now we want to
have smaller relation schemas in our running example of a bank database. We assume
that the customer name uniquely identifies a customer—obviously this may not be
true in the real world, but the assumption makes our examples much easier to read.

customer-name customer-street customer-city
Adams Spring Pittsfield
Brooks Senator Brooklyn
Curry North Rye
Glenn Sand Hill Woodside
Green Walnut Stamford
Hayes Main Harrison
Johnson Alma Palo Alto
Jones Main Harrison
Lindsay Park Pittsfield
Smith North Rye
Turner Putnam Stamford
Williams Nassau Princeton

Figure 3.4 The customer relation.
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In a real-world database, the customer-id (which could be a social-security number, or
an identifier generated by the bank) would serve to uniquely identify customers.

We also need a relation to describe the association between customers and ac-
counts. The relation schema to describe this association is

Depositor -schema = (customer-name, account-number)

Figure 3.5 shows a sample relation depositor (Depositor-schema).
It would appear that, for our banking example, we could have just one relation

schema, rather than several. That is, it may be easier for a user to think in terms of
one relation schema, rather than in terms of several. Suppose that we used only one
relation for our example, with schema

(branch-name, branch-city, assets, customer-name, customer-street
customer-city, account-number, balance)

Observe that, if a customer has several accounts, we must list her address once for
each account. That is, we must repeat certain information several times. This repeti-
tion is wasteful and is avoided by the use of several relations, as in our example.

In addition, if a branch has no accounts (a newly created branch, say, that has no
customers yet), we cannot construct a complete tuple on the preceding single rela-
tion, because no data concerning customer and account are available yet. To represent
incomplete tuples, we must use null values that signify that the value is unknown or
does not exist. Thus, in our example, the values for customer-name, customer-street, and
so on must be null. By using several relations, we can represent the branch informa-
tion for a bank with no customers without using null values. We simply use a tuple
on Branch-schema to represent the information about the branch, and create tuples on
the other schemas only when the appropriate information becomes available.

In Chapter 7, we shall study criteria to help us decide when one set of relation
schemas is more appropriate than another, in terms of information repetition and
the existence of null values. For now, we shall assume that the relation schemas are
given.

We include two additional relations to describe data about loans maintained in the
various branches in the bank:

customer-name account-number
Hayes A-102
Johnson A-101
Johnson A-201
Jones A-217
Lindsay A-222
Smith A-215
Turner A-305

Figure 3.5 The depositor relation.
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loan-number branch-name amount
L-11 Round Hill 900
L-14 Downtown 1500
L-15 Perryridge 1500
L-16 Perryridge 1300
L-17 Downtown 1000
L-23 Redwood 2000
L-93 Mianus 500

Figure 3.6 The loan relation.

Loan-schema = (loan-number, branch-name, amount)
Borrower -schema = (customer-name, loan-number)

Figures 3.6 and 3.7, respectively, show the sample relations loan (Loan-schema) and
borrower (Borrower-schema).

The E-R diagram in Figure 3.8 depicts the banking enterprise that we have just
described. The relation schemas correspond to the set of tables that we might gener-
ate by the method outlined in Section 2.9. Note that the tables for account-branch and
loan-branch have been combined into the tables for account and loan respectively. Such
combining is possible since the relationships are many to one from account and loan,
respectively, to branch, and, further, the participation of account and loan in the corre-
sponding relationships is total, as the double lines in the figure indicate. Finally, we
note that the customer relation may contain information about customers who have
neither an account nor a loan at the bank.

The banking enterprise described here will serve as our primary example in this
chapter and in subsequent ones. On occasion, we shall need to introduce additional
relation schemas to illustrate particular points.

3.1.3 Keys
The notions of superkey, candidate key, and primary key, as discussed in Chapter 2,
are also applicable to the relational model. For example, in Branch-schema, {branch-

customer-name loan-number
Adams L-16
Curry L-93
Hayes L-15
Jackson L-14
Jones L-17
Smith L-11
Smith L-23
Williams L-17

Figure 3.7 The borrower relation.
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account-number balance

account

branch-name assets

branchaccount-branch

customer-name

customer-street

customer-city

customer

loan-number amount

depositor

branch-city

loan-branch

loanborrower

Figure 3.8 E-R diagram for the banking enterprise.

name} and {branch-name, branch-city} are both superkeys. {branch-name, branch-city}
is not a candidate key, because {branch-name} is a subset of {branch-name, branch-
city} and {branch-name} itself is a superkey. However, {branch-name} is a candidate
key, and for our purpose also will serve as a primary key. The attribute branch-city is
not a superkey, since two branches in the same city may have different names (and
different asset figures).

Let R be a relation schema. If we say that a subset K of R is a superkey for R, we
are restricting consideration to relations r(R) in which no two distinct tuples have
the same values on all attributes in K. That is, if t1 and t2 are in r and t1 �= t2, then
t1[K] �= t2[K].

If a relational database schema is based on tables derived from an E-R schema, it
is possible to determine the primary key for a relation schema from the primary keys
of the entity or relationship sets from which the schema is derived:

• Strong entity set. The primary key of the entity set becomes the primary key
of the relation.

• Weak entity set. The table, and thus the relation, corresponding to a weak
entity set includes
� The attributes of the weak entity set
� The primary key of the strong entity set on which the weak entity set

depends
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The primary key of the relation consists of the union of the primary key of the
strong entity set and the discriminator of the weak entity set.

• Relationship set. The union of the primary keys of the related entity sets be-
comes a superkey of the relation. If the relationship is many-to-many, this su-
perkey is also the primary key. Section 2.4.2 describes how to determine the
primary keys in other cases. Recall from Section 2.9.3 that no table is gener-
ated for relationship sets linking a weak entity set to the corresponding strong
entity set.

• Combined tables. Recall from Section 2.9.3 that a binary many-to-one rela-
tionship set from A to B can be represented by a table consisting of the at-
tributes of A and attributes (if any exist) of the relationship set. The primary
key of the “many” entity set becomes the primary key of the relation (that is,
if the relationship set is many to one from A to B, the primary key of A is
the primary key of the relation). For one-to-one relationship sets, the relation
is constructed like that for a many-to-one relationship set. However, we can
choose either entity set’s primary key as the primary key of the relation, since
both are candidate keys.

• Multivalued attributes. Recall from Section 2.9.5 that a multivalued attribute
M is represented by a table consisting of the primary key of the entity set or
relationship set of which M is an attribute plus a column C holding an indi-
vidual value of M. The primary key of the entity or relationship set, together
with the attribute C, becomes the primary key for the relation.

From the preceding list, we see that a relation schema, say r1, derived from an E-R
schema may include among its attributes the primary key of another relation schema,
say r2. This attribute is called a foreign key from r1, referencing r2. The relation r1

is also called the referencing relation of the foreign key dependency, and r2 is called
the referenced relation of the foreign key. For example, the attribute branch-name in
Account-schema is a foreign key from Account-schema referencing Branch-schema, since
branch-name is the primary key of Branch-schema. In any database instance, given any
tuple, say ta, from the account relation, there must be some tuple, say tb, in the branch
relation such that the value of the branch-name attribute of ta is the same as the value
of the primary key, branch-name, of tb.

It is customary to list the primary key attributes of a relation schema before the
other attributes; for example, the branch-name attribute of Branch-schema is listed first,
since it is the primary key.

3.1.4 Schema Diagram
A database schema, along with primary key and foreign key dependencies, can be
depicted pictorially by schema diagrams. Figure 3.9 shows the schema diagram for
our banking enterprise. Each relation appears as a box, with the attributes listed in-
side it and the relation name above it. If there are primary key attributes, a horizontal
line crosses the box, with the primary key attributes listed above the line. Foreign
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customer–name
account–number

depositor

loan–number
branch–name
amount

loan

customer–name
customer–street
customer–city

customer

branch–name
branch–city
assets

branch

account–number
branch–name
balance

account

borrower

loan–number
customer–name

Figure 3.9 Schema diagram for the banking enterprise.

key dependencies appear as arrows from the foreign key attributes of the referencing
relation to the primary key of the referenced relation.

Do not confuse a schema diagram with an E-R diagram. In particular, E-R diagrams
do not show foreign key attributes explicitly, whereas schema diagrams show them
explicity.

Many database systems provide design tools with a graphical user interface for
creating schema diagrams.

3.1.5 Query Languages
A query language is a language in which a user requests information from the data-
base. These languages are usually on a level higher than that of a standard program-
ming language. Query languages can be categorized as either procedural or non-
procedural. In a procedural language, the user instructs the system to perform a
sequence of operations on the database to compute the desired result. In a nonproce-
dural language, the user describes the desired information without giving a specific
procedure for obtaining that information.

Most commercial relational-database systems offer a query language that includes
elements of both the procedural and the nonprocedural approaches. We shall study
the very widely used query language SQL in Chapter 4. Chapter 5 covers the query
languages QBE and Datalog, the latter a query language that resembles the Prolog
programming language.

In this chapter, we examine “pure” languages: The relational algebra is procedu-
ral, whereas the tuple relational calculus and domain relational calculus are nonpro-
cedural. These query languages are terse and formal, lacking the “syntactic sugar” of
commercial languages, but they illustrate the fundamental techniques for extracting
data from the database.

Although we shall be concerned with only queries initially, a complete data-
manipulation language includes not only a query language, but also a language for
database modification. Such languages include commands to insert and delete tuples,
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as well as commands to modify parts of existing tuples. We shall examine database
modification after we complete our discussion of queries.

3.2 The Relational Algebra
The relational algebra is a procedural query language. It consists of a set of operations
that take one or two relations as input and produce a new relation as their result. The
fundamental operations in the relational algebra are select, project, union, set difference,
Cartesian product, and rename. In addition to the fundamental operations, there are
several other operations—namely, set intersection, natural join, division, and assign-
ment. We will define these operations in terms of the fundamental operations.

3.2.1 Fundamental Operations
The select, project, and rename operations are called unary operations, because they
operate on one relation. The other three operations operate on pairs of relations and
are, therefore, called binary operations.

3.2.1.1 The Select Operation
The select operation selects tuples that satisfy a given predicate. We use the lowercase
Greek letter sigma (σ) to denote selection. The predicate appears as a subscript to σ.
The argument relation is in parentheses after the σ. Thus, to select those tuples of the
loan relation where the branch is “Perryridge,” we write

σbranch-name = “Perryridge” (loan)

If the loan relation is as shown in Figure 3.6, then the relation that results from the
preceding query is as shown in Figure 3.10.

We can find all tuples in which the amount lent is more than $1200 by writing

σamount>1200 (loan)

In general, we allow comparisons using =, �=, <, ≤, >, ≥ in the selection predicate.
Furthermore, we can combine several predicates into a larger predicate by using the
connectives and (∧), or (∨), and not (¬). Thus, to find those tuples pertaining to loans
of more than $1200 made by the Perryridge branch, we write

σbranch-name = “Perryridge”∧ amount>1200 (loan)

loan-number branch-name amount
L-15 Perryridge 1500
L-16 Perryridge 1300

Figure 3.10 Result of σbranch-name = “Perryridge” (loan).
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The selection predicate may include comparisons between two attributes. To illus-
trate, consider the relation loan-officer that consists of three attributes: customer-name,
banker-name, and loan-number, which specifies that a particular banker is the loan of-
ficer for a loan that belongs to some customer. To find all customers who have the
same name as their loan officer, we can write

σcustomer -name = banker -name(loan-officer)

3.2.1.2 The Project Operation
Suppose we want to list all loan numbers and the amount of the loans, but do not
care about the branch name. The project operation allows us to produce this relation.
The project operation is a unary operation that returns its argument relation, with
certain attributes left out. Since a relation is a set, any duplicate rows are eliminated.
Projection is denoted by the uppercase Greek letter pi (Π). We list those attributes that
we wish to appear in the result as a subscript to Π. The argument relation follows in
parentheses. Thus, we write the query to list all loan numbers and the amount of the
loan as

Πloan-number , amount(loan)

Figure 3.11 shows the relation that results from this query.

3.2.1.3 Composition of Relational Operations
The fact that the result of a relational operation is itself a relation is important. Con-
sider the more complicated query “Find those customers who live in Harrison.” We
write:

Πcustomer -name (σcustomer -city = “Harrison” (customer))

Notice that, instead of giving the name of a relation as the argument of the projection
operation, we give an expression that evaluates to a relation.

In general, since the result of a relational-algebra operation is of the same type
(relation) as its inputs, relational-algebra operations can be composed together into

loan-number amount
L-11 900
L-14 1500
L-15 1500
L-16 1300
L-17 1000
L-23 2000
L-93 500

Figure 3.11 Loan number and the amount of the loan.
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a relational-algebra expression. Composing relational-algebra operations into rela-
tional-algebra expressions is just like composing arithmetic operations (such as +, −,
∗, and ÷) into arithmetic expressions. We study the formal definition of relational-
algebra expressions in Section 3.2.2.

3.2.1.4 The Union Operation
Consider a query to find the names of all bank customers who have either an account
or a loan or both. Note that the customer relation does not contain the information,
since a customer does not need to have either an account or a loan at the bank. To
answer this query, we need the information in the depositor relation (Figure 3.5) and
in the borrower relation (Figure 3.7). We know how to find the names of all customers
with a loan in the bank:

Πcustomer -name (borrower)

We also know how to find the names of all customers with an account in the bank:

Πcustomer -name (depositor)

To answer the query, we need the union of these two sets; that is, we need all cus-
tomer names that appear in either or both of the two relations. We find these data by
the binary operation union, denoted, as in set theory, by ∪. So the expression needed
is

Πcustomer -name (borrower) ∪ Πcustomer -name (depositor)

The result relation for this query appears in Figure 3.12. Notice that there are 10 tuples
in the result, even though there are seven distinct borrowers and six depositors. This
apparent discrepancy occurs because Smith, Jones, and Hayes are borrowers as well
as depositors. Since relations are sets, duplicate values are eliminated.

customer-name
Adams
Curry
Hayes
Jackson
Jones
Smith
Williams
Lindsay
Johnson
Turner

Figure 3.12 Names of all customers who have either a loan or an account.
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Observe that, in our example, we took the union of two sets, both of which con-
sisted of customer-name values. In general, we must ensure that unions are taken be-
tween compatible relations. For example, it would not make sense to take the union of
the loan relation and the borrower relation. The former is a relation of three attributes;
the latter is a relation of two. Furthermore, consider a union of a set of customer
names and a set of cities. Such a union would not make sense in most situations.
Therefore, for a union operation r ∪ s to be valid, we require that two conditions
hold:

1. The relations r and s must be of the same arity. That is, they must have the
same number of attributes.

2. The domains of the ith attribute of r and the ith attribute of s must be the same,
for all i.

Note that r and s can be, in general, temporary relations that are the result of relational-
algebra expressions.

3.2.1.5 The Set Difference Operation
The set-difference operation, denoted by −, allows us to find tuples that are in one
relation but are not in another. The expression r − s produces a relation containing
those tuples in r but not in s.

We can find all customers of the bank who have an account but not a loan by
writing

Πcustomer -name (depositor) − Πcustomer -name (borrower)

The result relation for this query appears in Figure 3.13.
As with the union operation, we must ensure that set differences are taken be-

tween compatible relations. Therefore, for a set difference operation r − s to be valid,
we require that the relations r and s be of the same arity, and that the domains of the
ith attribute of r and the ith attribute of s be the same.

3.2.1.6 The Cartesian-Product Operation
The Cartesian-product operation, denoted by a cross (×), allows us to combine in-
formation from any two relations. We write the Cartesian product of relations r1 and
r2 as r1 × r2.

customer-name
Johnson
Lindsay
Turner

Figure 3.13 Customers with an account but no loan.
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Recall that a relation is by definition a subset of a Cartesian product of a set of
domains. From that definition, we should already have an intuition about the defi-
nition of the Cartesian-product operation. However, since the same attribute name
may appear in both r1 and r2, we need to devise a naming schema to distinguish
between these attributes. We do so here by attaching to an attribute the name of the
relation from which the attribute originally came. For example, the relation schema
for r = borrower × loan is

(borrower.customer-name, borrower.loan-number, loan.loan-number,
loan.branch-name, loan.amount)

With this schema, we can distinguish borrower.loan-number from loan.loan-number. For
those attributes that appear in only one of the two schemas, we shall usually drop
the relation-name prefix. This simplification does not lead to any ambiguity. We can
then write the relation schema for r as

(customer-name, borrower.loan-number, loan.loan-number,
branch-name, amount)

This naming convention requires that the relations that are the arguments of the
Cartesian-product operation have distinct names. This requirement causes problems
in some cases, such as when the Cartesian product of a relation with itself is desired.
A similar problem arises if we use the result of a relational-algebra expression in a
Cartesian product, since we shall need a name for the relation so that we can refer
to the relation’s attributes. In Section 3.2.1.7, we see how to avoid these problems by
using a rename operation.

Now that we know the relation schema for r = borrower × loan, what tuples ap-
pear in r? As you may suspect, we construct a tuple of r out of each possible pair of
tuples: one from the borrower relation and one from the loan relation. Thus, r is a large
relation, as you can see from Figure 3.14, which includes only a portion of the tuples
that make up r.

Assume that we have n1 tuples in borrower and n2 tuples in loan. Then, there are
n1 ∗ n2 ways of choosing a pair of tuples—one tuple from each relation; so there
are n1 ∗ n2 tuples in r. In particular, note that for some tuples t in r, it may be that
t[borrower.loan-number] �= t[loan.loan-number].

In general, if we have relations r1(R1) and r2(R2), then r1 × r2 is a relation whose
schema is the concatenation of R1 and R2. Relation R contains all tuples t for which
there is a tuple t1 in r1 and a tuple t2 in r2 for which t[R1] = t1[R1] and t[R2] =
t2[R2].

Suppose that we want to find the names of all customers who have a loan at the
Perryridge branch. We need the information in both the loan relation and the borrower
relation to do so. If we write

σbranch-name = “Perryridge”(borrower × loan)

then the result is the relation in Figure 3.15. We have a relation that pertains to only
the Perryridge branch. However, the customer-name column may contain customers
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customer-name
borrower. loan..

branch-name amountloan-number loan-number
Adams L-16 L-11 Round Hill

Round Hill

900
Adams L-16 L-14

DowntownDowntown

Downtown

1500
Adams L-16 L-15

Perryridge
Perryridge

1500
Adams L-16 L-16 1300
Adams L-16 L-17 1000
Adams L-16 L-23

Redwood

2000
Adams L-16 L-93

Mianus

Round Hill
Downtown

Downtown

Perryridge
Perryridge

Redwood
Mianus
Round Hill
Downtown

Downtown

Perryridge
Perryridge

Redwood
Mianus

Downtown

Downtown

Perryridge
Perryridge

Redwood
Mianus 500

Curry L-93 L-11 900
Curry L-93 L-14 1500
Curry L-93 L-15 1500
Curry L-93 L-16 1300
Curry L-93 L-17 1000
Curry L-93 L-23 2000
Curry L-93 L-93 500
Hayes L-15 L-11 900
Hayes L-15 L-14 1500
Hayes L-15 L-15 1500
Hayes L-15 L-16 1300
Hayes L-15 L-17 1000
Hayes L-15 L-23 2000
Hayes L-15 L-93 500

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
Smith L-23 L-11 900
Smith L-23 L-14 1500
Smith L-23 L-15 1500
Smith L-23 L-16 1300
Smith L-23 L-17 1000
Smith L-23 L-23 2000
Smith L-23 L-93 500
Williams L-17 L-11 900
Williams L-17 L-14 1500
Williams L-17 L-15 1500
Williams L-17 L-16 1300
Williams L-17 L-17 1000
Williams L-17 L-23 2000
Williams L-17 L-93 500

Figure 3.14 Result of borrower × loan.
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customer-name
borrower. loan.

branch-name amountloan-number loan-number
Adams L-16 L-15 Perryridge 1500
Adams L-16 L-16 Perryridge 1300
Curry L-93 L-15 Perryridge 1500
Curry L-93 L-16 Perryridge 1300
Hayes L-15 L-15 Perryridge 1500
Hayes L-15 L-16 Perryridge 1300
Jackson L-14 L-15 Perryridge 1500
Jackson L-14 L-16 Perryridge 1300
Jones L-17 L-15 Perryridge 1500
Jones L-17 L-16 Perryridge 1300
Smith L-11 L-15 Perryridge 1500
Smith L-11 L-16 Perryridge 1300
Smith L-23 L-15 Perryridge 1500
Smith L-23 L-16 Perryridge 1300
Williams L-17 L-15 Perryridge 1500
Williams L-17 L-16 Perryridge 1300

Figure 3.15 Result of σbranch-name = “Perryridge” (borrower × loan).

who do not have a loan at the Perryridge branch. (If you do not see why that is true,
recall that the Cartesian product takes all possible pairings of one tuple from borrower
with one tuple of loan.)

Since the Cartesian-product operation associates every tuple of loan with every tu-
ple of borrower, we know that, if a customer has a loan in the Perryridge branch, then
there is some tuple in borrower × loan that contains his name, and borrower.loan-number
= loan.loan-number. So, if we write

σborrower .loan-number = loan.loan-number

(σbranch-name = “Perryridge”(borrower × loan))

we get only those tuples of borrower × loan that pertain to customers who have a
loan at the Perryridge branch.

Finally, since we want only customer-name, we do a projection:

Πcustomer -name (σborrower .loan-number = loan.loan-number

(σbranch-name = “Perryridge” (borrower × loan)))

The result of this expression, shown in Figure 3.16, is the correct answer to our query.

3.2.1.7 The Rename Operation
Unlike relations in the database, the results of relational-algebra expressions do not
have a name that we can use to refer to them. It is useful to be able to give them
names; the rename operator, denoted by the lowercase Greek letter rho (ρ), lets us do
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customer-name
Adams
Hayes

Figure 3.16 Result of Πcustomer -name

(σborrower .loan-number = loan.loan-number

(σbranch-name = “Perryridge” (borrower × loan))).

this. Given a relational-algebra expression E, the expression

ρx (E)

returns the result of expression E under the name x.
A relation r by itself is considered a (trivial) relational-algebra expression. Thus,

we can also apply the rename operation to a relation r to get the same relation under
a new name.

A second form of the rename operation is as follows. Assume that a relational-
algebra expression E has arity n. Then, the expression

ρx(A1,A2,...,An) (E)

returns the result of expression E under the name x, and with the attributes renamed
to A1, A2, . . . , An.

To illustrate renaming a relation, we consider the query “Find the largest account
balance in the bank.” Our strategy is to (1) compute first a temporary relation consist-
ing of those balances that are not the largest and (2) take the set difference between
the relation Πbalance (account) and the temporary relation just computed, to obtain
the result.

Step 1: To compute the temporary relation, we need to compare the values of
all account balances. We do this comparison by computing the Cartesian product
account × account and forming a selection to compare the value of any two balances
appearing in one tuple. First, we need to devise a mechanism to distinguish between
the two balance attributes. We shall use the rename operation to rename one reference
to the account relation; thus we can reference the relation twice without ambiguity.

balance
500
400
700
750
350

Figure 3.17 Result of the subexpression
Πaccount.balance (σaccount.balance < d.balance (account × ρd (account))).
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balance
900

Figure 3.18 Largest account balance in the bank.

We can now write the temporary relation that consists of the balances that are not
the largest:

Πaccount.balance (σaccount.balance < d.balance (account × ρd (account)))

This expression gives those balances in the account relation for which a larger balance
appears somewhere in the account relation (renamed as d). The result contains all
balances except the largest one. Figure 3.17 shows this relation.

Step 2: The query to find the largest account balance in the bank can be written as:

Πbalance (account) −
Πaccount.balance (σaccount.balance < d.balance (account × ρd (account)))

Figure 3.18 shows the result of this query.
As one more example of the rename operation, consider the query “Find the names

of all customers who live on the same street and in the same city as Smith.” We can
obtain Smith’s street and city by writing

Πcustomer -street, customer -city (σcustomer -name = “Smith” (customer))

However, in order to find other customers with this street and city, we must refer-
ence the customer relation a second time. In the following query, we use the rename
operation on the preceding expression to give its result the name smith-addr, and to
rename its attributes to street and city, instead of customer-street and customer-city:

Πcustomer .customer -name

(σcustomer .customer -street=smith-addr .street ∧ customer .customer -city=smith-addr .city

(customer × ρsmith-addr(street,city)

(Πcustomer -street, customer -city (σcustomer -name = “Smith”(customer)))))

The result of this query, when we apply it to the customer relation of Figure 3.4, ap-
pears in Figure 3.19.

The rename operation is not strictly required, since it is possible to use a positional
notation for attributes. We can name attributes of a relation implicitly by using a po-
sitional notation, where $1, $2, . . . refer to the first attribute, the second attribute, and
so on. The positional notation also applies to results of relational-algebra operations.

customer-name
Curry
Smith

Figure 3.19 Customers who live on the same street and in the same city as Smith.
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The following relational-algebra expression illustrates the use of positional notation
with the unary operator σ:

σ$2=$3(R × R)

If a binary operation needs to distinguish between its two operand relations, a similar
positional notation can be used for relation names as well. For example, $R1 could
refer to the first operand, and $R2 could refer to the second operand. However, the
positional notation is inconvenient for humans, since the position of the attribute is a
number, rather than an easy-to-remember attribute name. Hence, we do not use the
positional notation in this textbook.

3.2.2 Formal Definition of the Relational Algebra
The operations in Section 3.2.1 allow us to give a complete definition of an expression
in the relational algebra. A basic expression in the relational algebra consists of either
one of the following:

• A relation in the database

• A constant relation

A constant relation is written by listing its tuples within { }, for example { (A-101,
Downtown, 500) (A-215, Mianus, 700) }.

A general expression in relational algebra is constructed out of smaller subexpres-
sions. Let E1 and E2 be relational-algebra expressions. Then, these are all relational-
algebra expressions:

• E1 ∪ E2

• E1 − E2

• E1 × E2

• σP (E1), where P is a predicate on attributes in E1

• ΠS(E1), where S is a list consisting of some of the attributes in E1

• ρx (E1), where x is the new name for the result of E1

3.2.3 Additional Operations
The fundamental operations of the relational algebra are sufficient to express any
relational-algebra query.1 However, if we restrict ourselves to just the fundamental
operations, certain common queries are lengthy to express. Therefore, we define ad-
ditional operations that do not add any power to the algebra, but simplify common
queries. For each new operation, we give an equivalent expression that uses only the
fundamental operations.

1. In Section 3.3, we introduce operations that extend the power of the relational algebra, to handle null
and aggregate values.
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3.2.3.1 The Set-Intersection Operation
The first additional-relational algebra operation that we shall define is set intersec-
tion (∩). Suppose that we wish to find all customers who have both a loan and an
account. Using set intersection, we can write

Πcustomer -name (borrower) ∩ Πcustomer -name (depositor)

The result relation for this query appears in Figure 3.20.
Note that we can rewrite any relational algebra expression that uses set intersec-

tion by replacing the intersection operation with a pair of set-difference operations
as:

r ∩ s = r − (r − s)

Thus, set intersection is not a fundamental operation and does not add any power
to the relational algebra. It is simply more convenient to write r ∩ s than to write
r − (r − s).

3.2.3.2 The Natural-Join Operation
It is often desirable to simplify certain queries that require a Cartesian product. Usu-
ally, a query that involves a Cartesian product includes a selection operation on the
result of the Cartesian product. Consider the query “Find the names of all customers
who have a loan at the bank, along with the loan number and the loan amount.” We
first form the Cartesian product of the borrower and loan relations. Then, we select
those tuples that pertain to only the same loan-number, followed by the projection of
the resulting customer-name, loan-number, and amount:

Πcustomer -name, loan.loan-number , amount

(σborrower .loan-number = loan.loan-number (borrower × loan))

The natural join is a binary operation that allows us to combine certain selections and
a Cartesian product into one operation. It is denoted by the “join” symbol �. The
natural-join operation forms a Cartesian product of its two arguments, performs a
selection forcing equality on those attributes that appear in both relation schemas,
and finally removes duplicate attributes.

Although the definition of natural join is complicated, the operation is easy to
apply. As an illustration, consider again the example “Find the names of all customers
who have a loan at the bank, and find the amount of the loan.” We express this query

customer-name
Hayes
Jones
Smith

Figure 3.20 Customers with both an account and a loan at the bank.
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customer-name loan-number amount
Adams L-16 1300
Curry L-93 500
Hayes L-15 1500
Jackson L-14 1500
Jones L-17 1000
Smith L-23 2000
Smith L-11 900
Williams L-17 1000

Figure 3.21 Result of Πcustomer -name, loan-number , amount (borrower � loan).

by using the natural join as follows:

Πcustomer -name, loan-number , amount (borrower � loan)

Since the schemas for borrower and loan (that is, Borrower-schema and Loan-schema)
have the attribute loan-number in common, the natural-join operation considers only
pairs of tuples that have the same value on loan-number. It combines each such pair
of tuples into a single tuple on the union of the two schemas (that is, customer-name,
branch-name, loan-number, amount). After performing the projection, we obtain the re-
lation in Figure 3.21.

Consider two relation schemas R and S—which are, of course, lists of attribute
names. If we consider the schemas to be sets, rather than lists, we can denote those
attribute names that appear in both R and S by R ∩ S, and denote those attribute
names that appear in R, in S, or in both by R ∪ S. Similarly, those attribute names that
appear in R but not S are denoted by R − S, whereas S − R denotes those attribute
names that appear in S but not in R. Note that the union, intersection, and difference
operations here are on sets of attributes, rather than on relations.

We are now ready for a formal definition of the natural join. Consider two relations
r(R) and s(S). The natural join of r and s, denoted by r � s, is a relation on schema
R ∪ S formally defined as follows:

r � s = ΠR ∪ S (σr.A1 = s.A1 ∧ r.A2 = s.A2 ∧ ...∧ r.An = s.An
r × s)

where R ∩ S = {A1, A2, . . . , An}.
Because the natural join is central to much of relational-database theory and prac-

tice, we give several examples of its use.

branch-name
Brighton
Perryridge

Figure 3.22 Result of
Πbranch-name(σcustomer -city = “Harrison” (customer � account � depositor)).
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• Find the names of all branches with customers who have an account in the
bank and who live in Harrison.

Πbranch-name

(σcustomer -city = “Harrison” (customer � account � depositor))

The result relation for this query appears in Figure 3.22.
Notice that we wrote customer � account � depositor without inserting

parentheses to specify the order in which the natural-join operations on the
three relations should be executed. In the preceding case, there are two possi-
bilities:
� (customer � account) � depositor
� customer � (account � depositor)

We did not specify which expression we intended, because the two are equiv-
alent. That is, the natural join is associative.

• Find all customers who have both a loan and an account at the bank.

Πcustomer -name (borrower � depositor)

Note that in Section 3.2.3.1 we wrote an expression for this query by using set
intersection. We repeat this expression here.

Πcustomer -name (borrower) ∩ Πcustomer -name (depositor)

The result relation for this query appeared earlier in Figure 3.20. This example
illustrates a general fact about the relational algebra: It is possible to write
several equivalent relational-algebra expressions that are quite different from
one another.

• Let r(R) and s(S) be relations without any attributes in common; that is,
R ∩ S = ∅. (∅ denotes the empty set.) Then, r � s = r × s.

The theta join operation is an extension to the natural-join operation that allows
us to combine a selection and a Cartesian product into a single operation. Consider
relations r(R) and s(S), and let θ be a predicate on attributes in the schema R ∪ S.
The theta join operation r �θ s is defined as follows:

r �θ s = σθ(r × s)

3.2.3.3 The Division Operation
The division operation, denoted by ÷, is suited to queries that include the phrase
“for all.” Suppose that we wish to find all customers who have an account at all the
branches located in Brooklyn. We can obtain all branches in Brooklyn by the expres-
sion

r1 = Πbranch-name (σbranch-city = “Brooklyn” (branch))

The result relation for this expression appears in Figure 3.23.
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branch-name
Brighton
Downtown

Figure 3.23 Result of Πbranch-name(σbranch-city = “Brooklyn” (branch).

We can find all (customer-name, branch-name) pairs for which the customer has an
account at a branch by writing

r2 = Πcustomer -name, branch-name (depositor � account)

Figure 3.24 shows the result relation for this expression.
Now, we need to find customers who appear in r2 with every branch name in

r1. The operation that provides exactly those customers is the divide operation. We
formulate the query by writing

Πcustomer -name, branch-name (depositor � account)
÷ Πbranch-name (σbranch-city = “Brooklyn” (branch))

The result of this expression is a relation that has the schema (customer-name) and that
contains the tuple (Johnson).

Formally, let r(R) and s(S) be relations, and let S ⊆ R; that is, every attribute of
schema S is also in schema R. The relation r ÷ s is a relation on schema R − S (that
is, on the schema containing all attributes of schema R that are not in schema S). A
tuple t is in r ÷ s if and only if both of two conditions hold:

1. t is in ΠR−S(r)

2. For every tuple ts in s, there is a tuple tr in r satisfying both of the following:
a. tr[S] = ts[S]
b. tr[R − S] = t

It may surprise you to discover that, given a division operation and the schemas of
the relations, we can, in fact, define the division operation in terms of the fundamen-
tal operations. Let r(R) and s(S) be given, with S ⊆ R:

r ÷ s = ΠR−S (r) − ΠR−S ((ΠR−S (r) × s) − ΠR−S,S(r))

customer-name branch-name
Hayes Perryridge
Johnson Downtown
Johnson Brighton
Jones Brighton
Lindsay Redwood
Smith Mianus
Turner Round Hill

Figure 3.24 Result of Πcustomer -name, branch-name (depositor � account).
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To see that this expression is true, we observe that ΠR−S (r) gives us all tuples t that
satisfy the first condition of the definition of division. The expression on the right
side of the set difference operator

ΠR−S ((ΠR−S (r) × s) − ΠR−S,S(r))

serves to eliminate those tuples that fail to satisfy the second condition of the defini-
tion of division. Let us see how it does so. Consider ΠR−S (r) × s. This relation is
on schema R, and pairs every tuple in ΠR−S (r) with every tuple in s. The expression
ΠR−S,S(r) merely reorders the attributes of r.

Thus, (ΠR−S (r) × s) − ΠR−S,S(r) gives us those pairs of tuples from ΠR−S (r)
and s that do not appear in r. If a tuple tj is in

ΠR−S ((ΠR−S (r) × s) − ΠR−S,S(r))

then there is some tuple ts in s that does not combine with tuple tj to form a tuple in
r. Thus, tj holds a value for attributes R − S that does not appear in r ÷ s. It is these
values that we eliminate from ΠR−S (r).

3.2.3.4 The Assignment Operation
It is convenient at times to write a relational-algebra expression by assigning parts of
it to temporary relation variables. The assignment operation, denoted by ←, works
like assignment in a programming language. To illustrate this operation, consider the
definition of division in Section 3.2.3.3. We could write r ÷ s as

temp1 ← ΠR−S (r)
temp2 ← ΠR−S ((temp1 × s) − ΠR−S,S(r))
result = temp1 − temp2

The evaluation of an assignment does not result in any relation being displayed to
the user. Rather, the result of the expression to the right of the ← is assigned to the
relation variable on the left of the ←. This relation variable may be used in subsequent
expressions.

With the assignment operation, a query can be written as a sequential program
consisting of a series of assignments followed by an expression whose value is dis-
played as the result of the query. For relational-algebra queries, assignment must
always be made to a temporary relation variable. Assignments to permanent rela-
tions constitute a database modification. We discuss this issue in Section 3.4. Note
that the assignment operation does not provide any additional power to the algebra.
It is, however, a convenient way to express complex queries.

3.3 Extended Relational-Algebra Operations
The basic relational-algebra operations have been extended in several ways. A simple
extension is to allow arithmetic operations as part of projection. An important exten-
sion is to allow aggregate operations such as computing the sum of the elements of a
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customer-name limit credit-balance
Curry 2000 1750
Hayes 1500 1500
Jones 6000 700
Smith 2000 400

Figure 3.25 The credit-info relation.

set, or their average. Another important extension is the outer-join operation, which
allows relational-algebra expressions to deal with null values, which model missing
information.

3.3.1 Generalized Projection
The generalized-projection operation extends the projection operation by allowing
arithmetic functions to be used in the projection list. The generalized projection op-
eration has the form

ΠF1,F2,...,Fn
(E)

where E is any relational-algebra expression, and each of F1, F2, . . . , Fn is an arith-
metic expression involving constants and attributes in the schema of E. As a special
case, the arithmetic expression may be simply an attribute or a constant.

For example, suppose we have a relation credit-info, as in Figure 3.25, which lists
the credit limit and expenses so far (the credit-balance on the account). If we want to
find how much more each person can spend, we can write the following expression:

Πcustomer -name, limit − credit-balance (credit-info)

The attribute resulting from the expression limit − credit -balance does not have a
name. We can apply the rename operation to the result of generalized projection in
order to give it a name. As a notational convenience, renaming of attributes can be
combined with generalized projection as illustrated below:

Πcustomer -name, (limit − credit-balance) as credit-available (credit-info)

The second attribute of this generalized projection has been given the name credit-
available. Figure 3.26 shows the result of applying this expression to the relation in
Figure 3.25.

3.3.2 Aggregate Functions
Aggregate functions take a collection of values and return a single value as a result.
For example, the aggregate function sum takes a collection of values and returns the
sum of the values. Thus, the function sum applied on the collection

{1, 1, 3, 4, 4, 11}
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customer-name credit-available
Curry 250
Jones 5300
Smith 1600
Hayes 0

Figure 3.26 The result of Πcustomer -name, (limit − credit-balance) as credit-available
(credit-info).

returns the value 24. The aggregate function avg returns the average of the values.
When applied to the preceding collection, it returns the value 4. The aggregate func-
tion count returns the number of the elements in the collection, and returns 6 on
the preceding collection. Other common aggregate functions include min and max,
which return the minimum and maximum values in a collection; they return 1 and
11, respectively, on the preceding collection.

The collections on which aggregate functions operate can have multiple occur-
rences of a value; the order in which the values appear is not relevant. Such collec-
tions are called multisets. Sets are a special case of multisets where there is only one
copy of each element.

To illustrate the concept of aggregation, we shall use the pt-works relation in Fig-
ure 3.27, for part-time employees. Suppose that we want to find out the total sum of
salaries of all the part-time employees in the bank. The relational-algebra expression
for this query is:

Gsum(salary)(pt-works)

The symbol G is the letter G in calligraphic font; read it as “calligraphic G.” The
relational-algebra operation G signifies that aggregation is to be applied, and its sub-
script specifies the aggregate operation to be applied. The result of the expression
above is a relation with a single attribute, containing a single row with a numerical
value corresponding to the sum of all the salaries of all employees working part-time
in the bank.

employee-name branch-name salary
Adams Perryridge 1500
Brown Perryridge 1300
Gopal Perryridge 5300
Johnson Downtown 1500
Loreena Downtown 1300
Peterson Downtown 2500
Rao Austin 1500
Sato Austin 1600

Figure 3.27 The pt-works relation.
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There are cases where we must eliminate multiple occurrences of a value before
computing an aggregate function. If we do want to eliminate duplicates, we use the
same function names as before, with the addition of the hyphenated string “distinct”
appended to the end of the function name (for example, count-distinct). An example
arises in the query “Find the number of branches appearing in the pt-works relation.”
In this case, a branch name counts only once, regardless of the number of employees
working that branch. We write this query as follows:

Gcount-distinct(branch-name)(pt-works)

For the relation in Figure 3.27, the result of this query is a single row containing the
value 3.

Suppose we want to find the total salary sum of all part-time employees at each
branch of the bank separately, rather than the sum for the entire bank. To do so, we
need to partition the relation pt-works into groups based on the branch, and to apply
the aggregate function on each group.

The following expression using the aggregation operator G achieves the desired
result:

branch-nameGsum(salary)(pt-works)

In the expression, the attribute branch-name in the left-hand subscript of G indicates
that the input relation pt-works must be divided into groups based on the value of
branch-name. Figure 3.28 shows the resulting groups. The expression sum(salary) in
the right-hand subscript of G indicates that for each group of tuples (that is, each
branch), the aggregation function sum must be applied on the collection of values of
the salary attribute. The output relation consists of tuples with the branch name, and
the sum of the salaries for the branch, as shown in Figure 3.29.

The general form of the aggregation operation G is as follows:

G1,G2,...,Gn
GF1(A1), F2(A2),..., Fm(Am)(E)

where E is any relational-algebra expression; G1, G2, . . . , Gn constitute a list of at-
tributes on which to group; each Fi is an aggregate function; and each Ai is an at-

employee-name branch-name salary
Rao Austin 1500
Sato Austin 1600
Johnson Downtown 1500
Loreena Downtown 1300
Peterson Downtown 2500
Adams Perryridge 1500
Brown Perryridge 1300
Gopal Perryridge 5300

Figure 3.28 The pt-works relation after grouping.
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branch-name sum of salary
Austin 3100
Downtown 5300
Perryridge 8100

Figure 3.29 Result of branch-nameGsum(salary)(pt-works).

tribute name. The meaning of the operation is as follows. The tuples in the result of
expression E are partitioned into groups in such a way that

1. All tuples in a group have the same values for G1, G2, . . . , Gn.

2. Tuples in different groups have different values for G1, G2, . . . , Gn.

Thus, the groups can be identified by the values of attributes G1, G2, . . . , Gn. For each
group (g1, g2, . . . , gn), the result has a tuple (g1, g2, . . . , gn, a1, a2, . . . , am) where, for
each i, ai is the result of applying the aggregate function Fi on the multiset of values
for attribute Ai in the group.

As a special case of the aggregate operation, the list of attributes G1, G2, . . . , Gn can
be empty, in which case there is a single group containing all tuples in the relation.
This corresponds to aggregation without grouping.

Going back to our earlier example, if we want to find the maximum salary for
part-time employees at each branch, in addition to the sum of the salaries, we write
the expression

branch-nameGsum(salary),max(salary)(pt-works)

As in generalized projection, the result of an aggregation operation does not have a
name. We can apply a rename operation to the result in order to give it a name. As
a notational convenience, attributes of an aggregation operation can be renamed as
illustrated below:

branch-nameGsum(salary) as sum-salary,max(salary) as max -salary(pt-works)

Figure 3.30 shows the result of the expression.

branch-name sum-salary max-salary
Austin 3100 1600
Downtown 5300 2500
Perryridge 8100 5300

Figure 3.30 Result of
branch-nameGsum(salary) as sum-salary,max(salary) as max -salary(pt-works).
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employee-name street city
Coyote Toon Hollywood
Rabbit Tunnel Carrotville
Smith Revolver Death Valley
Williams Seaview Seattle

employee-name branch-name salary
Coyote Mesa 1500
Rabbit Mesa 1300
Gates Redmond 5300
Williams Redmond 1500

Figure 3.31 The employee and ft-works relations.

3.3.3 Outer Join
The outer-join operation is an extension of the join operation to deal with missing
information. Suppose that we have the relations with the following schemas, which
contain data on full-time employees:

employee (employee-name, street, city)
ft-works (employee-name, branch-name, salary)

Consider the employee and ft-works relations in Figure 3.31. Suppose that we want
to generate a single relation with all the information (street, city, branch name, and
salary) about full-time employees. A possible approach would be to use the natural-
join operation as follows:

employee � ft-works

The result of this expression appears in Figure 3.32. Notice that we have lost the street
and city information about Smith, since the tuple describing Smith is absent from
the ft-works relation; similarly, we have lost the branch name and salary information
about Gates, since the tuple describing Gates is absent from the employee relation.

We can use the outer-join operation to avoid this loss of information. There are
actually three forms of the operation: left outer join, denoted �; right outer join, de-
noted � ; and full outer join, denoted � . All three forms of outer join compute the
join, and add extra tuples to the result of the join. The results of the expressions

employee-name street city branch-name salary
Coyote Toon Hollywood Mesa 1500
Rabbit Tunnel Carrotville Mesa 1300
Williams Seaview Seattle Redmond 1500

Figure 3.32 The result of employee � ft-works .
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employee-name street city branch-name salary
Coyote Toon Hollywood Mesa 1500
Rabbit Tunnel Carrotville Mesa 1300
Williams Seaview Seattle Redmond 1500
Smith Revolver Death Valley null null

Figure 3.33 Result of employee � ft-works .

employee � ft-works ,, employee � ft-works , and employee � ft-works appear in
Figures 3.33, 3.34, and 3.35, respectively.

The left outer join ( �) takes all tuples in the left relation that did not match with
any tuple in the right relation, pads the tuples with null values for all other attributes
from the right relation, and adds them to the result of the natural join. In Figure 3.33,
tuple (Smith, Revolver, Death Valley, null, null) is such a tuple. All information from
the left relation is present in the result of the left outer join.

The right outer join (� ) is symmetric with the left outer join: It pads tuples from
the right relation that did not match any from the left relation with nulls and adds
them to the result of the natural join. In Figure 3.34, tuple (Gates, null, null, Redmond,
5300) is such a tuple. Thus, all information from the right relation is present in the
result of the right outer join.

The full outer join( � ) does both of those operations, padding tuples from the
left relation that did not match any from the right relation, as well as tuples from the
right relation that did not match any from the left relation, and adding them to the
result of the join. Figure 3.35 shows the result of a full outer join.

Since outer join operations may generate results containing null values, we need
to specify how the different relational-algebra operations deal with null values. Sec-
tion 3.3.4 deals with this issue.

It is interesting to note that the outer join operations can be expressed by the basic
relational-algebra operations. For instance, the left outer join operation, r � s, can
be written as

(r � s) ∪ (r − ΠR(r � s)) × {(null, . . . , null)}

where the constant relation {(null, . . . , null)} is on the schema S − R.

employee-name street city branch-name salary
Coyote Toon Hollywood Mesa 1500
Rabbit Tunnel Carrotville Mesa 1300
Williams Seaview Seattle Redmond 1500
Gates null null Redmond 5300

Figure 3.34 Result of employee � ft-works .
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employee-name street city branch-name salary
Coyote Toon Hollywood Mesa 1500
Rabbit Tunnel Carrotville Mesa 1300
Williams Seaview Seattle Redmond 1500
Smith Revolver Death Valley null null
Gates null null Redmond 5300

Figure 3.35 Result of employee � ft-works .

3.3.4 Null Values∗∗
In this section, we define how the various relational algebra operations deal with null
values and complications that arise when a null value participates in an arithmetic
operation or in a comparison. As we shall see, there is often more than one possible
way of dealing with null values, and as a result our definitions can sometimes be
arbitrary. Operations and comparisons on null values should therefore be avoided,
where possible.

Since the special value null indicates “value unknown or nonexistent,” any arith-
metic operations (such as +,−, ∗, /) involving null values must return a null result.

Similarly, any comparisons (such as <, <=, >, >=, �=) involving a null value eval-
uate to special value unknown; we cannot say for sure whether the result of the
comparison is true or false, so we say that the result is the new truth value unknown.

Comparisons involving nulls may occur inside Boolean expressions involving the
and, or, and not operations. We must therefore define how the three Boolean opera-
tions deal with the truth value unknown.

• and: (true and unknown) = unknown; (false and unknown) = false; (unknown and
unknown) = unknown.

• or: (true or unknown) = true; (false or unknown) = unknown; (unknown or un-
known) = unknown.

• not: (not unknown) = unknown.

We are now in a position to outline how the different relational operations deal
with null values. Our definitions follow those used in the SQL language.

• select: The selection operation evaluates predicate P in σP (E) on each tuple t
in E. If the predicate returns the value true, t is added to the result. Otherwise,
if the predicate returns unknown or false, t is not added to the result.

• join: Joins can be expressed as a cross product followed by a selection. Thus,
the definition of how selection handles nulls also defines how join operations
handle nulls.

In a natural join, say r � s, we can see from the above definition that if two
tuples, tr ∈ r and ts ∈ s, both have a null value in a common attribute, then
the tuples do not match.
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• projection: The projection operation treats nulls just like any other value when
eliminating duplicates. Thus, if two tuples in the projection result are exactly
the same, and both have nulls in the same fields, they are treated as duplicates.

The decision is a little arbitrary since, without knowing the actual value,
we do not know if the two instances of null are duplicates or not.

• union, intersection, difference: These operations treat nulls just as the projec-
tion operation does; they treat tuples that have the same values on all fields as
duplicates even if some of the fields have null values in both tuples.

The behavior is rather arbitrary, especially in the case of intersection and
difference, since we do not know if the actual values (if any) represented by
the nulls are the same.

• generalized projection: We outlined how nulls are handled in expressions
at the beginning of Section 3.3.4. Duplicate tuples containing null values are
handled as in the projection operation.

• aggregate: When nulls occur in grouping attributes, the aggregate operation
treats them just as in projection: If two tuples are the same on all grouping
attributes, the operation places them in the same group, even if some of their
attribute values are null.

When nulls occur in aggregated attributes, the operation deletes null values
at the outset, before applying aggregation. If the resultant multiset is empty,
the aggregate result is null.

Note that the treatment of nulls here is different from that in ordinary arith-
metic expressions; we could have defined the result of an aggregate operation
as null if even one of the aggregated values is null. However, this would mean
a single unknown value in a large group could make the aggregate result on
the group to be null, and we would lose a lot of useful information.

• outer join: Outer join operations behave just like join operations, except on
tuples that do not occur in the join result. Such tuples may be added to the
result (depending on whether the operation is �,� , or � ), padded with
nulls.

3.4 Modification of the Database
We have limited our attention until now to the extraction of information from the
database. In this section, we address how to add, remove, or change information in
the database.

We express database modifications by using the assignment operation. We make
assignments to actual database relations by using the same notation as that described
in Section 3.2.3 for assignment.

3.4.1 Deletion
We express a delete request in much the same way as a query. However, instead of
displaying tuples to the user, we remove the selected tuples from the database. We
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can delete only whole tuples; we cannot delete values on only particular attributes.
In relational algebra a deletion is expressed by

r ← r − E

where r is a relation and E is a relational-algebra query.
Here are several examples of relational-algebra delete requests:

• Delete all of Smith’s account records.

depositor ← depositor − σcustomer -name = “Smith” (depositor)

• Delete all loans with amount in the range 0 to 50.

loan ← loan − σamount≥0 and amount≤50 (loan)

• Delete all accounts at branches located in Needham.

r1 ← σbranch-city = “Needham” (account � branch)
r2 ← Πbranch-name, account-number , balance (r1)
account ← account − r2

Note that, in the final example, we simplified our expression by using assign-
ment to temporary relations (r1 and r2).

3.4.2 Insertion
To insert data into a relation, we either specify a tuple to be inserted or write a query
whose result is a set of tuples to be inserted. Obviously, the attribute values for in-
serted tuples must be members of the attribute’s domain. Similarly, tuples inserted
must be of the correct arity. The relational algebra expresses an insertion by

r ← r ∪ E

where r is a relation and E is a relational-algebra expression. We express the insertion
of a single tuple by letting E be a constant relation containing one tuple.

Suppose that we wish to insert the fact that Smith has $1200 in account A-973 at
the Perryridge branch. We write

account ← account ∪ {(A-973, “Perryridge”, 1200)}
depositor ← depositor ∪ {(“Smith”, A-973)}

More generally, we might want to insert tuples on the basis of the result of a query.
Suppose that we want to provide as a gift for all loan customers of the Perryridge
branch a new $200 savings account. Let the loan number serve as the account number
for this savings account. We write

r1 ← (σbranch-name = “Perryridge” (borrower � loan))
r2 ← Πloan-number, branch-name (r1)
account ← account ∪ (r2 × {(200)})
depositor ← depositor ∪ Πcustomer -name, loan-number (r1)
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Instead of specifying a tuple as we did earlier, we specify a set of tuples that is in-
serted into both the account and depositor relation. Each tuple in the account relation
has an account-number (which is the same as the loan number), a branch-name (Per-
ryridge), and the initial balance of the new account ($200). Each tuple in the depositor
relation has as customer-name the name of the loan customer who is being given the
new account and the same account number as the corresponding account tuple.

3.4.3 Updating
In certain situations, we may wish to change a value in a tuple without changing all
values in the tuple. We can use the generalized-projection operator to do this task:

r ← ΠF1,F2,...,Fn
(r)

where each Fi is either the ith attribute of r, if the ith attribute is not updated, or, if
the attribute is to be updated, Fi is an expression, involving only constants and the
attributes of r, that gives the new value for the attribute.

If we want to select some tuples from r and to update only them, we can use
the following expression; here, P denotes the selection condition that chooses which
tuples to update:

r ← ΠF1,F2,...,Fn
(σP (r)) ∪ (r − σP (r))

To illustrate the use of the update operation, suppose that interest payments are
being made, and that all balances are to be increased by 5 percent. We write

account ← Πaccount-number, branch-name, balance ∗1.05 (account)

Now suppose that accounts with balances over $10,000 receive 6 percent interest,
whereas all others receive 5 percent. We write

account ← ΠAN,BN, balance ∗1.06 (σbalance>10000 (account))
∪ ΠAN , BN balance ∗1.05 (σbalance≤10000 (account))

where the abbreviations AN and BN stand for account-number and branch-name, re-
spectively.

3.5 Views
In our examples up to this point, we have operated at the logical-model level. That
is, we have assumed that the relations in thecollection we are given are the actual
relations stored in the database.

It is not desirable for all users to see the entire logical model. Security consider-
ations may require that certain data be hidden from users. Consider a person who
needs to know a customer’s loan number and branch name, but has no need to see
the loan amount. This person should see a relation described, in the relational alge-
bra, by

Πcustomer -name, loan-number , branch-name (borrower � loan)

Aside from security concerns, we may wish to create a personalized collection of
relations that is better matched to a certain user’s intuition than is the logical model.
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An employee in the advertising department, for example, might like to see a relation
consisting of the customers who have either an account or a loan at the bank, and
the branches with which they do business. The relation that we would create for that
employee is

Πbranch-name, customer -name (depositor � account)
∪ Πbranch-name, customer -name (borrower � loan)

Any relation that is not part of the logical model, but is made visible to a user as a
virtual relation, is called a view. It is possible to support a large number of views on
top of any given set of actual relations.

3.5.1 View Definition
We define a view by using the create view statement. To define a view, we must give
the view a name, and must state the query that computes the view. The form of the
create view statement is

create view v as <query expression>

where <query expression> is any legal relational-algebra query expression. The view
name is represented by v.

As an example, consider the view consisting of branches and their customers. We
wish this view to be called all-customer. We define this view as follows:

create view all-customer as
Πbranch-name, customer -name (depositor � account)

∪ Πbranch-name, customer -name (borrower � loan)

Once we have defined a view, we can use the view name to refer to the virtual re-
lation that the view generates. Using the view all-customer, we can find all customers
of the Perryridge branch by writing

Πcustomer -name (σbranch-name = “Perryridge” (all-customer))

Recall that we wrote the same query in Section 3.2.1 without using views.
View names may appear in any place where a relation name may appear, so long

as no update operations are executed on the views. We study the issue of update
operations on views in Section 3.5.2.

View definition differs from the relational-algebra assignment operation. Suppose
that we define relation r1 as follows:

r1 ← Πbranch-name, customer -name (depositor � account)
∪ Πbranch-name, customer -name(borrower � loan)

We evaluate the assignment operation once, and r1 does not change when we up-
date the relations depositor, account, loan, or borrower. In contrast, any modification
we make to these relations changes the set of tuples in the view all-customer as well.
Intuitively, at any given time, the set of tuples in the view relation is the result of
evaluation of the query expression that defines the view at that time.
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Thus, if a view relation is computed and stored, it may become out of date if the
relations used to define it are modified. To avoid this, views are usually implemented
as follows. When we define a view, the database system stores the definition of the
view itself, rather than the result of evaluation of the relational-algebra expression
that defines the view. Wherever a view relation appears in a query, it is replaced by
the stored query expression. Thus, whenever we evaluate the query, the view relation
gets recomputed.

Certain database systems allow view relations to be stored, but they make sure
that, if the actual relations used in the view definition change, the view is kept up
to date. Such views are called materialized views. The process of keeping the view
up to date is called view maintenance, covered in Section 14.5. Applications that use
a view frequently benefit from the use of materialized views, as do applications that
demand fast response to certain view-based queries. Of course, the benefits to queries
from the materialization of a view must be weighed against the storage costs and the
added overhead for updates.

3.5.2 Updates through Views and Null Values
Although views are a useful tool for queries, they present serious problems if we ex-
press updates, insertions, or deletions with them. The difficulty is that a modification
to the database expressed in terms of a view must be translated to a modification to
the actual relations in the logical model of the database.

To illustrate the problem, consider a clerk who needs to see all loan data in the loan
relation, except loan-amount. Let loan-branch be the view given to the clerk. We define
this view as

create view loan-branch as
Πloan-number , branch-name (loan)

Since we allow a view name to appear wherever a relation name is allowed, the clerk
can write:

loan-branch ← loan-branch ∪ {(L-37, “Perryridge”)}

This insertion must be represented by an insertion into the relation loan, since loan is
the actual relation from which the database system constructs the view loan-branch.
However, to insert a tuple into loan, we must have some value for amount. There are
two reasonable approaches to dealing with this insertion:

• Reject the insertion, and return an error message to the user.

• Insert a tuple (L-37, “Perryridge”, null) into the loan relation.

Another problem with modification of the database through views occurs with a
view such as

create view loan-info as
Πcustomer -name, amount(borrower � loan)
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loan-number branch-name amount
L-11 Round Hill 900
L-14 Downtown 1500
L-15 Perryridge

Perryridge
1500

L-16 1300
L-17 Downtown 1000
L-23 Redwood 2000
L-93 Mianus 500
null null 1900

customer-name loan-number
Adams L-16
Curry L-93
Hayes L-15
Jackson L-14
Jones L-17
Smith L-11
Smith L-23
Williams L-17
Johnson null

Figure 3.36 Tuples inserted into loan and borrower.

This view lists the loan amount for each loan that any customer of the bank has.
Consider the following insertion through this view:

loan-info ← loan-info ∪ {(“Johnson”, 1900)}

The only possible method of inserting tuples into the borrower and loan relations is to
insert (“Johnson”, null) into borrower and (null, null, 1900) into loan. Then, we obtain
the relations shown in Figure 3.36. However, this update does not have the desired
effect, since the view relation loan-info still does not include the tuple (“Johnson”,
1900). Thus, there is no way to update the relations borrower and loan by using nulls
to get the desired update on loan-info.

Because of problems such as these, modifications are generally not permitted on
view relations, except in limited cases. Different database systems specify different
conditions under which they permit updates on view relations; see the database
system manuals for details. The general problem of database modification through
views has been the subject of substantial research, and the bibliographic notes pro-
vide pointers to some of this research.

3.5.3 Views Defined by Using Other Views
In Section 3.5.1 we mentioned that view relations may appear in any place that a
relation name may appear, except for restrictions on the use of views in update ex-



Silberschatz−Korth−Sudarshan: 
Database System 
Concepts, Fourth Edition

I. Data Models 3. Relational Model 125© The McGraw−Hill 
Companies, 2001

3.5 Views 117

pressions. Thus, one view may be used in the expression defining another view. For
example, we can define the view perryridge-customer as follows:

create view perryridge-customer as
Πcustomer -name (σbranch-name = “Perryridge” (all-customer))

where all-customer is itself a view relation.
View expansion is one way to define the meaning of views defined in terms of

other views. The procedure assumes that view definitions are not recursive; that is,
no view is used in its own definition, whether directly, or indirectly through other
view definitions. For example, if v1 is used in the definition of v2, v2 is used in the
definition of v3, and v3 is used in the definition of v1, then each of v1, v2, and v3
is recursive. Recursive view definitions are useful in some situations, and we revisit
them in the context of the Datalog language, in Section 5.2.

Let view v1 be defined by an expression e1 that may itself contain uses of view
relations. A view relation stands for the expression defining the view, and therefore
a view relation can be replaced by the expression that defines it. If we modify an ex-
pression by replacing a view relation by the latter’s definition, the resultant expres-
sion may still contain other view relations. Hence, view expansion of an expression
repeats the replacement step as follows:

repeat
Find any view relation vi in e1

Replace the view relation vi by the expression defining vi

until no more view relations are present in e1

As long as the view definitions are not recursive, this loop will terminate. Thus, an
expression e containing view relations can be understood as the expression resulting
from view expansion of e, which does not contain any view relations.

As an illustration of view expansion, consider the following expression:

σcustomer -name=“John”( perryridge-customer)

The view-expansion procedure initially generates

σcustomer -name=“John”(Πcustomer -name (σbranch-name = “Perryridge”

(all-customer)))

It then generates

σcustomer -name=“John” (Πcustomer -name (σbranch-name = “Perryridge”

(Πbranch-name, customer -name (depositor � account)
∪ Πbranch-name, customer -name (borrower � loan))))

There are no more uses of view relations, and view expansion terminates.



Silberschatz−Korth−Sudarshan: 
Database System 
Concepts, Fourth Edition

I. Data Models 3. Relational Model126 © The McGraw−Hill 
Companies, 2001

118 Chapter 3 Relational Model

3.6 The Tuple Relational Calculus
When we write a relational-algebra expression, we provide a sequence of procedures
that generates the answer to our query. The tuple relational calculus, by contrast, is a
nonprocedural query language. It describes the desired information without giving
a specific procedure for obtaining that information.

A query in the tuple relational calculus is expressed as

{t | P (t)}
that is, it is the set of all tuples t such that predicate P is true for t. Following our
earlier notation, we use t[A] to denote the value of tuple t on attribute A, and we use
t ∈ r to denote that tuple t is in relation r.

Before we give a formal definition of the tuple relational calculus, we return to
some of the queries for which we wrote relational-algebra expressions in Section 3.2.

3.6.1 Example Queries
Say that we want to find the branch-name, loan-number, and amount for loans of over
$1200:

{t | t ∈ loan ∧ t[amount ] > 1200}
Suppose that we want only the loan-number attribute, rather than all attributes of the
loan relation. To write this query in the tuple relational calculus, we need to write
an expression for a relation on the schema (loan-number). We need those tuples on
(loan-number) such that there is a tuple in loan with the amount attribute > 1200. To
express this request, we need the construct “there exists” from mathematical logic.
The notation

∃ t ∈ r (Q(t))
means “there exists a tuple t in relation r such that predicate Q(t) is true.”

Using this notation, we can write the query “Find the loan number for each loan
of an amount greater than $1200” as

{t | ∃ s ∈ loan (t[loan-number ] = s[loan-number ]
∧ s[amount ] > 1200)}

In English, we read the preceding expression as “The set of all tuples t such that there
exists a tuple s in relation loan for which the values of t and s for the loan-number
attribute are equal, and the value of s for the amount attribute is greater than $1200.”

Tuple variable t is defined on only the loan-number attribute, since that is the only
attribute having a condition specified for t. Thus, the result is a relation on (loan-
number).

Consider the query “Find the names of all customers who have a loan from the
Perryridge branch.” This query is slightly more complex than the previous queries,
since it involves two relations: borrower and loan. As we shall see, however, all it
requires is that we have two “there exists” clauses in our tuple-relational-calculus
expression, connected by and (∧). We write the query as follows:
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{t | ∃ s ∈ borrower (t[customer -name] = s[customer -name]
∧ ∃ u ∈ loan (u[loan-number ] = s[loan-number ]

∧ u[branch-name] = “Perryridge”))}
In English, this expression is “The set of all (customer-name) tuples for which the cus-
tomer has a loan that is at the Perryridge branch.” Tuple variable u ensures that the
customer is a borrower at the Perryridge branch. Tuple variable s is restricted to per-
tain to the same loan number as s. Figure 3.37 shows the result of this query.

To find all customers who have a loan, an account, or both at the bank, we used
the union operation in the relational algebra. In the tuple relational calculus, we shall
need two “there exists” clauses, connected by or (∨):

{t | ∃ s ∈ borrower (t[customer -name] = s[customer -name])
∨ ∃ u ∈ depositor (t[customer -name] = u[customer -name])}

This expression gives us the set of all customer-name tuples for which at least one of
the following holds:

• The customer-name appears in some tuple of the borrower relation as a borrower
from the bank.

• The customer-name appears in some tuple of the depositor relation as a deposi-
tor of the bank.

If some customer has both a loan and an account at the bank, that customer appears
only once in the result, because the mathematical definition of a set does not allow
duplicate members. The result of this query appeared earlier in Figure 3.12.

If we now want only those customers who have both an account and a loan at the
bank, all we need to do is to change the or (∨) to and (∧) in the preceding expression.

{t | ∃ s ∈ borrower (t[customer -name] = s[customer -name])
∧ ∃ u ∈ depositor (t[customer -name] = u[customer -name])}

The result of this query appeared in Figure 3.20.
Now consider the query “Find all customers who have an account at the bank but

do not have a loan from the bank.” The tuple-relational-calculus expression for this
query is similar to the expressions that we have just seen, except for the use of the not
(¬) symbol:

{t | ∃ u ∈ depositor (t[customer -name] = u[customer -name])
∧ ¬ ∃ s ∈ borrower (t[customer -name] = s[customer -name])}

customer-name
Adams
Hayes

Figure 3.37 Names of all customers who have a loan at the Perryridge branch.
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This tuple-relational-calculus expression uses the ∃ u ∈ depositor (. . .) clause to
require that the customer have an account at the bank, and it uses the ¬ ∃ s ∈
borrower (. . .) clause to eliminate those customers who appear in some tuple of the
borrower relation as having a loan from the bank. The result of this query appeared in
Figure 3.13.

The query that we shall consider next uses implication, denoted by ⇒. The formula
P ⇒ Q means “P implies Q”; that is, “if P is true, then Q must be true.” Note that
P ⇒ Q is logically equivalent to ¬P ∨ Q. The use of implication rather than not and
or often suggests a more intuitive interpretation of a query in English.

Consider the query that we used in Section 3.2.3 to illustrate the division opera-
tion: “Find all customers who have an account at all branches located in Brooklyn.” To
write this query in the tuple relational calculus, we introduce the “for all” construct,
denoted by ∀. The notation

∀ t ∈ r (Q(t))

means “Q is true for all tuples t in relation r.”
We write the expression for our query as follows:

{t | ∃ r ∈ customer (r[customer -name] = t[customer -name]) ∧
( ∀ u ∈ branch (u[branch-city] = “ Brooklyn” ⇒

∃ s ∈ depositor (t[customer -name] = s[customer -name]
∧ ∃ w ∈ account (w[account-number ] = s[account-number ]
∧ w[branch-name] = u[branch-name]))))}

In English, we interpret this expression as “The set of all customers (that is, (customer-
name) tuples t) such that, for all tuples u in the branch relation, if the value of u on at-
tribute branch-city is Brooklyn, then the customer has an account at the branch whose
name appears in the branch-name attribute of u.”

Note that there is a subtlety in the above query: If there is no branch in Brooklyn,
all customer names satisfy the condition. The first line of the query expression is crit-
ical in this case—without the condition

∃ r ∈ customer (r[customer -name] = t[customer -name])
if there is no branch in Brooklyn, any value of t (including values that are not cus-
tomer names in the depositor relation) would qualify.

3.6.2 Formal Definition
We are now ready for a formal definition. A tuple-relational-calculus expression is of
the form

{t | P(t)}

where P is a formula. Several tuple variables may appear in a formula. A tuple vari-
able is said to be a free variable unless it is quantified by a ∃ or ∀. Thus, in

t ∈ loan ∧ ∃ s ∈ customer(t[branch-name] = s[branch-name])

t is a free variable. Tuple variable s is said to be a bound variable.
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A tuple-relational-calculus formula is built up out of atoms. An atom has one of
the following forms:

• s ∈ r, where s is a tuple variable and r is a relation (we do not allow use of the
/∈ operator)

• s[x] Θ u[y], where s and u are tuple variables, x is an attribute on which s is
defined, y is an attribute on which u is defined, and Θ is a comparison operator
(<, ≤, =, �=, >, ≥); we require that attributes x and y have domains whose
members can be compared by Θ

• s[x] Θ c, where s is a tuple variable, x is an attribute on which s is defined, Θ is
a comparison operator, and c is a constant in the domain of attribute x

We build up formulae from atoms by using the following rules:

• An atom is a formula.

• If P1 is a formula, then so are ¬P1 and (P1).

• If P1 and P2 are formulae, then so are P1 ∨ P2, P1 ∧ P2, and P1 ⇒ P2.

• If P1(s) is a formula containing a free tuple variable s, and r is a relation, then

∃ s ∈ r (P1(s)) and ∀ s ∈ r (P1(s))

are also formulae.

As we could for the relational algebra, we can write equivalent expressions that
are not identical in appearance. In the tuple relational calculus, these equivalences
include the following three rules:

1. P1 ∧ P2 is equivalent to ¬ (¬(P1) ∨ ¬(P2)).

2. ∀ t ∈ r (P1(t)) is equivalent to ¬ ∃ t ∈ r (¬P1(t)).

3. P1 ⇒ P2 is equivalent to ¬(P1) ∨ P2.

3.6.3 Safety of Expressions
There is one final issue to be addressed. A tuple-relational-calculus expression may
generate an infinite relation. Suppose that we write the expression

{t |¬ (t ∈ loan)}
There are infinitely many tuples that are not in loan. Most of these tuples contain
values that do not even appear in the database! Clearly, we do not wish to allow such
expressions.

To help us define a restriction of the tuple relational calculus, we introduce the
concept of the domain of a tuple relational formula, P. Intuitively, the domain of
P, denoted dom(P ), is the set of all values referenced by P. They include values
mentioned in P itself, as well as values that appear in a tuple of a relation men-
tioned in P. Thus, the domain of P is the set of all values that appear explicitly in
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P or that appear in one or more relations whose names appear in P. For example,
dom(t ∈ loan ∧ t[amount ] > 1200) is the set containing 1200 as well as the set of all
values appearing in loan. Also, dom(¬ (t ∈ loan)) is the set of all values appearing
in loan, since the relation loan is mentioned in the expression.

We say that an expression {t | P (t)} is safe if all values that appear in the result
are values from dom(P ). The expression {t |¬ (t ∈ loan)} is not safe. Note that
dom(¬ (t ∈ loan)) is the set of all values appearing in loan. However, it is possible
to have a tuple t not in loan that contains values that do not appear in loan. The other
examples of tuple-relational-calculus expressions that we have written in this section
are safe.

3.6.4 Expressive Power of Languages
The tuple relational calculus restricted to safe expressions is equivalent in expressive
power to the basic relational algebra (with the operators∪,−,×, σ, and ρ, but without
the extended relational operators such as generalized projection G and the outer-join
operations) Thus, for every relational-algebra expression using only the basic opera-
tions, there is an equivalent expression in the tuple relational calculus, and for every
tuple-relational-calculus expression, there is an equivalent relational-algebra expres-
sion. We will not prove this assertion here; the bibliographic notes contain references
to the proof. Some parts of the proof are included in the exercises. We note that the
tuple relational calculus does not have any equivalent of the aggregate operation, but
it can be extended to support aggregation. Extending the tuple relational calculus to
handle arithmetic expressions is straightforward.

3.7 The Domain Relational Calculus∗∗
A second form of relational calculus, called domain relational calculus, uses domain
variables that take on values from an attributes domain, rather than values for an
entire tuple. The domain relational calculus, however, is closely related to the tuple
relational calculus.

Domain relational calculus serves as the theoretical basis of the widely used QBE
language, just as relational algebra serves as the basis for the SQL language.

3.7.1 Formal Definition
An expression in the domain relational calculus is of the form

{< x1, x2, . . . , xn > | P (x1, x2, . . . , xn)}

where x1, x2, . . . , xn represent domain variables. P represents a formula composed
of atoms, as was the case in the tuple relational calculus. An atom in the domain
relational calculus has one of the following forms:

• < x1, x2, . . . , xn > ∈ r, where r is a relation on n attributes and x1, x2, . . . , xn

are domain variables or domain constants.
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• x Θ y, where x and y are domain variables and Θ is a comparison operator
(<, ≤, =, �=, >, ≥). We require that attributes x and y have domains that can
be compared by Θ.

• x Θ c, where x is a domain variable, Θ is a comparison operator, and c is a
constant in the domain of the attribute for which x is a domain variable.

We build up formulae from atoms by using the following rules:

• An atom is a formula.

• If P1 is a formula, then so are ¬P1 and (P1).

• If P1 and P2 are formulae, then so are P1 ∨ P2, P1 ∧ P2, and P1 ⇒ P2.

• If P1(x) is a formula in x, where x is a domain variable, then

∃ x (P1(x)) and ∀ x (P1(x))

are also formulae.

As a notational shorthand, we write

∃ a, b, c (P (a, b, c))

for

∃ a (∃ b (∃ c (P (a, b, c))))

3.7.2 Example Queries
We now give domain-relational-calculus queries for the examples that we consid-
ered earlier. Note the similarity of these expressions and the corresponding tuple-
relational-calculus expressions.

• Find the loan number, branch name, and amount for loans of over $1200:

{< l, b, a > | < l, b, a > ∈ loan ∧ a > 1200}
• Find all loan numbers for loans with an amount greater than $1200:

{< l > | ∃ b, a (< l, b, a > ∈ loan ∧ a > 1200)}
Although the second query appears similar to the one that we wrote for the tuple
relational calculus, there is an important difference. In the tuple calculus, when we
write ∃ s for some tuple variable s, we bind it immediately to a relation by writing
∃ s ∈ r. However, when we write ∃ b in the domain calculus, b refers not to a tuple,
but rather to a domain value. Thus, the domain of variable b is unconstrained until
the subformula < l, b, a > ∈ loan constrains b to branch names that appear in the
loan relation. For example,

• Find the names of all customers who have a loan from the Perryridge branch
and find the loan amount:
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{< c, a > | ∃ l (< c, l > ∈ borrower
∧ ∃ b (< l, b, a > ∈ loan ∧ b = “Perryridge”))}

• Find the names of all customers who have a loan, an account, or both at the
Perryridge branch:

{< c > | ∃ l (< c, l >∈ borrower
∧∃ b, a (< l, b, a >∈ loan ∧ b = “Perryridge”))
∨∃ a (< c, a >∈ depositor
∧∃ b, n (< a, b, n >∈ account ∧ b = “Perryridge”))}

• Find the names of all customers who have an account at all the branches lo-
cated in Brooklyn:

{< c > | ∃ n (< c, n > ∈ customer) ∧
∀ x, y, z (< x, y, z > ∈ branch ∧ y = “Brooklyn” ⇒

∃ a, b (< a, x, b > ∈ account ∧ < c, a > ∈ depositor))}

In English, we interpret this expression as “The set of all (customer-name) tu-
ples c such that, for all (branch-name, branch-city, assets) tuples, x, y, z, if the
branch city is Brooklyn, then the following is true”:
� There exists a tuple in the relation account with account number a and

branch name x.
� There exists a tuple in the relation depositor with customer c and account

number a.”

3.7.3 Safety of Expressions
We noted that, in the tuple relational calculus (Section 3.6), it is possible to write ex-
pressions that may generate an infinite relation. That led us to define safety for tuple-
relational-calculus expressions. A similar situation arises for the domain relational
calculus. An expression such as

{< l, b, a > | ¬(< l, b, a > ∈ loan)}

is unsafe, because it allows values in the result that are not in the domain of the
expression.

For the domain relational calculus, we must be concerned also about the form of
formulae within “there exists” and “for all” clauses. Consider the expression

{< x > | ∃ y (< x, y >∈ r) ∧ ∃ z (¬(< x, z >∈ r) ∧ P (x, z))}

where P is some formula involving x and z. We can test the first part of the formula,
∃ y (< x, y > ∈ r), by considering only the values in r. However, to test the second
part of the formula, ∃ z (¬ (< x, z > ∈ r) ∧ P (x, z)), we must consider values for
z that do not appear in r. Since all relations are finite, an infinite number of values
do not appear in r. Thus, it is not possible, in general, to test the second part of the
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formula, without considering an infinite number of potential values for z. Instead,
we add restrictions to prohibit expressions such as the preceding one.

In the tuple relational calculus, we restricted any existentially quantified variable
to range over a specific relation. Since we did not do so in the domain calculus, we
add rules to the definition of safety to deal with cases like our example. We say that
an expression

{< x1, x2, . . . , xn > | P (x1, x2, . . . , xn)}

is safe if all of the following hold:

1. All values that appear in tuples of the expression are values from dom(P).

2. For every “there exists” subformula of the form ∃ x (P1(x)), the subformula is
true if and only if there is a value x in dom(P1) such that P1(x) is true.

3. For every “for all” subformula of the form ∀x (P1(x)), the subformula is true
if and only if P1(x) is true for all values x from dom(P1).

The purpose of the additional rules is to ensure that we can test “for all” and “there
exists” subformulae without having to test infinitely many possibilities. Consider the
second rule in the definition of safety. For ∃ x (P1(x)) to be true, we need to find only
one x for which P1(x) is true. In general, there would be infinitely many values to
test. However, if the expression is safe, we know that we can restrict our attention to
values from dom(P1). This restriction reduces to a finite number the tuples we must
consider.

The situation for subformulae of the form ∀x (P1(x)) is similar. To assert that
∀x (P1(x)) is true, we must, in general, test all possible values, so we must exam-
ine infinitely many values. As before, if we know that the expression is safe, it is
sufficient for us to test P1(x) for those values taken from dom(P1).

All the domain-relational-calculus expressions that we have written in the exam-
ple queries of this section are safe.

3.7.4 Expressive Power of Languages
When the domain relational calculus is restricted to safe expressions, it is equivalent
in expressive power to the tuple relational calculus restricted to safe expressions.
Since we noted earlier that the restricted tuple relational calculus is equivalent to the
relational algebra, all three of the following are equivalent:

• The basic relational algebra (without the extended relational algebra opera-
tions)

• The tuple relational calculus restricted to safe expressions

• The domain relational calculus restricted to safe expressions
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We note that the domain relational calculus also does not have any equivalent of the
aggregate operation, but it can be extended to support aggregation, and extending it
to handle arithmatic expressions is straightforward.

3.8 Summary
• The relational data model is based on a collection of tables. The user of the

database system may query these tables, insert new tuples, delete tuples, and
update (modify) tuples. There are several languages for expressing these op-
erations.

• The relational algebra defines a set of algebraic operations that operate on
tables, and output tables as their results. These operations can be combined
to get expressions that express desired queries. The algebra defines the basic
operations used within relational query languages.

• The operations in relational algebra can be divided into
� Basic operations
� Additional operations that can be expressed in terms of the basic opera-

tions
� Extended operations, some of which add further expressive power to re-

lational algebra

• Databases can be modified by insertion, deletion, or update of tuples. We
used the relational algebra with the assignment operator to express these
modifications.

• Different users of a shared database may benefit from individualized views of
the database. Views are “virtual relations” defined by a query expression. We
evaluate queries involving views by replacing the view with the expression
that defines the view.

• Views are useful mechanisms for simplifying database queries, but modifica-
tion of the database through views may cause problems. Therefore, database
systems severely restrict updates through views.

• For reasons of query-processing efficiency, a view may be materialized—that
is, the query is evaluated and the result stored physically. When database re-
lations are updated, the materialized view must be correspondingly updated.

• The tuple relational calculus and the domain relational calculus are non-
procedural languages that represent the basic power required in a relational
query language. The basic relational algebra is a procedural language that is
equivalent in power to both forms of the relational calculus when they are
restricted to safe expressions.

• The relational algebra and the relational calculi are terse, formal languages
that are inappropriate for casual users of a database system. Commercial data-
base systems, therefore, use languages with more “syntactic sugar.” In Chap-
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ters 4 and 5, we shall consider the three most influential languages: SQL,
which is based on relational algebra, and QBE and Datalog, which are based
on domain relational calculus.

Review Terms
• Table

• Relation

• Tuple variable

• Atomic domain

• Null value

• Database schema

• Database instance

• Relation schema

• Relation instance

• Keys

• Foreign key
� Referencing relation
� Referenced relation

• Schema diagram

• Query language

• Procedural language

• Nonprocedural language

• Relational algebra

• Relational algebra operations
� Select σ
� Project Π
� Union ∪
� Set difference −
� Cartesian product ×
� Rename ρ

• Additional operations
� Set-intersection ∩

� Natural-join �
� Division /

• Assignment operation
• Extended relational-algebra

operations
� Generalized projection Π
� Outer join

–– Left outer join �

–– Right outer join �
–– Full outer join �

� Aggregation G
• Multisets
• Grouping
• Null values
• Modification of the database
� Deletion
� Insertion
� Updating

• Views
• View definition
• Materialized views
• View update
• View expansion
• Recursive views
• Tuple relational calculus
• Domain relational calculus
• Safety of expressions
• Expressive power of languages

Exercises
3.1 Design a relational database for a university registrar’s office. The office main-

tains data about each class, including the instructor, the number of students
enrolled, and the time and place of the class meetings. For each student–class
pair, a grade is recorded.
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person owns car

participated accident

address

damage-amount

model

yearlicensename

report-number
date

location

driver-id

driver

Figure 3.38 E-R diagram.

3.2 Describe the differences in meaning between the terms relation and relation schema.
Illustrate your answer by referring to your solution to Exercise 3.1.

3.3 Design a relational database corresponding to the E-R diagram of Figure 3.38.

3.4 In Chapter 2, we saw how to represent many-to-many, many-to-one, one-to-
many, and one-to-one relationship sets. Explain how primary keys help us to
represent such relationship sets in the relational model.

3.5 Consider the relational database of Figure 3.39, where the primary keys are un-
derlined. Give an expression in the relational algebra to express each of the fol-
lowing queries:

a. Find the names of all employees who work for First Bank Corporation.
b. Find the names and cities of residence of all employees who work for First

Bank Corporation.
c. Find the names, street address, and cities of residence of all employees who

work for First Bank Corporation and earn more than $10,000 per annum.
d. Find the names of all employees in this database who live in the same city

as the company for which they work.
e. Find the names of all employees who live in the same city and on the same

street as do their managers.
f. Find the names of all employees in this database who do not work for First

Bank Corporation.
g. Find the names of all employees who earn more than every employee of

Small Bank Corporation.
h. Assume the companies may be located in several cities. Find all companies

located in every city in which Small Bank Corporation is located.

3.6 Consider the relation of Figure 3.21, which shows the result of the query “Find
the names of all customers who have a loan at the bank.” Rewrite the query
to include not only the name, but also the city of residence for each customer.
Observe that now customer Jackson no longer appears in the result, even though
Jackson does in fact have a loan from the bank.
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employee (person-name, street, city)
works (person-name, company-name, salary)
company (company-name, city)
manages (person-name, manager-name)

Figure 3.39 Relational database for Exercises 3.5, 3.8 and 3.10.

a. Explain why Jackson does not appear in the result.
b. Suppose that you want Jackson to appear in the result. How would you

modify the database to achieve this effect?
c. Again, suppose that you want Jackson to appear in the result. Write a query

using an outer join that accomplishes this desire without your having to
modify the database.

3.7 The outer-join operations extend the natural-join operation so that tuples from
the participating relations are not lost in the result of the join. Describe how the
theta join operation can be extended so that tuples from the left, right, or both
relations are not lost from the result of a theta join.

3.8 Consider the relational database of Figure 3.39. Give an expression in the rela-
tional algebra for each request:

a. Modify the database so that Jones now lives in Newtown.
b. Give all employees of First Bank Corporation a 10 percent salary raise.
c. Give all managers in this database a 10 percent salary raise.
d. Give all managers in this database a 10 percent salary raise, unless the salary

would be greater than $100,000. In such cases, give only a 3 percent raise.
e. Delete all tuples in the works relation for employees of Small Bank Corpora-

tion.

3.9 Using the bank example, write relational-algebra queries to find the accounts
held by more than two customers in the following ways:

a. Using an aggregate function.
b. Without using any aggregate functions.

3.10 Consider the relational database of Figure 3.39. Give a relational-algebra expres-
sion for each of the following queries:

a. Find the company with the most employees.
b. Find the company with the smallest payroll.
c. Find those companies whose employees earn a higher salary, on average,

than the average salary at First Bank Corporation.

3.11 List two reasons why we may choose to define a view.

3.12 List two major problems with processing update operations expressed in terms
of views.

3.13 Let the following relation schemas be given:

R = (A, B, C)
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S = (D, E, F )

Let relations r(R) and s(S) be given. Give an expression in the tuple relational
calculus that is equivalent to each of the following:

a. ΠA(r)
b. σB = 17 (r)
c. r × s
d. ΠA,F (σC = D(r × s))

3.14 Let R = (A, B, C), and let r1 and r2 both be relations on schema R. Give
an expression in the domain relational calculus that is equivalent to each of the
following:

a. ΠA(r1)
b. σB = 17 (r1)
c. r1 ∪ r2

d. r1 ∩ r2

e. r1 − r2

f. ΠA,B(r1) � ΠB,C(r2)

3.15 Repeat Exercise 3.5 using the tuple relational calculus and the domain relational
calculus.

3.16 Let R = (A, B) and S = (A, C), and let r(R) and s(S) be relations. Write
relational-algebra expressions equivalent to the following domain-relational-
calculus expressions:

a. {< a > | ∃ b (< a, b > ∈ r ∧ b = 17)}
b. {< a, b, c > | < a, b > ∈ r ∧ < a, c > ∈ s}
c. {< a > | ∃ b (< a, b > ∈ r) ∨ ∀ c (∃ d (< d, c > ∈ s) ⇒ < a, c > ∈ s)}
d. {< a > | ∃ c (< a, c > ∈ s ∧ ∃ b1, b2 (< a, b1 > ∈ r ∧ < c, b2 >

∈ r ∧ b1 > b2))}

3.17 Let R = (A, B) and S = (A, C), and let r(R) and s(S) be relations. Using
the special constant null, write tuple-relational-calculus expressions equivalent
to each of the following:

a. r � s
b. r � s
c. r � s

3.18 List two reasons why null values might be introduced into the database.

3.19 Certain systems allow marked nulls. A marked null ⊥i is equal to itself, but if
i �= j, then ⊥i �=⊥j . One application of marked nulls is to allow certain updates
through views. Consider the view loan-info (Section 3.5). Show how you can use
marked nulls to allow the insertion of the tuple (“Johnson”, 1900) through loan-
info.
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the relational algebra (the RM/T model), as well as outer joins, are in Codd [1979].
Codd [1990] is a compendium of E. F. Codd’s papers on the relational model. Outer
joins are also discussed in Date [1993b]. The problem of updating relational databases
through views is addressed by Bancilhon and Spyratos [1981], Cosmadakis and Pa-
padimitriou [1984], Dayal and Bernstein [1978], and Langerak [1990]. Section 14.5
covers materialized view maintenance, and references to literature on view mainte-
nance can be found at the end of that chapter.
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Relational Databases

A relational database is a shared repository of data. To make data from a relational
database available to users, we have to address several issues. One is how users spec-
ify requests for data: Which of the various query languages do they use? Chapter 4
covers the SQL language, which is the most widely used query language today. Chap-
ter 5 covers two other query languages, QBE and Datalog, which offer alternative
approaches to querying relational data.

Another issue is data integrity and security; databases need to protect data from
damage by user actions, whether unintentional or intentional. The integrity main-
tenance component of a database ensures that updates do not violate integrity con-
straints that have been specified on the data. The security component of a database
includes authentication of users, and access control, to restrict the permissible actions
for each user. Chapter 6 covers integrity and security issues. Security and integrity
issues are present regardless of the data model, but for concreteness we study them
in the context of the relational model. Integrity constraints form the basis of relational
database design, which we study in Chapter 7.

Relational database design—the design of the relational schema—is the first step
in building a database application. Schema design was covered informally in ear-
lier chapters. There are, however, principles that can be used to distinguish good
database designs from bad ones. These are formalized by means of several “normal
forms,” which offer different tradeoffs between the possibility of inconsistencies and
the efficiency of certain queries. Chapter 7 describes the formal design of relational
schemas.
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SQL

The formal languages described in Chapter 3 provide a concise notation for repre-
senting queries. However, commercial database systems require a query language
that is more user friendly. In this chapter, we study SQL, the most influential commer-
cially marketed query language, SQL. SQL uses a combination of relational-algebra
and relational-calculus constructs.

Although we refer to the SQL language as a “query language,” it can do much
more than just query a database. It can define the structure of the data, modify data
in the database, and specify security constraints.

It is not our intention to provide a complete users’ guide for SQL. Rather, we
present SQL’s fundamental constructs and concepts. Individual implementations of
SQL may differ in details, or may support only a subset of the full language.

4.1 Background
IBM developed the original version of SQL at its San Jose Research Laboratory (now
the Almaden Research Center). IBM implemented the language, originally called Se-
quel, as part of the System R project in the early 1970s. The Sequel language has
evolved since then, and its name has changed to SQL (Structured Query Language).
Many products now support the SQL language. SQL has clearly established itself as
the standard relational-database language.

In 1986, the American National Standards Institute (ANSI) and the International
Organization for Standardization (ISO) published an SQL standard, called SQL-86.
IBM published its own corporate SQL standard, the Systems Application Architec-
ture Database Interface (SAA-SQL) in 1987. ANSI published an extended standard for
SQL, SQL-89, in 1989. The next version of the standard was SQL-92 standard, and the
most recent version is SQL:1999. The bibliographic notes provide references to these
standards.

135
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In this chapter, we present a survey of SQL, based mainly on the widely imple-
mented SQL-92 standard. The SQL:1999 standard is a superset of the SQL-92 standard;
we cover some features of SQL:1999 in this chapter, and provide more detailed cov-
erage in Chapter 9. Many database systems support some of the new constructs in
SQL:1999, although currently no database system supports all the new constructs. You
should also be aware that some database systems do not even support all the fea-
tures of SQL-92, and that many databases provide nonstandard features that we do
not cover here.

The SQL language has several parts:

• Data-definition language (DDL). The SQL DDL provides commands for defin-
ing relation schemas, deleting relations, and modifying relation schemas.

• Interactive data-manipulation language (DML). The SQL DML includes a
query language based on both the relational algebra and the tuple relational
calculus. It includes also commands to insert tuples into, delete tuples from,
and modify tuples in the database.

• View definition. The SQL DDL includes commands for defining views.

• Transaction control. SQL includes commands for specifying the beginning
and ending of transactions.

• Embedded SQL and dynamic SQL. Embedded and dynamic SQL define how
SQL statements can be embedded within general-purpose programming lan-
guages, such as C, C++, Java, PL/I, Cobol, Pascal, and Fortran.

• Integrity. The SQL DDL includes commands for specifying integrity constraints
that the data stored in the database must satisfy. Updates that violate integrity
constraints are disallowed.

• Authorization. The SQL DDL includes commands for specifying access rights
to relations and views.

In this chapter, we cover the DML and the basic DDL features of SQL. We also
briefly outline embedded and dynamic SQL, including the ODBC and JDBC standards
for interacting with a database from programs written in the C and Java languages.
SQL features supporting integrity and authorization are described in Chapter 6, while
Chapter 9 outlines object-oriented extensions to SQL.

The enterprise that we use in the examples in this chapter, and later chapters, is a
banking enterprise with the following relation schemas:

Branch-schema = (branch-name, branch-city, assets)
Customer-schema = (customer-name, customer-street, customer-city)
Loan-schema = (loan-number, branch-name, amount)
Borrower-schema = (customer-name, loan-number)
Account-schema = (account-number, branch-name, balance)
Depositor-schema = (customer-name, account-number)
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Note that in this chapter, as elsewhere in the text, we use hyphenated names for
schema, relations, and attributes for ease of reading. In actual SQL systems, however,
hyphens are not valid parts of a name (they are treated as the minus operator). A
simple way of translating the names we use to valid SQL names is to replace all hy-
phens by the underscore symbol (“ ”). For example, we use branch name in place of
branch-name.

4.2 Basic Structure
A relational database consists of a collection of relations, each of which is assigned
a unique name. Each relation has a structure similar to that presented in Chapter 3.
SQL allows the use of null values to indicate that the value either is unknown or does
not exist. It allows a user to specify which attributes cannot be assigned null values,
as we shall discuss in Section 4.11.

The basic structure of an SQL expression consists of three clauses: select, from, and
where.

• The select clause corresponds to the projection operation of the relational al-
gebra. It is used to list the attributes desired in the result of a query.

• The from clause corresponds to the Cartesian-product operation of the rela-
tional algebra. It lists the relations to be scanned in the evaluation of the ex-
pression.

• The where clause corresponds to the selection predicate of the relational alge-
bra. It consists of a predicate involving attributes of the relations that appear
in the from clause.

That the term select has different meaning in SQL than in the relational algebra is an
unfortunate historical fact. We emphasize the different interpretations here to mini-
mize potential confusion.

A typical SQL query has the form

select A1, A2, . . . , An

from r1, r2, . . . , rm

where P

Each Ai represents an attribute, and each ri a relation. P is a predicate. The query is
equivalent to the relational-algebra expression

ΠA1, A2,...,An
(σP (r1 × r2 × · · · × rm))

If the where clause is omitted, the predicate P is true. However, unlike the result of a
relational-algebra expression, the result of the SQL query may contain multiple copies
of some tuples; we shall return to this issue in Section 4.2.8.

SQL forms the Cartesian product of the relations named in the from clause,
performs a relational-algebra selection using the where clause predicate, and then
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projects the result onto the attributes of the select clause. In practice, SQL may con-
vert the expression into an equivalent form that can be processed more efficiently.
However, we shall defer concerns about efficiency to Chapters 13 and 14.

4.2.1 The select Clause
The result of an SQL query is, of course, a relation. Let us consider a simple query
using our banking example, “Find the names of all branches in the loan relation”:

select branch-name
from loan

The result is a relation consisting of a single attribute with the heading branch-name.
Formal query languages are based on the mathematical notion of a relation being

a set. Thus, duplicate tuples never appear in relations. In practice, duplicate elimina-
tion is time-consuming. Therefore, SQL (like most other commercial query languages)
allows duplicates in relations as well as in the results of SQL expressions. Thus, the
preceding query will list each branch-name once for every tuple in which it appears in
the loan relation.

In those cases where we want to force the elimination of duplicates, we insert the
keyword distinct after select. We can rewrite the preceding query as

select distinct branch-name
from loan

if we want duplicates removed.
SQL allows us to use the keyword all to specify explicitly that duplicates are not

removed:

select all branch-name
from loan

Since duplicate retention is the default, we will not use all in our examples. To ensure
the elimination of duplicates in the results of our example queries, we will use dis-
tinct whenever it is necessary. In most queries where distinct is not used, the exact
number of duplicate copies of each tuple present in the query result is not important.
However, the number is important in certain applications; we return to this issue in
Section 4.2.8.

The asterisk symbol “ * ” can be used to denote “all attributes.” Thus, the use of
loan.* in the preceding select clause would indicate that all attributes of loan are to be
selected. A select clause of the form select * indicates that all attributes of all relations
appearing in the from clause are selected.

The select clause may also contain arithmetic expressions involving the operators
+, −, ∗, and / operating on constants or attributes of tuples. For example, the query

select loan-number, branch-name, amount * 100
from loan
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will return a relation that is the same as the loan relation, except that the attribute
amount is multiplied by 100.

SQL also provides special data types, such as various forms of the date type, and
allows several arithmetic functions to operate on these types.

4.2.2 The where Clause
Let us illustrate the use of the where clause in SQL. Consider the query “Find all loan
numbers for loans made at the Perryridge branch with loan amounts greater that
$1200.” This query can be written in SQL as:

select loan-number
from loan
where branch-name = ’Perryridge’ and amount > 1200

SQL uses the logical connectives and, or, and not—rather than the mathematical
symbols ∧, ∨, and ¬ —in the where clause. The operands of the logical connectives
can be expressions involving the comparison operators <, <=, >, >=, =, and <>.
SQL allows us to use the comparison operators to compare strings and arithmetic
expressions, as well as special types, such as date types.

SQL includes a between comparison operator to simplify where clauses that spec-
ify that a value be less than or equal to some value and greater than or equal to some
other value. If we wish to find the loan number of those loans with loan amounts
between $90,000 and $100,000, we can use the between comparison to write

select loan-number
from loan
where amount between 90000 and 100000

instead of

select loan-number
from loan
where amount <= 100000 and amount >= 90000

Similarly, we can use the not between comparison operator.

4.2.3 The from Clause
Finally, let us discuss the use of the from clause. The from clause by itself defines a
Cartesian product of the relations in the clause. Since the natural join is defined in
terms of a Cartesian product, a selection, and a projection, it is a relatively simple
matter to write an SQL expression for the natural join.

We write the relational-algebra expression

Πcustomer-name, loan-number, amount (borrower � loan)

for the query “For all customers who have a loan from the bank, find their names,
loan numbers and loan amount.” In SQL, this query can be written as



Silberschatz−Korth−Sudarshan: 
Database System 
Concepts, Fourth Edition

II. Relational Databases 4. SQL146 © The McGraw−Hill 
Companies, 2001

140 Chapter 4 SQL

select customer-name, borrower.loan-number, amount
from borrower, loan
where borrower.loan-number = loan.loan-number

Notice that SQL uses the notation relation-name.attribute-name, as does the relational
algebra, to avoid ambiguity in cases where an attribute appears in the schema of more
than one relation. We could have written borrower.customer-name instead of customer-
name in the select clause. However, since the attribute customer-name appears in only
one of the relations named in the from clause, there is no ambiguity when we write
customer-name.

We can extend the preceding query and consider a more complicated case in which
we require also that the loan be from the Perryridge branch: “Find the customer
names, loan numbers, and loan amounts for all loans at the Perryridge branch.” To
write this query, we need to state two constraints in the where clause, connected by
the logical connective and:

select customer-name, borrower.loan-number, amount
from borrower, loan
where borrower.loan-number = loan.loan-number and

branch-name = ’Perryridge’

SQL includes extensions to perform natural joins and outer joins in the from clause.
We discuss these extensions in Section 4.10.

4.2.4 The Rename Operation
SQL provides a mechanism for renaming both relations and attributes. It uses the as
clause, taking the form:

old-name as new-name

The as clause can appear in both the select and from clauses.
Consider again the query that we used earlier:

select customer-name, borrower.loan-number, amount
from borrower, loan
where borrower.loan-number = loan.loan-number

The result of this query is a relation with the following attributes:

customer-name, loan-number, amount.

The names of the attributes in the result are derived from the names of the attributes
in the relations in the from clause.

We cannot, however, always derive names in this way, for several reasons: First,
two relations in the from clause may have attributes with the same name, in which
case an attribute name is duplicated in the result. Second, if we used an arithmetic
expression in the select clause, the resultant attribute does not have a name. Third,
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even if an attribute name can be derived from the base relations as in the preced-
ing example, we may want to change the attribute name in the result. Hence, SQL
provides a way of renaming the attributes of a result relation.

For example, if we want the attribute name loan-number to be replaced with the
name loan-id, we can rewrite the preceding query as

select customer-name, borrower.loan-number as loan-id, amount
from borrower, loan
where borrower.loan-number = loan.loan-number

4.2.5 Tuple Variables
The as clause is particularly useful in defining the notion of tuple variables, as is
done in the tuple relational calculus. A tuple variable in SQL must be associated with
a particular relation. Tuple variables are defined in the from clause by way of the as
clause. To illustrate, we rewrite the query “For all customers who have a loan from
the bank, find their names, loan numbers, and loan amount” as

select customer-name, T.loan-number, S.amount
from borrower as T, loan as S
where T.loan-number = S.loan-number

Note that we define a tuple variable in the from clause by placing it after the name of
the relation with which it is associated, with the keyword as in between (the keyword
as is optional). When we write expressions of the form relation-name.attribute-name,
the relation name is, in effect, an implicitly defined tuple variable.

Tuple variables are most useful for comparing two tuples in the same relation.
Recall that, in such cases, we could use the rename operation in the relational algebra.
Suppose that we want the query “Find the names of all branches that have assets
greater than at least one branch located in Brooklyn.” We can write the SQL expression

select distinct T.branch-name
from branch as T, branch as S
where T.assets > S.assets and S.branch-city = ’Brooklyn’

Observe that we could not use the notation branch.asset, since it would not be clear
which reference to branch is intended.

SQL permits us to use the notation (v1, v2, . . . , vn) to denote a tuple of arity n con-
taining values v1, v2, . . . , vn. The comparison operators can be used on tuples, and
the ordering is defined lexicographically. For example, (a1, a2) <= (b1, b2) is true if
a1 < b1, or (a1 = b1) ∧ (a2 <= b2); similarly, the two tuples are equal if all their
attributes are equal.

4.2.6 String Operations
SQL specifies strings by enclosing them in single quotes, for example, ’Perryridge’,
as we saw earlier. A single quote character that is part of a string can be specified by
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using two single quote characters; for example the string “It’s right” can be specified
by ’It”s right’.

The most commonly used operation on strings is pattern matching using the op-
erator like. We describe patterns by using two special characters:

• Percent (%): The % character matches any substring.

• Underscore ( ): The character matches any character.

Patterns are case sensitive; that is, uppercase characters do not match lowercase char-
acters, or vice versa. To illustrate pattern matching, we consider the following exam-
ples:

• ’Perry%’ matches any string beginning with “Perry”.

• ’%idge%’ matches any string containing “idge” as a substring, for example,
’Perryridge’, ’Rock Ridge’, ’Mianus Bridge’, and ’Ridgeway’.

• ’ ’ matches any string of exactly three characters.

• ’ %’ matches any string of at least three characters.

SQL expresses patterns by using the like comparison operator. Consider the query
“Find the names of all customers whose street address includes the substring ‘Main’.”
This query can be written as

select customer-name
from customer
where customer-street like ’%Main%’

For patterns to include the special pattern characters (that is, % and ), SQL allows
the specification of an escape character. The escape character is used immediately
before a special pattern character to indicate that the special pattern character is to be
treated like a normal character. We define the escape character for a like comparison
using the escape keyword. To illustrate, consider the following patterns, which use a
backslash (\) as the escape character:

• like ’ab\%cd%’ escape ’\’ matches all strings beginning with “ab%cd”.

• like ’ab\\cd%’ escape ’\’ matches all strings beginning with “ab\cd”.

SQL allows us to search for mismatches instead of matches by using the not like
comparison operator.

SQL also permits a variety of functions on character strings, such as concatenat-
ing (using “‖”), extracting substrings, finding the length of strings, converting be-
tween uppercase and lowercase, and so on. SQL:1999 also offers a similar to opera-
tion, which provides more powerful pattern matching than the like operation; the
syntax for specifying patterns is similar to that used in Unix regular expressions.
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4.2.7 Ordering the Display of Tuples
SQL offers the user some control over the order in which tuples in a relation are dis-
played. The order by clause causes the tuples in the result of a query to appear in
sorted order. To list in alphabetic order all customers who have a loan at the Per-
ryridge branch, we write

select distinct customer-name
from borrower, loan
where borrower.loan-number = loan.loan-number and

branch-name = ’Perryridge’
order by customer-name

By default, the order by clause lists items in ascending order. To specify the sort order,
we may specify desc for descending order or asc for ascending order. Furthermore,
ordering can be performed on multiple attributes. Suppose that we wish to list the
entire loan relation in descending order of amount. If several loans have the same
amount, we order them in ascending order by loan number. We express this query in
SQL as follows:

select *
from loan
order by amount desc, loan-number asc

To fulfill an order by request, SQL must perform a sort. Since sorting a large num-
ber of tuples may be costly, it should be done only when necessary.

4.2.8 Duplicates
Using relations with duplicates offers advantages in several situations. Accordingly,
SQL formally defines not only what tuples are in the result of a query, but also how
many copies of each of those tuples appear in the result. We can define the duplicate
semantics of an SQL query using multiset versions of the relational operators. Here,
we define the multiset versions of several of the relational-algebra operators. Given
multiset relations r1 and r2,

1. If there are c1 copies of tuple t1 in r1, and t1 satisfies selection σθ, then there
are c1 copies of t1 in σθ(r1).

2. For each copy of tuple t1 in r1, there is a copy of tuple ΠA(t1) in ΠA(r1), where
ΠA(t1) denotes the projection of the single tuple t1.

3. If there are c1 copies of tuple t1 in r1 and c2 copies of tuple t2 in r2, there are
c1 ∗ c2 copies of the tuple t1.t2 in r1 × r2.

For example, suppose that relations r1 with schema (A, B) and r2 with schema (C)
are the following multisets:

r1 = {(1, a), (2, a)} r2 = {(2), (3), (3)}
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Then ΠB(r1) would be {(a), (a)}, whereas ΠB(r1) × r2 would be

{(a, 2), (a, 2), (a, 3), (a, 3), (a, 3), (a, 3)}
We can now define how many copies of each tuple occur in the result of an SQL

query. An SQL query of the form

select A1, A2, . . . , An

from r1, r2, . . . , rm

where P

is equivalent to the relational-algebra expression

ΠA1, A2,...,An
(σP (r1 × r2 × · · · × rm))

using the multiset versions of the relational operators σ, Π, and ×.

4.3 Set Operations
The SQL operations union, intersect, and except operate on relations and correspond
to the relational-algebra operations ∪, ∩, and −. Like union, intersection, and set
difference in relational algebra, the relations participating in the operations must be
compatible; that is, they must have the same set of attributes.

Let us demonstrate how several of the example queries that we considered in
Chapter 3 can be written in SQL. We shall now construct queries involving the union,
intersect, and except operations of two sets: the set of all customers who have an
account at the bank, which can be derived by

select customer-name
from depositor

and the set of customers who have a loan at the bank, which can be derived by

select customer-name
from borrower

We shall refer to the relations obtained as the result of the preceding queries as
d and b, respectively.

4.3.1 The Union Operation
To find all customers having a loan, an account, or both at the bank, we write

(select customer-name
from depositor)
union
(select customer-name
from borrower)
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The union operation automatically eliminates duplicates, unlike the select clause.
Thus, in the preceding query, if a customer—say, Jones—has several accounts or
loans (or both) at the bank, then Jones will appear only once in the result.

If we want to retain all duplicates, we must write union all in place of union:

(select customer-name
from depositor)
union all
(select customer-name
from borrower)

The number of duplicate tuples in the result is equal to the total number of duplicates
that appear in both d and b. Thus, if Jones has three accounts and two loans at the
bank, then there will be five tuples with the name Jones in the result.

4.3.2 The Intersect Operation
To find all customers who have both a loan and an account at the bank, we write

(select distinct customer-name
from depositor)

intersect
(select distinct customer-name
from borrower)

The intersect operation automatically eliminates duplicates. Thus, in the preceding
query, if a customer—say, Jones—has several accounts and loans at the bank, then
Jones will appear only once in the result.

If we want to retain all duplicates, we must write intersect all in place of intersect:

(select customer-name
from depositor)
intersect all
(select customer-name
from borrower)

The number of duplicate tuples that appear in the result is equal to the minimum
number of duplicates in both d and b. Thus, if Jones has three accounts and two loans
at the bank, then there will be two tuples with the name Jones in the result.

4.3.3 The Except Operation
To find all customers who have an account but no loan at the bank, we write
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(select distinct customer-name
from depositor)

except
(select customer-name
from borrower)

The except operation automatically eliminates duplicates. Thus, in the preceding
query, a tuple with customer name Jones will appear (exactly once) in the result only
if Jones has an account at the bank, but has no loan at the bank.

If we want to retain all duplicates, we must write except all in place of except:

(select customer-name
from depositor)
except all
(select customer-name
from borrower)

The number of duplicate copies of a tuple in the result is equal to the number of
duplicate copies of the tuple in d minus the number of duplicate copies of the tuple
in b, provided that the difference is positive. Thus, if Jones has three accounts and
one loan at the bank, then there will be two tuples with the name Jones in the result.
If, instead, this customer has two accounts and three loans at the bank, there will be
no tuple with the name Jones in the result.

4.4 Aggregate Functions
Aggregate functions are functions that take a collection (a set or multiset) of values as
input and return a single value. SQL offers five built-in aggregate functions:

• Average: avg

• Minimum: min

• Maximum: max

• Total: sum

• Count: count

The input to sum and avg must be a collection of numbers, but the other operators
can operate on collections of nonnumeric data types, such as strings, as well.

As an illustration, consider the query “Find the average account balance at the
Perryridge branch.” We write this query as follows:

select avg (balance)
from account
where branch-name = ’Perryridge’
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The result of this query is a relation with a single attribute, containing a single tu-
ple with a numerical value corresponding to the average balance at the Perryridge
branch. Optionally, we can give a name to the attribute of the result relation by using
the as clause.

There are circumstances where we would like to apply the aggregate function not
only to a single set of tuples, but also to a group of sets of tuples; we specify this wish
in SQL using the group by clause. The attribute or attributes given in the group by
clause are used to form groups. Tuples with the same value on all attributes in the
group by clause are placed in one group.

As an illustration, consider the query “Find the average account balance at each
branch.” We write this query as follows:

select branch-name, avg (balance)
from account
group by branch-name

Retaining duplicates is important in computing an average. Suppose that the ac-
count balances at the (small) Brighton branch are $1000, $3000, $2000, and $1000. The
average balance is $7000/4 = $1750.00. If duplicates were eliminated, we would ob-
tain the wrong answer ($6000/3 = $2000).

There are cases where we must eliminate duplicates before computing an aggre-
gate function. If we do want to eliminate duplicates, we use the keyword distinct in
the aggregate expression. An example arises in the query “Find the number of de-
positors for each branch.” In this case, a depositor counts only once, regardless of the
number of accounts that depositor may have. We write this query as follows:

select branch-name, count (distinct customer-name)
from depositor, account
where depositor.account-number = account.account-number
group by branch-name

At times, it is useful to state a condition that applies to groups rather than to tu-
ples. For example, we might be interested in only those branches where the average
account balance is more than $1200. This condition does not apply to a single tuple;
rather, it applies to each group constructed by the group by clause. To express such a
query, we use the having clause of SQL. SQL applies predicates in the having clause
after groups have been formed, so aggregate functions may be used. We express this
query in SQL as follows:

select branch-name, avg (balance)
from account
group by branch-name
having avg (balance) > 1200

At times, we wish to treat the entire relation as a single group. In such cases, we
do not use a group by clause. Consider the query “Find the average balance for all
accounts.” We write this query as follows:
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select avg (balance)
from account

We use the aggregate function count frequently to count the number of tuples in
a relation. The notation for this function in SQL is count (*). Thus, to find the number
of tuples in the customer relation, we write

select count (*)
from customer

SQL does not allow the use of distinct with count(*). It is legal to use distinct with
max and min, even though the result does not change. We can use the keyword all
in place of distinct to specify duplicate retention, but, since all is the default, there is
no need to do so.

If a where clause and a having clause appear in the same query, SQL applies the
predicate in the where clause first. Tuples satisfying the where predicate are then
placed into groups by the group by clause. SQL then applies the having clause, if it
is present, to each group; it removes the groups that do not satisfy the having clause
predicate. The select clause uses the remaining groups to generate tuples of the result
of the query.

To illustrate the use of both a having clause and a where clause in the same query,
we consider the query “Find the average balance for each customer who lives in
Harrison and has at least three accounts.”

select depositor.customer-name, avg (balance)
from depositor, account, customer
where depositor.account-number = account.account-number and

depositor.customer-name = customer.customer-name and
customer-city = ’Harrison’

group by depositor.customer-name
having count (distinct depositor.account-number) >= 3

4.5 Null Values
SQL allows the use of null values to indicate absence of information about the value
of an attribute.

We can use the special keyword null in a predicate to test for a null value. Thus,
to find all loan numbers that appear in the loan relation with null values for amount,
we write

select loan-number
from loan
where amount is null

The predicate is not null tests for the absence of a null value.
The use of a null value in arithmetic and comparison operations causes several

complications. In Section 3.3.4 we saw how null values are handled in the relational
algebra. We now outline how SQL handles null values.
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The result of an arithmetic expression (involving, for example +, −, ∗ or /) is null
if any of the input values is null. SQL treats as unknown the result of any comparison
involving a null value (other than is null and is not null).

Since the predicate in a where clause can involve Boolean operations such as and,
or, and not on the results of comparisons, the definitions of the Boolean operations
are extended to deal with the value unknown, as outlined in Section 3.3.4.

• and: The result of true and unknown is unknown, false and unknown is false,
while unknown and unknown is unknown.

• or: The result of true or unknown is true, false or unknown is unknown, while
unknown or unknown is unknown.

• not: The result of not unknown is unknown.

SQL defines the result of an SQL statement of the form

select . . . from R1, · · · , Rn where P

to contain (projections of) tuples in R1 × · · · × Rn for which predicate P evaluates to
true. If the predicate evaluates to either false or unknown for a tuple in R1×· · ·×Rn

(the projection of) the tuple is not added to the result.
SQL also allows us to test whether the result of a comparison is unknown, rather

than true or false, by using the clauses is unknown and is not unknown.
Null values, when they exist, also complicate the processing of aggregate opera-

tors. For example, assume that some tuples in the loan relation have a null value for
amount. Consider the following query to total all loan amounts:

select sum (amount)
from loan

The values to be summed in the preceding query include null values, since some
tuples have a null value for amount. Rather than say that the overall sum is itself null,
the SQL standard says that the sum operator should ignore null values in its input.

In general, aggregate functions treat nulls according to the following rule: All ag-
gregate functions except count(*) ignore null values in their input collection. As a
result of null values being ignored, the collection of values may be empty. The count
of an empty collection is defined to be 0, and all other aggregate operations return a
value of null when applied on an empty collection. The effect of null values on some
of the more complicated SQL constructs can be subtle.

A boolean type data, which can take values true, false, and unknown, was in-
troduced in SQL:1999. The aggregate functions some and every, which mean exactly
what you would intuitively expect, can be applied on a collection of Boolean values.

4.6 Nested Subqueries
SQL provides a mechanism for nesting subqueries. A subquery is a select-from-
where expression that is nested within another query. A common use of subqueries
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is to perform tests for set membership, make set comparisons, and determine set car-
dinality. We shall study these uses in subsequent sections.

4.6.1 Set Membership
SQL draws on the relational calculus for operations that allow testing tuples for mem-
bership in a relation. The in connective tests for set membership, where the set is a
collection of values produced by a select clause. The not in connective tests for the
absence of set membership. As an illustration, reconsider the query “Find all cus-
tomers who have both a loan and an account at the bank.” Earlier, we wrote such a
query by intersecting two sets: the set of depositors at the bank, and the set of bor-
rowers from the bank. We can take the alternative approach of finding all account
holders at the bank who are members of the set of borrowers from the bank. Clearly,
this formulation generates the same results as the previous one did, but it leads us
to write our query using the in connective of SQL. We begin by finding all account
holders, and we write the subquery

(select customer-name
from depositor)

We then need to find those customers who are borrowers from the bank and who
appear in the list of account holders obtained in the subquery. We do so by nesting
the subquery in an outer select. The resulting query is

select distinct customer-name
from borrower
where customer-name in (select customer-name

from depositor)

This example shows that it is possible to write the same query several ways in
SQL. This flexibility is beneficial, since it allows a user to think about the query in
the way that seems most natural. We shall see that there is a substantial amount of
redundancy in SQL.

In the preceding example, we tested membership in a one-attribute relation. It is
also possible to test for membership in an arbitrary relation in SQL. We can thus write
the query “Find all customers who have both an account and a loan at the Perryridge
branch” in yet another way:

select distinct customer-name
from borrower, loan
where borrower.loan-number = loan.loan-number and

branch-name = ’Perryridge’ and
(branch-name, customer-name) in

(select branch-name, customer-name
from depositor, account
where depositor.account-number = account.account-number)
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We use the not in construct in a similar way. For example, to find all customers
who do have a loan at the bank, but do not have an account at the bank, we can write

select distinct customer-name
from borrower
where customer-name not in (select customer-name

from depositor)

The in and not in operators can also be used on enumerated sets. The following
query selects the names of customers who have a loan at the bank, and whose names
are neither Smith nor Jones.

select distinct customer-name
from borrower
where customer-name not in (’Smith’, ’Jones’)

4.6.2 Set Comparison
As an example of the ability of a nested subquery to compare sets, consider the query
“Find the names of all branches that have assets greater than those of at least one
branch located in Brooklyn.” In Section 4.2.5, we wrote this query as follows:

select distinct T.branch-name
from branch as T, branch as S
where T.assets > S.assets and S.branch-city = ’Brooklyn’

SQL does, however, offer an alternative style for writing the preceding query. The
phrase “greater than at least one” is represented in SQL by > some. This construct
allows us to rewrite the query in a form that resembles closely our formulation of the
query in English.

select branch-name
from branch
where assets > some (select assets

from branch
where branch-city = ’Brooklyn’)

The subquery

(select assets
from branch
where branch-city = ’Brooklyn’)

generates the set of all asset values for all branches in Brooklyn. The > some
comparison in the where clause of the outer select is true if the assets value of the
tuple is greater than at least one member of the set of all asset values for branches in
Brooklyn.
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SQL also allows < some, <= some, >= some, = some, and <> some comparisons.
As an exercise, verify that = some is identical to in, whereas <> some is not the same
as not in. The keyword any is synonymous to some in SQL. Early versions of SQL
allowed only any. Later versions added the alternative some to avoid the linguistic
ambiguity of the word any in English.

Now we modify our query slightly. Let us find the names of all branches that
have an asset value greater than that of each branch in Brooklyn. The construct > all
corresponds to the phrase “greater than all.” Using this construct, we write the query
as follows:

select branch-name
from branch
where assets > all (select assets

from branch
where branch-city = ’Brooklyn’)

As it does for some, SQL also allows < all, <= all, >= all, = all, and <> all compar-
isons. As an exercise, verify that <> all is identical to not in.

As another example of set comparisons, consider the query “Find the branch that
has the highest average balance.” Aggregate functions cannot be composed in SQL.
Thus, we cannot use max (avg (. . .)). Instead, we can follow this strategy: We begin
by writing a query to find all average balances, and then nest it as a subquery of a
larger query that finds those branches for which the average balance is greater than
or equal to all average balances:

select branch-name
from account
group by branch-name
having avg (balance) >= all (select avg (balance)

from account
group by branch-name)

4.6.3 Test for Empty Relations
SQL includes a feature for testing whether a subquery has any tuples in its result. The
exists construct returns the value true if the argument subquery is nonempty. Using
the exists construct, we can write the query “Find all customers who have both an
account and a loan at the bank” in still another way:

select customer-name
from borrower
where exists (select *

from depositor
where depositor.customer-name = borrower.customer-name)

We can test for the nonexistence of tuples in a subquery by using the not ex-
ists construct. We can use the not exists construct to simulate the set containment
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(that is, superset) operation: We can write “relation A contains relation B” as “not
exists (B except A).” (Although it is not part of the SQL-92 and SQL:1999 standards,
the contains operator was present in some early relational systems.) To illustrate the
not exists operator, consider again the query “Find all customers who have an ac-
count at all the branches located in Brooklyn.” For each customer, we need to see
whether the set of all branches at which that customer has an account contains the
set of all branches in Brooklyn. Using the except construct, we can write the query as
follows:

select distinct S.customer-name
from depositor as S
where not exists ((select branch-name

from branch
where branch-city = ’Brooklyn’)

except
(select R.branch-name
from depositor as T, account as R
where T.account-number = R.account-number and

S.customer-name = T.customer-name))

Here, the subquery

(select branch-name
from branch
where branch-city = ’Brooklyn’)

finds all the branches in Brooklyn. The subquery

(select R.branch-name
from depositor as T, account as R
where T.account-number = R.account-number and

S.customer-name = T.customer-name)

finds all the branches at which customer S.customer-name has an account. Thus, the
outer select takes each customer and tests whether the set of all branches at which
that customer has an account contains the set of all branches located in Brooklyn.

In queries that contain subqueries, a scoping rule applies for tuple variables. In
a subquery, according to the rule, it is legal to use only tuple variables defined in
the subquery itself or in any query that contains the subquery. If a tuple variable
is defined both locally in a subquery and globally in a containing query, the local
definition applies. This rule is analogous to the usual scoping rules used for variables
in programming languages.

4.6.4 Test for the Absence of Duplicate Tuples
SQL includes a feature for testing whether a subquery has any duplicate tuples in its
result. The unique construct returns the value true if the argument subquery contains
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no duplicate tuples. Using the unique construct, we can write the query “Find all
customers who have at most one account at the Perryridge branch” as follows:

select T.customer-name
from depositor as T
where unique (select R.customer-name

from account, depositor as R
where T.customer-name = R.customer-name and

R.account-number = account.account-number and
account.branch-name = ’Perryridge’)

We can test for the existence of duplicate tuples in a subquery by using the not
unique construct. To illustrate this construct, consider the query “Find all customers
who have at least two accounts at the Perryridge branch,” which we write as

select distinct T.customer-name
from depositor T
where not unique (select R.customer-name

from account, depositor as R
where T.customer-name = R.customer-name and

R.account-number = account.account-number and
account.branch-name = ’Perryridge’)

Formally, the unique test on a relation is defined to fail if and only if the relation
contains two tuples t1 and t2 such that t1 = t2. Since the test t1 = t2 fails if any of the
fields of t1 or t2 are null, it is possible for unique to be true even if there are multiple
copies of a tuple, as long as at least one of the attributes of the tuple is null.

4.7 Views
We define a view in SQL by using the create view command. To define a view, we
must give the view a name and must state the query that computes the view. The
form of the create view command is

create view v as <query expression>

where <query expression> is any legal query expression. The view name is repre-
sented by v. Observe that the notation that we used for view definition in the rela-
tional algebra (see Chapter 3) is based on that of SQL.

As an example, consider the view consisting of branch names and the names of
customers who have either an account or a loan at that branch. Assume that we want
this view to be called all-customer. We define this view as follows:
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create view all-customer as
(select branch-name, customer-name
from depositor, account
where depositor.account-number = account.account-number)

union
(select branch-name, customer-name
from borrower, loan
where borrower.loan-number = loan.loan-number)

The attribute names of a view can be specified explicitly as follows:

create view branch-total-loan(branch-name, total-loan) as
select branch-name, sum(amount)
from loan
groupby branch-name

The preceding view gives for each branch the sum of the amounts of all the loans
at the branch. Since the expression sum(amount) does not have a name, the attribute
name is specified explicitly in the view definition.

View names may appear in any place that a relation name may appear. Using the
view all-customer, we can find all customers of the Perryridge branch by writing

select customer-name
from all-customer
where branch-name = ’Perryridge’

4.8 Complex Queries
Complex queries are often hard or impossible to write as a single SQL block or a
union/intersection/difference of SQL blocks. (An SQL block consists of a single select
from where statement, possibly with groupby and having clauses.) We study here
two ways of composing multiple SQL blocks to express a complex query: derived
relations and the with clause.

4.8.1 Derived Relations
SQL allows a subquery expression to be used in the from clause. If we use such an
expression, then we must give the result relation a name, and we can rename the
attributes. We do this renaming by using the as clause. For example, consider the
subquery

(select branch-name, avg (balance)
from account
group by branch-name)

as result (branch-name, avg-balance)
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This subquery generates a relation consisting of the names of all branches and their
corresponding average account balances. The subquery result is named result, with
the attributes branch-name and avg-balance.

To illustrate the use of a subquery expression in the from clause, consider the
query “Find the average account balance of those branches where the average ac-
count balance is greater than $1200.” We wrote this query in Section 4.4 by using the
having clause. We can now rewrite this query, without using the having clause, as
follows:

select branch-name, avg-balance
from (select branch-name, avg (balance)

from account
group by branch-name)

as branch-avg (branch-name, avg-balance)
where avg-balance > 1200

Note that we do not need to use the having clause, since the subquery in the from
clause computes the average balance, and its result is named as branch-avg; we can
use the attributes of branch-avg directly in the where clause.

As another example, suppose we wish to find the maximum across all branches of
the total balance at each branch. The having clause does not help us in this task, but
we can write this query easily by using a subquery in the from clause, as follows:

select max(tot-balance)
from (select branch-name, sum(balance)

from account
group by branch-name) as branch-total (branch-name, tot-balance)

4.8.2 The with Clause
Complex queries are much easier to write and to understand if we structure them
by breaking them into smaller views that we then combine, just as we structure pro-
grams by breaking their task into procedures. However, unlike a procedure defini-
tion, a create view clause creates a view definition in the database, and the view
definition stays in the database until a command drop view view-name is executed.

The with clause provides a way of defining a temporary view whose definition is
available only to the query in which the with clause occurs. Consider the following
query, which selects accounts with the maximum balance; if there are many accounts
with the same maximum balance, all of them are selected.

with max-balance (value) as
select max(balance)
from account

select account-number
from account, max-balance
where account.balance = max-balance.value
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The with clause introduced in SQL:1999, is currently supported only by some data-
bases.

We could have written the above query by using a nested subquery in either the
from clause or the where clause. However, using nested subqueries would have
made the query harder to read and understand. The with clause makes the query
logic clearer; it also permits a view definition to be used in multiple places within a
query.

For example, suppose we want to find all branches where the total account deposit
is less than the average of the total account deposits at all branches. We can write the
query using the with clause as follows.

with branch-total (branch-name, value) as
select branch-name, sum(balance)
from account
group by branch-name

with branch-total-avg(value) as
select avg(value)
from branch-total

select branch-name
from branch-total, branch-total-avg
where branch-total.value >= branch-total-avg.value

We can, of course, create an equivalent query without the with clause, but it would
be more complicated and harder to understand. You can write the equivalent query
as an exercise.

4.9 Modification of the Database
We have restricted our attention until now to the extraction of information from the
database. Now, we show how to add, remove, or change information with SQL.

4.9.1 Deletion
A delete request is expressed in much the same way as a query. We can delete only
whole tuples; we cannot delete values on only particular attributes. SQL expresses a
deletion by

delete from r
where P

where P represents a predicate and r represents a relation. The delete statement first
finds all tuples t in r for which P (t) is true, and then deletes them from r. The where
clause can be omitted, in which case all tuples in r are deleted.

Note that a delete command operates on only one relation. If we want to delete
tuples from several relations, we must use one delete command for each relation.
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The predicate in the where clause may be as complex as a select command’s where
clause. At the other extreme, the where clause may be empty. The request

delete from loan

deletes all tuples from the loan relation. (Well-designed systems will seek confirma-
tion from the user before executing such a devastating request.)

Here are examples of SQL delete requests:

• Delete all account tuples in the Perryridge branch.

delete from account
where branch-name = ’Perryridge’

• Delete all loans with loan amounts between $1300 and $1500.

delete from loan
where amount between 1300 and 1500

• Delete all account tuples at every branch located in Needham.

delete from account
where branch-name in (select branch-name

from branch
where branch-city = ’Needham’)

This delete request first finds all branches in Needham, and then deletes all
account tuples pertaining to those branches.

Note that, although we may delete tuples from only one relation at a time, we may
reference any number of relations in a select-from-where nested in the where clause
of a delete. The delete request can contain a nested select that references the relation
from which tuples are to be deleted. For example, suppose that we want to delete the
records of all accounts with balances below the average at the bank. We could write

delete from account
where balance < (select avg (balance)

from account)

The delete statement first tests each tuple in the relation account to check whether the
account has a balance less than the average at the bank. Then, all tuples that fail the
test—that is, represent an account with a lower-than-average balance—are deleted.
Performing all the tests before performing any deletion is important—if some tuples
are deleted before other tuples have been tested, the average balance may change,
and the final result of the delete would depend on the order in which the tuples were
processed!
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4.9.2 Insertion
To insert data into a relation, we either specify a tuple to be inserted or write a query
whose result is a set of tuples to be inserted. Obviously, the attribute values for in-
serted tuples must be members of the attribute’s domain. Similarly, tuples inserted
must be of the correct arity.

The simplest insert statement is a request to insert one tuple. Suppose that we
wish to insert the fact that there is an account A-9732 at the Perryridge branch and
that is has a balance of $1200. We write

insert into account
values (’A-9732’, ’Perryridge’, 1200)

In this example, the values are specified in the order in which the corresponding
attributes are listed in the relation schema. For the benefit of users who may not
remember the order of the attributes, SQL allows the attributes to be specified as part
of the insert statement. For example, the following SQL insert statements are identical
in function to the preceding one:

insert into account (account-number, branch-name, balance)
values (’A-9732’, ’Perryridge’, 1200)

insert into account (branch-name, account-number, balance)
values (’Perryridge’, ’A-9732’, 1200)

More generally, we might want to insert tuples on the basis of the result of a query.
Suppose that we want to present a new $200 savings acocunt as a gift to all loan
customers of the Perryridge branch, for each loan they have. Let the loan number
serve as the account number for the savings account. We write

insert into account
select loan-number, branch-name, 200
from loan
where branch-name = ’Perryridge’

Instead of specifying a tuple as we did earlier in this section, we use a select to specify
a set of tuples. SQL evaluates the select statement first, giving a set of tuples that is
then inserted into the account relation. Each tuple has a loan-number (which serves as
the account number for the new account), a branch-name (Perryridge), and an initial
balance of the new account ($200).

We also need to add tuples to the depositor relation; we do so by writing

insert into depositor
select customer-name, loan-number
from borrower, loan
where borrower.loan-number = loan.loan-number and

branch-name = ’Perryridge’
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This query inserts a tuple (customer-name, loan-number) into the depositor relation for
each customer-name who has a loan in the Perryridge branch with loan number loan-
number.

It is important that we evaluate the select statement fully before we carry out
any insertions. If we carry out some insertions even as the select statement is being
evaluated, a request such as

insert into account
select *
from account

might insert an infinite number of tuples! The request would insert the first tuple in
account again, creating a second copy of the tuple. Since this second copy is part of
account now, the select statement may find it, and a third copy would be inserted into
account. The select statement may then find this third copy and insert a fourth copy,
and so on, forever. Evaluating the select statement completely before performing
insertions avoids such problems.

Our discussion of the insert statement considered only examples in which a value
is given for every attribute in inserted tuples. It is possible, as we saw in Chapter 3,
for inserted tuples to be given values on only some attributes of the schema. The
remaining attributes are assigned a null value denoted by null. Consider the request

insert into account
values (’A-401’, null, 1200)

We know that account A-401 has $1200, but the branch name is not known. Consider
the query

select account-number
from account
where branch-name = ’Perryridge’

Since the branch at which account A-401 is maintained is not known, we cannot de-
termine whether it is equal to “Perryridge”.

We can prohibit the insertion of null values on specified attributes by using the
SQL DDL, which we discuss in Section 4.11.

4.9.3 Updates
In certain situations, we may wish to change a value in a tuple without changing all
values in the tuple. For this purpose, the update statement can be used. As we could
for insert and delete, we can choose the tuples to be updated by using a query.

Suppose that annual interest payments are being made, and all balances are to be
increased by 5 percent. We write

update account
set balance = balance * 1.05
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The preceding update statement is applied once to each of the tuples in account rela-
tion.

If interest is to be paid only to accounts with a balance of $1000 or more, we can
write

update account
set balance = balance * 1.05
where balance >= 1000

In general, the where clause of the update statement may contain any construct
legal in the where clause of the select statement (including nested selects). As with
insert and delete, a nested select within an update statement may reference the re-
lation that is being updated. As before, SQL first tests all tuples in the relation to see
whether they should be updated, and carries out the updates afterward. For exam-
ple, we can write the request “Pay 5 percent interest on accounts whose balance is
greater than average” as follows:

update account
set balance = balance * 1.05
where balance > select avg (balance)

from account

Let us now suppose that all accounts with balances over $10,000 receive 6 percent
interest, whereas all others receive 5 percent. We could write two update statements:

update account
set balance = balance * 1.06
where balance > 10000

update account
set balance = balance * 1.05
where balance <= 10000

Note that, as we saw in Chapter 3, the order of the two update statements is impor-
tant. If we changed the order of the two statements, an account with a balance just
under $10,000 would receive 11.3 percent interest.

SQL provides a case construct, which we can use to perform both the updates with
a single update statement, avoiding the problem with order of updates.

update account
set balance = case

when balance <= 10000 then balance * 1.05
else balance * 1.06

end

The general form of the case statement is as follows.
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case
when pred1 then result1

when pred2 then result2

. . .
when predn then resultn

else result0

end

The operation returns result i, where i is the first of pred1, pred2, . . . , predn that is sat-
isfied; if none of the predicates is satisfied, the operation returns result0. Case state-
ments can be used in any place where a value is expected.

4.9.4 Update of a View
The view-update anomaly that we discussed in Chapter 3 exists also in SQL. As an
illustration, consider the following view definition:

create view loan-branch as
select branch-name, loan-number
from loan

Since SQL allows a view name to appear wherever a relation name is allowed, we can
write

insert into loan-branch
values (’Perryridge’, ’L-307’)

SQL represents this insertion by an insertion into the relation loan, since loan is the
actual relation from which the view loan-branch is constructed. We must, therefore,
have some value for amount. This value is a null value. Thus, the preceding insert
results in the insertion of the tuple

(’L-307’, ’Perryridge’, null)

into the loan relation.
As we saw in Chapter 3, the view-update anomaly becomes more difficult to han-

dle when a view is defined in terms of several relations. As a result, many SQL-based
database systems impose the following constraint on modifications allowed through
views:

• A modification is permitted through a view only if the view in question is
defined in terms of one relation of the actual relational database—that is, of
the logical-level database.

Under this constraint, the update, insert, and delete operations would be forbidden
on the example view all-customer that we defined previously.
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4.9.5 Transactions
A transaction consists of a sequence of query and/or update statements. The SQL
standard specifies that a transaction begins implicitly when an SQL statement is exe-
cuted. One of the following SQL statements must end the transaction:

• Commit work commits the current transaction; that is, it makes the updates
performed by the transaction become permanent in the database. After the
transaction is committed, a new transaction is automatically started.

• Rollback work causes the current transaction to be rolled back; that is, it un-
does all the updates performed by the SQL statements in the transaction. Thus,
the database state is restored to what it was before the first statement of the
transaction was executed.

The keyword work is optional in both the statements.
Transaction rollback is useful if some error condition is detected during execution

of a transaction. Commit is similar, in a sense, to saving changes to a document that
is being edited, while rollback is similar to quitting the edit session without saving
changes. Once a transaction has executed commit work, its effects can no longer be
undone by rollback work. The database system guarantees that in the event of some
failure, such as an error in one of the SQL statements, a power outage, or a system
crash, a transaction’s effects will be rolled back if it has not yet executed commit
work. In the case of power outage or other system crash, the rollback occurs when
the system restarts.

For instance, to transfer money from one account to another we need to update
two account balances. The two update statements would form a transaction. An error
while a transaction executes one of its statements would result in undoing of the
effects of the earlier statements of the transaction, so that the database is not left in a
partially updated state. We study further properties of transactions in Chapter 15.

If a program terminates without executing either of these commands, the updates
are either committed or rolled back. The standard does not specify which of the two
happens, and the choice is implementation dependent. In many SQL implementa-
tions, by default each SQL statement is taken to be a transaction on its own, and gets
committed as soon as it is executed. Automatic commit of individual SQL statements
must be turned off if a transaction consisting of multiple SQL statements needs to be
executed. How to turn off automatic commit depends on the specific SQL implemen-
tation.

A better alternative, which is part of the SQL:1999 standard (but supported by only
some SQL implementations currently), is to allow multiple SQL statements to be en-
closed between the keywords begin atomic . . . end. All the statements between the
keywords then form a single transaction.

4.10 Joined Relations∗∗
SQL provides not only the basic Cartesian-product mechanism for joining tuples of
relations found in its earlier versions, but, SQL also provides various other mecha-
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loan-number branch-name amount
L-170 Downtown 3000
L-230 Redwood 4000
L-260 Perryridge 1700

loan

customer-name loan-number
Jones L-170
Smith L-230
Hayes L-155

borrower

Figure 4.1 The loan and borrower relations.

nisms for joining relations, including condition joins and natural joins, as well as var-
ious forms of outer joins. These additional operations are typically used as subquery
expressions in the from clause.

4.10.1 Examples
We illustrate the various join operations by using the relations loan and borrower in
Figure 4.1. We start with a simple example of inner joins. Figure 4.2 shows the result
of the expression

loan inner join borrower on loan.loan-number = borrower .loan-number

The expression computes the theta join of the loan and the borrower relations, with the
join condition being loan.loan-number = borrower.loan-number. The attributes of the
result consist of the attributes of the left-hand-side relation followed by the attributes
of the right-hand-side relation.

Note that the attribute loan-number appears twice in the figure—the first occur-
rence is from loan, and the second is from borrower. The SQL standard does not require
attribute names in such results to be unique. An as clause should be used to assign
unique names to attributes in query and subquery results.

We rename the result relation of a join and the attributes of the result relation by
using an as clause, as illustrated here:

loan inner join borrower on loan.loan-number = borrower.loan-number
as lb(loan-number, branch, amount, cust, cust-loan-num)

We rename the second occurrence of loan-number to cust-loan-num. The ordering of
the attributes in the result of the join is important for the renaming.

Next, we consider an example of the left outer join operation:

loan left outer join borrower on loan.loan-number = borrower.loan-number

loan-number branch-name amount customer-name loan-number
L-170 Downtown 3000 Jones L-170
L-230 Redwood 4000 Smith L-230

Figure 4.2 The result of loan inner join borrower on
loan.loan-number = borrower .loan-number .
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loan-number branch-name amount customer-name loan-number
L-170 Downtown 3000 Jones L-170
L-230 Redwood 4000 Smith L-230
L-260 Perryridge 1700 null null

Figure 4.3 The result of loan left outer join borrower on
loan.loan-number = borrower .loan-number .

We can compute the left outer join operation logically as follows. First, compute the
result of the inner join as before. Then, for every tuple t in the left-hand-side relation
loan that does not match any tuple in the right-hand-side relation borrower in the inner
join, add a tuple r to the result of the join: The attributes of tuple r that are derived
from the left-hand-side relation are filled in with the values from tuple t, and the
remaining attributes of r are filled with null values. Figure 4.3 shows the resultant
relation. The tuples (L-170, Downtown, 3000) and (L-230, Redwood, 4000) join with
tuples from borrower and appear in the result of the inner join, and hence in the result
of the left outer join. On the other hand, the tuple (L-260, Perryridge, 1700) did not
match any tuple from borrower in the inner join, and hence a tuple (L-260, Perryridge,
1700, null, null) is present in the result of the left outer join.

Finally, we consider an example of the natural join operation:

loan natural inner join borrower

This expression computes the natural join of the two relations. The only attribute
name common to loan and borrower is loan-number. Figure 4.4 shows the result of the
expression. The result is similar to the result of the inner join with the on condition in
Figure 4.2, since they have, in effect, the same join condition. However, the attribute
loan-number appears only once in the result of the natural join, whereas it appears
twice in the result of the join with the on condition.

4.10.2 Join Types and Conditions
In Section 4.10.1, we saw examples of the join operations permitted in SQL. Join op-
erations take two relations and return another relation as the result. Although outer-
join expressions are typically used in the from clause, they can be used anywhere
that a relation can be used.

Each of the variants of the join operations in SQL consists of a join type and a join
condition. The join condition defines which tuples in the two relations match and what
attributes are present in the result of the join. The join type defines how tuples in each

loan-number branch-name amount customer-name
L-170 Downtown 3000 Jones
L-230 Redwood 4000 Smith

Figure 4.4 The result of loan natural inner join borrower.
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Join types
inner join
left outer join
right outer join
full outer join

Join Conditions
natural
on < predicate>
using (A1, A1, . . ., An)

Figure 4.5 Join types and join conditions.

relation that do not match any tuple in the other relation (based on the join condition)
are treated. Figure 4.5 shows some of the allowed join types and join conditions. The
first join type is the inner join, and the other three are the outer joins. Of the three join
conditions, we have seen the natural join and the on condition before, and we shall
discuss the using condition, later in this section.

The use of a join condition is mandatory for outer joins, but is optional for inner
joins (if it is omitted, a Cartesian product results). Syntactically, the keyword natural
appears before the join type, as illustrated earlier, whereas the on and using con-
ditions appear at the end of the join expression. The keywords inner and outer are
optional, since the rest of the join type enables us to deduce whether the join is an
inner join or an outer join.

The meaning of the join condition natural, in terms of which tuples from the two
relations match, is straightforward. The ordering of the attributes in the result of a
natural join is as follows. The join attributes (that is, the attributes common to both
relations) appear first, in the order in which they appear in the left-hand-side relation.
Next come all nonjoin attributes of the left-hand-side relation, and finally all nonjoin
attributes of the right-hand-side relation.

The right outer join is symmetric to the left outer join. Tuples from the right-hand-
side relation that do not match any tuple in the left-hand-side relation are padded
with nulls and are added to the result of the right outer join.

Here is an example of combining the natural join condition with the right outer
join type:

loan natural right outer join borrower

Figure 4.6 shows the result of this expression. The attributes of the result are defined
by the join type, which is a natural join; hence, loan-number appears only once. The
first two tuples in the result are from the inner natural join of loan and borrower. The
tuple (Hayes, L-155) from the right-hand-side relation does not match any tuple from
the left-hand-side relation loan in the natural inner join. Hence, the tuple (L-155, null,
null, Hayes) appears in the join result.

The join condition using(A1, A2, . . . , An) is similar to the natural join condition, ex-
cept that the join attributes are the attributes A1, A2, . . . , An, rather than all attributes
that are common to both relations. The attributes A1, A2, . . . , An must consist of only
attributes that are common to both relations, and they appear only once in the result
of the join.

The full outer join is a combination of the left and right outer-join types. After
the operation computes the result of the inner join, it extends with nulls tuples from
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loan-number branch-name amount customer-name
L-170 Downtown 3000 Jones
L-230 Redwood 4000 Smith
L-155 null null Hayes

Figure 4.6 The result of loan natural right outer join borrower.

the left-hand-side relation that did not match with any from the right-hand-side, and
adds them to the result. Similarly, it extends with nulls tuples from the right-hand-
side relation that did not match with any tuples from the left-hand-side relation and
adds them to the result.

For example, Figure 4.7 shows the result of the expression

loan full outer join borrower using (loan-number)

As another example of the use of the outer-join operation, we can write the query
“Find all customers who have an account but no loan at the bank” as

select d-CN
from (depositor left outer join borrower

on depositor.customer-name = borrower.customer-name)
as db1 (d-CN, account-number, b-CN, loan-number)

where b-CN is null

Similarly, we can write the query “Find all customers who have either an account
or a loan (but not both) at the bank,” with natural full outer joins as:

select customer-name
from (depositor natural full outer join borrower)
where account-number is null or loan-number is null

SQL-92 also provides two other join types, called cross join and union join. The
first is equivalent to an inner join without a join condition; the second is equivalent
to a full outer join on the “false” condition—that is, where the inner join is empty.

loan-number branch-name amount customer-name
L-170 Downtown 3000 Jones
L-230 Redwood 4000 Smith
L-260 Perryridge 1700 null
L-155 null null Hayes

Figure 4.7 The result of loan full outer join borrower using(loan-number).
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4.11 Data-Definition Language
In most of our discussions of SQL and relational databases, we have accepted a set of
relations as given. Of course, the set of relations in a database must be specified to
the system by means of a data definition language (DDL).

The SQL DDL allows specification of not only a set of relations, but also information
about each relation, including

• The schema for each relation

• The domain of values associated with each attribute

• The integrity constraints

• The set of indices to be maintained for each relation

• The security and authorization information for each relation

• The physical storage structure of each relation on disk

We discuss here schema definition and domain values; we defer discussion of the
other SQL DDL features to Chapter 6.

4.11.1 Domain Types in SQL
The SQL standard supports a variety of built-in domain types, including:

• char(n): A fixed-length character string with user-specified length n. The full
form, character, can be used instead.

• varchar(n): A variable-length character string with user-specified maximum
length n. The full form, character varying, is equivalent.

• int: An integer (a finite subset of the integers that is machine dependent). The
full form, integer, is equivalent.

• smallint: A small integer (a machine-dependent subset of the integer domain
type).

• numeric(p, d): A fixed-point number with user-specified precision. The num-
ber consists of p digits (plus a sign), and d of the p digits are to the right of the
decimal point. Thus, numeric(3,1) allows 44.5 to be stored exactly, but neither
444.5 or 0.32 can be stored exactly in a field of this type.

• real, double precision: Floating-point and double-precision floating-point
numbers with machine-dependent precision.

• float(n): A floating-point number, with precision of at least n digits.

• date: A calendar date containing a (four-digit) year, month, and day of the
month.
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• time: The time of day, in hours, minutes, and seconds. A variant, time(p), can
be used to specify the number of fractional digits for seconds (the default be-
ing 0). It is also possible to store time zone information along with the time.

• timestamp: A combination of date and time. A variant, timestamp(p), can be
used to specify the number of fractional digits for seconds (the default here
being 6).

Date and time values can be specified like this:

date ’2001-04-25’
time ’09:30:00’
timestamp ’2001-04-25 10:29:01.45’

Dates must be specified in the format year followed by month followed by day, as
shown. The seconds field of time or timestamp can have a fractional part, as in the
timestamp above. We can use an expression of the form cast e as t to convert a char-
acter string (or string valued expression) e to the type t, where t is one of date, time,
or timestamp. The string must be in the appropriate format as illustrated at the be-
ginning of this paragraph.

To extract individual fields of a date or time value d, we can use extract (field from
d), where field can be one of year, month, day, hour, minute, or second.

SQL allows comparison operations on all the domains listed here, and it allows
both arithmetic and comparison operations on the various numeric domains. SQL
also provides a data type called interval, and it allows computations based on dates
and times and on intervals. For example, if x and y are of type date, then x − y is an
interval whose value is the number of days from date x to date y. Similarly, adding
or subtracting an interval to a date or time gives back a date or time, respectively.

It is often useful to compare values from compatible domains. For example, since
every small integer is an integer, a comparison x < y, where x is a small integer and
y is an integer (or vice versa), makes sense. We make such a comparison by casting
small integer x as an integer. A transformation of this sort is called a type coercion.
Type coercion is used routinely in common programming languages, as well as in
database systems.

As an illustration, suppose that the domain of customer-name is a character string
of length 20, and the domain of branch-name is a character string of length 15. Al-
though the string lengths might differ, standard SQL will consider the two domains
compatible.

As we discussed in Chapter 3, the null value is a member of all domains. For cer-
tain attributes, however, null values may be inappropriate. Consider a tuple in the
customer relation where customer-name is null. Such a tuple gives a street and city for
an anonymous customer; thus, it does not contain useful information. In cases such
as this, we wish to forbid null values, and we do so by restricting the domain of
customer-name to exclude null values.

SQL allows the domain declaration of an attribute to include the specification not
null and thus prohibits the insertion of a null value for this attribute. Any database
modification that would cause a null to be inserted in a not null domain generates
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an error diagnostic. There are many situations where we want to avoid null values.
In particular, it is essential to prohibit null values in the primary key of a relation
schema. Thus, in our bank example, in the customer relation, we must prohibit a null
value for the attribute customer-name, which is the primary key for customer.

4.11.2 Schema Definition in SQL
We define an SQL relation by using the create table command:

create table r(A1D1, A2D2, . . . , AnDn,
〈integrity-constraint1〉,
. . . ,
〈integrity-constraintk〉)

where r is the name of the relation, each Ai is the name of an attribute in the schema
of relation r, and Di is the domain type of values in the domain of attribute Ai. The
allowed integrity constraints include

• primary key (Aj1 , Aj2 , . . . , Ajm
): The primary key specification says that at-

tributes Aj1 , Aj2 , . . . , Ajm
form the primary key for the relation. The primary

key attributes are required to be non-null and unique; that is, no tuple can have
a null value for a primary key attribute, and no two tuples in the relation can
be equal on all the primary-key attributes.1 Although the primary key specifi-
cation is optional, it is generally a good idea to specify a primary key for each
relation.

• check(P): The check clause specifies a predicate P that must be satisfied by
every tuple in the relation.

The create table command also includes other integrity constraints, which we shall
discuss in Chapter 6.

Figure 4.8 presents a partial SQL DDL definition of our bank database. Note that,
as in earlier chapters, we do not attempt to model precisely the real world in the
bank-database example. In the real world, multiple people may have the same name,
so customer-name would not be a primary key customer; a customer-id would more
likely be used as a primary key. We use customer-name as a primary key to keep our
database schema simple and short.

If a newly inserted or modified tuple in a relation has null values for any primary-
key attribute, or if the tuple has the same value on the primary-key attributes as does
another tuple in the relation, SQL flags an error and prevents the update. Similarly, it
flags an error and prevents the update if the check condition on the tuple fails.

By default null is a legal value for every attribute in SQL, unless the attribute is
specifically stated to be not null. An attribute can be declared to be not null in the
following way:

account-number char(10) not null

1. In SQL-89, primary-key attributes were not implicitly declared to be not null; an explicit not null
declaration was required.
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create table customer
(customer-name char(20),
customer-street char(30),
customer-city char(30),
primary key (customer-name))

create table branch
(branch-name char(15),
branch-city char(30),
assets integer,
primary key (branch-name),
check (assets >= 0))

create table account
(account-number char(10),
branch-name char(15),
balance integer,
primary key (account-number),
check (balance >= 0))

create table depositor
(customer-name char(20),
account-number char(10),
primary key (customer-name, account-number))

Figure 4.8 SQL data definition for part of the bank database.

SQL also supports an integrity constraint
unique (Aj1 , Aj2 , . . . , Ajm

)
The unique specification says that attributes Aj1 , Aj2 , . . . , Ajm

form a candidate key;
that is, no two tuples in the relation can be equal on all the primary-key attributes.
However, candidate key attributes are permitted to be null unless they have explicitly
been declared to be not null. Recall that a null value does not equal any other value.
The treatment of nulls here is the same as that of the unique construct defined in
Section 4.6.4.

A common use of the check clause is to ensure that attribute values satisfy spec-
ified conditions, in effect creating a powerful type system. For instance, the check
clause in the create table command for relation branch checks that the value of assets
is nonnegative. As another example, consider the following:

create table student
(name char(15) not null,
student-id char(10),
degree-level char(15),
primary key (student-id),
check (degree-level in (’Bachelors’, ’Masters’, ’Doctorate’)))
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Here, we use the check clause to simulate an enumerated type, by specifying that
degree-level must be one of ’Bachelors’, ’Masters’, or ’Doctorate’. We consider more
general forms of check conditions, as well as a class of constraints called referential
integrity constraints, in Chapter 6.

A newly created relation is empty initially. We can use the insert command to load
data into the relation. Many relational-database products have special bulk loader
utilities to load an initial set of tuples into a relation.

To remove a relation from an SQL database, we use the drop table command. The
drop table command deletes all information about the dropped relation from the
database. The command

drop table r

is a more drastic action than

delete from r

The latter retains relation r, but deletes all tuples in r. The former deletes not only all
tuples of r, but also the schema for r. After r is dropped, no tuples can be inserted
into r unless it is re-created with the create table command.

We use the alter table command to add attributes to an existing relation. All tuples
in the relation are assigned null as the value for the new attribute. The form of the
alter table command is

alter table r add A D

where r is the name of an existing relation, A is the name of the attribute to be added,
and D is the domain of the added attribute. We can drop attributes from a relation by
the command

alter table r drop A

where r is the name of an existing relation, and A is the name of an attribute of the
relation. Many database systems do not support dropping of attributes, although
they will allow an entire table to be dropped.

4.12 Embedded SQL
SQL provides a powerful declarative query language. Writing queries in SQL is usu-
ally much easier than coding the same queries in a general-purpose programming
language. However, a programmer must have access to a database from a general-
purpose programming language for at least two reasons:

1. Not all queries can be expressed in SQL, since SQL does not provide the full
expressive power of a general-purpose language. That is, there exist queries
that can be expressed in a language such as C, Java, or Cobol that cannot be
expressed in SQL. To write such queries, we can embed SQL within a more
powerful language.
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SQL is designed so that queries written in it can be optimized automatically
and executed efficiently—and providing the full power of a programming
language makes automatic optimization exceedingly difficult.

2. Nondeclarative actions—such as printing a report, interacting with a user, or
sending the results of a query to a graphical user interface—cannot be done
from within SQL. Applications usually have several components, and query-
ing or updating data is only one component; other components are written in
general-purpose programming languages. For an integrated application, the
programs written in the programming language must be able to access the
database.

The SQL standard defines embeddings of SQL in a variety of programming lan-
guages, such as C, Cobol, Pascal, Java, PL/I, and Fortran. A language in which SQL
queries are embedded is referred to as a host language, and the SQL structures per-
mitted in the host language constitute embedded SQL.

Programs written in the host language can use the embedded SQL syntax to ac-
cess and update data stored in a database. This embedded form of SQL extends the
programmer’s ability to manipulate the database even further. In embedded SQL, all
query processing is performed by the database system, which then makes the result
of the query available to the program one tuple (record) at a time.

An embedded SQL program must be processed by a special preprocessor prior to
compilation. The preprocessor replaces embedded SQL requests with host-language
declarations and procedure calls that allow run-time execution of the database ac-
cesses. Then, the resulting program is compiled by the host-language compiler. To
identify embedded SQL requests to the preprocessor, we use the EXEC SQL statement;
it has the form

EXEC SQL <embedded SQL statement > END-EXEC

The exact syntax for embedded SQL requests depends on the language in which
SQL is embedded. For instance, a semicolon is used instead of END-EXEC when SQL
is embedded in C. The Java embedding of SQL (called SQLJ) uses the syntax

# SQL { <embedded SQL statement > };

We place the statement SQL INCLUDE in the program to identify the place where
the preprocessor should insert the special variables used for communication between
the program and the database system. Variables of the host language can be used
within embedded SQL statements, but they must be preceded by a colon (:) to distin-
guish them from SQL variables.

Embedded SQL statements are similar in form to the SQL statements that we de-
scribed in this chapter. There are, however, several important differences, as we note
here.

To write a relational query, we use the declare cursor statement. The result of the
query is not yet computed. Rather, the program must use the open and fetch com-
mands (discussed later in this section) to obtain the result tuples.
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Consider the banking schema that we have used in this chapter. Assume that we
have a host-language variable amount, and that we wish to find the names and cities
of residence of customers who have more than amount dollars in any account. We can
write this query as follows:

EXEC SQL
declare c cursor for
select customer-name, customer-city
from depositor, customer, account
where depositor.customer-name = customer.customer-name and

account.account-number = depositor.account-number and
account.balance > :amount

END-EXEC

The variable c in the preceding expression is called a cursor for the query. We use
this variable to identify the query in the open statement, which causes the query to
be evaluated, and in the fetch statement, which causes the values of one tuple to be
placed in host-language variables.

The open statement for our sample query is as follows:

EXEC SQL open c END-EXEC

This statement causes the database system to execute the query and to save the results
within a temporary relation. The query has a host-language variable (:amount); the
query uses the value of the variable at the time the open statement was executed.

If the SQL query results in an error, the database system stores an error diagnostic
in the SQL communication-area (SQLCA) variables, whose declarations are inserted
by the SQL INCLUDE statement.

An embedded SQL program executes a series of fetch statements to retrieve tuples
of the result. The fetch statement requires one host-language variable for each at-
tribute of the result relation. For our example query, we need one variable to hold the
customer-name value and another to hold the customer-city value. Suppose that those
variables are cn and cc, respectively. Then the statement:

EXEC SQL fetch c into :cn, :cc END-EXEC

produces a tuple of the result relation. The program can then manipulate the vari-
ables cn and cc by using the features of the host programming language.

A single fetch request returns only one tuple. To obtain all tuples of the result,
the program must contain a loop to iterate over all tuples. Embedded SQL assists the
programmer in managing this iteration. Although a relation is conceptually a set, the
tuples of the result of a query are in some fixed physical order. When the program
executes an open statement on a cursor, the cursor is set to point to the first tuple
of the result. Each time it executes a fetch statement, the cursor is updated to point
to the next tuple of the result. When no further tuples remain to be processed, the
variable SQLSTATE in the SQLCA is set to ’02000’ (meaning “no data”). Thus, we can
use a while loop (or equivalent loop) to process each tuple of the result.
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We must use the close statement to tell the database system to delete the tempo-
rary relation that held the result of the query. For our example, this statement takes
the form

EXEC SQL close c END-EXEC

SQLJ, the Java embedding of SQL, provides a variation of the above scheme, where
Java iterators are used in place of cursors. SQLJ associates the results of a query with
an iterator, and the next() method of the Java iterator interface can be used to step
through the result tuples, just as the preceding examples use fetch on the cursor.

Embedded SQL expressions for database modification (update, insert, and delete)
do not return a result. Thus, they are somewhat simpler to express. A database-
modification request takes the form

EXEC SQL < any valid update, insert, or delete> END-EXEC

Host-language variables, preceded by a colon, may appear in the SQL database-
modification expression. If an error condition arises in the execution of the statement,
a diagnostic is set in the SQLCA.

Database relations can also be updated through cursors. For example, if we want
to add 100 to the balance attribute of every account where the branch name is “Per-
ryridge”, we could declare a cursor as follows.

declare c cursor for
select *
from account
where branch-name = ‘Perryridge‘
for update

We then iterate through the tuples by performing fetch operations on the cursor (as
illustrated earlier), and after fetching each tuple we execute the following code

update account
set balance = balance + 100
where current of c

Embedded SQL allows a host-language program to access the database, but it pro-
vides no assistance in presenting results to the user or in generating reports. Most
commercial database products include tools to assist application programmers in
creating user interfaces and formatted reports. We discuss such tools in Chapter 5
(Section 5.3).

4.13 Dynamic SQL
The dynamic SQL component of SQL allows programs to construct and submit SQL
queries at run time. In contrast, embedded SQL statements must be completely present
at compile time; they are compiled by the embedded SQL preprocessor. Using dy-
namic SQL, programs can create SQL queries as strings at run time (perhaps based on
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input from the user) and can either have them executed immediately or have them
prepared for subsequent use. Preparing a dynamic SQL statement compiles it, and
subsequent uses of the prepared statement use the compiled version.

SQL defines standards for embedding dynamic SQL calls in a host language, such
as C, as in the following example.

char * sqlprog = ”update account set balance = balance ∗1.05
where account-number = ?”

EXEC SQL prepare dynprog from :sqlprog;
char account[10] = ”A-101”;
EXEC SQL execute dynprog using :account;

The dynamic SQL program contains a ?, which is a place holder for a value that is
provided when the SQL program is executed.

However, the syntax above requires extensions to the language or a preprocessor
for the extended language. An alternative that is very widely used is to use an appli-
cation program interface to send SQL queries or updates to a database system, and
not make any changes in the programming language itself.

In the rest of this section, we look at two standards for connecting to an SQL
database and performing queries and updates. One, ODBC, is an application pro-
gram interface for the C language, while the other, JDBC, is an application program
interface for the Java language.

To understand these standards, we need to understand the concept of SQL ses-
sions. The user or application connects to an SQL server, establishing a session; exe-
cutes a series of statements; and finally disconnects the session. Thus, all activities of
the user or application are in the context of an SQL session. In addition to the normal
SQL commands, a session can also contain commands to commit the work carried out
in the session, or to rollback the work carried out in the session.

4.13.1 ODBC∗∗
The Open DataBase Connectivity (ODBC) standard defines a way for an application
program to communicate with a database server. ODBC defines an application pro-
gram interface (API) that applications can use to open a connection with a database,
send queries and updates, and get back results. Applications such as graphical user
interfaces, statistics packages, and spreadsheets can make use of the same ODBC API
to connect to any database server that supports ODBC.

Each database system supporting ODBC provides a library that must be linked
with the client program. When the client program makes an ODBC API call, the code
in the library communicates with the server to carry out the requested action, and
fetch results.

Figure 4.9 shows an example of C code using the ODBC API. The first step in using
ODBC to communicate with a server is to set up a connection with the server. To do
so, the program first allocates an SQL environment, then a database connection han-
dle. ODBC defines the types HENV, HDBC, and RETCODE. The program then opens
the database connection by using SQLConnect. This call takes several parameters, in-
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int ODBCexample()
{

RETCODE error;
HENV env; /* environment */
HDBC conn; /* database connection */

SQLAllocEnv(&env);
SQLAllocConnect(env, &conn);
SQLConnect(conn, ”aura.bell-labs.com”, SQL NTS, ”avi”, SQL NTS,

”avipasswd”, SQL NTS);
{

char branchname[80];
float balance;
int lenOut1, lenOut2;
HSTMT stmt;

SQLAllocStmt(conn, &stmt);
char * sqlquery = ”select branch name, sum (balance)

from account
group by branch name”;

error = SQLExecDirect(stmt, sqlquery, SQL NTS);
if (error == SQL SUCCESS) {

SQLBindCol(stmt, 1, SQL C CHAR, branchname , 80, &lenOut1);
SQLBindCol(stmt, 2, SQL C FLOAT, &balance, 0 , &lenOut2);
while (SQLFetch(stmt) >= SQL SUCCESS) {

printf (” %s %g\n”, branchname, balance);
}

}
}
SQLFreeStmt(stmt, SQL DROP);
SQLDisconnect(conn);
SQLFreeConnect(conn);
SQLFreeEnv(env);

}

Figure 4.9 ODBC code example.

cluding the connection handle, the server to which to connect, the user identifier,
and the password for the database. The constant SQL NTS denotes that the previous
argument is a null-terminated string.

Once the connection is set up, the program can send SQL commands to the database
by using SQLExecDirect C language variables can be bound to attributes of the query
result, so that when a result tuple is fetched using SQLFetch, its attribute values are
stored in corresponding C variables. The SQLBindCol function does this task; the sec-
ond argument identifies the position of the attribute in the query result, and the third
argument indicates the type conversion required from SQL to C. The next argument
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gives the address of the variable. For variable-length types like character arrays, the
last two arguments give the maximum length of the variable and a location where
the actual length is to be stored when a tuple is fetched. A negative value returned
for the length field indicates that the value is null.

The SQLFetch statement is in a while loop that gets executed until SQLFetch re-
turns a value other than SQL SUCCESS. On each fetch, the program stores the values
in C variables as specified by the calls on SQLBindCol and prints out these values.

At the end of the session, the program frees the statement handle, disconnects
from the database, and frees up the connection and SQL environment handles. Good
programming style requires that the result of every function call must be checked to
make sure there are no errors; we have omitted most of these checks for brevity.

It is possible to create an SQL statement with parameters; for example, consider
the statement insert into account values(?,?,?). The question marks are placeholders
for values which will be supplied later. The above statement can be “prepared,” that
is, compiled at the database, and repeatedly executed by providing actual values for
the placeholders—in this case, by providing an account number, branch name, and
balance for the relation account.

ODBC defines functions for a variety of tasks, such as finding all the relations in the
database and finding the names and types of columns of a query result or a relation
in the database.

By default, each SQL statement is treated as a separate transaction that is commit-
ted automatically. The call SQLSetConnectOption(conn, SQL AUTOCOMMIT, 0) turns
off automatic commit on connection conn, and transactions must then be committed
explicitly by SQLTransact(conn, SQL COMMIT) or rolled back by SQLTransact(conn,
SQL ROLLBACK).

The more recent versions of the ODBC standard add new functionality. Each ver-
sion defines conformance levels, which specify subsets of the functionality defined by
the standard. An ODBC implementation may provide only core level features, or it
may provide more advanced (level 1 or level 2) features. Level 1 requires support
for fetching information about the catalog, such as information about what relations
are present and the types of their attributes. Level 2 requires further features, such as
ability to send and retrieve arrays of parameter values and to retrieve more detailed
catalog information.

The more recent SQL standards (SQL-92 and SQL:1999) define a call level interface
(CLI) that is similar to the ODBC interface, but with some minor differences.

4.13.2 JDBC∗∗
The JDBC standard defines an API that Java programs can use to connect to database
servers. (The word JDBC was originally an abbreviation for “Java Database Connec-
tivity”, but the full form is no longer used.) Figure 4.10 shows an example Java pro-
gram that uses the JDBC interface. The program must first open a connection to a
database, and can then execute SQL statements, but before opening a connection,
it loads the appropriate drivers for the database by using Class.forName. The first
parameter to the getConnection call specifies the machine name where the server
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public static void JDBCexample(String dbid, String userid, String passwd)
{

try
{

Class.forName (”oracle.jdbc.driver.OracleDriver”);
Connection conn = DriverManager.getConnection(

”jdbc:oracle:thin:@aura.bell-labs.com:2000:bankdb”,
userid, passwd);

Statement stmt = conn.createStatement();
try {

stmt.executeUpdate(
”insert into account values(’A-9732’, ’Perryridge’, 1200)”);

} catch (SQLException sqle)
{

System.out.println(”Could not insert tuple. ” + sqle);
}
ResultSet rset = stmt.executeQuery(

”select branch name, avg (balance)
from account
group by branch name”);

while (rset.next()) {
System.out.println(rset.getString(”branch name”) + ” ” +

rset.getFloat(2));
}
stmt.close();
conn.close();

}
catch (SQLException sqle)
{

System.out.println(”SQLException : ” + sqle);
}

}

Figure 4.10 An example of JDBC code.

runs (in our example, aura.bell-labs.com), the port number it uses for communica-
tion (in our example, 2000). The parameter also specifies which schema on the server
is to be used (in our example, bankdb), since a database server may support multiple
schemas. The first parameter also specifies the protocol to be used to communicate
with the database (in our example, jdbc:oracle:thin:). Note that JDBC specifies only
the API, not the communication protocol. A JDBC driver may support multiple pro-
tocols, and we must specify one supported by both the database and the driver. The
other two arguments to getConnection are a user identifier and a password.

The program then creates a statement handle on the connection and uses it to
execute an SQL statement and get back results. In our example, stmt.executeUpdate
executes an update statement. The try { . . . } catch { . . . } construct permits us to
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PreparedStatement pStmt = conn.prepareStatement(
”insert into account values(?,?,?)”);

pStmt.setString(1, ”A-9732”);
pStmt.setString(2, ”Perryridge”);
pStmt.setInt(3, 1200);
pStmt.executeUpdate();
pStmt.setString(1, ”A-9733”);
pStmt.executeUpdate();

Figure 4.11 Prepared statements in JDBC code.

catch any exceptions (error conditions) that arise when JDBC calls are made, and print
an appropriate message to the user.

The program can execute a query by using stmt.executeQuery. It can retrieve the
set of rows in the result into a ResultSet and fetch them one tuple at a time using the
next() function on the result set. Figure 4.10 shows two ways of retrieving the values
of attributes in a tuple: using the name of the attribute (branch-name) and using the
position of the attribute (2, to denote the second attribute).

We can also create a prepared statement in which some values are replaced by “?”,
thereby specifying that actual values will be provided later. We can then provide the
values by using setString(). The database can compile the query when it is prepared,
and each time it is executed (with new values), the database can reuse the previously
compiled form of the query. The code fragment in Figure 4.11 shows how prepared
statements can be used.

JDBC provides a number of other features, such as updatable result sets. It can
create an updatable result set from a query that performs a selection and/or a pro-
jection on a database relation. An update to a tuple in the result set then results in
an update to the corresponding tuple of the database relation. JDBC also provides an
API to examine database schemas and to find the types of attributes of a result set.

For more information about JDBC, refer to the bibliographic information at the end
of the chapter.

4.14 Other SQL Features ∗∗
The SQL language has grown over the past two decades from a simple language with
a few features to a rather complex language with features to satisfy many different
types of users. We covered the basics of SQL earlier in this chapter. In this section we
introduce the reader to some of the more complex features of SQL.

4.14.1 Schemas, Catalogs, and Environments
To understand the motivation for schemas and catalogs, consider how files are named
in a file system. Early file systems were flat; that is, all files were stored in a single
directory. Current generation file systems of course have a directory structure, with
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files stored within subdirectories. To name a file uniquely, we must specify the full
path name of the file, for example, /users/avi/db-book/chapter4.tex.

Like early file systems, early database systems also had a single name space for all
relations. Users had to coordinate to make sure they did not try to use the same name
for different relations. Contemporary database systems provide a three-level hierar-
chy for naming relations. The top level of the hierarchy consists of catalogs, each of
which can contain schemas. SQL objects such as relations and views are contained
within a schema.

In order to perform any actions on a database, a user (or a program) must first
connect to the database. The user must provide the user name and usually, a secret
password for verifying the identity of the user, as we saw in the ODBC and JDBC
examples in Sections 4.13.1 and 4.13.2. Each user has a default catalog and schema,
and the combination is unique to the user. When a user connects to a database system,
the default catalog and schema are set up for for the connection; this corresponds to
the current directory being set to the user’s home directory when the user logs into
an operating system.

To identify a relation uniquely, a three-part name must be used, for example,

catalog5.bank-schema.account

We may omit the catalog component, in which case the catalog part of the name is
considered to be the default catalog for the connection. Thus if catalog5 is the default
catalog, we can use bank-schema.account to identify the same relation uniquely. Fur-
ther, we may also omit the schema name, and the schema part of the name is again
considered to be the default schema for the connection. Thus we can use just account
if the default catalog is catalog5 and the default schema is bank-schema.

With multiple catalogs and schemas available, different applications and differ-
ent users can work independently without worrying about name clashes. Moreover,
multiple versions of an application—one a production version, other test versions—
can run on the same database system.

The default catalog and schema are part of an SQL environment that is set up
for each connection. The environment additionally contains the user identifier (also
referred to as the authorization identifier). All the usual SQL statements, including the
DDL and DML statements, operate in the context of a schema. We can create and
drop schemas by means of create schema and drop schema statements. Creation and
dropping of catalogs is implementation dependent and not part of the SQL standard.

4.14.2 Procedural Extensions and Stored Procedures
SQL provides a module language, which allows procedures to be defined in SQL.
A module typically contains multiple SQL procedures. Each procedure has a name,
optional arguments, and an SQL statement. An extension of the SQL-92 standard lan-
guage also permits procedural constructs, such as for, while, and if-then-else, and
compound SQL statements (multiple SQL statements between a begin and an end).

We can store procedures in the database and then execute them by using the call
statement. Such procedures are also called stored procedures. Stored procedures
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are particularly useful because they permit operations on the database to be made
available to external applications, without exposing any of the internal details of the
database.

Chapter 9 covers procedural extensions of SQL as well as many other new features
of SQL:1999.

4.15 Summary
• Commercial database systems do not use the terse, formal query languages

covered in Chapter 3. The widely used SQL language, which we studied in
this chapter, is based on the formal relational algebra, but includes much “syn-
tactic sugar.”

• SQL includes a variety of language constructs for queries on the database. All
the relational-algebra operations, including the extended relational-algebra
operations, can be expressed by SQL. SQL also allows ordering of query re-
sults by sorting on specified attributes.

• View relations can be defined as relations containing the result of queries.
Views are useful for hiding unneeded information, and for collecting together
information from more than one relation into a single view.

• Temporary views defined by using the with clause are also useful for breaking
up complex queries into smaller and easier-to-understand parts.

• SQL provides constructs for updating, inserting, and deleting information. A
transaction consists of a sequence of operations, which must appear to be
atomic. That is, all the operations are carried out successfully, or none is car-
ried out. In practice, if a transaction cannot complete successfully, any partial
actions it carried out are undone.

• Modifications to the database may lead to the generation of null values in
tuples. We discussed how nulls can be introduced, and how the SQL query
language handles queries on relations containing null values.

• The SQL data definition language is used to create relations with specified
schemas. The SQL DDL supports a number of types including date and time
types. Further details on the SQL DDL, in particular its support for integrity
constraints, appear in Chapter 6.

• SQL queries can be invoked from host languages, via embedded and dynamic
SQL. The ODBC and JDBC standards define application program interfaces to
access SQL databases from C and Java language programs. Increasingly, pro-
grammers use these APIs to access databases.

• We also saw a brief overview of some advanced features of SQL, such as pro-
cedural extensions, catalogs, schemas and stored procedures.
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Review Terms
• DDL: data definition language
• DML: data manipulation

language
• select clause
• from clause
• where clause
• as clause
• Tuple variable
• order by clause
• Duplicates
• Set operations
� union, intersect, except

• Aggregate functions
� avg, min, max, sum, count
� group by

• Null values
� Truth value “unknown”

• Nested subqueries
• Set operations
� {<, <=, >, >=} { some, all }
� exists
� unique

• Views

• Derived relations (in from clause)

• with clause

• Database modification
� delete, insert, update
� View update

• Join types
� Inner and outer join
� left, right and full outer join
� natural, using, and on

• Transaction

• Atomicity

• Index

• Schema

• Domains

• Embedded SQL

• Dynamic SQL

• ODBC

• JDBC

• Catalog

• Stored procedures

Exercises
4.1 Consider the insurance database of Figure 4.12, where the primary keys are un-

derlined. Construct the following SQL queries for this relational database.
a. Find the total number of people who owned cars that were involved in ac-

cidents in 1989.
b. Find the number of accidents in which the cars belonging to “John Smith”

were involved.
c. Add a new accident to the database; assume any values for required at-

tributes.
d. Delete the Mazda belonging to “John Smith”.
e. Update the damage amount for the car with license number “AABB2000” in

the accident with report number “AR2197” to $3000.

4.2 Consider the employee database of Figure 4.13, where the primary keys are un-
derlined. Give an expression in SQL for each of the following queries.

a. Find the names of all employees who work for First Bank Corporation.
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person (driver-id#, name, address)
car (license, model, year)
accident (report-number, date, location)
owns (driver-id#, license)
participated (driver-id, car, report-number, damage-amount)

Figure 4.12 Insurance database.

employee (employee-name, street, city)
works (employee-name, company-name, salary)
company (company-name, city)
manages (employee-name, manager-name)

Figure 4.13 Employee database.

b. Find the names and cities of residence of all employees who work for First
Bank Corporation.

c. Find the names, street addresses, and cities of residence of all employees
who work for First Bank Corporation and earn more than $10,000.

d. Find all employees in the database who live in the same cities as the com-
panies for which they work.

e. Find all employees in the database who live in the same cities and on the
same streets as do their managers.

f. Find all employees in the database who do not work for First Bank Corpo-
ration.

g. Find all employees in the database who earn more than each employee of
Small Bank Corporation.

h. Assume that the companies may be located in several cities. Find all com-
panies located in every city in which Small Bank Corporation is located.

i. Find all employees who earn more than the average salary of all employees
of their company.

j. Find the company that has the most employees.
k. Find the company that has the smallest payroll.
l. Find those companies whose employees earn a higher salary, on average,

than the average salary at First Bank Corporation.

4.3 Consider the relational database of Figure 4.13. Give an expression in SQL for
each of the following queries.

a. Modify the database so that Jones now lives in Newtown.
b. Give all employees of First Bank Corporation a 10 percent raise.
c. Give all managers of First Bank Corporation a 10 percent raise.
d. Give all managers of First Bank Corporation a 10 percent raise unless the

salary becomes greater than $100,000; in such cases, give only a 3 percent
raise.

e. Delete all tuples in the works relation for employees of Small Bank Corpora-
tion.
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4.4 Let the following relation schemas be given:

R = (A, B, C)
S = (D, E, F )

Let relations r(R) and s(S) be given. Give an expression in SQL that is equivalent
to each of the following queries.

a. ΠA(r)
b. σB = 17 (r)
c. r × s
d. ΠA,F (σC = D(r × s))

4.5 Let R = (A, B, C), and let r1 and r2 both be relations on schema R. Give an
expression in SQL that is equivalent to each of the following queries.

a. r1 ∪ r2

b. r1 ∩ r2

c. r1 − r2

d. ΠAB(r1) � ΠBC(r2)

4.6 Let R = (A, B) and S = (A, C), and let r(R) and s(S) be relations. Write an
expression in SQL for each of the queries below:

a. {< a > | ∃ b (< a, b > ∈ r ∧ b = 17)}
b. {< a, b, c > | < a, b > ∈ r ∧ < a, c > ∈ s}
c. {< a > | ∃ c (< a, c > ∈ s ∧ ∃ b1, b2 (< a, b1 > ∈ r ∧ < c, b2 > ∈ r ∧ b1 >

b2))}
4.7 Show that, in SQL, <> all is identical to not in.

4.8 Consider the relational database of Figure 4.13. Using SQL, define a view con-
sisting of manager-name and the average salary of all employees who work for
that manager. Explain why the database system should not allow updates to be
expressed in terms of this view.

4.9 Consider the SQL query

select p.a1
from p, r1, r2
where p.a1 = r1.a1 or p.a1 = r2.a1

Under what conditions does the preceding query select values of p.a1 that are
either in r1 or in r2? Examine carefully the cases where one of r1 or r2 may be
empty.

4.10 Write an SQL query, without using a with clause, to find all branches where
the total account deposit is less than the average total account deposit at all
branches,

a. Using a nested query in the from clauser.
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b. Using a nested query in a having clause.

4.11 Suppose that we have a relation marks(student-id, score) and we wish to assign
grades to students based on the score as follows: grade F if score < 40, grade C
if 40 ≤ score < 60, grade B if 60 ≤ score < 80, and grade A if 80 ≤ score. Write
SQL queries to do the following:

a. Display the grade for each student, based on the marks relation.
b. Find the number of students with each grade.

4.12 SQL-92 provides an n-ary operation called coalesce, which is defined as follows:
coalesce(A1, A2, . . . , An) returns the first nonnull Ai in the list A1, A2, . . . , An,
and returns null if all of A1, A2, . . . , An are null. Show how to express the coa-
lesce operation using the case operation.

4.13 Let a and b be relations with the schemas A(name, address, title) and B(name, ad-
dress, salary), respectively. Show how to express a natural full outer join b using
the full outer join operation with an on condition and the coalesce operation.
Make sure that the result relation does not contain two copies of the attributes
name and address, and that the solution is correct even if some tuples in a and b
have null values for attributes name or address.

4.14 Give an SQL schema definition for the employee database of Figure 4.13. Choose
an appropriate domain for each attribute and an appropriate primary key for
each relation schema.

4.15 Write check conditions for the schema you defined in Exercise 4.14 to ensure
that:

a. Every employee works for a company located in the same city as the city in
which the employee lives.

b. No employee earns a salary higher than that of his manager.

4.16 Describe the circumstances in which you would choose to use embedded SQL
rather than SQL alone or only a general-purpose programming language.

Bibliographical Notes
The original version of SQL, called Sequel 2, is described by Chamberlin et al. [1976].
Sequel 2 was derived from the languages Square Boyce et al. [1975] and Chamber-
lin and Boyce [1974]. The American National Standard SQL-86 is described in ANSI
[1986]. The IBM Systems Application Architecture definition of SQL is defined by IBM
[1987]. The official standards for SQL-89 and SQL-92 are available as ANSI [1989] and
ANSI [1992], respectively.

Textbook descriptions of the SQL-92 language include Date and Darwen [1997],
Melton and Simon [1993], and Cannan and Otten [1993]. Melton and Eisenberg [2000]
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Eisenberg and Melton [1999] provide an overview of SQL:1999. The standard is
published as a sequence of five ISO/IEC standards documents, with several more
parts describing various extensions under development. Part 1 (SQL/Framework),
gives an overview of the other parts. Part 2 (SQL/Foundation) outlines the basics of
the language. Part 3 (SQL/CLI) describes the Call-Level Interface. Part 4 (SQL/PSM)
describes Persistent Stored Modules, and Part 5 (SQL/Bindings) describes host lan-
guage bindings. The standard is useful to database implementers but is very hard
to read. If you need them, you can purchase them electronically from the Web site
http://webstore.ansi.org.

Many database products support SQL features beyond those specified in the stan-
dards, and may not support some features of the standard. More information on
these features may be found in the SQL user manuals of the respective products.
http://java.sun.com/docs/books/tutorial is an excellent source for more (and up-to-
date) information on JDBC, and on Java in general. References to books on Java (in-
cluding JDBC) are also available at this URL. The ODBC API is described in Microsoft
[1997] and Sanders [1998].

The processing of SQL queries, including algorithms and performance issues, is
discussed in Chapters 13 and 14. Bibliographic references on these matters appear in
that chapter.
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Other Relational Languages

In Chapter 4, we described SQL—the most influential commercial relational-database
language. In this chapter, we study two more languages: QBE and Datalog. Unlike
SQL, QBE is a graphical language, where queries look like tables. QBE and its variants
are widely used in database systems on personal computers. Datalog has a syntax
modeled after the Prolog language. Although not used commercially at present, Dat-
alog has been used in several research database systems.

Here, we present fundamental constructs and concepts rather than a complete
users’ guide for these languages. Keep in mind that individual implementations of a
language may differ in details, or may support only a subset of the full language.

In this chapter, we also study forms interfaces and tools for generating reports and
analyzing data. While these are not strictly speaking languages, they form the main
interface to a database for many users. In fact, most users do not perform explicit
querying with a query language at all, and access data only via forms, reports, and
other data analysis tools.

5.1 Query-by-Example
Query-by-Example (QBE) is the name of both a data-manipulation language and an
early database system that included this language. The QBE database system was
developed at IBM’s T. J. Watson Research Center in the early 1970s. The QBE data-
manipulation language was later used in IBM’s Query Management Facility (QMF).
Today, many database systems for personal computers support variants of QBE lan-
guage. In this section, we consider only the data-manipulation language. It has two
distinctive features:

1. Unlike most query languages and programming languages, QBE has a two-
dimensional syntax: Queries look like tables. A query in a one-dimensional

189
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language (for example, SQL) can be written in one (possibly long) line. A two-
dimensional language requires two dimensions for its expression. (There is a
one-dimensional version of QBE, but we shall not consider it in our discus-
sion).

2. QBE queries are expressed “by example.” Instead of giving a procedure for
obtaining the desired answer, the user gives an example of what is desired.
The system generalizes this example to compute the answer to the query.

Despite these unusual features, there is a close correspondence between QBE and the
domain relational calculus.

We express queries in QBE by skeleton tables. These tables show the relation
schema, as in Figure 5.1. Rather than clutter the display with all skeletons, the user se-
lects those skeletons needed for a given query and fills in the skeletons with example
rows. An example row consists of constants and example elements, which are domain
variables. To avoid confusion between the two, QBE uses an underscore character ( )
before domain variables, as in x, and lets constants appear without any qualification.

branch branch-name branch-city assets

customer customer-name customer-street customer-city

loan loan-number branch-name amount

borrower customer-name loan-number

account account-number branch-name balance

depositor customer-name account-number

Figure 5.1 QBE skeleton tables for the bank example.



Silberschatz−Korth−Sudarshan: 
Database System 
Concepts, Fourth Edition

II. Relational Databases 5. Other Relational 
Languages

196 © The McGraw−Hill 
Companies, 2001

5.1 Query-by-Example 191

This convention is in contrast to those in most other languages, in which constants
are quoted and variables appear without any qualification.

5.1.1 Queries on One Relation
Returning to our ongoing bank example, to find all loan numbers at the Perryridge
branch, we bring up the skeleton for the loan relation, and fill it in as follows:

loan loan-number branch-name amount
P. x Perryridge

This query tells the system to look for tuples in loan that have “Perryridge” as the
value for the branch-name attribute. For each such tuple, the system assigns the value
of the loan-number attribute to the variable x. It “prints” (actually, displays) the value
of the variable x, because the command P. appears in the loan-number column next to
the variable x. Observe that this result is similar to what would be done to answer
the domain-relational-calculus query

{〈x〉 | ∃ b, a(〈x, b, a〉 ∈ loan ∧ b = “Perryridge”)}
QBE assumes that a blank position in a row contains a unique variable. As a result,

if a variable does not appear more than once in a query, it may be omitted. Our
previous query could thus be rewritten as

loan loan-number branch-name amount
P. Perryridge

QBE (unlike SQL) performs duplicate elimination automatically. To suppress du-
plicate elimination, we insert the command ALL. after the P. command:

loan loan-number branch-name amount
P.ALL. Perryridge

To display the entire loan relation, we can create a single row consisting of P. in
every field. Alternatively, we can use a shorthand notation by placing a single P. in
the column headed by the relation name:

loan loan-number branch-name amount
P.

QBE allows queries that involve arithmetic comparisons (for example, >), rather
than equality comparisons, as in “Find the loan numbers of all loans with a loan
amount of more than $700”:

loan loan-number branch-name amount
P. >700



Silberschatz−Korth−Sudarshan: 
Database System 
Concepts, Fourth Edition

II. Relational Databases 5. Other Relational 
Languages

197© The McGraw−Hill 
Companies, 2001

192 Chapter 5 Other Relational Languages

Comparisons can involve only one arithmetic expression on the right-hand side of
the comparison operation (for example, > ( x + y − 20)). The expression can include
both variables and constants. The space on the left-hand side of the comparison op-
eration must be blank. The arithmetic operations that QBE supports are =, <, ≤, >,
≥, and ¬.

Note that requiring the left-hand side to be blank implies that we cannot compare
two distinct named variables. We shall deal with this difficulty shortly.

As yet another example, consider the query “Find the names of all branches that
are not located in Brooklyn.” This query can be written as follows:

branch branch-name branch-city assets
P. ¬ Brooklyn

The primary purpose of variables in QBE is to force values of certain tuples to have
the same value on certain attributes. Consider the query “Find the loan numbers of
all loans made jointly to Smith and Jones”:

borrower customer-name loan-number
“Smith” P. x
“Jones” x

To execute this query, the system finds all pairs of tuples in borrower that agree on
the loan-number attribute, where the value for the customer-name attribute is “Smith”
for one tuple and “Jones” for the other. The system then displays the value of the
loan-number attribute.

In the domain relational calculus, the query would be written as

{〈l〉 | ∃ x (〈x, l〉 ∈ borrower ∧ x = “Smith”)

∧ ∃ x (〈x, l〉 ∈ borrower ∧ x = “Jones”)}
As another example, consider the query “Find all customers who live in the same

city as Jones”:

customer customer-name customer-street customer-city
P. x y
Jones y

5.1.2 Queries on Several Relations
QBE allows queries that span several different relations (analogous to Cartesian prod-
uct or natural join in the relational algebra). The connections among the various rela-
tions are achieved through variables that force certain tuples to have the same value
on certain attributes. As an illustration, suppose that we want to find the names of all
customers who have a loan from the Perryridge branch. This query can be written as
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loan loan-number branch-name amount
x Perryridge

borrower customer-name loan-number
P. y x

To evaluate the preceding query, the system finds tuples in loan with “Perryridge”
as the value for the branch-name attribute. For each such tuple, the system finds tu-
ples in borrower with the same value for the loan-number attribute as the loan tuple. It
displays the values for the customer-name attribute.

We can use a technique similar to the preceding one to write the query “Find the
names of all customers who have both an account and a loan at the bank”:

depositor customer-name account-number
P. x

borrower customer-name loan-number
x

Now consider the query “Find the names of all customers who have an account
at the bank, but who do not have a loan from the bank.” We express queries that
involve negation in QBE by placing a not sign (¬) under the relation name and next
to an example row:

depositor customer-name account-number
P. x

borrower customer-name loan-number
x¬

Compare the preceding query with our earlier query “Find the names of all cus-
tomers who have both an account and a loan at the bank.” The only difference is the ¬
appearing next to the example row in the borrower skeleton. This difference, however,
has a major effect on the processing of the query. QBE finds all x values for which

1. There is a tuple in the depositor relation whose customer-name is the domain
variable x.

2. There is no tuple in the borrower relation whose customer-name is the same as
in the domain variable x.

The ¬ can be read as “there does not exist.”
The fact that we placed the ¬ under the relation name, rather than under an at-

tribute name, is important. A ¬ under an attribute name is shorthand for �=. Thus, to
find all customers who have at least two accounts, we write
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depositor customer-name account-number
P. x y

x ¬ y

In English, the preceding query reads “Display all customer-name values that ap-
pear in at least two tuples, with the second tuple having an account-number different
from the first.”

5.1.3 The Condition Box
At times, it is either inconvenient or impossible to express all the constraints on the
domain variables within the skeleton tables. To overcome this difficulty, QBE includes
a condition box feature that allows the expression of general constraints over any of
the domain variables. QBE allows logical expressions to appear in a condition box.
The logical operators are the words and and or, or the symbols “&” and “|”.

For example, the query “Find the loan numbers of all loans made to Smith, to Jones
(or to both jointly)” can be written as

borrower customer-name loan-number
n P. x

conditions
n = Smith or n = Jones

It is possible to express the above query without using a condition box, by using
P. in multiple rows. However, queries with P. in multiple rows are sometimes hard to
understand, and are best avoided.

As yet another example, suppose that we modify the final query in Section 5.1.2
to be “Find all customers who are not named ‘Jones’ and who have at least two ac-
counts.” We want to include an “x �= Jones” constraint in this query. We do that by
bringing up the condition box and entering the constraint “x ¬ = Jones”:

conditions
x ¬ = Jones

Turning to another example, to find all account numbers with a balance between
$1300 and $1500, we write

account account-number branch-name balance
P. x

conditions
x ≥ 1300
x ≤ 1500
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As another example, consider the query “Find all branches that have assets greater
than those of at least one branch located in Brooklyn.” This query can be written as

branch branch-name branch-city assets
P. x y

Brooklyn z

conditions
y > z

QBE allows complex arithmetic expressions to appear in a condition box. We can
write the query “Find all branches that have assets that are at least twice as large as
the assets of one of the branches located in Brooklyn” much as we did in the preced-
ing query, by modifying the condition box to

conditions
y ≥ 2 * z

To find all account numbers of account with a balance between $1300 and $2000,
but not exactly $1500, we write

account account-number branch-name balance
P. x

x
conditions

( ≥ 1300 ≤ 2000 ¬ 1500)and and=

QBE uses the or construct in an unconventional way to allow comparison with a set
of constant values. To find all branches that are located in either Brooklyn or Queens,
we write

branch branch-name branch-city assets
P. x

x = (Brooklyn or Queens)
conditions

5.1.4 The Result Relation
The queries that we have written thus far have one characteristic in common: The
results to be displayed appear in a single relation schema. If the result of a query
includes attributes from several relation schemas, we need a mechanism to display
the desired result in a single table. For this purpose, we can declare a temporary result
relation that includes all the attributes of the result of the query. We print the desired
result by including the command P. in only the result skeleton table.
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As an illustration, consider the query “Find the customer-name, account-number, and
balance for all accounts at the Perryridge branch.” In relational algebra, we would
construct this query as follows:

1. Join depositor and account.

2. Project customer-name, account-number, and balance.

To construct the same query in QBE, we proceed as follows:

1. Create a skeleton table, called result, with attributes customer-name, account-
number, and balance. The name of the newly created skeleton table (that is,
result) must be different from any of the previously existing database relation
names.

2. Write the query.

The resulting query is

account account-number branch-name balance
y Perryridge z

depositor customer-name account-number
x y

result customer-name account-number balance
P. x y z

5.1.5 Ordering of the Display of Tuples
QBE offers the user control over the order in which tuples in a relation are displayed.
We gain this control by inserting either the command AO. (ascending order) or the
command DO. (descending order) in the appropriate column. Thus, to list in ascend-
ing alphabetic order all customers who have an account at the bank, we write

depositor customer-name account-number
P.AO.

QBE provides a mechanism for sorting and displaying data in multiple columns.
We specify the order in which the sorting should be carried out by including, with
each sort operator (AO or DO), an integer surrounded by parentheses. Thus, to list all
account numbers at the Perryridge branch in ascending alphabetic order with their
respective account balances in descending order, we write

account account-number branch-name balance
P.AO(1). Perryridge P.DO(2).
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The command P.AO(1). specifies that the account number should be sorted first;
the command P.DO(2). specifies that the balances for each account should then be
sorted.

5.1.6 Aggregate Operations
QBE includes the aggregate operators AVG, MAX, MIN, SUM, and CNT. We must post-
fix these operators with ALL. to create a multiset on which the aggregate operation is
evaluated. The ALL. operator ensures that duplicates are not eliminated. Thus, to find
the total balance of all the accounts maintained at the Perryridge branch, we write

account account-number branch-name balance
Perryridge P.SUM.ALL.

We use the operator UNQ to specify that we want duplicates eliminated. Thus, to
find the total number of customers who have an account at the bank, we write

depositor customer-name account-number
P.CNT.UNQ.

QBE also offers the ability to compute functions on groups of tuples using the G.
operator, which is analogous to SQL’s group by construct. Thus, to find the average
balance at each branch, we can write

account account-number branch-name balance
P.G. P.AVG.ALL. x

The average balance is computed on a branch-by-branch basis. The keyword ALL.
in the P.AVG.ALL. entry in the balance column ensures that all the balances are consid-
ered. If we wish to display the branch names in ascending order, we replace P.G. by
P.AO.G.

To find the average account balance at only those branches where the average
account balance is more than $1200, we add the following condition box:

conditions
AVG.ALL. x > 1200

As another example, consider the query “Find all customers who have accounts at
each of the branches located in Brooklyn”:
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depositor customer-name account-number
P.G. x y

account account-number branch-name balance
y z

branch branch-name branch-city assets
z Brooklyn
w Brooklyn

conditions
CNT.UNQ. z =
CNT.UNQ. w

The domain variable w can hold the value of names of branches located in Brook-
lyn. Thus, CNT.UNQ. w is the number of distinct branches in Brooklyn. The domain
variable z can hold the value of branches in such a way that both of the following
hold:

• The branch is located in Brooklyn.

• The customer whose name is x has an account at the branch.

Thus, CNT.UNQ. z is the number of distinct branches in Brooklyn at which customer x
has an account. If CNT.UNQ. z = CNT.UNQ. w, then customer x must have an account
at all of the branches located in Brooklyn. In such a case, the displayed result includes
x (because of the P.).

5.1.7 Modification of the Database
In this section, we show how to add, remove, or change information in QBE.

5.1.7.1 Deletion
Deletion of tuples from a relation is expressed in much the same way as a query. The
major difference is the use of D. in place of P. QBE (unlike SQL), lets us delete whole
tuples, as well as values in selected columns. When we delete information in only
some of the columns, null values, specified by −, are inserted.

We note that a D. command operates on only one relation. If we want to delete
tuples from several relations, we must use one D. operator for each relation.

Here are some examples of QBE delete requests:

• Delete customer Smith.

customer customer-name customer-street customer-city
D. Smith
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• Delete the branch-city value of the branch whose name is “Perryridge.”

branch branch-name branch-city assets
Perryridge D.

Thus, if before the delete operation the branch relation contains the tuple
(Perryridge, Brooklyn, 50000), the delete results in the replacement of the pre-
ceding tuple with the tuple (Perryridge, −, 50000).

• Delete all loans with a loan amount between $1300 and $1500.

loan loan-number branch-name amount
D. y x

borrower customer-name loan-number
D. y

conditions
x = (≥ 1300  ≤ 1500)and

Note that to delete loans we must delete tuples from both the loan and bor-
rower relations.

• Delete all accounts at all branches located in Brooklyn.

account account-number branch-name balance
D. y x

depositor customer-name account-number
D. y

branch branch-name branch-city assets
x Brooklyn

Note that, in expressing a deletion, we can reference relations other than those from
which we are deleting information.

5.1.7.2 Insertion
To insert data into a relation, we either specify a tuple to be inserted or write a query
whose result is a set of tuples to be inserted. We do the insertion by placing the I.
operator in the query expression. Obviously, the attribute values for inserted tuples
must be members of the attribute’s domain.

The simplest insert is a request to insert one tuple. Suppose that we wish to insert
the fact that account A-9732 at the Perryridge branch has a balance of $700. We write
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account account-number branch-name balance
I. A-9732 Perryridge 700

We can also insert a tuple that contains only partial information. To insert infor-
mation into the branch relation about a new branch with name “Capital” and city
“Queens,” but with a null asset value, we write

branch branch-name branch-city assets
I. Capital Queens

More generally, we might want to insert tuples on the basis of the result of a query.
Consider again the situation where we want to provide as a gift, for all loan cus-
tomers of the Perryridge branch, a new $200 savings account for every loan account
that they have, with the loan number serving as the account number for the savings
account. We write

account account-number branch-name balance
I. x Perryridge 200

depositor customer-name account-number
I. y x

loan loan-number branch-name amount
x Perryridge

borrower customer-name loan-number
y x

To execute the preceding insertion request, the system must get the appropriate
information from the borrower relation, then must use that information to insert the
appropriate new tuple in the depositor and account relations.

5.1.7.3 Updates
There are situations in which we wish to change one value in a tuple without chang-
ing all values in the tuple. For this purpose, we use the U. operator. As we could
for insert and delete, we can choose the tuples to be updated by using a query. QBE,
however, does not allow users to update the primary key fields.

Suppose that we want to update the asset value of the of the Perryridge branch to
$10,000,000. This update is expressed as

branch branch-name branch-city assets
Perryridge U.10000000
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The blank field of attribute branch-city implies that no updating of that value is
required.

The preceding query updates the assets of the Perryridge branch to $10,000,000,
regardless of the old value. There are circumstances, however, where we need to
update a value by using the previous value. Suppose that interest payments are being
made, and all balances are to be increased by 5 percent. We write

account account-number branch-name balance
U. x * 1.05

This query specifies that we retrieve one tuple at a time from the account relation,
determine the balance x, and update that balance to x * 1.05.

5.1.8 QBE in Microsoft Access
In this section, we survey the QBE version supported by Microsoft Access. While
the original QBE was designed for a text-based display environment, Access QBE is
designed for a graphical display environment, and accordingly is called graphical
query-by-example (GQBE).

Figure 5.2 An example query in Microsoft Access QBE.
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Figure 5.2 shows a sample GQBE query. The query can be described in English as
“Find the customer-name, account-number, and balance for all accounts at the Perryridge
branch.” Section 5.1.4 showed how it is expressed in QBE.

A minor difference in the GQBE version is that the attributes of a table are writ-
ten one below the other, instead of horizontally. A more significant difference is that
the graphical version of QBE uses a line linking attributes of two tables, instead of a
shared variable, to specify a join condition.

An interesting feature of QBE in Access is that links between tables are created
automatically, on the basis of the attribute name. In the example in Figure 5.2, the two
tables account and depositor were added to the query. The attribute account-number is
shared between the two selected tables, and the system automatically inserts a link
between the two tables. In other words, a natural join condition is imposed by default
between the tables; the link can be deleted if it is not desired. The link can also be
specified to denote a natural outer-join, instead of a natural join.

Another minor difference in Access QBE is that it specifies attributes to be printed
in a separate box, called the design grid, instead of using a P. in the table. It also
specifies selections on attribute values in the design grid.

Queries involving group by and aggregation can be created in Access as shown in
Figure 5.3. The query in the figure finds the name, street, and city of all customers
who have more than one account at the bank; we saw the QBE version of the query
earlier in Section 5.1.6. The group by attributes as well as the aggregate functions

Figure 5.3 An aggregation query in Microsoft Access QBE.
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are noted in the design grid. If an attribute is to be printed, it must appear in the
design grid, and must be specified in the “Total” row to be either a group by, or
have an aggregate function applied to it. SQL has a similar requirement. Attributes
that participate in selection conditions but are not to be printed can alternatively be
marked as “Where” in the row “Total”, indicating that the attribute is neither a group
by attribute, nor one to be aggregated on.

Queries are created through a graphical user interface, by first selecting tables.
Attributes can then be added to the design grid by dragging and dropping them
from the tables. Selection conditions, grouping and aggregation can then be specified
on the attributes in the design grid. Access QBE supports a number of other features
too, including queries to modify the database through insertion, deletion, or update.

5.2 Datalog
Datalog is a nonprocedural query language based on the logic-programming lan-
guage Prolog. As in the relational calculus, a user describes the information desired
without giving a specific procedure for obtaining that information. The syntax of Dat-
alog resembles that of Prolog. However, the meaning of Datalog programs is defined
in a purely declarative manner, unlike the more procedural semantics of Prolog, so
Datalog simplifies writing simple queries and makes query optimization easier.

5.2.1 Basic Structure
A Datalog program consists of a set of rules. Before presenting a formal definition
of Datalog rules and their formal meaning, we consider examples. Consider a Dat-
alog rule to define a view relation v1 containing account numbers and balances for
accounts at the Perryridge branch with a balance of over $700:

v1(A, B) :– account(A, “Perryridge”, B), B > 700

Datalog rules define views; the preceding rule uses the relation account, and de-
fines the view relation v1. The symbol :– is read as “if,” and the comma separating
the “account(A, “Perryridge”, B)” from “B > 700” is read as “and.” Intuitively, the
rule is understood as follows:

for all A, B
if (A, “Perryridge”, B) ∈ account and B > 700
then (A, B) ∈ v1

Suppose that the relation account is as shown in Figure 5.4. Then, the view relation
v1 contains the tuples in Figure 5.5.

To retrieve the balance of account number A-217 in the view relation v1, we can
write the following query:

? v1(“A-217”, B)

The answer to the query is

(A-217, 750)
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account-number branch-name balance
A-101 Downtown 500
A-215 Mianus 700
A-102 Perryridge

Perryridge

Perryridge

400
A-305 Round Hill 350
A-201 900
A-222 Redwood 700
A-217 750

Figure 5.4 The account relation.

To get the account number and balance of all accounts in relation v1, where the bal-
ance is greater than 800, we can write

? v1(A, B), B > 800

The answer to this query is

(A-201, 900)

In general, we need more than one rule to define a view relation. Each rule defines
a set of tuples that the view relation must contain. The set of tuples in the view re-
lation is then defined as the union of all these sets of tuples. The following Datalog
program specifies the interest rates for accounts:

interest-rate(A, 5) :– account(A, N , B), B < 10000
interest-rate(A, 6) :– account(A, N , B), B >= 10000

The program has two rules defining a view relation interest-rate, whose attributes are
the account number and the interest rate. The rules say that, if the balance is less than
$10000, then the interest rate is 5 percent, and if the balance is greater than or equal
to $10000, the interest rate is 6 percent.

Datalog rules can also use negation. The following rules define a view relation c
that contains the names of all customers who have a deposit, but have no loan, at the
bank:

c(N ) :– depositor(N ,A), not is-borrower(N )
is-borrower(N ) :– borrower(N , L),

Prolog and most Datalog implementations recognize attributes of a relation by po-
sition and omit attribute names. Thus, Datalog rules are compact, compared to SQL

account-number balance
A-201 900
A-217 750

Figure 5.5 The v1 relation.
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queries. However, when relations have a large number of attributes, or the order or
number of attributes of relations may change, the positional notation can be cum-
bersome and error prone. It is not hard to create a variant of Datalog syntax using
named attributes, rather than positional attributes. In such a system, the Datalog rule
defining v1 can be written as

v1(account-number A, balance B) :–
account(account-number A, branch-name “Perryridge”, balance B),
B > 700

Translation between the two forms can be done without significant effort, given the
relation schema.

5.2.2 Syntax of Datalog Rules
Now that we have informally explained rules and queries, we can formally define
their syntax; we discuss their meaning in Section 5.2.3. We use the same conventions
as in the relational algebra for denoting relation names, attribute names, and con-
stants (such as numbers or quoted strings). We use uppercase (capital) letters and
words starting with uppercase letters to denote variable names, and lowercase let-
ters and words starting with lowercase letters to denote relation names and attribute
names. Examples of constants are 4, which is a number, and “John,” which is a string;
X and Name are variables. A positive literal has the form

p(t1, t2, . . . , tn)

where p is the name of a relation with n attributes, and t1, t2, . . . ,tn are either con-
stants or variables. A negative literal has the form

not p(t1, t2, . . . , tn)

where relation p has n attributes. Here is an example of a literal:

account(A, “Perryridge”, B)

Literals involving arithmetic operations are treated specially. For example, the lit-
eral B > 700, although not in the syntax just described, can be conceptually un-
derstood to stand for > (B, 700), which is in the required syntax, and where > is a
relation.

But what does this notation mean for arithmetic operations such as “>”? The re-
lation > (conceptually) contains tuples of the form (x, y) for every possible pair of
values x, y such that x > y. Thus, (2, 1) and (5,−33) are both tuples in >. Clearly,
the (conceptual) relation > is infinite. Other arithmetic operations (such as >, =, +
or −) are also treated conceptually as relations. For example, A = B + C stands con-
ceptually for +(B, C, A), where the relation + contains every tuple (x, y, z) such that
z = x + y.
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A fact is written in the form

p(v1, v2, . . . , vn)

and denotes that the tuple (v1, v2, . . . , vn) is in relation p. A set of facts for a relation
can also be written in the usual tabular notation. A set of facts for the relations in a
database schema is equivalent to an instance of the database schema. Rules are built
out of literals and have the form

p(t1, t2, . . . , tn) :– L1, L2, . . . , Ln

where each Li is a (positive or negative) literal. The literal p(t1, t2, . . . , tn) is referred
to as the head of the rule, and the rest of the literals in the rule constitute the body of
the rule.

A Datalog program consists of a set of rules; the order in which the rules are writ-
ten has no significance. As mentioned earlier, there may be several rules defining a
relation.

Figure 5.6 shows a Datalog program that defines the interest on each account in
the Perryridge branch. The first rule of the program defines a view relation interest,
whose attributes are the account number and the interest earned on the account. It
uses the relation account and the view relation interest-rate. The last two rules of the
program are rules that we saw earlier.

A view relation v1 is said to depend directly on a view relation v2 if v2 is used
in the expression defining v1. In the above program, view relation interest depends
directly on relations interest-rate and account. Relation interest-rate in turn depends
directly on account.

A view relation v1 is said to depend indirectly on view relation v2 if there is a
sequence of intermediate relations i1, i2, . . . , in, for some n, such that v1 depends di-
rectly on i1, i1 depends directly on i2, and so on till in−1 depends on in.

In the example in Figure 5.6, since we have a chain of dependencies from interest
to interest-rate to account, relation interest also depends indirectly on account.

Finally, a view relation v1 is said to depend on view relation v2 if v1 either depends
directly or indirectly on v2.

A view relation v is said to be recursive if it depends on itself. A view relation that
is not recursive is said to be nonrecursive.

Consider the program in Figure 5.7. Here, the view relation empl depends on itself
(becasue of the second rule), and is therefore recursive. In contrast, the program in
Figure 5.6 is nonrecursive.

interest(A, I) :– account(A, “Perryridge”, B),
interest-rate(A, R), I = B ∗ R/100.

interest-rate(A, 5) :– account(A, N , B), B < 10000.
interest-rate(A, 6) :– account(A, N , B), B >= 10000.

Figure 5.6 Datalog program that defines interest on Perryridge accounts.
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empl(X , Y ) :– manager(X , Y ).
empl(X , Y ) :– manager(X , Z), empl(Z, Y ).

Figure 5.7 Recursive Datalog program.

5.2.3 Semantics of Nonrecursive Datalog
We consider the formal semantics of Datalog programs. For now, we consider only
programs that are nonrecursive. The semantics of recursive programs is somewhat
more complicated; it is discussed in Section 5.2.6. We define the semantics of a pro-
gram by starting with the semantics of a single rule.

5.2.3.1 Semantics of a Rule
A ground instantiation of a rule is the result of replacing each variable in the rule
by some constant. If a variable occurs multiple times in a rule, all occurrences of
the variable must be replaced by the same constant. Ground instantiations are often
simply called instantiations.

Our example rule defining v1, and an instantiation of the rule, are:

v1(A, B) :– account(A, “Perryridge”, B), B > 700
v1(“A-217”, 750) :– account(“A-217”, “Perryridge”, 750), 750 > 700

Here, variable A was replaced by “A-217,” and variable B by 750.
A rule usually has many possible instantiations. These instantiations correspond

to the various ways of assigning values to each variable in the rule.
Suppose that we are given a rule R,

p(t1, t2, . . . , tn) :– L1, L2, . . . , Ln

and a set of facts I for the relations used in the rule (I can also be thought of as a
database instance). Consider any instantiation R′ of rule R:

p(v1, v2, . . . , vn) :– l1, l2, . . . , ln

where each literal li is either of the form qi(vi,1, v1,2, . . . , vi,ni
) or of the form not qi(vi,1,

v1,2, . . . , vi,ni
), and where each vi and each vi,j is a constant.

We say that the body of rule instantiation R′ is satisfied in I if

1. For each positive literal qi(vi,1, . . . , vi,ni
) in the body of R′, the set of facts I

contains the fact q(vi,1, . . . , vi,ni
).

2. For each negative literal not qj(vj,1, . . . , vj,nj
) in the body of R′, the set of facts

I does not contain the fact qj(vj,1, . . . , vj,nj
).
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account-number balance
A-201 900
A-217 750

Figure 5.8 Result of infer(R, I).

We define the set of facts that can be inferred from a given set of facts I using rule
R as

infer(R, I) = {p(t1, . . . , tni
) | there is an instantiation R′ of R,

where p(t1, . . . , tni
) is the head of R′, and

the body of R′ is satisfied in I}.

Given a set of rules R = {R1, R2, . . . , Rn}, we define

infer(R, I) = infer(R1, I) ∪ infer(R2, I) ∪ . . .∪ infer(Rn, I)

Suppose that we are given a set of facts I containing the tuples for relation account
in Figure 5.4. One possible instantiation of our running-example rule R is

v1(“A-217”, 750) :– account(“A-217”, “Perryridge”, 750), 750 > 700.

The fact account(“A-217”, “Perryridge”, 750) is in the set of facts I . Further, 750 is
greater than 700, and hence conceptually (750, 700) is in the relation “>”. Hence, the
body of the rule instantiation is satisfied in I . There are other possible instantiations
of R, and using them we find that infer(R, I) has exactly the set of facts for v1 that
appears in Figure 5.8.

5.2.3.2 Semantics of a Program
When a view relation is defined in terms of another view relation, the set of facts in
the first view depends on the set of facts in the second one. We have assumed, in this
section, that the definition is nonrecursive; that is, no view relation depends (directly
or indirectly) on itself. Hence, we can layer the view relations in the following way,
and can use the layering to define the semantics of the program:

• A relation is in layer 1 if all relations used in the bodies of rules defining it are
stored in the database.

• A relation is in layer 2 if all relations used in the bodies of rules defining it
either are stored in the database or are in layer 1.

• In general, a relation p is in layer i + 1 if (1) it is not in layers 1, 2, . . . , i, and
(2) all relations used in the bodies of rules defining p either are stored in the
database or are in layers 1, 2, . . . , i.

Consider the program in Figure 5.6. The layering of view relations in the program
appears in Figure 5.9. The relation account is in the database. Relation interest-rate is
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interest

account

interest-rate
perryridge-account

layer 2

layer 1

database

Figure 5.9 Layering of view relations.

in level 1, since all the relations used in the two rules defining it are in the database.
Relation perryridge-account is similarly in layer 1. Finally, relation interest is in layer
2, since it is not in layer 1 and all the relations used in the rule defining it are in the
database or in layers lower than 2.

We can now define the semantics of a Datalog program in terms of the layering of
view relations. Let the layers in a given program be 1, 2, . . . , n. Let Ri denote the set
of all rules defining view relations in layer i.

• We define I0 to be the set of facts stored in the database, and define I1 as

I1 = I0 ∪ infer(R1, I0)

• We proceed in a similar fashion, defining I2 in terms of I1 and R2, and so on,
using the following definition:

Ii+1 = Ii ∪ infer(Ri+1, Ii)

• Finally, the set of facts in the view relations defined by the program (also called
the semantics of the program) is given by the set of facts In corresponding to
the highest layer n.

For the program in Figure 5.6, I0 is the set of facts in the database, and I1 is the set
of facts in the database along with all facts that we can infer from I0 using the rules for
relations interest-rate and perryridge-account. Finally, I2 contains the facts in I1 along
with the facts for relation interest that we can infer from the facts in I1 by the rule
defining interest. The semantics of the program—that is, the set of those facts that are
in each of the view relations—is defined as the set of facts I2.

Recall that, in Section 3.5.3, we saw how to define the meaning of nonrecursive
relational-algebra views by a technique known as view expansion. View expansion
can be used with nonrecursive Datalog views as well; conversely, the layering tech-
nique described here can also be used with relational-algebra views.
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5.2.4 Safety
It is possible to write rules that generate an infinite number of answers. Consider the
rule

gt(X , Y ) :– X > Y

Since the relation defining > is infinite, this rule would generate an infinite number
of facts for the relation gt, which calculation would, correspondingly, take an infinite
amount of time and space.

The use of negation can also cause similar problems. Consider the rule:

not-in-loan(L, B, A) :– not loan(L, B, A)

The idea is that a tuple (loan-number, branch-name, amount) is in view relation not-in-
loan if the tuple is not present in the loan relation. However, if the set of possible ac-
count numbers, branch-names, and balances is infinite, the relation not-in-loan would
be infinite as well.

Finally, if we have a variable in the head that does not appear in the body, we may
get an infinite number of facts where the variable is instantiated to different values.

So that these possibilities are avoided, Datalog rules are required to satisfy the
following safety conditions:

1. Every variable that appears in the head of the rule also appears in a nonarith-
metic positive literal in the body of the rule.

2. Every variable appearing in a negative literal in the body of the rule also ap-
pears in some positive literal in the body of the rule.

If all the rules in a nonrecursive Datalog program satisfy the preceding safety con-
ditions, then all the view relations defined in the program can be shown to be finite,
as long as all the database relations are finite. The conditions can be weakened some-
what to allow variables in the head to appear only in an arithmetic literal in the body
in some cases. For example, in the rule

p(A) :– q(B), A = B + 1

we can see that if relation q is finite, then so is p, according to the properties of addi-
tion, even though variable A appears in only an arithmetic literal.

5.2.5 Relational Operations in Datalog
Nonrecursive Datalog expressions without arithmetic operations are equivalent in
expressive power to expressions using the basic operations in relational algebra (∪,−,
×, σ, Π and ρ). We shall not formally prove this assertion here. Rather, we shall show
through examples how the various relational-algebra operations can be expressed in
Datalog. In all cases, we define a view relation called query to illustrate the operations.
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We have already seen how to do selection by using Datalog rules. We perform
projections simply by using only the required attributes in the head of the rule. To
project attribute account-name from account, we use

query(A) :– account(A, N , B)

We can obtain the Cartesian product of two relations r1 and r2 in Datalog as fol-
lows:

query(X1, X2, . . . , Xn, Y1, Y2, . . . , Ym) :– r1(X1, X2, . . . , Xn), r2(Y1, Y2, . . . , Ym)

where r1 is of arity n, and r2 is of arity m, and the X1, X2, . . . , Xn, Y1, Y2, . . . , Ym are
all distinct variable names.

We form the union of two relations r1 and r2 (both of arity n) in this way:

query(X1, X2, . . . , Xn) :– r1(X1, X2, . . . , Xn)
query(X1, X2, . . . , Xn) :– r2(X1, X2, . . . , Xn)

We form the set difference of two relations r1 and r2 in this way:

query(X1, X2, . . . , Xn) :– r1(X1, X2, . . . , Xn), not r2(X1, X2, . . . , Xn)

Finally, we note that with the positional notation used in Datalog, the renaming oper-
ator ρ is not needed. A relation can occur more than once in the rule body, but instead
of renaming to give distinct names to the relation occurrences, we can use different
variable names in the different occurrences.

It is possible to show that we can express any nonrecursive Datalog query without
arithmetic by using the relational-algebra operations. We leave this demonstration
as an exercise for you to carry out. You can thus establish the equivalence of the
basic operations of relational algebra and nonrecursive Datalog without arithmetic
operations.

Certain extensions to Datalog support the extended relational update operations
of insertion, deletion, and update. The syntax for such operations varies from imple-
mentation to implementation. Some systems allow the use of + or − in rule heads to
denote relational insertion and deletion. For example, we can move all accounts at
the Perryridge branch to the Johnstown branch by executing

+ account(A, “Johnstown”, B) :– account(A, “Perryridge”, B)
− account(A, “Perryridge”, B) :– account(A, “Perryridge”, B)

Some implementations of Datalog also support the aggregation operation of ex-
tended relational algebra. Again, there is no standard syntax for this operation.

5.2.6 Recursion in Datalog
Several database applications deal with structures that are similar to tree data struc-
tures. For example, consider employees in an organization. Some of the employees
are managers. Each manager manages a set of people who report to him or her. But
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procedure Datalog-Fixpoint
I = set of facts in the database
repeat

Old I = I
I = I∪ infer(R, I)

until I = Old I

Figure 5.10 Datalog-Fixpoint procedure.

each of these people may in turn be managers, and they in turn may have other peo-
ple who report to them. Thus employees may be organized in a structure similar to a
tree.

Suppose that we have a relation schema

Manager -schema = (employee-name,manager -name)

Let manager be a relation on the preceding schema.
Suppose now that we want to find out which employees are supervised, directly

or indirectly by a given manager—say, Jones. Thus, if the manager of Alon is Barin-
sky, and the manager of Barinsky is Estovar, and the manager of Estovar is Jones,
then Alon, Barinsky, and Estovar are the employees controlled by Jones. People of-
ten write programs to manipulate tree data structures by recursion. Using the idea
of recursion, we can define the set of employees controlled by Jones as follows. The
people supervised by Jones are (1) people whose manager is Jones and (2) people
whose manager is supervised by Jones. Note that case (2) is recursive.

We can encode the preceding recursive definition as a recursive Datalog view,
called empl-jones:

empl-jones(X) :– manager(X , “Jones” )
empl-jones(X) :– manager(X , Y ), empl-jones(Y )

The first rule corresponds to case (1); the second rule corresponds to case (2). The
view empl-jones depends on itself because of the second rule; hence, the preceding
Datalog program is recursive. We assume that recursive Datalog programs contain no
rules with negative literals. The reason will become clear later. The bibliographical

employee-name manager-name
Alon Barinsky
Barinsky Estovar
Corbin Duarte
Duarte Jones
Estovar Jones
Jones Klinger
Rensal Klinger

Figure 5.11 The manager relation.
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Iteration number Tuples in empl-jones
0
1 (Duarte), (Estovar)
2 (Duarte), (Estovar), (Barinsky), (Corbin)
3 (Duarte), (Estovar), (Barinsky), (Corbin), (Alon)
4 (Duarte), (Estovar), (Barinsky), (Corbin), (Alon)

Figure 5.12 Employees of Jones in iterations of procedure Datalog-Fixpoint.

notes refer to papers that describe where negation can be used in recursive Datalog
programs.

The view relations of a recursive program that contains a set of rules R are defined
to contain exactly the set of facts I computed by the iterative procedure Datalog-
Fixpoint in Figure 5.10. The recursion in the Datalog program has been turned into
an iteration in the procedure. At the end of the procedure, infer(R, I) = I , and I is
called a fixed point of the program.

Consider the program defining empl-jones, with the relation manager, as in Fig-
ure 5.11. The set of facts computed for the view relation empl-jones in each iteration
appears in Figure 5.12. In each iteration, the program computes one more level of
employees under Jones and adds it to the set empl-jones. The procedure terminates
when there is no change to the set empl-jones, which the system detects by finding
I = Old I . Such a termination point must be reached, since the set of managers and
employees is finite. On the given manager relation, the procedure Datalog-Fixpoint
terminates after iteration 4, when it detects that no new facts have been inferred.

You should verify that, at the end of the iteration, the view relation empl-jones
contains exactly those employees who work under Jones. To print out the names of
the employees supervised by Jones defined by the view, you can use the query

? empl-jones(N )

To understand procedure Datalog-Fixpoint, we recall that a rule infers new facts
from a given set of facts. Iteration starts with a set of facts I set to the facts in the
database. These facts are all known to be true, but there may be other facts that are
true as well.1 Next, the set of rules R in the given Datalog program is used to infer
what facts are true, given that facts in I are true. The inferred facts are added to I ,
and the rules are used again to make further inferences. This process is repeated until
no new facts can be inferred.

For safe Datalog programs, we can show that there will be some point where no
more new facts can be derived; that is, for some k, Ik+1 = Ik. At this point, then, we
have the final set of true facts. Further, given a Datalog program and a database, the
fixed-point procedure infers all the facts that can be inferred to be true.

1. The word “fact” is used in a technical sense to note membership of a tuple in a relation. Thus, in the
Datalog sense of “fact,” a fact may be true (the tuple is indeed in the relation) or false (the tuple is not in
the relation).
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If a recursive program contains a rule with a negative literal, the following prob-
lem can arise. Recall that when we make an inference by using a ground instantiation
of a rule, for each negative literal notq in the rule body we check that q is not present
in the set of facts I . This test assumes that q cannot be inferred later. However, in
the fixed-point iteration, the set of facts I grows in each iteration, and even if q is
not present in I at one iteration, it may appear in I later. Thus, we may have made
an inference in one iteration that can no longer be made at an earlier iteration, and
the inference was incorrect. We require that a recursive program should not contain
negative literals, in order to avoid such problems.

Instead of creating a view for the employees supervised by a specific manager
Jones, we can create a more general view relation empl that contains every tuple
(X, Y ) such that X is directly or indirectly managed by Y , using the following pro-
gram (also shown in Figure 5.7):

empl(X, Y ) :– manager(X, Y )
empl(X, Y ) :– manager(X, Z), empl(Z, Y )

To find the direct and indirect subordinates of Jones, we simply use the query

? empl(X , “Jones”)

which gives the same set of values for X as the view empl-jones. Most Datalog imple-
mentations have sophisticated query optimizers and evaluation engines that can run
the preceding query at about the same speed they could evaluate the view empl-jones.

The view empl defined previously is called the transitive closure of the relation
manager. If the relation manager were replaced by any other binary relation R, the
preceding program would define the transitive closure of R.

5.2.7 The Power of Recursion
Datalog with recursion has more expressive power than Datalog without recursion.
In other words, there are queries on the database that we can answer by using recur-
sion, but cannot answer without using it. For example, we cannot express transitive
closure in Datalog without using recursion (or for that matter, in SQL or QBE without
recursion). Consider the transitive closure of the relation manager. Intuitively, a fixed
number of joins can find only those employees that are some (other) fixed number of
levels down from any manager (we will not attempt to prove this result here). Since
any given nonrecursive query has a fixed number of joins, there is a limit on how
many levels of employees the query can find. If the number of levels of employees
in the manager relation is more than the limit of the query, the query will miss some
levels of employees. Thus, a nonrecursive Datalog program cannot express transitive
closure.

An alternative to recursion is to use an external mechanism, such as embedded
SQL, to iterate on a nonrecursive query. The iteration in effect implements the fixed-
point loop of Figure 5.10. In fact, that is how such queries are implemented on data-
base systems that do not support recursion. However, writing such queries by iter-
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ation is more complicated than using recursion, and evaluation by recursion can be
optimized to run faster than evaluation by iteration.

The expressive power provided by recursion must be used with care. It is relatively
easy to write recursive programs that will generate an infinite number of facts, as this
program illustrates:

number(0)
number(A) :– number(B), A = B + 1

The program generates number(n) for all positive integers n, which is clearly infinite,
and will not terminate. The second rule of the program does not satisfy the safety
condition in Section 5.2.4. Programs that satisfy the safety condition will terminate,
even if they are recursive, provided that all database relations are finite. For such
programs, tuples in view relations can contain only constants from the database, and
hence the view relations must be finite. The converse is not true; that is, there are
programs that do not satisfy the safety conditions, but that do terminate.

5.2.8 Recursion in Other Languages
The SQL:1999 standard supports a limited form of recursion, using the with recursive
clause. Suppose the relation manager has attributes emp and mgr. We can find every
pair (X, Y ) such that X is directly or indirectly managed by Y , using this SQL:1999
query:

with recursive empl(emp, mgr) as (
select emp, mgr
from manager

union
select emp, empl.mgr
from manager, empl
where manager.mgr = empl.emp

)
select ∗
from empl

Recall that the with clause is used to define a temporary view whose definition is
available only to the query where it is defined. The additional keyword recursive
specifies that the view is recursive. The SQL definition of the view empl above is
equivalent to the Datalog version we saw in Section 5.2.6.

The procedure Datalog-Fixpoint iteratively uses the function infer(R, I) to com-
pute what facts are true, given a recursive Datalog program. Although we consid-
ered only the case of Datalog programs without negative literals, the procedure can
also be used on views defined in other languages, such as SQL or relational algebra,
provided that the views satisfy the conditions described next. Regardless of the lan-
guage used to define a view V, the view can be thought of as being defined by an
expression EV that, given a set of facts I, returns a set of facts EV (I) for the view rela-
tion V. Given a set of view definitions R (in any language), we can define a function
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infer(R, I) that returns I ∪ ⋃
V ∈R EV (I). The preceding function has the same form

as the infer function for Datalog.
A view V is said to be monotonic if, given any two sets of facts I1 and I2 such

that I1 ⊆ I2, then EV (I1) ⊆ EV (I2), where EV is the expression used to define V .
Similarly, the function infer is said to be monotonic if

I1 ⊆ I2 ⇒ infer(R, I1) ⊆ infer(R, I2)

Thus, if infer is monotonic, given a set of facts I0 that is a subset of the true facts, we
can be sure that all facts in infer(R, I0) are also true. Using the same reasoning as in
Section 5.2.6, we can then show that procedure Datalog-Fixpoint is sound (that is, it
computes only true facts), provided that the function infer is monotonic.

Relational-algebra expressions that use only the operators Π, σ,×,�,∪,∩, or ρ are
monotonic. Recursive views can be defined by using such expressions.

However, relational expressions that use the operator − are not monotonic. For ex-
ample, let manager1 and manager2 be relations with the same schema as the manager
relation. Let

I1 = { manager1(“Alon”, “Barinsky”), manager1(“Barinsky”, “Estovar”),
manager2(“Alon”, “Barinsky”) }

and let

I2 = { manager1(“Alon”, “Barinsky”), manager1(“Barinsky”, “Estovar”),
manager2(“Alon”, “Barinsky”), manager2(“Barinsky”, “Estovar”)}

Consider the expression manager1 − manager2. Now the result of the preceding ex-
pression on I1 is (“Barinsky”, “Estovar”), whereas the result of the expression on I2 is
the empty relation. But I1 ⊆ I2; hence, the expression is not monotonic. Expressions
using the grouping operation of extended relational algebra are also nonmonotonic.

The fixed-point technique does not work on recursive views defined with non-
monotonic expressions. However, there are instances where such views are useful,
particularly for defining aggregates on “part–subpart” relationships. Such relation-
ships define what subparts make up each part. Subparts themselves may have further
subparts, and so on; hence, the relationships, like the manager relationship, have a
natural recursive structure. An example of an aggregate query on such a structure
would be to compute the total number of subparts of each part. Writing this query in
Datalog or in SQL (without procedural extensions) would require the use of a recur-
sive view on a nonmonotonic expression. The bibliographic notes provide references
to research on defining such views.

It is possible to define some kinds of recursive queries without using views. For
example, extended relational operations have been proposed to define transitive clo-
sure, and extensions to the SQL syntax to specify (generalized) transitive closure have
been proposed. However, recursive view definitions provide more expressive power
than do the other forms of recursive queries.
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5.3 User Interfaces and Tools
Although many people interact with databases, few people use a query language to
directly interact with a database system. Most people interact with a database system
through one of the following means:

1. Forms and graphical user interfaces allow users to enter values that com-
plete predefined queries. The system executes the queries and appropriately
formats and displays the results to the user. Graphical user interfaces provide
an easy-to-use way to interact with the database system.

2. Report generators permit predefined reports to be generated on the current
database contents. Analysts or managers view such reports in order to make
business decisions.

3. Data analysis tools permit users to interactively browse and analyze data.

It is worth noting that such interfaces use query languages to communicate with
database systems.

In this section, we provide an overview of forms, graphical user interfaces, and
report generators. Chapter 22 covers data analysis tools in more detail. Unfortunately,
there are no standards for user interfaces, and each database system usually provides
its own user interface. In this section, we describe the basic concepts, without going
into the details of any particular user interface product.

5.3.1 Forms and Graphical User Interfaces
Forms interfaces are widely used to enter data into databases, and extract informa-
tion from databases, via predefined queries. For example, World Wide Web search
engines provide forms that are used to enter key words. Hitting a “submit” button
causes the search engine to execute a query using the entered key words and display
the result to the user.

As a more database-oriented example, you may connect to a university registra-
tion system, where you are asked to fill in your roll number and password into a
form. The system uses this information to verify your identity, as well as to extract
information, such as your name and the courses you have registered for, from the
database and display it. There may be further links on the Web page that let you
search for courses and find further information about courses such as the syllabus
and the instructor.

Web browsers supporting HTML constitute the most widely used forms and graph-
ical user interface today. Most database system vendors also provide proprietary
forms interfaces that offer facilities beyond those present in HTML forms.

Programmers can create forms and graphical user interfaces by using HTML or
programming languages such as C or Java. Most database system vendors also pro-
vide tools that simplify the creation of graphical user interfaces and forms. These
tools allow application developers to create forms in an easy declarative fashion, us-
ing form-editor programs. Users can define the type, size, and format of each field in
a form by using the form editor. System actions can be associated with user actions,
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such as filling in a field, hitting a function key on the keyboard, or submitting a form.
For instance, the execution of a query to fill in name and address fields may be asso-
ciated with filling in a roll number field, and execution of an update statement may
be associated with submitting a form.

Simple error checks can be performed by defining constraints on the fields in
the form.2 For example, a constraint on the course number field may check that the
course number typed in by the user corresponds to an actual course. Although such
constraints can be checked when the transaction is executed, detecting errors early
helps the user to correct errors quickly. Menus that indicate the valid values that can
be entered in a field can help eliminate the possibility of many types of errors. Sys-
tem developers find that the ability to control such features declaratively with the
help of a user interface development tool, instead of creating a form directly by using
a scripting or programming language, makes their job much easier.

5.3.2 Report Generators
Report generators are tools to generate human-readable summary reports from a
database. They integrate querying the database with the creation of formatted text
and summary charts (such as bar or pie charts). For example, a report may show the
total sales in each of the past two months for each sales region.

The application developer can specify report formats by using the formatting fa-
cilities of the report generator. Variables can be used to store parameters such as the
month and the year and to define fields in the report. Tables, graphs, bar charts, or
other graphics can be defined via queries on the database. The query definitions can
make use of the parameter values stored in the variables.

Once we have defined a report structure on a report-generator facility, we can
store it, and can execute it at any time to generate a report. Report-generator systems
provide a variety of facilities for structuring tabular output, such as defining table
and column headers, displaying subtotals for each group in a table, automatically
splitting long tables into multiple pages, and displaying subtotals at the end of each
page.

Figure 5.13 is an example of a formatted report. The data in the report are gener-
ated by aggregation on information about orders.

The Microsoft Office suite provides a convenient way of embedding formatted
query results from a database, such as MS Access, into a document created with a
text editor, such as MS Word. The query results can be formatted in a tabular fashion
or graphically (as charts) by the report generator facility of MS Access. A feature
called OLE (Object Linking and Embedding) links the resulting structure into a text
document.

The collections of application-development tools provided by database systems,
such as forms packages and report generator, used to be referred to as fourth-generation
languages (4GLs). The name emphasizes that these tools offer a programming para-
digm that is different from the imperative programming paradigm offered by third-

2. These are called “form triggers” in Oracle, but in this book we use the term “trigger” in a different
sense, which we cover in Chapter 6.
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Region Category Sales

North Computer Hardware 1,000,000

Computer Software 500,000

All categories 1,500,000

South Computer Hardware 200,000

Computer Software 400,000

All categories 600,000

2,100,000

Acme Supply Company Inc. 
Quarterly Sales Report

Period:  Jan. 1 to March 31, 2001

Total Sales

Subtotal

Figure 5.13 A formatted report.

generation programming languages, such as Pascal and C. However, this term is less
relevant today, since forms and report generators are typically created with graphical
tools, rather than with programming languages.

5.4 Summary
• We have considered two query languages: QBE, and Datalog.

• QBE is based on a visual paradigm: The queries look much like tables.

• QBE and its variants have become popular with nonexpert database users be-
cause of the intuitive simplicity of the visual paradigm. The widely used Mi-
crosoft Access database system supports a graphical version of QBE, called
GQBE.

• Datalog is derived from Prolog, but unlike Prolog, it has a declarative seman-
tics, making simple queries easier to write and query evaluation easier to op-
timize.

• Defining views is particularly easy in Datalog, and the recursive views that
Datalog supports makes it possible to write queries, such as transitive-closure
queries, that cannot be written without recursion or iteration. However, no
accepted standards exist for important features, such as grouping and aggre-
gation, in Datalog. Datalog remains mainly a research language.

• Most users interact with databases via forms and graphical user interfaces,
and there are numerous tools to simplify the construction of such interfaces.
Report generators are tools that help create human-readable reports from the
contents of the database.
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Review Terms
• Query-by-Example (QBE)
• Two-dimensional syntax
• Skeleton tables
• Example rows
• Condition box
• Result relation
• Microsoft Access
• Graphical Query-By-Example

(GQBE)
• Design grid
• Datalog
• Rules
• Uses
• Defines
• Positive literal
• Negative literal
• Fact
• Rule
� Head
� Body

• Datalog program

• Depend on
� Directly
� Indirectly

• Recursive view

• Nonrecursive view

• Instantiation
� Ground instantiation
� Satisfied

• Infer

• Semantics
� Of a rule
� Of a program

• Safety

• Fixed point

• Transitive closure

• Monotonic view definition

• Forms

• Graphical user interfaces

• Report generators

Exercises
5.1 Consider the insurance database of Figure 5.14, where the primary keys are un-

derlined. Construct the following QBE queries for this relational-database.
a. Find the total number of people who owned cars that were involved in ac-

cidents in 1989.
b. Find the number of accidents in which the cars belonging to “John Smith”

were involved.
c. Add a new accident to the database; assume any values for required at-

tributes.
d. Delete the Mazda belonging to “John Smith.”
e. Update the damage amount for the car with license number “AABB2000” in

the accident with report number “AR2197” to $3000.

5.2 Consider the employee database of Figure 5.15. Give expressions in QBE, and
Datalog for each of the following queries:

a. Find the names of all employees who work for First Bank Corporation.
b. Find the names and cities of residence of all employees who work for First

Bank Corporation.
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person (driver-id#, name, address)
car (license, model, year)
accident (report-number, date, location)
owns (driver-id#, license)
participated (driver-id, car, report-number, damage-amount)

Figure 5.14 Insurance database.

c. Find the names, street addresses, and cities of residence of all employees
who work for First Bank Corporation and earn more than $10,000 per an-
num.

d. Find all employees who live in the same city as the company for which they
work is located.

e. Find all employees who live in the same city and on the same street as their
managers.

f. Find all employees in the database who do not work for First Bank Corpo-
ration.

g. Find all employees who earn more than every employee of Small Bank Cor-
poration.

h. Assume that the companies may be located in several cities. Find all com-
panies located in every city in which Small Bank Corporation is located.

5.3 Consider the relational database of Figure 5.15. where the primary keys are un-
derlined. Give expressions in QBE for each of the following queries:

a. Find all employees who earn more than the average salary of all employees
of their company.

b. Find the company that has the most employees.
c. Find the company that has the smallest payroll.
d. Find those companies whose employees earn a higher salary, on average,

than the average salary at First Bank Corporation.

5.4 Consider the relational database of Figure 5.15. Give expressions in QBE for each
of the following queries:

a. Modify the database so that Jones now lives in Newtown.
b. Give all employees of First Bank Corporation a 10 percent raise.
c. Give all managers in the database a 10 percent raise.
d. Give all managers in the database a 10 percent raise, unless the salary would

be greater than $100,000. In such cases, give only a 3 percent raise.

employee (person-name, street, city)
works (person-name, company-name, salary)
company (company-name, city)
manages (person-name, manager-name)

Figure 5.15 Employee database.
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e. Delete all tuples in the works relation for employees of Small Bank Corpora-
tion.

5.5 Let the following relation schemas be given:

R = (A, B, C)
S = (D, E, F )

Let relations r(R) and s(S) be given. Give expressions in QBE, and Datalog equiv-
alent to each of the following queries:

a. ΠA(r)
b. σB = 17 (r)
c. r × s
d. ΠA,F (σC = D(r × s))

5.6 Let R = (A, B, C), and let r1 and r2 both be relations on schema R. Give expres-
sions in QBE, and Datalog equivalent to each of the following queries:

a. r1 ∪ r2

b. r1 ∩ r2

c. r1 − r2

d. ΠAB(r1) � ΠBC(r2)

5.7 Let R = (A, B) and S = (A, C), and let r(R) and s(S) be relations. Write expres-
sions in QBE and Datalog for each of the following queries:

a. {< a > | ∃ b (< a, b > ∈ r ∧ b = 17)}
b. {< a, b, c > | < a, b > ∈ r ∧ < a, c > ∈ s}
c. {< a > | ∃ c (< a, c > ∈ s ∧ ∃ b1, b2 (< a, b1 > ∈ r ∧ < c, b2 > ∈ r ∧ b1 >

b2))}

5.8 Consider the relational database of Figure 5.15. Write a Datalog program for
each of the following queries:

a. Find all employees who work (directly or indirectly) under the manager
“Jones”.

b. Find all cities of residence of all employees who work (directly or indirectly)
under the manager “Jones”.

c. Find all pairs of employees who have a (direct or indirect) manager in com-
mon.

d. Find all pairs of employees who have a (direct or indirect) manager in com-
mon, and are at the same number of levels of supervision below the com-
mon manager.

5.9 Write an extended relational-algebra view equivalent to the Datalog rule

p(A, C, D) :– q1 (A, B), q2 (B, C), q3 (4, B), D = B + 1 .
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5.10 Describe how an arbitrary Datalog rule can be expressed as an extended relation-
al algebra view.

Bibliographical Notes
The experimental version of Query-by-Example is described in Zloof [1977]; the com-
mercial version is described in IBM [1978]. Numerous database systems—in partic-
ular, database systems that run on personal computers—implement QBE or variants.
Examples are Microsoft Access and Borland Paradox.

Implementations of Datalog include LDL system (described in Tsur and Zaniolo
[1986] and Naqvi and Tsur [1988]), Nail! (described in Derr et al. [1993]), and Coral
(described in Ramakrishnan et al. [1992b] and Ramakrishnan et al. [1993]). Early dis-
cussions concerning logic databases were presented in Gallaire and Minker [1978]
and Gallaire et al. [1984]. Ullman [1988] and Ullman [1989] provide extensive text-
book discussions of logic query languages and implementation techniques. Ramakr-
ishnan and Ullman [1995] provides a more recent survey on deductive databases.

Datalog programs that have both recursion and negation can be assigned a simple
semantics if the negation is “stratified”—that is, if there is no recursion through nega-
tion. Chandra and Harel [1982] and Apt and Pugin [1987] discuss stratified negation.
An important extension, called the modular-stratification semantics, which handles a
class of recursive programs with negative literals, is discussed in Ross [1990]; an eval-
uation technique for such programs is described by Ramakrishnan et al. [1992a].

Tools
The Microsoft Access QBE is probably the most widely used implementation of QBE.
IBM DB2 QMF and Borland Paradox also support QBE.

The Coral system from the University of Wisconsin–Madison is a widely used
implementation of Datalog (see (http://www.cs.wisc.edu/coral). The XSB system from
the State University of New York (SUNY) Stony Brook (http://xsb.sourceforge.net) is
a widely used Prolog implementation that supports database querying; recall that
Datalog is a nonprocedural subset of Prolog.
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Integrity and Security

Integrity constraints ensure that changes made to the database by authorized users
do not result in a loss of data consistency. Thus, integrity constraints guard against
accidental damage to the database.

We have already seen two forms of integrity constraints for the E-R model in Chap-
ter 2:

• Key declarations—the stipulation that certain attributes form a candidate key
for a given entity set.

• Form of a relationship—many to many, one to many, one to one.

In general, an integrity constraint can be an arbitrary predicate pertaining to the
database. However, arbitrary predicates may be costly to test. Thus, we concentrate
on integrity constraints that can be tested with minimal overhead. We study some
such forms of integrity constraints in Sections 6.1 and 6.2, and cover a more complex
form in Section 6.3. In Chapter 7 we study another form of integrity constraint, called
“functional dependency,” which is primarily used in the process of schema design.

In Section 6.4 we study triggers, which are statements that are executed automati-
cally by the system as a side effect of a modification to the database. Triggers are used
to ensure some types of integrity.

In addition to protecting against accidental introduction of inconsistency, the data
stored in the database need to be protected from unauthorized access and malicious
destruction or alteration. In Sections 6.5 through 6.7, we examine ways in which data
may be misused or intentionally made inconsistent, and present security mechanisms
to guard against such occurrences.

6.1 Domain Constraints
We have seen that a domain of possible values must be associated with every at-
tribute. In Chapter 4, we saw a number of standard domain types, such as integer

225
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types, character types, and date/time types defined in SQL. Declaring an attribute to
be of a particular domain acts as a constraint on the values that it can take. Domain
constraints are the most elementary form of integrity constraint. They are tested eas-
ily by the system whenever a new data item is entered into the database.

It is possible for several attributes to have the same domain. For example, the at-
tributes customer-name and employee-name might have the same domain: the set of all
person names. However, the domains of balance and branch-name certainly ought to be
distinct. It is perhaps less clear whether customer-name and branch-name should have
the same domain. At the implementation level, both customer names and branch
names are character strings. However, we would normally not consider the query
“Find all customers who have the same name as a branch” to be a meaningful query.
Thus, if we view the database at the conceptual, rather than the physical, level,
customer-name and branch-name should have distinct domains.

From the above discussion, we can see that a proper definition of domain con-
straints not only allows us to test values inserted in the database, but also permits
us to test queries to ensure that the comparisons made make sense. The principle be-
hind attribute domains is similar to that behind typing of variables in programming
languages. Strongly typed programming languages allow the compiler to check the
program in greater detail.

The create domain clause can be used to define new domains. For example, the
statements:

create domain Dollars numeric(12,2)
create domain Pounds numeric(12,2)

define the domains Dollars and Pounds to be decimal numbers with a total of 12 digits,
two of which are placed after the decimal point. An attempt to assign a value of type
Dollars to a variable of type Pounds would result in a syntax error, although both are of
the same numeric type. Such an assignment is likely to be due to a programmer error,
where the programmer forgot about the differences in currency. Declaring different
domains for different currencies helps catch such errors.

Values of one domain can be cast (that is, converted) to another domain. If the
attribute A or relation r is of type Dollars, we can convert it to Pounds by writing

cast r.A as Pounds

In a real application we would of course multiply r.A by a currency conversion factor
before casting it to pounds. SQL also provides drop domain and alter domain clauses
to drop or modify domains that have been created earlier.

The check clause in SQL permits domains to be restricted in powerful ways that
most programming language type systems do not permit. Specifically, the check
clause permits the schema designer to specify a predicate that must be satisfied by
any value assigned to a variable whose type is the domain. For instance, a check
clause can ensure that an hourly wage domain allows only values greater than a
specified value (such as the minimum wage):
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create domain HourlyWage numeric(5,2)
constraint wage-value-test check(value >= 4.00)

The domain HourlyWage has a constraint that ensures that the hourly wage is greater
than 4.00. The clause constraint wage-value-test is optional, and is used to give the
name wage-value-test to the constraint. The name is used to indicate which constraint
an update violated.

The check clause can also be used to restrict a domain to not contain any null
values:

create domain AccountNumber char(10)
constraint account-number-null-test check(value not null )

As another example, the domain can be restricted to contain only a specified set of
values by using the in clause:

create domain AccountType char(10)
constraint account-type-test

check(value in (’Checking’, ’Saving’))

The preceding check conditions can be tested quite easily, when a tuple is inserted
or modified. However, in general, the check conditions can be more complex (and
harder to check), since subqueries that refer to other relations are permitted in the
check condition. For example, this constraint could be specified on the relation de-
posit:

check (branch-name in (select branch-name from branch))

The check condition verifies that the branch-name in each tuple in the deposit relation
is actually the name of a branch in the branch relation. Thus, the condition has to be
checked not only when a tuple is inserted or modified in deposit, but also when the
relation branch changes (in this case, when a tuple is deleted or modified in relation
branch).

The preceding constraint is actually an example of a class of constraints called
referential-integrity constraints. We discuss such constraints, along with a simpler way
of specifying them in SQL, in Section 6.2.

Complex check conditions can be useful when we want to ensure integrity of data,
but we should use them with care, since they may be costly to test.

6.2 Referential Integrity
Often, we wish to ensure that a value that appears in one relation for a given set of
attributes also appears for a certain set of attributes in another relation. This condition
is called referential integrity.
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6.2.1 Basic Concepts
Consider a pair of relations r(R) and s(S), and the natural join r � s. There may be a
tuple tr in r that does not join with any tuple in s. That is, there is no ts in s such that
tr[R ∩ S] = ts[R ∩ S]. Such tuples are called dangling tuples. Depending on the entity
set or relationship set being modeled, dangling tuples may or may not be acceptable.
In Section 3.3.3, we considered a modified form of join—the outer join—to operate
on relations containing dangling tuples. Here, our concern is not with queries, but
rather with when we should permit dangling tuples to exist in the database.

Suppose there is a tuple t1 in the account relation with t1[branch-name] = “Lu-
nartown,” but there is no tuple in the branch relation for the Lunartown branch. This
situation would be undesirable. We expect the branch relation to list all bank branches.
Therefore, tuple t1 would refer to an account at a branch that does not exist. Clearly,
we would like to have an integrity constraint that prohibits dangling tuples of this
sort.

Not all instances of dangling tuples are undesirable, however. Assume that there
is a tuple t2 in the branch relation with t2[branch-name] = “Mokan,” but there is no
tuple in the account relation for the Mokan branch. In this case, a branch exists that
has no accounts. Although this situation is not common, it may arise when a branch
is opened or is about to close. Thus, we do not want to prohibit this situation.

The distinction between these two examples arises from two facts:

• The attribute branch-name in Account-schema is a foreign key referencing the
primary key of Branch-schema.

• The attribute branch-name in Branch-schema is not a foreign key.

(Recall from Section 3.1.3 that a foreign key is a set of attributes in a relation schema
that forms a primary key for another schema.)

In the Lunartown example, tuple t1 in account has a value on the foreign key
branch-name that does not appear in branch. In the Mokan-branch example, tuple t2 in
branch has a value on branch-name that does not appear in account, but branch-name is
not a foreign key. Thus, the distinction between our two examples of dangling tuples
is the presence of a foreign key.

Let r1(R1) and r2(R2) be relations with primary keys K1 and K2, respectively. We
say that a subset α of R2 is a foreign key referencing K1 in relation r1 if it is required
that, for every t2 in r2, there must be a tuple t1 in r1 such that t1[K1] = t2[α]. Re-
quirements of this form are called referential integrity constraints, or subset depen-
dencies. The latter term arises because the preceding referential-integrity constraint
can be written as Πα (r2) ⊆ ΠK1 (r1). Note that, for a referential-integrity constraint
to make sense, either α must be equal to K1, or α and K1 must be compatible sets of
attributes.

6.2.2 Referential Integrity and the E-R Model
Referential-integrity constraints arise frequently. If we derive our relational-database
schema by constructing tables from E-R diagrams, as we did in Chapter 2, then every
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Figure 6.1 An n-ary relationship set.

relation arising from a relationship set has referential-integrity constraints. Figure 6.1
shows an n-ary relationship set R, relating entity sets E1, E2, . . . , En. Let Ki denote
the primary key of Ei. The attributes of the relation schema for relationship set R
include K1 ∪ K2 ∪ · · · ∪ Kn. The following referential integrity constraints are
then present: For each i, Ki in the schema for R is a foreign key referencing Ki in the
relation schema generated from entity set Ei

Another source of referential-integrity constraints is weak entity sets. Recall from
Chapter 2 that the relation schema for a weak entity set must include the primary
key of the entity set on which the weak entity set depends. Thus, the relation schema
for each weak entity set includes a foreign key that leads to a referential-integrity
constraint.

6.2.3 Database Modification
Database modifications can cause violations of referential integrity. We list here the
test that we must make for each type of database modification to preserve the follow-
ing referential-integrity constraint:

Πα (r2) ⊆ ΠK (r1)

• Insert. If a tuple t2 is inserted into r2, the system must ensure that there is a
tuple t1 in r1 such that t1[K] = t2[α]. That is,

t2[α] ∈ ΠK (r1)

• Delete. If a tuple t1 is deleted from r1, the system must compute the set of
tuples in r2 that reference t1:

σα = t1[K] (r2)

If this set is not empty, either the delete command is rejected as an error, or the
tuples that reference t1 must themselves be deleted. The latter solution may
lead to cascading deletions, since tuples may reference tuples that reference
t1, and so on.
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• Update. We must consider two cases for update: updates to the referencing
relation (r2), and updates to the referenced relation (r1).
� If a tuple t2 is updated in relation r2, and the update modifies values for

the foreign key α, then a test similar to the insert case is made. Let t2
′

denote the new value of tuple t2. The system must ensure that

t2
′[α] ∈ ΠK (r1)

� If a tuple t1 is updated in r1, and the update modifies values for the pri-
mary key (K), then a test similar to the delete case is made. The system
must compute

σα = t1[K] (r2)

using the old value of t1 (the value before the update is applied). If this set
is not empty, the update is rejected as an error, or the update is cascaded
in a manner similar to delete.

6.2.4 Referential Integrity in SQL
Foreign keys can be specified as part of the SQL create table statement by using the
foreign key clause. We illustrate foreign-key declarations by using the SQL DDL def-
inition of part of our bank database, shown in Figure 6.2.

By default, a foreign key references the primary key attributes of the referenced
table. SQL also supports a version of the references clause where a list of attributes of
the referenced relation can be specified explicitly. The specified list of attributes must
be declared as a candidate key of the referenced relation.

We can use the following short form as part of an attribute definition to declare
that the attribute forms a foreign key:

branch-name char(15) references branch

When a referential-integrity constraint is violated, the normal procedure is to reject
the action that caused the violation. However, a foreign key clause can specify that
if a delete or update action on the referenced relation violates the constraint, then,
instead of rejecting the action, the system must take steps to change the tuple in the
referencing relation to restore the constraint. Consider this definition of an integrity
constraint on the relation account:

create table account
( . . .
foreign key (branch-name) references branch

on delete cascade
on update cascade,

. . . )

Because of the clause on delete cascade associated with the foreign-key declaration,
if a delete of a tuple in branch results in this referential-integrity constraint being vi-
olated, the system does not reject the delete. Instead, the delete “cascades” to the
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create table customer
(customer-name char(20),
customer-street char(30),
customer-city char(30),
primary key (customer-name))

create table branch
(branch-name char(15),
branch-city char(30),
assets integer,
primary key (branch-name),
check (assets >= 0))

create table account
(account-number char(10),
branch-name char(15),
balance integer,
primary key (account-number),
foreign key (branch-name) references branch,
check (balance >= 0))

create table depositor
(customer-name char(20),
account-number char(10),
primary key (customer-name, account-number),
foreign key (customer-name) references customer,
foreign key (account-number) references account)

Figure 6.2 SQL data definition for part of the bank database.

account relation, deleting the tuple that refers to the branch that was deleted. Simi-
larly, the system does not reject an update to a field referenced by the constraint if it
violates the constraint; instead, the system updates the field branch-name in the ref-
erencing tuples in account to the new value as well. SQL also allows the foreign key
clause to specify actions other than cascade, if the constraint is violated: The referenc-
ing field (here, branch-name) can be set to null (by using set null in place of cascade),
or to the default value for the domain (by using set default).

If there is a chain of foreign-key dependencies across multiple relations, a deletion
or update at one end of the chain can propagate across the entire chain. An interest-
ing case where the foreign key constraint on a relation references the same relation
appears in Exercise 6.4. If a cascading update or delete causes a constraint violation
that cannot be handled by a further cascading operation, the system aborts the trans-
action. As a result, all the changes caused by the transaction and its cascading actions
are undone.

Null values complicate the semantics of referential integrity constraints in SQL.
Attributes of foreign keys are allowed to be null, provided that they have not other-
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wise been declared to be non-null. If all the columns of a foreign key are non-null in
a given tuple, the usual definition of foreign-key constraints is used for that tuple. If
any of the foreign-key columns is null, the tuple is defined automatically to satisfy
the constraint.

This definition may not always be the right choice, so SQL also provides constructs
that allow you to change the behavior with null values; we do not discuss the con-
structs here. To avoid such complexity, it is best to ensure that all columns of a foreign
key specification are declared to be non-null.

Transactions may consist of several steps, and integrity constraints may be vio-
lated temporarily after one step, but a later step may remove the violation. For in-
stance, suppose we have a relation marriedperson with primary key name, and an at-
tribute spouse, and suppose that spouse is a foreign key on marriedperson. That is, the
constraint says that the spouse attribute must contain a name that is present in the per-
son table. Suppose we wish to note the fact that John and Mary are married to each
other by inserting two tuples, one for John and one for Mary, in the above relation.
The insertion of the first tuple would violate the foreign key constraint, regardless of
which of the two tuples is inserted first. After the second tuple is inserted the foreign
key constraint would hold again.

To handle such situations, integrity constraints are checked at the end of a trans-
action, and not at intermediate steps.1

6.3 Assertions
An assertion is a predicate expressing a condition that we wish the database always
to satisfy. Domain constraints and referential-integrity constraints are special forms
of assertions. We have paid substantial attention to these forms of assertion because
they are easily tested and apply to a wide range of database applications. However,
there are many constraints that we cannot express by using only these special forms.
Two examples of such constraints are:

• The sum of all loan amounts for each branch must be less than the sum of all
account balances at the branch.

• Every loan has at least one customer who maintains an account with a mini-
mum balance of $1000.00.

An assertion in SQL takes the form

create assertion <assertion-name> check <predicate>

Here is how the two examples of constraints can be written. Since SQL does not
provide a “for all X , P (X)” construct (where P is a predicate), we are forced to im-

1. We can work around the problem in the above example in another way, if the spouse attribute can be
set to null: We set the spouse attributes to null when inserting the tuples for John and Mary, and we update
them later. However, this technique is rather messy, and does not work if the attributes cannot be set to
null.
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plement the construct by the equivalent “not exists X such that not P (X)” construct,
which can be written in SQL. We write

create assertion sum-constraint check
(not exists (select * from branch

where (select sum(amount) from loan
where loan.branch-name = branch.branch-name)

>= (select sum(balance) from account
where account.branch-name = branch.branch-name)))

create assertion balance-constraint check
(not exists (select * from loan

where not exists ( select *
from borrower, depositor, account
where loan.loan-number = borrower.loan-number

and borrower.customer-name = depositor.customer-name
and depositor.account-number = account.account-number
and account.balance >= 1000)))

When an assertion is created, the system tests it for validity. If the assertion is valid,
then any future modification to the database is allowed only if it does not cause that
assertion to be violated. This testing may introduce a significant amount of overhead
if complex assertions have been made. Hence, assertions should be used with great
care. The high overhead of testing and maintaining assertions has led some system
developers to omit support for general assertions, or to provide specialized forms of
assertions that are easier to test.

6.4 Triggers
A trigger is a statement that the system executes automatically as a side effect of
a modification to the database. To design a trigger mechanism, we must meet two
requirements:

1. Specify when a trigger is to be executed. This is broken up into an event that
causes the trigger to be checked and a condition that must be satisfied for trig-
ger execution to proceed.

2. Specify the actions to be taken when the trigger executes.

The above model of triggers is referred to as the event-condition-action model for
triggers.

The database stores triggers just as if they were regular data, so that they are per-
sistent and are accessible to all database operations. Once we enter a trigger into the
database, the database system takes on the responsibility of executing it whenever
the specified event occurs and the corresponding condition is satisfied.
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6.4.1 Need for Triggers
Triggers are useful mechanisms for alerting humans or for starting certain tasks au-
tomatically when certain conditions are met. As an illustration, suppose that, instead
of allowing negative account balances, the bank deals with overdrafts by setting the
account balance to zero, and creating a loan in the amount of the overdraft. The bank
gives this loan a loan number identical to the account number of the overdrawn ac-
count. For this example, the condition for executing the trigger is an update to the ac-
count relation that results in a negative balance value. Suppose that Jones’ withdrawal
of some money from an account made the account balance negative. Let t denote the
account tuple with a negative balance value. The actions to be taken are:

• Insert a new tuple s in the loan relation with

s[loan-number] = t[account-number]
s[branch-name] = t[branch-name]
s[amount] = −t[balance]

(Note that, since t[balance] is negative, we negate t[balance] to get the loan
amount—a positive number.)

• Insert a new tuple u in the borrower relation with

u[customer -name] = “Jones”
u[loan-number] = t[account-number]

• Set t[balance] to 0.

As another example of the use of triggers, suppose a warehouse wishes to main-
tain a minimum inventory of each item; when the inventory level of an item falls
below the minimum level, an order should be placed automatically. This is how the
business rule can be implemented by triggers: On an update of the inventory level
of an item, the trigger should compare the level with the minimum inventory level
for the item, and if the level is at or below the minimum, a new order is added to an
orders relation.

Note that trigger systems cannot usually perform updates outside the database,
and hence in the inventory replenishment example, we cannot use a trigger to di-
rectly place an order in the external world. Instead, we add an order to the orders re-
lation as in the inventory example. We must create a separate permanently running
system process that periodically scans the orders relation and places orders. This sys-
tem process would also note which tuples in the orders relation have been processed
and when each order was placed. The process would also track deliveries of orders,
and alert managers in case of exceptional conditions such as delays in deliveries.

6.4.2 Triggers in SQL
SQL-based database systems use triggers widely, although before SQL:1999 they were
not part of the SQL standard. Unfortunately, each database system implemented its
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create trigger overdraft-trigger after update on account
referencing new row as nrow
for each row
when nrow.balance < 0
begin atomic

insert into borrower
(select customer-name, account-number
from depositor
where nrow.account-number = depositor.account-number);

insert into loan values
(nrow.account-number, nrow.branch-name, − nrow.balance);

update account set balance = 0
where account.account-number = nrow.account-number

end

Figure 6.3 Example of SQL:1999 syntax for triggers.

own syntax for triggers, leading to incompatibilities. We outline in Figure 6.3 the
SQL:1999 syntax for triggers (which is similar to the syntax in the IBM DB2 and Oracle
database systems).

This trigger definition specifies that the trigger is initiated after any update of the
relation account is executed. An SQL update statement could update multiple tuples
of the relation, and the for each row clause in the trigger code would then explicitly
iterate over each updated row. The referencing new row as clause creates a variable
nrow (called a transition variable), which stores the value of an updated row after
the update.

The when statement specifies a condition, namely nrow.balance < 0. The system
executes the rest of the trigger body only for tuples that satisfy the condition. The
begin atomic . . . end clause serves to collect multiple SQL statements into a single
compound statement. The two insert statements with the begin . . . end structure
carry out the specific tasks of creating new tuples in the borrower and loan relations to
represent the new loan. The update statement serves to set the account balance back
to 0 from its earlier negative value.

The triggering event and actions can take many forms:

• The triggering event can be insert or delete, instead of update.
For example, the action on delete of an account could be to check if the

holders of the account have any remaining accounts, and if they do not, to
delete them from the depositor relation. You can define this trigger as an exer-
cise (Exercise 6.7).

As another example, if a new depositor is inserted, the triggered action could
be to send a welcome letter to the depositor. Obviously a trigger cannot di-
rectly cause such an action outside the database, but could instead add a tu-
ple to a relation storing addresses to which welcome letters need to be sent. A
separate process would go over this table, and print out letters to be sent.
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• For updates, the trigger can specify columns whose update causes the trigger
to execute. For instance if the first line of the overdraft trigger were replaced
by

create trigger overdraft-trigger after update of balance on account

then the trigger would be executed only on updates to balance; updates to
other attributes would not cause it to be executed.

• The referencing old row as clause can be used to create a variable storing the
old value of an updated or deleted row. The referencing new row as clause
can be used with inserts in addition to updates.

• Triggers can be activated before the event (insert/delete/update) instead of
after the event.

Such triggers can serve as extra constraints that can prevent invalid up-
dates. For instance, if we wish not to permit overdrafts, we can create a before
trigger that rolls back the transaction if the new balance is negative.

As another example, suppose the value in a phone number field of an in-
serted tuple is blank, which indicates absence of a phone number. We can
define a trigger that replaces the value by the null value. The set statement
can be used to carry out such modifications.

create trigger setnull-trigger before update on r
referencing new row as nrow
for each row
when nrow.phone-number = ’ ’
set nrow.phone-number = null

• Instead of carrying out an action for each affected row, we can carry out a sin-
gle action for the entire SQL statement that caused the insert/delete/update.
To do so, we use the for each statement clause instead of the for each row
clause.

The clauses referencing old table as or referencing new table as can then
be used to refer to temporary tables (called transition tables) containing all the
affected rows. Transition tables cannot be used with before triggers, but can
be used with after triggers, regardless of whether they are statement triggers
or row triggers.

A single SQL statement can then be used to carry out multiple actions on
the basis of the transition tables.

Returning to our warehouse inventory example, suppose we have the following
relations:

• inventory(item, level), which notes the current amount (number/weight/vol-
ume) of the item in the warehouse
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create trigger reorder-trigger after update of amount on inventory
referencing old row as orow, new row as nrow
for each row
when nrow.level <= (select level

from minlevel
where minlevel.item = orow.item)

and orow.level > (select level
from minlevel
where minlevel.item = orow.item)

begin
insert into orders

(select item, amount
from reorder
where reorder.item = orow.item)

end

Figure 6.4 Example of trigger for reordering an item.

• minlevel(item, level), which notes the minimum amount of the item to be main-
tained

• reorder(item, amount), which notes the amount of the item to be ordered when
its level falls below the minimum

• orders(item, amount), which notes the amount of the item to be ordered.

We can then use the trigger shown in Figure 6.4 for reordering the item.
Note that we have been careful to place an order only when the amount falls from

above the minimum level to below the minimum level. If we only check that the
new value after an update is below the minimum level, we may place an order erro-
neously when the item has already been reordered.

Many database systems provide nonstandard trigger implementations, or imple-
ment only some of the trigger features. For instance, many database systems do not
implement the before clause, and the keyword on is used instead of after. They may
not implement the referencing clause. Instead, they may specify transition tables by
using the keywords inserted or deleted. Figure 6.5 illustrates how the overdraft trig-
ger would be written in MS-SQLServer. Read the user manual for the database system
you use for more information about the trigger features it supports.

6.4.3 When Not to Use Triggers
There are many good uses for triggers, such as those we have just seen in Section 6.4.2,
but some uses are best handled by alternative techniques. For example, in the past,
system designers used triggers to maintain summary data. For instance, they used
triggers on insert/delete/update of a employee relation containing salary and dept at-
tributes to maintain the total salary of each department. However, many database
systems today support materialized views (see Section 3.5.1), which provide a much
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create trigger overdraft-trigger on account
for update
as
if nrow.balance < 0
begin

insert into borrower
(select customer-name, account-number
from depositor, inserted
where inserted.account-number = depositor.account-number)

insert into loan values
(inserted.account-number, inserted.branch-name, − inserted.balance)

update account set balance = 0
from account, inserted
where account.account-number = inserted.account-number

end

Figure 6.5 Example of trigger in MS-SQL server syntax

easier way to maintain summary data. Designers also used triggers extensively for
replicating databases; they used triggers on insert/delete/update of each relation to
record the changes in relations called change or delta relations. A separate process
copied over the changes to the replica (copy) of the database, and the system executed
the changes on the replica. Modern database systems, however, provide built-in fa-
cilities for database replication, making triggers unnecessary for replication in most
cases.

In fact, many trigger applications, including our example overdraft trigger, can be
substituted by “encapsulation” features being introduced in SQL:1999. Encapsulation
can be used to ensure that updates to the balance attribute of account are done only
through a special procedure. That procedure would in turn check for negative bal-
ance, and carry out the actions of the overdraft trigger. Encapsulations can replace
the reorder trigger in a similar manner.

Triggers should be written with great care, since a trigger error detected at run
time causes the failure of the insert/delete/update statement that set off the trigger.
Furthermore, the action of one trigger can set off another trigger. In the worst case,
this could even lead to an infinite chain of triggering. For example, suppose an insert
trigger on a relation has an action that causes another (new) insert on the same rela-
tion. The insert action then triggers yet another insert action, and so on ad infinitum.
Database systems typically limit the length of such chains of triggers (for example to
16 or 32), and consider longer chains of triggering an error.

Triggers are occasionally called rules, or active rules, but should not be confused
with Datalog rules (see Section 5.2), which are really view definitions.

6.5 Security and Authorization
The data stored in the database need protection from unauthorized access and mali-
cious destruction or alteration, in addition to the protection against accidental intro-
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duction of inconsistency that integrity constraints provide. In this section, we exam-
ine the ways in which data may be misused or intentionally made inconsistent. We
then present mechanisms to guard against such occurrences.

6.5.1 Security Violations
Among the forms of malicious access are:

• Unauthorized reading of data (theft of information)

• Unauthorized modification of data

• Unauthorized destruction of data

Database security refers to protection from malicious access. Absolute protection
of the database from malicious abuse is not possible, but the cost to the perpetrator
can be made high enough to deter most if not all attempts to access the database
without proper authority.

To protect the database, we must take security measures at several levels:

• Database system. Some database-system users may be authorized to access
only a limited portion of the database. Other users may be allowed to issue
queries, but may be forbidden to modify the data. It is the responsibility of
the database system to ensure that these authorization restrictions are not vi-
olated.

• Operating system. No matter how secure the database system is, weakness in
operating-system security may serve as a means of unauthorized access to the
database.

• Network. Since almost all database systems allow remote access through ter-
minals or networks, software-level security within the network software is as
important as physical security, both on the Internet and in private networks.

• Physical. Sites with computer systems must be physically secured against
armed or surreptitious entry by intruders.

• Human. Users must be authorized carefully to reduce the chance of any user
giving access to an intruder in exchange for a bribe or other favors.

Security at all these levels must be maintained if database security is to be ensured.
A weakness at a low level of security (physical or human) allows circumvention of
strict high-level (database) security measures.

In the remainder of this section, we shall address security at the database-system
level. Security at the physical and human levels, although important, is beyond the
scope of this text.

Security within the operating system is implemented at several levels, ranging
from passwords for access to the system to the isolation of concurrent processes run-
ning within the system. The file system also provides some degree of protection. The
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bibliographical notes reference coverage of these topics in operating-system texts.
Finally, network-level security has gained widespread recognition as the Internet
has evolved from an academic research platform to the basis of international elec-
tronic commerce. The bibliographic notes list textbook coverage of the basic princi-
ples of network security. We shall present our discussion of security in terms of the
relational-data model, although the concepts of this chapter are equally applicable to
all data models.

6.5.2 Authorization
We may assign a user several forms of authorization on parts of the database. For
example,

• Read authorization allows reading, but not modification, of data.

• Insert authorization allows insertion of new data, but not modification of ex-
isting data.

• Update authorization allows modification, but not deletion, of data.

• Delete authorization allows deletion of data.

We may assign the user all, none, or a combination of these types of authorization.
In addition to these forms of authorization for access to data, we may grant a user

authorization to modify the database schema:

• Index authorization allows the creation and deletion of indices.

• Resource authorization allows the creation of new relations.

• Alteration authorization allows the addition or deletion of attributes in a re-
lation.

• Drop authorization allows the deletion of relations.

The drop and delete authorization differ in that delete authorization allows dele-
tion of tuples only. If a user deletes all tuples of a relation, the relation still exists, but
it is empty. If a relation is dropped, it no longer exists.

We regulate the ability to create new relations through resource authorization. A
user with resource authorization who creates a new relation is given all privileges on
that relation automatically.

Index authorization may appear unnecessary, since the creation or deletion of an
index does not alter data in relations. Rather, indices are a structure for performance
enhancements. However, indices also consume space, and all database modifications
are required to update indices. If index authorization were granted to all users, those
who performed updates would be tempted to delete indices, whereas those who is-
sued queries would be tempted to create numerous indices. To allow the database
administrator to regulate the use of system resources, it is necessary to treat index
creation as a privilege.
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The ultimate form of authority is that given to the database administrator. The
database administrator may authorize new users, restructure the database, and so
on. This form of authorization is analogous to that of a superuser or operator for an
operating system.

6.5.3 Authorization and Views
In Chapter 3, we introduced the concept of views as a means of providing a user
with a personalized model of the database. A view can hide data that a user does
not need to see. The ability of views to hide data serves both to simplify usage of the
system and to enhance security. Views simplify system usage because they restrict
the user’s attention to the data of interest. Although a user may be denied direct
access to a relation, that user may be allowed to access part of that relation through a
view. Thus, a combination of relational-level security and view-level security limits a
user’s access to precisely the data that the user needs.

In our banking example, consider a clerk who needs to know the names of all
customers who have a loan at each branch. This clerk is not authorized to see infor-
mation regarding specific loans that the customer may have. Thus, the clerk must be
denied direct access to the loan relation. But, if she is to have access to the information
needed, the clerk must be granted access to the view cust-loan, which consists of only
the names of customers and the branches at which they have a loan. This view can
be defined in SQL as follows:

create view cust-loan as
(select branch-name, customer-name
from borrower, loan
where borrower.loan-number = loan.loan-number)

Suppose that the clerk issues the following SQL query:

select *
from cust-loan

Clearly, the clerk is authorized to see the result of this query. However, when the
query processor translates it into a query on the actual relations in the database, it
produces a query on borrower and loan. Thus, the system must check authorization
on the clerk’s query before it begins query processing.

Creation of a view does not require resource authorization. A user who creates a
view does not necessarily receive all privileges on that view. She receives only those
privileges that provide no additional authorization beyond those that she already
had. For example, a user cannot be given update authorization on a view without
having update authorization on the relations used to define the view. If a user creates
a view on which no authorization can be granted, the system will deny the view
creation request. In our cust-loan view example, the creator of the view must have
read authorization on both the borrower and loan relations.
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6.5.4 Granting of Privileges
A user who has been granted some form of authorization may be allowed to pass
on this authorization to other users. However, we must be careful how authorization
may be passed among users, to ensure that such authorization can be revoked at
some future time.

Consider, as an example, the granting of update authorization on the loan rela-
tion of the bank database. Assume that, initially, the database administrator grants
update authorization on loan to users U1, U2, and U3, who may in turn pass on this
authorization to other users. The passing of authorization from one user to another
can be represented by an authorization graph. The nodes of this graph are the users.
The graph includes an edge Ui → Uj if user Ui grants update authorization on loan
to Uj . The root of the graph is the database administrator. In the sample graph in
Figure 6.6, observe that user U5 is granted authorization by both U1 and U2; U4 is
granted authorization by only U1.

A user has an authorization if and only if there is a path from the root of the autho-
rization graph (namely, the node representing the database administrator) down to
the node representing the user.

Suppose that the database administrator decides to revoke the authorization of
user U1. Since U4 has authorization from U1, that authorization should be revoked as
well. However, U5 was granted authorization by both U1 and U2. Since the database
administrator did not revoke update authorization on loan from U2, U5 retains update
authorization on loan. If U2 eventually revokes authorization from U5, then U5 loses
the authorization.

A pair of devious users might attempt to defeat the rules for revocation of
authorization by granting authorization to each other, as shown in Figure 6.7a. If
the database administrator revokes authorization from U2, U2 retains authorization
through U3, as in Figure 6.7b. If authorization is revoked subsequently from U3, U3

appears to retain authorization through U2, as in Figure 6.7c. However, when the
database administrator revokes authorization from U3, the edges from U3 to U2 and
from U2 to U3 are no longer part of a path starting with the database administrator.

U3

DBA

U1

U5U2

U4

Figure 6.6 Authorization-grant graph.
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U1

U1

UU2

U2

3

U3 U1 U2 U3

DBA DBA

DBA

(a)

(b) (c)

Figure 6.7 Attempt to defeat authorization revocation.

We require that all edges in an authorization graph be part of some path originating
with the database administrator. The edges between U2 and U3 are deleted, and the
resulting authorization graph is as in Figure 6.8.

6.5.5 Notion of Roles
Consider a bank where there are many tellers. Each teller must have the same types
of authorizations to the same set of relations. Whenever a new teller is appointed, she
will have to be given all these authorizations individually.

A better scheme would be to specify the authorizations that every teller is to be
given, and to separately identify which database users are tellers. The system can use
these two pieces of information to determine the authorizations of each person who
is a teller. When a new person is hired as a teller, a user identifier must be allocated
to him, and he must be identified as a teller. Individual permissions given to tellers
need not be specified again.

The notion of roles captures this scheme. A set of roles is created in the database.
Authorizations can be granted to roles, in exactly the same fashion as they are granted
to individual users. Each database user is granted a set of roles (which may be empty)
that he or she is authorized to perform.

U1 U
3

U2

DBA

Figure 6.8 Authorization graph.
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In our bank database, examples of roles could include teller, branch-manager, audi-
tor, and system-administrator.

A less preferable alternative would be to create a teller userid, and permit each
teller to connect to the database using the teller userid. The problem with this scheme
is that it would not be possible to identify exactly which teller carried out a transac-
tion, leading to security risks. The use of roles has the benefit of requiring users to
connect to the database with their own userid.

Any authorization that can be granted to a user can be granted to a role. Roles
are granted to users just as authorizations are. And like other authorizations, a user
may also be granted authorization to grant a particular role to others. Thus, branch
managers may be granted authorization to grant the teller role.

6.5.6 Audit Trails
Many secure database applications require an audit trail be maintained. An audit
trail is a log of all changes (inserts/deletes/updates) to the database, along with in-
formation such as which user performed the change and when the change was per-
formed.

The audit trail aids security in several ways. For instance, if the balance on an
account is found to be incorrect, the bank may wish to trace all the updates performed
on the account, to find out incorrect (or fraudulent) updates, as well as the persons
who carried out the updates. The bank could then also use the audit trail to trace all
the updates performed by these persons, in order to find other incorrect or fraudulent
updates.

It is possible to create an audit trail by defining appropriate triggers on relation
updates (using system-defined variables that identify the user name and time). How-
ever, many database systems provide built-in mechanisms to create audit trails, which
are much more convenient to use. Details of how to create audit trails vary across
database systems, and you should refer the database system manuals for details.

6.6 Authorization in SQL
The SQL language offers a fairly powerful mechanism for defining authorizations.
We describe these mechanisms, as well as their limitations, in this section.

6.6.1 Privileges in SQL
The SQL standard includes the privileges delete, insert, select, and update. The select
privilege corresponds to the read privilege. SQL also includes a references privilege
that permits a user/role to declare foreign keys when creating relations. If the relation
to be created includes a foreign key that references attributes of another relation,
the user/role must have been granted references privilege on those attributes. The
reason that the references privilege is a useful feature is somewhat subtle; we explain
the reason later in this section.
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The SQL data-definition language includes commands to grant and revoke priv-
ileges. The grant statement is used to confer authorization. The basic form of this
statement is:

grant <privilege list> on <relation name or view name> to <user/role list>

The privilege list allows the granting of several privileges in one command.
The following grant statement grants users U1, U2, and U3 select authorization on

the account relation:

grant select on account to U1, U2, U3

The update authorization may be given either on all attributes of the relation or
on only some. If update authorization is included in a grant statement, the list of at-
tributes on which update authorization is to be granted optionally appears in paren-
theses immediately after the update keyword. If the list of attributes is omitted, the
update privilege will be granted on all attributes of the relation.

This grant statement gives users U1, U2, and U3 update authorization on the amount
attribute of the loan relation:

grant update (amount) on loan to U1, U2, U3

The insert privilege may also specify a list of attributes; any inserts to the relation
must specify only these attributes, and the system either gives each of the remaining
attributes default values (if a default is defined for the attribute) or sets them to null.

The SQL references privilege is granted on specific attributes in a manner like
that for the update privilege. The following grant statement allows user U1 to create
relations that reference the key branch-name of the branch relation as a foreign key:

grant references (branch-name) on branch to U1

Initially, it may appear that there is no reason ever to prevent users from creating for-
eign keys referencing another relation. However, recall from Section 6.2 that foreign-
key constraints restrict deletion and update operations on the referenced relation.
In the preceding example, if U1 creates a foreign key in a relation r referencing the
branch-name attribute of the branch relation, and then inserts a tuple into r pertaining
to the Perryridge branch, it is no longer possible to delete the Perryridge branch from
the branch relation without also modifying relation r. Thus, the definition of a foreign
key by U1 restricts future activity by other users; therefore, there is a need for the
references privilege.

The privilege all privileges can be used as a short form for all the allowable priv-
ileges. Similarly, the user name public refers to all current and future users of the
system. SQL also includes a usage privilege that authorizes a user to use a specified
domain (recall that a domain corresponds to the programming-language notion of a
type, and may be user defined).
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6.6.2 Roles
Roles can be created in SQL:1999 as follows

create role teller

Roles can then be granted privileges just as the users can, as illustrated in this state-
ment:

grant select on account
to teller

Roles can be asigned to the users, as well as to some other roles, as these statements
show.

grant teller to john
create role manager
grant teller to manager
grant manager to mary

Thus the privileges of a user or a role consist of

• All privileges directly granted to the user/role

• All privileges granted to roles that have been granted to the user/role

Note that there can be a chain of roles; for example, the role employee may be granted
to all tellers. In turn the role teller is granted to all managers. Thus, the manager role in-
herits all privileges granted to the roles employee and to teller in addition to privileges
granted directly to manager.

6.6.3 The Privilege to Grant Privileges
By default, a user/role that is granted a privilege is not authorized to grant that priv-
ilege to another user/role. If we wish to grant a privilege and to allow the recipient
to pass the privilege on to other users, we append the with grant option clause to the
appropriate grant command. For example, if we wish to allow U1 the select privilege
on branch and allow U1 to grant this privilege to others, we write

grant select on branch to U1 with grant option

To revoke an authorization, we use the revoke statement. It takes a form almost
identical to that of grant:

revoke <privilege list> on <relation name or view name>
from <user/role list> [restrict | cascade]

Thus, to revoke the privileges that we granted previously, we write
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revoke select on branch from U1, U2, U3

revoke update (amount) on loan from U1, U2, U3

revoke references (branch-name) on branch from U1

As we saw in Section 6.5.4, the revocation of a privilege from a user/role may cause
other users/roles also to lose that privilege. This behavior is called cascading of the
revoke. In most database systems, cascading is the default behavior; the keyword cas-
cade can thus be omitted, as we have done in the preceding examples. The revoke
statement may alternatively specify restrict:

revoke select on branch from U1, U2, U3 restrict

In this case, the system returns an error if there are any cascading revokes, and does
not carry out the revoke action. The following revoke statement revokes only the
grant option, rather than the actual select privilege:

revoke grant option for select on branch from U1

6.6.4 Other Features
The creator of an object (relation/view/role) gets all privileges on the object, includ-
ing the privilege to grant privileges to others.

The SQL standard specifies a primitive authorization mechanism for the database
schema: Only the owner of the schema can carry out any modification to the schema.
Thus, schema modifications—such as creating or deleting relations, adding or drop-
ping attributes of relations, and adding or dropping indices—may be executed by
only the owner of the schema. Several database implementations have more power-
ful authorization mechanisms for database schemas, similar to those discussed ear-
lier, but these mechanisms are nonstandard.

6.6.5 Limitations of SQL Authorization
The current SQL standards for authorization have some shortcomings. For instance,
suppose you want all students to be able to see their own grades, but not the grades
of anyone else. Authorization must then be at the level of individual tuples, which is
not possible in the SQL standards for authorization.

Furthermore, with the growth in the Web, database accesses come primarily from
Web application servers. The end users may not have individual user identifiers on
the database, and indeed there may only be a single user identifier in the database
corresponding to all users of an application server.

The task of authorization then falls on the application server; the entire authoriza-
tion scheme of SQL is bypassed. The benefit is that fine-grained authorizations, such
as those to individual tuples, can be implemented by the application. The problems
are these:

• The code for checking authorization becomes intermixed with the rest of the
application code.
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• Implementing authorization through application code, rather than specifying
it declaratively in SQL, makes it hard to ensure the absence of loopholes. Be-
cause of an oversight, one of the application programs may not check for au-
thorization, allowing unauthorized users access to confidential data. Verifying
that all application programs make all required authorization checks involves
reading through all the application server code, a formidable task in a large
system.

6.7 Encryption and Authentication
The various provisions that a database system may make for authorization may still
not provide sufficient protection for highly sensitive data. In such cases, data may
be stored in encrypted form. It is not possible for encrypted data to be read unless
the reader knows how to decipher (decrypt) them. Encryption also forms the basis of
good schemes for authenticating users to a database.

6.7.1 Encryption Techniques
There are a vast number of techniques for the encryption of data. Simple encryption
techniques may not provide adequate security, since it may be easy for an unautho-
rized user to break the code. As an example of a weak encryption technique, consider
the substitution of each character with the next character in the alphabet. Thus,

Perryridge

becomes

Qfsszsjehf

If an unauthorized user sees only “Qfsszsjehf,” she probably has insufficient infor-
mation to break the code. However, if the intruder sees a large number of encrypted
branch names, she could use statistical data regarding the relative frequency of char-
acters to guess what substitution is being made (for example, E is the most common
letter in English text, followed by T, A, O, N, I and so on).

A good encryption technique has the following properties:

• It is relatively simple for authorized users to encrypt and decrypt data.

• It depends not on the secrecy of the algorithm, but rather on a parameter of
the algorithm called the encryption key.

• Its encryption key is extremely difficult for an intruder to determine.

One approach, the Data Encryption Standard (DES), issued in 1977, does both a
substitution of characters and a rearrangement of their order on the basis of an en-
cryption key. For this scheme to work, the authorized users must be provided with
the encryption key via a secure mechanism. This requirement is a major weakness,
since the scheme is no more secure than the security of the mechanism by which
the encryption key is transmitted. The DES standard was reaffirmed in 1983, 1987,
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and again in 1993. However, weakness in DES was recongnized in 1993 as reaching a
point where a new standard to be called the Advanced Encryption Standard (AES),
needed to be selected. In 2000, the Rijndael algorithm (named for the inventors
V. Rijmen and J. Daemen), was selected to be the AES. The Rijndael algorithm was
chosen for its significantly stronger level of security and its relative ease of imple-
mentation on current computer systems as well as such devices as smart cards. Like
the DES standard, the Rijndael algorithm is a shared-key (or, symmetric key) algo-
rithm in which the authorized users share a key.

Public-key encryption is an alternative scheme that avoids some of the problems
that we face with the DES. It is based on two keys; a public key and a private key. Each
user Ui has a public key Ei and a private key Di. All public keys are published: They
can be seen by anyone. Each private key is known to only the one user to whom the
key belongs. If user U1 wants to store encrypted data, U1 encrypts them using public
key E1. Decryption requires the private key D1.

Because the encryption key for each user is public, it is possible to exchange infor-
mation securely by this scheme. If user U1 wants to share data with U2, U1 encrypts
the data using E2, the public key of U2. Since only user U2 knows how to decrypt the
data, information is transferred securely.

For public-key encryption to work, there must be a scheme for encryption that
can be made public without making it easy for people to figure out the scheme for
decryption. In other words, it must be hard to deduce the private key, given the public
key. Such a scheme does exist and is based on these conditions:

• There is an efficient algorithm for testing whether or not a number is prime.

• No efficient algorithm is known for finding the prime factors of a number.

For purposes of this scheme, data are treated as a collection of integers. We create
a public key by computing the product of two large prime numbers: P1 and P2. The
private key consists of the pair (P1, P2). The decryption algorithm cannot be used
successfully if only the product P1P2 is known; it needs the individual values P1 and
P2. Since all that is published is the product P1P2, an unauthorized user would need
to be able to factor P1P2 to steal data. By choosing P1 and P2 to be sufficiently large
(over 100 digits), we can make the cost of factoring P1P2 prohibitively high (on the
order of years of computation time, on even the fastest computers).

The details of public-key encryption and the mathematical justification of this tech-
nique’s properties are referenced in the bibliographic notes.

Although public-key encryption by this scheme is secure, it is also computation-
ally expensive. A hybrid scheme used for secure communication is as follows: DES
keys are exchanged via a public-key–encryption scheme, and DES encryption is used
on the data transmitted subsequently.

6.7.2 Authentication
Authentication refers to the task of verifying the identity of a person/software con-
necting to a database. The simplest form of authentication consists of a secret pass-
word which must be presented when a connection is opened to a database.



Silberschatz−Korth−Sudarshan: 
Database System 
Concepts, Fourth Edition

II. Relational Databases 6. Integrity and Security254 © The McGraw−Hill 
Companies, 2001

250 Chapter 6 Integrity and Security

Password-based authentication is used widely by operating systems as well as
databases. However, the use of passwords has some drawbacks, especially over a
network. If an eavesdropper is able to “sniff” the data being sent over the network,
she may be able to find the password as it is being sent across the network. Once
the eavesdropper has a user name and password, she can connect to the database,
pretending to be the legitimate user.

A more secure scheme involves a challenge-response system. The database sys-
tem sends a challenge string to the user. The user encrypts the challenge string using
a secret password as encryption key, and then returns the result. The database system
can verify the authenticity of the user by decrypting the string with the same secret
password, and checking the result with the original challenge string. This scheme
ensures that no passwords travel across the network.

Public-key systems can be used for encryption in challenge–response systems.
The database system encrypts a challenge string using the user’s public key and
sends it to the user. The user decrypts the string using her private key, and returns
the result to the database system. The database system then checks the response.
This scheme has the added benefit of not storing the secret password in the database,
where it could potentially be seen by system administrators.

Another interesting application of public-key encryption is in digital signatures
to verify authenticity of data; digital signatures play the electronic role of physical
signatures on documents. The private key is used to sign data, and the signed data
can be made public. Anyone can verify them by the public key, but no one could have
generated the signed data without having the private key. Thus, we can authenticate
the data; that is, we can verify that the data were indeed created by the person who
claims to have created them.

Furthermore, digital signatures also serve to ensure nonrepudiation. That is, in
case the person who created the data later claims she did not create it (the electronic
equivalent of claiming not to have signed the check), we can prove that that person
must have created the data (unless her private key was leaked to others).

6.8 Summary
• Integrity constraints ensure that changes made to the database by authorized

users do not result in a loss of data consistency.

• In earlier chapters, we considered several forms of constraints, including key
declarations and the declaration of the form of a relationship (many to many,
many to one, one to one). In this chapter, we considered several additional
forms of constraints, and discussed mechanisms for ensuring the maintenance
of these constraints.

• Domain constraints specify the set of possible values that may be associated
with an attribute. Such constraints may also prohibit the use of null values for
particular attributes.
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• Referential-integrity constraints ensure that a value that appears in one rela-
tion for a given set of attributes also appears for a certain set of attributes in
another relation.

• Domain constraints, and referential-integrity constraints are relatively easy to
test. Use of more complex constraints may lead to substantial overhead. We
saw two ways to express more general constraints. Assertions are declarative
expressions that state predicates that we require always to be true.

• Triggers define actions to be executed automatically when certain events oc-
cur and corresponding conditions are satisfied. Triggers have many uses, such
as implementing business rules, audit logging, and even carrying out actions
outside the database system. Although triggers were added only lately to the
SQL standard as part of SQL:1999, most database systems have long imple-
mented triggers.

• The data stored in the database need to be protected from unauthorized ac-
cess, malicious destruction or alteration, and accidental introduction of incon-
sistency.

• It is easier to protect against accidental loss of data consistency than to protect
against malicious access to the database. Absolute protection of the database
from malicious abuse is not possible, but the cost to the perpetrator can be
made sufficiently high to deter most, if not all, attempts to access the database
without proper authority.

• A user may have several forms of authorization on parts of the database. Au-
thorization is a means by which the database system can be protected against
malicious or unauthorized access.

• A user who has been granted some form of authority may be allowed to pass
on this authority to other users. However, we must be careful about how au-
thorization can be passed among users if we are to ensure that such autho-
rization can be revoked at some future time.

• Roles help to assign a set of privileges to a user according to on the role that
the user plays in the organization.

• The various authorization provisions in a database system may not provide
sufficient protection for highly sensitive data. In such cases, data can be en-
crypted. Only a user who knows how to decipher (decrypt) the encrypted data
can read them. Encryption also forms the basis for secure authentication of
users.

Review Terms
• Domain constraints

• Check clause

• Referential integrity

• Primary key constraint

• Unique constraint

• Foreign key constraint
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• Cascade
• Assertion
• Trigger
• Event-condition-action model
• Before and after triggers
• Transition variables and tables
• Database security
• Levels of security
• Authorization
• Privileges
� Read
� Insert
� Update
� Delete
� Index

� Resource
� Alteration
� Drop
� Grant
� All privileges

• Authorization graph
• Granting of privileges
• Roles
• Encryption
• Secret-key encryption
• Public-key encryption
• Authentication
• Challenge–response system
• Digital signature
• Nonrepudiation

Exercises
6.1 Complete the SQL DDL definition of the bank database of Figure 6.2 to include

the relations loan and borrower.

6.2 Consider the following relational database:

employee (employee-name, street, city)
works (employee-name, company-name, salary)
company (company-name, city)
manages (employee-name, manager-name)

Give an SQL DDL definition of this database. Identify referential-integrity con-
straints that should hold, and include them in the DDL definition.

6.3 Referential-integrity constraints as defined in this chapter involve exactly two
relations. Consider a database that includes the following relations:

salaried-worker (name, office, phone, salary)
hourly-worker (name, hourly-wage)
address (name, street, city)

Suppose that we wish to require that every name that appears in address appear
in either salaried-worker or hourly-worker, but not necessarily in both.

a. Propose a syntax for expressing such constraints.
b. Discuss the actions that the system must take to enforce a constraint of this

form.
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6.4 SQL allows a foreign-key dependency to refer to the same relation, as in the
following example:

create table manager
(employee-name char(20) not null
manager-name char(20) not null,
primary key employee-name,
foreign key (manager-name) references manager

on delete cascade )

Here, employee-name is a key to the table manager, meaning that each employee
has at most one manager. The foreign-key clause requires that every manager
also be an employee. Explain exactly what happens when a tuple in the relation
manager is deleted.

6.5 Suppose there are two relations r and s, such that the foreign key B of r refer-
ences the primary key A of s. Describe how the trigger mechanism can be used
to implement the on delete cascade option, when a tuple is deleted from s.

6.6 Write an assertion for the bank database to ensure that the assets value for the
Perryridge branch is equal to the sum of all the amounts lent by the Perryridge
branch.

6.7 Write an SQL trigger to carry out the following action: On delete of an account,
for each owner of the account, check if the owner has any remaining accounts,
and if she does not, delete her from the depositor relation.

6.8 Consider a view branch-cust defined as follows:

create view branch-cust as
select branch-name, customer-name
from depositor, account
where depositor.account-number = account.account-number

Suppose that the view is materialized, that is, the view is computed and stored.
Write active rules to maintain the view, that is, to keep it up to date on insertions
to and deletions from depositor or account. Do not bother about updates.

6.9 Make a list of security concerns for a bank. For each item on your list, state
whether this concern relates to physical security, human security, operating-
system security, or database security.

6.10 Using the relations of our sample bank database, write an SQL expression to
define the following views:

a. A view containing the account numbers and customer names (but not the
balances) for all accounts at the Deer Park branch.
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b. A view containing the names and addresses of all customers who have an
account with the bank, but do not have a loan.

c. A view containing the name and average account balance of every customer
of the Rock Ridge branch.

6.11 For each of the views that you defined in Exercise 6.10, explain how updates
would be performed (if they should be allowed at all). Hint: See the discussion
of views in Chapter 3.

6.12 In Chapter 3, we described the use of views to simplify access to the database
by users who need to see only part of the database. In this chapter, we described
the use of views as a security mechanism. Do these two purposes for views ever
conflict? Explain your answer.

6.13 What is the purpose of having separate categories for index authorization and
resource authorization?

6.14 Database systems that store each relation in a separate operating-system file
may use the operating system’s security and authorization scheme, instead of
defining a special scheme themselves. Discuss an advantage and a disadvantage
of such an approach.

6.15 What are two advantages of encrypting data stored in the database?

6.16 Perhaps the most important data items in any database system are the pass-
words that control access to the database. Suggest a scheme for the secure stor-
age of passwords. Be sure that your scheme allows the system to test passwords
supplied by users who are attempting to log into the system.
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C H A P T E R 7

Relational-Database Design

This chapter continues our discussion of design issues in relational databases. In gen-
eral, the goal of a relational-database design is to generate a set of relation schemas
that allows us to store information without unnecessary redundancy, yet also allows
us to retrieve information easily. One approach is to design schemas that are in an
appropriate normal form. To determine whether a relation schema is in one of the
desirable normal forms, we need additional information about the real-world enter-
prise that we are modeling with the database. In this chapter, we introduce the notion
of functional dependencies. We then define normal forms in terms of functional de-
pendencies and other types of data dependencies.

7.1 First Normal Form
The first of the normal forms that we study, first normal form, imposes a very basic
requirement on relations; unlike the other normal forms, it does not require addi-
tional information such as functional dependencies.

A domain is atomic if elements of the domain are considered to be indivisible
units. We say that a relation schema R is in first normal form (1NF) if the domains of
all attributes of R are atomic.

A set of names is an example of a nonatomic value. For example, if the schema of
a relation employee included an attribute children whose domain elements are sets of
names, the schema would not be in first normal form.

Composite attributes, such as an attribute address with component attributes street
and city, also have nonatomic domains.

Integers are assumed to be atomic, so the set of integers is an atomic domain; the
set of all sets of integers is a nonatomic domain. The distinction is that we do not
normally consider integers to have subparts, but we consider sets of integers to have
subparts—namely, the integers making up the set. But the important issue is not
what the domain itself is, but rather how we use domain elements in our database.

257
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The domain of all integers would be nonatomic if we considered each integer to be
an ordered list of digits.

As a practical illustration of the above point, consider an organization that as-
signs employees identification numbers of the following form: The first two letters
specify the department and the remaining four digits are a unique number within
the department for the employee. Examples of such numbers would be CS0012 and
EE1127. Such identification numbers can be divided into smaller units, and are there-
fore nonatomic. If a relation schema had an attribute whose domain consists of iden-
tification numbers encoded as above, the schema would not be in first normal form.

When such identification numbers are used, the department of an employee can
be found by writing code that breaks up the structure of an identification number.
Doing so requires extra programming, and information gets encoded in the applica-
tion program rather than in the database. Further problems arise if such identification
numbers are used as primary keys: When an employee changes department, the em-
ployee’s identification number must be changed everywhere it occurs, which can be
a difficult task, or the code that interprets the number would give a wrong result.

The use of set valued attributes can lead to designs with redundant storage of data,
which in turn can result in inconsistencies. For instance, instead of the relationship
between accounts and customers being represented as a separate relation depositor,
a database designer may be tempted to store a set of owners with each account, and
a set of accounts with each customer. Whenever an account is created, or the set of
owners of an account is updated, the update has to be performed at two places; fail-
ure to perform both updates can leave the database in an inconsistent state. Keeping
only one of these sets would avoid repeated information, but would complicate some
queries. Set valued attributes are also more complicated to write queries with, and
more complicated to reason about.

In this chapter we consider only atomic domains, and assume that relations are in
first normal form. Although we have not mentioned first normal form earlier, when
we introduced the relational model in Chapter 3 we stated that attribute values must
be atomic.

Some types of nonatomic values can be useful, although they should be used with
care. For example, composite valued attributes are often useful, and set valued at-
tributes are also useful in many cases, which is why both are supported in the E-R
model. In many domains where entities have a complex structure, forcing a first nor-
mal form representation represents an unnecessary burden on the application pro-
grammer, who has to write code to convert data into atomic form. There is also a run-
time overhead of converting data back and forth from the atomic form. Support for
nonatomic values can thus be very useful in such domains. In fact, modern database
systems do support many types of nonatomic values, as we will see in Chapters 8
and 9. However, in this chapter we restrict ourselves to relations in first normal form.

7.2 Pitfalls in Relational-Database Design
Before we continue our discussion of normal forms, let us look at what can go wrong
in a bad database design. Among the undesirable properties that a bad design may
have are:
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• Repetition of information

• Inability to represent certain information

We shall discuss these problems with the help of a modified database design for our
banking example: In contrast to the relation schema used in Chapters 3 to 6, sup-
pose the information concerning loans is kept in one single relation, lending, which is
defined over the relation schema

Lending-schema = (branch-name, branch-city, assets, customer-name,
loan-number, amount)

Figure 7.1 shows an instance of the relation lending (Lending-schema). A tuple t in the
lending relation has the following intuitive meaning:

• t[assets] is the asset figure for the branch named t[branch-name].

• t[branch-city] is the city in which the branch named t[branch-name] is located.

• t[loan-number] is the number assigned to a loan made by the branch named
t[branch-name] to the customer named t[customer-name].

• t[amount] is the amount of the loan whose number is t[loan-number].

Suppose that we wish to add a new loan to our database. Say that the loan is made
by the Perryridge branch to Adams in the amount of $1500. Let the loan-number be
L-31. In our design, we need a tuple with values on all the attributes of Lending-
schema. Thus, we must repeat the asset and city data for the Perryridge branch, and
must add the tuple

(Perryridge, Horseneck, 1700000, Adams, L-31, 1500)

customer- loan-
branch-name branch-city assets name number amount
Downtown Brooklyn 9000000 Jones L-17 1000
Redwood Palo Alto 2100000 Smith L-23 2000
Perryridge Horseneck 1700000 Hayes L-15 1500
Downtown Brooklyn 9000000 Jackson L-14 1500
Mianus Horseneck 400000 Jones L-93 500
Round Hill Horseneck 8000000 Turner L-11 900
Pownal Bennington 300000 Williams L-29 1200
North Town Rye 3700000 Hayes L-16 1300
Downtown Brooklyn 9000000 Johnson L-18 2000
Perryridge Horseneck 1700000 Glenn L-25 2500
Brighton Brooklyn 7100000 Brooks L-10 2200

Figure 7.1 Sample lending relation.
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to the lending relation. In general, the asset and city data for a branch must appear
once for each loan made by that branch.

The repetition of information in our alternative design is undesirable. Repeating
information wastes space. Furthermore, it complicates updating the database. Sup-
pose, for example, that the assets of the Perryridge branch change from 1700000
to 1900000. Under our original design, one tuple of the branch relation needs to be
changed. Under our alternative design, many tuples of the lending relation need to be
changed. Thus, updates are more costly under the alternative design than under the
original design. When we perform the update in the alternative database, we must
ensure that every tuple pertaining to the Perryridge branch is updated, or else our
database will show two different asset values for the Perryridge branch.

That observation is central to understanding why the alternative design is bad. We
know that a bank branch has a unique value of assets, so given a branch name we can
uniquely identify the assets value. On the other hand, we know that a branch may
make many loans, so given a branch name, we cannot uniquely determine a loan
number. In other words, we say that the functional dependency

branch-name → assets

holds on Lending-schema, but we do not expect the functional dependency branch-
name → loan-number to hold. The fact that a branch has a particular value of assets,
and the fact that a branch makes a loan are independent, and, as we have seen, these
facts are best represented in separate relations. We shall see that we can use functional
dependencies to specify formally when a database design is good.

Another problem with the Lending-schema design is that we cannot represent di-
rectly the information concerning a branch (branch-name, branch-city, assets) unless
there exists at least one loan at the branch. This is because tuples in the lending rela-
tion require values for loan-number, amount, and customer-name.

One solution to this problem is to introduce null values, as we did to handle up-
dates through views. Recall, however, that null values are difficult to handle, as we
saw in Section 3.3.4. If we are not willing to deal with null values, then we can create
the branch information only when the first loan application at that branch is made.
Worse, we would have to delete this information when all the loans have been paid.
Clearly, this situation is undesirable, since, under our original database design, the
branch information would be available regardless of whether or not loans are cur-
rently maintained in the branch, and without resorting to null values.

7.3 Functional Dependencies
Functional dependencies play a key role in differentiating good database designs
from bad database designs. A functional dependency is a type of constraint that is a
generalization of the notion of key, as discussed in Chapters 2 and 3.

7.3.1 Basic Concepts
Functional dependencies are constraints on the set of legal relations. They allow us
to express facts about the enterprise that we are modeling with our database.



Silberschatz−Korth−Sudarshan: 
Database System 
Concepts, Fourth Edition

II. Relational Databases 7. Relational−Database 
Design

264 © The McGraw−Hill 
Companies, 2001

7.3 Functional Dependencies 261

In Chapter 2, we defined the notion of a superkey as follows. Let R be a relation
schema. A subset K of R is a superkey of R if, in any legal relation r(R), for all pairs
t1 and t2 of tuples in r such that t1 �= t2, then t1[K] �= t2[K]. That is, no two tuples
in any legal relation r(R) may have the same value on attribute set K.

The notion of functional dependency generalizes the notion of superkey. Consider
a relation schema R, and let α ⊆ R and β ⊆ R. The functional dependency

α → β

holds on schema R if, in any legal relation r(R), for all pairs of tuples t1 and t2 in r
such that t1[α] = t2[α], it is also the case that t1[β] = t2[β].

Using the functional-dependency notation, we say that K is a superkey of R if K
→ R. That is, K is a superkey if, whenever t1[K] = t2[K], it is also the case that
t1[R] = t2[R] (that is, t1 = t2).

Functional dependencies allow us to express constraints that we cannot express
with superkeys. Consider the schema

Loan-info-schema = (loan-number, branch-name, customer-name, amount)

which is simplification of the Lending-schema that we saw earlier. The set of functional
dependencies that we expect to hold on this relation schema is

loan-number → amount
loan-number → branch-name

We would not, however, expect the functional dependency

loan-number → customer-name

to hold, since, in general, a given loan can be made to more than one customer (for
example, to both members of a husband–wife pair).

We shall use functional dependencies in two ways:

1. To test relations to see whether they are legal under a given set of functional
dependencies. If a relation r is legal under a set F of functional dependencies,
we say that r satisfies F.

2. To specify constraints on the set of legal relations. We shall thus concern our-
selves with only those relations that satisfy a given set of functional dependen-
cies. If we wish to constrain ourselves to relations on schema R that satisfy a
set F of functional dependencies, we say that F holds on R.

Let us consider the relation r of Figure 7.2, to see which functional dependencies
are satisfied. Observe that A → C is satisfied. There are two tuples that have an A
value of a1. These tuples have the same C value—namely, c1. Similarly, the two tu-
ples with an A value of a2 have the same C value, c2. There are no other pairs of
distinct tuples that have the same A value. The functional dependency C → A is not
satisfied, however. To see that it is not, consider the tuples t1 = (a2, b3, c2, d3) and
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A B C D
a1
a1
a2
a2
a3

b1
b2
b2
b2
b3

c1
c1
c2
c2
c2

d1
d2
d2
d3
d4

Figure 7.2 Sample relation r.

t2 = (a3, b3, c2, d4). These two tuples have the same C values, c2, but they have dif-
ferent A values, a2 and a3, respectively. Thus, we have found a pair of tuples t1 and
t2 such that t1[C] = t2[C], but t1[A] �= t2[A].

Many other functional dependencies are satisfied by r, including, for example, the
functional dependency AB → D. Note that we use AB as a shorthand for {A,B}, to
conform with standard practice. Observe that there is no pair of distinct tuples t1 and
t2 such that t1[AB] = t2[AB]. Therefore, if t1[AB] = t2[AB], it must be that t1 = t2
and, thus, t1[D] = t2[D]. So, r satisfies AB → D.

Some functional dependencies are said to be trivial because they are satisfied by
all relations. For example, A → A is satisfied by all relations involving attribute A.
Reading the definition of functional dependency literally, we see that, for all tuples t1
and t2 such that t1[A] = t2[A], it is the case that t1[A] = t2[A]. Similarly, AB → A
is satisfied by all relations involving attribute A. In general, a functional dependency
of the form α → β is trivial if β ⊆ α.

To distinguish between the concepts of a relation satisfying a dependency and a
dependency holding on a schema, we return to the banking example. If we consider
the customer relation (on Customer-schema) in Figure 7.3, we see that customer-street
→ customer-city is satisfied. However, we believe that, in the real world, two cities

customer-name customer-street customer-city
Jones Main Harrison
Smith North Rye
Hayes Main Harrison
Curry North Rye
Lindsay Park
Turner Putnam Stamford
Williams Nassau Princeton
Adams Spring Pittsfield

Pittsfield

Johnson Alma Palo Alto
Glenn Sand Hill Woodside
Brooks Senator Brooklyn
Green Walnut Stamford

Figure 7.3 The customer relation.
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loan-number branch-name amount
DowntownL-17 1000

L-23 Redwood 2000
L-15 Perryridge

Perryridge

1500
L-14 Downtown

Downtown

1500
L-93 Mianus 500
L-11 Round Hill 900
L-29 Pownal 1200
L-16 North Town 1300
L-18 2000
L-25 2500
L-10 Brighton 2200

Figure 7.4 The loan relation.

can have streets with the same name. Thus, it is possible, at some time, to have an
instance of the customer relation in which customer-street → customer-city is not satis-
fied. So, we would not include customer-street → customer-city in the set of functional
dependencies that hold on Customer-schema.

In the loan relation (on Loan-schema) of Figure 7.4, we see that the dependency loan-
number → amount is satisfied. In contrast to the case of customer-city and customer-
street in Customer-schema, we do believe that the real-world enterprise that we are
modeling requires each loan to have only one amount. Therefore, we want to require
that loan-number → amount be satisfied by the loan relation at all times. In other words,
we require that the constraint loan-number → amount hold on Loan-schema.

In the branch relation of Figure 7.5, we see that branch-name → assets is satisfied,
as is assets → branch-name. We want to require that branch-name → assets hold on
Branch-schema. However, we do not wish to require that assets → branch-name hold,
since it is possible to have several branches that have the same asset value.

In what follows, we assume that, when we design a relational database, we first
list those functional dependencies that must always hold. In the banking example,
our list of dependencies includes the following:

branch-name branch-city assets
Downtown Brooklyn 9000000
Redwood Palo Alto 2100000
Perryridge Horseneck 1700000
Mianus Horseneck 400000
Round Hill Horseneck 8000000
Pownal Bennington 300000
North Town Rye 3700000
Brighton Brooklyn 7100000

Figure 7.5 The branch relation.
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• On Branch-schema:

branch-name → branch-city
branch-name → assets

• On Customer-schema:

customer-name → customer-city
customer-name → customer-street

• On Loan-schema:

loan-number → amount
loan-number → branch-name

• On Borrower-schema:

No functional dependencies

• On Account-schema:

account-number → branch-name
account-number → balance

• On Depositor-schema:

No functional dependencies

7.3.2 Closure of a Set of Functional Dependencies
It is not sufficient to consider the given set of functional dependencies. Rather, we
need to consider all functional dependencies that hold. We shall see that, given a set F
of functional dependencies, we can prove that certain other functional dependencies
hold. We say that such functional dependencies are “logically implied” by F.

More formally, given a relational schema R, a functional dependency f on R is log-
ically implied by a set of functional dependencies F on R if every relation instance
r(R) that satisfies F also satisfies f .

Suppose we are given a relation schema R = (A, B, C, G, H , I) and the set of
functional dependencies

A → B
A → C
CG → H
CG → I
B → H

The functional dependency

A → H
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is logically implied. That is, we can show that, whenever our given set of functional
dependencies holds on a relation, A → H must also hold on the relation. Suppose that
t1 and t2 are tuples such that

t1[A] = t2[A]

Since we are given that A→ B, it follows from the definition of functional dependency
that

t1[B] = t2[B]

Then, since we are given that B → H, it follows from the definition of functional
dependency that

t1[H] = t2[H]

Therefore, we have shown that, whenever t1 and t2 are tuples such that t1[A] = t2[A],
it must be that t1[H] = t2[H]. But that is exactly the definition of A → H .

Let F be a set of functional dependencies. The closure of F, denoted by F+, is the
set of all functional dependencies logically implied by F. Given F, we can compute
F+ directly from the formal definition of functional dependency. If F were large, this
process would be lengthy and difficult. Such a computation of F+ requires argu-
ments of the type just used to show that A → H is in the closure of our example set
of dependencies.

Axioms, or rules of inference, provide a simpler technique for reasoning about
functional dependencies. In the rules that follow, we use Greek letters (α, β, γ, . . . )
for sets of attributes, and uppercase Roman letters from the beginning of the alphabet
for individual attributes. We use αβ to denote α ∪ β.

We can use the following three rules to find logically implied functional dependen-
cies. By applying these rules repeatedly, we can find all of F+, given F. This collection
of rules is called Armstrong’s axioms in honor of the person who first proposed it.

• Reflexivity rule. If α is a set of attributes and β ⊆ α, then α → β holds.

• Augmentation rule. If α → β holds and γ is a set of attributes, then γα → γβ
holds.

• Transitivity rule. If α → β holds and β → γ holds, then α → γ holds.

Armstrong’s axioms are sound, because they do not generate any incorrect func-
tional dependencies. They are complete, because, for a given set F of functional de-
pendencies, they allow us to generate all F+. The bibliographical notes provide ref-
erences for proofs of soundness and completeness.

Although Armstrong’s axioms are complete, it is tiresome to use them directly for
the computation of F+. To simplify matters further, we list additional rules. It is pos-
sible to use Armstrong’s axioms to prove that these rules are correct (see Exercises 7.8,
7.9, and 7.10).

• Union rule. If α → β holds and α → γ holds, then α → βγ holds.

• Decomposition rule. If α → βγ holds, then α → β holds and α → γ holds.

• Pseudotransitivity rule. If α → β holds and γβ → δ holds, then αγ → δ holds.
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Let us apply our rules to the example of schema R = (A, B, C, G, H , I) and the
set F of functional dependencies {A → B, A → C, CG → H , CG → I , B → H}. We
list several members of F+ here:

• A → H . Since A → B and B → H hold, we apply the transitivity rule. Observe
that it was much easier to use Armstrong’s axioms to show that A → H holds
than it was to argue directly from the definitions, as we did earlier in this
section.

• CG → HI . Since CG → H and CG → I , the union rule implies that CG → HI .

• AG → I . Since A → C and CG → I , the pseudotransitivity rule implies that
AG → I holds.

Another way of finding that AG → I holds is as follows. We use the aug-
mentation rule on A → C to infer AG → CG. Applying the transitivity rule to
this dependency and CG → I , we infer AG → I .

Figure 7.6 shows a procedure that demonstrates formally how to use Armstrong’s
axioms to compute F+. In this procedure, when a functional dependency is added to
F+, it may be already present, and in that case there is no change to F+. We will also
see an alternative way of computing F+ in Section 7.3.3.

The left-hand and right-hand sides of a functional dependency are both subsets
of R. Since a set of size n has 2n subsets, there are a total of 2 × 2n = 2n+1 possible
functional dependencies, where n is the number of attributes in R. Each iteration of
the repeat loop of the procedure, except the last iteration, adds at least one functional
dependency to F+. Thus, the procedure is guaranteed to terminate.

7.3.3 Closure of Attribute Sets
To test whether a set α is a superkey, we must devise an algorithm for computing the
set of attributes functionally determined by α. One way of doing this is to compute
F+, take all functional dependencies with α as the left-hand side, and take the union
of the right-hand sides of all such dependencies. However, doing so can be expensive,
since F+ can be large.

F+ = F
repeat

for each functional dependency f in F+

apply reflexivity and augmentation rules on f
add the resulting functional dependencies to F+

for each pair of functional dependencies f1 and f2 in F+

if f1 and f2 can be combined using transitivity
add the resulting functional dependency to F+

until F+ does not change any further

Figure 7.6 A procedure to compute F+.
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An efficient algorithm for computing the set of attributes functionally determined
by α is useful not only for testing whether α is a superkey, but also for several other
tasks, as we will see later in this section.

Let α be a set of attributes. We call the set of all attributes functionally determined
by α under a set F of functional dependencies the closure of α under F; we denote
it by α+. Figure 7.7 shows an algorithm, written in pseudocode, to compute α+. The
input is a set F of functional dependencies and the set α of attributes. The output is
stored in the variable result.

To illustrate how the algorithm works, we shall use it to compute (AG)+ with the
functional dependencies defined in Section 7.3.2. We start with result = AG . The first
time that we execute the while loop to test each functional dependency, we find that

• A → B causes us to include B in result. To see this fact, we observe that A → B
is in F, A ⊆ result (which is AG), so result := result ∪ B.

• A → C causes result to become ABCG.

• CG → H causes result to become ABCGH.

• CG → I causes result to become ABCGHI.

The second time that we execute the while loop, no new attributes are added to result,
and the algorithm terminates.

Let us see why the algorithm of Figure 7.7 is correct. The first step is correct, since
α → α always holds (by the reflexivity rule). We claim that, for any subset β of result,
α → β. Since we start the while loop with α → result being true, we can add γ to result
only if β ⊆ result and β → γ. But then result → β by the reflexivity rule, so α → β by
transitivity. Another application of transitivity shows that α → γ (using α → β and
β → γ). The union rule implies that α → result ∪ γ, so α functionally determines any
new result generated in the while loop. Thus, any attribute returned by the algorithm
is in α+.

It is easy to see that the algorithm finds all α+. If there is an attribute in α+ that
is not yet in result, then there must be a functional dependency β → γ for which β ⊆
result, and at least one attribute in γ is not in result.

It turns out that, in the worst case, this algorithm may take an amount of time
quadratic in the size of F. There is a faster (although slightly more complex) algo-
rithm that runs in time linear in the size of F; that algorithm is presented as part of
Exercise 7.14.

result := α;
while (changes to result) do

for each functional dependency β → γ in F do
begin

if β ⊆ result then result := result ∪ γ;
end

Figure 7.7 An algorithm to compute α+, the closure of α under F.
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There are several uses of the attribute closure algorithm:

• To test if α is a superkey, we compute α+, and check if α+ contains all at-
tributes of R.

• We can check if a functional dependency α → β holds (or, in other words,
is in F+), by checking if β ⊆ α+. That is, we compute α+ by using attribute
closure, and then check if it contains β. This test is particularly useful, as we
will see later in this chapter.

• It gives us an alternative way to compute F+: For each γ ⊆ R, we find the
closure γ+, and for each S ⊆ γ+, we output a functional dependency γ → S.

7.3.4 Canonical Cover
Suppose that we have a set of functional dependencies F on a relation schema. When-
ever a user performs an update on the relation, the database system must ensure that
the update does not violate any functional dependencies, that is, all the functional
dependencies in F are satisfied in the new database state.

The system must roll back the update if it violates any functional dependencies in
the set F .

We can reduce the effort spent in checking for violations by testing a simplified set
of functional dependencies that has the same closure as the given set. Any database
that satisfies the simplified set of functional dependencies will also satisfy the origi-
nal set, and vice versa, since the two sets have the same closure. However, the sim-
plified set is easier to test. We shall see how the simplified set can be constructed in a
moment. First, we need some definitions.

An attribute of a functional dependency is said to be extraneous if we can remove
it without changing the closure of the set of functional dependencies. The formal
definition of extraneous attributes is as follows. Consider a set F of functional de-
pendencies and the functional dependency α → β in F.

• Attribute A is extraneous in α if A ∈ α, and F logically implies (F − {α →
β}) ∪ {(α − A) → β}.

• Attribute A is extraneous in β if A ∈ β, and the set of functional dependencies
(F − {α → β}) ∪ {α → (β − A)} logically implies F.

For example, suppose we have the functional dependencies AB → C and A → C
in F . Then, B is extraneous in AB → C. As another example, suppose we have the
functional dependencies AB → CD and A → C in F . Then C would be extraneous
in the right-hand side of AB → CD.

Beware of the direction of the implications when using the definition of extraneous
attributes: If you exchange the left-hand side with right-hand side, the implication
will always hold. That is, (F − {α → β}) ∪ {(α − A) → β} always logically implies
F, and also F always logically implies (F − {α → β}) ∪ {α → (β − A)}
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Here is how we can test efficiently if an attribute is extraneous. Let R be the rela-
tion schema, and let F be the given set of functional dependencies that hold on R.
Consider an attribute A in a dependency α → β.

• If A ∈ β, to check if A is extraneous consider the set
F ′ = (F − {α → β}) ∪ {α → (β − A)}

and check if α → A can be inferred from F ′. To do so, compute α+ (the closure
of α) under F ′; if α+ includes A, then A is extraneous in β.

• If A ∈ α, to check if A is extraneous, let γ = α − {A}, and check if γ → β
can be inferred from F . To do so, compute γ+ (the closure of γ) under F ; if γ+

includes all attributes in β, then A is extraneous in α.

For example, suppose F contains AB → CD, A → E, and E → C. To check
if C is extraneous in AB → CD, we compute the attribute closure of AB under
F ′ = {AB → D, A → E, and E → C}. The closure is ABCDE, which includes CD,
so we infer that C is extraneous.

A canonical cover Fc for F is a set of dependencies such that F logically implies all
dependencies in Fc, and Fc logically implies all dependencies in F. Furthermore, Fc

must have the following properties:

• No functional dependency in Fc contains an extraneous attribute.

• Each left side of a functional dependency in Fc is unique. That is, there are no
two dependencies α1 → β1 and α2 → β2 in Fc such that α1 = α2.

A canonical cover for a set of functional dependencies F can be computed as de-
picted in Figure 7.8. It is important to note that when checking if an attribute is extra-
neous, the check uses the dependencies in the current value of Fc, and not the depen-
dencies in F . If a functional dependency contains only one attribute in its right-hand
side, for example A → C, and that attribute is found to be extraneous, we would get a
functional dependency with an empty right-hand side. Such functional dependencies
should be deleted.

The canonical cover of F , Fc, can be shown to have the same closure as F ; hence,
testing whether Fc is satisfied is equivalent to testing whether F is satisfied. However,
Fc is minimal in a certain sense—it does not contain extraneous attributes, and it

Fc = F
repeat

Use the union rule to replace any dependencies in Fc of the form
α1 → β1 and α1 → β2 with α1 → β1 β2.

Find a functional dependency α → β in Fc with an extraneous
attribute either in α or in β.
/* Note: the test for extraneous attributes is done using Fc, not F */

If an extraneous attribute is found, delete it from α → β.
until Fc does not change.

Figure 7.8 Computing canonical cover
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combines functional dependencies with the same left side. It is cheaper to test Fc

than it is to test F itself.
Consider the following set F of functional dependencies on schema (A, B, C):

A → BC
B → C
A → B
AB → C

Let us compute the canonical cover for F.

• There are two functional dependencies with the same set of attributes on the
left side of the arrow:

A → BC
A → B

We combine these functional dependencies into A → BC.

• A is extraneous in AB → C because F logically implies (F − {AB → C}) ∪
{B → C}. This assertion is true because B → C is already in our set of func-
tional dependencies.

• C is extraneous in A → BC, since A → BC is logically implied by A → B and
B → C.

Thus, our canonical cover is

A → B
B → C

Given a set F of functional dependencies, it may be that an entire functional de-
pendency in the set is extraneous, in the sense that dropping it does not change the
closure of F . We can show that a canonical cover Fc of F contains no such extraneous
functional dependency. Suppose that, to the contrary, there were such an extraneous
functional dependency in Fc. The right-side attributes of the dependency would then
be extraneous, which is not possible by the definition of canonical covers.

A canonical cover might not be unique. For instance, consider the set of functional
dependencies F = {A → BC, B → AC, and C → AB}. If we apply the extraneity
test to A → BC, we find that both B and C are extraneous under F . However, it is
incorrect to delete both! The algorithm for finding the canonical cover picks one of
the two, and deletes it. Then,

1. If C is deleted, we get the set F ′ = {A → B, B → AC, and C → AB}. Now,
B is not extraneous in the righthand side of A → B under F ′. Continuing the
algorithm, we find A and B are extraneous in the right-hand side of C → AB,
leading to two canonical covers

Fc = {A → B, B → C, and C → A}, and
Fc = {A → B, B → AC, and C → B}.
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2. If B is deleted, we get the set {A → C, B → AC, and C → AB}. This case is
symmetrical to the previous case, leading to the canonical covers

Fc = {A → C, C → B, and B → A}, and
Fc = {A → C, B → C, and C → AB}.

As an exercise, can you find one more canonical cover for F ?

7.4 Decomposition
The bad design of Section 7.2 suggests that we should decompose a relation schema
that has many attributes into several schemas with fewer attributes. Careless decom-
position, however, may lead to another form of bad design.

Consider an alternative design in which we decompose Lending-schema into the
following two schemas:

Branch-customer-schema = (branch-name, branch-city, assets, customer-name)
Customer-loan-schema = (customer-name, loan-number, amount)

Using the lending relation of Figure 7.1, we construct our new relations branch-customer
(Branch-customer) and customer-loan (Customer-loan-schema):

branch-customer = Πbranch-name, branch-city, assets, customer-name (lending)
customer -loan = Πcustomer-name, loan-number , amount (lending)

Figures 7.9 and 7.10, respectively, show the resulting branch-customer and customer-
name relations.

Of course, there are cases in which we need to reconstruct the loan relation. For
example, suppose that we wish to find all branches that have loans with amounts
less than $1000. No relation in our alternative database contains these data. We need
to reconstruct the lending relation. It appears that we can do so by writing

branch-customer � customer -loan

branch-name branch-city assets customer-name
Downtown Brooklyn 9000000 Jones
Redwood Palo Alto 2100000 Smith
Perryridge Horseneck 1700000 Hayes
Downtown Brooklyn 9000000 Jackson
Mianus Horseneck 400000 Jones
Round Hill Horseneck 8000000 Turner
Pownal Bennington 300000 Williams
North Town Rye 3700000 Hayes
Downtown Brooklyn 9000000 Johnson
Perryridge Horseneck 1700000 Glenn
Brighton Brooklyn 7100000 Brooks

Figure 7.9 The relation branch-customer.
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customer-name loan-number amount
Jones L-17 1000
Smith L-23 2000
Hayes L-15 1500
Jackson L-14 1500
Jones L-93 500
Turner L-11 900
Williams L-29 1200
Hayes L-16 1300
Johnson L-18 2000
Glenn L-25 2500
Brooks L-10 2200

Figure 7.10 The relation customer-loan.

Figure 7.11 shows the result of computing branch-customer � customer -loan . When
we compare this relation and the lending relation with which we started (Figure 7.1),
we notice a difference: Although every tuple that appears in the lending relation ap-
pears in branch-customer � customer -loan , there are tuples in branch-customer �

customer -loan that are not in lending. In our example, branch-customer � customer-loan
has the following additional tuples:

(Downtown, Brooklyn, 9000000, Jones, L-93, 500)
(Perryridge, Horseneck, 1700000, Hayes, L-16, 1300)
(Mianus, Horseneck, 400000, Jones, L-17, 1000)
(North Town, Rye, 3700000, Hayes, L-15, 1500)

Consider the query, “Find all bank branches that have made a loan in an amount less
than $1000.” If we look back at Figure 7.1, we see that the only branches with loan
amounts less than $1000 are Mianus and Round Hill. However, when we apply the
expression

Πbranch-name (σamount < 1000 (branch-customer � customer -loan))

we obtain three branch names: Mianus, Round Hill, and Downtown.
A closer examination of this example shows why. If a customer happens to have

several loans from different branches, we cannot tell which loan belongs to which
branch. Thus, when we join branch-customer and customer-loan, we obtain not only
the tuples we had originally in lending, but also several additional tuples. Although
we have more tuples in branch-customer � customer -loan , we actually have less in-
formation. We are no longer able, in general, to represent in the database information
about which customers are borrowers from which branch. Because of this loss of in-
formation, we call the decomposition of Lending-schema into Branch-customer-schema
and customer-loan-schema a lossy decomposition, or a lossy-join decomposition. A
decomposition that is not a lossy-join decomposition is a lossless-join decomposi-
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customer- loan-
branch-name branch-city assets name number amount
Downtown Brooklyn 9000000 Jones L-17 1000
Downtown Brooklyn 9000000 Jones L-93 500
Redwood Palo Alto 2100000 Smith L-23 2000
Perryridge Horseneck 1700000 Hayes L-15 1500
Perryridge Horseneck 1700000 Hayes L-16 1300
Downtown Brooklyn 9000000 Jackson L-14 1500
Mianus Horseneck 400000 Jones L-17 1000
Mianus Horseneck 400000 Jones L-93 500
Round Hill Horseneck 8000000 Turner L-11 900
Pownal Bennington 300000 Williams L-29 1200
North Town Rye 3700000 Hayes L-15 1500
North Town Rye 3700000 Hayes L-16 1300
Downtown Brooklyn 9000000 Johnson L-18 2000
Perryridge Horseneck 1700000 Glenn L-25 2500
Brighton Brooklyn 7100000 Brooks L-10 2200

Figure 7.11 The relation branch-customer � customer -loan .

tion. It should be clear from our example that a lossy-join decomposition is, in gen-
eral, a bad database design.

Why is the decomposition lossy? There is one attribute in common between Branch-
customer-schema and Customer-loan-schema:

Branch-customer-schema ∩ Customer-loan-schema = {customer-name}
The only way that we can represent a relationship between, for example, loan-number
and branch-name is through customer-name. This representation is not adequate be-
cause a customer may have several loans, yet these loans are not necessarily obtained
from the same branch.

Let us consider another alternative design, in which we decompose Lending-schema
into the following two schemas:

Branch-schema = (branch-name, branch-city, assets)
Loan-info-schema = (branch-name, customer-name, loan-number, amount)

There is one attribute in common between these two schemas:

Branch-loan-schema ∩ Customer-loan-schema = {branch-name}
Thus, the only way that we can represent a relationship between, for example,
customer-name and assets is through branch-name. The difference between this exam-
ple and the preceding one is that the assets of a branch are the same, regardless
of the customer to which we are referring, whereas the lending branch associated
with a certain loan amount does depend on the customer to which we are referring.
For a given branch-name, there is exactly one assets value and exactly one branch-city;
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whereas a similar statement cannot be made for customer-name. That is, the functional
dependency

branch-name → assets branch-city

holds, but customer-name does not functionally determine loan-number.
The notion of lossless joins is central to much of relational-database design. There-

fore, we restate the preceding examples more concisely and more formally. Let R be
a relation schema. A set of relation schemas {R1, R2, . . . , Rn} is a decomposition of
R if

R = R1 ∪ R2 ∪ · · · ∪ Rn

That is, {R1, R2, . . . , Rn} is a decomposition of R if, for i = 1, 2, . . . , n, each Ri is a
subset of R, and every attribute in R appears in at least one Ri.

Let r be a relation on schema R, and let ri = ΠRi
(r) for i = 1, 2, . . . , n. That is,

{r1, r2, . . . , rn} is the database that results from decomposing R into {R1, R2, . . . , Rn}.
It is always the case that

r ⊆ r1 � r2 � · · · � rn

To see that this assertion is true, consider a tuple t in relation r. When we compute the
relations r1, r2, . . . , rn, the tuple t gives rise to one tuple ti in each ri, i = 1, 2, . . . , n.
These n tuples combine to regenerate t when we compute r1 � r2 � · · · � rn. The
details are left for you to complete as an exercise. Therefore, every tuple in r appears
in r1 � r2 � · · · � rn.

In general, r �= r1 � r2 � · · · � rn. As an illustration, consider our earlier
example, in which

• n = 2.

• R = Lending-schema.

• R1 = Branch-customer-schema.

• R2 = Customer-loan-schema.

• r = the relation shown in Figure 7.1.

• r1 = the relation shown in Figure 7.9.

• r2 = the relation shown in Figure 7.10.

• r1 � r2 = the relation shown in Figure 7.11.

Note that the relations in Figures 7.1 and 7.11 are not the same.
To have a lossless-join decomposition, we need to impose constraints on the set of

possible relations. We found that the decomposition of Lending-schema into Branch-
schema and Loan-info-schema is lossless because the functional dependency

branch-name → branch-city assets

holds on Branch-schema.
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Later in this chapter, we shall introduce constraints other than functional depen-
dencies. We say that a relation is legal if it satisfies all rules, or constraints, that we
impose on our database.

Let C represent a set of constraints on the database, and let R be a relation schema.
A decomposition {R1, R2, . . . , Rn} of R is a lossless-join decomposition if, for all
relations r on schema R that are legal under C,

r = ΠR1 (r) � ΠR2 (r) � · · · � ΠRn
(r)

We shall show how to test whether a decomposition is a lossless-join decomposi-
tion in the next few sections. A major part of this chapter deals with the questions of
how to specify constraints on the database, and how to obtain lossless-join decom-
positions that avoid the pitfalls represented by the examples of bad database designs
that we have seen in this section.

7.5 Desirable Properties of Decomposition
We can use a given set of functional dependencies in designing a relational database
in which most of the undesirable properties discussed in Section 7.2 do not occur.
When we design such systems, it may become necessary to decompose a relation
into several smaller relations.

In this section, we outline the desirable properties of a decomposition of a rela-
tional schema. In later sections, we outline specific ways of decomposing a relational
schema to get the properties we desire. We illustrate our concepts with the Lending-
schema schema of Section 7.2:

Lending-schema = (branch-name, branch-city, assets, customer-name,
loan-number, amount)

The set F of functional dependencies that we require to hold on Lending-schema are

branch-name → branch-city assets
loan-number → amount branch-name

As we discussed in Section 7.2, Lending-schema is an example of a bad database
design. Assume that we decompose it to the following three relations:

Branch-schema = (branch-name, branch-city, assets)
Loan-schema = (loan-number, branch-name, amount)
Borrower-schema = (customer-name, loan-number)

We claim that this decomposition has several desirable properties, which we discuss
next. Note that these three relation schemas are precisely the ones that we used pre-
viously, in Chapters 3 through 5.

7.5.1 Lossless-Join Decomposition
In Section 7.2, we argued that, when we decompose a relation into a number of
smaller relations, it is crucial that the decomposition be lossless. We claim that the
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decomposition in Section 7.5 is indeed lossless. To demonstrate our claim, we must
first present a criterion for determining whether a decomposition is lossy.

Let R be a relation schema, and let F be a set of functional dependencies on R. Let
R1 and R2 form a decomposition of R. This decomposition is a lossless-join decom-
position of R if at least one of the following functional dependencies is in F+:

• R1 ∩ R2 → R1

• R1 ∩ R2 → R2

In other words, if R1 ∩ R2 forms a superkey of either R1 or R2, the decomposition of
R is a lossless-join decomposition. We can use attribute closure to efficiently test for
superkeys, as we have seen earlier.

We now demonstrate that our decomposition of Lending-schema is a lossless-join
decomposition by showing a sequence of steps that generate the decomposition. We
begin by decomposing Lending-schema into two schemas:

Branch-schema = (branch-name, branch-city, assets)
Loan-info-schema = (branch-name, customer-name, loan-number, amount)

Since branch-name → branch-city assets, the augmentation rule for functional depen-
dencies (Section 7.3.2) implies that

branch-name → branch-name branch-city assets

Since Branch-schema ∩ Loan-info-schema = {branch-name}, it follows that our initial
decomposition is a lossless-join decomposition.

Next, we decompose Loan-info-schema into

Loan-schema = (loan-number, branch-name, amount)
Borrower-schema = (customer-name, loan-number)

This step results in a lossless-join decomposition, since loan-number is a common at-
tribute and loan-number → amount branch-name.

For the general case of decomposition of a relation into multiple parts at once, the
test for lossless join decomposition is more complicated. See the bibliographical notes
for references on the topic.

While the test for binary decomposition is clearly a sufficient condition for lossless
join, it is a necessary condition only if all constraints are functional dependencies.
We shall see other types of constraints later (in particular, a type of constraint called
multivalued dependencies), that can ensure that a decomposition is lossless join even
if no functional dependencies are present.

7.5.2 Dependency Preservation
There is another goal in relational-database design: dependency preservation. When an
update is made to the database, the system should be able to check that the update
will not create an illegal relation—that is, one that does not satisfy all the given
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functional dependencies. If we are to check updates efficiently, we should design
relational-database schemas that allow update validation without the computation
of joins.

To decide whether joins must be computed to check an update, we need to deter-
mine what functional dependencies can be tested by checking each relation individ-
ually. Let F be a set of functional dependencies on a schema R, and let R1, R2, . . . , Rn

be a decomposition of R. The restriction of F to Ri is the set Fi of all functional depen-
dencies in F+ that include only attributes of Ri. Since all functional dependencies in
a restriction involve attributes of only one relation schema, it is possible to test such
a dependency for satisfaction by checking only one relation.

Note that the definition of restriction uses all dependencies in F+, not just those in
F . For instance, suppose F = {A → B, B → C}, and we have a decomposition into
AC and AB. The restriction of F to AC is then A → C, since A → C is in F+, even
though it is not in F .

The set of restrictions F1, F2, . . . , Fn is the set of dependencies that can be checked
efficiently. We now must ask whether testing only the restrictions is sufficient. Let
F ′ = F1 ∪ F2 ∪ · · · ∪ Fn. F ′ is a set of functional dependencies on schema R, but,
in general, F ′ �= F . However, even if F ′ �= F , it may be that F ′+ = F+. If the latter is
true, then every dependency in F is logically implied by F ′, and, if we verify that F ′

is satisfied, we have verified that F is satisfied. We say that a decomposition having
the property F ′+ = F+ is a dependency-preserving decomposition.

Figure 7.12 shows an algorithm for testing dependency preservation. The input
is a set D = {R1, R2, . . . , Rn} of decomposed relation schemas, and a set F of func-
tional dependencies. This algorithm is expensive since it requires computation of F+;
we will describe another algorithm that is more efficient after giving an example of
testing for dependency preservation.

We can now show that our decomposition of Lending-schema is dependency pre-
serving. Instead of applying the algorithm of Figure 7.12, we consider an easier al-
ternative: We consider each member of the set F of functional dependencies that we

compute F+;
for each schema Ri in D do

begin
Fi : = the restriction of F+ to Ri;

end
F ′ := ∅
for each restriction Fi do

begin
F ′ = F ′ ∪ Fi

end
compute F ′+;
if (F ′+ = F+) then return (true)

else return (false);

Figure 7.12 Testing for dependency preservation.
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require to hold on Lending-schema, and show that each one can be tested in at least
one relation in the decomposition.

• We can test the functional dependency: branch-name → branch-city assets using
Branch-schema = (branch-name, branch-city, assets).

• We can test the functional dependency: loan-number → amount branch-name
using Loan-schema = (branch-name, loan-number, amount).

If each member of F can be tested on one of the relations of the decomposition, then
the decomposition is dependency preserving. However, there are cases where, even
though the decomposition is dependency preserving, there is a dependency in F that
cannot be tested in any one relation in the decomposition. The alternative test can
therefore be used as a sufficient condition that is easy to check; if it fails we cannot
conclude that the decomposition is not dependency preserving, instead we will have
to apply the general test.

We now give a more efficient test for dependency preservation, which avoids com-
puting F+. The idea is to test each functional dependency α → β in F by using a
modified form of attribute closure to see if it is preserved by the decomposition. We
apply the following procedure to each α → β in F .

result = α
while (changes to result) do

for each Ri in the decomposition
t = (result ∩Ri)+ ∩ Ri

result = result ∪ t

The attribute closure is with respect to the functional dependencies in F . If result
contains all attributes in β, then the functional dependency α → β is preserved. The
decomposition is dependency preserving if and only if all the dependencies in F are
preserved.

Note that instead of precomputing the restriction of F on Ri and using it for com-
puting the attribute closure of result, we use attribute closure on (result ∩Ri) with
respect to F , and then intersect it with Ri, to get an equivalent result. This procedure
takes polynomial time, instead of the exponential time required to compute F+.

7.5.3 Repetition of Information
The decomposition of Lending-schema does not suffer from the problem of repetition
of information that we discussed in Section 7.2. In Lending-schema, it was necessary
to repeat the city and assets of a branch for each loan. The decomposition separates
branch and loan data into distinct relations, thereby eliminating this redundancy.
Similarly, observe that, if a single loan is made to several customers, we must repeat
the amount of the loan once for each customer (as well as the city and assets of the
branch) in lending-schema. In the decomposition, the relation on schema Borrower-
schema contains the loan-number, customer-name relationship, and no other schema
does. Therefore, we have one tuple for each customer for a loan in only the relation
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on Borrower-schema. In the other relations involving loan-number (those on schemas
Loan-schema and Borrower-schema), only one tuple per loan needs to appear.

Clearly, the lack of redundancy in our decomposition is desirable. The degree to
which we can achieve this lack of redundancy is represented by several normal forms,
which we shall discuss in the remainder of this chapter.

7.6 Boyce–Codd Normal Form
Using functional dependencies, we can define several normal forms that represent
“good” database designs. In this section we cover BCNF (defined below), and later, in
Section 7.7, we cover 3NF.

7.6.1 Definition
One of the more desirable normal forms that we can obtain is Boyce–Codd normal
form (BCNF). A relation schema R is in BCNF with respect to a set F of functional
dependencies if, for all functional dependencies in F+ of the form α → β, where α ⊆
R and β ⊆ R, at least one of the following holds:

• α → β is a trivial functional dependency (that is, β ⊆ α).

• α is a superkey for schema R.

A database design is in BCNF if each member of the set of relation schemas that con-
stitutes the design is in BCNF.

As an illustration, consider the following relation schemas and their respective
functional dependencies:

• Customer-schema = (customer-name, customer-street, customer-city)
customer-name → customer-street customer-city

• Branch-schema = (branch-name, assets, branch-city)
branch-name → assets branch-city

• Loan-info-schema = (branch-name, customer-name, loan-number, amount)
loan-number → amount branch-name

We claim that Customer-schema is in BCNF. We note that a candidate key for the
schema is customer-name. The only nontrivial functional dependencies that hold on
Customer-schema have customer-name on the left side of the arrow. Since customer-name
is a candidate key, functional dependencies with customer-name on the left side do
not violate the definition of BCNF. Similarly, it can be shown easily that the relation
schema Branch-schema is in BCNF.

The schema Loan-info-schema, however, is not in BCNF. First, note that loan-number
is not a superkey for Loan-info-schema, since we could have a pair of tuples represent-
ing a single loan made to two people—for example,

(Downtown, John Bell, L-44, 1000)
(Downtown, Jane Bell, L-44, 1000)
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Because we did not list functional dependencies that rule out the preceding case, loan-
number is not a candidate key. However, the functional dependency loan-number →
amount is nontrivial. Therefore, Loan-info-schema does not satisfy the definition of
BCNF.

We claim that Loan-info-schema is not in a desirable form, since it suffers from the
problem of repetition of information that we described in Section 7.2. We observe that,
if there are several customer names associated with a loan, in a relation on Loan-info-
schema, then we are forced to repeat the branch name and the amount once for each
customer. We can eliminate this redundancy by redesigning our database such that
all schemas are in BCNF. One approach to this problem is to take the existing non-
BCNF design as a starting point, and to decompose those schemas that are not in
BCNF. Consider the decomposition of Loan-info-schema into two schemas:

Loan-schema = (loan-number, branch-name, amount)
Borrower-schema = (customer-name, loan-number)

This decomposition is a lossless-join decomposition.
To determine whether these schemas are in BCNF, we need to determine what

functional dependencies apply to them. In this example, it is easy to see that

loan-number → amount branch-name

applies to the Loan-schema, and that only trivial functional dependencies apply to
Borrower-schema. Although loan-number is not a superkey for Loan-info-schema, it is a
candidate key for Loan-schema. Thus, both schemas of our decomposition are in BCNF.

It is now possible to avoid redundancy in the case where there are several cus-
tomers associated with a loan. There is exactly one tuple for each loan in the rela-
tion on Loan-schema, and one tuple for each customer of each loan in the relation on
Borrower-schema. Thus, we do not have to repeat the branch name and the amount
once for each customer associated with a loan.

Often testing of a relation to see if it satisfies BCNF can be simplified:

• To check if a nontrivial dependency α → β causes a violation of BCNF, com-
pute α+ (the attribute closure of α), and verify that it includes all attributes of
R; that is, it is a superkey of R.

• To check if a relation schema R is in BCNF, it suffices to check only the depen-
dencies in the given set F for violation of BCNF, rather than check all depen-
dencies in F+.

We can show that if none of the dependencies in F causes a violation of
BCNF, then none of the dependencies in F+ will cause a violation of BCNF
either.

Unfortunately, the latter procedure does not work when a relation is decomposed.
That is, it does not suffice to use F when we test a relation Ri, in a decomposition
of R, for violation of BCNF. For example, consider relation schema R (A, B, C, D, E),
with functional dependencies F containing A → B and BC → D. Suppose this were
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decomposed into R1(A, B) and R2(A, C, D, E). Now, neither of the dependencies in
F contains only attributes from (A, C, D, E) so we might be misled into thinking R2
satisfies BCNF. In fact, there is a dependency AC → D in F+ (which can be inferred
using the pseudotransitivity rule from the two dependencies in F ), which shows that
R2 is not in BCNF. Thus, we may need a dependency that is in F+, but is not in F , to
show that a decomposed relation is not in BCNF.

An alternative BCNF test is sometimes easier than computing every dependency
in F+. To check if a relation Ri in a decomposition of R is in BCNF, we apply this test:

• For every subset α of attributes in Ri, check that α+ (the attribute closure of α
under F ) either includes no attribute of Ri −α, or includes all attributes of Ri.

If the condition is violated by some set of attributes α in Ri, consider the following
functional dependency, which can be shown to be present in F+:

α → (α+ − α) ∩ Ri.
The above dependency shows that Ri violates BCNF, and is a “witness” for the viola-
tion. The BCNF decomposition algorithm, which we shall see in Section 7.6.2, makes
use of the witness.

7.6.2 Decomposition Algorithm
We are now able to state a general method to decompose a relation schema so as to
satisfy BCNF. Figure 7.13 shows an algorithm for this task. If R is not in BCNF, we
can decompose R into a collection of BCNF schemas R1, R2, . . . , Rn by the algorithm.
The algorithm uses dependencies (“witnesses”) that demonstrate violation of BCNF
to perform the decomposition.

The decomposition that the algorithm generates is not only in BCNF, but is also
a lossless-join decomposition. To see why our algorithm generates only lossless-join
decompositions, we note that, when we replace a schema Ri with (Ri −β) and (α, β),
the dependency α → β holds, and (Ri − β) ∩ (α, β) = α.

result := {R};
done := false;
compute F+;
while (not done) do

if (there is a schema Ri in result that is not in BCNF)
then begin

let α → β be a nontrivial functional dependency that holds
on Ri such that α → Ri is not in F+, and α ∩ β = ∅ ;
result := (result − Ri) ∪ (Ri − β) ∪ ( α, β);

end
else done := true;

Figure 7.13 BCNF decomposition algorithm.
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We apply the BCNF decomposition algorithm to the Lending-schema schema that
we used in Section 7.2 as an example of a poor database design:

Lending-schema = (branch-name, branch-city, assets, customer-name,
loan-number, amount)

The set of functional dependencies that we require to hold on Lending-schema are

branch-name → assets branch-city
loan-number → amount branch-name

A candidate key for this schema is {loan-number, customer-name}.
We can apply the algorithm of Figure 7.13 to the Lending-schema example as fol-

lows:

• The functional dependency

branch-name → assets branch-city

holds on Lending-schema, but branch-name is not a superkey. Thus, Lending-
schema is not in BCNF. We replace Lending-schema by

Branch-schema = (branch-name, branch-city, assets)
Loan-info-schema = (branch-name, customer-name, loan-number, amount)

• The only nontrivial functional dependencies that hold on Branch-schema in-
clude branch-name on the left side of the arrow. Since branch-name is a key for
Branch-schema, the relation Branch-schema is in BCNF.

• The functional dependency

loan-number → amount branch-name

holds on Loan-info-schema, but loan-number is not a key for Loan-info-schema.
We replace Loan-info-schema by

Loan-schema = (loan-number, branch-name, amount)
Borrower-schema = (customer-name, loan-number)

• Loan-schema and Borrower-schema are in BCNF.

Thus, the decomposition of Lending-schema results in the three relation schemas Branch-
schema, Loan-schema, and Borrower-schema, each of which is in BCNF. These relation
schemas are the same as those in Section 7.5, where we demonstrated that the result-
ing decomposition is both a lossless-join decomposition and a dependency-preserving
decomposition.

The BCNF decomposition algorithm takes time exponential in the size of the initial
schema, since the algorithm for checking if a relation in the decomposition satisfies
BCNF can take exponential time. The bibliographical notes provide references to an
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algorithm that can compute a BCNF decomposition in polynomial time. However, the
algorithm may “overnormalize,” that is, decompose a relation unnecessarily.

7.6.3 Dependency Preservation
Not every BCNF decomposition is dependency preserving. As an illustration, con-
sider the relation schema

Banker-schema = (branch-name, customer-name, banker-name)

which indicates that a customer has a “personal banker” in a particular branch. The
set F of functional dependencies that we require to hold on the Banker-schema is

banker-name → branch-name
branch-name customer-name → banker-name

Clearly, Banker-schema is not in BCNF since banker-name is not a superkey.
If we apply the algorithm of Figure 7.13, we obtain the following BCNF decompo-

sition:

Banker-branch-schema = (banker-name, branch-name)
Customer-banker-schema = (customer-name, banker-name)

The decomposed schemas preserve only banker-name → branch-name (and trivial
dependencies), but the closure of {banker-name → branch-name} does not include
customer-name branch-name → banker-name. The violation of this dependency cannot
be detected unless a join is computed.

To see why the decomposition of Banker-schema into the schemas Banker-branch-
schema and Customer-banker-schema is not dependency preserving, we apply the al-
gorithm of Figure 7.12. We find that the restrictions F1 and F2 of F to each schema
are:

F1 = {banker-name → branch-name}
F2 = ∅ (only trivial dependencies hold on Customer-banker-schema)

(For brevity, we do not show trivial functional dependencies.) It is easy to see that
the dependency customer-name branch-name → banker-name is not in (F1 ∪ F2)+ even
though it is in F+. Therefore, (F1 ∪ F2)+ �= F+, and the decomposition is not depen-
dency preserving.

This example demonstrates that not every BCNF decomposition is dependency
preserving. Moreover, it is easy to see that any BCNF decomposition of Banker-schema
must fail to preserve customer-name branch-name → banker-name. Thus, the example
shows that we cannot always satisfy all three design goals:

1. Lossless join

2. BCNF

3. Dependency preservation
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Recall that lossless join is an essential condition for a decomposition, to avoid loss
of information. We are therefore forced to give up either BCNF or dependency preser-
vation. In Section 7.7 we present an alternative normal form, called third normal
form, which is a small relaxation of BCNF; the motivation for using third normal
form is that there is always a dependency preserving decomposition into third nor-
mal form.

There are situations where there is more than one way to decompose a schema
into BCNF. Some of these decompositions may be dependency preserving, while oth-
ers may not. For instance, suppose we have a relation schema R(A, B, C) with the
functional dependencies A → B and B → C. From this set we can derive the further
dependency A → C. If we used the dependency A → B (or equivalently, A → C)
to decompose R, we would end up with two relations R1(A, B) and R2(A, C); the
dependency B → C would not be preserved.

If instead we used the dependency B → C to decompose R, we would end up with
two relations R1(A, B) and R2(B, C), which are in BCNF, and the decomposition is
also dependency preserving. Clearly the decomposition into R1(A, B) and R2(B, C)
is preferable. In general, the database designer should therefore look at alternative
decompositions, and pick a dependency preserving decomposition where possible.

7.7 Third Normal Form
As we saw earlier, there are relational schemas where a BCNF decomposition cannot
be dependency preserving. For such schemas, we have two alternatives if we wish to
check if an update violates any functional dependencies:

• Pay the extra cost of computing joins to test for violations.

• Use an alternative decomposition, third normal form (3NF), which we present
below, which makes testing of updates cheaper. Unlike BCNF, 3NF decompo-
sitions may contain some redundancy in the decomposed schema.

We shall see that it is always possible to find a lossless-join, dependency-preserving
decomposition that is in 3NF. Which of the two alternatives to choose is a design
decision to be made by the database designer on the basis of the application require-
ments.

7.7.1 Definition
BCNF requires that all nontrivial dependencies be of the form α → β, where α is a
superkey. 3NF relaxes this constraint slightly by allowing nontrivial functional de-
pendencies whose left side is not a superkey.

A relation schema R is in third normal form (3NF) with respect to a set F of func-
tional dependencies if, for all functional dependencies in F+ of the form α → β,
where α ⊆ R and β ⊆ R, at least one of the following holds:

• α → β is a trivial functional dependency.

• α is a superkey for R.
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• Each attribute A in β − α is contained in a candidate key for R.

Note that the third condition above does not say that a single candidate key should
contain all the attributes in β − α; each attribute A in β − α may be contained in a
different candidate key.

The first two alternatives are the same as the two alternatives in the definition of
BCNF. The third alternative of the 3NF definition seems rather unintuitive, and it is
not obvious why it is useful. It represents, in some sense, a minimal relaxation of the
BCNF conditions that helps ensure that every schema has a dependency-preserving
decomposition into 3NF. Its purpose will become more clear later, when we study
decomposition into 3NF.

Observe that any schema that satisfies BCNF also satisfies 3NF, since each of its
functional dependencies would satisfy one of the first two alternatives. BCNF is there-
fore a more restrictive constraint than is 3NF.

The definition of 3NF allows certain functional dependencies that are not allowed
in BCNF. A dependency α → β that satisfies only the third alternative of the 3NF
definition is not allowed in BCNF, but is allowed in 3NF.1

Let us return to our Banker-schema example (Section 7.6). We have shown that this
relation schema does not have a dependency-preserving, lossless-join decomposition
into BCNF. This schema, however, turns out to be in 3NF. To see that it is, we note
that {customer-name, branch-name} is a candidate key for Banker-schema, so the only
attribute not contained in a candidate key for Banker-schema is banker-name. The only
nontrivial functional dependencies of the form

α → banker-name

include {customer-name, branch-name} as part of α. Since {customer-name, branch-name}
is a candidate key, these dependencies do not violate the definition of 3NF.

As an optimization when testing for 3NF, we can consider only functional depen-
dencies in the given set F , rather than in F+. Also, we can decompose the dependen-
cies in F so that their right-hand side consists of only single attributes, and use the
resultant set in place of F .

Given a dependency α → β, we can use the same attribute-closure–based tech-
nique that we used for BCNF to check if α is a superkey. If α is not a superkey, we
have to verify whether each attribute in β is contained in a candidate key of R; this
test is rather more expensive, since it involves finding candidate keys. In fact, test-
ing for 3NF has been shown to be NP-hard; thus, it is very unlikely that there is a
polynomial time complexity algorithm for the task.

7.7.2 Decomposition Algorithm
Figure 7.14 shows an algorithm for finding a dependency-preserving, lossless-join
decomposition into 3NF. The set of dependencies Fc used in the algorithm is a canoni-

1. These dependencies are examples of transitive dependencies (see Exercise 7.25). The original defi-
nition of 3NF was in terms of transitive dependencies. The definition we use is equivalent but easier to
understand.
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let Fc be a canonical cover for F;
i := 0;
for each functional dependency α → β in Fc do

if none of the schemas Rj , j = 1, 2, . . . , i contains α β
then begin

i := i + 1;
Ri := α β;

end
if none of the schemas Rj , j = 1, 2, . . . , i contains a candidate key for R

then begin
i := i + 1;
Ri := any candidate key for R;

end
return (R1, R2, . . . , Ri)

Figure 7.14 Dependency-preserving, lossless-join decomposition into 3NF.

cal cover for F. Note that the algorithm considers the set of schemas Rj , j = 1, 2, . . . , i;
initially i = 0, and in this case the set is empty.

To illustrate the algorithm of Figure 7.14, consider the following extension to the
Banker-schema in Section 7.6:

Banker-info-schema = (branch-name, customer-name, banker-name,
office-number)

The main difference here is that we include the banker’s office number as part of the
information. The functional dependencies for this relation schema are

banker-name → branch-name office-number
customer-name branch-name → banker-name

The for loop in the algorithm causes us to include the following schemas in our
decomposition:

Banker-office-schema = (banker-name, branch-name, office-number)
Banker-schema = (customer-name, branch-name, banker-name)

Since Banker-schema contains a candidate key for Banker-info-schema, we are finished
with the decomposition process.

The algorithm ensures the preservation of dependencies by explicitly building a
schema for each dependency in a canonical cover. It ensures that the decomposition
is a lossless-join decomposition by guaranteeing that at least one schema contains a
candidate key for the schema being decomposed. Exercise 7.19 provides some insight
into the proof that this suffices to guarantee a lossless join.

This algorithm is also called the 3NF synthesis algorithm, since it takes a set of de-
pendencies and adds one schema at a time, instead of decomposing the initial schema
repeatedly. The result is not uniquely defined, since a set of functional dependencies
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can have more than one canonical cover, and, further, in some cases the result of the
algorithm depends on the order in which it considers the dependencies in Fc.

If a relation Ri is in the decomposition generated by the synthesis algorithm, then
Ri is in 3NF. Recall that when we test for 3NF, it suffices to consider functional de-
pendencies whose right-hand side is a single attribute. Therefore, to see that Ri is in
3NF, you must convince yourself that any functional dependency γ → B that holds
on Ri satisfies the definition of 3NF. Assume that the dependency that generated Ri

in the synthesis algorithm is α → β. Now, B must be in α or β, since B is in Ri and
α → β generated Ri. Let us consider the three possible cases:

• B is in both α and β. In this case, the dependency α → β would not have been
in Fc since B would be extraneous in β. Thus, this case cannot hold.

• B is in β but not α. Consider two cases:
� γ is a superkey. The second condition of 3NF is satisfied.
� γ is not a superkey. Then α must contain some attribute not in γ. Now,

since γ → B is in F+, it must be derivable from Fc by using the attribute
closure algorithm on γ. The derivation could not have used α → β —
if it had been used, α must be contained in the attribute closure of γ,
which is not possible, since we assumed γ is not a superkey. Now, us-
ing α → (β −{B}) and γ → B, we can derive α → B (since γ ⊆ αβ, and γ
cannot contain B because γ → B is nontrivial). This would imply that B
is extraneous in the right-hand side of α → β, which is not possible since
α → β is in the canonical cover Fc. Thus, if B is in β, then γ must be a
superkey, and the second condition of 3NF must be satisfied.

• B is in α but not β.
Since α is a candidate key, the third alternative in the definition of 3NF is

satisfied.

Interestingly, the algorithm we described for decomposition into 3NF can be imple-
mented in polynomial time, even though testing a given relation to see if it satisfies
3NF is NP-hard.

7.7.3 Comparison of BCNF and 3NF
Of the two normal forms for relational-database schemas, 3NF and BCNF, there are
advantages to 3NF in that we know that it is always possible to obtain a 3NF design
without sacrificing a lossless join or dependency preservation. Nevertheless, there are
disadvantages to 3NF: If we do not eliminate all transitive relations schema depen-
dencies, we may have to use null values to represent some of the possible meaningful
relationships among data items, and there is the problem of repetition of information.

As an illustration of the null value problem, consider again the Banker-schema and
its associated functional dependencies. Since banker-name → branch-name, we may
want to represent relationships between values for banker-name and values for branch-
name in our database. If we are to do so, however, either there must be a correspond-
ing value for customer-name, or we must use a null value for the attribute customer-
name.
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customer-name banker-name branch-name
Jones Johnson Perryridge
Smith Johnson Perryridge
Hayes Johnson Perryridge
Jackson Johnson Perryridge
Curry Johnson Perryridge
Turner Johnson Perryridge

Figure 7.15 An instance of Banker-schema.

As an illustration of the repetition of information problem, consider the instance
of Banker-schema in Figure 7.15. Notice that the information indicating that Johnson
is working at the Perryridge branch is repeated.

Recall that our goals of database design with functional dependencies are:

1. BCNF

2. Lossless join

3. Dependency preservation

Since it is not always possible to satisfy all three, we may be forced to choose between
BCNF and dependency preservation with 3NF.

It is worth noting that SQL does not provide a way of specifying functional depen-
dencies, except for the special case of declaring superkeys by using the primary key
or unique constraints. It is possible, although a little complicated, to write assertions
that enforce a functional dependency (see Exercise 7.15); unfortunately, testing the
assertions would be very expensive in most database systems. Thus even if we had
a dependency-preserving decomposition, if we use standard SQL we would not be
able to efficiently test a functional dependency whose left-hand side is not a key.

Although testing functional dependencies may involve a join if the decomposition
is not dependency preserving, we can reduce the cost by using materialized views,
which many database systems support. Given a BCNF decomposition that is not de-
pendency preserving, we consider each dependency in a minimum cover Fc that is
not preserved in the decomposition. For each such dependency α → β, we define
a materialized view that computes a join of all relations in the decomposition, and
projects the result on αβ. The functional dependency can be easily tested on the ma-
terialized view, by means of a constraint unique (α). On the negative side, there is a
space and time overhead due to the materialized view, but on the positive side, the
application programmer need not worry about writing code to keep redundant data
consistent on updates; it is the job of the database system to maintain the material-
ized view, that is, keep up up to date when the database is updated. (Later in the
book, in Section 14.5, we outline how a database system can perform materialized
view maintenance efficiently.)

Thus, in case we are not able to get a dependency-preserving BCNF decomposition,
it is generally preferable to opt for BCNF, and use techniques such as materialized
views to reduce the cost of checking functional dependencies.
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7.8 Fourth Normal Form
Some relation schemas, even though they are in BCNF, do not seem to be sufficiently
normalized, in the sense that they still suffer from the problem of repetition of infor-
mation. Consider again our banking example. Assume that, in an alternative design
for the bank database schema, we have the schema

BC-schema = (loan-number, customer-name, customer-street, customer-city)

The astute reader will recognize this schema as a non-BCNF schema because of the
functional dependency

customer-name → customer-street customer-city

that we asserted earlier, and because customer-name is not a key for BC-schema. How-
ever, assume that our bank is attracting wealthy customers who have several ad-
dresses (say, a winter home and a summer home). Then, we no longer wish to en-
force the functional dependency customer-name → customer-street customer-city. If we
remove this functional dependency, we find BC-schema to be in BCNF with respect to
our modified set of functional dependencies. Yet, even though BC-schema is now in
BCNF, we still have the problem of repetition of information that we had earlier.

To deal with this problem, we must define a new form of constraint, called a mul-
tivalued dependency. As we did for functional dependencies, we shall use multivalued
dependencies to define a normal form for relation schemas. This normal form, called
fourth normal form (4NF), is more restrictive than BCNF. We shall see that every 4NF
schema is also in BCNF, but there are BCNF schemas that are not in 4NF.

7.8.1 Multivalued Dependencies
Functional dependencies rule out certain tuples from being in a relation. If A → B,
then we cannot have two tuples with the same A value but different B values. Mul-
tivalued dependencies, on the other hand, do not rule out the existence of certain
tuples. Instead, they require that other tuples of a certain form be present in the rela-
tion. For this reason, functional dependencies sometimes are referred to as equality-
generating dependencies, and multivalued dependencies are referred to as tuple-
generating dependencies.

Let R be a relation schema and let α ⊆ R and β ⊆ R. The multivalued dependency

α →→ β

holds on R if, in any legal relation r(R), for all pairs of tuples t1 and t2 in r such that
t1[α] = t2[α], there exist tuples t3 and t4 in r such that

t1[α] = t2[α] = t3[α] = t4[α]
t3[β] = t1[β]
t3[R − β] = t2[R − β]
t4[β] = t2[β]
t4[R − β] = t1[R − β]
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α α ββ –R –
t1
t2
t3
t4

a1 . . . ai
a1 . . . ai
a1 . . . ai
a1 . . . ai

ai + 1 . . . aj
bi + 1 . . . bj
ai + 1 . . . aj
bi + 1 . . . bj

aj + 1 . . . an
bj + 1 . . . bn
bj + 1 . . . bn
aj + 1 . . . an

Figure 7.16 Tabular representation of α →→ β.

This definition is less complicated than it appears to be. Figure 7.16 gives a tabular
picture of t1, t2, t3, and t4. Intuitively, the multivalued dependency α →→ β says that
the relationship between α and β is independent of the relationship between α and
R − β. If the multivalued dependency α →→ β is satisfied by all relations on schema
R, then α →→ β is a trivial multivalued dependency on schema R. Thus, α →→ β is
trivial if β ⊆ α or β ∪ α = R.

To illustrate the difference between functional and multivalued dependencies, we
consider the BC-schema again, and the relation bc (BC-schema) of Figure 7.17. We must
repeat the loan number once for each address a customer has, and we must repeat
the address for each loan a customer has. This repetition is unnecessary, since the
relationship between a customer and his address is independent of the relationship
between that customer and a loan. If a customer (say, Smith) has a loan (say, loan
number L-23), we want that loan to be associated with all Smith’s addresses. Thus,
the relation of Figure 7.18 is illegal. To make this relation legal, we need to add the
tuples (L-23, Smith, Main, Manchester) and (L-27, Smith, North, Rye) to the bc relation
of Figure 7.18.

Comparing the preceding example with our definition of multivalued dependency,
we see that we want the multivalued dependency

customer-name →→ customer-street customer-city

to hold. (The multivalued dependency customer-name →→ loan-number will do as well.
We shall soon see that they are equivalent.)

As with functional dependencies, we shall use multivalued dependencies in two
ways:

1. To test relations to determine whether they are legal under a given set of func-
tional and multivalued dependencies

2. To specify constraints on the set of legal relations; we shall thus concern our-
selves with only those relations that satisfy a given set of functional and mul-
tivalued dependencies

loan-number customer-name customer-street customer-city
L-23 Smith North Rye
L-23 Smith Main Manchester
L-93 Curry Lake Horseneck

Figure 7.17 Relation bc: An example of redundancy in a BCNF relation.
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loan-number customer-name customer-street customer-city
L-23 Smith North Rye
L-27 Smith Main Manchester

Figure 7.18 An illegal bc relation.

Note that, if a relation r fails to satisfy a given multivalued dependency, we can con-
struct a relation r′ that does satisfy the multivalued dependency by adding tuples
to r.

Let D denote a set of functional and multivalued dependencies. The closure D+

of D is the set of all functional and multivalued dependencies logically implied by D.
As we did for functional dependencies, we can compute D+ from D, using the formal
definitions of functional dependencies and multivalued dependencies. We can man-
age with such reasoning for very simple multivalued dependencies. Luckily, multi-
valued dependencies that occur in practice appear to be quite simple. For complex
dependencies, it is better to reason about sets of dependencies by using a system of
inference rules. (Section C.1.1 of the appendix outlines a system of inference rules for
multivalued dependencies.)

From the definition of multivalued dependency, we can derive the following rule:

• If α → β, then α →→ β.

In other words, every functional dependency is also a multivalued dependency.

7.8.2 Definition of Fourth Normal Form
Consider again our BC-schema example in which the multivalued dependency
customer-name →→ customer-street customer-city holds, but no nontrivial functional de-
pendencies hold. We saw in the opening paragraphs of Section 7.8 that, although BC-
schema is in BCNF, the design is not ideal, since we must repeat a customer’s address
information for each loan. We shall see that we can use the given multivalued de-
pendency to improve the database design, by decomposing BC-schema into a fourth
normal form decomposition.

A relation schema R is in fourth normal form (4NF) with respect to a set D of
functional and multivalued dependencies if, for all multivalued dependencies in D+

of the form α →→ β, where α ⊆ R and β ⊆ R, at least one of the following holds

• α →→ β is a trivial multivalued dependency.

• α is a superkey for schema R.

A database design is in 4NF if each member of the set of relation schemas that consti-
tutes the design is in 4NF.

Note that the definition of 4NF differs from the definition of BCNF in only the use
of multivalued dependencies instead of functional dependencies. Every 4NF schema
is in BCNF. To see this fact, we note that, if a schema R is not in BCNF, then there is
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result := {R};
done := false;
compute D+; Given schema Ri, let Di denote the restriction of D+ to Ri

while (not done) do
if (there is a schema Ri in result that is not in 4NF w.r.t. Di)

then begin
let α →→ β be a nontrivial multivalued dependency that holds
on Ri such that α → Ri is not in Di, and α ∩ β = ∅;
result := (result − Ri) ∪ (Ri − β) ∪ (α, β);

end
else done := true;

Figure 7.19 4NF decomposition algorithm.

a nontrivial functional dependency α → β holding on R, where α is not a superkey.
Since α → β implies α →→ β, R cannot be in 4NF.

Let R be a relation schema, and let R1, R2, . . . , Rn be a decomposition of R. To
check if each relation schema Ri in the decomposition is in 4NF, we need to find
what multivalued dependencies hold on each Ri. Recall that, for a set F of functional
dependencies, the restriction Fi of F to Ri is all functional dependencies in F+ that
include only attributes of Ri. Now consider a set D of both functional and multivalued
dependencies. The restriction of D to Ri is the set Di consisting of

1. All functional dependencies in D+ that include only attributes of Ri

2. All multivalued dependencies of the form

α →→ β ∩ Ri

where α ⊆ Ri and α →→ β is in D+.

7.8.3 Decomposition Algorithm
The analogy between 4NF and BCNF applies to the algorithm for decomposing a
schema into 4NF. Figure 7.19 shows the 4NF decomposition algorithm. It is identical
to the BCNF decomposition algorithm of Figure 7.13, except that it uses multivalued,
instead of functional, dependencies and uses the restriction of D+ to Ri.

If we apply the algorithm of Figure 7.19 to BC-schema, we find that customer-name
→→ loan-number is a nontrivial multivalued dependency, and customer-name is not
a superkey for BC-schema. Following the algorithm, we replace BC-schema by two
schemas:

Borrower-schema = (customer-name, loan-number)
Customer-schema = (customer-name, customer-street, customer-city).

This pair of schemas, which is in 4NF, eliminates the problem we encountered earlier
with the redundancy of BC-schema.
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As was the case when we were dealing solely with functional dependencies, we
are interested in decompositions that are lossless-join decompositions and that pre-
serve dependencies. The following fact about multivalued dependencies and lossless
joins shows that the algorithm of Figure 7.19 generates only lossless-join decomposi-
tions:

• Let R be a relation schema, and let D be a set of functional and multivalued
dependencies on R. Let R1 and R2 form a decomposition of R. This decom-
position is a lossless-join decomposition of R if and only if at least one of the
following multivalued dependencies is in D+:

R1 ∩ R2 →→ R1

R1 ∩ R2 →→ R2

Recall that we stated in Section 7.5.1 that, if R1 ∩ R2 → R1 or R1 ∩ R2 → R2, then
R1 and R2 are a lossless-join decomposition of R. The preceding fact about multival-
ued dependencies is a more general statement about lossless joins. It says that, for
every lossless-join decomposition of R into two schemas R1 and R2, one of the two
dependencies R1 ∩ R2 →→ R1 or R1 ∩ R2 →→ R2 must hold.

The issue of dependency preservation when we decompose a relation becomes
more complicated in the presence of multivalued dependencies. Section C.1.2 of the
appendix pursues this topic.

7.9 More Normal Forms
The fourth normal form is by no means the “ultimate” normal form. As we saw ear-
lier, multivalued dependencies help us understand and tackle some forms of rep-
etition of information that cannot be understood in terms of functional dependen-
cies. There are types of constraints called join dependencies that generalize multi-
valued dependencies, and lead to another normal form called project-join normal
form (PJNF) (PJNF is called fifth normal form in some books). There is a class of even
more general constraints, which leads to a normal form called domain-key normal
form.

A practical problem with the use of these generalized constraints is that they are
not only hard to reason with, but there is also no set of sound and complete inference
rules for reasoning about the constraints. Hence PJNF and domain-key normal form
are used quite rarely. Appendix C provides more details about these normal forms.

Conspicuous by its absence from our discussion of normal forms is second nor-
mal form (2NF). We have not discussed it, because it is of historical interest only. We
simply define it, and let you experiment with it in Exercise 7.26.

7.10 Overall Database Design Process
So far we have looked at detailed issues about normal forms and normalization. In
this section we study how normalization fits into the overall database design process.

Earlier in the chapter, starting in Section 7.4, we assumed that a relation schema
R is given, and proceeded to normalize it. There are several ways in which we could
have come up with the schema R:
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1. R could have been generated when converting a E-R diagram to a set of tables.

2. R could have been a single relation containing all attributes that are of interest.
The normalization process then breaks up R into smaller relations.

3. R could have been the result of some ad hoc design of relations, which we
then test to verify that it satisfies a desired normal form.

In the rest of this section we examine the implications of these approaches. We also
examine some practical issues in database design, including denormalization for per-
formance and examples of bad design that are not detected by normalization.

7.10.1 E-R Model and Normalization
When we carefully define an E-R diagram, identifying all entities correctly, the tables
generated from the E-R diagram should not need further normalization. However,
there can be functional dependencies between attributes of an entity. For instance,
suppose an employee entity had attributes department-number and department-address,
and there is a functional dependency department-number → department-address. We
would then need to normalize the relation generated from employee.

Most examples of such dependencies arise out of poor E-R diagram design. In the
above example, if we did the E-R diagram correctly, we would have created a depart-
ment entity with attribute department-address and a relationship between employee and
department. Similarly, a relationship involving more than two entities may not be in a
desirable normal form. Since most relationships are binary, such cases are relatively
rare. (In fact, some E-R diagram variants actually make it difficult or impossible to
specify nonbinary relations.)

Functional dependencies can help us detect poor E-R design. If the generated re-
lations are not in desired normal form, the problem can be fixed in the E-R diagram.
That is, normalization can be done formally as part of data modeling. Alternatively,
normalization can be left to the designer’s intuition during E-R modeling, and can be
done formally on the relations generated from the E-R model.

7.10.2 The Universal Relation Approach
The second approach to database design is to start with a single relation schema
containing all attributes of interest, and decompose it. One of our goals in choosing a
decomposition was that it be a lossless-join decomposition. To consider losslessness,
we assumed that it is valid to talk about the join of all the relations of the decomposed
database.

Consider the database of Figure 7.20, showing a decomposition of the loan-info re-
lation. The figure depicts a situation in which we have not yet determined the amount
of loan L-58, but wish to record the remainder of the data on the loan. If we compute
the natural join of these relations, we discover that all tuples referring to loan L-58
disappear. In other words, there is no loan-info relation corresponding to the relations
of Figure 7.20. Tuples that disappear when we compute the join are dangling tuples
(see Section 6.2.1). Formally, let r1(R1), r2(R2), . . . , rn(Rn) be a set of relations. A
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branch-name loan-number
Round Hill L-58

loan-number amount

loan-number customer-name
L-58 Johnson

Figure 7.20 Decomposition of loan-info.

tuple t of relation ri is a dangling tuple if t is not in the relation

ΠRi
(r1 � r2 � · · · � rn)

Dangling tuples may occur in practical database applications. They represent in-
complete information, as they do in our example, where we wish to store data about a
loan that is still in the process of being negotiated. The relation r1 � r2 � · · · � rn is
called a universal relation, since it involves all the attributes in the universe defined
by R1 ∪ R2 ∪ · · · ∪ Rn.

The only way that we can write a universal relation for the example of Figure 7.20
is to include null values in the universal relation. We saw in Chapter 3 that null values
present several difficulties. Because of them, it may be better to view the relations
of the decomposed design as representing the database, rather than as the univer-
sal relation whose schema we decomposed during the normalization process. (The
bibliographical notes discuss research on null values and universal relations.)

Note that we cannot enter all incomplete information into the database of Fig-
ure 7.20 without resorting to null values. For example, we cannot enter a loan number
unless we know at least one of the following:

• The customer name

• The branch name

• The amount of the loan

Thus, a particular decomposition defines a restricted form of incomplete information
that is acceptable in our database.

The normal forms that we have defined generate good database designs from the
point of view of representation of incomplete information. Returning again to the
example of Figure 7.20, we would not want to allow storage of the following fact:
“There is a loan (whose number is unknown) to Jones in the amount of $100.” This is
because

loan-number → customer-name amount

and therefore the only way that we can relate customer-name and amount is through
loan-number. If we do not know the loan number, we cannot distinguish this loan
from other loans with unknown numbers.
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In other words, we do not want to store data for which the key attributes are un-
known. Observe that the normal forms that we have defined do not allow us to store
that type of information unless we use null values. Thus, our normal forms allow
representation of acceptable incomplete information via dangling tuples, while pro-
hibiting the storage of undesirable incomplete information.

Another consequence of the universal relation approach to database design is that
attribute names must be unique in the universal relation. We cannot use name to refer
to both customer-name and to branch-name. It is generally preferable to use unique
names, as we have done. Nevertheless, if we defined our relation schemas directly,
rather than in terms of a universal relation, we could obtain relations on schemas
such as the following for our banking example:

branch-loan (name, number)
loan-customer (number, name)
amt (number, amount)

Observe that, with the preceding relations, expressions such as branch-loan � loan-
customer are meaningless. Indeed, the expression branch-loan � loan-customer finds
loans made by branches to customers who have the same name as the name of the
branch.

In a language such as SQL, however, a query involving branch-loan and loan-custom-
er must remove ambiguity in references to name by prefixing the relation name. In
such environments, the multiple roles for name (as branch name and as customer
name) are less troublesome and may be simpler to use.

We believe that using the unique-role assumption—that each attribute name has
a unique meaning in the database—is generally preferable to reusing of the same
name in multiple roles. When the unique-role assumption is not made, the database
designer must be especially careful when constructing a normalized relational-data-
base design.

7.10.3 Denormalization for Performance
Occasionally database designers choose a schema that has redundant information;
that is, it is not normalized. They use the redundancy to improve performance for
specific applications. The penalty paid for not using a normalized schema is the extra
work (in terms of coding time and execution time) to keep redundant data consistent.

For instance, suppose that the name of an account holder has to be displayed along
with the account number and balance, every time the account is accessed. In our
normalized schema, this requires a join of account with depositor.

One alternative to computing the join on the fly is to store a relation containing all
the attributes of account and depositor. This makes displaying the account information
faster. However, the balance information for an account is repeated for every person
who owns the account, and all copies must be updated by the application, when-
ever the account balance is updated. The process of taking a normalized schema and
making it non-normalized is called denormalization, and designers use it to tune
performance of systems to support time-critical operations.
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A better alternative, supported by many database systems today, is to use the nor-
malized schema, and additionally store the join or account and depositor as a materi-
alized view. (Recall that a materialized view is a view whose result is stored in the
database, and brought up to date when the relations used in the view are updated.)
Like denormalization, using materialized view does have space and time overheads;
however, it has the advantage that keeping the view up to date is the job of the
database system, not the application programmer.

7.10.4 Other Design Issues
There are some aspects of database design that are not addressed by normalization,
and can thus lead to bad database design. We give examples here; obviously, such
designs should be avoided.

Consider a company database, where we want to store earnings of companies in
different years. A relation earnings(company-id, year, amount) could be used to store the
earnings information. The only functional dependency on this relation is company-id,
year → amount, and the relation is in BCNF.

An alternative design is to use multiple relations, each storing the earnings for a
different year. Let us say the years of interest are 2000, 2001, and 2002; we would then
have relations of the form earnings-2000, earnings-2001, earnings-2002, all of which are
on the schema (company-id, earnings). The only functional dependency here on each
relation would be company-id → earnings, so these relations are also in BCNF.

However, this alternative design is clearly a bad idea—we would have to create
a new relation every year, and would also have to write new queries every year, to
take each new relation into account. Queries would also be more complicated since
they may have to refer to many relations.

Yet another way of representing the same data is to have a single relation company-
year(company-id, earnings-2000, earnings-2001, earnings-2002). Here the only functional
dependencies are from company-id to the other attributes, and again the relation is
in BCNF. This design is also a bad idea since it has problems similar to the previous
design—namely we would have to modify the relation schema and write new queries,
every year. Queries would also be more complicated, since they may have to refer to
many attributes.

Representations such as those in the company-year relation, with one column for
each value of an attribute, are called crosstabs; they are widely used in spreadsheets
and reports and in data analysis tools. While such representations are useful for dis-
play to users, for the reasons just given, they are not desirable in a database design.
SQL extensions have been proposed to convert data from a normal relational repre-
sentation to a crosstab, for display.

7.11 Summary
• We showed pitfalls in database design, and how to systematically design a

database schema that avoids the pitfalls. The pitfalls included repeated infor-
mation and inability to represent some information.
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• We introduced the concept of functional dependencies, and showed how to
reason with functional dependencies. We laid special emphasis on what de-
pendencies are logically implied by a set of dependencies. We also defined the
notion of a canonical cover, which is a minimal set of functional dependencies
equivalent to a given set of functional dependencies.

• We introduced the concept of decomposition, and showed that decomposi-
tions must be lossless-join decompositions, and should preferably be depen-
dency preserving.

• If the decomposition is dependency preserving, given a database update, all
functional dependencies can be verifiable from individual relations, without
computing a join of relations in the decomposition.

• We then presented Boyce–Codd Normal Form (BCNF); relations in BCNF are
free from the pitfalls outlined earlier. We outlined an algorithm for decompos-
ing relations into BCNF. There are relations for which there is no dependency-
preserving BCNF decomposition.

• We used the canonical covers to decompose a relation into 3NF, which is a
small relaxation of the BCNF condition. Relations in 3NF may have some re-
dundancy, but there is always a dependency-preserving decomposition into
3NF.

• We presented the notion of multivalued dependencies, which specify con-
straints that cannot be specified with functional dependencies alone. We de-
fined fourth normal form (4NF) with multivalued dependencies. Section C.1.1
of the appendix gives details on reasoning about multivalued dependencies.

• Other normal forms, such as PJNF and DKNF, eliminate more subtle forms
of redundancy. However, these are hard to work with and are rarely used.
Appendix C gives details on these normal forms.

• In reviewing the issues in this chapter, note that the reason we could define
rigorous approaches to relational-database design is that the relational data
model rests on a firm mathematical foundation. That is one of the primary
advantages of the relational model compared with the other data models that
we have studied.

Review Terms
• Atomic domains

• First normal form

• Pitfalls in relational-database
design

• Functional dependencies

• Superkey

• F holds on R

• R satisfies F

• Trivial functional dependencies

• Closure of a set of functional
dependencies

• Armstrong’s axioms
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• Closure of attribute sets
• Decomposition
• Lossless-join decomposition
• Legal relations
• Dependency preservation
• Restriction of F to Ri

• Boyce–Codd normal form
(BCNF)

• BCNF decomposition algorithm
• Canonical cover
• Extraneous attributes
• Third normal form

• 3NF decomposition algorithm

• Multivalued dependencies

• Fourth normal form

• restriction of a multivalued
dependency

• Project-join normal form (PJNF)

• Domain-key normal form

• E-R model and normalization

• Universal relation

• Unique-role assumption

• Denormalization

Exercises
7.1 Explain what is meant by repetition of information and inability to represent in-

formation. Explain why each of these properties may indicate a bad relational-
database design.

7.2 Suppose that we decompose the schema R = (A, B, C, D, E) into

(A, B, C)
(A, D, E)

Show that this decomposition is a lossless-join decomposition if the following
set F of functional dependencies holds:

A → BC
CD → E
B → D
E → A

7.3 Why are certain functional dependencies called trivial functional dependencies?

7.4 List all functional dependencies satisfied by the relation of Figure 7.21.

A B C
a1
a1
a2
a2

b1
b1
b1
b1

c1
c2
c1
c3

Figure 7.21 Relation of Exercise 7.4.
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7.5 Use the definition of functional dependency to argue that each of Armstrong’s
axioms (reflexivity, augmentation, and transitivity) is sound.

7.6 Explain how functional dependencies can be used to indicate the following:
• A one-to-one relationship set exists between entity sets account and customer.
• A many-to-one relationship set exists between entity sets account and cus-

tomer.

7.7 Consider the following proposed rule for functional dependencies: If α → β and
γ → β, then α → γ. Prove that this rule is not sound by showing a relation r that
satisfies α → β and γ → β, but does not satisfy α → γ.

7.8 Use Armstrong’s axioms to prove the soundness of the union rule. (Hint: Use the
augmentation rule to show that, if α → β, then α → αβ. Apply the augmentation
rule again, using α → γ, and then apply the transitivity rule.)

7.9 Use Armstrong’s axioms to prove the soundness of the decomposition rule.

7.10 Use Armstrong’s axioms to prove the soundness of the pseudotransitivity rule.

7.11 Compute the closure of the following set F of functional dependencies for rela-
tion schema R = (A, B, C, D, E).

A → BC
CD → E
B → D
E → A

List the candidate keys for R.

7.12 Using the functional dependencies of Exercise 7.11, compute B+.

7.13 Using the functional dependencies of Exercise 7.11, compute the canonical
cover Fc.

7.14 Consider the algorithm in Figure 7.22 to compute α+. Show that this algorithm
is more efficient than the one presented in Figure 7.7 (Section 7.3.3) and that it
computes α+ correctly.

7.15 Given the database schema R(a, b, c), and a relation r on the schema R, write an
SQL query to test whether the functional dependency b → c holds on relation
r. Also write an SQL assertion that enforces the functional dependency. Assume
that no null values are present.

7.16 Show that the following decomposition of the schema R of Exercise 7.2 is not a
lossless-join decomposition:

(A, B, C)
(C, D, E)

Hint: Give an example of a relation r on schema R such that

ΠA, B, C (r) � ΠC, D, E (r) �= r
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result := ∅;
/* fdcount is an array whose ith element contains the number

of attributes on the left side of the ith FD that are
not yet known to be in α+ */

for i := 1 to |F | do
begin

let β → γ denote the ith FD;
fdcount [i] := |β|;

end
/* appears is an array with one entry for each attribute. The

entry for attribute A is a list of integers. Each integer
i on the list indicates that A appears on the left side
of the ith FD */

for each attribute A do
begin

appears [A] := NIL;
for i := 1 to |F | do

begin
let β → γ denote the ith FD;
if A ∈ β then add i to appears [A];

end
end

addin (α);
return (result);

procedure addin (α);
for each attribute A in α do

begin
if A �∈ result then

begin
result := result ∪ {A};
for each element i of appears[A] do

begin
fdcount [i] := fdcount [i] − 1;
if fdcount [i] := 0 then

begin
let β → γ denote the ith FD;
addin (γ);

end
end

end
end

Figure 7.22 An algorithm to compute α+.
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7.17 Let R1, R2, . . . , Rn be a decomposition of schema U. Let u(U) be a relation, and
let ri = ΠRI

(u). Show that

u ⊆ r1 � r2 � · · · � rn

7.18 Show that the decomposition in Exercise 7.2 is not a dependency-preserving
decomposition.

7.19 Show that it is possible to ensure that a dependency-preserving decomposi-
tion into 3NF is a lossless-join decomposition by guaranteeing that at least one
schema contains a candidate key for the schema being decomposed. (Hint: Show
that the join of all the projections onto the schemas of the decomposition cannot
have more tuples than the original relation.)

7.20 List the three design goals for relational databases, and explain why each is
desirable.

7.21 Give a lossless-join decomposition into BCNF of schema R of Exercise 7.2.

7.22 Give an example of a relation schema R′ and set F ′ of functional dependencies
such that there are at least three distinct lossless-join decompositions of R′ into
BCNF.

7.23 In designing a relational database, why might we choose a non-BCNF design?

7.24 Give a lossless-join, dependency-preserving decomposition into 3NF of schema
R of Exercise 7.2.

7.25 Let a prime attribute be one that appears in at least one candidate key. Let α and
β be sets of attributes such that α → β holds, but β → α does not hold. Let A be
an attribute that is not in α, is not in β, and for which β → A holds. We say that
A is transitively dependent on α. We can restate our definition of 3NF as follows:
A relation schema R is in 3NF with respect to a set F of functional dependencies
if there are no nonprime attributes A in R for which A is transitively dependent
on a key for R.

Show that this new definition is equivalent to the original one.

7.26 A functional dependency α → β is called a partial dependency if there is a
proper subset γ of α such that γ → β. We say that β is partially dependent on α. A
relation schema R is in second normal form (2NF) if each attribute A in R meets
one of the following criteria:
• It appears in a candidate key.
• It is not partially dependent on a candidate key.

Show that every 3NF schema is in 2NF. (Hint: Show that every partial depen-
dency is a transitive dependency.)

7.27 Given the three goals of relational-database design, is there any reason to design
a database schema that is in 2NF, but is in no higher-order normal form? (See
Exercise 7.26 for the definition of 2NF.)
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7.28 Give an example of a relation schema R and a set of dependencies such that R is
in BCNF, but is not in 4NF.

7.29 Explain why 4NF is a normal form more desirable than BCNF.

7.30 Explain how dangling tuples may arise. Explain problems that they may cause.

Bibliographical Notes
The first discussion of relational-database design theory appeared in an early paper
by Codd [1970]. In that paper, Codd also introduced functional dependencies, and
first, second, and third normal forms.

Armstrong’s axioms were introduced in Armstrong [1974]. Ullman [1988] is an
easily accessible source of proofs of soundness and completeness of Armstrong’s ax-
ioms. Ullman [1988] also provides an algorithm for testing for lossless-join decompo-
sition for general (nonbinary) decompositions, and many other algorithms, theorems,
and proofs concerning dependency theory. Maier [1983] discusses the theory of func-
tional dependencies.Graham et al. [1986] discusses formal aspects of the concept of a
legal relation.

BCNF was introduced in Codd [1972]. The desirability of BCNF is discussed in
Bernstein et al. [1980a]. A polynomial-time algorithm for BCNF decomposition ap-
pears in Tsou and Fischer [1982], and can also be found in Ullman [1988]. Biskup et al.
[1979] gives the algorithm we used to find a lossless-join dependency-preserving de-
composition into 3NF. Fundamental results on the lossless-join property appear in
Aho et al. [1979a].

Multivalued dependencies are discussed in Zaniolo [1976]. Beeri et al. [1977] gives
a set of axioms for multivalued dependencies, and proves that the authors axioms
are sound and complete. Our axiomatization is based on theirs. The notions of 4NF,
PJNF, and DKNF are from Fagin [1977], Fagin [1979], and Fagin [1981], respectively.

Maier [1983] presents the design theory of relational databases in detail. Ullman
[1988] and Abiteboul et al. [1995] present a more theoretic coverage of many of the
dependencies and normal forms presented here. See the bibliographical notes of Ap-
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Object-based Databases
and XML

Several application areas for database systems are limited by the restrictions of the
relational data model. As a result, researchers have developed several data models to
deal with these application domains. In this part, we study the object-oriented data
model and the object-relational data model. In addition, we study XML, a language
that can represent data that is less structured than that of the other data models.

The object-oriented data model, described in Chapter 8, is based on the object-
oriented-programming language paradigm, which is now in wide use. Inheritance,
object-identity, and encapsulation (information hiding), with methods to provide an
interface to objects, are among the key concepts of object-oriented programming that
have found applications in data modeling. The object-oriented data model also sup-
ports a rich type system, including structured and collection types. While inheritance
and, to some extent, complex types are also present in the E-R model, encapsulation
and object-identity distinguish the object-oriented data model from the E-R model.

The object-relational model, described in Chapter 9, combines features of the re-
lational and object-oriented models. This model provides the rich type system of
object-oriented databases, combined with relations as the basis for storage of data.
It applies inheritance to relations, not just to types. The object-relational data model
provides a smooth migration path from relational databases, which is attractive to
relational database vendors. As a result, the SQL:1999 standard includes a number
of object-oriented features in its type system, while continuing to use the relational
model as the underlying model.

The XML language was initially designed as a way of adding markup informa-
tion to text documents, but has become important because of its applications in data
exchange. XML provides a way to represent data that have nested structure, and fur-
thermore allows a great deal of flexibility in structuring of data, which is important
for certain kinds of nontraditional data. Chapter 10 describes the XML language, and
then presents different ways of expressing queries on data represented in XML, and
transforming XML data from one form to another.



Silberschatz−Korth−Sudarshan: 
Database System 
Concepts, Fourth Edition

III. Object−Based 
Databases and XML

8. Object−Oriented 
Databases

308 © The McGraw−Hill 
Companies, 2001

P A R T 8

Case Studies

This part describes how different database systems integrate the various concepts
described earlier in the book. Specifically, three widely used database systems—IBM
DB2, Oracle, and Microsoft SQL Server—are covered in Chapters 25, 26, and 27. These
three represent three of the most widely used database systems.

Each of these chapters highlights unique features of each database system: tools,
SQL variations and extensions, and system architecture, including storage organiza-
tion, query processing, concurrency control and recovery, and replication.

The chapters cover only key aspects of the database products they describe, and
therefore should not be regarded as a comprehensive coverage of the product. Fur-
thermore, since products are enhanced regularly, details of the product may change.
When using a particular product version, be sure to consult the user manuals for
specific details.

Keep in mind that the chapters in this part use industrial rather than academic
terminology. For instance, they use table instead of relation, row instead of tuple,
and column instead of attribute.
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Oracle
Hakan Jakobsson
Oracle Corporation

When Oracle was founded in 1977 as Software Development Laboratories by Larry
Ellison, Bob Miner, and Ed Oates, there were no commercial relational database prod-
ucts. The company, which was later renamed Oracle, set out to build a relational
database management system as a commercial product, and was the first to reach the
market. Since then, Oracle has held a leading position in the relational database mar-
ket, but over the years its product and service offerings have grown beyond the rela-
tional database server. In addition to tools directly related to database development
and management, Oracle sells business intelligence tools, including a multidimen-
sional database management system (Oracle Express), query and analysis tools, data-
mining products, and an application server with close integration to the database
server.

In addition to database-related servers and tools, the company also offers appli-
cation software for enterprise resource planning and customer-relationship manage-
ment, including areas such as financials, human resources, manufacturing, market-
ing, sales, and supply chain management. Oracle’s Business OnLine unit offers ser-
vices in these areas as an application service provider.

This chapter surveys a subset of the features, options, and functionality of Oracle
products. New versions of the products are being developed continually, so all prod-
uct descriptions are subject to change. The feature set described here is based on the
first release of Oracle9i.

25.1 Database Design and Querying Tools
Oracle provides a variety of tools for database design, querying, report generation
and data analysis, including OLAP.

921
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25.1.1 Database Design Tools
Most of Oracle’s design tools are included in the Oracle Internet Development Suite.
This is a suite of tools for various aspects of application development, including tools
for forms development, data modeling, reporting, and querying. The suite supports
the UML standard (see Section 2.10) for development modeling. It provides class
modeling to generate code for the business components for Java framework as well
as activity modeling for general-purpose control flow modeling. The suite also sup-
ports XML for data exchange with other UML tools.

The major database design tool in the suite is Oracle Designer, which translates
business logic and data flows into a schema definitions and procedural scripts for
application logic. It supports such modeling techniques as E-R diagrams, information
engineering, and object analysis and design. Oracle Designer stores the design in
Oracle Repository, which serves as a single point of metadata for the application.
The metadata can then be used to generate forms and reports. Oracle Repository
provides configuration management for database objects, forms applications, Java
classes, XML files, and other types of files.

The suite also contains application development tools for generating forms, re-
ports, and tools for various aspects of Java and XML-based development. The busi-
ness intelligence component provides JavaBeans for analytic functionality such as
data visualization, querying, and analytic calculations.

Oracle also has an application development tool for data warehousing, Oracle
Warehouse Builder. Warehouse Builder is a tool for design and deployment of all as-
pects of a data warehouse, including schema design, data mapping and transforma-
tions, data load processing, and metadata management. Oracle Warehouse Builder
supports both 3NF and star schemas and can also import designs from Oracle De-
signer.

25.1.2 Querying Tools
Oracle provides tools for ad-hoc querying, report generation and data analysis, in-
cluding OLAP.

Oracle Discoverer is a Web-based, ad hoc query, reporting, analysis and Web pub-
lishing tool for end users and data analysts. It allows users to drill up and down on
result sets, pivot data, and store calculations as reports that can be published in a
variety of formats such as spreadsheets or HTML. Discoverer has wizards to help end
users visualize data as graphs. Oracle9i has supports a rich set of analytical func-
tions, such as ranking and moving aggregation in SQL. Discoverer’s ad hoc query
interface can generate SQL that takes advantage of this functionality and can pro-
vide end users with rich analytical functionality. Since the processing takes place in
the relational database management system, Discoverer does not require a complex
client-side calculation engine and there is a version of Discoverer that is browser
based.

Oracle Express Server is a multidimensional database server. It supports a wide
variety of analytical queries as well as forecasting, modeling, and scenario manage-



Silberschatz−Korth−Sudarshan: 
Database System 
Concepts, Fourth Edition

III. Object−Based 
Databases and XML

8. Object−Oriented 
Databases

312 © The McGraw−Hill 
Companies, 2001

25.2 SQL Variations and Extensions 923

ment. It can use the relational database management system as a back end for storage
or use its own multidimensional storage of the data.

With the introduction of OLAP services in Oracle9i, Oracle is moving away from
supporting a separate storage engine and moving most of the calculations into SQL.
The result is a model where all the data reside in the relational database management
system and where any remaining calculations that cannot be performed in SQL are
done in a calculation engine running on the database server. The model also provides
a Java OLAP application programmer interface.

There are many reasons for moving away from a separate multidimensional stor-
age engine:

• A relational engine can scale to much larger data sets.

• A common security model can be used for the analytical applications and the
data warehouse.

• Multidimensional modeling can be integrated with data warehouse modeling.

• The relational database management system has a larger set of features and
functionality in many areas such as high availability, backup and recovery,
and third-party tool support.

• There is no need to train database administrators for two database engines.

The main challenge with moving away from a separate multidimensional database
engine is to provide the same performance. A multidimensional database manage-
ment system that materializes all or large parts of a data cube can offer very fast
response times for many calculations. Oracle has approached this problem in two
ways.

• Oracle has added SQL support for a wide range of analytical functions, in-
cluding cube, rollup, grouping sets, ranks, moving aggregation, lead and lag
functions, histogram buckets, linear regression, and standard deviation, along
with the ability to optimize the execution of such functions in the database en-
gine.

• Oracle has extended materialized views to permit analytical functions, in par-
ticular grouping sets. The ability to materialize parts or all of the cube is key
to the performance of a multidimensional database management system and
materialized views give a relational database management system the ability
to do the same thing.

25.2 SQL Variations and Extensions
Oracle9i supports all core SQL:1999 features fully or partially, with some minor ex-
ceptions such as distinct data types. In addition, Oracle supports a large number of
other language constructs, some of which conform with SQL:1999, while others are
Oracle-specific in syntax or functionality. For example, Oracle supports the OLAP
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operations described in Section 22.2, including ranking, moving aggregation, cube,
and rollup.

A few examples of Oracle SQL extensions are:

• connect by, which is a form of tree traversal that allows transitive closure-
style calculations in a single SQL statement. It is an Oracle-specific syntax for
a feature that Oracle has had since the 1980s.

• Upsert and multitable inserts. The upsert operation combines update and in-
sert, and is useful for merging new data with old data in data warehousing
applications. If a new row has the same key value as an old row, the old row is
updated (for example by adding the measure values from the new row), oth-
erwise the new row is inserted into the table. Multitable inserts allow multiple
tables to be updated based on a single scan of new data.

• with clause, which is described in Section 4.8.2.

25.2.1 Object-Relational Features
Oracle has extensive support for object-relational constructs, including:

• Object types. A single-inheritance model is supported for type hierarchies.

• Collection types. Oracle supports varrays which are variable length arrays,
and nested tables.

• Object tables. These are used to store objects while providing a relational
view of the attributes of the objects.

• Table functions. These are functions that produce sets of rows as output, and
can be used in the from clause of a query. Table functions in Oracle can be
nested. If a table function is used to express some form of data transformation,
nesting multiple functions allows multiple transformations to be expressed in
a single statement.

• Object views. These provide a virtual object table view of data stored in a
regular relational table. They allow data to be accessed or viewed in an object-
oriented style even if the data are really stored in a traditional relational for-
mat.

• Methods. These can be written in PL/SQL, Java, or C.

• User-defined aggregate functions. These can be used in SQL statements in the
same way as built-in functions such as sum and count.

• XML data types. These can be used to store and index XML documents.

Oracle has two main procedural languages, PL/SQL and Java. PL/SQL was Oracle’s
original language for stored procedures and it has syntax similar to that used in the
Ada language. Java is supported through a Java virtual machine inside the database
engine. Oracle provides a package to encapsulate related procedures, functions, and
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variables into single units. Oracle supports SQLJ (SQL embedded in Java) and JDBC,
and provides a tool to generate Java class definitions corresponding to user-defined
database types.

25.2.2 Triggers
Oracle provides several types of triggers and several options for when and how they
are invoked. (See Section 6.4 for an introduction to triggers in SQL.) Triggers can be
written in PL/SQL or Java or as C callouts.

For triggers that execute on DML statements such as insert, update, and delete,
Oracle supports row triggers and statement triggers. Row triggers execute once for
every row that is affected (updated or deleted, for example) by the DML operation.
A statement trigger is executed just once per statement. In each case, the trigger can
be defined as either a before or after trigger, depending on whether it is to be invoked
before or after the DML operation is carried out.

Oracle allows the creation of instead of triggers for views that cannot be subject
to DML operations. Depending on the view definition, it may not be possible for Or-
acle to translate a DML statement on a view to modifications of the underlying base
tables unambiguously. Hence, DML operations on views are subject to numerous re-
strictions. A user can create an instead of trigger on a view to specify manually what
operations on the base tables are to occur in response to the DML operation on the
view. Oracle executes the trigger instead of the DML operation and therefore pro-
vides a mechanism to circumvent the restrictions on DML operations against views.

Oracle also has triggers that execute on a variety of other events, like database
startup or shutdown, server error messages, user logon or logoff, and DDL statements
such as create, alter and drop statements.

25.3 Storage and Indexing
In Oracle parlance, a database consists of information stored in files and is accessed
through an instance, which is a shared memory area and a set of processes that inter-
act with the data in the files.

25.3.1 Table Spaces
A database consists of one or more logical storage units called table spaces. Each
table space, in turn, consists of one or more physical structures called data files. These
may be either files managed by the operating system or raw devices.

Usually, an Oracle database will have the following table spaces:

• The system table space, which is always created. It contains the data dictio-
nary tables and storage for triggers and stored procedures.

• Table spaces created to store user data. While user data can be stored in the
system table space, it is often desirable to separate the user data from the sys-
tem data. Usually, the decision about what other table spaces should be cre-
ated is based on performance, availability, maintainability, and ease of admin-
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istration. For example, having multiple table spaces can be useful for partial
backup and recovery operations.

• Temporary table spaces. Many database operations require sorting the data,
and the sort routine may have to store data temporarily on disk if the sort
cannot be done in memory. Temporary table spaces are allocated for sorting,
to make the space management operations involved in spilling to disk more
efficient.

Table spaces can also be used as a means of moving data between databases. For
example, it is common to move data from a transactional system to a data warehouse
at regular intervals. Oracle allows moving all the data in a table space from one sys-
tem to the other by simply copying the files and exporting and importing a small
amount of data dictionary metadata. These operations can be much faster than un-
loading the data from one database and then using a loader to insert it into the other.
A requirement for this feature is that both systems use the same operating system.

25.3.2 Segments
The space in a table space is divided into units, called segments, that each contain
data for a specific data structure. There are four types of segments.

• Data segments. Each table in a table space has its own data segment where
the table data are stored unless the table is partitioned; if so, there is one data
segment per partition. (Partitioning in Oracle is described in Section 25.3.10.)

• Index segments. Each index in a table space has its own index segment, except
for partitioned indices, which have one index segment per partition.

• Temporary segments. These are segments used when a sort operation needs
to write data to disk or when data are inserted into a temporary table.

• Rollback segments. These segments contain undo information so that an un-
committed transaction can be rolled back. They also play an important roll in
Oracle’s concurrency control model and for database recovery, described in
Sections 25.5.1 and 25.5.2.

Below the level of segment, space is allocated at a level of granularity called extent.
Each extent consists of a set of contiguous database blocks. A database block is the
lowest level of granularity at which Oracle performs disk I/O. A database block does
not have to be the same as an operating system block in size, but should be a multiple
thereof.

Oracle provides storage parameters that allow for detailed control of how space is
allocated and managed, parameters such as:

• The size of a new extent that is to be allocated to provide room for rows that
are inserted into a table.
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• The percentage of space utilization at which a database block is considered full
and at which no more rows will be inserted into that block. (Leaving some free
space in a block can allow the existing rows to grow in size through updates,
without running out of space in the block.)

25.3.3 Tables
A standard table in Oracle is heap organized; that is, the storage location of a row in
a table is not based on the values contained in the row, and is fixed when the row
is inserted. However, if the table is partitioned, the content of the row affects the
partition in which it is stored. There are several features and variations.

Oracle supports nested tables; that is, a table can have a column whose data type
is another table. The nested table is not stored in line in the parent table, but is stored
in a separate table.

Oracle supports temporary tables where the duration of the data is either the trans-
action in which the data are inserted, or the user session. The data are private to the
session and are automatically removed at the end of its duration.

A cluster is another form of organization for table data (see Section 11.7). The
concept, in this context, should not be confused with other meanings of the word
cluster, such as those relating to hardware architecture. In a cluster, rows from dif-
ferent tables are stored together in the same block on the basis of some common
columns. For example, a department table and an employee table could be clustered
so that each row in the department table is stored together with all the employee
rows for those employees who work in that department. The primary key/foreign
key values are used to determine the storage location. This organization gives per-
formance benefits when the two tables are joined, but without the space penalty of a
denormalized schema, since the values in the department table are not repeated for
each employee. As a tradeoff, a query involving only the department table may have
to involve a substantially larger number of blocks than if that table had been stored
on its own.

The cluster organization implies that a row belongs in a specific place; for example,
a new employee row must be inserted with the other rows for the same department.
Therefore, an index on the clustering column is mandatory. An alternative organiza-
tion is a hash cluster. Here, Oracle computes the location of a row by applying a hash
function to the value for the cluster column. The hash function maps the row to a
specific block in the hash cluster. Since no index traversal is needed to access a row
according to its cluster column value, this organization can save significant amounts
of disk I/O. However, the number of hash buckets and other storage parameters must
be set carefully to avoid performance problems due to too many collisions or space
wastage due to empty hash buckets.

Both the hash cluster and regular cluster organization can be applied to a single
table. Storing a table as a hash cluster with the primary key column as the cluster key
can allow an access based on a primary key value with a single disk I/O provided
that there is no overflow for that data block.
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25.3.4 Index-Organized Tables
In an index organized table, records are stored in an Oracle B-tree index instead of in a
heap. An index-organized table requires that a unique key be identified for use as the
index key. While an entry in a regular index contains the key value and row-id of the
indexed row, an index-organized table replaces the row-id with the column values
for the remaining columns of the row. Compared to storing the data in a regular heap
table and creating an index on the key columns, index-organized table can improve
both performance and space utilization. Consider looking up all the column values
of a row, given its primary key value. For a heap table, that would require an index
probe followed by a table access by row-id. For an index-organized table, only the
index probe is necessary.

Secondary indices on nonkey columns of an index-organized table are different
from indices on a regular heap table. In a heap table, each row has a fixed row-id
that does not change. However, a B-tree is reorganized as it grows or shrinks when
entries are inserted or deleted, and there is no guarantee that a row will stay in a
fixed place inside an index-organized table. Hence, a secondary index on an index-
organized table contains not normal row-ids, but logical row-ids instead. A logical
row-id consists of two parts: a physical row-id corresponding to where the row was
when the index was created or last rebuilt and a value for the unique key. The phys-
ical row-id is referred to as a “guess” since it could be incorrect if the row has been
moved. If so, the other part of a logical row-id, the key value for the row, is used to
access the row; however, this access is slower than if the guess had been correct, since
it involves a traversal of the B-tree for the index-organized table from the root all the
way to the leaf nodes, potentially incurring several disk I/Os. However, if a table is
highly volatile and a large percentage of the guesses are likely to be wrong, it can be
better to create the secondary index with only key values, since using an incorrect
guess may result in a wasted disk I/O.

25.3.5 Indices
Oracle supports several different types of indices. The most commonly used type is a
B-tree index, created on one or multiple columns. (Note: in the terminology of Oracle
(as also in several other database systems) a B-tree index is what is referred to as a
B+-tree index in Chapter 12.) Index entries have the following format: For an index
on columns col1, col2, and col3, each row in the table where at least one of the columns
has a nonnull value would result in the index entry

< col1 >< col2 >< col3 >< row-id >

where < coli > denotes the value for column i and < row-id > is the row-id for
the row. Oracle can optionally compress the prefix of the entry to save space. For
example, if there are many repeated combinations of < col1 >< col2 > values, the
representation of each distinct < col1 >< col2 > prefix can be shared between the
entries that have that combination of values, rather than stored explicitly for each
such entry. Prefix compression can lead to substantial space savings.
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25.3.6 Bitmap Indices
Bitmap indices (described in Section 12.9.4) use a bitmap representation for index
entries, which can lead to substantial space saving (and therefore disk I/O savings),
when the indexed column has a moderate number of distinct values. Bitmap indices
in Oracle use the same kind of B-tree structure to store the entries as a regular in-
dex. However, where a regular index on a column would have entries of the form
< col1 >< row-id >, a bitmap index entry has the form

< col1 >< startrow-id >< endrow-id >< compressedbitmap >

The bitmap conceptually represents the space of all possible rows in the table be-
tween the start and end row-id. The number of such possible rows in a block depends
on how many rows can fit into a block, which is a function of the number of columns
in the table and their data types. Each bit in the bitmap represents one such possible
row in a block. If the column value of that row is that of the index entry, the bit is set
to 1. If the row has some other value, or the row does not actually exist in the table,
the bit is set to 0. (It is possible that the row does not actually exist because a table
block may well have a smaller number of rows than the number that was calculated
as the maximum possible.) If the difference is large, the result may be long strings
of consecutive zeros in the bitmap, but the compression algorithm deals with such
strings of zeros, so the negative effect is limited.

The compression algorithm is a variation of a compression technique called Byte-
Aligned Bitmap Compression (BBC). Essentially, a section of the bitmap where the
distance between two consecutive ones is small enough is stored as verbatim bitmaps.
If the distance between two ones is sufficiently large—that is, there is a sufficient
number of adjacent zeros between them—a runlength of zeros, that is the number of
zeros, is stored.

Bitmap indices allow multiple indices on the same table to be combined in the
same access path if there are multiple conditions on indexed columns in the where
clause of a query. For example, for the condition

(col1 = 1 or col1 = 2) and col2 > 5 and col3 <> 10

Oracle would be able to calculate which rows match the condition by performing
Boolean operations on bitmaps from indices on the three columns. In this case, these
operations would take place for each index:

• For the index on col1, the bitmaps for key values 1 and 2 would be ored.

• For the index on col2, all the bitmaps for key values > 5 would be merged in
an operation that corresponds to a logical or.

• For the index on col3, the bitmaps for key values 10 and null would be re-
trieved. Then, a Boolean and would be performed on the results from the first
two indices, followed by two Boolean minuses of the bitmaps for values 10
and null for col3.
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All operations are performed directly on the compressed representation of the bit-
maps—no decompression is necessary—and the resulting (compressed) bitmap rep-
resents those rows that match all the logical conditions.

The ability to use the Boolean operations to combine multiple indices is not lim-
ited to bitmap indices. Oracle can convert row-ids to the compressed bitmap repre-
sentation, so it can use a regular B-tree index anywhere in a Boolean tree of bitmap
operation simply by putting a row-id-to-bitmap operator on top of the index access
in the execution plan.

As a rule of thumb, bitmap indices tend to be more space efficient than regular
B-tree indices if the number of distinct key values is less than half the number of
rows in the table. For example, in a table with 1 million rows, an index on a column
with less than 500,000 distinct values would probably be smaller if it were created as
a bitmap index. For columns with a very small number of distinct values—for ex-
ample, columns referring to properties such as country, state, gender, marital status,
and various status flags—a bitmap index might require only a small fraction of the
space of a regular B-tree index. Any such space advantage can also give rise to corre-
sponding performance advantages in the form of fewer disk I/Os when the index is
scanned.

25.3.7 Function-Based Indices
In addition to creating indices on one or multiple columns of a table, Oracle allows
indices to be created on expressions that involve one or more columns, such as col1 +
col2 ∗5. For example, by creating an index on the expression upper(name), where upper
is a function that returns the uppercase version of a string, and name is a column, it is
possible to do case-insensitive searches on the name column. In order to find all rows
with name “van Gogh” efficiently, the condition

upper(name) = ’VAN GOGH’

would be used in the where clause of the query. Oracle then matches the condition
with the index definition and concludes that the index can be used to retrieve all the
rows matching “van Gogh” regardless of how the name was capitalized when it was
stored in the database. A function-based index can be created as either a bitmap or a
B-tree index.

25.3.8 Join Indices
A join index is an index where the key columns are not in the table that is referenced
by the row-ids in the index. Oracle supports bitmap join indices primarily for use
with star schemas (see Section 22.4.2). For example, if there is a column for product
names in a product dimension table, a bitmap join index on the fact table with this key
column could be used to retrieve the fact table rows that correspond to a product with
a specific name, although the name is not stored in the fact table. How the rows in
the fact and dimension tables correspond is based on a join condition that is specified
when the index is created, and becomes part of the index metadata. When a query is
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processed, the optimizer will look for the same join condition in the where clause of
the query in order to determine if the join index is applicable.

Oracle allows bitmap join indices to have more than one key column and these
columns can be in different tables. In all cases, the join conditions between the fact
table on which the index is built and the dimension tables must refer to unique keys
in the dimension tables; that is, an indexed row in the fact table must correspond to
a unique row in each of the dimension tables.

Oracle can combine a bitmap join index on a fact table with other indices on the
same table—whether join indices or not—by using the operators for Boolean bitmap
operations. For example, consider a schema with a fact table for sales, and dimension
tables for customers, products, and time. Suppose a query requests information about
sales to customers in a certain zip code who bought products in a certain product cat-
egory during a certain time period. If a multicolumn bitmap join index exists where
the key columns are the constrained dimension table columns (zip code, product cat-
egory and time), Oracle can use the join index to find rows in the fact table that match
the constraining conditions. However, if individual, single-column indices exist for
the key columns (or a subset of them), Oracle can retrieve bitmaps for fact table rows
that match each individual condition, and use the Boolean and operation to generate
a fact table bitmap for those rows that satisfy all the conditions. If the query contains
conditions on some columns of the fact table, indices on those columns could be in-
cluded in the same access path, even if they were regular B-tree indices or domain
indices (domain indices are described below in Section 25.3.9).

25.3.9 Domain Indices
Oracle allows tables to be indexed by index structures that are not native to Oracle.
This extensibility feature of the Oracle server allows software vendors to develop
so-called cartridges with functionality for specific application domains, such as text,
spatial data, and images, with indexing functionality beyond that provided by the
standard Oracle index types. In implementing the logic for creating, maintaining,
and searching the index, the index designer must ensure that it adheres to a specific
protocol in its interaction with the Oracle server.

A domain index must be registered in the data dictionary, together with the oper-
ators it supports. Oracle’s optimizer considers domain indices as one of the possible
access paths for a table. Oracle allows cost functions to be registered with the opera-
tors so that the optimizer can compare the cost of using the domain index to those of
other access paths.

For example, a domain index for advanced text searches may support an operator
contains. Once this operator has been registered, the domain index will be considered
as an access path for a query like

select *
from employees
where contains(resume, ’LINUX’)
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where resume is a text column in the employee table. The domain index can be stored
in either an external data file or inside an Oracle index-organized table.

A domain index can be combined with other (bitmap or B-tree) indices in the same
access path by converting between the row-id and bitmap representation and using
Boolean bitmap operations.

25.3.10 Partitioning
Oracle supports various kinds of horizontal partitioning of tables and indices, and
this feature plays a major role in Oracle’s ability to support very large databases. The
ability to partition a table or index has advantages in many areas.

• Backup and recovery are easier and faster, since they can be done on individ-
ual partitions rather than on the table as a whole.

• Loading operations in a data warehousing environment are less intrusive:
data can be added to a partition, and then the partition added to a table, which
is an instantaneous operation. Likewise, dropping a partition with obsolete
data from a table is very easy in a data warehouse that maintains a rolling
window of historical data.

• Query performance benefits substantially, since the optimizer can recognize
that only a subset of the partitions of a table need to be accessed in order to
resolve a query (partition pruning). Also, the optimizer can recognize that in
a join, it is not necessary to try to match all rows in one table with all rows in
the other, but that the joins need to be done only between matching pairs of
partitions (partitionwise join).

Each row in a partitioned table is associated with a specific partition. This associa-
tion is based on the partitioning column or columns that are part of the definition of a
partitioned table. There are several ways to map column values to partitions, giving
rise to several types of partitioning, each with different characteristics: range, hash,
composite, and list partitioning.

25.3.10.1 Range Partitioning
In range partitioning, the partitioning criteria are ranges of values. This type of par-
titioning is especially well suited to date columns, in which case all rows in the same
date range, say a day or a month, belong in the same partition. In a data warehouse
where data are loaded from the transactional systems at regular intervals, range par-
titioning can be used to implement a rolling window of historical data efficiently.
Each data load gets its own new partition, making the loading process faster and
more efficient. The system actually loads the data into a separate table with the same
column definition as the partitioned table. It can then check the data for consistency,
cleanse them, and index them. After that, the system can make the separate table a
new partition of the partitioned table, by a simple change to the metadata in the data
dictionary—a nearly instantaneous operation.
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Up until the metadata change, the loading process does not affect the existing
data in the partitioned table in any way. There is no need to do any maintenance
of existing indices as part of the loading. Old data can be removed from a table by
simply dropping its partition; this operation does not affect the other partitions.

In addition, queries in a data warehousing environment often contain conditions
that restrict them to a certain time period, such as a quarter or month. If date range
partitioning is used, the query optimizer can restrict the data access to those parti-
tions that are relevant to the query, and avoid a scan of the entire table.

25.3.10.2 Hash Partitioning
In hash partitioning, a hash function maps rows to partitions according to the values
in the partitioning columns. This type of partitioning is primarily useful when it is
important to distribute the rows evenly among partitions or when partitionwise joins
are important for query performance.

25.3.10.3 Composite Partitioning
In composite partitioning, the table is range partitioned, but each partition is subpar-
titioned by using hash partitioning. This type of partitioning combines the advan-
tages of range partitioning and hash partitioning.

25.3.10.4 List Partitioning
In list partitioning, the values associated with a particular partition are stated in a
list. This type of partitioning is useful if the data in the partitioning column have a
relatively small set of discrete values. For instance, a table with a state column can be
implicitly partitioned by geographical region if each partition list has the states that
belong in the same region.

25.3.11 Materialized Views
The materialized view feature (see Section 3.5.1) allows the result of an SQL query to
be stored in a table and used for later query processing. In addition, Oracle maintains
the materialized result, updating it when the tables that were referenced in the query
are updated. Materialized views are used in data warehousing to speed up query
processing, but the technology is also used for replication in distributed and mobile
environments.

In data warehousing, a common usage for materialized views is to summarize
data. For example, a common type of query asks for “the sum of sales for each quarter
during the last 2 years.” Precomputing the result, or some partial result, of such a
query can speed up query processing dramatically compared to computing it from
scratch by aggregating all detail-level sales records.

Oracle supports automatic query rewrites that take advantage of any useful mate-
rialized view when resolving a query. The rewrite consists of changing the query to
use the materialized view instead of the original tables in the query. In addition, the
rewrite may add additional joins or aggregate processing as may be required to get
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the correct result. For example, if a query needs sales by quarter, the rewrite can take
advantage of a view that materializes sales by month, by adding additional aggre-
gation to roll up the months to quarters. Oracle has a type of metadata object called
dimension that allows hierarchical relationships in tables to be defined. For example,
for a time dimension table in a star schema, Oracle can define a dimension metadata
object to specify how days roll up to months, months to quarters, quarters to years,
and so forth. Likewise, hierarchical properties relating to geography can be specified
—for example, how sales districts roll up to regions. The query rewrite logic looks at
these relationships since they allow a materialized view to be used for wider classes
of queries.

The container object for a materialized view is a table, which means that a mate-
rialized view can be indexed, partitioned, or subjected to other controls, to improve
query performance.

When there are changes to the data in the tables referenced in the query that de-
fines a materialized view, the materialized view must be refreshed to reflect those
changes. Oracle supports both full refresh of a materialized view and fast, incremen-
tal refresh. In a full refresh, Oracle recomputes the materialized view from scratch,
which may be the best option if the underlying tables have had significant changes,
for example, changes due to a bulk load. In an incremental refresh, Oracle updates
the view using the records that were changed in the underlying tables; the refresh to
the view is immediate, that is, it is executed as part of the transaction that changed
the underlying tables. Incremental refresh may be better if the number of rows that
were changed is low. There are some restrictions on the classes of queries for which
a materialized view can be incrementally refreshed (and others for when a material-
ized view can be created at all).

A materialized view is similar to an index in the sense that, while it can improve
query performance, it uses up space, and creating and maintaining it consumes re-
sources. To help resolve this tradeoff, Oracle provides a package that can advise a
user of the most cost-effective materialized views, given a particular query workload
as input.

25.4 Query Processing and Optimization
Oracle supports a large variety of processing techniques in its query processing en-
gine. Some of the more important ones are described here briefly.

25.4.1 Execution Methods
Data can be accessed through a variety of access methods:

• Full table scan. The query processor scans the entire table by getting infor-
mation about the blocks that make up the table from the extent map, and
scanning those blocks.

• Index scan. The processor creates a start and/or stop key from conditions
in the query and uses it to scan to a relevant part of the index. If there are
columns that need to be retrieved, that are not part of the index, the index
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scan would be followed by a table access by index row-id. If no start or stop
key is available, the scan would be a full index scan.

• Index fast full scan. The processor scans the extents the same way as the table
extent in a full table scan. If the index contains all the columns that are needed
in the index, and there are no good start/stop keys that would significantly
reduce that portion of the index that would be scanned in a regular index scan,
this method may be the fastest way to access the data. This is because the fast
full scan can take full advantage of multiblock disk I/O. However, unlike a
regular full scan, which traverses the index leaf blocks in order, a fast full scan
does not guarantee that the output preserves the sort order of the index.

• Index join. If a query needs only a small subset of the columns of a wide
table, but no single index contains all those columns, the processor can use an
index join to generate the relevant information without accessing the table, by
joining several indices that together contain the needed columns. It performs
the joins as hash joins on the row-ids from the different indices.

• Cluster and hash cluster access. The processor accesses the data by using the
cluster key.

Oracle has several ways to combine information from multiple indices in a single
access path. This ability allows multiple where-clause conditions to be used together
to compute the result set as efficiently as possible. The functionality includes the
ability to perform Boolean operations and, or, and minus on bitmaps representing
row-ids. There are also operators that map a list of row-ids into bitmaps and vice
versa, which allows regular B-tree indices and bitmap indices to be used together in
the same access path. In addition, for many queries involving count(*) on selections
on a table, the result can be computed by just counting the bits that are set in the
bitmap generated by applying the where clause conditions, without accessing the
table.

Oracle supports several types of joins in the execution engine: inner joins, outer
joins, semijoins, and antijoins. (An antijoin in Oracle returns rows from the left-hand
side input that do not match any row in the right-hand side input; this operation is
called anti-semijoin in other literature.) It evaluates each type of join by one of three
methods: hash join, sort–merge join, or nested-loop join.

25.4.2 Optimization
In Chapter 14, we discussed the general topic of query optimization. Here, we discuss
optimization in the context of Oracle.

25.4.2.1 Query Transformations
Oracle does query optimization in several stages. Most of the techniques relating to
query transformations and rewrites take place before access path selection, but Or-
acle also supports several types of cost-based query transformations that generate a
complete plan and return a cost estimate for both a standard version of the query and
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one that has been subjected to advanced transformations. Not all query transforma-
tion techniques are guaranteed to be beneficial for every query, but by generating a
cost estimate for the best plan with and without the transformation applied, Oracle
is able to make an intelligent decision.

Some of the major types of transformations and rewrites supported by Oracle are
as follows:

• View merging. A view reference in a query is replaced by the view definition.
This transformation is not applicable to all views.

• Complex view merging. Oracle offers this feature for certain classes of views
that are not subject to regular view merging because they have a group by or
select distinct in the view definition. If such a view is joined to other tables,
Oracle can commute the joins and the sort operation used for the group by or
distinct.

• Subquery flattening. Oracle has a variety of transformations that convert var-
ious classes of subqueries into joins, semijoins, or antijoins.

• Materialized view rewrite. Oracle has the ability to rewrite a query automati-
cally to take advantage of materialized views. If some part of the query can be
matched up with an existing materialized view, Oracle can replace that part
of the query with a reference to the table in which the view is materialized.
If need be, Oracle adds join conditions or group by operations to preserve
the semantics of the query. If multiple materialized views are applicable, Ora-
cle picks the one that gives the greatest advantage in reducing the amount of
data that has to be processed. In addition, Oracle subjects both the rewritten
query and the original version to the full optimization process producing an
execution plan and an associated cost estimate for each. Oracle then decides
whether to execute the rewritten or the original version of the query on the
basis of the cost estimates.

• Star transformation. Oracle supports a technique for evaluating queries against
star schemas, known as the star transformation. When a query contains a join
of a fact table with dimension tables, and selections on attributes from the
dimension tables, the query is transformed by deleting the join condition be-
tween the fact table and the dimension tables, and replacing the selection con-
dition on each dimension table by a subquery of the form:

fact table.fki in
(select pk from dimension tablei

where <conditions on dimension tablei >)

One such subquery is generated for each dimension that has some constrain-
ing predicate. If the dimension has a snow-flake schema (see Section 22.4), the
subquery will contain a join of the applicable tables that make up the dimen-
sion.
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Oracle uses the values that are returned from each subquery to probe an
index on the corresponding fact table column, getting a bitmap as a result.
The bitmaps generated from different subqueries are combined by a bitmap
and operation. The resultant bitmap can be used to access matching fact table
rows. Hence, only those rows in the fact table that simultaneously match the
conditions on the constrained dimensions will be accessed.

Both the decision on whether the use of a subquery for a particular dimen-
sion is cost-effective, and the decision on whether the rewritten query is better
than the original, are based on the optimizer’s cost estimates.

25.4.2.2 Access Path Selection
Oracle has a cost-based optimizer that determines join order, join methods, and ac-
cess paths. Each operation that the optimizer considers has an associated cost func-
tion, and the optimizer tries to generate the combination of operations that has the
lowest overall cost.

In estimating the cost of an operation, the optimizer relies on statistics that have
been computed for schema objects such as tables and indices. The statistics contain
information about the size of the object, the cardinality, data distribution of table
columns, and so forth. For column statistics, Oracle supports height-balanced and
frequency histograms. To facilitate the collection of optimizer statistics, Oracle can
monitor modification activity on tables and keep track of those tables that have been
subject to enough changes that recalculating the statistics may be appropriate. Oracle
also tracks what columns are used in where clauses of queries, which make them po-
tential candidates for histogram creation. With a single command, a user can tell Or-
acle to refresh the statistics for those tables that were marked as sufficiently changed.
Oracle uses sampling to speed up the process of gathering the new statistics and
automatically chooses the smallest adequate sample percentage. It also determines
whether the distribution of the marked columns merit the creation of histograms; if
the distribution is close to uniform, Oracle uses a simpler representation of the col-
umn statistics.

Oracle uses both CPU cost and disk I/Os in the optimizer cost model. To balance
the two components, it stores measures about CPU speed and disk I/O performance
as part of the optimizer statistics. Oracle’s package for gathering optimizer statistics
computes these measures.

For queries involving a nontrivial number of joins, the search space is an issue for a
query optimizer. Oracle addresses this issue in several ways. The optimizer generates
an initial join order and then decides on the best join methods and access paths for
that join order. It then changes the order of the tables and determines the best join
methods and access paths for the new join order and so forth, while keeping the best
plan that has been found so far. Oracle cuts the optimization short if the number of
different join orders that have been considered becomes so large that the time spent
in the optimizer may be noticeable compared to the time it would take to execute
the best plan found so far. Since this cutoff depends on the cost estimate for the best
plan found so far, finding a good plan early is important so that the optimization can
be stopped after a smaller number of join orders, resulting in better response time.
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Oracle uses several initial ordering heuristics to increase the likelihood that the first
join order considered is a good one.

For each join order that is considered, the optimizer may make additional passes
over the tables to decide join methods and access paths. Such additional passes would
target specific global side effects of the access path selection. For instance, a specific
combination of join methods and access paths may eliminate the need to perform an
order by sort. Since such a global side effect may not be obvious when the costs of
the different join methods and access paths are considered locally, a separate pass
targeting a specific side effect is used to find a possible execution plan with a better
overall cost.

25.4.2.3 Partition Pruning
For partitioned tables, the optimizer tries to match conditions in the where clause
of a query with the partitioning criteria for the table, in order to avoid accessing
partitions that are not needed for the result. For example, if a table is partitioned
by date range and the query is constrained to data between two specific dates, the
optimizer determines which partitions contain data between the specified dates and
ensures that only those partitions are accessed. This scenario is very common, and
the speedup can be dramatic if only a small subset of the partitions are needed.

25.4.3 Parallel Execution
Oracle allows the execution of a single SQL statement to be parallelized by dividing
the work between multiple processes on a multiprocessor computer. This feature is
especially useful for computationally intensive operations that would otherwise take
an unacceptably long time to perform. Representative examples are decision support
queries that need to process large amounts of data, data loads in a data warehouse,
and index creation or rebuild.

In order to achieve good speedup through parallelism, it is important that the
work involved in executing the statement be divided into granules that can be pro-
cessed independently by the different parallel processors. Depending on the type of
operation, Oracle has several ways to split up the work.

For operations that access base objects (tables and indices), Oracle can divide the
work by horizontal slices of the data. For some operations, such as a full table scan,
each such slice can be a range of blocks—each parallel query process scans the table
from the block at the start of the range to the block at the end. For other operations on
a partitioned table, like update and delete, the slice would be a partition. For inserts
into a nonpartitioned table, the data to be inserted are randomly divided across the
parallel processes.

Joins can be parallelized in several different ways. One way is to divide one of the
inputs to the join between parallel processes and let each process join its slice with
the other input to the join; this is the asymmetric fragment-and-replicate method
of Section 20.5.2.2. For example, if a large table is joined to a small one by a hash
join, Oracle divides the large table among the processes and broadcasts a copy of the
small table to each process, which then joins its slice with the smaller table. If both
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tables are large, it would be prohibitively expensive to broadcast one of them to all
processes. In that case, Oracle achieves parallelism by partitioning the data among
processes by hashing on the values of the join columns (the partitioned hash-join
method of Section 20.5.2.1). Each table is scanned in parallel by a set of processes and
each row in the output is passed on to one of a set of processes that are to perform
the join. Which one of these processes gets the row is determined by a hash function
on the values of the join column. Hence, each join process gets only rows that could
potentially match, and no rows that could match could end up in different processes.

Oracle parallelizes sort operations by value ranges of the column on which the
sort is performed (that is, using the range-partitioning sort of Section 20.5.1). Each
process participating in the sort is sent rows with values in its range, and it sorts the
rows in its range. To maximize the benefits of parallelism, the rows need to be divided
as evenly as possible among the parallel processes, and the problem of determining
range boundaries that generates a good distribution then arises. Oracle solves the
problem by dynamically sampling a subset of the rows in the input to the sort before
deciding on the range boundaries.

25.4.3.1 Process Structure
The processes involved in the parallel execution of an SQL statement consist of a
coordinator process and a number of parallel server processes. The coordinator is
responsible for assigning work to the parallel servers and for collecting and returning
data to the user process that issued the statement. The degree of parallelism is the
number of parallel server processes that are assigned to execute a primitive operation
as part of the statement. The degree of parallelism is determined by the optimizer, but
can be throttled back dynamically if the load on the system increases.

The parallel servers operate on a producer/consumer model. When a sequence of
operations is needed to process a statement, the producer set of servers performs the
first operation and passes the resulting data to the consumer set. For example, if a full
table scan is followed by a sort and the degree of parallelism is 12, there would be
12 producer servers performing the table scan and passing the result to 12 consumer
servers that perform the sort. If a subsequent operation is needed, like another sort,
the roles of the two sets of servers switch. The servers that originally performed the
table scan take on the role of consumers of the output produced by the the first sort
and use it to perform the second sort. Hence, a sequence of operations proceeds by
passing data back and forth between two sets of servers that alternate in their roles as
producers and consumers. The servers communicate with each other through mem-
ory buffers on shared-memory hardware and through high-speed network connec-
tions on MPP (shared nothing) configurations and clustered (shared disk) systems.

For shared nothing systems, the cost of accessing data on disk is not uniform
among processes. A process running on a node that has direct access to a device
is able to process data on that device faster than a process that has to retrieve the
data over a network. Oracle uses knowledge about device-to-node and device-to-
process affinity—that is, the ability to access devices directly—when distributing
work among parallel execution servers.
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25.5 Concurrency Control and Recovery
Oracle supports concurrency control and recovery techniques that provide a number
of useful features.

25.5.1 Concurrency Control
Oracle’s multiversion concurrency control differs from the concurrency mechanisms
used by most other database vendors. Read-only queries are given a read-consistent
snapshot, which is a view of the database as it existed at a specific point in time,
containing all updates that were committed by that point in time, and not containing
any updates that were not committed at that point in time. Thus, read locks are not
used and read-only queries do not interfere with other database activity in terms of
locking. (This is basically the multiversion two-phase locking protocol described in
Section 16.5.2.)

Oracle supports both statement and transaction level read consistency: At the be-
ginning of the execution of either a statement or a transaction (depending on what
level of consistency is used), Oracle determines the current system change number
(SCN). The SCN essentially acts as a timestamp, where the time is measured in terms
of transaction commits instead of wall-clock time.

If in the course of a query a data block is found that has a higher SCN than the one
being associated with the query, it is evident that the data block has been modified
after the time of the original query’s SCN by some other transaction that may or may
not have committed. Hence, the data in the block cannot be included in a consistent
view of the database as it existed at the time of the query’s SCN. Instead, an older
version of the data in the block must be used; specifically, the one that has the highest
SCN that does not exceed the SCN of the query. Oracle retrieves that version of the
data from the rollback segment (rollback segments are described in Section 25.5.2).
Hence, provided that the rollback segment is sufficiently large, Oracle can return
a consistent result of the query even if the data items have been modified several
times since the query started execution. Should the block with the desired SCN no
longer exist in the rollback segment, the query will return an error. It would be an
indication that the rollback segment has not been properly sized, given the activity
on the system.

In the Oracle concurrency model, read operations do not block write operations
and write operations do not block read operations, a property that allows a high
degree of concurrency. In particular, the scheme allows for long-running queries (for
example, reporting queries) to run on a system with a large amount of transactional
activity. This kind of scenario is often problematic for database systems where queries
use read locks, since the query may either fail to acquire them or lock large amounts
of data for a long time, thereby preventing transactional activity against that data
and reducing concurrency. (An alternative that is used in some systems is to use a
lower degree of consistency, such as degree-two consistency, but that could result in
inconsistent query results.)

Oracle’s concurrency model is used as a basis for the Flashback Query feature. This
feature allows a user to set a certain SCN number or wall-clock time in his session and
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perform queries on the data that existed at that point in time (provided that the data
still exist in the rollback segment). Normally in a database system, once a change
has been committed, there is no way to get back to the previous state of the data
other than performing point-in-time recovery from backups. However, recovery of a
very large database can be very costly, especially if the goal is just to retrieve some
data item that had been inadvertently deleted by a user. The Flashback Query feature
provides a much simpler mechanism to deal with user errors.

Oracle supports two ANSI/ISO isolation levels, “read committed” and “serializ-
able”. There is no support for dirty reads since it is not needed. The two isolation
levels correspond to whether statement-level or transaction-level read consistency is
used. The level can be set for a session or an individual transaction. Statement-level
read consistency is the default.

Oracle uses row-level locking. Updates to different rows do not conflict. If two
writers attempt to modify the same row, one waits until the other either commits or
is rolled back, and then it can either return a write-conflict error or go ahead and
modify the row. Locks are held for the duration of a transaction.

In addition to row-level locks that prevent inconsistencies due to DML activity,
Oracle uses table locks that prevent inconsistencies due to DDL activity. These locks
prevent one user from, say, dropping a table while another user has an uncommitted
transaction that is accessing that table. Oracle does not use lock escalation to convert
row locks to table locks for the purpose of its regular concurrency control.

Oracle detects deadlocks automatically and resolves them by rolling back one of
the transactions involved in the deadlock.

Oracle supports autonomous transactions, which are independent transactions
generated within other transactions. When Oracle invokes an autonomous transac-
tion, it generates a new transaction in a separate context. The new transaction can
be either committed or rolled back before control returns to the calling transaction.
Oracle supports multiple levels of nesting of autonomous transactions.

25.5.2 Basic Structures for Recovery
In order to understand how Oracle recovers from a failure, such as a disk crash, it
is important to understand the basic structures that are involved. In addition to the
data files that contain tables and indices, there are control files, redo logs, archived
redo logs, and rollback segments.

The control file contains various metadata that are needed to operate the database,
including information about backups.

Oracle records any transactional modification of a database buffer in the redo log,
which consists of two or more files. It logs the modification as part of the operation
that causes it and regardless of whether the transaction eventually commits. It logs
changes to indices and rollback segments as well as changes to table data. As the redo
logs fill up, they are archived by one or several background processes (if the database
is running in archivelog mode).

The rollback segment contains information about older versions of the data (that
is, undo information). In addition to its role in Oracle’s consistency model, the infor-
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mation is used to restore the old version of data items when a transaction that has
modified the data items is rolled back.

To be able to recover from a storage failure, the data files and control files should be
backed up regularly. The frequency of the backup determines the worst-case recovery
time, since it takes longer to recover if the backup is old. Oracle supports hot backups
—backups performed on an online database that is subject to transactional activity.

During recovery from a backup, Oracle performs two steps to reach a consistent
state of the database as it existed just prior to the failure. First, Oracle rolls forward
by applying the (archived) redo logs to the backup. This action takes the database
to a state that existed at the time of the failure, but not necessarily a consistent state
since the redo logs include uncommitted data. Second, Oracle rolls back uncommit-
ted transactions by using the rollback segment. The database is now in a consistent
state.

Recovery on a database that has been subject to heavy transactional activity since
the last backup can be time consuming. Oracle supports parallel recovery in which
several processes are used to apply redo information simultaneously. Oracle provides
a GUI tool, Recovery Manager, which automates most tasks associated with backup
and recovery.

25.5.3 Managed Standby Databases
To ensure high availability, Oracle provides a managed standby database feature.
(This feature is the same as remote backups, described in Section 17.10.) A standby
database is a copy of the regular database that is installed on a separate system. If
a catastrophic failure occurs on the primary system, the standby system is activated
and takes over, thereby minimizing the effect of the failure on availability. Oracle
keeps the standby database up to date by constantly applying archived redo logs
that are shipped from the primary database. The backup database can be brought
online in read-only mode and used for reporting and decision support queries.

25.6 System Architecture
Whenever an database application executes an SQL statement, there is an operating
system process that executes code in the database server. Oracle can be configured
so that the operating system process is dedicated exclusively to the statement it is
processing or so that the process can be shared among multiple statements. The latter
configuration, known as the multithreaded server, has somewhat different properties
with regard to the process and memory architecture. We shall discuss the dedicated
server architecture first and the multithreaded server architecture later.

25.6.1 Dedicated Server: Memory Structures
The memory used by Oracle falls mainly into three categories: software code areas,
the system global area (SGA), and the program global area (PGA).

The system code areas are the parts of the memory where the Oracle server code
resides. A PGA is allocated for each process to hold its local data and control informa-
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tion. This area contains stack space for various session data and the private memory
for the SQL statement that it is executing. It also contains memory for sorting and
hashing operations that may occur during the evaluation of the statement.

The SGA is a memory area for structures that are shared among users. It is made
up by several major structures, including:

• The buffer cache. This cache keeps frequently accessed data blocks (from ta-
bles as well as indices) in memory to reduce the need to perform physical
disk I/O. A least recently used replacement policy is used except for blocks ac-
cessed during a full table scan. However, Oracle allows multiple buffer pools
to be created that have different criteria for aging out data. Some Oracle oper-
ations bypass the buffer cache and read data directly from disk.

• The redo log buffer. This buffer contains the part of the redo log that has not
yet been written to disk.

• The shared pool. Oracle seeks to maximize the number of users that can
use the database concurrently by minimizing the amount of memory that is
needed for each user. One important concept in this context is the ability to
share the internal representation of SQL statements and procedural code writ-
ten in PL/SQL. When multiple users execute the same SQL statement, they can
share most data structures that represent the execution plan for the statement.
Only data that is local to each specific invocation of the statement needs to be
kept in private memory.

The sharable parts of the data structures representing the SQL statement are
stored in the shared pool, including the text of the statement. The caching of
SQL statements in the shared pool also saves compilation time, since a new in-
vocation of a statement that is already cached does not have to go through the
complete compilation process. The determination of whether an SQL state-
ment is the same as one existing in the shared pool is based on exact text
matching and the setting of certain session parameters. Oracle can automati-
cally replace constants in an SQL statement with bind variables; future queries
that are the same except for the values of constants will then match the earlier
query in the shared pool. The shared pool also contains caches for dictionary
information and various control structures.

25.6.2 Dedicated Server: Process Structures
There are two types of processes that execute Oracle server code: server processes
that process SQL statements and background processes that perform various admin-
istrative and performance-related tasks. Some of these processes are optional, and in
some cases, multiple processes of the same type can be used for performance reasons.
Some of the most important types of background processes are:

• Database writer. When a buffer is removed from the buffer cache, it must be
written back to disk if it has been modified since it entered the cache. This task



Silberschatz−Korth−Sudarshan: 
Database System 
Concepts, Fourth Edition

III. Object−Based 
Databases and XML

8. Object−Oriented 
Databases

333© The McGraw−Hill 
Companies, 2001

944 Chapter 25 Oracle

is performed by the database writer processes, which help the performance of
the system by freeing up space in the buffer cache.

• Log writer. The log writer process writes entries in the redo log buffer to the
redo log file on disk. It also writes a commit record to disk whenever a trans-
action commits.

• Checkpoint. The checkpoint process updates the headers of the data file when
a checkpoint occurs.

• System monitor. This process performs crash recovery if needed. It is also
performs some space management to reclaim unused space in temporary seg-
ments.

• Process monitor. This process performs process recovery for server processes
that fail, releasing resources and performing various cleanup operations.

• Recoverer. The recoverer process resolves failures and conducts cleanup for
distributed transactions.

• Archiver. The archiver copies the online redo log file to an archived redo log
every time the online log file fills up.

25.6.3 Multithreaded Server
The multithreaded server configuration increases the number of users that a given
number of server processes can support by sharing server processes among state-
ments. It differs from the dedicated server architecture in these major aspects:

• A background dispatch process routes user requests to the next available ser-
ver process. In doing so, it uses a request queue and a response queue in the
SGA. The dispatcher puts a new request in the request queue where it will
be picked up by a server process. As a server process completes a request, it
puts the result in the response queue to be picked up by the dispatcher and
returned to the user.

• Since a server process is shared among multiple SQL statements, Oracle does
not keep private data in the PGA. Instead, it stores the session-specific data in
the SGA.

25.6.4 Oracle9i Real Application Clusters
Oracle9i Real Application Clusters is a feature that allows multiple instances of Ora-
cle to run against the same database. (Recall that, in Oracle terminology, an instance
is the combination of background processes and memory areas.) This feature enables
Oracle to run on clustered and MPP (shared disk and shared nothing) hardware ar-
chitectures. This feature was called Oracle Parallel Server in earlier versions of Or-
acle. The ability to cluster multiple nodes has important benefits for scalability and
availability that are useful in both OLTP and data warehousing environments.
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The scalability benefits of the feature are obvious, since more nodes mean more
processing power. Oracle further optimizes the use of the hardware through features
such as affinity and partitionwise joins.

Oracle9i Real Application Clusters can also be used to achieve high availability. If
one node fails, the remaining ones are still available to the application accessing the
database. The remaining instances will automatically roll back uncommitted trans-
actions that were being processed on the failed node in order to prevent them from
blocking activity on the remaining nodes.

Having multiple instances run against the same database gives rise to some tech-
nical issues that do not exist on a single instance. While it is sometimes possible to
partition an application among nodes so that nodes rarely access the same data, there
is always the possibility of overlaps, which affects locking and cache management.
To address this, Oracle supports a distributed lock manager and the cache fusion fea-
ture, which allows data blocks to flow directly among caches on different instances
using the interconnect, without being written to disk.

25.7 Replication, Distribution, and External Data
Oracle provides support for replication and distributed transactions with two-phase
commit.

25.7.1 Replication
Oracle supports several types of replication. (See Section 19.2.1 for an introduction
to replication.) In its simplest form, data in a master site are replicated to other sites
in the form of snapshots. (The term “snapshot” in this context should not be con-
fused with the concept of a read-consistent snapshot in the context of the concurrency
model.) A snapshot does not have to contain all the master data—it can, for example,
exclude certain columns from a table for security reasons. Oracle supports two types
of snapshots: read-only and updatable. An updatable snapshot can be modified at a
slave site and the modifications propagated to the master table. However, read-only
snapshots allow for a wider range of snapshot definitions. For instance, a read-only
snapshot can be defined in terms of set operations on tables at the master site.

Oracle also supports multiple master sites for the same data, where all master
sites act as peers. A replicated table can be updated at any of the master sites and
the update is propagated to the other sites. The updates can be propagated either
asynchronously or synchronously.

For asynchronous replication, the update information is sent in batches to the other
master sites and applied. Since the same data could be subject to conflicting modi-
fications at different sites, conflict resolution based on some business rules might be
needed. Oracle provides a number of of built-in conflict resolution methods and al-
lows users to write their own if need be.

With synchronous replication, an update to one master site is propagated imme-
diately to all other sites. If the update transaction fails at any master site, the update
is rolled back at all sites.
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25.7.2 Distributed Databases
Oracle supports queries and transactions spanning multiple databases on different
systems. With the use of gateways, the remote systems can include non-Oracle data-
bases. Oracle has built-in capability to optimize a query that includes tables at differ-
ent sites, retrieve the relevant data, and return the result as if it had been a normal,
local query. Oracle also transparently supports transactions spanning multiple sites
by a built-in two-phase-commit protocol.

25.7.3 External Data Sources
Oracle has several mechanisms for supporting external data sources. The most com-
mon usage is in data warehousing when large amounts of data are regularly loaded
from a transactional system.

25.7.3.1 SQL*Loader
Oracle has a direct load utility, SQL*Loader, that supports fast parallel loads of large
amounts of data from external files. It supports a variety of data formats and it can
perform various filtering operations on the data being loaded.

25.7.3.2 External Tables
Oracle allows external data sources, such as flat files, to be referenced in the from
clause of a query as if they were regular tables. An external table is defined by meta-
data that describe the Oracle column types and the mapping of the external data into
those columns. An access driver is also needed to access the external data. Oracle
provides a default driver for flat files.

The external table feature is primarily intended for extraction, transformation, and
loading (ETL) operations in a data warehousing environment. Data can be loaded into
the data warehouse from a flat file using

create table table as
select ... from < external table >
where ...

By adding operations on the data in either the select list or where clause, trans-
formations and filtering can be done as part of the same SQL statement. Since these
operations can be expressed either in native SQL or in functions written in PL/SQL or
Java, the external table feature provides a very powerful mechanism for expressing
all kinds of data transformation and filtering operations. For scalability, the access to
the external table can be parallelized by Oracle’s parallel execution feature.

25.8 Database Administration Tools
Oracle provides users a number of tools for system management and application
development.
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25.8.1 Oracle Enterprise Manager
Oracle Enterprise Manager is Oracle’s main tool for database systems management.
It provides an easy-to-use graphical user interface (GUI) and a variety of wizards for
schema management, security management, instance management, storage manage-
ment, and job scheduling. It also provides performance monitoring and tools to help
an administrator tune application SQL, access paths, and instance and data storage
parameters. For example, it includes a wizard that can suggest what indices are the
most cost-effective to create under a given workload.

25.8.2 Database Resource Management
A database administrator needs to be able to control how the processing power of
the hardware is divided among users or groups of users. Some groups may execute
interactive queries where response time is critical; others may execute long-running
reports that can be run as batch jobs in the background when the system load is low.
It is also important to be able to prevent a user from inadvertently submitting an
extremely expensive ad hoc query that will unduly delay other users.

Oracle’s Database Resource Management feature allows the database administra-
tor to divide users into resource consumer groups with different priorities and prop-
erties. For example, a group of high-priority, interactive users may be guaranteed at
least 60 percent of the CPU. The remainder, plus any part of the 60 percent not used
up by the high-priority group, would be allocated among resource consumer groups
with lower priority. A really low-priority group could get assigned 0 percent, which
would mean that queries issued by this group would run only when there are spare
CPU cycles available. Limits for the degree of parallelism for parallel execution can
be set for each group. The database administrator can also set time limits for how
long an SQL statement is allowed to run for each group. When a users submits a
statement, the Resource Manager estimates how long it would take to execute it and
returns an error if the statement violates the limit. The resource manager can also
limit the number of user sessions that can be active concurrently for each resource
consumer group.

Bibliographical Notes
Up-to-date product information, including documentation, on Oracle products can
be found at the Web sites http://www.oracle.com and http://technet.oracle.com.

Extensible indexing in Oracle8i is described by Srinivasan et al. [2000b], while
Srinivasan et al. [2000a] describe index organized tables in Oracle8i. Banerjee et al.
[2000] describe XML support in Oracle8i. Bello et al. [1998] describe materialized
views in Oracle. Antoshenkov [1995] describes the byte-aligned bitmap compression
technique used in Oracle; see also Johnson [1999b].

The Oracle Parallel Server is described by Bamford et al. [1998]. Recovery in Oracle
is described by Joshi et al. [1998] and Lahiri et al. [2001]. Messaging and queuing in
Oracle are described by Gawlick [1998].
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C H A P T E R 9

Object-Relational Databases

Persistent programming languages add persistence and other database features to ex-
isting programming languages by using an existing object-oriented type system. In
contrast, object-relational data models extend the relational data model by providing a
richer type system including complex data types and object orientation. Relational
query languages, in particular SQL, need to be correspondingly extended to deal
with the richer type system. Such extensions attempt to preserve the relational foun-
dations—in particular, the declarative access to data—while extending the model-
ing power. Object-relational database systems (that is, database systems based on
the object-relation model) provide a convenient migration path for users of relational
databases who wish to use object-oriented features.

We first present the motivation for the nested relational model, which allows rela-
tions that are not in first normal form, and allows direct representation of hierarchical
structures. We then show how to extend SQL by adding a variety of object-relational
features. Our discussion is based on the SQL:1999 standard.

Finally, we discuss differences between persistent programming languages and
object-relational systems, and mention criteria for choosing between them.

9.1 Nested Relations
In Chapter 7, we defined first normal form (1NF), which requires that all attributes
have atomic domains. Recall that a domain is atomic if elements of the domain are
considered to be indivisible units.

The assumption of 1NF is a natural one in the bank examples we have considered.
However, not all applications are best modeled by 1NF relations. For example, rather
than view a database as a set of records, users of certain applications view it as a set of
objects (or entities). These objects may require several records for their representation.
We shall see that a simple, easy-to-use interface requires a one-to-one correspondence

335
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title author-set publisher keyword-set
(name, branch)

Compilers {Smith, Jones} (McGraw-Hill, New York) {parsing, analysis}
Networks {Jones, Frick} (Oxford, London) {Internet, Web}

Figure 9.1 Non-1NF books relation, books.

between the user’s intuitive notion of an object and the database system’s notion of
a data item.

The nested relational model is an extension of the relational model in which do-
mains may be either atomic or relation valued. Thus, the value of a tuple on an at-
tribute may be a relation, and relations may be contained within relations. A complex
object thus can be represented by a single tuple of a nested relation. If we view a tu-
ple of a nested relation as a data item, we have a one-to-one correspondence between
data items and objects in the user’s view of the database.

We illustrate nested relations by an example from a library. Suppose we store for
each book the following information:

• Book title

• Set of authors

• Publisher

• Set of keywords

We can see that, if we define a relation for the preceding information, several domains
will be nonatomic.

• Authors. A book may have a set of authors. Nevertheless, we may want to
find all books of which Jones was one of the authors. Thus, we are interested
in a subpart of the domain element “set of authors.”

• Keywords. If we store a set of keywords for a book, we expect to be able to
retrieve all books whose keywords include one or more keywords. Thus, we
view the domain of the set of keywords as nonatomic.

• Publisher. Unlike keywords and authors, publisher does not have a set-valued
domain. However, we may view publisher as consisting of the subfields name
and branch. This view makes the domain of publisher nonatomic.

Figure 9.1 shows an example relation, books. The books relation can be represented
in 1NF, as in Figure 9.2. Since we must have atomic domains in 1NF, yet want ac-
cess to individual authors and to individual keywords, we need one tuple for each
(keyword, author) pair. The publisher attribute is replaced in the 1NF version by two
attributes: one for each subfield of publisher.
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title author pub-name pub-branch keyword
Compilers Smith McGraw-Hill New York parsing
Compilers Jones McGraw-Hill New York parsing
Compilers Smith McGraw-Hill New York analysis
Compilers Jones McGraw-Hill New York analysis
Networks Jones Oxford London Internet
Networks Frick Oxford London Internet
Networks Jones Oxford London Web
Networks Frick Oxford London Web

Figure 9.2 flat-books, a 1NF version of non-1NF relation books.

Much of the awkwardness of the flat-books relation in Figure 9.2 disappears if we
assume that the following multivalued dependencies hold:

• title →→ author

• title →→ keyword

• title → pub-name, pub-branch

Then, we can decompose the relation into 4NF using the schemas:

• authors(title, author)

• keywords(title, keyword)

• books4(title, pub-name, pub-branch)

Figure 9.3 shows the projection of the relation flat-books of Figure 9.2 onto the preced-
ing decomposition.

Although our example book database can be adequately expressed without using
nested relations, the use of nested relations leads to an easier-to-understand model:
The typical user of an information-retrieval system thinks of the database in terms of
books having sets of authors, as the non-1NF design models. The 4NF design would
require users to include joins in their queries, thereby complicating interaction with
the system.

We could define a non-nested relational view (whose contents are identical to flat-
books) that eliminates the need for users to write joins in their query. In such a view,
however, we lose the one-to-one correspondence between tuples and books.

9.2 Complex Types
Nested relations are just one example of extensions to the basic relational model;
other nonatomic data types, such as nested records, have also proved useful. The
object-oriented data model has caused a need for features such as inheritance and
references to objects. With complex type systems and object orientation, we can rep-
resent E-R model concepts, such as identity of entities, multivalued attributes, and
generalization and specialization directly, without a complex translation to the rela-
tional model.
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title author
Compilers Smith
Compilers Jones
Networks Jones
Networks Frick

authors

title keyword
Compilers parsing
Compilers analysis
Networks Internet
Networks Web

keywords

title pub-name pub-branch
Compilers McGraw-Hill New York
Networks Oxford London

books4

Figure 9.3 4NF version of the relation flat-books of Figure 9.2.

In this section, we describe extensions to SQL to allow complex types, includ-
ing nested relations, and object-oriented features. Our presentation is based on the
SQL:1999 standard, but we also outline features that are not currently in the standard
but may be introduced in future versions of SQL standards.

9.2.1 Collection and Large Object Types
Consider this fragment of code.

create table books (
. . .
keyword-set setof(varchar(20))
. . .

)

This table definition differs from table definitions in ordinary relational databases,
since it allows attributes that are sets, thereby permitting multivalued attributes of
E-R diagrams to be represented directly.

Sets are an instance of collection types. Other instances of collection types include
arrays and multisets (that is, unordered collections, where an element may occur
multiple times). The following attribute definitions illustrate the declaration of an
array:

author-array varchar(20) array [10]
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Here, author-array is an array of up to 10 author names. We can access elements of an
array by specifying the array index, for example author-array[1].

Arrays are the only collection type supported by SQL:1999; the syntax used is as
in the preceding declaration. SQL:1999 does not support unordered sets or multisets,
although they may appear in future versions of SQL.1

Many current-generation database applications need to store attributes that can
be large (of the order of many kilobytes), such as a photograph of a person, or very
large (of the order of many megabytes or even gigabytes), such as a high-resolution
medical image or video clip. SQL:1999 therefore provides new large-object data types
for character data (clob) and binary data (blob). The letters “lob” in these data types
stand for “Large OBject”. For example, we may declare attributes

book-review clob(10KB)
image blob(10MB)
movie blob(2GB))

Large objects are typically used in external applications, and it makes little sense to
retrieve them in their entirety by SQL. Instead, an application would usually retrieve
a “locator” for a large object and then use the locator to manipulate the object from
the host language. For instance, JDBC permits the programmer to fetch a large object
in small pieces, rather than all at once, much like fetching data from an operating
system file.

9.2.2 Structured Types
Structured types can be declared and used in SQL:1999 as in the following example:

create type Publisher as
(name varchar(20),
branch varchar(20))

create type Book as
(title varchar(20),
author-array varchar(20) array [10],
pub-date date,
publisher Publisher,
keyword-set setof(varchar(20)))

create table books of Book

The first statement defines a type called Publisher, which has two components: a name
and a branch. The second statement defines a structured type Book, which contains
a title, an author-array, which is an array of authors, a publication date, a publisher
(of type Publisher), and a set of keywords. (The declaration of keyword-set as a set
uses our extended syntax, and is not supported by the SQL:1999 standard.) The types
illustrated above are called structured types in SQL:1999.

1. The Oracle 8 database system supports nested relations, but uses a syntax different from that in this
chapter.
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Finally, a table books containing tuples of type Book is created. The table is similar
to the nested relation books in Figure 9.1, except we have decided to create an array
of author names instead of a set of author names. The array permits us to record the
order of author names.

Structured types allow composite attributes of E-R diagrams to be represented
directly. Unnamed row types can also be used in SQL:1999 to define composite at-
tributes. For instance, we could have defined an attribute publisher1 as

publisher1 row (name varchar(20),
branch varchar(20))

instead of creating a named type Publisher.
We can of course create tables without creating an intermediate type for the table.

For example, the table books could also be defined as follows:

create table books
(title varchar(20),
author-array varchar(20) array[10],
pub-date date,
publisher Publisher,
keyword-set setof(varchar(20)))

With the above declaration, there is no explicit type for rows of the table. 2

A structured type can have methods defined on it. We declare methods as part of
the type definition of a structured type:

create type Employee as (
name varchar(20),
salary integer )

method giveraise (percent integer)

We create the method body separately:

create method giveraise (percent integer) for Employee
begin

set self.salary = self.salary + (self.salary * percent) / 100;
end

The variable self refers to the structured type instance on which the method is in-
voked. The body of the method can contain procedural statements, which we shall
study in Section 9.6.

2. In Oracle PL/SQL, given a table t, t%rowtype denotes the type of the rows of the table. Similarly,
t.a%type denotes the type of attribute a of table t.
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9.2.3 Creation of Values of Complex Types
In SQL:1999 constructor functions are used to create values of structured types. A
function with the same name as a structured type is a constructor function for the
structured type. For instance, we could declare a constructor for the type Publisher
like this:

create function Publisher (n varchar(20), b varchar(20))
returns Publisher
begin

set name = n;
set branch = b;

end

We can then use Publisher(’McGraw-Hill’, ’New York’) to create a value of the type
Publisher.

SQL:1999 also supports functions other than constructors, as we shall see in Sec-
tion 9.6; the names of such functions must be different from the name of any struc-
tured type.

Note that in SQL:1999, unlike in object-oriented databases, a constructor creates a
value of the type, not an object of the type. That is, the value the constructor creates
has no object identity. In SQL:1999 objects correspond to tuples of a relation, and are
created by inserting a tuple in a relation.

By default every structured type has a constructor with no arguments, which sets
the attributes to their default values. Any other constructors have to be created explic-
itly. There can be more than one constructor for the same structured type; although
they have the same name, they must be distinguishable by the number of arguments
and types of their arguments.

An array of values can be created in SQL:1999 in this way:

array[’Silberschatz’, ’Korth’, ’Sudarshan’]

We can construct a row value by listing its attributes within parentheses. For instance,
if we declare an attribute publisher1 as a row type (as in Section 9.2.2), we can con-
struct this value for it:

(’McGraw-Hill’, ’New York’)

without using a constructor.
We create set-valued attributes, such as keyword-set, by enumerating their elements

within parentheses following the keyword set. We can create multiset values just like
set values, by replacing set by multiset.3

Thus, we can create a tuple of the type defined by the books relation as:

(’Compilers’, array[’Smith’, ’Jones’], Publisher(’McGraw-Hill’, ’New York’),
set(’parsing’, ’analysis’))

3. Although sets and multisets are not part of the SQL:1999 standard, the other constructs shown in this
section are part of the standard. Future versions of SQL are likely to support sets and multisets.
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Here we have created a value for the attribute Publisher by invoking a constructor
function for Publisher with appropriate arguments.

If we want to insert the preceding tuple into the relation books, we could execute
the statement

insert into books
values
(’Compilers’, array[’Smith’, ’Jones’], Publisher(’McGraw-Hill’, ’New York’),

set(’parsing’, ’analysis’))

9.3 Inheritance
Inheritance can be at the level of types, or at the level of tables. We first consider
inheritance of types, then inheritance at the level of tables.

9.3.1 Type Inheritance
Suppose that we have the following type definition for people:

create type Person
(name varchar(20),
address varchar(20))

We may want to store extra information in the database about people who are stu-
dents, and about people who are teachers. Since students and teachers are also peo-
ple, we can use inheritance to define the student and teacher types in SQL:1999:

create type Student
under Person
(degree varchar(20),
department varchar(20))

create type Teacher
under Person
(salary integer,
department varchar(20))

Both Student and Teacher inherit the attributes of Person—namely, name and address.
Student and Teacher are said to be subtypes of Person, and Person is a supertype of
Student, as well as of Teacher.

Methods of a structured type are inherited by its subtypes, just as attributes are.
However, a subtype can redefine the effect of a method by declaring the method
again, using overriding method in place of method in the method declaration.

Now suppose that we want to store information about teaching assistants, who
are simultaneously students and teachers, perhaps even in different departments.
We can do this by using multiple inheritance, which we studied in Chapter 8. The
SQL:1999 standard does not support multiple inheritance. However, draft versions
of the SQL:1999 standard provided for multiple inheritance, and although the final
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SQL:1999 omitted it, future versions of the SQL standard may introduce it. We base
our discussion on the draft versions of the SQL:1999 standard.

For instance, if our type system supports multiple inheritance, we can define a
type for teaching assistant as follows:

create type TeachingAssistant
under Student, Teacher

TeachingAssistant would inherit all the attributes of Student and Teacher. There is a
problem, however, since the attributes name, address, and department are present in
Student, as well as in Teacher.

The attributes name and address are actually inherited from a common source, Per-
son. So there is no conflict caused by inheriting them from Student as well as Teacher.
However, the attribute department is defined separately in Student and Teacher. In fact,
a teaching assistant may be a student of one department and a teacher in another
department. To avoid a conflict between the two occurrences of department, we can
rename them by using an as clause, as in this definition of the type TeachingAssistant:

create type TeachingAssistant
under Student with (department as student-dept),

Teacher with (department as teacher-dept)

We note that SQL:1999 supports only single inheritance— that is, a type can inherit
from only a single type; the syntax used is as in our earlier examples. Multiple inher-
itance as in the TeachingAssistant example is not supported in SQL:1999. The SQL:1999
standard also requires an extra field at the end of the type definition, whose value
is either final or not final. The keyword final says that subtypes may not be created
from the given type, while not final says that subtypes may be created.

In SQL as in most other languages, a value of a structured type must have exactly
one “most-specific type.” That is, each value must be associated with one specific
type, called its most-specific type, when it is created. By means of inheritance, it
is also associated with each of the supertypes of its most specific type. For example,
suppose that an entity has the type Person, as well as the type Student. Then, the most-
specific type of the entity is Student, since Student is a subtype of Person. However, an
entity cannot have the type Student, as well as the type Teacher, unless it has a type,
such as TeachingAssistant, that is a subtype of Teacher, as well as of Student.

9.3.2 Table Inheritance
Subtables in SQL:1999 correspond to the E-R notion of specialization/generalization.
For instance, suppose we define the people table as follows:

create table people of Person

We can then define tables students and teachers as subtables of people, as follows:
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create table students of Student
under people

create table teachers of Teacher
under people

The types of the subtables must be subtypes of the type of the parent table. Thereby,
every attribute present in people is also present in the subtables.

Further, when we declare students and teachers as subtables of people, every tuple
present in students or teachers becomes also implicitly present in people. Thus, if a
query uses the table people, it will find not only tuples directly inserted into that table,
but also tuples inserted into its subtables, namely students and teachers. However,
only those attributes that are present in people can be accessed.

Multiple inheritance is possible with tables, just as it is possible with types. (We
note, however, that multiple inheritance of tables is not supported by SQL:1999.) For
example, we can create a table of type TeachingAssistant:

create table teaching-assistants
of TeachingAssistant

under students, teachers

As a result of the declaration, every tuple present in the teaching-assistants table is
also implicitly present in the teachers and in the students table, and in turn in the
people table.

SQL:1999 permits us to find tuples that are in people but not in its subtables by using
“only people” in place of people in a query.

There are some consistency requirements for subtables. Before we state the con-
straints, we need a definition: We say that tuples in a subtable corresponds to tuples
in a parent table if they have the same values for all inherited attributes. Thus, corre-
sponding tuples represent the same entity.

The consistency requirements for subtables are:

1. Each tuple of the supertable can correspond to at most one tuple in each of its
immediate subtables.

2. SQL:1999 has an additional constraint that all the tuples corresponding to each
other must be derived from one tuple (inserted into one table).

For example, without the first condition, we could have two tuples in students (or
teachers) that correspond to the same person.

The second condition rules out a tuple in people corresponding to both a tuple in
students and a tuple in teachers, unless all these tuples are implicitly present because
a tuple was inserted in a table teaching-assistants, which is a subtable of both teachers
and students.

Since SQL:1999 does not support multiple inheritance, the second condition actu-
ally prevents a person from being both a teacher and a student. The same problem
would arise if the subtable teaching-assistants is absent, even if multiple inheritance
were supported. Obviously it would be useful to model a situation where a person
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can be a teacher and a student, even if a common subtable teaching-assistants is not
present. Thus, it can be useful to remove the second consistency constraint. We return
to this issue in Section 9.3.3.

Subtables can be stored in an efficient manner without replication of all inherited
fields, in one of two ways:

• Each table stores the primary key (which may be inherited from a parent table)
and the attributes defined locally. Inherited attributes (other than the primary
key) do not need to be stored, and can be derived by means of a join with the
supertable, based on the primary key.

• Each table stores all inherited and locally defined attributes. When a tuple is
inserted, it is stored only in the table in which it is inserted, and its presence is
inferred in each of the supertables. Access to all attributes of a tuple is faster,
since a join is not required. However, in case the second consistency constraint
is absent—that is, an entity can be represented in two subtables without be-
ing present in a common subtable of both—this representation can result in
replication of information.

9.3.3 Overlapping Subtables
Inheritance of types should be used with care. A university database may have many
subtypes of Person, such as Student, Teacher, FootballPlayer, ForeignCitizen, and so on.
Student may itself have subtypes such as UndergraduateStudent, GraduateStudent, and
PartTimeStudent. Clearly, a person can belong to several of these categories at once.
As Chapter 8 mentions, each of these categories is sometimes called a role.

For each entity to have exactly one most-specific type, we would have to create
a subtype for every possible combination of the supertypes. In the preceding exam-
ple, we would have subtypes such as ForeignUndergraduateStudent, ForeignGraduate-
StudentFootballPlayer, and so on. Unfortunately, we would end up with an enormous
number of subtypes of Person.

A better approach in the context of database systems is to allow an object to have
multiple types, without having a most-specific type. Object-relational systems can
model such a feature by using inheritance at the level of tables, rather than of types,
and allowing an entity to exist in more than one table at once.

For example, suppose we again have the type Person, with subtypes Student and
Teacher, and the corresponding table people, with subtables teachers and students. We
can then have a tuple in teachers and a tuple in students corresponding to the same
tuple in people.

There is no need to have a type TeachingAssistant that is a subtype of both Student
and Teacher. We need not create a type TeachingAssistant unless we wish to store extra
attributes or redefine methods in a manner specific to people who are both students
and teachers.

We note, however, that SQL:1999 prohibits such a situation, because of consistency
requirement 2 from Section 9.3.2. Since SQL:1999 also does not support multiple in-
heritance, we cannot use inheritance to model a situation where a person can be
both a student and a teacher. We can of course create separate tables to represent the
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information without using inheritance. We would have to add appropriate referen-
tial integrity constraints to ensure that students and teachers are also represented in
the people table.

9.4 Reference Types
Object-oriented languages provide the ability to refer to objects. An attribute of a type
can be a reference to an object of a specified type. For example, in SQL:1999 we can
define a type Department with a field name and a field head which is a reference to the
type Person, and a table departments of type Department, as follows:

create type Department (
name varchar(20),
head ref(Person) scope people

)
create table departments of Department

Here, the reference is restricted to tuples of the table people. The restriction of the
scope of a reference to tuples of a table is mandatory in SQL:1999, and it makes refer-
ences behave like foreign keys.

We can omit the declaration scope people from the type declaration and instead
make an addition to the create table statement:

create table departments of Department
(head with options scope people)

In order to initialize a reference attribute, we need to get the identifier of the tuple
that is to be referenced. We can get the identifier value of a tuple by means of a query.
Thus, to create a tuple with the reference value, we may first create the tuple with a
null reference and then set the reference separately:

insert into departments
values (’CS’, null)

update departments
set head = (select ref(p)

from people as p
where name = ’John’)

where name = ’CS’

This syntax for accessing the identifier of a tuple is based on the Oracle syntax.
SQL:1999 adopts a different approach, one where the referenced table must have an
attribute that stores the identifier of the tuple. We declare this attribute, called the
self-referential attribute, by adding a ref is clause to the create table statement:

create table people of Person
ref is oid system generated
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Here, oid is an attribute name, not a keyword. The subquery above would then use

select p.oid

instead of select ref(p).
An alternative to system-generated identifiers is to allow users to generate iden-

tifiers. The type of the self-referential attribute must be specified as part of the type
definition of the referenced table, and the table definition must specify that the refer-
ence is user generated:

create type Person
(name varchar(20),
address varchar(20))
ref using varchar(20)

create table people of Person
ref is oid user generated

When inserting a tuple in people, we must provide a value for the identifier:

insert into people values
(’01284567’, ’John’, ’23 Coyote Run’)

No other tuple for people or its supertables or subtables can have the same identifier.
We can then use the identifier value when inserting a tuple into departments, without
the need for a separate query to retrieve the identifier:

insert into departments
values (’CS’, ’01284567’)

It is even possible to use an existing primary key value as the identifier, by includ-
ing the ref from clause in the type definition:

create type Person
(name varchar(20) primary key,
address varchar(20))

ref from(name)
create table people of Person

ref is oid derived

Note that the table definition must specify that the reference is derived, and must still
specify a self-referential attribute name. When inserting a tuple for departments, we
can then use

insert into departments
values (’CS’, ’John’)
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9.5 Querying with Complex Types
In this section, we present extensions of the SQL query language to deal with complex
types. Let us start with a simple example: Find the title and the name of the publisher
of each book. This query carries out the task:

select title, publisher.name
from books

Notice that the field name of the composite attribute publisher is referred to by a dot
notation.

9.5.1 Path Expressions
References are dereferenced in SQL:1999 by the −> symbol. Consider the departments
table defined earlier. We can use this query to find the names and addresses of the
heads of all departments:

select head−>name, head−>address
from departments

An expression such as “head−>name” is called a path expression.
Since head is a reference to a tuple in the people table, the attribute name in the

preceding query is the name attribute of the tuple from the people table. References can
be used to hide join operations; in the preceding example, without the references, the
head field of department would be declared a foreign key of the table people. To find
the name and address of the head of a department, we would require an explicit
join of the relations departments and people. The use of references simplifies the query
considerably.

9.5.2 Collection-Valued Attributes
We now consider how to handle collection-valued attributes. Arrays are the only
collection type supported by SQL:1999, but we use the same syntax for relation-valued
attributes also. An expression evaluating to a collection can appear anywhere that a
relation name may appear, such as in a from clause, as the following paragraphs
illustrate. We use the table books which we defined earlier.

If we want to find all books that have the word “database” as one of their key-
words, we can use this query:

select title
from books
where ’database’ in (unnest(keyword-set))

Note that we have used unnest(keyword-set) in a position where SQL without nested
relations would have required a select-from-where subexpression.
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If we know that a particular book has three authors, we could write:

select author-array[1], author-array[2], author-array[3]
from books
where title = ’Database System Concepts’

Now, suppose that we want a relation containing pairs of the form “title, author-
name” for each book and each author of the book. We can use this query:

select B.title, A.name
from books as B, unnest(B.author-array) as A

Since the author-array attribute of books is a collection-valued field, it can be used in a
from clause, where a relation is expected.

9.5.3 Nesting and Unnesting
The transformation of a nested relation into a form with fewer (or no) relation-valued
attributes is called unnesting. The books relation has two attributes, author-array and
keyword-set, that are collections, and two attributes, title and publisher, that are not.
Suppose that we want to convert the relation into a single flat relation, with no nested
relations or structured types as attributes. We can use the following query to carry out
the task:

select title, A as author, publisher.name as pub-name, publisher.branch
as pub-branch, K as keyword

from books as B, unnest(B.author-array) as A, unnest (B.keyword-set) as K

The variable B in the from clause is declared to range over books. The variable A is
declared to range over the authors in author-array for the book B, and K is declared to
range over the keywords in the keyword-set of the book B. Figure 9.1 (in Section 9.1)
shows an instance books relation, and Figure 9.2 shows the 1NF relation that is the
result of the preceding query.

The reverse process of transforming a 1NF relation into a nested relation is called
nesting. Nesting can be carried out by an extension of grouping in SQL. In the normal
use of grouping in SQL, a temporary multiset relation is (logically) created for each
group, and an aggregate function is applied on the temporary relation. By return-
ing the multiset instead of applying the aggregate function, we can create a nested
relation. Suppose that we are given a 1NF relation flat-books, as in Figure 9.2. The
following query nests the relation on the attribute keyword:

select title, author, Publisher(pub-name, pub-branch) as publisher,
set(keyword) as keyword-set

from flat-books
groupby title, author, publisher

The result of the query on the books relation from Figure 9.2 appears in Figure 9.4.
If we want to nest the author attribute as well, and thereby to convert the 1NF table
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title author publisher keyword-set
(pub-name, pub-branch)

Compilers Smith (McGraw-Hill, New York) {parsing, analysis}
{parsing, analysis}Compilers Jones (McGraw-Hill, New York)

Networks Jones (Oxford, London) {Internet, Web}
{Internet, Web}Networks Frick (Oxford, London)

Figure 9.4 A partially nested version of the flat-books relation.

flat-books in Figure 9.2 back to the nested table books in Figure 9.1, we can use the
query:

select title, set(author) as author-set, Publisher(pub-name, pub-branch) as publisher,
set(keyword) as keyword-set

from flat-books
groupby title, publisher

Another approach to creating nested relations is to use subqueries in the select
clause. The following query, which performs the same task as the previous query,
illustrates this approach.

select title,
( select author
from flat-books as M
where M.title = O.title) as author-set,

Publisher(pub-name, pub-branch) as publisher,
( select keyword
from flat-books as N
where N.title = O.title) as keyword-set,

from flat-books as O

The system executes the nested subqueries in the select clause for each tuple gen-
erated by the from and where clauses of the outer query. Observe that the attribute
O.title from the outer query is used in the nested queries, to ensure that only the
correct sets of authors and keywords are generated for each title. An advantage of
this approach is that an orderby clause can be used in the nested query, to generate
results in a desired order. An array or a list could be constructed from the result of
the nested query. Without such an ordering, arrays and lists would not be uniquely
determined.

We note that while unnesting of array-valued attributes can be carried out in
SQL:1999 as shown above, the reverse process of nesting is not supported in SQL:1999.
The extensions we have shown for nesting illustrate features from some proposals
for extending SQL, but are not part of any standard currently.
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9.6 Functions and Procedures
SQL:1999 allows the definition of functions, procedures, and methods. These can be
defined either by the procedural component of SQL:1999, or by an external program-
ming language such as Java, C, or C++. We look at definitions in SQL:1999 first, and
then see how to use definitions in external languages. Several database systems sup-
port their own procedural languages, such as PL/SQL in Oracle and TransactSQL in
Microsoft SQLServer. These resemble the procedural part of SQL:1999, but there are
differences in syntax and semantics; see the respective system manuals for further
details.

9.6.1 SQL Functions and Procedures
Suppose that we want a function that, given the title of a book, returns the count of
the number of authors, using the 4NF schema. We can define the function this way:

create function author-count(title varchar(20))
returns integer
begin
declare a-count integer;

select count(author) into a-count
from authors
where authors.title = title

return a-count;
end

This function can be used in a query that returns the titles of all books that have
more than one author:

select title
from books4
where author-count(title) > 1

Functions are particularly useful with specialized data types such as images and
geometric objects. For instance, a polygon data type used in a map database may
have an associated function that checks if two polygons overlap, and an image data
type may have associated functions to compare two images for similarity. Functions
may be written in an external language such as C, as we see in Section 9.6.2. Some
database systems also support functions that return relations, that is, multisets of
tuples, although such functions are not supported by SQL:1999.

Methods, which we saw in Section 9.2.2, can be viewed as functions associated
with structured types. They have an implicit first parameter called self, which is set
to the structured type value on which the method is invoked. Thus, the body of the
method can refer to an attribute a of the value by using self.a. These attributes can
also be updated by the method.

SQL:1999 also supports procedures. The author-count function could instead be writ-
ten as a procedure:
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create procedure author-count-proc(in title varchar(20), out a-count integer)
begin

select count(author) into a-count
from authors
where authors.title = title

end

Procedures can be invoked either from an SQL procedure or from embedded SQL
by the call statement:

declare a-count integer;
call author-count-proc(’Database Systems Concepts’, a-count);

SQL:1999 permits more than one procedure of the same name, so long as the
number of arguments of the procedures with the same name is different. The name,
along with the number of arguments, is used to identify the procedure. SQL:1999 also
permits more than one function with the same name, so long as the different func-
tions with the same name either have different numbers of arguments, or for func-
tions with the same number of arguments, differ in the type of at least one argument.

9.6.2 External Language Routines
SQL:1999 allows us to define functions in a programming language such as C or C++.
Functions defined in this fashion can be more efficient than functions defined in SQL,
and computations that cannot be carried out in SQL can be executed by these func-
tions. An example of the use of such functions would be to perform a complex arith-
metic computation on the data in a tuple.

External procedures and functions can be specified in this way:

create procedure author-count-proc( in title varchar(20), out count integer)
language C
external name ’/usr/avi/bin/author-count-proc’

create function author-count (title varchar(20))
returns integer
language C
external name ’/usr/avi/bin/author-count’

The external language procedures need to deal with null values and exceptions.
They must therefore have several extra parameters: an sqlstate value to indicate fail-
ure/success status, a parameter to store the return value of the function, and indi-
cator variables for each parameter/function result to indicate if the value is null. An
extra line parameter style general added to the declaration above indicates that the
external procedures/functions take only the arguments shown and do not deal with
null values or exceptions.

Functions defined in a programming language and compiled outside the database
system may be loaded and executed with the database system code. However, do-
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ing so carries the risk that a bug in the program can corrupt the database internal
structures, and can bypass the access-control functionality of the database system.
Database systems that are concerned more about efficient performance than about
security may execute procedures in such a fashion.

Database systems that are concerned about security would typically execute such
code as part of a separate process, communicate the parameter values to it, and fetch
results back, via interprocess communication.

If the code is written in a language such as Java, there is a third possibility: execut-
ing the code in a “sandbox” within the database process itself. The sandbox prevents
the Java code from carrying out any reads or updates directly on the database.

9.6.3 Procedural Constructs
SQL:1999 supports a variety of procedural constructs, which gives it almost all the
power of a general purpose programming language. The part of the SQL:1999
standard that deals with these constructs is called the Persistent Storage Module
(PSM).

A compound statement is of the form begin . . . end, and it may contain multi-
ple SQL statements between the begin and the end. Local variables can be declared
within a compound statement, as we have seen in Section 9.6.1.

SQL:1999 supports while statements and repeat statements by this syntax:

declare n integer default 0;
while n < 10 do

set n = n + 1;
end while
repeat

set n = n − 1;
until n = 0
end repeat

This code does not do anything useful; it is simply meant to show the syntax of while
and repeat loops. We will see more meaningful uses later.

There is also a for loop, which permits iteration over all results of a query:

declare n integer default 0;
for r as

select balance from account
where branch-name = ‘Perryridge‘

do
set n = n+ r.balance

end for

The program implicitly opens a cursor when the for loop begins execution and uses
it to fetch the values one row at a time into the for loop variable (r, in the above exam-
ple). It is possible to give a name to the cursor, by inserting the text cn cursor for just
after the keyword as, where cn is the name we wish to give to the cursor. The cursor
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name can be used to perform update/delete operations on the tuple being pointed to
by the cursor. The statement leave can be used to exit the loop, while iterate starts on
the next tuple, from the beginning of the loop, skipping the remaining statements.

The conditional statements supported by SQL:1999 include if-then-else statements
statements by using this syntax:

if r.balance < 1000
then set l = l+ r.balance

elseif r.balance < 5000
then set m = m+ r.balance

else set h = h+ r.balance
end if

This code assumes that l, m, and h are integer variables, and r is a row variable. If we
replace the line “set n = n+ r.balance” in the for loop of the preceding paragraph by
the if-then-else code, the loop would compute the total balances of accounts that fall
under the low, medium, and high balance categories respectively.

SQL:1999 also supports a case statement similar to the C/C++ language case state-
ment (in addition to case expressions, which we saw in Chapter 4).

Finally, SQL:1999 includes the concept of signaling exception conditions, and dec-
laring handlers that can handle the exception, as in this code:

declare out-of-stock condition
declare exit handler for out-of-stock
begin
. . .
end

The statements between the begin and the end can raise an exception by executing
signal out-of-stock. The handler says that if the condition arises, the action to be taken
is to exit the enclosing begin end statement. Alternative actions would be continue,
which continues execution from the next statement following the one that raised the
exception. In addition to explicitly defined conditions, there are also predefined con-
ditions such as sqlexception, sqlwarning, and not found.

Figure 9.5 provides a larger example of the use of SQL:1999 procedural constructs.
The procedure findEmpl computes the set of all direct and indirect employees of a
given manager (specified by the parameter mgr), and stores the resulting employee
names in a relation called empl, which is assumed to exist already. The relation man-
ager(empname, mgrname), specifying who works directly for which manager, is as-
sumed to be available. The set of all direct/indirect employees is basically the transi-
tive closure of the relation manager. We saw how to express such a query by recursion
in Chapter 5 (Section 5.2.6).

The procedure uses two temporary tables, newemp and temp. The procedure inserts
all employees who directly work for mgr into newemp before the repeat loop. The
repeat loop first adds all employees in newemp to empl. Next, it computes employees
who work for those in newemp, except those who have already been found to be
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create procedure findEmpl(in mgr char(10))
– – Finds all employees who work directly or indirectly for mgr
– – and adds them to the relation empl(name).
– – The relation manager(empname, mgrname) specifies who directly
– – works for whom.
begin

create temporary table newemp (name char(10));
create temporary table temp (name char(10));
insert into newemp

select empname
from manager
where mgrname = mgr

repeat
insert into empl

select name
from newemp;

insert into temp
(select manager.empname

from newemp, manager
where newemp.empname = manager.mgrname;

)
except (

select empname
from empl

);
delete from newemp;
insert into newemp

select *
from temp;

delete from temp;

until not exists (select * from newemp)
end repeat;

end

Figure 9.5 Finding all employees of a manager.

employees of mgr, and stores them in the temporary table temp. Finally, it replaces
the contents of newemp by the contents of temp. The repeat loop terminates when it
finds no new (indirect) employees.

We note that the use of the except clause in the procedure ensures that the proce-
dure works even in the (abnormal) case where there is a cycle of management. For
example, if a works for b, b works for c, and c works for a, there is a cycle.

While cycles may be unrealistic in management control, cycles are possible in other
applications. For instance, suppose we have a relation flights(to, from) that says which
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cities can be reached from which other cities by a direct flight. We can modify the
findEmpl procedure to find all cities that are reachable by a sequence of one or more
flights from a given city. All we have to do is to replace manager by flight and replace
attribute names correspondingly. In this situation there can be cycles of reachability,
but the procedure would work correctly since it would eliminate cities that have
already been seen.

9.7 Object-Oriented versus Object-Relational
We have now studied object-oriented databases built around persistent program-
ming languages, as well as object-relational databases, which are object-oriented data-
bases built on top of the relation model. Database systems of both types are on the
market, and a database designer needs to choose the kind of system that is appropri-
ate to the needs of the application.

Persistent extensions to programming languages and object-relational systems
target different markets. The declarative nature and limited power (compared to a
programming language) of the SQL language provides good protection of data from
programming errors, and makes high-level optimizations, such as reducing I/O, rel-
atively easy. (We cover optimization of relational expressions in Chapter 13.) Object-
relational systems aim at making data modeling and querying easier by using com-
plex data types. Typical applications include storage and querying of complex data,
including multimedia data.

A declarative language such as SQL, however, imposes a significant performance
penalty for certain kinds of applications that run primarily in main memory, and
that perform a large number of accesses to the database. Persistent programming
languages target such applications that have high performance requirements. They
provide low-overhead access to persistent data, and eliminate the need for data trans-
lation if the data are to be manipulated by a programming language. However, they
are more susceptible to data corruption by programming errors, and usually do not
have a powerful querying capability. Typical applications include CAD databases.

We can summarize the strengths of the various kinds of database systems in this
way:

• Relational systems: simple data types, powerful query languages, high pro-
tection

• Persistent-programming-language–based OODBs: complex data types, in-
tegration with programming language, high performance

• Object-relational systems: complex data types, powerful query languages,
high protection

These descriptions hold in general, but keep in mind that some database systems blur
the boundaries. For example, some object-oriented database systems built around a
persistent programming language are implemented on top of a relational database
system. Such systems may provide lower performance than object-oriented database
systems built directly on a storage system, but provide some of the stronger protec-
tion guarantees of relational systems.



Silberschatz−Korth−Sudarshan: 
Database System 
Concepts, Fourth Edition

III. Object−Based 
Databases and XML

9. Object−Relational 
Databases

359© The McGraw−Hill 
Companies, 2001

9.8 Summary 357

Many object-relational database systems are built on top of existing relational
database systems. To do so, the complex data types supported by object-relational
systems need to be translated to the simpler type system of relational databases.

To understand how the translation is done, we need only look at how some fea-
tures of the E-R model are translated into relations. For instance, multivalued at-
tributes in the E-R model correspond to set-valued attributes in the object-relational
model. Composite attributes roughly correspond to structured types. ISA hierarchies
in the E-R model correspond to table inheritance in the object-relational model. The
techniques for converting E-R model features to tables, which we saw in Section 2.9,
can be used, with some extensions, to translate object-relational data to relational
data.

9.8 Summary
• The object-relational data model extends the relational data model by provid-

ing a richer type system including collection types, and object orientation.

• Object orientation provides inheritance with subtypes and subtables, as well
as object (tuple) references.

• Collection types include nested relations, sets, multisets, and arrays, and the
object-relational model permits attributes of a table to be collections.

• The SQL:1999 standard extends the SQL data definition and query language to
deal with the new data types and with object orientation.

• We saw a variety of features of the extended data-definition language, as
well as the query language, and in particular support for collection-valued
attributes, inheritance, and tuple references. Such extensions attempt to pre-
serve the relational foundations—in particular, the declarative access to data
—while extending the modeling power.

• Object-relational database systems (that is, database systems based on the
object-relation model) provide a convenient migration path for users of re-
lational databases who wish to use object-oriented features.

• We have also outlined the procedural extensions provided by SQL:1999.

• We discussed differences between persistent programming languages and
object-relational systems, and mention criteria for choosing between them.

Review Terms
• Nested relations

• Nested relational model

• Complex types

• Collection types

• Large object types

• Sets

• Arrays

• Multisets

• Character large object (clob)

• Binary large object (blob)
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• Structured types

• Methods

• Row types

• Constructors

• Inheritance
� Single inheritance
� Multiple inheritance

• Type inheritance

• Most-specific type

• Table inheritance

• Subtable

• Overlapping subtables
• Reference types
• Scope of a reference
• Self-referential attribute
• Path expressions
• Nesting and unnesting
• SQL functions and procedures
• Procedural constructs
• Exceptions
• Handlers
• External language routines

Exercises
9.1 Consider the database schema

Emp = (ename, setof(Children), setof(Skills))
Children = (name, Birthday)
Birthday = (day, month, year)
Skills = (type, setof(Exams))
Exams = (year, city)

Assume that attributes of type setof(Children), setof(Skills), and setof(Exams),
have attribute names ChildrenSet, SkillsSet, and ExamsSet, respectively. Suppose
that the database contains a relation emp (Emp). Write the following queries in
SQL:1999 (with the extensions described in this chapter).

a. Find the names of all employees who have a child who has a birthday in
March.

b. Find those employees who took an examination for the skill type “typing”
in the city “Dayton”.

c. List all skill types in the relation emp.

9.2 Redesign the database of Exercise 9.1 into first normal form and fourth normal
form. List any functional or multivalued dependencies that you assume. Also
list all referential-integrity constraints that should be present in the first- and
fourth-normal-form schemas.

9.3 Consider the schemas for the table people, and the tables students and teachers,
which were created under people, in Section 9.3. Give a relational schema in third
normal form that represents the same information. Recall the constraints on sub-
tables, and give all constraints that must be imposed on the relational schema
so that every database instance of the relational schema can also be represented
by an instance of the schema with inheritance.
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9.4 A car-rental company maintains a vehicle database for all vehicles in its current
fleet. For all vehicles, it includes the vehicle identification number, license num-
ber, manufacturer, model, date of purchase, and color. Special data are included
for certain types of vehicles:
• Trucks: cargo capacity
• Sports cars: horsepower, renter age requirement
• Vans: number of passengers
• Off-road vehicles: ground clearance, drivetrain (four- or two-wheel drive)

Construct an SQL:1999 schema definition for this database. Use inheritance where
appropriate.

9.5 Explain the distinction between a type x and a reference type ref(x). Under what
circumstances would you choose to use a reference type?

9.6 Consider the E-R diagram in Figure 2.11, which contains composite, multivalued
and derived attributes.

a. Give an SQL:1999 schema definition corresponding to the E-R diagram. Use
an array to represent the multivalued attribute, and appropriate SQL:1999
constructs to represent the other attribute types.

b. Give constructors for each of the structured types defined above.

9.7 Give an SQL:1999 schema definition of the E-R diagram in Figure 2.17, which
contains specializations.

9.8 Consider the relational schema shown in Figure 3.39.
a. Give a schema definition in SQL:1999 corresponding to the relational schema,

but using references to express foreign-key relationships.
b. Write each of the queries given in Exercise 3.10 on the above schema, using

SQL:1999.

9.9 Consider an employee database with two relations

employee (employee-name, street, city)
works (employee-name, company-name, salary)

where the primary keys are underlined. Write a query to find companies
whose employees earn a higher salary, on average, than the average salary at
First Bank Corporation.

a. Using SQL:1999 functions as appropriate.
b. Without using SQL:1999 functions.

9.10 Rewrite the query in Section 9.6.1 that returns the titles of all books that have
more than one author, using the with clause in place of the function.

9.11 Compare the use of embedded SQL with the use in SQL of functions defined in
a general-purpose programming language. Under what circumstances would
you use each of these features?
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9.12 Suppose that you have been hired as a consultant to choose a database system
for your client’s application. For each of the following applications, state what
type of database system (relational, persistent-programming-language–based
OODB, object relational; do not specify a commercial product) you would rec-
ommend. Justify your recommendation.

a. A computer-aided design system for a manufacturer of airplanes
b. A system to track contributions made to candidates for public office
c. An information system to support the making of movies
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have some features that are not part of SQL:1999. IBM DB2 supports many of the
SQL:1999 features.
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XML

Unlike most of the technologies presented in the preceding chapters, the Extensible
Markup Language (XML) was not originally conceived as a database technology. In
fact, like the Hyper-Text Markup Language (HTML) on which the World Wide Web is
based, XML has its roots in document management, and is derived from a language
for structuring large documents known as the Standard Generalized Markup Language
(SGML). However, unlike SGML and HTML, XML can represent database data, as well
as many other kinds of structured data used in business applications. It is particularly
useful as a data format when an application must communicate with another appli-
cation, or integrate information from several other applications. When XML is used in
these contexts, many database issues arise, including how to organize, manipulate,
and query the XML data. In this chapter, we introduce XML and discuss both the man-
agement of XML data with database techniques and the exchange of data formatted
as XML documents.

10.1 Background
To understand XML, it is important to understand its roots as a document markup
language. The term markup refers to anything in a document that is not intended to
be part of the printed output. For example, a writer creating text that will eventually
be typeset in a magazine may want to make notes about how the typesetting should
be done. It would be important to type these notes in a way so that they could be
distinguished from the actual content, so that a note like “do not break this para-
graph” does not end up printed in the magazine. In electronic document processing,
a markup language is a formal description of what part of the document is content,
what part is markup, and what the markup means.

Just as database systems evolved from physical file processing to provide a sepa-
rate logical view, markup languages evolved from specifying instructions for how to

361
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print parts of the document to specify the function of the content. For instance, with
functional markup, text representing section headings (for this section, the words
“Background”) would be marked up as being a section heading, instead of being
marked up as text to be printed in large size, bold font. Such functional markup al-
lowed the document to be formatted differently in different situations. It also helps
different parts of a large document, or different pages in a large Web site to be for-
matted in a uniform manner. Functional markup also helps automate extraction of
key parts of documents.

For the family of markup languages that includes HTML, SGML, and XML the
markup takes the form of tags enclosed in angle-brackets, <>. Tags are used in pairs,
with <tag> and </tag> delimiting the beginning and the end of the portion of the
document to which the tag refers. For example, the title of a document might be
marked up as follows.

<title>Database System Concepts</title>

Unlike HTML, XML does not prescribe the set of tags allowed, and the set may be
specialized as needed. This feature is the key to XML’s major role in data representa-
tion and exchange, whereas HTML is used primarily for document formatting.

For example, in our running banking application, account and customer informa-
tion can be represented as part of an XML document as in Figure 10.1. Observe the
use of tags such as account and account-number. These tags provide context for each
value and allow the semantics of the value to be identified.

Compared to storage of data in a database, the XML representation may be ineffi-
cient, since tag names are repeated throughout the document. However, in spite of
this disadvantage, an XML representation has significant advantages when it is used
to exchange data, for example, as part of a message:

• First, the presence of the tags makes the message self-documenting; that is, a
schema need not be consulted to understand the meaning of the text. We can
readily read the fragment above, for example.

• Second, the format of the document is not rigid. For example, if some sender
adds additional information, such as a tag last-accessed noting the last date
on which an account was accessed, the recipient of the XML data may simply
ignore the tag. The ability to recognize and ignore unexpected tags allows the
format of the data to evolve over time, without invalidating existing applica-
tions.

• Finally, since the XML format is widely accepted, a wide variety of tools are
available to assist in its processing, including browser software and database
tools.

Just as SQL is the dominant language for querying relational data, XML is becoming
the dominant format for data exchange.
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<bank>
<account>

<account-number> A-101 </account-number>
<branch-name> Downtown </branch-name>
<balance> 500 </balance>

</account>
<account>

<account-number> A-102 </account-number>
<branch-name> Perryridge </branch-name>
<balance> 400 </balance>

</account>
<account>

<account-number> A-201 </account-number>
<branch-name> Brighton </branch-name>
<balance> 900 </balance>

</account>
<customer>

<customer-name> Johnson </customer-name>
<customer-street> Alma </customer-street>
<customer-city> Palo Alto </customer-city>

</customer>
<customer>

<customer-name> Hayes </customer-name>
<customer-street> Main </customer-street>
<customer-city> Harrison </customer-city>

</customer>
<depositor>

<account-number> A-101 </account-number>
<customer-name> Johnson </customer-name>

</depositor>
<depositor>

<account-number> A-201 </account-number>
<customer-name> Johnson </customer-name>

</depositor>
<depositor>

<account-number> A-102 </account-number>
<customer-name> Hayes </customer-name>

</depositor>
</bank>

Figure 10.1 XML representation of bank information.
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10.2 Structure of XML Data
The fundamental construct in an XML document is the element. An element is simply
a pair of matching start- and end-tags, and all the text that appears between them.

XML documents must have a single root element that encompasses all other ele-
ments in the document. In the example in Figure 10.1, the <bank> element forms
the root element. Further, elements in an XML document must nest properly. For in-
stance,

<account> . . . <balance> . . . </balance> . . . </account>

is properly nested, whereas

<account> . . . <balance> . . . </account> . . . </balance>

is not properly nested.
While proper nesting is an intuitive property, we may define it more formally.

Text is said to appear in the context of an element if it appears between the start-tag
and end-tag of that element. Tags are properly nested if every start-tag has a unique
matching end-tag that is in the context of the same parent element.

Note that text may be mixed with the subelements of an element, as in Figure 10.2.
As with several other features of XML, this freedom makes more sense in a document-
processing context than in a data-processing context, and is not particularly useful for
representing more structured data such as database content in XML.

The ability to nest elements within other elements provides an alternative way to
represent information. Figure 10.3 shows a representation of the bank information
from Figure 10.1, but with account elements nested within customer elements. The
nested representation makes it easy to find all accounts of a customer, although it
would store account elements redundantly if they are owned by multiple customers.

Nested representations are widely used in XML data interchange applications to
avoid joins. For instance, a shipping application would store the full address of sender
and receiver redundantly on a shipping document associated with each shipment,
whereas a normalized representation may require a join of shipping records with a
company-address relation to get address information.

In addition to elements, XML specifies the notion of an attribute. For instance, the
type of an account can represented as an attribute, as in Figure 10.4. The attributes of

. . .
<account>

This account is seldom used any more.
<account-number> A-102 </account-number>
<branch-name> Perryridge </branch-name>
<balance> 400 </balance>

</account>
. . .

Figure 10.2 Mixture of text with subelements.



Silberschatz−Korth−Sudarshan: 
Database System 
Concepts, Fourth Edition

III. Object−Based 
Databases and XML

10. XML 367© The McGraw−Hill 
Companies, 2001

10.2 Structure of XML Data 365

<bank-1>
<customer>

<customer-name> Johnson </customer-name>
<customer-street> Alma </customer-street>
<customer-city> Palo Alto </customer-city>
<account>

<account-number> A-101 </account-number>
<branch-name> Downtown </branch-name>
<balance> 500 </balance>

</account>
<account>

<account-number> A-201 </account-number>
<branch-name> Brighton </branch-name>
<balance> 900 </balance>

</account>
</customer>
<customer>

<customer-name> Hayes </customer-name>
<customer-street> Main </customer-street>
<customer-city> Harrison </customer-city>
<account>

<account-number> A-102 </account-number>
<branch-name> Perryridge </branch-name>
<balance> 400 </balance>

</account>
</customer>

</bank-1>

Figure 10.3 Nested XML representation of bank information.

an element appear as name=value pairs before the closing “>” of a tag. Attributes are
strings, and do not contain markup. Furthermore, attributes can appear only once in
a given tag, unlike subelements, which may be repeated.

Note that in a document construction context, the distinction between subelement
and attribute is important—an attribute is implicitly text that does not appear in the
printed or displayed document. However, in database and data exchange applica-
tions of XML, this distinction is less relevant, and the choice of representing data as
an attribute or a subelement is frequently arbitrary.

One final syntactic note is that an element of the form <element></element>,
which contains no subelements or text, can be abbreviated as <element/>; abbrevi-
ated elements may, however, contain attributes.

Since XML documents are designed to be exchanged between applications, a name-
space mechanism has been introduced to allow organizations to specify globally
unique names to be used as element tags in documents. The idea of a namespace
is to prepend each tag or attribute with a universal resource identifier (for example, a
Web address) Thus, for example, if First Bank wanted to ensure that XML documents
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. . .
<account acct-type= “checking”>

<account-number> A-102 </account-number>
<branch-name> Perryridge </branch-name>
<balance> 400 </balance>

</account>
. . .

Figure 10.4 Use of attributes.

it created would not duplicate tags used by any business partner’s XML documents,
it can prepend a unique identifier with a colon to each tag name. The bank may use
a Web URL such as

http://www.FirstBank.com

as a unique identifier. Using long unique identifiers in every tag would be rather
inconvenient, so the namespace standard provides a way to define an abbreviation
for identifiers.

In Figure 10.5, the root element (bank) has an attribute xmlns:FB, which declares
that FB is defined as an abbreviation for the URL given above. The abbreviation can
then be used in various element tags, as illustrated in the figure.

A document can have more than one namespace, declared as part of the root ele-
ment. Different elements can then be associated with different namespaces. A default
namespace can be defined, by using the attribute xmlns instead of xmlns:FB in the
root element. Elements without an explicit namespace prefix would then belong to
the default namespace.

Sometimes we need to store values containing tags without having the tags inter-
preted as XML tags. So that we can do so, XML allows this construct:

<![CDATA[<account> · · ·</account>]]>

Because it is enclosed within CDATA, the text <account> is treated as normal text
data, not as a tag. The term CDATA stands for character data.

<bank xmlns:FB=“http://www.FirstBank.com”>
. . .
<FB:branch>

<FB:branchname> Downtown </FB:branchname>
<FB:branchcity> Brooklyn </FB:branchcity>

</FB:branch>
. . .

</bank>

Figure 10.5 Unique tag names through the use of namespaces.
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10.3 XML Document Schema
Databases have schemas, which are used to constrain what information can be stored
in the database and to constrain the data types of the stored information. In contrast,
by default, XML documents can be created without any associated schema: An el-
ement may then have any subelement or attribute. While such freedom may occa-
sionally be acceptable given the self-describing nature of the data format, it is not
generally useful when XML documents must be processesed automatically as part of
an application, or even when large amounts of related data are to be formatted in
XML.

Here, we describe the document-oriented schema mechanism included as part of
the XML standard, the Document Type Definition, as well as the more recently defined
XMLSchema.

10.3.1 Document Type Definition
The document type definition (DTD) is an optional part of an XML document. The
main purpose of a DTD is much like that of a schema: to constrain and type the infor-
mation present in the document. However, the DTD does not in fact constrain types
in the sense of basic types like integer or string. Instead, it only constrains the appear-
ance of subelements and attributes within an element. The DTD is primarily a list of
rules for what pattern of subelements appear within an element. Figure 10.6 shows
a part of an example DTD for a bank information document; the XML document in
Figure 10.1 conforms to this DTD.

Each declaration is in the form of a regular expression for the subelements of an
element. Thus, in the DTD in Figure 10.6, a bank element consists of one or more
account, customer, or depositor elements; the | operator specifies “or” while the +
operator specifies “one or more.” Although not shown here, the ∗ operator is used to
specify “zero or more,” while the ? operator is used to specify an optional element
(that is, “zero or one”).

<!DOCTYPE bank [
<!ELEMENT bank ( (account—customer—depositor)+)>
<!ELEMENT account ( account-number branch-name balance )>
<!ELEMENT customer ( customer-name customer-street customer-city )>
<!ELEMENT depositor ( customer-name account-number )>
<!ELEMENT account-number ( #PCDATA )>
<!ELEMENT branch-name ( #PCDATA )>
<!ELEMENT balance( #PCDATA )>
<!ELEMENT customer-name( #PCDATA )>
<!ELEMENT customer-street( #PCDATA )>
<!ELEMENT customer-city( #PCDATA )>

] >

Figure 10.6 Example of a DTD.
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The account element is defined to contain subelements account-number, branch-
name and balance (in that order). Similarly, customer and depositor have the at-
tributes in their schema defined as subelements.

Finally, the elements account-number, branch-name, balance, customer-name, cu-
stomer-street, and customer-city are all declared to be of type #PCDATA. The keyword
#PCDATA indicates text data; it derives its name, historically, from “parsed character
data.” Two other special type declarations are empty, which says that the element has
no contents, and any, which says that there is no constraint on the subelements of the
element; that is, any elements, even those not mentioned in the DTD, can occur as
subelements of the element. The absence of a declaration for an element is equivalent
to explicitly declaring the type as any.

The allowable attributes for each element are also declared in the DTD. Unlike
subelements, no order is imposed on attributes. Attributes may specified to be of
type CDATA, ID, IDREF, or IDREFS; the type CDATA simply says that the attribute con-
tains character data, while the other three are not so simple; they are explained in
more detail shortly. For instance, the following line from a DTD specifies that element
account has an attribute of type acct-type, with default value checking.

<!ATTLIST account acct-type CDATA “checking” >

Attributes must have a type declaration and a default declaration. The default
declaration can consist of a default value for the attribute or #REQUIRED, meaning
that a value must be specified for the attribute in each element, or #IMPLIED, meaning
that no default value has been provided. If an attribute has a default value, for every
element that does not specify a value for the attribute, the default value is filled in
automatically when the XML document is read

An attribute of type ID provides a unique identifier for the element; a value that
occurs in an ID attribute of an element must not occur in any other element in the
same document. At most one attribute of an element is permitted to be of type ID.

<!DOCTYPE bank-2 [
<!ELEMENT account ( branch, balance )>
<!ATTLIST account

account-number ID #REQUIRED
owners IDREFS #REQUIRED >

<!ELEMENT customer ( customer-name, customer-street, customer-city )>
<!ATTLIST customer

customer-id ID #REQUIRED
accounts IDREFS #REQUIRED >

· · · declarations for branch, balance, customer-name,
customer-street and customer-city · · ·

] >

Figure 10.7 DTD with ID and IDREF attribute types.
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An attribute of type IDREF is a reference to an element; the attribute must contain
a value that appears in the ID attribute of some element in the document. The type
IDREFS allows a list of references, separated by spaces.

Figure 10.7 shows an example DTD in which customer account relationships are
represented by ID and IDREFS attributes, instead of depositor records. The account
elements use account-number as their identifier attribute; to do so, account-number
has been made an attribute of account instead of a subelement. The customer ele-
ments have a new identifier attribute called customer-id. Additionally, each customer
element contains an attribute accounts, of type IDREFS, which is a list of identifiers
of accounts that are owned by the customer. Each account element has an attribute
owners, of type IDREFS, which is a list of owners of the account.

Figure 10.8 shows an example XML document based on the DTD in Figure 10.7.
Note that we use a different set of accounts and customers from our earlier example,
in order to illustrate the IDREFS feature better.

The ID and IDREF attributes serve the same role as reference mechanisms in object-
oriented and object-relational databases, permitting the construction of complex data
relationships.

<bank-2>
<account account-number=“A-401” owners=“C100 C102”>

<branch-name> Downtown </branch-name>
<balance> 500 </balance>

</account>
<account account-number=“A-402” owners=“C102 C101”>

<branch-name> Perryridge </branch-name>
<balance> 900 </balance>

</account>
<customer customer-id=“C100” accounts=“A-401”>

<customer-name>Joe</customer-name>
<customer-street> Monroe </customer-street>
<customer-city> Madison </customer-city>

</customer>
<customer customer-id=“C101” accounts=“A-402”>

<customer-name>Lisa</customer-name>
<customer-street> Mountain </customer-street>
<customer-city> Murray Hill </customer-city>

</customer>
<customer customer-id=“C102” accounts=“A-401 A-402”>

<customer-name>Mary</customer-name>
<customer-street> Erin </customer-street>
<customer-city> Newark </customer-city>

</customer>
</bank-2>

Figure 10.8 XML data with ID and IDREF attributes.
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Document type definitions are strongly connected to the document formatting her-
itage of XML. Because of this, they are unsuitable in many ways for serving as the type
structure of XML for data processing applications. Nevertheless, a tremendous num-
ber of data exchange formats are being defined in terms of DTDs, since they were
part of the original standard. Here are some of the limitations of DTDs as a schema
mechanism.

• Individual text elements and attributes cannot be further typed. For instance,
the element balance cannot be constrained to be a positive number. The lack of
such constraints is problematic for data processing and exchange applications,
which must then contain code to verify the types of elements and attributes.

• It is difficult to use the DTD mechanism to specify unordered sets of subele-
ments. Order is seldom important for data exchange (unlike document layout,
where it is crucial). While the combination of alternation (the | operation) and
the ∗ operation as in Figure 10.6 permits the specification of unordered collec-
tions of tags, it is much more difficult to specify that each tag may only appear
once.

• There is a lack of typing in IDs and IDREFs. Thus, there is no way to specify
the type of element to which an IDREF or IDREFS attribute should refer. As a
result, the DTD in Figure 10.7 does not prevent the “owners” attribute of an
account element from referring to other accounts, even though this makes no
sense.

10.3.2 XML Schema
An effort to redress many of these DTD deficiencies resulted in a more sophisticated
schema language, XMLSchema. We present here an example of XMLSchema, and list
some areas in which it improves DTDs, without giving full details of XMLSchema’s
syntax.

Figure 10.9 shows how the DTD in Figure 10.6 can be represented by XMLSchema.
The first element is the root element bank, whose type is declared later. The example
then defines the types of elements account, customer, and depositor. Observe the use
of types xsd:string and xsd:decimal to constrain the types of data elements. Finally
the example defines the type BankType as containing zero or more occurrences of
each of account, customer and depositor. XMLSchema can define the minimum and
maximum number of occurrences of subelements by using minOccurs and maxOc-
curs. The default for both minimum and maximum occurrences is 1, so these have to
be explicity specified to allow zero or more accounts, deposits, and customers.

Among the benefits that XMLSchema offers over DTDs are these:

• It allows user-defined types to be created.

• It allows the text that appears in elements to be constrained to specific types,
such as numeric types in specific formats or even more complicated types such
as lists or union.
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<xsd:schema xmlns:xsd=“http://www.w3.org/2001/XMLSchema”>
<xsd:element name=“bank” type=“BankType” />
<xsd:element name=“account”>

<xsd:complexType>
<xsd:sequence>

<xsd:element name=“account-number” type=“xsd:string”/>
<xsd:element name=“branch-name” type=“xsd:string”/>
<xsd:element name=“balance” type=“xsd:decimal”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name=“customer”>

<xsd:element name=“customer-number” type=“xsd:string”/>
<xsd:element name=“customer-street” type=“xsd:string”/>
<xsd:element name=“customer-city” type=“xsd:string”/>

</xsd:element>
<xsd:element name=“depositor”>

<xsd:complexType>
<xsd:sequence>

<xsd:element name=“customer-name” type=“xsd:string”/>
<xsd:element name=“account-number” type=“xsd:string”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:complexType name=“BankType”>

<xsd:sequence>
<xsd:element ref=“account” minOccurs=“0” maxOccurs=“unbounded”/>
<xsd:element ref=“customer” minOccurs=“0” maxOccurs=“unbounded”/>
<xsd:element ref=“depositor” minOccurs=“0” maxOccurs=“unbounded”/>

</xsd:sequence>
</xsd:complexType>
</xsd:schema>

Figure 10.9 XMLSchema version of DTD from Figure 10.6.

• It allows types to be restricted to create specialized types, for instance by spec-
ifying minimum and maximum values.

• It allows complex types to be extended by using a form of inheritance.

• It is a superset of DTDs.

• It allows uniqueness and foreign key constraints.

• It is integrated with namespaces to allow different parts of a document to
conform to different schema.

• It is itself specified by XML syntax, as Figure 10.9 shows.
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However, the price paid for these features is that XMLSchema is significantly more
complicated than DTDs.

10.4 Querying and Transformation
Given the increasing number of applications that use XML to exchange, mediate, and
store data, tools for effective management of XML data are becoming increasingly im-
portant. In particular, tools for querying and transformation of XML data are essential
to extract information from large bodies of XML data, and to convert data between
different representations (schemas) in XML. Just as the output of a relational query is
a relation, the output of an XML query can be an XML document. As a result, querying
and transformation can be combined into a single tool.

Several languages provide increasing degrees of querying and transformation ca-
pabilities:

• XPath is a language for path expressions, and is actually a building block for
the remaining two query languages.

• XSLT was designed to be a transformation language, as part of the XSL style
sheet system, which is used to control the formatting of XML data into HTML
or other print or display languages. Although designed for formatting, XSLT
can generate XML as output, and can express many interesting queries. Fur-
thermore, it is currently the most widely available language for manipulating
XML data.

• XQuery has been proposed as a standard for querying of XML data. XQuery
combines features from many of the earlier proposals for querying XML, in
particular the language Quilt.

A tree model of XML data is used in all these languages. An XML document is mod-
eled as a tree, with nodes corresponding to elements and attributes. Element nodes
can have children nodes, which can be subelements or attributes of the element. Cor-
respondingly, each node (whether attribute or element), other than the root element,
has a parent node, which is an element. The order of elements and attributes in the
XML document is modeled by the ordering of children of nodes of the tree. The terms
parent, child, ancestor, descendant, and siblings are interpreted in the tree model of
XML data.

The text content of an element can be modeled as a text node child of the element.
Elements containing text broken up by intervening subelements can have multiple
text node children. For instance, an element containing “this is a <bold> wonderful
</bold> book” would have a subelement child corresponding to the element bold
and two text node children corresponding to “this is a” and “book”. Since such struc-
tures are not commonly used in database data, we shall assume that elements do not
contain both text and subelements.
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10.4.1 XPath
XPath addresses parts of an XML document by means of path expressions. The lan-
guage can be viewed as an extension of the simple path expressions in object-oriented
and object-relational databases (See Section 9.5.1).

A path expression in XPath is a sequence of location steps separated by “/” (in-
stead of the “.” operator that separates steps in SQL:1999). The result of a path ex-
pression is a set of values. For instance, on the document in Figure 10.8, the XPath
expression

/bank-2/customer/name

would return these elements:

<name>Joe</name>
<name>Lisa</name>
<name>Mary</name>

The expression

/bank-2/customer/name/text()

would return the same names, but without the enclosing tags.
Like a directory hierarchy, the initial ’/’ indicates the root of the document. (Note

that this is an abstract root “above” <bank-2> that is the document tag.) Path expres-
sions are evaluated from left to right. As a path expression is evaluated, the result of
the path at any point consists of a set of nodes from the document.

When an element name, such as customer, appears before the next ’/’, it refers to
all elements of the specified name that are children of elements in the current element
set. Since multiple children can have the same name, the number of nodes in the node
set can increase or decrease with each step. Attribute values may also be accessed,
using the “@” symbol. For instance, /bank-2/account/@account-number returns a set
of all values of account-number attributes of account elements. By default, IDREF
links are not followed; we shall see how to deal with IDREFs later.

XPath supports a number of other features:

• Selection predicates may follow any step in a path, and are contained in square
brackets. For example,

/bank-2/account[balance > 400]

returns account elements with a balance value greater than 400, while

/bank-2/account[balance > 400]/@account-number

returns the account numbers of those accounts.
We can test the existence of a subelement by listing it without any compar-

ison operation; for instance, if we removed just “> 400” from the above, the
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expression would return account numbers of all accounts that have a balance
subelement, regardless of its value.

• XPath provides several functions that can be used as part of predicates, includ-
ing testing the position of the current node in the sibling order and counting
the number of nodes matched. For example, the path expression

/bank-2/account/[customer/count()> 2]

returns accounts with more than 2 customers. Boolean connectives and and or
can be used in predicates, while the function not(. . .) can be used for negation.

• The function id(“foo”) returns the node (if any) with an attribute of type ID and
value “foo”. The function id can even be applied on sets of references, or even
strings containing multiple references separated by blanks, such as IDREFS.
For instance, the path

/bank-2/account/id(@owner)

returns all customers referred to from the owners attribute of account ele-
ments.

• The | operator allows expression results to be unioned. For example, if the
DTD of bank-2 also contained elements for loans, with attribute borrower of
type IDREFS identifying loan borrower, the expression

/bank-2/account/id(@owner) | /bank-2/loan/id(@borrower)

gives customers with either accounts or loans. However, the | operator cannot
be nested inside other operators.

• An XPath expression can skip multiple levels of nodes by using “//”. For in-
stance, the expression /bank-2//name finds any name element anywhere under
the /bank-2 element, regardless of the element in which it is contained. This
example illustrates the ability to find required data without full knowledge of
the schema.

• Each step in the path need not select from the children of the nodes in the
current node set. In fact, this is just one of several directions along which a
step in the path may proceed, such as parents, siblings, ancestors and descen-
dants. We omit details, but note that “//”, described above, is a short form for
specifying “all descendants,” while “..” specifies the parent.

10.4.2 XSLT
A style sheet is a representation of formatting options for a document, usually stored
outside the document itself, so that formatting is separate from content. For example,
a style sheet for HTML might specify the font to be used on all headers, and thus
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<xsl:template match=“/bank-2/customer”>
<customer>
<xsl:value-of select=“customer-name”/>
</customer>

</xsl:template>
<xsl:template match=“.”/>

Figure 10.10 Using XSLT to wrap results in new XML elements.

replace a large number of font declarations in the HTML page. The XML Stylesheet
Language (XSL) was originally designed for generating HTML from XML, and is thus
a logical extension of HTML style sheets. The language includes a general-purpose
transformation mechanism, called XSL Transformations (XSLT), which can be used
to transform one XML document into another XML document, or to other formats
such as HTML.1 XSLT transformations are quite powerful, and in fact XSLT can even
act as a query language.

XSLT transformations are expressed as a series of recursive rules, called templates.
In their basic form, templates allow selection of nodes in an XML tree by an XPath
expression. However, templates can also generate new XML content, so that selection
and content generation can be mixed in natural and powerful ways. While XSLT can
be used as a query language, its syntax and semantics are quite dissimilar from those
of SQL.

A simple template for XSLT consists of a match part and a select part. Consider
this XSLT code:

<xsl:template match=“/bank-2/customer”>
<xsl:value-of select=“customer-name”/>

</xsl:template>
<xsl:template match=“.”/>

The xsl:template match statement contains an XPath expression that selects one or
more nodes. The first template matches customer elements that occur as children of
the bank-2 root element. The xsl:value-of statement enclosed in the match statement
outputs values from the nodes in the result of the XPath expression. The first template
outputs the value of the customer-name subelement; note that the value does not
contain the element tag.

Note that the second template matches all nodes. This is required because the de-
fault behavior of XSLT on subtrees of the input document that do not match any
template is to copy the subtrees to the output document.

XSLT copies any tag that is not in the xsl namespace unchanged to the output. Fig-
ure 10.10 shows how to use this feature to make each customer name from our exam-
ple appear as a subelement of a “<customer>” element, by placing the xsl:value-of
statement between <customer> and </customer>.

1. The XSL standard now consists of XSLT and a standard for specifying formatting features such as
fonts, page margins, and tables. Formatting is not relevant from a database perspective, so we do not
cover it here.
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<xsl:template match=“/bank”>
<customers>
<xsl:apply-templates/>
</customers>

</xsl:template>
<xsl:template match=“/customer”>

<customer>
<xsl:value-of select=“customer-name”/>
</customer>

</xsl:template>
<xsl:template match=“.”/>

Figure 10.11 Applying rules recursively.

Structural recursion is a key part of XSLT. Recall that elements and subelements
naturally form a tree structure. The idea of structural recursion is this: When a tem-
plate matches an element in the tree structure, XSLT can use structural recursion to
apply template rules recursively on subtrees, instead of just outputting a value. It
applies rules recursively by the xsl:apply-templates directive, which appears inside
other templates.

For example, the results of our previous query can be placed in a surrounding
<customers> element by the addition of a rule using xsl:apply-templates, as in Fig-
ure 10.11 The new rule matches the outer “bank” tag, and constructs a result doc-
ument by applying all other templates to the subtrees appearing within the bank
element, but wrapping the results in the given <customers> </customers> ele-
ment. Without recursion forced by the <xsl:apply-templates/> clause, the template
would output <customers> </customers>, and then apply the other templates on
the subelements.

In fact, the structural recursion is critical to constructing well-formed XML doc-
uments, since XML documents must have a single top-level element containing all
other elements in the document.

XSLT provides a feature called keys, which permit lookup of elements by using
values of subelements or attributes; the goals are similar to that of the id() function in
XPath, but permits attributes other than the ID attributes to be used. Keys are defined
by an xsl:key directive, which has three parts, for example:

<xsl:key name=“acctno” match=“account” use=“account-number”/>

The name attribute is used to distinguish different keys. The match attribute specifies
which nodes the key applies to. Finally, the use attribute specifies the expression
to be used as the value of the key. Note that the expression need not be unique to
an element; that is, more than one element may have the same expression value. In
the example, the key named acctno specifies that the account-number subelement of
account should be used as a key for that account.

Keys can be subsequently used in templates as part of any pattern through the
key function. This function takes the name of the key and a value, and returns the
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<xsl:key name=“acctno” match=“account”use=“account-number”/>
<xsl:key name=“custno” match=“customer” use=“customer-name”/>
<xsl:template match=“depositor”>

<cust-acct>
<xsl:value-of select=key(“custno”, “customer-name”)/>
<xsl:value-of select=key(“acctno”, “account-number”)/>
</cust-acct>

</xsl:template>
<xsl:template match=“.”/>

Figure 10.12 Joins in XSLT.

set of nodes that match that value. Thus, the XML node for account “A-401” can be
referenced as key(“acctno”, “A-401”).

Keys can be used to implement some types of joins, as in Figure 10.12. The code
in the figure can be applied to XML data in the format in Figure 10.1. Here, the key
function joins the depositor elements with matching customer and account elements.
The result of the query consists of pairs of customer and account elements enclosed
within cust-acct elements.

XSLT allows nodes to be sorted. A simple example shows how xsl:sort would be
used in our style sheet to return customer elements sorted by name:

<xsl:template match=“/bank”>
<xsl:apply-templates select=“customer”>
<xsl:sort select=“customer-name”/>
</xsl:apply-templates>

</xsl:template>
<xsl:template match=“customer”>

<customer>
<xsl:value-of select=“customer-name”/>
<xsl:value-of select=“customer-street”/>
<xsl:value-of select=“customer-city”/>

</customer>
</xsl:template>
<xsl:template match=“.”/>

Here, the xsl:apply-template has a select attribute, which constrains it to be applied
only on customer subelements. The xsl:sort directive within the xsl:apply-template el-
ement causes nodes to be sorted before they are processed by the next set of templates.
Options exist to allow sorting on multiple subelements/attributes, by numeric value,
and in descending order.

10.4.3 XQuery
The World Wide Web Consortium (W3C) is developing XQuery, a query language
for XML. Our discusssion here is based on a draft of the language standard, so the
final standard may differ; however we expect the main features we cover here will
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not change substantially. The XQuery language derives from an XML query language
called Quilt; most of the XQuery features we outline here are part of Quilt. Quilt itself
includes features from earlier languages such as XPath, discussed in Section 10.4.1,
and two other XML query languages, XQL and XML-QL.

Unlike XSLT, XQuery does not represent queries in XML. Instead, they appear more
like SQL queries, and are organized into “FLWR” (pronounced “flower”) expressions
comprising four sections: for, let, where, and return. The for section gives a series
of variables that range over the results of XPath expressions. When more than one
variable is specified, the results include the Cartesian product of the possible values
the variables can take, making the for clause similar in spirit to the from clause of
an SQL query. The let clause simply allows complicated expressions to be assigned
to variable names for simplicity of representation. The where section, like the SQL
where clause, performs additional tests on the joined tuples from the for section.
Finally, the return section allows the construction of results in XML.

A simple FLWR expression that returns the account numbers for checking accounts
is based on the XML document of Figure 10.8, which uses ID and IDREFS:

for $x in /bank-2/account
let $acctno := $x/@account-number
where $x/balance > 400
return <account-number> $acctno </account-number>

Since this query is simple, the let clause is not essential, and the variable $acctno
in the return clause could be replaced with $x/@account-number. Note further that,
since the for clause uses XPath expressions, selections may occur within the XPath
expression. Thus, an equivalent query may have only for and return clauses:

for $x in /bank-2/account[balance > 400]
return <account-number> $x/@account-number </account-number>

However, the let clause simplifies complex queries.
Path expressions in XQuery may return a multiset, with repeated nodes. The func-

tion distinct applied on a multiset, returns a set without duplication. The distinct func-
tion can be used even within a for clause. XQuery also provides aggregate functions
such as sum and count that can be applied on collections such as sets and multi-
sets. While XQuery does not provide a group by construct, aggregate queries can
be written by using nested FLWR constructs in place of grouping; we leave details
as an exercise for you. Note also that variables assigned by let clauses may be set- or
multiset-valued, if the path expression on the right-hand side returns a set or multiset
value.

Joins are specified in XQuery much as they are in SQL. The join of depositor, ac-
count and customer elements in Figure 10.1, which we wrote in XSLT in Section 10.4.2,
can be written in XQuery this way:
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for $b in /bank/account,
$c in /bank/customer,
$d in /bank/depositor

where $a/account-number = $d/account-number
and $c/customer-name = $d/customer-name

return <cust-acct> $c $a </cust-acct>

The same query can be expressed with the selections specified as XPath selections:

for $a in /bank/account,
$c in /bank/customer,
$d in /bank/depositor[account-number = $a/account-number

and customer-name = $c/customer-name]
return <cust-acct> $c $a</cust-acct>

XQuery FLWR expressions can be nested in the return clause, in order to generate
element nestings that do not appear in the source document. This feature is similar
to nested subqueries in the from clause of SQL queries in Section 9.5.3.

For instance, the XML structure shown in Figure 10.3, with account elements nested
within customer elements, can be generated from the structure in Figure 10.1 by this
query:

<bank-1>
for $c in /bank/customer
return

<customer>
$c/*
for $d in /bank/depositor[customer-name = $c/customer-name],

$a in /bank/account[account-number=$d/account-number]
return $a

</customer>
</bank-1>

The query also introduces the syntax $c/*, which refers to all the children of the node,
which is bound to the variable $c. Similarly, $c/text() gives the text content of an
element, without the tags.

Path expressions in XQuery are based on path expressions in XPath, but XQuery
provides some extensions (which may eventually be added to XPath itself). One of
the useful syntax extensions is the operator ->, which can be used to dereference
IDREFs, just like the function id(). The operator can be applied on a value of type
IDREFS to get a set of elements. It can be used, for example, to find all the accounts
associated with a customer, with the ID/IDREFS representation of bank information.
We leave details to the reader.

Results can be sorted in XQuery if a sortby clause is included at the end of any ex-
pression; the clause specifies how the instances of that expression should be sorted.
For instance, this query outputs all customer elements sorted by the name subele-
ment:
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for $c in /bank/customer,
return <customer> $c/* </customer> sortby(name)

To sort in descending order, we can use sortby(name descending).
Sorting can be done at multiple levels of nesting. For instance, we can get a nested

representation of bank information sorted in customer name order, with accounts of
each customer sorted by account number, as follows.

<bank-1>
for $c in /bank/customer
return

<customer>
$c/*
for $d in /bank/depositor[customer-name = $c/customer-name],

$a in /bank/account[account-number=$d/account-number]
return <account> $a/* </account> sortby(account-number)

</customer> sortby(customer-name)
</bank-1>

XQuery provides a variety of built-in functions, and supports user-defined func-
tions. For instance, the built-in function document(name) returns the root of a named
document; the root can then be used in a path expression to access the contents of the
document. Users can define functions as illustrated by this function, which returns a
list of all balances of a customer with a specified name:

function balances(xsd:string $c) returns list(xsd:numeric) {
for $d in /bank/depositor[customer-name = $c],

$a in /bank/account[account-number=$d/account-number]
return $a/balance

}

XQuery uses the type system of XMLSchema. XQuery also provides functions to con-
vert between types. For instance, number(x) converts a string to a number.

XQuery offers a variety of other features, such as if-then-else clauses, which can be
used within return clauses, and existential and universal quantification, which can
be used in predicates in where clauses. For example, existential quantification can be
expressed using some $e in path satisfies P where path is a path expression, and P
is a predicate which can use $e. Universal quantification can be expressed by using
every in place of some.

10.5 The Application Program Interface
With the wide acceptance of XML as a data representation and exchange format, soft-
ware tools are widely available for manipulation of XML data. In fact, there are two
standard models for programmatic manipulation of XML, each available for use with
a wide variety of popular programming languages.
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One of the standard APIs for manipulating XML is the document object model (DOM),
which treats XML content as a tree, with each element represented by a node, called
a DOMNode. Programs may access parts of the document in a navigational fashion,
beginning with the root.

DOM libraries are available for most common programming langauges and are
even present in Web browsers, where it may be used to manipulate the document
displayed to the user. We outline here some of the interfaces and methods in the Java
API for DOM, to give a flavor of DOM. The Java DOM API provides an interface called
Node, and interfaces Element and Attribute, which inherit from the Node interface.
The Node interface provides methods such as getParentNode(), getFirstChild(), and
getNextSibling(), to navigate the DOM tree, starting with the root node. Subelements
of an element can be accessed by name getElementsByTagName(name), which re-
turns a list of all child elements with a specified tag name; individual members of
the list can be accessed by the method item(i), which returns the ith element in the
list. Attribute values of an element can be accessed by name, using the method getAt-
tribute(name). The text value of an element is modeled as a Text node, which is a child
of the element node; an element node with no subelements has only one such child
node. The method getData() on the Text node returns the text contents. DOM also
provides a variety of functions for updating the document by adding and deleting
attribute and element children of a node, setting node values, and so on.

Many more details are required for writing an actual DOM program; see the biblio-
graphical notes for references to further information.

DOM can be used to access XML data stored in databases, and an XML database
can be built using DOM as its primary interface for accessing and modifying data.
However, the DOM interface does not support any form of declarative querying.

The second programming interface we discuss, the Simple API for XML (SAX) is an
event model, designed to provide a common interface between parsers and applica-
tions. This API is built on the notion of event handlers, which consists of user-specified
functions associated with parsing events. Parsing events correspond to the recogni-
tion of parts of a document; for example, an event is generated when the start-tag is
found for an element, and another event is generated when the end-tag is found. The
pieces of a document are always encountered in order from start to finish. SAX is not
appropriate for database applications.

10.6 Storage of XML Data
Many applications require storage of XML data. One way to store XML data is to
convert it to relational representation, and store it in a relational database. There are
several alternatives for storing XML data, briefly outlined here.

10.6.1 Relational Databases
Since relational databases are widely used in existing applications, there is a great
benefit to be had in storing XML data in relational databases, so that the data can be
accessed from existing applications.
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Converting XML data to relational form is usually straightforward if the data were
generated from a relational schema in the first place, and XML was used merely as
a data exchange format for relational data. However, there are many applications
where the XML data is not generated from a relational schema, and translating the
data to relational form for storage may not be straightforward. In particular, nested
elements and elements that recur (corresponding to set valued attributes) complicate
storage of XML data in relational format. Several alternative approaches are available:

• Store as string. A simple way to store XML data in a relational database is to
store each child element of the top-level element as a string in a separate tuple
in the database. For instance, the XML data in Figure 10.1 could be stored as
a set of tuples in a relation elements(data), with the attribute data of each tuple
storing one XML element (account, customer, or depositor) in string form.

While the above representation is easy to use, the database system does
not know the schema of the stored elements. As a result, it is not possible
to query the data directly. In fact, it is not even possible to implement simple
selections such as finding all account elements, or finding the account element
with account number A-401, without scanning all tuples of the relation and
examining the contents of the string stored in the tuple.

A partial solution to this problem is to store different types of elements
in different relations, and also store the values of some critical elements as
attributes of the relation to enable indexing. For instance, in our example, the
relations would be account-elements, customer-elements, and depositor-elements,
each with an attribute data. Each relation may have extra attributes to store the
values of some subelements, such as account-number or customer-name. Thus, a
query that requires account elements with a specified account number can be
answered efficiently with this representation. Such an approach depends on
type information about XML data, such as the DTD of the data.

Some database systems, such as Oracle 9, support function indices, which
can help avoid replication of attributes between the XML string and relation
attributes. Unlike normal indices, which are on attribute values, function in-
dices can be built on the result of applying user-defined functions on tuples.
For instance, a function index can be built on a user-defined function that re-
turns the value of the account-number subelement of the XML string in a tuple.
The index can then be used in the same way as an index on a account-number
attribute.

The above approaches have the drawback that a large part of the XML in-
formation is stored within strings. It is possible to store all the information in
relations in one of several ways which we examine next.

• Tree representation. Arbitrary XML data can be modeled as a tree and stored
using a pair of relations:

nodes(id, type, label, value)
child(child-id, parent-id)
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Each element and attribute in the XML data is given a unique identifier. A tu-
ple inserted in the nodes relation for each element and attribute with its iden-
tifier (id), its type (attribute or element), the name of the element or attribute
(label), and the text value of the element or attribute (value). The relation child
is used to record the parent element of each element and attribute. If order
information of elements and attributes must be preserved, an extra attribute
position can be added to the child relation to indicate the relative position of
the child among the children of the parent. As an exercise, you can represent
the XML data of Figure 10.1 by using this technique.

This representation has the advantage that all XML information can be rep-
resented directly in relational form, and many XML queries can be translated
into relational queries and executed inside the database system. However, it
has the drawback that each element gets broken up into many pieces, and a
large number of joins are required to reassemble elements.

• Map to relations. In this approach, XML elements whose schema is known are
mapped to relations and attributes. Elements whose schema is unknown are
stored as strings, or as a tree representation.

A relation is created for each element type whose schema is known. All
attributes of these elements are stored as attributes of the relation. All subele-
ments that occur at most once inside these element (as specified in the DTD)
can also be represented as attributes of the relation; if the subelement can con-
tain only text, the attribute stores the text value. Otherwise, the relation corre-
sponding to the subelement stores the contents of the subelement, along with
an identifier for the parent type and the attribute stores the identifier of the
subelement. If the subelement has further nested subelements, the same pro-
cedure is applied to the subelement.

If a subelement can occur multiple times in an element, the map-to-relations
approach stores the contents of the subelements in the relation corresponding
to the subelement. It gives both parent and subelement unique identifiers, and
creates a separate relation, similar to the child relation we saw earlier in the
tree representation, to identify which subelement occurs under which parent.

Note that when we apply this appoach to the DTD of the data in Figure 10.1,
we get back the original relational schema that we have used in earlier chap-
ters. The bibliographical notes provide references to such hybrid approaches.

10.6.2 Nonrelational Data Stores
There are several alternatives for storing XML data in nonrelational data storage sys-
tems:

• Store in flat files. Since XML is primarily a file format, a natural storage mech-
anism is simply a flat file. This approach has many of the drawbacks, outlined
in Chapter 1, of using file systems as the basis for database applications. In
particular, it lacks data isolation, integrity checks, atomicity, concurrent ac-
cess, and security. However, the wide availability of XML tools that work on
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file data makes it relatively easy to access and query XML data stored in files.
Thus, this storage format may be sufficient for some applications.

• Store in an XML Database. XML databases are databases that use XML as
their basic data model. Early XML databases implemented the Document Ob-
ject Model on a C++-based object-oriented database. This allows much of the
object-oriented database infrastucture to be reused, while using a standard
XML interface. The addition of an XML query language provides declarative
querying. It is also possible to build XML databases as a layer on top of rela-
tional databases.

10.7 XML Applications
A central design goal for XML is to make it easier to communicate information, on the
Web and between applications, by allowing the semantics of the data to be described
with the data itself. Thus, while the large amount of XML data and its use in business
applications will undoubtably require and benefit from database technologies, XML
is foremost a means of communication. Two applications of XML for communication
—exchange of data, and mediation of Web information resources—illustrate how
XML achieves its goal of supporting data exchange and demonstrate how database
technology and interaction are key in supporting exchange-based applications.

10.7.1 Exchange of Data
Standards are being developed for XML representation of data for a variety of special-
ized applications ranging from business applications such as banking and shipping
to scientific applications such as chemistry and molecular biology. Some examples:

• The chemical industry needs information about chemicals, such as their molec-
ular structure, and a variety of important properties such as boiling and melt-
ing points, calorific values, solubility in various solvents, and so on. ChemML
is a standard for representing such information.

• In shipping, carriers of goods and customs and tax officials need shipment
records containing detailed information about the goods being shipped, from
whom and to where they were sent, to whom and to where they are being
shipped, the monetary value of the goods, and so on.

• An online marketplace in which business can buy and sell goods (a so-called
business-to-business B2B market) requires information such as product cata-
logs, including detailed product descriptions and price information, product
inventories, offers to buy, and quotes for a proposed sale.

Using normalized relational schemas to model such complex data requirements
results in a large number of relations, which is often hard for users to manage. The
relations often have large numbers of attributes; explicit representation of attribute/-
element names along with values in XML helps avoid confusion between attributes.
Nested element representations help reduce the number of relations that must be
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represented, as well as the number of joins required to get required information, at
the possible cost of redundancy. For instance, in our bank example, listing customers
with account elements nested within account elements, as in Figure 10.3, results in a
format that is more natural for some applications, in particular for humans to read,
than is the normalized representation in Figure 10.1.

When XML is used to exchange data between business applications, the data most
often originate in relational databases. Data in relational databases must be published,
that is, converted to XML form, for export to other applications. Incoming data must
be shredded, that is, converted back from XML to normalized relation form and stored
in a relational database. While application code can perform the publishing and
shredding operations, the operations are so common that the conversions should
be done automatically, without writing application code, where possible. Database
vendors are therefore working to XML-enable their database products.

An XML-enabled database supports an automatic mapping from its internal model
(relational, object-relational or object-oriented) to XML. These mappings may be sim-
ple or complex. A simple mapping might assign an element to every row of a table,
and make each column in that row either an attribute or a subelement of the row’s
element. Such a mapping is straightforward to generate automatically. A more com-
plicated mapping would allow nested structures to be created. Extensions of SQL
with nested queries in the select clause have been developed to allow easy creation
of nested XML output. Some database products also allow XML queries to access re-
lational data by treating the XML form of relational data as a virtual XML document.

10.7.1.1 Data Mediation
Comparison shopping is an example of a mediation application, in which data about
items, inventory, pricing, and shipping costs are extracted from a variety of Web sites
offering a particular item for sale. The resulting aggregated information is signifi-
cantly more valuable than the individual information offered by a single site.

A personal financial manager is a similar application in the context of banking.
Consider a consumer with a variety of accounts to manage, such as bank accounts,
savings accounts, and retirement accounts. Suppose that these accounts may be held
at different institutions. Providing centralized management for all accounts of a cus-
tomer is a major challenge. XML-based mediation addresses the problem by extract-
ing an XML representation of account information from the respective Web sites of
the financial institutions where the individual holds accounts. This information may
be extracted easily if the institution exports it in a standard XML format, and un-
doubtedly some will. For those that do not, wrapper software is used to generate XML
data from HTML Web pages returned by the Web site. Wrapper applications need
constant maintenance, since they depend on formatting details of Web pages, which
change often. Nevertheless, the value provided by mediation often justifies the effort
required to develop and maintain wrappers.

Once the basic tools are available to extract information from each source, a medi-
ator application is used to combine the extracted information under a single schema.
This may require further transformation of the XML data from each site, since dif-
ferent sites may structure the same information differently. For instance, one of the
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banks may export information in the format in Figure 10.1, while another may use the
nested format in Figure 10.3. They may also use different names for the same informa-
tion (for instance, acct-number and account-id), or may even use the same name for
different information. The mediator must decide on a single schema that represents
all required information, and must provide code to transform data between different
representations. Such issues are discussed in more detail in Section 19.8, in the con-
text of distributed databases. XML query languages such as XSLT and XQuery play an
important role in the task of transformation between different XML representations.

10.8 Summary
• Like the Hyper-Text Markup Language, HTML, on which the Web is based, the

Extensible Markup Language, XML, is a descendant of the Standard General-
ized Markup Language (SGML). XML was originally intended for providing
functional markup for Web documents, but has now become the defacto stan-
dard data format for data exchange between applications.

• XML documents contain elements, with matching starting and ending tags
indicating the beginning and end of an element. Elements may have subele-
ments nested within them, to any level of nesting. Elements may also have
attributes. The choice between representing information as attributes and sub-
elements is often arbitrary in the context of data representation.

• Elements may have an attribute of type ID that stores a unique identifier for the
element. Elements may also store references to other elements using attributes
of type IDREF. Attributes of type IDREFS can store a list of references.

• Documents may optionally have their schema specified by a Document Type
Declaration, DTD. The DTD of a document specifies what elements may occur,
how they may be nested, and what attributes each element may have.

• Although DTDs are widely used, they have several limitations. For instance,
they do not provide a type system. XMLSchema is a new standard for spec-
ifying the schema of a document. While it provides more expressive power,
including a powerful type system, it is also more complicated.

• XML data can be represented as tree structures, with nodes corresponding to
elements and attributes. Nesting of elements is reflected by the parent-child
structure of the tree representation.

• Path expressions can be used to traverse the XML tree structure, to locate re-
quired data. XPath is a standard language for path expressions, and allows
required elements to be specified by a file-system-like path, and additionally
allows selections and other features. XPath also forms part of other XML query
languages.

• The XSLT language was originally designed as the transformation language
for a style sheet facility, in other words, to apply formatting information to
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XML documents. However, XSLT offers quite powerful querying and transfor-
mation features and is widely available, so it is used for quering XML data.

• XSLT programs contain a series of templates, each with a match part and a
select part. Each element in the input XML data is matched against available
templates, and the select part of the first matching template is applied to the
element.

Templates can be applied recursively, from within the body of another tem-
plate, a procedure known as structural recursion. XSLT supports keys, which
can be used to implement some types of joins. It also supports sorting and
other querying facilities.

• The XQuery language, which is currently being standardized, is based on the
Quilt query language. The XQuery language is similar to SQL, with for, let,
where, and return clauses.

However, it supports many extensions to deal with the tree nature of XML
and to allow for the transformation of XML documents into other documents
with a significantly different structure.

• XML data can be stored in any of several different ways. For example, XML
data can be stored as strings in a relational database. Alternatively, relations
can represent XML data as trees. As another alternative, XML data can be
mapped to relations in the same way that E-R schemas are mapped to rela-
tional schemas.

XML data may also be stored in file systems, or in XML-databases, which
use XML as their internal representation.

• The ability to transform documents in languages such as XSLT and XQuery
is a key to the use of XML in mediation applications, such as electronic busi-
ness exchanges and the extraction and combination of Web data for use by a
personal finance manager or comparison shopper.

Review Terms
• Extensible Markup Language

(XML)

• Hyper-Text Markup Language
(HTML)

• Standard Generalized Markup
Language

• Markup language

• Tags

• Self-documenting

• Element

• Root element

• Nested elements

• Attribute

• Namespace

• Default namespace

• Schema definition
� Document Type Definition

(DTD)
� XMLSchema

• ID

• IDREF and IDREFS

• Tree model of XML data
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• Nodes

• Querying and transformation

• Path expressions

• XPath

• Style sheet

• XML Style sheet Language (XSL)

• XSL Transformations (XSLT)
� Templates

–– Match
–– Select

� Structural recursion
� Keys
� Sorting

• XQuery
� FLWR expressions

–– for
–– let
–– where
–– return

� Joins
� Nested FLWR expression
� Sorting

• XML API

• Document Object Model (DOM)
• Simple API for XML (SAX)
• Storage of XML data
� In relational databases

–– Store as string
–– Tree representation
–– Map to relations

� In nonrelational data stores
–– Files
–– XML-databases

• XML Applications
� Exchange of data

–– Publish and shred
� Data mediation

–– Wrapper software
• XML-Enabled database

Exercises
10.1 Give an alternative representation of bank information containing the same

data as in Figure 10.1, but using attributes instead of subelements. Also give
the DTD for this representation.

10.2 Show, by giving a DTD, how to represent the books nested-relation from Sec-
tion 9.1, using XML.

10.3 Give the DTD for an XML representation of the following nested-relational
schema

Emp = (ename, ChildrenSet setof(Children), SkillsSet setof(Skills))
Children = (name, Birthday)
Birthday = (day, month, year)
Skills = (type, ExamsSet setof(Exams))
Exams = (year, city)

10.4 Write the following queries in XQuery, assuming the DTD from Exercise 10.3.
a. Find the names of all employees who have a child who has a birthday in

March.
b. Find those employees who took an examination for the skill type “typing”

in the city “Dayton”.
c. List all skill types in Emp.
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<!DOCTYPE bibliography [
<!ELEMENT book (title, author+, year, publisher, place?)>
<!ELEMENT article (title, author+, journal, year, number, volume, pages?)>
<!ELEMENT author ( last-name, first-name) >
<!ELEMENT title ( #PCDATA )>
· · · similar PCDATA declarations for year, publisher, place, journal, year,

number, volume, pages, last-name and first-name
] >

Figure 10.13 DTD for bibliographical data.

10.5 Write queries in XSLT and in XPath on the DTD of Exercise 10.3 to list all skill
types in Emp.

10.6 Write a query in XQuery on the XML representation in Figure 10.1 to find the
total balance, across all accounts, at each branch. (Hint: Use a nested query to
get the effect of an SQL group by.)

10.7 Write a query in XQuery on the XML representation in Figure 10.1 to compute
the left outer join of customer elements with account elements. (Hint: Use uni-
versal quantification.)

10.8 Give a query in XQuery to flip the nesting of data from Exercise 10.2. That is, at
the outermost level of nesting the output must have elements corresponding to
authors, and each such element must have nested within it items correspond-
ing to all the books written by the author.

10.9 Give the DTD for an XML representation of the information in Figure 2.29. Cre-
ate a separate element type to represent each relationship, but use ID and IDREF
to implement primary and foreign keys.

10.10 Write queries in XSLT and XQuery to output customer elements with associ-
ated account elements nested within the customer elements, given the bank
information representation using ID and IDREFS in Figure 10.8.

10.11 Give a relational schema to represent bibliographical information specified as
per the DTD fragment in Figure 10.13. The relational schema must keep track
of the order of author elements. You can assume that only books and articles
appear as top level elements in XML documents.

10.12 Consider Exercise 10.11, and suppose that authors could also appear as top
level elements. What change would have to be done to the relational schema.

10.13 Write queries in XQuery on the bibliography DTD fragment in Figure 10.13, to
do the following.

a. Find all authors who have authored a book and an article in the same year.
b. Display books and articles sorted by year.
c. Display books with more than one author.
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10.14 Show the tree representation of the XML data in Figure 10.1, and the represen-
tation of the tree using nodes and child relations described in Section 10.6.1.

10.15 Consider the following recursive DTD.

<!DOCTYPE parts [
<!ELEMENT part (name, subpartinfo*)>
<!ELEMENT subpartinfo (part, quantity)>
<!ELEMENT name ( #PCDATA )>
<!ELEMENT quantity ( #PCDATA )>

] >

a. Give a small example of data corresponding to the above DTD.
b. Show how to map this DTD to a relational schema. You can assume that

part names are unique, that is, whereever a part appears, its subpart struc-
ture will be the same.

Bibliographical Notes
The XML Cover Pages site (www.oasis-open.org/cover/) contains a wealth of XML
information, including tutorial introductions to XML, standards, publications, and
software. The World Wide Web Consortium (W3C) acts as the standards body for
Web-related standards, including basic XML and all the XML-related languages such
as XPath, XSLT and XQuery. A large number of technical reports defining the XML
related standards are available at www.w3c.org.

Fernandez et al. [2000] gives an algebra for XML. Quilt is described in Chamberlin
et al. [2000]. Sahuguet [2001] describes a system, based on the Quilt language, for
querying XML. Deutsch et al. [1999b] describes the XML-QL language. Integration of
keyword querying into XML is outlined by Florescu et al. [2000]. Query optimiza-
tion for XML is described in McHugh and Widom [1999]. Fernandez and Morishima
[2001] describe efficient evaluation of XML queries in middleware systems. Other
work on querying and manipulating XML data includes Chawathe [1999], Deutsch
et al. [1999a], and Shanmugasundaram et al. [2000].

Florescu and Kossmann [1999], Kanne and Moerkotte [2000], and Shanmugasun-
daram et al. [1999] describe storage of XML data. Schning [2001] describes a database
designed for XML. XML support in commercial databases is described in Banerjee
et al. [2000], Cheng and Xu [2000] and Rys [2001]. See Chapters 25 through 27 for
more information on XML support in commercial databases. The use of XML for data
integration is described by Liu et al. [2000], Draper et al. [2001], Baru et al. [1999], and
Carey et al. [2000].

Tools
A number of tools to deal with XML are available in the public domain. The site
www.oasis-open.org/cover/ contains links to a variety of software tools for XML and
XSL (including XSLT). Kweelt (available at http://db.cis.upenn.edu/Kweelt/) is a pub-
licly available XML querying system based on the Quilt language.
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Data Storage and Querying

Although a database system provides a high-level view of data, ultimately data have
to be stored as bits on one or more storage devices. A vast majority of databases today
store data on magnetic disk and fetch data into main space memory for processing,
or copy data onto tapes and other backup devices for archival storage. The physical
characteristics of storage devices play a major role in the way data are stored, in
particular because access to a random piece of data on disk is much slower than
memory access: Disk access takes tens of milliseconds, whereas memory access takes
a tenth of a microsecond.

Chapter 11 begins with an overview of physical storage media, including mecha-
nisms to minimize the chance of data loss due to failures. The chapter then describes
how records are mapped to files, which in turn are mapped to bits on the disk. Stor-
age and retrieval of objects is also covered in Chapter 11.

Many queries reference only a small proportion of the records in a file. An index
is a structure that helps locate desired records of a relation quickly, without examin-
ing all records. The index in this textbook is an example, although, unlike database
indices, it is meant for human use. Chapter 12 describes several types of indices used
in database systems.

User queries have to be executed on the database contents, which reside on storage
devices. It is usually convenient to break up queries into smaller operations, roughly
corresponding to the relational algebra operations. Chapter 13 describes how queries
are processed, presenting algorithms for implementing individual operations, and
then outlining how the operations are executed in synchrony, to process a query.

There are many alternative ways of processing a query, which can have widely
varying costs. Query optimization refers to the process of finding the lowest-cost
method of evaluating a given query. Chapter 14 describes the process of query opti-
mization.
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Storage and File Structure

In preceding chapters, we have emphasized the higher-level models of a database.
For example, at the conceptual or logical level, we viewed the database, in the relational
model, as a collection of tables. Indeed, the logical model of the database is the correct
level for database users to focus on. This is because the goal of a database system is
to simplify and facilitate access to data; users of the system should not be burdened
unnecessarily with the physical details of the implementation of the system.

In this chapter, however, as well as in Chapters 12, 13, and 14, we probe below
the higher levels as we describe various methods for implementing the data models
and languages presented in preceding chapters. We start with characteristics of the
underlying storage media, such as disk and tape systems. We then define various
data structures that will allow fast access to data. We consider several alternative
structures, each best suited to a different kind of access to data. The final choice of
data structure needs to be made on the basis of the expected use of the system and of
the physical characteristics of the specific machine.

11.1 Overview of Physical Storage Media
Several types of data storage exist in most computer systems. These storage media
are classified by the speed with which data can be accessed, by the cost per unit of
data to buy the medium, and by the medium’s reliability. Among the media typically
available are these:

• Cache. The cache is the fastest and most costly form of storage. Cache memory
is small; its use is managed by the computer system hardware. We shall not
be concerned about managing cache storage in the database system.

• Main memory. The storage medium used for data that are available to be op-
erated on is main memory. The general-purpose machine instructions operate
on main memory. Although main memory may contain many megabytes of

393
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data, or even gigabytes of data in large server systems, it is generally too small
(or too expensive) for storing the entire database. The contents of main mem-
ory are usually lost if a power failure or system crash occurs.

• Flash memory. Also known as electrically erasable programmable read-only mem-
ory (EEPROM), flash memory differs from main memory in that data survive
power failure. Reading data from flash memory takes less than 100 nanosec-
onds (a nanosecond is 1/1000 of a microsecond), which is roughly as fast as
reading data from main memory. However, writing data to flash memory is
more complicated—data can be written once, which takes about 4 to 10 mi-
croseconds, but cannot be overwritten directly. To overwrite memory that has
been written already, we have to erase an entire bank of memory at once; it
is then ready to be written again. A drawback of flash memory is that it can
support only a limited number of erase cycles, ranging from 10,000 to 1 mil-
lion. Flash memory has found popularity as a replacement for magnetic disks
for storing small volumes of data (5 to 10 megabytes) in low-cost computer
systems, such as computer systems that are embedded in other devices, in
hand-held computers, and in other digital electronic devices such as digital
cameras.

• Magnetic-disk storage. The primary medium for the long-term on-line stor-
age of data is the magnetic disk. Usually, the entire database is stored on mag-
netic disk. The system must move the data from disk to main memory so that
they can be accessed. After the system has performed the designated opera-
tions, the data that have been modified must be written to disk.

The size of magnetic disks currently ranges from a few gigabytes to 80 giga-
bytes. Both the lower and upper end of this range have been growing at about
50 percent per year, and we can expect much larger capacity disks every year.
Disk storage survives power failures and system crashes. Disk-storage devices
themselves may sometimes fail and thus destroy data, but such failures usu-
ally occur much less frequently than do system crashes.

• Optical storage. The most popular forms of optical storage are the compact
disk (CD), which can hold about 640 megabytes of data, and the digital video
disk (DVD) which can hold 4.7 or 8.5 gigabytes of data per side of the disk (or
up to 17 gigabytes on a two-sided disk). Data are stored optically on a disk,
and are read by a laser. The optical disks used in read-only compact disks
(CD-ROM) or read-only digital video disk (DVD-ROM) cannot be written, but
are supplied with data prerecorded.

There are “record-once” versions of compact disk (called CD-R) and digital
video disk (called DVD-R), which can be written only once; such disks are also
called write-once, read-many (WORM) disks. There are also “multiple-write”
versions of compact disk (called CD-RW) and digital video disk (DVD-RW and
DVD-RAM), which can be written multiple times. Recordable compact disks
are magnetic–optical storage devices that use optical means to read magnet-
ically encoded data. Such disks are useful for archival storage of data as well
as distribution of data.
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Jukebox systems contain a few drives and numerous disks that can be
loaded into one of the drives automatically (by a robot arm) on demand.

• Tape storage. Tape storage is used primarily for backup and archival data.
Although magnetic tape is much cheaper than disks, access to data is much
slower, because the tape must be accessed sequentially from the beginning.
For this reason, tape storage is referred to as sequential-access storage. In con-
trast, disk storage is referred to as direct-access storage because it is possible
to read data from any location on disk.

Tapes have a high capacity (40 gigabyte to 300 gigabytes tapes are currently
available), and can be removed from the tape drive, so they are well suited to
cheap archival storage. Tape jukeboxes are used to hold exceptionally large
collections of data, such as remote-sensing data from satellites, which could
include as much as hundreds of terabytes (1 terabyte = 1012 bytes), or even a
petabyte (1 petabyte = 1015 bytes) of data.

The various storage media can be organized in a hierarchy (Figure 11.1) according
to their speed and their cost. The higher levels are expensive, but are fast. As we move
down the hierarchy, the cost per bit decreases, whereas the access time increases. This
trade-off is reasonable; if a given storage system were both faster and less expensive
than another—other properties being the same—then there would be no reason to
use the slower, more expensive memory. In fact, many early storage devices, includ-
ing paper tape and core memories, are relegated to museums now that magnetic tape
and semiconductor memory have become faster and cheaper. Magnetic tapes them-
selves were used to store active data back when disks were expensive and had low

cache

main memory

flash memory

magnetic disk

optical disk

magnetic tapes

Figure 11.1 Storage-device hierarchy.
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storage capacity. Today, almost all active data are stored on disks, except in rare cases
where they are stored on tape or in optical jukeboxes.

The fastest storage media—for example, cache and main memory—are referred
to as primary storage. The media in the next level in the hierarchy—for example,
magnetic disks—are referred to as secondary storage, or online storage. The media
in the lowest level in the hierarchy—for example, magnetic tape and optical-disk
jukeboxes—are referred to as tertiary storage, or offline storage.

In addition to the speed and cost of the various storage systems, there is also the
issue of storage volatility. Volatile storage loses its contents when the power to the
device is removed. In the hierarchy shown in Figure 11.1, the storage systems from
main memory up are volatile, whereas the storage systems below main memory are
nonvolatile. In the absence of expensive battery and generator backup systems, data
must be written to nonvolatile storage for safekeeping. We shall return to this subject
in Chapter 17.

11.2 Magnetic Disks
Magnetic disks provide the bulk of secondary storage for modern computer systems.
Disk capacities have been growing at over 50 percent per year, but the storage re-
quirements of large applications have also been growing very fast, in some cases even
faster than the growth rate of disk capacities. A large database may require hundreds
of disks.

11.2.1 Physical Characteristics of Disks
Physically, disks are relatively simple (Figure 11.2). Each disk platter has a flat cir-
cular shape. Its two surfaces are covered with a magnetic material, and information
is recorded on the surfaces. Platters are made from rigid metal or glass and are cov-
ered (usually on both sides) with magnetic recording material. We call such magnetic
disks hard disks, to distinguish them from floppy disks, which are made from flexi-
ble material.

When the disk is in use, a drive motor spins it at a constant high speed (usually 60,
90, or 120 revolutions per second, but disks running at 250 revolutions per second are
available). There is a read–write head positioned just above the surface of the platter.
The disk surface is logically divided into tracks, which are subdivided into sectors.
A sector is the smallest unit of information that can be read from or written to the
disk. In currently available disks, sector sizes are typically 512 bytes; there are over
16,000 tracks on each platter, and 2 to 4 platters per disk. The inner tracks (closer to
the spindle) are of smaller length, and in current-generation disks, the outer tracks
contain more sectors than the inner tracks; typical numbers are around 200 sectors
per track in the inner tracks, and around 400 sectors per track in the outer tracks. The
numbers above vary among different models; higher-capacity models usually have
more sectors per track and more tracks on each platter.

The read–write head stores information on a sector magnetically as reversals of
the direction of magnetization of the magnetic material. There may be hundreds of
concentric tracks on a disk surface, containing thousands of sectors.
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Figure 11.2 Moving-head disk mechanism.

Each side of a platter of a disk has a read–write head, which moves across the
platter to access different tracks. A disk typically contains many platters, and the read
–write heads of all the tracks are mounted on a single assembly called a disk arm,
and move together. The disk platters mounted on a spindle and the heads mounted
on a disk arm are together known as head–disk assemblies. Since the heads on all
the platters move together, when the head on one platter is on the ith track, the heads
on all other platters are also on the ith track of their respective platters. Hence, the
ith tracks of all the platters together are called the ith cylinder.

Today, disks with a platter diameter of 3 1
2 inches dominate the market. They have

a lower cost and faster seek times (due to smaller seek distances) than do the larger-
diameter disks (up to 14 inches) that were common earlier, yet they provide high
storage capacity. Smaller-diameter disks are used in portable devices such as laptop
computers.

The read–write heads are kept as close as possible to the disk surface to increase
the recording density. The head typically floats or flies only microns from the disk
surface; the spinning of the disk creates a small breeze, and the head assembly is
shaped so that the breeze keeps the head floating just above the disk surface. Because
the head floats so close to the surface, platters must be machined carefully to be flat.
Head crashes can be a problem. If the head contacts the disk surface, the head can
scrape the recording medium off the disk, destroying the data that had been there.
Usually, the head touching the surface causes the removed medium to become air-
borne and to come between the other heads and their platters, causing more crashes.
Under normal circumstances, a head crash results in failure of the entire disk, which
must then be replaced. Current-generation disk drives use a thin film of magnetic
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metal as recording medium. They are much less susceptible to failure by head crashes
than the older oxide-coated disks.

A fixed-head disk has a separate head for each track. This arrangement allows the
computer to switch from track to track quickly, without having to move the head as-
sembly, but because of the large number of heads, the device is extremely expensive.
Some disk systems have multiple disk arms, allowing more than one track on the
same platter to be accessed at a time. Fixed-head disks and multiple-arm disks were
used in high-performance mainframe systems, but are no longer in production.

A disk controller interfaces between the computer system and the actual hard-
ware of the disk drive. It accepts high-level commands to read or write a sector, and
initiates actions, such as moving the disk arm to the right track and actually reading
or writing the data. Disk controllers also attach checksums to each sector that is writ-
ten; the checksum is computed from the data written to the sector. When the sector is
read back, the controller computes the checksum again from the retrieved data and
compares it with the stored checksum; if the data are corrupted, with a high proba-
bility the newly computed checksum will not match the stored checksum. If such an
error occurs, the controller will retry the read several times; if the error continues to
occur, the controller will signal a read failure.

Another interesting task that disk controllers perform is remapping of bad sectors.
If the controller detects that a sector is damaged when the disk is initially formatted,
or when an attempt is made to write the sector, it can logically map the sector to a
different physical location (allocated from a pool of extra sectors set aside for this
purpose). The remapping is noted on disk or in nonvolatile memory, and the write is
carried out on the new location.

Figure 11.3 shows how disks are connected to a computer system. Like other stor-
age units, disks are connected to a computer system or to a controller through a high-
speed interconnection. In modern disk systems, lower-level functions of the disk con-
troller, such as control of the disk arm, computing and verification of checksums, and
remapping of bad sectors, are implemented within the disk drive unit.

The AT attachment (ATA) interface (which is a faster version of the integrated
drive electronics (IDE) interface used earlier in IBM PCs) and a small-computer-
system interconnect (SCSI; pronounced “scuzzy”) are commonly used to connect

disk
controller

system bus

disks

Figure 11.3 Disk subsystem.
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disks to personal computers and workstations. Mainframe and server systems usu-
ally have a faster and more expensive interface, such as high-capacity versions of the
SCSI interface, and the Fibre Channel interface.

While disks are usually connected directly by cables to the disk controller, they can
be situated remotely and connected by a high-speed network to the disk controller. In
the storage area network (SAN) architecture, large numbers of disks are connected
by a high-speed network to a number of server computers. The disks are usually
organized locally using redundant arrays of independent disks (RAID) storage or-
ganizations, but the RAID organization may be hidden from the server computers:
the disk subsystems pretend each RAID system is a very large and very reliable disk.
The controller and the disk continue to use SCSI or Fibre Channel interfaces to talk
with each other, although they may be separated by a network. Remote access to
disks across a storage area network means that disks can be shared by multiple com-
puters, which could run different parts of an application in parallel. Remote access
also means that disks containing important data can be kept in a central server room
where they can be monitored and maintained by system administrators, instead of
being scattered in different parts of an organization.

11.2.2 Performance Measures of Disks
The main measures of the qualities of a disk are capacity, access time, data-transfer
rate, and reliability.

Access time is the time from when a read or write request is issued to when data
transfer begins. To access (that is, to read or write) data on a given sector of a disk,
the arm first must move so that it is positioned over the correct track, and then must
wait for the sector to appear under it as the disk rotates. The time for repositioning
the arm is called the seek time, and it increases with the distance that the arm must
move. Typical seek times range from 2 to 30 milliseconds, depending on how far the
track is from the initial arm position. Smaller disks tend to have lower seek times
since the head has to travel a smaller distance.

The average seek time is the average of the seek times, measured over a sequence
of (uniformly distributed) random requests. If all tracks have the same number of
sectors, and we disregard the time required for the head to start moving and to stop
moving, we can show that the average seek time is one-third the worst case seek
time. Taking these factors into account, the average seek time is around one-half of
the maximum seek time. Average seek times currently range between 4 milliseconds
and 10 milliseconds, depending on the disk model.

Once the seek has started, the time spent waiting for the sector to be accessed
to appear under the head is called the rotational latency time. Rotational speeds
of disks today range from 5400 rotations per minute (90 rotations per second) up to
15,000 rotations per minute (250 rotations per second), or, equivalently, 4 milliseconds
to 11.1 milliseconds per rotation. On an average, one-half of a rotation of the disk is
required for the beginning of the desired sector to appear under the head. Thus, the
average latency time of the disk is one-half the time for a full rotation of the disk.

The access time is then the sum of the seek time and the latency, and ranges from
8 to 20 milliseconds. Once the first sector of the data to be accessed has come under
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the head, data transfer begins. The data-transfer rate is the rate at which data can be
retrieved from or stored to the disk. Current disk systems claim to support maximum
transfer rates of about 25 to 40 megabytes per second, although actual transfer rates
may be significantly less, at about 4 to 8 megabytes per second.

The final commonly used measure of a disk is the mean time to failure (MTTF),
which is a measure of the reliability of the disk. The mean time to failure of a disk (or
of any other system) is the amount of time that, on average, we can expect the system
to run continuously without any failure. According to vendors’ claims, the mean
time to failure of disks today ranges from 30,000 to 1,200,000 hours—about 3.4 to 136
years. In practice the claimed mean time to failure is computed on the probability of
failure when the disk is new—the figure means that given 1000 relatively new disks,
if the MTTF is 1,200,000 hours, on an average one of them will fail in 1200 hours. A
mean time to failure of 1,200,000 hours does not imply that the disk can be expected
to function for 136 years! Most disks have an expected life span of about 5 years, and
have significantly higher rates of failure once they become more than a few years old.

There may be multiple disks sharing a disk interface. The widely used ATA-4 in-
terface standard (also called Ultra-DMA) supports 33 megabytes per second transfer
rates, while ATA-5 supports 66 megabytes per second. SCSI-3 (Ultra2 wide SCSI)
supports 40 megabytes per second, while the more expensive Fibre Channel inter-
face supports up to 256 megabytes per second. The transfer rate of the interface is
shared between all disks attached to the interface.

11.2.3 Optimization of Disk-Block Access
Requests for disk I/O are generated both by the file system and by the virtual memory
manager found in most operating systems. Each request specifies the address on the
disk to be referenced; that address is in the form of a block number. A block is a con-
tiguous sequence of sectors from a single track of one platter. Block sizes range from
512 bytes to several kilobytes. Data are transferred between disk and main memory in
units of blocks. The lower levels of the file-system manager convert block addresses
into the hardware-level cylinder, surface, and sector number.

Since access to data on disk is several orders of magnitude slower than access to
data in main memory, equipment designers have focused on techniques for improv-
ing the speed of access to blocks on disk. One such technique, buffering of blocks
in memory to satisfy future requests, is discussed in Section 11.5. Here, we discuss
several other techniques.

• Scheduling. If several blocks from a cylinder need to be transferred from disk
to main memory, we may be able to save access time by requesting the blocks
in the order in which they will pass under the heads. If the desired blocks
are on different cylinders, it is advantageous to request the blocks in an or-
der that minimizes disk-arm movement. Disk-arm–scheduling algorithms
attempt to order accesses to tracks in a fashion that increases the number of
accesses that can be processed. A commonly used algorithm is the elevator
algorithm, which works in the same way many elevators do. Suppose that,
initially, the arm is moving from the innermost track toward the outside of
the disk. Under the elevator algorithms control, for each track for which there
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is an access request, the arm stops at that track, services requests for the track,
and then continues moving outward until there are no waiting requests for
tracks farther out. At this point, the arm changes direction, and moves toward
the inside, again stopping at each track for which there is a request, until it
reaches a track where there is no request for tracks farther toward the center.
Now, it reverses direction and starts a new cycle. Disk controllers usually per-
form the task of reordering read requests to improve performance, since they
are intimately aware of the organization of blocks on disk, of the rotational
position of the disk platters, and of the position of the disk arm.

• File organization. To reduce block-access time, we can organize blocks on disk
in a way that corresponds closely to the way we expect data to be accessed.
For example, if we expect a file to be accessed sequentially, then we should
ideally keep all the blocks of the file sequentially on adjacent cylinders. Older
operating systems, such as the IBM mainframe operating systems, provided
programmers fine control on placement of files, allowing a programmer to
reserve a set of cylinders for storing a file. However, this control places a bur-
den on the programmer or system administrator to decide, for example, how
many cylinders to allocate for a file, and may require costly reorganization if
data are inserted to or deleted from the file.

Subsequent operating systems, such as Unix and personal-computer oper-
ating systems, hide the disk organization from users, and manage the alloca-
tion internally. However, over time, a sequential file may become fragmented;
that is, its blocks become scattered all over the disk. To reduce fragmentation,
the system can make a backup copy of the data on disk and restore the entire
disk. The restore operation writes back the blocks of each file contiguously (or
nearly so). Some systems (such as different versions of the Windows operating
system) have utilities that scan the disk and then move blocks to decrease the
fragmentation. The performance increases realized from these techniques can
be large, but the system is generally unusable while these utilities operate.

• Nonvolatile write buffers. Since the contents of main memory are lost in
a power failure, information about database updates has to be recorded on
disk to survive possible system crashes. For this reason, the performance of
update-intensive database applications, such as transaction-processing sys-
tems, is heavily dependent on the speed of disk writes.

We can use nonvolatile random-access memory (NV-RAM) to speed up
disk writes drastically. The contents of nonvolatile RAM are not lost in power
failure. A common way to implement nonvolatile RAM is to use battery–
backed-up RAM. The idea is that, when the database system (or the operat-
ing system) requests that a block be written to disk, the disk controller writes
the block to a nonvolatile RAM buffer, and immediately notifies the operating
system that the write completed successfully. The controller writes the data to
their destination on disk whenever the disk does not have any other requests,
or when the nonvolatile RAM buffer becomes full. When the database system
requests a block write, it notices a delay only if the nonvolatile RAM buffer
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is full. On recovery from a system crash, any pending buffered writes in the
nonvolatile RAM are written back to the disk.

An example illustrates how much nonvolatile RAM improves performance.
Assume that write requests are received in a random fashion, with the disk
being busy on average 90 percent of the time.1 If we have a nonvolatile RAM
buffer of 50 blocks, then, on average, only once per minute will a write find
the buffer to be full (and therefore have to wait for a disk write to finish). Dou-
bling the buffer to 100 blocks results in approximately only one write per hour
finding the buffer to be full. Thus, in most cases, disk writes can be executed
without the database system waiting for a seek or rotational latency.

• Log disk. Another approach to reducing write latencies is to use a log disk—
that is, a disk devoted to writing a sequential log—in much the same way as
a nonvolatile RAM buffer. All access to the log disk is sequential, essentially
eliminating seek time, and several consecutive blocks can be written at once,
making writes to the log disk several times faster than random writes. As
before, the data have to be written to their actual location on disk as well, but
the log disk can do the write later, without the database system having to wait
for the write to complete. Furthermore, the log disk can reorder the writes to
minimize disk arm movement. If the system crashes before some writes to the
actual disk location have completed, when the system comes back up it reads
the log disk to find those writes that had not been completed, and carries them
out then.

File systems that support log disks as above are called journaling file sys-
tems. Journaling file systems can be implemented even without a separate log
disk, keeping data and the log on the same disk. Doing so reduces the mone-
tary cost, at the expense of lower performance.

The log-based file system is an extreme version of the log-disk approach.
Data are not written back to their original destination on disk; instead, the
file system keeps track of where in the log disk the blocks were written most
recently, and retrieves them from that location. The log disk itself is compacted
periodically, so that old writes that have subsequently been overwritten can
be removed. This approach improves write performance, but generates a high
degree of fragmentation for files that are updated often. As we noted earlier,
such fragmentation increases seek time for sequential reading of files.

11.3 RAID
The data storage requirements of some applications (in particular Web, database, and
multimedia data applications) have been growing so fast that a large number of disks
are needed to store data for such applications, even though disk drive capacities have
been growing very fast.

1. For the statistically inclined reader, we assume Poisson distribution of arrivals. The exact arrival rate
and rate of service are not needed since the disk utilization provides enough information for our calcula-
tions.
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Having a large number of disks in a system presents opportunities for improving
the rate at which data can be read or written, if the disks are operated in parallel. Par-
allelism can also be used to perform several independent reads or writes in parallel.
Furthermore, this setup offers the potential for improving the reliability of data stor-
age, because redundant information can be stored on multiple disks. Thus, failure of
one disk does not lead to loss of data.

A variety of disk-organization techniques, collectively called redundant arrays of
independent disks (RAID), have been proposed to achieve improved performance
and reliability.

In the past, system designers viewed storage systems composed of several small
cheap disks as a cost-effective alternative to using large, expensive disks; the cost per
megabyte of the smaller disks was less than that of larger disks. In fact, the I in RAID,
which now stands for independent, originally stood for inexpensive. Today, however,
all disks are physically small, and larger-capacity disks actually have a lower cost per
megabyte. RAID systems are used for their higher reliability and higher performance
rate, rather than for economic reasons.

11.3.1 Improvement of Reliability via Redundancy
Let us first consider reliability. The chance that some disk out of a set of N disks will
fail is much higher than the chance that a specific single disk will fail. Suppose that
the mean time to failure of a disk is 100,000 hours, or slightly over 11 years. Then,
the mean time to failure of some disk in an array of 100 disks will be 100,000 / 100 =
1000 hours, or around 42 days, which is not long at all! If we store only one copy of
the data, then each disk failure will result in loss of a significant amount of data (as
discussed in Section 11.2.1). Such a high rate of data loss is unacceptable.

The solution to the problem of reliability is to introduce redundancy; that is, we
store extra information that is not needed normally, but that can be used in the event
of failure of a disk to rebuild the lost information. Thus, even if a disk fails, data are
not lost, so the effective mean time to failure is increased, provided that we count
only failures that lead to loss of data or to nonavailability of data.

The simplest (but most expensive) approach to introducing redundancy is to du-
plicate every disk. This technique is called mirroring (or, sometimes, shadowing). A
logical disk then consists of two physical disks, and every write is carried out on both
disks. If one of the disks fails, the data can be read from the other. Data will be lost
only if the second disk fails before the first failed disk is repaired.

The mean time to failure (where failure is the loss of data) of a mirrored disk de-
pends on the mean time to failure of the individual disks, as well as on the mean
time to repair, which is the time it takes (on an average) to replace a failed disk and
to restore the data on it. Suppose that the failures of the two disks are independent;
that is, there is no connection between the failure of one disk and the failure of the
other. Then, if the mean time to failure of a single disk is 100,000 hours, and the mean
time to repair is 10 hours, then the mean time to data loss of a mirrored disk system is
1000002/(2 ∗ 10) = 500∗106 hours, or 57,000 years! (We do not go into the derivations
here; references in the bibliographical notes provide the details.)
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You should be aware that the assumption of independence of disk failures is not
valid. Power failures, and natural disasters such as earthquakes, fires, and floods,
may result in damage to both disks at the same time. As disks age, the probability of
failure increases, increasing the chance that a second disk will fail while the first is
being repaired. In spite of all these considerations, however, mirrored-disk systems
offer much higher reliability than do single-disk systems. Mirrored-disk systems with
mean time to data loss of about 500,000 to 1,000,000 hours, or 55 to 110 years, are
available today.

Power failures are a particular source of concern, since they occur far more fre-
quently than do natural disasters. Power failures are not a concern if there is no data
transfer to disk in progress when they occur. However, even with mirroring of disks,
if writes are in progress to the same block in both disks, and power fails before both
blocks are fully written, the two blocks can be in an inconsistent state. The solution
to this problem is to write one copy first, then the next, so that one of the two copies
is always consistent. Some extra actions are required when we restart after a power
failure, to recover from incomplete writes. This matter is examined in Exercise 11.4.

11.3.2 Improvement in Performance via Parallelism
Now let us consider the benefit of parallel access to multiple disks. With disk mirror-
ing, the rate at which read requests can be handled is doubled, since read requests
can be sent to either disk (as long as both disks in a pair are functional, as is almost
always the case). The transfer rate of each read is the same as in a single-disk system,
but the number of reads per unit time has doubled.

With multiple disks, we can improve the transfer rate as well (or instead) by strip-
ing data across multiple disks. In its simplest form, data striping consists of splitting
the bits of each byte across multiple disks; such striping is called bit-level striping.
For example, if we have an array of eight disks, we write bit i of each byte to disk
i. The array of eight disks can be treated as a single disk with sectors that are eight
times the normal size, and, more important, that has eight times the transfer rate. In
such an organization, every disk participates in every access (read or write), so the
number of accesses that can be processed per second is about the same as on a sin-
gle disk, but each access can read eight times as many data in the same time as on a
single disk. Bit-level striping can be generalized to a number of disks that either is a
multiple of 8 or a factor of 8. For example, if we use an array of four disks, bits i and
4 + i of each byte go to disk i.

Block-level striping stripes blocks across multiple disks. It treats the array of disks
as a single large disk, and it gives blocks logical numbers; we assume the block num-
bers start from 0. With an array of n disks, block-level striping assigns logical block i
of the disk array to disk (i mod n) + 1; it uses the �i/n�th physical block of the disk
to store logical block i. For example, with 8 disks, logical block 0 is stored in physical
block 0 of disk 1, while logical block 11 is stored in physical block 1 of disk 4. When
reading a large file, block-level striping fetches n blocks at a time in parallel from the
n disks, giving a high data transfer rate for large reads. When a single block is read,
the data transfer rate is the same as on one disk, but the remaining n − 1 disks are
free to perform other actions.
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Block level striping is the most commonly used form of data striping. Other levels
of striping, such as bytes of a sector or sectors of a block also are possible.

In summary, there are two main goals of parallelism in a disk system:

1. Load-balance multiple small accesses (block accesses), so that the throughput
of such accesses increases.

2. Parallelize large accesses so that the response time of large accesses is reduced.

11.3.3 RAID Levels
Mirroring provides high reliability, but it is expensive. Striping provides high data-
transfer rates, but does not improve reliability. Various alternative schemes aim to
provide redundancy at lower cost by combining disk striping with “parity” bits
(which we describe next). These schemes have different cost–performance trade-offs.
The schemes are classified into RAID levels, as in Figure 11.4. (In the figure, P indi-
cates error-correcting bits, and C indicates a second copy of the data.) For all levels,
the figure depicts four disk’s worth of data, and the extra disks depicted are used to
store redundant information for failure recovery.

• RAID level 0 refers to disk arrays with striping at the level of blocks, but
without any redundancy (such as mirroring or parity bits). Figure 11.4a shows
an array of size 4.

• RAID level 1 refers to disk mirroring with block striping. Figure 11.4b shows
a mirrored organization that holds four disks worth of data.

• RAID level 2, known as memory-style error-correcting-code (ECC) organiza-
tion, employs parity bits. Memory systems have long used parity bits for error
detection and correction. Each byte in a memory system may have a parity bit
associated with it that records whether the numbers of bits in the byte that are
set to 1 is even (parity = 0) or odd (parity = 1). If one of the bits in the byte
gets damaged (either a 1 becomes a 0, or a 0 becomes a 1), the parity of the
byte changes and thus will not match the stored parity. Similarly, if the stored
parity bit gets damaged, it will not match the computed parity. Thus, all 1-bit
errors will be detected by the memory system. Error-correcting schemes store
2 or more extra bits, and can reconstruct the data if a single bit gets damaged.

The idea of error-correcting codes can be used directly in disk arrays by
striping bytes across disks. For example, the first bit of each byte could be
stored in disk 1, the second bit in disk 2, and so on until the eighth bit is
stored in disk 8, and the error-correction bits are stored in further disks.

Figure 11.4c shows the level 2 scheme. The disks labeled P store the error-
correction bits. If one of the disks fails, the remaining bits of the byte and the
associated error-correction bits can be read from other disks, and can be used
to reconstruct the damaged data. Figure 11.4c shows an array of size 4; note
RAID level 2 requires only three disks’ overhead for four disks of data, unlike
RAID level 1, which required four disks’ overhead.
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(a) RAID 0: nonredundant striping

(b) RAID 1: mirrored disks

(c) RAID 2: memory-style error-correcting codes

(d) RAID 3: bit-interleaved parity

(e) RAID 4: block-interleaved parity

(f) RAID 5: block-interleaved distributed parity

(g) RAID 6: P + Q redundancy

P

P P

P P

P P

P P

P

C CCC

P PP

P

P P

Figure 11.4 RAID levels.

• RAID level 3, bit-interleaved parity organization, improves on level 2 by
exploiting the fact that disk controllers, unlike memory systems, can detect
whether a sector has been read correctly, so a single parity bit can be used for
error correction, as well as for detection. The idea is as follows. If one of the
sectors gets damaged, the system knows exactly which sector it is, and, for
each bit in the sector, the system can figure out whether it is a 1 or a 0 by com-
puting the parity of the corresponding bits from sectors in the other disks. If
the parity of the remaining bits is equal to the stored parity, the missing bit is
0; otherwise, it is 1.
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RAID level 3 is as good as level 2, but is less expensive in the number of
extra disks (it has only a one-disk overhead), so level 2 is not used in practice.
Figure 11.4d shows the level 3 scheme.

RAID level 3 has two benefits over level 1. It needs only one parity disk for
several regular disks, whereas Level 1 needs one mirror disk for every disk,
and thus reduces the storage overhead. Since reads and writes of a byte are
spread out over multiple disks, with N -way striping of data, the transfer rate
for reading or writing a single block is N times faster than a RAID level 1 or-
ganization using N -way striping. On the other hand, RAID level 3 supports a
lower number of I/O operations per second, since every disk has to participate
in every I/O request.

• RAID level 4, block-interleaved parity organization, uses block level striping,
like RAID 0, and in addition keeps a parity block on a separate disk for cor-
responding blocks from N other disks. This scheme is shown pictorially in
Figure 11.4e. If one of the disks fails, the parity block can be used with the
corresponding blocks from the other disks to restore the blocks of the failed
disk.

A block read accesses only one disk, allowing other requests to be pro-
cessed by the other disks. Thus, the data-transfer rate for each access is slower,
but multiple read accesses can proceed in parallel, leading to a higher overall
I/O rate. The transfer rates for large reads is high, since all the disks can be
read in parallel; large writes also have high transfer rates, since the data and
parity can be written in parallel.

Small independent writes, on the other hand, cannot be performed in par-
allel. A write of a block has to access the disk on which the block is stored,
as well as the parity disk, since the parity block has to be updated. Moreover,
both the old value of the parity block and the old value of the block being
written have to be read for the new parity to be computed. Thus, a single
write requires four disk accesses: two to read the two old blocks, and two to
write the two blocks.

• RAID level 5, block-interleaved distributed parity, improves on level 4 by
partitioning data and parity among all N + 1 disks, instead of storing data in
N disks and parity in one disk. In level 5, all disks can participate in satisfying
read requests, unlike RAID level 4, where the parity disk cannot participate,
so level 5 increases the total number of requests that can be met in a given
amount of time. For each set of N logical blocks, one of the disks stores the
parity, and the other N disks store the blocks.

Figure 11.4f shows the setup. The P ’s are distributed across all the disks.
For example, with an array of 5 disks, the parity block, labelled Pk, for logical
blocks 4k, 4k +1, 4k +2, 4k +3 is stored in disk (k mod 5)+1; the correspond-
ing blocks of the other four disks store the 4 data blocks 4k to 4k + 3. The
following table indicates how the first 20 blocks, numbered 0 to 19, and their
parity blocks are laid out. The pattern shown gets repeated on further blocks.
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P0
4
8

12
16

0
P1

9
13
17

1
5

P2
14
18

2
6

10
P3
19

3
7

11
15
P4

Note that a parity block cannot store parity for blocks in the same disk,
since then a disk failure would result in loss of data as well as of parity, and
hence would not be recoverable. Level 5 subsumes level 4, since it offers better
read–write performance at the same cost, so level 4 is not used in practice.

• RAID level 6, the P + Q redundancy scheme, is much like RAID level 5, but
stores extra redundant information to guard against multiple disk failures.
Instead of using parity, level 6 uses error-correcting codes such as the Reed–
Solomon codes (see the bibliographical notes). In the scheme in Figure 11.4g,
2 bits of redundant data are stored for every 4 bits of data—unlike 1 parity bit
in level 5—and the system can tolerate two disk failures.

Finally, we note that several variations have been proposed to the basic RAID schemes
described here.

Some vendors use their own terminology to describe their RAID implementations.2

However, the terminology we have presented is the most widely used.

11.3.4 Choice of RAID Level
The factors to be taken into account when choosing a RAID level are

• Monetary cost of extra disk storage requirements

• Performance requirements in terms of number of I/O operations

• Performance when a disk has failed

• Performance during rebuild (that is, while the data in a failed disk is being
rebuilt on a new disk)

The time to rebuild the data of a failed disk can be significant, and varies with
the RAID level that is used. Rebuilding is easiest for RAID level 1, since data can
be copied from another disk; for the other levels, we need to access all the other
disks in the array to rebuild data of a failed disk. The rebuild performance of a RAID
system may be an important factor if continuous availability of data is required, as it
is in high-performance database systems. Furthermore, since rebuild time can form a
significant part of the repair time, rebuild performance also influences the mean time
to data loss.

2. For example, some products use RAID level 1 to refer to mirroring without striping, and level 1+0 or
level 10 to refer to mirroring with striping. Such a distinction is not really necessary since not striping can
simply be viewed as a special case of striping, namely striping across 1 disk.
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RAID level 0 is used in high-performance applications where data safety is not
critical. Since RAID levels 2 and 4 are subsumed by RAID levels 3 and 5, the choice
of RAID levels is restricted to the remaining levels. Bit striping (level 3) is rarely used
since block striping (level 5) gives as good data transfer rates for large transfers, while
using fewer disks for small transfers. For small transfers, the disk access time domi-
nates anyway, so the benefit of parallel reads diminishes. In fact, level 3 may perform
worse than level 5 for a small transfer, since the transfer completes only when cor-
responding sectors on all disks have been fetched; the average latency for the disk
array thus becomes very close to the worst-case latency for a single disk, negating
the benefits of higher transfer rates. Level 6 is not supported currently by many RAID
implementations, but it offers better reliability than level 5 and can be used in appli-
cations where data safety is very important.

The choice between RAID level 1 and level 5 is harder to make. RAID level 1 is
popular for applications such as storage of log files in a database system, since it
offers the best write performance. RAID level 5 has a lower storage overhead than
level 1, but has a higher time overhead for writes. For applications where data are
read frequently, and written rarely, level 5 is the preferred choice.

Disk storage capacities have been growing at a rate of over 50 percent per year for
many years, and the cost per byte has been falling at the same rate. As a result, for
many existing database applications with moderate storage requirements, the mon-
etary cost of the extra disk storage needed for mirroring has become relatively small
(the extra monetary cost, however, remains a significant issue for storage-intensive
applications such as video data storage). Access speeds have improved at a much
slower rate (around a factor of 3 over 10 years), while the number of I/O operations
required per second has increased tremendously, particularly for Web application
servers.

RAID level 5, which increases the number of I/O operations needed to write a
single logical block, pays a significant time penalty in terms of write performance.
RAID level 1 is therefore the RAID level of choice for many applications with moderate
storage requirements, and high I/O requirements.

RAID system designers have to make several other decisions as well. For example,
how many disks should there be in an array? How many bits should be protected by
each parity bit? If there are more disks in an array, data-transfer rates are higher, but
the system would be more expensive. If there are more bits protected by a parity bit,
the space overhead due to parity bits is lower, but there is an increased chance that a
second disk will fail before the first failed disk is repaired, and that will result in data
loss.

11.3.5 Hardware Issues
Another issue in the choice of RAID implementations is at the level of hardware.
RAID can be implemented with no change at the hardware level, using only software
modification. Such RAID implementations are called software RAID. However, there
are significant benefits to be had by building special-purpose hardware to support
RAID, which we outline below; systems with special hardware support are called
hardware RAID systems.
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Hardware RAID implementations can use nonvolatile RAM to record writes that
need to be executed; in case of power failure before a write is completed, when the
system comes back up, it retrieves information about incomplete writes from non-
volatile RAM and then completes the writes. Without such hardware support, extra
work needs to be done to detect blocks that may have been partially written before
power failure (see Exercise 11.4).

Some hardware RAID implementations permit hot swapping; that is, faulty disks
can be removed and replaced by new ones without turning power off. Hot swapping
reduces the mean time to repair, since replacement of a disk does not have to wait
until a time when the system can be shut down. In fact many critical systems today
run on a 24 × 7 schedule; that is, they run 24 hours a day, 7 days a week, providing
no time for shutting down and replacing a failed disk. Further, many RAID imple-
mentations assign a spare disk for each array (or for a set of disk arrays). If a disk
fails, the spare disk is immediately used as a replacement. As a result, the mean time
to repair is reduced greatly, minimizing the chance of any data loss. The failed disk
can be replaced at leisure.

The power supply, or the disk controller, or even the system interconnection in
a RAID system could become a single point of failure, that could stop functioning of
the RAID system. To avoid this possibility, good RAID implementations have multiple
redundant power supplies (with battery backups so they continue to function even
if power fails). Such RAID systems have multiple disk controllers, and multiple in-
terconnections to connect them to the computer system (or to a network of computer
systems). Thus, failure of any single component will not stop the functioning of the
RAID system.

11.3.6 Other RAID Applications
The concepts of RAID have been generalized to other storage devices, including ar-
rays of tapes, and even to the broadcast of data over wireless systems. When applied
to arrays of tapes, the RAID structures are able to recover data even if one of the tapes
in an array of tapes is damaged. When applied to broadcast of data, a block of data
is split into short units and is broadcast along with a parity unit; if one of the units is
not received for any reason, it can be reconstructed from the other units.

11.4 Tertiary Storage
In a large database system, some of the data may have to reside on tertiary storage.
The two most common tertiary storage media are optical disks and magnetic tapes.

11.4.1 Optical Disks
Compact disks are a popular medium for distributing software, multimedia data
such as audio and images, and other electronically published information. They have
a fairly large capacity (640 megabytes), and they are cheap to mass-produce.

Digital video disks (DVDs) are replacing compact disks in applications that require
very large amounts of data. Disks in the DVD-5 format can store 4.7 gigabytes of data
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(in one recording layer), while disks in the DVD-9 format can store 8.5 gigabytes of
data (in two recording layers). Recording on both sides of a disk yields even larger
capacities; DVD-10 and DVD-18 formats, which are the two-sided versions of DVD-5
and DVD-9, can store 9.4 gigabytes and 17 gigabytes respectively.

CD and DVD drives have much longer seek times (100 milliseconds is common)
than do magnetic-disk drives, since the head assembly is heavier. Rotational speeds
are typically lower than those of magnetic disks, although the faster CD and DVD
drives have rotation speeds of about 3000 rotations per minute, which is comparable
to speeds of lower-end magnetic-disk drives. Rotational speeds of CD drives origi-
nally corresponded to the audio CD standards, and the speeds of DVD drives origi-
nally corresponded to the DVD video standards, but current-generation drives rotate
at many times the standard rate.

Data transfer rates are somewhat less than for magnetic disks. Current CD drives
read at around 3 to 6 megabytes per second, and current DVD drives read at 8 to 15
megabytes per second. Like magnetic disk drives, optical disks store more data in
outside tracks and less data in inner tracks. The transfer rate of optical drives is char-
acterized as n×, which means the drive supports transfers at n times the standard
rate; rates of around 50× for CD and 12× for DVD are now common.

The record-once versions of optical disks (CD-R, and increasingly, DVD-R) are pop-
ular for distribution of data and particularly for archival storage of data because they
have a high capacity, have a longer lifetime than magnetic disks, and can be removed
and stored at a remote location. Since they cannot be overwritten, they can be used
to store information that should not be modified, such as audit trails. The multiple-
write versions (CD-RW, DVD-RW, and DVD-RAM) are also used for archival purposes.

Jukeboxes are devices that store a large number of optical disks (up to several hun-
dred) and load them automatically on demand to one of a small number (usually, 1 to
10) of drives. The aggregate storage capacity of such a system can be many terabytes.
When a disk is accessed, it is loaded by a mechanical arm from a rack onto a drive
(any disk that was already in the drive must first be placed back on the rack). The
disk load/unload time is usually of the order of a few seconds—very much slower
than disk access times.

11.4.2 Magnetic Tapes
Although magnetic tapes are relatively permanent, and can hold large volumes of
data, they are slow in comparison to magnetic and optical disks. Even more impor-
tant, magnetic tapes are limited to sequential access. Thus, they cannot provide ran-
dom access for secondary-storage requirements, although historically, prior to the
use of magnetic disks, tapes were used as a secondary-storage medium.

Tapes are used mainly for backup, for storage of infrequently used information,
and as an offline medium for transferring information from one system to another.
Tapes are also used for storing large volumes of data, such as video or image data,
that either do not need to be accessible quickly or are so voluminous that magnetic-
disk storage would be too expensive.

A tape is kept in a spool, and is wound or rewound past a read–write head.
Moving to the correct spot on a tape can take seconds or even minutes, rather than
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milliseconds; once positioned, however, tape drives can write data at densities and
speeds approaching those of disk drives. Capacities vary, depending on the length
and width of the tape and on the density at which the head can read and write.
The market is currently fragmented among a wide variety of tape formats. Currently
available tape capacities range from a few gigabytes [with the Digital Audio Tape
(DAT) format], 10 to 40 gigabytes [with the Digital Linear Tape (DLT) format], 100
gigabytes and higher (with the Ultrium format), to 330 gigabytes (with Ampex heli-
cal scan tape formats). Data transfer rates are of the order of a few to tens of megabytes
per second.

Tape devices are quite reliable, and good tape drive systems perform a read of the
just-written data to ensure that it has been recorded correctly. Tapes, however, have
limits on the number of times that they can be read or written reliably.

Some tape formats (such as the Accelis format) support faster seek times (of the
order of tens of seconds), which is important for applications that need quick access
to very large amounts of data, larger than what would fit economically on a disk
drive. Most other tape formats provide larger capacities, at the cost of slower access;
such formats are ideal for data backup, where fast seeks are not important.

Tape jukeboxes, like optical disk jukeboxes, hold large numbers of tapes, with
a few drives onto which the tapes can be mounted; they are used for storing large
volumes of data, ranging up to many terabytes (1012 bytes), with access times on
the order of seconds to a few minutes. Applications that need such enormous data
storage include imaging systems that gather data by remote-sensing satellites, and
large video libraries for television broadcasters.

11.5 Storage Access
A database is mapped into a number of different files, which are maintained by the
underlying operating system. These files reside permanently on disks, with backups
on tapes. Each file is partitioned into fixed-length storage units called blocks, which
are the units of both storage allocation and data transfer. We shall discuss in Section
11.6 various ways to organize the data logically in files.

A block may contain several data items. The exact set of data items that a block
contains is determined by the form of physical data organization being used (see
Section 11.6). We shall assume that no data item spans two or more blocks. This
assumption is realistic for most data-processing applications, such as our banking
example.

A major goal of the database system is to minimize the number of block transfers
between the disk and memory. One way to reduce the number of disk accesses is to
keep as many blocks as possible in main memory. The goal is to maximize the chance
that, when a block is accessed, it is already in main memory, and, thus, no disk access
is required.

Since it is not possible to keep all blocks in main memory, we need to manage the
allocation of the space available in main memory for the storage of blocks. The buffer
is that part of main memory available for storage of copies of disk blocks. There is
always a copy kept on disk of every block, but the copy on disk may be a version
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of the block older than the version in the buffer. The subsystem responsible for the
allocation of buffer space is called the buffer manager.

11.5.1 Buffer Manager
Programs in a database system make requests (that is, calls) on the buffer manager
when they need a block from disk. If the block is already in the buffer, the buffer man-
ager passes the address of the block in main memory to the requester. If the block is
not in the buffer, the buffer manager first allocates space in the buffer for the block,
throwing out some other block, if necessary, to make space for the new block. The
thrown-out block is written back to disk only if it has been modified since the most
recent time that it was written to the disk. Then, the buffer manager reads in the re-
quested block from the disk to the buffer, and passes the address of the block in main
memory to the requester. The internal actions of the buffer manager are transparent
to the programs that issue disk-block requests.

If you are familiar with operating-system concepts, you will note that the buffer
manager appears to be nothing more than a virtual-memory manager, like those
found in most operating systems. One difference is that the size of the database may
be much more than the hardware address space of a machine, so memory addresses
are not sufficient to address all disk blocks. Further, to serve the database system
well, the buffer manager must use techniques more sophisticated than typical virtual-
memory management schemes:

• Buffer replacement strategy. When there is no room left in the buffer, a block
must be removed from the buffer before a new one can be read in. Most oper-
ating systems use a least recently used (LRU) scheme, in which the block that
was referenced least recently is written back to disk and is removed from the
buffer. This simple approach can be improved on for database applications.

• Pinned blocks. For the database system to be able to recover from crashes
(Chapter 17), it is necessary to restrict those times when a block may be written
back to disk. For instance, most recovery systems require that a block should
not be written to disk while an update on the block is in progress. A block that
is not allowed to be written back to disk is said to be pinned. Although many
operating systems do not support pinned blocks, such a feature is essential for
a database system that is resilient to crashes.

• Forced output of blocks. There are situations in which it is necessary to write
back the block to disk, even though the buffer space that it occupies is not
needed. This write is called the forced output of a block. We shall see the
reason for forced output in Chapter 17; briefly, main-memory contents and
thus buffer contents are lost in a crash, whereas data on disk usually survive
a crash.

11.5.2 Buffer-Replacement Policies
The goal of a replacement strategy for blocks in the buffer is to minimize accesses
to the disk. For general-purpose programs, it is not possible to predict accurately
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for each tuple b of borrower do
for each tuple c of customer do

if b[customer-name] = c[customer-name]
then begin

let x be a tuple defined as follows:
x[customer-name] := b[customer-name]
x[loan-number] := b[loan-number]
x[customer-street] := c[customer-street]
x[customer-city] := c[customer-city]
include tuple x as part of result of borrower � customer

end
end

end

Figure 11.5 Procedure for computing join.

which blocks will be referenced. Therefore, operating systems use the past pattern of
block references as a predictor of future references. The assumption generally made
is that blocks that have been referenced recently are likely to be referenced again.
Therefore, if a block must be replaced, the least recently referenced block is replaced.
This approach is called the least recently used (LRU) block-replacement scheme.

LRU is an acceptable replacement scheme in operating systems. However, a data-
base system is able to predict the pattern of future references more accurately than an
operating system. A user request to the database system involves several steps. The
database system is often able to determine in advance which blocks will be needed by
looking at each of the steps required to perform the user-requested operation. Thus,
unlike operating systems, which must rely on the past to predict the future, database
systems may have information regarding at least the short-term future.

To illustrate how information about future block access allows us to improve the
LRU strategy, consider the processing of the relational-algebra expression

borrower � customer

Assume that the strategy chosen to process this request is given by the pseudocode
program shown in Figure 11.5. (We shall study other strategies in Chapter 13.)

Assume that the two relations of this example are stored in separate files. In this
example, we can see that, once a tuple of borrower has been processed, that tuple is not
needed again. Therefore, once processing of an entire block of borrower tuples is com-
pleted, that block is no longer needed in main memory, even though it has been used
recently. The buffer manager should be instructed to free the space occupied by a
borrower block as soon as the final tuple has been processed. This buffer-management
strategy is called the toss-immediate strategy.

Now consider blocks containing customer tuples. We need to examine every block
of customer tuples once for each tuple of the borrower relation. When processing of
a customer block is completed, we know that that block will not be accessed again
until all other customer blocks have been processed. Thus, the most recently used
customer block will be the final block to be re-referenced, and the least recently used
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customer block is the block that will be referenced next. This assumption set is the
exact opposite of the one that forms the basis for the LRU strategy. Indeed, the optimal
strategy for block replacement is the most recently used (MRU) strategy. If a customer
block must be removed from the buffer, the MRU strategy chooses the most recently
used block.

For the MRU strategy to work correctly for our example, the system must pin the
customer block currently being processed. After the final customer tuple has been pro-
cessed, the block is unpinned, and it becomes the most recently used block.

In addition to using knowledge that the system may have about the request being
processed, the buffer manager can use statistical information about the probability
that a request will reference a particular relation. For example, the data dictionary
that (as we will see in detail in Section 11.8) keeps track of the logical schema of the
relations as well as their physical storage information is one of the most frequently
accessed parts of the database. Thus, the buffer manager should try not to remove
data-dictionary blocks from main memory, unless other factors dictate that it do so.
In Chapter 12, we discuss indices for files. Since an index for a file may be accessed
more frequently than the file itself, the buffer manager should, in general, not remove
index blocks from main memory if alternatives are available.

The ideal database block-replacement strategy needs knowledge of the database
operations—both those being performed and those that will be performed in the
future. No single strategy is known that handles all the possible scenarios well. In-
deed, a surprisingly large number of database systems use LRU, despite that strat-
egy’s faults. The exercises explore alternative strategies.

The strategy that the buffer manager uses for block replacement is influenced by
factors other than the time at which the block will be referenced again. If the system
is processing requests by several users concurrently, the concurrency-control sub-
system (Chapter 16) may need to delay certain requests, to ensure preservation of
database consistency. If the buffer manager is given information from the concurrency-
control subsystem indicating which requests are being delayed, it can use this infor-
mation to alter its block-replacement strategy. Specifically, blocks needed by active
(nondelayed) requests can be retained in the buffer at the expense of blocks needed
by the delayed requests.

The crash-recovery subsystem (Chapter 17) imposes stringent constraints on block
replacement. If a block has been modified, the buffer manager is not allowed to write
back the new version of the block in the buffer to disk, since that would destroy
the old version. Instead, the block manager must seek permission from the crash-
recovery subsystem before writing out a block. The crash-recovery subsystem may
demand that certain other blocks be force-output before it grants permission to the
buffer manager to output the block requested. In Chapter 17, we define precisely the
interaction between the buffer manager and the crash-recovery subsystem.

11.6 File Organization
A file is organized logically as a sequence of records. These records are mapped onto
disk blocks. Files are provided as a basic construct in operating systems, so we shall
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Figure 11.6 File containing account records.

assume the existence of an underlying file system. We need to consider ways of repre-
senting logical data models in terms of files.

Although blocks are of a fixed size determined by the physical properties of the
disk and by the operating system, record sizes vary. In a relational database, tuples
of distinct relations are generally of different sizes.

One approach to mapping the database to files is to use several files, and to store
records of only one fixed length in any given file. An alternative is to structure our
files so that we can accommodate multiple lengths for records; however, files of fixed-
length records are easier to implement than are files of variable-length records. Many
of the techniques used for the former can be applied to the variable-length case. Thus,
we begin by considering a file of fixed-length records.

11.6.1 Fixed-Length Records
As an example, let us consider a file of account records for our bank database. Each
record of this file is defined as:

type deposit = record
account-number : char(10);
branch-name : char (22);
balance : real;

end

If we assume that each character occupies 1 byte and that a real occupies 8 bytes,
our account record is 40 bytes long. A simple approach is to use the first 40 bytes
for the first record, the next 40 bytes for the second record, and so on (Figure 11.6).
However, there are two problems with this simple approach:

1. It is difficult to delete a record from this structure. The space occupied by the
record to be deleted must be filled with some other record of the file, or we
must have a way of marking deleted records so that they can be ignored.
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record 0
record 1
record 3
record 4

record 5
record 6

record 7

record 8

A-102
A-305
A-101
A-222

A-201
A-217

A-110

A-218

400
350
500
700
900

Perryridge

Perryridge

Perryridge

Round Hill
Downtown

Downtown

Redwood

Brighton 750
 600
 700

Figure 11.7 File of Figure 11.6, with record 2 deleted and all records moved.

2. Unless the block size happens to be a multiple of 40 (which is unlikely), some
records will cross block boundaries. That is, part of the record will be stored
in one block and part in another. It would thus require two block accesses to
read or write such a record.

When a record is deleted, we could move the record that came after it into the
space formerly occupied by the deleted record, and so on, until every record fol-
lowing the deleted record has been moved ahead (Figure 11.7). Such an approach
requires moving a large number of records. It might be easier simply to move the
final record of the file into the space occupied by the deleted record (Figure 11.8).

It is undesirable to move records to occupy the space freed by a deleted record,
since doing so requires additional block accesses. Since insertions tend to be more fre-
quent than deletions, it is acceptable to leave open the space occupied by the deleted
record, and to wait for a subsequent insertion before reusing the space. A simple
marker on a deleted record is not sufficient, since it is hard to find this available space
when an insertion is being done. Thus, we need to introduce an additional structure.

At the beginning of the file, we allocate a certain number of bytes as a file header.
The header will contain a variety of information about the file. For now, all we need
to store there is the address of the first record whose contents are deleted. We use this

record 0
record 1

record 3
record 4
record 5

record 6
record 7

record 8
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700
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500
700
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900

Perryridge
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Downtown

Downtown

Redwood

Brighton 
600 

A-102
A-305

A-101
A-222
A-201

A-217
A-110

A-218

Figure 11.8 File of Figure 11.6, with record 2 deleted and final record moved.
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header
record 0

record 2
record 3
record 4

record 5
record 6
record 7
record 8

record 1
400

700
500

900

Perryridge

Mianus
Downtown

Perryridge 

A-102

A-215
A-101

A-201

600
Perryridge
Downtown

700
A-110
A-218

Figure 11.9 File of Figure 11.6, with free list after deletion of records 1, 4, and 6.

first record to store the address of the second available record, and so on. Intuitively,
we can think of these stored addresses as pointers, since they point to the location of
a record. The deleted records thus form a linked list, which is often referred to as a
free list. Figure 11.9 shows the file of Figure 11.6, with the free list, after records 1, 4,
and 6 have been deleted.

On insertion of a new record, we use the record pointed to by the header. We
change the header pointer to point to the next available record. If no space is avail-
able, we add the new record to the end of the file.

Insertion and deletion for files of fixed-length records are simple to implement,
because the space made available by a deleted record is exactly the space needed to
insert a record. If we allow records of variable length in a file, this match no longer
holds. An inserted record may not fit in the space left free by a deleted record, or it
may fill only part of that space.

11.6.2 Variable-Length Records
Variable-length records arise in database systems in several ways:

• Storage of multiple record types in a file

• Record types that allow variable lengths for one or more fields

• Record types that allow repeating fields

Different techniques for implementing variable-length records exist. For purposes of
illustration, we shall use one example to demonstrate the various implementation
techniques. We shall consider a different representation of the account information
stored in the file of Figure 11.6, in which we use one variable-length record for each
branch name and for all the account information for that branch. The format of the
record is
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type account-list = record
branch-name : char (22);
account-info : array [1 .. ∞] of

record;
account-number : char(10);
balance : real;

end
end

We define account-info as an array with an arbitrary number of elements. That is,
the type definition does not limit the number of elements in the array, although any
actual record will have a specific number of elements in its array. There is no limit on
how large a record can be (up to, of course, the size of the disk storage!).

11.6.2.1 Byte-String Representation
A simple method for implementing variable-length records is to attach a special end-
of-record (⊥) symbol to the end of each record. We can then store each record as a
string of consecutive bytes. Figure 11.10 shows such an organization to represent the
file of fixed-length records of Figure 11.6 as variable-length records. An alternative
version of the byte-string representation stores the record length at the beginning of
each record, instead of using end-of-record symbols.

The byte-string representation as described in Figure 11.10 has some disadvan-
tages:

• It is not easy to reuse space occupied formerly by a deleted record. Although
techniques exist to manage insertion and deletion, they lead to a large number
of small fragments of disk storage that are wasted.

• There is no space, in general, for records to grow longer. If a variable-length
record becomes longer, it must be moved—movement is costly if pointers to
the record are stored elsewhere in the database (e.g., in indices, or in other
records), since the pointers must be located and updated.

Thus, the basic byte-string representation described here not usually used for imple-
menting variable-length records. However, a modified form of the byte-string repre-
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Figure 11.10 Byte-string representation of variable-length records.
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Size # Entries Free Space  Location

Block Header

End of Free Space

Records

Figure 11.11 Slotted-page structure.

sentation, called the slotted-page structure, is commonly used for organizing records
within a single block.

The slotted-page structure appears in Figure 11.11. There is a header at the begin-
ning of each block, containing the following information:

1. The number of record entries in the header

2. The end of free space in the block

3. An array whose entries contain the location and size of each record

The actual records are allocated contiguously in the block, starting from the end of
the block. The free space in the block is contiguous, between the final entry in the
header array, and the first record. If a record is inserted, space is allocated for it at the
end of free space, and an entry containing its size and location is added to the header.

If a record is deleted, the space that it occupies is freed, and its entry is set to
deleted (its size is set to −1, for example). Further, the records in the block before the
deleted record are moved, so that the free space created by the deletion gets occupied,
and all free space is again between the final entry in the header array and the first
record. The end-of-free-space pointer in the header is appropriately updated as well.
Records can be grown or shrunk by similar techniques, as long as there is space in
the block. The cost of moving the records is not too high, since the size of a block is
limited: A typical value is 4 kilobytes.

The slotted-page structure requires that there be no pointers that point directly
to records. Instead, pointers must point to the entry in the header that contains the
actual location of the record. This level of indirection allows records to be moved to
prevent fragmentation of space inside a block, while supporting indirect pointers to
the record.

11.6.2.2 Fixed-Length Representation
Another way to implement variable-length records efficiently in a file system is to
use one or more fixed-length records to represent one variable-length record.

There are two ways of doing this:

1. Reserved space. If there is a maximum record length that is never exceeded,
we can use fixed-length records of that length. Unused space (for records
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Figure 11.12 File of Figure 11.10, using the reserved-space method.

shorter than the maximum space) is filled with a special null, or end-of-record,
symbol.

2. List representation. We can represent variable-length records by lists of fixed-
length records, chained together by pointers.

If we choose to apply the reserved-space method to our account example, we need
to select a maximum record length. Figure 11.12 shows how the file of Figure 11.10
would be represented if we allowed a maximum of three accounts per branch. A
record in this file is of the account-list type, but with the array containing exactly
three elements. Those branches with fewer than three accounts (for example, Round
Hill) have records with null fields. We use the symbol ⊥ to represent this situation in
Figure 11.12. In practice, a particular value that can never represent real data is used
(for example, an account number that is blank, or a name beginning with “*”).

The reserved-space method is useful when most records have a length close to
the maximum. Otherwise, a significant amount of space may be wasted. In our bank
example, some branches may have many more accounts than others. This situation
leads us to consider the linked list method. To represent the file by the linked list
method, we add a pointer field as we did in Figure 11.9. The resulting structure ap-
pears in Figure 11.13.

0 Perryridge A-102 400
1 Round Hill A-305 350
2 Mianus A-215 700
3 Downtown A-101 500
4 Redwood A-222 700
5 A-201 900
6 Brighton A-217 750
7  A-110 600
8  A-218 700

Figure 11.13 File of Figure 11.10 using linked lists.
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Perryridge A-102 400
Round Hill A-305 350
Mianus A-215 700
Downtown A-101 500
Redwood A-222 700
Brighton A-217 750

A-201 900
A-218 700
A-110 600

anchor
block

overflow
block

Figure 11.14 Anchor-block and overflow-block structures.

The file structures of Figures 11.9 and 11.13 both use pointers; the difference is
that, in Figure 11.9, we use pointers to chain together only deleted records, whereas
in Figure 11.13, we chain together all records pertaining to the same branch.

A disadvantage to the structure of Figure 11.13 is that we waste space in all records
except the first in a chain. The first record needs to have the branch-name value, but
subsequent records do not. Nevertheless, we need to include a field for branch-name
in all records, lest the records not be of fixed length. This wasted space is significant,
since we expect, in practice, that each branch has a large number of accounts. To deal
with this problem, we allow two kinds of blocks in our file:

1. Anchor block, which contains the first record of a chain

2. Overflow block, which contains records other than those that are the first
record of a chain

Thus, all records within a block have the same length, even though not all records in
the file have the same length. Figure 11.14 shows this file structure.

11.7 Organization of Records in Files
So far, we have studied how records are represented in a file structure. An instance
of a relation is a set of records. Given a set of records, the next question is how to
organize them in a file. Several of the possible ways of organizing records in files are:

• Heap file organization. Any record can be placed anywhere in the file where
there is space for the record. There is no ordering of records. Typically, there is
a single file for each relation

• Sequential file organization. Records are stored in sequential order, accord-
ing to the value of a “search key” of each record. Section 11.7.1 describes this
organization.
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• Hashing file organization. A hash function is computed on some attribute of
each record. The result of the hash function specifies in which block of the
file the record should be placed. Chapter 12 describes this organization; it is
closely related to the indexing structures described in that chapter.

Generally, a separate file is used to store the records of each relation. However,
in a clustering file organization, records of several different relations are stored in
the same file; further, related records of the different relations are stored on the same
block, so that one I/O operation fetches related records from all the relations. For
example, records of the two relations can be considered to be related if they would
match in a join of the two relations. Section 11.7.2 describes this organization.

11.7.1 Sequential File Organization
A sequential file is designed for efficient processing of records in sorted order based
on some search-key. A search key is any attribute or set of attributes; it need not be
the primary key, or even a superkey. To permit fast retrieval of records in search-key
order, we chain together records by pointers. The pointer in each record points to
the next record in search-key order. Furthermore, to minimize the number of block
accesses in sequential file processing, we store records physically in search-key order,
or as close to search-key order as possible.

Figure 11.15 shows a sequential file of account records taken from our banking
example. In that example, the records are stored in search-key order, using branch-
name as the search key.

The sequential file organization allows records to be read in sorted order; that can
be useful for display purposes, as well as for certain query-processing algorithms
that we shall study in Chapter 13.

It is difficult, however, to maintain physical sequential order as records are in-
serted and deleted, since it is costly to move many records as a result of a single
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Figure 11.15 Sequential file for account records.
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Figure 11.16 Sequential file after an insertion.

insertion or deletion. We can manage deletion by using pointer chains, as we saw
previously. For insertion, we apply the following rules:

1. Locate the record in the file that comes before the record to be inserted in
search-key order.

2. If there is a free record (that is, space left after a deletion) within the same block
as this record, insert the new record there. Otherwise, insert the new record in
an overflow block. In either case, adjust the pointers so as to chain together the
records in search-key order.

Figure 11.16 shows the file of Figure 11.15 after the insertion of the record (North
Town, A-888, 800). The structure in Figure 11.16 allows fast insertion of new records,
but forces sequential file-processing applications to process records in an order that
does not match the physical order of the records.

If relatively few records need to be stored in overflow blocks, this approach works
well. Eventually, however, the correspondence between search-key order and physi-
cal order may be totally lost, in which case sequential processing will become much
less efficient. At this point, the file should be reorganized so that it is once again phys-
ically in sequential order. Such reorganizations are costly, and must be done during
times when the system load is low. The frequency with which reorganizations are
needed depends on the frequency of insertion of new records. In the extreme case in
which insertions rarely occur, it is possible always to keep the file in physically sorted
order. In such a case, the pointer field in Figure 11.15 is not needed.

11.7.2 Clustering File Organization
Many relational-database systems store each relation in a separate file, so that they
can take full advantage of the file system that the operating system provides. Usu-
ally, tuples of a relation can be represented as fixed-length records. Thus, relations
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can be mapped to a simple file structure. This simple implementation of a relational
database system is well suited to low-cost database implementations as in, for exam-
ple, embedded systems or portable devices. In such systems, the size of the database
is small, so little is gained from a sophisticated file structure. Furthermore, in such
environments, it is essential that the overall size of the object code for the database
system be small. A simple file structure reduces the amount of code needed to imple-
ment the system.

This simple approach to relational-database implementation becomes less satis-
factory as the size of the database increases. We have seen that there are performance
advantages to be gained from careful assignment of records to blocks, and from care-
ful organization of the blocks themselves. Clearly, a more complicated file structure
may be beneficial, even if we retain the strategy of storing each relation in a separate
file.

However, many large-scale database systems do not rely directly on the underly-
ing operating system for file management. Instead, one large operating-system file is
allocated to the database system. The database system stores all relations in this one
file, and manages the file itself. To see the advantage of storing many relations in one
file, consider the following SQL query for the bank database:

select account-number, customer-name, customer-street, customer-city
from depositor, customer
where depositor.customer-name = customer.customer-name

This query computes a join of the depositor and customer relations. Thus, for each
tuple of depositor, the system must locate the customer tuples with the same value for
customer-name. Ideally, these records will be located with the help of indices, which we
shall discuss in Chapter 12. Regardless of how these records are located, however,
they need to be transferred from disk into main memory. In the worst case, each
record will reside on a different block, forcing us to do one block read for each record
required by the query.

As a concrete example, consider the depositor and customer relations of Figures
11.17 and 11.18, respectively. In Figure 11.19, we show a file structure designed for ef-
ficient execution of queries involving depositor � customer. The depositor tuples for
each customer-name are stored near the customer tuple for the corresponding customer-
name. This structure mixes together tuples of two relations, but allows for efficient
processing of the join. When a tuple of the customer relation is read, the entire block
containing that tuple is copied from disk into main memory. Since the corresponding

customer-name account-number
Hayes A-102
Hayes A-220
Hayes A-503
Turner A-305

Figure 11.17 The depositor relation.
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customer-name customer-street customer-city
Hayes Main Brooklyn
Turner Putnam Stamford

Figure 11.18 The customer relation.

depositor tuples are stored on the disk near the customer tuple, the block containing the
customer tuple contains tuples of the depositor relation needed to process the query. If
a customer has so many accounts that the depositor records do not fit in one block, the
remaining records appear on nearby blocks.

A clustering file organization is a file organization, such as that illustrated in Fig-
ure 11.19 that stores related records of two or more relations in each block. Such a file
organization allows us to read records that would satisfy the join condition by using
one block read. Thus, we are able to process this particular query more efficiently.

Our use of clustering has enhanced processing of a particular join (depositor � cus-
tomer), but it results in slowing processing of other types of query. For example,

select *
from customer

requires more block accesses than it did in the scheme under which we stored each
relation in a separate file. Instead of several customer records appearing in one block,
each record is located in a distinct block. Indeed, simply finding all the customer
records is not possible without some additional structure. To locate all tuples of the
customer relation in the structure of Figure 11.19, we need to chain together all the
records of that relation using pointers, as in Figure 11.20.

When clustering is to be used depends on the types of query that the database de-
signer believes to be most frequent. Careful use of clustering can produce significant
performance gains in query processing.

11.8 Data-Dictionary Storage
So far, we have considered only the representation of the relations themselves. A
relational-database system needs to maintain data about the relations, such as the

Brooklyn
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Turner
Turner

Figure 11.19 Clustering file structure.
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Figure 11.20 Clustering file structure with pointer chains.

schema of the relations. This information is called the data dictionary, or system
catalog. Among the types of information that the system must store are these:

• Names of the relations

• Names of the attributes of each relation

• Domains and lengths of attributes

• Names of views defined on the database, and definitions of those views

• Integrity constraints (for example, key constraints)

In addition, many systems keep the following data on users of the system:

• Names of authorized users

• Accounting information about users

• Passwords or other information used to authenticate users

Further, the database may store statistical and descriptive data about the relations,
such as:

• Number of tuples in each relation

• Method of storage for each relation (for example, clustered or nonclustered)

The data dictionary may also note the storage organization (sequential, hash or heap)
of relations, and the location where each relation is stored:

• If relations are stored in operating system files, the dictionary would note the
names of the file (or files) containing each relation.

• If the database stores all relations in a single file, the dictionary may note the
blocks containing records of each relation in a data structure such as a linked
list.

In Chapter 12, in which we study indices, we shall see a need to store information
about each index on each of the relations:
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• Name of the index

• Name of the relation being indexed

• Attributes on which the index is defined

• Type of index formed

All this information constitutes, in effect, a miniature database. Some database
systems store this information by using special-purpose data structures and code.
It is generally preferable to store the data about the database in the database itself.
By using the database to store system data, we simplify the overall structure of the
system and harness the full power of the database for fast access to system data.

The exact choice of how to represent system data by relations must be made by
the system designers. One possible representation, with primary keys underlined, is

Relation-metadata (relation-name, number-of-attributes, storage-organization, location)
Attribute-metadata (attribute-name, relation-name, domain-type, position, length)
User-metadata (user-name, encrypted-password, group)
Index-metadata (index-name, relation-name, index-type, index-attributes)
View-metadata (view-name, definition)

In this representation, the attribute index-attributes of the relation Index-metadata is
assumed to contain a list of one or more attributes, which can be represented by a
character string such as “branch-name, branch-city”. The Index-metadata relation is thus
not in first normal form; it can be normalized, but the above representation is likely
to be more efficient to access. The data dictionary is often stored in a non-normalized
form to achieve fast access.

The storage organization and location of the Relation-metadata itself must be recor-
ded elsewhere (for example, in the database code itself), since we need this informa-
tion to find the contents of Relation-metadata.

11.9 Storage for Object-Oriented Databases∗∗
The file-organization techniques described in Section 11.7—the heap, sequential,
hashing and clustering organizations—can also be used for storing objects in an
object-oriented database. However, some extra features are needed to support object-
oriented database features, such as set-valued fields and persistent pointers.

11.9.1 Mapping of Objects to Files
The mapping of objects to files is in many ways like the mapping of tuples to files in a
relational system. At the lowest level of data representation, both tuples and the data
parts of objects are simply sequences of bytes. We can therefore store object data in
the file structures described in this chapter, with some modifications which we note
next.

Objects in object-oriented databases may lack the uniformity of tuples in relational
databases. For example, fields of records may be sets; in relational databases, in con-
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trast, data are typically required to be (at least) in first normal form. Furthermore,
objects may be extremely large. Such objects have to be managed differently from
records in a relational system.

We can implement set-valued fields that have a small number of elements using
data structures such as linked lists. Set-valued fields that have a larger number of
elements can be implemented as relations in the database. Set-valued fields of ob-
jects can also be eliminated at the storage level by normalization: A relation is created
containing one tuple for each value of a set-valued field of an object. Each tuple also
contains the object identifier of the object. However, this relation is not made visible
to the upper levels of the database system. The storage system gives the upper levels
of the database system the view of a set-valued field, even though the set-valued field
has actually been normalized by creating a new relation.

Some applications include extremely large objects that are not easily decomposed
into smaller components. Such large objects may each be stored in a separate file. We
discuss this idea further in Section 11.9.6.

11.9.2 Implementation of Object Identifiers
Since objects are identified by object identifiers (OIDs), an object-storage system needs
a mechanism to locate an object, given an OID. If the OIDs are logical OIDs—that is,
they do not specify the location of the object—then the storage system must maintain
an index that maps OIDs to the actual location of the object. If the OIDs are physical
OIDs—that is, they encode the location of the object—then the object can be found
directly. Physical OIDs typically have the following three parts:

1. A volume or file identifier

2. A block identifier within the volume or file

3. An offset within the block

A volume is a logical unit of storage that usually corresponds to a disk.
In addition, physical OIDs may contain a unique identifier, which is an integer

that distinguishes the OID from the identifiers of other objects that happened to be
stored at the same location earlier, and were deleted or moved elsewhere. The unique
identifier is also stored with the object, and the identifiers in an OID and the corre-
sponding object should match. If the unique identifier in a physical OID does not
match the unique identifier in the object to which that OID points, the system detects
that the pointer is a dangling pointer, and signals an error. (A dangling pointer is a
pointer that does not point to a valid object.) Figure 11.21 illustrates this scheme.

Such pointer errors occur when physical OIDs corresponding to old objects that
have been deleted are used accidentally. If the space occupied by the object had been
reallocated, there may be a new object in the location, and it may get incorrectly
addressed by the identifier of the old object. If a dangling pointer is not detected,
it could cause corruption of a new object stored at the same location. The unique
identifier helps to detect such errors, since the unique identifiers of the old physical
OID and the new object will not match.
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(b)  Example of use

Location Unique-Id Data

519.56850.1200 51 ......

519.56850.1200 51

519.56850.1200 50

Good OID

Bad OID

 Volume.Block.Offset  

Unique-Id       Data

Physical Object Identifier

Object

(a)  General structure

Unique-Id

Figure 11.21 Unique identifiers in an OID.

Suppose that an object has to be moved to a new block, perhaps because the size of
the object has increased, and the old block has no extra space. Then, the physical OID
will point to the old block, which no longer contains the object. Rather than change
the OID of the object (which involves changing every object that points to this one),
we leave behind a forwarding address at the old location. When the database tries
to locate the object, it finds the forwarding address instead of the object; it then uses
the forwarding address to locate the object.

11.9.3 Management of Persistent Pointers
We implement persistent pointers in a persistent programming language by using
OIDs. In some implementations, persistent pointers are physical OIDs; in others, they
are logical OIDs. An important difference between persistent pointers and in-memory
pointers is the size of the pointer. In-memory pointers need to be only big enough
to address all virtual memory. On most current computers, in-memory pointers are
usually 4 bytes long, which is sufficient to address 4 gigabytes of memory. The most
recent computer architectures have pointers that are 8 bytes long,

Persistent pointers need to address all the data in a database. Since database sys-
tems are often bigger than 4 gigabytes, persistent pointers are usually at least 8 bytes
long. Many object-oriented databases also provide unique identifiers in persistent
pointers, to catch dangling references. This feature further increases the size of persis-
tent pointers. Thus, persistent pointers may be substantially longer than in-memory
pointers.

The action of looking up an object, given its identifier, is called dereferencing.
Given an in-memory pointer (as in C++), looking up the object is merely a memory
reference. Given a persistent pointer, dereferencing an object has an extra step—find-
ing the actual location of the object in memory by looking up the persistent pointer
in a table. If the object is not already in memory, it has to be loaded from disk. We
can implement the table lookup fairly efficiently by using a hash table data structure,
but the lookup is still slow compared to a pointer dereference, even if the object is
already in memory.
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Pointer swizzling is a way to cut down the cost of locating persistent objects that
are already present in memory. The idea is that, when a persistent pointer is first
dereferenced, the system locates the object and brings it into memory if it is not
already there. Now the system carries out an extra step—it stores an in-memory
pointer to the object in place of the persistent pointer. The next time that the same
persistent pointer is dereferenced, the in-memory location can be read out directly,
so the costs of locating the object are avoided. (When persistent objects have to be
moved from memory back to disk to make space for other persistent objects, the
system must carry out an extra step to ensure that the object is still in memory. Cor-
respondingly, when an object is written out, any persistent pointers that it contained
and that were swizzled have to be deswizzled, that is, converted back to their per-
sistent representation. Pointer swizzling on pointer dereference, as described here, is
called software swizzling.

Buffer management is more complicated if pointer swizzling is used, since the
physical location of an object must not change once that object is brought into the
buffer. One way to ensure that it will not change is to pin pages containing swiz-
zled objects in the buffer pool, so that they are never replaced until the program
that performed the swizzling has finished execution. See the bibliographical notes
for more complex buffer-management schemes, based on virtual-memory mapping
techniques, that make it unnecessary to pin the buffer pages.

11.9.4 Hardware Swizzling
Having two types of pointers, persistent and transient (in-memory), is inconvenient.
Programmers have to remember the type of the pointers, and may have to write
code twice—once for the persistent pointers and once for the in-memory pointers. It
would be simpler if both persistent and in-memory pointers were of the same type.

A simple way to merge persistent and in-memory pointer types is just to extend
the length of in-memory pointers to the same size as persistent pointers, and to use 1
bit of the identifier to distinguish between persistent and in-memory pointers. How-
ever, the storage cost of longer persistent pointers will have to be borne by in-memory
pointers as well; understandably, this scheme is unpopular.

We shall describe a technique called hardware swizzling, which uses the virtual-
memory-management hardware present in most current computer systems to ad-
dress this problem. When data in a virtual memory page are accessed, and the oper-
ating system detects that the page does not have real storage allocated for it, or has
been access protected, then a segmentation violation is said to occur.3 Many oper-
ating systems provide a mechanism to specify a function to be called when a seg-
mentation violation occurs, and a mechanism to allocate storage for a page in virtual
address space, and to set that page’s access permissions. In most Unix systems, the
mmap system call provides this latter functionality. Hardware swizzling makes clever
use of the above mechanisms.

3. The term page fault is sometimes used instead of segmentation violation, although access protection
violations are generally not considered to be page faults.
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Hardware swizzling has two major advantages over software swizzling:

1. It is able to store persistent pointers in objects in the same amount of space as
in-memory pointers require (along with extra storage external to the object).

2. It transparently converts between persistent pointers and in-memory pointers
in a clever and efficient way. Software written to deal with in-memory pointers
can thereby deal with persistent pointers as well, without any changes.

11.9.4.1 Pointer Representation
Hardware swizzling uses the following representation of persistent pointers con-
tained in objects that are on disk. A persistent pointer is conceptually split into two
parts: a page identifier in the database, and an offset within the page.4 The page
identifier in a persistent pointer is actually a small indirect pointer, which we call
the short page identifier. Each page (or other unit of storage) has a translation table
that provides a mapping from the short page identifiers to full database page identi-
fiers. The system has to look up the short page identifier in a persistent pointer in the
translation table to find the full page identifier.

The translation table, in the worst case, will be only as big as the maximum number
of pointers that can be contained in objects in a page; with a page size of 4096, and
a pointer size of 4 bytes, the maximum number of pointers is 1024. In practice, the
translation table is likely to contain much less than the maximum number of elements
(1024 in our example) and will not consume excessive space. The short page identifier
needs to have only enough bits to identify a row in the table; with a maximum table
size of 1024, only 10 bits are required. Hence, a small number of bits is enough to
store the short page identifier. Thus, the translation table permits an entire persistent
pointer to fit into the same space as an in-memory pointer. Even though only a few
bits are needed for the short page identifier, all the bits of an in-memory pointer,
other than the page-offset bits, are used as the short page identifier. This architecture
facilitates swizzling, as we shall see.

The persistent-pointer representation scheme appears in Figure 11.22, where there
are three objects in the page, each containing a persistent pointer. The translation ta-
ble gives the mapping between short page identifiers and the full database page iden-
tifiers for each of the short page identifiers in these persistent pointers. The database
page identifiers are shown in the format volume.page.offset.

Each page maintains extra information so that all persistent pointers in the page
can be found. The system updates the information when an object is created or deleted
in the page. The need to locate all the persistent pointers in a page will become clear
later.

4. The term page is generally used to refer to a real-memory or virtual-memory page, and the term
block is used to refer to disk blocks in the database. In hardware swizzling, these have to be of the same
size, and database blocks are fetched into virtual memory pages. We shall use the terms page and block
interchangeably in this section.
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2395 679.34278
4867 519.56850

object 1 object 2 object 3

PageId  Off.
2552395

PageId  Off. PageId  Off.
2395

translation table

PageID  FullPageID

020 1704867

Figure 11.22 Page image before swizzling.

11.9.4.2 Swizzling Pointers on a Page
Initially no page of the database has been allocated a page in virtual memory. Virtual-
memory pages may be allocated to database pages even before they are actually
loaded, as we will see shortly. Database pages get loaded into virtual-memory when
the database system needs to access data on the page. Before a database page is
loaded, the system allocates a virtual-memory page to the database page if one has
not already been allocated. The system then loads the database page into the virtual-
memory page it has allocated to it.

When the system loads a database page P into virtual memory, it does pointer
swizzling on the page: It locates all persistent pointers contained in objects in page
P , using the extra information stored in the page. It takes the following actions for
each persistent pointer in the page. (Let the value of the persistent pointer be 〈pi, oi〉,
where pi is the short page identifier and oi is the offset within the page. Let Pi be the
full page identifier of pi, found in the translation table in page P .)

1. If page Pi does not already have a virtual-memory page allocated to it, the
system now allocates a free page in virtual memory to it. The page Pi will
reside at this virtual-memory location if and when it is brought in. At this
point, the page in virtual address space does not have any storage allocated
for it, either in memory or on disk; it is merely a range of addresses reserved
for the database page. The system allocates actual space when it actually loads
the database page Pi into virtual memory.

2. Let the virtual-memory page allocated (either earlier or in the preceding step)
for Pi be vi. The system updates the persistent pointer being considered, whose
value is 〈pi, oi〉, by replacing pi with vi.
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679.34278
4867 519.56850
5001

object 1 object 2 object 3

PageId  Off.
255

PageId  Off.PageId  Off.
5001 4867 020 1705001

translation table

PageID  FullPageID

Figure 11.23 Page image after swizzling.

Figure 11.23 shows the state of the page from Figure 11.22 after the system has
brought that page into memory and swizzled the pointers in it. Here, we assume
that the page whose database page identifier is 679.34278 has been mapped to page
5001 in memory, whereas the page whose identifier is 519.56850 has been mapped to
page 4867 (which is the same as the short page identifier). All the pointers in objects
have been updated to reflect the new mapping, and can now be used as in-memory
pointers.

At the end of the translation phase for a page, the objects in the page satisfy an
important property: All persistent pointers contained in objects in the page have been
converted to in-memory pointers. Thus, objects in in-memory pages contain only in-
memory pointers. Routines that use these objects do not even need to know about the
existence of persistent pointers! For example, existing libraries written for in-memory
objects can be used unchanged for persistent objects. That is indeed an important
advantage!

11.9.4.3 Pointer Dereference
Consider the first time that an in-memory pointer to a virtual-memory page vi is
dereferenced, when storage has not yet been allocated for the page. As we described,
a segmentation violation will occur, and will result in a function call on the database
system. The database system takes the following actions:

1. It first determines what database page was allocated to virtual-memory page
vi; let the full page identifier of the database page be Pi. (If no database page
has been allocated to vi, the pointer is incorrect, and the system flags an error.)

2. It allocates storage space for page vi, and loads the database page Pi into
virtual-memory page vi.
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3. It carries out pointer swizzling out on page Pi, as described earlier in “Swiz-
zling Pointer on a Page”.

4. After swizzling all persistent pointers in P , the system allows the pointer
dereference that resulted in the segmentation violation to continue. The pointer
dereference will find the object for which it was looking loaded in memory.

If any swizzled pointer that points to an object in page vi is dereferenced later,
the dereference proceeds just like any other virtual-memory access, with no extra
overheads. In contrast, if swizzling is not used, there is considerable overhead in
locating the buffer page containing the object and then accessing it. This overhead
has to be incurred on every access to objects in the page, whereas when swizzling is
performed, the overhead is incurred only on the first access to an object in the page.
Later accesses operate at regular virtual-memory access speeds. Hardware swizzling
thus gives excellent performance benefits to applications that repeatedly dereference
pointers.

11.9.4.4 Optimizations
Software swizzling performs a deswizzling operation when a page in memory has
to be written back to the database, to convert in-memory pointers back to persistent
pointers. Hardware swizzling can avoid this step—when the system does pointer
swizzling for the page, it simply updates the translation table for the page, so that
the page-identifier part of the swizzled in-memory pointers can be used to look up
the table. For example, as shown in Figure 11.23, database page 679.34278 (with short
identifier 2395 in the page shown) is mapped to virtual-memory page 5001. At this
point, not only is the pointer in object 1 updated from 2395255 to 5001255, but also
the short identifier in the table is updated to 5001. Thus, the short identifier 5001 in
object 1 and in the table match each other again. Therefore, the page can be written
back to disk without any deswizzling.

Several optimizations can be carried out on the basic scheme described here. When
the system swizzles page P , for each page P ′ referred to by any persistent pointer in
P , it attempts to allocate P ′ to the virtual address location indicated by the short page
identifier of P ′ on page P . If the system can allocate the page in this attempt, pointers
to it do not need to be updated. In our swizzling example, page 519.56850 with short
page identifier 4867 was mapped to virtual-memory page 4867, which is the same as
its short page identifier. We can see that the pointer in object 2 to this page did not
need to be changed during swizzling. If every page can be allocated to its appropriate
location in virtual address space, none of the pointers need to be translated, and the
cost of swizzling is reduced significantly.

Hardware swizzling works even if the database is bigger than virtual memory,
but only as long as all the pages that a particular process accesses fit into the virtual
memory of the process. If they do not, a page that has been brought into virtual
memory will have to be replaced, and that replacement is hard to do, since there may
be in-memory pointers to objects in that page.
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Hardware swizzling can also be used at the level of sets of pages (often called
segments), instead of for a single page. For set-level swizzling, the system uses a
single translation table for all pages in the segment. It loads pages in the segment and
swizzles them as and when they are required; they need not be loaded all together.

11.9.5 Disk Versus Memory Structure of Objects
The format in which objects are stored in memory may be different from the for-
mat in which they are stored on disk in the database. One reason may be the use of
software swizzling, where the structures of persistent and in-memory pointers are
different. Another reason may be that we want to have the database accessible from
different machines, possibly based on different architectures, and from different lan-
guages, and from programs compiled under different compilers, all of which result
in differences in the in-memory representation.

Consider, for example, a data-structure definition in a programming language
such as C++. The physical structure (such as sizes and representation of integers)
in the object depends on the machine on which the program is run.5 Further, the
physical structure may also depend on which compiler is used—in a language as
complex as C++, different choices for translation from the high-level description to
the physical structure are possible, and each compiler can make its own choice.

The solution to this problem is to make the physical representation of objects in the
database independent of the machine and of the compiler. The system can convert
the object from the disk representation to the form that is required on the specific
machine, language, and compiler, when that object is brought into memory. It can do
this conversion transparently at the same time that it swizzles pointers in the object,
so the programmer does not need to worry about the conversion.

The first step in implementing such a scheme is to define a common language
for describing the structure of objects—that is, a data-definition language. One such
language is the Object Definition Language (ODL) developed by the Object Database
Management Group (ODMG). ODL has mappings defined to the Java, C++, and Small-
talk languages, so potentially we may manipulate objects in an ODMG-compliant
database using any of these languages.

The definition of the structure of each class in the database is stored (logically) in
the databases. The code to translate an object in the database to the representation
that is manipulated with the programming language (and vice versa) depends on
the machine as well as on the compiler for the language. We can generate this code
automatically, using the stored definition of the class of the object.

An unexpected source of differences between the disk and in-memory representa-
tions of data is the hidden-pointers in objects. Hidden pointers are transient pointers

5. For instance, the Motorola 680x0 architectures, the IBM 360 architecture, and the Intel
80386/80486/Pentium/Pentium-II/Pentium-III architectures all have 4-byte integers. However, they dif-
fer in how the bits of an integer are laid out within a word. In earlier-generation personal computers,
integers were 2 bytes long; in newer workstation architectures, such as the Compaq Alpha, Intel Itanium,
and Sun UltraSparc architectures, integers can be 8 bytes long.
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that compilers generate and store in objects. These pointers point (indirectly) to tables
used to implement certain methods of the object. The tables are typically compiled
into executable object code, and their exact location depends on the executable object
code; hence, they may be different for different processes. Therefore, when a process
accesses an object, the hidden pointers must be fixed to point to the correct location.
The hidden pointers can be initialized at the same time that data-representation con-
versions are carried out.

11.9.6 Large Objects
Objects may also be extremely large; for instance, multimedia objects may occupy
several megabytes of space. Exceptionally large data items, such as video sequences,
may run into gigabytes, although they are usually split into multiple objects, each on
the order of a few megabytes or less. Large objects containing binary data are called
binary large objects (blobs), while large objects containing character data, are called
character large objects (clobs), as we saw in Section 9.2.1.

Most relational databases restrict the size of a record to be no larger than the size
of a page, to simplify buffer management and free-space management. Large objects
and long fields are often stored in a special file (or collection of files) reserved for
long-field storage.

Allocation of buffer pages presents a problem with managing large objects. Large
objects may need to be stored in a contiguous sequence of bytes when they are
brought into memory; in that case, if an object is bigger than a page, contiguous pages
of the buffer pool must be allocated to store it, which makes buffer management more
difficult.

We often modify large objects by updating part of the object, or by inserting or
deleting parts of the object, rather than by writing the entire object. If inserts and
deletes need to be supported, we can handle large objects by using B-tree structures
(which we study in Chapter 12). B-tree structures permit us to read the entire object,
as well as to insert and delete parts of the object.

For practical reasons, we may manipulate large objects by using application pro-
grams, instead of doing so within the database:

• Text data. Text is usually treated as a byte string manipulated by editors and
formatters.

• Image/Graphical data. Graphical data may be represented as a bitmap or as
a set of lines, boxes, and other geometric objects. Although some graphical
data often are managed within the database system itself, special application
software is used for many cases, such as integrated circuit design.

• Audio and video data. Audio and video data are typically a digitized, com-
pressed representation created and displayed by separate application soft-
ware. Data are usually modified with special-purpose editing software, out-
side the database system.
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The most widely used method for updating such data is the checkout/checkin
method. A user or an application would check out a copy of a long-field object, op-
erate on this copy with special-purpose application programs, and then check in the
modified copy. Checkout and a checkin correspond roughly to read and write. In some
systems, a checkin may create a new version of the object without deleting the old
version.

11.10 Summary
• Several types of data storage exist in most computer systems. They are clas-

sified by the speed with which they can access data, by their cost per unit
of data to buy the memory, and by their reliability. Among the media avail-
able are cache, main memory, flash memory, magnetic disks, optical disks, and
magnetic tapes.

• Two factors determine the reliability of storage media: whether a power fail-
ure or system crash causes data to be lost, and what the likelihood is of phys-
ical failure of the storage devise.

• We can reduce the likelihood of physical failure by retaining multiple copies
of data. For disks, we can use mirroring. Or we can use more sophisticated
methods based on redundant arrays of independent disks (RAIDs). By striping
data across disks, these methods offer high throughput rates on large accesses;
by introducing redundancy across disks, they improve reliability greatly. Sev-
eral different RAID organizations are possible, each with different cost, perfor-
mance and reliability characteristics. RAID level 1 (mirroring) and RAID level
5 are the most commonly used.

• We can organize a file logically as a sequence of records mapped onto disk
blocks. One approach to mapping the database to files is to use several files,
and to store records of only one fixed length in any given file. An alternative is
to structure files so that they can accommodate multiple lengths for records.
There are different techniques for implementing variable-length records, in-
cluding the slotted-page method, the pointer method, and the reserved-space
method.

• Since data are transferred between disk storage and main memory in units
of a block, it is worthwhile to assign file records to blocks in such a way that
a single block contains related records. If we can access several of the records
we want with only one block access, we save disk accesses. Since disk accesses
are usually the bottleneck in the performance of a database system, careful
assignment of records to blocks can pay significant performance dividends.

• One way to reduce the number of disk accesses is to keep as many blocks as
possible in main memory. Since it is not possible to keep all blocks in main
memory, we need to manage the allocation of the space available in main
memory for the storage of blocks. The buffer is that part of main memory avail-
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able for storage of copies of disk blocks. The subsystem responsible for the
allocation of buffer space is called the buffer manager.

• Storage systems for object-oriented databases are somewhat different from
storage systems for relational databases: They must deal with large objects, for
example, and must support persistent pointers. There are schemes to detect
dangling persistent pointers.

• Software- and hardware-based swizzling schemes permit efficient derefer-
encing of persistent pointers. The hardware-based schemes use the virtual-
memory-management support implemented in hardware, and made accessi-
ble to user programs by many current-generation operating systems.

Review Terms
• Physical storage media
� Cache
� Main memory
� Flash memory
� Magnetic disk
� Optical storage

• Magnetic disk
� Platter
� Hard disks
� Floppy disks
� Tracks
� Sectors
� Read–write head
� Disk arm
� Cylinder
� Disk controller
� Checksums
� Remapping of bad sectors

• Performance measures of disks
� Access time
� Seek time
� Rotational latency
� Data-transfer rate
� Mean time to failure (MTTF)

• Disk block

• Optimization of disk-block access
� Disk-arm scheduling
� Elevator algorithm

� File organization
� Defragmenting
� Nonvolatile write buffers
� Nonvolatile random-access

memory (NV-RAM)
� Log disk
� Log-based file system

• Redundant arrays of independent
disks (RAID)

� Mirroring
� Data striping
� Bit-level striping
� Block-level striping

• RAID levels

� Level 0 (block striping, no
redundancy)

� Level 1 (block striping,
mirroring)

� Level 3 (bit striping, parity)
� Level 5 (block striping,

distributed parity)
� Level 6 (block striping, P + Q

redundancy)

• Rebuild performance

• Software RAID

• Hardware RAID

• Hot swapping
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• Tertiary storage
� Optical disks
� Magnetic tapes
� Jukeboxes

• Buffer
� Buffer manager
� Pinned blocks
� Forced output of blocks

• Buffer-replacement policies
� Least recently used (LRU)
� Toss-immediate
� Most recently used (MRU)

• File

• File organization
� File header
� Free list

• Variable-length records
� Byte-string representation
� Slotted-page structure
� Reserved space
� List representation

• Heap file organization

• Sequential file organization
• Hashing file organization
• Clustering file organization
• Search key
• Data dictionary
• System catalog
• Storage structures for OODBs
• Object identifier (OID)
� Logical OID
� Physical OID
� Unique identifier
� Dangling pointer
� Forwarding address

• Pointer swizzling
� Dereferencing
� Deswizzling
� Software swizzling
� Hardware swizzling
� Segmentation violation
� Page fault

• Hidden pointers
• Large objects

Exercises
11.1 List the physical storage media available on the computers you use routinely.

Give the speed with which data can be accessed on each medium.

11.2 How does the remapping of bad sectors by disk controllers affect data-retrieval
rates?

11.3 Consider the following data and parity-block arrangement on four disks:

Disk 1 Disk 2 Disk 3 Disk 4

...
...

...
...

B1
P1
B8

B2
B5
P2

B3
B6
B9

B4
B7
B10

The Bi’s represent data blocks; the Pi’s represent parity blocks. Parity block Pi

is the parity block for data blocks B4i−3 to B4i. What, if any, problem might
this arrangement present?
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11.4 A power failure that occurs while a disk block is being written could result in
the block being only partially written. Assume that partially written blocks can
be detected. An atomic block write is one where either the disk block is fully
written or nothing is written (i.e., there are no partial writes). Suggest schemes
for getting the effect of atomic block writes with the following RAID schemes.
Your schemes should involve work on recovery from failure.

a. RAID level 1 (mirroring)
b. RAID level 5 (block interleaved, distributed parity)

11.5 RAID systems typically allow you to replace failed disks without stopping ac-
cess to the system. Thus, the data in the failed disk must be rebuilt and written
to the replacement disk while the system is in operation. With which of the
RAID levels is the amount of interference between the rebuild and ongoing
disk accesses least? Explain your answer.

11.6 Give an example of a relational-algebra expression and a query-processing
strategy in each of the following situations:

a. MRU is preferable to LRU.
b. LRU is preferable to MRU.

11.7 Consider the deletion of record 5 from the file of Figure 11.8. Compare the
relative merits of the following techniques for implementing the deletion:

a. Move record 6 to the space occupied by record 5, and move record 7 to the
space occupied by record 6.

b. Move record 7 to the space occupied by record 5.
c. Mark record 5 as deleted, and move no records.

11.8 Show the structure of the file of Figure 11.9 after each of the following steps:
a. Insert (Brighton, A-323, 1600).
b. Delete record 2.
c. Insert (Brighton, A-626, 2000).

11.9 Give an example of a database application in which the reserved-space method
of representing variable-length records is preferable to the pointer method. Ex-
plain your answer.

11.10 Give an example of a database application in which the pointer method of rep-
resenting variable-length records is preferable to the reserved-space method.
Explain your answer.

11.11 Show the structure of the file of Figure 11.12 after each of the following steps:
a. Insert (Mianus, A-101, 2800).
b. Insert (Brighton, A-323, 1600).
c. Delete (Perryridge, A-102, 400).
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11.12 What happens if you attempt to insert the record

(Perryridge, A-929, 3000)

into the file of Figure 11.12?

11.13 Show the structure of the file of Figure 11.13 after each of the following steps:
a. Insert (Mianus, A-101, 2800).
b. Insert (Brighton, A-323, 1600).
c. Delete (Perryridge, A-102, 400).

11.14 Explain why the allocation of records to blocks affects database-system perfor-
mance significantly.

11.15 If possible, determine the buffer-management strategy used by the operating
system running on your local computer system, and what mechanisms it pro-
vides to control replacement of pages. Discuss how the control on replacement
that it provides would be useful for the implementation of database systems.

11.16 In the sequential file organization, why is an overflow block used even if there
is, at the moment, only one overflow record?

11.17 List two advantages and two disadvantages of each of the following strategies
for storing a relational database:

a. Store each relation in one file.
b. Store multiple relations (perhaps even the entire database) in one file.

11.18 Consider a relational database with two relations:

course (course-name, room, instructor)
enrollment (course-name, student-name, grade)

Define instances of these relations for three courses, each of which enrolls five
students. Give a file structure of these relations that uses clustering.

11.19 Consider the following bitmap technique for tracking free space in a file. For
each block in the file, two bits are maintained in the bitmap. If the block is
between 0 and 30 percent full the bits are 00, between 30 and 60 percent the
bits are 01, between 60 and 90 percent the bits are 10, and above 90 percent the
bits are 11. Such bitmaps can be kept in memory even for quite large files.

a. Describe how to keep the bitmap up-to-date on record insertions and dele-
tions.

b. Outline the benefit of the bitmap technique over free lists when searching
for free space and when updating free space information.

11.20 Give a normalized version of the Index-metadata relation, and explain why us-
ing the normalized version would result in worse performance.

11.21 Explain why a physical OID must contain more information than a pointer to a
physical storage location.
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11.22 If physical OIDs are used, an object can be relocated by keeping a forwarding
pointer to its new location. In case an object gets forwarded multiple times,
what would be the effect on retrieval speed? Suggest a technique to avoid mul-
tiple accesses in such a case.

11.23 Define the term dangling pointer. Describe how the unique-id scheme helps in
detecting dangling pointers in an object-oriented database.

11.24 Consider the example on page 435, which shows that there is no need for
deswizzling if hardware swizzling is used. Explain why, in that example, it
is safe to change the short identifier of page 679.34278 from 2395 to 5001. Can
some other page already have short identifier 5001? If it could, how can you
handle that situation?
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Indexing and Hashing

Many queries reference only a small proportion of the records in a file. For exam-
ple, a query like “Find all accounts at the Perryridge branch” or “Find the balance
of account number A-101” references only a fraction of the account records. It is in-
efficient for the system to read every record and to check the branch-name field for
the name “Perryridge,” or the account-number field for the value A-101. Ideally, the
system should be able to locate these records directly. To allow these forms of access,
we design additional structures that we associate with files.

12.1 Basic Concepts
An index for a file in a database system works in much the same way as the index
in this textbook. If we want to learn about a particular topic (specified by a word or
a phrase) in this textbook, we can search for the topic in the index at the back of the
book, find the pages where it occurs, and then read the pages to find the information
we are looking for. The words in the index are in sorted order, making it easy to find
the word we are looking for. Moreover, the index is much smaller than the book,
further reducing the effort needed to find the words we are looking for.

Card catalogs in libraries worked in a similar manner (although they are rarely
used any longer). To find a book by a particular author, we would search in the author
catalog, and a card in the catalog tells us where to find the book. To assist us in
searching the catalog, the library would keep the cards in alphabetic order by authors,
with one card for each author of each book.

Database system indices play the same role as book indices or card catalogs in
libraries. For example, to retrieve an account record given the account number, the
database system would look up an index to find on which disk block the correspond-
ing record resides, and then fetch the disk block, to get the account record.

Keeping a sorted list of account numbers would not work well on very large
databases with millions of accounts, since the index would itself be very big; further,

445
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even though keeping the index sorted reduces the search time, finding an account
can still be rather time-consuming. Instead, more sophisticated indexing techniques
may be used. We shall discuss several of these techniques in this chapter.

There are two basic kinds of indices:

• Ordered indices. Based on a sorted ordering of the values.

• Hash indices. Based on a uniform distribution of values across a range of
buckets. The bucket to which a value is assigned is determined by a function,
called a hash function.

We shall consider several techniques for both ordered indexing and hashing. No
one technique is the best. Rather, each technique is best suited to particular database
applications. Each technique must be evaluated on the basis of these factors:

• Access types: The types of access that are supported efficiently. Access types
can include finding records with a specified attribute value and finding records
whose attribute values fall in a specified range.

• Access time: The time it takes to find a particular data item, or set of items,
using the technique in question.

• Insertion time: The time it takes to insert a new data item. This value includes
the time it takes to find the correct place to insert the new data item, as well as
the time it takes to update the index structure.

• Deletion time: The time it takes to delete a data item. This value includes the
time it takes to find the item to be deleted, as well as the time it takes to update
the index structure.

• Space overhead: The additional space occupied by an index structure. Pro-
vided that the amount of additional space is moderate, it is usually worth-
while to sacrifice the space to achieve improved performance.

We often want to have more than one index for a file. For example, libraries main-
tained several card catalogs: for author, for subject, and for title.

An attribute or set of attributes used to look up records in a file is called a search
key. Note that this definition of key differs from that used in primary key, candidate
key, and superkey. This duplicate meaning for key is (unfortunately) well established
in practice. Using our notion of a search key, we see that if there are several indices
on a file, there are several search keys.

12.2 Ordered Indices
To gain fast random access to records in a file, we can use an index structure. Each
index structure is associated with a particular search key. Just like the index of a book
or a library catalog, an ordered index stores the values of the search keys in sorted
order, and associates with each search key the records that contain it.

The records in the indexed file may themselves be stored in some sorted order, just
as books in a library are stored according to some attribute such as the Dewey deci-
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A-217     Brighton 750
A-101     Downtown 500
A-110     Downtown 600
A-215     Mianus 700
A-102     Perryridge 400
A-201     Perryridge 900
A-218     Perryridge 700
A-222     Redwood 700
A-305     Round Hill 350

Brighton
Mianus
Redwood

Figure 12.1 Sequential file for account records.

mal number. A file may have several indices, on different search keys. If the file con-
taining the records is sequentially ordered, a primary index is an index whose search
key also defines the sequential order of the file. (The term primary index is sometimes
used to mean an index on a primary key. However, such usage is nonstandard and
should be avoided.) Primary indices are also called clustering indices. The search
key of a primary index is usually the primary key, although that is not necessarily so.
Indices whose search key specifies an order different from the sequential order of the
file are called secondary indices, or nonclustering indices.

12.2.1 Primary Index
In this section, we assume that all files are ordered sequentially on some search key.
Such files, with a primary index on the search key, are called index-sequential files.
They represent one of the oldest index schemes used in database systems. They are
designed for applications that require both sequential processing of the entire file and
random access to individual records.

Figure 12.1 shows a sequential file of account records taken from our banking ex-
ample. In the example of Figure 12.1, the records are stored in search-key order, with
branch-name used as the search key.

12.2.1.1 Dense and Sparse Indices
An index record, or index entry, consists of a search-key value, and pointers to one
or more records with that value as their search-key value. The pointer to a record
consists of the identifier of a disk block and an offset within the disk block to identify
the record within the block.

There are two types of ordered indices that we can use:

• Dense index: An index record appears for every search-key value in the file.
In a dense primary index, the index record contains the search-key value and
a pointer to the first data record with that search-key value. The rest of the
records with the same search key-value would be stored sequentially after the
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first record, since, because the index is a primary one, records are sorted on
the same search key.

Dense index implementations may store a list of pointers to all records with
the same search-key value; doing so is not essential for primary indices.

• Sparse index: An index record appears for only some of the search-key values.
As is true in dense indices, each index record contains a search-key value and
a pointer to the first data record with that search-key value. To locate a record,
we find the index entry with the largest search-key value that is less than or
equal to the search-key value for which we are looking. We start at the record
pointed to by that index entry, and follow the pointers in the file until we find
the desired record.

Figures 12.2 and 12.3 show dense and sparse indices, respectively, for the account
file. Suppose that we are looking up records for the Perryridge branch. Using the
dense index of Figure 12.2, we follow the pointer directly to the first Perryridge
record. We process this record, and follow the pointer in that record to locate the
next record in search-key (branch-name) order. We continue processing records until
we encounter a record for a branch other than Perryridge. If we are using the sparse
index (Figure 12.3), we do not find an index entry for “Perryridge.” Since the last en-
try (in alphabetic order) before “Perryridge” is “Mianus,” we follow that pointer. We
then read the account file in sequential order until we find the first Perryridge record,
and begin processing at that point.

As we have seen, it is generally faster to locate a record if we have a dense index
rather than a sparse index. However, sparse indices have advantages over dense in-
dices in that they require less space and they impose less maintenance overhead for
insertions and deletions.

There is a trade-off that the system designer must make between access time and
space overhead. Although the decision regarding this trade-off depends on the spe-
cific application, a good compromise is to have a sparse index with one index entry
per block. The reason this design is a good trade-off is that the dominant cost in pro-

A-217     Brighton 750
A-101     Downtown 500
A-110     Downtown 600
A-215     Mianus 700
A-102     Perryridge 400
A-201     Perryridge 900
A-218     Perryridge 700
A-222     Redwood 700
A-305     Round Hill 350

Brighton
Downtown
Mianus
Perryridge
Redwood
Round Hill

Figure 12.2 Dense index.
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A-217     Brighton 750
A-101     Downtown 500
A-110     Downtown 600
A-215     Mianus 700
A-102     Perryridge 400
A-201     Perryridge 900
A-218     Perryridge 700
A-222     Redwood 700
A-305     Round Hill 350

Brighton
Mianus
Redwood

Figure 12.3 Sparse index.

cessing a database request is the time that it takes to bring a block from disk into
main memory. Once we have brought in the block, the time to scan the entire block
is negligible. Using this sparse index, we locate the block containing the record that
we are seeking. Thus, unless the record is on an overflow block (see Section 11.7.1),
we minimize block accesses while keeping the size of the index (and thus, our space
overhead) as small as possible.

For the preceding technique to be fully general, we must consider the case where
records for one search-key value occupy several blocks. It is easy to modify our
scheme to handle this situation.

12.2.1.2 Multilevel Indices
Even if we use a sparse index, the index itself may become too large for efficient
processing. It is not unreasonable, in practice, to have a file with 100,000 records, with
10 records stored in each block. If we have one index record per block, the index has
10,000 records. Index records are smaller than data records, so let us assume that 100
index records fit on a block. Thus, our index occupies 100 blocks. Such large indices
are stored as sequential files on disk.

If an index is sufficiently small to be kept in main memory, the search time to find
an entry is low. However, if the index is so large that it must be kept on disk, a search
for an entry requires several disk block reads. Binary search can be used on the index
file to locate an entry, but the search still has a large cost. If the index occupies b
blocks, binary search requires as many as �log2(b)� blocks to be read. (�x� denotes
the least integer that is greater than or equal to x; that is, we round upward.) For our
100-block index, binary search requires seven block reads. On a disk system where a
block read takes 30 milliseconds, the search will take 210 milliseconds, which is long.
Note that, if overflow blocks have been used, binary search will not be possible. In
that case, a sequential search is typically used, and that requires b block reads, which
will take even longer. Thus, the process of searching a large index may be costly.

To deal with this problem, we treat the index just as we would treat any other
sequential file, and construct a sparse index on the primary index, as in Figure 12.4.
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To locate a record, we first use binary search on the outer index to find the record for
the largest search-key value less than or equal to the one that we desire. The pointer
points to a block of the inner index. We scan this block until we find the record that
has the largest search-key value less than or equal to the one that we desire. The
pointer in this record points to the block of the file that contains the record for which
we are looking.

Using the two levels of indexing, we have read only one index block, rather than
the seven we read with binary search, if we assume that the outer index is already in
main memory. If our file is extremely large, even the outer index may grow too large
to fit in main memory. In such a case, we can create yet another level of index. Indeed,
we can repeat this process as many times as necessary. Indices with two or more
levels are called multilevel indices. Searching for records with a multilevel index
requires significantly fewer I/O operations than does searching for records by binary
search. Each level of index could correspond to a unit of physical storage. Thus, we
may have indices at the track, cylinder, and disk levels.

A typical dictionary is an example of a multilevel index in the nondatabase world.
The header of each page lists the first word alphabetically on that page. Such a book

outer index

inner index

index
block 0

index
block 1

data
block 0

data
block 1

Figure 12.4 Two-level sparse index.
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index is a multilevel index: The words at the top of each page of the book index form
a sparse index on the contents of the dictionary pages.

Multilevel indices are closely related to tree structures, such as the binary trees
used for in-memory indexing. We shall examine the relationship later, in Section 12.3.

12.2.1.3 Index Update
Regardless of what form of index is used, every index must be updated whenever a
record is either inserted into or deleted from the file. We first describe algorithms for
updating single-level indices.

• Insertion. First, the system performs a lookup using the search-key value that
appears in the record to be inserted. Again, the actions the system takes next
depend on whether the index is dense or sparse:
� Dense indices:

1. If the search-key value does not appear in the index, the system inserts
an index record with the search-key value in the index at the appro-
priate position.

2. Otherwise the following actions are taken:
a. If the index record stores pointers to all records with the same

search-key value, the system adds a pointer to the new record to
the index record.

b. Otherwise, the index record stores a pointer to only the first record
with the search-key value. The system then places the record being
inserted after the other records with the same search-key values.

� Sparse indices: We assume that the index stores an entry for each block.
If the system creates a new block, it inserts the first search-key value (in
search-key order) appearing in the new block into the index. On the other
hand, if the new record has the least search-key value in its block, the
system updates the index entry pointing to the block; if not, the system
makes no change to the index.

• Deletion. To delete a record, the system first looks up the record to be deleted.
The actions the system takes next depend on whether the index is dense or
sparse:
� Dense indices:

1. If the deleted record was the only record with its particular search-key
value, then the system deletes the corresponding index record from
the index.

2. Otherwise the following actions are taken:
a. If the index record stores pointers to all records with the same

search-key value, the system deletes the pointer to the deleted re-
cord from the index record.
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b. Otherwise, the index record stores a pointer to only the first record
with the search-key value. In this case, if the deleted record was
the first record with the search-key value, the system updates the
index record to point to the next record.

� Sparse indices:
1. If the index does not contain an index record with the search-key value

of the deleted record, nothing needs to be done to the index.
2. Otherwise the system takes the following actions:

a. If the deleted record was the only record with its search key, the
system replaces the corresponding index record with an index rec-
ord for the next search-key value (in search-key order). If the next
search-key value already has an index entry, the entry is deleted
instead of being replaced.

b. Otherwise, if the index record for the search-key value points to the
record being deleted, the system updates the index record to point
to the next record with the same search-key value.

Insertion and deletion algorithms for multilevel indices are a simple extension of
the scheme just described. On deletion or insertion, the system updates the lowest-
level index as described. As far as the second level is concerned, the lowest-level in-
dex is merely a file containing records—thus, if there is any change in the lowest-level
index, the system updates the second-level index as described. The same technique
applies to further levels of the index, if there are any.

12.2.2 Secondary Indices
Secondary indices must be dense, with an index entry for every search-key value, and
a pointer to every record in the file. A primary index may be sparse, storing only some
of the search-key values, since it is always possible to find records with intermediate
search-key values by a sequential access to a part of the file, as described earlier. If a
secondary index stores only some of the search-key values, records with intermediate
search-key values may be anywhere in the file and, in general, we cannot find them
without searching the entire file.

A secondary index on a candidate key looks just like a dense primary index, except
that the records pointed to by successive values in the index are not stored sequen-
tially. In general, however, secondary indices may have a different structure from
primary indices. If the search key of a primary index is not a candidate key, it suffices
if the index points to the first record with a particular value for the search key, since
the other records can be fetched by a sequential scan of the file.

In contrast, if the search key of a secondary index is not a candidate key, it is
not enough to point to just the first record with each search-key value. The remain-
ing records with the same search-key value could be anywhere in the file, since the
records are ordered by the search key of the primary index, rather than by the search
key of the secondary index. Therefore, a secondary index must contain pointers to all
the records.
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A-217     Brighton 750
A-101     Downtown 500

A-110     Downtown 600
A-215     Mianus 700
A-102     Perryridge 400
A-201     Perryridge 900
A-218     Perryridge 700
A-222     Redwood 700
A-305     Round Hill 350

Figure 12.5 Secondary index on account file, on noncandidate key balance.

We can use an extra level of indirection to implement secondary indices on search
keys that are not candidate keys. The pointers in such a secondary index do not point
directly to the file. Instead, each points to a bucket that contains pointers to the file.
Figure 12.5 shows the structure of a secondary index that uses an extra level of indi-
rection on the account file, on the search key balance.

A sequential scan in primary index order is efficient because records in the file are
stored physically in the same order as the index order. However, we cannot (except in
rare special cases) store a file physically ordered both by the search key of the primary
index, and the search key of a secondary index. Because secondary-key order and
physical-key order differ, if we attempt to scan the file sequentially in secondary-key
order, the reading of each record is likely to require the reading of a new block from
disk, which is very slow.

The procedure described earlier for deletion and insertion can also be applied to
secondary indices; the actions taken are those described for dense indices storing a
pointer to every record in the file. If a file has multiple indices, whenever the file is
modified, every index must be updated.

Secondary indices improve the performance of queries that use keys other than
the search key of the primary index. However, they impose a significant overhead
on modification of the database. The designer of a database decides which secondary
indices are desirable on the basis of an estimate of the relative frequency of queries
and modifications.

12.3 B+-Tree Index Files
The main disadvantage of the index-sequential file organization is that performance
degrades as the file grows, both for index lookups and for sequential scans through
the data. Although this degradation can be remedied by reorganization of the file,
frequent reorganizations are undesirable.
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P1 P2 Pn – 1 Pn Kn – 1. . .K1

Figure 12.6 Typical node of a B+-tree.

The B+-tree index structure is the most widely used of several index structures
that maintain their efficiency despite insertion and deletion of data. A B+-tree index
takes the form of a balanced tree in which every path from the root of the tree to a
leaf of the tree is of the same length. Each nonleaf node in the tree has between �n/2�
and n children, where n is fixed for a particular tree.

We shall see that the B+-tree structure imposes performance overhead on inser-
tion and deletion, and adds space overhead. The overhead is acceptable even for fre-
quently modified files, since the cost of file reorganization is avoided. Furthermore,
since nodes may be as much as half empty (if they have the minimum number of
children), there is some wasted space. This space overhead, too, is acceptable given
the performance benefits of the B+-tree structure.

12.3.1 Structure of a B+-Tree
A B+-tree index is a multilevel index, but it has a structure that differs from that of the
multilevel index-sequential file. Figure 12.6 shows a typical node of a B+-tree. It con-
tains up to n − 1 search-key values K1, K2, . . . , Kn− 1, and n pointers P1, P2, . . . , Pn.
The search-key values within a node are kept in sorted order; thus, if i < j, then
Ki < Kj .

We consider first the structure of the leaf nodes. For i = 1, 2, . . . , n − 1, pointer
Pi points to either a file record with search-key value Ki or to a bucket of pointers,
each of which points to a file record with search-key value Ki. The bucket structure
is used only if the search key does not form a primary key, and if the file is not sorted
in the search-key value order. Pointer Pn has a special purpose that we shall discuss
shortly.

Figure 12.7 shows one leaf node of a B+-tree for the account file, in which we have
chosen n to be 3, and the search key is branch-name. Note that, since the account file
is ordered by branch-name, the pointers in the leaf node point directly to the file.

Now that we have seen the structure of a leaf node, let us consider how search-key
values are assigned to particular nodes. Each leaf can hold up to n − 1 values. We
allow leaf nodes to contain as few as �(n− 1)/2� values. The ranges of values in each
leaf do not overlap. Thus, if Li and Lj are leaf nodes and i < j, then every search-
key value in Li is less than every search-key value in Lj . If the B+-tree index is to be
a dense index, every search-key value must appear in some leaf node.

Now we can explain the use of the pointer Pn. Since there is a linear order on the
leaves based on the search-key values that they contain, we use Pn to chain together
the leaf nodes in search-key order. This ordering allows for efficient sequential pro-
cessing of the file.

The nonleaf nodes of the B+-tree form a multilevel (sparse) index on the leaf nodes.
The structure of nonleaf nodes is the same as that for leaf nodes, except that all point-
ers are pointers to tree nodes. A nonleaf node may hold up to n pointers, and must
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 Brighton Downtown

A-212   Brighton 750

A-101   Downtown 500

A-110   Downtown 600

account file

leaf node

. .
 .

Figure 12.7 A leaf node for account B+-tree index (n = 3).

hold at least �n/2� pointers. The number of pointers in a node is called the fanout of
the node.

Let us consider a node containing m pointers. For i = 2, 3, . . . , m − 1, pointer Pi

points to the subtree that contains search-key values less than Ki and greater than or
equal to Ki− 1. Pointer Pm points to the part of the subtree that contains those key
values greater than or equal to Km− 1, and pointer P1 points to the part of the subtree
that contains those search-key values less than K1.

Unlike other nonleaf nodes, the root node can hold fewer than �n/2� pointers;
however, it must hold at least two pointers, unless the tree consists of only one node.
It is always possible to construct a B+-tree, for any n, that satisfies the preceding
requirements. Figure 12.8 shows a complete B+-tree for the account file (n = 3). For
simplicity, we have omitted both the pointers to the file itself and the null pointers.
As an example of a B+-tree for which the root must have less than �n/2� values,
Figure 12.9 shows a B+-tree for the account file with n = 5.

These examples of B+-trees are all balanced. That is, the length of every path from
the root to a leaf node is the same. This property is a requirement for a B+-tree. In-
deed, the “B” in B+-tree stands for “balanced.” It is the balance property of B+-trees
that ensures good performance for lookup, insertion, and deletion.

Perryridge

Mianus Redwood

Redwood     Round HillPerryridgeMianusBrighton    Downtown

Figure 12.8 B+-tree for account file (n = 3).
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 Perryridge

Perryridge    Redwood    Round HillBrighton      Downtown        Mianus

Figure 12.9 B+-tree for account file with n = 5.

12.3.2 Queries on B+-Trees
Let us consider how we process queries on a B+-tree. Suppose that we wish to find
all records with a search-key value of V. Figure 12.10 presents pseudocode for doing
so. Intuitively, the procedure works as follows. First, we examine the root node, look-
ing for the smallest search-key value greater than V. Suppose that we find that this
search-key value is Ki. We then follow pointer Pi to another node. If we find no such
value, then k ≥ Km−1, where m is the number of pointers in the node. In this case
we follow Pm to another node. In the node we reached above, again we look for the
smallest search-key value greater than V, and once again follow the corresponding
pointer as above. Eventually, we reach a leaf node. At the leaf node, if we find search-
key value Ki equals V , then pointer Pi directs us to the desired record or bucket. If
the value V is not found in the leaf node, no record with key value V exists.

Thus, in processing a query, we traverse a path in the tree from the root to some
leaf node. If there are K search-key values in the file, the path is no longer than
�log�n/2	(K)�.

In practice, only a few nodes need to be accessed, Typically, a node is made to
be the same size as a disk block, which is typically 4 kilobytes. With a search-key
size of 12 bytes, and a disk-pointer size of 8 bytes, n is around 200. Even with a
more conservative estimate of 32 bytes for the search-key size, n is around 100. With
n = 100, if we have 1 million search-key values in the file, a lookup requires only

procedure find(value V )
set C = root node
while C is not a leaf node begin

Let Ki = smallest search-key value, if any, greater than V
if there is no such value then begin

Let m = the number of pointers in the node
set C = node pointed to by Pm

end
else set C = the node pointed to by Pi

end
if there is a key value Ki in C such that Ki = V

then pointer Pi directs us to the desired record or bucket
else no record with key value k exists

end procedure

Figure 12.10 Querying a B+-tree.
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�log50(1,000,000)� = 4 nodes to be accessed. Thus, at most four blocks need to be
read from disk for the lookup. The root node of the tree is usually heavily accessed
and is likely to be in the buffer, so typically only three or fewer blocks need to be read
from disk.

An important difference between B+-tree structures and in-memory tree struc-
tures, such as binary trees, is the size of a node, and as a result, the height of the
tree. In a binary tree, each node is small, and has at most two pointers. In a B+-tree,
each node is large—typically a disk block—and a node can have a large number of
pointers. Thus, B+-trees tend to be fat and short, unlike thin and tall binary trees. In
a balanced binary tree, the path for a lookup can be of length �log2(K)�, where K is
the number of search-key values. With K = 1,000,000 as in the previous example, a
balanced binary tree requires around 20 node accesses. If each node were on a differ-
ent disk block, 20 block reads would be required to process a lookup, in contrast to
the four block reads for the B+-tree.

12.3.3 Updates on B+-Trees
Insertion and deletion are more complicated than lookup, since it may be necessary to
split a node that becomes too large as the result of an insertion, or to coalesce nodes
(that is, combine nodes) if a node becomes too small (fewer than �n/2� pointers).
Furthermore, when a node is split or a pair of nodes is combined, we must ensure
that balance is preserved. To introduce the idea behind insertion and deletion in a
B+-tree, we shall assume temporarily that nodes never become too large or too small.
Under this assumption, insertion and deletion are performed as defined next.

• Insertion. Using the same technique as for lookup, we find the leaf node in
which the search-key value would appear. If the search-key value already ap-
pears in the leaf node, we add the new record to the file and, if necessary, add
to the bucket a pointer to the record. If the search-key value does not appear,
we insert the value in the leaf node, and position it such that the search keys
are still in order. We then insert the new record in the file and, if necessary,
create a new bucket with the appropriate pointer.

• Deletion. Using the same technique as for lookup, we find the record to be
deleted, and remove it from the file. We remove the search-key value from the
leaf node if there is no bucket associated with that search-key value or if the
bucket becomes empty as a result of the deletion.

We now consider an example in which a node must be split. Assume that we wish
to insert a record with a branch-name value of “Clearview” into the B+-tree of Fig-
ure 12.8. Using the algorithm for lookup, we find that “Clearview” should appear
in the node containing “Brighton” and “Downtown.” There is no room to insert the
search-key value “Clearview.” Therefore, the node is split into two nodes. Figure 12.11
shows the two leaf nodes that result from inserting “Clearview” and splitting the
node containing “Brighton” and “Downtown.” In general, we take the n search-key
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Brighton     Clearview Downtown

Figure 12.11 Split of leaf node on insertion of “Clearview.”

values (the n − 1 values in the leaf node plus the value being inserted), and put the
first �n/2� in the existing node and the remaining values in a new node.

Having split a leaf node, we must insert the new leaf node into the B+-tree struc-
ture. In our example, the new node has “Downtown” as its smallest search-key value.
We need to insert this search-key value into the parent of the leaf node that was split.
The B+-tree of Figure 12.12 shows the result of the insertion. The search-key value
“Downtown” was inserted into the parent. It was possible to perform this insertion
because there was room for an added search-key value. If there were no room, the
parent would have had to be split. In the worst case, all nodes along the path to the
root must be split. If the root itself is split, the entire tree becomes deeper.

The general technique for insertion into a B+-tree is to determine the leaf node l
into which insertion must occur. If a split results, insert the new node into the parent
of node l. If this insertion causes a split, proceed recursively up the tree until either
an insertion does not cause a split or a new root is created.

Figure 12.13 outlines the insertion algorithm in pseudocode. In the pseudocode,
L.Ki and L.Pi denote the ith value and the ith pointer in node L, respectively. The
pseudocode also makes use of the function parent(L) to find the parent of a node L.
We can compute a list of nodes in the path from the root to the leaf while initially
finding the leaf node, and can use it later to find the parent of any node in the path
efficiently. The pseudocode refers to inserting an entry (V, P ) into a node. In the case
of leaf nodes, the pointer to an entry actually precedes the key value, so the leaf node
actually stores P before V . For internal nodes, P is stored just after V .

We now consider deletions that cause tree nodes to contain too few pointers. First,
let us delete “Downtown” from the B+-tree of Figure 12.12. We locate the entry for
“Downtown” by using our lookup algorithm. When we delete the entry for “Down-
town” from its leaf node, the leaf becomes empty. Since, in our example, n = 3 and
0 < �(n−1)/2�, this node must be eliminated from the B+-tree. To delete a leaf node,

 Perryridge

 Downtown      Mianus Redwood

Redwood    Round HillMianusDowntownBrighton       Clearview Perryridge

Figure 12.12 Insertion of “Clearview” into the B+-tree of Figure 12.8.



Silberschatz−Korth−Sudarshan: 
Database System 
Concepts, Fourth Edition

IV. Data Storage and 
Querying

12. Indexing and Hashing460 © The McGraw−Hill 
Companies, 2001

12.3 B+-Tree Index Files 459

procedure insert(value V , pointer P )
find the leaf node L that should contain value V
insert entry(L, V , P )

end procedure

procedure insert entry(node L, value V , pointer P )
if (L has space for (V, P ))

then insert (V, P ) in L
else begin /* Split L */

Create node L′

Let V ′ be the value in L.K1, . . . , L.Kn−1, V such that exactly
�n/2� of the values L.K1, . . . , L.Kn−1, V are less than V ′

Let m be the lowest value such that L.Km ≥ V ′

/* Note: V ′ must be either L.Km or V */
if (L is a leaf) then begin

move L.Pm, L.Km, . . . , L.Pn−1, L.Kn−1 to L′

if (V < V ′) then insert (P, V ) in L
else insert (P, V ) in L′

end
else begin

if (V = V ′) /* V is smallest value to go to L′ */
then add P, L.Km, . . . , L.Pn−1, L.Kn−1, L.Pn to L′

else add L.Pm, . . . , L.Pn−1, L.Kn−1, L.Pn to L′

delete L.Km, . . . , L.Pn−1, L.Kn−1, L.Pn from L
if (V < V ′) then insert (V, P ) in L
else if (V > V ′) then insert (V, P ) in L′

/* Case of V = V ′ handled already */
end
if (L is not the root of the tree)

then insert entry(parent(L), V ′, L′);
else begin

create a new node R with child nodes L and L′ and
the single value V ′

make R the root of the tree
end

if (L) is a leaf node then begin /* Fix next child pointers */
set L′.Pn = L.Pn;
set L.Pn = L′

end
end

end procedure

Figure 12.13 Insertion of entry in a B+-tree.
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Perryridge

Mianus Redwood

Redwood      Round HillPerryridgeMianusBrighton      Clearview

Figure 12.14 Deletion of “Downtown” from the B+-tree of Figure 12.12.

we must delete the pointer to it from its parent. In our example, this deletion leaves
the parent node, which formerly contained three pointers, with only two pointers.
Since 2 ≥ �n/2�, the node is still sufficiently large, and the deletion operation is
complete. The resulting B+-tree appears in Figure 12.14.

When we make a deletion from a parent of a leaf node, the parent node itself may
become too small. That is exactly what happens if we delete “Perryridge” from the
B+-tree of Figure 12.14. Deletion of the Perryridge entry causes a leaf node to become
empty. When we delete the pointer to this node in the latter’s parent, the parent is left
with only one pointer. Since n = 3, �n/2� = 2, and thus only one pointer is too few.
However, since the parent node contains useful information, we cannot simply delete
it. Instead, we look at the sibling node (the nonleaf node containing the one search
key, Mianus). This sibling node has room to accommodate the information contained
in our now-too-small node, so we coalesce these nodes, such that the sibling node
now contains the keys “Mianus” and “Redwood.” The other node (the node contain-
ing only the search key “Redwood”) now contains redundant information and can be
deleted from its parent (which happens to be the root in our example). Figure 12.15
shows the result. Notice that the root has only one child pointer after the deletion, so
it is deleted and its sole child becomes the root. So the depth of the B+-tree has been
decreased by 1.

It is not always possible to coalesce nodes. As an illustration, delete “Perryridge”
from the B+-tree of Figure 12.12. In this example, the “Downtown” entry is still part
of the tree. Once again, the leaf node containing “Perryridge” becomes empty. The
parent of the leaf node becomes too small (only one pointer). However, in this ex-
ample, the sibling node already contains the maximum number of pointers: three.
Thus, it cannot accommodate an additional pointer. The solution in this case is to re-
distribute the pointers such that each sibling has two pointers. The result appears in

Mianus       Redwood

Redwood     Round HillMianusBrighton      Clearview

Figure 12.15 Deletion of “Perryridge” from the B+-tree of Figure 12.14.
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Mianus

Downtown  Redwood

Redwood      Round HillMianusDowntownBrighton      Clearview

Figure 12.16 Deletion of “Perryridge” from the B+-tree of Figure 12.12.

Figure 12.16. Note that the redistribution of values necessitates a change of a search-
key value in the parent of the two siblings.

In general, to delete a value in a B+-tree, we perform a lookup on the value and
delete it. If the node is too small, we delete it from its parent. This deletion results
in recursive application of the deletion algorithm until the root is reached, a parent
remains adequately full after deletion, or redistribution is applied.

Figure 12.17 outlines the pseudocode for deletion from a B+-tree. The procedure
swap variables(L, L′) merely swaps the values of the (pointer) variables L and L′;
this swap has no effect on the tree itself. The pseudocode uses the condition “too few
pointers/values.” For nonleaf nodes, this criterion means less than �n/2� pointers;
for leaf nodes, it means less than �(n − 1)/2� values. The pseudocode redistributes
entries by borrowing a single entry from an adjacent node. We can also redistribute
entries by repartitioning entries equally between the two nodes. The pseudocode
refers to deleting an entry (V, P ) from a node. In the case of leaf nodes, the pointer to
an entry actually precedes the key value, so the pointer P precedes the key value V .
For internal nodes, P follows the key value V .

It is worth noting that, as a result of deletion, a key value that is present in an
internal node of the B+-tree may not be present at any leaf of the tree.

Although insertion and deletion operations on B+-trees are complicated, they re-
quire relatively few I/O operations, which is an important benefit since I/O opera-
tions are expensive. It can be shown that the number of I/O operations needed for a
worst-case insertion or deletion is proportional to log�n/2	(K), where n is the max-
imum number of pointers in a node, and K is the number of search-key values. In
other words, the cost of insertion and deletion operations is proportional to the height
of the B+-tree, and is therefore low. It is the speed of operation on B+-trees that makes
them a frequently used index structure in database implementations.

12.3.4 B+-Tree File Organization
As mentioned in Section 12.3, the main drawback of index-sequential file organiza-
tion is the degradation of performance as the file grows: With growth, an increasing
percentage of index records and actual records become out of order, and are stored in
overflow blocks. We solve the degradation of index lookups by using B+-tree indices
on the file. We solve the degradation problem for storing the actual records by using
the leaf level of the B+-tree to organize the blocks containing the actual records. We
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procedure delete(value V , pointer P )
find the leaf node L that contains (V, P )
delete entry(L, V, P )

end procedure
procedure delete entry(node L, value V , pointer P )

delete (V, P ) from L
if (L is the root and L has only one remaining child)
then make the child of L the new root of the tree and delete L
else if (L has too few values/pointers) then begin

Let L′ be the previous or next child of parent(L)
Let V ′ be the value between pointers L and L′ in parent(L)
if (entries in L and L′ can fit in a single node)

then begin /* Coalesce nodes */
if (L is a predecessor of L′) then swap variables(L, L′)
if (L is not a leaf)

then append V ′ and all pointers and values in L to L′

else append all (Ki, Pi) pairs in L to L′; set L′.Pn = L.Pn

delete entry(parent(L), V ′, L); delete node L
end

else begin /* Redistribution: borrow an entry from L′ */
if (L′ is a predecessor of L) then begin

if (L is a non-leaf node) then begin
let m be such that L′.Pm is the last pointer in L′

remove (L′.Km−1, L
′.Pm) from L′

insert (L′.Pm, V ′) as the first pointer and value in L,
by shifting other pointers and values right

replace V ′ in parent(L) by L′.Km−1

end
else begin

let m be such that (L′.Pm, L′.Km) is the last pointer/value
pair in L′

remove (L′.Pm, L′.Km) from L′

insert (L′.Pm, L′.Km) as the first pointer and value in L,
by shifting other pointers and values right

replace V ′ in parent(L) by L′.Km

end
end
else . . . symmetric to the then case . . .

end
end

end procedure

Figure 12.17 Deletion of entry from a B+-tree.
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use the B+-tree structure not only as an index, but also as an organizer for records in
a file. In a B+-tree file organization, the leaf nodes of the tree store records, instead of
storing pointers to records. Figure 12.18 shows an example of a B+-tree file organiza-
tion. Since records are usually larger than pointers, the maximum number of records
that can be stored in a leaf node is less than the number of pointers in a nonleaf node.
However, the leaf nodes are still required to be at least half full.

Insertion and deletion of records from a B+-tree file organization are handled in
the same way as insertion and deletion of entries in a B+-tree index. When a record
with a given key value v is inserted, the system locates the block that should contain
the record by searching the B+-tree for the largest key in the tree that is ≤ v. If the
block located has enough free space for the record, the system stores the record in the
block. Otherwise, as in B+-tree insertion, the system splits the block in two, and redis-
tributes the records in it (in the B+-tree–key order) to create space for the new record.
The split propagates up the B+-tree in the normal fashion. When we delete a record,
the system first removes it from the block containing it. If a block B becomes less
than half full as a result, the records in B are redistributed with the records in an ad-
jacent block B′. Assuming fixed-sized records, each block will hold at least one-half
as many records as the maximum that it can hold. The system updates the nonleaf
nodes of the B+-tree in the usual fashion.

When we use a B+-tree for file organization, space utilization is particularly im-
portant, since the space occupied by the records is likely to be much more than the
space occupied by keys and pointers. We can improve the utilization of space in a B+-
tree by involving more sibling nodes in redistribution during splits and merges. The
technique is applicable to both leaf nodes and internal nodes, and works as follows.

During insertion, if a node is full the system attempts to redistribute some of its
entries to one of the adjacent nodes, to make space for a new entry. If this attempt fails
because the adjacent nodes are themselves full, the system splits the node, and splits
the entries evenly among one of the adjacent nodes and the two nodes that it obtained
by splitting the original node. Since the three nodes together contain one more record
than can fit in two nodes, each node will be about two-thirds full. More precisely, each
node will have at least �2n/3� entries, where n is the maximum number of entries that
the node can hold. (�x� denotes the greatest integer that is less than or equal to x; that
is, we drop the fractional part, if any.)

C       F K      M

I

(A,4)    (B,8) (C,1)    (D,9)   (E,4) (F,7)    (G,3)    (H,3)

(I,4)      (J,8) (K,1)    (L,6) (M,4)   (N,8)    (P,6)

Figure 12.18 B+-tree file organization.
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During deletion of a record, if the occupancy of a node falls below �2n/3�, the
system attempts to borrow an entry from one of the sibling nodes. If both sibling
nodes have �2n/3� records, instead of borrowing an entry, the system redistributes
the entries in the node and in the two siblings evenly between two of the nodes, and
deletes the third node. We can use this approach because the total number of entries
is 3�2n/3�−1, which is less than 2n. With three adjacent nodes used for redistribution,
each node can be guaranteed to have �3n/4� entries. In general, if m nodes (m − 1
siblings) are involved in redistribution, each node can be guaranteed to contain at
least �(m − 1)n/m� entries. However, the cost of update becomes higher as more
sibling nodes are involved in the redistribution.

12.4 B-Tree Index Files
B-tree indices are similar to B+-tree indices. The primary distinction between the two
approaches is that a B-tree eliminates the redundant storage of search-key values.
In the B+-tree of Figure 12.12, the search keys “Downtown,” “Mianus,” “Redwood,”
and “Perryridge” appear twice. Every search-key value appears in some leaf node;
several are repeated in nonleaf nodes.

A B-tree allows search-key values to appear only once. Figure 12.19 shows a B-tree
that represents the same search keys as the B+-tree of Figure 12.12. Since search keys
are not repeated in the B-tree, we may be able to store the index in fewer tree nodes
than in the corresponding B+-tree index. However, since search keys that appear in
nonleaf nodes appear nowhere else in the B-tree, we are forced to include an addi-
tional pointer field for each search key in a nonleaf node. These additional pointers
point to either file records or buckets for the associated search key.

A generalized B-tree leaf node appears in Figure 12.20a; a nonleaf node appears
in Figure 12.20b. Leaf nodes are the same as in B+-trees. In nonleaf nodes, the point-
ers Pi are the tree pointers that we used also for B+-trees, while the pointers Bi are
bucket or file-record pointers. In the generalized B-tree in the figure, there are n − 1
keys in the leaf node, but there are m − 1 keys in the nonleaf node. This discrepancy
occurs because nonleaf nodes must include pointers Bi, thus reducing the number of

Downtown        Redwood

Round HillMianus      PerryridgeBrighton       Clearview

Downtown
bucket

Redwood
bucket

Brighton
bucket

Clearview
bucket

Mianus
bucket

Perryridge
bucket

Round Hill
bucket

Figure 12.19 B-tree equivalent of B+-tree in Figure 12.12.
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P1         K1          P2           .  .  .            Pn−1           Kn−1          Pn

(a)

P1         B1          K1          P2           B2             K2           .  .  .          Pm−1           Bm−1           Km−1           Pm

(b)

Figure 12.20 Typical nodes of a B-tree. (a) Leaf node. (b) Nonleaf node.

search keys that can be held in these nodes. Clearly, m < n, but the exact relationship
between m and n depends on the relative size of search keys and pointers.

The number of nodes accessed in a lookup in a B-tree depends on where the search
key is located. A lookup on a B+-tree requires traversal of a path from the root of the
tree to some leaf node. In contrast, it is sometimes possible to find the desired value
in a B-tree before reaching a leaf node. However, roughly n times as many keys are
stored in the leaf level of a B-tree as in the nonleaf levels, and, since n is typically
large, the benefit of finding certain values early is relatively small. Moreover, the fact
that fewer search keys appear in a nonleaf B-tree node, compared to B+-trees, implies
that a B-tree has a smaller fanout and therefore may have depth greater than that of
the corresponding B+-tree. Thus, lookup in a B-tree is faster for some search keys
but slower for others, although, in general, lookup time is still proportional to the
logarithm of the number of search keys.

Deletion in a B-tree is more complicated. In a B+-tree, the deleted entry always
appears in a leaf. In a B-tree, the deleted entry may appear in a nonleaf node. The
proper value must be selected as a replacement from the subtree of the node contain-
ing the deleted entry. Specifically, if search key Ki is deleted, the smallest search key
appearing in the subtree of pointer Pi + 1 must be moved to the field formerly occu-
pied by Ki. Further actions need to be taken if the leaf node now has too few entries.
In contrast, insertion in a B-tree is only slightly more complicated than is insertion in
a B+-tree.

The space advantages of B-trees are marginal for large indices, and usually do not
outweigh the disadvantages that we have noted. Thus, many database system imple-
menters prefer the structural simplicity of a B+-tree. The exercises explore details of
the insertion and deletion algorithms for B-trees.

12.5 Static Hashing
One disadvantage of sequential file organization is that we must access an index
structure to locate data, or must use binary search, and that results in more I/O op-
erations. File organizations based on the technique of hashing allow us to avoid ac-
cessing an index structure. Hashing also provides a way of constructing indices. We
study file organizations and indices based on hashing in the following sections.
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12.5.1 Hash File Organization
In a hash file organization, we obtain the address of the disk block containing a
desired record directly by computing a function on the search-key value of the record.
In our description of hashing, we shall use the term bucket to denote a unit of storage
that can store one or more records. A bucket is typically a disk block, but could be
chosen to be smaller or larger than a disk block.

Formally, let K denote the set of all search-key values, and let B denote the set of
all bucket addresses. A hash function h is a function from K to B. Let h denote a hash
function.

To insert a record with search key Ki, we compute h(Ki), which gives the address
of the bucket for that record. Assume for now that there is space in the bucket to store
the record. Then, the record is stored in that bucket.

To perform a lookup on a search-key value Ki, we simply compute h(Ki), then
search the bucket with that address. Suppose that two search keys, K5 and K7, have
the same hash value; that is, h(K5) = h(K7). If we perform a lookup on K5, the
bucket h(K5) contains records with search-key values K5 and records with search-
key values K7. Thus, we have to check the search-key value of every record in the
bucket to verify that the record is one that we want.

Deletion is equally straightforward. If the search-key value of the record to be
deleted is Ki, we compute h(Ki), then search the corresponding bucket for that
record, and delete the record from the bucket.

12.5.1.1 Hash Functions
The worst possible hash function maps all search-key values to the same bucket. Such
a function is undesirable because all the records have to be kept in the same bucket.
A lookup has to examine every such record to find the one desired. An ideal hash
function distributes the stored keys uniformly across all the buckets, so that every
bucket has the same number of records.

Since we do not know at design time precisely which search-key values will be
stored in the file, we want to choose a hash function that assigns search-key values to
buckets in such a way that the distribution has these qualities:

• The distribution is uniform. That is, the hash function assigns each bucket the
same number of search-key values from the set of all possible search-key val-
ues.

• The distribution is random. That is, in the average case, each bucket will have
nearly the same number of values assigned to it, regardless of the actual dis-
tribution of search-key values. More precisely, the hash value will not be cor-
related to any externally visible ordering on the search-key values, such as
alphabetic ordering or ordering by the length of the search keys; the hash
function will appear to be random.

As an illustration of these principles, let us choose a hash function for the account
file using the search key branch-name. The hash function that we choose must have
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the desirable properties not only on the example account file that we have been using,
but also on an account file of realistic size for a large bank with many branches.

Assume that we decide to have 26 buckets, and we define a hash function that
maps names beginning with the ith letter of the alphabet to the ith bucket. This hash
function has the virtue of simplicity, but it fails to provide a uniform distribution,
since we expect more branch names to begin with such letters as B and R than Q and
X, for example.

Now suppose that we want a hash function on the search key balance. Suppose that
the minimum balance is 1 and the maximum balance is 100,000, and we use a hash
function that divides the values into 10 ranges, 1–10,000, 10,001–20,000 and so on. The
distribution of search-key values is uniform (since each bucket has the same number
of different balance values), but is not random. But records with balances between 1
and 10,000 are far more common than are records with balances between 90,001 and
100,000. As a result, the distribution of records is not uniform—some buckets receive
more records than others do. If the function has a random distribution, even if there
are such correlations in the search keys, the randomness of the distribution will make
it very likely that all buckets will have roughly the same number of records, as long
as each search key occurs in only a small fraction of the records. (If a single search
key occurs in a large fraction of the records, the bucket containing it is likely to have
more records than other buckets, regardless of the hash function used.)

Typical hash functions perform computation on the internal binary machine rep-
resentation of characters in the search key. A simple hash function of this type first
computes the sum of the binary representations of the characters of a key, then re-
turns the sum modulo the number of buckets. Figure 12.21 shows the application of
such a scheme, with 10 buckets, to the account file, under the assumption that the ith
letter in the alphabet is represented by the integer i.

Hash functions require careful design. A bad hash function may result in lookup
taking time proportional to the number of search keys in the file. A well-designed
function gives an average-case lookup time that is a (small) constant, independent of
the number of search keys in the file.

12.5.1.2 Handling of Bucket Overflows
So far, we have assumed that, when a record is inserted, the bucket to which it is
mapped has space to store the record. If the bucket does not have enough space, a
bucket overflow is said to occur. Bucket overflow can occur for several reasons:

• Insufficient buckets. The number of buckets, which we denote nB , must be
chosen such that nB > nr/fr, where nr denotes the total number of records
that will be stored, and fr denotes the number of records that will fit in a
bucket. This designation, of course, assumes that the total number of records
is known when the hash function is chosen.

• Skew. Some buckets are assigned more records than are others, so a bucket
may overflow even when other buckets still have space. This situation is called
bucket skew. Skew can occur for two reasons:
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bucket 0

bucket 1

bucket 2

bucket 3

A-217 Brighton 750
A-305 Round Hill 350

bucket 4

A-222 Redwood 700

bucket 5

A-102 Perryridge 400
A-201 Perryridge 900
A-218 Perryridge 700

bucket 6

bucket 7

A-215 Mianus 700

bucket 8

A-101 Downtown 500
A-110 Downtown 600

bucket 9

Figure 12.21 Hash organization of account file, with branch-name as the key.

1. Multiple records may have the same search key.
2. The chosen hash function may result in nonuniform distribution of search

keys.

So that the probability of bucket overflow is reduced, the number of buckets is
chosen to be (nr/fr) ∗ (1 + d), where d is a fudge factor, typically around 0.2. Some
space is wasted: About 20 percent of the space in the buckets will be empty. But the
benefit is that the probability of overflow is reduced.

Despite allocation of a few more buckets than required, bucket overflow can still
occur. We handle bucket overflow by using overflow buckets. If a record must be
inserted into a bucket b, and b is already full, the system provides an overflow bucket
for b, and inserts the record into the overflow bucket. If the overflow bucket is also
full, the system provides another overflow bucket, and so on. All the overflow buck-
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overflow  buckets for bucket 1

bucket 0

bucket 1

bucket 2

bucket 3

Figure 12.22 Overflow chaining in a hash structure.

ets of a given bucket are chained together in a linked list, as in Figure 12.22. Overflow
handling using such a linked list is called overflow chaining.

We must change the lookup algorithm slightly to handle overflow chaining. As
before, the system uses the hash function on the search key to identify a bucket b. The
system must examine all the records in bucket b to see whether they match the search
key, as before. In addition, if bucket b has overflow buckets, the system must examine
the records in all the overflow buckets also.

The form of hash structure that we have just described is sometimes referred to
as closed hashing. Under an alternative approach, called open hashing, the set of
buckets is fixed, and there are no overflow chains. Instead, if a bucket is full, the sys-
tem inserts records in some other bucket in the initial set of buckets B. One policy is
to use the next bucket (in cyclic order) that has space; this policy is called linear prob-
ing. Other policies, such as computing further hash functions, are also used. Open
hashing has been used to construct symbol tables for compilers and assemblers, but
closed hashing is preferable for database systems. The reason is that deletion un-
der open hashing is troublesome. Usually, compilers and assemblers perform only
lookup and insertion operations on their symbol tables. However, in a database sys-
tem, it is important to be able to handle deletion as well as insertion. Thus, open
hashing is of only minor importance in database implementation.

An important drawback to the form of hashing that we have described is that
we must choose the hash function when we implement the system, and it cannot be
changed easily thereafter if the file being indexed grows or shrinks. Since the function
h maps search-key values to a fixed set B of bucket addresses, we waste space if B is
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made large to handle future growth of the file. If B is too small, the buckets contain
records of many different search-key values, and bucket overflows can occur. As the
file grows, performance suffers. We study later, in Section 12.6, how the number of
buckets and the hash function can be changed dynamically.

12.5.2 Hash Indices
Hashing can be used not only for file organization, but also for index-structure cre-
ation. A hash index organizes the search keys, with their associated pointers, into a
hash file structure. We construct a hash index as follows. We apply a hash function
on a search key to identify a bucket, and store the key and its associated pointers
in the bucket (or in overflow buckets). Figure 12.23 shows a secondary hash index
on the account file, for the search key account-number. The hash function in the figure
computes the sum of the digits of the account number modulo 7. The hash index has
seven buckets, each of size 2 (realistic indices would, of course, have much larger

bucket 0

bucket 1
A-215
A-305

bucket 2
A-101
A-110

bucket 3
A-217
A-102

A-201

bucket 4
A-218

bucket 5

bucket 6
A-222

A-217    Brighton 750
A-101    Downtown 500
A-110    Downtown 600
A-215     Mianus 700
A-102     Perryridge 400
A-201     Perryridge 900
A-218     Perryridge 700
A-222     Redwood 700
A-305     Round Hill 350

Figure 12.23 Hash index on search key account-number of account file.
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bucket sizes). One of the buckets has three keys mapped to it, so it has an overflow
bucket. In this example, account-number is a primary key for account, so each search-
key has only one associated pointer. In general, multiple pointers can be associated
with each key.

We use the term hash index to denote hash file structures as well as secondary
hash indices. Strictly speaking, hash indices are only secondary index structures. A
hash index is never needed as a primary index structure, since, if a file itself is orga-
nized by hashing, there is no need for a separate hash index structure on it. However,
since hash file organization provides the same direct access to records that indexing
provides, we pretend that a file organized by hashing also has a primary hash index
on it.

12.6 Dynamic Hashing
As we have seen, the need to fix the set B of bucket addresses presents a serious
problem with the static hashing technique of the previous section. Most databases
grow larger over time. If we are to use static hashing for such a database, we have
three classes of options:

1. Choose a hash function based on the current file size. This option will result
in performance degradation as the database grows.

2. Choose a hash function based on the anticipated size of the file at some point
in the future. Although performance degradation is avoided, a significant
amount of space may be wasted initially.

3. Periodically reorganize the hash structure in response to file growth. Such a
reorganization involves choosing a new hash function, recomputing the hash
function on every record in the file, and generating new bucket assignments.
This reorganization is a massive, time-consuming operation. Furthermore, it
is necessary to forbid access to the file during reorganization.

Several dynamic hashing techniques allow the hash function to be modified dy-
namically to accommodate the growth or shrinkage of the database. In this section
we describe one form of dynamic hashing, called extendable hashing. The biblio-
graphical notes provide references to other forms of dynamic hashing.

12.6.1 Data Structure
Extendable hashing copes with changes in database size by splitting and coalescing
buckets as the database grows and shrinks. As a result, space efficiency is retained.
Moreover, since the reorganization is performed on only one bucket at a time, the
resulting performance overhead is acceptably low.

With extendable hashing, we choose a hash function h with the desirable prop-
erties of uniformity and randomness. However, this hash function generates val-
ues over a relatively large range—namely, b-bit binary integers. A typical value for
b is 32.
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i1

bucket 1

i2

bucket 2
i3

bucket 3

i

hash prefix

00 . .

01 . .

10 . .

11 . .
.
.
.

.

.

.bucket address table

Figure 12.24 General extendable hash structure.

We do not create a bucket for each hash value. Indeed, 232 is over 4 billion, and
that many buckets is unreasonable for all but the largest databases. Instead, we create
buckets on demand, as records are inserted into the file. We do not use the entire b
bits of the hash value initially. At any point, we use i bits, where 0 ≤ i ≤ b. These i
bits are used as an offset into an additional table of bucket addresses. The value of i
grows and shrinks with the size of the database.

Figure 12.24 shows a general extendable hash structure. The i appearing above
the bucket address table in the figure indicates that i bits of the hash value h(K) are
required to determine the correct bucket for K. This number will, of course, change
as the file grows. Although i bits are required to find the correct entry in the bucket
address table, several consecutive table entries may point to the same bucket. All
such entries will have a common hash prefix, but the length of this prefix may be less
than i. Therefore, we associate with each bucket an integer giving the length of the
common hash prefix. In Figure 12.24 the integer associated with bucket j is shown as
ij . The number of bucket-address-table entries that point to bucket j is

2(i− ij)

12.6.2 Queries and Updates
We now see how to perform lookup, insertion, and deletion on an extendable hash
structure.

To locate the bucket containing search-key value Kl, the system takes the first i
high-order bits of h(Kl), looks at the corresponding table entry for this bit string, and
follows the bucket pointer in the table entry.

To insert a record with search-key value Kl, the system follows the same procedure
for lookup as before, ending up in some bucket—say, j. If there is room in the bucket,
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the system inserts the record in the bucket. If, on the other hand, the bucket is full, it
must split the bucket and redistribute the current records, plus the new one. To split
the bucket, the system must first determine from the hash value whether it needs to
increase the number of bits that it uses.

• If i = ij , only one entry in the bucket address table points to bucket j. There-
fore, the system needs to increase the size of the bucket address table so that
it can include pointers to the two buckets that result from splitting bucket j. It
does so by considering an additional bit of the hash value. It increments the
value of i by 1, thus doubling the size of the bucket address table. It replaces
each entry by two entries, both of which contain the same pointer as the orig-
inal entry. Now two entries in the bucket address table point to bucket j. The
system allocates a new bucket (bucket z), and sets the second entry to point
to the new bucket. It sets ij and iz to i. Next, it rehashes each record in bucket
j and, depending on the first i bits (remember the system has added 1 to i),
either keeps it in bucket j or allocates it to the newly created bucket.

The system now reattempts the insertion of the new record. Usually, the
attempt will succeed. However, if all the records in bucket j, as well as the
new record, have the same hash-value prefix, it will be necessary to split a
bucket again, since all the records in bucket j and the new record are assigned
to the same bucket. If the hash function has been chosen carefully, it is unlikely
that a single insertion will require that a bucket be split more than once, unless
there are a large number of records with the same search key. If all the records
in bucket j have the same search-key value, no amount of splitting will help. In
such cases, overflow buckets are used to store the records, as in static hashing.

• If i > ij , then more than one entry in the bucket address table points to
bucket j. Thus, the system can split bucket j without increasing the size of
the bucket address table. Observe that all the entries that point to bucket j
correspond to hash prefixes that have the same value on the leftmost ij bits.
The system allocates a new bucket (bucket z), and set ij and iz to the value
that results from adding 1 to the original ij value. Next, the system needs to
adjust the entries in the bucket address table that previously pointed to bucket
j. (Note that with the new value for ij , not all the entries correspond to hash
prefixes that have the same value on the leftmost ij bits.) The system leaves
the first half of the entries as they were (pointing to bucket j), and sets all the
remaining entries to point to the newly created bucket (bucket z). Next, as in
the previous case, the system rehashes each record in bucket j, and allocates it
either to bucket j or to the newly created bucket z.

The system then reattempts the insert. In the unlikely case that it again fails,
it applies one of the two cases, i = ij or i > ij , as appropriate.

Note that, in both cases, the system needs to recompute the hash function on only the
records in bucket j.

To delete a record with search-key value Kl, the system follows the same proce-
dure for lookup as before, ending up in some bucket—say, j. It removes both the
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A-217 Brighton 750
A-101 Downtown 500
A-1 10 Downtown 600
A-215 Mianus 700
A-102 Perryridge 400
A-201 Perryridge 900
A-218 Perryridge 700
A-222 Redwood 700
A-305 Round Hill 350

Figure 12.25 Sample account file.

search key from the bucket and the record from the file. The bucket too is removed
if it becomes empty. Note that, at this point, several buckets can be coalesced, and
the size of the bucket address table can be cut in half. The procedure for deciding on
which buckets can be coalesced and how to coalesce buckets is left to you to do as an
exercise. The conditions under which the bucket address table can be reduced in size
are also left to you as an exercise. Unlike coalescing of buckets, changing the size of
the bucket address table is a rather expensive operation if the table is large. Therefore
it may be worthwhile to reduce the bucket address table size only if the number of
buckets reduces greatly.

Our example account file in Figure 12.25 illustrates the operation of insertion. The
32-bit hash values on branch-name appear in Figure 12.26. Assume that, initially, the
file is empty, as in Figure 12.27. We insert the records one by one. To illustrate all
the features of extendable hashing in a small structure, we shall make the unrealistic
assumption that a bucket can hold only two records.

We insert the record (A-217, Brighton, 750). The bucket address table contains a
pointer to the one bucket, and the system inserts the record. Next, we insert the record
(A-101, Downtown, 500). The system also places this record in the one bucket of our
structure.

When we attempt to insert the next record (Downtown, A-110, 600), we find that
the bucket is full. Since i = i0, we need to increase the number of bits that we use
from the hash value. We now use 1 bit, allowing us 21 = 2 buckets. This increase in

branch-name h(branch-name)

Brighton 0010 1101 1111 1011 0010 1100 0011 0000
1010 0011 1010 0000 1100 0110 1001 1111
1100 0111 1110 1101 1011 1111 0011 1010
1111 0001 0010 0100 1001 0011 0110 1101
0011 0101 1010 0110 1100 1001 1110 1011
1101 1000 0011 1111 1001 1100 0000 0001

Downtown
Mianus
Perryridge
Redwood
Round Hill

Figure 12.26 Hash function for branch-name.
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0

bucket 1

hash prefix

bucket address table

0

Figure 12.27 Initial extendable hash structure.

the number of bits necessitates doubling the size of the bucket address table to two
entries. The system splits the bucket, placing in the new bucket those records whose
search key has a hash value beginning with 1, and leaving in the original bucket the
other records. Figure 12.28 shows the state of our structure after the split.

Next, we insert (A-215, Mianus, 700). Since the first bit of h(Mianus) is 1, we must
insert this record into the bucket pointed to by the “1” entry in the bucket address
table. Once again, we find the bucket full and i = i1. We increase the number of
bits that we use from the hash to 2. This increase in the number of bits necessitates
doubling the size of the bucket address table to four entries, as in Figure 12.29. Since
the bucket of Figure 12.28 for hash prefix 0 was not split, the two entries of the bucket
address table of 00 and 01 both point to this bucket.

For each record in the bucket of Figure 12.28 for hash prefix 1 (the bucket being
split), the system examines the first 2 bits of the hash value to determine which bucket
of the new structure should hold it.

Next, we insert (A-102, Perryridge, 400), which goes in the same bucket as Mianus.
The following insertion, of (A-201, Perryridge, 900), results in a bucket overflow, lead-
ing to an increase in the number of bits, and a doubling of the size of the bucket
address table. The insertion of the third Perryridge record, (A-218, Perryridge, 700),
leads to another overflow. However, this overflow cannot be handled by increasing
the number of bits, since there are three records with exactly the same hash value.
Hence the system uses an overflow bucket, as in Figure 12.30.

We continue in this manner until we have inserted all the account records of Fig-
ure 12.25. The resulting structure appears in Figure 12.31.

1

1
hash prefix

A-217  Brighton 750

A-101  Downtown 500

A-110  Downtown 600

bucket address table

1

Figure 12.28 Hash structure after three insertions.
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hash prefix

bucket address table

2

A-217 750

A-101 500

A-110 600

A-215 700Mianus

Downtown

Downtown

Brighton2

1

2 

Figure 12.29 Hash structure after four insertions.

12.6.3 Comparison with Other Schemes
We now examine the advantages and disadvantages of extendable hashing, com-
pared with the other schemes that we have discussed. The main advantage of ex-
tendable hashing is that performance does not degrade as the file grows. Further-
more, there is minimal space overhead. Although the bucket address table incurs
additional overhead, it contains one pointer for each hash value for the current pre-

hash prefix

bucket address table

A-217 750

A-101 500

A-110 600

A-215 700

A-102 400

A-201 900

700

Brighton

Downtown

Downtown

Mianus

Perryridge A-218 Perryridge

Perryridge

3

3

1

2

3 3

Figure 12.30 Hash structure after seven insertions.
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hash prefix

bucket address table

A-217 750

A-222 700

A-101 500

A-110 600

A-215 700

A-305 350

A-102 400

A-201 900

A-218 700

Brighton

Redwood

Downtown

Downtown

Mianus

Round Hill

Perryridge

Perryridge Perryridge

3

1

2

3 3

3

Figure 12.31 Extendable hash structure for the account file.

fix length. This table is thus small. The main space saving of extendable hashing
over other forms of hashing is that no buckets need to be reserved for future growth;
rather, buckets can be allocated dynamically.

A disadvantage of extendable hashing is that lookup involves an additional level
of indirection, since the system must access the bucket address table before access-
ing the bucket itself. This extra reference has only a minor effect on performance.
Although the hash structures that we discussed in Section 12.5 do not have this ex-
tra level of indirection, they lose their minor performance advantage as they become
full.

Thus, extendable hashing appears to be a highly attractive technique, provided
that we are willing to accept the added complexity involved in its implementation.
The bibliographical notes reference more detailed descriptions of extendable hashing
implementation. The bibliographical notes also provide references to another form of
dynamic hashing called linear hashing, which avoids the extra level of indirection
associated with extendable hashing, at the possible cost of more overflow buckets.

12.7 ComparisonofOrderedIndexingandHashing
We have seen several ordered-indexing schemes and several hashing schemes. We
can organize files of records as ordered files, by using index-sequential organization
or B+-tree organizations. Alternatively, we can organize the files by using hashing.
Finally, we can organize them as heap files, where the records are not ordered in any
particular way.
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Each scheme has advantages in certain situations. A database-system implemen-
tor could provide many schemes, leaving the final decision of which schemes to use
to the database designer. However, such an approach requires the implementor to
write more code, adding both to the cost of the system and to the space that the sys-
tem occupies. Most database systems support B+-trees and may additionally support
some form of hash file organization or hash indices.

To make a wise choice of file organization and indexing techniques for a relation,
the implementor or the database designer must consider the following issues:

• Is the cost of periodic reorganization of the index or hash organization accept-
able?

• What is the relative frequency of insertion and deletion?

• Is it desirable to optimize average access time at the expense of increasing the
worst-case access time?

• What types of queries are users likely to pose?

We have already examined the first three of these issues, first in our review of the
relative merits of specific indexing techniques, and again in our discussion of hashing
techniques. The fourth issue, the expected type of query, is critical to the choice of
ordered indexing or hashing.

If most queries are of the form

select A1, A2, . . . , An

from r
where Ai = c

then, to process this query, the system will perform a lookup on an ordered index
or a hash structure for attribute Ai, for value c. For queries of this form, a hashing
scheme is preferable. An ordered-index lookup requires time proportional to the log
of the number of values in r for Ai. In a hash structure, however, the average lookup
time is a constant independent of the size of the database. The only advantage to
an index over a hash structure for this form of query is that the worst-case lookup
time is proportional to the log of the number of values in r for Ai. By contrast, for
hashing, the worst-case lookup time is proportional to the number of values in r
for Ai. However, the worst-case lookup time is unlikely to occur with hashing, and
hashing is preferable in this case.

Ordered-index techniques are preferable to hashing in cases where the query spec-
ifies a range of values. Such a query takes the following form:

select A1, A2, ..., An

from r
where Ai ≤ c2 and Ai ≥ c1

In other words, the preceding query finds all the records with Ai values between c1

and c2.
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Let us consider how we process this query using an ordered index. First, we per-
form a lookup on value c1. Once we have found the bucket for value c1, we follow
the pointer chain in the index to read the next bucket in order, and we continue in
this manner until we reach c2.

If, instead of an ordered index, we have a hash structure, we can perform a lookup
on c1 and can locate the corresponding bucket—but it is not easy, in general, to de-
termine the next bucket that must be examined. The difficulty arises because a good
hash function assigns values randomly to buckets. Thus, there is no simple notion of
“next bucket in sorted order.” The reason we cannot chain buckets together in sorted
order on Ai is that each bucket is assigned many search-key values. Since values are
scattered randomly by the hash function, the values in the specified range are likely
to be scattered across many or all of the buckets. Therefore, we have to read all the
buckets to find the required search keys.

Usually the designer will choose ordered indexing unless it is known in advance
that range queries will be infrequent, in which case hashing would be chosen. Hash
organizations are particularly useful for temporary files created during query pro-
cessing, if lookups based on a key value are required, but no range queries will be
performed.

12.8 Index Definition in SQL
The SQL standard does not provide any way for the database user or administrator
to control what indices are created and maintained in the database system. Indices
are not required for correctness, since they are redundant data structures. However,
indices are important for efficient processing of transactions, including both update
transactions and queries. Indices are also important for efficient enforcement of in-
tegrity constraints. For example, typical implementations enforce a key declaration
(Chapter 6) by creating an index with the declared key as the search key of the index.

In principle, a database system can decide automatically what indices to create.
However, because of the space cost of indices, as well as the effect of indices on up-
date processing, it is not easy to automatically make the right choices about what
indices to maintain. Therefore, most SQL implementations provide the programmer
control over creation and removal of indices via data-definition-language commands.

We illustrate the syntax of these commands next. Although the syntax that we
show is widely used and supported by many database systems, it is not part of the
SQL:1999 standard. The SQL standards (up to SQL:1999, at least) do not support con-
trol of the physical database schema, and have restricted themselves to the logical
database schema.

We create an index by the create index command, which takes the form

create index <index-name> on <relation-name> (<attribute-list>)

The attribute-list is the list of attributes of the relations that form the search key for
the index.

To define an index name b-index on the branch relation with branch-name as the
search key, we write
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create index b-index on branch (branch-name)

If we wish to declare that the search key is a candidate key, we add the attribute
unique to the index definition. Thus, the command

create unique index b-index on branch (branch-name)

declares branch-name to be a candidate key for branch. If, at the time we enter the
create unique index command, branch-name is not a candidate key, the system will
display an error message, and the attempt to create the index will fail. If the index-
creation attempt succeeds, any subsequent attempt to insert a tuple that violates the
key declaration will fail. Note that the unique feature is redundant if the database
system supports the unique declaration of the SQL standard.

Many database systems also provide a way to specify the type of index to be used
(such as B+-tree or hashing). Some database systems also permit one of the indices
on a relation to be declared to be clustered; the system then stores the relation sorted
by the search-key of the clustered index.

The index name we specified for an index is required to drop an index. The drop
index command takes the form:

drop index <index-name>

12.9 Multiple-Key Access
Until now, we have assumed implicitly that only one index (or hash table) is used to
process a query on a relation. However, for certain types of queries, it is advantageous
to use multiple indices if they exist.

12.9.1 Using Multiple Single-Key Indices
Assume that the account file has two indices: one for branch-name and one for balance.
Consider the following query: “Find all account numbers at the Perryridge branch
with balances equal to $1000.” We write

select loan-number
from account
where branch-name = “Perryridge” and balance = 1000

There are three strategies possible for processing this query:

1. Use the index on branch-name to find all records pertaining to the Perryridge
branch. Examine each such record to see whether balance = 1000.

2. Use the index on balance to find all records pertaining to accounts with bal-
ances of $1000. Examine each such record to see whether branch-name = “Per-
ryridge.”

3. Use the index on branch-name to find pointers to all records pertaining to the
Perryridge branch. Also, use the index on balance to find pointers to all records
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pertaining to accounts with a balance of $1000. Take the intersection of these
two sets of pointers. Those pointers that are in the intersection point to records
pertaining to both Perryridge and accounts with a balance of $1000.

The third strategy is the only one of the three that takes advantage of the existence
of multiple indices. However, even this strategy may be a poor choice if all of the
following hold:

• There are many records pertaining to the Perryridge branch.

• There are many records pertaining to accounts with a balance of $1000.

• There are only a few records pertaining to both the Perryridge branch and
accounts with a balance of $1000.

If these conditions hold, we must scan a large number of pointers to produce a small
result. An index structure called a “bitmap index” greatly speeds up the intersection
operation used in the third strategy. Bitmap indices are outlined in Section 12.9.4.

12.9.2 Indices on Multiple Keys
An alternative strategy for this case is to create and use an index on a search key
(branch-name, balance)—that is, the search key consisting of the branch name concate-
nated with the account balance. The structure of the index is the same as that of any
other index, the only difference being that the search key is not a single attribute, but
rather is a list of attributes. The search key can be represented as a tuple of values,
of the form (a1, . . . , an), where the indexed attributes are A1, . . . , An. The ordering
of search-key values is the lexicographic ordering. For example, for the case of two
attribute search keys, (a1, a2) < (b1, b2) if either a1 < b1 or a1 = b1 and a2 < b2.
Lexicographic ordering is basically the same as alphabetic ordering of words.

The use of an ordered-index structure on multiple attributes has a few short-
comings. As an illustration, consider the query

select loan-number
from account
where branch-name < “Perryridge” and balance = 1000

We can answer this query by using an ordered index on the search key (branch-name,
balance): For each value of branch-name that is less than “Perryridge” in alphabetic
order, the system locates records with a balance value of 1000. However, each record
is likely to be in a different disk block, because of the ordering of records in the file,
leading to many I/O operations.

The difference between this query and the previous one is that the condition on
branch-name is a comparison condition, rather than an equality condition.

To speed the processing of general multiple search-key queries (which can involve
one or more comparison operations), we can use several special structures. We shall
consider the grid file in Section 12.9.3. There is another structure, called the R-tree, that
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can be used for this purpose. The R-tree is an extension of the B+-tree to handle in-
dexing on multiple dimensions. Since the R-tree is used primarily with geographical
data types, we describe the structure in Chapter 23.

12.9.3 Grid Files
Figure 12.32 shows part of a grid file for the search keys branch-name and balance on
the account file. The two-dimensional array in the figure is called the grid array, and
the one-dimensional arrays are called linear scales. The grid file has a single grid array,
and one linear scale for each search-key attribute.

Search keys are mapped to cells in this way. Each cell in the grid array has a pointer
to a bucket that contains the search-key values and pointers to records. Only some
of the buckets and pointers from the cells are shown in the figure. To conserve space,
multiple elements of the array can point to the same bucket. The dotted boxes in the
figure indicate which cells point to the same bucket.

Suppose that we want to insert in the grid-file index a record whose search-key
value is (“Brighton”, 500000). To find the cell to which the key is mapped, we inde-
pendently locate the row and column to which the cell belongs.

We first use the linear scales on branch-name to locate the row of the cell to which
the search key maps. To do so, we search the array to find the least element that is
greater than “Brighton”. In this case, it is the first element, so the search key maps to
the row marked 0. If it were the ith element, the search key would map to row i − 1.
If the search key is greater than or equal to all elements in the linear scale, it maps to

4 Townsend
3 Perryridge
2 Mianus
1 Central

Linear scale for
branch-name

4

3

2

1

0

Grid Array 0 1 2 3 4 5 6

1K 2K 5K 10K 50K 100K Buckets
1 2 3 4 5 6

Bi

Bj

Linear scale for balance

Figure 12.32 Grid file on keys branch-name and balance of the account file.
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the final row. Next, we use the linear scale on balance to find out similarly to which
column the search key maps. In this case, the balance 500000 maps to column 6.

Thus, the search-key value (“Brighton”, 500000) maps to the cell in row 0, column
6. Similarly, (“Downtown”, 60000) would map to the cell in row 1 column 5. Both cells
point to the same bucket (as indicated by the dotted box), so, in both cases, the system
stores the search-key values and the pointer to the record in the bucket labeled Bj in
the figure.

To perform a lookup to answer our example query, with the search condition of

branch-name < “Perryridge” and balance = 1000

we find all rows that can contain branch names less than “Perryridge”, using the
linear scale on branch-name. In this case, these rows are 0, 1, and 2. Rows 3 and beyond
contain branch names greater than or equal to “Perryridge”. Similarly, we find that
only column 1 can contain a balance value of 1000. In this case, only column 1 satisfies
this condition. Thus, only the cells in column 1, rows 0, 1, and 2, can contain entries
that satisfy the search condition.

We therefore look up all entries in the buckets pointed to from these three cells. In
this case, there are only two buckets, since two of the cells point to the same bucket,
as indicated by the dotted boxes in the figure. The buckets may contain some search
keys that do not satisfy the required condition, so each search key in the buckets must
be tested again to see whether it satisfies the search condition. We have to examine
only a small number of buckets, however, to answer this query.

We must choose the linear scales in such a way that the records are uniformly dis-
tributed across the cells. When a bucket—call it A—becomes full and an entry has to
be inserted in it, the system allocates an extra bucket, B. If more than one cell points
to A, the system changes the cell pointers so that some point to A and others to B.
The entries in bucket A and the new entry are then redistributed between A and B ac-
cording to the cells to which they map. If only one cell points to bucket A, B becomes
an overflow bucket for A. To improve performance in such a situation, we must re-
organize the grid file, with an expanded grid array and expanded linear scales. The
process is much like the expansion of the bucket address table in extensible hashing,
and is left for you to do as an exercise.

It is conceptually simple to extend the grid-file approach to any number of search
keys. If we want our structure to be used for queries on n keys, we construct an n-
dimensional grid array with n linear scales.

The grid structure is suitable also for queries involving one search key. Consider
this query:

select *
from account
where branch-name = “Perryridge”

The linear scale on branch-name tells us that only cells in row 3 can satisfy this condi-
tion. Since there is no condition on balance, we examine all buckets pointed to by cells
in row 3 to find entries pertaining to Perryridge. Thus, we can use a grid-file index on
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two search keys to answer queries on either search key by itself, as well as to answer
queries on both search keys. Thus, a single grid-file index can serve the role of three
separate indices. If each index were maintained separately, the three together would
occupy more space, and the cost of updating them would be high.

Grid files provide a significant decrease in processing time for multiple-key queries.
However, they impose a space overhead (the grid directory can become large), as
well as a performance overhead on record insertion and deletion. Further, it is hard
to choose partitioning ranges for the keys such that the distribution of records is uni-
form. If insertions to the file are frequent, reorganization will have to be carried out
periodically, and that can have a high cost.

12.9.4 Bitmap Indices
Bitmap indices are a specialized type of index designed for easy querying on multiple
keys, although each bitmap index is built on a single key.

For bitmap indices to be used, records in a relation must be numbered sequen-
tially, starting from, say, 0. Given a number n, it must be easy to retrieve the record
numbered n. This is particularly easy to achieve if records are fixed in size, and allo-
cated on consecutive blocks of a file. The record number can then be translated easily
into a block number and a number that identifies the record within the block.

Consider a relation r, with an attribute A that can take on only one of a small num-
ber (for example, 2 to 20) values. For instance, a relation customer-info may have an
attribute gender, which can take only values m (male) or f (female). Another example
would be an attribute income-level, where income has been broken up into 5 levels:
L1: $0 − 9999, L2: $10, 000 − 19, 999, L3: 20, 000 − 39, 999, L4: 40, 000 − 74, 999, and
L5: 75, 000 −∞. Here, the raw data can take on many values, but a data analyst has
split the values into a small number of ranges to simplify analysis of the data.

12.9.4.1 Bitmap Index Structure
A bitmap is simply an array of bits. In its simplest form, a bitmap index on the
attribute A of relation r consists of one bitmap for each value that A can take. Each
bitmap has as many bits as the number of records in the relation. The ith bit of the
bitmap for value vj is set to 1 if the record numbered i has the value vj for attribute
A. All other bits of the bitmap are set to 0.

In our example, there is one bitmap for the value m and one for f. The ith bit of
the bitmap for m is set to 1 if the gender value of the record numbered i is m. All
other bits of the bitmap for m are set to 0. Similarly, the bitmap for f has the value
1 for bits corresponding to records with the value f for the gender attribute; all other
bits have the value 0. Figure 12.33 shows an example of bitmap indices on a relation
customer-info.

We now consider when bitmaps are useful. The simplest way of retrieving all
records with value m (or value f) would be to simply read all records of the relation
and select those records with value m (or f, respectively). The bitmap index doesn’t
really help to speed up such a selection.
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Bitmaps for 
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Figure 12.33 Bitmap indices on relation customer-info.

In fact, bitmap indices are useful for selections mainly when there are selections
on multiple keys. Suppose we create a bitmap index on attribute income-level, which
we described earlier, in addition to the bitmap index on gender.

Consider now a query that selects women with income in the range 10, 000 −
19, 999. This query can be expressed as σgender=f∧income-level=L2(r). To evaluate this
selection, we fetch the bitmaps for gender value f and the bitmap for income-level value
L2, and perform an intersection (logical-and) of the two bitmaps. In other words, we
compute a new bitmap where bit i has value 1 if the ith bit of the two bitmaps are
both 1, and has a value 0 otherwise. In the example in Figure 12.33, the intersection
of the bitmap for gender = f (01101) and the bitmap for income-level = L1 (10100)
gives the bitmap 00100.

Since the first attribute can take 2 values, and the second can take 5 values, we
would expect only about 1 in 10 records, on an average, to satisfy a combined condi-
tion on the two attributes. If there are further conditions, the fraction of records sat-
isfying all the conditions is likely to be quite small. The system can then compute the
query result by finding all bits with value 1 in the intersection bitmap, and retrieving
the corresponding records. If the fraction is large, scanning the entire relation would
remain the cheaper alternative.

Another important use of bitmaps is to count the number of tuples satisfying a
given selection. Such queries are important for data analysis. For instance, if we wish
to find out how many women have an income level L2, we compute the intersection
of the two bitmaps, and then count the number of bits that are 1 in the intersection
bitmap. We can thus get the desired result from the bitmap index, without even ac-
cessing the relation.

Bitmap indices are generally quite small compared to the actual relation size. Rec-
ords are typically at least tens of bytes to hundreds of bytes long, whereas a single
bit represents the record in a bitmap. Thus the space occupied by a single bitmap
is usually less than 1 percent of the space occupied by the relation. For instance, if
the record size for a given relation is 100 bytes, then the space occupied by a single
bitmap would be 1

8 of 1 percent of the space occupied by the relation. If an attribute A
of the relation can take on only one of 8 values, a bitmap index on attribute A would
consist of 8 bitmaps, which together occupy only 1 percent of the size of the relation.
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Deletion of records creates gaps in the sequence of records, since shifting records
(or record numbers) to fill gaps would be extremely expensive. To recognize deleted
records, we can store an existence bitmap, in which bit i is 0 if record i does not exist
and 1 otherwise. We will see the need for existence bitmaps in Section 12.9.4.2. Inser-
tion of records should not affect the sequence numbering of other records. Therefore,
we can do insertion either by appending records to the end of the file or by replacing
deleted records.

12.9.4.2 Efficient Implementation of Bitmap Operations
We can compute the intersection of two bitmaps easily by using a for loop: the ith
iteration of the loop computes the and of the ith bits of the two bitmaps. We can
speed up computation of the intersection greatly by using bit-wise and instructions
supported by most computer instruction sets. A word usually consists of 32 or 64
bits, depending on the architecture of the computer. A bit-wise and instruction takes
two words as input and outputs a word where each bit is the logical and of the bits in
corresponding positions of the input words. What is important to note is that a single
bit-wise and instruction can compute the intersection of 32 or 64 bits at once.

If a relation had 1 million records, each bitmap would contain 1 million bits, or
equivalently 128 Kbytes. Only 31,250 instructions are needed to compute the intersec-
tion of two bitmaps for our relation, assuming a 32-bit word length. Thus, computing
bitmap intersections is an extremely fast operation.

Just like bitmap intersection is useful for computing the and of two conditions,
bitmap union is useful for computing the or of two conditions. The procedure for
bitmap union is exactly the same as for intersection, except we use bit-wise or in-
structions instead of bit-wise and instructions.

The complement operation can be used to compute a predicate involving the nega-
tion of a condition, such as not (income-level = L1). The complement of a bitmap is
generated by complementing every bit of the bitmap (the complement of 1 is 0 and
the complement of 0 is 1). It may appear that not (income-level = L1) can be imple-
mented by just computing the complement of the bitmap for income level L1. If some
records have been deleted, however, just computing the complement of a bitmap is
not sufficient. Bits corresponding to such records would be 0 in the original bitmap,
but would become 1 in the complement, although the records don’t exist. A similar
problem also arises when the value of an attribute is null. For instance, if the value
of income-level is null, the bit would be 0 in the original bitmap for value L1, and 1 in
the complement bitmap.

To make sure that the bits corresponding to deleted records are set to 0 in the result,
the complement bitmap must be intersected with the existence bitmap to turn off the
bits for deleted records. Similarly, to handle null values, the complement bitmap must
also be intersected with the complement of the bitmap for the value null.1

Counting the number of bits that are 1 in a bitmap can be done fast by a clever
technique. We can maintain an array with 256 entries, where the ith entry stores the

1. Handling predicates such as is unknown would cause further complications, which would in general
require use of an extra bitmap to to track which operation results are unknown.
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number of bits that are 1 in the binary representation of i. Set the total count initially
to 0. We take each byte of the bitmap, use it to index into this array, and add the
stored count to the total count. The number of addition operations would be 1

8 of the
number of tuples, and thus the counting process is very efficient. A large array (using
216 = 65536 entries), indexed by pairs of bytes, would give even higher speedup, but
at a higher storage cost.

12.9.4.3 Bitmaps and B+-Trees
Bitmaps can be combined with regular B+-tree indices for relations where a few at-
tribute values are extremely common, and other values also occur, but much less
frequently. In a B+-tree index leaf, for each value we would normally maintain a list
of all records with that value for the indexed attribute. Each element of the list would
be a record identifier, consisting of at least 32 bits, and usually more. For a value that
occurs in many records, we store a bitmap instead of a list of records.

Suppose a particular value vi occurs in 1
16 of the records of a relation. Let N be

the number of records in the relation, and assume that a record has a 64-bit number
identifying it. The bitmap needs only 1 bit per record, or N bits in total. In contrast,
the list representation requires 64 bits per record where the value occurs, or 64 ∗
N/16 = 4N bits. Thus, a bitmap is preferable for representing the list of records for
value vi. In our example (with a 64-bit record identifier), if fewer than 1 in 64 records
have a particular value, the list representation is preferable for identifying records
with that value, since it uses fewer bits than the bitmap representation. If more than
1 in 64 records have that value, the bitmap representation is preferable.

Thus, bitmaps can be used as a compressed storage mechanism at the leaf nodes
of B+-trees, for those values that occur very frequently.

12.10 Summary
• Many queries reference only a small proportion of the records in a file. To

reduce the overhead in searching for these records, we can construct indices
for the files that store the database.

• Index-sequential files are one of the oldest index schemes used in database
systems. To permit fast retrieval of records in search-key order, records are
stored sequentially, and out-of-order records are chained together. To allow
fast random access, we use an index structure.

• There are two types of indices that we can use: dense indices and sparse
indices. Dense indices contain entries for every search-key value, whereas
sparse indices contain entries only for some search-key values.

• If the sort order of a search key matches the sort order of a relation, an index
on the search key is called a primary index. The other indices are called sec-
ondary indices. Secondary indices improve the performance of queries that use
search keys other than the primary one. However, they impose an overhead
on modification of the database.
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• The primary disadvantage of the index-sequential file organization is that per-
formance degrades as the file grows. To overcome this deficiency, we can use
a B+-tree index.

• A B+-tree index takes the form of a balanced tree, in which every path from the
root of the tree to a leaf of the tree is of the same length. The height of a B+-
tree is proportional to the logarithm to the base N of the number of records
in the relation, where each nonleaf node stores N pointers; the value of N is
often around 50 or 100. B+-trees are much shorter than other balanced binary-
tree structures such as AVL trees, and therefore require fewer disk accesses to
locate records.

• Lookup on B+-trees is straightforward and efficient. Insertion and deletion,
however, are somewhat more complicated, but still efficient. The number of
operations required for lookup, insertion, and deletion on B+-trees is propor-
tional to the logarithm to the base N of the number of records in the relation,
where each nonleaf node stores N pointers.

• We can use B+-trees for indexing a file containing records, as well as to orga-
nize records into a file.

• B-tree indices are similar to B+-tree indices. The primary advantage of a B-tree
is that the B-tree eliminates the redundant storage of search-key values. The
major disadvantages are overall complexity and reduced fanout for a given
node size. System designers almost universally prefer B+-tree indices over B-
tree indices in practice.

• Sequential file organizations require an index structure to locate data. File or-
ganizations based on hashing, by contrast, allow us to find the address of a
data item directly by computing a function on the search-key value of the de-
sired record. Since we do not know at design time precisely which search-key
values will be stored in the file, a good hash function to choose is one that as-
signs search-key values to buckets such that the distribution is both uniform
and random.

• Static hashing uses hash functions in which the set of bucket addresses is fixed.
Such hash functions cannot easily accommodate databases that grow signifi-
cantly larger over time. There are several dynamic hashing techniques that allow
the hash function to be modified. One example is extendable hashing, which
copes with changes in database size by splitting and coalescing buckets as the
database grows and shrinks.

• We can also use hashing to create secondary indices; such indices are called
hash indices. For notational convenience, we assume hash file organizations
have an implicit hash index on the search key used for hashing.

• Ordered indices such as B+-trees and hash indices can be used for selections
based on equality conditions involving single attributes. When multiple
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attributes are involved in a selection condition, we can intersect record iden-
tifiers retrieved from multiple indices.

• Grid files provide a general means of indexing on multiple attributes.

• Bitmap indices provide a very compact representation for indexing attributes
with very few distinct values. Intersection operations are extremely fast on
bitmaps, making them ideal for supporting queries on multiple attributes.

Review Terms
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• Clustering index

• Secondary index

• Nonclustering index

• Index-sequential file

• Index record/entry

• Dense index

• Sparse index

• Multilevel index

• Sequential scan

• B+-Tree index

• Balanced tree

• B+-Tree file organization

• B-Tree index
• Static hashing
• Hash file organization
• Hash index
• Bucket
• Hash function
• Bucket overflow
• Skew
• Closed hashing
• Dynamic hashing
• Extendable hashing
• Multiple-key access
• Indices on multiple keys
• Grid files
• Bitmap index
• Bitmap operations
� Intersection
� Union
� Complement
� Existence bitmap

Exercises
12.1 When is it preferable to use a dense index rather than a sparse index? Explain

your answer.

12.2 Since indices speed query processing, why might they not be kept on several
search keys? List as many reasons as possible.

12.3 What is the difference between a primary index and a secondary index?

12.4 Is it possible in general to have two primary indices on the same relation for
different search keys? Explain your answer.
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12.5 Construct a B+-tree for the following set of key values:

(2, 3, 5, 7, 11, 17, 19, 23, 29, 31)

Assume that the tree is initially empty and values are added in ascending or-
der. Construct B+-trees for the cases where the number of pointers that will fit
in one node is as follows:

a. Four
b. Six
c. Eight

12.6 For each B+-tree of Exercise 12.5, show the steps involved in the following
queries:

a. Find records with a search-key value of 11.
b. Find records with a search-key value between 7 and 17, inclusive.

12.7 For each B+-tree of Exercise 12.5, show the form of the tree after each of the
following series of operations:

a. Insert 9.
b. Insert 10.
c. Insert 8.
d. Delete 23.
e. Delete 19.

12.8 Consider the modified redistribution scheme for B+-trees described in page
463. What is the expected height of the tree as a function of n?

12.9 Repeat Exercise 12.5 for a B-tree.

12.10 Explain the distinction between closed and open hashing. Discuss the relative
merits of each technique in database applications.

12.11 What are the causes of bucket overflow in a hash file organization? What can
be done to reduce the occurrence of bucket overflows?

12.12 Suppose that we are using extendable hashing on a file that contains records
with the following search-key values:

2, 3, 5, 7, 11, 17, 19, 23, 29, 31

Show the extendable hash structure for this file if the hash function is h(x) = x
mod 8 and buckets can hold three records.

12.13 Show how the extendable hash structure of Exercise 12.12 changes as the result
of each of the following steps:

a. Delete 11.
b. Delete 31.
c. Insert 1.
d. Insert 15.
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12.14 Give pseudocode for deletion of entries from an extendable hash structure,
including details of when and how to coalesce buckets. Do not bother about
reducing the size of the bucket address table.

12.15 Suggest an efficient way to test if the bucket address table in extendable hash-
ing can be reduced in size, by storing an extra count with the bucket address
table. Give details of how the count should be maintained when buckets are
split, coalesced or deleted.

(Note: Reducing the size of the bucket address table is an expensive oper-
ation, and subsequent inserts may cause the table to grow again. Therefore, it
is best not to reduce the size as soon as it is possible to do so, but instead do
it only if the number of index entries becomes small compared to the bucket
address table size.)

12.16 Why is a hash structure not the best choice for a search key on which range
queries are likely?

12.17 Consider a grid file in which we wish to avoid overflow buckets for perfor-
mance reasons. In cases where an overflow bucket would be needed, we in-
stead reorganize the grid file. Present an algorithm for such a reorganization.

12.18 Consider the account relation shown in Figure 12.25.
a. Construct a bitmap index on the attributes branch-name and balance, divid-

ing balance values into 4 ranges: below 250, 250 to below 500, 500 to below
750, and 750 and above.

b. Consider a query that requests all accounts in Downtown with a balance of
500 or more. Outline the steps in answering the query, and show the final
and intermediate bitmaps constructed to answer the query.

12.19 Show how to compute existence bitmaps from other bitmaps. Make sure that
your technique works even in the presence of null values, by using a bitmap
for the value null.

12.20 How does data encryption affect index schemes? In particular, how might it
affect schemes that attempt to store data in sorted order?

Bibliographical Notes
Discussions of the basic data structures in indexing and hashing can be found in
Cormen et al. [1990]. B-tree indices were first introduced in Bayer [1972] and Bayer
and McCreight [1972]. B+-trees are discussed in Comer [1979], Bayer and Unterauer
[1977] and Knuth [1973]. The bibliographic notes in Chapter 16 provides references to
research on allowing concurrent accesses and updates on B+-trees. Gray and Reuter
[1993] provide a good description of issues in the implementation of B+-trees.

Several alternative tree and treelike search structures have been proposed. Tries
are trees whose structure is based on the “digits” of keys (for example, a dictionary
thumb index, which has one entry for each letter). Such trees may not be balanced
in the sense that B+-trees are. Tries are discussed by Ramesh et al. [1989], Orenstein
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[1982], Litwin [1981] and Fredkin [1960]. Related work includes the digital B-trees of
Lomet [1981].

Knuth [1973] analyzes a large number of different hashing techniques. Several dy-
namic hashing schemes exist. Extendable hashing was introduced by Fagin et al.
[1979]. Linear hashing was introduced by Litwin [1978] and Litwin [1980]; Larson
[1982] presents a performance analysis of linear hashing. Ellis [1987] examined con-
currency with linear hashing. Larson [1988] presents a variant of linear hashing. An-
other scheme, called dynamic hashing, was proposed by Larson [1978]. An alterna-
tive given by Ramakrishna and Larson [1989] allows retrieval in a single disk access
at the price of a high overhead for a small fraction of database modifications. Par-
titioned hashing is an extension of hashing to multiple attributes, and is covered in
Rivest [1976], Burkhard [1976] and Burkhard [1979].

The grid file structure appears in Nievergelt et al. [1984] and Hinrichs [1985].
Bitmap indices, and variants called bit-sliced indices and projection indices are de-
scribed in O’Neil and Quass [1997]. They were first introduced in the IBM Model
204 file manager on the AS 400 platform. They provide very large speedups on cer-
tain types of queries, and are today implemented on most database systems. Recent
research on bitmap indices includes Wu and Buchmann [1998], Chan and Ioannidis
[1998], Chan and Ioannidis [1999], and Johnson [1999a].
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Query Processing

Query processing refers to the range of activities involved in extracting data from
a database. The activities include translation of queries in high-level database lan-
guages into expressions that can be used at the physical level of the file system, a
variety of query-optimizing transformations, and actual evaluation of queries.

13.1 Overview
The steps involved in processing a query appear in Figure 13.1. The basic steps are

1. Parsing and translation

2. Optimization

3. Evaluation

Before query processing can begin, the system must translate the query into a us-
able form. A language such as SQL is suitable for human use, but is ill-suited to be
the system’s internal representation of a query. A more useful internal representation
is one based on the extended relational algebra.

Thus, the first action the system must take in query processing is to translate a
given query into its internal form. This translation process is similar to the work
performed by the parser of a compiler. In generating the internal form of the query,
the parser checks the syntax of the user’s query, verifies that the relation names ap-
pearing in the query are names of the relations in the database, and so on. The sys-
tem constructs a parse-tree representation of the query, which it then translates into
a relational-algebra expression. If the query was expressed in terms of a view, the
translation phase also replaces all uses of the view by the relational-algebra expres-

493
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query
output

query parser and
translator

evaluation engine

relational algebra
expression

execution plan

optimizer

data statistics
about data

Figure 13.1 Steps in query processing.

sion that defines the view.1 Most compiler texts cover parsing (see the bibliographical
notes).

Given a query, there are generally a variety of methods for computing the answer.
For example, we have seen that, in SQL, a query could be expressed in several differ-
ent ways. Each SQL query can itself be translated into a relational-algebra expression
in one of several ways. Furthermore, the relational-algebra representation of a query
specifies only partially how to evaluate a query; there are usually several ways to
evaluate relational-algebra expressions. As an illustration, consider the query

select balance
from account
where balance < 2500

This query can be translated into either of the following relational-algebra expres-
sions:

• σbalance<2500 (Πbalance (account))

• Πbalance (σbalance<2500 (account))

Further, we can execute each relational-algebra operation by one of several dif-
ferent algorithms. For example, to implement the preceding selection, we can search
every tuple in account to find tuples with balance less than 2500. If a B+-tree index is
available on the attribute balance, we can use the index instead to locate the tuples.

To specify fully how to evaluate a query, we need not only to provide the relational-
algebra expression, but also to annotate it with instructions specifying how to eval-

1. For materialized views, the expression defining the view has already been evaluated and stored. There-
fore, the stored relation can be used, instead of uses of the view being replaced by the expression defining
the view. Recursive views are handled differently, via a fixed-point procedure, as discussed in Section 5.2.6.
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Π balance

σ balance < 2500; use index 1

account

Figure 13.2 A query-evaluation plan.

uate each operation. Annotations may state the algorithm to be used for a specific
operation, or the particular index or indices to use. A relational-algebra operation
annotated with instructions on how to evaluate it is called an evaluation primitive.
A sequence of primitive operations that can be used to evaluate a query is a query-
execution plan or query-evaluation plan. Figure 13.2 illustrates an evaluation plan
for our example query, in which a particular index (denoted in the figure as “in-
dex 1”) is specified for the selection operation. The query-execution engine takes a
query-evaluation plan, executes that plan, and returns the answers to the query.

The different evaluation plans for a given query can have different costs. We do not
expect users to write their queries in a way that suggests the most efficient evaluation
plan. Rather, it is the responsibility of the system to construct a query-evaluation plan
that minimizes the cost of query evaluation. Chapter 14 describes query optimization
in detail.

Once the query plan is chosen, the query is evaluated with that plan, and the result
of the query is output.

The sequence of steps already described for processing a query is representa-
tive; not all databases exactly follow those steps. For instance, instead of using the
relational-algebra representation, several databases use an annotated parse-tree rep-
resentation based on the structure of the given SQL query. However, the concepts that
we describe here form the basis of query processing in databases.

In order to optimize a query, a query optimizer must know the cost of each oper-
ation. Although the exact cost is hard to compute, since it depends on many param-
eters such as actual memory available to the operation, it is possible to get a rough
estimate of execution cost for each operation.

Section 13.2 outlines how we measure the cost of a query. Sections 13.3 through
13.6 cover the evaluation of individual relational-algebra operations. Several opera-
tions may be grouped together into a pipeline, in which each of the operations starts
working on its input tuples even as they are being generated by another operation.
In Section 13.7, we examine how to coordinate the execution of multiple operations
in a query evaluation plan, in particular, how to use pipelined operations to avoid
writing intermediate results to disk.

13.2 Measures of Query Cost
The cost of query evaluation can be measured in terms of a number of different re-
sources, including disk accesses, CPU time to execute a query, and, in a distributed
or parallel database system, the cost of communication (which we discuss later, in
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Chapters 19 and 20). The response time for a query-evaluation plan (that is, the clock
time required to execute the plan), assuming no other activity is going on on the com-
puter, would account for all these costs, and could be used as a good measure of the
cost of the plan.

In large database systems, however, disk accesses (which we measure as the num-
ber of transfers of blocks from disk) are usually the most important cost, since disk ac-
cesses are slow compared to in-memory operations. Moreover, CPU speeds have been
improving much faster than have disk speeds. Thus, it is likely that the time spent in
disk activity will continue to dominate the total time to execute a query. Finally, esti-
mating the CPU time is relatively hard, compared to estimating the disk-access cost.
Therefore, most people consider the disk-access cost a reasonable measure of the cost
of a query-evaluation plan.

We use the number of block transfers from disk as a measure of the actual cost. To
simplify our computation of disk-access cost, we assume that all transfers of blocks
have the same cost. This assumption ignores the variance arising from rotational
latency (waiting for the desired data to spin under the read–write head) and seek
time (the time that it takes to move the head over the desired track or cylinder). To
get more precise numbers, we need to distinguish between sequential I/O, where
the blocks read are contiguous on disk, and random I/O, where the blocks are non-
contiguous, and an extra seek cost must be paid for each disk I/O operation. We also
need to distinguish between reads and writes of blocks, since it takes more time to
write a block to disk than to read a block from disk. A more accurate measure would
therefore estimate

1. The number of seek operations performed

2. The number of blocks read

3. The number of blocks written

and then add up these numbers after multiplying them by the average seek time,
average transfer time for reading a block, and average transfer time for writing a
block, respectively. Real-life query optimizers also take CPU costs into account when
computing the cost of an operation. For simplicity we ignore these details, and leave
it to you to work out more precise cost estimates for various operations.

The cost estimates we give ignore the cost of writing the final result of an operation
back to disk. These are taken into account separately where required. The costs of all
the algorithms that we consider depend on the size of the buffer in main memory.
In the best case, all data can be read into the buffers, and the disk does not need
to be accessed again. In the worst case, we assume that the buffer can hold only
a few blocks of data—approximately one block per relation. When presenting cost
estimates, we generally assume the worst case.

13.3 Selection Operation
In query processing, the file scan is the lowest-level operator to access data. File scans
are search algorithms that locate and retrieve records that fulfill a selection condition.
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In relational systems, a file scan allows an entire relation to be read in those cases
where the relation is stored in a single, dedicated file.

13.3.1 Basic Algorithms
Consider a selection operation on a relation whose tuples are stored together in one
file. Two scan algorithms to implement the selection operation are:

• A1 (linear search). In a linear search, the system scans each file block and tests
all records to see whether they satisfy the selection condition. For a selection
on a key attribute, the system can terminate the scan if the required record is
found, without looking at the other records of the relation.

The cost of linear search, in terms of number of I/O operations, is br, where
br denotes the number of blocks in the file. Selections on key attributes have
an average cost of br/2, but still have a worst-case cost of br.

Although it may be slower than other algorithms for implementing selec-
tion, the linear search algorithm can be applied to any file, regardless of the
ordering of the file, or the availability of indices, or the nature of the selection
operation. The other algorithms that we shall study are not applicable in all
cases, but when applicable they are generally faster than linear search.

• A2 (binary search). If the file is ordered on an attribute, and the selection con-
dition is an equality comparison on the attribute, we can use a binary search to
locate records that satisfy the selection. The system performs the binary search
on the blocks of the file.

The number of blocks that need to be examined to find a block containing
the required records is �log2(br)�, where br denotes the number of blocks in
the file. If the selection is on a nonkey attribute, more than one block may
contain required records, and the cost of reading the extra blocks has to be
added to the cost estimate. We can estimate this number by estimating the
size of the selection result (which we cover in Section 14.2), and dividing it by
the average number of records that are stored per block of the relation.

13.3.2 Selections Using Indices
Index structures are referred to as access paths, since they provide a path through
which data can be located and accessed. In Chapter 12, we pointed out that it is
efficient to read the records of a file in an order corresponding closely to physical
order. Recall that a primary index is an index that allows the records of a file to be read
in an order that corresponds to the physical order in the file. An index that is not a
primary index is called a secondary index.

Search algorithms that use an index are referred to as index scans. Ordered indices,
such as B+-trees, also permit access to tuples in a sorted order, which is useful for
implementing range queries. Although indices can provide fast, direct, and ordered
access, they impose the overhead of access to those blocks containing the index. We
use the selection predicate to guide us in the choice of the index to use in processing
the query. Search algorithms that use an index are:
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• A3 (primary index, equality on key). For an equality comparison on a key
attribute with a primary index, we can use the index to retrieve a single record
that satisfies the corresponding equality condition.

If a B+-tree is used, the cost of the operation, in terms of I/O operations, is
equal to the height of the tree plus one I/O to fetch the record.

• A4 (primary index, equality on nonkey). We can retrieve multiple records
by using a primary index when the selection condition specifies an equality
comparison on a nonkey attribute, A. The only difference from the previous
case is that multiple records may need to be fetched. However, the records
would be stored consecutively in the file since the file is sorted on the search
key.

The cost of the operation is proportional to the height of the tree, plus the
number of blocks containing records with the specified search key.

• A5 (secondary index, equality). Selections specifying an equality condition
can use a secondary index. This strategy can retrieve a single record if the
equality condition is on a key; multiple records may get retrieved if the index-
ing field is not a key.

In the first case, only one record is retrieved, and the cost is equal to the
height of the tree plus one I/O operation to fetch the record. In the second
case each record may be resident on a different block, which may result in one
I/O operation per retrieved record. The cost could become even worse than
that of linear search if a large number of records are retrieved.

If B+-tree file organizations are used to store relations, records may be moved
between blocks when leaf nodes are split or merged, and when records are redis-
tributed. If secondary indices store pointers to records’ physical location, the pointers
will have to be updated when records are moved. In some systems, such as Com-
paq’s Non-Stop SQL System, the secondary indices instead store the key value in
the B+-tree file organization. Accessing a record through a secondary index is then
even more expensive since a search has to be performed on the B+-tree used in the
file organization. The cost formulae described for secondary indices will have to be
modified appropriately if such indices are used.

13.3.3 Selections Involving Comparisons
Consider a selection of the form σA≤v(r). We can implement the selection either by
using a linear or binary search or by using indices in one of the following ways:

• A6 (primary index, comparison). A primary ordered index (for example, a
primary B+-tree index) can be used when the selection condition is a compar-
ison. For comparison conditions of the form A > v or A ≥ v, a primary index
on A can be used to direct the retrieval of tuples, as follows. For A ≥ v, we
look up the value v in the index to find the first tuple in the file that has a value
of A = v. A file scan starting from that tuple up to the end of the file returns
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all tuples that satisfy the condition. For A > v, the file scan starts with the first
tuple such that A > v.

For comparisons of the form A < v or A ≤ v, an index lookup is not re-
quired. For A < v, we use a simple file scan starting from the beginning of
the file, and continuing up to (but not including) the first tuple with attribute
A = v. The case of A ≤ v is similar, except that the scan continues up to (but
not including) the first tuple with attribute A > v. In either case, the index is
not useful.

• A7 (secondary index, comparison). We can use a secondary ordered index to
guide retrieval for comparison conditions involving <,≤,≥, or >. The lowest-
level index blocks are scanned, either from the smallest value up to v (for <
and ≤), or from v up to the maximum value (for > and ≥).

The secondary index provides pointers to the records, but to get the actual
records we have to fetch the records by using the pointers. This step may re-
quire an I/O operation for each record fetched, since consecutive records may
be on different disk blocks. If the number of retrieved records is large, using
the secondary index may be even more expensive than using linear search.
Therefore the secondary index should be used only if very few records are
selected.

13.3.4 Implementation of Complex Selections
So far, we have considered only simple selection conditions of the form A op B, where
op is an equality or comparison operation. We now consider more complex selection
predicates.

• Conjunction: A conjunctive selection is a selection of the form

σθ1∧θ2∧···∧θn
(r)

• Disjunction: A disjunctive selection is a selection of the form

σθ1∨θ2∨···∨θn
(r)

A disjunctive condition is satisfied by the union of all records satisfying the
individual, simple conditions θi.

• Negation: The result of a selection σ¬θ(r) is the set of tuples of r for which the
condition θ evaluates to false. In the absence of nulls, this set is simply the set
of tuples that are not in σθ(r).

We can implement a selection operation involving either a conjunction or a dis-
junction of simple conditions by using one of the following algorithms:

• A8 (conjunctive selection using one index). We first determine whether an
access path is available for an attribute in one of the simple conditions. If one
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is, one of the selection algorithms A2 through A7 can retrieve records satis-
fying that condition. We complete the operation by testing, in the memory
buffer, whether or not each retrieved record satisfies the remaining simple
conditions.

To reduce the cost, we choose a θi and one of algorithms A1 through A7 for
which the combination results in the least cost for σθi

(r). The cost of algorithm
A8 is given by the cost of the chosen algorithm.

• A9 (conjunctive selection using composite index). An appropriate compos-
ite index (that is, an index on multiple attributes) may be available for some
conjunctive selections. If the selection specifies an equality condition on two
or more attributes, and a composite index exists on these combined attribute
fields, then the index can be searched directly. The type of index determines
which of algorithms A3, A4, or A5 will be used.

• A10 (conjunctive selection by intersection of identifiers). Another alterna-
tive for implementing conjunctive selection operations involves the use of
record pointers or record identifiers. This algorithm requires indices with
record pointers, on the fields involved in the individual conditions. The algo-
rithm scans each index for pointers to tuples that satisfy an individual condi-
tion. The intersection of all the retrieved pointers is the set of pointers to tuples
that satisfy the conjunctive condition. The algorithm then uses the pointers to
retrieve the actual records. If indices are not available on all the individual
conditions, then the algorithm tests the retrieved records against the remain-
ing conditions.

The cost of algorithm A10 is the sum of the costs of the individual index
scans, plus the cost of retrieving the records in the intersection of the retrieved
lists of pointers. This cost can be reduced by sorting the list of pointers and
retrieving records in the sorted order. Thereby, (1) all pointers to records in a
block come together, hence all selected records in the block can be retrieved
using a single I/O operation, and (2) blocks are read in sorted order, minimiz-
ing disk arm movement. Section 13.4 describes sorting algorithms.

• A11 (disjunctive selection by union of identifiers). If access paths are avail-
able on all the conditions of a disjunctive selection, each index is scanned for
pointers to tuples that satisfy the individual condition. The union of all the
retrieved pointers yields the set of pointers to all tuples that satisfy the dis-
junctive condition. We then use the pointers to retrieve the actual records.

However, if even one of the conditions does not have an access path, we
will have to perform a linear scan of the relation to find tuples that satisfy the
condition. Therefore, if there is even one such condition in the disjunct, the
most efficient access method is a linear scan, with the disjunctive condition
tested on each tuple during the scan.

The implementation of selections with negation conditions is left to you as an ex-
ercise (Exercise 13.10).
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13.4 Sorting
Sorting of data plays an important role in database systems for two reasons. First,
SQL queries can specify that the output be sorted. Second, and equally important for
query processing, several of the relational operations, such as joins, can be imple-
mented efficiently if the input relations are first sorted. Thus, we discuss sorting here
before discussing the join operation in Section 13.5.

We can sort a relation by building an index on the sort key, and then using that
index to read the relation in sorted order. However, such a process orders the relation
only logically, through an index, rather than physically. Hence, the reading of tuples
in the sorted order may lead to a disk access for each record, which can be very
expensive, since the number of records can be much larger than the number of blocks.
For this reason, it may be desirable to order the records physically.

The problem of sorting has been studied extensively, both for relations that fit
entirely in main memory, and for relations that are bigger than memory. In the first
case, standard sorting techniques such as quick-sort can be used. Here, we discuss
how to handle the second case.

Sorting of relations that do not fit in memory is called external sorting. The most
commonly used technique for external sorting is the external sort–merge algorithm.
We describe the external sort–merge algorithm next. Let M denote the number of
page frames in the main-memory buffer (the number of disk blocks whose contents
can be buffered in main memory).

1. In the first stage, a number of sorted runs are created; each run is sorted, but
contains only some of the records of the relation.

i = 0;
repeat

read M blocks of the relation, or the rest of the relation,
whichever is smaller;

sort the in-memory part of the relation;
write the sorted data to run file Ri;
i = i + 1;

until the end of the relation

2. In the second stage, the runs are merged. Suppose, for now, that the total num-
ber of runs, N, is less than M, so that we can allocate one page frame to each
run and have space left to hold one page of output. The merge stage operates
as follows:

read one block of each of the N files Ri into a buffer page in memory;
repeat

choose the first tuple (in sort order) among all buffer pages;
write the tuple to the output, and delete it from the buffer page;
if the buffer page of any run Ri is empty and not end-of-file(Ri)

then read the next block of Ri into the buffer page;
until all buffer pages are empty
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The output of the merge stage is the sorted relation. The output file is buffered
to reduce the number of disk write operations. The preceding merge operation is a
generalization of the two-way merge used by the standard in-memory sort–merge
algorithm; it merges N runs, so it is called an N-way merge.

In general, if the relation is much larger than memory, there may be M or more
runs generated in the first stage, and it is not possible to allocate a page frame for each
run during the merge stage. In this case, the merge operation proceeds in multiple
passes. Since there is enough memory for M − 1 input buffer pages, each merge can
take M − 1 runs as input.

The initial pass functions in this way: It merges the first M − 1 runs (as described
in item 2 above) to get a single run for the next pass. Then, it merges the next M − 1
runs similarly, and so on, until it has processed all the initial runs. At this point, the
number of runs has been reduced by a factor of M −1. If this reduced number of runs
is still greater than or equal to M , another pass is made, with the runs created by the
first pass as input. Each pass reduces the number of runs by a factor of M − 1. The
passes repeat as many times as required, until the number of runs is less than M ; a
final pass then generates the sorted output.

Figure 13.3 illustrates the steps of the external sort–merge for an example relation.
For illustration purposes, we assume that only one tuple fits in a block (fr = 1), and
we assume that memory holds at most three page frames. During the merge stage,
two page frames are used for input and one for output.
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Figure 13.3 External sorting using sort–merge.
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We compute how many block transfers are required for the external sort merge
in this way: Let br denote the number of blocks containing records of relation r. The
first stage reads every block of the relation and writes them out again, giving a total
of 2br disk accesses. The initial number of runs is �br/M�. Since the number of runs
decreases by a factor of M − 1 in each merge pass, the total number of merge passes
required is �logM−1(br/M)�. Each of these passes reads every block of the relation
once and writes it out once, with two exceptions. First, the final pass can produce
the sorted output without writing its result to disk. Second, there may be runs that
are not read in or written out during a pass—for example, if there are M runs to
be merged in a pass, M − 1 are read in and merged, and one run is not accessed
during the pass. Ignoring the (relatively small) savings due to the latter effect, the
total number of disk accesses for external sorting of the relation is

br(2�logM−1(br/M)� + 1)

Applying this equation to the example in Figure 13.3, we get a total of 12∗(4+1) =
60 block transfers, as you can verify from the figure. Note that this value does not
include the cost of writing out the final result.

13.5 Join Operation
In this section, we study several algorithms for computing the join of relations, and
we analyze their respective costs.

We use the term equi-join to refer to a join of the form r �r.A=s.B s, where A and
B are attributes or sets of attributes of relations r and s respectively.

We use as a running example the expression

depositor � customer

We assume the following information about the two relations:

• Number of records of customer: ncustomer = 10, 000.

• Number of blocks of customer: bcustomer = 400.

• Number of records of depositor: ndepositor = 5000.

• Number of blocks of depositor: bdepositor = 100.

13.5.1 Nested-Loop Join
Figure 13.4 shows a simple algorithm to compute the theta join, r �θ s, of two rela-
tions r and s. This algorithm is called the nested-loop join algorithm, since it basi-
cally consists of a pair of nested for loops. Relation r is called the outer relation and
relation s the inner relation of the join, since the loop for r encloses the loop for s.
The algorithm uses the notation tr · ts, where tr and ts are tuples; tr · ts denotes the
tuple constructed by concatenating the attribute values of tuples tr and ts.

Like the linear file-scan algorithm for selection, the nested-loop join algorithm re-
quires no indices, and it can be used regardless of what the join condition is. Extend-
ing the algorithm to compute the natural join is straightforward, since the natural
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for each tuple tr in r do begin
for each tuple ts in s do begin

test pair (tr, ts) to see if they satisfy the join condition θ
if they do, add tr · ts to the result.

end
end

Figure 13.4 Nested-loop join.

join can be expressed as a theta join followed by elimination of repeated attributes by
a projection. The only change required is an extra step of deleting repeated attributes
from the tuple tr · ts, before adding it to the result.

The nested-loop join algorithm is expensive, since it examines every pair of tuples
in the two relations. Consider the cost of the nested-loop join algorithm. The number
of pairs of tuples to be considered is nr ∗ns, where nr denotes the number of tuples in
r, and ns denotes the number of tuples in s. For each record in r, we have to perform
a complete scan on s. In the worst case, the buffer can hold only one block of each
relation, and a total of nr ∗ bs + br block accesses would be required, where br and
bs denote the number of blocks containing tuples of r and s respectively. In the best
case, there is enough space for both relations to fit simultaneously in memory, so each
block would have to be read only once; hence, only br + bs block accesses would be
required.

If one of the relations fits entirely in main memory, it is beneficial to use that re-
lation as the inner relation, since the inner relation would then be read only once.
Therefore, if s is small enough to fit in main memory, our strategy requires only a
total br + bs accesses—the same cost as that for the case where both relations fit in
memory.

Now consider the natural join of depositor and customer. Assume for now that we
have no indices whatsoever on either relation, and that we are not willing to create
any index. We can use the nested loops to compute the join; assume that depositor
is the outer relation and customer is the inner relation in the join. We will have to
examine 5000 ∗ 10000 = 50 ∗ 106 pairs of tuples. In the worst case, the number of
block accesses is 5000 ∗ 400 + 100 = 2,000,100. In the best-case scenario, however, we
can read both relations only once, and perform the computation. This computation
requires at most 100+400 = 500 block accesses—a significant improvement over the
worst-case scenario. If we had used customer as the relation for the outer loop and
depositor for the inner loop, the worst-case cost of our final strategy would have been
lower: 10000 ∗ 100 + 400 = 1,000,400.

13.5.2 Block Nested-Loop Join
If the buffer is too small to hold either relation entirely in memory, we can still ob-
tain a major saving in block accesses if we process the relations on a per-block basis,
rather than on a per-tuple basis. Figure 13.5 shows block nested-loop join, which is
a variant of the nested-loop join where every block of the inner relation is paired with
every block of the outer relation. Within each pair of blocks, every tuple in one block
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for each block Br of r do begin
for each block Bs of s do begin

for each tuple tr in Br do begin
for each tuple ts in Bs do begin

test pair (tr, ts) to see if they satisfy the join condition
if they do, add tr · ts to the result.

end
end

end
end

Figure 13.5 Block nested-loop join.

is paired with every tuple in the other block, to generate all pairs of tuples. As before,
all pairs of tuples that satisfy the join condition are added to the result.

The primary difference in cost between the block nested-loop join and the basic
nested-loop join is that, in the worst case, each block in the inner relation s is read
only once for each block in the outer relation, instead of once for each tuple in the
outer relation. Thus, in the worst case, there will be a total of br ∗ bs + br block ac-
cesses, where br and bs denote the number of blocks containing records of r and s
respectively. Clearly, it is more efficient to use the smaller relation as the outer re-
lation, in case neither of the relations fits in memory. In the best case, there will be
br + bs block accesses.

Now return to our example of computing depositor � customer, using the block
nested-loop join algorithm. In the worst case we have to read each block of customer
once for each block of depositor. Thus, in the worst case, a total of 100 ∗ 400 + 100 =
40, 100 block accesses are required. This cost is a significant improvement over the
5000 ∗ 400 + 100 = 2, 000, 100 block accesses needed in the worst case for the basic
nested-loop join. The number of block accesses in the best case remains the same—
namely, 100 + 400 = 500.

The performance of the nested-loop and block nested-loop procedures can be fur-
ther improved:

• If the join attributes in a natural join or an equi-join form a key on the inner
relation, then for each outer relation tuple the inner loop can terminate as soon
as the first match is found.

• In the block nested-loop algorithm, instead of using disk blocks as the block-
ing unit for the outer relation, we can use the biggest size that can fit in mem-
ory, while leaving enough space for the buffers of the inner relation and the
output. In other words, if memory has M blocks, we read in M − 2 blocks
of the outer relation at a time, and when we read each block of the inner re-
lation we join it with all the M − 2 blocks of the outer relation. This change
reduces the number of scans of the inner relation from br to �br/(M − 2)�,
where br is the number of blocks of the outer relation. The total cost is then
�br/(M − 2)� ∗ bs + br.
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• We can scan the inner loop alternately forward and backward. This scanning
method orders the requests for disk blocks so that the data remaining in the
buffer from the previous scan can be reused, thus reducing the number of disk
accesses needed.

• If an index is available on the inner loop’s join attribute, we can replace file
scans with more efficient index lookups. Section 13.5.3 describes this optimiza-
tion.

13.5.3 Indexed Nested-Loop Join
In a nested-loop join (Figure 13.4), if an index is available on the inner loop’s join
attribute, index lookups can replace file scans. For each tuple tr in the outer relation
r, the index is used to look up tuples in s that will satisfy the join condition with
tuple tr.

This join method is called an indexed nested-loop join; it can be used with existing
indices, as well as with temporary indices created for the sole purpose of evaluating
the join.

Looking up tuples in s that will satisfy the join conditions with a given tuple tr is
essentially a selection on s. For example, consider depositor � customer. Suppose that
we have a depositor tuple with customer-name “John”. Then, the relevant tuples in s
are those that satisfy the selection “customer-name = John”.

The cost of an indexed nested-loop join can be computed as follows. For each tuple
in the outer relation r, a lookup is performed on the index for s, and the relevant
tuples are retrieved. In the worst case, there is space in the buffer for only one page
of r and one page of the index. Then, br disk accesses are needed to read relation
r, where br denotes the number of blocks containing records of r. For each tuple in
r, we perform an index lookup on s. Then, the cost of the join can be computed as
br +nr ∗ c, where nr is the number of records in relation r, and c is the cost of a single
selection on s using the join condition. We have seen in Section 13.3 how to estimate
the cost of a single selection algorithm (possibly using indices); that estimate gives us
the value of c.

The cost formula indicates that, if indices are available on both relations r and s, it
is generally most efficient to use the one with fewer tuples as the outer relation.

For example, consider an indexed nested-loop join of depositor � customer, with
depositor as the outer relation. Suppose also that customer has a primary B+-tree index
on the join attribute customer-name, which contains 20 entries on an average in each
index node. Since customer has 10,000 tuples, the height of the tree is 4, and one more
access is needed to find the actual data. Since ndepositor is 5000, the total cost is 100 +
5000 ∗ 5 = 25, 100 disk accesses. This cost is lower than the 40, 100 accesses needed
for a block nested-loop join.

13.5.4 Merge Join
The merge join algorithm (also called the sort–merge join algorithm) can be used
to compute natural joins and equi-joins. Let r(R) and s(S) be the relations whose
natural join is to be computed, and let R∩S denote their common attributes. Suppose
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pr := address of first tuple of r;
ps := address of first tuple of s;
while (ps �= null and pr �= null) do

begin
ts := tuple to which ps points;
Ss := {ts};
set ps to point to next tuple of s;
done := false;
while (not done and ps �= null) do

begin
ts

′ := tuple to which ps points;
if (ts′[JoinAttrs] = ts[JoinAttrs])

then begin
Ss := Ss ∪ {ts′};
set ps to point to next tuple of s;

end
else done := true;

end
tr := tuple to which pr points;
while (pr �= null and tr[JoinAttrs] < ts[JoinAttrs]) do

begin
set pr to point to next tuple of r;
tr := tuple to which pr points;

end
while (pr �= null and tr[JoinAttrs] = ts[JoinAttrs]) do

begin
for each ts in Ss do

begin
add ts � tr to result ;

end
set pr to point to next tuple of r;
tr := tuple to which pr points;

end
end.

Figure 13.6 Merge join.

that both relations are sorted on the attributes R∩S. Then, their join can be computed
by a process much like the merge stage in the merge–sort algorithm.

Figure 13.6 shows the merge join algorithm. In the algorithm, JoinAttrs refers to the
attributes in R ∩ S, and tr � ts, where tr and ts are tuples that have the same values
for JoinAttrs, denotes the concatenation of the attributes of the tuples, followed by
projecting out repeated attributes. The merge join algorithm associates one pointer
with each relation. These pointers point initially to the first tuple of the respective
relations. As the algorithm proceeds, the pointers move through the relation. A group
of tuples of one relation with the same value on the join attributes is read into Ss.
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The algorithm in Figure 13.6 requires that every set of tuples Ss fit in main memory;
we shall look at extensions of the algorithm to avoid this requirement later in this
section. Then, the corresponding tuples (if any) of the other relation are read in, and
are processed as they are read.

Figure 13.7 shows two relations that are sorted on their join attribute a1. It is in-
structive to go through the steps of the merge join algorithm on the relations shown
in the figure.

Since the relations are in sorted order, tuples with the same value on the join at-
tributes are in consecutive order. Thereby, each tuple in the sorted order needs to be
read only once, and, as a result, each block is also read only once. Since it makes only
a single pass through both files, the merge join method is efficient; the number of
block accesses is equal to the sum of the number of blocks in both files, br + bs.

If either of the input relations r and s is not sorted on the join attributes, they can be
sorted first, and then the merge join algorithm can be used. The merge join algorithm
can also be easily extended from natural joins to the more general case of equi-joins.

Suppose the merge join scheme is applied to our example of depositor � customer.
The join attribute here is customer-name. Suppose that the relations are already sorted
on the join attribute customer-name. In this case, the merge join takes a total of 400 +
100 = 500 block accesses. Suppose the relations are not sorted, and the memory size
is the worst case of three blocks. Sorting customer takes 400 ∗ (2�log2(400/3)� + 1), or
6800, block transfers, with 400 more transfers to write out the result. Similarly, sorting
depositor takes 100∗ (2�log2(100/3)�+1), or 1300, transfers, with 100 more transfers to
write it out. Thus, the total cost is 9100 block transfers if the relations are not sorted,
and the memory size is just 3 blocks.

With a memory size of 25 blocks, sorting the relation customer takes a total of just
400 ∗ (2�log24(400/25) + 1) = 1200 block transfers, while sorting depositor takes 300
block transfers. Adding the cost of writing out the sorted results and reading them
back gives a total cost of 2500 block transfers if the relations are not sorted and the
memory size is 25 blocks.

As mentioned earlier, the merge join algorithm of Figure 13.6 requires that the set
Ss of all tuples with the same value for the join attributes must fit in main memory.
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Figure 13.7 Sorted relations for merge join.
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This requirement can usually be met, even if the relation s is large. If it cannot be met,
a block nested-loop join must be performed between Ss and the tuples in r with the
same values for the join attributes. The overall cost of the merge join increases as a
result.

It is also possible to perform a variation of the merge join operation on unsorted tu-
ples, if secondary indices exist on both join attributes. The algorithm scans the records
through the indices, resulting in their being retrieved in sorted order. This variation
presents a significant drawback, however, since records may be scattered throughout
the file blocks. Hence, each tuple access could involve accessing a disk block, and
that is costly.

To avoid this cost, we can use a hybrid merge–join technique, which combines
indices with merge join. Suppose that one of the relations is sorted; the other is un-
sorted, but has a secondary B+-tree index on the join attributes. The hybrid merge–
join algorithm merges the sorted relation with the leaf entries of the secondary B+-
tree index. The result file contains tuples from the sorted relation and addresses for
tuples of the unsorted relation. The result file is then sorted on the addresses of tu-
ples of the unsorted relation, allowing efficient retrieval of the corresponding tuples,
in physical storage order, to complete the join. Extensions of the technique to handle
two unsorted relations are left as an exercise for you.

13.5.5 Hash Join
Like the merge join algorithm, the hash join algorithm can be used to implement
natural joins and equi-joins. In the hash join algorithm, a hash function h is used to
partition tuples of both relations. The basic idea is to partition the tuples of each of
the relations into sets that have the same hash value on the join attributes.

We assume that

• h is a hash function mapping JoinAttrs values to {0, 1, . . . , nh}, where JoinAttrs
denotes the common attributes of r and s used in the natural join.

• Hr0 , Hr1 , . . . , Hrnh
denote partitions of r tuples, each initially empty. Each tu-

ple tr ∈ r is put in partition Hri
, where i = h(tr[JoinAttrs]).

• Hs0 , Hs1 , ..., Hsnh
denote partitions of s tuples, each initially empty. Each tuple

ts ∈ s is put in partition Hsi
, where i = h(ts[JoinAttrs]).

The hash function h should have the “goodness” properties of randomness and uni-
formity that we discussed in Chapter 12. Figure 13.8 depicts the partitioning of the
relations.

The idea behind the hash join algorithm is this: Suppose that an r tuple and an
s tuple satisfy the join condition; then, they will have the same value for the join
attributes. If that value is hashed to some value i, the r tuple has to be in Hri

and the
s tuple in Hsi

. Therefore, r tuples in Hri
need only to be compared with s tuples in

Hsi
; they do not need to be compared with s tuples in any other partition.

For example, if d is a tuple in depositor, c a tuple in customer, and h a hash function
on the customer-name attributes of the tuples, then d and c must be tested only if
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Figure 13.8 Hash partitioning of relations.

h(c) = h(d). If h(c) �= h(d), then c and d must have different values for customer-name.
However, if h(c) = h(d), we must test c and d to see whether the values in their join
attributes are the same, since it is possible that c and d have different customer-names
that have the same hash value.

Figure 13.9 shows the details of the hash join algorithm to compute the natural
join of relations r and s. As in the merge join algorithm, tr � ts denotes the concate-
nation of the attributes of tuples tr and ts, followed by projecting out repeated at-
tributes. After the partitioning of the relations, the rest of the hash join code performs
a separate indexed nested-loop join on each of the partition pairs i, for i = 0, . . . , nh.
To do so, it first builds a hash index on each Hsi

, and then probes (that is, looks
up Hsi

) with tuples from Hri
. The relation s is the build input, and r is the probe

input.
The hash index on Hsi

is built in memory, so there is no need to access the disk to
retrieve the tuples. The hash function used to build this hash index is different from
the hash function h used earlier, but is still applied to only the join attributes. In the
course of the indexed nested-loop join, the system uses this hash index to retrieve
records that will match records in the probe input.

The build and probe phases require only a single pass through both the build
and probe inputs. It is straightforward to extend the hash join algorithm to compute
general equi-joins.

The value nh must be chosen to be large enough such that, for each i, the tuples
in the partition Hsi

of the build relation, along with the hash index on the partition,
will fit in memory. It is not necessary for the partitions of the probe relation to fit in
memory. Clearly, it is best to use the smaller input relation as the build relation. If the
size of the build relation is bs blocks, then, for each of the nh partitions to be of size
less than or equal to M , nh must be at least �bs/M�. More precisely stated, we have
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/* Partition s */
for each tuple ts in s do begin

i := h(ts[JoinAttrs]);
Hsi

:= Hsi
∪ {ts};

end
/* Partition r */
for each tuple tr in r do begin

i := h(tr[JoinAttrs]);
Hri

:= Hri
∪ {tr};

end
/* Perform join on each partition */
for i := 0 to nh do begin

read Hsi
and build an in-memory hash index on it

for each tuple tr in Hri
do begin

probe the hash index on Hsi
to locate all tuples ts

such that ts[JoinAttrs] = tr[JoinAttrs]
for each matching tuple ts in Hsi

do begin
add tr � ts to the result

end
end

end

Figure 13.9 Hash join.

to account for the extra space occupied by the hash index on the partition as well, so
nh should be correspondingly larger. For simplicity, we sometimes ignore the space
requirement of the hash index in our analysis.

13.5.5.1 Recursive Partitioning
If the value of nh is greater than or equal to the number of page frames of memory,
the relations cannot be partitioned in one pass, since there will not be enough buffer
pages. Instead, partitioning has to be done in repeated passes. In one pass, the input
can be split into at most as many partitions as there are page frames available for
use as output buffers. Each bucket generated by one pass is separately read in and
partitioned again in the next pass, to create smaller partitions. The hash function used
in a pass is, of course, different from the one used in the previous pass. The system
repeats this splitting of the input until each partition of the build input fits in memory.
Such partitioning is called recursive partitioning.

A relation does not need recursive partitioning if M > nh+1, or equivalently M >
(bs/M) + 1, which simplifies (approximately) to M >

√
bs. For example, consider

a memory size of 12 megabytes, divided into 4-kilobyte blocks; it would contain a
total of 3000 blocks. We can use a memory of this size to partition relations of size
9 million blocks, which is 36 gigabytes. Similarly, a relation of size 1 gigabyte requires√

250000 blocks, or about 2 megabytes, to avoid recursive partitioning.
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13.5.5.2 Handling of Overflows
Hash-table overflow occurs in partition i of the build relation s if the hash index on
Hsi

is larger than main memory. Hash-table overflow can occur if there are many
tuples in the build relation with the same values for the join attributes, or if the hash
function does not have the properties of randomness and uniformity. In either case,
some of the partitions will have more tuples than the average, whereas others will
have fewer; partitioning is then said to be skewed.

We can handle a small amount of skew by increasing the number of partitions so
that the expected size of each partition (including the hash index on the partition)
is somewhat less than the size of memory. The number of partitions is therefore in-
creased by a small value called the fudge factor, which is usually about 20 percent of
the number of hash partitions computed as described in Section 13.5.5.

Even if we are conservative on the sizes of the partitions, by using a fudge factor,
overflows can still occur. Hash-table overflows can be handled by either overflow reso-
lution or overflow avoidance. Overflow resolution is performed during the build phase,
if a hash-index overflow is detected. Overflow resolution proceeds in this way: If Hsi

,
for any i, is found to be too large, it is further partitioned into smaller partitions by
using a different hash function. Similarly, Hri

is also partitioned using the new hash
function, and only tuples in the matching partitions need to be joined.

In contrast, overflow avoidance performs the partitioning carefully, so that over-
flows never occur during the build phase. In overflow avoidance, the build relation s
is initially partitioned into many small partitions, and then some partitions are com-
bined in such a way that each combined partition fits in memory. The probe relation
r is partitioned in the same way as the combined partitions on s, but the sizes of Hri

do not matter.
If a large number of tuples in s have the same value for the join attributes, the res-

olution and avoidance techniques may fail on some partitions. In that case, instead of
creating an in-memory hash index and using a nested-loop join to join the partitions,
we can use other join techniques, such as block nested-loop join, on those partitions.

13.5.5.3 Cost of Hash Join
We now consider the cost of a hash join. Our analysis assumes that there is no hash-
table overflow. First, consider the case where recursive partitioning is not required.
The partitioning of the two relations r and s calls for a complete reading of both rela-
tions, and a subsequent writing back of them. This operation requires 2(br +bs) block
accesses, where br and bs denote the number of blocks containing records of relations
r and s respectively. The build and probe phases read each of the partitions once, call-
ing for a further br + bs accesses. The number of blocks occupied by partitions could
be slightly more than br + bs, as a result of partially filled blocks. Accessing such par-
tially filled blocks can add an overhead of at most 2nh for each of the relations, since
each of the nh partitions could have a partially filled block that has to be written and
read back. Thus, the cost estimate for a hash join is

3(br + bs) + 4nh
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The overhead 4nh is quite small compared to br + bs, and can be ignored.
Now consider the case where recursive partitioning is required. Each pass reduces

the size of each of the partitions by an expected factor of M − 1; and passes are
repeated until each partition is of size at most M blocks. The expected number of
passes required for partitioning s is therefore �logM−1(bs) − 1�. Since, in each pass,
every block of s is read in and written out, the total block transfers for partitioning of
s is 2bs�logM−1(bs)− 1�. The number of passes for partitioning of r is the same as the
number of passes for partitioning of s, therefore the cost estimate for the join is

2(br + bs)�logM−1(bs) − 1� + br + bs

Consider, for example, the join customer � depositor. With a memory size of 20
blocks, depositor can be partitioned into five partitions, each of size 20 blocks, which
size will fit into memory. Only one pass is required for the partitioning. The relation
customer is similarly partitioned into five partitions, each of size 80. Ignoring the cost
of writing partially filled blocks, the cost is 3(100 + 400) = 1500 block transfers.

The hash join can be improved if the main memory size is large. When the en-
tire build input can be kept in main memory, nh can be set to 0; then, the hash join
algorithm executes quickly, without partitioning the relations into temporary files,
regardless of the probe input’s size. The cost estimate goes down to br + bs.

13.5.5.4 Hybrid Hash–Join
The hybrid hash–join algorithm performs another optimization; it is useful when
memory sizes are relatively large, but not all of the build relation fits in memory. The
partitioning phase of the hash join algorithm needs one block of memory as a buffer
for each partition that is created, and one block of memory as an input buffer. Hence,
a total of nh + 1 blocks of memory are needed for the partitioning the two relations.
If memory is larger than nh + 1, we can use the rest of memory (M − nh − 1 blocks)
to buffer the first partition of the build input (that is, Hs0), so that it will not need
to be written out and read back in. Further, the hash function is designed in such a
way that the hash index on Hs0 fits in M − nh − 1 blocks, in order that, at the end of
partitioning of s, Hs0 is completely in memory and a hash index can be built on Hs0 .

When the system partitions r it again does not write tuples in Hr0 to disk; instead,
as it generates them, the system uses them to probe the memory-resident hash index
on Hs0 , and to generate output tuples of the join. After they are used for probing,
the tuples can be discarded, so the partition Hr0 does not occupy any memory space.
Thus, a write and a read access have been saved for each block of both Hr0 and Hs0 .
The system writes out tuples in the other partitions as usual, and joins them later.
The savings of hybrid hash–join can be significant if the build input is only slightly
bigger than memory.

If the size of the build relation is bs, nh is approximately equal to bs/M . Thus,
hybrid hash–join is most useful if M >> bs/M , or M >>

√
bs, where the notation

>> denotes much larger than. For example, suppose the block size is 4 kilobytes, and
the build relation size is 1 gigabyte. Then, the hybrid hash–join algorithm is use-
ful if the size of memory is significantly more than 2 megabytes; memory sizes of
100 megabytes or more are common on computers today.
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Consider the join customer � depositor again. With a memory size of 25 blocks,
depositor can be partitioned into five partitions, each of size 20 blocks, and the first
of the partitions of the build relation can be kept in memory. It occupies 20 blocks
of memory; one block is for input and one block each is for buffering the other four
partitions. The relation customer can be similarly partitioned into five partitions each
of size 80, the first of which the system uses right away for probing, instead of writing
it out and reading it back in. Ignoring the cost of writing partially filled blocks, the
cost is 3(80 + 320) + 20 + 80 = 1300 block transfers, instead of 1500 block transfers
without the hybrid hashing optimization.

13.5.6 Complex Joins
Nested-loop and block nested-loop joins can be used regardless of the join condi-
tions. The other join techniques are more efficient than the nested-loop join and its
variants, but can handle only simple join conditions, such as natural joins or equi-
joins. We can implement joins with complex join conditions, such as conjunctions
and disjunctions, by using the efficient join techniques, if we apply the techniques
developed in Section 13.3.4 for handling complex selections.

Consider the following join with a conjunctive condition:

r �θ1∧θ2∧···∧θn
s

One or more of the join techniques described earlier may be applicable for joins on
the individual conditions r �θ1 s, r �θ2 s, r �θ3 s, and so on. We can compute the
overall join by first computing the result of one of these simpler joins r �θi

s; each
pair of tuples in the intermediate result consists of one tuple from r and one from s.
The result of the complete join consists of those tuples in the intermediate result that
satisfy the remaining conditions

θ1 ∧ · · · ∧ θi−1 ∧ θi+1 ∧ · · · ∧ θn

These conditions can be tested as tuples in r �θi
s are being generated.

A join whose condition is disjunctive can be computed in this way: Consider

r �θ1∨θ2∨···∨θn
s

The join can be computed as the union of the records in individual joins r �θi
s:

(r �θ1 s) ∪ (r �θ2 s) ∪ · · · ∪ (r �θn
s)

Section 13.6 describes algorithms for computing the union of relations.

13.6 Other Operations
Other relational operations and extended relational operations—such as duplicate
elimination, projection, set operations, outer join, and aggregation—can be imple-
mented as outlined in Sections 13.6.1 through 13.6.5.
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13.6.1 Duplicate Elimination
We can implement duplicate elimination easily by sorting. Identical tuples will ap-
pear adjacent to each other during sorting, and all but one copy can be removed. With
external sort–merge, duplicates found while a run is being created can be removed
before the run is written to disk, thereby reducing the number of block transfers. The
remaining duplicates can be eliminated during merging, and the final sorted run will
have no duplicates. The worst-case cost estimate for duplicate elimination is the same
as the worst-case cost estimate for sorting of the relation.

We can also implement duplicate elimination by hashing, as in the hash join algo-
rithm. First, the relation is partitioned on the basis of a hash function on the whole
tuple. Then, each partition is read in, and an in-memory hash index is constructed.
While constructing the hash index, a tuple is inserted only if it is not already present.
Otherwise, the tuple is discarded. After all tuples in the partition have been pro-
cessed, the tuples in the hash index are written to the result. The cost estimate is the
same as that for the cost of processing (partitioning and reading each partition) of the
build relation in a hash join.

Because of the relatively high cost of duplicate elimination, SQL requires an explicit
request by the user to remove duplicates; otherwise, the duplicates are retained.

13.6.2 Projection
We can implement projection easily by performing projection on each tuple, which
gives a relation that could have duplicate records, and then removing duplicate rec-
ords. Duplicates can be eliminated by the methods described in Section 13.6.1. If the
attributes in the projection list include a key of the relation, no duplicates will ex-
ist; hence, duplicate elimination is not required. Generalized projection (which was
discussed in Section 3.3.1) can be implemented in the same way as projection.

13.6.3 Set Operations
We can implement the union, intersection, and set-difference operations by first sorting
both relations, and then scanning once through each of the sorted relations to produce
the result. In r∪ s, when a concurrent scan of both relations reveals the same tuple in
both files, only one of the tuples is retained. The result of r∩ s will contain only those
tuples that appear in both relations. We implement set difference, r − s, similarly, by
retaining tuples in r only if they are absent in s.

For all these operations, only one scan of the two input relations is required, so
the cost is br + bs. If the relations are not sorted initially, the cost of sorting has to be
included. Any sort order can be used in evaluation of set operations, provided that
both inputs have that same sort order.

Hashing provides another way to implement these set operations. The first step
in each case is to partition the two relations by the same hash function, and thereby
create the partitions Hr0 , Hr1 , . . . , Hrnh

and Hs0 , Hs1 , . . . , Hsnh
. Depending on the

operation, the system then takes these steps on each partition i = 0, 1 . . . , nh:
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• r ∪ s

1. Build an in-memory hash index on Hri
.

2. Add the tuples in Hsi
to the hash index only if they are not already present.

3. Add the tuples in the hash index to the result.

• r ∩ s

1. Build an in-memory hash index on Hri
.

2. For each tuple in Hsi
, probe the hash index, and output the tuple to the

result only if it is already present in the hash index.

• r − s

1. Build an in-memory hash index on Hri
.

2. For each tuple in Hsi
, probe the hash index, and, if the tuple is present in

the hash index, delete it from the hash index.
3. Add the tuples remaining in the hash index to the result.

13.6.4 Outer Join
Recall the outer-join operations described in Section 3.3.3. For example, the natural left
outer join customer � depositor contains the join of customer and depositor, and, in
addition, for each customer tuple t that has no matching tuple in depositor (that is,
where customer-name is not in depositor), the following tuple t1 is added to the result.
For all attributes in the schema of customer, tuple t1 has the same values as tuple t.
The remaining attributes (from the schema of depositor) of tuple t1 contain the value
null.

We can implement the outer-join operations by using one of two strategies:

1. Compute the corresponding join, and then add further tuples to the join re-
sult to get the outer-join result. Consider the left outer-join operation and two
relations: r(R) and s(S). To evaluate r �θ s, we first compute r �θ s, and
save that result as temporary relation q1. Next, we compute r−ΠR(q1), which
gives tuples in r that did not participate in the join. We can use any of the algo-
rithms for computing the joins, projection, and set difference described earlier
to compute the outer joins. We pad each of these tuples with null values for
attributes from s, and add it to q1 to get the result of the outer join.

The right outer-join operation r � θ s is equivalent to s �θ r, and can
therefore be implemented in a symmetric fashion to the left outer join. We
can implement the full outer-join operation r � θ s by computing the join
r � s, and then adding the extra tuples of both the left and right outer-join
operations, as before.

2. Modify the join algorithms. It is easy to extend the nested-loop join algorithms
to compute the left outer join: Tuples in the outer relation that do not match
any tuple in the inner relation are written to the output after being padded
with null values. However, it is hard to extend the nested-loop join to compute
the full outer join.
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Natural outer joins and outer joins with an equi-join condition can be com-
puted by extensions of the merge join and hash join algorithms. Merge join
can be extended to compute the full outer join as follows: When the merge
of the two relations is being done, tuples in either relation that did not match
any tuple in the other relation can be padded with nulls and written to the out-
put. Similarly, we can extend merge join to compute the left and right outer
joins by writing out nonmatching tuples (padded with nulls) from only one
of the relations. Since the relations are sorted, it is easy to detect whether or
not a tuple matches any tuples from the other relation. For example, when a
merge join of customer and depositor is done, the tuples are read in sorted or-
der of customer-name, and it is easy to check, for each tuple, whether there is a
matching tuple in the other.

The cost estimates for implementing outer joins using the merge join algo-
rithm are the same as are those for the corresponding join. The only difference
lies in size of the result, and therefore in the block transfers for writing it out,
which we did not count in our earlier cost estimates.

The extension of the hash join algorithm to compute outer joins is left for
you to do as an exercise (Exercise 13.11).

13.6.5 Aggregation
Recall the aggregation operator G, discussed in Section 3.3.2. For example, the oper-
ation

branch-nameGsum(balance)(account)

groups account tuples by branch, and computes the total balance of all the accounts
at each branch.

The aggregation operation can be implemented in the same way as duplicate elim-
ination. We use either sorting or hashing, just as we did for duplicate elimination,
but based on the grouping attributes (branch-name in the preceding example). How-
ever, instead of eliminating tuples with the same value for the grouping attribute, we
gather them into groups, and apply the aggregation operations on each group to get
the result.

The cost estimate for implementing the aggregation operation is the same as the
cost of duplicate elimination, for aggregate functions such as min, max, sum, count,
and avg.

Instead of gathering all the tuples in a group and then applying the aggregation
operations, we can implement the aggregation operations sum, min, max, count, and
avg on the fly as the groups are being constructed. For the case of sum, min, and
max, when two tuples in the same group are found, the system replaces them by
a single tuple containing the sum, min, or max, respectively, of the columns being
aggregated. For the count operation, it maintains a running count for each group for
which a tuple has been found. Finally, we implement the avg operation by computing
the sum and the count values on the fly, and finally dividing the sum by the count to
get the average.
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If all tuples of the result will fit in memory, both the sort-based and the hash-based
implementations do not need to write any tuples to disk. As the tuples are read in,
they can be inserted in a sorted tree structure or in a hash index. When we use on the
fly aggregation techniques, only one tuple needs to be stored for each of the groups.
Hence, the sorted tree structure or hash index will fit in memory, and the aggregation
can be processed with just br block transfers, instead of with the 3br transfers that
would be required otherwise.

13.7 Evaluation of Expressions
So far, we have studied how individual relational operations are carried out. Now
we consider how to evaluate an expression containing multiple operations. The ob-
vious way to evaluate an expression is simply to evaluate one operation at a time,
in an appropriate order. The result of each evaluation is materialized in a temporary
relation for subsequent use. A disadvantage to this approach is the need to construct
the temporary relations, which (unless they are small) must be written to disk. An
alternative approach is to evaluate several operations simultaneously in a pipeline,
with the results of one operation passed on to the next, without the need to store a
temporary relation.

In Sections 13.7.1 and 13.7.2, we consider both the materialization approach and
the pipelining approach. We shall see that the costs of these approaches can differ
substantially, but also that there are cases where only the materialization approach is
feasible.

13.7.1 Materialization
It is easiest to understand intuitively how to evaluate an expression by looking at a
pictorial representation of the expression in an operator tree. Consider the expression

Πcustomer-name (σbalance<2500 (account) � customer)

in Figure 13.10.

Π customer-name

σ balance < 2500

account

customer

Figure 13.10 Pictorial representation of an expression.
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If we apply the materialization approach, we start from the lowest-level operations
in the expression (at the bottom of the tree). In our example, there is only one such op-
eration; the selection operation on account. The inputs to the lowest-level operations
are relations in the database. We execute these operations by the algorithms that we
studied earlier, and we store the results in temporary relations. We can use these tem-
porary relations to execute the operations at the next level up in the tree, where the
inputs now are either temporary relations or relations stored in the database. In our
example, the inputs to the join are the customer relation and the temporary relation
created by the selection on account. The join can now be evaluated, creating another
temporary relation.

By repeating the process, we will eventually evaluate the operation at the root of
the tree, giving the final result of the expression. In our example, we get the final
result by executing the projection operation at the root of the tree, using as input the
temporary relation created by the join.

Evaluation as just described is called materialized evaluation, since the results of
each intermediate operation are created (materialized) and then are used for evalua-
tion of the next-level operations.

The cost of a materialized evaluation is not simply the sum of the costs of the oper-
ations involved. When we computed the cost estimates of algorithms, we ignored the
cost of writing the result of the operation to disk. To compute the cost of evaluating
an expression as done here, we have to add the costs of all the operations, as well
as the cost of writing the intermediate results to disk. We assume that the records
of the result accumulate in a buffer, and, when the buffer is full, they are written to
disk. The cost of writing out the result can be estimated as nr/fr, where nr is the
estimated number of tuples in the result relation r, and fr is the blocking factor of the
result relation, that is, the number of records of r that will fit in a block.

Double buffering (using two buffers, with one continuing execution of the al-
gorithm while the other is being written out) allows the algorithm to execute more
quickly by performing CPU activity in parallel with I/O activity.

13.7.2 Pipelining
We can improve query-evaluation efficiency by reducing the number of temporary
files that are produced. We achieve this reduction by combining several relational op-
erations into a pipeline of operations, in which the results of one operation are passed
along to the next operation in the pipeline. Evaluation as just described is called
pipelined evaluation. Combining operations into a pipeline eliminates the cost of
reading and writing temporary relations.

For example, consider the expression (Πa1,a2(r � s)). If materialization were ap-
plied, evaluation would involve creating a temporary relation to hold the result of the
join, and then reading back in the result to perform the projection. These operations
can be combined: When the join operation generates a tuple of its result, it passes that
tuple immediately to the project operation for processing. By combining the join and
the projection, we avoid creating the intermediate result, and instead create the final
result directly.
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13.7.2.1 Implementation of Pipelining
We can implement a pipeline by constructing a single, complex operation that com-
bines the operations that constitute the pipeline. Although this approach may be fea-
sible for various frequently occurring situations, it is desirable in general to reuse the
code for individual operations in the construction of a pipeline. Therefore, each op-
eration in the pipeline is modeled as a separate process or thread within the system,
which takes a stream of tuples from its pipelined inputs, and generates a stream of
tuples for its output. For each pair of adjacent operations in the pipeline, the system
creates a buffer to hold tuples being passed from one operation to the next.

In the example of Figure 13.10, all three operations can be placed in a pipeline,
which passes the results of the selection to the join as they are generated. In turn,
it passes the results of the join to the projection as they are generated. The memory
requirements are low, since results of an operation are not stored for long. However,
as a result of pipelining, the inputs to the operations are not available all at once for
processing.

Pipelines can be executed in either of two ways:

1. Demand driven

2. Producer driven

In a demand-driven pipeline, the system makes repeated requests for tuples from
the operation at the top of the pipeline. Each time that an operation receives a request
for tuples, it computes the next tuple (or tuples) to be returned, and then returns
that tuple. If the inputs of the operation are not pipelined, the next tuple(s) to be
returned can be computed from the input relations, while the system keeps track of
what has been returned so far. If it has some pipelined inputs, the operation also
makes requests for tuples from its pipelined inputs. Using the tuples received from
its pipelined inputs, the operation computes tuples for its output, and passes them
up to its parent.

In a producer-driven pipeline, operations do not wait for requests to produce
tuples, but instead generate the tuples eagerly. Each operation at the bottom of a
pipeline continually generates output tuples, and puts them in its output buffer, until
the buffer is full. An operation at any other level of a pipeline generates output tuples
when it gets input tuples from lower down in the pipeline, until its output buffer is
full. Once the operation uses a tuple from a pipelined input, it removes the tuple
from its input buffer. In either case, once the output buffer is full, the operation waits
until its parent operation removes tuples from the buffer, so that the buffer has space
for more tuples. At this point, the operation generates more tuples, until the buffer
is full again. The operation repeats this process until all the output tuples have been
generated.

It is necessary for the system to switch between operations only when an output
buffer is full, or an input buffer is empty and more input tuples are needed to gener-
ate any more output tuples. In a parallel-processing system, operations in a pipeline
may be run concurrently on distinct processors (see Chapter 20).

Using producer-driven pipelining can be thought of as pushing data up an oper-
ation tree from below, whereas using demand-driven pipelining can be thought of as
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pulling data up an operation tree from the top. Whereas tuples are generated eagerly
in producer-driven pipelining, they are generated lazily, on demand, in demand-
driven pipelining.

Each operation in a demand-driven pipeline can be implemented as an iterator,
which provides the following functions: open(), next(), and close(). After a call to
open(), each call to next() returns the next output tuple of the operation. The imple-
mentation of the operation in turn calls open() and next() on its inputs, to get its input
tuples when required. The function close() tells an iterator that no more tuples are
required. The iterator maintains the state of its execution in between calls, so that
successive next() requests receive successive result tuples.

For example, for an iterator implementing the select operation using linear search,
the open() operation starts a file scan, and the iterator’s state records the point to
which the file has been scanned. When the next() function is called, the file scan con-
tinues from after the previous point; when the next tuple satisfying the selection is
found by scanning the file, the tuple is returned after storing the point where it was
found in the iterator state. A merge–join iterator’s open() operation would open its
inputs, and if they are not already sorted, it would also sort the inputs. On calls to
next(), it would return the next pair of matching tuples. The state information would
consist of up to where each input had been scanned.

Details of the implementation of iterators are left for you to complete in Exer-
cise 13.12. Demand-driven pipelining is used more commonly than producer-driven
pipelining, because it is easier to implement.

13.7.2.2 Evaluation Algorithms for Pipelining
Consider a join operation whose left-hand–side input is pipelined. Since it is pipe-
lined, the input is not available all at once for processing by the join operation. This
unavailability limits the choice of join algorithm to be used. Merge join, for example,
cannot be used if the inputs are not sorted, since it is not possible to sort a relation
until all the tuples are available—thus, in effect, turning pipelining into materializa-
tion. However, indexed nested-loop join can be used: As tuples are received for the
left-hand side of the join, they can be used to index the right-hand–side relation, and
to generate tuples in the join result. This example illustrates that choices regarding
the algorithm used for an operation and choices regarding pipelining are not inde-
pendent.

The restrictions on the evaluation algorithms that are eligible for use are a limiting
factor for pipelining. As a result, despite the apparent advantages of pipelining, there
are cases where materialization achieves lower overall cost. Suppose that the join of
r and s is required, and input r is pipelined. If indexed nested-loop join is used to
support pipelining, one access to disk may be needed for every tuple in the pipelined
input relation. The cost of this technique is nr ∗ HTi, where HTi is the height of the
index on s. With materialization, the cost of writing out r would be br. With a join
technique such as hash join, it may be possible to perform the join with a cost of
about 3(br + bs). If nr is substantially more than 4br + 3bs, materialization would be
cheaper.
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doner := false;
dones := false;
r := ∅;
s := ∅;
result := ∅;
while not doner or not dones do

begin
if queue is empty, then wait until queue is not empty;
t := top entry in queue;
if t = Endr then doner := true

else if t = Ends then dones := true
else if t is from input r

then
begin

r := r ∪ {t};
result := result ∪ ({t} � s);

end
else /* t is from input s */

begin
s := s ∪ {t};
result := result ∪ (r � {t});

end
end

Figure 13.11 Pipelined join algorithm.

The effective use of pipelining requires the use of evaluation algorithms that can
generate output tuples even as tuples are received for the inputs to the operation. We
can distinguish between two cases:

1. Only one of the inputs to a join is pipelined.

2. Both inputs to the join are pipelined.

If only one of the inputs to a join is pipelined, indexed nested-loop join is a natural
choice. If the pipelined input tuples are sorted on the join attributes, and the join
condition is an equi-join, merge join can also be used. Hybrid hash–join can be used
too, with the pipelined input as the probe relation. However, tuples that are not in the
first partition will be output only after the entire pipelined input relation is received.
Hybrid hash–join is useful if the nonpipelined input fits entirely in memory, or if at
least most of that input fits in memory.

If both inputs are pipelined, the choice of join algorithms is more restricted. If both
inputs are sorted on the join attribute, and the join condition is an equi-join, merge
join can be used. Another alternative is the pipelined join technique, shown in Figure
13.11. The algorithm assumes that the input tuples for both input relations, r and s,
are pipelined. Tuples made available for both relations are queued for processing in a
single queue. Special queue entries, called Endr and Ends, which serve as end-of-file
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markers, are inserted in the queue after all tuples from r and s (respectively) have
been generated. For efficient evaluation, appropriate indices should be built on the
relations r and s. As tuples are added to r and s, the indices must be kept up to date.

13.8 Summary
• The first action that the system must perform on a query is to translate the

query into its internal form, which (for relational database systems) is usually
based on the relational algebra. In the process of generating the internal form
of the query, the parser checks the syntax of the user’s query, verifies that the
relation names appearing in the query are names of relations in the database,
and so on. If the query was expressed in terms of a view, the parser replaces all
references to the view name with the relational-algebra expression to compute
the view.

• Given a query, there are generally a variety of methods for computing the
answer. It is the responsibility of the query optimizer to transform the query
as entered by the user into an equivalent query that can be computed more
efficiently. Chapter 14 covers query optimization.

• We can process simple selection operations by performing a linear scan, by
doing a binary search, or by making use of indices. We can handle complex
selections by computing unions and intersections of the results of simple se-
lections.

• We can sort relations larger than memory by the external merge–sort algo-
rithm.

• Queries involving a natural join may be processed in several ways, depending
on the availability of indices and the form of physical storage for the relations.
� If the join result is almost as large as the Cartesian product of the two

relations, a block nested-loop join strategy may be advantageous.
� If indices are available, the indexed nested-loop join can be used.
� If the relations are sorted, a merge join may be desirable. It may be advan-

tageous to sort a relation prior to join computation (so as to allow use of
the merge join strategy).

� The hash join algorithm partitions the relations into several pieces, such
that each piece of one of the relations fits in memory. The partitioning is
carried out with a hash function on the join attributes, so that correspond-
ing pairs of partitions can be joined independently.

• Duplicate elimination, projection, set operations (union, intersection and dif-
ference), and aggregation can be done by sorting or by hashing.

• Outer join operations can be implemented by simple extensions of join algo-
rithms.

• Hashing and sorting are dual, in the sense that any operation such as du-
plicate elimination, projection, aggregation, join, and outer join that can be
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implemented by hashing can also be implemented by sorting, and vice versa;
that is, any operation that can be implemented by sorting can also be imple-
mented by hashing.

• An expression can be evaluated by means of materialization, where the sys-
tem computes the result of each subexpression and stores it on disk, and then
uses it to compute the result of the parent expression.

• Pipelining helps to avoid writing the results of many subexpressions to disk,
by using the results in the parent expression even as they are being generated.

Review Terms

• Query processing

• Evaluation primitive

• Query-execution plan

• Query-evaluation plan

• Query-execution engine

• Measures of query cost

• Sequential I/O

• Random I/O

• File scan

• Linear search

• Binary search

• Selections using indices

• Access paths

• Index scans

• Conjunctive selection

• Disjunctive selection

• Composite index

• Intersection of identifiers

• External sorting

• External sort–merge

• Runs

• N-way merge

• Equi-join

• Nested-loop join

• Block nested-loop join
• Indexed nested-loop join
• Merge join
• Sort–merge join
• Hybrid merge–join
• Hash join
� Build
� Probe
� Build input
� Probe input
� Recursive partitioning
� Hash-table overflow
� Skew
� Fudge factor
� Overflow resolution
� Overflow avoidance

• Hybrid hash–join
• Operator tree
• Materialized evaluation
• Double buffering
• Pipelined evaluation
� Demand-driven pipeline

(lazy, pulling)
� Producer-driven pipeline

(eager, pushing)
� Iterator

• Pipelined join
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Exercises
13.1 Why is it not desirable to force users to make an explicit choice of a query-

processing strategy? Are there cases in which it is desirable for users to be
aware of the costs of competing query-processing strategies? Explain your an-
swer.

13.2 Consider the following SQL query for our bank database:

select T.branch-name
from branch T, branch S
where T.assets > S.assets and S.branch-city = “Brooklyn”

Write an efficient relational-algebra expression that is equivalent to this query.
Justify your choice.

13.3 What are the advantages and disadvantages of hash indices relative to B+-tree
indices? How might the type of index available influence the choice of a query-
processing strategy?

13.4 Assume (for simplicity in this exercise) that only one tuple fits in a block and
memory holds at most 3 page frames. Show the runs created on each pass of
the sort-merge algorithm, when applied to sort the following tuples on the first
attribute: (kangaroo, 17), (wallaby, 21), (emu, 1), (wombat, 13), (platypus, 3),
(lion, 8), (warthog, 4), (zebra, 11), (meerkat, 6), (hyena, 9), (hornbill, 2), (baboon,
12).

13.5 Let relations r1(A, B, C) and r2(C, D, E) have the following properties: r1 has
20,000 tuples, r2 has 45,000 tuples, 25 tuples of r1 fit on one block, and 30 tuples
of r2 fit on one block. Estimate the number of block accesses required, using
each of the following join strategies for r1 � r2:

a. Nested-loop join
b. Block nested-loop join
c. Merge join
d. Hash join

13.6 Design a variant of the hybrid merge–join algorithm for the case where both
relations are not physically sorted, but both have a sorted secondary index on
the join attributes.

13.7 The indexed nested-loop join algorithm described in Section 13.5.3 can be inef-
ficient if the index is a secondary index, and there are multiple tuples with the
same value for the join attributes. Why is it inefficient? Describe a way, using
sorting, to reduce the cost of retrieving tuples of the inner relation. Under what
conditions would this algorithm be more efficient than hybrid merge–join?

13.8 Estimate the number of block accesses required by your solution to Exer-
cise 13.6 for r1 � r2, where r1 and r2 are as defined in Exercise 13.5.
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13.9 Let r and s be relations with no indices, and assume that the relations are not
sorted. Assuming infinite memory, what is the lowest cost way (in terms of I/O
operations) to compute r � s? What is the amount of memory required for this
algorithm?

13.10 Suppose that a B+-tree index on branch-city is available on relation branch, and
that no other index is available. List different ways to handle the following
selections that involve negation?

a. σ¬(branch-city<“Brooklyn”)(branch)
b. σ¬(branch-city=“Brooklyn”)(branch)
c. σ¬(branch-city<“Brooklyn” ∨ assets<5000)(branch)

13.11 The hash join algorithm as described in Section 13.5.5 computes the natural join
of two relations. Describe how to extend the hash join algorithm to compute
the natural left outer join, the natural right outer join and the natural full outer
join. (Hint: Keep extra information with each tuple in the hash index, to detect
whether any tuple in the probe relation matches the tuple in the hash index.)
Try out your algorithm on the customer and depositor relations.

13.12 Write pseudocode for an iterator that implements indexed nested-loop join,
where the outer relation is pipelined. Use the standard iterator functions in
your pseudocode. Show what state information the iterator must maintain be-
tween calls.

13.13 Design sorting based and hashing algorithms for computing the division op-
eration.

Bibliographical Notes
A query processor must parse statements in the query language, and must translate
them into an internal form. Parsing of query languages differs little from parsing of
traditional programming languages. Most compiler texts, such as Aho et al. [1986],
cover the main parsing techniques, and present optimization from a programming-
language point of view.

Knuth [1973] presents an excellent description of external sorting algorithms,
including an optimization that can create initial runs that are (on the average) twice
the size of memory. Based on performance studies conducted in the mid-1970s, data-
base systems of that period used only nested-loop join and merge join. These stud-
ies, which were related to the development of System R, determined that either the
nested-loop join or merge join nearly always provided the optimal join method (Blas-
gen and Eswaran [1976]); hence, these two were the only join algorithms imple-
mented in System R. The System R study, however, did not include an analysis of
hash join algorithms. Today, hash joins are considered to be highly efficient.

Hash join algorithms were initially developed for parallel database systems. Hash
join techniques are described in Kitsuregawa et al. [1983], and extensions including
hybrid hash join are described in Shapiro [1986]. Zeller and Gray [1990] and Davison
and Graefe [1994] describe hash join techniques that can adapt to the available mem-
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ory, which is important in systems where multiple queries may be running at the
same time. Graefe et al. [1998] describes the use of hash joins and hash teams, which
allow pipelining of hash-joins by using the same partitioning for all hash-joins in a
pipeline sequence, in the Microsoft SQL Server.

Graefe [1993] presents an excellent survey of query-evaluation techniques. An ear-
lier survey of query-processing techniques appears in Jarke and Koch [1984].

Query processing in main memory database is covered by DeWitt et al. [1984] and
Whang and Krishnamurthy [1990]. Kim [1982] and Kim [1984] describe join strategies
and the optimal use of available main memory.
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Query Optimization

Query optimization is the process of selecting the most efficient query-evaluation
plan from among the many strategies usually possible for processing a given query,
especially if the query is complex. We do not expect users to write their queries so
that they can be processed efficiently. Rather, we expect the system to construct a
query-evaluation plan that minimizes the cost of query evaluation. This is where
query optimization comes into play.

One aspect of optimization occurs at the relational-algebra level, where the system
attempts to find an expression that is equivalent to the given expression, but more
efficient to execute. Another aspect is selecting a detailed strategy for processing the
query, such as choosing the algorithm to use for executing an operation, choosing the
specific indices to use, and so on.

The difference in cost (in terms of evaluation time) between a good strategy and a
bad strategy is often substantial, and may be several orders of magnitude. Hence, it
is worthwhile for the system to spend a substantial amount of time on the selection
of a good strategy for processing a query, even if the query is executed only once.

14.1 Overview
Consider the relational-algebra expression for the query “Find the names of all cus-
tomers who have an account at any branch located in Brooklyn.”

Πcustomer-name (σbranch−city = “Brooklyn” (branch � (account � depositor)))

This expression constructs a large intermediate relation, branch � account � depositor.
However, we are interested in only a few tuples of this relation (those pertaining to
branches located in Brooklyn), and in only one of the six attributes of this relation.
Since we are concerned with only those tuples in the branch relation that pertain to
branches located in Brooklyn, we do not need to consider those tuples that do not

529
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Π customer-name

branch

depositor

σ branch-city=Brooklyn

accountdepositoraccount

σ branch-city=Brooklyn

(a) Initial expression tree (b) Transformed expression tree

branch

Π customer-name

Figure 14.1 Equivalent expressions.

have branch-city = “Brooklyn”. By reducing the number of tuples of the branch rela-
tion that we need to access, we reduce the size of the intermediate result. Our query
is now represented by the relational-algebra expression

Πcustomer-name ( (σbranch-city = “Brooklyn” (branch)) � (account � depositor))

which is equivalent to our original algebra expression, but which generates smaller
intermediate relations. Figure 14.1 depicts the initial and transformed expressions.

Given a relational-algebra expression, it is the job of the query optimizer to come
up with a query-evaluation plan that computes the same result as the given expres-
sion, and is the least costly way of generating the result (or, at least, is not much
costlier than the least costly way).

To choose among different query-evaluation plans, the optimizer has to estimate
the cost of each evaluation plan. Computing the precise cost of evaluation of a plan is
usually not possible without actually evaluating the plan. Instead, optimizers make
use of statistical information about the relations, such as relation sizes and index
depths, to make a good estimate of the cost of a plan. Disk access, which is slow
compared to memory access, usually dominates the cost of processing a query.

In Section 14.2 we describe how to estimate statistics of the results of each opera-
tion in a query plan. Using these statistics with the cost formulae in Chapter 13 allows
us to estimate the costs of individual operation. The individual costs are combined to
determine the estimated cost of evaluating a given relational-algebra expression, as
outlined earlier in Section 13.7.

To find the least-costly query-evaluation plan, the optimizer needs to generate al-
ternative plans that produce the same result as the given expression, and to choose
the least costly one. Generation of query-evaluation plans involves two steps: (1) gen-
erating expressions that are logically equivalent to the given expression and (2) an-
notating the resultant expressions in alternative ways to generate alternative query
evaluation plans. The two steps are interleaved in the query optimizer—some ex-
pressions are generated and annotated, then further expressions are generated and
annotated, and so on.
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To implement the first step, the query optimizer must generate expressions equiv-
alent to a given expression. It does so by means of equivalence rules that specify how
to transform an expression into a logically equivalent one. We describe these rules in
Section 14.3.1. In Section 14.4, we describe how to choose a query-evaluation plan.
We can choose one based on the estimated cost of the plans. Since the cost is an es-
timate, the selected plan is not necessarily the least costly plan; however, as long as
the estimates are good, the plan is likely to be the least costly one, or not much more
costly than it. Such optimization, called cost-based optimization, is described in Sec-
tion 14.4.2.

Materialized views help to speed up processing of certain queries. In Section 14.5,
we study how to “maintain” materialized views—that is, to keep them up-to-date—
and how to perform query optimization with materialized views.

14.2 Estimating Statistics of Expression Results
The cost of an operation depends on the size and other statistics of its inputs. Given
an expression such as a � (b � c) to estimate the cost of joining a with (b � c), we
need to have estimates of statistics such as the size of b � c.

In this section we first list some statistics about database relations that are stored in
database system catalogs, and then show how to use the statistics to estimate statistics
on the results of various relational operations.

One thing that will become clear later in this section is that the estimates are not
very accurate, since they are based on assumptions that may not hold exactly. A
query evaluation plan that has the lowest estimated execution cost may therefore
not actually have the lowest actual execution cost. However, real-world experience
has shown that even if estimates are not precise, the plans with the lowest estimated
costs usually have actual execution costs that are either the lowest actual execution
costs, or are close to the lowest actual execution costs.

14.2.1 Catalog Information
The DBMS catalog stores the following statistical information about database rela-
tions:

• nr, the number of tuples in the relation r.

• br, the number of blocks containing tuples of relation r.

• lr, the size of a tuple of relation r in bytes.

• fr, the blocking factor of relation r—that is, the number of tuples of relation r
that fit into one block.

• V (A, r), the number of distinct values that appear in the relation r for attribute
A. This value is the same as the size of ΠA(r). If A is a key for relation r, V (A, r)
is nr.
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The last statistic, V (A, r), can also be maintained for sets of attributes, if desired,
instead of just for individual attributes. Thus, given a set of attributes, A, V (A, r) is
the size of ΠA(r).

If we assume that the tuples of relation r are stored together physically in a file,
the following equation holds:

br =
⌈

nr

fr

⌉

Statistics about indices, such as the heights of B+-tree indices and number of leaf
pages in the indices, are also maintained in the catalog.

If we wish to maintain accurate statistics, then, every time a relation is modified,
we must also update the statistics. This update incurs a substantial amount of over-
head. Therefore, most systems do not update the statistics on every modification. In-
stead, they update the statistics during periods of light system load. As a result, the
statistics used for choosing a query-processing strategy may not be completely accu-
rate. However, if not too many updates occur in the intervals between the updates of
the statistics, the statistics will be sufficiently accurate to provide a good estimation
of the relative costs of the different plans.

The statistical information noted here is simplified. Real-world optimizers often
maintain further statistical information to improve the accuracy of their cost esti-
mates of evaluation plans. For instance, some databases store the distribution of val-
ues for each attribute as a histogram: in a histogram the values for the attribute are
divided into a number of ranges, and with each range the histogram associates the
number of tuples whose attribute value lies in that range. As an example of a his-
togram, the range of values for an attribute age of a relation person could be divided
into 0–9, 10–19, . . . , 90–99 (assuming a maximum age of 99). With each range we
store a count of the number of person tuples whose age values lie in that range. With-
out such histogram information, an optimizer would have to assume that the distri-
bution of values is uniform; that is, each range has the same count.

14.2.2 Selection Size Estimation
The size estimate of the result of a selection operation depends on the selection predi-
cate. We first consider a single equality predicate, then a single comparison predicate,
and finally combinations of predicates.

• σA = a(r): If we assume uniform distribution of values (that is, each value ap-
pears with equal probability), the selection result can be estimated to have
nr/V (A, r) tuples, assuming that the value a appears in attribute A of some
record of r. The assumption that the value a in the selection appears in some
record is generally true, and cost estimates often make it implicitly. However,
it is often not realistic to assume that each value appears with equal proba-
bility. The branch-name attribute in the account relation is an example where
the assumption is not valid. There is one tuple in the account relation for
each account. It is reasonable to expect that the large branches have more ac-
counts than smaller branches. Therefore, certain branch-name values appear
with greater probability than do others. Despite the fact that the uniform-
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distribution assumption is often not correct, it is a reasonable approximation
of reality in many cases, and it helps us to keep our presentation relatively
simple.

• σA≤v(r): Consider a selection of the form σA≤v(r). If the actual value used
in the comparison (v) is available at the time of cost estimation, a more ac-
curate estimate can be made. The lowest and highest values (min(A, r) and
max(A, r)) for the attribute can be stored in the catalog. Assuming that values
are uniformly distributed, we can estimate the number of records that will
satisfy the condition A ≤ v as 0 if v < min(A, r), as nr if v ≥ max(A, r), and

nr · v − min(A, r)
max(A, r) − min(A, r)

otherwise.
In some cases, such as when the query is part of a stored procedure, the

value v may not be available when the query is optimized. In such cases, we
will assume that approximately one-half the records will satisfy the compari-
son condition. That is, we assume the result has nr/2 tuples; the estimate may
be very inaccurate, but is the best we can do without any further information.

• Complex selections:
� Conjunction: A conjunctive selection is a selection of the form

σθ1∧θ2∧···∧θn
(r)

We can estimate the result size of such a selection: For each θi, we esti-
mate the size of the selection σθi

(r), denoted by si, as described previ-
ously. Thus, the probability that a tuple in the relation satisfies selection
condition θi is si/nr.

The preceding probability is called the selectivity of the selection σθi
(r).

Assuming that the conditions are independent of each other, the probabil-
ity that a tuple satisfies all the conditions is simply the product of all these
probabilities. Thus, we estimate the number of tuples in the full selection
as

nr ∗ s1 ∗ s2 ∗ · · · ∗ sn

nn
r

� Disjunction: A disjunctive selection is a selection of the form

σθ1∨θ2∨···∨θn
(r)

A disjunctive condition is satisfied by the union of all records satisfying
the individual, simple conditions θi.

As before, let si/nr denote the probability that a tuple satisfies condi-
tion θi. The probability that the tuple will satisfy the disjunction is then 1
minus the probability that it will satisfy none of the conditions:

1 − (1 − s1

nr
) ∗ (1 − s2

nr
) ∗ · · · ∗ (1 − sn

nr
)

Multiplying this value by nr gives us the estimated number of tuples that
satisfy the selection.
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� Negation: In the absence of nulls, the result of a selection σ¬θ(r) is simply
the tuples of r that are not in σθ(r). We already know how to estimate
the number of tuples in σθ(r). The number of tuples in σ¬θ(r) is therefore
estimated to be n(r) minus the estimated number of tuples in σθ(r).

We can account for nulls by estimating the number of tuples for which
the condition θ would evaluate to unknown, and subtracting that number
from the above estimate ignoring nulls. Estimating that number would
require extra statistics to be maintained in the catalog.

14.2.3 Join Size Estimation
In this section, we see how to estimate the size of the result of a join.

The Cartesian product r × s contains nr ∗ ns tuples. Each tuple of r × s occupies
lr + ls bytes, from which we can calculate the size of the Cartesian product.

Estimating the size of a natural join is somewhat more complicated than estimat-
ing the size of a selection or of a Cartesian product. Let r(R) and s(S) be relations.

• If R ∩ S = ∅—that is, the relations have no attribute in common—then r � s
is the same as r × s, and we can use our estimation technique for Cartesian
products.

• If R ∩ S is a key for R, then we know that a tuple of s will join with at most
one tuple from r. Therefore, the number of tuples in r � s is no greater than
the number of tuples in s. The case where R ∩ S is a key for S is symmetric
to the case just described. If R ∩ S forms a foreign key of S, referencing R, the
number of tuples in r � s is exactly the same as the number of tuples in s.

• The most difficult case is when R ∩ S is a key for neither R nor S. In this
case, we assume, as we did for selections, that each value appears with equal
probability. Consider a tuple t of r, and assume R ∩ S = {A}. We estimate
that tuple t produces

ns

V (A, s)
tuples in r � s, since this number is the average number of tuples in s with a
given value for the attributes A. Considering all the tuples in r, we estimate
that there are

nr ∗ ns

V (A, s)
tuples in r � s. Observe that, if we reverse the roles of r and s in the preceding
estimate, we obtain an estimate of

nr ∗ ns

V (A, r)

tuples in r � s. These two estimates differ if V (A, r) �= V (A, s). If this situation
occurs, there are likely to be dangling tuples that do not participate in the join.
Thus, the lower of the two estimates is probably the more accurate one.

The preceding estimate of join size may be too high if the V (A, r) values
for attribute A in r have few values in common with the V (A, s) values for
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attribute A in s. However, this situation is unlikely to happen in the real world,
since dangling tuples either do not exist, or constitute only a small fraction of
the tuples, in most real-world relations. More important, the preceding esti-
mate depends on the assumption that each value appears with equal proba-
bility. More sophisticated techniques for size estimation have to be used if this
assumption does not hold.

We can estimate the size of a theta join r �θ s by rewriting the join as σθ(r × s),
and using the size estimates for Cartesian products along with the size estimates for
selections, which we saw in Section 14.2.2.

To illustrate all these ways of estimating join sizes, consider the expression

depositor � customer

Assume the following catalog information about the two relations:

• ncustomer = 10000.

• fcustomer = 25, which implies that bcustomer = 10000/25 = 400.

• ndepositor = 5000.

• fdepositor = 50, which implies that bdepositor = 5000/50 = 100.

• V (customer-name, depositor) = 2500, which implies that, on average, each
customer has two accounts.

Also assume that customer-name in depositor is a foreign key on customer.
In our example of depositor � customer, customer-name in depositor is a foreign key

referencing customer; hence, the size of the result is exactly ndepositor , which is 5000.
Let us now compute the size estimates for depositor � customer without using infor-

mation about foreign keys. Since V (customer-name, depositor) = 2500 and V (customer-
name, customer) = 10000, the two estimates we get are 5000 ∗ 10000/2500 = 20, 000
and 5000 ∗ 10000/10000 = 5000, and we choose the lower one. In this case, the lower
of these estimates is the same as that which we computed earlier from information
about foreign keys.

14.2.4 Size Estimation for Other Operations
We outline below how to estimate the sizes of the results of other relational algebra
operations.

Projection: The estimated size (number of records or number of tuples) of a projec-
tion of the form ΠA(r) is V (A, r), since projection eliminates duplicates.

Aggregation: The size of AGF (r) is simply V (A, r), since there is one tuple in AGF (r)
for each distinct value of A.

Set operations: If the two inputs to a set operation are selections on the same rela-
tion, we can rewrite the set operation as disjunctions, conjunctions, or nega-
tions. For example, σθ1(r) ∪ σθ2(r) can be rewritten as σθ1∨θ2(r). Similarly, we
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can rewrite intersections as conjunctions, and we can rewrite set difference by
using negation, so long as the two relations participating in the set operations
are selections on the same relation. We can then use the estimates for selections
involving conjunctions, disjunctions, and negation in Section 14.2.2.

If the inputs are not selections on the same relation, we estimate the sizes
this way: The estimated size of r ∪ s is the sum of the sizes of r and s. The
estimated size of r ∩ s is the minimum of the sizes of r and s. The estimated
size of r − s is the same size as r. All three estimates may be inaccurate, but
provide upper bounds on the sizes.

Outer join: The estimated size of r � s is the size of r � s plus the size of r; that of
r � s is symmetric, while that of r � s is the size of r � s plus the sizes of
r and s. All three estimates may be inaccurate, but provide upper bounds on
the sizes.

14.2.5 Estimation of Number of Distinct Values
For selections, the number of distinct values of an attribute (or set of attributes) A in
the result of a selection, V (A, σθ(r)), can be estimated in these ways:

• If the selection condition θ forces A to take on a specified value (e.g., A = 3),
V (A, σθ(r)) = 1.

• If θ forces A to take on one of a specified set of values (e.g., (A = 1 ∨ A =
3 ∨ A = 4)), then V (A, σθ(r)) is set to the number of specified values.

• If the selection condition θ is of the form A op v, where op is a comparison
operator, V (A, σθ(r)) is estimated to be V (A, r) ∗ s, where s is the selectivity
of the selection.

• In all other cases of selections, we assume that the distribution of A values
is independent of the distribution of the values on which selection conditions
are specified, and use an approximate estimate of min(V (A, r), nσθ(r)). A more
accurate estimate can be derived for this case using probability theory, but the
above approximation works fairly well.

For joins, the number of distinct values of an attribute (or set of attributes) A in the
result of a join, V (A, r � s), can be estimated in these ways:

• If all attributes in A are from r, V (A, r � s) is estimated as min(V (A, r), nr�s),
and similarly if all attributes in A are from s, V (A, r � s) is estimated to be
min(V (A, s), nr�s).

• If A contains attributes A1 from r and A2 from s, then V (A, r � s) is estimated
as

min(V (A1, r) ∗ V (A2 − A1, s), V (A1 − A2, r) ∗ V (A2, s), nr�s)

Note that some attributes may be in A1 as well as in A2, and A1 − A2 and
A2−A1 denote, respectively, attributes in A that are only from r and attributes
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in A that are only from s. Again, more accurate estimates can be derived by
using probability theory, but the above approximations work fairly well.

The estimates of distinct values are straightforward for projections: They are the
same in ΠA(r) as in r. The same holds for grouping attributes of aggregation. For
results of sum, count, and average, we can assume, for simplicity, that all aggregate
values are distinct. For min(A) and max(A), the number of distinct values can be es-
timated as min(V (A, r), V (G, r)), where G denotes the grouping attributes. We omit
details of estimating distinct values for other operations.

14.3 Transformation of Relational Expressions
So far, we have studied algorithms to evaluate extended relational-algebra opera-
tions, and have estimated their costs. As mentioned at the start of this chapter, a
query can be expressed in several different ways, with different costs of evaluation.
In this section, rather than take the relational expression as given, we consider alter-
native, equivalent expressions.

Two relational-algebra expressions are said to be equivalent if, on every legal data-
base instance, the two expressions generate the same set of tuples. (Recall that a legal
database instance is one that satisfies all the integrity constraints specified in the data-
base schema.) Note that the order of the tuples is irrelevant; the two expressions may
generate the tuples in different orders, but would be considered equivalent as long
as the set of tuples is the same.

In SQL, the inputs and outputs are multisets of tuples, and a multiset version of the
relational algebra is used for evaluating SQL queries. Two expressions in the multiset
version of the relational algebra are said to be equivalent if on every legal database
the two expressions generate the same multiset of tuples. The discussion in this chap-
ter is based on the relational algebra. We leave extensions to the multiset version of
the relational algebra to you as exercises.

14.3.1 Equivalence Rules
An equivalence rule says that expressions of two forms are equivalent. We can re-
place an expression of the first form by an expression of the second form, or vice
versa—that is we can replace an expression of the second form by an expression
of the first form—since the two expressions would generate the same result on any
valid database. The optimizer uses equivalence rules to transform expressions into
other logically equivalent expressions.

We now list a number of general equivalence rules on relational-algebra expres-
sions. Some of the equivalences listed appear in Figure 14.2. We use θ, θ1, θ2, and
so on to denote predicates, L1, L2, L3, and so on to denote lists of attributes, and
E, E1, E2, and so on to denote relational-algebra expressions. A relation name r is
simply a special case of a relational-algebra expression, and can be used wherever E
appears.
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E1 E2

θ

E2 E1

Rule 5
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E1 E2 E2 E3

E1

Rule 6a

Rule 7a

If θ only has
attributes from E1

E1 E2 E1

E2

σθ

σθ

Figure 14.2 Pictorial representation of equivalences.

1. Conjunctive selection operations can be deconstructed into a sequence of in-
dividual selections. This transformation is referred to as a cascade of σ.

σθ1∧θ2(E) = σθ1(σθ2(E))

2. Selection operations are commutative.

σθ1(σθ2(E)) = σθ2(σθ1(E))

3. Only the final operations in a sequence of projection operations are needed,
the others can be omitted. This transformation can also be referred to as a
cascade of Π.

ΠL1(ΠL2(. . . (ΠLn
(E)) . . .)) = ΠL1(E)

4. Selections can be combined with Cartesian products and theta joins.
a. σθ(E1 × E2) = E1 �θ E2

This expression is just the definition of the theta join.
b. σθ1(E1 �θ2 E2) = E1 �θ1∧θ2 E2

5. Theta-join operations are commutative.

E1 �θ E2 = E2 �θ E1

Actually, the order of attributes differs between the left-hand side and right-
hand side, so the equivalence does not hold if the order of attributes is taken
into account. A projection operation can be added to one of the sides of the
equivalence to appropriately reorder attributes, but for simplicity we omit the
projection and ignore the attribute order in most of our examples.
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Recall that the natural-join operator is simply a special case of the theta-join
operator; hence, natural joins are also commutative.

6. a. Natural-join operations are associative.

(E1 � E2) � E3 = E1 � (E2 � E3)

b. Theta joins are associative in the following manner:

(E1 �θ1 E2) �θ2∧θ3 E3 = E1 �θ1∧θ3 (E2 �θ2 E3)

where θ2 involves attributes from only E2 and E3. Any of these conditions
may be empty; hence, it follows that the Cartesian product (×) operation
is also associative. The commutativity and associativity of join operations
are important for join reordering in query optimization.

7. The selection operation distributes over the theta-join operation under the fol-
lowing two conditions:

a. It distributes when all the attributes in selection condition θ0 involve only
the attributes of one of the expressions (say, E1) being joined.

σθ0(E1 �θ E2) = (σθ0(E1)) �θ E2

b. It distributes when selection condition θ1 involves only the attributes of
E1 and θ2 involves only the attributes of E2.

σθ1∧θ2(E1 �θ E2) = (σθ1(E1)) �θ (σθ2(E2))

8. The projection operation distributes over the theta-join operation under the
following conditions.

a. Let L1 and L2 be attributes of E1 and E2, respectively. Suppose that the
join condition θ involves only attributes in L1 ∪ L2. Then,

ΠL1∪L2(E1 �θ E2) = (ΠL1(E1)) �θ (ΠL2(E2))

b. Consider a join E1 �θ E2. Let L1 and L2 be sets of attributes from E1

and E2, respectively. Let L3 be attributes of E1 that are involved in join
condition θ, but are not in L1 ∪ L2, and let L4 be attributes of E2 that are
involved in join condition θ, but are not in L1 ∪ L2. Then,

ΠL1∪L2(E1 �θ E2) = ΠL1∪L2((ΠL1∪L3(E1)) �θ (ΠL2∪L4(E2)))

9. The set operations union and intersection are commutative.

E1 ∪ E2 = E2 ∪ E1

E1 ∩ E2 = E2 ∩ E1

Set difference is not commutative.

10. Set union and intersection are associative.

(E1 ∪ E2) ∪ E3 = E1 ∪ (E2 ∪ E3)

(E1 ∩ E2) ∩ E3 = E1 ∩ (E2 ∩ E3)
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11. The selection operation distributes over the union, intersection, and set–
difference operations.

σP (E1 − E2) = σP (E1) − σP (E2)

Similarly, the preceding equivalence, with − replaced with either ∪ or ∩, also
holds. Further,

σP (E1 − E2) = σP (E1) − E2

The preceding equivalence, with − replaced by ∩, also holds, but does not
hold if − is replaced by ∪.

12. The projection operation distributes over the union operation.

ΠL(E1 ∪ E2) = (ΠL(E1)) ∪ (ΠL(E2))

This is only a partial list of equivalences. More equivalences involving extended
relational operators, such as the outer join and aggregation, are discussed in the ex-
ercises.

14.3.2 Examples of Transformations
We now illustrate the use of the equivalence rules. We use our bank example with the
relation schemas:

Branch-schema = (branch-name, branch-city, assets)
Account-schema = (account-number, branch-name, balance)
Depositor-schema = (customer-name, account-number)

The relations branch, account, and depositor are instances of these schemas.
In our example in Section 14.1, the expression

Πcustomer-name(σbranch-city = “Brooklyn”(branch � (account � depositor)))

was transformed into the following expression,

Πcustomer-name((σbranch-city = “Brooklyn”(branch)) � (account � depositor))

which is equivalent to our original algebra expression, but generates smaller inter-
mediate relations. We can carry out this transformation by using rule 7.a. Remember
that the rule merely says that the two expressions are equivalent; it does not say that
one is better than the other.

Multiple equivalence rules can be used, one after the other, on a query or on parts
of the query. As an illustration, suppose that we modify our original query to restrict
attention to customers who have a balance over $1000. The new relational-algebra
query is

Πcustomer-name (σbranch-city = “Brooklyn” ∧ balance >1000

(branch � (account � depositor)))

We cannot apply the selection predicate directly to the branch relation, since the pred-
icate involves attributes of both the branch and account relation. However, we can first
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apply rule 6.a (associativity of natural join) to transform the join branch � (account �
depositor) into (branch � account) � depositor:

Πcustomer-name (σbranch-city = “Brooklyn” ∧ balance >1000

((branch � account) � depositor))

Then, using rule 7.a, we can rewrite our query as

Πcustomer-name ((σbranch-city = “Brooklyn”∧ balance>1000

(branch � account)) � depositor)

Let us examine the selection subexpression within this expression. Using rule 1, we
can break the selection into two selections, to get the following subexpression:

σbranch-city = “Brooklyn” (σbalance > 1000 (branch � account))

Both of the preceding expressions select tuples with branch-city = “Brooklyn” and
balance > 1000. However, the latter form of the expression provides a new opportu-
nity to apply the “perform selections early” rule, resulting in the subexpression

σbranch-city = “Brooklyn” (branch) � σbalance>1000 (account)

Figure 14.3 depicts the initial expression and the final expression after all these
transformations. We could equally well have used rule 7.b to get the final expression
directly, without using rule 1 to break the selection into two selections. In fact, rule 7.b
can itself be derived from rules 1 and 7.a

A set of equivalence rules is said to be minimal if no rule can be derived from any
combination of the others. The preceding example illustrates that the set of equiva-
lence rules in Section 14.3.1 is not minimal. An expression equivalent to the original
expression may be generated in different ways; the number of different ways of gen-
erating an expression increases when we use a nonminimal set of equivalence rules.
Query optimizers therefore use minimal sets of equivalence rules.

Π customer-name

branch

depositor

σbranch-city=Brooklyn

account

σbranch-city=Brooklyn

balance < 1000

(a) Initial expression tree (b) Tree after multiple transformations

branch

Π customer-name

account

depositor

σbalance < 1000

^

Figure 14.3 Multiple transformations.
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Now consider the following form of our example query:

Πcustomer-name ((σbranch-city = “Brooklyn” (branch) � account) � depositor)

When we compute the subexpression

(σbranch-city = “Brooklyn” (branch) � account)

we obtain a relation whose schema is

(branch-name, branch-city, assets, account-number, balance)

We can eliminate several attributes from the schema, by pushing projections based
on equivalence rules 8.a and 8.b. The only attributes that we must retain are those
that either appear in the result of the query or are needed to process subsequent
operations. By eliminating unneeded attributes, we reduce the number of columns
of the intermediate result. Thus, we reduce the size of the intermediate result. In our
example, the only attribute we need from the join of branch and account is account-
number. Therefore, we can modify the expression to

Πcustomer-name (
( Πaccount-number ((σbranch-city = “Brooklyn” (branch)) � account)) � depositor)

The projection Πaccount-number reduces the size of the intermediate join results.

14.3.3 Join Ordering
A good ordering of join operations is important for reducing the size of temporary
results; hence, most query optimizers pay a lot of attention to the join order. As men-
tioned in Chapter 3 and in equivalence rule 6.a, the natural-join operation is associa-
tive. Thus, for all relations r1, r2, and r3,

(r1 � r2) � r3 = r1 � (r2 � r3)

Although these expressions are equivalent, the costs of computing them may differ.
Consider again the expression

Πcustomer-name ((σbranch-city = “Brooklyn” (branch)) � account � depositor)

We could choose to compute account � depositor first, and then to join the result with

σbranch-city = “Brooklyn” (branch)

However, account � depositor is likely to be a large relation, since it contains one tuple
for every account. In contrast,

σbranch-city = “Brooklyn” (branch) � account

is probably a small relation. To see that it is, we note that, since the bank has a large
number of widely distributed branches, it is likely that only a small fraction of the
bank’s customers have accounts in branches located in Brooklyn. Thus, the preced-
ing expression results in one tuple for each account held by a resident of Brooklyn.
Therefore, the temporary relation that we must store is smaller than it would have
been had we computed account � depositor first.
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There are other options to consider for evaluating our query. We do not care about
the order in which attributes appear in a join, since it is easy to change the order
before displaying the result. Thus, for all relations r1 and r2,

r1 � r2 = r2 � r1

That is, natural join is commutative (equivalence rule 5).
Using the associativity and commutativity of the natural join (rules 5 and 6), we

can consider rewriting our relational-algebra expression as

Πcustomer-name (((σbranch-city = “Brooklyn” (branch)) � depositor) � account)

That is, we could compute

(σbranch-city = “Brooklyn” (branch)) � depositor

first, and, after that, join the result with account. Note, however, that there are no
attributes in common between Branch-schema and Depositor-schema, so the join is just
a Cartesian product. If there are b branches in Brooklyn and d tuples in the depositor
relation, this Cartesian product generates b ∗ d tuples, one for every possible pair of
depositor tuple and branches (without regard for whether the account in depositor is
maintained at the branch). Thus, it appears that this Cartesian product will produce
a large temporary relation. As a result, we would reject this strategy. However, if
the user had entered the preceding expression, we could use the associativity and
commutativity of the natural join to transform this expression to the more efficient
expression that we used earlier.

14.3.4 Enumeration of Equivalent Expressions
Query optimizers use equivalence rules to systematically generate expressions equiv-
alent to the given query expression. Conceptually, the process proceeds as follows.
Given an expression, if any subexpression matches one side of an equivalence rule,
the optimizer generates a new expression where the subexpression is transformed to
match the other side of the rule. This process continues until no more new expres-
sions can be generated.

The preceding process is costly both in space and in time. Here is how the space
requirement can be reduced: If we generate an expression E1 from an expression
E2 by using an equivalence rule, then E1 and E2 are similar in structure, and have
subexpressions that are identical. Expression-representation techniques that allow
both expressions to point to shared subexpressions can reduce the space requirement
significantly, and many query optimizers use them.

Moreover, it is not always necessary to generate every expression that can be gen-
erated with the equivalence rules. If an optimizer takes cost estimates of evaluation
into account, it may be able to avoid examining some of the expressions, as we shall
see in Section 14.4. We can reduce the time required for optimization by using tech-
niques such as these.
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14.4 Choice of Evaluation Plans
Generation of expressions is only part of the query-optimization process, since each
operation in the expression can be implemented with different algorithms. An eval-
uation plan is therefore needed to define exactly what algorithm should be used for
each operation, and how the execution of the operations should be coordinated. Fig-
ure 14.4 illustrates one possible evaluation plan for the expression from Figure 14.3.
As we have seen, several different algorithms can be used for each relational opera-
tion, giving rise to alternative evaluation plans. Further, decisions about pipelining
have to be made. In the figure, the edges from the selection operations to the merge
join operation are marked as pipelined; pipelining is feasible if the selection oper-
ations generate their output sorted on the join attributes. They would do so if the
indices on branch and account store records with equal values for the index attributes
sorted by branch-name.

14.4.1 Interaction of Evaluation Techniques
One way to choose an evaluation plan for a query expression is simply to choose for
each operation the cheapest algorithm for evaluating it. We can choose any ordering
of the operations that ensures that operations lower in the tree are executed before
operations higher in the tree.

However, choosing the cheapest algorithm for each operation independently is not
necessarily a good idea. Although a merge join at a given level may be costlier than
a hash join, it may provide a sorted output that makes evaluating a later operation
(such as duplicate elimination, intersection, or another merge join) cheaper. Similarly,
a nested-loop join with indexing may provide opportunities for pipelining the results
to the next operation, and thus may be useful even if it is not the cheapest way of

σ branch-city=Brooklyn

branch

Π customer-name (sort to remove duplicates)

account

depositor

σ balance < 1000

(use index 1) (use linear scan)

(hash join)

(merge join)

pipeline pipeline

Figure 14.4 An evaluation plan.
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performing the join. To choose the best overall algorithm, we must consider even
nonoptimal algorithms for individual operations.

Thus, in addition to considering alternative expressions for a query, we must also
consider alternative algorithms for each operation in an expression. We can use rules
much like the equivalence rules to define what algorithms can be used for each op-
eration, and whether its result can be pipelined or must be materialized. We can use
these rules to generate all the query-evaluation plans for a given expression.

Given an evaluation plan, we can estimate its cost using statistics estimated by
the techniques in Section 14.2 coupled with cost estimates for various algorithms
and evaluation methods described in Chapter 13. That still leaves the problem of
choosing the best evaluation plan for a query. There are two broad approaches: The
first searches all the plans, and chooses the best plan in a cost-based fashion. The
second uses heuristics to choose a plan. We discuss these approaches next. Practical
query optimizers incorporate elements of both approaches.

14.4.2 Cost-Based Optimization
A cost-based optimizer generates a range of query-evaluation plans from the given
query by using the equivalence rules, and chooses the one with the least cost. For
a complex query, the number of different query plans that are equivalent to a given
plan can be large. As an illustration, consider the expression

r1 � r2 � · · · � rn

where the joins are expressed without any ordering. With n = 3, there are 12 different
join orderings:

r1 � (r2 � r3) r1 � (r3 � r2) (r2 � r3) � r1 (r3 � r2) � r1

r2 � (r1 � r3) r2 � (r3 � r1) (r1 � r3) � r2 (r3 � r1) � r2

r3 � (r1 � r2) r3 � (r2 � r1) (r1 � r2) � r3 (r2 � r1) � r3

In general, with n relations, there are (2(n− 1))!/(n− 1)! different join orders. (We
leave the computation of this expression for you to do in Exercise 14.10.) For joins
involving small numbers of relations, this number is acceptable; for example, with
n = 5, the number is 1680. However, as n increases, this number rises quickly. With
n = 7, the number is 665280; with n = 10, the number is greater than 17.6 billion!

Luckily, it is not necessary to generate all the expressions equivalent to a given
expression. For example, suppose we want to find the best join order of the form

(r1 � r2 � r3) � r4 � r5

which represents all join orders where r1, r2, and r3 are joined first (in some order),
and the result is joined (in some order) with r4 and r5. There are 12 different join
orders for computing r1 � r2 � r3, and 12 orders for computing the join of this result
with r4 and r5. Thus, there appear to be 144 join orders to examine. However, once
we have found the best join order for the subset of relations {r1, r2, r3}, we can use
that order for further joins with r4 and r5, and can ignore all costlier join orders of
r1 � r2 � r3. Thus, instead of 144 choices to examine, we need to examine only
12 + 12 choices.
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procedure findbestplan(S)
if (bestplan[S].cost �= ∞)

return bestplan[S]
// else bestplan[S] has not been computed earlier, compute it now
for each non-empty subset S1 of S such that S1 �= S

P1 = findbestplan(S1)
P2 = findbestplan(S − S1)
A = best algorithm for joining results of P1 and P2
cost = P1.cost + P2.cost + cost of A
if cost < bestplan[S].cost

bestplan[S].cost = cost
bestplan[S].plan = “execute P1.plan; execute P2.plan;

join results of P1 and P2 using A”
return bestplan[S]

Figure 14.5 Dynamic programming algorithm for join order optimization.

Using this idea, we can develop a dynamic-programming algorithm for finding op-
timal join orders. Dynamic programming algorithms store results of computations
and reuse them, a procedure that can reduce execution time greatly. A recursive pro-
cedure implementing the dynamic programming algorithm appears in Figure 14.5.

The procedure stores the evaluation plans it computes in an associative array
bestplan, which is indexed by sets of relations. Each element of the associative ar-
ray contains two components: the cost of the best plan of S, and the plan itself. The
value of bestplan[S].cost is assumed to be initialized to ∞ if bestplan[S] has not yet
been computed.

The procedure first checks if the best plan for computing the join of the given
set of relations S has been computed already (and stored in the associative array
bestplan); if so it returns the already computed plan. Otherwise, the procedure tries
every way of dividing S into two disjoint subsets. For each division, the procedure
recursively finds the best plans for each of the two subsets, and then computes the
cost of the overall plan by using that division. The procedure picks the cheapest plan
from among all the alternatives for dividing S into two sets. The cheapest plan and
its cost are stored in the array bestplan, and returned by the procedure. The time
complexity of the procedure can be shown to be O(3n) (see Exercise 14.11).

Actually, the order in which tuples are generated by the join of a set of relations
is also important for finding the best overall join order, since it can affect the cost of
further joins (for instance, if merge join is used). A particular sort order of the tuples
is said to be an interesting sort order if it could be useful for a later operation. For
instance, generating the result of r1 � r2 � r3 sorted on the attributes common with
r4 or r5 may be useful, but generating it sorted on the attributes common to only r1

and r2 is not useful. Using merge join for computing r1 � r2 � r3 may be costlier than
using some other join technique, but may provide an output sorted in an interesting
sort order.

Hence, it is not sufficient to find the best join order for each subset of the set of
n given relations. Instead, we have to find the best join order for each subset, for
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each interesting sort order of the join result for that subset. The number of subsets of
n relations is 2n. The number of interesting sort orders is generally not large. Thus,
about 2n join expressions need to be stored. The dynamic-programming algorithm
for finding the best join order can be easily extended to handle sort orders. The cost of
the extended algorithm depends on the number of interesting orders for each subset
of relations; since this number has been found to be small in practice, the cost remains
at O(3n).

With n = 10, this number is around 59000, which is much better than the 17.6
billion different join orders. More important, the storage required is much less than
before, since we need to store only one join order for each interesting sort order of
each of 1024 subsets of r1, . . . , r10. Although both numbers still increase rapidly with
n, commonly occurring joins usually have less than 10 relations, and can be handled
easily.

We can use several techniques to reduce further the cost of searching through a
large number of plans. For instance, when examining the plans for an expression, we
can terminate after we examine only a part of the expression, if we determine that
the cheapest plan for that part is already costlier than the cheapest evaluation plan
for a full expression examined earlier. Similarly, suppose that we determine that the
cheapest way of evaluating a subexpression is costlier than the cheapest evaluation
plan for a full expression examined earlier. Then, no full expression involving that
subexpression needs to be examined. We can further reduce the number of evaluation
plans that need to be considered fully by first making a heuristic guess of a good plan,
and estimating that plan’s cost. Then, only a few competing plans will require a full
analysis of cost. These optimizations can reduce the overhead of query optimization
significantly.

14.4.3 Heuristic Optimization
A drawback of cost-based optimization is the cost of optimization itself. Although
the cost of query processing can be reduced by clever optimizations, cost-based opti-
mization is still expensive. Hence, many systems use heuristics to reduce the number
of choices that must be made in a cost-based fashion. Some systems even choose to
use only heuristics, and do not use cost-based optimization at all.

An example of a heuristic rule is the following rule for transforming relational-
algebra queries:

• Perform selection operations as early as possible.

A heuristic optimizer would use this rule without finding out whether the cost is
reduced by this transformation. In the first transformation example in Section 14.3,
the selection operation was pushed into a join.

We say that the preceding rule is a heuristic because it usually, but not always,
helps to reduce the cost. For an example of where it can result in an increase in cost,
consider an expression σθ(r � s), where the condition θ refers to only attributes in s.
The selection can certainly be performed before the join. However, if r is extremely
small compared to s, and if there is an index on the join attributes of s, but no index
on the attributes used by θ, then it is probably a bad idea to perform the selection
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early. Performing the selection early—that is, directly on s—would require doing a
scan of all tuples in s. It is probably cheaper, in this case, to compute the join by using
the index, and then to reject tuples that fail the selection.

The projection operation, like the selection operation, reduces the size of relations.
Thus, whenever we need to generate a temporary relation, it is advantageous to ap-
ply immediately any projections that are possible. This advantage suggests a com-
panion to the “perform selections early” heuristic:

• Perform projections early.

It is usually better to perform selections earlier than projections, since selections have
the potential to reduce the sizes of relations greatly, and selections enable the use of
indices to access tuples. An example similar to the one used for the selection heuristic
should convince you that this heuristic does not always reduce the cost.

Drawing on the equivalences discussed in Section 14.3.1, a heuristic optimization
algorithm will reorder the components of an initial query tree to achieve improved
query execution. We now present an overview of the steps in a typical heuristic op-
timization algorithm. You can understand the heuristics by visualizing a query ex-
pression as a tree, as illustrated in Figure 14.3

1. Deconstruct conjunctive selections into a sequence of single selection opera-
tions. This step, based on equivalence rule 1, facilitates moving selection op-
erations down the query tree.

2. Move selection operations down the query tree for the earliest possible exe-
cution. This step uses the commutativity and distributivity properties of the
selection operation noted in equivalence rules 2, 7.a, 7.b, and 11.

For instance, this step transforms σθ(r � s) into either σθ(r) � s or r � σθ(s)
whenever possible. Performing value-based selections as early as possible re-
duces the cost of sorting and merging intermediate results. The degree of re-
ordering permitted for a particular selection is determined by the attributes
involved in that selection condition.

3. Determine which selection operations and join operations will produce the
smallest relations—that is, will produce the relations with the least number
of tuples. Using associativity of the � operation, rearrange the tree so that the
leaf-node relations with these restrictive selections are executed first.

This step considers the selectivity of a selection or join condition. Recall
that the most restrictive selection—that is, the condition with the smallest
selectivity—retrieves the fewest records. This step relies on the associativity
of binary operations given in equivalence rule 6.

4. Replace with join operations those Cartesian product operations that are fol-
lowed by a selection condition (rule 4.a). The Cartesian product operation is
often expensive to implement since r1 × r2 includes a record for each combi-
nation of records from r1 and r2. The selection may significantly reduce the
number of records, making the join much less expensive than the Cartesian
product.
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5. Deconstruct and move as far down the tree as possible lists of projection at-
tributes, creating new projections where needed. This step draws on the prop-
erties of the projection operation given in equivalence rules 3, 8.a, 8.b, and
12.

6. Identify those subtrees whose operations can be pipelined, and execute them
using pipelining.

In summary, the heuristics listed here reorder an initial query-tree representation
in such a way that the operations that reduce the size of intermediate results are ap-
plied first; early selection reduces the number of tuples, and early projection reduces
the number of attributes. The heuristic transformations also restructure the tree so
that the system performs the most restrictive selection and join operations before
other similar operations.

Heuristic optimization further maps the heuristically transformed query expres-
sion into alternative sequences of operations to produce a set of candidate evalu-
ation plans. An evaluation plan includes not only the relational operations to be
performed, but also the indices to be used, the order in which tuples are to be ac-
cessed, and the order in which the operations are to be performed. The access-plan
–selection phase of a heuristic optimizer chooses the most efficient strategy for each
operation.

14.4.4 Structure of Query Optimizers∗∗
So far, we have described the two basic approaches to choosing an evaluation plan;
as noted, most practical query optimizers combine elements of both approaches. For
example, certain query optimizers, such as the System R optimizer, do not consider
all join orders, but rather restrict the search to particular kinds of join orders. The
System R optimizer considers only those join orders where the right operand of each
join is one of the initial relations r1, . . . , rn. Such join orders are called left-deep join
orders. Left-deep join orders are particularly convenient for pipelined evaluation,
since the right operand is a stored relation, and thus only one input to each join is
pipelined.

Figure 14.6 illustrates the difference between left-deep join trees and non-left-deep
join trees. The time it takes to consider all left-deep join orders is O(n!), which is much
less than the time to consider all join orders. With the use of dynamic programming
optimizations, the System R optimizer can find the best join order in time O(n2n).
Contrast this cost with the O(3n) time required to find the best overall join order.
The System R optimizer uses heuristics to push selections and projections down the
query tree.

The cost estimate that we presented for scanning by secondary indices assumed
that every tuple access results in an I/O operation. The estimate is likely to be ac-
curate with small buffers; with large buffers, however, the page containing the tuple
may already be in the buffer. Some optimizers incorporate a better cost-estimation
technique for such scans: They take into account the probability that the page con-
taining the tuple is in the buffer.
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Figure 14.6 Left-deep join trees.

Query optimization approaches that integrate heuristic selection and the genera-
tion of alternative access plans have been adopted in several systems. The approach
used in System R and in its successor, the Starburst project, is a hierarchical procedure
based on the nested-block concept of SQL. The cost-based optimization techniques
described here are used for each block of the query separately.

The heuristic approach in some versions of Oracle works roughly this way: For
an n-way join, it considers n evaluation plans. Each plan uses a left-deep join order,
starting with a different one of the n relations. The heuristic constructs the join or-
der for each of the n evaluation plans by repeatedly selecting the “best” relation to
join next, on the basis of a ranking of the available access paths. Either nested-loop
or sort–merge join is chosen for each of the joins, depending on the available access
paths. Finally, the heuristic chooses one of the n evaluation plans in a heuristic man-
ner, based on minimizing the number of nested-loop joins that do not have an index
available on the inner relation, and on the number of sort–merge joins.

The intricacies of SQL introduce a good deal of complexity into query optimizers.
In particular, it is hard to translate nested subqueries in SQL into relational algebra.
We briefly outline how to handle nested subqueries in Section 14.4.5. For compound
SQL queries (using the ∪, ∩, or − operation), the optimizer processes each component
separately, and combines the evaluation plans to form the overall evaluation plan.

Even with the use of heuristics, cost-based query optimization imposes a substan-
tial overhead on query processing. However, the added cost of cost-based query op-
timization is usually more than offset by the saving at query-execution time, which
is dominated by slow disk accesses. The difference in execution time between a good
plan and a bad one may be huge, making query optimization essential. The achieved
saving is magnified in those applications that run on a regular basis, where the query
can be optimized once, and the selected query plan can be used on each run. There-
fore, most commercial systems include relatively sophisticated optimizers. The bib-
liographical notes give references to descriptions of the query optimizers of actual
database systems.
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14.4.5 Optimizing Nested Subqueries∗∗
SQL conceptually treats nested subqueries in the where clause as functions that take
parameters and return either a single value or a set of values (possibly an empty set).
The parameters are the variables from outer level query that are used in the nested
subquery (these variables are called correlation variables). For instance, suppose we
have the following query.

select customer-name
from borrower
where exists (select *

from depositor
where depositor.customer-name = borrower.customer-name)

Conceptually, the subquery can be viewed as a function that takes a parameter (here,
borrower.customer-name) and returns the set of all depositors with the same name.

SQL evaluates the overall query (conceptually) by computing the Cartesian prod-
uct of the relations in the outer from clause and then testing the predicates in the
where clause for each tuple in the product. In the preceding example, the predicate
tests if the result of the subquery evaluation is empty.

This technique for evaluating a query with a nested subquery is called correlated
evaluation. Correlated evaluation is not very efficient, since the subquery is sepa-
rately evaluated for each tuple in the outer level query. A large number of random
disk I/O operations may result.

SQL optimizers therefore attempt to transform nested subqueries into joins, where
possible. Efficient join algorithms help avoid expensive random I/O. Where the trans-
formation is not possible, the optimizer keeps the subqueries as separate expressions,
optimizes them separately, and then evaluates them by correlated evaluation.

As an example of transforming a nested subquery into a join, the query in the
preceding example can be rewritten as

select customer-name
from borrower, depositor
where depositor.customer-name = borrower.customer-name

(To properly reflect SQL semantics, the number of duplicate derivations should not
change because of the rewriting; the rewritten query can be modified to ensure this
property, as we will see shortly.)

In the example, the nested subquery was very simple. In general, it may not be
possible to directly move the nested subquery relations into the from clause of the
outer query. Instead, we create a temporary relation that contains the results of the
nested query without the selections using correlation variables from the outer query,
and join the temporary table with the outer level query. For instance, a query of the
form
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select . . .
from L1

where P1 and exists (select *
from L2

where P2)

where P2 is a conjunction of simpler predicates, can be rewritten as

create table t1 as
select distinct V

from L2

where P 1
2

select . . .
from L1, t1
where P1 and P 2

2

where P 1
2 contains predicates in P2 without selections involving correlation variables,

and P 2
2 reintroduces the selections involving correlation variables (with relations ref-

erenced in the predicate appropriately renamed). Here, V contains all attributes that
are used in selections with correlation variables in the nested subquery.

In our example, the original query would have been transformed to

create table t1 as
select distinct customer-name
from depositor

select customer-name
from borrower, t1
where t1.customer-name = borrower.customer-name

The query we rewrote to illustrate creation of a temporary relation can be obtained
by simplifying the above transformed query, assuming the number of duplicates of
each tuple does not matter.

The process of replacing a nested query by a query with a join (possibly with a
temporary relation) is called decorrelation.

Decorrelation is more complicated when the nested subquery uses aggregation,
or when the result of the nested subquery is used to test for equality, or when the
condition linking the nested subquery to the outer query is not exists, and so on.
We do not attempt to give algorithms for the general case, and instead refer you to
relevant items in the bibliographical notes.

Optimization of complex nested subqueries is a difficult task, as you can infer from
the above discussion, and many optimizers do only a limited amount of decorrela-
tion. It is best to avoid using complex nested subqueries, where possible, since we
cannot be sure that the query optimizer will succeed in converting them to a form
that can be evaluated efficiently.
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14.5 Materialized Views∗∗
When a view is defined, normally the database stores only the query defining the
view. In contrast, a materialized view is a view whose contents are computed and
stored. Materialized views constitute redundant data, in that their contents can be
inferred from the view definition and the rest of the database contents. However, it
is much cheaper in many cases to read the contents of a materialized view than to
compute the contents of the view by executing the query defining the view.

Materialized views are important for improving performance in some applica-
tions. Consider this view, which gives the total loan amount at each branch:

create view branch-total-loan(branch-name, total-loan) as
select branch-name, sum(amount)
from loan
groupby branch-name

Suppose the total loan amount at the branch is required frequently (before making
a new loan, for example). Computing the view requires reading every loan tuple
pertaining to the branch, and summing up the loan amounts, which can be time-
consuming.

In contrast, if the view definition of the total loan amount were materialized, the
total loan amount could be found by looking up a single tuple in the materialized
view.

14.5.1 View Maintenance
A problem with materialized views is that they must be kept up-to-date when the
data used in the view definition changes. For instance, if the amount value of a loan
is updated, the materialized view would become inconsistent with the underlying
data, and must be updated. The task of keeping a materialized view up-to-date with
the underlying data is known as view maintenance.

Views can be maintained by manually written code: That is, every piece of code
that updates the amount value of a loan can be modified to also update the total loan
amount for the corresponding branch.

Another option for maintaining materialized views is to define triggers on insert,
delete, and update of each relation in the view definition. The triggers must modify
the contents of the materialized view, to take into account the change that caused the
trigger to fire. A simplistic way of doing so is to completely recompute the material-
ized view on every update.

A better option is to modify only the affected parts of the materialized view, which
is known as incremental view maintenance. We describe how to perform incremen-
tal view maintenance in Section 14.5.2.

Modern database systems provide more direct support for incremental view main-
tenance. Database system programmers no longer need to define triggers for view
maintenance. Instead, once a view is declared to be materialized, the database sys-
tem computes the contents of the view, and incrementally updates the contents when
the underlying data changes.
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14.5.2 Incremental View Maintenance
To understand how to incrementally maintain materialized views, we start off by
considering individual operations, and then see how to handle a complete expres-
sion.

The changes to a relation that can cause a materialized view to become out-of-date
are inserts, deletes, and updates. To simplify our description, we replace updates to
a tuple by deletion of the tuple followed by insertion of the updated tuple. Thus,
we need to consider only inserts and deletes. The changes (inserts and deletes) to a
relation or expression are referred to as its differential.

14.5.2.1 Join Operation
Consider the materialized view v = r � s. Suppose we modify r by inserting a set of
tuples denoted by ir. If the old value of r is denoted by rold, and the new value of r
by rnew, rnew = rold ∪ ir. Now, the old value of the view, vold is given by rold

� s, and
the new value vnew is given by rnew

� s. We can rewrite rnew
� s as (rold ∪ ir) � s,

which we can again rewrite as (rold
� s) ∪ (ir � s). In other words,

vnew = vold ∪ (ir � s)

Thus, to update the materialized view v, we simply need to add the tuples ir � s
to the old contents of the materialized view. Inserts to s are handled in an exactly
symmetric fashion.

Now suppose r is modified by deleting a set of tuples denoted by dr. Using the
same reasoning as above, we get

vnew = vold − (dr � s)

Deletes on s are handled in an exactly symmetric fashion.

14.5.2.2 Selection and Projection Operations
Consider a view v = σθ(r). If we modify r by inserting a set of tuples ir, the new
value of v can be computed as

vnew = vold ∪ σθ(ir)

Similarly, if r is modified by deleting a set of tuples dr, the new value of v can be
computed as

vnew = vold − σθ(dr)
Projection is a more difficult operation with which to deal. Consider a materialized

view v = ΠA(r). Suppose the relation r is on the schema R = (A, B), and r contains
two tuples (a, 2) and (a, 3). Then, ΠA(r) has a single tuple (a). If we delete the tuple
(a, 2) from r, we cannot delete the tuple (a) from ΠA(r): If we did so, the result would
be an empty relation, whereas in reality ΠA(r) still has a single tuple (a). The reason is
that the same tuple (a) is derived in two ways, and deleting one tuple from r removes
only one of the ways of deriving (a); the other is still present.

This reason also gives us the intuition for solution: For each tuple in a projection
such as ΠA(r), we will keep a count of how many times it was derived.
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When a set of tuples dr is deleted from r, for each tuple t in dr we do the following.
Let t.A denote the projection of t on the attribute A. We find (t.A) in the materialized
view, and decrease the count stored with it by 1. If the count becomes 0, (t.A) is
deleted from the materialized view.

Handling insertions is relatively straightforward. When a set of tuples ir is in-
serted into r, for each tuple t in ir we do the following. If (t.A) is already present in
the materialized view, we increase the count stored with it by 1. If not, we add (t.A)
to the materialized view, with the count set to 1.

14.5.2.3 Aggregation Operations
Aggregation operations proceed somewhat like projections. The aggregate opera-
tions in SQL are count, sum, avg, min, and max:

• count: Consider a materialized view v = AGcount(B)(r), which computes the
count of the attribute B, after grouping r by attribute A.

When a set of tuples ir is inserted into r, for each tuple t in ir we do the fol-
lowing. We look for the group t.A in the materialized view. If it is not present,
we add (t.A, 1) to the materialized view. If the group t.A is present, we add 1
to the count of the group.

When a set of tuples dr is deleted from r, for each tuple t in dr we do the
following. We look for the group t.A in the materialized view, and subtract 1
from the count for the group. If the count becomes 0, we delete the tuple for
the group t.A from the materialized view.

• sum: Consider a materialized view v = AGsum(B)(r).
When a set of tuples ir is inserted into r, for each tuple t in ir we do the fol-

lowing. We look for the group t.A in the materialized view. If it is not present,
we add (t.A, t.B) to the materialized view; in addition, we store a count of
1 associated with (t.A, t.B), just as we did for projection. If the group t.A is
present, we add the value of t.B to the aggregate value for the group, and add
1 to the count of the group.

When a set of tuples dr is deleted from r, for each tuple t in dr we do the
following. We look for the group t.A in the materialized view, and subtract
t.B from the aggregate value for the group. We also subtract 1 from the count
for the group, and if the count becomes 0, we delete the tuple for the group
t.A from the materialized view.

Without keeping the extra count value, we would not be able to distinguish
a case where the sum for a group is 0 from the case where the last tuple in a
group is deleted.

• avg: Consider a materialized view v = AGavg(B)(r).
Directly updating the average on an insert or delete is not possible, since

it depends not only on the old average and the tuple being inserted/deleted,
but also on the number of tuples in the group.
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Instead, to handle the case of avg, we maintain the sum and count aggre-
gate values as described earlier, and compute the average as the sum divided
by the count.

• min, max: Consider a materialized view v = AGmin(B)(r). (The case of max is
exactly equivalent.)

Handling insertions on r is straightforward. Maintaining the aggregate val-
ues min and max on deletions may be more expensive. For example, if the
tuple corresponding to the minimum value for a group is deleted from r, we
have to look at the other tuples of r that are in the same group to find the new
minimum value.

14.5.2.4 Other Operations
The set operation intersection is maintained as follows. Given materialized view v =
r ∩ s, when a tuple is inserted in r we check if it is present in s, and if so we add
it to v. If a tuple is deleted from r, we delete it from the intersection if it is present.
The other set operations, union and set difference, are handled in a similar fashion; we
leave details to you.

Outer joins are handled in much the same way as joins, but with some extra work.
In the case of deletion from r we have to handle tuples in s that no longer match any
tuple in r. In the case of insertion to r, we have to handle tuples in s that did not
match any tuple in r. Again we leave details to you.

14.5.2.5 Handling Expressions
So far we have seen how to update incrementally the result of a single operation. To
handle an entire expression, we can derive expressions for computing the incremen-
tal change to the result of each subexpression, starting from the smallest subexpres-
sions.

For example, suppose we wish to incrementally update a materialized view E1 �

E2 when a set of tuples ir is inserted into relation r. Let us assume r is used in E1

alone. Suppose the set of tuples to be inserted into E1 is given by expression D1. Then
the expression D1 � E2 gives the set of tuples to be inserted into E1 � E2.

See the bibliographical notes for further details on incremental view maintenance
with expressions.

14.5.3 Query Optimization and Materialized Views
Query optimization can be performed by treating materialized views just like regular
relations. However, materialized views offer further opportunities for optimization:

• Rewriting queries to use materialized views:
Suppose a materialized view v = r � s is available, and a user submits a

query r � s � t. Rewriting the query as v � t may provide a more efficient
query plan than optimizing the query as submitted. Thus, it is the job of the
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query optimizer to recognize when a materialized view can be used to speed
up a query.

• Replacing a use of a materialized view by the view definition:
Suppose a materialized view v = r � s is available, but without any index

on it, and a user submits a query σA=10(v). Suppose also that s has an index
on the common attribute B, and r has an index on attribute A. The best plan
for this query may be to replace v by r � s, which can lead to the query plan
σA=10(r) � s; the selection and join can be performed efficiently by using
the indices on r.A and s.B, respectively. In contrast, evaluating the selection
directly on v may require a full scan of v, which may be more expensive.

The bibliographical notes give pointers to research showing how to efficiently per-
form query optimization with materialized views.

Another related optimization problem is that of materialized view selection,
namely, “What is the best set of views to materialize?” This decision must be made
on the basis of the system workload, which is a sequence of queries and updates that
reflects the typical load on the system. One simple criterion would be to select a set
of materialized views that minimizes the overall execution time of the workload of
queries and updates, including the time taken to maintain the materialized views.
Database administrators usually modify this criterion to take into account the im-
portance of different queries and updates: Fast response may be required for some
queries and updates, but a slow response may be acceptable for others.

Indices are just like materialized views, in that they too are derived data, can speed
up queries, and may slow down updates. Thus, the problem of index selection is
closely related, to that of materialized view selection, although it is simpler.

We examine these issues in more detail in Sections 21.2.5 and 21.2.6.
Some database systems, such as Microsoft SQL Server 7.5, and the RedBrick Data

Warehouse from Informix, provide tools to help the database administrator with in-
dex and materialized view selection. These tools examine the history of queries and
updates, and suggest indices and views to be materialized.

14.6 Summary
• Given a query, there are generally a variety of methods for computing the

answer. It is the responsibility of the system to transform the query as entered
by the user into an equivalent query that can be computed more efficiently.
The process of finding a good strategy for processing a query, is called query
optimization.

• The evaluation of complex queries involves many accesses to disk. Since the
transfer of data from disk is slow relative to the speed of main memory and
the CPU of the computer system, it is worthwhile to allocate a considerable
amount of processing to choose a method that minimizes disk accesses.

• The strategy that the database system chooses for evaluating an operation de-
pends on the size of each relation and on the distribution of values within
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columns. So that they can base the strategy choice on reliable information,
database systems may store statistics for each relation r. These statistics in-
clude
� The number of tuples in the relation r
� The size of a record (tuple) of relation r in bytes
� The number of distinct values that appear in the relation r for a particular

attribute

• These statistics allow us to estimate the sizes of the results of various oper-
ations, as well as the cost of executing the operations. Statistical information
about relations is particularly useful when several indices are available to as-
sist in the processing of a query. The presence of these structures has a signif-
icant influence on the choice of a query-processing strategy.

• Each relational-algebra expression represents a particular sequence of opera-
tions. The first step in selecting a query-processing strategy is to find a relation-
al-algebra expression that is equivalent to the given expression and is esti-
mated to cost less to execute.

• There are a number of equivalence rules that we can use to transform an ex-
pression into an equivalent one. We use these rules to generate systematically
all expressions equivalent to the given query.

• Alternative evaluation plans for each expression can be generated by simi-
lar rules, and the cheapest plan across all expressions can be chosen. Several
optimization techniques are available to reduce the number of alternative ex-
pressions and plans that need to be generated.

• We use heuristics to reduce the number of plans considered, and thereby to
reduce the cost of optimization. Heuristic rules for transforming relational-
algebra queries include “Perform selection operations as early as possible,”
“Perform projections early,” and “Avoid Cartesian products.”

• Materialized views can be used to speed up query processing. Incremental
view maintenance is needed to efficiently update materialized views when
the underlying relations are modified. The differential of an operation can be
computed by means of algebraic expressions involving differentials of the in-
puts of the operation. Other issues related to materialized views include how
to optimize queries by making use of available materialized views, and how
to select views to be materialized.

Review Terms
• Query optimization

• Statistics estimation

• Catalog information

• Size estimation

� Selection
� Selectivity
� Join
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• Distinct value estimation
• Transformation of expressions
• Cost-based optimization
• Equivalence of expressions
• Equivalence rules
� Join commutativity
� Join associativity

• Minimal set of equivalence rules
• Enumeration of equivalent

expressions
• Choice of evaluation plans
• Interaction of evaluation

techniques
• Join order optimization
� Dynamic-programming

algorithm

� Left-deep join order
• Heuristic optimization

• Access-plan selection

• Correlated evaluation

• Decorrelation

• Materialized views

• Materialized view maintenance
� Recomputation
� Incremental maintenance
� Insertion,
� Deletion
� Updates

• Query optimization with
materialized views

• Index selection

• Materialized view selection

Exercises
14.1 Clustering indices may allow faster access to data than a nonclustering index

affords. When must we create a nonclustering index, despite the advantages of
a clustering index? Explain your answer.

14.2 Consider the relations r1(A, B, C), r2(C, D, E), and r3(E, F ), with primary keys
A, C, and E, respectively. Assume that r1 has 1000 tuples, r2 has 1500 tuples,
and r3 has 750 tuples. Estimate the size of r1 � r2 � r3, and give an efficient
strategy for computing the join.

14.3 Consider the relations r1(A, B, C), r2(C, D, E), and r3(E, F ) of Exercise 14.2.
Assume that there are no primary keys, except the entire schema. Let V (C, r1)
be 900, V (C, r2) be 1100, V (E, r2) be 50, and V (E, r3) be 100. Assume that r1

has 1000 tuples, r2 has 1500 tuples, and r3 has 750 tuples. Estimate the size of
r1 � r2 � r3, and give an efficient strategy for computing the join.

14.4 Suppose that a B+-tree index on branch-city is available on relation branch, and
that no other index is available. What would be the best way to handle the
following selections that involve negation?

a. σ¬(branch-city<“Brooklyn”)(branch)
b. σ¬(branch-city=“Brooklyn”)(branch)
c. σ¬(branch-city<“Brooklyn” ∨ assets<5000)(branch)

14.5 Suppose that a B+-tree index on (branch-name, branch-city) is available on rela-
tion branch. What would be the best way to handle the following selection?

σ(branch-city<“Brooklyn”) ∧ (assets<5000)∧(branch-name=“Downtown”)(branch)
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14.6 Show that the following equivalences hold. Explain how you can apply then
to improve the efficiency of certain queries:

a. E1 �θ (E2 − E3) = (E1 �θ E2 − E1 �θ E3).
b. σθ( AGF (E)) = AGF (σθ(E)), where θ uses only attributes from A.
c. σθ(E1 � E2) = σθ(E1) � E2 where θ uses only attributes from E1.

14.7 Show how to derive the following equivalences by a sequence of transforma-
tions using the equivalence rules in Section 14.3.1.

a. σθ1∧θ2∧θ3(E) = σθ1(σθ2(σθ3(E)))
b. σθ1∧θ2(E1 �θ3 E2) = σθ1(E1 �θ3 (σθ2(E2))), where θ2 involves only at-

tributes from E2

14.8 For each of the following pairs of expressions, give instances of relations that
show the expressions are not equivalent.

a. ΠA(R − S) and ΠA(R) − ΠA(S)
b. σB<4( AGmax(B)(R)) and AGmax(B)(σB<4(R))
c. In the preceding expressions, if both occurrences of max were replaced by

min would the expressions be equivalent?
d. (R � S) � T and R � (S � T )

In other words, the natural left outer join is not associative.
(Hint: Assume that the schemas of the three relations are R(a, b1), S(a, b2),
and T (a, b3), respectively.)

e. σθ(E1 � E2) and E1 � σθ(E2), where θ uses only attributes from E2

14.9 SQL allows relations with duplicates (Chapter 4).

a. Define versions of the basic relational-algebra operations σ, Π, ×, �, −, ∪,
and ∩ that work on relations with duplicates, in a way consistent with SQL.

b. Check which of the equivalence rules 1 through 7.b hold for the multiset
version of the relational-algebra defined in part a.

14.10 ∗∗ Show that, with n relations, there are (2(n−1))!/(n−1)! different join orders.
Hint: A complete binary tree is one where every internal node has exactly

two children. Use the fact that the number of different complete binary trees
with n leaf nodes is 1

n

(2(n−1)
(n−1)

)
.

If you wish, you can derive the formula for the number of complete binary
trees with n nodes from the formula for the number of binary trees with n
nodes. The number of binary trees with n nodes is 1

n+1

(
2n
n

)
; this number is

known as the Catalan number, and its derivation can be found in any standard
textbook on data structures or algorithms.

14.11 ∗∗ Show that the lowest-cost join order can be computed in time O(3n). As-
sume that you can store and look up information about a set of relations (such
as the optimal join order for the set, and the cost of that join order) in constant
time. (If you find this exercise difficult, at least show the looser time bound of
O(22n).)
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14.12 Show that, if only left-deep join trees are considered, as in the System R opti-
mizer, the time taken to find the most efficient join order is around n2n. Assume
that there is only one interesting sort order.

14.13 A set of equivalence rules is said to be complete if, whenever two expressions
are equivalent, one can be derived from the other by a sequence of uses of the
equivalence rules. Is the set of equivalence rules that we considered in Sec-
tion 14.3.1 complete? Hint: Consider the equivalence σ3=5(r) = { }.

14.14 Decorrelation:
a. Write a nested query on the relation account to find for each branch with

name starting with “B”, all accounts with the maximum balance at the
branch.

b. Rewrite the preceding query, without using a nested subquery; in other
words, decorrelate the query.

c. Give a procedure (similar that that described in Section 14.4.5) for decorre-
lating such queries.

14.15 Describe how to incrementally maintain the results of the following operations,
on both insertions and deletions.

a. Union and set difference
b. Left outer join

14.16 Give an example of an expression defining a materialized view and two situ-
ations (sets of statistics for the input relations and the differentials) such that
incremental view maintenance is better than recomputation in one situation,
and recomputation is better in the other situation.
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Transaction Management

The term transaction refers to a collection of operations that form a single logical unit
of work. For instance, transfer of money from one account to another is a transaction
consisting of two updates, one to each account.

It is important that either all actions of a transaction be executed completely, or, in
case of some failure, partial effects of a transaction be undone. This property is called
atomicity. Further, once a transaction is successfully executed, its effects must persist
in the database—a system failure should not result in the database forgetting about
a transaction that successfully completed. This property is called durability.

In a database system where multiple transactions are executing concurrently, if
updates to shared data are not controlled there is potential for transactions to see
inconsistent intermediate states created by updates of other transactions. Such a sit-
uation can result in erroneous updates to data stored in the database. Thus, database
systems must provide mechanisms to isolate transactions from the effects of other
concurrently executing transactions. This property is called isolation.

Chapter 15 describes the concept of a transaction in detail, including the properties
of atomicity, durability, isolation, and other properties provided by the transaction
abstraction. In particular, the chapter makes precise the notion of isolation by means
of a concept called serializability.

Chapter 16 describes several concurrency control techniques that help implement
the isolation property.

Chapter 17 describes the recovery management component of a database, which
implements the atomicity and durability properties.
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Transactions

Often, a collection of several operations on the database appears to be a single unit
from the point of view of the database user. For example, a transfer of funds from
a checking account to a savings account is a single operation from the customer’s
standpoint; within the database system, however, it consists of several operations.
Clearly, it is essential that all these operations occur, or that, in case of a failure, none
occur. It would be unacceptable if the checking account were debited, but the savings
account were not credited.

Collections of operations that form a single logical unit of work are called transac-
tions. A database system must ensure proper execution of transactions despite fail-
ures—either the entire transaction executes, or none of it does. Furthermore, it must
manage concurrent execution of transactions in a way that avoids the introduction of
inconsistency. In our funds-transfer example, a transaction computing the customer’s
total money might see the checking-account balance before it is debited by the funds-
transfer transaction, but see the savings balance after it is credited. As a result, it
would obtain an incorrect result.

This chapter introduces the basic concepts of transaction processing. Details on
concurrent transaction processing and recovery from failures are in Chapters 16 and
17, respectively. Further topics in transaction processing are discussed in Chapter 24.

15.1 Transaction Concept
A transaction is a unit of program execution that accesses and possibly updates var-
ious data items. Usually, a transaction is initiated by a user program written in a
high-level data-manipulation language or programming language (for example, SQL,
COBOL, C, C++, or Java), where it is delimited by statements (or function calls) of the
form begin transaction and end transaction. The transaction consists of all opera-
tions executed between the begin transaction and end transaction.

To ensure integrity of the data, we require that the database system maintain the
following properties of the transactions:

565
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• Atomicity. Either all operations of the transaction are reflected properly in the
database, or none are.

• Consistency. Execution of a transaction in isolation (that is, with no other
transaction executing concurrently) preserves the consistency of the database.

• Isolation. Even though multiple transactions may execute concurrently, the
system guarantees that, for every pair of transactions Ti and Tj , it appears
to Ti that either Tj finished execution before Ti started, or Tj started execu-
tion after Ti finished. Thus, each transaction is unaware of other transactions
executing concurrently in the system.

• Durability. After a transaction completes successfully, the changes it has made
to the database persist, even if there are system failures.

These properties are often called the ACID properties; the acronym is derived from
the first letter of each of the four properties.

To gain a better understanding of ACID properties and the need for them, con-
sider a simplified banking system consisting of several accounts and a set of trans-
actions that access and update those accounts. For the time being, we assume that
the database permanently resides on disk, but that some portion of it is temporarily
residing in main memory.

Transactions access data using two operations:

• read(X), which transfers the data item X from the database to a local buffer
belonging to the transaction that executed the read operation.

• write(X), which transfers the data item X from the the local buffer of the trans-
action that executed the write back to the database.

In a real database system, the write operation does not necessarily result in the imme-
diate update of the data on the disk; the write operation may be temporarily stored
in memory and executed on the disk later. For now, however, we shall assume that
the write operation updates the database immediately. We shall return to this subject
in Chapter 17.

Let Ti be a transaction that transfers $50 from account A to account B. This trans-
action can be defined as

Ti: read(A);
A := A − 50;
write(A);
read(B);
B := B + 50;
write(B).

Let us now consider each of the ACID requirements. (For ease of presentation, we
consider them in an order different from the order A-C-I-D).

• Consistency: The consistency requirement here is that the sum of A and B
be unchanged by the execution of the transaction. Without the consistency
requirement, money could be created or destroyed by the transaction! It can
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be verified easily that, if the database is consistent before an execution of the
transaction, the database remains consistent after the execution of the transac-
tion.

Ensuring consistency for an individual transaction is the responsibility of
the application programmer who codes the transaction. This task may be facil-
itated by automatic testing of integrity constraints, as we discussed in Chap-
ter 6.

• Atomicity: Suppose that, just before the execution of transaction Ti the values
of accounts A and B are $1000 and $2000, respectively. Now suppose that, dur-
ing the execution of transaction Ti, a failure occurs that prevents Ti from com-
pleting its execution successfully. Examples of such failures include power
failures, hardware failures, and software errors. Further, suppose that the fail-
ure happened after the write(A) operation but before the write(B) operation. In
this case, the values of accounts A and B reflected in the database are $950 and
$2000. The system destroyed $50 as a result of this failure. In particular, we
note that the sum A + B is no longer preserved.

Thus, because of the failure, the state of the system no longer reflects a real
state of the world that the database is supposed to capture. We term such a
state an inconsistent state. We must ensure that such inconsistencies are not
visible in a database system. Note, however, that the system must at some
point be in an inconsistent state. Even if transaction Ti is executed to comple-
tion, there exists a point at which the value of account A is $950 and the value
of account B is $2000, which is clearly an inconsistent state. This state, how-
ever, is eventually replaced by the consistent state where the value of account
A is $950, and the value of account B is $2050. Thus, if the transaction never
started or was guaranteed to complete, such an inconsistent state would not
be visible except during the execution of the transaction. That is the reason for
the atomicity requirement: If the atomicity property is present, all actions of
the transaction are reflected in the database, or none are.

The basic idea behind ensuring atomicity is this: The database system keeps
track (on disk) of the old values of any data on which a transaction performs a
write, and, if the transaction does not complete its execution, the database sys-
tem restores the old values to make it appear as though the transaction never
executed. We discuss these ideas further in Section 15.2. Ensuring atomicity
is the responsibility of the database system itself; specifically, it is handled by
a component called the transaction-management component, which we de-
scribe in detail in Chapter 17.

• Durability: Once the execution of the transaction completes successfully, and
the user who initiated the transaction has been notified that the transfer of
funds has taken place, it must be the case that no system failure will result in
a loss of data corresponding to this transfer of funds.

The durability property guarantees that, once a transaction completes suc-
cessfully, all the updates that it carried out on the database persist, even if
there is a system failure after the transaction completes execution.
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We assume for now that a failure of the computer system may result in
loss of data in main memory, but data written to disk are never lost. We can
guarantee durability by ensuring that either

1. The updates carried out by the transaction have been written to disk be-
fore the transaction completes.

2. Information about the updates carried out by the transaction and written
to disk is sufficient to enable the database to reconstruct the updates when
the database system is restarted after the failure.

Ensuring durability is the responsibility of a component of the database sys-
tem called the recovery-management component. The transaction-manage-
ment component and the recovery-management component are closely re-
lated, and we describe them in Chapter 17.

• Isolation: Even if the consistency and atomicity properties are ensured for
each transaction, if several transactions are executed concurrently, their oper-
ations may interleave in some undesirable way, resulting in an inconsistent
state.

For example, as we saw earlier, the database is temporarily inconsistent
while the transaction to transfer funds from A to B is executing, with the de-
ducted total written to A and the increased total yet to be written to B. If a
second concurrently running transaction reads A and B at this intermediate
point and computes A+B, it will observe an inconsistent value. Furthermore,
if this second transaction then performs updates on A and B based on the in-
consistent values that it read, the database may be left in an inconsistent state
even after both transactions have completed.

A way to avoid the problem of concurrently executing transactions is to
execute transactions serially—that is, one after the other. However, concur-
rent execution of transactions provides significant performance benefits, as
we shall see in Section 15.4. Other solutions have therefore been developed;
they allow multiple transactions to execute concurrently.

We discuss the problems caused by concurrently executing transactions in
Section 15.4. The isolation property of a transaction ensures that the concur-
rent execution of transactions results in a system state that is equivalent to a
state that could have been obtained had these transactions executed one at a
time in some order. We shall discuss the principles of isolation further in Sec-
tion 15.5. Ensuring the isolation property is the responsibility of a component
of the database system called the concurrency-control component, which we
discuss later, in Chapter 16.

15.2 Transaction State
In the absence of failures, all transactions complete successfully. However, as we
noted earlier, a transaction may not always complete its execution successfully. Such
a transaction is termed aborted. If we are to ensure the atomicity property, an aborted
transaction must have no effect on the state of the database. Thus, any changes that
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the aborted transaction made to the database must be undone. Once the changes
caused by an aborted transaction have been undone, we say that the transaction has
been rolled back. It is part of the responsibility of the recovery scheme to manage
transaction aborts.

A transaction that completes its execution successfully is said to be committed.
A committed transaction that has performed updates transforms the database into a
new consistent state, which must persist even if there is a system failure.

Once a transaction has committed, we cannot undo its effects by aborting it. The
only way to undo the effects of a committed transaction is to execute a compensating
transaction. For instance, if a transaction added $20 to an account, the compensating
transaction would subtract $20 from the account. However, it is not always possible
to create such a compensating transaction. Therefore, the responsibility of writing
and executing a compensating transaction is left to the user, and is not handled by
the database system. Chapter 24 includes a discussion of compensating transactions.

We need to be more precise about what we mean by successful completion of a trans-
action. We therefore establish a simple abstract transaction model. A transaction must
be in one of the following states:

• Active, the initial state; the transaction stays in this state while it is executing

• Partially committed, after the final statement has been executed

• Failed, after the discovery that normal execution can no longer proceed

• Aborted, after the transaction has been rolled back and the database has been
restored to its state prior to the start of the transaction

• Committed, after successful completion

The state diagram corresponding to a transaction appears in Figure 15.1. We say
that a transaction has committed only if it has entered the committed state. Simi-
larly, we say that a transaction has aborted only if it has entered the aborted state. A
transaction is said to have terminated if has either committed or aborted.

A transaction starts in the active state. When it finishes its final statement, it enters
the partially committed state. At this point, the transaction has completed its exe-
cution, but it is still possible that it may have to be aborted, since the actual output
may still be temporarily residing in main memory, and thus a hardware failure may
preclude its successful completion.

The database system then writes out enough information to disk that, even in the
event of a failure, the updates performed by the transaction can be re-created when
the system restarts after the failure. When the last of this information is written out,
the transaction enters the committed state.

As mentioned earlier, we assume for now that failures do not result in loss of data
on disk. Chapter 17 discusses techniques to deal with loss of data on disk.

A transaction enters the failed state after the system determines that the transac-
tion can no longer proceed with its normal execution (for example, because of hard-
ware or logical errors). Such a transaction must be rolled back. Then, it enters the
aborted state. At this point, the system has two options:
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committed

abortedfailed

active

partially
committed

Figure 15.1 State diagram of a transaction.

• It can restart the transaction, but only if the transaction was aborted as a result
of some hardware or software error that was not created through the inter-
nal logic of the transaction. A restarted transaction is considered to be a new
transaction.

• It can kill the transaction. It usually does so because of some internal logical
error that can be corrected only by rewriting the application program, or be-
cause the input was bad, or because the desired data were not found in the
database.

We must be cautious when dealing with observable external writes, such as writes
to a terminal or printer. Once such a write has occurred, it cannot be erased, since it
may have been seen external to the database system. Most systems allow such writes
to take place only after the transaction has entered the committed state. One way to
implement such a scheme is for the database system to store any value associated
with such external writes temporarily in nonvolatile storage, and to perform the ac-
tual writes only after the transaction enters the committed state. If the system should
fail after the transaction has entered the committed state, but before it could complete
the external writes, the database system will carry out the external writes (using the
data in nonvolatile storage) when the system is restarted.

Handling external writes can be more complicated in some situations. For example
suppose the external action is that of dispensing cash at an automated teller machine,
and the system fails just before the cash is actually dispensed (we assume that cash
can be dispensed atomically). It makes no sense to dispense cash when the system
is restarted, since the user may have left the machine. In such a case a compensat-
ing transaction, such as depositing the cash back in the users account, needs to be
executed when the system is restarted.
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For certain applications, it may be desirable to allow active transactions to dis-
play data to users, particularly for long-duration transactions that run for minutes
or hours. Unfortunately, we cannot allow such output of observable data unless we
are willing to compromise transaction atomicity. Most current transaction systems
ensure atomicity and, therefore, forbid this form of interaction with users. In Chapter
24, we discuss alternative transaction models that support long-duration, interactive
transactions.

15.3 Implementation of Atomicity and Durability
The recovery-management component of a database system can support atomicity
and durability by a variety of schemes. We first consider a simple, but extremely in-
efficient, scheme called the shadow copy scheme. This scheme, which is based on
making copies of the database, called shadow copies, assumes that only one transac-
tion is active at a time. The scheme also assumes that the database is simply a file on
disk. A pointer called db-pointer is maintained on disk; it points to the current copy
of the database.

In the shadow-copy scheme, a transaction that wants to update the database first
creates a complete copy of the database. All updates are done on the new database
copy, leaving the original copy, the shadow copy, untouched. If at any point the trans-
action has to be aborted, the system merely deletes the new copy. The old copy of the
database has not been affected.

If the transaction completes, it is committed as follows. First, the operating system
is asked to make sure that all pages of the new copy of the database have been written
out to disk. (Unix systems use the flush command for this purpose.) After the operat-
ing system has written all the pages to disk, the database system updates the pointer
db-pointer to point to the new copy of the database; the new copy then becomes
the current copy of the database. The old copy of the database is then deleted. Fig-
ure 15.2 depicts the scheme, showing the database state before and after the update.

db-pointer

(a) Before update

old copy of
database

(to be deleted)

old copy of
database

db-pointer

(b) After update

new copy of
database

Figure 15.2 Shadow-copy technique for atomicity and durability.
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The transaction is said to have been committed at the point where the updated db-
pointer is written to disk.

We now consider how the technique handles transaction and system failures. First,
consider transaction failure. If the transaction fails at any time before db-pointer is
updated, the old contents of the database are not affected. We can abort the trans-
action by just deleting the new copy of the database. Once the transaction has been
committed, all the updates that it performed are in the database pointed to by db-
pointer. Thus, either all updates of the transaction are reflected, or none of the effects
are reflected, regardless of transaction failure.

Now consider the issue of system failure. Suppose that the system fails at any time
before the updated db-pointer is written to disk. Then, when the system restarts, it
will read db-pointer and will thus see the original contents of the database, and none
of the effects of the transaction will be visible on the database. Next, suppose that the
system fails after db-pointer has been updated on disk. Before the pointer is updated,
all updated pages of the new copy of the database were written to disk. Again, we
assume that, once a file is written to disk, its contents will not be damaged even if
there is a system failure. Therefore, when the system restarts, it will read db-pointer
and will thus see the contents of the database after all the updates performed by the
transaction.

The implementation actually depends on the write to db-pointer being atomic;
that is, either all its bytes are written or none of its bytes are written. If some of the
bytes of the pointer were updated by the write, but others were not, the pointer is
meaningless, and neither old nor new versions of the database may be found when
the system restarts. Luckily, disk systems provide atomic updates to entire blocks, or
at least to a disk sector. In other words, the disk system guarantees that it will update
db-pointer atomically, as long as we make sure that db-pointer lies entirely in a single
sector, which we can ensure by storing db-pointer at the beginning of a block.

Thus, the atomicity and durability properties of transactions are ensured by the
shadow-copy implementation of the recovery-management component.

As a simple example of a transaction outside the database domain, consider a text-
editing session. An entire editing session can be modeled as a transaction. The actions
executed by the transaction are reading and updating the file. Saving the file at the
end of editing corresponds to a commit of the editing transaction; quitting the editing
session without saving the file corresponds to an abort of the editing transaction.

Many text editors use essentially the implementation just described, to ensure that
an editing session is transactional. A new file is used to store the updated file. At the
end of the editing session, if the updated file is to be saved, the text editor uses a file
rename command to rename the new file to have the actual file name. The rename,
assumed to be implemented as an atomic operation by the underlying file system,
deletes the old file as well.

Unfortunately, this implementation is extremely inefficient in the context of large
databases, since executing a single transaction requires copying the entire database.
Furthermore, the implementation does not allow transactions to execute concurrently
with one another. There are practical ways of implementing atomicity and durability
that are much less expensive and more powerful. We study these recovery techniques
in Chapter 17.
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15.4 Concurrent Executions
Transaction-processing systems usually allow multiple transactions to run concur-
rently. Allowing multiple transactions to update data concurrently causes several
complications with consistency of the data, as we saw earlier. Ensuring consistency
in spite of concurrent execution of transactions requires extra work; it is far easier to
insist that transactions run serially—that is, one at a time, each starting only after
the previous one has completed. However, there are two good reasons for allowing
concurrency:

• Improved throughput and resource utilization. A transaction consists of many
steps. Some involve I/O activity; others involve CPU activity. The CPU and the
disks in a computer system can operate in parallel. Therefore, I/O activity can
be done in parallel with processing at the CPU. The parallelism of the CPU
and the I/O system can therefore be exploited to run multiple transactions in
parallel. While a read or write on behalf of one transaction is in progress on
one disk, another transaction can be running in the CPU, while another disk
may be executing a read or write on behalf of a third transaction. All of this
increases the throughput of the system—that is, the number of transactions
executed in a given amount of time. Correspondingly, the processor and disk
utilization also increase; in other words, the processor and disk spend less
time idle, or not performing any useful work.

• Reduced waiting time. There may be a mix of transactions running on a sys-
tem, some short and some long. If transactions run serially, a short transaction
may have to wait for a preceding long transaction to complete, which can lead
to unpredictable delays in running a transaction. If the transactions are oper-
ating on different parts of the database, it is better to let them run concurrently,
sharing the CPU cycles and disk accesses among them. Concurrent execution
reduces the unpredictable delays in running transactions. Moreover, it also
reduces the average response time: the average time for a transaction to be
completed after it has been submitted.

The motivation for using concurrent execution in a database is essentially the same
as the motivation for using multiprogramming in an operating system.

When several transactions run concurrently, database consistency can be destroyed
despite the correctness of each individual transaction. In this section, we present the
concept of schedules to help identify those executions that are guaranteed to ensure
consistency.

The database system must control the interaction among the concurrent trans-
actions to prevent them from destroying the consistency of the database. It does
so through a variety of mechanisms called concurrency-control schemes. We study
concurrency-control schemes in Chapter 16; for now, we focus on the concept of cor-
rect concurrent execution.

Consider again the simplified banking system of Section 15.1, which has several
accounts, and a set of transactions that access and update those accounts. Let T1 and
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T2 be two transactions that transfer funds from one account to another. Transaction T1

transfers $50 from account A to account B. It is defined as

T1: read(A);
A := A − 50;
write(A);
read(B);
B := B + 50;
write(B).

Transaction T2 transfers 10 percent of the balance from account A to account B. It is
defined as

T2: read(A);
temp := A * 0.1;
A := A − temp;
write(A);
read(B);
B := B + temp;
write(B).

Suppose the current values of accounts A and B are $1000 and $2000, respectively.
Suppose also that the two transactions are executed one at a time in the order T1

followed by T2. This execution sequence appears in Figure 15.3. In the figure, the
sequence of instruction steps is in chronological order from top to bottom, with in-
structions of T1 appearing in the left column and instructions of T2 appearing in the
right column. The final values of accounts A and B, after the execution in Figure 15.3
takes place, are $855 and $2145, respectively. Thus, the total amount of money in

T1 T2
read(A)
A := A – 50
write (A)
read(B)
B := B + 50
write(B)

read(A)
temp := A * 0.1
A := A – temp
write(A)
read(B)
B := B + temp
write(B)

Figure 15.3 Schedule 1—a serial schedule in which T1 is followed by T2.
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accounts A and B—that is, the sum A + B—is preserved after the execution of both
transactions.

Similarly, if the transactions are executed one at a time in the order T2 followed
by T1, then the corresponding execution sequence is that of Figure 15.4. Again, as
expected, the sum A + B is preserved, and the final values of accounts A and B are
$850 and $2150, respectively.

The execution sequences just described are called schedules. They represent the
chronological order in which instructions are executed in the system. Clearly, a sched-
ule for a set of transactions must consist of all instructions of those transactions, and
must preserve the order in which the instructions appear in each individual transac-
tion. For example, in transaction T1, the instruction write(A) must appear before the
instruction read(B), in any valid schedule. In the following discussion, we shall refer
to the first execution sequence (T1 followed by T2) as schedule 1, and to the second
execution sequence (T2 followed by T1) as schedule 2.

These schedules are serial: Each serial schedule consists of a sequence of instruc-
tions from various transactions, where the instructions belonging to one single trans-
action appear together in that schedule. Thus, for a set of n transactions, there exist
n! different valid serial schedules.

When the database system executes several transactions concurrently, the corre-
sponding schedule no longer needs to be serial. If two transactions are running con-
currently, the operating system may execute one transaction for a little while, then
perform a context switch, execute the second transaction for some time, and then
switch back to the first transaction for some time, and so on. With multiple transac-
tions, the CPU time is shared among all the transactions.

Several execution sequences are possible, since the various instructions from both
transactions may now be interleaved. In general, it is not possible to predict exactly
how many instructions of a transaction will be executed before the CPU switches to

T1 T2

read(A)
temp := A * 0.1
A := A –

–

temp
write(A)
read(B)
B := B + temp
write(B)

read(A)
A := A 50
write(A)
read(B)
B := B + 50
write(B)

Figure 15.4 Schedule 2—a serial schedule in which T2 is followed by T1.
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T1 T2

read(A)
A := A –

–

50
write(A)

read(A)
temp := A * 0.1
A := A temp
write(A )

read(B)
B := B + 50
write(B)

read(B)
B := B + temp
write(B)

Figure 15.5 Schedule 3—a concurrent schedule equivalent to schedule 1.

another transaction. Thus, the number of possible schedules for a set of n transactions
is much larger than n!.

Returning to our previous example, suppose that the two transactions are exe-
cuted concurrently. One possible schedule appears in Figure 15.5. After this execu-
tion takes place, we arrive at the same state as the one in which the transactions are
executed serially in the order T1 followed by T2. The sum A + B is indeed preserved.

Not all concurrent executions result in a correct state. To illustrate, consider the
schedule of Figure 15.6. After the execution of this schedule, we arrive at a state
where the final values of accounts A and B are $950 and $2100, respectively. This final
state is an inconsistent state, since we have gained $50 in the process of the concur-
rent execution. Indeed, the sum A + B is not preserved by the execution of the two
transactions.

If control of concurrent execution is left entirely to the operating system, many
possible schedules, including ones that leave the database in an inconsistent state,
such as the one just described, are possible. It is the job of the database system to
ensure that any schedule that gets executed will leave the database in a consistent
state. The concurrency-control component of the database system carries out this
task.

We can ensure consistency of the database under concurrent execution by making
sure that any schedule that executed has the same effect as a schedule that could
have occurred without any concurrent execution. That is, the schedule should, in
some sense, be equivalent to a serial schedule. We examine this idea in Section 15.5.

15.5 Serializability
The database system must control concurrent execution of transactions, to ensure
that the database state remains consistent. Before we examine how the database
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T1 T2

read(A)
A := A –

–

50
read(A)
temp := A * 0.1
A := A temp
write(A)
read(B)

write(A)
read(B)
B := B + 50
write(B)

B := B + temp
write(B)

Figure 15.6 Schedule 4—a concurrent schedule.

system can carry out this task, we must first understand which schedules will en-
sure consistency, and which schedules will not.

Since transactions are programs, it is computationally difficult to determine ex-
actly what operations a transaction performs and how operations of various trans-
actions interact. For this reason, we shall not interpret the type of operations that a
transaction can perform on a data item. Instead, we consider only two operations:
read and write. We thus assume that, between a read(Q) instruction and a write(Q)
instruction on a data item Q, a transaction may perform an arbitrary sequence of op-
erations on the copy of Q that is residing in the local buffer of the transaction. Thus,
the only significant operations of a transaction, from a scheduling point of view, are
its read and write instructions. We shall therefore usually show only read and write
instructions in schedules, as we do in schedule 3 in Figure 15.7.

In this section, we discuss different forms of schedule equivalence; they lead to the
notions of conflict serializability and view serializability.

T1 T2

read(A)
write(A)

read(A)
write(A)

read(B)
write(B)

read(B)
write(B)

Figure 15.7 Schedule 3—showing only the read and write instructions.
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15.5.1 Conflict Serializability
Let us consider a schedule S in which there are two consecutive instructions Ii and
Ij , of transactions Ti and Tj , respectively (i �= j). If Ii and Ij refer to different data
items, then we can swap Ii and Ij without affecting the results of any instruction in
the schedule. However, if Ii and Ij refer to the same data item Q, then the order of
the two steps may matter. Since we are dealing with only read and write instructions,
there are four cases that we need to consider:

1. Ii = read(Q), Ij = read(Q). The order of Ii and Ij does not matter, since the
same value of Q is read by Ti and Tj , regardless of the order.

2. Ii = read(Q), Ij = write(Q). If Ii comes before Ij , then Ti does not read the value
of Q that is written by Tj in instruction Ij . If Ij comes before Ii, then Ti reads
the value of Q that is written by Tj . Thus, the order of Ii and Ij matters.

3. Ii = write(Q), Ij = read(Q). The order of Ii and Ij matters for reasons similar
to those of the previous case.

4. Ii = write(Q), Ij = write(Q). Since both instructions are write operations, the
order of these instructions does not affect either Ti or Tj . However, the value
obtained by the next read(Q) instruction of S is affected, since the result of
only the latter of the two write instructions is preserved in the database. If
there is no other write(Q) instruction after Ii and Ij in S, then the order of Ii

and Ij directly affects the final value of Q in the database state that results
from schedule S.

Thus, only in the case where both Ii and Ij are read instructions does the relative
order of their execution not matter.

We say that Ii and Ij conflict if they are operations by different transactions on the
same data item, and at least one of these instructions is a write operation.

To illustrate the concept of conflicting instructions, we consider schedule 3, in Fig-
ure 15.7. The write(A) instruction of T1 conflicts with the read(A) instruction of T2.
However, the write(A) instruction of T2 does not conflict with the read(B) instruction
of T1, because the two instructions access different data items.

Let Ii and Ij be consecutive instructions of a schedule S. If Ii and Ij are instructions
of different transactions and Ii and Ij do not conflict, then we can swap the order of
Ii and Ij to produce a new schedule S′. We expect S to be equivalent to S′, since all
instructions appear in the same order in both schedules except for Ii and Ij , whose
order does not matter.

Since the write(A) instruction of T2 in schedule 3 of Figure 15.7 does not conflict
with the read(B) instruction of T1, we can swap these instructions to generate an
equivalent schedule, schedule 5, in Figure 15.8. Regardless of the initial system state,
schedules 3 and 5 both produce the same final system state.

We continue to swap nonconflicting instructions:
• Swap the read(B) instruction of T1 with the read(A) instruction of T2.

• Swap the write(B) instruction of T1 with the write(A) instruction of T2.

• Swap the write(B) instruction of T1 with the read(A) instruction of T2.
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T1 T2

read(A)
write(A)

read(A)
read(B)

write(A)
write(B)

read(B)
write(B)

Figure 15.8 Schedule 5—schedule 3 after swapping of a pair of instructions.

The final result of these swaps, schedule 6 of Figure 15.9, is a serial schedule. Thus,
we have shown that schedule 3 is equivalent to a serial schedule. This equivalence
implies that, regardless of the initial system state, schedule 3 will produce the same
final state as will some serial schedule.

If a schedule S can be transformed into a schedule S′ by a series of swaps of non-
conflicting instructions, we say that S and S′ are conflict equivalent.

In our previous examples, schedule 1 is not conflict equivalent to schedule 2. How-
ever, schedule 1 is conflict equivalent to schedule 3, because the read(B) and write(B)
instruction of T1 can be swapped with the read(A) and write(A) instruction of T2.

The concept of conflict equivalence leads to the concept of conflict serializability.
We say that a schedule S is conflict serializable if it is conflict equivalent to a serial
schedule. Thus, schedule 3 is conflict serializable, since it is conflict equivalent to the
serial schedule 1.

Finally, consider schedule 7 of Figure 15.10; it consists of only the significant op-
erations (that is, the read and write) of transactions T3 and T4. This schedule is not
conflict serializable, since it is not equivalent to either the serial schedule <T3,T4> or
the serial schedule <T4,T3>.

It is possible to have two schedules that produce the same outcome, but that are
not conflict equivalent. For example, consider transaction T5, which transfers $10

T1 T2

read(A)
write(A)
read(B)
write(B)

read(A)
write(A)
read(B)
write(B)

Figure 15.9 Schedule 6—a serial schedule that is equivalent to schedule 3.
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T3 T4

read(Q)
write(Q)

write(Q)

Figure 15.10 Schedule 7.

from account B to account A. Let schedule 8 be as defined in Figure 15.11. We claim
that schedule 8 is not conflict equivalent to the serial schedule <T1,T5>, since, in
schedule 8, the write(B) instruction of T5 conflicts with the read(B) instruction of T1.
Thus, we cannot move all the instructions of T1 before those of T5 by swapping con-
secutive nonconflicting instructions. However, the final values of accounts A and B
after the execution of either schedule 8 or the serial schedule <T1,T5> are the same
—$960 and $2040, respectively.

We can see from this example that there are less stringent definitions of schedule
equivalence than conflict equivalence. For the system to determine that schedule 8
produces the same outcome as the serial schedule <T1,T5>, it must analyze the com-
putation performed by T1 and T5, rather than just the read and write operations. In
general, such analysis is hard to implement and is computationally expensive. How-
ever, there are other definitions of schedule equivalence based purely on the read and
write operations. We will consider one such definition in the next section.

15.5.2 View Serializability
In this section, we consider a form of equivalence that is less stringent than conflict
equivalence, but that, like conflict equivalence, is based on only the read and write
operations of transactions.

T1 T5

read(A)
A := A – 50
write(A)

read(B)
B := B 10
write(B)

read(B)
B := B + 50
write(B)

read(A)
A := A + 10
write(A)

–

Figure 15.11 Schedule 8.
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Consider two schedules S and S′, where the same set of transactions participates
in both schedules. The schedules S and S′ are said to be view equivalent if three
conditions are met:

1. For each data item Q, if transaction Ti reads the initial value of Q in schedule
S, then transaction Ti must, in schedule S′, also read the initial value of Q.

2. For each data item Q, if transaction Ti executes read(Q) in schedule S, and if
that value was produced by a write(Q) operation executed by transaction Tj ,
then the read(Q) operation of transaction Ti must, in schedule S′, also read the
value of Q that was produced by the same write(Q) operation of transaction Tj .

3. For each data item Q, the transaction (if any) that performs the final write(Q)
operation in schedule S must perform the final write(Q) operation in sched-
ule S′.

Conditions 1 and 2 ensure that each transaction reads the same values in both
schedules and, therefore, performs the same computation. Condition 3, coupled with
conditions 1 and 2, ensures that both schedules result in the same final system state.

In our previous examples, schedule 1 is not view equivalent to schedule 2, since,
in schedule 1, the value of account A read by transaction T2 was produced by T1,
whereas this case does not hold in schedule 2. However, schedule 1 is view equivalent
to schedule 3, because the values of account A and B read by transaction T2 were
produced by T1 in both schedules.

The concept of view equivalence leads to the concept of view serializability. We
say that a schedule S is view serializable if it is view equivalent to a serial schedule.

As an illustration, suppose that we augment schedule 7 with transaction T6, and
obtain schedule 9 in Figure 15.12. Schedule 9 is view serializable. Indeed, it is view
equivalent to the serial schedule <T3, T4, T6>, since the one read(Q) instruction reads
the initial value of Q in both schedules, and T6 performs the final write of Q in both
schedules.

Every conflict-serializable schedule is also view serializable, but there are view-
serializable schedules that are not conflict serializable. Indeed, schedule 9 is not con-
flict serializable, since every pair of consecutive instructions conflicts, and, thus, no
swapping of instructions is possible.

Observe that, in schedule 9, transactions T4 and T6 perform write(Q) operations
without having performed a read(Q) operation. Writes of this sort are called blind
writes. Blind writes appear in any view-serializable schedule that is not conflict seri-
alizable.

T3 T4 T6

read(Q)
write(Q)

write(Q)
write(Q)

Figure 15.12 Schedule 9—a view-serializable schedule.
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15.6 Recoverability
So far, we have studied what schedules are acceptable from the viewpoint of consis-
tency of the database, assuming implicitly that there are no transaction failures. We
now address the effect of transaction failures during concurrent execution.

If a transaction Ti fails, for whatever reason, we need to undo the effect of this
transaction to ensure the atomicity property of the transaction. In a system that allows
concurrent execution, it is necessary also to ensure that any transaction Tj that is
dependent on Ti (that is, Tj has read data written by Ti) is also aborted. To achieve
this surety, we need to place restrictions on the type of schedules permitted in the
system.

In the following two subsections, we address the issue of what schedules are
acceptable from the viewpoint of recovery from transaction failure. We describe in
Chapter 16 how to ensure that only such acceptable schedules are generated.

15.6.1 Recoverable Schedules
Consider schedule 11 in Figure 15.13, in which T9 is a transaction that performs only
one instruction: read(A). Suppose that the system allows T9 to commit immediately
after executing the read(A) instruction. Thus, T9 commits before T8 does. Now sup-
pose that T8 fails before it commits. Since T9 has read the value of data item A writ-
ten by T8, we must abort T9 to ensure transaction atomicity. However, T9 has already
committed and cannot be aborted. Thus, we have a situation where it is impossible
to recover correctly from the failure of T8.

Schedule 11, with the commit happening immediately after the read(A) instruc-
tion, is an example of a nonrecoverable schedule, which should not be allowed. Most
database system require that all schedules be recoverable. A recoverable schedule is
one where, for each pair of transactions Ti and Tj such that Tj reads a data item previ-
ously written by Ti, the commit operation of Ti appears before the commit operation
of Tj .

15.6.2 Cascadeless Schedules
Even if a schedule is recoverable, to recover correctly from the failure of a transac-
tion Ti, we may have to roll back several transactions. Such situations occur if trans-
actions have read data written by Ti. As an illustration, consider the partial schedule

T8 T9

read(A)
write(A)

read(A)
read(B)

Figure 15.13 Schedule 11.
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T10 T11 T12

read(A)
read(B)
write(A)

read(A)
write(A)

read(A)

Figure 15.14 Schedule 12.

of Figure 15.14. Transaction T10 writes a value of A that is read by transaction T11.
Transaction T11 writes a value of A that is read by transaction T12. Suppose that,
at this point, T10 fails. T10 must be rolled back. Since T11 is dependent on T10, T11

must be rolled back. Since T12 is dependent on T11, T12 must be rolled back. This
phenomenon, in which a single transaction failure leads to a series of transaction
rollbacks, is called cascading rollback.

Cascading rollback is undesirable, since it leads to the undoing of a significant
amount of work. It is desirable to restrict the schedules to those where cascading
rollbacks cannot occur. Such schedules are called cascadeless schedules. Formally, a
cascadeless schedule is one where, for each pair of transactions Ti and Tj such that
Tj reads a data item previously written by Ti, the commit operation of Ti appears
before the read operation of Tj . It is easy to verify that every cascadeless schedule is
also recoverable.

15.7 Implementation of Isolation
So far, we have seen what properties a schedule must have if it is to leave the database
in a consistent state and allow transaction failures to be handled in a safe manner.
Specifically, schedules that are conflict or view serializable and cascadeless satisfy
these requirements.

There are various concurrency-control schemes that we can use to ensure that,
even when multiple transactions are executed concurrently, only acceptable sched-
ules are generated, regardless of how the operating-system time-shares resources
(such as CPU time) among the transactions.

As a trivial example of a concurrency-control scheme, consider this scheme: A
transaction acquires a lock on the entire database before it starts and releases the
lock after it has committed. While a transaction holds a lock, no other transaction is
allowed to acquire the lock, and all must therefore wait for the lock to be released. As
a result of the locking policy, only one transaction can execute at a time. Therefore,
only serial schedules are generated. These are trivially serializable, and it is easy to
verify that they are cascadeless as well.

A concurrency-control scheme such as this one leads to poor performance, since it
forces transactions to wait for preceding transactions to finish before they can start. In
other words, it provides a poor degree of concurrency. As explained in Section 15.4,
concurrent execution has several performance benefits.
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The goal of concurrency-control schemes is to provide a high degree of concur-
rency, while ensuring that all schedules that can be generated are conflict or view
serializable, and are cascadeless.

We study a number of concurrency-control schemes in Chapter 16. The schemes
have different trade-offs in terms of the amount of concurrency they allow and the
amount of overhead that they incur. Some of them allow only conflict serializable
schedules to be generated; others allow certain view-serializable schedules that are
not conflict-serializable to be generated.

15.8 Transaction Definition in SQL
A data-manipulation language must include a construct for specifying the set of ac-
tions that constitute a transaction.

The SQL standard specifies that a transaction begins implicitly. Transactions are
ended by one of these SQL statements:

• Commit work commits the current transaction and begins a new one.

• Rollback work causes the current transaction to abort.

The keyword work is optional in both the statements. If a program terminates with-
out either of these commands, the updates are either committed or rolled back—
which of the two happens is not specified by the standard and depends on the im-
plementation.

The standard also specifies that the system must ensure both serializability and
freedom from cascading rollback. The definition of serializability used by the stan-
dard is that a schedule must have the same effect as would some serial schedule. Thus,
conflict and view serializability are both acceptable.

The SQL-92 standard also allows a transaction to specify that it may be executed in
a manner that causes it to become nonserializable with respect to other transactions.
We study such weaker levels of consistency in Section 16.8.

15.9 Testing for Serializability
When designing concurrency control schemes, we must show that schedules gen-
erated by the scheme are serializable. To do that, we must first understand how to
determine, given a particular schedule S, whether the schedule is serializable.

We now present a simple and efficient method for determining conflict serializ-
ability of a schedule. Consider a schedule S. We construct a directed graph, called a
precedence graph, from S. This graph consists of a pair G = (V, E), where V is a set
of vertices and E is a set of edges. The set of vertices consists of all the transactions
participating in the schedule. The set of edges consists of all edges Ti → Tj for which
one of three conditions holds:

1. Ti executes write(Q) before Tj executes read(Q).

2. Ti executes read(Q) before Tj executes write(Q).

3. Ti executes write(Q) before Tj executes write(Q).
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T1 T2 T2 T1

(a) (b)

Figure 15.15 Precedence graph for (a) schedule 1 and (b) schedule 2.

If an edge Ti → Tj exists in the precedence graph, then, in any serial schedule S′

equivalent to S, Ti must appear before Tj .
For example, the precedence graph for schedule 1 in Figure 15.15a contains the

single edge T1 → T2, since all the instructions of T1 are executed before the first in-
struction of T2 is executed. Similarly, Figure 15.15b shows the precedence graph for
schedule 2 with the single edge T2 → T1, since all the instructions of T2 are executed
before the first instruction of T1 is executed.

The precedence graph for schedule 4 appears in Figure 15.16. It contains the edge
T1 → T2, because T1 executes read(A) before T2 executes write(A). It also contains the
edge T2 → T1, because T2 executes read(B) before T1 executes write(B).

If the precedence graph for S has a cycle, then schedule S is not conflict serializable.
If the graph contains no cycles, then the schedule S is conflict serializable.

A serializability order of the transactions can be obtained through topological
sorting, which determines a linear order consistent with the partial order of the
precedence graph. There are, in general, several possible linear orders that can be
obtained through a topological sorting. For example, the graph of Figure 15.17a has
the two acceptable linear orderings shown in Figures 15.17b and 15.17c.

Thus, to test for conflict serializability, we need to construct the precedence graph
and to invoke a cycle-detection algorithm. Cycle-detection algorithms can be found
in standard textbooks on algorithms. Cycle-detection algorithms, such as those based
on depth-first search, require on the order of n2 operations, where n is the number of
vertices in the graph (that is, the number of transactions). Thus, we have a practical
scheme for determining conflict serializability.

Returning to our previous examples, note that the precedence graphs for sched-
ules 1 and 2 (Figure 15.15) indeed do not contain cycles. The precedence graph for
schedule 4 (Figure 15.16), on the other hand, contains a cycle, indicating that this
schedule is not conflict serializable.

Testing for view serializability is rather complicated. In fact, it has been shown
that the problem of testing for view serializability is itself NP-complete. Thus, al-
most certainly there exists no efficient algorithm to test for view serializability. See

T1 T2

Figure 15.16 Precedence graph for schedule 4.
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Tj Tk

Ti

Tm

(a)

Ti

Tj

Tk

Tm

(b)

Ti

Tk

Tj

Tm

(c)

Figure 15.17 Illustration of topological sorting.

the bibliographical notes for references on testing for view serializability. However,
concurrency-control schemes can still use sufficient conditions for view serializability.
That is, if the sufficient conditions are satisfied, the schedule is view serializable, but
there may be view-serializable schedules that do not satisfy the sufficient conditions.

15.10 Summary
• A transaction is a unit of program execution that accesses and possibly updates

various data items. Understanding the concept of a transaction is critical for
understanding and implementing updates of data in a database, in such a way
that concurrent executions and failures of various forms do not result in the
database becoming inconsistent.

• Transactions are required to have the ACID properties: atomicity, consistency,
isolation, and durability.
� Atomicity ensures that either all the effects of a transaction are reflected

in the database, or none are; a failure cannot leave the database in a state
where a transaction is partially executed.

� Consistency ensures that, if the database is initially consistent, the execu-
tion of the transaction (by itself) leaves the database in a consistent state.
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� Isolation ensures that concurrently executing transactions are isolated from
one another, so that each has the impression that no other transaction is
executing concurrently with it.

� Durability ensures that, once a transaction has been committed, that trans-
action’s updates do not get lost, even if there is a system failure.

• Concurrent execution of transactions improves throughput of transactions and
system utilization, and also reduces waiting time of transactions.

• When several transactions execute concurrently in the database, the consis-
tency of data may no longer be preserved. It is therefore necessary for the
system to control the interaction among the concurrent transactions.
� Since a transaction is a unit that preserves consistency, a serial execution

of transactions guarantees that consistency is preserved.
� A schedule captures the key actions of transactions that affect concurrent

execution, such as read and write operations, while abstracting away in-
ternal details of the execution of the transaction.

� We require that any schedule produced by concurrent processing of a
set of transactions will have an effect equivalent to a schedule produced
when these transactions are run serially in some order.

� A system that guarantees this property is said to ensure serializability.
� There are several different notions of equivalence leading to the concepts

of conflict serializability and view serializability.

• Serializability of schedules generated by concurrently executing transactions
can be ensured through one of a variety of mechanisms called concurrency-
control schemes.

• Schedules must be recoverable, to make sure that if transaction a sees the ef-
fects of transaction b, and b then aborts, then a also gets aborted.

• Schedules should preferably be cascadeless, so that the abort of a transaction
does not result in cascading aborts of other transactions. Cascadelessness is
ensured by allowing transactions to only read committed data.

• The concurrency-control–management component of the database is respon-
sible for handling the concurrency-control schemes. Chapter 16 describes
concurrency-control schemes.

• The recovery-management component of a database is responsible for ensur-
ing the atomicity and durability properties of transactions.

The shadow copy scheme is used for ensuring atomicity and durability in
text editors; however, it has extremely high overheads when used for database
systems, and, moreover, it does not support concurrent execution. Chapter 17
covers better schemes.

• We can test a given schedule for conflict serializability by constructing a prece-
dence graph for the schedule, and by searching for absence of cycles in the
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graph. However, there are more efficient concurrency control schemes for en-
suring serializability.

Review Terms
• Transaction

• ACID properties

� Atomicity
� Consistency
� Isolation
� Durability

• Inconsistent state

• Transaction state

� Active
� Partially committed
� Failed
� Aborted
� Committed
� Terminated

• Transaction

� Restart
� Kill

• Observable external writes

• Shadow copy scheme

• Concurrent executions
• Serial execution
• Schedules
• Conflict of operations
• Conflict equivalence
• Conflict serializability
• View equivalence
• View serializability
• Blind writes
• Recoverability
• Recoverable schedules
• Cascading rollback
• Cascadeless schedules
• Concurrency-control scheme
• Lock
• Serializability testing
• Precedence graph
• Serializability order

Exercises
15.1 List the ACID properties. Explain the usefulness of each.

15.2 Suppose that there is a database system that never fails. Is a recovery manager
required for this system?

15.3 Consider a file system such as the one on your favorite operating system.
a. What are the steps involved in creation and deletion of files, and in writing

data to a file?
b. Explain how the issues of atomicity and durability are relevant to the cre-

ation and deletion of files, and to writing data to files.

15.4 Database-system implementers have paid much more attention to the ACID
properties than have file-system implementers. Why might this be the case?

15.5 During its execution, a transaction passes through several states, until it finally
commits or aborts. List all possible sequences of states through which a trans-
action may pass. Explain why each state transition may occur.
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15.6 Justify the following statement: Concurrent execution of transactions is more
important when data must be fetched from (slow) disk or when transactions
are long, and is less important when data is in memory and transactions are
very short.

15.7 Explain the distinction between the terms serial schedule and serializable schedule.

15.8 Consider the following two transactions:

T1: read(A);
read(B);
if A = 0 then B := B + 1;
write(B).

T2: read(B);
read(A);
if B = 0 then A := A + 1;
write(A).

Let the consistency requirement be A = 0 ∨ B = 0, with A = B = 0 the
initial values.

a. Show that every serial execution involving these two transactions pre-
serves the consistency of the database.

b. Show a concurrent execution of T1 and T2 that produces a nonserializable
schedule.

c. Is there a concurrent execution of T1 and T2 that produces a serializable
schedule?

15.9 Since every conflict-serializable schedule is view serializable, why do we em-
phasize conflict serializability rather than view serializability?

15.10 Consider the precedence graph of Figure 15.18. Is the corresponding schedule
conflict serializable? Explain your answer.

15.11 What is a recoverable schedule? Why is recoverability of schedules desirable?
Are there any circumstances under which it would be desirable to allow non-
recoverable schedules? Explain your answer.

T4

T2

T5

T1

T3

Figure 15.18 Precedence graph.
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15.12 What is a cascadeless schedule? Why is cascadelessness of schedules desir-
able? Are there any circumstances under which it would be desirable to allow
noncascadeless schedules? Explain your answer.

Bibliographical Notes
Gray and Reuter [1993] provides detailed textbook coverage of transaction-processing
concepts, techniques and implementation details, including concurrency control and
recovery issues. Bernstein and Newcomer [1997] provides textbook coverage of var-
ious aspects of transaction processing.

Early textbook discussions of concurrency control and recovery included Papadim-
itriou [1986] and Bernstein et al. [1987]. An early survey paper on implementation
issues in concurrency control and recovery is presented by Gray [1978].

The concept of serializability was formalized by Eswaran et al. [1976] in connection
to work on concurrency control for System R. The results concerning serializability
testing and NP-completeness of testing for view serializability are from Papadim-
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Concurrency Control

We saw in Chapter 15 that one of the fundamental properties of a transaction is iso-
lation. When several transactions execute concurrently in the database, however, the
isolation property may no longer be preserved. To ensure that it is, the system must
control the interaction among the concurrent transactions; this control is achieved
through one of a variety of mechanisms called concurrency-control schemes.

The concurrency-control schemes that we discuss in this chapter are all based on
the serializability property. That is, all the schemes presented here ensure that the
schedules are serializable. In Chapter 24, we discuss concurrency control schemes
that admit nonserializable schedules. In this chapter, we consider the management of
concurrently executing transactions, and we ignore failures. In Chapter 17, we shall
see how the system can recover from failures.

16.1 Lock-Based Protocols
One way to ensure serializability is to require that data items be accessed in a mutu-
ally exclusive manner; that is, while one transaction is accessing a data item, no other
transaction can modify that data item. The most common method used to implement
this requirement is to allow a transaction to access a data item only if it is currently
holding a lock on that item.

16.1.1 Locks
There are various modes in which a data item may be locked. In this section, we
restrict our attention to two modes:

1. Shared. If a transaction Ti has obtained a shared-mode lock (denoted by S)
on item Q, then Ti can read, but cannot write, Q.

2. Exclusive. If a transaction Ti has obtained an exclusive-mode lock (denoted
by X) on item Q, then Ti can both read and write Q.

591
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S X
S true false
X false false

Figure 16.1 Lock-compatibility matrix comp.

We require that every transaction request a lock in an appropriate mode on data
item Q, depending on the types of operations that it will perform on Q. The trans-
action makes the request to the concurrency-control manager. The transaction can
proceed with the operation only after the concurrency-control manager grants the
lock to the transaction.

Given a set of lock modes, we can define a compatibility function on them as
follows. Let A and B represent arbitrary lock modes. Suppose that a transaction Ti

requests a lock of mode A on item Q on which transaction Tj (Ti �= Tj) currently holds
a lock of mode B. If transaction Ti can be granted a lock on Q immediately, in spite
of the presence of the mode B lock, then we say mode A is compatible with mode
B. Such a function can be represented conveniently by a matrix. The compatibility
relation between the two modes of locking discussed in this section appears in the
matrix comp of Figure 16.1. An element comp(A, B) of the matrix has the value true if
and only if mode A is compatible with mode B.

Note that shared mode is compatible with shared mode, but not with exclusive
mode. At any time, several shared-mode locks can be held simultaneously (by differ-
ent transactions) on a particular data item. A subsequent exclusive-mode lock request
has to wait until the currently held shared-mode locks are released.

A transaction requests a shared lock on data item Q by executing the lock-S(Q)
instruction. Similarly, a transaction requests an exclusive lock through the lock-X(Q)
instruction. A transaction can unlock a data item Q by the unlock(Q) instruction.

To access a data item, transaction Ti must first lock that item. If the data item is
already locked by another transaction in an incompatible mode, the concurrency-
control manager will not grant the lock until all incompatible locks held by other
transactions have been released. Thus, Ti is made to wait until all incompatible locks
held by other transactions have been released.

T1: lock-X(B);
read(B);
B := B − 50;
write(B);
unlock(B);
lock-X(A);
read(A);
A := A + 50;
write(A);
unlock(A).

Figure 16.2 Transaction T1.



Silberschatz−Korth−Sudarshan: 
Database System 
Concepts, Fourth Edition

V. Transaction 
Management

16. Concurrency Control592 © The McGraw−Hill 
Companies, 2001

16.1 Lock-Based Protocols 593

T2: lock-S(A);
read(A);
unlock(A);
lock-S(B);
read(B);
unlock(B);
display(A + B).

Figure 16.3 Transaction T2.

Transaction Ti may unlock a data item that it had locked at some earlier point.
Note that a transaction must hold a lock on a data item as long as it accesses that item.
Moreover, for a transaction to unlock a data item immediately after its final access of
that data item is not always desirable, since serializability may not be ensured.

As an illustration, consider again the simplified banking system that we intro-
duced in Chapter 15. Let A and B be two accounts that are accessed by transactions
T1 and T2. Transaction T1 transfers $50 from account B to account A (Figure 16.2).
Transaction T2 displays the total amount of money in accounts A and B—that is, the
sum A + B (Figure 16.3).

anagerT1 T2 concurrency-control
lock-X(B)

grant-X(B, T1)
read(B)
B := B 50
write(B)
unlock(B)

lock-S(A)
grant-S(A, T2)

read(A)
unlock(A)
lock-S(B)

grant-S(B, T2)
read(B)
unlock(B)
display(A + B)

lock-X(A)
grant-X(A, T2)

read(A)
A := A + 50
write(A)
unlock(A)

––

m

Figure 16.4 Schedule 1.
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T3: lock-X(B);
read(B);
B := B − 50;
write(B);
lock-X(A);
read(A);
A := A + 50;
write(A);
unlock(B);
unlock(A).

Figure 16.5 Transaction T3.

Suppose that the values of accounts A and B are $100 and $200, respectively. If these
two transactions are executed serially, either in the order T1, T2 or the order T2, T1,
then transaction T2 will display the value $300. If, however, these transactions are
executed concurrently, then schedule 1, in Figure 16.4 is possible. In this case, trans-
action T2 displays $250, which is incorrect. The reason for this mistake is that the
transaction T1 unlocked data item B too early, as a result of which T2 saw an incon-
sistent state.

The schedule shows the actions executed by the transactions, as well as the points
at which the concurrency-control manager grants the locks. The transaction mak-
ing a lock request cannot execute its next action until the concurrency-control man-
ager grants the lock. Hence, the lock must be granted in the interval of time between
the lock-request operation and the following action of the transaction. Exactly when
within this interval the lock is granted is not important; we can safely assume that the
lock is granted just before the following action of the transaction. We shall therefore
drop the column depicting the actions of the concurrency-control manager from all
schedules depicted in the rest of the chapter. We let you infer when locks are granted.

Suppose now that unlocking is delayed to the end of the transaction. Transac-
tion T3 corresponds to T1 with unlocking delayed (Figure 16.5). Transaction T4 corre-
sponds to T2 with unlocking delayed (Figure 16.6).

You should verify that the sequence of reads and writes in schedule 1, which lead
to an incorrect total of $250 being displayed, is no longer possible with T3 and T4.

T4: lock-S(A);
read(A);
lock-S(B);
read(B);
display(A + B);
unlock(A);
unlock(B).

Figure 16.6 Transaction T4.
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T3 T4

lock-X(B)
read(B)
B := B 50
write(B)

lock-S(A)
read(A)
lock-S(B)

lock-X(A)

–

Figure 16.7 Schedule 2.

Other schedules are possible. T4 will not print out an inconsistent result in any of
them; we shall see why later.

Unfortunately, locking can lead to an undesirable situation. Consider the partial
schedule of Figure 16.7 for T3 and T4. Since T3 is holding an exclusive-mode lock
on B and T4 is requesting a shared-mode lock on B, T4 is waiting for T3 to unlock
B. Similarly, since T4 is holding a shared-mode lock on A and T3 is requesting an
exclusive-mode lock on A, T3 is waiting for T4 to unlock A. Thus, we have arrived at
a state where neither of these transactions can ever proceed with its normal execution.
This situation is called deadlock. When deadlock occurs, the system must roll back
one of the two transactions. Once a transaction has been rolled back, the data items
that were locked by that transaction are unlocked. These data items are then available
to the other transaction, which can continue with its execution. We shall return to the
issue of deadlock handling in Section 16.6.

If we do not use locking, or if we unlock data items as soon as possible after read-
ing or writing them, we may get inconsistent states. On the other hand, if we do not
unlock a data item before requesting a lock on another data item, deadlocks may
occur. There are ways to avoid deadlock in some situations, as we shall see in Sec-
tion 16.1.5. However, in general, deadlocks are a necessary evil associated with lock-
ing, if we want to avoid inconsistent states. Deadlocks are definitely preferable to in-
consistent states, since they can be handled by rolling back of transactions, whereas
inconsistent states may lead to real-world problems that cannot be handled by the
database system.

We shall require that each transaction in the system follow a set of rules, called a
locking protocol, indicating when a transaction may lock and unlock each of the data
items. Locking protocols restrict the number of possible schedules. The set of all such
schedules is a proper subset of all possible serializable schedules. We shall present
several locking protocols that allow only conflict-serializable schedules. Before doing
so, we need a few definitions.

Let {T0, T1, . . ., Tn} be a set of transactions participating in a schedule S. We say
that Ti precedes Tj in S, written Ti → Tj , if there exists a data item Q such that Ti

has held lock mode A on Q, and Tj has held lock mode B on Q later, and comp(A,B)
= false. If Ti → Tj , then that precedence implies that in any equivalent serial sched-
ule, Ti must appear before Tj . Observe that this graph is similar to the precedence
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graph that we used in Section 15.9 to test for conflict serializability. Conflicts between
instructions correspond to noncompatibility of lock modes.

We say that a schedule S is legal under a given locking protocol if S is a possible
schedule for a set of transactions that follow the rules of the locking protocol. We say
that a locking protocol ensures conflict serializability if and only if all legal sched-
ules are conflict serializable; in other words, for all legal schedules the associated →
relation is acyclic.

16.1.2 Granting of Locks
When a transaction requests a lock on a data item in a particular mode, and no other
transaction has a lock on the same data item in a conflicting mode, the lock can be
granted. However, care must be taken to avoid the following scenario. Suppose a
transaction T2 has a shared-mode lock on a data item, and another transaction T1

requests an exclusive-mode lock on the data item. Clearly, T1 has to wait for T2 to re-
lease the shared-mode lock. Meanwhile, a transaction T3 may request a shared-mode
lock on the same data item. The lock request is compatible with the lock granted to
T2, so T3 may be granted the shared-mode lock. At this point T2 may release the lock,
but still T1 has to wait for T3 to finish. But again, there may be a new transaction
T4 that requests a shared-mode lock on the same data item, and is granted the lock
before T3 releases it. In fact, it is possible that there is a sequence of transactions that
each requests a shared-mode lock on the data item, and each transaction releases the
lock a short while after it is granted, but T1 never gets the exclusive-mode lock on the
data item. The transaction T1 may never make progress, and is said to be starved.

We can avoid starvation of transactions by granting locks in the following manner:
When a transaction Ti requests a lock on a data item Q in a particular mode M , the
concurrency-control manager grants the lock provided that

1. There is no other other transaction holding a lock on Q in a mode that conflicts
with M .

2. There is no other transaction that is waiting for a lock on Q, and that made its
lock request before Ti.

Thus, a lock request will never get blocked by a lock request that is made later.

16.1.3 The Two-Phase Locking Protocol
One protocol that ensures serializability is the two-phase locking protocol. This pro-
tocol requires that each transaction issue lock and unlock requests in two phases:

1. Growing phase. A transaction may obtain locks, but may not release any lock.

2. Shrinking phase. A transaction may release locks, but may not obtain any
new locks.
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Initially, a transaction is in the growing phase. The transaction acquires locks as
needed. Once the transaction releases a lock, it enters the shrinking phase, and it
can issue no more lock requests.

For example, transactions T3 and T4 are two phase. On the other hand, transactions
T1 and T2 are not two phase. Note that the unlock instructions do not need to appear
at the end of the transaction. For example, in the case of transaction T3, we could
move the unlock(B) instruction to just after the lock-X(A) instruction, and still retain
the two-phase locking property.

We can show that the two-phase locking protocol ensures conflict serializability.
Consider any transaction. The point in the schedule where the transaction has ob-
tained its final lock (the end of its growing phase) is called the lock point of the
transaction. Now, transactions can be ordered according to their lock points—this or-
dering is, in fact, a serializability ordering for the transactions. We leave the proof as
an exercise for you to do (see Exercise 16.1).

Two-phase locking does not ensure freedom from deadlock. Observe that transac-
tions T3 and T4 are two phase, but, in schedule 2 (Figure 16.7), they are deadlocked.

Recall from Section 15.6.2 that, in addition to being serializable, schedules should
be cascadeless. Cascading rollback may occur under two-phase locking. As an illus-
tration, consider the partial schedule of Figure 16.8. Each transaction observes the
two-phase locking protocol, but the failure of T5 after the read(A) step of T7 leads to
cascading rollback of T6 and T7.

Cascading rollbacks can be avoided by a modification of two-phase locking called
the strict two-phase locking protocol. This protocol requires not only that locking
be two phase, but also that all exclusive-mode locks taken by a transaction be held
until that transaction commits. This requirement ensures that any data written by an
uncommitted transaction are locked in exclusive mode until the transaction commits,
preventing any other transaction from reading the data.

Another variant of two-phase locking is the rigorous two-phase locking proto-
col, which requires that all locks be held until the transaction commits. We can easily

read

T5 T6 T7

lock-X(A)
read(A)
lock-S(B)
read(B)
write(A)
unlock(A)

lock-X(A)
read(A)
write(A)
unlock(A)

lock-S(A)
read(A)

Figure 16.8 Partial schedule under two-phase locking.
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verify that, with rigorous two-phase locking, transactions can be serialized in the or-
der in which they commit. Most database systems implement either strict or rigorous
two-phase locking.

Consider the following two transactions, for which we have shown only some of
the significant read and write operations:

T8: read(a1);
read(a2);
. . .
read(an);
write(a1).

T9: read(a1);
read(a2);
display(a1 + a2).

If we employ the two-phase locking protocol, then T8 must lock a1 in exclusive
mode. Therefore, any concurrent execution of both transactions amounts to a serial
execution. Notice, however, that T8 needs an exclusive lock on a1 only at the end of
its execution, when it writes a1. Thus, if T8 could initially lock a1 in shared mode, and
then could later change the lock to exclusive mode, we could get more concurrency,
since T8 and T9 could access a1 and a2 simultaneously.

This observation leads us to a refinement of the basic two-phase locking protocol,
in which lock conversions are allowed. We shall provide a mechanism for upgrading
a shared lock to an exclusive lock, and downgrading an exclusive lock to a shared
lock. We denote conversion from shared to exclusive modes by upgrade, and from
exclusive to shared by downgrade. Lock conversion cannot be allowed arbitrarily.
Rather, upgrading can take place in only the growing phase, whereas downgrading
can take place in only the shrinking phase.

Returning to our example, transactions T8 and T9 can run concurrently under
the refined two-phase locking protocol, as shown in the incomplete schedule of Fig-
ure 16.9, where only some of the locking instructions are shown.

T8 T9

lock-S (a

a
a

a

a
a

a
a

a
a

1 )
lock-S( 1 )

lock-S ( 2 )
lock-S( 2 )

lock-S ( 3 )
lock-S ( 4 )

unlock( 1 )
unlock( 2 )

lock-S ( n )
upgrade ( 1 )

Figure 16.9 Incomplete schedule with a lock conversion.
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Note that a transaction attempting to upgrade a lock on an item Q may be forced
to wait. This enforced wait occurs if Q is currently locked by another transaction in
shared mode.

Just like the basic two-phase locking protocol, two-phase locking with lock conver-
sion generates only conflict-serializable schedules, and transactions can be serialized
by their lock points. Further, if exclusive locks are held until the end of the transac-
tion, the schedules are cascadeless.

For a set of transactions, there may be conflict-serializable schedules that cannot
be obtained through the two-phase locking protocol. However, to obtain conflict-
serializable schedules through non-two-phase locking protocols, we need either to
have additional information about the transactions or to impose some structure or
ordering on the set of data items in the database. In the absence of such information,
two-phase locking is necessary for conflict serializability—if Ti is a non-two-phase
transaction, it is always possible to find another transaction Tj that is two-phase so
that there is a schedule possible for Ti and Tj that is not conflict serializable.

Strict two-phase locking and rigorous two-phase locking (with lock conversions)
are used extensively in commercial database systems.

A simple but widely used scheme automatically generates the appropriate lock
and unlock instructions for a transaction, on the basis of read and write requests
from the transaction:

• When a transaction Ti issues a read(Q) operation, the system issues a lock-
S(Q) instruction followed by the read(Q) instruction.

• When Ti issues a write(Q) operation, the system checks to see whether Ti

already holds a shared lock on Q. If it does, then the system issues an up-
grade(Q) instruction, followed by the write(Q) instruction. Otherwise, the sys-
tem issues a lock-X(Q) instruction, followed by the write(Q) instruction.

• All locks obtained by a transaction are unlocked after that transaction commits
or aborts.

16.1.4 Implementation of Locking∗∗
A lock manager can be implemented as a process that receives messages from trans-
actions and sends messages in reply. The lock-manager process replies to lock-request
messages with lock-grant messages, or with messages requesting rollback of the trans-
action (in case of deadlocks). Unlock messages require only an acknowledgment in
response, but may result in a grant message to another waiting transaction.

The lock manager uses this data structure: For each data item that is currently
locked, it maintains a linked list of records, one for each request, in the order in which
the requests arrived. It uses a hash table, indexed on the name of a data item, to
find the linked list (if any) for a data item; this table is called the lock table. Each
record of the linked list for a data item notes which transaction made the request,
and what lock mode it requested. The record also notes if the request has currently
been granted.
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Figure 16.10 Lock table.

Figure 16.10 shows an example of a lock table. The table contains locks for five
different data items, I4, I7, I23, I44, and I912. The lock table uses overflow chaining,
so there is a linked list of data items for each entry in the lock table. There is also a list
of transactions that have been granted locks, or are waiting for locks, for each of the
data items. Granted locks are the filled-in (black) rectangles, while waiting requests
are the empty rectangles. We have omitted the lock mode to keep the figure simple.
It can be seen, for example, that T23 has been granted locks on I912 and I7, and is
waiting for a lock on I4.

Although the figure does not show it, the lock table should also maintain an index
on transaction identifiers, so that it is possible to determine efficiently the set of locks
held by a given transaction.

The lock manager processes requests this way:

• When a lock request message arrives, it adds a record to the end of the linked
list for the data item, if the linked list is present. Otherwise it creates a new
linked list, containing only the record for the request.

It always grants the first lock request on a data item. But if the transaction
requests a lock on an item on which a lock has already been granted, the lock
manager grants the request only if it is compatible with all earlier requests,
and all earlier requests have been granted already. Otherwise the request has
to wait.
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• When the lock manager receives an unlock message from a transaction, it
deletes the record for that data item in the linked list corresponding to that
transaction. It tests the record that follows, if any, as described in the previous
paragraph, to see if that request can now be granted. If it can, the lock man-
ager grants that request, and processes the record following it, if any, similarly,
and so on.

• If a transaction aborts, the lock manager deletes any waiting request made
by the transaction. Once the database system has taken appropriate actions to
undo the transaction (see Section 17.3), it releases all locks held by the aborted
transaction.

This algorithm guarantees freedom from starvation for lock requests, since a re-
quest can never be granted while a request received earlier is waiting to be granted.
We study how to detect and handle deadlocks later, in Section 16.6.3. Section 18.2.1
describes an alternative implementation—one that uses shared memory instead of
message passing for lock request/grant.

16.1.5 Graph-Based Protocols
As noted in Section 16.1.3, the two-phase locking protocol is both necessary and suf-
ficient for ensuring serializability in the absence of information concerning the man-
ner in which data items are accessed. But, if we wish to develop protocols that are
not two phase, we need additional information on how each transaction will access
the database. There are various models that can give us the additional information,
each differing in the amount of information provided. The simplest model requires
that we have prior knowledge about the order in which the database items will be
accessed. Given such information, it is possible to construct locking protocols that are
not two phase, but that, nevertheless, ensure conflict serializability.

To acquire such prior knowledge, we impose a partial ordering → on the set
D = {d1, d2, . . ., dh} of all data items. If di → dj , then any transaction accessing both
di and dj must access di before accessing dj . This partial ordering may be the result
of either the logical or the physical organization of the data, or it may be imposed
solely for the purpose of concurrency control.

The partial ordering implies that the set D may now be viewed as a directed acyclic
graph, called a database graph. In this section, for the sake of simplicity, we will
restrict our attention to only those graphs that are rooted trees. We will present a
simple protocol, called the tree protocol, which is restricted to employ only exclusive
locks. References to other, more complex, graph-based locking protocols are in the
bibliographical notes.

In the tree protocol, the only lock instruction allowed is lock-X. Each transaction
Ti can lock a data item at most once, and must observe the following rules:

1. The first lock by Ti may be on any data item.

2. Subsequently, a data item Q can be locked by Ti only if the parent of Q is
currently locked by Ti.
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3. Data items may be unlocked at any time.

4. A data item that has been locked and unlocked by Ti cannot subsequently be
relocked by Ti.

All schedules that are legal under the tree protocol are conflict serializable.
To illustrate this protocol, consider the database graph of Figure 16.11. The follow-

ing four transactions follow the tree protocol on this graph. We show only the lock
and unlock instructions:

T10: lock-X(B); lock-X(E); lock-X(D); unlock(B); unlock(E); lock-X(G);
unlock(D); unlock(G).

T11: lock-X(D); lock-X(H); unlock(D); unlock(H).
T12: lock-X(B); lock-X(E); unlock(E); unlock(B).
T13: lock-X(D); lock-X(H); unlock(D); unlock(H).

One possible schedule in which these four transactions participated appears in
Figure 16.12. Note that, during its execution, transaction T10 holds locks on two dis-
joint subtrees.

Observe that the schedule of Figure 16.12 is conflict serializable. It can be shown
not only that the tree protocol ensures conflict serializability, but also that this proto-
col ensures freedom from deadlock.

The tree protocol in Figure 16.12 does not ensure recoverability and cascadeless-
ness. To ensure recoverability and cascadelessness, the protocol can be modified to
not permit release of exclusive locks until the end of the transaction. Holding exclu-
sive locks until the end of the transaction reduces concurrency. Here is an alterna-
tive that improves concurrency, but ensures only recoverability: For each data item
with an uncommitted write we record which transaction performed the last write to
the data item. Whenever a transaction Ti performs a read of an uncommitted data
item, we record a commit dependency of Ti on the transaction that performed the

E

A

I

B C

D

J

H

F

G

Figure 16.11 Tree-structured database graph.
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Figure 16.12 Serializable schedule under the tree protocol.

last write to the data item. Transaction Ti is then not permitted to commit until the
commit of all transactions on which it has a commit dependency. If any of these trans-
actions aborts, Ti must also be aborted.

The tree-locking protocol has an advantage over the two-phase locking protocol in
that, unlike two-phase locking, it is deadlock-free, so no rollbacks are required. The
tree-locking protocol has another advantage over the two-phase locking protocol in
that unlocking may occur earlier. Earlier unlocking may lead to shorter waiting times,
and to an increase in concurrency.

However, the protocol has the disadvantage that, in some cases, a transaction may
have to lock data items that it does not access. For example, a transaction that needs
to access data items A and J in the database graph of Figure 16.11 must lock not only
A and J, but also data items B, D, and H. This additional locking results in increased
locking overhead, the possibility of additional waiting time, and a potential decrease
in concurrency. Further, without prior knowledge of what data items will need to
be locked, transactions will have to lock the root of the tree, and that can reduce
concurrency greatly.

For a set of transactions, there may be conflict-serializable schedules that cannot
be obtained through the tree protocol. Indeed, there are schedules possible under the
two-phase locking protocol that are not possible under the tree protocol, and vice
versa. Examples of such schedules are explored in the exercises.
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16.2 Timestamp-Based Protocols
The locking protocols that we have described thus far determine the order between
every pair of conflicting transactions at execution time by the first lock that both
members of the pair request that involves incompatible modes. Another method
for determining the serializability order is to select an ordering among transactions
in advance. The most common method for doing so is to use a timestamp-ordering
scheme.

16.2.1 Timestamps
With each transaction Ti in the system, we associate a unique fixed timestamp, de-
noted by TS(Ti). This timestamp is assigned by the database system before the trans-
action Ti starts execution. If a transaction Ti has been assigned timestamp TS(Ti), and
a new transaction Tj enters the system, then TS(Ti) < TS(Tj). There are two simple
methods for implementing this scheme:

1. Use the value of the system clock as the timestamp; that is, a transaction’s time-
stamp is equal to the value of the clock when the transaction enters the system.

2. Use a logical counter that is incremented after a new timestamp has been
assigned; that is, a transaction’s timestamp is equal to the value of the counter
when the transaction enters the system.

The timestamps of the transactions determine the serializability order. Thus, if
TS(Ti) < TS(Tj), then the system must ensure that the produced schedule is equiva-
lent to a serial schedule in which transaction Ti appears before transaction Tj .

To implement this scheme, we associate with each data item Q two timestamp
values:

• W-timestamp(Q) denotes the largest timestamp of any transaction that exe-
cuted write(Q) successfully.

• R-timestamp(Q) denotes the largest timestamp of any transaction that exe-
cuted read(Q) successfully.

These timestamps are updated whenever a new read(Q) or write(Q) instruction is
executed.

16.2.2 The Timestamp-Ordering Protocol
The timestamp-ordering protocol ensures that any conflicting read and write opera-
tions are executed in timestamp order. This protocol operates as follows:

1. Suppose that transaction Ti issues read(Q).
a. If TS(Ti) < W-timestamp(Q), then Ti needs to read a value of Q that was

already overwritten. Hence, the read operation is rejected, and Ti is rolled
back.
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b. If TS(Ti) ≥ W-timestamp(Q), then the read operation is executed, and R-
timestamp(Q) is set to the maximum of R-timestamp(Q) and TS(Ti).

2. Suppose that transaction Ti issues write(Q).
a. If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is producing was

needed previously, and the system assumed that that value would never
be produced. Hence, the system rejects the write operation and rolls Ti

back.
b. If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an obsolete

value of Q. Hence, the system rejects this write operation and rolls Ti back.
c. Otherwise, the system executes the write operation and sets W-time-

stamp(Q) to TS(Ti).

If a transaction Ti is rolled back by the concurrency-control scheme as result of is-
suance of either a read or write operation, the system assigns it a new timestamp and
restarts it.

To illustrate this protocol, we consider transactions T14 and T15. Transaction T14

displays the contents of accounts A and B:

T14: read(B);
read(A);
display(A + B).

Transaction T15 transfers $50 from account A to account B, and then displays the
contents of both:

T15: read(B);
B := B − 50;
write(B);
read(A);
A := A + 50;
write(A);
display(A + B).

In presenting schedules under the timestamp protocol, we shall assume that a trans-
action is assigned a timestamp immediately before its first instruction. Thus, in sched-
ule 3 of Figure 16.13, TS(T14) < TS(T15), and the schedule is possible under the time-
stamp protocol.

We note that the preceding execution can also be produced by the two-phase lock-
ing protocol. There are, however, schedules that are possible under the two-phase
locking protocol, but are not possible under the timestamp protocol, and vice versa
(see Exercise 16.20).

The timestamp-ordering protocol ensures conflict serializability. This is because
conflicting operations are processed in timestamp order.

The protocol ensures freedom from deadlock, since no transaction ever waits.
However, there is a possibility of starvation of long transactions if a sequence of
conflicting short transactions causes repeated restarting of the long transaction. If
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T14 T15

read (B)
read (B)
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write(B)

read (A)
read (A)

display(A + B)
A := A + 50
write(A)
display (A + B)

Figure 16.13 Schedule 3.

a transaction is found to be getting restarted repeatedly, conflicting transactions need
to be temporarily blocked to enable the transaction to finish.

The protocol can generate schedules that are not recoverable. However, it can be
extended to make the schedules recoverable, in one of several ways:

• Recoverability and cascadelessness can be ensured by performing all writes
together at the end of the transaction. The writes must be atomic in the fol-
lowing sense: While the writes are in progress, no transaction is permitted to
access any of the data items that have been written.

• Recoverability and cascadelessness can also be guaranteed by using a limited
form of locking, whereby reads of uncommitted items are postponed until the
transaction that updated the item commits (see Exercise 16.22).

• Recoverability alone can be ensured by tracking uncommitted writes, and al-
lowing a transaction Ti to commit only after the commit of any transaction that
wrote a value that Ti read. Commit dependencies, outlined in Section 16.1.5,
can be used for this purpose.

16.2.3 Thomas’ Write Rule
We now present a modification to the timestamp-ordering protocol that allows greater
potential concurrency than does the protocol of Section 16.2.2. Let us consider sched-
ule 4 of Figure 16.14, and apply the timestamp-ordering protocol. Since T16 starts
before T17, we shall assume that TS(T16) < TS(T17). The read(Q) operation of T16 suc-
ceeds, as does the write(Q) operation of T17. When T16 attempts its write(Q) operation,
we find that TS(T16) < W-timestamp(Q), since W-timestamp(Q) = TS(T17). Thus, the
write(Q) by T16 is rejected and transaction T16 must be rolled back.

Although the rollback of T16 is required by the timestamp-ordering protocol, it
is unnecessary. Since T17 has already written Q, the value that T16 is attempting to
write is one that will never need to be read. Any transaction Ti with TS(Ti) < TS(T17)
that attempts a read(Q) will be rolled back, since TS(Ti) < W-timestamp(Q). Any
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Figure 16.14 Schedule 4.

transaction Tj with TS(Tj) > TS(T17) must read the value of Q written by T17, rather
than the value written by T16.

This observation leads to a modified version of the timestamp-ordering protocol
in which obsolete write operations can be ignored under certain circumstances. The
protocol rules for read operations remain unchanged. The protocol rules for write
operations, however, are slightly different from the timestamp-ordering protocol of
Section 16.2.2.

The modification to the timestamp-ordering protocol, called Thomas’ write rule,
is this: Suppose that transaction Ti issues write(Q).

1. If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is producing was pre-
viously needed, and it had been assumed that the value would never be pro-
duced. Hence, the system rejects the write operation and rolls Ti back.

2. If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an obsolete value
of Q. Hence, this write operation can be ignored.

3. Otherwise, the system executes the write operation and sets W-timestamp(Q)
to TS(Ti).

The difference between these rules and those of Section 16.2.2 lies in the second
rule. The timestamp-ordering protocol requires that Ti be rolled back if Ti issues
write(Q) and TS(Ti) < W-timestamp(Q). However, here, in those cases where TS(Ti)
≥ R-timestamp(Q), we ignore the obsolete write.

Thomas’ write rule makes use of view serializability by, in effect, deleting obsolete
write operations from the transactions that issue them. This modification of transac-
tions makes it possible to generate serializable schedules that would not be possible
under the other protocols presented in this chapter. For example, schedule 4 of Fig-
ure 16.14 is not conflict serializable and, thus, is not possible under any of two-phase
locking, the tree protocol, or the timestamp-ordering protocol. Under Thomas’ write
rule, the write(Q) operation of T16 would be ignored. The result is a schedule that is
view equivalent to the serial schedule <T16, T17>.

16.3 Validation-Based Protocols
In cases where a majority of transactions are read-only transactions, the rate of con-
flicts among transactions may be low. Thus, many of these transactions, if executed
without the supervision of a concurrency-control scheme, would nevertheless leave
the system in a consistent state. A concurrency-control scheme imposes overhead of
code execution and possible delay of transactions. It may be better to use an alterna-
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tive scheme that imposes less overhead. A difficulty in reducing the overhead is that
we do not know in advance which transactions will be involved in a conflict. To gain
that knowledge, we need a scheme for monitoring the system.

We assume that each transaction Ti executes in two or three different phases in its
lifetime, depending on whether it is a read-only or an update transaction. The phases
are, in order,

1. Read phase. During this phase, the system executes transaction Ti. It reads
the values of the various data items and stores them in variables local to Ti.
It performs all write operations on temporary local variables, without updates
of the actual database.

2. Validation phase. Transaction Ti performs a validation test to determine whe-
ther it can copy to the database the temporary local variables that hold the
results of write operations without causing a violation of serializability.

3. Write phase. If transaction Ti succeeds in validation (step 2), then the system
applies the actual updates to the database. Otherwise, the system rolls back
Ti.

Each transaction must go through the three phases in the order shown. However, all
three phases of concurrently executing transactions can be interleaved.

To perform the validation test, we need to know when the various phases of trans-
actions Ti took place. We shall, therefore, associate three different timestamps with
transaction Ti:

1. Start(Ti), the time when Ti started its execution.

2. Validation(Ti), the time when Ti finished its read phase and started its vali-
dation phase.

3. Finish(Ti), the time when Ti finished its write phase.

We determine the serializability order by the timestamp-ordering technique, using
the value of the timestamp Validation(Ti). Thus, the value TS(Ti) = Validation(Ti)
and, if TS(Tj) < TS(Tk), then any produced schedule must be equivalent to a serial
schedule in which transaction Tj appears before transaction Tk. The reason we have
chosen Validation(Ti), rather than Start(Ti), as the timestamp of transaction Ti is that
we can expect faster response time provided that conflict rates among transactions
are indeed low.

The validation test for transaction Tj requires that, for all transactions Ti with
TS(Ti) < TS(Tj), one of the following two conditions must hold:

1. Finish(Ti) < Start(Tj). Since Ti completes its execution before Tj started, the
serializability order is indeed maintained.

2. The set of data items written by Ti does not intersect with the set of data items
read by Tj , and Ti completes its write phase before Tj starts its validation
phase (Start(Tj) < Finish(Ti) < Validation(Tj)). This condition ensures that
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Figure 16.15 Schedule 5, a schedule produced by using validation.

the writes of Ti and Tj do not overlap. Since the writes of Ti do not affect the
read of Tj , and since Tj cannot affect the read of Ti, the serializability order is
indeed maintained.

As an illustration, consider again transactions T14 and T15. Suppose that TS(T14)
< TS(T15). Then, the validation phase succeeds in the schedule 5 in Figure 16.15. Note
that the writes to the actual variables are performed only after the validation phase
of T15. Thus, T14 reads the old values of B and A, and this schedule is serializable.

The validation scheme automatically guards against cascading rollbacks, since the
actual writes take place only after the transaction issuing the write has committed.
However, there is a possibility of starvation of long transactions, due to a sequence
of conflicting short transactions that cause repeated restarts of the long transaction.
To avoid starvation, conflicting transactions must be temporarily blocked, to enable
the long transaction to finish.

This validation scheme is called the optimistic concurrency control scheme since
transactions execute optimistically, assuming they will be able to finish execution
and validate at the end. In contrast, locking and timestamp ordering are pessimistic
in that they force a wait or a rollback whenever a conflict is detected, even though
there is a chance that the schedule may be conflict serializable.

16.4 Multiple Granularity
In the concurrency-control schemes described thus far, we have used each individual
data item as the unit on which synchronization is performed.

There are circumstances, however, where it would be advantageous to group sev-
eral data items, and to treat them as one individual synchronization unit. For exam-
ple, if a transaction Ti needs to access the entire database, and a locking protocol is
used, then Ti must lock each item in the database. Clearly, executing these locks is
time consuming. It would be better if Ti could issue a single lock request to lock the
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Figure 16.16 Granularity hierarchy.

entire database. On the other hand, if transaction Tj needs to access only a few data
items, it should not be required to lock the entire database, since otherwise concur-
rency is lost.

What is needed is a mechanism to allow the system to define multiple levels of
granularity. We can make one by allowing data items to be of various sizes and defin-
ing a hierarchy of data granularities, where the small granularities are nested within
larger ones. Such a hierarchy can be represented graphically as a tree. Note that the
tree that we describe here is significantly different from that used by the tree protocol
(Section 16.1.5). A nonleaf node of the multiple-granularity tree represents the data
associated with its descendants. In the tree protocol, each node is an independent
data item.

As an illustration, consider the tree of Figure 16.16, which consists of four levels
of nodes. The highest level represents the entire database. Below it are nodes of type
area; the database consists of exactly these areas. Each area in turn has nodes of type
file as its children. Each area contains exactly those files that are its child nodes. No
file is in more than one area. Finally, each file has nodes of type record. As before, the
file consists of exactly those records that are its child nodes, and no record can be
present in more than one file.

Each node in the tree can be locked individually. As we did in the two-phase lock-
ing protocol, we shall use shared and exclusive lock modes. When a transaction locks
a node, in either shared or exclusive mode, the transaction also has implicitly locked
all the descendants of that node in the same lock mode. For example, if transaction
Ti gets an explicit lock on file Fc of Figure 16.16, in exclusive mode, then it has an
implicit lock in exclusive mode all the records belonging to that file. It does not need
to lock the individual records of Fc explicitly.

Suppose that transaction Tj wishes to lock record rb6 of file Fb. Since Ti has locked
Fb explicitly, it follows that rb6 is also locked (implicitly). But, when Tj issues a lock
request for rb6 , rb6 is not explicitly locked! How does the system determine whether
Tj can lock rb6? Tj must traverse the tree from the root to record rb6 . If any node in
that path is locked in an incompatible mode, then Tj must be delayed.
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IS IX S SIX X
IS true true true true false
IX true true false false false
S true false true false false

SIX true false false false false
X false false false false false

Figure 16.17 Compatibility matrix.

Suppose now that transaction Tk wishes to lock the entire database. To do so, it
simply must lock the root of the hierarchy. Note, however, that Tk should not suc-
ceed in locking the root node, since Ti is currently holding a lock on part of the tree
(specifically, on file Fb). But how does the system determine if the root node can be
locked? One possibility is for it to search the entire tree. This solution, however, de-
feats the whole purpose of the multiple-granularity locking scheme. A more efficient
way to gain this knowledge is to introduce a new class of lock modes, called inten-
tion lock modes. If a node is locked in an intention mode, explicit locking is being
done at a lower level of the tree (that is, at a finer granularity). Intention locks are put
on all the ancestors of a node before that node is locked explicitly. Thus, a transaction
does not need to search the entire tree to determine whether it can lock a node suc-
cessfully. A transaction wishing to lock a node—say, Q—must traverse a path in the
tree from the root to Q. While traversing the tree, the transaction locks the various
nodes in an intention mode.

There is an intention mode associated with shared mode, and there is one with
exclusive mode. If a node is locked in intention-shared (IS) mode, explicit locking is
being done at a lower level of the tree, but with only shared-mode locks. Similarly,
if a node is locked in intention-exclusive (IX) mode, then explicit locking is being
done at a lower level, with exclusive-mode or shared-mode locks. Finally, if a node
is locked in shared and intention-exclusive (SIX) mode, the subtree rooted by that
node is locked explicitly in shared mode, and that explicit locking is being done at
a lower level with exclusive-mode locks. The compatibility function for these lock
modes is in Figure 16.17.

The multiple-granularity locking protocol, which ensures serializability, is this:
Each transaction Ti can lock a node Q by following these rules:

1. It must observe the lock-compatibility function of Figure 16.17.

2. It must lock the root of the tree first, and can lock it in any mode.

3. It can lock a node Q in S or IS mode only if it currently has the parent of Q
locked in either IX or IS mode.

4. It can lock a node Q in X, SIX, or IX mode only if it currently has the parent of
Q locked in either IX or SIX mode.

5. It can lock a node only if it has not previously unlocked any node (that is, Ti

is two phase).

6. It can unlock a node Q only if it currently has none of the children of Q locked.
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Observe that the multiple-granularity protocol requires that locks be acquired in top-
down (root-to-leaf) order, whereas locks must be released in bottom-up (leaf-to-root)
order.

As an illustration of the protocol, consider the tree of Figure 16.16 and these trans-
actions:

• Suppose that transaction T18 reads record ra2 in file Fa. Then, T18 needs to
lock the database, area A1, and Fa in IS mode (and in that order), and finally
to lock ra2 in S mode.

• Suppose that transaction T19 modifies record ra9 in file Fa. Then, T19 needs to
lock the database, area A1, and file Fa in IX mode, and finally to lock ra9 in X
mode.

• Suppose that transaction T20 reads all the records in file Fa. Then, T20 needs
to lock the database and area A1 (in that order) in IS mode, and finally to lock
Fa in S mode.

• Suppose that transaction T21 reads the entire database. It can do so after lock-
ing the database in S mode.

We note that transactions T18, T20, and T21 can access the database concurrently.
Transaction T19 can execute concurrently with T18, but not with either T20 or T21.

This protocol enhances concurrency and reduces lock overhead. It is particularly
useful in applications that include a mix of

• Short transactions that access only a few data items

• Long transactions that produce reports from an entire file or set of files

There is a similar locking protocol that is applicable to database systems in which
data granularities are organized in the form of a directed acyclic graph. See the bib-
liographical notes for additional references. Deadlock is possible in the protocol that
we have, as it is in the two-phase locking protocol. There are techniques to reduce
deadlock frequency in the multiple-granularity protocol, and also to eliminate dead-
lock entirely. These techniques are referenced in the bibliographical notes.

16.5 Multiversion Schemes
The concurrency-control schemes discussed thus far ensure serializability by either
delaying an operation or aborting the transaction that issued the operation. For ex-
ample, a read operation may be delayed because the appropriate value has not been
written yet; or it may be rejected (that is, the issuing transaction must be aborted)
because the value that it was supposed to read has already been overwritten. These
difficulties could be avoided if old copies of each data item were kept in a system.

In multiversion concurrency control schemes, each write(Q) operation creates a
new version of Q. When a transaction issues a read(Q) operation, the concurrency-
control manager selects one of the versions of Q to be read. The concurrency-control
scheme must ensure that the version to be read is selected in a manner that ensures
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serializability. It is also crucial, for performance reasons, that a transaction be able to
determine easily and quickly which version of the data item should be read.

16.5.1 Multiversion Timestamp Ordering
The most common transaction ordering technique used by multiversion schemes is
timestamping. With each transaction Ti in the system, we associate a unique static
timestamp, denoted by TS(Ti). The database system assigns this timestamp before
the transaction starts execution, as described in Section 16.2.

With each data item Q, a sequence of versions <Q1, Q2, . . ., Qm> is associated.
Each version Qk contains three data fields:

• Content is the value of version Qk.

• W-timestamp(Qk) is the timestamp of the transaction that created version Qk.

• R-timestamp(Qk) is the largest timestamp of any transaction that successfully
read version Qk.

A transaction—say, Ti—creates a new version Qk of data item Q by issuing a
write(Q) operation. The content field of the version holds the value written by Ti.
The system initializes the W-timestamp and R-timestamp to TS(Ti). It updates the
R-timestamp value of Qk whenever a transaction Tj reads the content of Qk, and
R-timestamp(Qk) < TS(Tj).

The multiversion timestamp-ordering scheme presented next ensures serializ-
ability. The scheme operates as follows. Suppose that transaction Ti issues a read(Q)
or write(Q) operation. Let Qk denote the version of Q whose write timestamp is the
largest write timestamp less than or equal to TS(Ti).

1. If transaction Ti issues a read(Q), then the value returned is the content of
version Qk.

2. If transaction Ti issues write(Q), and if TS(Ti) < R-timestamp(Qk), then the sys-
tem rolls back transaction Ti. On the other hand, if TS(Ti) = W-timestamp(Qk),
the system overwrites the contents of Qk; otherwise it creates a new version
of Q.

The justification for rule 1 is clear. A transaction reads the most recent version that
comes before it in time. The second rule forces a transaction to abort if it is “too late”
in doing a write. More precisely, if Ti attempts to write a version that some other
transaction would have read, then we cannot allow that write to succeed.

Versions that are no longer needed are removed according to the following rule.
Suppose that there are two versions, Qk and Qj , of a data item, and that both versions
have a W-timestamp less than the timestamp of the oldest transaction in the system.
Then, the older of the two versions Qk and Qj will not be used again, and can be
deleted.

The multiversion timestamp-ordering scheme has the desirable property that a
read request never fails and is never made to wait. In typical database systems, where



Silberschatz−Korth−Sudarshan: 
Database System 
Concepts, Fourth Edition

V. Transaction 
Management

16. Concurrency Control 613© The McGraw−Hill 
Companies, 2001

614 Chapter 16 Concurrency Control

reading is a more frequent operation than is writing, this advantage may be of major
practical significance.

The scheme, however, suffers from two undesirable properties. First, the reading
of a data item also requires the updating of the R-timestamp field, resulting in two
potential disk accesses, rather than one. Second, the conflicts between transactions
are resolved through rollbacks, rather than through waits. This alternative may be
expensive. Section 16.5.2 describes an algorithm to alleviate this problem.

This multiversion timestamp-ordering scheme does not ensure recoverability and
cascadelessness. It can be extended in the same manner as the basic timestamp-
ordering scheme, to make it recoverable and cascadeless.

16.5.2 Multiversion Two-Phase Locking
The multiversion two-phase locking protocol attempts to combine the advantages
of multiversion concurrency control with the advantages of two-phase locking. This
protocol differentiates between read-only transactions and update transactions.

Update transactions perform rigorous two-phase locking; that is, they hold all
locks up to the end of the transaction. Thus, they can be serialized according to their
commit order. Each version of a data item has a single timestamp. The timestamp in
this case is not a real clock-based timestamp, but rather is a counter, which we will
call the ts-counter, that is incremented during commit processing.

Read-only transactions are assigned a timestamp by reading the current value
of ts-counter before they start execution; they follow the multiversion timestamp-
ordering protocol for performing reads. Thus, when a read-only transaction Ti issues
a read(Q), the value returned is the contents of the version whose timestamp is the
largest timestamp less than TS(Ti).

When an update transaction reads an item, it gets a shared lock on the item, and
reads the latest version of that item. When an update transaction wants to write an
item, it first gets an exclusive lock on the item, and then creates a new version of
the data item. The write is performed on the new version, and the timestamp of the
new version is initially set to a value ∞, a value greater than that of any possible
timestamp.

When the update transaction Ti completes its actions, it carries out commit pro-
cessing: First, Ti sets the timestamp on every version it has created to 1 more than the
value of ts-counter; then, Ti increments ts-counter by 1. Only one update transaction
is allowed to perform commit processing at a time.

As a result, read-only transactions that start after Ti increments ts-counter will see
the values updated by Ti, whereas those that start before Ti increments ts-counter will
see the value before the updates by Ti. In either case, read-only transactions never
need to wait for locks. Multiversion two-phase locking also ensures that schedules
are recoverable and cascadeless.

Versions are deleted in a manner like that of multiversion timestamp ordering.
Suppose there are two versions, Qk and Qj , of a data item, and that both versions
have a timestamp less than the timestamp of the oldest read-only transaction in the
system. Then, the older of the two versions Qk and Qj will not be used again and can
be deleted.
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Multiversion two-phase locking or variations of it are used in some commercial
database systems.

16.6 Deadlock Handling
A system is in a deadlock state if there exists a set of transactions such that every
transaction in the set is waiting for another transaction in the set. More precisely,
there exists a set of waiting transactions {T0, T1, . . ., Tn} such that T0 is waiting for a
data item that T1 holds, and T1 is waiting for a data item that T2 holds, and . . ., and
Tn−1 is waiting for a data item that Tn holds, and Tn is waiting for a data item that
T0 holds. None of the transactions can make progress in such a situation.

The only remedy to this undesirable situation is for the system to invoke some
drastic action, such as rolling back some of the transactions involved in the deadlock.
Rollback of a transaction may be partial: That is, a transaction may be rolled back to
the point where it obtained a lock whose release resolves the deadlock.

There are two principal methods for dealing with the deadlock problem. We can
use a deadlock prevention protocol to ensure that the system will never enter a dead-
lock state. Alternatively, we can allow the system to enter a deadlock state, and then
try to recover by using a deadlock detection and deadlock recovery scheme. As we
shall see, both methods may result in transaction rollback. Prevention is commonly
used if the probability that the system would enter a deadlock state is relatively high;
otherwise, detection and recovery are more efficient.

Note that a detection and recovery scheme requires overhead that includes not
only the run-time cost of maintaining the necessary information and of executing the
detection algorithm, but also the potential losses inherent in recovery from a dead-
lock.

16.6.1 Deadlock Prevention
There are two approaches to deadlock prevention. One approach ensures that no
cyclic waits can occur by ordering the requests for locks, or requiring all locks to be
acquired together. The other approach is closer to deadlock recovery, and performs
transaction rollback instead of waiting for a lock, whenever the wait could potentially
result in a deadlock.

The simplest scheme under the first approach requires that each transaction locks
all its data items before it begins execution. Moreover, either all are locked in one step
or none are locked. There are two main disadvantages to this protocol: (1) it is often
hard to predict, before the transaction begins, what data items need to be locked;
(2) data-item utilization may be very low, since many of the data items may be locked
but unused for a long time.

Another approach for preventing deadlocks is to impose an ordering of all data
items, and to require that a transaction lock data items only in a sequence consistent
with the ordering. We have seen one such scheme in the tree protocol, which uses a
partial ordering of data items.

A variation of this approach is to use a total order of data items, in conjunction
with two-phase locking. Once a transaction has locked a particular item, it cannot
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request locks on items that precede that item in the ordering. This scheme is easy
to implement, as long as the set of data items accessed by a transaction is known
when the transaction starts execution. There is no need to change the underlying
concurrency-control system if two-phase locking is used: All that is needed it to en-
sure that locks are requested in the right order.

The second approach for preventing deadlocks is to use preemption and transac-
tion rollbacks. In preemption, when a transaction T2 requests a lock that transaction
T1 holds, the lock granted to T1 may be preempted by rolling back of T1, and granting
of the lock to T2. To control the preemption, we assign a unique timestamp to each
transaction. The system uses these timestamps only to decide whether a transaction
should wait or roll back. Locking is still used for concurrency control. If a transaction
is rolled back, it retains its old timestamp when restarted. Two different deadlock-
prevention schemes using timestamps have been proposed:

1. The wait–die scheme is a nonpreemptive technique. When transaction Ti re-
quests a data item currently held by Tj , Ti is allowed to wait only if it has a
timestamp smaller than that of Tj (that is, Ti is older than Tj). Otherwise, Ti is
rolled back (dies).

For example, suppose that transactions T22, T23, and T24 have timestamps
5, 10, and 15, respectively. If T22 requests a data item held by T23, then T22 will
wait. If T24 requests a data item held by T23, then T24 will be rolled back.

2. The wound–wait scheme is a preemptive technique. It is a counterpart to the
wait–die scheme. When transaction Ti requests a data item currently held by
Tj , Ti is allowed to wait only if it has a timestamp larger than that of Tj (that
is, Ti is younger than Tj). Otherwise, Tj is rolled back (Tj is wounded by Ti).

Returning to our example, with transactions T22, T23, and T24, if T22 re-
quests a data item held by T23, then the data item will be preempted from T23,
and T23 will be rolled back. If T24 requests a data item held by T23, then T24

will wait.

Whenever the system rolls back transactions, it is important to ensure that there
is no starvation—that is, no transaction gets rolled back repeatedly and is never al-
lowed to make progress.

Both the wound–wait and the wait–die schemes avoid starvation: At any time,
there is a transaction with the smallest timestamp. This transaction cannot be required
to roll back in either scheme. Since timestamps always increase, and since transac-
tions are not assigned new timestamps when they are rolled back, a transaction that
is rolled back repeatedly will eventually have the smallest timestamp, at which point
it will not be rolled back again.

There are, however, significant differences in the way that the two schemes oper-
ate.

• In the wait–die scheme, an older transaction must wait for a younger one to
release its data item. Thus, the older the transaction gets, the more it tends to
wait. By contrast, in the wound–wait scheme, an older transaction never waits
for a younger transaction.
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• In the wait–die scheme, if a transaction Ti dies and is rolled back because it
requested a data item held by transaction Tj , then Ti may reissue the same
sequence of requests when it is restarted. If the data item is still held by Tj ,
then Ti will die again. Thus, Ti may die several times before acquiring the
needed data item. Contrast this series of events with what happens in the
wound–wait scheme. Transaction Ti is wounded and rolled back because Tj

requested a data item that it holds. When Ti is restarted and requests the data
item now being held by Tj , Ti waits. Thus, there may be fewer rollbacks in the
wound–wait scheme.

The major problem with both of these schemes is that unnecessary rollbacks may
occur.

16.6.2 Timeout-Based Schemes
Another simple approach to deadlock handling is based on lock timeouts. In this ap-
proach, a transaction that has requested a lock waits for at most a specified amount of
time. If the lock has not been granted within that time, the transaction is said to time
out, and it rolls itself back and restarts. If there was in fact a deadlock, one or more
transactions involved in the deadlock will time out and roll back, allowing the oth-
ers to proceed. This scheme falls somewhere between deadlock prevention, where a
deadlock will never occur, and deadlock detection and recovery, which Section 16.6.3
discusses.

The timeout scheme is particularly easy to implement, and works well if transac-
tions are short and if long waits are likely to be due to deadlocks. However, in general
it is hard to decide how long a transaction must wait before timing out. Too long a
wait results in unnecessary delays once a deadlock has occurred. Too short a wait
results in transaction rollback even when there is no deadlock, leading to wasted re-
sources. Starvation is also a possibility with this scheme. Hence, the timeout-based
scheme has limited applicability.

16.6.3 Deadlock Detection and Recovery
If a system does not employ some protocol that ensures deadlock freedom, then a
detection and recovery scheme must be used. An algorithm that examines the state
of the system is invoked periodically to determine whether a deadlock has occurred.
If one has, then the system must attempt to recover from the deadlock. To do so, the
system must:

• Maintain information about the current allocation of data items to transac-
tions, as well as any outstanding data item requests.

• Provide an algorithm that uses this information to determine whether the sys-
tem has entered a deadlock state.

• Recover from the deadlock when the detection algorithm determines that a
deadlock exists.

In this section, we elaborate on these issues.
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T26 T28

T25

T27

Figure 16.18 Wait-for graph with no cycle.

16.6.3.1 Deadlock Detection
Deadlocks can be described precisely in terms of a directed graph called a wait-for
graph. This graph consists of a pair G = (V, E), where V is a set of vertices and E is
a set of edges. The set of vertices consists of all the transactions in the system. Each
element in the set E of edges is an ordered pair Ti → Tj . If Ti → Tj is in E, then there
is a directed edge from transaction Ti to Tj , implying that transaction Ti is waiting
for transaction Tj to release a data item that it needs.

When transaction Ti requests a data item currently being held by transaction Tj ,
then the edge Ti → Tj is inserted in the wait-for graph. This edge is removed only
when transaction Tj is no longer holding a data item needed by transaction Ti.

A deadlock exists in the system if and only if the wait-for graph contains a cycle.
Each transaction involved in the cycle is said to be deadlocked. To detect deadlocks,
the system needs to maintain the wait-for graph, and periodically to invoke an algo-
rithm that searches for a cycle in the graph.

To illustrate these concepts, consider the wait-for graph in Figure 16.18, which
depicts the following situation:

• Transaction T25 is waiting for transactions T26 and T27.

• Transaction T27 is waiting for transaction T26.

• Transaction T26 is waiting for transaction T28.

Since the graph has no cycle, the system is not in a deadlock state.
Suppose now that transaction T28 is requesting an item held by T27. The edge

T28 → T27 is added to the wait-for graph, resulting in the new system state in
Figure 16.19. This time, the graph contains the cycle

T26 → T28 → T27 → T26

implying that transactions T26, T27, and T28 are all deadlocked.
Consequently, the question arises: When should we invoke the detection algo-

rithm? The answer depends on two factors:

1. How often does a deadlock occur?

2. How many transactions will be affected by the deadlock?
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Figure 16.19 Wait-for graph with a cycle.

If deadlocks occur frequently, then the detection algorithm should be invoked
more frequently than usual. Data items allocated to deadlocked transactions will be
unavailable to other transactions until the deadlock can be broken. In addition, the
number of cycles in the graph may also grow. In the worst case, we would invoke the
detection algorithm every time a request for allocation could not be granted immedi-
ately.

16.6.3.2 Recovery from Deadlock
When a detection algorithm determines that a deadlock exists, the system must re-
cover from the deadlock. The most common solution is to roll back one or more trans-
actions to break the deadlock. Three actions need to be taken:

1. Selection of a victim. Given a set of deadlocked transactions, we must deter-
mine which transaction (or transactions) to roll back to break the deadlock. We
should roll back those transactions that will incur the minimum cost. Unfortu-
nately, the term minimum cost is not a precise one. Many factors may determine
the cost of a rollback, including

a. How long the transaction has computed, and how much longer the trans-
action will compute before it completes its designated task.

b. How many data items the transaction has used.
c. How many more data items the transaction needs for it to complete.
d. How many transactions will be involved in the rollback.

2. Rollback. Once we have decided that a particular transaction must be rolled
back, we must determine how far this transaction should be rolled back.

The simplest solution is a total rollback: Abort the transaction and then
restart it. However, it is more effective to roll back the transaction only as far
as necessary to break the deadlock. Such partial rollback requires the system
to maintain additional information about the state of all the running trans-
actions. Specifically, the sequence of lock requests/grants and updates per-
formed by the transaction needs to be recorded. The deadlock detection mech-
anism should decide which locks the selected transaction needs to release in
order to break the deadlock. The selected transaction must be rolled back to
the point where it obtained the first of these locks, undoing all actions it took
after that point. The recovery mechanism must be capable of performing such
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partial rollbacks. Furthermore, the transactions must be capable of resuming
execution after a partial rollback. See the bibliographical notes for relevant
references.

3. Starvation. In a system where the selection of victims is based primarily on
cost factors, it may happen that the same transaction is always picked as a
victim. As a result, this transaction never completes its designated task, thus
there is starvation. We must ensure that transaction can be picked as a victim
only a (small) finite number of times. The most common solution is to include
the number of rollbacks in the cost factor.

16.7 Insert and Delete Operations
Until now, we have restricted our attention to read and write operations. This re-
striction limits transactions to data items already in the database. Some transactions
require not only access to existing data items, but also the ability to create new data
items. Others require the ability to delete data items. To examine how such transac-
tions affect concurrency control, we introduce these additional operations:

• delete(Q) deletes data item Q from the database.

• insert(Q) inserts a new data item Q into the database and assigns Q an initial
value.

An attempt by a transaction Ti to perform a read(Q) operation after Q has been
deleted results in a logical error in Ti. Likewise, an attempt by a transaction Ti to
perform a read(Q) operation before Q has been inserted results in a logical error in
Ti. It is also a logical error to attempt to delete a nonexistent data item.

16.7.1 Deletion
To understand how the presence of delete instructions affects concurrency control,
we must decide when a delete instruction conflicts with another instruction. Let Ii

and Ij be instructions of Ti and Tj , respectively, that appear in schedule S in consec-
utive order. Let Ii = delete(Q). We consider several instructions Ij .

• Ij = read(Q). Ii and Ij conflict. If Ii comes before Ij , Tj will have a logical
error. If Ij comes before Ii, Tj can execute the read operation successfully.

• Ij = write(Q). Ii and Ij conflict. If Ii comes before Ij , Tj will have a logical
error. If Ij comes before Ii, Tj can execute the write operation successfully.

• Ij = delete(Q). Ii and Ij conflict. If Ii comes before Ij , Ti will have a logical
error. If Ij comes before Ii, Ti will have a logical error.

• Ij = insert(Q). Ii and Ij conflict. Suppose that data item Q did not exist prior
to the execution of Ii and Ij . Then, if Ii comes before Ij , a logical error results
for Ti. If Ij comes before Ii, then no logical error results. Likewise, if Q existed
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prior to the execution of Ii and Ij , then a logical error results if Ij comes before
Ii, but not otherwise.

We can conclude the following:

• Under the two-phase locking protocol, an exclusive lock is required on a data
item before that item can be deleted.

• Under the timestamp-ordering protocol, a test similar to that for a write must
be performed. Suppose that transaction Ti issues delete(Q).
� If TS(Ti) < R-timestamp(Q), then the value of Q that Ti was to delete has

already been read by a transaction Tj with TS(Tj) > TS(Ti). Hence, the
delete operation is rejected, and Ti is rolled back.

� If TS(Ti) < W-timestamp(Q), then a transaction Tj with TS(Tj) > TS(Ti)
has written Q. Hence, this delete operation is rejected, and Ti is rolled
back.

� Otherwise, the delete is executed.

16.7.2 Insertion
We have already seen that an insert(Q) operation conflicts with a delete(Q) operation.
Similarly, insert(Q) conflicts with a read(Q) operation or a write(Q) operation; no read
or write can be performed on a data item before it exists.

Since an insert(Q) assigns a value to data item Q, an insert is treated similarly to a
write for concurrency-control purposes:

• Under the two-phase locking protocol, if Ti performs an insert(Q) operation,
Ti is given an exclusive lock on the newly created data item Q.

• Under the timestamp-ordering protocol, if Ti performs an insert(Q) operation,
the values R-timestamp(Q) and W-timestamp(Q) are set to TS(Ti).

16.7.3 The Phantom Phenomenon
Consider transaction T29 that executes the following SQL query on the bank database:

select sum(balance)
from account
where branch-name = ’Perryridge’

Transaction T29 requires access to all tuples of the account relation pertaining to the
Perryridge branch.

Let T30 be a transaction that executes the following SQL insertion:

insert into account
values (A-201, ’Perryridge’, 900)

Let S be a schedule involving T29 and T30. We expect there to be potential for a
conflict for the following reasons:
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• If T29 uses the tuple newly inserted by T30 in computing sum(balance), then
T29 read a value written by T30. Thus, in a serial schedule equivalent to S, T30

must come before T29.

• If T29 does not use the tuple newly inserted by T30 in computing sum(balance),
then in a serial schedule equivalent to S, T29 must come before T30.

The second of these two cases is curious. T29 and T30 do not access any tuple in
common, yet they conflict with each other! In effect, T29 and T30 conflict on a phantom
tuple. If concurrency control is performed at the tuple granularity, this conflict would
go undetected. This problem is called the phantom phenomenon.

To prevent the phantom phenomenon, we allow T29 to prevent other transactions
from creating new tuples in the account relation with branch-name = “Perryridge.”

To find all account tuples with branch-name = “Perryridge”, T29 must search either
the whole account relation, or at least an index on the relation. Up to now, we have as-
sumed implicitly that the only data items accessed by a transaction are tuples. How-
ever, T29 is an example of a transaction that reads information about what tuples are
in a relation, and T30 is an example of a transaction that updates that information.

Clearly, it is not sufficient merely to lock the tuples that are accessed; the informa-
tion used to find the tuples that are accessed by the transaction must also be locked.

The simplest solution to this problem is to associate a data item with the relation;
the data item represents the information used to find the tuples in the relation. Trans-
actions, such as T29, that read the information about what tuples are in a relation
would then have to lock the data item corresponding to the relation in shared mode.
Transactions, such as T30, that update the information about what tuples are in a re-
lation would have to lock the data item in exclusive mode. Thus, T29 and T30 would
conflict on a real data item, rather than on a phantom.

Do not confuse the locking of an entire relation, as in multiple granularity lock-
ing, with the locking of the data item corresponding to the relation. By locking the
data item, a transaction only prevents other transactions from updating information
about what tuples are in the relation. Locking is still required on tuples. A transaction
that directly accesses a tuple can be granted a lock on the tuples even when another
transaction has an exclusive lock on the data item corresponding to the relation itself.

The major disadvantage of locking a data item corresponding to the relation is
the low degree of concurrency— two transactions that insert different tuples into a
relation are prevented from executing concurrently.

A better solution is the index-locking technique. Any transaction that inserts a
tuple into a relation must insert information into every index maintained on the re-
lation. We eliminate the phantom phenomenon by imposing a locking protocol for
indices. For simplicity we shall only consider B+-tree indices.

As we saw in Chapter 12, every search-key value is associated with an index leaf
node. A query will usually use one or more indices to access a relation. An insert
must insert the new tuple in all indices on the relation. In our example, we assume
that there is an index on account for branch-name. Then, T30 must modify the leaf
containing the key Perryridge. If T29 reads the same leaf node to locate all tuples
pertaining to the Perryridge branch, then T29 and T30 conflict on that leaf node.
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The index-locking protocol takes advantage of the availability of indices on a re-
lation, by turning instances of the phantom phenomenon into conflicts on locks on
index leaf nodes. The protocol operates as follows:

• Every relation must have at least one index.

• A transaction Ti can access tuples of a relation only after first finding them
through one or more of the indices on the relation.

• A transaction Ti that performs a lookup (whether a range lookup or a point
lookup) must acquire a shared lock on all the index leaf nodes that it accesses.

• A transaction Ti may not insert, delete, or update a tuple ti in a relation r
without updating all indices on r. The transaction must obtain exclusive locks
on all index leaf nodes that are affected by the insertion, deletion, or update.
For insertion and deletion, the leaf nodes affected are those that contain (after
insertion) or contained (before deletion) the search-key value of the tuple. For
updates, the leaf nodes affected are those that (before the modification) con-
tained the old value of the search-key, and nodes that (after the modification)
contain the new value of the search-key.

• The rules of the two-phase locking protocol must be observed.

Variants of the index-locking technique exist for eliminating the phantom phe-
nomenon under the other concurrency-control protocols presented in this chapter.

16.8 Weak Levels of Consistency
Serializability is a useful concept because it allows programmers to ignore issues
related to concurrency when they code transactions. If every transaction has the
property that it maintains database consistency if executed alone, then serializabil-
ity ensures that concurrent executions maintain consistency. However, the protocols
required to ensure serializability may allow too little concurrency for certain applica-
tions. In these cases, weaker levels of consistency are used. The use of weaker levels
of consistency places additional burdens on programmers for ensuring database cor-
rectness.

16.8.1 Degree-Two Consistency
The purpose of degree-two consistency is to avoid cascading aborts without neces-
sarily ensuring serializability. The locking protocol for degree-two consistency uses
the same two lock modes that we used for the two-phase locking protocol: shared
(S) and exclusive (X). A transaction must hold the appropriate lock mode when it
accesses a data item.

In contrast to the situation in two-phase locking, S-locks may be released at any
time, and locks may be acquired at any time. Exclusive locks cannot be released until
the transaction either commits or aborts. Serializability is not ensured by this pro-
tocol. Indeed, a transaction may read the same data item twice and obtain different
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T3 T4

lock-S(Q)

lock-X(Q)
read(Q)
write(Q)
unlock(Q)

lock-S(Q)
read(Q)
unlock(Q)

read(Q)
unlock(Q)

Figure 16.20 Nonserializable schedule with degree-two consistency.

results. In Figure 16.20, T3 reads the value of Q before and after that value is written
by T4.

The potential for inconsistency due to nonserializable schedules under degree-two
consistency makes this approach undesirable for many applications.

16.8.2 Cursor Stability
Cursor stability is a form of degree-two consistency designed for programs written
in host languages, which iterate over tuples of a relation by using cursors. Instead of
locking the entire relation, cursor stability ensures that

• The tuple that is currently being processed by the iteration is locked in shared
mode.

• Any modified tuples are locked in exclusive mode until the transaction com-
mits.

These rules ensure that degree-two consistency is obtained. Two-phase locking is
not required. Serializability is not guaranteed. Cursor stability is used in practice
on heavily accessed relations as a means of increasing concurrency and improving
system performance. Applications that use cursor stability must be coded in a way
that ensures database consistency despite the possibility of nonserializable sched-
ules. Thus, the use of cursor stability is limited to specialized situations with simple
consistency constraints.

16.8.3 Weak Levels of Consistency in SQL
The SQL standard also allows a transaction to specify that it may be executed in such a
way that it becomes nonserializable with respect to other transactions. For instance, a
transaction may operate at the level of read uncommitted, which permits the transac-
tion to read records even if they have not been committed. SQL provides such features
for long transactions whose results do not need to be precise. For instance, approx-
imate information is usually sufficient for statistics used for query optimization. If
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these transactions were to execute in a serializable fashion, they could interfere with
other transactions, causing the others’ execution to be delayed.

The levels of consistency specified by SQL-92 are as follows:

• Serializable is the default.

• Repeatable read allows only committed records to be read, and further re-
quires that, between two reads of a record by a transaction, no other trans-
action is allowed to update the record. However, the transaction may not be
serializable with respect to other transactions. For instance, when it is search-
ing for records satisfying some conditions, a transaction may find some of the
records inserted by a committed transaction, but may not find others.

• Read committed allows only committed records to be read, but does not re-
quire even repeatable reads. For instance, between two reads of a record by the
transaction, the records may have been updated by other committed transac-
tions. This is basically the same as degree-two consistency; most systems sup-
porting this level of consistency would actually implement cursor stability,
which is a special case of degree-two consistency.

• Read uncommitted allows even uncommitted records to be read. It is the low-
est level of consistency allowed by SQL-92.

16.9 Concurrency in Index Structures∗∗
It is possible to treat access to index structures like any other database structure, and
to apply the concurrency-control techniques discussed earlier. However, since indices
are accessed frequently, they would become a point of great lock contention, leading
to a low degree of concurrency. Luckily, indices do not have to be treated like other
database structures. It is perfectly acceptable for a transaction to perform a lookup
on an index twice, and to find that the structure of the index has changed in between,
as long as the index lookup returns the correct set of tuples. Thus, it is acceptable
to have nonserializable concurrent access to an index, as long as the accuracy of the
index is maintained.

We outline two techniques for managing concurrent access to B+-trees. The bib-
liographical notes reference other techniques for B+-trees, as well as techniques for
other index structures.

The techniques that we present for concurrency control on B+-trees are based on
locking, but neither two-phase locking nor the tree protocol is employed. The algo-
rithms for lookup, insertion, and deletion are those used in Chapter 12, with only
minor modifications.

The first technique is called the crabbing protocol:

• When searching for a key value, the crabbing protocol first locks the root node
in shared mode. When traversing down the tree, it acquires a shared lock on
the child node to be traversed further. After acquiring the lock on the child
node, it releases the lock on the parent node. It repeats this process until it
reaches a leaf node.
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• When inserting or deleting a key value, the crabbing protocol takes these ac-
tions:
� It follows the same protocol as for searching until it reaches the desired

leaf node. Up to this point, it obtains only shared locks.
� It locks the leaf node in exclusive mode and inserts or deletes the key

value.
� If it needs to split a node or coalesce it with its siblings, or redistribute

key values between siblings, the crabbing protocol locks the parent of the
node in exclusive mode. After performing these actions, it releases the
locks on the node and siblings.

If the parent requires splitting, coalescing, or redistribution of key val-
ues, the protcol retains the lock on the parent, and splitting, coalescing,
or redistribution propagates further in the same manner. Otherwise, it re-
leases the lock on the parent.

The protocol gets its name from the way in which crabs advance by moving side-
ways, moving the legs on one side, then the legs on the other, and so on alternately.
The progress of locking while the protocol both goes down the tree and goes back up
(in case of splits, coalescing, or redistribution) proceeds in a similar crab-like manner.

Once a particular operation releases a lock on a node, other operations can ac-
cess that node. There is a possibility of deadlocks between search operations coming
down the tree, and splits, coalescing or redistribution propagating up the tree. The
system can easily handle such deadlocks by restarting the search operation from the
root, after releasing the locks held by the operation.

The second technique achieves even more concurrency, avoiding even holding the
lock on one node while acquiring the lock on another node, by using a modified ver-
sion of B+-trees called B-link trees; B-link trees require that every node (including in-
ternal nodes, not just the leaves) maintain a pointer to its right sibling. This pointer is
required because a lookup that occurs while a node is being split may have to search
not only that node but also that node’s right sibling (if one exists). We shall illustrate
this technique with an example later, but we first present the modified procedures of
the B-link-tree locking protocol.

• Lookup. Each node of the B+-tree must be locked in shared mode before it is
accessed. A lock on a nonleaf node is released before any lock on any other
node in the B+-tree is requested. If a split occurs concurrently with a lookup,
the desired search-key value may no longer appear within the range of values
represented by a node accessed during lookup. In such a case, the search-key
value is in the range represented by a sibling node, which the system locates
by following the pointer to the right sibling. However, the system locks leaf
nodes following the two-phase locking protocol, as Section 16.7.3 describes,
to avoid the phantom phenomenon.

• Insertion and deletion. The system follows the rules for lookup to locate the
leaf node into which it will make the insertion or deletion. It upgrades the
shared-mode lock on this node to exclusive mode, and performs the insertion
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or deletion. It locks leaf nodes affected by insertion or deletion following the
two-phase locking protocol, as Section 16.7.3 describes, to avoid the phantom
phenomenon.

• Split. If the transaction splits a node, it creates a new node according to the
algorithm of Section 12.3 and makes it the right sibling of the original node.
The right-sibling pointers of both the original node and the new node are set.
Following this, the transaction releases the exclusive lock on the original node
and requests an exclusive lock on the parent, so that it can insert a pointer to
the new node.

• Coalescence. If a node has too few search-key values after a deletion, the node
with which it will be coalesced must be locked in exclusive mode. Once the
transaction has coalesced these two nodes, it requests an exclusive lock on the
parent so that the deleted node can be removed. At this point, the transaction
releases the locks on the coalesced nodes. Unless the parent node must be
coalesced also, its lock is released.

Observe this important fact: An insertion or deletion may lock a node, unlock it, and
subsequently relock it. Furthermore, a lookup that runs concurrently with a split or
coalescence operation may find that the desired search key has been moved to the
right-sibling node by the split or coalescence operation.

As an illustration, consider the B+-tree in Figure 16.21. Assume that there are two
concurrent operations on this B+-tree:

1. Insert “Clearview”

2. Look up “Downtown”

Let us assume that the insertion operation begins first. It does a lookup on “Clear-
view,” and finds that the node into which “Clearview” should be inserted is full.
It therefore converts its shared lock on the node to exclusive mode, and creates a
new node. The original node now contains the search-key values “Brighton” and
“Clearview.” The new node contains the search-key value “Downtown.”

Now assume that a context switch occurs that results in control passing to the
lookup operation. This lookup operation accesses the root, and follows the pointer

Perryridge

Redwood

RedwoodPerryridgeBrighton Mianus

Downtown

Downtown

Mianus

Clearview Round Hill

Figure 16.21 B+-tree for account file with n = 3.
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Perryridge

Perryridge

Redwood

RedwoodBrighton Mianus

Downtown

Downtown

Mianus

Clearview Round Hill

Figure 16.22 Insertion of “Clearview” into the B+-tree of Figure 16.21.

to the left child of the root. It then accesses that node, and obtains a pointer to the
left child. This left-child node originally contained the search-key values “Brighton”
and “Downtown.” Since this node is currently locked by the insertion operation in
exclusive mode, the lookup operation must wait. Note that, at this point, the lookup
operation holds no locks at all!

The insertion operation now unlocks the leaf node and relocks its parent, this time
in exclusive mode. It completes the insertion, leaving the B+-tree as in Figure 16.22.
The lookup operation proceeds. However, it is holding a pointer to an incorrect leaf
node. It therefore follows the right-sibling pointer to locate the next node. If this node,
too, turns out to be incorrect, the lookup follows that node’s right-sibling pointer. It
can be shown that, if a lookup holds a pointer to an incorrect node, then, by following
right-sibling pointers, the lookup must eventually reach the correct node.

Lookup and insertion operations cannot lead to deadlock. Coalescing of nodes
during deletion can cause inconsistencies, since a lookup may have read a pointer
to a deleted node from its parent, before the parent node was updated, and may
then try to access the deleted node. The lookup would then have to restart from the
root. Leaving nodes uncoalesced avoids such inconsistencies. This solution results
in nodes that contain too few search-key values and that violate some properties of
B+-trees. In most databases, however, insertions are more frequent than deletions, so
it is likely that nodes that have too few search-key values will gain additional values
relatively quickly.

Instead of locking index leaf nodes in a two-phase manner, some index concur-
rency control schemes use key-value locking on individual key values, allowing
other key values to be inserted or deleted from the same leaf. Key-value locking thus
provides increased concurrency. Using key-value locking naively, however, would
allow the phantom phenomenon to occur; to prevent the phantom phenomenon, the
next-key locking technique is used. In this technique, every index lookup must lock
not only the keys found within the range (or the single key, in case of a point lookup)
but also the next key value—that is, the key value just greater than the last key value
that was within the range. Also, every insert must lock not only the value that is in-
serted, but also the next key value. Thus, if a transaction attempts to insert a value
that was within the range of the index lookup of another transaction, the two transac-
tions would conflict on the key value next to the inserted key value. Similarly, deletes
must also lock the next key value to the value being deleted, to ensure that conflicts
with subsequent range lookups of other queries are detected.
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16.10 Summary
• When several transactions execute concurrently in the database, the consis-

tency of data may no longer be preserved. It is necessary for the system to
control the interaction among the concurrent transactions, and this control is
achieved through one of a variety of mechanisms called concurrency-control
schemes.

• To ensure serializability, we can use various concurrency-control schemes.
All these schemes either delay an operation or abort the transaction that is-
sued the operation. The most common ones are locking protocols, timestamp-
ordering schemes, validation techniques, and multiversion schemes.

• A locking protocol is a set of rules that state when a transaction may lock and
unlock each of the data items in the database.

• The two-phase locking protocol allows a transaction to lock a new data item
only if that transaction has not yet unlocked any data item. The protocol en-
sures serializability, but not deadlock freedom. In the absence of information
concerning the manner in which data items are accessed, the two-phase lock-
ing protocol is both necessary and sufficient for ensuring serializability.

• The strict two-phase locking protocol permits release of exclusive locks only
at the end of transaction, in order to ensure recoverability and cascadelessness
of the resulting schedules. The rigorous two-phase locking protocol releases
all locks only at the end of the transaction.

• A timestamp-ordering scheme ensures serializability by selecting an ordering
in advance between every pair of transactions. A unique fixed timestamp is
associated with each transaction in the system. The timestamps of the transac-
tions determine the serializability order. Thus, if the timestamp of transaction
Ti is smaller than the timestamp of transaction Tj , then the scheme ensures
that the produced schedule is equivalent to a serial schedule in which trans-
action Ti appears before transaction Tj . It does so by rolling back a transaction
whenever such an order is violated.

• A validation scheme is an appropriate concurrency-control method in cases
where a majority of transactions are read-only transactions, and thus the rate
of conflicts among these transactions is low. A unique fixed timestamp is as-
sociated with each transaction in the system. The serializability order is de-
termined by the timestamp of the transaction. A transaction in this scheme is
never delayed. It must, however, pass a validation test to complete. If it does
not pass the validation test, the system rolls it back to its initial state.

• There are circumstances where it would be advantageous to group several
data items, and to treat them as one aggregate data item for purposes of work-
ing, resulting in multiple levels of granularity. We allow data items of various
sizes, and define a hierarchy of data items, where the small items are nested
within larger ones. Such a hierarchy can be represented graphically as a tree.
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Locks are acquired in root-to-leaf order; they are released in leaf-to-root order.
The protocol ensures serializability, but not freedom from deadlock.

• A multiversion concurrency-control scheme is based on the creation of a new
version of a data item for each transaction that writes that item. When a read
operation is issued, the system selects one of the versions to be read. The
concurrency-control scheme ensures that the version to be read is selected in
a manner that ensures serializability, by using timestamps. A read operation
always succeeds.
� In multiversion timestamp ordering, a write operation may result in the

rollback of the transaction.
� In multiversion two-phase locking, write operations may result in a lock

wait or, possibly, in deadlock.

• Various locking protocols do not guard against deadlocks. One way to prevent
deadlock is to use an ordering of data items, and to request locks in a sequence
consistent with the ordering.

• Another way to prevent deadlock is to use preemption and transaction roll-
backs. To control the preemption, we assign a unique timestamp to each trans-
action. The system uses these timestamps to decide whether a transaction
should wait or roll back. If a transaction is rolled back, it retains its old time-
stamp when restarted. The wound–wait scheme is a preemptive scheme.

• If deadlocks are not prevented, the system must deal with them by using a
deadlock detection and recovery scheme. To do so, the system constructs a
wait-for graph. A system is in a deadlock state if and only if the wait-for graph
contains a cycle. When the deadlock detection algorithm determines that a
deadlock exists, the system must recover from the deadlock. It does so by
rolling back one or more transactions to break the deadlock.

• A delete operation may be performed only if the transaction deleting the tuple
has an exclusive lock on the tuple to be deleted. A transaction that inserts a
new tuple into the database is given an exclusive lock on the tuple.

• Insertions can lead to the phantom phenomenon, in which an insertion logi-
cally conflicts with a query even though the two transactions may access no
tuple in common. Such conflict cannot be detected if locking is done only on
tuples accessed by the transactions. Locking is required on the data used to
find the tuples in the relation. The index-locking technique solves this prob-
lem by requiring locks on certain index buckets. These locks ensure that all
conflicting transactions conflict on a real data item, rather than on a phantom.

• Weak levels of consistency are used in some applications where consistency
of query results is not critical, and using serializability would result in queries
adversely affecting transaction processing. Degree-two consistency is one such
weaker level of consistency; cursor stability is a special case of degree-two
consistency, and is widely used. SQL:1999 allows queries to specify the level of
consistency that they require.
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• Special concurrency-control techniques can be developed for special data
structures. Often, special techniques are applied in B+-trees to allow greater
concurrency. These techniques allow nonserializable access to the B+-tree, but
they ensure that the B+-tree structure is correct, and ensure that accesses to
the database itself are serializable.

Review Terms
• Concurrency control

• Lock types
� Shared-mode (S) lock
� Exclusive-mode (X) lock

• Lock
� Compatibility
� Request
� Wait
� Grant

• Deadlock

• Starvation

• Locking protocol

• Legal schedule

• Two-phase locking protocol
� Growing phase
� Shrinking phase
� Lock point
� Strict two-phase locking
� Rigorous two-phase locking

• Lock conversion
� Upgrade
� Downgrade

• Graph-based protocols
� Tree protocol
� Commit dependency

• Timestamp-based protocols

• Timestamp
� System clock
� Logical counter
� W-timestamp(Q)
� R-timestamp(Q)

• Timestamp-ordering protocol

� Thomas’ write rule
• Validation-based protocols
� Read phase
� Validation phase
� Write phase
� Validation test

• Multiple granularity
� Explicit locks
� Implicit locks
� Intention locks

• Intention lock modes
� Intention-shared (IS)
� Intention-exclusive (IX)
� Shared and intention-

exclusive (SIX)
• Multiple-granularity locking

protocol

• Multiversion concurrency control

• Versions

• Multiversion timestamp ordering

• Multiversion two-phase locking
� Read-only transactions
� Update transactions

• Deadlock handling
� Prevention
� Detection
� Recovery

• Deadlock prevention
� Ordered locking
� Preemption of locks
� Wait–die scheme
� Wound–wait scheme
� Timeout-based schemes
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• Deadlock detection
� Wait-for graph

• Deadlock recovery
� Total rollback
� Partial rollback

• Insert and delete operations
• Phantom phenomenon
� Index-locking protocol

• Weak levels of consistency

� Degree-two consistency
� Cursor stability
� Repeatable read
� Read committed
� Read uncommitted

• Concurrency in indices
� Crabbing
� B-link trees
� B-link-tree locking protocol
� Next-key locking

Exercises
16.1 Show that the two-phase locking protocol ensures conflict serializability, and

that transactions can be serialized according to their lock points.

16.2 Consider the following two transactions:

T31: read(A);
read(B);
if A = 0 then B := B + 1;
write(B).

T32: read(B);
read(A);
if B = 0 then A := A + 1;
write(A).

Add lock and unlock instructions to transactions T31 and T32, so that they ob-
serve the two-phase locking protocol. Can the execution of these transactions
result in a deadlock?

16.3 What benefit does strict two-phase locking provide? What disadvantages re-
sult?

16.4 What benefit does rigorous two-phase locking provide? How does it compare
with other forms of two-phase locking?

16.5 Most implementations of database systems use strict two-phase locking. Sug-
gest three reasons for the popularity of this protocol.

16.6 Consider a database organized in the form of a rooted tree. Suppose that we
insert a dummy vertex between each pair of vertices. Show that, if we follow
the tree protocol on the new tree, we get better concurrency than if we follow
the tree protocol on the original tree.
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16.7 Show by example that there are schedules possible under the tree protocol that
are not possible under the two-phase locking protocol, and vice versa.

16.8 Consider the following extension to the tree-locking protocol, which allows
both shared and exclusive locks:
• A transaction can be either a read-only transaction, in which case it can

request only shared locks, or an update transaction, in which case it can
request only exclusive locks.

• Each transaction must follow the rules of the tree protocol. Read-only trans-
actions may lock any data item first, whereas update transactions must
lock the root first.

Show that the protocol ensures serializability and deadlock freedom.

16.9 Consider the following graph-based locking protocol, which allows only ex-
clusive lock modes, and which operates on data graphs that are in the form of
a rooted directed acyclic graph.
• A transaction can lock any vertex first.
• To lock any other vertex, the transaction must be holding a lock on the

majority of the parents of that vertex.
Show that the protocol ensures serializability and deadlock freedom.

16.10 Consider the following graph-based locking protocol that allows only exclu-
sive lock modes, and that operates on data graphs that are in the form of a
rooted directed acyclic graph.
• A transaction can lock any vertex first.
• To lock any other vertex, the transaction must have visited all the parents

of that vertex, and must be holding a lock on one of the parents of the
vertex.

Show that the protocol ensures serializability and deadlock freedom.

16.11 Consider a variant of the tree protocol called the forest protocol. The database
is organized as a forest of rooted trees. Each transaction Ti must follow the
following rules:
• The first lock in each tree may be on any data item.
• The second, and all subsequent, locks in a tree may be requested only if

the parent of the requested node is currently locked.
• Data items may be unlocked at any time.
• A data item may not be relocked by Ti after it has been unlocked by Ti.

Show that the forest protocol does not ensure serializability.

16.12 Locking is not done explicitly in persistent programming languages. Rather,
objects (or the corresponding pages) must be locked when the objects are
accessed. Most modern operating systems allow the user to set access pro-
tections (no access, read, write) on pages, and memory access that violate the
access protections result in a protection violation (see the Unix mprotect com-
mand, for example). Describe how the access-protection mechanism can be
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S X I
S true false false
X false false false
I false false true

Figure 16.23 Lock-compatibility matrix.

used for page-level locking in a persistent programming language. (Hint: The
technique is similar to that used for hardware swizzling in Section 11.9.4).

16.13 Consider a database system that includes an atomic increment operation, in
addition to the read and write operations. Let V be the value of data item X.
The operation

increment(X) by C

sets the value of X to V + C in an atomic step. The value of X is not available to
the transaction unless the latter executes a read(X). Figure 16.23 shows a lock-
compatibility matrix for three lock modes: share mode, exclusive mode, and
incrementation mode.

a. Show that, if all transactions lock the data that they access in the corre-
sponding mode, then two-phase locking ensures serializability.

b. Show that the inclusion of increment mode locks allows for increased con-
currency. (Hint: Consider check-clearing transactions in our bank exam-
ple.)

16.14 In timestamp ordering, W-timestamp(Q) denotes the largest timestamp of any
transaction that executed write(Q) successfully. Suppose that, instead, we de-
fined it to be the timestamp of the most recent transaction to execute write(Q)
successfully. Would this change in wording make any difference? Explain your
answer.

16.15 When a transaction is rolled back under timestamp ordering, it is assigned a
new timestamp. Why can it not simply keep its old timestamp?

16.16 In multiple-granularity locking, what is the difference between implicit and
explicit locking?

16.17 Although SIX mode is useful in multiple-granularity locking, an exclusive and
intend-shared (XIS) mode is of no use. Why is it useless?

16.18 Use of multiple-granularity locking may require more or fewer locks than an
equivalent system with a single lock granularity. Provide examples of both sit-
uations, and compare the relative amount of concurrency allowed.

16.19 Consider the validation-based concurrency-control scheme of Section 16.3.
Show that by choosing Validation(Ti), rather than Start(Ti), as the timestamp of
transaction Ti, we can expect better response time provided that conflict rates
among transactions are indeed low.
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16.20 Show that there are schedules that are possible under the two-phase locking
protocol, but are not possible under the timestamp protocol, and vice versa.

16.21 For each of the following protocols, describe aspects of practical applications
that would lead you to suggest using the protocol, and aspects that would
suggest not using the protocol:
• Two-phase locking
• Two-phase locking with multiple-granularity locking
• The tree protocol
• Timestamp ordering
• Validation
• Multiversion timestamp ordering
• Multiversion two-phase locking

16.22 Under a modified version of the timestamp protocol, we require that a commit
bit be tested to see whether a read request must wait. Explain how the com-
mit bit can prevent cascading abort. Why is this test not necessary for write
requests?

16.23 Explain why the following technique for transaction execution may provide
better performance than just using strict two-phase locking: First execute the
transaction without acquiring any locks and without performing any writes to
the database as in the validation based techniques, but unlike in the validation
techniques do not perform either validation or perform writes on the database.
Instead, rerun the transaction using strict two-phase locking. (Hint: Consider
waits for disk I/O.)

16.24 Under what conditions is it less expensive to avoid deadlock than to allow
deadlocks to occur and then to detect them?

16.25 If deadlock is avoided by deadlock avoidance schemes, is starvation still pos-
sible? Explain your answer.

16.26 Consider the timestamp ordering protocol, and two transactions, one that
writes two data items p and q, and another that reads the same two data items.
Give a schedule whereby the timestamp test for a write operation fails and
causes the first transaction to be restarted, in turn causing a cascading abort of
the other transaction. Show how this could result in starvation of both transac-
tions. (Such a situation, where two or more processes carry out actions, but are
unable to complete their task because of interaction with the other processes,
is called a livelock.)

16.27 Explain the phantom phenomenon. Why may this phenomenon lead to an in-
correct concurrent execution despite the use of the two-phase locking protocol?

16.28 Devise a timestamp-based protocol that avoids the phantom phenomenon.

16.29 Explain the reason for the use of degree-two consistency. What disadvantages
does this approach have?
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16.30 Suppose that we use the tree protocol of Section 16.1.5 to manage concurrent
access to a B+-tree. Since a split may occur on an insert that affects the root, it
appears that an insert operation cannot release any locks until it has completed
the entire operation. Under what circumstances is it possible to release a lock
earlier?

16.31 Give example schedules to show that if any of lookup, insert or delete do not
lock the next key value, the phantom phenomemon could go undetected.

Bibliographical Notes
Gray and Reuter [1993] provides detailed textbook coverage of transaction-processing
concepts, including concurrency control concepts and implementation details. Bern-
stein and Newcomer [1997] provides textbook coverage of various aspects of trans-
action processing including concurrency control.

Early textbook discussions of concurrency control and recovery included Papadim-
itriou [1986] and Bernstein et al. [1987]. An early survey paper on implementation
issues in concurrency control and recovery is presented by Gray [1978].

The two-phase locking protocol was introduced by Eswaran et al. [1976]. The tree-
locking protocol is from Silberschatz and Kedem [1980]. Other non-two-phase lock-
ing protocols that operate on more general graphs are described in Yannakakis et al.
[1979], Kedem and Silberschatz [1983], and Buckley and Silberschatz [1985]. Gen-
eral discussions concerning locking protocols are offered by Lien and Weinberger
[1978], Yannakakis et al. [1979], Yannakakis [1981], and Papadimitriou [1982]. Korth
[1983] explores various lock modes that can be obtained from the basic shared and
exclusive lock modes.

Exercise 16.6 is from Buckley and Silberschatz [1984]. Exercise 16.8 is from Kedem
and Silberschatz [1983]. Exercise 16.9 is from Kedem and Silberschatz [1979]. Exercise
16.10 is from Yannakakis et al. [1979]. Exercise 16.13 is from Korth [1983].

The timestamp-based concurrency-control scheme is from Reed [1983]. An expo-
sition of various timestamp-based concurrency-control algorithms is presented by
Bernstein and Goodman [1980]. A timestamp algorithm that does not require any
rollback to ensure serializability is presented by Buckley and Silberschatz [1983]. The
validation concurrency-control scheme is from Kung and Robinson [1981].

The locking protocol for multiple-granularity data items is from Gray et al. [1975].
A detailed description is presented by Gray et al. [1976]. The effects of locking granu-
larity are discussed by Ries and Stonebraker [1977]. Korth [1983] formalizes multiple-
granularity locking for an arbitrary collection of lock modes (allowing for more se-
mantics than simply read and write). This approach includes a class of lock modes
called update modes to deal with lock conversion. Carey [1983] extends the multiple-
granularity idea to timestamp-based concurrency control. An extension of the pro-
tocol to ensure deadlock freedom is presented by Korth [1982]. Multiple-granularity
locking for object-oriented database systems is discussed in Lee and Liou [1996].

Discussions concerning multiversion concurrency control are offered by Bernstein
et al. [1983]. A multiversion tree-locking algorithm appears in Silberschatz [1982].



Silberschatz−Korth−Sudarshan: 
Database System 
Concepts, Fourth Edition

V. Transaction 
Management

16. Concurrency Control636 © The McGraw−Hill 
Companies, 2001

Bibliographical Notes 637

Multiversion timestamp order was introduced in Reed [1978] and Reed [1983]. Lai
and Wilkinson [1984] describes a multiversion two-phase locking certifier.

Dijkstra [1965] was one of the first and most influential contributors in the dead-
lock area. Holt [1971] and Holt [1972] were the first to formalize the notion of dead-
locks in terms of a graph model similar to the one presented in this chapter. An anal-
ysis of the probability of waiting and deadlock is presented by Gray et al. [1981a].
Theoretical results concerning deadlocks and serializability are presented by Fussell
et al. [1981] and Yannakakis [1981]. Cycle-detection algorithms can be found in stan-
dard algorithm textbooks, such as Cormen et al. [1990].

Degree-two consistency was introduced in Gray et al. [1975]. The levels of consis-
tency—or isolation—offered in SQL are explained and critiqued in Berenson et al.
[1995].

Concurrency in B+-trees was studied by Bayer and Schkolnick [1977] and Johnson
and Shasha [1993]. The techniques presented in Section 16.9 are based on Kung and
Lehman [1980] and Lehman and Yao [1981]. The technique of key-value locking used
in ARIES provides for very high concurrency on B+-tree access, and is described in
Mohan [1990a] and Mohan and Levine [1992].

Shasha and Goodman [1988] presents a good characterization of concurrency pro-
tocols for index structures. Ellis [1987] presents a concurrency-control technique for
linear hashing. Lomet and Salzberg [1992] present some extensions of B-link trees.
Concurrency-control algorithms for other index structures appear in Ellis [1980a] and
Ellis [1980b].



Silberschatz−Korth−Sudarshan: 
Database System 
Concepts, Fourth Edition

V. Transaction 
Management

17. Recovery System 637© The McGraw−Hill 
Companies, 2001

C H A P T E R 1 7

Recovery System

A computer system, like any other device, is subject to failure from a variety of
causes: disk crash, power outage, software error, a fire in the machine room, even
sabotage. In any failure, information may be lost. Therefore, the database system
must take actions in advance to ensure that the atomicity and durability properties of
transactions, introduced in Chapter 15, are preserved. An integral part of a database
system is a recovery scheme that can restore the database to the consistent state that
existed before the failure. The recovery scheme must also provide high availability;
that is, it must minimize the time for which the database is not usable after a crash.

17.1 Failure Classification
There are various types of failure that may occur in a system, each of which needs to
be dealt with in a different manner. The simplest type of failure is one that does not
result in the loss of information in the system. The failures that are more difficult to
deal with are those that result in loss of information. In this chapter, we shall consider
only the following types of failure:

• Transaction failure. There are two types of errors that may cause a transaction
to fail:
� Logical error. The transaction can no longer continue with its normal ex-

ecution because of some internal condition, such as bad input, data not
found, overflow, or resource limit exceeded.

� System error. The system has entered an undesirable state (for example,
deadlock), as a result of which a transaction cannot continue with its nor-
mal execution. The transaction, however, can be reexecuted at a later time.

• System crash. There is a hardware malfunction, or a bug in the database soft-
ware or the operating system, that causes the loss of the content of volatile

639
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storage, and brings transaction processing to a halt. The content of nonvolatile
storage remains intact, and is not corrupted.

The assumption that hardware errors and bugs in the software bring the
system to a halt, but do not corrupt the nonvolatile storage contents, is known
as the fail-stop assumption. Well-designed systems have numerous internal
checks, at the hardware and the software level, that bring the system to a halt
when there is an error. Hence, the fail-stop assumption is a reasonable one.

• Disk failure. A disk block loses its content as a result of either a head crash
or failure during a data transfer operation. Copies of the data on other disks,
or archival backups on tertiary media, such as tapes, are used to recover from
the failure.

To determine how the system should recover from failures, we need to identify
the failure modes of those devices used for storing data. Next, we must consider
how these failure modes affect the contents of the database. We can then propose
algorithms to ensure database consistency and transaction atomicity despite failures.
These algorithms, known as recovery algorithms, have two parts:

1. Actions taken during normal transaction processing to ensure that enough
information exists to allow recovery from failures.

2. Actions taken after a failure to recover the database contents to a state that
ensures database consistency, transaction atomicity, and durability.

17.2 Storage Structure
As we saw in Chapter 11, the various data items in the database may be stored and
accessed in a number of different storage media. To understand how to ensure the
atomicity and durability properties of a transaction, we must gain a better under-
standing of these storage media and their access methods.

17.2.1 Storage Types
In Chapter 11 we saw that storage media can be distinguished by their relative speed,
capacity, and resilience to failure, and classified as volatile storage or nonvolatile stor-
age. We review these terms, and introduce another class of storage, called stable stor-
age.

• Volatile storage. Information residing in volatile storage does not usually sur-
vive system crashes. Examples of such storage are main memory and cache
memory. Access to volatile storage is extremely fast, both because of the speed
of the memory access itself, and because it is possible to access any data item
in volatile storage directly.

• Nonvolatile storage. Information residing in nonvolatile storage survives sys-
tem crashes. Examples of such storage are disk and magnetic tapes. Disks are
used for online storage, whereas tapes are used for archival storage. Both,
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however, are subject to failure (for example, head crash), which may result
in loss of information. At the current state of technology, nonvolatile stor-
age is slower than volatile storage by several orders of magnitude. This is
because disk and tape devices are electromechanical, rather than based en-
tirely on chips, as is volatile storage. In database systems, disks are used for
most nonvolatile storage. Other nonvolatile media are normally used only for
backup data. Flash storage (see Section 11.1), though nonvolatile, has insuffi-
cient capacity for most database systems.

• Stable storage. Information residing in stable storage is never lost (never should
be taken with a grain of salt, since theoretically never cannot be guaranteed—
for example, it is possible, although extremely unlikely, that a black hole may
envelop the earth and permanently destroy all data!). Although stable stor-
age is theoretically impossible to obtain, it can be closely approximated by
techniques that make data loss extremely unlikely. Section 17.2.2 discusses
stable-storage implementation.

The distinctions among the various storage types are often less clear in practice than
in our presentation. Certain systems provide battery backup, so that some main
memory can survive system crashes and power failures. Alternative forms of non-
volatile storage, such as optical media, provide an even higher degree of reliability
than do disks.

17.2.2 Stable-Storage Implementation
To implement stable storage, we need to replicate the needed information in sev-
eral nonvolatile storage media (usually disk) with independent failure modes, and
to update the information in a controlled manner to ensure that failure during data
transfer does not damage the needed information.

Recall (from Chapter 11) that RAID systems guarantee that the failure of a single
disk (even during data transfer) will not result in loss of data. The simplest and fastest
form of RAID is the mirrored disk, which keeps two copies of each block, on separate
disks. Other forms of RAID offer lower costs, but at the expense of lower performance.

RAID systems, however, cannot guard against data loss due to disasters such as
fires or flooding. Many systems store archival backups of tapes off-site to guard
against such disasters. However, since tapes cannot be carried off-site continually,
updates since the most recent time that tapes were carried off-site could be lost in
such a disaster. More secure systems keep a copy of each block of stable storage at a
remote site, writing it out over a computer network, in addition to storing the block
on a local disk system. Since the blocks are output to a remote system as and when
they are output to local storage, once an output operation is complete, the output is
not lost, even in the event of a disaster such as a fire or flood. We study such remote
backup systems in Section 17.10.

In the remainder of this section, we discuss how storage media can be protected
from failure during data transfer. Block transfer between memory and disk storage
can result in
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• Successful completion. The transferred information arrived safely at its des-
tination.

• Partial failure. A failure occurred in the midst of transfer, and the destination
block has incorrect information.

• Total failure. The failure occurred sufficiently early during the transfer that
the destination block remains intact.

We require that, if a data-transfer failure occurs, the system detects it and invokes
a recovery procedure to restore the block to a consistent state. To do so, the system
must maintain two physical blocks for each logical database block; in the case of
mirrored disks, both blocks are at the same location; in the case of remote backup,
one of the blocks is local, whereas the other is at a remote site. An output operation
is executed as follows:

1. Write the information onto the first physical block.

2. When the first write completes successfully, write the same information onto
the second physical block.

3. The output is completed only after the second write completes successfully.

During recovery, the system examines each pair of physical blocks. If both are the
same and no detectable error exists, then no further actions are necessary. (Recall that
errors in a disk block, such as a partial write to the block, are detected by storing a
checksum with each block.) If the system detects an error in one block, then it replaces
its content with the content of the other block. If both blocks contain no detectable
error, but they differ in content, then the system replaces the content of the first block
with the value of the second. This recovery procedure ensures that a write to stable
storage either succeeds completely (that is, updates all copies) or results in no change.

The requirement of comparing every corresponding pair of blocks during recovery
is expensive to meet. We can reduce the cost greatly by keeping track of block writes
that are in progress, using a small amount of nonvolatile RAM. On recovery, only
blocks for which writes were in progress need to be compared.

The protocols for writing out a block to a remote site are similar to the protocols
for writing blocks to a mirrored disk system, which we examined in Chapter 11, and
particularly in Exercise 11.4.

We can extend this procedure easily to allow the use of an arbitrarily large number
of copies of each block of stable storage. Although a large number of copies reduces
the probability of a failure to even lower than two copies do, it is usually reasonable
to simulate stable storage with only two copies.

17.2.3 Data Access
As we saw in Chapter 11, the database system resides permanently on nonvolatile
storage (usually disks), and is partitioned into fixed-length storage units called blocks.
Blocks are the units of data transfer to and from disk, and may contain several data
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Figure 17.1 Block storage operations.

items. We shall assume that no data item spans two or more blocks. This assumption
is realistic for most data-processing applications, such as our banking example.

Transactions input information from the disk to main memory, and then output the
information back onto the disk. The input and output operations are done in block
units. The blocks residing on the disk are referred to as physical blocks; the blocks
residing temporarily in main memory are referred to as buffer blocks. The area of
memory where blocks reside temporarily is called the disk buffer.

Block movements between disk and main memory are initiated through the fol-
lowing two operations:

1. input(B) transfers the physical block B to main memory.

2. output(B) transfers the buffer block B to the disk, and replaces the appropriate
physical block there.

Figure 17.1 illustrates this scheme.
Each transaction Ti has a private work area in which copies of all the data items

accessed and updated by Ti are kept. The system creates this work area when the
transaction is initiated; the system removes it when the transaction either commits
or aborts. Each data item X kept in the work area of transaction Ti is denoted by xi.
Transaction Ti interacts with the database system by transferring data to and from its
work area to the system buffer. We transfer data by these two operations:

1. read(X) assigns the value of data item X to the local variable xi. It executes
this operation as follows:

a. If block BX on which X resides is not in main memory, it issues input(BX ).
b. It assigns to xi the value of X from the buffer block.

2. write(X) assigns the value of local variable xi to data item X in the buffer block.
It executes this operation as follows:

a. If block BX on which X resides is not in main memory, it issues input(BX ).
b. It assigns the value of xi to X in buffer BX .
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Note that both operations may require the transfer of a block from disk to main mem-
ory. They do not, however, specifically require the transfer of a block from main mem-
ory to disk.

A buffer block is eventually written out to the disk either because the buffer man-
ager needs the memory space for other purposes or because the database system
wishes to reflect the change to B on the disk. We shall say that the database system
performs a force-output of buffer B if it issues an output(B).

When a transaction needs to access a data item X for the first time, it must execute
read(X). The system then performs all updates to X on xi. After the transaction ac-
cesses X for the final time, it must execute write(X) to reflect the change to X in the
database itself.

The output(BX ) operation for the buffer block BX on which X resides does not
need to take effect immediately after write(X) is executed, since the block BX may
contain other data items that are still being accessed. Thus, the actual output may
take place later. Notice that, if the system crashes after the write(X) operation was
executed but before output(BX ) was executed, the new value of X is never written to
disk and, thus, is lost.

17.3 Recovery and Atomicity
Consider again our simplified banking system and transaction Ti that transfers $50
from account A to account B, with initial values of A and B being $1000 and $2000,
respectively. Suppose that a system crash has occurred during the execution of Ti,
after output(BA) has taken place, but before output(BB) was executed, where BA and
BB denote the buffer blocks on which A and B reside. Since the memory contents
were lost, we do not know the fate of the transaction; thus, we could invoke one of
two possible recovery procedures:

• Reexecute Ti. This procedure will result in the value of A becoming $900,
rather than $950. Thus, the system enters an inconsistent state.

• Do not reexecute Ti. The current system state has values of $950 and $2000
for A and B, respectively. Thus, the system enters an inconsistent state.

In either case, the database is left in an inconsistent state, and thus this simple re-
covery scheme does not work. The reason for this difficulty is that we have modified
the database without having assurance that the transaction will indeed commit. Our
goal is to perform either all or no database modifications made by Ti. However, if
Ti performed multiple database modifications, several output operations may be re-
quired, and a failure may occur after some of these modifications have been made,
but before all of them are made.

To achieve our goal of atomicity, we must first output information describing the
modifications to stable storage, without modifying the database itself. As we shall
see, this procedure will allow us to output all the modifications made by a commit-
ted transaction, despite failures. There are two ways to perform such outputs; we
study them in Sections 17.4 and 17.5. In these two sections, we shall assume that
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transactions are executed serially; in other words, only a single transaction is active at
a time. We shall describe how to handle concurrently executing transactions later, in
Section 17.6.

17.4 Log-Based Recovery
The most widely used structure for recording database modifications is the log. The
log is a sequence of log records, recording all the update activities in the database.
There are several types of log records. An update log record describes a single data-
base write. It has these fields:

• Transaction identifier is the unique identifier of the transaction that performed
the write operation.

• Data-item identifier is the unique identifier of the data item written. Typically,
it is the location on disk of the data item.

• Old value is the value of the data item prior to the write.

• New value is the value that the data item will have after the write.

Other special log records exist to record significant events during transaction pro-
cessing, such as the start of a transaction and the commit or abort of a transaction.
We denote the various types of log records as:

• <Ti start>. Transaction Ti has started.

• <Ti, Xj , V1, V2>. Transaction Ti has performed a write on data item Xj . Xj

had value V1 before the write, and will have value V2 after the write.

• <Ti commit>. Transaction Ti has committed.

• <Ti abort>. Transaction Ti has aborted.

Whenever a transaction performs a write, it is essential that the log record for that
write be created before the database is modified. Once a log record exists, we can
output the modification to the database if that is desirable. Also, we have the ability
to undo a modification that has already been output to the database. We undo it by
using the old-value field in log records.

For log records to be useful for recovery from system and disk failures, the log
must reside in stable storage. For now, we assume that every log record is written to
the end of the log on stable storage as soon as it is created. In Section 17.7, we shall
see when it is safe to relax this requirement so as to reduce the overhead imposed by
logging. In Sections 17.4.1 and 17.4.2, we shall introduce two techniques for using the
log to ensure transaction atomicity despite failures. Observe that the log contains a
complete record of all database activity. As a result, the volume of data stored in the
log may become unreasonably large. In Section 17.4.3, we shall show when it is safe
to erase log information.
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17.4.1 Deferred Database Modification
The deferred-modification technique ensures transaction atomicity by recording all
database modifications in the log, but deferring the execution of all write operations
of a transaction until the transaction partially commits. Recall that a transaction is
said to be partially committed once the final action of the transaction has been ex-
ecuted. The version of the deferred-modification technique that we describe in this
section assumes that transactions are executed serially.

When a transaction partially commits, the information on the log associated with
the transaction is used in executing the deferred writes. If the system crashes before
the transaction completes its execution, or if the transaction aborts, then the informa-
tion on the log is simply ignored.

The execution of transaction Ti proceeds as follows. Before Ti starts its execution,
a record <Ti start> is written to the log. A write(X) operation by Ti results in the
writing of a new record to the log. Finally, when Ti partially commits, a record <Ti

commit> is written to the log.
When transaction Ti partially commits, the records associated with it in the log are

used in executing the deferred writes. Since a failure may occur while this updating is
taking place, we must ensure that, before the start of these updates, all the log records
are written out to stable storage. Once they have been written, the actual updating
takes place, and the transaction enters the committed state.

Observe that only the new value of the data item is required by the deferred-
modification technique. Thus, we can simplify the general update-log record struc-
ture that we saw in the previous section, by omitting the old-value field.

To illustrate, reconsider our simplified banking system. Let T0 be a transaction that
transfers $50 from account A to account B:

T0: read(A);
A := A − 50;
write(A);
read(B);
B := B + 50;
write(B).

Let T1 be a transaction that withdraws $100 from account C:

T1: read(C);
C := C − 100;
write(C).

Suppose that these transactions are executed serially, in the order T0 followed by T1,
and that the values of accounts A, B, and C before the execution took place were
$1000, $2000, and $700, respectively. The portion of the log containing the relevant
information on these two transactions appears in Figure 17.2.

There are various orders in which the actual outputs can take place to both the
database system and the log as a result of the execution of T0 and T1. One such order
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<T0  start>
<T0 , A, 950>
<T0 , B, 2050>
<T0  commit>
<T1  start>
<T1 , C, 600>
<T1  commit>

Figure 17.2 Portion of the database log corresponding to T0 and T1.

appears in Figure 17.3. Note that the value of A is changed in the database only after
the record <T0, A, 950> has been placed in the log.

Using the log, the system can handle any failure that results in the loss of informa-
tion on volatile storage. The recovery scheme uses the following recovery procedure:

• redo(Ti) sets the value of all data items updated by transaction Ti to the new
values.

The set of data items updated by Ti and their respective new values can be found in
the log.

The redo operation must be idempotent; that is, executing it several times must be
equivalent to executing it once. This characteristic is required if we are to guarantee
correct behavior even if a failure occurs during the recovery process.

After a failure, the recovery subsystem consults the log to determine which trans-
actions need to be redone. Transaction Ti needs to be redone if and only if the log
contains both the record <Ti start> and the record <Ti commit>. Thus, if the system
crashes after the transaction completes its execution, the recovery scheme uses the
information in the log to restore the system to a previous consistent state after the
transaction had completed.

As an illustration, let us return to our banking example with transactions T0 and
T1 executed one after the other in the order T0 followed by T1. Figure 17.2 shows the
log that results from the complete execution of T0 and T1. Let us suppose that the

Log Database

A = 950
B = 2050

C = 600

<T0  start>
<T0 ,  A,  950>
<T0 ,  B,  2050>
<T0  commit>

<T1  start>
<T1 ,  C,  600>
<T1  commit>

Figure 17.3 State of the log and database corresponding to T0 and T1.
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<T0  start>
<T0 ,  A,  950>
<T0 ,  B,  2050>

<T0  start>
<T0 ,  A,  950>
<T0 ,  B,  2050>
<T0  commit>
<T1  start>
<T1 ,  C,  600>

<T0  start>
<T0 ,  A,  950>
<T0 ,  B,  2050>
<T0  commit>
<T1  start>
<T1 ,  C,  600>
<T1  commit>

(a) (b) (c)

Figure 17.4 The same log as that in Figure 17.3, shown at three different times.

system crashes before the completion of the transactions, so that we can see how the
recovery technique restores the database to a consistent state. Assume that the crash
occurs just after the log record for the step

write(B)

of transaction T0 has been written to stable storage. The log at the time of the crash
appears in Figure 17.4a. When the system comes back up, no redo actions need to
be taken, since no commit record appears in the log. The values of accounts A and B
remain $1000 and $2000, respectively. The log records of the incomplete transaction
T0 can be deleted from the log.

Now, let us assume the crash comes just after the log record for the step

write(C)

of transaction T1 has been written to stable storage. In this case, the log at the time
of the crash is as in Figure 17.4b. When the system comes back up, the operation
redo(T0) is performed, since the record

<T0 commit>

appears in the log on the disk. After this operation is executed, the values of accounts
A and B are $950 and $2050, respectively. The value of account C remains $700. As
before, the log records of the incomplete transaction T1 can be deleted from the log.

Finally, assume that a crash occurs just after the log record

<T1 commit>

is written to stable storage. The log at the time of this crash is as in Figure 17.4c. When
the system comes back up, two commit records are in the log: one for T0 and one
for T1. Therefore, the system must perform operations redo(T0) and redo(T1), in the
order in which their commit records appear in the log. After the system executes these
operations, the values of accounts A, B, and C are $950, $2050, and $600, respectively.

Finally, let us consider a case in which a second system crash occurs during re-
covery from the first crash. Some changes may have been made to the database as a
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result of the redo operations, but all changes may not have been made. When the sys-
tem comes up after the second crash, recovery proceeds exactly as in the preceding
examples. For each commit record

<Ti commit>

found in the log, the the system performs the operation redo(Ti). In other words,
it restarts the recovery actions from the beginning. Since redo writes values to the
database independent of the values currently in the database, the result of a success-
ful second attempt at redo is the same as though redo had succeeded the first time.

17.4.2 Immediate Database Modification
The immediate-modification technique allows database modifications to be output
to the database while the transaction is still in the active state. Data modifications
written by active transactions are called uncommitted modifications. In the event
of a crash or a transaction failure, the system must use the old-value field of the
log records described in Section 17.4 to restore the modified data items to the value
they had prior to the start of the transaction. The undo operation, described next,
accomplishes this restoration.

Before a transaction Ti starts its execution, the system writes the record <Ti start>
to the log. During its execution, any write(X) operation by Ti is preceded by the writ-
ing of the appropriate new update record to the log. When Ti partially commits, the
system writes the record <Ti commit> to the log.

Since the information in the log is used in reconstructing the state of the database,
we cannot allow the actual update to the database to take place before the corre-
sponding log record is written out to stable storage. We therefore require that, before
execution of an output(B) operation, the log records corresponding to B be written
onto stable storage. We shall return to this issue in Section 17.7.

As an illustration, let us reconsider our simplified banking system, with transac-
tions T0 and T1 executed one after the other in the order T0 followed by T1. The por-
tion of the log containing the relevant information concerning these two transactions
appears in Figure 17.5.

Figure 17.6 shows one possible order in which the actual outputs took place in both
the database system and the log as a result of the execution of T0 and T1. Notice that

<T0  start>
<T0 ,  A,  1000,  950>
<T0 ,  B,  2000,  2050>
<T0  commit>
<T1  start>
<T1 ,  C,  700,  600>
<T1  commit>

Figure 17.5 Portion of the system log corresponding to T0 and T1.
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Log Database

A = 950
B = 2050

C = 600

<T0  start>
<T0 ,  A,  1000,  950>
<T0 ,  B,  2000,  2050>

<T0  commit>
<T1  start>
<T1 ,  C,  700,  600>

<T1  commit>

Figure 17.6 State of system log and database corresponding to T0 and T1.

this order could not be obtained in the deferred-modification technique of Section
17.4.1.

Using the log, the system can handle any failure that does not result in the loss
of information in nonvolatile storage. The recovery scheme uses two recovery proce-
dures:

• undo(Ti) restores the value of all data items updated by transaction Ti to the
old values.

• redo(Ti) sets the value of all data items updated by transaction Ti to the new
values.

The set of data items updated by Ti and their respective old and new values can be
found in the log.

The undo and redo operations must be idempotent to guarantee correct behavior
even if a failure occurs during the recovery process.

After a failure has occurred, the recovery scheme consults the log to determine
which transactions need to be redone, and which need to be undone:

• Transaction Ti needs to be undone if the log contains the record <Ti start>,
but does not contain the record <Ti commit>.

• Transaction Ti needs to be redone if the log contains both the record <Ti start>
and the record <Ti commit>.

As an illustration, return to our banking example, with transaction T0 and T1 ex-
ecuted one after the other in the order T0 followed by T1. Suppose that the system
crashes before the completion of the transactions. We shall consider three cases. The
state of the logs for each of these cases appears in Figure 17.7.

First, let us assume that the crash occurs just after the log record for the step

write(B)
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<T0  start>
<T0 ,  A,  1000,  950>
<T0 ,  B,  2000,  2050>

<T0  start>
<T0 ,  A,  1000,  950>
<T0 ,  B,  2000,  2050>
<T0  commit>
<T1  start>
<T1 ,  C,  700,  600>

<T0  start>
<T0 ,  A,  1000,  950>
<T0 ,  B,  2000,  2050>
<T0  commit>
<T1  start>
<T1 ,  C,  700,  600>
<T1  commit>

(a) (b) (c)

Figure 17.7 The same log, shown at three different times.

of transaction T0 has been written to stable storage (Figure 17.7a). When the system
comes back up, it finds the record <T0 start> in the log, but no corresponding <T0

commit> record. Thus, transaction T0 must be undone, so an undo(T0) is performed.
As a result, the values in accounts A and B (on the disk) are restored to $1000 and
$2000, respectively.

Next, let us assume that the crash comes just after the log record for the step

write(C)

of transaction T1 has been written to stable storage (Figure 17.7b). When the system
comes back up, two recovery actions need to be taken. The operation undo(T1) must
be performed, since the record <T1 start> appears in the log, but there is no record
<T1 commit>. The operation redo(T0) must be performed, since the log contains both
the record <T0 start> and the record <T0 commit>. At the end of the entire recovery
procedure, the values of accounts A, B, and C are $950, $2050, and $700, respectively.
Note that the undo(T1) operation is performed before the redo(T0). In this example,
the same outcome would result if the order were reversed. However, the order of
doing undo operations first, and then redo operations, is important for the recovery
algorithm that we shall see in Section 17.6.

Finally, let us assume that the crash occurs just after the log record

<T1 commit>

has been written to stable storage (Figure 17.7c). When the system comes back up,
both T0 and T1 need to be redone, since the records <T0 start> and <T0 commit>
appear in the log, as do the records <T1 start> and <T1 commit>. After the system
performs the recovery procedures redo(T0) and redo(T1), the values in accounts A, B,
and C are $950, $2050, and $600, respectively.

17.4.3 Checkpoints
When a system failure occurs, we must consult the log to determine those transac-
tions that need to be redone and those that need to be undone. In principle, we need
to search the entire log to determine this information. There are two major difficulties
with this approach:
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1. The search process is time consuming.

2. Most of the transactions that, according to our algorithm, need to be redone
have already written their updates into the database. Although redoing them
will cause no harm, it will nevertheless cause recovery to take longer.

To reduce these types of overhead, we introduce checkpoints. During execution, the
system maintains the log, using one of the two techniques described in Sections 17.4.1
and 17.4.2. In addition, the system periodically performs checkpoints, which require
the following sequence of actions to take place:

1. Output onto stable storage all log records currently residing in main memory.

2. Output to the disk all modified buffer blocks.

3. Output onto stable storage a log record <checkpoint>.

Transactions are not allowed to perform any update actions, such as writing to a
buffer block or writing a log record, while a checkpoint is in progress.

The presence of a <checkpoint> record in the log allows the system to streamline
its recovery procedure. Consider a transaction Ti that committed prior to the check-
point. For such a transaction, the <Ti commit> record appears in the log before the
<checkpoint> record. Any database modifications made by Ti must have been writ-
ten to the database either prior to the checkpoint or as part of the checkpoint itself.
Thus, at recovery time, there is no need to perform a redo operation on Ti.

This observation allows us to refine our previous recovery schemes. (We continue
to assume that transactions are run serially.) After a failure has occurred, the recov-
ery scheme examines the log to determine the most recent transaction Ti that started
executing before the most recent checkpoint took place. It can find such a transac-
tion by searching the log backward, from the end of the log, until it finds the first
<checkpoint> record (since we are searching backward, the record found is the final
<checkpoint> record in the log); then it continues the search backward until it finds
the next <Ti start> record. This record identifies a transaction Ti.

Once the system has identified transaction Ti, the redo and undo operations need
to be applied to only transaction Ti and all transactions Tj that started executing
after transaction Ti. Let us denote these transactions by the set T. The remainder
(earlier part) of the log can be ignored, and can be erased whenever desired. The
exact recovery operations to be performed depend on the modification technique
being used. For the immediate-modification technique, the recovery operations are:

• For all transactions Tk in T that have no <Tk commit> record in the log, exe-
cute undo(Tk).

• For all transactions Tk in T such that the record <Tk commit> appears in the
log, execute redo(Tk).

Obviously, the undo operation does not need to be applied when the deferred-modifi-
cation technique is being employed.
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As an illustration, consider the set of transactions {T0, T1, . . ., T100} executed in the
order of the subscripts. Suppose that the most recent checkpoint took place during
the execution of transaction T67. Thus, only transactions T67, T68, . . ., T100 need to be
considered during the recovery scheme. Each of them needs to be redone if it has
committed; otherwise, it needs to be undone.

In Section 17.6.3, we consider an extension of the checkpoint technique for concur-
rent transaction processing.

17.5 Shadow Paging
An alternative to log-based crash-recovery techniques is shadow paging. The
shadow-paging technique is essentially an improvement on the shadow-copy tech-
nique that we saw in Section 15.3. Under certain circumstances, shadow paging may
require fewer disk accesses than do the log-based methods discussed previously.
There are, however, disadvantages to the shadow-paging approach, as we shall see,
that limit its use. For example, it is hard to extend shadow paging to allow multiple
transactions to execute concurrently.

As before, the database is partitioned into some number of fixed-length blocks,
which are referred to as pages. The term page is borrowed from operating systems,
since we are using a paging scheme for memory management. Assume that there are
n pages, numbered 1 through n. (In practice, n may be in the hundreds of thousands.)
These pages do not need to be stored in any particular order on disk (there are many
reasons why they do not, as we saw in Chapter 11). However, there must be a way to
find the ith page of the database for any given i. We use a page table, as in Figure 17.8,
for this purpose. The page table has n entries—one for each database page. Each
entry contains a pointer to a page on disk. The first entry contains a pointer to the
first page of the database, the second entry points to the second page, and so on. The
example in Figure 17.8 shows that the logical order of database pages does not need
to correspond to the physical order in which the pages are placed on disk.

The key idea behind the shadow-paging technique is to maintain two page tables
during the life of a transaction: the current page table and the shadow page table.
When the transaction starts, both page tables are identical. The shadow page table is
never changed over the duration of the transaction. The current page table may be
changed when a transaction performs a write operation. All input and output opera-
tions use the current page table to locate database pages on disk.

Suppose that the transaction Tj performs a write(X) operation, and that X resides
on the ith page. The system executes the write operation as follows:

1. If the ith page (that is, the page on which X resides) is not already in main
memory, then the system issues input(X).

2. If this is the write first performed on the ith page by this transaction, then the
system modifies the current page table as follows:

a. It finds an unused page on disk. Usually, the database system has access
to a list of unused (free) pages, as we saw in Chapter 11.
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 page table

pages on disk

…
…

…

1
2
3
4
5
6
7

n

Figure 17.8 Sample page table.

b. It deletes the page found in step 2a from the list of free page frames; it
copies the contents of the ith page to the page found in step 2a.

c. It modifies the current page table so that the ith entry points to the page
found in step 2a.

3. It assigns the value of xj to X in the buffer page.

Compare this action for a write operation with that described in Section 17.2.3 The
only difference is that we have added a new step. Steps 1 and 3 here correspond
to steps 1 and 2 in Section 17.2.3. The added step, step 2, manipulates the current
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pages on disk

Figure 17.9 Shadow and current page tables.

page table. Figure 17.9 shows the shadow and current page tables for a transaction
performing a write to the fourth page of a database consisting of 10 pages.

Intuitively, the shadow-page approach to recovery is to store the shadow page ta-
ble in nonvolatile storage, so that the state of the database prior to the execution of
the transaction can be recovered in the event of a crash, or transaction abort. When
the transaction commits, the system writes the current page table to nonvolatile stor-
age. The current page table then becomes the new shadow page table, and the next
transaction is allowed to begin execution. It is important that the shadow page table
be stored in nonvolatile storage, since it provides the only means of locating database
pages. The current page table may be kept in main memory (volatile storage). We do
not care whether the current page table is lost in a crash, since the system recovers by
using the shadow page table.

Successful recovery requires that we find the shadow page table on disk after a
crash. A simple way of finding it is to choose one fixed location in stable storage that
contains the disk address of the shadow page table. When the system comes back
up after a crash, it copies the shadow page table into main memory and uses it for



Silberschatz−Korth−Sudarshan: 
Database System 
Concepts, Fourth Edition

V. Transaction 
Management

17. Recovery System654 © The McGraw−Hill 
Companies, 2001

656 Chapter 17 Recovery System

subsequent transaction processing. Because of our definition of the write operation,
we are guaranteed that the shadow page table will point to the database pages cor-
responding to the state of the database prior to any transaction that was active at the
time of the crash. Thus, aborts are automatic. Unlike our log-based schemes, shadow
paging needs to invoke no undo operations.

To commit a transaction, we must do the following:

1. Ensure that all buffer pages in main memory that have been changed by the
transaction are output to disk. (Note that these output operations will not
change database pages pointed to by some entry in the shadow page table.)

2. Output the current page table to disk. Note that we must not overwrite the
shadow page table, since we may need it for recovery from a crash.

3. Output the disk address of the current page table to the fixed location in sta-
ble storage containing the address of the shadow page table. This action over-
writes the address of the old shadow page table. Therefore, the current page
table has become the shadow page table, and the transaction is committed.

If a crash occurs prior to the completion of step 3, we revert to the state just prior to
the execution of the transaction. If the crash occurs after the completion of step 3, the
effects of the transaction will be preserved; no redo operations need to be invoked.

Shadow paging offers several advantages over log-based techniques. The over-
head of log-record output is eliminated, and recovery from crashes is significantly
faster (since no undo or redo operations are needed). However, there are drawbacks
to the shadow-page technique:

• Commit overhead. The commit of a single transaction using shadow paging
requires multiple blocks to be output—the actual data blocks, the current page
table, and the disk address of the current page table. Log-based schemes need
to output only the log records, which, for typical small transactions, fit within
one block.

The overhead of writing an entire page table can be reduced by implement-
ing the page table as a tree structure, with page table entries at the leaves. We
outline the idea below, and leave it to the reader to fill in missing details. The
nodes of the tree are pages and have a high fanout, like B+-trees. The current
page table’s tree is initially the same as the shadow page table’s tree. When a
page is to be updated for the first time, the system changes the entry in the cur-
rent page table to point to the copy of the page. If the leaf page containing the
entry has been copied already, the system directly updates it. Otherwise, the
system first copies it, and updates the copy. In turn, the parent of the copied
page needs to be updated to point to the new copy, which the system does
by applying the same procedure to its parent, copying it if it was not already
copied. The process of copying proceeds up to the root of the tree. Changes
are made only to the copied nodes, so the shadow page table’s tree does not
get modified.
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The benefit of the tree representation is that the only pages that need to be
copied are the leaf pages that are updated, and all their ancestors in the tree.
All the other parts of the tree are shared between the shadow and the current
page table, and do not need to be copied. The reduction in copying costs can be
very significant for large databases. However, several pages of the page table
still need to copied for each transaction, and the log-based schemes continue
to be superior as long as most transactions update only small parts of the
database.

• Data fragmentation. In Chapter 11, we considered strategies to ensure locality
—that is, to keep related database pages close physically on the disk. Local-
ity allows for faster data transfer. Shadow paging causes database pages to
change location when they are updated. As a result, either we lose the locality
property of the pages or we must resort to more complex, higher-overhead
schemes for physical storage management. (See the bibliographical notes for
references.)

• Garbage collection. Each time that a transaction commits, the database pages
containing the old version of data changed by the transaction become inac-
cessible. In Figure 17.9, the page pointed to by the fourth entry of the shadow
page table will become inaccessible once the transaction of that example com-
mits. Such pages are considered garbage, since they are not part of free space
and do not contain usable information. Garbage may be created also as a side
effect of crashes. Periodically, it is necessary to find all the garbage pages, and
to add them to the list of free pages. This process, called garbage collection,
imposes additional overhead and complexity on the system. There are several
standard algorithms for garbage collection. (See the bibliographical notes for
references.)

In addition to the drawbacks of shadow paging just mentioned, shadow paging is
more difficult than logging to adapt to systems that allow several transactions to exe-
cute concurrently. In such systems, some logging is usually required, even if shadow
paging is used. The System R prototype, for example, used a combination of shadow
paging and a logging scheme similar to that presented in Section 17.4.2. It is relatively
easy to extend the log-based recovery schemes to allow concurrent transactions, as
we shall see in Section 17.6. For these reasons, shadow paging is not widely used.

17.6 Recovery with Concurrent Transactions
Until now, we considered recovery in an environment where only a single trans-
action at a time is executing. We now discuss how we can modify and extend the
log-based recovery scheme to deal with multiple concurrent transactions. Regardless
of the number of concurrent transactions, the system has a single disk buffer and a
single log. All transactions share the buffer blocks. We allow immediate modification,
and permit a buffer block to have data items updated by one or more transactions.
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17.6.1 Interaction with Concurrency Control
The recovery scheme depends greatly on the concurrency-control scheme that is
used. To roll back a failed transaction, we must undo the updates performed by the
transaction. Suppose that a transaction T0 has to be rolled back, and a data item Q that
was updated by T0 has to be restored to its old value. Using the log-based schemes
for recovery, we restore the value by using the undo information in a log record. Sup-
pose now that a second transaction T1 has performed yet another update on Q before
T0 is rolled back. Then, the update performed by T1 will be lost if T0 is rolled back.

Therefore, we require that, if a transaction T has updated a data item Q, no other
transaction may update the same data item until T has committed or been rolled
back. We can ensure this requirement easily by using strict two-phase locking—that
is, two-phase locking with exclusive locks held until the end of the transaction.

17.6.2 Transaction Rollback
We roll back a failed transaction, Ti, by using the log. The system scans the log back-
ward; for every log record of the form <Ti, Xj , V1, V2> found in the log, the system
restores the data item Xj to its old value V1. Scanning of the log terminates when the
log record <Ti, start> is found.

Scanning the log backward is important, since a transaction may have updated a
data item more than once. As an illustration, consider the pair of log records

<Ti, A, 10, 20>
<Ti, A, 20, 30>

The log records represent a modification of data item A by Ti, followed by another
modification of A by Ti. Scanning the log backward sets A correctly to 10. If the log
were scanned in the forward direction, A would be set to 20, which is incorrect.

If strict two-phase locking is used for concurrency control, locks held by a transac-
tion T may be released only after the transaction has been rolled back as described.
Once transaction T (that is being rolled back) has updated a data item, no other trans-
action could have updated the same data item, because of the concurrency-control
requirements mentioned in Section 17.6.1. Therefore, restoring the old value of the
data item will not erase the effects of any other transaction.

17.6.3 Checkpoints
In Section 17.4.3, we used checkpoints to reduce the number of log records that the
system must scan when it recovers from a crash. Since we assumed no concurrency,
it was necessary to consider only the following transactions during recovery:

• Those transactions that started after the most recent checkpoint

• The one transaction, if any, that was active at the time of the most recent check-
point

The situation is more complex when transactions can execute concurrently, since sev-
eral transactions may have been active at the time of the most recent checkpoint.



Silberschatz−Korth−Sudarshan: 
Database System 
Concepts, Fourth Edition

V. Transaction 
Management

17. Recovery System 657© The McGraw−Hill 
Companies, 2001

17.6 Recovery with Concurrent Transactions 659

In a concurrent transaction-processing system, we require that the checkpoint log
record be of the form <checkpoint L>, where L is a list of transactions active at the
time of the checkpoint. Again, we assume that transactions do not perform updates
either on the buffer blocks or on the log while the checkpoint is in progress.

The requirement that transactions must not perform any updates to buffer blocks
or to the log during checkpointing can be bothersome, since transaction processing
will have to halt while a checkpoint is in progress. A fuzzy checkpoint is a check-
point where transactions are allowed to perform updates even while buffer blocks
are being written out. Section 17.9.5 describes fuzzy checkpointing schemes.

17.6.4 Restart Recovery
When the system recovers from a crash, it constructs two lists: The undo-list consists
of transactions to be undone, and the redo-list consists of transactions to be redone.

The system constructs the two lists as follows: Initially, they are both empty.
The system scans the log backward, examining each record, until it finds the first
<checkpoint> record:

• For each record found of the form <Ti commit>, it adds Ti to redo-list.

• For each record found of the form <Ti start>, if Ti is not in redo-list, then it
adds Ti to undo-list.

When the system has examined all the appropriate log records, it checks the list L in
the checkpoint record. For each transaction Ti in L, if Ti is not in redo-list then it adds
Ti to the undo-list.

Once the redo-list and undo-list have have been constructed, the recovery pro-
ceeds as follows:

1. The system rescans the log from the most recent record backward, and per-
forms an undo for each log record that belongs transaction Ti on the undo-list.
Log records of transactions on the redo-list are ignored in this phase. The scan
stops when the <Ti start> records have been found for every transaction Ti

in the undo-list.

2. The system locates the most recent <checkpoint L> record on the log. Notice
that this step may involve scanning the log forward, if the checkpoint record
was passed in step 1.

3. The system scans the log forward from the most recent <checkpoint L> record,
and performs redo for each log record that belongs to a transaction Ti that is
on the redo-list. It ignores log records of transactions on the undo-list in this
phase.

It is important in step 1 to process the log backward, to ensure that the resulting
state of the database is correct.
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After the system has undone all transactions on the undo-list, it redoes those trans-
actions on the redo-list. It is important, in this case, to process the log forward. When
the recovery process has completed, transaction processing resumes.

It is important to undo the transaction in the undo-list before redoing transactions
in the redo-list, using the algorithm in steps 1 to 3; otherwise, a problem may occur.
Suppose that data item A initially has the value 10. Suppose that a transaction Ti

updated data item A to 20 and aborted; transaction rollback would restore A to the
value 10. Suppose that another transaction Tj then updated data item A to 30 and
committed, following which the system crashed. The state of the log at the time of
the crash is

<Ti, A, 10, 20>
<Tj , A, 10, 30>
<Tj commit>

If the redo pass is performed first, A will be set to 30; then, in the undo pass, A will
be set to 10, which is wrong. The final value of Q should be 30, which we can ensure
by performing undo before performing redo.

17.7 Buffer Management
In this section, we consider several subtle details that are essential to the implementa-
tion of a crash-recovery scheme that ensures data consistency and imposes a minimal
amount of overhead on interactions with the database.

17.7.1 Log-Record Buffering
So far, we have assumed that every log record is output to stable storage at the time it
is created. This assumption imposes a high overhead on system execution for several
reasons: Typically, output to stable storage is in units of blocks. In most cases, a log
record is much smaller than a block. Thus, the output of each log record translates to
a much larger output at the physical level. Furthermore, as we saw in Section 17.2.2,
the output of a block to stable storage may involve several output operations at the
physical level.

The cost of performing the output of a block to stable storage is sufficiently high
that it is desirable to output multiple log records at once. To do so, we write log
records to a log buffer in main memory, where they stay temporarily until they are
output to stable storage. Multiple log records can be gathered in the log buffer, and
output to stable storage in a single output operation. The order of log records in the
stable storage must be exactly the same as the order in which they were written to
the log buffer.

As a result of log buffering, a log record may reside in only main memory (volatile
storage) for a considerable time before it is output to stable storage. Since such log
records are lost if the system crashes, we must impose additional requirements on
the recovery techniques to ensure transaction atomicity:
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• Transaction Ti enters the commit state after the <Ti commit> log record has
been output to stable storage.

• Before the <Ti commit> log record can be output to stable storage, all log
records pertaining to transaction Ti must have been output to stable storage.

• Before a block of data in main memory can be output to the database (in non-
volatile storage), all log records pertaining to data in that block must have
been output to stable storage.

This rule is called the write-ahead logging (WAL) rule. (Strictly speaking,
the WAL rule requires only that the undo information in the log have been
output to stable storage, and permits the redo information to be written later.
The difference is relevant in systems where undo information and redo infor-
mation are stored in separate log records.)

The three rules state situations in which certain log records must have been output
to stable storage. There is no problem resulting from the output of log records earlier
than necessary. Thus, when the system finds it necessary to output a log record to
stable storage, it outputs an entire block of log records, if there are enough log records
in main memory to fill a block. If there are insufficient log records to fill the block, all
log records in main memory are combined into a partially full block, and are output
to stable storage.

Writing the buffered log to disk is sometimes referred to as a log force.

17.7.2 Database Buffering
In Section 17.2, we described the use of a two-level storage hierarchy. The system
stores the database in nonvolatile storage (disk), and brings blocks of data into main
memory as needed. Since main memory is typically much smaller than the entire
database, it may be necessary to overwrite a block B1 in main memory when another
block B2 needs to be brought into memory. If B1 has been modified, B1 must be
output prior to the input of B2. As discussed in Section 11.5.1 in Chapter 11, this
storage hierarchy is the standard operating system concept of virtual memory.

The rules for the output of log records limit the freedom of the system to output
blocks of data. If the input of block B2 causes block B1 to be chosen for output, all log
records pertaining to data in B1 must be output to stable storage before B1 is output.
Thus, the sequence of actions by the system would be:

• Output log records to stable storage until all log records pertaining to block
B1 have been output.

• Output block B1 to disk.

• Input block B2 from disk to main memory.

It is important that no writes to the block B1 be in progress while the system car-
ries out this sequence of actions. We can ensure that there are no writes in progress
by using a special means of locking: Before a transaction performs a write on a data
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item, it must acquire an exclusive lock on the block in which the data item resides.
The lock can be released immediately after the update has been performed. Before
a block is output, the system obtains an exclusive lock on the block, to ensure that
no transaction is updating the block. It releases the lock once the block output has
completed. Locks that are held for a short duration are often called latches. Latches
are treated as distinct from locks used by the concurrency-control system. As a re-
sult, they may be released without regard to any locking protocol, such as two-phase
locking, required by the concurrency-control system.

To illustrate the need for the write-ahead logging requirement, consider our bank-
ing example with transactions T0 and T1. Suppose that the state of the log is

<T0 start>
<T0, A, 1000, 950>

and that transaction T0 issues a read(B). Assume that the block on which B resides is
not in main memory, and that main memory is full. Suppose that the block on which
A resides is chosen to be output to disk. If the system outputs this block to disk and
then a crash occurs, the values in the database for accounts A, B, and C are $950,
$2000, and $700, respectively. This database state is inconsistent. However, because
of the WAL requirements, the log record

<T0, A, 1000, 950>

must be output to stable storage prior to output of the block on which A resides.
The system can use the log record during recovery to bring the database back to a
consistent state.

17.7.3 Operating System Role in Buffer Management
We can manage the database buffer by using one of two approaches:

1. The database system reserves part of main memory to serve as a buffer that
it, rather than the operating system, manages. The database system manages
data-block transfer in accordance with the requirements in Section 17.7.2.

This approach has the drawback of limiting flexibility in the use of main
memory. The buffer must be kept small enough that other applications have
sufficient main memory available for their needs. However, even when the
other applications are not running, the database will not be able to make use
of all the available memory. Likewise, nondatabase applications may not use
that part of main memory reserved for the database buffer, even if some of the
pages in the database buffer are not being used.

2. The database system implements its buffer within the virtual memory pro-
vided by the operating system. Since the operating system knows about the
memory requirements of all processes in the system, ideally it should be in
charge of deciding what buffer blocks must be force-output to disk, and when.
But, to ensure the write-ahead logging requirements in Section 17.7.1, the op-
erating system should not write out the database buffer pages itself, but in-
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stead should request the database system to force-output the buffer blocks.
The database system in turn would force-output the buffer blocks to the data-
base, after writing relevant log records to stable storage.

Unfortunately, almost all current-generation operating systems retain com-
plete control of virtual memory. The operating system reserves space on disk
for storing virtual-memory pages that are not currently in main memory; this
space is called swap space. If the operating system decides to output a block
Bx, that block is output to the swap space on disk, and there is no way for the
database system to get control of the output of buffer blocks.

Therefore, if the database buffer is in virtual memory, transfers between
database files and the buffer in virtual memory must be managed by the
database system, which enforces the write-ahead logging requirements that
we discussed.

This approach may result in extra output of data to disk. If a block Bx is
output by the operating system, that block is not output to the database. In-
stead, it is output to the swap space for the operating system’s virtual mem-
ory. When the database system needs to output Bx, the operating system may
need first to input Bx from its swap space. Thus, instead of a single output of
Bx, there may be two outputs of Bx (one by the operating system, and one by
the database system) and one extra input of Bx.

Although both approaches suffer from some drawbacks, one or the other must
be chosen unless the operating system is designed to support the requirements of
database logging. Only a few current operating systems, such as the Mach operating
system, support these requirements.

17.8 Failure with Loss of Nonvolatile Storage
Until now, we have considered only the case where a failure results in the loss of
information residing in volatile storage while the content of the nonvolatile storage
remains intact. Although failures in which the content of nonvolatile storage is lost
are rare, we nevertheless need to be prepared to deal with this type of failure. In
this section, we discuss only disk storage. Our discussions apply as well to other
nonvolatile storage types.

The basic scheme is to dump the entire content of the database to stable storage
periodically—say, once per day. For example, we may dump the database to one or
more magnetic tapes. If a failure occurs that results in the loss of physical database
blocks, the system uses the most recent dump in restoring the database to a previous
consistent state. Once this restoration has been accomplished, the system uses the log
to bring the database system to the most recent consistent state.

More precisely, no transaction may be active during the dump procedure, and a
procedure similar to checkpointing must take place:

1. Output all log records currently residing in main memory onto stable storage.

2. Output all buffer blocks onto the disk.
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3. Copy the contents of the database to stable storage.

4. Output a log record <dump> onto the stable storage.

Steps 1, 2, and 4 correspond to the three steps used for checkpoints in Section 17.4.3.
To recover from the loss of nonvolatile storage, the system restores the database

to disk by using the most recent dump. Then, it consults the log and redoes all the
transactions that have committed since the most recent dump occurred. Notice that
no undo operations need to be executed.

A dump of the database contents is also referred to as an archival dump, since
we can archive the dumps and use them later to examine old states of the database.
Dumps of a database and checkpointing of buffers are similar.

The simple dump procedure described here is costly for the following two reasons.
First, the entire database must be be copied to stable storage, resulting in considerable
data transfer. Second, since transaction processing is halted during the dump proce-
dure, CPU cycles are wasted. Fuzzy dump schemes have been developed, which al-
low transactions to be active while the dump is in progress. They are similar to fuzzy
checkpointing schemes; see the bibliographical notes for more details.

17.9 Advanced Recovery Techniques∗∗
The recovery techniques described in Section 17.6 require that, once a transaction up-
dates a data item, no other transaction may update the same data item until the first
commits or is rolled back. We ensure the condition by using strict two-phase locking.
Although strict two-phase locking is acceptable for records in relations, as discussed
in Section 16.9, it causes a significant decrease in concurrency when applied to certain
specialized structures, such as B+-tree index pages.

To increase concurrency, we can use the B+-tree concurrency-control algorithm de-
scribed in Section 16.9 to allow locks to be released early, in a non-two-phase manner.
As a result, however, the recovery techniques from Section 17.6 will become inap-
plicable. Several alternative recovery techniques, applicable even with early lock re-
lease, have been proposed. These schemes can be used in a variety of applications, not
just for recovery of B+-trees. We first describe an advanced recovery scheme support-
ing early lock release. We then outline the ARIES recovery scheme, which is widely
used in the industry. ARIES is more complex than our advanced recovery scheme, but
incorporates a number of optimizations to minimize recovery time, and provides a
number of other useful features.

17.9.1 Logical Undo Logging
For operations where locks are released early, we cannot perform the undo actions
by simply writing back the old value of the data items. Consider a transaction T
that inserts an entry into a B+-tree, and, following the B+-tree concurrency-control
protocol, releases some locks after the insertion operation completes, but before the
transaction commits. After the locks are released, other transactions may perform
further insertions or deletions, thereby causing further changes to the B+-tree nodes.



Silberschatz−Korth−Sudarshan: 
Database System 
Concepts, Fourth Edition

V. Transaction 
Management

17. Recovery System 663© The McGraw−Hill 
Companies, 2001

17.9 Advanced Recovery Techniques∗∗ 665

Even though the operation releases some locks early, it must retain enough locks
to ensure that no other transaction is allowed to execute any conflicting operation
(such as reading the inserted value or deleting the inserted value). For this reason,
the B+-tree concurrency-control protocol in Section 16.9 holds locks on the leaf level
of the B+-tree until the end of the transaction.

Now let us consider how to perform transaction rollback. If physical undo is used,
that is, the old values of the internal B+-tree nodes (before the insertion operation
was executed) are written back during transaction rollback, some of the updates per-
formed by later insertion or deletion operations executed by other transactions could
be lost. Instead, the insertion operation has to be undone by a logical undo—that is,
in this case, by the execution of a delete operation.

Therefore, when the insertion operation completes, before it releases any locks, it
writes a log record <Ti, Oj , operation-end, U>, where the U denotes undo informa-
tion and Oj denotes a unique identifier for (the instance of) the operation. For exam-
ple, if the operation inserted an entry in a B+-tree, the undo information U would
indicate that a deletion operation is to be performed, and would identify the B+-tree
and what to delete from the tree. Such logging of information about operations is
called logical logging. In contrast, logging of old-value and new-value information
is called physical logging, and the corresponding log records are called physical log
records.

The insertion and deletion operations are examples of a class of operations that re-
quire logical undo operations since they release locks early; we call such operations
logical operations. Before a logical operation begins, it writes a log record <Ti, Oj ,
operation-begin>, where Oj is the unique identifier for the operation. While the sys-
tem is executing the operation, it does physical logging in the normal fashion for all
updates performed by the operation. Thus, the usual old-value and new-value in-
formation is written out for each update. When the operation finishes, it writes an
operation-end log record as described earlier.

17.9.2 Transaction Rollback
First consider transaction rollback during normal operation (that is, not during re-
covery from system failure). The system scans the log backward and uses log records
belonging to the transaction to restore the old values of data items. Unlike rollback
in normal operation, however, rollback in our advanced recovery scheme writes out
special redo-only log records of the form <Ti, Xj , V > containing the value V being
restored to data item Xj during the rollback. These log records are sometimes called
compensation log records. Such records do not need undo information, since we will
never need to undo such an undo operation.

Whenever the system finds a log record <Ti, Oj , operation-end, U>, it takes spe-
cial actions:

1. It rolls back the operation by using the undo information U in the log record.
It logs the updates performed during the rollback of the operation just like
updates performed when the operation was first executed. In other words,
the system logs physical undo information for the updates performed during
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rollback, instead of using compensation log records. This is because a crash
may occur while a logical undo is in progress, and on recovery the system
has to complete the logical undo; to do so, restart recovery will undo the par-
tial effects of the earlier undo, using the physical undo information, and then
perform the logical undo again, as we will see in Section 17.9.4.

At the end of the operation rollback, instead of generating a log record
< Ti, Oj , operation-end, U >, the system generates a log record < Ti, Oj ,
operation-abort>.

2. When the backward scan of the log continues, the system skips all log records
of the transaction until it finds the log record <Ti, Oj , operation-begin>. After
it finds the operation-begin log record, it processes log records of the transac-
tion in the normal manner again.

Observe that skipping over physical log records when the operation-end log record
is found during rollback ensures that the old values in the physical log record are not
used for rollback, once the operation completes.

If the system finds a record < Ti, Oj , operation-abort>, it skips all preceding re-
cords until it finds the record < Ti, Oj , operation-begin>. These preceding log records
must be skipped to prevent multiple rollback of the same operation, in case there had
been a crash during an earlier rollback, and the transaction had already been partly
rolled back. When the transaction Ti has been rolled back, the system adds a record
<Ti abort> to the log.

If failures occur while a logical operation is in progress, the operation-end log
record for the operation will not be found when the transaction is rolled back. How-
ever, for every update performed by the operation, undo information—in the form
of the old value in the physical log records—is available in the log. The physical log
records will be used to roll back the incomplete operation.

17.9.3 Checkpoints
Checkpointing is performed as described in Section 17.6. The system suspends up-
dates to the database temporarily and carries out these actions:

1. It outputs to stable storage all log records currently residing in main memory.

2. It outputs to the disk all modified buffer blocks.

3. It outputs onto stable storage a log record <checkpoint L>, where L is a list of
all active transactions.

17.9.4 Restart Recovery
Recovery actions, when the database system is restarted after a failure, take place in
two phases:

1. In the redo phase, the system replays updates of all transactions by scan-
ning the log forward from the last checkpoint. The log records that are re-
played include log records for transactions that were rolled back before sys-
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tem crash, and those that had not committed when the system crash occurred.
The records are the usual log records of the form <Ti, Xj , V1, V2> as well
as the special log records of the form <Ti, Xj , V2>; the value V2 is written
to data item Xj in either case. This phase also determines all transactions that
are either in the transaction list in the checkpoint record, or started later, but
did not have either a <Ti abort> or a <Ti commit> record in the log. All these
transactions have to be rolled back, and the system puts their transaction iden-
tifiers in an undo-list.

2. In the undo phase, the system rolls back all transactions in the undo-list. It
performs rollback by scanning the log backward from the end. Whenever
it finds a log record belonging to a transaction in the undo-list, it performs
undo actions just as if the log record had been found during the rollback of a
failed transaction. Thus, log records of a transaction preceding an operation-
end record, but after the corresponding operation-begin record, are ignored.

When the system finds a <Ti start> log record for a transaction Ti in undo-
list, it writes a <Ti abort> log record to the log. Scanning of the log stops
when the system has found <Ti start> log records for all transactions in the
undo-list.

The redo phase of restart recovery replays every physical log record since the most
recent checkpoint record. In other words, this phase of restart recovery repeats all
the update actions that were executed after the checkpoint, and whose log records
reached the stable log. The actions include actions of incomplete transactions and the
actions carried out to roll failed transactions back. The actions are repeated in the
same order in which they were carried out; hence, this process is called repeating
history. Repeating history simplifies recovery schemes greatly.

Note that if an operation undo was in progress when the system crash occurred,
the physical log records written during operation undo would be found, and the par-
tial operation undo would itself be undone on the basis of these physical log records.
After that the original operation’s operation-end record would be found during re-
covery, and the operation undo would be executed again.

17.9.5 Fuzzy Checkpointing
The checkpointing technique described in Section 17.6.3 requires that all updates to
the database be temporarily suspended while the checkpoint is in progress. If the
number of pages in the buffer is large, a checkpoint may take a long time to finish,
which can result in an unacceptable interruption in processing of transactions.

To avoid such interruptions, the checkpointing technique can be modified to per-
mit updates to start once the checkpoint record has been written, but before the modi-
fied buffer blocks are written to disk. The checkpoint thus generated is a fuzzy check-
point.

Since pages are output to disk only after the checkpoint record has been written, it
is possible that the system could crash before all pages are written. Thus, a checkpoint
on disk may be incomplete. One way to deal with incomplete checkpoints is this:
The location in the log of the checkpoint record of the last completed checkpoint
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is stored in a fixed position, last-checkpoint, on disk. The system does not update
this information when it writes the checkpoint record. Instead, before it writes the
checkpoint record, it creates a list of all modified buffer blocks. The last-checkpoint
information is updated only after all buffer blocks in the list of modified buffer blocks
have been output to disk.

Even with fuzzy checkpointing, a buffer block must not be updated while it is
being output to disk, although other buffer blocks may be updated concurrently. The
write-ahead log protocol must be followed so that (undo) log records pertaining to a
block are on stable storage before the block is output.

Note that, in our scheme, logical logging is used only for undo purposes, whereas
physical logging is used for redo and undo purposes. There are recovery schemes that
use logical logging for redo purposes. To perform logical redo, the database state on
disk must be operation consistent, that is, it should not have partial effects of any
operation. It is difficult to guarantee operation consistency of the database on disk
if an operation can affect more than one page, since it is not possible to write two
or more pages atomically. Therefore, logical redo logging is usually restricted only
to operations that affect a single page; we will see how to handle such logical redos
in Section 17.9.6. In contrast, logical undos are performed on an operation-consistent
database state achieved by repeating history, and then performing physical undo of
partially completed operations.

17.9.6 ARIES
The state of the art in recovery methods is best illustrated by the ARIES recovery
method. The advanced recovery technique which we have described is modeled af-
ter ARIES, but has been simplified significantly to bring out key concepts and make
it easier to understand. In contrast, ARIES uses a number of techniques to reduce the
time taken for recovery, and to reduce the overheads of checkpointing. In particu-
lar, ARIES is able to avoid redoing many logged operations that have already been
applied and to reduce the amount of information logged. The price paid is greater
complexity; the benefits are worth the price.

The major differences between ARIES and our advanced recovery algorithm are
that ARIES:

1. Uses a log sequence number (LSN) to identify log records, and the use of
LSNs in database pages to identify which operations have been applied to a
database page.

2. Supports physiological redo operations, which are physical in that the af-
fected page is physically identified, but can be logical within the page.

For instance, the deletion of a record from a page may result in many other
records in the page being shifted, if a slotted page structure is used. With phys-
ical redo logging, all bytes of the page affected by the shifting of records must
be logged. With physiological logging, the deletion operation can be logged,
resulting in a much smaller log record. Redo of the deletion operation would
delete the record and shift other records as required.
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3. Uses a dirty page table to minimize unnecessary redos during recovery. Dirty
pages are those that have been updated in memory, and the disk version is
not up-to-date.

4. Uses fuzzy checkpointing scheme that only records information about dirty
pages and associated information, and does not even require writing of dirty
pages to disk. It flushes dirty pages in the background, continuously, instead
of writing them during checkpoints.

In the rest of this section we provide an overview of ARIES. The bibliographical notes
list references that provide a complete description of ARIES.

17.9.6.1 Data Structures
Each log record in ARIES has a log sequence number (LSN) that uniquely identifies
the record. The number is conceptually just a logical identifier whose value is greater
for log records that occur later in the log. In practice, the LSN is generated in such a
way that it can also be used to locate the log record on disk. Typically, ARIES splits a
log into multiple log files, each of which has a file number. When a log file grows to
some limit, ARIES appends further log records to a new log file; the new log file has a
file number that is higher by 1 than the previous log file. The LSN then consists of a
file number and an offset within the file.

Each page also maintains an identifier called the PageLSN. Whenever an opera-
tion (whether physical or logical) occurs on a page, the operation stores the LSN of
its log record in the PageLSN field of the page. During the redo phase of recovery,
any log records with LSN less than or equal to the PageLSN of a page should not be
executed on the page, since their actions are already reflected on the page. In com-
bination with a scheme for recording PageLSNs as part of checkpointing, which we
present later, ARIES can avoid even reading many pages for which logged operations
are already reflected on disk. Thereby recovery time is reduced significantly.

The PageLSN is essential for ensuring idempotence in the presence of physiologi-
cal redo operations, since reapplying a physiological redo that has already been ap-
plied to a page could cause incorrect changes to a page.

Pages should not be flushed to disk while an update is in progress, since physi-
ological operations cannot be redone on the partially updated state of the page on
disk. Therefore, ARIES uses latches on buffer pages to prevent them from being writ-
ten to disk while they are being updated. It releases the buffer page latch only after
the update is completed, and the log record for the update has been written to the
log.

Each log record also contains the LSN of the previous log record of the same trans-
action. This value, stored in the PrevLSN field, permits log records of a transaction
to be fetched backward, without reading the whole log. There are special redo-only
log records generated during transaction rollback, called compensation log records
(CLRs) in ARIES. These serve the same purpose as the redo-only log records in our
advanced recovery scheme. In addition CLRs serve the role of the operation-abort
log records in our scheme. The CLRs have an extra field, called the UndoNextLSN,
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that records the LSN of the log that needs to be undone next, when the transaction is
being rolled back. This field serves the same purpose as the operation identifier in the
operation-abort log record in our scheme, which helps to skip over log records that
have already been rolled back. The DirtyPageTable contains a list of pages that have
been updated in the database buffer. For each page, it stores the PageLSN and a field
called the RecLSN which helps identify log records that have been applied already
to the version of the page on disk. When a page is inserted into the DirtyPageTable
(when it is first modified in the buffer pool) the value of RecLSN is set to the cur-
rent end of log. Whenever the page is flushed to disk, the page is removed from the
DirtyPageTable.

A checkpoint log record contains the DirtyPageTable and a list of active transac-
tions. For each transaction, the checkpoint log record also notes LastLSN, the LSN of
the last log record written by the transaction. A fixed position on disk also notes the
LSN of the last (complete) checkpoint log record.

17.9.6.2 Recovery Algorithm
ARIES recovers from a system crash in three passes.

• Analysis pass: This pass determines which transactions to undo, which pages
were dirty at the time of the crash, and the LSN from which the redo pass
should start.

• Redo pass: This pass starts from a position determined during analysis, and
performs a redo, repeating history, to bring the database to a state it was in
before the crash.

• Undo pass: This pass rolls back all transactions that were incomplete at the
time of crash.

Analysis Pass: The analysis pass finds the last complete checkpoint log record, and
reads in the DirtyPageTable from this record. It then sets RedoLSN to the minimum
of the RecLSNs of the pages in the DirtyPageTable. If there are no dirty pages, it
sets RedoLSN to the LSN of the checkpoint log record. The redo pass starts its scan
of the log from RedoLSN. All the log records earlier than this point have already
been applied to the database pages on disk. The analysis pass initially sets the list of
transactions to be undone, undo-list, to the list of transactions in the checkpoint log
record. The analysis pass also reads from the checkpoint log record the LSNs of the
last log record for each transaction in undo-list.

The analysis pass continues scanning forward from the checkpoint. Whenever it
finds a log record for a transaction not in the undo-list, it adds the transaction to
undo-list. Whenever it finds a transaction end log record, it deletes the transaction
from undo-list. All transactions left in undo-list at the end of analysis have to be
rolled back later, in the undo pass. The analysis pass also keeps track of the last record
of each transaction in undo-list, which is used in the undo pass.
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The analysis pass also updates DirtyPageTable whenever it finds a log record for
an update on a page. If the page is not in DirtyPageTable, the analysis pass adds it to
DirtyPageTable, and sets the RecLSN of the page to the LSN of the log record.

Redo Pass: The redo pass repeats history by replaying every action that is not already
reflected in the page on disk. The redo pass scans the log forward from RedoLSN.
Whenever it finds an update log record, it takes this action:

1. If the page is not in DirtyPageTable or the LSN of the update log record is less
than the RecLSN of the page in DirtyPageTable, then the redo pass skips the
log record.

2. Otherwise the redo pass fetches the page from disk, and if the PageLSN is less
than the LSN of the log record, it redoes the log record.

Note that if either of the tests is negative, then the effects of the log record have
already appeared on the page. If the first test is negative, it is not even necessary to
fetch the page from disk.

Undo Pass and Transaction Rollback: The undo pass is relatively straightforward. It
performs a backward scan of the log, undoing all transactions in undo-list. If a CLR
is found, it uses the UndoNextLSN field to skip log records that have already been
rolled back. Otherwise, it uses the PrevLSN field of the log record to find the next log
record to be undone.

Whenever an update log record is used to perform an undo (whether for transac-
tion rollback during normal processing, or during the restart undo pass), the undo
pass generates a CLR containing the undo action performed (which must be physio-
logical). It sets the UndoNextLSN of the CLR to the PrevLSN value of the update log
record.

17.9.6.3 Other Features
Among other key features that ARIES provides are:

• Recovery independence: Some pages can be recovered independently from
others, so that they can be used even while other pages are being recovered. If
some pages of a disk fail, they can be recovered without stopping transaction
processing on other pages.

• Savepoints: Transactions can record savepoints, and can be rolled back par-
tially, up to a savepoint. This can be quite useful for deadlock handling, since
transactions can be rolled back up to a point that permits release of required
locks, and then restarted from that point.

• Fine-grained locking: The ARIES recovery algorithm can be used with index
concurrency control algorithms that permit tuple level locking on indices, in-
stead of page level locking, which improves concurrency significantly.



Silberschatz−Korth−Sudarshan: 
Database System 
Concepts, Fourth Edition

V. Transaction 
Management

17. Recovery System670 © The McGraw−Hill 
Companies, 2001

672 Chapter 17 Recovery System

• Recovery optimizations: The DirtyPageTable can be used to prefetch pages
during redo, instead of fetching a page only when the system finds a log
record to be applied to the page. Out-of-order redo is also possible: Redo can
be postponed on a page being fetched from disk, and performed when the
page is fetched. Meanwhile, other log records can continue to be processed.

In summary, the ARIES algorithm is a state-of-the-art recovery algorithm, incorpo-
rating a variety of optimizations designed to improve concurrency, reduce logging
overhead, and reduce recovery time.

17.10 Remote Backup Systems
Traditional transaction-processing systems are centralized or client–server systems.
Such systems are vulnerable to environmental disasters such as fire, flooding, or
earthquakes. Increasingly, there is a need for transaction-processing systems that can
function in spite of system failures or environmental disasters. Such systems must
provide high availability, that is, the time for which the system is unusable must be
extremely small.

We can achieve high availability by performing transaction processing at one site,
called the primary site, and having a remote backup site where all the data from
the primary site are replicated. The remote backup site is sometimes also called the
secondary site. The remote site must be kept synchronized with the primary site, as
updates are performed at the primary. We achieve synchronization by sending all log
records from primary site to the remote backup site. The remote backup site must be
physically separated from the primary—for example, we can locate it in a different
state—so that a disaster at the primary does not damage the remote backup site.
Figure 17.10 shows the architecture of a remote backup system.

When the primary site fails, the remote backup site takes over processing. First,
however, it performs recovery, using its (perhaps outdated) copy of the data from the
primary, and the log records received from the primary. In effect, the remote backup
site is performing recovery actions that would have been performed at the primary
site when the latter recovered. Standard recovery algorithms, with minor modifica-
tions, can be used for recovery at the remote backup site. Once recovery has been
performed, the remote backup site starts processing transactions.

log
records

backupnetworkprimary

Figure 17.10 Architecture of remote backup system.
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Availability is greatly increased over a single-site system, since the system can
recover even if all data at the primary site are lost. The performance of a remote
backup system is better than the performance of a distributed system with two-phase
commit.

Several issues must be addressed in designing a remote backup system:

• Detection of failure. As in failure-handling protocols for distributed system,
it is important for the remote backup system to detect when the primary has
failed. Failure of communication lines can fool the remote backup into believ-
ing that the primary has failed. To avoid this problem, we maintain several
communication links with independent modes of failure between the primary
and the remote backup. For example, in addition to the network connection,
there may be a separate modem connection over a telephone line, with ser-
vices provided by different telecommunication companies. These connections
may be backed up via manual intervention by operators, who can communi-
cate over the telephone system.

• Transfer of control. When the primary fails, the backup site takes over pro-
cessing and becomes the new primary. When the original primary site recov-
ers, it can either play the role of remote backup, or take over the role of pri-
mary site again. In either case, the old primary must receive a log of updates
carried out by the backup site while the old primary was down.

The simplest way of transferring control is for the old primary to receive
redo logs from the old backup site, and to catch up with the updates by ap-
plying them locally. The old primary can then act as a remote backup site.
If control must be transferred back, the old backup site can pretend to have
failed, resulting in the old primary taking over.

• Time to recover. If the log at the remote backup grows large, recovery will
take a long time. The remote backup site can periodically process the redo log
records that it has received, and can perform a checkpoint, so that earlier parts
of the log can be deleted. The delay before the remote backup takes over can
be significantly reduced as a result.

A hot-spare configuration can make takeover by the backup site almost
instantaneous. In this configuration, the remote backup site continually pro-
cesses redo log records as they arrive, applying the updates locally. As soon
as the failure of the primary is detected, the backup site completes recovery
by rolling back incomplete transactions; it is then ready to process new trans-
actions.

• Time to commit. To ensure that the updates of a committed transaction are
durable, a transaction must not be declared committed until its log records
have reached the backup site. This delay can result in a longer wait to commit
a transaction, and some systems therefore permit lower degrees of durability.
The degrees of durability can be classified as follows.
� One-safe. A transaction commits as soon as its commit log record is writ-

ten to stable storage at the primary site.
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The problem with this scheme is that the updates of a committed trans-
action may not have made it to the backup site, when the backup site
takes over processing. Thus, the updates may appear to be lost. When the
primary site recovers, the lost updates cannot be merged in directly, since
the updates may conflict with later updates performed at the backup site.
Thus, human intervention may be required to bring the database to a con-
sistent state.

� Two-very-safe. A transaction commits as soon as its commit log record is
written to stable storage at the primary and the backup site.

The problem with this scheme is that transaction processing cannot
proceed if either the primary or the backup site is down. Thus, availabil-
ity is actually less than in the single-site case, although the probability of
data loss is much less.

� Two-safe. This scheme is the same as two-very-safe if both primary and
backup sites are active. If only the primary is active, the transaction is
allowed to commit as soon as its commit log record is written to stable
storage at the primary site.

This scheme provides better availability than does two-very-safe, while
avoiding the problem of lost transactions faced by the one-safe scheme.
It results in a slower commit than the one-safe scheme, but the benefits
generally outweigh the cost.

Several commercial shared-disk systems provide a level of fault tolerance that is
intermediate between centralized and remote backup systems. In these systems, the
failure of a CPU does not result in system failure. Instead, other CPUs take over, and
they carry out recovery. Recovery actions include rollback of transactions running
on the failed CPU, and recovery of locks held by those transactions. Since data are
on a shared disk, there is no need for transfer of log records. However, we should
safeguard the data from disk failure by using, for example, a RAID disk organization.

An alternative way of achieving high availability is to use a distributed database,
with data replicated at more than one site. Transactions are then required to update
all replicas of any data item that they update. We study distributed databases, includ-
ing replication, in Chapter 19.

17.11 Summary
• A computer system, like any other mechanical or electrical device, is subject

to failure. There are a variety of causes of such failure, including disk crash,
power failure, and software errors. In each of these cases, information con-
cerning the database system is lost.

• In addition to system failures, transactions may also fail for various reasons,
such as violation of integrity constraints or deadlocks.

• An integral part of a database system is a recovery scheme that is responsible
for the detection of failures and for the restoration of the database to a state
that existed before the occurrence of the failure.
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• The various types of storage in a computer are volatile storage, nonvolatile
storage, and stable storage. Data in volatile storage, such as in RAM, are lost
when the computer crashes. Data in nonvolatile storage, such as disk, are not
lost when the computer crashes, but may occasionally be lost because of fail-
ures such as disk crashes. Data in stable storage are never lost.

• Stable storage that must be accessible online is approximated with mirrored
disks, or other forms of RAID, which provide redundant data storage. Offline,
or archival, stable storage may consist of multiple tape copies of data stored
in a physically secure location.

• In case of failure, the state of the database system may no longer be consis-
tent; that is, it may not reflect a state of the world that the database is sup-
posed to capture. To preserve consistency, we require that each transaction be
atomic. It is the responsibility of the recovery scheme to ensure the atomic-
ity and durability property. There are basically two different approaches for
ensuring atomicity: log-based schemes and shadow paging.

• In log-based schemes, all updates are recorded on a log, which must be kept
in stable storage.

� In the deferred-modifications scheme, during the execution of a transac-
tion, all the write operations are deferred until the transaction partially
commits, at which time the system uses the information on the log asso-
ciated with the transaction in executing the deferred writes.

� In the immediate-modifications scheme, the system applies all updates
directly to the database. If a crash occurs, the system uses the information
in the log in restoring the state of the system to a previous consistent state.

To reduce the overhead of searching the log and redoing transactions, we can
use the checkpointing technique.

• In shadow paging, two page tables are maintained during the life of a trans-
action: the current page table and the shadow page table. When the transac-
tion starts, both page tables are identical. The shadow page table and pages
it points to are never changed during the duration of the transaction. When
the transaction partially commits, the shadow page table is discarded, and the
current table becomes the new page table. If the transaction aborts, the current
page table is simply discarded.

• If multiple transactions are allowed to execute concurrently, then the shadow-
paging technique is not applicable, but the log-based technique can be used.

No transaction can be allowed to update a data item that has already been
updated by an incomplete transaction. We can use strict two-phase locking to
ensure this condition.

• Transaction processing is based on a storage model in which main memory
holds a log buffer, a database buffer, and a system buffer. The system buffer
holds pages of system object code and local work areas of transactions.
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• Efficient implementation of a recovery scheme requires that the number of
writes to the database and to stable storage be minimized. Log records may
be kept in volatile log buffer initially, but must be written to stable storage
when one of the following conditions occurs:
� Before the <Ti commit> log record may be output to stable storage, all

log records pertaining to transaction Ti must have been output to stable
storage.

� Before a block of data in main memory is output to the database (in non-
volatile storage), all log records pertaining to data in that block must have
been output to stable storage.

• To recover from failures that result in the loss of nonvolatile storage, we must
dump the entire contents of the database onto stable storage periodically—
say, once per day. If a failure occurs that results in the loss of physical database
blocks, we use the most recent dump in restoring the database to a previous
consistent state. Once this restoration has been accomplished, we use the log
to bring the database system to the most recent consistent state.

• Advanced recovery techniques support high-concurrency locking techniques,
such as those used for B+-tree concurrency control. These techniques are based
on logical (operation) undo, and follow the principle of repeating history.
When recovering from system failure, the system performs a redo pass using
the log, followed by an undo pass on the log to roll back incomplete transac-
tions.

• The ARIES recovery scheme is a state-of-the-art scheme that supports a num-
ber of features to provide greater concurrency, reduce logging overheads, and
minimize recovery time. It is also based on repeating of history, and allows
logical undo operations. The scheme flushes pages on a continuous basis and
does not need to flush all pages at the time of a checkpoint. It uses log se-
quence numbers (LSNs) to implement a variety of optimizations that reduce
the time taken for recovery.

• Remote backup systems provide a high degree of availability, allowing trans-
action processing to continue even if the primary site is destroyed by a fire,
flood, or earthquake.

Review Terms
• Recovery scheme

• Failure classification

� Transaction failure
� Logical error
� System error
� System crash
� Data-transfer failure

• Fail-stop assumption

• Disk failure

• Storage types

� Volatile storage
� Nonvolatile storage
� Stable storage
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• Blocks
� Physical blocks
� Buffer blocks

• Disk buffer

• Force-output

• Log-based recovery

• Log

• Log records

• Update log record

• Deferred modification

• Idempotent

• Immediate modification

• Uncommitted modifications

• Checkpoints

• Shadow paging
� Page table
� Current page table
� Shadow page table

• Garbage collection

• Recovery with concurrent
transactions
� Transaction rollback
� Fuzzy checkpoint
� Restart recovery

• Buffer management

• Log-record buffering

• Write-ahead logging (WAL)

• Log force

• Database buffering

• Latches

• Operating system and buffer
management

• Loss of nonvolatile storage

• Archival dump
• Fuzzy dump
• Advanced recovery technique
� Physical undo
� Logical undo
� Physical logging
� Logical logging
� Logical operations
� Transaction rollback
� Checkpoints
� Restart recovery
� Redo phase
� Undo phase

• Repeating history
• Fuzzy checkpointing
• ARIES

� Log sequence number (LSN)
� PageLSN
� Physiological redo
� Compensation log record

(CLR)
� DirtyPageTable
� Checkpoint log record

• High availability
• Remote backup systems
� Primary site
� Remote backup site
� Secondary site

• Detection of failure
• Transfer of control
• Time to recover
• Hot-spare configuration
• Time to commit
� One-safe
� Two-very-safe
� Two-safe

Exercises
17.1 Explain the difference between the three storage types—volatile, nonvolatile,

and stable—in terms of I/O cost.
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17.2 Stable storage cannot be implemented.

a. Explain why it cannot be.
b. Explain how database systems deal with this problem.

17.3 Compare the deferred- and immediate-modification versions of the log-based
recovery scheme in terms of ease of implementation and overhead cost.

17.4 Assume that immediate modification is used in a system. Show, by an example,
how an inconsistent database state could result if log records for a transaction
are not output to stable storage prior to data updated by the transaction being
written to disk.

17.5 Explain the purpose of the checkpoint mechanism. How often should check-
points be performed? How does the frequency of checkpoints affect

• System performance when no failure occurs
• The time it takes to recover from a system crash
• The time it takes to recover from a disk crash

17.6 When the system recovers from a crash (see Section 17.6.4), it constructs an
undo-list and a redo-list. Explain why log records for transactions on the undo-
list must be processed in reverse order, while those log records for transactions
on the redo-list are processed in a forward direction.

17.7 Compare the shadow-paging recovery scheme with the log-based recovery
schemes in terms of ease of implementation and overhead cost.

17.8 Consider a database consisting of 10 consecutive disk blocks (block 1, block
2, . . ., block 10). Show the buffer state and a possible physical ordering of the
blocks after the following updates, assuming that shadow paging is used, that
the buffer in main memory can hold only three blocks, and that a least recently
used (LRU) strategy is used for buffer management.

read block 3
read block 7
read block 5
read block 3
read block 1
modify block 1
read block 10
modify block 5

17.9 Explain how the buffer manager may cause the database to become inconsis-
tent if some log records pertaining to a block are not output to stable storage
before the block is output to disk.

17.10 Explain the benefits of logical logging. Give examples of one situation where
logical logging is preferable to physical logging and one situation where phys-
ical logging is preferable to logical logging.
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17.11 Explain the reasons why recovery of interactive transactions is more difficult
to deal with than is recovery of batch transactions. Is there a simple way to deal
with this difficulty? (Hint: Consider an automatic teller machine transaction in
which cash is withdrawn.)

17.12 Sometimes a transaction has to be undone after it has commited, because it was
erroneously executed, for example because of erroneous input by a bank teller.

a. Give an example to show that using the normal transaction undo mecha-
nism to undo such a transaction could lead to an inconsistent state.

b. One way to handle this situation is to bring the whole database to a state
prior to the commit of the erroneous transaction (called point-in-time recov-
ery). Transactions that committed later have their effects rolled back with
this scheme.

Suggest a modification to the advanced recovery mechanism to imple-
ment point-in-time recovery.

c. Later non-erroneous transactions can be reexecuted logically, but cannot
be reexecuted using their log records. Why?

17.13 Logging of updates is not done explicitly in persistent programming languages.
Describe how page access protections provided by modern operating systems
can be used to create before and after images of pages that are updated. (Hint:
See Exercise 16.12.)

17.14 ARIES assumes there is space in each page for an LSN. When dealing with large
objects that span multiple pages, such as operating system files, an entire page
may be used by an object, leaving no space for the LSN. Suggest a technique to
handle such a situation; your technique must support physical redos but need
not support physiological redos.

17.15 Explain the difference between a system crash and a “disaster.”

17.16 For each of the following requirements, identify the best choice of degree of
durability in a remote backup system:

a. Data loss must be avoided but some loss of availability may be tolerated.
b. Transaction commit must be accomplished quickly, even at the cost of loss

of some committed transactions in a disaster.
c. A high degree of availability and durability is required, but a longer run-

ning time for the transaction commit protocol is acceptable.

Bibliographical Notes
Gray and Reuter [1993] is an excellent textbook source of information about recovery,
including interesting implementation and historical details. Bernstein et al. [1987] is
an early textbook source of information on concurrency control and recovery.
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for rollback and recovery strategies in database systems, is another early work in this
area.
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checkpointing and fuzzy dumps are described in Lindsay et al. [1980]. A compre-
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[1983].
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method, described in Mohan et al. [1992] and Mohan [1990b]. Aries and its variants
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Specialized recovery techniques for index structures are described in Mohan and
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Database System Architecture

The architecture of a database system is greatly influenced by the underlying com-
puter system on which the database system runs. Database systems can be central-
ized, or client–server, where one server machine executes work on behalf of multi-
ple client machines. Database systems can also be designed to exploit parallel com-
puter architectures. Distributed databases span multiple geographically separated
machines.

Chapter 18 first outlines the architectures of database systems running on server
systems, which are used in centralized and client–server architectures. The various
processes that together implement the functionality of a database are outlined here.
The chapter then outlines parallel computer architectures, and parallel database ar-
chitectures designed for different types of parallel computers. Finally, the chapter
outlines architectural issues in building a distributed database system.

Chapter 19 presents a number of issues that arise in a distributed database, and
describes how to deal with each issue. The issues include how to store data, how
to ensure atomicity of transactions that execute at multiple sites, how to perform
concurrency control, and how to provide high availability in the presence of failures.
Distributed query processing and directory systems are also described in this chapter.

Chapter 20 describes how various actions of a database, in particular query pro-
cessing, can be implemented to exploit parallel processing.
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The architecture of a database system is greatly influenced by the underlying com-
puter system on which it runs, in particular by such aspects of computer architecture
as networking, parallelism, and distribution:

• Networking of computers allows some tasks to be executed on a server sys-
tem, and some tasks to be executed on client systems. This division of work
has led to client–server database systems.

• Parallel processing within a computer system allows database-system activi-
ties to be speeded up, allowing faster response to transactions, as well as more
transactions per second. Queries can be processed in a way that exploits the
parallelism offered by the underlying computer system. The need for parallel
query processing has led to parallel database systems.

• Distributing data across sites or departments in an organization allows those
data to reside where they are generated or most needed, but still to be acces-
sible from other sites and from other departments. Keeping multiple copies
of the database across different sites also allows large organizations to con-
tinue their database operations even when one site is affected by a natural
disaster, such as flood, fire, or earthquake. Distributed database systems han-
dle geographically or administratively distributed data spread across multiple
database systems.

We study the architecture of database systems in this chapter, starting with the
traditional centralized systems, and covering client–server, parallel, and distributed
database systems.

18.1 Centralized and Client–Server Architectures
Centralized database systems are those that run on a single computer system and do
not interact with other computer systems. Such database systems span a range from

683
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single-user database systems running on personal computers to high-performance
database systems running on high-end server systems. Client–server systems, on
the other hand, have functionality split between a server system, and multiple client
systems.

18.1.1 Centralized Systems
A modern, general-purpose computer system consists of one to a few CPUs and a
number of device controllers that are connected through a common bus that provides
access to shared memory (Figure 18.1). The CPUs have local cache memories that store
local copies of parts of the memory, to speed up access to data. Each device controller
is in charge of a specific type of device (for example, a disk drive, an audio device,
or a video display). The CPUs and the device controllers can execute concurrently,
competing for memory access. Cache memory reduces the contention for memory
access, since it reduces the number of times that the CPU needs to access the shared
memory.

We distinguish two ways in which computers are used: as single-user systems
and as multiuser systems. Personal computers and workstations fall into the first cat-
egory. A typical single-user system is a desktop unit used by a single person, usually
with only one CPU and one or two hard disks, and usually only one person using the

Computer-System 
Structures

memory controller

memory

system bus

diskdisk printer tape drives

CPU
disk

controller
printer

controller
tape-drive
controller

Figure 18.1 A centralized computer system.
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machine at a time. A typical multiuser system, on the other hand, has more disks
and more memory, may have multiple CPUs and has a multiuser operating system.
It serves a large number of users who are connected to the system via terminals.

Database systems designed for use by single users usually do not provide many of
the facilities that a multiuser database provides. In particular, they may not support
concurrency control, which is not required when only a single user can generate up-
dates. Provisions for crash-recovery in such systems are either absent or primitive–
for example, they may consist of simply making a backup of the database before any
update. Many such systems do not support SQL, and provide a simpler query lan-
guage, such as a variant of QBE. In contrast, database systems designed for multiuser
systems support the full transactional features that we have studied earlier.

Although general-purpose computer systems today have multiple processors, they
have coarse-granularity parallelism, with only a few processors (about two to four,
typically), all sharing the main memory. Databases running on such machines usu-
ally do not attempt to partition a single query among the processors; instead, they
run each query on a single processor, allowing multiple queries to run concurrently.
Thus, such systems support a higher throughput; that is, they allow a greater num-
ber of transactions to run per second, although individual transactions do not run
any faster.

Databases designed for single-processor machines already provide multitasking,
allowing multiple processes to run on the same processor in a time-shared manner,
giving a view to the user of multiple processes running in parallel. Thus, coarse-
granularity parallel machines logically appear to be identical to single-processor
machines, and database systems designed for time-shared machines can be easily
adapted to run on them.

In contrast, machines with fine-granularity parallelism have a large number of
processors, and database systems running on such machines attempt to parallelize
single tasks (queries, for example) submitted by users. We study the architecture of
parallel database systems in Section 18.3.

18.1.2 Client–Server Systems
As personal computers became faster, more powerful, and cheaper, there was a shift
away from the centralized system architecture. Personal computers supplanted ter-
minals connected to centralized systems. Correspondingly, personal computers as-
sumed the user-interface functionality that used to be handled directly by the cen-
tralized systems. As a result, centralized systems today act as server systems that
satisfy requests generated by client systems. Figure 18.2 shows the general structure
of a client–server system.

Database functionality can be broadly divided into two parts—the front end and
the back end—as in Figure 18.3. The back end manages access structures, query
evaluation and optimization, concurrency control, and recovery. The front end of a
database system consists of tools such as forms, report writers, and graphical user-
interface facilities. The interface between the front end and the back end is through
SQL, or through an application program.
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client client client client

server

…

network

Figure 18.2 General structure of a client–server system.

Standards such as ODBC and JDBC, which we saw in Chapter 4, were developed
to interface clients with servers. Any client that uses the ODBC or JDBC interfaces can
connect to any server that provides the interface.

In earlier-generation database systems, the lack of such standards necessitated that
the front end and the back end be provided by the same software vendor. With the
growth of interface standards, the front-end user interface and the back-end server
are often provided by different vendors. Application development tools are used to con-
struct user interfaces; they provide graphical tools that can be used to construct inter-
faces without any programming. Some of the popular application development tools
are PowerBuilder, Magic, and Borland Delphi; Visual Basic is also widely used for
application development.

Further, certain application programs, such as spreadsheets and statistical-analysis
packages, use the client–server interface directly to access data from a back-end
server. In effect, they provide front ends specialized for particular tasks.

Some transaction-processing systems provide a transactional remote procedure
call interface to connect clients with a server. These calls appear like ordinary pro-
cedure calls to the programmer, but all the remote procedure calls from a client are
enclosed in a single transaction at the server end. Thus, if the transaction aborts, the
server can undo the effects of the individual remote procedure calls.

SQL user-
interface

forms
interface

report
writer

graphical
interface

SQL engine

front-end

interface
(SQL + API)

back-end

Figure 18.3 Front-end and back-end functionality.
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18.2 Server System Architectures
Server systems can be broadly categorized as transaction servers and data servers.

• Transaction-server systems, also called query-server systems, provide an in-
terface to which clients can send requests to perform an action, in response
to which they execute the action and send back results to the client. Usually,
client machines ship transactions to the server systems, where those transac-
tions are executed, and results are shipped back to clients that are in charge
of displaying the data. Requests may be specified by using SQL, or through a
specialized application program interface.

• Data-server systems allow clients to interact with the servers by making re-
quests to read or update data, in units such as files or pages. For example,
file servers provide a file-system interface where clients can create, update,
read, and delete files. Data servers for database systems offer much more func-
tionality; they support units of data—such as pages, tuples, or objects—that
are smaller than a file. They provide indexing facilities for data, and provide
transaction facilities so that the data are never left in an inconsistent state if a
client machine or process fails.

Of these, the transaction-server architecture is by far the more widely used archi-
tecture. We shall elaborate on the transaction-server and data-server architectures in
Sections 18.2.1 and 18.2.2.

18.2.1 Transaction Server Process Structure
A typical transaction server system today consists of multiple processes accessing
data in shared memory, as in Figure 18.4. The processes that form part of the database
system include

• Server processes: These are processes that receive user queries (transactions),
execute them, and send the results back. The queries may be submitted to the
server processes from a a user interface, or from a user process running em-
bedded SQL, or via JDBC, ODBC, or similar protocols. Some database systems
use a separate process for each user session, and a few use a single database
process for all user sessions, but with multiple threads so that multiple queries
can execute concurrently. (A thread is like a process, but multiple threads ex-
ecute as part of the same process, and all threads within a process run in the
same virtual memory space. Multiple threads within a process can execute
concurrently.) Many database systems use a hybrid architecture, with multi-
ple processes, each one running multiple threads.

• Lock manager process: This process implements lock manager functionality,
which includes lock grant, lock release, and deadlock detection.

• Database writer process: There are one or more processes that output modi-
fied buffer blocks back to disk on a continuous basis.
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Figure 18.4 Shared memory and process structure.

• Log writer process: This process outputs log records from the log record buffer
to stable storage. Server processes simply add log records to the log record
buffer in shared memory, and if a log force is required, they request the log
writer process to output log records.

• Checkpoint process: This process performs periodic checkpoints.

• Process monitor process: This process monitors other processes, and if any of
them fails, it takes recovery actions for the process, such as aborting any trans-
action being executed by the failed process, and then restarting the process.

The shared memory contains all shared data, such as:

• Buffer pool

• Lock table
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• Log buffer, containing log records waiting to be output to the log on stable
storage

• Cached query plans, which can be reused if the same query is submitted again

All database processes can access the data in shared memory. Since multiple pro-
cesses may read or perform updates on data structures in shared memory, there must
be a mechanism to ensure that only one of them is modifying any data structure at
a time, and no process is reading a data structure while it is being written by others.
Such mutual exclusion can be implemented by means of operating system functions
called semaphores. Alternative implementations, with less overheads, use special
atomic instructions supported by the computer hardware; one type of atomic in-
struction tests a memory location and sets it to 1 atomically. Further implementation
details of mutual exclusion can be found in any standard operating system textbook.
The mutual exclusion mechanisms are also used to implement latches.

To avoid the overhead of message passing, in many database systems, server pro-
cesses implement locking by directly updating the lock table (which is in shared
memory), instead of sending lock request messages to a lock manager process. The
lock request procedure executes the actions that the lock manager process would
take on getting a lock request. The actions on lock request and release are like those
in Section 16.1.4, but with two significant differences:

• Since multiple server processes may access shared memory, mutual exclusion
must be ensured on the lock table.

• If a lock cannot be obtained immediately because of a lock conflict, the lock
request code keeps monitoring the lock table to check when the lock has been
granted. The lock release code updates the lock table to note which process
has been granted the lock.

To avoid repeated checks on the lock table, operating system semaphores
can be used by the lock request code to wait for a lock grant notification. The
lock release code must then use the semaphore mechanism to notify waiting
transactions that their locks have been granted.

Even if the system handles lock requests through shared memory, it still uses the lock
manager process for deadlock detection.

18.2.2 Data Servers
Data-server systems are used in local-area networks, where there is a high-speed
connection between the clients and the server, the client machines are comparable in
processing power to the server machine, and the tasks to be executed are computa-
tion intensive. In such an environment, it makes sense to ship data to client machines,
to perform all processing at the client machine (which may take a while), and then
to ship the data back to the server machine. Note that this architecture requires full
back-end functionality at the clients. Data-server architectures have been particularly
popular in object-oriented database systems.
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Interesting issues arise in such an architecture, since the time cost of communica-
tion between the client and the server is high compared to that of a local memory
reference (milliseconds, versus less than 100 nanoseconds):

• Page shipping versus item shipping. The unit of communication for data can
be of coarse granularity, such as a page, or fine granularity, such as a tuple (or
an object, in the context of object-oriented database systems). We use the term
item to refer to both tuples and objects.

If the unit of communication is a single item, the overhead of message pass-
ing is high compared to the amount of data transmitted. Instead, when an item
is requested, it makes sense also to send back other items that are likely to be
used in the near future. Fetching items even before they are requested is called
prefetching. Page shipping can be considered a form of prefetching if multi-
ple items reside on a page, since all the items in the page are shipped when a
process desires to access a single item in the page.

• Locking. Locks are usually granted by the server for the data items that it
ships to the client machines. A disadvantage of page shipping is that client
machines may be granted locks of too coarse a granularity—a lock on a page
implicitly locks all items contained in the page. Even if the client is not access-
ing some items in the page, it has implicitly acquired locks on all prefetched
items. Other client machines that require locks on those items may be blocked
unnecessarily. Techniques for lock de-escalation, have been proposed where
the server can request its clients to transfer back locks on prefetched items. If
the client machine does not need a prefetched item, it can transfer locks on the
item back to the server, and the locks can then be allocated to other clients.

• Data caching. Data that are shipped to a client on behalf of a transaction can be
cached at the client, even after the transaction completes, if sufficient storage
space is available. Successive transactions at the same client may be able to
make use of the cached data. However, cache coherency is an issue: Even if a
transaction finds cached data, it must make sure that those data are up to date,
since they may have been updated by a different client after they were cached.
Thus, a message must still be exchanged with the server to check validity of
the data, and to acquire a lock on the data.

• Lock caching. If the use of data is mostly partitioned among the clients, with
clients rarely requesting data that are also requested by other clients, locks can
also be cached at the client machine. Suppose that a client finds a data item in
the cache, and that it also finds the lock required for an access to the data item
in the cache. Then, the access can proceed without any communication with
the server. However, the server must keep track of cached locks; if a client re-
quests a lock from the server, the server must call back all conflicting locks on
the data item from any other client machines that have cached the locks. The
task becomes more complicated when machine failures are taken into account.
This technique differs from lock de-escalation in that lock caching takes place
across transactions; otherwise, the two techniques are similar.
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The bibliographical references provide more information about client–server data-
base systems.

18.3 Parallel Systems
Parallel systems improve processing and I/O speeds by using multiple CPUs and
disks in parallel. Parallel machines are becoming increasingly common, making the
study of parallel database systems correspondingly more important. The driving
force behind parallel database systems is the demands of applications that have to
query extremely large databases (of the order of terabytes—that is, 1012 bytes) or
that have to process an extremely large number of transactions per second (of the or-
der of thousands of transactions per second). Centralized and client–server database
systems are not powerful enough to handle such applications.

In parallel processing, many operations are performed simultaneously, as opposed
to serial processing, in which the computational steps are performed sequentially. A
coarse-grain parallel machine consists of a small number of powerful processors; a
massively parallel or fine-grain parallel machine uses thousands of smaller proces-
sors. Most high-end machines today offer some degree of coarse-grain parallelism:
Two or four processor machines are common. Massively parallel computers can be
distinguished from the coarse-grain parallel machines by the much larger degree of
parallelism that they support. Parallel computers with hundreds of CPUs and disks
are available commercially.

There are two main measures of performance of a database system: (1) through-
put, the number of tasks that can be completed in a given time interval, and (2) re-
sponse time, the amount of time it takes to complete a single task from the time
it is submitted. A system that processes a large number of small transactions can
improve throughput by processing many transactions in parallel. A system that pro-
cesses large transactions can improve response time as well as throughput by per-
forming subtasks of each transaction in parallel.

18.3.1 Speedup and Scaleup
Two important issues in studying parallelism are speedup and scaleup. Running a
given task in less time by increasing the degree of parallelism is called speedup.
Handling larger tasks by increasing the degree of parallelism is called scaleup.

Consider a database application running on a parallel system with a certain num-
ber of processors and disks. Now suppose that we increase the size of the system by
increasing the number or processors, disks, and other components of the system. The
goal is to process the task in time inversely proportional to the number of processors
and disks allocated. Suppose that the execution time of a task on the larger machine
is TL, and that the execution time of the same task on the smaller machine is TS .
The speedup due to parallelism is defined as TS/TL. The parallel system is said to
demonstrate linear speedup if the speedup is N when the larger system has N times
the resources (CPU, disk, and so on) of the smaller system. If the speedup is less than
N , the system is said to demonstrate sublinear speedup. Figure 18.5 illustrates linear
and sublinear speedup.
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Figure 18.5 Speedup with increasing resources.

Scaleup relates to the ability to process larger tasks in the same amount of time by
providing more resources. Let Q be a task, and let QN be a task that is N times bigger
than Q. Suppose that the execution time of task Q on a given machine MS is TS , and
the execution time of task QN on a parallel machine ML, which is N times larger than
MS , is TL. The scaleup is then defined as TS/TL. The parallel system ML is said to
demonstrate linear scaleup on task Q if TL = TS . If TL > TS , the system is said to
demonstrate sublinear scaleup. Figure 18.6 illustrates linear and sublinear scaleups
(where the resources increase proportional to problem size). There are two kinds of
scaleup that are relevant in parallel database systems, depending on how the size of
the task is measured:

• In batch scaleup, the size of the database increases, and the tasks are large jobs
whose runtime depends on the size of the database. An example of such a task
is a scan of a relation whose size is proportional to the size of the database.
Thus, the size of the database is the measure of the size of the problem. Batch
scaleup also applies in scientific applications, such as executing a query at an
N -times finer resolution or performing an N -times longer simulation.

• In transaction scaleup, the rate at which transactions are submitted to the
database increases and the size of the database increases proportionally to
the transaction rate. This kind of scaleup is what is relevant in transaction-
processing systems where the transactions are small updates—for example, a
deposit or withdrawal from an account—and transaction rates grow as more
accounts are created. Such transaction processing is especially well adapted
for parallel execution, since transactions can run concurrently and indepen-
dently on separate processors, and each transaction takes roughly the same
amount of time, even if the database grows.

Scaleup is usually the more important metric for measuring efficiency of parallel
database systems. The goal of parallelism in database systems is usually to make sure
that the database system can continue to perform at an acceptable speed, even as the
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Figure 18.6 Scaleup with increasing problem size and resources.

size of the database and the number of transactions increases. Increasing the capac-
ity of the system by increasing the parallelism provides a smoother path for growth
for an enterprise than does replacing a centralized system by a faster machine (even
assuming that such a machine exists). However, we must also look at absolute per-
formance numbers when using scaleup measures; a machine that scales up linearly
may perform worse than a machine that scales less than linearly, simply because the
latter machine is much faster to start off with.

A number of factors work against efficient parallel operation and can diminish
both speedup and scaleup.

• Startup costs. There is a startup cost associated with initiating a single process.
In a parallel operation consisting of thousands of processes, the startup time
may overshadow the actual processing time, affecting speedup adversely.

• Interference. Since processes executing in a parallel system often access shared
resources, a slowdown may result from the interference of each new process as
it competes with existing processes for commonly held resources, such as a
system bus, or shared disks, or even locks. Both speedup and scaleup are af-
fected by this phenomenon.

• Skew. By breaking down a single task into a number of parallel steps, we
reduce the size of the average step. Nonetheless, the service time for the single
slowest step will determine the service time for the task as a whole. It is often
difficult to divide a task into exactly equal-sized parts, and the way that the
sizes are distributed is therefore skewed. For example, if a task of size 100 is
divided into 10 parts, and the division is skewed, there may be some tasks of
size less than 10 and some tasks of size more than 10; if even one task happens
to be of size 20, the speedup obtained by running the tasks in parallel is only
five, instead of ten as we would have hoped.
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18.3.2 Interconnection Networks
Parallel systems consist of a set of components (processors, memory, and disks) that
can communicate with each other via an interconnection network. Figure 18.7 shows
three commonly used types of interconnection networks:

• Bus. All the system components can send data on and receive data from a sin-
gle communication bus. This type of interconnection is shown in Figure 18.7a.
The bus could be an Ethernet or a parallel interconnect. Bus architectures work
well for small numbers of processors. However, they do not scale well with in-
creasing parallelism, since the bus can handle communication from only one
component at a time.

• Mesh. The components are nodes in a grid, and each component connects
to all its adjacent components in the grid. In a two-dimensional mesh each
node connects to four adjacent nodes, while in a three-dimensional mesh each
node connects to six adjacent nodes. Figure 18.7b shows a two-dimensional
mesh. Nodes that are not directly connected can communicate with one an-
other by routing messages via a sequence of intermediate nodes that are di-
rectly connected to one another. The number of communication links grows as
the number of components grows, and the communication capacity of a mesh
therefore scales better with increasing parallelism.

• Hypercube. The components are numbered in binary, and a component is
connected to another if the binary representations of their numbers differ in
exactly one bit. Thus, each of the n components is connected to log(n) other
components. Figure 18.7c shows a hypercube with 8 nodes. In a hypercube
interconnection, a message from a component can reach any other component
by going through at most log(n) links. In contrast, in a mesh architecture a
component may be 2(

√
n− 1) links away from some of the other components

(or
√

n links away, if the mesh interconnection wraps around at the edges of
the grid). Thus communication delays in a hypercube are significantly lower
than in a mesh.

110

111011
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Figure 18.7 Interconnection networks.
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18.3.3 Parallel Database Architectures
There are several architectural models for parallel machines. Among the most promi-
nent ones are those in Figure 18.8 (in the figure, M denotes memory, P denotes a
processor, and disks are shown as cylinders):

• Shared memory. All the processors share a common memory (Figure 18.8a).

• Shared disk. All the processors share a common set of disks (Figure 18.8b).
Shared-disk systems are sometimes called clusters.

• Shared nothing. The processors share neither a common memory nor com-
mon disk (Figure 18.8c).

• Hierarchical. This model is a hybrid of the preceding three architectures (Fig-
ure 18.8d).

In Sections 18.3.3.1 through 18.3.3.4, we elaborate on each of these models.
Techniques used to speed up transaction processing on data-server systems, such

as data and lock caching and lock de-escalation, outlined in Section 18.2.2, can also be
used in shared-disk parallel databases as well as in shared-nothing parallel databases.
In fact, they are very important for efficient transaction processing in such systems.
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Figure 18.8 Parallel database architectures.
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18.3.3.1 Shared Memory
In a shared-memory architecture, the processors and disks have access to a common
memory, typically via a bus or through an interconnection network. The benefit of
shared memory is extremely efficient communication between processors—data in
shared memory can be accessed by any processor without being moved with soft-
ware. A processor can send messages to other processors much faster by using mem-
ory writes (which usually take less than a microsecond) than by sending a message
through a communication mechanism. The downside of shared-memory machines is
that the architecture is not scalable beyond 32 or 64 processors because the bus or the
interconnection network becomes a bottleneck (since it is shared by all processors).
Adding more processors does not help after a point, since the processors will spend
most of their time waiting for their turn on the bus to access memory.

Shared-memory architectures usually have large memory caches at each proces-
sor, so that referencing of the shared memory is avoided whenever possible. How-
ever, at least some of the data will not be in the cache, and accesses will have to go
to the shared memory. Moreover, the caches need to be kept coherent; that is, if a
processor performs a write to a memory location, the data in that memory location
should be either updated at or removed from any processor where the data is cached.
Maintaining cache-coherency becomes an increasing overhead with increasing num-
ber of processors. Consequently, shared-memory machines are not capable of scaling
up beyond a point; current shared-memory machines cannot support more than 64
processors.

18.3.3.2 Shared Disk
In the shared-disk model, all processors can access all disks directly via an intercon-
nection network, but the processors have private memories. There are two advan-
tages of this architecture over a shared-memory architecture. First, since each pro-
cessor has its own memory, the memory bus is not a bottleneck. Second, it offers a
cheap way to provide a degree of fault tolerance: If a processor (or its memory) fails,
the other processors can take over its tasks, since the database is resident on disks
that are accessible from all processors. We can make the disk subsystem itself fault
tolerant by using a RAID architecture, as described in Chapter 11. The shared-disk
architecture has found acceptance in many applications.

The main problem with a shared-disk system is again scalability. Although the
memory bus is no longer a bottleneck, the interconnection to the disk subsystem is
now a bottleneck; it is particularly so in a situation where the database makes a large
number of accesses to disks. Compared to shared-memory systems, shared-disk sys-
tems can scale to a somewhat larger number of processors, but communication across
processors is slower (up to a few milliseconds in the absence of special-purpose hard-
ware for communication), since it has to go through a communication network.

DEC clusters running Rdb were one of the early commercial users of the shared-
disk database architecture. (Rdb is now owned by Oracle, and is called Oracle Rdb.
Digital Equipment Corporation (DEC) is now owned by Compaq.)
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18.3.3.3 Shared Nothing
In a shared-nothing system, each node of the machine consists of a processor, mem-
ory, and one or more disks. The processors at one node may communicate with an-
other processor at another node by a high-speed interconnection network. A node
functions as the server for the data on the disk or disks that the node owns. Since
local disk references are serviced by local disks at each processor, the shared-nothing
model overcomes the disadvantage of requiring all I/O to go through a single inter-
connection network; only queries, accesses to nonlocal disks, and result relations pass
through the network. Moreover, the interconnection networks for shared-nothing
systems are usually designed to be scalable, so that their transmission capacity in-
creases as more nodes are added. Consequently, shared-nothing architectures are
more scalable and can easily support a large number of processors. The main draw-
backs of shared-nothing systems are the costs of communication and of nonlocal disk
access, which are higher than in a shared-memory or shared-disk architecture since
sending data involves software interaction at both ends.

The Teradata database machine was among the earliest commercial systems to
use the shared-nothing database architecture. The Grace and the Gamma research
prototypes also used shared-nothing architectures.

18.3.3.4 Hierarchical
The hierarchical architecture combines the characteristics of shared-memory, shared-
disk, and shared-nothing architectures. At the top level, the system consists of nodes
connected by an interconnection network, and do not share disks or memory with
one another. Thus, the top level is a shared-nothing architecture. Each node of the sys-
tem could actually be a shared-memory system with a few processors. Alternatively,
each node could be a shared-disk system, and each of the systems sharing a set of
disks could be a shared-memory system. Thus, a system could be built as a hierarchy,
with shared-memory architecture with a few processors at the base, and a shared-
nothing architecture at the top, with possibly a shared-disk architecture in the mid-
dle. Figure 18.8d illustrates a hierarchical architecture with shared-memory nodes
connected together in a shared-nothing architecture. Commercial parallel database
systems today run on several of these architectures.

Attempts to reduce the complexity of programming such systems have yielded
distributed virtual-memory architectures, where logically there is a single shared
memory, but physically there are multiple disjoint memory systems; the virtual-
memory-mapping hardware, coupled with system software, allows each processor
to view the disjoint memories as a single virtual memory. Since access speeds differ,
depending on whether the page is available locally or not, such an architecture is also
referred to as a nonuniform memory architecture (NUMA).

18.4 Distributed Systems
In a distributed database system, the database is stored on several computers. The
computers in a distributed system communicate with one another through various
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communication media, such as high-speed networks or telephone lines. They do not
share main memory or disks. The computers in a distributed system may vary in size
and function, ranging from workstations up to mainframe systems.

The computers in a distributed system are referred to by a number of different
names, such as sites or nodes, depending on the context in which they are mentioned.
We mainly use the term site, to emphasize the physical distribution of these systems.
The general structure of a distributed system appears in Figure 18.9.

The main differences between shared-nothing parallel databases and distributed
databases are that distributed databases are typically geographically separated, are
separately administered, and have a slower interconnection. Another major differ-
ence is that, in a distributed database system, we differentiate between local and
global transactions. A local transaction is one that accesses data only from sites
where the transaction was initiated. A global transaction, on the other hand, is one
that either accesses data in a site different from the one at which the transaction was
initiated, or accesses data in several different sites.

There are several reasons for building distributed database systems, including
sharing of data, autonomy, and availability.

• Sharing data. The major advantage in building a distributed database system
is the provision of an environment where users at one site may be able to
access the data residing at other sites. For instance, in a distributed banking
system, where each branch stores data related to that branch, it is possible for
a user in one branch to access data in another branch. Without this capability,
a user wishing to transfer funds from one branch to another would have to
resort to some external mechanism that would couple existing systems.

• Autonomy. The primary advantage of sharing data by means of data distri-
bution is that each site is able to retain a degree of control over data that

site A site C

site B

communication
via network

network

Figure 18.9 A distributed system.
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are stored locally. In a centralized system, the database administrator of the
central site controls the database. In a distributed system, there is a global
database administrator responsible for the entire system. A part of these re-
sponsibilities is delegated to the local database administrator for each site.
Depending on the design of the distributed database system, each adminis-
trator may have a different degree of local autonomy. The possibility of local
autonomy is often a major advantage of distributed databases.

• Availability. If one site fails in a distributed system, the remaining sites may
be able to continue operating. In particular, if data items are replicated in sev-
eral sites, a transaction needing a particular data item may find that item in
any of several sites. Thus, the failure of a site does not necessarily imply the
shutdown of the system.

The failure of one site must be detected by the system, and appropriate
action may be needed to recover from the failure. The system must no longer
use the services of the failed site. Finally, when the failed site recovers or is
repaired, mechanisms must be available to integrate it smoothly back into the
system.

Although recovery from failure is more complex in distributed systems
than in centralized systems, the ability of most of the system to continue to
operate despite the failure of one site results in increased availability. Avail-
ability is crucial for database systems used for real-time applications. Loss of
access to data by, for example, an airline may result in the loss of potential
ticket buyers to competitors.

18.4.1 An Example of a Distributed Database
Consider a banking system consisting of four branches in four different cities. Each
branch has its own computer, with a database of all the accounts maintained at that
branch. Each such installation is thus a site. There also exists one single site that
maintains information about all the branches of the bank. Each branch maintains
(among others) a relation account(Account-schema), where

Account-schema = (account-number, branch-name, balance)

The site containing information about all the branches of the bank maintains the re-
lation branch(Branch-schema), where

Branch-schema = (branch-name, branch-city, assets)

There are other relations maintained at the various sites; we ignore them for the pur-
pose of our example.

To illustrate the difference between the two types of transactions—local and
global—at the sites, consider a transaction to add $50 to account number A-177
located at the Valleyview branch. If the transaction was initiated at the Valleyview
branch, then it is considered local; otherwise, it is considered global. A transaction
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to transfer $50 from account A-177 to account A-305, which is located at the Hillside
branch, is a global transaction, since accounts in two different sites are accessed as a
result of its execution.

In an ideal distributed database system, the sites would share a common global
schema (although some relations may be stored only at some sites), all sites would
run the same distributed database-management software, and the sites would be
aware of each other’s existence. If a distributed database is built from scratch, it
would indeed be possible to achieve the above goals. However, in reality a dis-
tributed database has to be constructed by linking together multiple already-existing
database systems, each with its own schema and possibly running different database-
management software. Such systems are sometimes called multidatabase systems
or heterogeneous distributed database systems. We discuss these systems in Sec-
tion 19.8, where we show how to achieve a degree of global control despite the het-
erogeneity of the component systems.

18.4.2 Implementation Issues
Atomicity of transactions is an important issue in building a distributed database sys-
tem. If a transaction runs across two sites, unless the system designers are careful, it
may commit at one site and abort at another, leading to an inconsistent state. Trans-
action commit protocols ensure such a situation cannot arise. The two-phase commit
protocol (2PC) is the most widely used of these protocols.

The basic idea behind 2PC is for each site to execute the transaction till just before
commit, and then leave the commit decision to a single coordinator site; the trans-
action is said to be in the ready state at a site at this point. The coordinator decides
to commit the transaction only if the transaction reaches the ready state at every site
where it executed; otherwise (for example, if the transaction aborts at any site), the
coordinator decides to abort the transaction. Every site where the transaction exe-
cuted must follow the decision of the coordinator. If a site fails when a transaction is
in ready state, when the site recovers from failure it should be in a position to either
commit or abort the transaction, depending on the decision of the coordinator. The
2PC protocol is described in detail in Section 19.4.1.

Concurrency control is another issue in a distributed database. Since a transac-
tion may access data items at several sites, transaction managers at several sites may
need to coordinate to implement concurrency control. If locking is used (as is almost
always the case in practice), locking can be performed locally at the sites containing
accessed data items, but there is also a possibility of deadlock involving transactions
originating at multiple sites. Therefore deadlock detection needs to be carried out
across multiple sites. Failures are more common in distributed systems since not only
may computers fail, but communication links may also fail. Replication of data items,
which is the key to the continued functioning of distributed databases when failures
occur, further complicates concurrency control. Section 19.5 provides detailed cover-
age of concurrency control in distributed databases.

The standard transaction models, based on multiple actions carried out by a single
program unit, are often inappropriate for carrying out tasks that cross the boundaries
of databases that cannot or will not cooperate to implement protocols such as 2PC.
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Alternative approaches, based on persistent messaging for communication, are gener-
ally used for such tasks.

When the tasks to be carried out are complex, involving multiple databases and/or
multiple interactions with humans, coordination of the tasks and ensuring transac-
tion properties for the tasks become more complicated. Workflow management systems
are systems designed to help with carrying out such tasks. Section 19.4.3 describes
persistent messaging, while Section 24.2 describes workflow management systems.

In case an organization has to choose between a distributed architecture and a
centralized architecture for implementing an application, the system architect must
balance the advantages against the disadvantages of distribution of data. We have al-
ready seen the advantages of using distributed databases. The primary disadvantage
of distributed database systems is the added complexity required to ensure proper
coordination among the sites. This increased complexity takes various forms:

• Software-development cost. It is more difficult to implement a distributed
database system; thus, it is more costly.

• Greater potential for bugs. Since the sites that constitute the distributed sys-
tem operate in parallel, it is harder to ensure the correctness of algorithms,
especially operation during failures of part of the system, and recovery from
failures. The potential exists for extremely subtle bugs.

• Increased processing overhead. The exchange of messages and the additional
computation required to achieve intersite coordination are a form of overhead
that does not arise in centralized systems.

There are several approaches to distributed database design, ranging from fully
distributed designs to ones that include a large degree of centralization. We study
them in Chapter 19.

18.5 Network Types
Distributed databases and client–server systems are built around communication
networks. There are basically two types of networks: local-area networks and wide-
area networks. The main difference between the two is the way in which they are
distributed geographically. In local-area networks, processors are distributed over
small geographical areas, such as a single building or a number of adjacent build-
ings. In wide-area networks, on the other hand, a number of autonomous processors
are distributed over a large geographical area (such as the United States or the en-
tire world). These differences imply major variations in the speed and reliability of
the communication network, and are reflected in the distributed operating-system
design.

18.5.1 Local-Area Networks
Local-area networks (LANs) (Figure 18.10) emerged in the early 1970s as a way
for computers to communicate and to share data with one another. People recog-
nized that, for many enterprises, numerous small computers, each with its own self-
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Figure 18.10 Local-area network.

contained applications, are more economical than a single large system. Because each
small computer is likely to need access to a full complement of peripheral devices
(such as disks and printers), and because some form of data sharing is likely to oc-
cur in a single enterprise, it was a natural step to connect these small systems into a
network.

LANs are generally used in an office environment. All the sites in such systems
are close to one another, so the communication links tend to have a higher speed and
lower error rate than do their counterparts in wide-area networks. The most common
links in a local-area network are twisted pair, coaxial cable, fiber optics, and, increas-
ingly, wireless connections. Communication speeds range from a few megabits per
second (for wireless local-area networks), to 1 gigabit per second for Gigabit Ether-
net. Standard Ethernet runs at 10 megabits per second, while Fast Ethernet run at 100
megabits per second.

A storage-area network (SAN) is a special type of high-speed local-area network
designed to connect large banks of storage devices (disks) to computers that use the
data. Thus storage-area networks help build large-scale shared-disk systems. The moti-
vation for using storage-area networks to connect multiple computers to large banks
of storage devices is essentially the same as that for shared-disk databases, namely

• Scalability by adding more computers

• High availability, since data is still accessible even if a computer fails

RAID organizations are used in the storage devices to ensure high availability of the
data, permitting processing to continue even if individual disks fail. Storage area
networks are usually built with redundancy, such as multiple paths between nodes,
so if a component such as a link or a connection to the network fails, the network
continues to function.
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18.5.2 Wide-Area Networks
Wide-area networks (WANs) emerged in the late 1960s, mainly as an academic re-
search project to provide efficient communication among sites, allowing hardware
and software to be shared conveniently and economically by a wide community of
users. Systems that allowed remote terminals to be connected to a central computer
via telephone lines were developed in the early 1960s, but they were not true WANs.
The first WAN to be designed and developed was the Arpanet. Work on the Arpanet
began in 1968. The Arpanet has grown from a four-site experimental network to a
worldwide network of networks, the Internet, comprising hundreds of millions of
computer systems. Typical links on the Internet are fiber-optic lines and, sometimes,
satellite channels. Data rates for wide-area links typically range from a few megabits
per second to hundreds of gigabits per second. The last link, to end user sites, is of-
ten based on digital subscriber loop (DSL) technology supporting a few megabits per
second), or cable modem (supporting 10 megabits per second), or dial-up modem
connections over phone lines (supporting up to 56 kilobits per second).

WANs can be classified into two types:

• In discontinuous connection WANs, such as those based on wireless connec-
tions, hosts are connected to the network only part of the time.

• In continuous connection WANs, such as the wired Internet, hosts are con-
nected to the network at all times.

Networks that are not continuously connected typically do not allow transactions
across sites, but may keep local copies of remote data, and refresh the copies peri-
odically (every night, for instance). For applications where consistency is not critical,
such as sharing of documents, groupware systems such as Lotus Notes allow up-
dates of remote data to be made locally, and the updates are then propagated back
to the remote site periodically. There is a potential for conflicting updates at differ-
ent sites, conflicts that have to be detected and resolved. A mechanism for detecting
conflicting updates is described later, in Section 23.5.4; the resolution mechanism for
conflicting updates is, however, application dependent.

18.6 Summary
• Centralized database systems run entirely on a single computer. With the

growth of personal computers and local-area networking, the database front-
end functionality has moved increasingly to clients, with server systems pro-
viding the back-end functionality. Client–server interface protocols have
helped the growth of client–server database systems.

• Servers can be either transaction servers or data servers, although the use
of transaction servers greatly exceeds the use of data servers for providing
database services.
� Transaction servers have multiple processes, possibly running on multiple

processors. So that these processes have access to common data, such as
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the database buffer, systems store such data in shared memory. In addition
to processes that handle queries, there are system processes that carry out
tasks such as lock and log management and checkpointing.

� Data server systems supply raw data to clients. Such systems strive to
minimize communication between clients and servers by caching data
and locks at the clients. Parallel database systems use similar optimiza-
tions.

• Parallel database systems consist of multiple processors and multiple disks
connected by a fast interconnection network. Speedup measures how much
we can increase processing speed by increasing parallelism, for a single trans-
action. Scaleup measures how well we can handle an increased number of
transactions by increasing parallelism. Interference, skew, and start–up costs
act as barriers to getting ideal speedup and scaleup.

• Parallel database architectures include the shared-memory, shared-disk,
shared-nothing, and hierarchical architectures. These architectures have dif-
ferent tradeoffs of scalability versus communication speed.

• A distributed database is a collection of partially independent databases that
(ideally) share a common schema, and coordinate processing of transactions
that access nonlocal data. The processors communicate with one another thro-
ugh a communication network that handles routing and connection strategies.

• Principally, there are two types of communication networks: local-area net-
works and wide-area networks. Local-area networks connect nodes that are
distributed over small geographical areas, such as a single building or a few
adjacent buildings. Wide-area networks connect nodes spread over a large
geographical area. The Internet is the most extensively used wide-area net-
work today.

Storage-area networks are a special type of local-area network designed
to provide fast interconnection between large banks of storage devices and
multiple computers.

Review Terms
• Centralized systems

• Server systems

• Coarse-granularity parallelism

• Fine-granularity parallelism

• Database process structure

• Mutual exclusion

• Thread

• Server processes

� Lock manager process
� Database writer process
� Log writer process
� Checkpoint process
� Process monitor process

• Client–server systems

• Transaction-server
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• Query-server
• Data server
� Prefetching
� De-escalation
� Data caching
� Cache coherency
� Lock caching
� Call back

• Parallel systems
• Throughput
• Response time
• Speedup
� Linear speedup
� Sublinear speedup

• Scaleup
� Linear scaleup
� Sublinear scaleup
� Batch scaleup
� Transaction scaleup

• Startup costs
• Interference
• Skew
• Interconnection networks

� Bus
� Mesh
� Hypercube

• Parallel database architectures
� Shared memory
� Shared disk (clusters)
� Shared nothing
� Hierarchical

• Fault tolerance

• Distributed virtual-memory

• Nonuniform memory architecture
(NUMA)

• Distributed systems

• Distributed database
� Sites (nodes)
� Local transaction
� Global transaction
� Local autonomy

• Multidatabase systems

• Network types
� Local-area networks (LAN)
� Wide-area networks (WAN)
� Storage-area network (SAN)

Exercises
18.1 Why is it relatively easy to port a database from a single processor machine to

a multiprocessor machine if individual queries need not be parallelized?

18.2 Transaction server architectures are popular for client-server relational data-
bases, where transactions are short. On the other hand, data server architec-
tures are popular for client-server object-oriented database systems, where
transactions are expected to be relatively long. Give two reasons why data
servers may be popular for object-oriented databases but not for relational
databases.

18.3 Instead of storing shared structures in shared memory, an alternative architec-
ture would be to store them in the local memory of a special process, and access
the shared data by interprocess communication with the process. What would
be the drawback of such an architecture?

18.4 In typical client–server systems the server machine is much more powerful
than the clients; that is, its processor is faster, it may have multiple proces-
sors, and it has more memory and disk capacity. Consider instead a scenario
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where client and server machines have exactly the same power. Would it make
sense to build a client–server system in such a scenario? Why? Which scenario
would be better suited to a data-server architecture?

18.5 Consider an object-oriented database system based on a client-server architec-
ture, with the server acting as a data server.

a. What is the effect of the speed of the interconnection between the client
and the server on the choice between object and page shipping?

b. If page shipping is used, the cache of data at the client can be organized
either as an object cache or a page cache. The page cache stores data in units
of a page, while the object cache stores data in units of objects. Assume
objects are smaller than a page. Describe one benefit of an object cache
over a page cache.

18.6 What is lock de-escalation, and under what conditions is it required? Why is it
not required if the unit of data shipping is an item?

18.7 Suppose you were in charge of the database operations of a company whose
main job is to process transactions. Suppose the company is growing rapidly
each year, and has outgrown its current computer system. When you are choos-
ing a new parallel computer, what measure is most relevant—speedup, batch
scaleup, or transaction scaleup? Why?

18.8 Suppose a transaction is written in C with embedded SQL, and about 80 percent
of the time is spent in the SQL code, with the remaining 20 percent spent in C
code. How much speedup can one hope to attain if parallelism is used only for
the SQL code? Explain.

18.9 What are the factors that can work against linear scaleup in a transaction pro-
cessing system? Which of the factors are likely to be the most important in
each of the following architectures: shared memory, shared disk, and shared
nothing?

18.10 Consider a bank that has a collection of sites, each running a database system.
Suppose the only way the databases interact is by electronic transfer of money
between one another. Would such a system qualify as a distributed database?
Why?

18.11 Consider a network based on dial-up phone lines, where sites communicate
periodically, such as every night. Such networks are often configured with a
server site and multiple client sites. The client sites connect only to the server,
and exchange data with other clients by storing data at the server and retriev-
ing data stored at the server by other clients. What is the advantage of such an
architecture over one where a site can exchange data with another site only by
first dialing it up?



Silberschatz−Korth−Sudarshan: 
Database System 
Concepts, Fourth Edition

VI. Database System 
Architecture

18. Database System 
Architecture

704 © The McGraw−Hill 
Companies, 2001

Bibliographical Notes 707

Bibliographical Notes
Patterson and Hennessy [1995] and Stone [1993] are textbooks that provide a good
introduction to the area of computer architecture.

Gray and Reuter [1993] provides a textbook description of transaction processing,
including the architecture of client–server and distributed systems. Geiger [1995] and
Signore et al. [1995] describe the ODBC standard for client–server connectivity. North
[1995] describes the use of a variety of tools for client–server database access.

Carey et al. [1991] and Franklin et al. [1993] describe data-caching techniques for
client–server database systems. Biliris and Orenstein [1994] survey object storage
management systems, including client–server related issues. Franklin et al. [1992]
and Mohan and Narang [1994] describe recovery techniques for client-server sys-
tems.

DeWitt and Gray [1992] survey parallel database systems, including their archi-
tecture and performance measures. A survey of parallel computer architectures is
presented by Duncan [1990]. Dubois and Thakkar [1992] is a collection of papers on
scalable shared-memory architectures.

Ozsu and Valduriez [1999], Bell and Grimson [1992] and Ceri and Pelagatti [1984]
provide textbook coverage of distributed database systems. Further references per-
taining to parallel and distributed database systems appear in the bibliographical
notes of Chapters 20 and 19, respectively.

Comer and Droms [1999] and Thomas [1996] describe the computer networking
and the Internet. Tanenbaum [1996] and Halsall [1992] provide general overviews of
computer networks. Discussions concerning ATM networks and switches are offered
by de Prycker [1993].



Silberschatz−Korth−Sudarshan: 
Database System 
Concepts, Fourth Edition

VI. Database System 
Architecture

19. Distributed Databases 705© The McGraw−Hill 
Companies, 2001

C H A P T E R 1 9

Distributed Databases

Unlike parallel systems, in which the processors are tightly coupled and constitute
a single database system, a distributed database system consists of loosely coupled
sites that share no physical components. Furthermore, the database systems that run
on each site may have a substantial degree of mutual independence. We discussed
the basic structure of distributed systems in Chapter 18.

Each site may participate in the execution of transactions that access data at one
site, or several sites. The main difference between centralized and distributed data-
base systems is that, in the former, the data reside in one single location, whereas in
the latter, the data reside in several locations. This distribution of data is the cause of
many difficulties in transaction processing and query processing. In this chapter, we
address these difficulties.

We start by classifying distributed databases as homogeneous or heterogeneous,
in Section 19.1. We then address the question of how to store data in a distributed
database in Section 19.2. In Section 19.3, we outline a model for transaction processing
in a distributed database. In Section 19.4, we describe how to implement atomic trans-
actions in a distributed database by using special commit protocols. In Section 19.5,
we describe concurrency control in distributed databases. In Section 19.6, we outline
how to provide high availability in a distributed database by exploiting replication,
so the system can continue processing transactions even when there is a failure. We
address query processing in distributed databases in Section 19.7. In Section 19.8, we
outline issues in handling heterogeneous databases. In Section 19.9, we describe di-
rectory systems, which can be viewed as a specialized form of distributed databases.

19.1 HomogeneousandHeterogeneousDatabases
In a homogeneous distributed database, all sites have identical database manage-
ment system software, are aware of one another, and agree to cooperate in processing
users’ requests. In such a system, local sites surrender a portion of their autonomy

709
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in terms of their right to change schemas or database management system software.
That software must also cooperate with other sites in exchanging information about
transactions, to make transaction processing possible across multiple sites.

In contrast, in a heterogeneous distributed database, different sites may use dif-
ferent schemas, and different database management system software. The sites may
not be aware of one another, and they may provide only limited facilities for cooper-
ation in transaction processing. The differences in schemas are often a major problem
for query processing, while the divergence in software becomes a hindrance for pro-
cessing transactions that access multiple sites.

In this chapter, we concentrate on homogeneous distributed databases. However,
in Section 19.8 we briefly discuss query processing issues in heterogeneous distributed
database systems. Transaction processing issues in such systems are covered later, in
Section 24.6.

19.2 Distributed Data Storage
Consider a relation r that is to be stored in the database. There are two approaches to
storing this relation in the distributed database:

• Replication. The system maintains several identical replicas (copies) of the
relation, and stores each replica at a different site. The alternative to replication
is to store only one copy of relation r.

• Fragmentation. The system partitions the relation into several fragments, and
stores each fragment at a different site.

Fragmentation and replication can be combined: A relation can be partitioned into
several fragments and there may be several replicas of each fragment. In the follow-
ing subsections, we elaborate on each of these techniques.

19.2.1 Data Replication
If relation r is replicated, a copy of relation r is stored in two or more sites. In the most
extreme case, we have full replication, in which a copy is stored in every site in the
system.

There are a number of advantages and disadvantages to replication.

• Availability. If one of the sites containing relation r fails, then the relation r
can be found in another site. Thus, the system can continue to process queries
involving r, despite the failure of one site.

• Increased parallelism. In the case where the majority of accesses to the rela-
tion r result in only the reading of the relation, then several sites can process
queries involving r in parallel. The more replicas of r there are, the greater the
chance that the needed data will be found in the site where the transaction
is executing. Hence, data replication minimizes movement of data between
sites.
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• Increased overhead on update. The system must ensure that all replicas of a
relation r are consistent; otherwise, erroneous computations may result. Thus,
whenever r is updated, the update must be propagated to all sites containing
replicas. The result is increased overhead. For example, in a banking system,
where account information is replicated in various sites, it is necessary to en-
sure that the balance in a particular account agrees in all sites.

In general, replication enhances the performance of read operations and increases
the availability of data to read-only transactions. However, update transactions incur
greater overhead. Controlling concurrent updates by several transactions to repli-
cated data is more complex than in centralized systems, which we saw in Chapter
16. We can simplify the management of replicas of relation r by choosing one of them
as the primary copy of r. For example, in a banking system, an account can be as-
sociated with the site in which the account has been opened. Similarly, in an airline-
reservation system, a flight can be associated with the site at which the flight origi-
nates. We shall examine the primary copy scheme and other options for distributed
concurrency control in Section 19.5.

19.2.2 Data Fragmentation
If relation r is fragmented, r is divided into a number of fragments r1, r2, . . . , rn. These
fragments contain sufficient information to allow reconstruction of the original re-
lation r. There are two different schemes for fragmenting a relation: horizontal frag-
mentation and vertical fragmentation. Horizontal fragmentation splits the relation by
assigning each tuple of r to one or more fragments. Vertical fragmentation splits the
relation by decomposing the scheme R of relation r.

We shall illustrate these approaches by fragmenting the relation account, with the
schema

Account-schema = (account-number, branch-name, balance)

In horizontal fragmentation, a relation r is partitioned into a number of subsets,
r1, r2, . . . , rn. Each tuple of relation r must belong to at least one of the fragments, so
that the original relation can be reconstructed, if needed.

As an illustration, the account relation can be divided into several different frag-
ments, each of which consists of tuples of accounts belonging to a particular branch.
If the banking system has only two branches—Hillside and Valleyview—then there
are two different fragments:

account1 = σbranch-name = “Hillside” (account)
account2 = σbranch-name = “Valleyview” (account)

Horizontal fragmentation is usually used to keep tuples at the sites where they are
used the most, to minimize data transfer.

In general, a horizontal fragment can be defined as a selection on the global relation
r. That is, we use a predicate Pi to construct fragment ri:

ri = σPi
(r)
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We reconstruct the relation r by taking the union of all fragments; that is,

r = r1 ∪ r2 ∪ · · · ∪ rn

In our example, the fragments are disjoint. By changing the selection predicates
used to construct the fragments, we can have a particular tuple of r appear in more
than one of the ri.

In its simplest form, vertical fragmentation is the same as decomposition (see
Chapter 7). Vertical fragmentation of r(R) involves the definition of several subsets
of attributes R1, R2, . . . , Rn of the schema R so that

R = R1 ∪ R2 ∪ · · · ∪ Rn

Each fragment ri of r is defined by

ri = ΠRi
(r)

The fragmentation should be done in such a way that we can reconstruct relation r
from the fragments by taking the natural join

r = r1 � r2 � r3 � · · · � rn

One way of ensuring that the relation r can be reconstructed is to include the
primary-key attributes of R in each of the Ri. More generally, any superkey can be
used. It is often convenient to add a special attribute, called a tuple-id, to the schema
R. The tuple-id value of a tuple is a unique value that distinguishes the tuple from all
other tuples. The tuple-id attribute thus serves as a candidate key for the augmented
schema, and is included in each of the Ris. The physical or logical address for a tuple
can be used as a tuple-id, since each tuple has a unique address.

To illustrate vertical fragmentation, consider a university database with a relation
employee-info that stores, for each employee, employee-id, name, designation, and salary.
For privacy reasons, this relation may be fragmented into a relation employee-private-
info containing employee-id and salary, and another relation employee-public-info con-
taining attributes employee-id, name, and designation. These may be stored at different
sites, again for security reasons.

The two types of fragmentation can be applied to a single schema; for instance, the
fragments obtained by horizontally fragmenting a relation can be further partitioned
vertically. Fragments can also be replicated. In general, a fragment can be replicated,
replicas of fragments can be fragmented further, and so on.

19.2.3 Transparency
The user of a distributed database system should not be required to know either
where the data are physically located or how the data can be accessed at the specific
local site. This characteristic, called data transparency, can take several forms:

• Fragmentation transparency. Users are not required to know how a relation
has been fragmented.

• Replication transparency. Users view each data object as logically unique.
The distributed system may replicate an object to increase either system per-
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formance or data availability. Users do not have to be concerned with what
data objects have been replicated, or where replicas have been placed.

• Location transparency. Users are not required to know the physical location
of the data. The distributed database system should be able to find any data
as long as the data identifier is supplied by the user transaction.

Data items—such as relations, fragments, and replicas — must have unique names.
This property is easy to ensure in a centralized database. In a distributed database,
however, we must take care to ensure that two sites do not use the same name for
distinct data items.

One solution to this problem is to require all names to be registered in a central
name server. The name server helps to ensure that the same name does not get used
for different data items. We can also use the name server to locate a data item, given
the name of the item. This approach, however, suffers from two major disadvantages.
First, the name server may become a performance bottleneck when data items are
located by their names, resulting in poor performance. Second, if the name server
crashes, it may not be possible for any site in the distributed system to continue
to run.

A more widely used alternative approach requires that each site prefix its own
site identifier to any name that it generates. This approach ensures that no two sites
generate the same name (since each site has a unique identifier). Furthermore, no
central control is required. This solution, however, fails to achieve location trans-
parency, since site identifiers are attached to names. Thus, the account relation might
be referred to as site17.account, or account@site17, rather than as simply account. Many
database systems use the internet address of a site to identify it.

To overcome this problem, the database system can create a set of alternative
names or aliases for data items. A user may thus refer to data items by simple
names that are translated by the system to complete names. The mapping of aliases
to the real names can be stored at each site. With aliases, the user can be unaware of
the physical location of a data item. Furthermore, the user will be unaffected if the
database administrator decides to move a data item from one site to another.

Users should not have to refer to a specific replica of a data item. Instead, the
system should determine which replica to reference on a read request, and should
update all replicas on a write request. We can ensure that it does so by maintaining a
catalog table, which the system uses to determine all replicas for the data item.

19.3 Distributed Transactions
Access to the various data items in a distributed system is usually accomplished
through transactions, which must preserve the ACID properties (Section 15.1). There
are two types of transaction that we need to consider. The local transactions are those
that access and update data in only one local database; the global transactions are
those that access and update data in several local databases. Ensuring the ACID prop-
erties of the local transactions can be done as described in Chapters 15, 16, and 17.
However, for global transactions, this task is much more complicated, since several
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sites may be participating in execution. The failure of one of these sites, or the failure
of a communication link connecting these sites, may result in erroneous computa-
tions.

In this section we study the system structure of a distributed database, and its
possible failure modes. On the basis of the model presented in this section, in Sec-
tion 19.4 we study protocols for ensuring atomic commit of global transactions, and
in Section 19.5 we study protocols for concurrency control in distributed databases.
In Section 19.6 we study how a distributed database can continue functioning even
in the presence of various types of failure.

19.3.1 System Structure
Each site has its own local transaction manager, whose function is to ensure the ACID
properties of those transactions that execute at that site. The various transaction man-
agers cooperate to execute global transactions. To understand how such a manager
can be implemented, consider an abstract model of a transaction system, in which
each site contains two subsystems:

• The transaction manager manages the execution of those transactions (or sub-
transactions) that access data stored in a local site. Note that each such trans-
action may be either a local transaction (that is, a transaction that executes at
only that site) or part of a global transaction (that is, a transaction that executes
at several sites).

• The transaction coordinator coordinates the execution of the various transac-
tions (both local and global) initiated at that site.

The overall system architecture appears in Figure 19.1.

TM1 TMn

computer 1 computer n

TC1 TCn
transaction
coordinator

transaction
manager

Figure 19.1 System architecture.
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The structure of a transaction manager is similar in many respects to the structure
of a centralized system. Each transaction manager is responsible for

• Maintaining a log for recovery purposes

• Participating in an appropriate concurrency-control scheme to coordinate the
concurrent execution of the transactions executing at that site

As we shall see, we need to modify both the recovery and concurrency schemes to
accommodate the distribution of transactions.

The transaction coordinator subsystem is not needed in the centralized environ-
ment, since a transaction accesses data at only a single site. A transaction coordinator,
as its name implies, is responsible for coordinating the execution of all the transac-
tions initiated at that site. For each such transaction, the coordinator is responsible
for

• Starting the execution of the transaction

• Breaking the transaction into a number of subtransactions and distributing
these subtransactions to the appropriate sites for execution

• Coordinating the termination of the transaction, which may result in the trans-
action being committed at all sites or aborted at all sites

19.3.2 System Failure Modes
A distributed system may suffer from the same types of failure that a centralized
system does (for example, software errors, hardware errors, or disk crashes). There
are, however, additional types of failure with which we need to deal in a distributed
environment. The basic failure types are

• Failure of a site

• Loss of messages

• Failure of a communication link

• Network partition

The loss or corruption of messages is always a possibility in a distributed sys-
tem. The system uses transmission-control protocols, such as TCP/IP, to handle such
errors. Information about such protocols may be found in standard textbooks on net-
working (see the bibliographical notes).

However, if two sites A and B are not directly connected, messages from one to
the other must be routed through a sequence of communication links. If a communi-
cation link fails, messages that would have been transmitted across the link must be
rerouted. In some cases, it is possible to find another route through the network, so
that the messages are able to reach their destination. In other cases, a failure may re-
sult in there being no connection between some pairs of sites. A system is partitioned
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if it has been split into two (or more) subsystems, called partitions, that lack any con-
nection between them. Note that, under this definition, a subsystem may consist of a
single node.

19.4 Commit Protocols
If we are to ensure atomicity, all the sites in which a transaction T executed must
agree on the final outcome of the execution. T must either commit at all sites, or it
must abort at all sites. To ensure this property, the transaction coordinator of T must
execute a commit protocol.

Among the simplest and most widely used commit protocols is the two-phase
commit protocol (2PC), which is described in Section 19.4.1. An alternative is the
three-phase commit protocol (3PC), which avoids certain disadvantages of the 2PC
protocol but adds to complexity and overhead. Section 19.4.2 briefly outlines the 3PC
protocol.

19.4.1 Two-Phase Commit
We first describe how the two-phase commit protocol (2PC) operates during normal
operation, then describe how it handles failures and finally how it carries out recov-
ery and concurrency control.

Consider a transaction T initiated at site Si, where the transaction coordinator
is Ci.

19.4.1.1 The Commit Protocol
When T completes its execution—that is, when all the sites at which T has executed
inform Ci that T has completed—Ci starts the 2PC protocol.

• Phase 1. Ci adds the record <prepare T> to the log, and forces the log onto sta-
ble storage. It then sends a prepare T message to all sites at which T executed.
On receiving such a message, the transaction manager at that site determines
whether it is willing to commit its portion of T. If the answer is no, it adds a
record <no T> to the log, and then responds by sending an abort T message
to Ci. If the answer is yes, it adds a record <ready T> to the log, and forces
the log (with all the log records corresponding to T) onto stable storage. The
transaction manager then replies with a ready T message to Ci.

• Phase 2. When Ci receives responses to the prepare T message from all the
sites, or when a prespecified interval of time has elapsed since the prepare
T message was sent out, Ci can determine whether the transaction T can be
committed or aborted. Transaction T can be committed if Ci received a ready
T message from all the participating sites. Otherwise, transaction T must be
aborted. Depending on the verdict, either a record <commit T> or a record
<abort T> is added to the log and the log is forced onto stable storage. At
this point, the fate of the transaction has been sealed. Following this point, the
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coordinator sends either a commit T or an abort T message to all participating
sites. When a site receives that message, it records the message in the log.

A site at which T executed can unconditionally abort T at any time before it sends
the message ready T to the coordinator. Once the message is sent, the transaction is
said to be in the ready state at the site. The ready T message is, in effect, a promise
by a site to follow the coordinator’s order to commit T or to abort T. To make such a
promise, the needed information must first be stored in stable storage. Otherwise, if
the site crashes after sending ready T, it may be unable to make good on its promise.
Further, locks acquired by the transaction must continue to be held till the transaction
completes.

Since unanimity is required to commit a transaction, the fate of T is sealed as soon
as at least one site responds abort T. Since the coordinator site Si is one of the sites at
which T executed, the coordinator can decide unilaterally to abort T. The final verdict
regarding T is determined at the time that the coordinator writes that verdict (commit
or abort) to the log and forces that verdict to stable storage. In some implementations
of the 2PC protocol, a site sends an acknowledge T message to the coordinator at the
end of the second phase of the protocol. When the coordinator receives the acknowl-
edge T message from all the sites, it adds the record <complete T> to the log.

19.4.1.2 Handling of Failures
The 2PC protocol responds in differenct ways to various types of failures:

• Failure of a participating site. If the coordinator Ci detects that a site has
failed, it takes these actions: If the site fails before responding with a ready
T message to Ci, the coordinator assumes that it responded with an abort T
message. If the site fails after the coordinator has received the ready T message
from the site, the coordinator executes the rest of the commit protocol in the
normal fashion, ignoring the failure of the site.

When a participating site Sk recovers from a failure, it must examine its log
to determine the fate of those transactions that were in the midst of execution
when the failure occurred. Let T be one such transaction. We consider each of
the possible cases:
� The log contains a <commit T> record. In this case, the site executes

redo(T).
� The log contains an <abort T> record. In this case, the site executes undo(T).
� The log contains a <ready T> record. In this case, the site must consult Ci

to determine the fate of T. If Ci is up, it notifies Sk regarding whether T
committed or aborted. In the former case, it executes redo(T); in the latter
case, it executes undo(T). If Ci is down, Sk must try to find the fate of T
from other sites. It does so by sending a querystatus T message to all the
sites in the system. On receiving such a message, a site must consult its
log to determine whether T has executed there, and if T has, whether T
committed or aborted. It then notifies Sk about this outcome. If no site has
the appropriate information (that is, whether T committed or aborted),
then Sk can neither abort nor commit T. The decision concerning T is
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postponed until Sk can obtain the needed information. Thus, Sk must pe-
riodically resend the querystatus message to the other sites. It continues
to do so until a site that contains the needed information recovers. Note
that the site at which Ci resides always has the needed information.

� The log contains no control records (abort, commit, ready) concerning T.
Thus, we know that Sk failed before responding to the prepare T message
from Ci. Since the failure of Sk precludes the sending of such a response,
by our algorithm Ci must abort T. Hence, Sk must execute undo(T).

• Failure of the coordinator. If the coordinator fails in the midst of the execu-
tion of the commit protocol for transaction T, then the participating sites must
decide the fate of T. We shall see that, in certain cases, the participating sites
cannot decide whether to commit or abort T, and therefore these sites must
wait for the recovery of the failed coordinator.
� If an active site contains a <commit T> record in its log, then T must be

committed.
� If an active site contains an <abort T> record in its log, then T must be

aborted.
� If some active site does not contain a <ready T> record in its log, then

the failed coordinator Ci cannot have decided to commit T, because a site
that does not have a <ready T> record in its log cannot have sent a ready
T message to Ci. However, the coordinator may have decided to abort T,
but not to commit T. Rather than wait for Ci to recover, it is preferable to
abort T.

� If none of the preceding cases holds, then all active sites must have a
<ready T> record in their logs, but no additional control records (such
as <abort T> or <commit T>). Since the coordinator has failed, it is im-
possible to determine whether a decision has been made, and if one has,
what that decision is, until the coordinator recovers. Thus, the active sites
must wait for Ci to recover. Since the fate of T remains in doubt, T may
continue to hold system resources. For example, if locking is used, T may
hold locks on data at active sites. Such a situation is undesirable, because
it may be hours or days before Ci is again active. During this time, other
transactions may be forced to wait for T. As a result, data items may be
unavailable not only on the failed site (Ci), but on active sites as well. This
situation is called the blocking problem, because T is blocked pending the
recovery of site Ci.

• Network partition. When a network partitions, two possibilities exist:
1. The coordinator and all its participants remain in one partition. In this

case, the failure has no effect on the commit protocol.
2. The coordinator and its participants belong to several partitions. From the

viewpoint of the sites in one of the partitions, it appears that the sites in
other partitions have failed. Sites that are not in the partition containing
the coordinator simply execute the protocol to deal with failure of the
coordinator. The coordinator and the sites that are in the same partition as
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the coordinator follow the usual commit protocol, assuming that the sites
in the other partitions have failed.

Thus, the major disadvantage of the 2PC protocol is that coordinator failure may re-
sult in blocking, where a decision either to commit or to abort T may have to be
postponed until Ci recovers.

19.4.1.3 Recovery and Concurrency Control
When a failed site restarts, we can perform recovery by using, for example, the re-
covery algorithm described in Section 17.9. To deal with distributed commit proto-
cols (such as 2PC and 3PC), the recovery procedure must treat in-doubt transactions
specially; in-doubt transactions are transactions for which a <ready T> log record is
found, but neither a <commit T> log record nor an <abort T> log record is found.
The recovering site must determine the commit–abort status of such transactions by
contacting other sites, as described in Section 19.4.1.2.

If recovery is done as just described, however, normal transaction processing at
the site cannot begin until all in-doubt transactions have been committed or rolled
back. Finding the status of in-doubt transactions can be slow, since multiple sites
may have to be contacted. Further, if the coordinator has failed, and no other site has
information about the commit–abort status of an incomplete transaction, recovery
potentially could become blocked if 2PC is used. As a result, the site performing
restart recovery may remain unusable for a long period.

To circumvent this problem, recovery algorithms typically provide support for
noting lock information in the log. (We are assuming here that locking is used for
concurrency control.) Instead of writing a <ready T> log record, the algorithm writes
a <ready T, L> log record, where L is a list of all write locks held by the transaction
T when the log record is written. At recovery time, after performing local recovery
actions, for every in-doubt transaction T , all the write locks noted in the <ready T,
L> log record (read from the log) are reacquired.

After lock reacquisition is complete for all in-doubt transactions, transaction pro-
cessing can start at the site, even before the commit–abort status of the in-doubt trans-
actions is determined. The commit or rollback of in-doubt transactions proceeds con-
currently with the execution of new transactions. Thus, site recovery is faster, and
never gets blocked. Note that new transactions that have a lock conflict with any
write locks held by in-doubt transactions will be unable to make progress until the
conflicting in-doubt transactions have been committed or rolled back.

19.4.2 Three-Phase Commit
The three-phase commit (3PC) protocol is an extension of the two-phase commit pro-
tocol that avoids the blocking problem under certain assumptions. In particular, it is
assumed that no network partition occurs, and not more than k sites fail, where k is
some predetermined number. Under these assumptions, the protocol avoids blocking
by introducing an extra third phase where multiple sites are involved in the decision
to commit. Instead of directly noting the commit decision in its persistent storage, the
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coordinator first ensures that at least k other sites know that it intended to commit
the transaction. If the coordinator fails, the remaining sites first select a new coor-
dinator. This new coordinator checks the status of the protocol from the remaining
sites; if the coordinator had decided to commit, at least one of the other k sites that it
informed will be up and will ensure that the commit decision is respected. The new
coordinator restarts the third phase of the protocol if some site knew that the old co-
ordinator intended to commit the transaction. Otherwise the new coordinator aborts
the transaction.

While the 3PC protocol has the desirable property of not blocking unless k sites
fail, it has the drawback that a partitioning of the network will appear to be the same
as more than k sites failing, which would lead to blocking. The protocol also has to
be carefully implemented to ensure that network partitioning (or more than k sites
failing) does not result in inconsistencies, where a transaction is committed in one
partition, and aborted in another. Because of its overhead, the 3PC protocol is not
widely used. See the bibliographical notes for references giving more details of the
3PC protocol.

19.4.3 Alternative Models of Transaction Processing
For many applications, the blocking problem of two-phase commit is not acceptable.
The problem here is the notion of a single transaction that works across multiple sites.
In this section we describe how to use persistent messaging to avoid the problem of
distributed commit, and then briefly outline the larger issue of workflows; workflows
are considered in more detail in Section 24.2.

To understand persistent messaging consider how one might transfer funds be-
tween two different banks, each with its own computer. One approach is to have a
transaction span the two sites, and use two-phase commit to ensure atomicity. How-
ever, the transaction may have to update the total bank balance, and blocking could
have a serious impact on all other transactions at each bank, since almost all transac-
tions at the bank would update the total bank balance.

In contrast, consider how fund transfer by a bank check occurs. The bank first
deducts the amount of the check from the available balance and prints out a check.
The check is then physically transferred to the other bank where it is deposited. After
verifying the check, the bank increases the local balance by the amount of the check.
The check constitutes a message sent between the two banks. So that funds are not
lost or incorrectly increased, the check must not be lost, and must not be duplicated
and deposited more than once. When the bank computers are connected by a net-
work, persistent messages provide the same service as the check (but much faster, of
course).

Persistent messages are messages that are guaranteed to be delivered to the re-
cipient exactly once (neither less nor more), regardless of failures, if the transaction
sending the message commits, and are guaranteed to not be delivered if the transac-
tion aborts. Database recovery techniques are used to implement persistent messag-
ing on top of the normal network channels, as we will see shortly. In contrast, regular
messages may be lost or may even be delivered multiple times in some situations.
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Error handling is more complicated with persistent messaging than with two-
phase commit. For instance, if the account where the check is to be deposited has
been closed, the check must be sent back to the originating account and credited
back there. Both sites must therefore be provided with error handling code, along
with code to handle the persistent messages. In contrast, with two-phase commit,
the error would be detected by the transaction, which would then never deduct the
amount in the first place.

The types of exception conditions that may arise depend on the application, so
it is not possible for the database system to handle exceptions automatically. The
application programs that send and receive persistent messages must include code
to handle exception conditions and bring the system back to a consistent state. For
instance, it is not acceptable to just lose the money being transfered if the receiving
account has been closed; the money must be credited back to the originating account,
and if that is not possible for some reason, humans must be alerted to resolve the
situation manually.

There are many applications where the benefit of eliminating blocking is well
worth the extra effort to implement systems that use persistent messages. In fact, few
organizations would agree to support two-phase commit for transactions originating
outside the organization, since failures could result in blocking of access to local data.
Persistent messaging therefore plays an important role in carrying out transactions
that cross organizational boundaries.

Workflows provide a general model of transaction processing involving multiple
sites and possibly human processing of certain steps. For instance, when a bank re-
ceives a loan application, there are many steps it must take, including contacting ex-
ternal credit-checking agencies, before approving or rejecting a loan application. The
steps, together, form a workflow. We study workflows in more detail in Section 24.2.
We also note that persistent messaging forms the underlying basis for workflows in
a distributed environment.

We now consider the implementation of persistent messaging. Persistent messag-
ing can be implemented on top of an unreliable messaging infrastructure, which may
lose messages or deliver them multiple times, by these protocols:

• Sending site protocol: When a transaction wishes to send a persistent mes-
sage, it writes a record containing the message in a special relation messages-
to-send, instead of directly sending out the message. The message is also given
a unique message identifier.

A message delivery process monitors the relation, and when a new message is
found, it sends the message to its destination. The usual database concurrency
control mechanisms ensure that the system process reads the message only
after the transaction that wrote the message commits; if the transaction aborts,
the usual recovery mechanism would delete the message from the relation.

The message delivery process deletes a message from the relation only af-
ter it receives an acknowledgment from the destination site. If it receives no
acknowledgement from the destination site, after some time it sends the mes-
sage again. It repeats this until an acknowledgment is received. In case of per-
manent failures, the system will decide, after some period of time, that the
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message is undeliverable. Exception handling code provided by the applica-
tion is then invoked to deal with the failure.

Writing the message to a relation and processing it only after the transaction
commits ensures that the message will be delivered if and only if the transac-
tion commits. Repeatedly sending it guarantees it will be delivered even if
there are (temporary) system or network failures.

• Receiving site protocol: When a site receives a persistent message, it runs a
transaction that adds the message to a special received-messages relation, pro-
vided it is not already present in the relation (the unique message identifier
detects duplicates). After the transaction commits, or if the message was al-
ready present in the relation, the receiving site sends an acknowledgment back
to the sending site.

Note that sending the acknowledgment before the transaction commits is
not safe, since a system failure may then result in loss of the message. Check-
ing whether the message has been received earlier is essential to avoid multi-
ple deliveries of the message.

In many messaging systems, it is possible for messages to get delayed ar-
bitrarily, although such delays are very unlikely. Therefore, to be safe, the
message must never be deleted from the received-messages relation. Deleting
it could result in a duplicate delivery not being detected. But as a result,
the received-messages relation may grow indefinitely. To deal with this prob-
lem, each message is given a timestamp, and if the timestamp of a received
message is older than some cutoff, the message is discarded. All messages
recorded in the received-messages relation that are older than the cutoff can be
deleted.

19.5 ConcurrencyControl inDistributedDatabases
We show here how some of the concurrency-control schemes discussed in Chapter 16
can be modified so that they can be used in a distributed environment. We assume
that each site participates in the execution of a commit protocol to ensure global trans-
action atomicity.

The protocols we describe in this section require updates to be done on all replicas
of a data item. If any site containing a replica of a data item has failed, updates to the
data item cannot be processed. In Section 19.6 we describe protocols that can continue
transaction processing even if some sites or links have failed, thereby providing high
availability.

19.5.1 Locking Protocols
The various locking protocols described in Chapter 16 can be used in a distributed
environment. The only change that needs to be incorporated is in the way the lock
manager deals with replicated data. We present several possible schemes that are
applicable to an environment where data can be replicated in several sites. As in
Chapter 16, we shall assume the existence of the shared and exclusive lock modes.
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19.5.1.1 Single Lock-Manager Approach
In the single lock-manager approach, the system maintains a single lock manager
that resides in a single chosen site—say Si. All lock and unlock requests are made at
site Si. When a transaction needs to lock a data item, it sends a lock request to Si.
The lock manager determines whether the lock can be granted immediately. If the
lock can be granted, the lock manager sends a message to that effect to the site at
which the lock request was initiated. Otherwise, the request is delayed until it can
be granted, at which time a message is sent to the site at which the lock request was
initiated. The transaction can read the data item from any one of the sites at which a
replica of the data item resides. In the case of a write, all the sites where a replica of
the data item resides must be involved in the writing.

The scheme has these advantages:

• Simple implementation. This scheme requires two messages for handling
lock requests, and one message for handling unlock requests.

• Simple deadlock handling. Since all lock and unlock requests are made at one
site, the deadlock-handling algorithms discussed in Chapter 16 can be applied
directly to this environment.

The disadvantages of the scheme are:

• Bottleneck. The site Si becomes a bottleneck, since all requests must be pro-
cessed there.

• Vulnerability. If the site Si fails, the concurrency controller is lost. Either pro-
cessing must stop, or a recovery scheme must be used so that a backup site
can take over lock management from Si, as described in Section 19.6.5.

19.5.1.2 Distributed Lock Manager
A compromise between the advantages and disadvantages can be achieved through
the distributed lock-manager approach, in which the lock-manager function is dis-
tributed over several sites.

Each site maintains a local lock manager whose function is to administer the lock
and unlock requests for those data items that are stored in that site. When a trans-
action wishes to lock data item Q, which is not replicated and resides at site Si, a
message is sent to the lock manager at site Si requesting a lock (in a particular lock
mode). If data item Q is locked in an incompatible mode, then the request is delayed
until it can be granted. Once it has determined that the lock request can be granted,
the lock manager sends a message back to the initiator indicating that it has granted
the lock request.

There are several alternative ways of dealing with replication of data items, which
we study in Sections 19.5.1.3 to 19.5.1.6.

The distributed lock manager scheme has the advantage of simple implementa-
tion, and reduces the degree to which the coordinator is a bottleneck. It has a reason-
ably low overhead, requiring two message transfers for handling lock requests, and
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one message transfer for handling unlock requests. However, deadlock handling is
more complex, since the lock and unlock requests are no longer made at a single site:
There may be intersite deadlocks even when there is no deadlock within a single site.
The deadlock-handling algorithms discussed in Chapter 16 must be modified, as we
shall discuss in Section 19.5.4, to detect global deadlocks.

19.5.1.3 Primary Copy
When a system uses data replication, we can choose one of the replicas as the primary
copy. Thus, for each data item Q, the primary copy of Q must reside in precisely one
site, which we call the primary site of Q.

When a transaction needs to lock a data item Q, it requests a lock at the primary
site of Q. As before, the response to the request is delayed until it can be granted.

Thus, the primary copy enables concurrency control for replicated data to be han-
dled like that for unreplicated data. This similarity allows for a simple implementa-
tion. However, if the primary site of Q fails, Q is inaccessible, even though other sites
containing a replica may be accessible.

19.5.1.4 Majority Protocol
The majority protocol works this way: If data item Q is replicated in n different sites,
then a lock-request message must be sent to more than one-half of the n sites in which
Q is stored. Each lock manager determines whether the lock can be granted immedi-
ately (as far as it is concerned). As before, the response is delayed until the request can
be granted. The transaction does not operate on Q until it has successfully obtained
a lock on a majority of the replicas of Q.

This scheme deals with replicated data in a decentralized manner, thus avoiding
the drawbacks of central control. However, it suffers from these disadvantages:

• Implementation. The majority protocol is more complicated to implement
than are the previous schemes. It requires 2(n/2 + 1) messages for handling
lock requests, and (n/2 + 1) messages for handling unlock requests.

• Deadlock handling. In addition to the problem of global deadlocks due to
the use of a distributed lock-manager approach, it is possible for a deadlock
to occur even if only one data item is being locked. As an illustration, consider
a system with four sites and full replication. Suppose that transactions T1 and
T2 wish to lock data item Q in exclusive mode. Transaction T1 may succeed
in locking Q at sites S1 and S3, while transaction T2 may succeed in locking
Q at sites S2 and S4. Each then must wait to acquire the third lock; hence, a
deadlock has occurred. Luckily, we can avoid such deadlocks with relative
ease, by requiring all sites to request locks on the replicas of a data item in the
same predetermined order.
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19.5.1.5 Biased Protocol
The biased protocol is another approach to handling replication. The difference from
the majority protocol is that requests for shared locks are given more favorable treat-
ment than requests for exclusive locks.

• Shared locks. When a transaction needs to lock data item Q, it simply requests
a lock on Q from the lock manager at one site that contains a replica of Q.

• Exclusive locks. When a transaction needs to lock data item Q, it requests a
lock on Q from the lock manager at all sites that contain a replica of Q.

As before, the response to the request is delayed until it can be granted.
The biased scheme has the advantage of imposing less overhead on read oper-

ations than does the majority protocol. This savings is especially significant in com-
mon cases in which the frequency of read is much greater than the frequency of write.
However, the additional overhead on writes is a disadvantage. Furthermore, the bi-
ased protocol shares the majority protocol’s disadvantage of complexity in handling
deadlock.

19.5.1.6 Quorum Consensus Protocol
The quorum consensus protocol is a generalization of the majority protocol. The
quorum consensus protocol assigns each site a nonnegative weight. It assigns read
and write operations on an item x two integers, called read quorum Qr and write
quorum Qw, that must satisfy the following condition, where S is the total weight of
all sites at which x resides:

Qr + Qw > S and 2 ∗ Qw > S

To execute a read operation, enough replicas must be read that their total weight
is ≥ Qr. To execute a write operation, enough replicas must be written so that their
total weight is ≥ Qw.

The benefit of the quorum consensus approach is that it can permit the cost of ei-
ther reads or writes to be selectively reduced by appropriately defining the read and
write quorums. For instance, with a small read quorum, reads need to read fewer
replicas, but the write quorum will be higher, hence writes can succeed only if corre-
spondingly more replicas are available. Also, if higher weights are given to some sites
(for example, those less likely to fail), fewer sites need to be accessed for acquiring
locks.

In fact, by setting weights and quorums appropriately, the quorum consensus pro-
tocol can simulate the majority protocol and the biased protocols.

19.5.2 Timestamping
The principal idea behind the timestamping scheme in Section 16.2 is that each trans-
action is given a unique timestamp that the system uses in deciding the serialization
order. Our first task, then, in generalizing the centralized scheme to a distributed



Silberschatz−Korth−Sudarshan: 
Database System 
Concepts, Fourth Edition

VI. Database System 
Architecture

19. Distributed Databases722 © The McGraw−Hill 
Companies, 2001

726 Chapter 19 Distributed Databases

site
identifier

global unique
identifier

local unique
timestamp

Figure 19.2 Generation of unique timestamps.

scheme is to develop a scheme for generating unique timestamps. Then, the various
protocols can operate directly to the nonreplicated environment.

There are two primary methods for generating unique timestamps, one central-
ized and one distributed. In the centralized scheme, a single site distributes the time-
stamps. The site can use a logical counter or its own local clock for this purpose.

In the distributed scheme, each site generates a unique local timestamp by using
either a logical counter or the local clock. We obtain the unique global timestamp by
concatenating the unique local timestamp with the site identifier, which also must be
unique (Figure 19.2). The order of concatenation is important! We use the site iden-
tifier in the least significant position to ensure that the global timestamps generated
in one site are not always greater than those generated in another site. Compare this
technique for generating unique timestamps with the one that we presented in Sec-
tion 19.2.3 for generating unique names.

We may still have a problem if one site generates local timestamps at a rate faster
than that of the other sites. In such a case, the fast site’s logical counter will be larger
than that of other sites. Therefore, all timestamps generated by the fast site will be
larger than those generated by other sites. What we need is a mechanism to ensure
that local timestamps are generated fairly across the system. We define within each
site Si a logical clock (LCi), which generates the unique local timestamp. The logical
clock can be implemented as a counter that is incremented after a new local time-
stamp is generated. To ensure that the various logical clocks are synchronized, we
require that a site Si advance its logical clock whenever a transaction Ti with time-
stamp <x,y> visits that site and x is greater than the current value of LCi. In this case,
site Si advances its logical clock to the value x + 1.

If the system clock is used to generate timestamps, then timestamps will be as-
signed fairly, provided that no site has a system clock that runs fast or slow. Since
clocks may not be perfectly accurate, a technique similar to that for logical clocks
must be used to ensure that no clock gets far ahead of or behind another clock.

19.5.3 Replication with Weak Degrees of Consistency
Many commercial databases today support replication, which can take one of several
forms. With master–slave replication, the database allows updates at a primary site,
and automatically propagates updates to replicas at other sites. Transactions may
read the replicas at other sites, but are not permitted to update them.

An important feature of such replication is that transactions do not obtain locks at
remote sites. To ensure that transactions running at the replica sites see a consistent
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(but perhaps outdated) view of the database, the replica should reflect a transaction-
consistent snapshot of the data at the primary; that is, the replica should reflect all
updates of transactions up to some transaction in the serialization order, and should
not reflect any updates of later transactions in the serialization order.

The database may be configured to propagate updates immediately after they oc-
cur at the primary, or to propagate updates only periodically.

Master–slave replication is particularly useful for distributing information, for in-
stance from a central office to branch offices of an organization. Another use for this
form of replication is in creating a copy of the database to run large queries, so that
queries do not interfere with transactions. Updates should be propagated periodi-
cally—every night, for example—so that update propagation does not interfere with
query processing.

The Oracle database system supports a create snapshot statement, which can cre-
ate a transaction-consistent snapshot copy of a relation, or set of relations, at a remote
site. It also supports snapshot refresh, which can be done either by recomputing the
snapshot or by incrementally updating it. Oracle supports automatic refresh, either
continuously or at periodic intervals.

With multimaster replication (also called update-anywhere replication) updates
are permitted at any replica of a data item, and are automatically propagated to
all replicas. This model is the basic model used to manage replicas in distributed
databases. Transactions update the local copy and the system updates other replicas
transparently.

One way of updating replicas is to apply immediate update with two-phase com-
mit, using one of the distributed concurrency-control techniques we have seen. Many
database systems use the biased protocol, where writes have to lock and update all
replicas and reads lock and read any one replica, as their currency-control technique.

Many database systems provide an alternative form of updating: They update at
one site, with lazy propagation of updates to other sites, instead of immediately
applying updates to all replicas as part of the transaction performing the update.
Schemes based on lazy propagation allow transaction processing (including updates)
to proceed even if a site is disconnected from the network, thus improving availabil-
ity, but, unfortunately, do so at the cost of consistency. One of two approaches is
usually followed when lazy propagation is used:

• Updates at replicas are translated into updates at a primary site, which are
then propagated lazily to all replicas.

This approach ensures that updates to an item are ordered serially, although
serializability problems can occur, since transactions may read an old value of
some other data item and use it to perform an update.

• Updates are performed at any replica and propagated to all other replicas.
This approach can cause even more problems, since the same data item

may be updated concurrently at multiple sites.

Some conflicts due to the lack of distributed concurrency control can be detected
when updates are propagated to other sites (we shall see how in Section 23.5.4),
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but resolving the conflict involves rolling back committed transactions, and dura-
bility of committed transactions is therefore not guaranteed. Further, human inter-
vention may be required to deal with conflicts. The above schemes should therefore
be avoided or used with care.

19.5.4 Deadlock Handling
The deadlock-prevention and deadlock-detection algorithms in Chapter 16 can be
used in a distributed system, provided that modifications are made. For example,
we can use the tree protocol by defining a global tree among the system data items.
Similarly, the timestamp-ordering approach could be directly applied to a distributed
environment, as we saw in Section 19.5.2.

Deadlock prevention may result in unnecessary waiting and rollback. Further-
more, certain deadlock-prevention techniques may require more sites to be involved
in the execution of a transaction than would otherwise be the case.

If we allow deadlocks to occur and rely on deadlock detection, the main problem
in a distributed system is deciding how to maintain the wait-for graph. Common
techniques for dealing with this issue require that each site keep a local wait-for
graph. The nodes of the graph correspond to all the transactions (local as well as
nonlocal) that are currently either holding or requesting any of the items local to that
site. For example, Figure 19.3 depicts a system consisting of two sites, each maintain-
ing its local wait-for graph. Note that transactions T2 and T3 appear in both graphs,
indicating that the transactions have requested items at both sites.

These local wait-for graphs are constructed in the usual manner for local transac-
tions and data items. When a transaction Ti on site S1 needs a resource in site S2, it
sends a request message to site S2. If the resource is held by transaction Tj , the system
inserts an edge Ti → Tj in the local wait-for graph of site S2.

Clearly, if any local wait-for graph has a cycle, deadlock has occurred. On the
other hand, the fact that there are no cycles in any of the local wait-for graphs does
not mean that there are no deadlocks. To illustrate this problem, we consider the
local wait-for graphs of Figure 19.3. Each wait-for graph is acyclic; nevertheless, a
deadlock exists in the system because the union of the local wait-for graphs contains
a cycle. This graph appears in Figure 19.4.

T2 T4T1 T2

T5 T3 T3

site S1 site S2

Figure 19.3 Local wait-for graphs.
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T1 T4

T5

T2

T3

Figure 19.4 Global wait-for graph for Figure 19.3.

In the centralized deadlock detection approach, the system constructs and main-
tains a global wait-for graph (the union of all the local graphs) in a single site: the
deadlock-detection coordinator. Since there is communication delay in the system,
we must distinguish between two types of wait-for graphs. The real graph describes
the real but unknown state of the system at any instance in time, as would be seen
by an omniscient observer. The constructed graph is an approximation generated by
the controller during the execution of the controller’s algorithm. Obviously, the con-
troller must generate the constructed graph in such a way that, whenever the detec-
tion algorithm is invoked, the reported results are correct. Correct means in this case
that, if a deadlock exists, it is reported promptly, and if the system reports a deadlock,
it is indeed in a deadlock state.

The global wait-for graph can be reconstructed or updated under these conditions:

• Whenever a new edge is inserted in or removed from one of the local wait-for
graphs.

• Periodically, when a number of changes have occurred in a local wait-for
graph.

• Whenever the coordinator needs to invoke the cycle-detection algorithm.

When the coordinator invokes the deadlock-detection algorithm, it searches its
global graph. If it finds a cycle, it selects a victim to be rolled back. The coordinator
must notify all the sites that a particular transaction has been selected as victim. The
sites, in turn, roll back the victim transaction.

This scheme may produce unnecessary rollbacks if:

• False cycles exist in the global wait-for graph. As an illustration, consider a
snapshot of the system represented by the local wait-for graphs of Figure 19.5.
Suppose that T2 releases the resource that it is holding in site S1, resulting in
the deletion of the edge T1 → T2 in S1. Transaction T2 then requests a resource
held by T3 at site S2, resulting in the addition of the edge T2 → T3 in S2. If the
insert T2 → T3 message from S2 arrives before the remove T1 → T2 message
from S1, the coordinator may discover the false cycle T1 → T2 → T3 after the
insert (but before the remove). Deadlock recovery may be initiated, although
no deadlock has occurred.
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T1

T2

T2

T1

T3

S2

T1

T3

coordinator

S1

Figure 19.5 False cycles in the global wait-for graph.

Note that the false-cycle situation could not occur under two-phase locking.
The likelihood of false cycles is usually sufficiently low that they do not cause
a serious performance problem.

• A deadlock has indeed occurred and a victim has been picked, while one of the
transactions was aborted for reasons unrelated to the deadlock. For example,
suppose that site S1 in Figure 19.3 decides to abort T2. At the same time, the
coordinator has discovered a cycle, and has picked T3 as a victim. Both T2 and
T3 are now rolled back, although only T2 needed to be rolled back.

Deadlock detection can be done in a distributed manner, with several sites taking
on parts of the task, instead of being done at a single site, However, such algorithms
are more complicated and more expensive. See the bibliographical notes for refer-
ences to such algorithms.

19.6 Availability
One of the goals in using distributed databases is high availability; that is, the data-
base must function almost all the time. In particular, since failures are more likely
in large distributed systems, a distributed database must continue functioning even
when there are various types of failures. The ability to continue functioning even
during failures is referred to as robustness.

For a distributed system to be robust, it must detect failures, reconfigure the system
so that computation may continue, and recover when a processor or a link is repaired.

The different types of failures are handled in different ways. For example, message
loss is handled by retransmission. Repeated retransmission of a message across a link,
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without receipt of an acknowledgment, is usually a symptom of a link failure. The
network usually attempts to find an alternative route for the message. Failure to find
such a route is usually a symptom of network partition.

It is generally not possible, however, to differentiate clearly between site failure
and network partition. The system can usually detect that a failure has occurred, but
it may not be able to identify the type of failure. For example, suppose that site S1

is not able to communicate with S2. It could be that S2 has failed. However, another
possibility is that the link between S1 and S2 has failed, resulting in network parti-
tion. The problem is partly addressed by using multiple links between sites, so that
even if one link fails the sites will remain connected. However, multiple link failure
can still occur, so there are situations where we cannot be sure whether a site failure
or network partition has occurred.

Suppose that site S1 has discovered that a failure has occurred. It must then ini-
tiate a procedure that will allow the system to reconfigure, and to continue with the
normal mode of operation.

• If transactions were active at a failed/inaccessible site at the time of the failure,
these transactions should be aborted. It is desirable to abort such transactions
promptly, since they may hold locks on data at sites that are still active; wait-
ing for the failed/inaccessible site to become accessible again may impede
other transactions at sites that are operational.

However, in some cases, when data objects are replicated it may be possible
to proceed with reads and updates even though some replicas are inaccessible.
In this case, when a failed site recovers, if it had replicas of any data object, it
must obtain the current values of these data objects, and must ensure that it
receives all future updates. We address this issue in Section 19.6.1.

• If replicated data are stored at a failed/inaccessible site, the catalog should be
updated so that queries do not reference the copy at the failed site. When a
site rejoins, care must be taken to ensure that data at the site is consistent, as
we will see in Section 19.6.3.

• If a failed site is a central server for some subsystem, an election must be held
to determine the new server (see Section 19.6.5). Examples of central servers
include a name server, a concurrency coordinator, or a global deadlock detec-
tor.

Since it is, in general, not possible to distinguish between network link failures and
site failures, any reconfiguration scheme must be designed to work correctly in case
of a partitioning of the network. In particular, these situations must be avoided:

• Two or more central servers are elected in distinct partitions.

• More than one partition updates a replicated data item.
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19.6.1 Majority-Based Approach
The majority-based approach to distributed concurrency control in Section 19.5.1.4
can be modified to work in spite of failures. In this approach, each data object stores
with it a version number to detect when it was last written to. Whenever a transaction
writes an object it also updates the version number in this way:

• If data object a is replicated in n different sites, then a lock-request message
must be sent to more than one-half of the n sites in which a is stored. The
transaction does not operate on a until it has successfully obtained a lock on a
majority of the replicas of a.

• Read operations look at all replicas on which a lock has been obtained, and
read the value from the replica that has the highest version number. (Option-
ally, they may also write this value back to replicas with lower version num-
bers.) Writes read all the replicas just like reads to find the highest version
number (this step would normally have been performed earlier in the trans-
action by a read, and the result can be reused). The new version number is
one more than the highest version number. The write operation writes all the
replicas on which it has obtained locks, and sets the version number at all the
replicas to the new version number.

Failures during a transaction (whether network partitions or site failures) can be tol-
erated as long as (1) the sites available at commit contain a majority of replicas of all
the objects written to and (2) during reads, a majority of replicas are read to find the
version numbers. If these requirements are violated, the transaction must be aborted.
As long as the requirements are satisfied, the two-phase commit protocol can be used,
as usual, on the sites that are available.

In this scheme, reintegration is trivial; nothing needs to be done. This is because
writes would have updated a majority of the replicas, while reads will read a majority
of the replicas and find at least one replica that has the latest version.

The version numbering technique used with the majority protocol can also be used
to make the quorum consensus protocol work in the presence of failures. We leave the
(straightforward) details to the reader. However, the danger of failures preventing the
system from processing transactions increases if some sites are given higher weights.

19.6.2 Read One, Write All Available Approach
As a special case of quorum consensus, we can employ the biased protocol by giving
unit weights to all sites, setting the read quorum to 1, and setting the write quorum to
n (all sites). In this special case, there is no need to use version numbers; however, if
even a single site containing a data item fails, no write to the item can proceed, since
the write quorum will not be available. This protocol is called the read one, write all
protocol since all replicas must be written.

To allow work to proceed in the event of failures, we would like to be able to use a
read one, write all available protocol. In this approach, a read operation proceeds as
in the read one, write all scheme; any available replica can be read, and a read lock is



Silberschatz−Korth−Sudarshan: 
Database System 
Concepts, Fourth Edition

VI. Database System 
Architecture

19. Distributed Databases 729© The McGraw−Hill 
Companies, 2001

19.6 Availability 733

obtained at that replica. A write operation is shipped to all replicas; and write locks
are acquired on all the replicas. If a site is down, the transaction manager proceeds
without waiting for the site to recover.

While this approach appears very attractive, there are several complications. In
particular, temporary communication failure may cause a site to appear to be un-
available, resulting in a write not being performed, but when the link is restored,
the site is not aware that it has to perform some reintegration actions to catch up on
writes it has lost. Further, if the network partitions, each partition may proceed to
update the same data item, believing that sites in the other partitions are all dead.

The read one, write all available scheme can be used if there is never any network
partitioning, but it can result in inconsistencies in the event of network partitions.

19.6.3 Site Reintegration
Reintegration of a repaired site or link into the system requires care. When a failed
site recovers, it must initiate a procedure to update its system tables to reflect changes
made while it was down. If the site had replicas of any data items, it must obtain
the current values of these data items and ensure that it receives all future updates.
Reintegration of a site is more complicated than it may seem to be at first glance,
since there may be updates to the data items processed during the time that the site
is recovering.

An easy solution is to halt the entire system temporarily while the failed site rejoins
it. In most applications, however, such a temporary halt is unacceptably disruptive.
Techniques have been developed to allow failed sites to reintegrate while concurrent
updates to data items proceed concurrently. Before a read or write lock is granted
on any data item, the site must ensure that it has caught up on all updates to the
data item. If a failed link recovers, two or more partitions can be rejoined. Since a
partitioning of the network limits the allowable operations by some or all sites, all
sites should be informed promptly of the recovery of the link. See the bibliographical
notes for more information on recovery in distributed systems.

19.6.4 Comparison with Remote Backup
Remote backup systems, which we studied in Section 17.10, and replication in dis-
tributed databases are two alternative approaches to providing high availability. The
main difference between the two schemes is that with remote backup systems, ac-
tions such as concurrency control and recovery are performed at a single site, and
only data and log records are replicated at the other site. In particular, remote backup
systems help avoid two-phase commit, and its resultant overheads. Also, transac-
tions need to contact only one site (the primary site), and thus avoid the overhead
of running transaction code at multiple sites. Thus remote backup systems offer a
lower-cost approach to high availability than replication.

On the other hand, replication can provide greater availability by having multiple
replicas available, and using the majority protocol.
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19.6.5 Coordinator Selection
Several of the algorithms that we have presented require the use of a coordinator. If
the coordinator fails because of a failure of the site at which it resides, the system can
continue execution only by restarting a new coordinator on another site. One way to
continue execution is by maintaining a backup to the coordinator, which is ready to
assume responsibility if the coordinator fails.

A backup coordinator is a site that, in addition to other tasks, maintains enough
information locally to allow it to assume the role of coordinator with minimal disrup-
tion to the distributed system. All messages directed to the coordinator are received
by both the coordinator and its backup. The backup coordinator executes the same
algorithms and maintains the same internal state information (such as, for a concur-
rency coordinator, the lock table) as does the actual coordinator. The only difference
in function between the coordinator and its backup is that the backup does not take
any action that affects other sites. Such actions are left to the actual coordinator.

In the event that the backup coordinator detects the failure of the actual coordi-
nator, it assumes the role of coordinator. Since the backup has all the information
available to it that the failed coordinator had, processing can continue without inter-
ruption.

The prime advantage to the backup approach is the ability to continue processing
immediately. If a backup were not ready to assume the coordinator’s responsibility,
a newly appointed coordinator would have to seek information from all sites in the
system so that it could execute the coordination tasks. Frequently, the only source
of some of the requisite information is the failed coordinator. In this case, it may be
necessary to abort several (or all) active transactions, and to restart them under the
control of the new coordinator.

Thus, the backup-coordinator approach avoids a substantial amount of delay while
the distributed system recovers from a coordinator failure. The disadvantage is the
overhead of duplicate execution of the coordinator’s tasks. Furthermore, a coordina-
tor and its backup need to communicate regularly to ensure that their activities are
synchronized.

In short, the backup-coordinator approach incurs overhead during normal pro-
cessing to allow fast recovery from a coordinator failure.

In the absence of a designated backup coordinator, or in order to handle multiple
failures, a new coordinator may be chosen dynamically by sites that are live. Elec-
tion algorithms enable the sites to choose the site for the new coordinator in a decen-
tralized manner. Election algorithms require that a unique identification number be
associated with each active site in the system.

The bully algorithm for election works as follows. To keep the notation and the
discussion simple, assume that the identification number of site Si is i and that the
chosen coordinator will always be the active site with the largest identification num-
ber. Hence, when a coordinator fails, the algorithm must elect the active site that has
the largest identification number. The algorithm must send this number to each active
site in the system. In addition, the algorithm must provide a mechanism by which a
site recovering from a crash can identify the current coordinator. Suppose that site Si

sends a request that is not answered by the coordinator within a prespecified time
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interval T. In this situation, it is assumed that the coordinator has failed, and Si tries
to elect itself as the site for the new coordinator.

Site Si sends an election message to every site that has a higher identification num-
ber. Site Si then waits, for a time interval T, for an answer from any one of these sites.
If it receives no response within time T, it assumes that all sites with numbers greater
than i have failed, and it elects itself as the site for the new coordinator and sends a
message to inform all active sites with identification numbers lower than i that it is
the site at which the new coordinator resides.

If Si does receive an answer, it begins a time interval T ′, to receive a message
informing it that a site with a higher identification number has been elected. (Some
other site is electing itself coordinator, and should report the results within time T ′.)
If Si receives no message within T ′, then it assumes the site with a higher number
has failed, and site Si restarts the algorithm.

After a failed site recovers, it immediately begins execution of the same algorithm.
If there are no active sites with higher numbers, the recovered site forces all sites with
lower numbers to let it become the coordinator site, even if there is a currently active
coordinator with a lower number. It is for this reason that the algorithm is termed the
bully algorithm.

19.7 Distributed Query Processing
In Chapter 14, we saw that there are a variety of methods for computing the answer
to a query. We examined several techniques for choosing a strategy for processing a
query that minimize the amount of time that it takes to compute the answer. For cen-
tralized systems, the primary criterion for measuring the cost of a particular strategy
is the number of disk accesses. In a distributed system, we must take into account
several other matters, including

• The cost of data transmission over the network

• The potential gain in performance from having several sites process parts of
the query in parallel

The relative cost of data transfer over the network and data transfer to and from disk
varies widely depending on the type of network and on the speed of the disks. Thus,
in general, we cannot focus solely on disk costs or on network costs. Rather, we must
find a good tradeoff between the two.

19.7.1 Query Transformation
Consider an extremely simple query: “Find all the tuples in the account relation.” Al-
though the query is simple — indeed, trivial—processing it is not trivial, since the
account relation may be fragmented, replicated, or both, as we saw in Section 19.2.
If the account relation is replicated, we have a choice of replica to make. If no repli-
cas are fragmented, we choose the replica for which the transmission cost is lowest.
However, if a replica is fragmented, the choice is not so easy to make, since we need
to compute several joins or unions to reconstruct the account relation. In this case,
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the number of strategies for our simple example may be large. Query optimization
by exhaustive enumeration of all alternative strategies may not be practical in such
situations.

Fragmentation transparency implies that a user may write a query such as

σbranch-name = “Hillside” (account)

Since account is defined as

account1 ∪ account2

the expression that results from the name translation scheme is

σbranch-name = “Hillside” (account1 ∪ account2)

Using the query-optimization techniques of Chapter 13, we can simplify the preced-
ing expression automatically. The result is the expression

σbranch-name = “Hillside” (account1) ∪ σbranch-name = “Hillside” (account2)

which includes two subexpressions. The first involves only account1, and thus can
be evaluated at the Hillside site. The second involves only account2, and thus can be
evaluated at the Valleyview site.

There is a further optimization that can be made in evaluating

σbranch-name = “Hillside” (account1)

Since account1 has only tuples pertaining to the Hillside branch, we can eliminate the
selection operation. In evaluating

σbranch-name = “Hillside” (account2)

we can apply the definition of the account2 fragment to obtain

σbranch-name = “Hillside” (σbranch-name = “Valleyview” (account))

This expression is the empty set, regardless of the contents of the account relation.
Thus, our final strategy is for the Hillside site to return account1 as the result of

the query.

19.7.2 Simple Join Processing
As we saw in Chapter 13, a major decision in the selection of a query-processing strat-
egy is choosing a join strategy. Consider the following relational-algebra expression:

account � depositor � branch

Assume that the three relations are neither replicated nor fragmented, and that ac-
count is stored at site S1, depositor at S2, and branch at S3. Let SI denote the site
at which the query was issued. The system needs to produce the result at site SI .
Among the possible strategies for processing this query are these:
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• Ship copies of all three relations to site SI . Using the techniques of Chapter 13,
choose a strategy for processing the entire query locally at site SI .

• Ship a copy of the account relation to site S2, and compute temp1 = account �
depositor at S2. Ship temp1 from S2 to S3, and compute temp2 = temp1 � branch
at S3. Ship the result temp2 to SI .

• Devise strategies similar to the previous one, with the roles of S1, S2, S3 ex-
changed.

No one strategy is always the best one. Among the factors that must be considered
are the volume of data being shipped, the cost of transmitting a block of data be-
tween a pair of sites, and the relative speed of processing at each site. Consider the
first two strategies listed. If we ship all three relations to SI , and indices exist on
these relations, we may need to re-create these indices at SI . This re-creation of in-
dices entails extra processing overhead and extra disk accesses. However, the second
strategy has the disadvantage that a potentially large relation (customer � account)
must be shipped from S2 to S3. This relation repeats the address data for a customer
once for each account that the customer has. Thus, the second strategy may result in
extra network transmission compared to the first strategy.

19.7.3 Semijoin Strategy
Suppose that we wish to evaluate the expression r1 � r2, where r1 and r2 are stored
at sites S1 and S2, respectively. Let the schemas of r1 and r2 be R1 and R2. Suppose
that we wish to obtain the result at S1. If there are many tuples of r2 that do not
join with any tuple of r1, then shipping r2 to S1 entails shipping tuples that fail to
contribute to the result. We want to remove such tuples before shipping data to S1,
particularly if network costs are high.

A possible strategy to accomplish all this is:

1. Compute temp1 ← ΠR1 ∩R2 (r1) at S1.

2. Ship temp1 from S1 to S2.

3. Compute temp2 ← r2 � temp1 at S2.

4. Ship temp2 from S2 to S1.

5. Compute r1 � temp2 at S1. The resulting relation is the same as r1 � r2.

Before considering the efficiency of this strategy, let us verify that the strategy com-
putes the correct answer. In step 3, temp2 has the result of r2 � ΠR1 ∩R2 (r1). In step
5, we compute

r1 � r2 � ΠR1 ∩R2 (r1)
Since join is associative and commutative, we can rewrite this expression as

(r1 � ΠR1 ∩R2 (r1)) � r2

Since r1 � Π(R1 ∩R2) (r1) = r1, the expression is, indeed, equal to r1 � r2, the
expression we are trying to evaluate.
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This strategy is particularly advantageous when relatively few tuples of r2 con-
tribute to the join. This situation is likely to occur if r1 is the result of a relational-
algebra expression involving selection. In such a case, temp2 may have significantly
fewer tuples than r2. The cost savings of the strategy result from having to ship only
temp2, rather than all of r2, to S1. Additional cost is incurred in shipping temp1 to S2.
If a sufficiently small fraction of tuples in r2 contribute to the join, the overhead of
shipping temp1 will be dominated by the savings of shipping only a fraction of the
tuples in r2.

This strategy is called a semijoin strategy, after the semijoin operator of the rela-
tional algebra, denoted n. The semijoin of r1 with r2, denoted r1 n r2, is

ΠR1(r1 � r2)

Thus, r1 n r2 selects those tuples of r1 that contributed to r1 � r2. In step 3, temp2

= r2 n r1.
For joins of several relations, this strategy can be extended to a series of semijoin

steps. A substantial body of theory has been developed regarding the use of semijoins
for query optimization. Some of this theory is referenced in the bibliographical notes.

19.7.4 Join Strategies that Exploit Parallelism
Consider a join of four relations:

r1 � r2 � r3 � r4

where relation ri is stored at site Si. Assume that the result must be presented at site
S1. There are many possible strategies for parallel evaluation. (We study the issue
of parallel processing of queries in detail in Chapter 20.) In one such strategy, r1 is
shipped to S2, and r1 � r2 computed at S2. At the same time, r3 is shipped to S4,
and r3 � r4 computed at S4. Site S2 can ship tuples of (r1 � r2) to S1 as they are
produced, rather than wait for the entire join to be computed. Similarly, S4 can ship
tuples of (r3 � r4) to S1. Once tuples of (r1 � r2) and (r3 � r4) arrive at S1, the
computation of (r1 � r2) � (r3 � r4) can begin, with the pipelined join technique
of Section 13.7.2.2. Thus, computation of the final join result at S1 can be done
in parallel with the computation of (r1 � r2) at S2, and with the computation of
(r3 � r4) at S4.

19.8 Heterogeneous Distributed Databases
Many new database applications require data from a variety of preexisting databases
located in a heterogeneous collection of hardware and software environments. Ma-
nipulation of information located in a heterogeneous distributed database requires
an additional software layer on top of existing database systems. This software layer
is called a multidatabase system. The local database systems may employ different
logical models and data-definition and data-manipulation languages, and may dif-
fer in their concurrency-control and transaction-management mechanisms. A multi-
database system creates the illusion of logical database integration without requiring
physical database integration.
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Full integration of heterogeneous systems into a homogeneous distributed data-
base is often difficult or impossible:

• Technical difficulties. The investment in application programs based on ex-
isting database systems may be huge, and the cost of converting these appli-
cations may be prohibitive.

• Organizational difficulties. Even if integration is technically possible, it may
not be politically possible, because the existing database systems belong to dif-
ferent corporations or organizations. In such cases, it is important for a multi-
database system to allow the local database systems to retain a high degree of
autonomy over the local database and transactions running against that data.

For these reasons, multidatabase systems offer significant advantages that out-
weigh their overhead. In this section, we provide an overview of the challenges faced
in constructing a multidatabase environment from the standpoint of data definition
and query processing. Section 24.6 provides an overview of transaction management
issues in multidatabases.

19.8.1 Unified View of Data
Each local database management system may use a different data model. For in-
stance, some may employ the relational model, whereas others may employ older
data models, such as the network model (see Appendix A) or the hierarchical model
(see Appendix B).

Since the multidatabase system is supposed to provide the illusion of a single,
integrated database system, a common data model must be used. A commonly used
choice is the relational model, with SQL as the common query language. Indeed, there
are several systems available today that allow SQL queries to a nonrelational database
management system.

Another difficulty is the provision of a common conceptual schema. Each local sys-
tem provides its own conceptual schema. The multidatabase system must integrate
these separate schemas into one common schema. Schema integration is a compli-
cated task, mainly because of the semantic heterogeneity.

Schema integration is not simply straightforward translation between data-defini-
tion languages. The same attribute names may appear in different local databases but
with different meanings. The data types used in one system may not be supported by
other systems, and translation between types may not be simple. Even for identical
data types, problems may arise from the physical representation of data: One system
may use ASCII, another EBCDIC; floating-point representations may differ; integers
may be represented in big-endian or little-endian form. At the semantic level, an inte-
ger value for length may be inches in one system and millimeters in another, thus
creating an awkward situation in which equality of integers is only an approximate
notion (as is always the case for floating-point numbers). The same name may ap-
pear in different languages in different systems. For example, a system based in the
United States may refer to the city “Cologne,” whereas one in Germany refers to it as
“Köln.”
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All these seemingly minor distinctions must be properly recorded in the com-
mon global conceptual schema. Translation functions must be provided. Indices must
be annotated for system-dependent behavior (for example, the sort order of nonal-
phanumeric characters is not the same in ASCII as in EBCDIC). As we noted earlier,
the alternative of converting each database to a common format may not be feasible
without obsoleting existing application programs.

19.8.2 Query Processing
Query processing in a heterogeneous database can be complicated. Some of the issues
are:

• Given a query on a global schema, the query may have to be translated into
queries on local schemas at each of the sites where the query has to be exe-
cuted. The query results have to be translated back into the global schema.

The task is simplified by writing wrappers for each data source, which pro-
vide a view of the local data in the global schema. Wrappers also translate
queries on the global schema into queries on the local schema, and translate
results back into the global schema. Wrappers may be provided by individual
sites, or may be written separately as part of the multidatabase system.

Wrappers can even be used to provide a relational view of nonrelational
data sources, such as Web pages (possibly with forms interfaces), flat files,
hierarchical and network databases, and directory systems.

• Some data sources may provide only limited query capabilities; for instance,
they may support selections, but not joins. They may even restrict the form
of selections, allowing selections only on certain fields; Web data sources with
form interfaces are an example of such data sources. Queries may therefore
have to be broken up, to be partly performed at the data source and partly at
the site issuing the query.

• In general, more than one site may need to be accessed to answer a given
query. Answers retrieved from the sites may have to be processed to remove
duplicates. Suppose one site contains account tuples satisfying the selection
balance < 100, while another contains account tuples satisfying balance > 50.
A query on the entire account relation would require access to both sites and
removal of duplicate answers resulting from tuples with balance between 50
and 100, which are replicated at both sites.

• Global query optimization in a heterogeneous database is difficult, since the
query execution system may not know what the costs are of alternative query
plans at different sites. The usual solution is to rely on only local-level opti-
mization, and just use heuristics at the global level.

Mediator systems are systems that integrate multiple heterogeneous data sources,
providing an integrated global view of the data and providing query facilities on
the global view. Unlike full-fledged multidatabase systems, mediator systems do not
bother about transaction processing. (The terms mediator and multidatabase are of-
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ten used in an interchangeable fashion, and systems that are called mediators may
support limited forms of transactions.) The term virtual database is used to refer
to multidatabase/mediator systems, since they provide the appearance of a single
database with a global schema, although data exist on multiple sites in local schemas.

19.9 Directory Systems
Consider an organization that wishes to make data about its employees available to
a variety of people in the organization; example of the kinds of data would include
name, designation, employee-id, address, email address, phone number, fax num-
ber, and so on. In the precomputerization days, organizations would create physical
directories of employees and distribute them across the organization. Even today,
telephone companies create physical directories of customers.

In general, a directory is a listing of information about some class of objects such as
persons. Directories can be used to find information about a specific object, or in the
reverse direction to find objects that meet a certain requirement. In the world of phys-
ical telephone directories, directories that satisfy lookups in the forward direction are
called white pages, while directories that satisfy lookups in the reverse direction are
called yellow pages.

In today’s networked world, the need for directories is still present and, if any-
thing, even more important. However, directories today need to be available over a
computer network, rather than in a physical (paper) form.

19.9.1 Directory Access Protocols
Directory information can be made available through Web interfaces, as many orga-
nizations, and phone companies in particular do. Such interfaces are good for hu-
mans. However, programs too, need to access directory information. Directories can
be used for storing other types of information, much like file system directories. For
instance, Web browsers can store personal bookmarks and other browser settings in
a directory system. A user can thus access the same settings from multiple locations,
such as at home and at work, without having to share a file system.

Several directory access protocols have been developed to provide a standardized
way of accessing data in a directory. The most widely used among them today is the
Lightweight Directory Access Protocol (LDAP).

Obviously all the types of data in our examples can be stored without much trou-
ble in a database system, and accessed through protocols such as JDBC or ODBC. The
question then is, why come up with a specialized protocol for accessing directory
information? There are at least two answers to the question.

• First, directory access protocols are simplified protocols that cater to a lim-
ited type of access to data. They evolved in parallel with the database access
protocols.

• Second, and more important, directory systems provide a simple mechanism
to name objects in a hierarchical fashion, similar to file system directory names,
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which can be used in a distributed directory system to specify what informa-
tion is stored in each of the directory servers. For example, a particular direc-
tory server may store information for Bell Laboratories employees in Murray
Hill, while another may store information for Bell Laboratories employees in
Bangalore, giving both sites autonomy in controlling their local data. The di-
rectory access protocol can be used to obtain data from both directories, across
a network. More importantly, the directory system can be set up to automati-
cally forward queries made at one site to the other site, without user interven-
tion.

For these reasons, several organizations have directory systems to make organiza-
tional information available online. As may be expected, several directory implemen-
tations find it beneficial to use relational databases to store data, instead of creating
special-purpose storage systems.

19.9.2 LDAP: Lightweight Directory Access Protocol
In general a directory system is implemented as one or more servers, which service
multiple clients. Clients use the application programmer interface defined by direc-
tory system to communicate with the directory servers. Directory access protocols
also define a data model and access control.

The X.500 directory access protocol, defined by the International Organization for
Standardization (ISO), is a standard for accessing directory information. However,
the protocol is rather complex, and is not widely used. The Lightweight Directory
Access Protocol (LDAP) provides many of the X.500 features, but with less complex-
ity, and is widely used. In the rest of this section, we shall outline the data model and
access protocol details of LDAP.

19.9.2.1 LDAP Data Model
In LDAP directories store entries, which are similar to objects. Each entry must have a
distinguished name (DN), which uniquely identifies the entry. A DN is in turn made
up of a sequence of relative distinguished names (RDNs). For example, an entry may
have the following distinguished name.

cn=Silberschatz, ou=Bell Labs, o=Lucent, c=USA

As you can see, the distinguished name in this example is a combination of a name
and (organizational) address, starting with a person’s name, then giving the orga-
nizational unit (ou), the organization (o), and country (c). The order of the compo-
nents of a distinguished name reflects the normal postal address order, rather than
the reverse order used in specifying path names for files. The set of RDNs for a DN is
defined by the schema of the directory system.

Entries can also have attributes. LDAP provides binary, string, and time types, and
additionally the types tel for telephone numbers, and PostalAddress for addresses
(lines separated by a “$” character). Unlike those in the relational model, attributes
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are multivalued by default, so it is possible to store multiple telephone numbers or
addresses for an entry.

LDAP allows the definition of object classes with attribute names and types. In-
heritance can be used in defining object classes. Moreover, entries can be specified to
be of one or more object classes. It is not necessary that there be a single most-specific
object class to which an entry belongs.

Entries are organized into a directory information tree (DIT), according to their
distinguished names. Entries at the leaf level of the tree usually represent specific
objects. Entries that are internal nodes represent objects such as organizational units,
organizations, or countries. The children of a node have a DN containing all the RDNs
of the parent, and one or more additional RDNs. For instance, an internal node may
have a DN c=USA, and all entries below it have the value USA for the RDN c.

The entire distinguished name need not be stored in an entry; The system can
generate the distinguished name of an entry by traversing up the DIT from the entry,
collecting the RDN=value components to create the full distinguished name.

Entries may have more than one distinguished name—for example, an entry for a
person in more than one organization. To deal with such cases, the leaf level of a DIT
can be an alias, which points to an entry in another branch of the tree.

19.9.2.2 Data Manipulation
Unlike SQL, LDAP does not define either a data-definition language or a data manip-
ulation language. However, LDAP defines a network protocol for carrying out data
definition and manipulation. Users of LDAP can either use an application program-
ming interface, or use tools provided by various vendors to perform data definition
and manipulation. LDAP also defines a file format called LDAP Data Interchange
Format (LDIF) that can be used for storing and exchanging information.

The querying mechanism in LDAP is very simple, consisting of just selections and
projections, without any join. A query must specify the following:

• A base—that is, a node within a DIT—by giving its distinguished name (the
path from the root to the node).

• A search condition, which can be a Boolean combination of conditions on in-
dividual attributes. Equality, matching by wild-card characters, and approxi-
mate equality (the exact definition of approximate equality is system depen-
dent) are supported.

• A scope, which can be just the base, the base and its children, or the entire
subtree beneath the base.

• Attributes to return.

• Limits on number of results and resource consumption.

The query can also specify whether to automatically dereference aliases; if alias deref-
erences are turned off, alias entries can be returned as answers.
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One way of querying an LDAP data source is by using LDAP URLs. Examples of
LDAP URLs are:

ldap:://aura.research.bell-labs.com/o=Lucent,c=USA
ldap:://aura.research.bell-labs.com/o=Lucent,c=USA??sub?cn=Korth

The first URL returns all attributes of all entries at the server with organization being
Lucent, and country being USA. The second URL executes a search query (selection)
cn=Korth on the subtree of the node with distinguished name o=Lucent, c=USA. The
question marks in the URL separate different fields. The first field is the distinguished
name, here o=Lucent,c=USA. The second field, the list of attributes to return, is left
empty, meaning return all attributes. The third attribute, sub, indicates that the entire
subtree is to be searched. The last parameter is the search condition.

A second way of querying an LDAP directory is by using an application program-
ming interface. Figure 19.6 shows a piece of C code used to connect to an LDAP server
and run a query against the server. The code first opens a connection to an LDAP
server by ldap open and ldap bind. It then executes a query by ldap search s. The
arguments to ldap search s are the LDAP connection handle, the DN of the base from
which the search should be done, the scope of the search, the search condition, the
list of attributes to be returned, and an attribute called attrsonly, which, if set to 1,
would result in only the schema of the result being returned, without any actual tu-
ples. The last argument is an output argument that returns the result of the search as
an LDAPMessage structure.

The first for loop iterates over and prints each entry in the result. Note that an
entry may have multiple attributes, and the second for loop prints each attribute.
Since attributes in LDAP may be multivalued, the third for loop prints each value of
an attribute. The calls ldap msgfree and ldap value free free memory that is allocated
by the LDAP libraries. Figure 19.6 does not show code for handling error conditions.

The LDAP API also contains functions to create, update, and delete entries, as well
as other operations on the DIT. Each function call behaves like a separate transaction;
LDAP does not support atomicity of multiple updates.

19.9.2.3 Distributed Directory Trees
Information about an organization may be split into multiple DITs, each of which
stores information about some entries. The suffix of a DIT is a sequence of RDN=value
pairs that identify what information the DIT stores; the pairs are concatenated to the
rest of the distinguished name generated by traversing from the entry to the root.
For instance, the suffix of a DIT may be o=Lucent, c=USA, while another may have
the suffix o=Lucent, c=India. The DITs may be organizationally and geographically
separated.

A node in a DIT may contain a referral to another node in another DIT; for in-
stance, the organizational unit Bell Labs under o=Lucent, c=USA may have its own
DIT, in which case the DIT for o=Lucent, c=USA would have a node ou=Bell Labs
representing a referral to the DIT for Bell Labs.

Referrals are the key component that help organize a distributed collection of di-
rectories into an integrated system. When a server gets a query on a DIT, it may
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#include <stdio.h>
#include <ldap.h>
main() {

LDAP *ld;
LDAPMessage *res, *entry;
char *dn, *attr, *attrList[] = {“telephoneNumber”, NULL};
BerElement *ptr;
int vals, i;
ld = ldap open(“aura.research.bell-labs.com”, LDAP PORT);
ldap simple bind(ld, “avi”, “avi-passwd”) ;
ldap search s(ld, “o=Lucent, c=USA”, LDAP SCOPE SUBTREE, “cn=Korth”,

attrList, /*attrsonly*/ 0, &res);
printf(“found %d entries”, ldap count entries(ld, res));
for (entry=ldap first entry(ld, res); entry != NULL;

entry = ldap next entry(ld, entry)
{

dn = ldap get dn(ld, entry);
printf(“dn: %s”, dn);
ldap memfree(dn);
for (attr = ldap first attribute(ld, entry, &ptr);

attr ! NULL;
attr = ldap next attribute(ld, entry, ptr))

{
printf(“%s: ”, attr);
vals = ldap get values(ld, entry, attr);
for (i=0; vals[i] != NULL; i++)

printf(“%s, ”, vals[i]);
ldap value free(vals);

}
}
ldap msgfree(res);
ldap unbind(ld);

}

Figure 19.6 Example of LDAP code in C.

return a referral to the client, which then issues a query on the referenced DIT. Ac-
cess to the referenced DIT is transparent, proceeding without the user’s knowledge.
Alternatively, the server itself may issue the query to the referred DIT and return the
results along with locally computed results.

The hierarchical naming mechanism used by LDAP helps break up control of in-
formation across parts of an organization. The referral facility then helps integrate all
the directories in an organization into a single virtual directory.

Although it is not an LDAP requirement, organizations often choose to break up
information either by geography (for instance, an organization may maintain a direc-
tory for each site where the organization has a large presence) or by organizational
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structure (for instance, each organizational unit, such as department, maintains its
own directory).

Many LDAP implementations support master–slave and multimaster replication
of DITs, although replication is not part of the current LDAP version 3 standard. Work
on standardizing replication in LDAP is in progress.

19.10 Summary
• A distributed database system consists of a collection of sites, each of which

maintains a local database system. Each site is able to process local transac-
tions: those transactions that access data in only that single site. In addition, a
site may participate in the execution of global transactions; those transactions
that access data in several sites. The execution of global transactions requires
communication among the sites.

• Distributed databases may be homogeneous, where all sites have a common
schema and database system code, or heterogeneous, where the schemas and
system codes may differ.

• There are several issues involved in storing a relation in the distributed data-
base, including replication and fragmentation. It is essential that the system
minimize the degree to which a user needs to be aware of how a relation is
stored.

• A distributed system may suffer from the same types of failure that can afflict
a centralized system. There are, however, additional failures with which we
need to deal in a distributed environment, including the failure of a site, the
failure of a link, loss of a message, and network partition. Each of these prob-
lems needs to be considered in the design of a distributed recovery scheme.

• To ensure atomicity, all the sites in which a transaction T executed must agree
on the final outcome of the execution. T either commits at all sites or aborts at
all sites. To ensure this property, the transaction coordinator of T must execute
a commit protocol. The most widely used commit protocol is the two-phase
commit protocol.

• The two-phase commit protocol may lead to blocking, the situation in which
the fate of a transaction cannot be determined until a failed site (the coordi-
nator) recovers. We can use the three-phase commit protocol to reduce the
probability of blocking.

• Persistent messaging provides an alternative model for handling distributed
transactions. The model breaks a single transaction into parts that are exe-
cuted at different databases. Persistent messages (which are guaranteed to be
delivered exactly once, regardless of failures), are sent to remote sites to re-
quest actions to be taken there. While persistent messaging avoids the block-
ing problem, application developers have to write code to handle various
types of failures.
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• The various concurrency-control schemes used in a centralized system can be
modified for use in a distributed environment.
� In the case of locking protocols, the only change that needs to be incor-

porated is in the way that the lock manager is implemented. There are
a variety of different approaches here. One or more central coordinators
may be used. If, instead, a distributed lock-manager approach is taken,
replicated data must be treated specially.

� Protocols for handling replicated data include the primary-copy, majority,
biased, and quorum-consensus protocols. These have different tradeoffs
in terms of cost and ability to work in the presence of failures.

� In the case of timestamping and validation schemes, the only needed
change is to develop a mechanism for generating unique global time-
stamps.

� Many database systems support lazy replication, where updates are prop-
agated to replicas outside the scope of the transaction that performed the
update. Such facilities must be used with great care, since they may result
in nonserializable executions.

• Deadlock detection in a distributed lock-manager environment requires co-
operation between multiple sites, since there may be global deadlocks even
when there are no local deadlocks.

• To provide high availability, a distributed database must detect failures, recon-
figure itself so that computation may continue, and recover when a processor
or a link is repaired. The task is greatly complicated by the fact that it is hard
to distinguish between network partitions or site failures.

The majority protocol can be extended by using version numbers to per-
mit transaction processing to proceed even in the presence of failures. While
the protocol has a significant overhead, it works regardless of the type of fail-
ure. Less-expensive protocols are available to deal with site failures, but they
assume network partitioning does not occur.

• Some of the distributed algorithms require the use of a coordinator. To provide
high availability, the system must maintain a backup copy that is ready to as-
sume responsibility if the coordinator fails. Another approach is to choose the
new coordinator after the coordinator has failed. The algorithms that deter-
mine which site should act as a coordinator are called election algorithms.

• Queries on a distributed database may need to access multiple sites. Several
optimization techniques are available to choose which sites need to be ac-
cessed. Based on fragmentation and replication, the techniques can use semi-
join techniques to reduce data transfer.

• Heterogeneous distributed databases allow sites to have their own schemas
and database system code. A multidatabase system provides an environment
in which new database applications can access data from a variety of pre-
existing databases located in various heterogeneous hardware and software
environments. The local database systems may employ different logical mod-
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els and data-definition and data-manipulation languages, and may differ in
their concurrency-control and transaction-management mechanisms. A mul-
tidatabase system creates the illusion of logical database integration, without
requiring physical database integration.

• Directory systems can be viewed as a specialized form of database, where
information is organized in a hierarchical fashion similar to the way files are
organized in a file system. Directories are accessed by standardized directory
access protocols such as LDAP.

Directories can be distributed across multiple sites to provide autonomy to
individual sites. Directories can contain referrals to other directories, which
help build an integrated view whereby a query is sent to a single directory,
and it is transparently executed at all relevant directories.

Review Terms
• Homogeneous distributed

database

• Heterogeneous distributed
database

• Data replication

• Primary copy

• Data fragmentation
� Horizontal fragmentation
� Vertical fragmentation

• Data transparency
� Fragmentation transparency
� Replication transparency
� Location transparency

• Name server

• Aliases

• Distributed transactions
� Local transactions
� Global transactions

• Transaction manager

• Transaction coordinator

• System failure modes

• Network partition

• Commit protocols

• Two-phase commit protocol (2PC)
� Ready state

� In-doubt transactions
� Blocking problem

• Three-phase commit protocol
(3PC)

• Persistent messaging

• Concurrency control

• Single lock-manager

• Distributed lock-manager

• Protocols for replicas
� Primary copy
� Majority protocol
� Biased protocol
� Quorum consensus protocol

• Timestamping

• Master–slave replication

• Multimaster (update-anywhere)
replication

• Transaction-consistent snapshot

• Lazy propagation

• Deadlock handling
� Local wait-for graph
� Global wait-for graph
� False cycles

• Availability

• Robustness
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� Majority based approach
� Read one, write all
� Read one, write all available
� Site reintegration

• Coordinator selection

• Backup coordinator

• Election algorithms

• Bully algorithm

• Distributed query processing

• Semijoin strategy

• Multidatabase system

• Autonomy

• Mediators

• Virtual database

• Directory systems
• LDAP: Lightweight directory

access protocol
� Distinguished name (DN)
� Relative distinguished names

RDNs
� Directory information

tree (DIT)
• Distributed directory trees

• DIT suffix

• Referral

Exercises
19.1 Discuss the relative advantages of centralized and distributed databases.

19.2 Explain how the following differ: fragmentation transparency, replication
transparency, and location transparency.

19.3 How might a distributed database designed for a local-area network differ
from one designed for a wide-area network?

19.4 When is it useful to have replication or fragmentation of data? Explain your
answer.

19.5 Explain the notions of transparency and autonomy. Why are these notions de-
sirable from a human-factors standpoint?

19.6 To build a highly available distributed system, you must know what kinds of
failures can occur.

a. List possible types of failure in a distributed system.
b. Which items in your list from part a are also applicable to a centralized

system?

19.7 Consider a failure that occurs during 2PC for a transaction. For each possible
failure that you listed in Exercise 19.6a, explain how 2PC ensures transaction
atomicity despite the failure.

19.8 Consider a distributed system with two sites, A and B. Can site A distinguish
among the following?
• B goes down.
• The link between A and B goes down.
• B is extremely overloaded and response time is 100 times longer than nor-

mal.
What implications does your answer have for recovery in distributed systems?
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19.9 The persistent messaging scheme described in this chapter depends on times-
tamps combined with discarding of received messages if they are too old. Sug-
gest an alternative scheme based on sequence numbers instead of timestamps.

19.10 Give an example where the read one, write all available approach leads to an
erroneous state.

19.11 If we apply a distributed version of the multiple-granularity protocol of Chap-
ter 16 to a distributed database, the site responsible for the root of the DAG may
become a bottleneck. Suppose we modify that protocol as follows:

• Only intention-mode locks are allowed on the root.
• All transactions are given all possible intention-mode locks on the root

automatically.

Show that these modifications alleviate this problem without allowing any
nonserializable schedules.

19.12 Explain the difference between data replication in a distributed system and the
maintenance of a remote backup site.

19.13 Give an example where lazy replication can lead to an inconsistent database
state even when updates get an exclusive lock on the primary (master) copy.

19.14 Study and summarize the facilities that the database system you are using pro-
vides for dealing with inconsistent states that can be reached with lazy propa-
gation of updates.

19.15 Discuss the advantages and disadvantages of the two methods that we pre-
sented in Section 19.5.2 for generating globally unique timestamps.

19.16 Consider the following deadlock-detection algorithm. When transaction Ti, at
site S1, requests a resource from Tj , at site S3, a request message with time-
stamp n is sent. The edge (Ti, Tj , n) is inserted in the local wait-for of S1. The
edge (Ti, Tj , n) is inserted in the local wait-for graph of S3 only if Tj has re-
ceived the request message and cannot immediately grant the requested re-
source. A request from Ti to Tj in the same site is handled in the usual manner;
no timestamps are associated with the edge (Ti, Tj). A central coordinator in-
vokes the detection algorithm by sending an initiating message to each site in
the system.

On receiving this message, a site sends its local wait-for graph to the coordi-
nator. Note that such a graph contains all the local information that the site has
about the state of the real graph. The wait-for graph reflects an instantaneous
state of the site, but it is not synchronized with respect to any other site.

When the controller has received a reply from each site, it constructs a graph
as follows:

• The graph contains a vertex for every transaction in the system.
• The graph has an edge (Ti, Tj) if and only if
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� There is an edge (Ti, Tj) in one of the wait-for graphs.
� An edge (Ti, Tj , n) (for some n) appears in more than one wait-for

graph.
Show that, if there is a cycle in the constructed graph, then the system is in a
deadlock state, and that, if there is no cycle in the constructed graph, then the
system was not in a deadlock state when the execution of the algorithm began.

19.17 Consider a relation that is fragmented horizontally by plant-number:

employee (name, address, salary, plant-number)

Assume that each fragment has two replicas: one stored at the New York site
and one stored locally at the plant site. Describe a good processing strategy for
the following queries entered at the San Jose site.

a. Find all employees at the Boca plant.
b. Find the average salary of all employees.
c. Find the highest-paid employee at each of the following sites: Toronto, Ed-

monton, Vancouver, Montreal.
d. Find the lowest-paid employee in the company.

19.18 Consider the relations

employee (name, address, salary, plant-number)
machine (machine-number, type, plant-number)

Assume that the employee relation is fragmented horizontally by plant-number,
and that each fragment is stored locally at its corresponding plant site. Assume
that the machine relation is stored in its entirety at the Armonk site. Describe a
good strategy for processing each of the following queries.

a. Find all employees at the plant that contains machine number 1130.
b. Find all employees at plants that contain machines whose type is “milling

machine.”
c. Find all machines at the Almaden plant.
d. Find employee � machine.

19.19 For each of the strategies of Exercise 19.18, state how your choice of a strategy
depends on:

a. The site at which the query was entered
b. The site at which the result is desired

19.20 Compute r n s for the relations of Figure 19.7.

19.21 Is ri n rj necessarily equal to rj n ri? Under what conditions does ri n

rj = rj n ri hold?

19.22 Given that the LDAP functionality can be implemented on top of a database
system, what is the need for the LDAP standard?
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r

A B C

s

C D E
1 2 3 3 4 5
4 5 6 3 6 8
1 2 4 2 3 2
5 3 2 1 4 1
8 9 7 1 2 3

Figure 19.7 Relations for Exercise 19.20.

19.23 Describe how LDAP can be used to provide multiple hierarchical views of data,
without replicating the base level data.
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Parallel Databases

In this chapter, we discuss fundamental algorithms for parallel database systems that
are based on the relational data model. In particular, we focus on the placement of
data on multiple disks and the parallel evaluation of relational operations, both of
which have been instrumental in the success of parallel databases.

20.1 Introduction
Fifteen years ago, parallel database systems had been nearly written off, even by
some of their staunchest advocates. Today, they are successfully marketed by practi-
cally every database system vendor. Several trends fueled this transition:

• The transaction requirements of organizations have grown with increasing
use of computers. Moreover, the growth of the World Wide Web has created
many sites with millions of viewers, and the increasing amounts of data col-
lected from these viewers has produced extremely large databases at many
companies.

• Organizations are using these increasingly large volumes of data—such as
data about what items people buy, what Web links users clicked on, or when
people make telephone calls—to plan their activities and pricing. Queries
used for such purposes are called decision-support queries, and the data re-
quirements for such queries may run into terabytes. Single-processor systems
are not capable of handling such large volumes of data at the required rates.

• The set-oriented nature of database queries naturally lends itself to paral-
lelization. A number of commercial and research systems have demonstrated
the power and scalability of parallel query processing.

• As microprocessors have become cheap, parallel machines have become com-
mon and relatively inexpensive.

755
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As we discussed in Chapter 18, parallelism is used to provide speedup, where
queries are executed faster because more resources, such as processors and disks, are
provided. Parallelism is also used to provide scaleup, where increasing workloads
are handled without increased response time, via an increase in the degree of paral-
lelism.

We outlined in Chapter 18 the different architectures for parallel database systems:
shared-memory, shared-disk, shared-nothing, and hierarchical architectures. Briefly,
in shared-memory architectures, all processors share a common memory and disks;
in shared-disk architectures, processors have independent memories, but share disks;
in shared-nothing architectures, processors share neither memory nor disks; and hi-
erarchical architectures have nodes that share neither memory nor disks with each
other, but internally each node has a shared-memory or a shared-disk architecture.

20.2 I/O Parallelism
In it simplest form, I/O parallelism refers to reducing the time required to retrieve
relations from disk by partitioning the relations on multiple disks. The most common
form of data partitioning in a parallel database environment is horizontal partitioning.
In horizontal partitioning, the tuples of a relation are divided (or declustered) among
many disks, so that each tuple resides on one disk. Several partitioning strategies
have been proposed.

20.2.1 Partitioning Techniques
We present three basic data-partitioning strategies. Assume that there are n disks,
D0, D1, . . . , Dn−1, across which the data are to be partitioned.

• Round-robin. This strategy scans the relation in any order and sends the ith
tuple to disk number Di mod n. The round-robin scheme ensures an even dis-
tribution of tuples across disks; that is, each disk has approximately the same
number of tuples as the others.

• Hash partitioning. This declustering strategy designates one or more attrib-
utes from the given relation’s schema as the partitioning attributes. A hash
function is chosen whose range is {0, 1, . . . , n − 1}. Each tuple of the original
relation is hashed on the partitioning attributes. If the hash function returns i,
then the tuple is placed on disk Di.

• Range partitioning. This strategy distributes contiguous attribute-value
ranges to each disk. It chooses a partitioning attribute, A, as a partitioning
vector. The relation is partitioned as follows. Let [v0, v1, . . . , vn−2] denote the
partitioning vector, such that, if i < j, then vi < vj . Consider a tuple t such
that t[A] = x. If x < v0, then t goes on disk D0. If x ≥ vn−2, then t goes on disk
Dn−1. If vi ≤ x < vi+1, then t goes on disk Di+1.

For example, range partitioning with three disks numbered 0, 1, and 2 may
assign tuples with values less than 5 to disk 0, values between 5 and 40 to disk
1, and values greater than 40 to disk 2.
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20.2.2 Comparison of Partitioning Techniques
Once a relation has been partitioned among several disks, we can retrieve it in paral-
lel, using all the disks. Similarly, when a relation is being partitioned, it can be written
to multiple disks in parallel. Thus, the transfer rates for reading or writing an entire
relation are much faster with I/O parallelism than without it. However, reading an
entire relation, or scanning a relation, is only one kind of access to data. Access to data
can be classified as follows:

1. Scanning the entire relation

2. Locating a tuple associatively (for example, employee-name = “Campbell”);
these queries, called point queries, seek tuples that have a specified value
for a specific attribute

3. Locating all tuples for which the value of a given attribute lies within a spec-
ified range (for example, 10000 < salary < 20000); these queries are called
range queries.

The different partitioning techniques support these types of access at different levels
of efficiency:

• Round-robin. The scheme is ideally suited for applications that wish to read
the entire relation sequentially for each query. With this scheme, both point
queries and range queries are complicated to process, since each of the n disks
must be used for the search.

• Hash partitioning. This scheme is best suited for point queries based on the
partitioning attribute. For example, if a relation is partitioned on the telephone-
number attribute, then we can answer the query “Find the record of the em-
ployee with telephone-number = 555-3333” by applying the partitioning hash
function to 555-3333 and then searching that disk. Directing a query to a sin-
gle disk saves the startup cost of initiating a query on multiple disks, and
leaves the other disks free to process other queries.

Hash partitioning is also useful for sequential scans of the entire relation.
If the hash function is a good randomizing function, and the partitioning at-
tributes form a key of the relation, then the number of tuples in each of the
disks is approximately the same, without much variance. Hence, the time
taken to scan the relation is approximately 1/n of the time required to scan
the relation in a single disk system.

The scheme, however, is not well suited for point queries on nonparti-
tioning attributes. Hash-based partitioning is also not well suited for answer-
ing range queries, since, typically, hash functions do not preserve proximity
within a range. Therefore, all the disks need to be scanned for range queries
to be answered.

• Range partitioning. This scheme is well suited for point and range queries on
the partitioning attribute. For point queries, we can consult the partitioning
vector to locate the disk where the tuple resides. For range queries, we consult
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the partitioning vector to find the range of disks on which the tuples may
reside. In both cases, the search narrows to exactly those disks that might have
any tuples of interest.

An advantage of this feature is that, if there are only a few tuples in the
queried range, then the query is typically sent to one disk, as opposed to
all the disks. Since other disks can be used to answer other queries, range
partitioning results in higher throughput while maintaining good response
time. On the other hand, if there are many tuples in the queried range (as
there are when the queried range is a larger fraction of the domain of the re-
lation), many tuples have to be retrieved from a few disks, resulting in an I/O
bottleneck (hot spot) at those disks. In this example of execution skew, all pro-
cessing occurs in one—or only a few—partitions. In contrast, hash partition-
ing and round-robin partitioning would engage all the disks for such queries,
giving a faster response time for approximately the same throughput.

The type of partitioning also affects other relational operations, such as joins, as
we shall see in Section 20.5. Thus, the choice of partitioning technique also depends
on the operations that need to be executed. In general, hash partitioning or range
partitioning are preferred to round-robin partitioning.

In a system with many disks, the number of disks across which to partition a rela-
tion can be chosen in this way: If a relation contains only a few tuples that will fit into
a single disk block, then it is better to assign the relation to a single disk. Large rela-
tions are preferably partitioned across all the available disks. If a relation consists of
m disk blocks and there are n disks available in the system, then the relation should
be allocated min(m, n) disks.

20.2.3 Handling of Skew
When a relation is partitioned (by a technique other than round-robin), there may be
a skew in the distribution of tuples, with a high percentage of tuples placed in some
partitions and fewer tuples in other partitions. The ways that skew may appear are
classified as:

• Attribute-value skew

• Partition skew

Attribute-value skew refers to the fact that some values appear in the partitioning
attributes of many tuples. All the tuples with the same value for the partitioning
attribute end up in the same partition, resulting in skew. Partition skew refers to
the fact that there may be load imbalance in the partitioning, even when there is no
attribute skew.

Attribute-value skew can result in skewed partitioning regardless of whether range
partitioning or hash partitioning is used. If the partition vector is not chosen carefully,
range partitioning may result in partition skew. Partition skew is less likely with hash
partitioning, if a good hash function is chosen.
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As Section 18.3.1 noted, even a small skew can result in a significant decrease in
performance. Skew becomes an increasing problem with a higher degree of paral-
lelism. For example, if a relation of 1000 tuples is divided into 10 parts, and the di-
vision is skewed, then there may be some partitions of size less than 100 and some
partitions of size more than 100; if even one partition happens to be of size 200, the
speedup that we would obtain by accessing the partitions in parallel is only 5, instead
of the 10 for which we would have hoped. If the same relation has to be partitioned
into 100 parts, a partition will have 10 tuples on an average. If even one partition has
40 tuples (which is possible, given the large number of partitions) the speedup that
we would obtain by accessing them in parallel would be 25, rather than 100. Thus,
we see that the loss of speedup due to skew increases with parallelism.

A balanced range-partitioning vector can be constructed by sorting: The relation
is first sorted on the partitioning attributes. The relation is then scanned in sorted
order. After every 1/n of the relation has been read, the value of the partitioning
attribute of the next tuple is added to the partition vector. Here, n denotes the number
of partitions to be constructed. In case there are many tuples with the same value
for the partitioning attribute, the technique can still result in some skew. The main
disadvantage of this method is the extra I/O overhead incurred in doing the initial
sort.

The I/O overhead for constructing balanced range-partition vectors can be re-
duced by constructing and storing a frequency table, or histogram, of the attribute
values for each attribute of each relation. Figure 20.1 shows an example of a his-
togram for an integer-valued attribute that takes values in the range 1 to 25. A his-
togram takes up only a little space, so histograms on several different attributes
can be stored in the system catalog. It is straightforward to construct a balanced
range-partitioning function given a histogram on the partitioning attributes. If the
histogram is not stored, it can be computed approximately by sampling the relation,
using only tuples from a randomly chosen subset of the disk blocks of the relation.
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Figure 20.1 Example of histogram.
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Another approach to minimizing the effect of skew, particularly with range par-
titioning, is to use virtual processors. In the virtual processor approach, we pretend
there are several times as many virtual processors as the number of real processors.
Any of the partitioning techniques and query evaluation techniques that we study
later in this chapter can be used, but they map tuples and work to virtual processors
instead of to real processors. Virtual processors, in turn, are mapped to real proces-
sors, usually by round-robin partitioning.

The idea is that even if one range had many more tuples than the others because
of skew, these tuples would get split across multiple virtual processor ranges. Round
robin allocation of virtual processors to real processors would distribute the extra
work among multiple real processors, so that one processor does not have to bear all
the burden.

20.3 Interquery Parallelism
In interquery parallelism, different queries or transactions execute in parallel with
one another. Transaction throughput can be increased by this form of parallelism.
However, the response times of individual transactions are no faster than they would
be if the transactions were run in isolation. Thus, the primary use of interquery par-
allelism is to scaleup a transaction-processing system to support a larger number of
transactions per second.

Interquery parallelism is the easiest form of parallelism to support in a database
system—particularly in a shared-memory parallel system. Database systems designed
for single-processor systems can be used with few or no changes on a shared-memory
parallel architecture, since even sequential database systems support concurrent pro-
cessing. Transactions that would have operated in a time-shared concurrent manner
on a sequential machine operate in parallel in the shared-memory parallel architec-
ture.

Supporting interquery parallelism is more complicated in a shared-disk or shared-
nothing architecture. Processors have to perform some tasks, such as locking and
logging, in a coordinated fashion, and that requires that they pass messages to each
other. A parallel database system must also ensure that two processors do not update
the same data independently at the same time. Further, when a processor accesses
or updates data, the database system must ensure that the processor has the latest
version of the data in its buffer pool. The problem of ensuring that the version is the
latest is known as the cache-coherency problem.

Various protocols are available to guarantee cache coherency; often, cache-coheren-
cy protocols are integrated with concurrency-control protocols so that their overhead
is reduced. One such protocol for a shared-disk system is this:

1. Before any read or write access to a page, a transaction locks the page in shared
or exclusive mode, as appropriate. Immediately after the transaction obtains
either a shared or exclusive lock on a page, it also reads the most recent copy
of the page from the shared disk.

2. Before a transaction releases an exclusive lock on a page, it flushes the page to
the shared disk; then, it releases the lock.
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This protocol ensures that, when a transaction sets a shared or exclusive lock on a
page, it gets the correct copy of the page.

More complex protocols avoid the repeated reading and writing to disk required
by the preceding protocol. Such protocols do not write pages to disk when exclusive
locks are released. When a shared or exclusive lock is obtained, if the most recent
version of a page is in the buffer pool of some processor, the page is obtained from
there. The protocols have to be designed to handle concurrent requests. The shared-
disk protocols can be extended to shared-nothing architectures by this scheme: Each
page has a home processor Pi, and is stored on disk Di. When other processors want
to read or write the page, they send requests to the home processor Pi of the page,
since they cannot directly communicate with the disk. The other actions are the same
as in the shared-disk protocols.

The Oracle 8 and Oracle Rdb systems are examples of shared-disk parallel database
systems that support interquery parallelism.

20.4 Intraquery Parallelism
Intraquery parallelism refers to the execution of a single query in parallel on multi-
ple processors and disks. Using intraquery parallelism is important for speeding up
long-running queries. Interquery parallelism does not help in this task, since each
query is run sequentially.

To illustrate the parallel evaluation of a query, consider a query that requires a
relation to be sorted. Suppose that the relation has been partitioned across multiple
disks by range partitioning on some attribute, and the sort is requested on the parti-
tioning attribute. The sort operation can be implemented by sorting each partition in
parallel, then concatenating the sorted partitions to get the final sorted relation.

Thus, we can parallelize a query by parallelizing individual operations. There is
another source of parallelism in evaluating a query: The operator tree for a query can
contain multiple operations. We can parallelize the evaluation of the operator tree by
evaluating in parallel some of the operations that do not depend on one another. Fur-
ther, as Chapter 13 mentions, we may be able to pipeline the output of one operation
to another operation. The two operations can be executed in parallel on separate pro-
cessors, one generating output that is consumed by the other, even as it is generated.

In summary, the execution of a single query can be parallelized in two ways:

• Intraoperation parallelism. We can speed up processing of a query by paral-
lelizing the execution of each individual operation, such as sort, select, project,
and join. We consider intraoperation parallelism in Section 20.5.

• Interoperation parallelism. We can speed up processing of a query by execut-
ing in parallel the different operations in a query expression. We consider this
form of parallelism in Section 20.6.

The two forms of parallelism are complementary, and can be used simultaneously
on a query. Since the number of operations in a typical query is small, compared to
the number of tuples processed by each operation, the first form of parallelism can
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scale better with increasing parallelism. However, with the relatively small number of
processors in typical parallel systems today, both forms of parallelism are important.

In the following discussion of parallelization of queries, we assume that the queries
are read only. The choice of algorithms for parallelizing query evaluation depends
on the machine architecture. Rather than presenting algorithms for each architecture
separately, we use a shared-nothing architecture model in our description. Thus, we
explicitly describe when data have to be transferred from one processor to another.
We can simulate this model easily by using the other architectures, since transfer
of data can be done via shared memory in a shared-memory architecture, and via
shared disks in a shared-disk architecture. Hence, algorithms for shared-nothing ar-
chitectures can be used on the other architectures too. We mention occasionally how
the algorithms can be further optimized for shared-memory or shared-disk systems.

To simplify the presentation of the algorithms, assume that there are n processors,
P0, P1, . . . , Pn−1, and n disks D0, D1, . . . , Dn−1, where disk Di is associated with pro-
cessor Pi. A real system may have multiple disks per processor. It is not hard to
extend the algorithms to allow multiple disks per processor: We simply allow Di to
be a set of disks. However, for simplicity, we assume here that Di is a single disk.

20.5 Intraoperation Parallelism
Since relational operations work on relations containing large sets of tuples, we can
parallelize the operations by executing them in parallel on different subsets of the re-
lations. Since the number of tuples in a relation can be large, the degree of parallelism
is potentially enormous. Thus, intraoperation parallelism is natural in a database sys-
tem. We shall study parallel versions of some common relational operations in Sec-
tions 20.5.1 through 20.5.3.

20.5.1 Parallel Sort
Suppose that we wish to sort a relation that resides on n disks D0, D1, . . . , Dn−1. If the
relation has been range partitioned on the attributes on which it is to be sorted, then,
as noted in Section 20.2.2, we can sort each partition separately, and can concatenate
the results to get the full sorted relation. Since the tuples are partitioned on n disks,
the time required for reading the entire relation is reduced by the parallel access.

If the relation has been partitioned in any other way, we can sort it in one of two
ways:

1. We can range partition it on the sort attributes, and then sort each partition
separately.

2. We can use a parallel version of the external sort–merge algorithm.

20.5.1.1 Range-Partitioning Sort
Range-partitioning sort works in two steps: first range partitioning the relation, then
sorting each partition separately. When we sort by range partitioning the relation,
it is not necessary to range-partition the relation on the same set of processors or
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disks as those on which that relation is stored. Suppose that we choose processors
P0, P1, . . . , Pm, where m < n to sort the relation. There are two steps involved in this
operation:

1. Redistribute the tuples in the relation, using a range-partition strategy, so that
all tuples that lie within the ith range are sent to processor Pi, which stores
the relation temporarily on disk Di.

To implement range partitioning, in parallel every processor reads the tu-
ples from its disk and sends the tuples to their destination processor. Each
processor P0, P1, . . . , Pm also receives tuples belonging to its partition, and
stores them locally. This step requires disk I/O and communication overhead.

2. Each of the processors sorts its partition of the relation locally, without inter-
action with the other processors. Each processor executes the same operation
—namely, sorting—on a different data set. (Execution of the same operation
in parallel on different sets of data is called data parallelism.)

The final merge operation is trivial, because the range partitioning in the
first phase ensures that, for 1 ≤ i < j ≤ m, the key values in processor Pi are
all less than the key values in Pj .

We must do range partitioning with a good range-partition vector, so that each
partition will have approximately the same number of tuples. Virtual processor par-
titioning can also be used to reduce skew.

20.5.1.2 Parallel External Sort–Merge
Parallel external sort–merge is an alternative to range partitioning. Suppose that a
relation has already been partitioned among disks D0, D1, . . . , Dn−1 (it does not mat-
ter how the relation has been partitioned). Parallel external sort–merge then works
this way:

1. Each processor Pi locally sorts the data on disk Di.

2. The system then merges the sorted runs on each processor to get the final
sorted output.

The merging of the sorted runs in step 2 can be parallelized by this sequence of
actions:

1. The system range-partitions the sorted partitions at each processor Pi (all by
the same partition vector) across the processors P0, P1, . . . , Pm−1. It sends the
tuples in sorted order, so that each processor receives the tuples in sorted
streams.

2. Each processor Pi performs a merge on the streams as they are received, to get
a single sorted run.

3. The system concatenates the sorted runs on processors P0, P1, . . . , Pm−1 to get
the final result.
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As described, this sequence of actions results in an interesting form of execution
skew, since at first every processor sends all blocks of partition 0 to P0, then every
processor sends all blocks of partition 1 to P1, and so on. Thus, while sending hap-
pens in parallel, receiving tuples becomes sequential: first only P0 receives tuples,
then only P1 receives tuples, and so on. To avoid this problem, each processor repeat-
edly sends a block of data to each partition. In other words, each processor sends the
first block of every partition, then sends the second block of every partition, and so
on. As a result, all processors receive data in parallel.

Some machines, such as the Teradata DBC series machines, use specialized hard-
ware to perform merging. The Y-net interconnection network in the Teradata DBC
machines can merge output from multiple processors to give a single sorted output.

20.5.2 Parallel Join
The join operation requires that the system test pairs of tuples to see whether they
satisfy the join condition; if they do, the system adds the pair to the join output.
Parallel join algorithms attempt to split the pairs to be tested over several processors.
Each processor then computes part of the join locally. Then, the system collects the
results from each processor to produce the final result.

20.5.2.1 Partitioned Join
For certain kinds of joins, such as equi-joins and natural joins, it is possible to partition
the two input relations across the processors, and to compute the join locally at each
processor. Suppose that we are using n processors, and that the relations to be joined
are r and s. Partitioned join then works this way: The system partitions the relations
r and s each into n partitions, denoted r0, r1, . . . , rn−1 and s0, s1, . . . , sn−1. The system
sends partitions ri and si to processor Pi, where their join is computed locally.

The partitioned join technique works correctly only if the join is an equi-join (for
example, r �r.A=s.B s) and if we partition r and s by the same partitioning function
on their join attributes. The idea of partitioning is exactly the same as that behind the
partitioning step of hash–join. In a partitioned join, however, there are two different
ways of partitioning r and s:

• Range partitioning on the join attributes

• Hash partitioning on the join attributes

In either case, the same partitioning function must be used for both relations. For
range partitioning, the same partition vector must be used for both relations. For
hash partitioning, the same hash function must be used on both relations. Figure 20.2
depicts the partitioning in a partitioned parallel join.

Once the relations are partitioned, we can use any join technique locally at each
processor Pi to compute the join of ri and si. For example, hash–join, merge–join, or
nested-loop join could be used. Thus, we can use partitioning to parallelize any join
technique.



Silberschatz−Korth−Sudarshan: 
Database System 
Concepts, Fourth Edition

VI. Database System 
Architecture

20. Parallel Databases760 © The McGraw−Hill 
Companies, 2001

20.5 Intraoperation Parallelism 765

P0r0

P1r1

s
r

P2r2

P3r3

s0

s1

s2

s3

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

Figure 20.2 Partitioned parallel join.

If one or both of the relations r and s are already partitioned on the join attributes
(by either hash partitioning or range partitioning), the work needed for partitioning
is reduced greatly. If the relations are not partitioned, or are partitioned on attributes
other than the join attributes, then the tuples need to be repartitioned. Each processor
Pi reads in the tuples on disk Di, computes for each tuple t the partition j to which t
belongs, and sends tuple t to processor Pj . Processor Pj stores the tuples on disk Dj .

We can optimize the join algorithm used locally at each processor to reduce I/O by
buffering some of the tuples to memory, instead of writing them to disk. We describe
such optimizations in Section 20.5.2.3.

Skew presents a special problem when range partitioning is used, since a partition
vector that splits one relation of the join into equal-sized partitions may split the other
relations into partitions of widely varying size. The partition vector should be such
that | ri | + | si | (that is, the sum of the sizes of ri and si) is roughly equal over all
the i = 0, 1, . . . , n − 1. With a good hash function, hash partitioning is likely to have
a smaller skew, except when there are many tuples with the same values for the join
attributes.

20.5.2.2 Fragment-and-Replicate Join
Partitioning is not applicable to all types of joins. For instance, if the join condition
is an inequality, such as r �r.a<s.b s, it is possible that all tuples in r join with some
tuple in s (and vice versa). Thus, there may be no easy way of partitioning r and s so
that tuples in partition ri join with only tuples in partition si.

We can parallelize such joins by using a technique called fragment and replicate. We
first consider a special case of fragment and replicate—asymmetric fragment-and-
replicate join—which works as follows.
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1. The system partitions one of the relations—say, r. Any partitioning technique
can be used on r, including round-robin partitioning.

2. The system replicates the other relation, s, across all the processors.

3. Processor Pi then locally computes the join of ri with all of s, using any join
technique.

The asymmetric fragment-and-replicate scheme appears in Figure 20.3a. If r is al-
ready stored by partitioning, there is no need to partition it further in step 1. All that
is required is to replicate s across all processors.

The general case of fragment and replicate join appears in Figure 20.3b; it works
this way: The system partitions relation r into n partitions, r0, r1, . . . , rn−1, and parti-
tions s into m partitions, s0, s1, . . . , sm−1. As before, any partitioning technique may
be used on r and on s. The values of m and n do not need to be equal, but they
must be chosen so that there are at least m ∗ n processors. Asymmetric fragment and
replicate is simply a special case of general fragment and replicate, where m = 1.
Fragment and replicate reduces the sizes of the relations at each processor, compared
to asymmetric fragment and replicate.
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Figure 20.3 Fragment-and-replicate schemes.
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Let the processors be P0,0, P0,1, . . . , P0,m−1, P1,0, . . . , Pn−1,m−1. Processor Pi,j com-
putes the join of ri with sj . Each processor must get the tuples in the partitions it
works on. To do so, the system replicates ri to processors Pi,0, Pi,1, . . . , Pi,m−1 (which
form a row in Figure 20.3b), and replicates si to processors P0,i, P1,i, . . . , Pn−1,i (which
form a column in Figure 20.3b). Any join technique can be used at each processor Pi,j .

Fragment and replicate works with any join condition, since every tuple in r can
be tested with every tuple in s. Thus, it can be used where partitioning cannot be.

Fragment and replicate usually has a higher cost than partitioning when both re-
lations are of roughly the same size, since at least one of the relations has to be repli-
cated. However, if one of the relations—say, s—is small, it may be cheaper to repli-
cate s across all processors, rather than to repartition r and s on the join attributes. In
such a case, asymmetric fragment and replicate is preferable, even though partition-
ing could be used.

20.5.2.3 Partitioned Parallel Hash–Join
The partitioned hash–join of Section 13.5.5 can be parallelized. Suppose that we have
n processors, P0, P1, . . . , Pn−1, and two relations r and s, such that the relations r and
s are partitioned across multiple disks. Recall from Section 13.5.5 that the smaller
relation is chosen as the build relation. If the size of s is less than that of r, the parallel
hash–join algorithm proceeds this way:

1. Choose a hash function—say, h1 —that takes the join attribute value of each
tuple in r and s and maps the tuple to one of the n processors. Let ri denote the
tuples of relation r that are mapped to processor Pi; similarly, let si denote the
tuples of relation s that are mapped to processor Pi. Each processor Pi reads
the tuples of s that are on its disk Di, and sends each tuple to the appropriate
processor on the basis of hash function h1.

2. As the destination processor Pi receives the tuples of si, it further partitions
them by another hash function, h2, which the processor uses to compute the
hash–join locally. The partitioning at this stage is exactly the same as in the
partitioning phase of the sequential hash–join algorithm. Each processor Pi

executes this step independently from the other processors.

3. Once the tuples of s have been distributed, the system redistributes the larger
relation r across the m processors by the hash function h1, in the same way
as before. As it receives each tuple, the destination processor repartitions it
by the function h2, just as the probe relation is partitioned in the sequential
hash–join algorithm.

4. Each processor Pi executes the build and probe phases of the hash–join algo-
rithm on the local partitions ri and si of r and s to produce a partition of the
final result of the hash–join.

The hash–join at each processor is independent of that at other processors, and
receiving the tuples of ri and si is similar to reading them from disk. Therefore, any
of the optimizations of the hash–join described in Chapter 13 can be applied as well
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to the parallel case. In particular, we can use the hybrid hash–join algorithm to cache
some of the incoming tuples in memory, and thus avoid the costs of writing them
and of reading them back in.

20.5.2.4 Parallel Nested-Loop Join
To illustrate the use of fragment-and-replicate–based parallelization, consider the
case where the relation s is much smaller than relation r. Suppose that relation r is
stored by partitioning; the attribute on which it is partitioned does not matter. Sup-
pose too that there is an index on a join attribute of relation r at each of the partitions
of relation r.

We use asymmetric fragment and replicate, with relation s being replicated and
with the existing partitioning of relation r. Each processor Pj where a partition of
relation s is stored reads the tuples of relation s stored in Dj , and replicates the tuples
to every other processor Pi. At the end of this phase, relation s is replicated at all sites
that store tuples of relation r.

Now, each processor Pi performs an indexed nested-loop join of relation s with
the ith partition of relation r. We can overlap the indexed nested-loop join with the
distribution of tuples of relation s, to reduce the costs of writing the tuples of relation
s to disk, and of reading them back. However, the replication of relation s must be
synchronized with the join so that there is enough space in the in-memory buffers
at each processor Pi to hold the tuples of relation s that have been received but that
have not yet been used in the join.

20.5.3 Other Relational Operations
The evaluation of other relational operations also can be parallelized:

• Selection. Let the selection be σθ(r). Consider first the case where θ is of the
form ai = v, where ai is an attribute and v is a value. If the relation r is par-
titioned on ai, the selection proceeds at a single processor. If θ is of the form
l ≤ ai ≤ u—that is, θ is a range selection—and the relation has been range-
partitioned on ai, then the selection proceeds at each processor whose parti-
tion overlaps with the specified range of values. In all other cases, the selection
proceeds in parallel at all the processors.

• Duplicate elimination. Duplicates can be eliminated by sorting; either of the
parallel sort techniques can be used, optimized to eliminate duplicates as soon
as they appear during sorting. We can also parallelize duplicate elimination by
partitioning the tuples (by either range or hash partitioning) and eliminating
duplicates locally at each processor.

• Projection. Projection without duplicate elimination can be performed as tu-
ples are read in from disk in parallel. If duplicates are to be eliminated, either
of the techniques just described can be used.

• Aggregation. Consider an aggregation operation. We can parallelize the op-
eration by partitioning the relation on the grouping attributes, and then com-
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puting the aggregate values locally at each processor. Either hash partitioning
or range partitioning can be used. If the relation is already partitioned on the
grouping attributes, the first step can be skipped.

We can reduce the cost of transferring tuples during partitioning by partly
computing aggregate values before partitioning, at least for the commonly
used aggregate functions. Consider an aggregation operation on a relation r,
using the sum aggregate function on attribute B, with grouping on attribute
A. The system can perform the operation at each processor Pi on those r tuples
stored on disk Di. This computation results in tuples with partial sums at each
processor; there is one tuple at Pi for each value for attribute A present in r
tuples stored on Di. The system partitions the result of the local aggregation
on the grouping attribute A, and performs the aggregation again (on tuples
with the partial sums) at each processor Pi to get the final result.

As a result of this optimization, fewer tuples need to be sent to other pro-
cessors during partitioning. This idea can be extended easily to the min and
max aggregate functions. Extensions to the count and avg aggregate functions
are left for you to do in Exercise 20.8.

The parallelization of other operations is covered in several of the the exercises.

20.5.4 Cost of Parallel Evaluation of Operations
We achieve parallelism by partitioning the I/O among multiple disks, and partition-
ing the CPU work among multiple processors. If such a split is achieved without any
overhead, and if there is no skew in the splitting of work, a parallel operation using n
processors will take 1/n times as long as the same operation on a single processor. We
already know how to estimate the cost of an operation such as a join or a selection.
The time cost of parallel processing would then be 1/n of the time cost of sequential
processing of the operation.

We must also account for the following costs:

• Startup costs for initiating the operation at multiple processors

• Skew in the distribution of work among the processors, with some processors
getting a larger number of tuples than others

• Contention for resources—such as memory, disk, and the communication
network—resulting in delays

• Cost of assembling the final result by transmitting partial results from each
processor

The time taken by a parallel operation can be estimated as

Tpart + Tasm + max(T0, T1, . . . , Tn−1)

where Tpart is the time for partitioning the relations, Tasm is the time for assembling
the results and Ti the time taken for the operation at processor Pi. Assuming that the
tuples are distributed without any skew, the number of tuples sent to each processor
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can be estimated as 1/n of the total number of tuples. Ignoring contention, the cost
Ti of the operations at each processor Pi can then be estimated by the techniques in
Chapter 13.

The preceding estimate will be an optimistic estimate, since skew is common. Even
though breaking down a single query into a number of parallel steps reduces the size
of the average step, it is the time for processing the single slowest step that deter-
mines the time taken for processing the query as a whole. A partitioned parallel eval-
uation, for instance, is only as fast as the slowest of the parallel executions. Thus, any
skew in the distribution of the work across processors greatly affects performance.

The problem of skew in partitioning is closely related to the problem of partition
overflow in sequential hash–joins (Chapter 13). We can use overflow resolution and
avoidance techniques developed for hash–joins to handle skew when hash partition-
ing is used. We can use balanced range partitioning and virtual processor partitioning
to minimize skew due to range partitioning, as in Section 20.2.3.

20.6 Interoperation Parallelism
There are two forms of interoperation parallelism: pipelined parallelism, and inde-
pendent parallelism.

20.6.1 Pipelined Parallelism
As discussed in Chapter 13, pipelining forms an important source of economy of
computation for database query processing. Recall that, in pipelining, the output tu-
ples of one operation, A, are consumed by a second operation, B, even before the first
operation has produced the entire set of tuples in its output. The major advantage of
pipelined execution in a sequential evaluation is that we can carry out a sequence of
such operations without writing any of the intermediate results to disk.

Parallel systems use pipelining primarily for the same reason that sequential sys-
tems do. However, pipelines are a source of parallelism as well, in the same way that
instruction pipelines are a source of parallelism in hardware design. It is possible to
run operations A and B simultaneously on different processors, so that B consumes
tuples in parallel with A producing them. This form of parallelism is called pipelined
parallelism.

Consider a join of four relations:

r1 � r2 � r3 � r4

We can set up a pipeline that allows the three joins to be computed in parallel. Sup-
pose processor P1 is assigned the computation of temp1 ← r1 � r2, and P2 is
assigned the computation of r3 � temp1. As P1 computes tuples in r1 � r2, it
makes these tuples available to processor P2. Thus, P2 has available to it some of the
tuples in r1 � r2 before P1 has finished its computation. P2 can use those tuples
that are available to begin computation of temp1 � r3, even before r1 � r2 is fully
computed by P1. Likewise, as P2 computes tuples in (r1 � r2) � r3, it makes these
tuples available to P3, which computes the join of these tuples with r4.
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Pipelined parallelism is useful with a small number of processors, but does not
scale up well. First, pipeline chains generally do not attain sufficient length to pro-
vide a high degree of parallelism. Second, it is not possible to pipeline relational
operators that do not produce output until all inputs have been accessed, such as the
set-difference operation. Third, only marginal speedup is obtained for the frequent
cases in which one operator’s execution cost is much higher than are those of the
others.

All things considered, when the degree of parallelism is high, pipelining is a less
important source of parallelism than partitioning. The real reason for using pipelin-
ing is that pipelined executions can avoid writing intermediate results to disk.

20.6.2 Independent Parallelism
Operations in a query expression that do not depend on one another can be executed
in parallel. This form of parallelism is called independent parallelism.

Consider the join r1 � r2 � r3 � r4. Clearly, we can compute temp1 ← r1 � r2

in parallel with temp2 ← r3 � r4. When these two computations complete, we
compute

temp1 � temp2

To obtain further parallelism, we can pipeline the tuples in temp1 and temp2 into
the computation of temp1 � temp2, which is itself carried out by a pipelined join
(Section 13.7.2.2).

Like pipelined parallelism, independent parallelism does not provide a high de-
gree of parallelism, and is less useful in a highly parallel system, although it is useful
with a lower degree of parallelism.

20.6.3 Query Optimization
Query optimizers account in large measure for the success of relational technology.
Recall that a query optimizer takes a query and finds the cheapest execution plan
among the many possible execution plans that give the same answer.

Query optimizers for parallel query evaluation are more complicated than query
optimizers for sequential query evaluation. First, the cost models are more compli-
cated, since partitioning costs have to be accounted for, and issues such as skew and
resource contention must be taken into account. More important is the issue of how
to parallelize a query. Suppose that we have somehow chosen an expression (from
among those equivalent to the query) to be used for evaluating the query. The ex-
pression can be represented by an operator tree, as in Section 13.1.

To evaluate an operator tree in a parallel system, we must make the following
decisions:

• How to parallelize each operation, and how many processors to use for it

• What operations to pipeline across different processors, what operations to ex-
ecute independently in parallel, and what operations to execute sequentially,
one after the other
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These decisions constitute the task of scheduling the execution tree.
Determining the resources of each kind—such as processors, disks, and memory

—that should be allocated to each operation in the tree is another aspect of the opti-
mization problem. For instance, it may appear wise to use the maximum amount of
parallelism available, but it is a good idea not to execute certain operations in paral-
lel. Operations whose computational requirements are significantly smaller than the
communication overhead should be clustered with one of their neighbors. Otherwise,
the advantage of parallelism is negated by the overhead of communication.

One concern is that long pipelines do not lend themselves to good resource utiliza-
tion. Unless the operations are coarse grained, the final operation of the pipeline may
wait for a long time to get inputs, while holding precious resources, such as memory.
Hence, long pipelines should be avoided.

The number of parallel evaluation plans from which to choose is much larger than
the number of sequential evaluation plans. Optimizing parallel queries by consid-
ering all alternatives is therefore much more expensive than optimizing sequential
queries. Hence, we usually adopt heuristic approaches to reduce the number of par-
allel execution plans that we have to consider. We describe two popular heuristics
here.

The first heuristic is to consider only evaluation plans that parallelize every oper-
ation across all processors, and that do not use any pipelining. This approach is used
in the Teradata DBC series machines. Finding the best such execution plan is like do-
ing query optimization in a sequential system. The main differences lie in how the
partitioning is performed and what cost-estimation formula is used.

The second heuristic is to choose the most efficient sequential evaluation plan,
and then to parallelize the operations in that evaluation plan. The Volcano parallel
database popularized a model of parallelization called the exchange-operator model.
This model uses existing implementations of operations, operating on local copies of
data, coupled with an exchange operation that moves data around between different
processors. Exchange operators can be introduced into an evaluation plan to trans-
form it into a parallel evaluation plan.

Yet another dimension of optimization is the design of physical-storage organi-
zation to speed up queries. The optimal physical organization differs for different
queries. The database administrator must choose a physical organization that ap-
pears to be good for the expected mix of database queries. Thus, the area of parallel
query optimization is complex, and it is still an area of active research.

20.7 Design of Parallel Systems
So far this chapter has concentrated on parallelization of data storage and of query
processing. Since large-scale parallel database systems are used primarily for storing
large volumes of data, and for processing decision-support queries on those data,
these topics are the most important in a parallel database system. Parallel loading
of data from external sources is an important requirement, if we are to handle large
volumes of incoming data.
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A large parallel database system must also address these availability issues:

• Resilience to failure of some processors or disks

• Online reorganization of data and schema changes

We consider these issues here.
With a large number of processors and disks, the probability that at least one pro-

cessor or disk will malfunction is significantly greater than in a single-processor sys-
tem with one disk. A poorly designed parallel system will stop functioning if any
component (processor or disk) fails. Assuming that the probability of failure of a sin-
gle processor or disk is small, the probability of failure of the system goes up linearly
with the number of processors and disks. If a single processor or disk would fail once
every 5 years, a system with 100 processors would have a failure every 18 days.

Therefore, large-scale parallel database systems, such as Compaq Himalaya,
Teradata, and Informix XPS (now a division of IBM), are designed to operate even
if a processor or disk fails. Data are replicated across at least two processors. If a pro-
cessor fails, the data that it stored can still be accessed from the other processors. The
system keeps track of failed processors and distributes the work among functioning
processors. Requests for data stored at the failed site are automatically routed to the
backup sites that store a replica of the data. If all the data of a processor A are repli-
cated at a single processor B, B will have to handle all the requests to A as well as
those to itself, and that will result in B becoming a bottleneck. Therefore, the replicas
of the data of a processor are partitioned across multiple other processors.

When we are dealing with large volumes of data (ranging in the terabytes), simple
operations, such as creating indices, and changes to schema, such as adding a column
to a relation, can take a long time — perhaps hours or even days. Therefore, it is
unacceptable for the database system to be unavailable while such operations are in
progress. Many parallel database systems, such as the Compaq Himalaya systems,
allow such operations to be performed online, that is, while the system is executing
other transactions.

Consider, for instance, online index construction. A system that supports this fea-
ture allows insertions, deletions, and updates on a relation even as an index is being
built on the relation. The index-building operation therefore cannot lock the entire
relation in shared mode, as it would have done otherwise. Instead, the process keeps
track of updates that occur while it is active, and incorporates the changes into the
index being constructed.

20.8 Summary
• Parallel databases have gained significant commercial acceptance in the past

15 years.

• In I/O parallelism, relations are partitioned among available disks so that
they can be retrieved faster. Three commonly used partitioning techniques
are round-robin partitioning, hash partitioning, and range partitioning.
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• Skew is a major problem, especially with increasing degrees of parallelism.
Balanced partitioning vectors, using histograms, and virtual processor parti-
tioning are among the techniques used to reduce skew.

• In interquery parallelism, we run different queries concurrently to increase
throughput.

• Intraquery parallelism attempts to reduce the cost of running a query. There
are two types of intraquery parallelism: intraoperation parallelism and inter-
operation parallelism.

• We use intraoperation parallelism to execute relational operations, such as
sorts and joins, in parallel. Intraoperation parallelism is natural for relational
operations, since they are set oriented.

• There are two basic approaches to parallelizing a binary operation such as a
join.
� In partitioned parallelism, the relations are split into several parts, and

tuples in ri are joined with only tuples from si. Partitioned parallelism
can only be used for natural and equi-joins.

� In fragment and replicate, both relations are partitioned and each parti-
tion is replicated. In asymmetric fragment-and-replicate, one of the rela-
tions is replicated while the other is partitioned. Unlike partitioned par-
allelism, fragment and replicate and asymmetric fragment-and-replicate
can be used with any join condition.

Both parallelization techniques can work in conjunction with any join tech-
nique.

• In independent parallelism, different operations that do not depend on one
another are executed in parallel.

• In pipelined parallelism, processors send the results of one operation to an-
other operation as those results are computed, without waiting for the entire
operation to finish.

• Query optimization in parallel databases is significantly more complex than
query optimization in sequential databases.

Review Terms
• Decision-support queries

• I/O parallelism

• Horizontal partitioning

• Partitioning techniques

� Round-robin

� Hash partitioning
� Range partitioning

• Partitioning attribute

• Partitioning vector

• Point query
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• Range query
• Skew
� Execution skew
� Attribute-value skew
� Partition skew

• Handling of skew
� Balanced range-partitioning

vector
� Histogram
� Virtual processors

• Interquery parallelism
• Cache coherency
• Intraquery parallelism
� Intraoperation parallelism
� Interoperation parallelism

• Parallel sort
� Range-partitioning sort
� Parallel external sort–merge

• Data parallelism
• Parallel join

� Partitioned join
� Fragment-and-replicate join
� Asymmetric fragment-and-

replicate join
� Partitioned parallel hash–join
� Parallel nested-loop join

• Parallel selection

• Parallel duplicate elimination

• Parallel projection

• Parallel aggregation

• Cost of parallel evaluation

• Interoperation parallelism
� Pipelined parallelism
� Independent parallelism

• Query optimization

• Scheduling

• Exchange-operator model

• Design of parallel systems

• Online index construction

Exercises
20.1 For each of the three partitioning techniques, namely round-robin, hash par-

titioning, and range partitioning, give an example of a query for which that
partitioning technique would provide the fastest response.

20.2 In a range selection on a range-partitioned attribute, it is possible that only
one disk may need to be accessed. Describe the benefits and drawbacks of this
property.

20.3 What factors could result in skew when a relation is partitioned on one of its
attributes by:

a. Hash partitioning
b. Range partitioning

In each case, what can be done to reduce the skew?

20.4 What form of parallelism (interquery, interoperation, or intraoperation) is likely
to be the most important for each of the following tasks.

a. Increasing the throughput of a system with many small queries
b. Increasing the throughput of a system with a few large queries, when the

number of disks and processors is large
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20.5 With pipelined parallelism, it is often a good idea to perform several operations
in a pipeline on a single processor, even when many processors are available.

a. Explain why.
b. Would the arguments you advanced in part a hold if the machine has a

shared-memory architecture? Explain why or why not.
c. Would the arguments in part a hold with independent parallelism? (That

is, are there cases where, even if the operations are not pipelined and there
are many processors available, it is still a good idea to perform several
operations on the same processor?)

20.6 Give an example of a join that is not a simple equi-join for which partitioned
parallelism can be used. What attributes should be used for partitioning?

20.7 Consider join processing using symmetric fragment and replicate with range
partitioning. How can you optimize the evaluation if the join condition is of
the form | r.A − s.B | ≤ k, where k is a small constant. Here, | x | denotes the
absolute value of x. A join with such a join condition is called a band join.

20.8 Describe a good way to parallelize each of the following.
a. The difference operation
b. Aggregation by the count operation
c. Aggregation by the count distinct operation
d. Aggregation by the avg operation
e. Left outer join, if the join condition involves only equality
f. Left outer join, if the join condition involves comparisons other than equal-

ity
g. Full outer join, if the join condition involves comparisons other than equal-

ity

20.9 Recall that histograms are used for constructing load-balanced range parti-
tions.

a. Suppose you have a histogram where values are between 1 and 100, and
are partitioned into 10 ranges, 1–10, 11–20, . . ., 91–100, with frequencies
15, 5, 20, 10, 10, 5, 5, 20, 5, and 5, respectively. Give a load-balanced range
partitioning function to divide the values into 5 partitions.

b. Write an algorithm for computing a balanced range partition with p parti-
tions, given a histogram of frequency distributions containing n ranges.

20.10 Describe the benefits and drawbacks of pipelined parallelism.

20.11 Some parallel database systems store an extra copy of each data item on disks
attached to a different processor, to avoid loss of data if one of the processors
fails.

a. Why is it a good idea to partition the copies of the data items of a processor
across multiple processors?

b. What are the benefits and drawbacks of using RAID storage instead of stor-
ing an extra copy of each data item?
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Bibliographical Notes
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Skew handling in parallel joins is described by Walton et al. [1991], Wolf [1991],
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by Seshadri and Naughton [1992] and Ganguly et al. [1996]. The exchange-operator
model was advocated by Graefe [1990] and Graefe [1993].
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Other Topics

Chapter 21 covers a number of issues in building and maintaining applications and
administering database systems. The chapter first outlines how to implement user in-
terfaces, in particular Web-based interfaces. Other issues such as performance tuning
(to improve application speed), standards issues in electronic commerce, and how to
handle legacy systems are also covered in this chapter.

Chapter 22 describes a number of recent advances in querying and information
retrieval. It first covers SQL extensions to support new types of queries, in particular
queries typically posed by data analysts. It next covers data warehousing, whereby
data generated by different parts of an organization are gathered centrally. The chap-
ter then outlines data mining, which aims at finding patterns of various complex
forms in large volumes of data. Finally, the chapter describes information retrieval,
which deals with techniques for querying collections of text documents, such as Web
pages, to find documents of interest.

Chapter 22 describes data types, such as temporal data, spatial data, and multime-
dia data, and the issues in storing such data in databases. Applications such as mobile
computing and its connections with databases, are also described in this chapter.

Finally, Chapter 23 describes several advanced transaction-processing techniques,
including transaction-processing monitors, transactional workflows, long-duration
transactions, and multidatabase transactions.
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Application Development
and Administration

Practically all use of databases occurs from within application programs. Correspon-
dingly, almost all user interaction with databases is indirect, via application pro-
grams. Not surprisingly, therefore, database systems have long supported tools such
as form and GUI builders, which help in rapid development of applications that in-
terface with users. In recent years, the Web has become the most widely used user
interface to databases.

Once an application has been built, it is often found to run slower than the design-
ers wanted, or to handle fewer transactions per second than they required. Applica-
tions can be made to run significantly faster by performance tuning, which consists of
finding and eliminating bottlenecks and adding appropriate hardware such as mem-
ory or disks. Benchmarks help to characterize the performance of database systems.

Standards are very important for application development, especially in the age of
the internet, since applications need to communicate with each other to perform use-
ful tasks. A variety of standards have been proposed that affect database application
development.

Electronic commerce is becoming an integral part of how we purchase goods and
services and databases play an important role in that domain.

Legacy systems are systems based on older-generation technology. They are often
at the core of organizations, and run mission-critical applications. We outline issues
in interfacing with legacy systems, and how they can be replaced by other systems.

21.1 Web Interfaces to Databases
The World Wide Web (Web, for short), is a distributed information system based on
hypertext. Web interfaces to databases have become very important. After outlining
several reasons for interfacing databases with the Web (Section 21.1.1), we provide
an overview of Web technology (Section 21.1.2) and then study Web servers (Sec-
tion 21.1.3) and outline some state-of-the art techniques for building Web interfaces

781
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to databases, using servlets and server-side scripting languages (Sections 21.1.4 and
21.1.5). We describe techniques for improving performance in Section 21.1.6.

21.1.1 Motivation
The Web has become important as a front end to databases for several reasons: Web
browsers provide a universal front end to information supplied by back ends located
anywhere in the world. The front end can run on any computer system, and there is
no need for a user to download any special-purpose software to access information.
Further, today, almost everyone who can afford it has access to the Web.

With the growth of information services and electronic commerce on the Web,
databases used for information services, decision support, and transaction process-
ing must be linked with the Web. The HTML forms interface is convenient for trans-
action processing. The user can fill in details in an order form, then click a submit
button to send a message to the server. The server executes an application program
corresponding to the order form, and this action in turn executes transactions on a
database at the server site. The server formats the results of the transaction and sends
them back to the user.

Another reason for interfacing databases to the Web is that presenting only static
(fixed) documents on a Web site has some limitations, even when the user is not
doing any querying or transaction processing:

• Fixed Web documents do not allow the display to be tailored to the user. For
instance, a newspaper may want to tailor its display on a per-user basis, to
give prominence to news articles that are likely to be of interest to the user.

• When the company data are updated, the Web documents become obsolete
if they are not updated simultaneously. The problem becomes more acute if
multiple Web documents replicate important data, and all must be updated.

We can fix these problems by generating Web documents dynamically from a database.
When a document is requested, a program gets executed at the server site, which in
turn runs queries on a database, and generates the requested document on the basis
of the query results. Whenever relevant data in the database are updated, the gener-
ated documents will automatically become up-to-date. The generated document can
also be tailored to the user on the basis of user information stored in the database.

Web interfaces provide attractive benefits even for database applications that are
used only with a single organization. The HyperText Markup Language (HTML)
standard allows text to be neatly formatted, with important information highlighted.
Hyperlinks, which are links to other documents, can be associated with regions of
the displayed data. Clicking on a hyperlink fetches and displays the linked docu-
ment. Hyperlinks are very useful for browsing data, permitting users to get more
details of parts of the data as desired.

Finally, browsers today can fetch programs along with HTML documents, and run
the programs on the browser, in safe mode—that is, without damaging data on the
user’s computer. Programs can be written in client-side scripting languages, such as
Javascript, or can be “applets” written in the Java language. These programs permit
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the construction of sophisticated user interfaces, beyond what is possible with just
HTML, interfaces that can be used without downloading and installing any software.
Thus, Web interfaces are powerful and visually attractive, and are likely to eclipse
special-purpose interfaces for all except a small class of users.

21.1.2 Web Fundamentals
Here we review some of the fundamental technology behind the World Wide Web,
for readers who are not familiar with it.

21.1.2.1 Uniform Resource Locators
A uniform resource locator (URL) is a globally unique name for each document that
can be accessed on the Web. An example of a URL is

http://www.bell-labs.com/topic/book/db-book

The first part of the URL indicates how the document is to be accessed: “http” indi-
cates that the document is to be accessed by the HyperText Transfer Protocol, which is
a protocol for transferring HTML documents. The second part gives the unique name
of a machine that has a Web server. The rest of the URL is the path name of the file on
the machine, or other unique identifier of the document within the machine.

Much data on the Web is dynamically generated. A URL can contain the identifier
of a program located on the Web server machine, as well as arguments to be given to
the program. An example of such a URL is

http://www.google.com/search?q=silberschatz

which says that the program search on the server www.google.com should be exe-
cuted with the argument q=silberschatz. The program executes, using the given ar-
guments, and returns an HTML document, which is then sent to the front end.

21.1.2.2 HyperText Markup Language
Figure 21.1 is an example of the source of an HTML document. Figure 21.2 shows the
displayed image that this document creates.

The figures show how HTML can display a table and a simple form that allows
users to select the type (account or loan) from a menu and to input a number in a text
box. HTML also supports several other input types. Clicking on the submit button
causes the program BankQuery (specified in the form action field) to be executed
with the user-provided values for the arguments type and number (specified in the
select and input fields). The program generates an HTML document, which is then
sent back and displayed to the user; we will see how to construct such programs in
Sections 21.1.3, 21.1.4, and 21.1.5.

HTML supports stylesheets, which can alter the default definitions of how an HTML
formatting construct is displayed, as well as other display attributes such as back-
ground color of the page. The cascading stylesheet (css) standard allows the same
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<html>
<body>
<table BORDER COLS=3>
<tr> <td>A-101</td> <td>Downtown</td> <td>500</td> </tr>
<tr> <td>A-102</td> <td>Perryridge</td> <td>400</td> </tr>
<tr> <td>A-201</td> <td>Brighton </td> <td>900</td> </tr>
</table>
<center> The <i>account</i> relation </center>

<form action=“BankQuery” method=get>
Select account/loan and enter number <br>
<select name=”type”>

<option value=“account” selected>Account
<option value=“loan”> Loan

</select>
<input type=text size=5 name=“number”>
<input type=submit value=“submit”>

</body>
</html>

Figure 21.1 An HTML source text.

stylesheet to be used for multiple HTML documents, giving a uniform look to all
the pages on a Web site.

21.1.2.3 Client-Side Scripting and Applets
Embedding of program code in documents allows Web pages to be active, carry-
ing out activities such as animation by executing programs at the local site, rather
than just presenting passive text and graphics. The primary use of such programs
is flexible interaction with the user, beyond the limited interaction power provided
by HTML and HTML forms. Further, executing programs at the client site speeds up

A–101

A–102

A–201

DowntownDowntown

PerryridgePerryridge

BrightonBrighton
The         The         relationrelation

Select account/loan and enter number

500
400
900

Account submit

accountaccount

Figure 21.2 Display of HTML source from Figure 21.1.
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interaction greatly, compared to every interaction being sent to a server site for pro-
cessing.

A danger in supporting such programs is that, if the design of the system is done
carelessly, program code embedded in a Web page (or equivalently, in an e-mail mes-
sage) can perform malicious actions on the user’s computer. The malicious actions
could range from reading private information, to deleting or modifying information
on the computer, up to taking control of the computer and propagating the code
to other computers (through e-mail, for example). A number of e-mail viruses have
spread widely in recent years in this way.

The Java language became very popular because it provides a safe mode for ex-
ecuting programs on user’s computers. Java code can be compiled into platform-
independent “byte-code” that can be executed on any browser that supports Java.
Unlike local programs, Java programs (applets) downloaded as part of a Web page
have no authority to perform any actions that could be destructive. They are permit-
ted to display data on the screen, or to make a network connection to the server from
which the Web page was downloaded, in order to fetch more information. However,
they are not permitted to access local files, to execute any system programs, or to
make network connections to any other computers.

While Java is a full-fledged programming language, there are simpler languages,
called scripting languages, that can enrich user interaction, while providing the same
protection as Java. These languages provide constructs that can be embedded with
an HTML document. Client-side scripting languages are languages designed to be
executed on the client’s Web browser. Of these, the Javascript language is by far the
most widely used. There are also special-purpose scripting languages for special-
ized tasks such as animation (for example, Macromedia Flash and Shockwave), and
three-dimensional modeling (Virtual Reality Markup Language (VRML)). Scripting
languages can also be used on the server side, as we shall see.

21.1.3 Web Servers and Sessions
A Web server is a program running on the server machine, which accepts requests
from a Web browser and sends back results in the form of HTML documents. The
browser and Web server communicate by a protocol called the HyperText Trans-
fer Protocol (HTTP). HTTP provides powerful features, beyond the simple transfer
of documents. The most important feature is the ability to execute programs, with
arguments supplied by the user, and deliver the results back as an HTML document.

As a result, a Web server can easily act as an intermediary to provide access to
a variety of information services. A new service can be created by creating and in-
stalling an application program that provides the service. The common gateway in-
terface (CGI) standard defines how the Web server communicates with application
programs. The application program typically communicates with a database server,
through ODBC, JDBC, or other protocols, in order to get or store data.

Figure 21.3 shows a Web service using a three-tier architecture, with a Web server,
an application server, and a database server. Using multiple levels of servers in-
creases system overhead; the CGI interface starts a new process to service each re-
quest, which results in even greater overhead.
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HTTP

browser

server

application server

data

database server

network

web server
network

Figure 21.3 Three-tier Web architecture.

Most Web services today therefore use a two-tier Web architecture, where the ap-
plication program runs within the Web server, as in Figure 21.4. We study systems
based on the two-tier architecture in more detail in subsequent sections.

Be aware that there is no continuous connection between the client and the server.
In contrast, when a user logs on to a computer, or connects to an ODBC or JDBC
server, a session is created, and session information is retained at the server and the
client until the session is terminated—information such as whether the user was
authenticated using a password and what session options the user set. The reason
that HTTP is connectionless is that most computers have limits on the number of
simultaneous connections they can accommodate, and if a large number of sites on
the Web open connections, this limit would be exceeded, denying service to further
users. With a connectionless service, the connection is broken as soon as a request is
satisfied, leaving connections available for other requests.

Most information services need session information. For instance, services typ-
ically restrict access to information, and therefore need to authenticate users. Au-
thentication should be done once per session, and further interactions in the session
should not require reauthentication.

To create the view of such sessions, extra information has to be stored at the client,
and returned with each request in a session, for a server to identify that a request is
part of a user session. Extra information about the session also has to be maintained
at the server.

This extra information is maintained in the form of a cookie at the client; a cookie
is simply a small piece of text containing identifying information. The server sends a
cookie to the client after authentication, and also keeps a copy locally. Cookies sent
to different clients contain different identifying text. The browser sends the cookie
automatically on further document requests from the same server. By comparing the
cookie with locally stored cookies at the server, the server can identify the request as
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Figure 21.4 Two-tier Web architecture.

part of an ongoing session. Cookies can also be used for storing user preferences and
using them when the server replies to a request. Cookies can be stored permanently
at the browser; they identify the user on subsequent visits to the same site, without
any identification information being typed in.

21.1.4 Servlets
In a two-tier Web architecture, the application runs as part of the Web server itself.
One way of implementing such an architecture is to load Java programs with the
Web server. The Java servlet specification defines an application programming inter-
face for communication between the Web server and the application program. The
word servlet also refers to a Java program that implements the servlet interface. The
program is loaded into the Web server when the server starts up or when the server
receives a Web request for executing the servlet application. Figure 21.5 is an example
of servlet code to implement the form in Figure 21.1.

The servlet is called BankQueryServlet, while the form specifies that action=“Bank-
Query”. The Web server must be told that this servlet is to be used to handle requests
for BankQuery.

The example will give you an idea of how servlets are used. For details needed to
build your own servlet application, you can consult a book on servlets or read the
online documentation on servlets that is part of the Java documentation from Sun.
See the bibliographical notes for references to these sources.

The form specifies that the HTTP get mechanism is used for transmitting parame-
ters (post is the other widely used mechanism). So the doGet() method of the servlet,
which is defined in the code, gets invoked. Each request results in a new thread
within which the call is executed, so multiple requests can be handled in parallel.

Any values from the form menus and input fields on the Web page, as well as
cookies, pass through an object of the HttpServletRequest class that is created for the



Silberschatz−Korth−Sudarshan: 
Database System 
Concepts, Fourth Edition

VII. Other Topics 21. Application 
Development and 
Administration

781© The McGraw−Hill 
Companies, 2001

788 Chapter 21 Application Development and Administration

public class BankQueryServlet extends HttpServlet {
public void doGet(HttpServletRequest request, HttpServletResponse result)

throws ServletException, IOException
{

String type = request.getParameter(“type”);
String number = request.getParameter(“number”);
... code to find the loan amount/account balance ...
... using JDBC to communicate with the database ..
... we assume the value is stored in the variable balance

result.setContentType(“text/html”);
PrintWriter out = result.getWriter();
out.println(“<HEAD><TITLE> Query Result</TITLE></HEAD>”);
out.println(“<BODY>”);
out.println(“Balance on ” + type + number + “ = ” + balance);
out.println(“</BODY>”);
out.close();

}
}

Figure 21.5 Example of servlet code.

request, and the reply to the request passes through an object of the class HttpServlet-
Response.1

The doGet() method code in the example extracts values of the parameter’s type
and number by using request.getParameter(), and uses these to run a query against
a database. The code used to access the database is not shown; refer to Section 4.13.2
for details of how to use JDBC to access a database. The system returns the results of
the query to the requester by printing them out in HTML format to the HttpServlet-
Response result.

The servlet API provides a convenient method of creating sessions. Invoking the
method getSession(true) of the class HttpServletRequest creates a new object of type
HttpSession if this is the first request from that client; the argument true says that a
session must be created if the request is a new request. The method returns an exist-
ing object if it had been created already for that browser session. Internally, cookies
are used to recognize that a request is from the same browser session as an earlier
request. The servlet code can store and look up (attribute-name, value) pairs in the
HttpSession object, to maintain state across multiple requests. For instance, the first
request in a session may ask for a user-id and password, and store the user-id in the
session object. On subsequent requests from the browser session, the user-id will be
found in the session object.

Displaying a set of results from a query is a common task for many database appli-
cations. It is possible to build a generic function that will take any JDBC ResulSet as
argument, and display the tuples in the ResulSet appropriately. JDBC metadata calls

1. The servlet interface can also support non-HTTP requests, although our examples only use HTTP.
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can be used to find information such as the number of columns, and the name and
types of the columns, in the query result; this information is then used to print the
query result.

21.1.5 Server-Side Scripting
Writing even a simple Web application in a programming language such as Java or C
is a rather time-consuming task that requires many lines of code and programmers
familiar with the intricacies of the language. An alternative approach, that of server-
side scripting, provides a much easier method for creating many applications. Script-
ing languages provide constructs that can be embedded within HTML documents. In
server-side scripting, before delivering a Web page, the server executes the scripts
embedded within the HTML contents of the page. Each piece of script, when exe-
cuted, can generate text that is added to the page (or may even delete content from
the page). The source code of the scripts is removed from the page, so the client may
not even be aware that the page orignally had any code in it. The executed script may
contain SQL code that is executed against a database.

Several scripting languages have appeared in recent years. These include Server-
Side Javascript from Netscape, JScript from Microsoft, JavaServer Pages (JSP) from
Sun, the PHP Hypertext Preprocessor (PHP), ColdFusion’s ColdFusion Markup Lan-
guage (CFML) and Zope’s DTML. In fact, it is even possible to embed code written
in older scripting languages such as VBScript, Perl, and Python into HTML pages.
For instance, Microsoft’s Active Server Pages (ASP) supports embedded VBScript
and JScript. Other approaches have extended report-writer software, originally de-
veloped for generating printable reports, to generate HTML reports. These also sup-
port HTML forms for getting parameter values that are used in the queries embedded
in the reports.

Clearly, there are many options from which to choose. They all support similar
features, but differ in the style of programming and the ease with which simple ap-
plications can be created.

21.1.6 Improving Performance
Web sites may be accessed by millions or billions of people from across the globe, at
rates of thousands of requests per second, or even more, for the most popular sites.
Ensuring that requests are served with low response times is a major challenge for
Web site developers.

Caching techniques of various types are used to exploit commonalities between
transactions. For instance, suppose the application code for servicing each request
needs to contact a database through JDBC. Creating a new JDBC connection may take
several milliseconds, so opening a new connection for each request is not a good idea
if very high transaction rates are to be supported. Many applications create a pool of
open JDBC connections, and each request uses one of the connections from the pool.

Many requests may result in exactly the same query being executed on the data-
base. The cost of communication with the database can be greatly reduced by caching
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the results of earlier queries, and reusing them, so long as the query result has not
changed at the database. Some Web servers support such query result caching.

Costs can be further reduced by caching the final Web page that is sent in response
to a request. If a new request comes with exactly the same parameters as a previous
request, if the resultant Web page is in the cache it can be reused, avoiding the cost of
recomputing the page.

Cached query results and cached Web pages are forms of materialized views. If the
underlying database data changes, they can be discarded, or can be recomputed, or
even incrementally updated, as in materialized view maintenance (Section 14.5). For
example, the IBM Web server that was used in the 2000 Olympics can keep track of
what data a cached Web page depends on and recompute the page if the data change.

21.2 Performance Tuning
Tuning the performance of a system involves adjusting various parameters and de-
sign choices to improve its performance for a specific application. Various aspects of
a database-system design—ranging from high-level aspects such as the schema and
transaction design, to database parameters such as buffer sizes, down to hardware
issues such as number of disks—affect the performance of an application. Each of
these aspects can be adjusted so that performance is improved.

21.2.1 Location of Bottlenecks
The performance of most systems (at least before they are tuned) is usually limited
primarily by the performance of one or a few components, called bottlenecks. For
instance, a program may spend 80 percent of its time in a small loop deep in the code,
and the remaining 20 percent of the time on the rest of the code; the small loop then is
a bottleneck. Improving the performance of a component that is not a bottleneck does
little to improve the overall speed of the system; in the example, improving the speed
of the rest of the code cannot lead to more than a 20 percent improvement overall,
whereas improving the speed of the bottleneck loop could result in an improvement
of nearly 80 percent overall, in the best case.

Hence, when tuning a system, we must first try to discover what are the bottle-
necks, and then to eliminate the bottlenecks by improving the performance of the
components causing them. When one bottleneck is removed, it may turn out that an-
other component becomes the bottleneck. In a well-balanced system, no single com-
ponent is the bottleneck. If the system contains bottlenecks, components that are not
part of the bottleneck are underutilized, and could perhaps have been replaced by
cheaper components with lower performance.

For simple programs, the time spent in each region of the code determines the
overall execution time. However, database systems are much more complex, and can
be modeled as queueing systems. A transaction requests various services from the
database system, starting from entry into a server process, disk reads during exe-
cution, CPU cycles, and locks for concurrency control. Each of these services has a
queue associated with it, and small transactions may spend most of their time wait-
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ing in queues—especially in disk I/O queues—instead of executing code. Figure 21.6
illustrates some of the queues in a database system.

As a result of the numerous queues in the database, bottlenecks in a database sys-
tem typically show up in the form of long queues for a particular service, or, equiva-
lently, in high utilizations for a particular service. If requests are spaced exactly uni-
formly, and the time to service a request is less than or equal to the time before the
next request arrives, then each request will find the resource idle and can therefore
start execution immediately without waiting. Unfortunately, the arrival of requests
in a database system is never so uniform, and is instead random.

If a resource, such as a disk, has a low utilization, then, when a request is made,
the resource is likely to be idle, in which case the waiting time for the request will be
0. Assuming uniformly randomly distributed arrivals, the length of the queue (and
correspondingly the waiting time) go up exponentially with utilization; as utilization
approaches 100 percent, the queue length increases sharply, resulting in excessively
long waiting times. The utilization of a resource should be kept low enough that
queue length is short. As a rule of the thumb, utilizations of around 70 percent are
considered to be good, and utilizations above 90 percent are considered excessive,
since they will result in significant delays. To learn more about the theory of queueing
systems, generally referred to as queueing theory, you can consult the references
cited in the bibliographical notes.
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Figure 21.6 Queues in a database system.
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21.2.2 Tunable Parameters
Database administrators can tune a database system at three levels. The lowest level
is at the hardware level. Options for tuning systems at this level include adding disks
or using a RAID system if disk I/O is a bottleneck, adding more memory if the disk
buffer size is a bottleneck, or moving to a faster processor if CPU use is a bottleneck.

The second level consists of the database-system parameters, such as buffer size
and checkpointing intervals. The exact set of database-system parameters that can be
tuned depends on the specific database system. Most database-system manuals pro-
vide information on what database-system parameters can be adjusted, and how you
should choose values for the parameters. Well-designed database systems perform
as much tuning as possible automatically, freeing the user or database administrator
from the burden. For instance, in many database systems the buffer size is fixed but
tunable. If the system automatically adjusts the buffer size by observing indicators
such as page-fault rates, then the user will not have to worry about tuning the buffer
size.

The third level is the highest level. It includes the schema and transactions. The
administrator can tune the design of the schema, the indices that are created, and
the transactions that are executed, to improve performance. Tuning at this level is
comparatively system independent.

The three levels of tuning interact with one another; we must consider them to-
gether when tuning a system. For example, tuning at a higher level may result in the
hardware bottleneck changing from the disk system to the CPU, or vice versa.

21.2.3 Tuning of Hardware
Even in a well-designed transaction processing system, each transaction usually has
to do at least a few I/O operations, if the data required by the transaction is on disk.
An important factor in tuning a transaction processing system is to make sure that
the disk subsystem can handle the rate at which I/O operations are required. For in-
stance, disks today have an access time of about 10 milliseconds, and transfer times
of 20 MB per second, which gives about 100 random access I/O operations of 1 KB
each. If each transaction requires just 2 I/O operations, a single disk would support at
most 50 transactions per second. The only way to support more transactions per sec-
ond is to increase the number of disks. If the system needs to support n transactions
per second, each performing 2 I/O operations, data must be striped (or otherwise
partitioned) across n/50 disks (ignoring skew).

Notice here that the limiting factor is not the capacity of the disk, but the speed
at which random data can be accessed (limited in turn by the speed at which the
disk arm can move). The number of I/O operations per transaction can be reduced
by storing more data in memory. If all data are in memory, there will be no disk I/O
except for writes. Keeping frequently used data in memory reduces the number of
disk I/Os, and is worth the extra cost of memory. Keeping very infrequently used
data in memory would be a waste, since memory is much more expensive than disk.

The question is, for a given amount of money available for spending on disks or
memory, what is the best way to spend the money to achieve maximum number of
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transactions per second. A reduction of 1 I/O per second saves (price per disk drive) /
(access per second per disk). Thus, if a particular page is accessed n times per second,
the saving due to keeping it in memory is n times the above value. Storing a page in
memory costs (price per MB of memory) / (pages per MB of memory). Thus, the
break-even point is

n ∗ price per disk drive
access per second per disk

=
price per MB of memory
pages per MB of memory

We can rearrange the equation, and substitute current values for each of the above
parameters to get a value for n; if a page is accessed more frequently than this, it is
worth buying enough memory to store it. Current disk technology and memory and
disk prices give a value of n around 1/300 times per second (or equivalently, once in
5 minutes) for pages that are randomly accessed.

This reasoning is captured by the rule of thumb called the 5-minute rule: If a page
is used more frequently than once in 5 minutes, it should be cached in memory. In
other words, it is worth buying enough memory to cache all pages that are accessed
at least once in 5 minutes on an average. For data that are accessed less frequently,
buy enough disks to support the rate of I/O required for the data.

The formula for finding the break-even point depends on factors, such as the costs
of disks and memory, that have changed by factors of 100 or 1000 over the past
decade. However, it is interesting to note that the ratios of the changes have been
such that the break-even point has remained at roughly 5 minutes; the 5-minute rule
has not changed to say, a 1-hour rule or a 1-second rule!

For data that are sequentially accessed, significantly more pages can be read per
second. Assuming 1 MB of data is read at a time, we get the 1-minute rule, which
says that sequentially accessed data should be cached in memory if they are used at
least once in 1 minute.

The rules of thumb take only number of I/O operations into account, and do not
consider factors such as response time. Some applications need to keep even infre-
quently used data in memory, to support response times that are less than or compa-
rable to disk access time.

Another aspect of tuning is in whether to use RAID 1 or RAID 5. The answer de-
pends on how frequently the data are updated, since RAID 5 is much slower than
RAID 1 on random writes: RAID 5 requires 2 reads and 2 writes to execute a single ran-
dom write request. If an application performs r random reads and w random writes
per second to support a particular throughput, a RAID 5 implementation would re-
quire r + 4w I/O operations per second whereas a RAID 1 implementation would
require r + w I/O operations per second. We can then calculate the number of disks
required to support the required I/O operations per second by dividing the result of
the calculation by 100 I/O operations per second (for current generation disks). For
many applications, r and w are large enough that the (r + w)/100 disks can easily
hold two copies of all the data. For such applications, if RAID 1 is used, the required
number of disks is actually less than the required number of disks if RAID 5 is used!
Thus RAID 5 is useful only when the data storage requirements are very large, but
the I/O rates and data transfer requirements are small, that is, for very large and very
“cold” data.
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21.2.4 Tuning of the Schema
Within the constraints of the chosen normal form, it is possible to partition relations
vertically. For example, consider the account relation, with the schema

account (account-number, branch-name, balance)

for which account-number is a key. Within the constraints of the normal forms (BCNF
and third normal forms), we can partition the account relation into two relations:

account-branch (account-number, branch-name)
account-balance (account-number, balance)

The two representations are logically equivalent, since account-number is a key, but
they have different performance characteristics.

If most accesses to account information look at only the account-number and bal-
ance, then they can be run against the account-balance relation, and access is likely to be
somewhat faster, since the branch-name attribute is not fetched. For the same reason,
more tuples of account-balance will fit in the buffer than corresponding tuples of ac-
count, again leading to faster performance. This effect would be particularly marked
if the branch-name attribute were large. Hence, a schema consisting of account-branch
and account-balance would be preferable to a schema consisting of the account relation
in this case.

On the other hand, if most accesses to account information require both balance and
branch-name, using the account relation would be preferable, since the cost of the join
of account-balance and account-branch would be avoided. Also, the storage overhead
would be lower, since there would be only one relation, and the attribute account-
number would not be replicated.

Another trick to improve performance is to store a denormalized relation, such
as a join of account and depositor, where the information about branch-names and
balances is repeated for every account holder. More effort has to be expended to
make sure the relation is consistent whenever an update is carried out. However,
a query that fetches the names of the customers and the associated balances will
be speeded up, since the join of account and depositor will have been precomputed. If
such a query is executed frequently, and has to be performed as efficiently as possible,
the denormalized relation could be beneficial.

Materialized views can provide the benefits that denormalized relations provide,
at the cost of some extra storage; we describe performance tuning of materialized
views in Section 21.2.6. A major advantage to materialized views over denormal-
ized relations is that maintaining consistency of redundant data becomes the job of
the database system, not the programmer. Thus, materialized views are preferable,
whenever they are supported by the database system.

Another approach to speed up the computation of the join without materializing
it, is to cluster records that would match in the join on the same disk page. We saw
such clustered file organizations in Section 11.7.2.
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21.2.5 Tuning of Indices
We can tune the indices in a system to improve performance. If queries are the bottle-
neck, we can often speed them up by creating appropriate indices on relations. If
updates are the bottleneck, there may be too many indices, which have to be updated
when the relations are updated. Removing indices may speed up certain updates.

The choice of the type of index also is important. Some database systems support
different kinds of indices, such as hash indices and B-tree indices. If range queries
are common, B-tree indices are preferable to hash indices. Whether to make an index
a clustered index is another tunable parameter. Only one index on a relation can
be made clustered, by storing the relation sorted on the index attributes. Generally,
the index that benefits the most number of queries and updates should be made
clustered.

To help identify what indices to create, and which index (if any) on each relation
should be clustered, some database systems provide tuning wizards. These tools use
the past history of queries and updates (called the workload) to estimate the effects
of various indices on the execution time of the queries and updates in the workload.
Recommendations on what indices to create are based on these estimates.

21.2.6 Using Materialized Views
Maintaining materialized views can greatly speed up certain types of queries, in par-
ticular aggregate queries. Recall the example from Section 14.5 where the total loan
amount at each branch (obtained by summing the loan amounts of all loans at the
branch) is required frequently. As we saw in that section, creating a materialized view
storing the total loan amount for each branch can greatly speed up such queries.

Materialized views should be used with care, however, since there is not only a
space overhead for storing them but, more important, there is also a time overhead
for maintaining materialized views. In the case of immediate view maintenance, if
the updates of a transaction affect the materialized view, the materialized view must
be updated as part of the same transaction. The transaction may therefore run slower.
In the case of deferred view maintenance, the materialized view is updated later;
until it is updated, the materialized view may be inconsistent with the database rela-
tions. For instance, the materialized view may be brought up-to-date when a query
uses the view, or periodically. Using deferred maintenance reduces the burden on
update transactions.

An important question is, how does one select which materialized views to main-
tain? The system administrator can make the selection manually by examining the
types of queries in the workload, and finding out which queries need to run faster
and which updates/queries may be executed slower. From the examination, the sys-
tem administrator may choose an appropriate set of materialized views. For instance,
the administrator may find that a certain aggregate is used frequently, and choose to
materialize it, or may find that a particular join is computed frequently, and choose
to materialize it.

However, manual choice is tedious for even moderately large sets of query types,
and making a good choice may be difficult, since it requires understanding the costs
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of different alternatives; only the query optimizer can estimate the costs with reason-
able accuracy, without actually executing the query. Thus a good set of views may
only be found by trial and error—that is, by materializing one or more views, run-
ning the workload, and measuring the time taken to run the queries in the workload.
The administrator repeats the process until a set of views is found that gives accept-
able performance.

A better alternative is to provide support for selecting materialized views within
the database system itself, integrated with the query optimizer. Some database sys-
tems, such as Microsoft SQL Server 7.5 and the RedBrick Data Warehouse from In-
formix, provide tools to help the database administrator with index and materialized
view selection. These tools examine the workload (the history of queries and updates)
and suggest indices and views to be materialized. The user may specify the impor-
tance of speeding up different queries, which the administrator takes into account
when selecting views to materialize.

Microsoft’s materialized view selection tool also permits the user to ask “what
if” questions, whereby the user can pick a view, and the optimizer then estimates the
effect of materializing the view on the total cost of the workload and on the individual
costs of different query/update types in the workload.

In fact, even automated selection techniques are implemented in a similar manner
internally: Different alternatives are tried, and for each the query optimizer estimates
the costs and benefits of materializing it.

Greedy heuristics for materialized view selection operate roughly this way: They
estimate the benefits of materializing different views, and choose the view that gives
either the maximum benefit or the maximum benefit per unit space (that is, bene-
fit divided by the space required to store the view). Once the heuristic has selected
a view, the benefits of other views may have changed, so the heuristic recomputes
these, and chooses the next best view for materialization. The process continues until
either the available disk space for storing materialized views is exhausted, or the cost
of view maintenance increases above acceptable limits.

21.2.7 Tuning of Transactions
In this section, we study two approaches for improving transaction performance:

• Improve set orientation

• Reduce lock contention

In the past, optimizers on many database systems were not particularly good, so how
a query was written would have a big influence on how it was executed, and there-
fore on the performance. Today’s advanced optimizers can transform even badly
written queries and execute them efficiently, so the need for tuning individual queries
is less important than it used to be. However, complex queries containing nested sub-
queries are not optimized very well by many optimizers. Most systems provide a
mechanism to find out the exact execution plan for a query; this information can be
used to rewrite the query in a form that the optimizer can deal with better.

In embedded SQL, if a query is executed frequently with different values for a
parameter, it may help to combine the calls into a more set-oriented query that is
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executed only once. The costs of communication of SQL queries can be high in client
–server systems, so combining the embedded SQL calls is particularly helpful in such
systems.

For example, consider a program that steps through each department specified in
a list, invoking an embedded SQL query to find the total expenses of the department
by using the group by construct on a relation expenses(date, employee, department,
amount). If the expenses relation does not have a clustered index on department, each
such query will result in a scan of the relation. Instead, we can use a single SQL query
to find total expenses of all departments; the query can be evaluated with a single
scan. The relevant departments can then be looked up in this (much smaller) tempo-
rary relation containing the aggregate. Even if there is an index that permits efficient
access to tuples of a given department, using multiple SQL queries can have a high
communication overhead in a client–server system. Communication cost can be re-
duced by using a single SQL query, fetching its results to the client side, and then
stepping through the results to find the required tuples.

Another technique used widely in client–server systems to reduce the cost of com-
munication and SQL compilation is to use stored procedures, where queries are stored
at the server in the form of procedures, which may be precompiled. Clients can in-
voke these stored procedures, rather than communicate entire queries.

Concurrent execution of different types of transactions can sometimes lead to poor
performance because of contention on locks. Consider, for example, a banking data-
base. During the day, numerous small update transactions are executed almost con-
tinuously. Suppose that a large query that computes statistics on branches is run at
the same time. If the query performs a scan on a relation, it may block out all updates
on the relation while it runs, and that can have a disastrous effect on the performance
of the system.

Some database systems—Oracle, for example—permit multiversion concurrency
control, whereby queries are executed on a snapshot of the data, and updates can
go on concurrently. This feature should be used if available. If it is not available,
an alternative option is to execute large queries at times when updates are few or
nonexistent. For databases supporting Web sites, there may be no such quiet period
for updates.

Another alternative is to use weaker levels of consistency, whereby evaluation of
the query has a minimal impact on concurrent updates, but the query results are not
guaranteed to be consistent. The application semantics determine whether approxi-
mate (inconsistent) answers are acceptable.

Long update transactions can cause performance problems with system logs, and
can increase the time taken to recover from system crashes. If a transaction performs
many updates, the system log may become full even before the transaction com-
pletes, in which case the transaction will have to be rolled back. If an update transac-
tion runs for a long time (even with few updates), it may block deletion of old parts
of the log, if the logging system is not well designed. Again, this blocking could lead
to the log getting filled up.

To avoid such problems, many database systems impose strict limits on the num-
ber of updates that a single transaction can carry out. Even if the system does not
impose such limits, it is often helpful to break up a large update transaction into a set
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of smaller update transactions where possible. For example, a transaction that gives
a raise to every employee in a large corporation could be split up into a series of
small transactions, each of which updates a small range of employee-ids. Such trans-
actions are called minibatch transactions. However, minibatch transactions must be
used with care. First, if there are concurrent updates on the set of employees, the
result of the set of smaller transactions may not be equivalent to that of the single
large transaction. Second, if there is a failure, the salaries of some of the employees
would have been increased by committed transactions, but salaries of other employ-
ees would not. To avoid this problem, as soon as the system recovers from failure, we
must execute the transactions remaining in the batch.

21.2.8 Performance Simulation
To test the performance of a database system even before it is installed, we can cre-
ate a performance-simulation model of the database system. Each service shown in
Figure 21.6, such as the CPU, each disk, the buffer, and the concurrency control, is
modeled in the simulation. Instead of modeling details of a service, the simulation
model may capture only some aspects of each service, such as the service time—that
is, the time taken to finish processing a request once processing has begun. Thus, the
simulation can model a disk access from just the average disk access time.

Since requests for a service generally have to wait their turn, each service has an
associated queue in the simulation model. A transaction consists of a series of re-
quests. The requests are queued up as they arrive, and are serviced according to the
policy for that service, such as first come, first served. The models for services such as
CPU and the disks conceptually operate in parallel, to account for the fact that these
subsystems operate in parallel in a real system.

Once the simulation model for transaction processing is built, the system admin-
istrator can run a number of experiments on it. The administrator can use experi-
ments with simulated transactions arriving at different rates to find how the system
would behave under various load conditions. The administrator could run other ex-
periments that vary the service times for each service to find out how sensitive the
performance is to each of them. System parameters, too, can be varied, so that per-
formance tuning can be done on the simulation model.

21.3 Performance Benchmarks
As database servers become more standardized, the differentiating factor among the
products of different vendors is those products’ performance. Performance bench-
marks are suites of tasks that are used to quantify the performance of software sys-
tems.

21.3.1 Suites of Tasks
Since most software systems, such as databases, are complex, there is a good deal of
variation in their implementation by different vendors. As a result, there is a signifi-
cant amount of variation in their performance on different tasks. One system may be
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the most efficient on a particular task; another may be the most efficient on a differ-
ent task. Hence, a single task is usually insufficient to quantify the performance of the
system. Instead, the performance of a system is measured by suites of standardized
tasks, called performance benchmarks.

Combining the performance numbers from multiple tasks must be done with care.
Suppose that we have two tasks, T1 and T2, and that we measure the throughput of a
system as the number of transactions of each type that run in a given amount of time
—say, 1 second. Suppose that system A runs T1 at 99 transactions per second, and
that T2 runs at 1 transaction per second. Similarly, let system B run both T1 and T2 at
50 transactions per second. Suppose also that a workload has an equal mixture of the
two types of transactions.

If we took the average of the two pairs of numbers (that is, 99 and 1, versus 50
and 50), it might appear that the two systems have equal performance. However, it
is wrong to take the averages in this fashion—if we ran 50 transactions of each type,
system A would take about 50.5 seconds to finish, whereas system B would finish in
just 2 seconds!

The example shows that a simple measure of performance is misleading if there
is more than one type of transaction. The right way to average out the numbers is to
take the time to completion for the workload, rather than the average throughput for
each transaction type. We can then compute system performance accurately in trans-
actions per second for a specified workload. Thus, system A takes 50.5/100, which is
0.505 seconds per transaction, whereas system B takes 0.02 seconds per transaction,
on average. In terms of throughput, system A runs at an average of 1.98 transac-
tions per second, whereas system B runs at 50 transactions per second. Assuming
that transactions of all the types are equally likely, the correct way to average out
the throughputs on different transaction types is to take the harmonic mean of the
throughputs. The harmonic mean of n throughputs t1, . . . , tn is defined as

n
1
t1

+ 1
t2

+ · · · + 1
tn

For our example, the harmonic mean for the throughputs in system A is 1.98. For
system B, it is 50. Thus, system B is approximately 25 times faster than system A on
a workload consisting of an equal mixture of the two example types of transactions.

21.3.2 Database-Application Classes
Online transaction processing (OLTP) and decision support (including online ana-
lytical processing (OLAP)) are two broad classes of applications handled by database
systems. These two classes of tasks have different requirements. High concurrency
and clever techniques to speed up commit processing are required for supporting
a high rate of update transactions. On the other hand, good query-evaluation algo-
rithms and query optimization are required for decision support. The architecture of
some database systems has been tuned to transaction processing; that of others, such
as the Teradata DBC series of parallel database systems, has been tuned to decision
support. Other vendors try to strike a balance between the two tasks.
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Applications usually have a mixture of transaction-processing and decision- sup-
port requirements. Hence, which database system is best for an application depends
on what mix of the two requirements the application has.

Suppose that we have throughput numbers for the two classes of applications
separately, and the application at hand has a mix of transactions in the two classes.
We must be careful even about taking the harmonic mean of the throughput num-
bers, because of interference between the transactions. For example, a long-running
decision-support transaction may acquire a number of locks, which may prevent all
progress of update transactions. The harmonic mean of throughputs should be used
only if the transactions do not interfere with one another.

21.3.3 The TPC Benchmarks
The Transaction Processing Performance Council (TPC), has defined a series of
benchmark standards for database systems.

The TPC benchmarks are defined in great detail. They define the set of relations
and the sizes of the tuples. They define the number of tuples in the relations not as a
fixed number, but rather as a multiple of the number of claimed transactions per sec-
ond, to reflect that a larger rate of transaction execution is likely to be correlated with
a larger number of accounts. The performance metric is throughput, expressed as
transactions per second (TPS). When its performance is measured, the system must
provide a response time within certain bounds, so that a high throughput cannot be
obtained at the cost of very long response times. Further, for business applications,
cost is of great importance. Hence, the TPC benchmark also measures performance
in terms of price per TPS. A large system may have a high number of transactions
per second, but may be expensive (that is, have a high price per TPS). Moreover, a
company cannot claim TPC benchmark numbers for its systems without an external
audit that ensures that the system faithfully follows the definition of the benchmark,
including full support for the ACID properties of transactions.

The first in the series was the TPC-A benchmark, which was defined in 1989. This
benchmark simulates a typical bank application by a single type of transaction that
models cash withdrawal and deposit at a bank teller. The transaction updates sev-
eral relations—such as the bank balance, the teller’s balance, and the customer’s
balance—and adds a record to an audit trail relation. The benchmark also incorpo-
rates communication with terminals, to model the end-to-end performance of the
system realistically. The TPC-B benchmark was designed to test the core performance
of the database system, along with the operating system on which the system runs.
It removes the parts of the TPC-A benchmark that deal with users, communication,
and terminals, to focus on the back-end database server. Neither TPC-A nor TPC-B is
widely used today.

The TPC-C benchmark was designed to model a more complex system than the
TPC-A benchmark. The TPC-C benchmark concentrates on the main activities in an
order-entry environment, such as entering and delivering orders, recording payments,
checking status of orders, and monitoring levels of stock. The TPC-C benchmark is
still widely used for transaction processing.
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The TPC-D benchmark was designed to test the performance of database systems
on decision-support queries. Decision-support systems are becoming increasingly
important today. The TPC-A, TPC-B, and TPC-C benchmarks measure performance
on transaction-processing workloads, and should not be used as a measure of per-
formance on decision-support queries. The D in TPC-D stands for decision support.
The TPC-D benchmark schema models a sales/distribution application, with parts,
suppliers, customers, and orders, along with some auxiliary information. The sizes
of the relations are defined as a ratio, and database size is the total size of all the rela-
tions, expressed in gigabytes. TPC-D at scale factor 1 represents the TPC-D benchmark
on a 1-gigabyte database, while scale factor 10 represents a 10-gigabyte database. The
benchmark workload consists of a set of 17 SQL queries modeling common tasks ex-
ecuted on decision-support systems. Some of the queries make use of complex SQL
features, such as aggregation and nested queries.

The benchmark’s users soon realized that the various TPC-D queries could be
significantly speeded up by using materialized views and other redundant informa-
tion. There are applications, such as periodic reporting tasks, where the queries are
known in advance and materialized view can be carefully selected to speed up the
queries. It is necessary, however, to account for the overhead of maintaining materal-
ized views.

The TPC-R benchmark (where R stands for reporting) is a refinement of the TPC-D
benchmark. The schema is the same, but there are 22 queries, of which 16 are from
TPC-D. In addition, there are two updates, a set of inserts and a set of deletes. The
database running the benchmark is permitted to use materialized views and other
redundant information.

In contrast the TPC-H benchmark (where H represents ad hoc) uses the same
schema and workload as TPC-R but prohibits materialized views and other redun-
dant information, and permits indices only on primary and foreign keys. This bench-
mark models ad hoc querying where the queries are not known beforehand, so it is
not possible to create appropriate materialized views ahead of time.

Both TPC-H and TPC-R measure performance in this way: The power test runs
the queries and updates one at a time sequentially, and 3600 seconds divided by
geometric mean of the execution times of the queries (in seconds) gives a measure
of queries per hour. The throughput test runs multiple streams in parallel, with each
stream executing all 22 queries. There is also a parallel update stream. Here the total
time for the entire run is used to compute the number of queries per hour.

The composite query per hour metric, which is the overall metric, is then ob-
tained as the square root of the the product of the power and throughput metrics. A
composite price/performance metric is defined by dividing the system price by the
composite metric.

The TPC-W Web commerce benchmark is an end-to-end benchmark that models
Web sites having static content (primarily images) and dynamic content generated
from a database. Caching of dynamic content is specifically permitted, since it is very
useful for speeding up Web sites. The benchmark models an electronic bookstore,
and like other TPC benchmarks, provides for different scale factors. The primary per-
formance metrics are Web interactions per second (WIPS) and price per WIPS.
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21.3.4 The OODB Benchmarks
The nature of applications in an object-oriented database, OODB, is different from
that of typical transaction-processing applications. Therefore, a different set of bench-
marks has been proposed for OODBs. The Object Operations benchmark, version 1,
popularly known as the OO1 benchmark, was an early proposal. The OO7 bench-
mark follows a philosophy different from that of the TPC benchmarks. The TPC bench-
marks provide one or two numbers (in terms of average transactions per second, and
transactions per second per dollar); the OO7 benchmark provides a set of numbers,
containing a separate benchmark number for each of several different kinds of oper-
ations. The reason for this approach is that it is not yet clear what is the typical OODB
transaction. It is clear that such a transaction will carry out certain operations, such
as traversing a set of connected objects or retrieving all objects in a class, but it is not
clear exactly what mix of these operations will be used. Hence, the benchmark pro-
vides separate numbers for each class of operations; the numbers can be combined
in an appropriate way, depending on the specific application.

21.4 Standardization
Standards define the interface of a software system; for example, standards define the
syntax and semantics of a programming language, or the functions in an application-
program interface, or even a data model (such as the object-oriented-database stan-
dards). Today, database systems are complex, and are often made up of multiple in-
dependently created parts that need to interact. For example, client programs may
be created independently of back-end systems, but the two must be able to interact
with each other. A company that has multiple heterogeneous database systems may
need to exchange data between the databases. Given such a scenario, standards play
an important role.

Formal standards are those developed by a standards organization or by industry
groups, through a public process. Dominant products sometimes become de facto
standards, in that they become generally accepted as standards without any formal
process of recognition. Some formal standards, like many aspects of the SQL-92 and
SQL:1999 standards, are anticipatory standards that lead the marketplace; they define
features that vendors then implement in products. In other cases, the standards, or
parts of the standards, are reactionary standards, in that they attempt to standardize
features that some vendors have already implemented, and that may even have be-
come de facto standards. SQL-89 was in many ways reactionary, since it standardized
features, such as integrity checking, that were already present in the IBM SAA SQL
standard and in other databases.

Formal standards committees are typically composed of representatives of the
vendors, and members from user groups and standards organizations such as the
International Organization for Standardization (ISO) or the American National Stan-
dards Institute (ANSI), or professional bodies, such as the Institute of Electrical and
Electronics Engineers (IEEE). Formal standards committees meet periodically, and
members present proposals for features to be added to or modified in the standard.
After a (usually extended) period of discussion, modifications to the proposal, and
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public review, members vote on whether to accept or reject a feature. Some time after
a standard has been defined and implemented, its shortcomings become clear, and
new requirements become apparent. The process of updating the standard then be-
gins, and a new version of the standard is usually released after a few years. This
cycle usually repeats every few years, until eventually (perhaps many years later)
the standard becomes technologically irrelevant, or loses its user base.

The DBTG CODASYL standard for network databases, formulated by the Database
Task Group, was one of the early formal standards for databases. IBM database prod-
ucts used to establish de facto standards, since IBM commanded much of the database
market. With the growth of relational databases came a number of new entrants in
the database business; hence, the need for formal standards arose. In recent years,
Microsoft has created a number of specifications that also have become de facto
standards. A notable example is ODBC, which is now used in non-Microsoft envi-
ronments. JDBC, whose specification was created by Sun Microsystems, is another
widely used de facto standard.

This section give a very high level overview of different standards, concentrating
on the goals of the standard. The bibliographical notes at the end of the chapter pro-
vide references to detailed descriptions of the standards mentioned in this section.

21.4.1 SQL Standards
Since SQL is the most widely used query language, much work has been done on
standardizing it. ANSI and ISO, with the various database vendors, have played a
leading role in this work. The SQL-86 standard was the initial version. The IBM Sys-
tems Application Architecture (SAA) standard for SQL was released in 1987. As peo-
ple identified the need for more features, updated versions of the formal SQL stan-
dard were developed, called SQL-89 and SQL-92.

The latest version of the SQL standard, called SQL:1999, adds a variety of features
to SQL. We have seen many of these features in earlier chapters, and will see a few in
later chapters. The standard is broken into several parts:

• SQL/Framework (Part 1) provides an overview of the standard.

• SQL/Foundation (Part 2) defines the basics of the standard: types, schemas, ta-
bles, views, query and update statements, expressions, security model, predi-
cates, assignment rules, transaction management and so on.

• SQL/CLI (Call Level Interface) (Part 3) defines application program interfaces
to SQL.

• SQL/PSM (Persistent Stored Modules) (Part 4) defines extensions to SQL to
make it procedural.

• SQL/Bindings (Part 5) defines standards for embedded SQL for different em-
bedding languages.
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The SQL:1999 OLAP features (Section 22.2.3) have been specified as an amendment
to the earlier version of the SQL:1999 standard. There are several other parts under
development, including

• Part 7: SQL/Temporal deals with standards for temporal data.

• Part 9: SQL/MED (Management of External Data) defines standards for in-
terfacing an SQL system to external sources. By writing wrappers, system de-
signers can treat external data sources, such as files or data in nonrelational
databases, as if they were “foreign” tables.

• Part 10: SQL/OLB (Object Language Bindings) defines standards for embed-
ding SQL in Java.

The missing numbers (Parts 6 and 8) cover features such as distributed transaction
processing and multimedia data, for which there is as yet no agreement on the stan-
dards. The multimedia standards propose to cover storage and retrieval of text data,
spatial data, and still images.

21.4.2 Database Connectivity Standards
The ODBC standard is a widely used standard for communication between client
applications and database systems. ODBC is based on the SQL Call-Level Interface
(CLI) standards developed by the X/Open industry consortium and the SQL Access
Group, but has several extensions. The ODBC API defines a CLI, an SQL syntax defi-
nition, and rules about permissible sequences of CLI calls. The standard also defines
conformance levels for the CLI and the SQL syntax. For example, the core level of the
CLI has commands to connect to a database, to prepare and execute SQL statements,
to get back results or status values and to manage transactions. The next level of con-
formance (level 1) requires support for catalog information retrieval and some other
features over and above the core-level CLI; level 2 requires further features, such as
ability to send and retrieve arrays of parameter values and to retrieve more detailed
catalog information.

ODBC allows a client to connect simultaneously to multiple data sources and to
switch among them, but transactions on each are independent; ODBC does not sup-
port two-phase commit.

A distributed system provides a more general environment than a client–server
system. The X/Open consortium has also developed the X/Open XA standards for
interoperation of databases. These standards define transaction-management prim-
itives (such as transaction begin, commit, abort, and prepare-to-commit) that com-
pliant databases should provide; a transaction manager can invoke these primitives
to implement distributed transactions by two-phase commit. The XA standards are
independent of the data model and of the specific interfaces between clients and
databases to exchange data. Thus, we can use the XA protocols to implement a dis-
tributed transaction system in which a single transaction can access relational as well
as object-oriented databases, yet the transaction manager ensures global consistency
via two-phase commit.
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There are many data sources that are not relational databases, and in fact may not
be databases at all. Examples are flat files and email stores. Microsoft’s OLE-DB is
a C++ API with goals similar to ODBC, but for nondatabase data sources that may
provide only limited querying and update facilities. Just like ODBC, OLE-DB provides
constructs for connecting to a data source, starting a session, executing commands,
and getting back results in the form of a rowset, which is a set of result rows.

However, OLE-DB differes from ODBC in several ways. To support data sources
with limited feature support, features in OLE-DB are divided into a number of inter-
faces, and a data source may implement only a subset of the interfaces. An OLE-DB
program can negotiate with a data source to find what interfaces are supported. In
ODBC commands are always in SQL. In OLE-DB, commands may be in any language
supported by the data source; while some sources may support SQL, or a limited
subset of SQL, other sources may provide only simple capabilities such as accessing
data in a flat file, without any query capability. Another major difference of OLE-DB
from ODBC is that a rowset is an object that can be shared by multiple applications
through shared memory. A rowset object can be updated by one application, and
other applications sharing that object would get notified about the change.

The Active Data Objects (ADO) API, also created by Microsoft, provides an easy-
to-use interface to the OLE-DB functionality, which can be called from scripting lan-
guages, such as VBScript and JScript.

21.4.3 Object Database Standards
Standards in the area of object-oriented databases have so far been driven primarily
by OODB vendors. The Object Database Management Group (ODMG) is a group formed
by OODB vendors to standardize the data model and language interfaces to OODBs.
The C++ language interface specified by ODMG was discussed in Chapter 8. The
ODMG has also specified a Java interface and a Smalltalk interface.

The Object Management Group (OMG) is a consortium of companies, formed with
the objective of developing a standard architecture for distributed software applica-
tions based on the object-oriented model. OMG brought out the Object Management
Architecture (OMA) reference model. The Object Request Broker (ORB) is a component
of the OMA architecture that provides message dispatch to distributed objects trans-
parently, so the physical location of the object is not important. The Common Object
Request Broker Architecture (CORBA) provides a detailed specification of the ORB,
and includes an Interface Description Language (IDL), which is used to define the
data types used for data interchange. The IDL helps to support data conversion when
data are shipped between systems with different data representations.

21.4.4 XML-Based Standards
A wide variety of standards based on XML (see Chapter 10) have been defined for
a wide variety of applications. Many of these standards are related to e-commerce.
They include standards promulgated by nonprofit consortia and corporate-backed
efforts to create defacto standards. RosettaNet, which falls into the former category,
uses XML-based standards to facilitate supply-chain management in the computer
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and information technology industries. Companies such as Commerce One provide
Web-based procurement systems, supply-chain management, and electonic market-
places (including online auctions). BizTalk is a framework of XML schemas and guide-
lines, backed by Microsoft. These and other frameworks define catalogs, service de-
scriptions, invoices, purchase orders, order status requests, shipping bills, and related
items.

Participants in electronic marketplaces may store data in a variety of database sys-
tems. These systems may use different data models, data formats, and data types.
Furthermore, there may be semantic differences (metric versus English measure, dis-
tinct monetary currencies, and so forth) in the data. Standards for electronic market-
places include methods for wrapping each of these heterogeneous systems with an
XML schema. These XML wrappers form the basis of a unified view of data across all
of the participants in the marketplace.

Simple Object Access Protocol (SOAP) is a remote procedure call standard that uses
XML to encode data (both parameters and results), and uses HTTP as the transport
protocol; that is, a procedure call becomes an HTTP request. SOAP is backed by the
World Wide Web Consortium (W3C) and is gaining wide acceptance in industry
(including IBM and Microsoft). SOAP can be used in a variety of applications. For
instance, in business-to-business e-commerce, applications running at one site can
access data from other sites through SOAP. Microsoft has defined standards for ac-
cessing OLAP and mining data with SOAP. (OLAP and data mining are covered in
Chapter 22.)

The W3C standard query language for XML is called XQuery. As of early 2001 the
standard was in working draft stage, and should be finalized by the end of the year.
Earlier XML query languages include Quilt (on which XQuery is based), XML-QL,
and XQL.

21.5 E-Commerce∗∗
E-commerce refers to the process of carrying out various activities related to com-
merce, through electronic means, primarily through the internet. The types of activi-
ties include:

• Presale activities, needed to inform the potential buyer about the product or
service being sold.

• The sale process, which includes negotiations on price and quality of service,
and other contractual matters.

• The marketplace: When there are multiple sellers and buyers for a product,
a marketplace, such as a stock exchange, helps in negotiating the price to be
paid for the product. Auctions are used when there is a single seller and mul-
tiple buyers, and reverse auctions are used when there is a single buyer and
multiple sellers.

• Payment for the sale.
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• Activities related to delivery of the product or service. Some products and
services can be delivered over the internet; for others the internet is used only
for providing shipping information and for tracking shipments of products.

• Customer support and postsale service.

Databases are used extensively to support these activities. For some of the activi-
ties the use of databases is straightforward, but there are interesting application de-
velopment issues for the other activities.

21.5.1 E-Catalogs
Any e-commerce site provides users with a catalog of the products and services that
the site supplies. The services provided by an e-catalog may vary considerably.

At the minimum, an e-catalog must provide browsing and search facilities to help
customers find the product they are looking for. To help with browsing, products
should be organized into an intuitive hierarchy, so a few clicks on hyperlinks can
lead a customer to the products they are interested in. Keywords provided by the
customer (for example, “digital camera” or “computer”) should speed up the process
of finding required products. E-catalogs should also provide a means for customers
to easily compare alternatives from which to choose among competing products.

E-catalogs can be customized for the customer. For instance, a retailer may have
an agreement with a large company to supply some products at a discount. An em-
ployee of the company, viewing the catalog to purchase products for the company,
should see prices as per the negotiated discount, instead of the regular prices. Be-
cause of legal restrictions on sales of some types of items, customers who are under-
age, or from certain states or countries, should not be shown items that cannot be
legally sold to them. Catalogs can also be personalized to individual users, on the
basis of past buying history. For instance, frequent customers may be offered special
discounts on some items.

Supporting such customization requires customer information as well as special
pricing/discount information and sales restriction information to be stored in a data-
base. There are also challenges in supporting very high transaction rates, which are
often tackled by caching of query results or generated Web pages.

21.5.2 Marketplaces
When there are multiple sellers or multiple buyers (or both) for a product, a market-
place helps in negotiating the price to be paid for the product. There are several dif-
ferent types of marketplaces:

• In a reverse auction system a buyer states requirements, and sellers bid for
supplying the item. The supplier quoting the lowest price wins. In a closed
bidding system, the bids are not made public, whereas in an open bidding
system the bids are made public.

• In an auction there are multiple buyers and a single seller. For simplicity, as-
sume that there is only one instance of each item being sold. Buyers bid for



Silberschatz−Korth−Sudarshan: 
Database System 
Concepts, Fourth Edition

VII. Other Topics 21. Application 
Development and 
Administration

801© The McGraw−Hill 
Companies, 2001

808 Chapter 21 Application Development and Administration

the items being sold, and the highest bidder for an item gets to buy the item
at the bid price.

When there are multiple copies of an item, things become more compli-
cated: Suppose there are four items, and one bidder may want three copies
for $10 each, while another wants two copies for $13 each. It is not possible
to satisfy both bids. If the items will be of no value if they are not sold (for
instance, airline seats, which must be sold before the plane leaves), the seller
simply picks a set of bids that maximizes the income. Otherwise the decision
is more complicated.

• In an exchange, such as a stock exchange, there are multiple sellers and mul-
tiple buyers. Buyers can specify the maximum price they are willing to pay,
while sellers specify the minimum price they want. There is usually a market
maker who matches buy and sell bids, deciding on the price for each trade (for
instance, at the price of the sell bid).

There are other more complex types of marketplaces.
Among the database issues in handling marketplaces are these:

• Bidders need to be authenticated before they are allowed to bid.

• Bids (buy or sell) need to be recorded securely in a database. Bids need to be
communicated quickly to other people involved in the marketplace (such as
all the buyers or all the sellers), who may be numerous.

• Delays in broadcasting bids can lead to financial losses to some participants.

• The volumes of trades may be extremely large at times of stock market volatil-
ity, or toward the end of auctions. Thus, very high performance databases with
large degrees of parallelism are used for such systems.

21.5.3 Order Settlement
After items have been selected (perhaps through an electronic catalog), and the price
determined (perhaps by an electronic marketplace), the order has to be settled. Set-
tlement involves payment for goods and the delivery of the goods.

A simple but unsecure way of paying electronically is to send a credit card number.
There are two major problems. First, credit card fraud is possible. When a buyer pays
for physical goods, companies can ensure that the address for delivery matches the
card holder’s address, so no one else can receive the goods, but for goods delivered
electronically no such check is possible. Second, the seller has to be trusted to bill only
for the agreed-on item and to not pass on the card number to unauthorized people
who may misuse it.

Several protocols are available for secure payments that avoid both the problems
listed above. In addition, they provide for better privacy, whereby the seller may not
be given any unnecessary details about the buyer, and the credit card company is not
provided any unnecessary information about the items purchased. All information
transmitted must be encrypted so that anyone intercepting the data on the network
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cannot find out the contents. Public/private key encryption is widely used for this
task.

The protocols must also prevent person-in-the-middle attacks, where someone
can impersonate the bank or credit-card company, or even the seller, or buyer, and
steal secret information. Impersonation can be perpetrated by passing off a fake key
as someone else’s public key (the bank’s or credit-card company’s, or the merchant’s
or the buyer’s). Impersonation is prevented by a system of digital certificates, where-
by public keys are signed by a certification agency, whose public key is well known
(or which in turn has its public key certified by another certification agency and so
on up to a key that is well known). From the well-known public key, the system can
authenticate the other keys by checking the certificates in reverse sequence.

The Secure Electronic Transaction (SET) protocol is one such secure payment pro-
tocol. The protocol requires several rounds of communication between the buyer,
seller, and the bank, in order to guarantee safety of the transaction.

There are also systems that provide for greater anonymity, similar to that pro-
vided by physical cash. The DigiCash payment system is one such system. When
a payment is made in such a system, it is not possible to identify the purchaser. In
contrast, identifying purchasers is very easy with credit cards, and even in the case
of SET, it is possible to identify the purchaser with the cooperation of the credit card
company or bank.

21.6 Legacy Systems
Legacy systems are older-generation systems that are incompatible with current-
generation standards and systems. Such systems may still contain valuable data, and
may support critical applications. The legacy systems of today are typically those
built with technologies such as databases that use the network or hierarchical data
models, or use Cobol and file systems without a database.

Porting legacy applications to a more modern environment is often costly in terms
of both time and money, since they are often very large, consisting of millions of lines
of code developed by teams of programmers, over several decades.

Thus, it is important to support these older-generation, or legacy, systems, and
to facilitate their interoperation with newer systems. One approach used to interop-
erate between relational databases and legacy databases is to build a layer, called a
wrapper, on top of the legacy systems that can make the legacy system appear to be
a relational database. The wrapper may provide support for ODBC or other intercon-
nection standards such as OLE-DB, which can be used to query and update the legacy
system. The wrapper is responsible for converting relational queries and updates into
queries and updates on the legacy system.

When an organization decides to replace a legacy system by a new system, it must
follow a process called reverse engineering, which consists of going over the code
of the legacy system to come up with schema designs in the required data model
(such as an E-R model or an object-oriented data model). Reverse engineering also
examines the code to find out what procedures and processes were implemented, in
order to get a high-level model of the system. Reverse engineering is needed because
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legacy systems usually do not have high-level documentation of their schema and
overall system design. When coming up with the design of a new system, the design
is reviewed, so that it can be improved rather than just reimplemented as is. Exten-
sive coding is required to support all the functionality (such as user interface and
reporting systems) that were provided by the legacy system. The overall process is
called re-engineering.

When a new system has been built and tested, the system must be populated
with data from the legacy system, and all further activities must be carried out on
the new system. However, abruptly transitioning to a new system, which is called
the big-bang approach, carries several risks. First, users may not be familiar with the
interfaces of the new system. Second there may be bugs or performance problems
in the new system that were not discovered when it was tested. Such problems may
lead to great losses for companies, since their ability to carry out critical transactions
such as sales and purchases may be severely affected. In some extreme cases the new
system has even been abandoned, and the legacy system reused, after an attempted
switchover failed.

An alternative approach, called the chicken-little approach, incrementally replaces
the functionality of the legacy system. For example, the new user interfaces may be
used with the old system in the back end, or vice versa. Another option is to use
the new system only for some functionality that can be decoupled from the legacy
system. In either case, the legacy and new systems coexist for some time. There is
therefore a need for developing and using wrappers on the legacy system to provide
required functionality to interoperate with the new system. This approach, therefore
has a higher development cost associated with it.

21.7 Summary
• The Web browser has emerged as the most widely used user interface to

databases. HTML provides the ability to define interfaces that combine hyper-
links with forms facilities. Web browsers communicate with Web servers by
the HTTP protocol. Web servers can pass on requests to application programs,
and return the results to the browser.

• There are several client-side scripting languages—Javascript is the most widely
used—that provide richer user interaction at the browser end.

• Web servers execute application programs to implement desired functionality.
Servlets are a widely used mechanism to write application programs that run
as part of the Web server process, in order to reduce overheads. There are also
many server-side scripting languages that are interpreted by the Web server
and provide application program functionality as part of the Web server.

• Tuning of the database-system parameters, as well as the higher-level database
design—such as the schema, indices, and transactions—is important for good
performance. Tuning is best done by identifying bottlenecks and eliminating
them.
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• Performance benchmarks play an important role in comparisons of database
systems, especially as systems become more standards compliant. The TPC
benchmark suites are widely used, and the different TPC benchmarks are use-
ful for comparing the performance of databases under different workloads.

• Standards are important because of the complexity of database systems and
their need for interoperation. Formal standards exist for SQL. Defacto stan-
dards, such as ODBC and JDBC, and standards adopted by industry groups,
such as CORBA, have played an important role in the growth of client–server
database systems. Standards for object-oriented databases, such as ODMG, are
being developed by industry groups.

• E-commerce systems are fast becoming a core part of how commerce is per-
formed. There are several database issues in e-commerce systems. Catalog
management, especially personalization of the catalog, is done with databases.
Electronic marketplaces help in pricing of products through auctions, reverse
auctions, or exchanges. High-performance database systems are needed to
handle such trading. Orders are settled by electronic payment systems, which
also need high-performance database systems to handle very high transaction
rates.

• Legacy systems are systems based on older-generation technologies such as
nonrelational databases or even directly on file systems. Interfacing legacy
systems with new-generation systems is often important when they run
mission-critical systems. Migrating from legacy systems to new-generation
systems must be done carefully to avoid disruptions, which can be very ex-
pensive.

Review Terms
• Web interfaces to databases

• HyperText Markup Language
(HTML)

• Hyperlinks

• Uniform resource locator (URL)

• Client-side scripting

• Applets

• Client-side scripting language

• Web servers

• Session

• HyperText Transfer Protocol
(HTTP)

• Common Gateway Interface
(CGI)

• Connectionless

• Cookie

• Servlets

• Server-side scripting

• Performance tuning

• Bottlenecks

• Queueing systems

• Tunable parameters

• Tuning of hardware

• Five-minute rule

• One-minute rule

• Tuning of the schema

• Tuning of indices
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• Materialized views
• Immediate view maintenance
• Deferred view maintenance
• Tuning of transactions
• Improving set orientedness
• Minibatch transactions
• Performance simulation
• Performance benchmarks
• Service time
• Time to completion
• Database-application classes
• The TPC benchmarks
� TPC-A
� TPC-B
� TPC-C
� TPC-D
� TPC-R
� TPC-H
� TPC-W

• Web interactions per second
• OODB benchmarks
� OO1
� OO7

• Standardization

� Formal standards
� De facto standards
� Anticipatory standards
� Reactionary standards

• Database connectivity standards
� ODBC
� OLE-DB
� X/Open XA standards

• Object database standards
� ODMG
� CORBA

• XML-based standards

• E-commerce

• E-catalogs

• Marketplaces
� Auctions
� Reverse-auctions
� Exchange

• Order settlement

• Digital certificates

• Legacy systems

• Reverse engineering

• Re-engineering

Exercises
21.1 What is the main reason why servlets give better performance than programs

that use the common gateway interface (CGI), even though Java programs gen-
erally run slower than C or C++ programs.

21.2 List some benefits and drawbacks of connectionless protocols over protocols
that maintain connections.

21.3 List three ways in which caching can be used to speed up Web server perfor-
mance.

21.4 a. What are the three broad levels at which a database system can be tuned
to improve performance?

b. Give two examples of how tuning can be done, for each of the levels.

21.5 What is the motivation for splitting a long transaction into a series of small
ones? What problems could arise as a result, and how can these problems be
averted?
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21.6 Suppose a system runs three types of transactions. Transactions of type A run
at the rate of 50 per second, transactions of type B run at 100 per second, and
transactions of type C run at 200 per second. Suppose the mix of transactions
has 25 percent of type A, 25 percent of type B, and 50 percent of type C.

a. What is the average transaction throughput of the system, assuming there
is no interference between the transactions.

b. What factors may result in interference between the transactions of differ-
ent types, leading to the calculated throughput being incorrect?

21.7 Suppose the price of memory falls by half, and the speed of disk access (num-
ber of accesses per second) doubles, while all other factors remain the same.
What would be the effect of this change on the 5 minute and 1 minute rule?

21.8 List some of the features of the TPC benchmarks that help make them realistic
and dependable measures.

21.9 Why was the TPC-D benchmark replaced by the TPC-H and TPC-R benchmarks?

21.10 List some benefits and drawbacks of an anticipatory standard compared to a
reactionary standard.

21.11 Suppose someone impersonates a company and gets a certificate from a certifi-
cate issuing authority. What is the effect on things (such as purchase orders or
programs) certified by the impersonated company, and on things certified by
other companies?

Project Suggestions
Each of the following is a large project, which can be a semester-long project done by
a group of students. The difficulty of the project can be adjusted easily by adding or
deleting features.

Project 21.1 Consider the E-R schema of Exercise 2.7 (Chapter 2), which represents
information about teams in a league. Design and implement a Web-based sys-
tem to enter, update, and view the data.

Project 21.2 Design and implement a shopping cart system that lets shoppers collect
items into a shopping cart (you can decide what information is to be supplied
for each item) and purchased together. You can extend and use the E-R schema
of Exercise 2.12 of Chapter 2. You should check for availability of the item and
deal with nonavailable items as you feel appropriate.

Project 21.3 Design and implement a Web-based system to record student registra-
tion and grade information for courses at a university.

Project 21.4 Design and implement a system that permits recording of course perfor-
mance information—specifically, the marks given to each student in each as-
signment or exam of a course, and computation of a (weighted) sum of marks
to get the total course marks. The number of assignments/exams should not
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be predefined; that is, more assignments/exams can be added at any time. The
system should also support grading, permitting cutoffs to be specified for var-
ious grades.

You may also wish to integrate it with the student registration system of
Project 21.3 (perhaps being implemented by another project team).

Project 21.5 Design and implement a Web-based system for booking classrooms at
your university. Periodic booking (fixed days/times each week for a whole
semester) must be supported. Cancellation of specific lectures in a periodic
booking should also be supported.

You may also wish to integrate it with the student registration system of
Project 21.3 (perhaps being implemented by another project team) so that class-
rooms can be booked for courses, and cancellations of a lecture or extra lectures
can be noted at a single interface, and will be reflected in the classroom booking
and communicated to students via e-mail.

Project 21.6 Design and implement a system for managing online multiple-choice
tests. You should support distributed contribution of questions (by teaching
assistants, for example), editing of questions by whoever is in charge of the
course, and creation of tests from the available set of questions. You should
also be able to administer tests online, either at a fixed time for all students, or
at any time but with a time limit from start to finish (support one or both), and
give students feedback on their scores at the end of the allotted time.

Project 21.7 Design and implement a system for managing e-mail customer service.
Incoming mail goes to a common pool. There is a set of customer service agents
who reply to e-mail. If the e-mail is part of an ongoing series of replies (tracked
using the in-reply-to field of e-mail) the mail should preferably be replied to
by the same agent who replied earlier. The system should track all incoming
mail and replies, so an agent can see the history of questions from a customer
before replying to an email.

Project 21.8 Design and implement a simple electronic marketplace where items can
be listed for sale or for purchase under various categories (which should form
a hierarchy). You may also wish to support alerting services, whereby a user
can register interest in items in a particular category, perhaps with other con-
straints as well, without publicly advertising his/her interest, and is notified
when such an item is listed for sale.

Project 21.9 Design and implement a Web-based newsgroup system. Users should
be able to subscribe to newsgroups, and browse articles in newsgroups. The
system tracks which articles were read by a user, so they are not displayed
again. Also provide search against old articles.

You may also wish to provide a rating service for articles, so that articles
with high rating are highlighted permitting the busy reader to skip low-rated
articles.
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Project 21.10 Design and implement a Web-based system for managing a sports “lad-
der.” Many people register, and may be given some initial rankings (perhaps
based on past performance). Anyone can challenge anyone else to a match, and
the rankings are adjusted according to the result.

One simple system for adjusting rankings just moves the winner ahead of
the loser in the rank order, in case the winner was behind earlier. You can try
to invent more complicated rank adjustment systems.

Project 21.11 Design and implement a publications listing service. The service should
permit entering of information about publications, such as title, authors, year,
where the publication appeared, pages, and so forth. Authors should be a sep-
arate entity with attributes such as name, institution, department, e-mail, ad-
dress, and home page.

Your application should support multiple views on the same data. For in-
stance, you should provide all publications by a given author (sorted by year,
for example), or all publications by authors from a given institution or depart-
ment. You should also support search by keywords, on the overall database as
well as within each of the views.

Bibliographical Notes
Information about servlets, including tutorials, standard specifications, and software,
is available on java.sun.com/products/servlet. Information about JSP is available at
java.sun.com/products/jsp.

An early proposal for a database-system benchmark (the Wisconsin benchmark)
was made by Bitton et al. [1983]. The TPC-A,-B, and -C benchmarks are described
in Gray [1991]. An online version of all the TPC benchmarks descriptions, as well
as benchmark results, is available on the World Wide Web at the URL www.tpc.org;
the site also contains up-to-date information about new benchmark proposals. Poess
and Floyd [2000] gives an overview of the TPC-H, TPC-R, and TPC-W benchmarks.
The OO1 benchmark for OODBs is described in Cattell and Skeen [1992]; the OO7
benchmark is described in Carey et al. [1993].

Kleinrock [1975] and Kleinrock [1976] is a popular two-volume textbook on queue-
ing theory.

Shasha [1992] provides a good overview of database tuning. O’Neil and O’Neil
[2000] provides a very good textbook coverage of performance measurement and
tuning. The five minute and one minute rules are described in Gray and Putzolu
[1987] and Gray and Graefe [1997]. Brown et al. [1994] describes an approach to
automated tuning. Index selection and materialized view selection are addressed
by Ross et al. [1996], Labio et al. [1997], Gupta [1997], Chaudhuri and Narasayya
[1997], Agrawal et al. [2000] and Mistry et al. [2001].

The American National Standard SQL-86 is described in ANSI [1986]. The IBM
Systems Application Architecture definition of SQL is specified by IBM [1987]. The
standards for SQL-89 and SQL-92 are available as ANSI [1989] and ANSI [1992] re-
spectively. For references on the SQL:1999 standard, see the bibliographical notes of
Chapter 9.
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The X/Open SQL call-level interface is defined in X/Open [1993]; the ODBC API is
described in Microsoft [1997] and Sanders [1998]. The X/Open XA interface is defined
in X/Open [1991]. More information about ODBC, OLE-DB, and ADO can be found
on the Web site www.microsoft.com/data, and in a number of books on the subject
that can be found through www.amazon.com. The ODMG 3.0 standard is defined in
Cattell [2000]. ACM Sigmod Record, which is published quarterly, has a regular section
on standards in databases, including benchmark standards.

A wealth of information on XML based standards is available online. You can use
a Web search engine such as Google to search for more detailed and up-to-date infor-
mation about the XML and other standards.

Loeb [1998] provides a detailed description of secure electronic transactions. Busi-
ness process reengineering is covered by Cook [1996]. Kirchmer [1999] describes ap-
plication implementation using standard software such as Enterprise Resource Plan-
ning (ERP) packages. Umar [1997] covers reengineering and issues in dealing with
legacy systems.

Tools
There are many Web development tools that support database connectivity through
servlets, JSP, Javascript, or other mechanisms. We list a few of the better-known ones
here: Java SDK from Sun (java.sun.com), Apache’s Tomcat (jakarta.apache.org) and
Web server (apache.org), IBM WebSphere (www.software.ibm.com), Microsoft’s ASP
tools (www.microsoft.com), Allaire’s Coldfusion and JRun products (www.allaire.com),
Caucho’s Resin (www.caucho.com), and Zope (www.zope.org). A few of these, such
as Apache, are free for any use, some are free for noncommercial use or for per-
sonal use, while others need to be paid for. See the respective Web sites for more
information.
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Advanced Querying and
Information Retrieval

Businesses have begun to exploit the burgeoning data online to make better decisions
about their activities, such as what items to stock and how best to target customers
to increase sales. Many of their queries are rather complicated, however, and certain
types of information cannot be extracted even by using SQL.

Several techniques and tools are available to help with decision support. Several
tools for data analysis allow analysts to view data in different ways. Other analy-
sis tools precompute summaries of very large amounts of data, in order to give fast
responses to queries. The SQL:1999 standard now contains additional constructs to
support data analysis. Another approach to getting knowledge from data is to use
data mining, which aims at detecting various types of patterns in large volumes of
data. Data mining supplements various types of statistical techniques with similar
goals.

Textual data, too, has grown explosively. Textual data is unstructured, unlike the
rigidly structured data in relational databases. Querying of unstructured textual data
is referred to as information retrieval. Information retrieval systems have much in com-
mon with database systems—in particular, the storage and retrieval of data on sec-
ondary storage. However, the emphasis in the field of information systems is differ-
ent from that in database systems, concentrating on issues such as querying based on
keywords; the relevance of documents to the query; and the analysis, classification,
and indexing of documents.

This chapter covers decision support, including online analytical processing and
data mining and information retrieval.

22.1 Decision-Support Systems
Database applications can be broadly classified into transaction processing and de-
cision support, as we have seen earlier in Section 21.3.2. Transaction-processing sys-
tems are widely used today, and companies have accumulated a vast amount of in-
formation generated by these systems.

817
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For example, company databases often contain enormous quantities of informa-
tion about customers and transactions. The size of the information storage required
may range up to hundreds of gigabytes, or even terabytes, for large retail chains.
Transaction information for a retailer may include the name or identifier (such as
credit-card number) of the customer, the items purchased, the price paid, and the
dates on which the purchases were made. Information about the items purchased
may include the name of the item, the manufacturer, the model number, the color,
and the size. Customer information may include credit history, annual income, resi-
dence, age, and even educational background.

Such large databases can be treasure troves of information for making business
decisions, such as what items to stock and what discounts to offer. For instance, a
retail company may notice a sudden spurt in purchases of flannel shirts in the Pacific
Northwest, may realize that there is a trend, and may start stocking a larger number
of such shirts in shops in that area. As another example, a car company may find, on
querying its database, that most of its small sports cars are bought by young women
whose annual incomes are above $50,000. The company may then target its market-
ing to attract more such women to buy its small sports cars, and may avoid wasting
money trying to attract other categories of people to buy those cars. In both cases, the
company has identified patterns in customer behavior, and has used the patterns to
make business decisions.

The storage and retrieval of data for decision support raises several issues:

• Although many decision support queries can be written in SQL, others either
cannot be expressed in SQL or cannot be expressed easily in SQL. Several SQL
extensions have therefore been proposed to make data analysis easier. The
area of online analytical processing (OLAP) deals with tools and techniques for
data analysis that can give nearly instantaneous answers to queries request-
ing summarized data, even though the database may be extremely large. In
Section 22.2, we study SQL extensions for data analysis, and techniques for
online analytical processing.

• Database query languages are not suited to the performance of detailed sta-
tistical analyses of data. There are several packages, such as SAS and S++, that
help in statistical analysis. Such packages have been interfaced with databases,
to allow large volumes of data to be stored in the database and retrieved effi-
ciently for analysis. The field of statistical analysis is a large discipline on its
own; see the references in the bibliographical notes for more information.

• Knowledge-discovery techniques attempt to discover automatically statisti-
cal rules and patterns from data. The field of data mining combines knowledge
discovery techniques invented by artificial intelligence researchers and statis-
tical analysts, with efficient implementation techniques that enable them to be
used on extremely large databases. Section 22.3 discusses data mining.

• Large companies have diverse sources of data that they need to use for making
business decisions. The sources may store the data under different schemas.
For performance reasons (as well as for reasons of organization control), the
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data sources usually will not permit other parts of the company to retrieve
data on demand.

To execute queries efficiently on such diverse data, companies have built
data warehouses. Data warehouses gather data from multiple sources under a
unified schema, at a single site. Thus, they provide the user a single uniform
interface to data. We study issues in building and maintaining a data ware-
house in Section 22.4.

The area of decision support can be broadly viewed as covering all the above
areas, although some people use the term in a narrower sense that excludes statistical
analysis and data mining.

22.2 Data Analysis and OLAP
Although complex statistical analysis is best left to statistics packages, databases
should support simple, commonly used, forms of data analysis. Since the data stored
in databases are usually large in volume, they need to be summarized in some fash-
ion if we are to derive information that humans can use.

OLAP tools support interactive analysis of summary information. Several SQL ex-
tensions have been developed to support OLAP tools. There are many commonly
used tasks that cannot be done using the basic SQL aggregation and grouping facili-
ties. Examples include finding percentiles, or cumulative distributions, or aggregates
over sliding windows on sequentially ordered data. A number of extensions of SQL
have been recently proposed to support such tasks, and implemented in products
such as Oracle and IBM DB2.

22.2.1 Online Analytical Processing
Statistical analysis often requires grouping on multiple attributes. Consider an ap-
plication where a shop wants to find out what kinds of clothes are popular. Let us
suppose that clothes are characterized by their item-name, color, and size, and that
we have a relation sales with the schema sales(item-name, color, size, number). Suppose
that item-name can take on the values (skirt, dress, shirt, pant), color can take on the
values (dark, pastel, white), and size can take on values (small, medium, large).

Given a relation used for data analysis, we can identify some of its attributes as
measure attributes, since they measure some value, and can be aggregated upon. For
instance, the attribute number of the sales relation is a measure attribute, since it mea-
sures the number of units sold. Some (or all) of the other attributes of the relation
are identified as dimension attributes, since they define the dimensions on which
measure attributes, and summaries of measure attributes, are viewed. In the sales re-
lation, item-name, color, and size are dimension attributes. (A more realistic version of
the sales relation would have additional dimensions, such as time and sales location,
and additional measures such as monetary value of the sale.)

Data that can be modeled as dimension attributes and measure attributes are called
multidimensional data.
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size: all

item-name

color

dark pastel white Total
skirt 8 35 10 53
dress 20 10 5 35
shirt 14 7 28 49
pant 20 2 5 27
Total 62 54 48 164

Figure 22.1 Cross tabulation of sales by item-name and color.

To analyze the multidimensional data, a manager may want to see data laid out
as shown in the table in Figure 22.1. The table shows total numbers for different
combinations of item-name and color. The value of size is specified to be all, indicating
that the displayed values are a summary across all values of size.

The table in Figure 22.1 is an example of a cross-tabulation (or cross-tab, for short),
also referred to as a pivot-table. In general, a cross-tab is a table where values for one
attribute (say A) form the row headers, values for another attribute (say B) form the
column headers, and the values in an individual cell are derived as follows. Each cell
can be identified by (ai, bj), where ai is a value for A and bj a value for B. If there
is at most one tuple with any (ai, bj) value, the value in the cell is derived from that
single tuple (if any); for instance, it could be the value of one or more other attributes
of the tuple. If there can be multiple tuples with an (ai, bj) value, the value in the cell
must be derived by aggregation on the tuples with that value. In our example, the
aggregation used is the sum of the values for attribute number. In our example, the
cross-tab also has an extra column and an extra row storing the totals of the cells in
the row/column. Most cross-tabs have such summary rows and columns.

A cross-tab is different from relational tables usually stored in databases, since the
number of columns in the cross-tab depends on the actual data. A change in the data
values may result in adding more columns, which is not desirable for data storage.
However, a cross-tab view is desirable for display to users. It is straightforward to
represent a cross-tab without summary values in a relational form with a fixed num-
ber of columns. A cross-tab with summary rows/columns can be represented by in-
troducing a special value all to represent subtotals, as in Figure 22.2. The SQL:1999
standard actually uses the null value in place of all, but to avoid confusion with
regular null values, we shall continue to use all.

Consider the tuples (skirt, all, 53) and (dress, all, 35). We have obtained these tu-
ples by eliminating individual tuples with different values for color, and by replacing
the value of number by an aggregate—namely, sum. The value all can be thought of
as representing the set of all values for an attribute. Tuples with the value all only for
the color dimension can be obtained by an SQL query performing a group by on the
column item-name. Similarly, a group by on color can be used to get the tuples with
the value all for item-name, and a group by with no attributes (which can simply be
omitted in SQL) can be used to get the tuple with value all for item-name and color.
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item-name color number
skirt dark 8
skirt pastel 35
skirt white 10
skirt all 53
dress dark 20
dress pastel 10
dress white 5
dress all 35
shirt dark 14
shirt pastel 7
shirt white 28
shirt all 49
pant dark 20
pant pastel 2
pant white 5
pant all 27
all dark 62
all pastel 54
all white 48
all all 164

Figure 22.2 Relational representation of the data in Figure 22.1.

The generalization of a cross-tab, which is 2-dimensional, to n dimensions can be
visualized as an n-dimensional cube, called the data cube. Figure 22.3 shows a data
cube on the sales relation. The data cube has three dimensions, namely item-name,
color, and size, and the measure attribute is number. Each cell is identified by values
for these three dimensions. Each cell in the data cube contains a value, just as in a
cross-tab. In Figure 22.3, the value contained in a cell is shown on one of the faces of
the cell; other faces of the cell are shown blank if they are visible.

The value for a dimension may be all, in which case the cell contains a summary
over all values of that dimension, as in the case of cross-tabs. The number of different
ways in which the tuples can be grouped for aggregation can be large. In fact, for a
table with n dimensions, aggregation can be performed with grouping on each of the
2n subsets of the n dimensions.1

An online analytical processing or OLAP system is an interactive system that per-
mits an analyst to view different summaries of multidimensional data. The word
online indicates that the an analyst must be able to request new summaries and get
responses online, within a few seconds, and should not be forced to wait for a long
time to see the result of a query.

With an OLAP system, a data analyst can look at different cross-tabs on the same
data by interactively selecting the attributes in the cross-tab. Each cross-tab is a

1. Grouping on the set of all n dimensions is useful only if the table may have duplicates.
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Figure 22.3 Three-dimensional data cube.

two-dimensional view on a multidimensional data cube. For instance the analyst may
select a cross-tab on item-name and size, or a cross-tab on color and size. The operation
of changing the dimensions used in a cross-tab is called pivoting.

An OLAP system provides other functionality as well. For instance, the analyst
may wish to see a cross-tab on item-name and color for a fixed value of size, for ex-
ample, large, instead of the sum across all sizes. Such an operation is referred to as
slicing, since it can be thought of as viewing a slice of the data cube. The operation is
sometimes called dicing, particularly when values for multiple dimensions are fixed.

When a cross-tab is used to view a multidimensional cube, the values of dimension
attributes that are not part of the cross-tab are shown above the cross-tab. The value of
such an attribute can be all, as shown in Figure 22.1, indicating that data in the cross-
tab are a summary over all values for the attribute. Slicing/dicing simply consists of
selecting specific values for these attributes, which are then displayed on top of the
cross-tab.

OLAP systems permit users to view data at any desired level of granularity. The
operation of moving from finer-granularity data to a coarser granularity (by means
of aggregation) is called a rollup. In our example, starting from the data cube on the
sales table, we got our example cross-tab by rolling up on the attribute size. The op-
posite operation—that of moving from coarser-granularity data to finer-granularity
data—is called a drill down. Clearly, finer-granularity data cannot be generated from
coarse-granularity data; they must be generated either from the original data, or from
even finer-granularity summary data.

Analysts may wish to view a dimension at different levels of detail. For instance,
an attribute of type datetime contains a date and a time of day. Using time precise to
a second (or less) may not be meaningful: An analyst who is interested in rough time
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Hour of day Date
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Day of week Month
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Year

State
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a) Time Hierarchy b) Location Hierarchy

Figure 22.4 Hierarchies on dimensions.

of day may look at only the hour value. An analyst who is interested in sales by day
of the week may map the date to a day-of-the-week and look only at that. Another
analyst may be interested in aggregates over a month, or a quarter, or for an entire
year.

The different levels of detail for an attribute can be organized into a hierarchy.
Figure 22.4(a) shows a hierarchy on the datetime attribute. As another example, Fig-
ure 22.4(b) shows a hierarchy on location, with the city being at the bottom of the
hierarchy, state above it, country at the next level, and region being the top level. In
our earlier example, clothes can be grouped by category (for instance, menswear or
womenswear); category would then lie above item-name in our hierarchy on clothes.
At the level of actual values, skirts and dresses would fall under the womenswear
category and pants and shirts under the menswear category.

An analyst may be interested in viewing sales of clothes divided as menswear and
womenswear, and not interested in individual values. After viewing the aggregates
at the level of womenswear and menswear, an analyst may drill down the hierarchy
to look at individual values. An analyst looking at the detailed level may drill up the
hierarchy, and look at coarser-level aggregates. Both levels can be displayed on the
same cross-tab, as in Figure 22.5.

22.2.2 OLAP Implementation
The earliest OLAP systems used multidimensional arrays in memory to store data
cubes, and are referred to as multidimensional OLAP (MOLAP) systems. Later, OLAP
facilities were integrated into relational systems, with data stored in a relational data-
base. Such systems are referred to as relational OLAP (ROLAP) systems. Hybrid
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Figure 22.5 Cross tabulation of sales with hierarchy on item-name.

systems, which store some summaries in memory and store the base data and other
summaries in a relational database, are called hybrid OLAP (HOLAP) systems.

Many OLAP systems are implemented as client–server systems. The server con-
tains the relational database as well as any MOLAP data cubes. Client systems obtain
views of the data by communicating with the server.

A naı̈ve way of computing the entire data cube (all groupings) on a relation is to
use any standard algorithm for computing aggregate operations, one grouping at a
time. The naı̈ve algorithm would require a large number of scans of the relation. A
simple optimization is to compute an aggregation on, say, (item-name, color) from an
aggregation (item-name, color, size), instead of from the original relation. For the stan-
dard SQL aggregate functions, we can compute an aggregate with grouping on a set
of attributes A from an aggregate with grouping on a set of attributes B if A ⊆ B; you
can do so as an exercise (see Exercise 22.1), but note that to compute avg, we addi-
tionally need the count value. (For some non-standard aggregate functions, such as
median, aggregates cannot be computed as above; the optimization described here
do not apply to such “non-decomposable” aggregate functions.) The amount of data
read drops significantly by computing an aggregate from another aggregate, instead
of from the original relation. Further improvements are possible; for instance, multi-
ple groupings can be computed on a single scan of the data. See the bibliographical
notes for references to algorithms for efficiently computing data cubes.

Early OLAP implementations precomputed and stored entire data cubes, that is,
groupings on all subsets of the dimension attributes. Precomputation allows OLAP
queries to be answered within a few seconds, even on datasets that may contain
millions of tuples adding up to gigabytes of data. However, there are 2n groupings
with n dimension attributes; hierarchies on attributes increase the number further.
As a result, the entire data cube is often larger than the original relation that formed
the data cube and in many cases it is not feasible to store the entire data cube.

Instead of precomputing and storing all possible groupings, it makes sense to pre-
compute and store some of the groupings, and to compute others on demand. In-
stead of computing queries from the original relation, which may take a very long
time, we can compute them from other precomputed queries. For instance, suppose
a query requires summaries by (item-name, color), which has not been precomputed.
The query result can be computed from summaries by (item-name, color, size), if that
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has been precomputed. See the bibliographical notes for references on how to select
a good set of groupings for precomputation, given limits on the storage available for
precomputed results.

The data in a data cube cannot be generated by a single SQL query using the basic
group by constructs, since aggregates are computed for several different groupings
of the dimension attributes. Section 22.2.3 discusses SQL extensions to support OLAP
functionality.

22.2.3 Extended Aggregation
The SQL-92 aggregation functionality is limited, so several extensions were imple-
mented by different databases. The SQL:1999 standard, however, defines a rich set of
aggregate functions, which we outline in this section and in the next two sections. The
Oracle and IBM DB2 databases support most of these features, and other databases
will no doubt support these features in the near future.

The new aggregate functions on single attributes are standard deviation and vari-
ance (stddev and variance). Standard deviation is the square root of variance.2 Some
database systems support other aggregate functions such as median and mode. Some
database systems even allow users to add new aggregate functions.

SQL:1999 also supports a new class of binary aggregate functions, which can com-
pute statistical results on pairs of attributes; they include correlations, covariances,
and regression curves, which give a line approximating the relation between the val-
ues of the pair of attributes. Definitions of these functions may be found in any stan-
dard textbook on statistics, such as those referenced in the bibliographical notes.

SQL:1999 also supports generalizations of the group by construct, using the cube
and rollup constructs. A representative use of the cube construct is:

select item-name, color, size, sum(number)
from sales
group by cube(item-name, color, size)

This query computes the union of eight different groupings of the sales relation:

{ (item-name, color, size), (item-name, color), (item-name, size),
(color, size), (item-name), (color), (size), () }

where () denotes an empty group by list.
For each grouping, the result contains the null value for attributes not present in

the grouping. For instance, the table in Figure 22.2, with occurrences of all replaced
by null, can be computed by the query

select item-name, color, sum(number)
from sales
group by cube(item-name, color)

2. The SQL:1999 standard actually supports two types of variance, called population variance and sam-
ple variance, and correspondingly two types of standard deviation. The definitions of the two types differ
slightly; see a statistics textbook for details.
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A representative rollup construct is

select item-name, color, size, sum(number)
from sales
group by rollup(item-name, color, size)

Here, only four groupings are generated:

{ (item-name, color, size), (item-name, color), (item-name), () }

Rollup can be used to generate aggregates at multiple levels of a hierarchy on a
column. For instance, suppose we have a table itemcategory(item-name, category) giv-
ing the category of each item. Then the query

select category, item-name, sum(number)
from sales, category
where sales.item-name = itemcategory.item-name
group by rollup(category, item-name)

would give a hierarchical summary by item-name and by category.
Multiple rollups and cubes can be used in a single group by clause. For instance,

the following query

select item-name, color, size, sum(number)
from sales
group by rollup(item-name), rollup(color, size)

generates the groupings

{ (item-name, color, size), (item-name, color), (item-name),
(color, size), (color), () }

To understand why, note that rollup(item-name) generates two groupings, {(item-
name), ()}, and rollup(color, size) generates three groupings, {(color, size), (color), () }.
The cross product of the two gives us the six groupings shown.

As we mentioned in Section 22.2.1, SQL:1999 uses the value null to indicate the
usual sense of null as well as all. This dual use of null can cause ambiguity if the
attributes used in a rollup or cube clause contain null values. The function grouping
can be applied on an attribute; it returns 1 if the value is a null value representing all,
and returns 0 in all other cases. Consider the following query:

select item-name, color, size, sum(number),
grouping(item-name) as item-name-flag,
grouping(color) as color-flag,
grouping(size) as size-flag

from sales
group by cube(item-name, color, size)
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The output is the same as in the version of the query without grouping, but with
three extra columns called item-name-flag, color-flag, and size-flag. In each tuple, the
value of a flag field is 1 if the corresponding field is a null representing all.

Instead of using tags to indicate nulls that represent all, we can replace the null
value by a value of our choice:

decode(grouping(item-name), 1, ’all’, item-name)

This expression returns the value “all” if the value of item-name is a null correspond-
ing to all, and returns the actual value of item-name otherwise. This expression can be
used in place of item-name in the select clause to get “all” in the output of the query,
in place of nulls representing all.

Neither the rollup nor the cube clause gives complete control on the groupings
that are generated. For instance, we cannot use them to specify that we want only
groupings {(color, size), (size, item-name)}. Such restricted groupings can be generated
by using the grouping construct in the having clause; we leave the details as an
exercise for you.

22.2.4 Ranking
Finding the position of a value in a larger set is a common operation. For instance,
we may wish to assign students a rank in class based on their total marks, with the
rank 1 going to the student with the highest marks, the rank 2 to the student with
the next highest marks, and so on. While such queries can be expressed in SQL-92,
they are difficult to express and inefficient to evaluate. Programmers often resort to
writing the query partly in SQL and partly in a programming language. A related
type of query is to find the percentile in which a value in a (multi)set belongs, for
example, the bottom third, middle third, or top third. We study SQL:1999 support for
these types of queries here.

Ranking is done in conjunction with an order by specification. Suppose we are
given a relation student-marks(student-id, marks) which stores the marks obtained by
each student. The following query gives the rank of each student.

select student-id, rank() over (order by (marks) desc) as s-rank
from student-marks

Note that the order of tuples in the output is not defined, so they may not be sorted
by rank. An extra order by clause is needed to get them in sorted order, as shown
below.

select student-id, rank () over (order by (marks) desc) as s-rank
from student-marks order by s-rank

A basic issue with ranking is how to deal with the case of multiple tuples that are
the same on the ordering attribute(s). In our example, this means deciding what to
do if there are two students with the same marks. The rank function gives the same
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rank to all tuples that are equal on the order by attributes. For instance, if the highest
mark is shared by two students, both would get rank 1. The next rank given would
be 3, not 2, so if three students get the next highest mark, they would all get rank
3, and the next student(s) would get rank 5, and so on. There is also a dense rank
function that does not create gaps in the ordering. In the above example, the tuples
with the second highest value all get rank 2, and tuples with the third highest value
get rank 3, and so on.

Ranking can be done within partitions of the data. For instance, suppose we have
an additional relation student-section(student-id, section) that stores for each student
the section in which the student studies. The following query then gives the rank of
students within each section.

select student-id, section,
rank () over (partition by section order by marks desc) as sec-rank

from student-marks, student-section
where student-marks.student-id = student-section.student-id
order by section, sec-rank

The outer order by clause orders the result tuples by section, and within each section
by the rank.

Multiple rank expressions can be used within a single select statement; thus we
can obtain the overall rank and the rank within the section by using two rank expres-
sions in the same select clause. An interesting question is what happens when rank-
ing (possibly with partitioning) occurs along with a group by clause. In this case, the
group by clause is applied first, and partitioning and ranking are done on the results
of the group by. Thus aggregate values can then be used for ranking. For example,
suppose we had marks for each student for each of several subjects. To rank students
by the sum of their marks in different subjects, we can use a group by clause to com-
pute the aggregate marks for each student, and then rank students by the aggregate
sum. We leave details as an exercise for you.

The ranking functions can be used to find the top n tuples by embedding a ranking
query within an outer-level query; we leave details as an exercise. Note that bottom
n is simply the same as top n with a reverse sorting order. Several database systems
provide nonstandard SQL extensions to specify directly that only the top n results are
required; such extensions do not require the rank function, and simplify the job of the
optimizer, but are (currently) not as general since they do not support partitioning.

SQL:1999 also specifies several other functions that can be used in place of rank.
For instance, percent rank of a tuple gives the rank of the tuple as a fraction. If there
are n tuples in the partition3 and the rank of the tuple is r, then its percent rank is
defined as (r − 1)/(n − 1) (and as null if there is only one tuple in the partition). The
function cume dist, short for cumulative distribution, for a tuple is defined as p/n
where p is the number of tuples in the partition with ordering values preceding or
equal to the ordering value of the tuple, and n is the number of tuples in the parti-

3. The entire set is treated as a single partition if no explicit partition is used.
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tion. The function row number sorts the rows and gives each row a unique number
corresponding to its position in the sort order; different rows with the same ordering
value would get different row numbers, in a nondeterministic fashion.

Finally, for a given constant n, the ranking function ntile(n) takes the tuples in each
partition in the specified order, and divides them into n buckets with equal numbers
of tuples.4 For each tuple, ntile(n) then gives the number of the bucket in which it is
placed, with bucket numbers starting with 1. This function is particularly useful for
constructing histograms based on percentiles. For instance, we can sort employees
by salary, and use ntile(3) to find which range (bottom third, middle third, or top
third) each employee is in, and compute the total salary earned by employees in each
range:

select threetile, sum(salary)
from (

select salary, ntile(3) over (order by (salary)) as threetile
from employee) as s

group by threetile.

The presence of null values can complicate the definition of rank, since it is not
clear where they should occur first in the sort order. SQL:1999 permits the user to
specify where they should occur by using nulls first or nulls last, for instance

select student-id, rank () over (order by marks desc nulls last) as s-rank
from student-marks

22.2.5 Windowing
An example of a window query is query that, given sales values for each date, cal-
culates for each date the average of the sales on that day, the previous day, and the
next day; such moving average queries are used to smooth out random variations.
Another example of a window query is one that finds the cumulative balance in an
account, given a relation specifying the deposits and withdrawals on an account.
Such queries are either hard or impossible (depending on the exact query) to express
in basic SQL.

SQL:1999 provides a windowing feature to support such queries. In contrast to
group by, the same tuple can exist in multiple windows. Suppose we are given a
relation transaction(account-number, date-time, value), where value is positive for a de-
posit and negative for a withdrawal. We assume there is at most one transaction per
date-time value.

Consider the query

4. If the total number of tuples in a partition is not divisible by n, then the number of tuples in each
bucket can differ by at most 1. Tuples with the same value for the ordering attribute may be assigned to
different buckets, nondeterministically, in order to make the number of tuples in each bucket equal.
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select account-number, date-time,
sum(value) over

(partition by account-number
order by date-time
rows unbounded preceding)

as balance
from transaction
order by account-number, date-time

The query gives the cumulative balances on each account just before each transaction
on the account; the cumulative balance of the account is the sum of values of all
earlier transactions on the account.

The partition by clause partitions tuples by account number, so for each row only
the tuples in its partition are considered. A window is created for each tuple; the key-
words rows unbounded preceding specify that the window for each tuple consists
of all tuples in the partition that precede it in the specified order (here, increasing
order of date-time). The aggregate function sum(value) is applied on all the tuples in
the window. Observe that the query does not use a group by clause, since there is an
output tuple for each tuple in the transaction relation.

While the query could be written without these extended constructs, it would be
rather difficult to formulate. Note also that different windows can overlap, that is, a
tuple may be present in more than one window.

Other types of windows can be specified. For instance, to get a window containing
the previous 10 rows for each row, we can specify rows 10 preceding. To get a win-
dow containing the current, previous, and following row, we can use between rows
1 preceding and 1 following. To get the previous rows and the current row, we can
say between rows unbounded preceding and current. Note that if the ordering is on
a nonkey attribute, the result is not deterministic, since the order of tuples is not fully
defined.

We can even specify windows by ranges of values, instead of numbers of rows. For
instance, suppose the ordering value of a tuple is v; then range between 10 preceding
and current row would give tuples whose ordering value is between v − 10 and v
(both values inclusive). When dealing with dates, we can use range interval 10 day
preceding to get a window containing tuples within the previous 10 days, but not
including the date of the tuple.

Clearly, the windowing functionality of SQL:1999 is very rich and can be used to
write rather complex queries with a small amount of effort.

22.3 Data Mining
The term data mining refers loosely to the process of semiautomatically analyzing
large databases to find useful patterns. Like knowledge discovery in artificial intelli-
gence (also called machine learning), or statistical analysis, data mining attempts to
discover rules and patterns from data. However, data mining differs from machine
learning and statistics in that it deals with large volumes of data, stored primarily on
disk. That is, data mining deals with “knowledge discovery in databases.”
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Some types of knowledge discovered from a database can be represented by a set
of rules. The following is an example of a rule, stated informally: “Young women
with annual incomes greater than $50,000 are the most likely people to buy small
sports cars.” Of course such rules are not universally true, and have degrees of “sup-
port” and “confidence,” as we shall see. Other types of knowledge are represented
by equations relating different variables to each other, or by other mechanisms for
predicting outcomes when the values of some variables are known.

There are a variety of possible types of patterns that may be useful, and different
techniques are used to find different types of patterns. We shall study a few examples
of patterns and see how they may be automatically derived from a database.

Usually there is a manual component to data mining, consisting of preprocessing
data to a form acceptable to the algorithms, and postprocessing of discovered pat-
terns to find novel ones that could be useful. There may also be more than one type
of pattern that can be discovered from a given database, and manual interaction may
be needed to pick useful types of patterns. For this reason, data mining is really a
semiautomatic process in real life. However, in our description we concentrate on
the automatic aspect of mining.

22.3.1 Applications of Data Mining
The discovered knowledge has numerous applications. The most widely used appli-
cations are those that require some sort of prediction. For instance, when a person
applies for a credit card, the credit-card company wants to predict if the person is a
good credit risk. The prediction is to be based on known attributes of the person, such
as age, income, debts, and past debt repayment history. Rules for making the predic-
tion are derived from the same attributes of past and current credit card holders,
along with their observed behavior, such as whether they defaulted on their credit-
card dues. Other types of prediction include predicting which customers may switch
over to a competitor (these customers may be offered special discounts to tempt them
not to switch), predicting which people are likely to respond to promotional mail
(“junk mail”), or predicting what types of phone calling card usage are likely to be
fraudulent.

Another class of applications looks for associations, for instance, books that tend
to be bought together. If a customer buys a book, an online bookstore may suggest
other associated books. If a person buys a camera, the system may suggest accessories
that tend to be bought along with cameras. A good salesperson is aware of such pat-
terns and exploits them to make additional sales. The challenge is to automate the
process. Other types of associations may lead to discovery of causation. For instance,
discovery of unexpected associations between a newly introduced medicine and car-
diac problems led to the finding that the medicine may cause cardiac problems in
some people. The medicine was then withdrawn from the market.

Associations are an example of descriptive patterns. Clusters are another example
of such patterns. For example, over a century ago a cluster of typhoid cases was found
around a well, which led to the discovery that the water in the well was contaminated
and was spreading typhoid. Detection of clusters of disease remains important even
today.
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22.3.2 Classification
As mentioned in Section 22.3.1, prediction is one of the most important types of data
mining. We outline what is classification, study techniques for building one type of
classifiers, called decision tree classifiers, and then study other prediction techniques.

Abstractly, the classification problem is this: Given that items belong to one of
several classes, and given past instances (called training instances) of items along
with the classes to which they belong, the problem is to predict the class to which a
new item belongs. The class of the new instance is not known, so other attributes of
the instance must be used to predict the class.

Classification can be done by finding rules that partition the given data into
disjoint groups. For instance, suppose that a credit-card company wants to decide
whether or not to give a credit card to an applicant. The company has a variety of
information about the person, such as her age, educational background, annual in-
come, and current debts, that it can use for making a decision.

Some of this information could be relevant to the credit worthiness of the appli-
cant, whereas some may not be. To make the decision, the company assigns a credit-
worthiness level of excellent, good, average, or bad to each of a sample set of cur-
rent customers according to each customer’s payment history. Then, the company
attempts to find rules that classify its current customers into excellent, good, aver-
age, or bad, on the basis of the information about the person, other than the actual
payment history (which is unavailable for new customers). Let us consider just two
attributes: education level (highest degree earned) and income. The rules may be of
the following form:

∀person P, P .degree = masters and P .income > 75, 000
⇒ P .credit = excellent

∀ person P, P .degree = bachelors or
(P .income ≥ 25, 000 and P .income ≤ 75, 000) ⇒ P .credit = good

Similar rules would also be present for the other credit worthiness levels (average
and bad).

The process of building a classifier starts from a sample of data, called a training
set. For each tuple in the training set, the class to which the tuple belongs is already
known. For instance, the training set for a credit-card application may be the existing
customers, with their credit worthiness determined from their payment history. The
actual data, or population, may consist of all people, including those who are not
existing customers. There are several ways of building a classifier, as we shall see.

22.3.2.1 Decision Tree Classifiers
The decision tree classifier is a widely used technique for classification. As the name
suggests, decision tree classifiers use a tree; each leaf node has an associated class,
and each internal node has a predicate (or more generally, a function) associated with
it. Figure 22.6 shows an example of a decision tree.

To classify a new instance, we start at the root, and traverse the tree to reach a
leaf; at an internal node we evaluate the predicate (or function) on the data instance,
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degree

income income income income

bachelors masters doctoratenone

bad average good

bad average good excellent

<50K >100K
<25K >=25K

>=50K<50K

<25K >75K

25 to 75K50 to 100K

Figure 22.6 Classification tree.

to find which child to go to. The process continues till we reach a leaf node. For
example, if the degree level of a person is masters, and the persons income is 40K,
starting from the root we follow the edge labeled “masters,” and from there the edge
labeled “25K to 75K,” to reach a leaf. The class at the leaf is “good,” so we predict that
the credit risk of that person is good.

Building Decision Tree Classifiers

The question then is how to build a decision tree classifier, given a set of training
instances. The most common way of doing so is to use a greedy algorithm, which
works recursively, starting at the root and building the tree downward. Initially there
is only one node, the root, and all training instances are associated with that node.

At each node, if all, or “almost all” training instances associated with the node be-
long to the same class, then the node becomes a leaf node associated with that class.
Otherwise, a partitioning attribute and partitioning conditions must be selected to
create child nodes. The data associated with each child node is the set of training
instances that satisfy the partitioning condition for that child node. In our example,
the attribute degree is chosen, and four children, one for each value of degree, are cre-
ated. The conditions for the four children nodes are degree = none, degree = bachelors,
degree = masters, and degree = doctorate, respectively. The data associated with each
child consist of training instances satisfying the condition associated with that child.
At the node corresponding to masters, the attribute income is chosen, with the range
of values partitioned into intervals 0 to 25,000, 25,000 to 50,000, 50,000 to 75,000, and
over 75,000. The data associated with each node consist of training instances with the
degree attribute being masters, and the income attribute being in each of these ranges,
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respectively. As an optimization, since the class for the range 25,000 to 50,000 and the
range 50,000 to 75,000 is the same under the node degree = masters, the two ranges
have been merged into a single range 25,000 to 75,000.

Best Splits

Intuitively, by choosing a sequence of partitioning attributes, we start with the set
of all training instances, which is “impure” in the sense that it contains instances
from many classes, and end up with leaves which are “pure” in the sense that at
each leaf all training instances belong to only one class. We shall see shortly how to
measure purity quantitatively. To judge the benefit of picking a particular attribute
and condition for partitioning of the data at a node, we measure the purity of the
data at the children resulting from partitioning by that attribute. The attribute and
condition that result in the maximum purity are chosen.

The purity of a set S of training instances can be measured quantitatively in several
ways. Suppose there are k classes, and of the instances in S the fraction of instances
in class i is pi. One measure of purity, the Gini measure is defined as

Gini(S) = 1 −
k∑

i−1

p2
i

When all instances are in a single class, the Gini value is 0, while it reaches its max-
imum (of 1 − 1/k) if each class has the same number of instances. Another measure
of purity is the entropy measure, which is defined as

Entropy(S) = −
k∑

i−1

pi log2 pi

The entropy value is 0 if all instances are in a single class, and reaches its maximum
when each class has the same number of instances. The entropy measure derives
from information theory.

When a set S is split into multiple sets Si, i = 1, 2, . . . , r, we can measure the purity
of the resultant set of sets as:

Purity(S1, S2, . . . , Sr) =
r∑

i=1

|Si|
|S| purity(Si)

That is, the purity is the weighted average of the purity of the sets Si. The above
formula can be used with both the Gini measure and the entropy measure of purity.

The information gain due to a particular split of S into Si, i = 1, 2, . . . , r is then

Information-gain(S, {S1, S2, . . . , Sr}) = purity(S) − purity(S1, S2, . . . , Sr)

Splits into fewer sets are preferable to splits into many sets, since they lead to
simpler and more meaningful decision trees. The number of elements in each of the
sets Si may also be taken into account; otherwise, whether a set Si has 0 elements or
1 element would make a big difference in the number of sets, although the split is the
same for almost all the elements. The information content of a particular split can be



Silberschatz−Korth−Sudarshan: 
Database System 
Concepts, Fourth Edition

VII. Other Topics 22. Advanced Querying and 
Information Retrieval

828 © The McGraw−Hill 
Companies, 2001

22.3 Data Mining 835

defined in terms of entropy as

Information-content(S, {S1, S2, . . . , Sr})) = −
r∑

i−1

|Si|
|S| log2

|Si|
|S|

All of this leads to a definition: The best split for an attribute is the one that gives
the maximum information gain ratio, defined as

Information-gain(S, {S1, S2, . . . , Sr})
Information-content(S, {S1, S2, . . . , Sr})

Finding Best Splits

How do we find the best split for an attribute? How to split an attribute depends
on the type of the attribute. Attributes can be either continuous valued, that is, the
values can be ordered in a fashion meaningful to classification, such as age or income,
or can be categorical, that is, they have no meaningful order, such as department
names or country names. We do not expect the sort order of department names or
country names to have any significance to classification.

Usually attributes that are numbers (integers/reals) are treated as continuous val-
ued while character string attributes are treated as categorical, but this may be con-
trolled by the user of the system. In our example, we have treated the attribute degree
as categorical, and the attribute income as continuous valued.

We first consider how to find best splits for continuous-valued attributes. For sim-
plicity, we shall only consider binary splits of continuous-valued attributes, that is,
splits that result in two children. The case of multiway splits is more complicated;
see the bibliographical notes for references on the subject.

To find the best binary split of a continuous-valued attribute, we first sort the at-
tribute values in the training instances. We then compute the information gain ob-
tained by splitting at each value. For example, if the training instances have values
1, 10, 15, and 25 for an attribute, the split points considered are 1, 10, and 15; in each
case values less than or equal to the split point form one partition and the rest of the
values form the other partition. The best binary split for the attribute is the split that
gives the maximum information gain.

For a categorical attribute, we can have a multiway split, with a child for each
value of the attribute. This works fine for categorical attributes with only a few dis-
tinct values, such as degree or gender. However, if the attribute has many distinct
values, such as department names in a large company, creating a child for each value
is not a good idea. In such cases, we would try to combine multiple values into each
child, to create a smaller number of children. See the bibliographical notes for refer-
ences on how to do so.

Decision-Tree Construction Algorithm

The main idea of decision tree construction is to evaluate different attributes and dif-
ferent partitioning conditions, and pick the attribute and partitioning condition that
results in the maximum information gain ratio. The same procedure works recur-
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procedure GrowTree(S)
Partition(S);

procedure Partition (S)
if (purity(S) > δp or |S| < δs ) then

return;
for each attribute A

evaluate splits on attribute A;
Use best split found (across all attributes) to partition

S into S1, S2, . . . , Sr;
for i = 1, 2, . . . , r

Partition(Si);

Figure 22.7 Recursive construction of a decision tree.

sively on each of the sets resulting from the split, thereby recursively constructing
a decision tree. If the data can be perfectly classified, the recursion stops when the
purity of a set is 0. However, often data are noisy, or a set may be so small that par-
titioning it further may not be justified statistically. In this case, the recursion stops
when the purity of a set is “sufficiently high,” and the class of resulting leaf is defined
as the class of the majority of the elements of the set. In general, different branches of
the tree could grow to different levels.

Figure 22.7 shows pseudocode for a recursive tree construction procedure, which
takes a set of training instances S as parameter. The recursion stops when the set is
sufficiently pure or the set S is too small for further partitioning to be statistically
significant. The parameters δp and δs define cutoffs for purity and size; the system
may give them default values, that may be overridden by users.

There are a wide variety of decision tree construction algorithms, and we outline
the distinguishing features of a few of them. See the bibliographical notes for details.
With very large data sets, partitioning may be expensive, since it involves repeated
copying. Several algorithms have therefore been developed to minimize the I/O and
computation cost when the training data are larger than available memory.

Several of the algorithms also prune subtrees of the generated decision tree to
reduce overfitting: A subtree is overfitted if it has been so highly tuned to the specifics
of the training data that it makes many classification errors on other data. A subtree
is pruned by replacing it with a leaf node. There are different pruning heuristics;
one heuristic uses part of the training data to build the tree and another part of the
training data to test it. The heuristic prunes a subtree if it finds that misclassification
on the test instances would be reduced if the subtree were replaced by a leaf node.

We can generate classification rules from a decision tree, if we so desire. For each
leaf we generate a rule as follows: The left-hand side is the conjunction of all the split
conditions on the path to the leaf, and the class is the class of the majority of the
training instances at the leaf. An example of such a classification rule is

degree = masters and income > 75, 000 ⇒ excellent
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22.3.2.2 Other Types of Classifiers
There are several types of classifiers other than decision tree classifiers. Two types
that have been quite useful are neural net classifiers and Bayesian classifiers. Neural net
classifiers use the training data to train artificial neural nets. There is a large body of
literature on neural nets, and we do not consider them further here.

Bayesian classifiers find the distribution of attribute values for each class in the
training data; when given a new instance d, they use the distribution information to
estimate, for each class cj , the probability that instance d belongs to class cj , denoted
by p(cj |d), in a manner outlined here. The class with maximum probability becomes
the predicted class for instance d.

To find the probability p(cj |d) of instance d being in class cj , Bayesian classifiers
use Bayes’ theorem, which says

p(cj |d) =
p(d|cj)p(cj)

p(d)

where p(d|cj) is the probability of generating instance d given class cj , p(cj) is the
probability of occurrence of class cj , and p(d) is the probability of instance d occur-
ring. Of these, p(d) can be ignored since it is the same for all classes. p(cj) is simply
the fraction of training instances that belong to class cj .

Finding p(d|cj) exactly is difficult, since it requires a complete distribution of in-
stances of cj . To simplify the task, naive Bayesian classifiers assume attributes have
independent distributions, and thereby estimate

p(d|cj) = p(d1|cj) ∗ p(d2|cj) ∗ . . . ∗ p(dn|cj)

That is, the probability of the instance d occurring is the product of the probability of
occurrence of each of the attribute values di of d, given the class is cj .

The probabilities p(di|cj) derive from the distribution of values for each attribute i,
for each class class cj . This distribution is computed from the training instances that
belong to each class cj ; the distribution is usually approximated by a histogram. For
instance, we may divide the range of values of attribute i into equal intervals, and
store the fraction of instances of class cj that fall in each interval. Given a value di for
attribute i, the value of p(di|cj) is simply the fraction of instances belonging to class
cj that fall in the interval to which di belongs.

A significant benefit of Bayesian classifiers is that they can classify instances with
unknown and null attribute values—unknown or null attributes are just omitted
from the probability computation. In contrast, decision tree classifiers cannot mean-
ingfully handle situations where an instance to be classified has a null value for a
partitioning attribute used to traverse further down the decision tree.

22.3.2.3 Regression
Regression deals with the prediction of a value, rather than a class. Given values for
a set of variables, X1, X2, . . . , Xn, we wish to predict the value of a variable Y . For
instance, we could treat the level of education as a number and income as another
number, and, on the basis of these two variables, we wish to predict the likelihood of
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default, which could be a percentage chance of defaulting, or the amount involved in
the default.

One way is to infer coefficients a0, a1, a1, . . . , an such that

Y = a0 + a1 ∗ X1 + a2 ∗ X2 + · · · + an ∗ Xn

Finding such a linear polynomial is called linear regression. In general, we wish to
find a curve (defined by a polynomial or other formula) that fits the data; the process
is also called curve fitting.

The fit may only be approximate, because of noise in the data or because the rela-
tionship is not exactly a polynomial, so regression aims to find coefficients that give
the best possible fit. There are standard techniques in statistics for finding regression
coefficients. We do not discuss these techniques here, but the bibliographical notes
provide references.

22.3.3 Association Rules
Retail shops are often interested in associations between different items that people
buy. Examples of such associations are:

• Someone who buys bread is quite likely also to buy milk

• A person who bought the book Database System Concepts is quite likely also to
buy the book Operating System Concepts.

Association information can be used in several ways. When a customer buys a partic-
ular book, an online shop may suggest associated books. A grocery shop may decide
to place bread close to milk, since they are often bought together, to help shoppers fin-
ish their task faster. Or the shop may place them at opposite ends of a row, and place
other associated items in between to tempt people to buy those items as well, as the
shoppers walk from one end of the row to the other. A shop that offers discounts on
one associated item may not offer a discount on the other, since the customer will
probably buy the other anyway.

Association Rules

An example of an association rule is

bread ⇒ milk

In the context of grocery-store purchases, the rule says that customers who buy bread
also tend to buy milk with a high probability. An association rule must have an asso-
ciated population: the population consists of a set of instances. In the grocery-store
example, the population may consist of all grocery store purchases; each purchase is
an instance. In the case of a bookstore, the population may consist of all people who
made purchases, regardless of when they made a purchase. Each customer is an in-
stance. Here, the analyst has decided that when a purchase is made is not significant,
whereas for the grocery-store example, the analyst may have decided to concentrate
on single purchases, ignoring multiple visits by the same customer.
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Rules have an associated support, as well as an associated confidence. These are
defined in the context of the population:

• Support is a measure of what fraction of the population satisfies both the an-
tecedent and the consequent of the rule.

For instance, suppose only 0.001 percent of all purchases include milk and
screwdrivers. The support for the rule

milk ⇒ screwdrivers

is low. The rule may not even be statistically significant—perhaps there was
only a single purchase that included both milk and screwdrivers. Businesses
are usually not interested in rules that have low support, since they involve
few customers, and are not worth bothering about.

On the other hand, if 50 percent of all purchases involve milk and bread,
then support for rules involving bread and milk (and no other item) is rela-
tively high, and such rules may be worth attention. Exactly what minimum
degree of support is considered desirable depends on the application.

• Confidence is a measure of how often the consequent is true when the an-
tecedent is true. For instance, the rule

bread ⇒ milk

has a confidence of 80 percent if 80 percent of the purchases that include bread
also include milk. A rule with a low confidence is not meaningful. In busi-
ness applications, rules usually have confidences significantly less than 100
percent, whereas in other domains, such as in physics, rules may have high
confidences.

Note that the confidence of bread ⇒ milk may be very different from the
confidence of milk ⇒ bread, although both have the same support.

Finding Association Rules

To discover association rules of the form

i1, i2, . . . , in ⇒ i0

we first find sets of items with sufficient support, called large itemsets. In our exam-
ple we find sets of items that are included in a sufficiently large number of instances.
We will shortly see how to compute large itemsets.

For each large itemset, we then output all rules with sufficient confidence that
involve all and only the elements of the set. For each large itemset S, we output a
rule S − s ⇒ s for every subset s ⊂ S, provided S − s ⇒ s has sufficient confidence;
the confidence of the rule is given by support of s divided by support of S.

We now consider how to generate all large itemsets. If the number of possible sets
of items is small, a single pass over the data suffices to detect the level of support
for all the sets. A count, initialized to 0, is maintained for each set of items. When a
purchase record is fetched, the count is incremented for each set of items such that
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all items in the set are contained in the purchase. For instance, if a purchase included
items a, b, and c, counts would be incremented for {a}, {b}, {c}, {a, b}, {b, c}, {a, c},
and {a, b, c}. Those sets with a sufficiently high count at the end of the pass corre-
spond to items that have a high degree of association.

The number of sets grows exponentially, making the procedure just described in-
feasible if the number of items is large. Luckily, almost all the sets would normally
have very low support; optimizations have been developed to eliminate most such
sets from consideration. These techniques use multiple passes on the database, con-
sidering only some sets in each pass.

In the a priori technique for generating large itemsets, only sets with single items
are considered in the first pass. In the second pass, sets with two items are considered,
and so on.

At the end of a pass all sets with sufficient support are output as large itemsets.
Sets found to have too little support at the end of a pass are eliminated. Once a set is
eliminated, none of its supersets needs to be considered. In other words, in pass i we
need to count only supports for sets of size i such that all subsets of the set have been
found to have sufficiently high support; it suffices to test all subsets of size i − 1 to
ensure this property. At the end of some pass i, we would find that no set of size i has
sufficient support, so we do not need to consider any set of size i + 1. Computation
then terminates.

22.3.4 Other Types of Associations
Using plain association rules has several shortcomings. One of the major shortcom-
ings is that many associations are not very interesting, since they can be predicted.
For instance, if many people buy cereal and many people buy bread, we can predict
that a fairly large number of people would buy both, even if there is no connection be-
tween the two purchases. What would be interesting is a deviation from the expected
co-occurrence of the two. In statistical terms, we look for correlations between items;
correlations can be positive, in that the co-occurrence is higher than would have been
expected, or negative, in that the items co-occur less frequently than predicted. See a
standard textbook on statistics for more information about correlations.

Another important class of data-mining applications is sequence associations (or
correlations). Time-series data, such as stock prices on a sequence of days, form an
example of sequence data. Stock-market analysts want to find associations among
stock-market price sequences. An example of such a association is the following rule:
“Whenever bond rates go up, the stock prices go down within 2 days.” Discover-
ing such association between sequences can help us to make intelligent investment
decisions. See the bibliographical notes for references to research on this topic.

Deviations from temporal patterns are often interesting. For instance, if a company
has been growing at a steady rate each year, a deviation from the usual growth rate
is surprising. If sales of winter clothes go down in summer, it is not surprising, since
we can predict it from past years; a deviation that we could not have predicted from
past experience would be considered interesting. Mining techniques can find devia-
tions from what one would have expected on the basis of past temporal/sequential
patterns. See the bibliographical notes for references to research on this topic.
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22.3.5 Clustering
Intuitively, clustering refers to the problem of finding clusters of points in the given
data. The problem of clustering can be formalized from distance metrics in several
ways. One way is to phrase it as the problem of grouping points into k sets (for a
given k) so that the average distance of points from the centroid of their assigned
cluster is minimized.5 Another way is to group points so that the average distance
between every pair of points in each cluster is minimized. There are other defini-
tions too; see the bibliographical notes for details. But the intuition behind all these
definitions is to group similar points together in a single set.

Another type of clustering appears in classification systems in biology. (Such clas-
sification systems do not attempt to predict classes, rather they attempt to cluster re-
lated items together.) For instance, leopards and humans are clustered under the class
mammalia, while crocodiles and snakes are clustered under reptilia. Both mammalia
and reptilia come under the common class chordata. The clustering of mammalia has
further subclusters, such as carnivora and primates. We thus have hierarchical clus-
tering. Given characteristics of different species, biologists have created a complex
hierarchical clustering scheme grouping related species together at different levels of
the hierarchy.

Hierarchical clustering is also useful in other domains—for clustering documents,
for example. Internet directory systems (such as Yahoo’s) cluster related documents
in a hierarchical fashion (see Section 22.5.5). Hierarchical clustering algorithms can
be classified as agglomerative clustering algorithms, which start by building small
clusters and then creater higher levels, or divisive clustering algorithms, which first
create higher levels of the hierarchical clustering, then refine each resulting cluster
into lower level clusters.

The statistics community has studied clustering extensively. Database research has
provided scalable clustering algorithms that can cluster very large data sets (that may
not fit in memory). The Birch clustering algorithm is one such algorithm. Intuitively,
data points are inserted into a multidimensional tree structure (based on R-trees, de-
scribed in Section 23.3.5.3), and guided to appropriate leaf nodes based on nearness
to representative points in the internal nodes of the tree. Nearby points are thus clus-
tered together in leaf nodes, and summarized if there are more points than fit in
memory. Some postprocessing after insertion of all points gives the desired overall
clustering. See the bibliographical notes for references to the Birch algorithm, and
other techniques for clustering, including algorithms for hierarchical clustering.

An interesting application of clustering is to predict what new movies (or books,
or music) a person is likely to be interested in, on the basis of:

1. The person’s past preferences in movies

2. Other people with similar past preferences

3. The preferences of such people for new movies

5. The centroid of a set of points is defined as a point whose coordinate on each dimension is the average
of the coordinates of all the points of that set on that dimension. For example in two dimensions, the

centroid of a set of points { (x1, y1), (x2, y2), . . ., (xn, yn) } is given by (
Pn

i=1 xi

n
,
Pn

i=1 yi

n
)
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One approach to this problem is as follows. To find people with similar past prefer-
ences we create clusters of people based on their preferences for movies. The accuracy
of clustering can be improved by previously clustering movies by their similarity, so
even if people have not seen the same movies, if they have seen similar movies they
would be clustered together. We can repeat the clustering, alternately clustering peo-
ple, then movies, then people, and so on till we reache an equilibrium. Given a new
user, we find a cluster of users most similar to that user, on the basis of the user’s
preferences for movies already seen. We then predict movies in movie clusters that
are popular with that user’s cluster as likely to be interesting to the new user. In fact,
this problem is an instance of collaborative filtering, where users collaborate in the task
of filtering information to find information of interest.

22.3.6 Other Types of Mining
Text mining applies data mining techniques to textual documents. For instance, there
are tools that form clusters on pages that a user has visited; this helps users when
they browse the history of their browsing to find pages they have visited earlier. The
distance between pages can be based, for instance, on common words in the pages
(see Section 22.5.1.3). Another application is to classify pages into a Web directory
automatically, according to their similarity with other pages (see Section 22.5.5).

Data-visualization systems help users to examine large volumes of data, and to
detect patterns visually. Visual displays of data—such as maps, charts, and other
graphical representations—allow data to be presented compactly to users. A sin-
gle graphical screen can encode as much information as a far larger number of text
screens. For example, if the user wants to find out whether production problems at
plants are correlated to the locations of the plants, the problem locations can be en-
coded in a special color—say, red—on a map. The user can then quickly discover
locations where problems are occurring. The user may then form hypotheses about
why problems are occurring in those locations, and may verify the hypotheses quan-
titatively against the database.

As another example, information about values can be encoded as a color, and can
be displayed with as little as one pixel of screen area. To detect associations between
pairs of items, we can use a two-dimensional pixel matrix, with each row and each
column representing an item. The percentage of transactions that buy both items can
be encoded by the color intensity of the pixel. Items with high association will show
up as bright pixels in the screen—easy to detect against the darker background.

Data visualization systems do not automatically detect patterns, but provide sys-
tem support for users to detect patterns. Since humans are very good at detecting
visual patterns, data visualization is an important component of data mining.

22.4 Data Warehousing
Large companies have presences in many places, each of which may generate a large
volume of data. For instance, large retail chains have hundreds or thousands of stores,
whereas insurance companies may have data from thousands of local branches. Fur-
ther, large organizations have a complex internal organization structure, and there-
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Figure 22.8 Data-warehouse architecture.

fore different data may be present in different locations, or on different operational
systems, or under different schemas. For instance, manufacturing-problem data and
customer-complaint data may be stored on different database systems. Corporate de-
cision makers require access to information from all such sources. Setting up queries
on individual sources is both cumbersome and inefficient. Moreover, the sources of
data may store only current data, whereas decision makers may need access to past
data as well; for instance, information about how purchase patterns have changed in
the past year could be of great importance. Data warehouses provide a solution to
these problems.

A data warehouse is a repository (or archive) of information gathered from mul-
tiple sources, stored under a unified schema, at a single site. Once gathered, the data
are stored for a long time, permitting access to historical data. Thus, data warehouses
provide the user a single consolidated interface to data, making decision-support
queries easier to write. Moreover, by accessing information for decision support from
a data warehouse, the decision maker ensures that online transaction-processing sys-
tems are not affected by the decision-support workload.

22.4.1 Components of a Data Warehouse
Figure 22.8 shows the architecture of a typical data warehouse, and illustrates the
gathering of data, the storage of data, and the querying and data-analysis support.
Among the issues to be addressed in building a warehouse are the following:

• When and how to gather data. In a source-driven architecture for gather-
ing data, the data sources transmit new information, either continually (as
transaction processing takes place), or periodically (nightly, for example). In
a destination-driven architecture, the data warehouse periodically sends re-
quests for new data to the sources.
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Unless updates at the sources are replicated at the warehouse via two-phase
commit, the warehouse will never be quite up to date with the sources. Two-
phase commit is usually far too expensive to be an option, so data warehouses
typically have slightly out-of-date data. That, however, is usually not a prob-
lem for decision-support systems.

• What schema to use. Data sources that have been constructed independently
are likely to have different schemas. In fact, they may even use different data
models. Part of the task of a warehouse is to perform schema integration, and
to convert data to the integrated schema before they are stored. As a result, the
data stored in the warehouse are not just a copy of the data at the sources. In-
stead, they can be thought of as a materialized view of the data at the sources.

• Data cleansing. The task of correcting and preprocessing data is called data
cleansing. Data sources often deliver data with numerous minor inconsisten-
cies, that can be corrected. For example, names are often misspelled, and ad-
dresses may have street/area/city names misspelled, or zip codes entered in-
correctly. These can be corrected to a reasonable extent by consulting a data-
base of street names and zip codes in each city. Address lists collected from
multiple sources may have duplicates that need to be eliminated in a merge–
purge operation. Records for multiple individuals in a house may be grouped
together so only one mailing is sent to each house; this operation is called
householding.

• How to propagate updates. Updates on relations at the data sources must
be propagated to the data warehouse. If the relations at the data warehouse
are exactly the same as those at the data source, the propagation is straight-
forward. If they are not, the problem of propagating updates is basically the
view-maintenance problem, which was discussed in Section 14.5.

• What data to summarize. The raw data generated by a transaction-processing
system may be too large to store online. However, we can answer many queries
by maintaining just summary data obtained by aggregation on a relation,
rather than maintaining the entire relation. For example, instead of storing
data about every sale of clothing, we can store total sales of clothing by item-
name and category.

Suppose that a relation r has been replaced by a summary relation s. Users
may still be permitted to pose queries as though the relation r were available
online. If the query requires only summary data, it may be possible to trans-
form it into an equivalent one using s instead; see Section 14.5.

22.4.2 Warehouse Schemas
Data warehouses typically have schemas that are designed for data analysis, using
tools such as OLAP tools. Thus, the data are usually multidimensional data, with di-
mension attributes and measure attributes. Tables containing multidimensional data
are called fact tables and are usually very large. A table recording sales information
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for a retail store, with one tuple for each item that is sold, is a typical example of a fact
table. The dimensions of the sales table would include what the item is (usually an
item identifier such as that used in bar codes), the date when the item is sold, which
location (store) the item was sold from, which customer bought the item, and so on.
The measure attributes may include the number of items sold and the price of the
items.

To minimize storage requirements, dimension attributes are usually short identi-
fiers that are foreign keys into other other tables called dimension tables. For
instance, a fact table sales would have attributes item-id, store-id, customer-id, and date,
and measure attributes number and price. The attribute store-id is a foreign key into
a dimension table store, which has other attributes such as store location (city, state,
country). The item-id attribute of the sales table would be a foreign key into a di-
mension table item-info, which would contain information such as the name of the
item, the category to which the item belongs, and other item details such as color and
size. The customer-id attribute would be a foreign key into a customer table containing
attributes such as name and address of the customer. We can also view the date at-
tribute as a foreign key into a date-info table giving the month, quarter, and year of
each date.

The resultant schema appears in Figure 22.9. Such a schema, with a fact table,
multiple dimension tables, and foreign keys from the fact table to the dimension ta-
bles, is called a star schema. More complex data warehouse designs may have multi-
ple levels of dimension tables; for instance, the item-info table may have an attribute
manufacturer-id that is a foreign key into another table giving details of the manufac-
turer. Such schemas are called snowflake schemas. Complex data warehouse designs
may also have more than one fact table.

item-id
store-id

store-id
item-id
itemname
color
size

item-info

sales

store

city
state
country

date
month
quarter
year

date-info
number
date
customer-id

customer

customer-id
name
street
city
state
zipcode
country

category

price

Figure 22.9 Star schema for a data warehouse.
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22.5 Information-Retrieval Systems
The field of information retrieval has developed in parallel with the field of databases.
In the traditional model used in the field of information retrieval, information is orga-
nized into documents, and it is assumed that there is a large number of documents.
Data contained in documents is unstructured, without any associated schema. The
process of information retrieval consists of locating relevant documents, on the basis
of user input, such as keywords or example documents.

The Web provides a convenient way to get to, and to interact with, information
sources across the Internet. However, a persistent problem facing the Web is the ex-
plosion of stored information, with little guidance to help the user to locate what
is interesting. Information retrieval has played a critical role in making the Web a
productive and useful tool, especially for researchers.

Traditional examples of information-retrieval systems are online library catalogs
and online document-management systems such as those that store newspaper arti-
cles. The data in such systems are organized as a collection of documents; a newspaper
article or a catalog entry (in a library catalog) are examples of documents. In the con-
text of the Web, usually each HTML page is considered to be a document.

A user of such a system may want to retrieve a particular document or a particular
class of documents. The intended documents are typically described by a set of key-
words—for example, the keywords “database system” may be used to locate books
on database systems, and the keywords “stock” and “scandal” may be used to locate
articles about stock-market scandals. Documents have associated with them a set of
keywords, and documents whose keywords contain those supplied by the user are
retrieved.

Keyword-based information retrieval can be used not only for retrieving textual
data, but also for retrieving other types of data, such as video or audio data, that
have descriptive keywords associated with them. For instance, a video movie may
have associated with it keywords such as its title, director, actors, type, and so on.

There are several differences between this model and the models used in tradi-
tional database systems.

• Database systems deal with several operations that are not addressed in infor-
mation-retrieval systems. For instance, database systems deal with updates
and with the associated transactional requirements of concurrency control
and durability. These matters are viewed as less important in information sys-
tems. Similarly, database systems deal with structured information organized
with relatively complex data models (such as the relational model or object-
oriented data models), whereas information-retrieval systems traditionally
have used a much simpler model, where the information in the database is
organized simply as a collection of unstructured documents.

• Information-retrieval systems deal with several issues that have not been ad-
dressed adequately in database systems. For instance, the field of information
retrieval has dealt with the problems of managing unstructured documents,
such as approximate searching by keywords, and of ranking of documents on
estimated degree of relevance of the documents to the query.
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22.5.1 Keyword Search
Information-retrieval systems typically allow query expressions formed using key-
words and the logical connectives and, or, and not. For example, a user could ask
for all documents that contain the keywords “motorcycle and maintenance,” or docu-
ments that contain the keywords “computer or microprocessor,” or even documents
that contain the keyword “computer but not database.” A query containing keywords
without any of the above connectives is assumed to have ands implicitly connecting
the keywords.

In full text retrieval, all the words in each document are considered to be key-
words. For unstructured documents, full text retrieval is essential since there may be
no information about what words in the document are keywords. We shall use the
word term to refer to the words in a document, since all words are keywords.

In its simplest form an information retrieval system locates and returns all doc-
uments that contain all the keywords in the query, if the query has no connectives;
connectives are handled as you would expect. More sophisticated systems estimate
relevance of documents to a query so that the documents can be shown in order of
estimated relevance. They use information about term occurrences, as well as hyper-
link information, to estimate relevance; Section 22.5.1.1 and 22.5.1.2 outline how to do
so. Section 22.5.1.3 outlines how to define similarity of documents, and use similarity
for searching. Some systems also attempt to provide a better set of answers by using
the meanings of terms, rather than just the syntactic occurrence of terms, as outlined
in Section 22.5.1.4.

22.5.1.1 Relevance Ranking Using Terms
The set of all documents that satisfy a query expression may be very large; in par-
ticular, there are billions of documents on the Web, and most keyword queries on
a Web search engine find hundreds of thousands of documents containing the key-
words. Full text retrieval makes this problem worse: Each document may contain
many terms, and even terms that are only mentioned in passing are treated equiva-
lently with documents where the term is indeed relevant. Irrelevant documents may
get retrieved as a result.

Information retrieval systems therefore estimate relevance of documents to a query,
and return only highly ranked documents as answers. Relevance ranking is not an
exact science, but there are some well-accepted approaches.

The first question to address is, given a particular term t, how relevant is a partic-
ular document d to the term. One approach is to use the the number of occurrences
of the term in the document as a measure of its relevance, on the assumption that
relevant terms are likely to be mentioned many times in a document. Just counting
the number of occurrences of a term is usually not a good indicator: First, the num-
ber of occurrences depends on the length of the document, and second, a document
containing 10 occurrences of a term may not be 10 times as relevant as a document
containing one occurrence.
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One way of measuring r(d, t), the relevance of a document d to a term t, is

r(d, t) = log
(

1 +
n(d, t)
n(d)

)

where n(d) denotes the number of terms in the document and n(d, t) denotes the
number of occurrences of term t in the document d. Observe that this metric takes
the length of the document into account. The relevance grows with more occurrences
of a term in the document, although it is not directly proportional to the number of
occurrences.

Many systems refine the above metric by using other information. For instance, if
the term occurs in the title, or the author list, or the abstract, the document would be
considered more relevant to the term. Similarly, if the first occurrence of a term is late
in the document, the document may be considered less relevant than if the first oc-
currence is early in the document. The above notions can be formalized by extensions
of the formula we have shown for r(d, t). In the information retrieval community, the
relevance of a document to a term is referred to as term frequency, regardless of the
exact formula used.

A query Q may contain multiple keywords. The relevance of a document to a
query with two or more keywords is estimated by combining the relevance measures
of the document to each keyword. A simple way of combining the measures is to
add them up. However, not all terms used as keywords are equal. Suppose a query
uses two terms, one of which occurs frequently, such as “web,” and another that is
less frequent, such as “Silberschatz.” A document containing “Silberschatz” but not
“web” should be ranked higher than a document containing the term “web” but not
“Silberschatz.”

To fix the above problem, weights are assigned to terms using the inverse doc-
ument frequency, defined as 1/n(t), where n(t) denotes the number of documents
(among those indexed by the system) that contain the term t. The relevance of a doc-
ument d to a set of terms Q is then defined as

r(d, Q) =
∑

t∈Q

r(d, t)
n(t)

This measure can be further refined if the user is permitted to specify weights w(t)
for terms in the query, in which case the user-specified weights are also taken into
account by using w(t)/n(t) in place of 1/n(t).

Almost all text documents (in English) contain words such as “and,” “or,” “a,”
and so on, and hence these words are useless for querying purposes since their in-
verse document frequency is extremely low. Information-retrieval systems define a
set of words, called stop words, containing 100 or so of the most common words,
and remove this set from the document when indexing; such words are not used as
keywords, and are discarded if present in the keywords supplied by the user.

Another factor taken into account when a query contains multiple terms is the
proximity of the term in the document. If the terms occur close to each other in the
document, the document would be ranked higher than if they occur far apart. The
formula for r(d, Q) can be modified to take proximity into account.
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Given a query Q, the job of an information retrieval system is to return documents
in descending order of their relevance to Q. Since there may be a very large number
of documents that are relevant, information retrieval systems typically return only
the first few documents with the highest degree of estimated relevance, and permit
users to interactively request further documents.

22.5.1.2 Relevance Using Hyperlinks
Early Web search engines ranked documents by using only relevance measures simi-
lar to those described in Section 22.5.1.1. However, researchers soon realized that Web
documents have information that plain text documents do not have, namely hyper-
links. And in fact, the relevance ranking of a document is affected more by hyperlinks
that point to the document, than by hyperlinks going out of the document.

The basic idea of site ranking is to find sites that are popular, and to rank pages
from such sites higher than pages from other sites. A site is identified by the in-
ternet address part of the URL, such as www.bell-labs.com in a URL http://www.bell-
labs.com/topic/books/db-book. A site usually contains multiple Web pages. Since most
searches are intended to find information from popular sites, ranking pages from
popular sites higher is generally a good idea. For instance, the term “google” may oc-
cur in vast numbers of pages, but the site google.com is the most popular among the
sites with pages that contain the term “google”. Documents from google.com con-
taining the term “google” would therefore be ranked as the most relevant to the term
“google”.

This raises the question of how to define the popularity of a site. One way would
be to find how many times a site is accessed. However, getting such information
is impossible without the cooperation of the site, and is infeasible for a Web search
engine to implement. A very effective alternative uses hyperlinks; it defines p(s), the
popularity of a site s, as the number of sites that contain at least one page with a link
to site s.

Traditional measures of relevance of the page (which we saw in Section 22.5.1.2)
can be combined with the popularity of the site containing the page to get an overall
measure of the relevance of the page. Pages with high overall relevance value are
returned as answers to a query, as before.

Note also that we used the popularity of a site as a measure of relevance of indi-
vidual pages at the site, not the popularity of individual pages. There are at least two
reasons for this. First, most sites contain only links to root pages of other sites, so all
other pages would appear to have almost zero popularity, when in fact they may be
accessed quite frequently by following links from the root page. Second, there are far
fewer sites than pages, so computing and using popularity of sites is cheaper than
computing and using popularity of pages.

There are more refined notions of popularity of sites. For instance, a link from
a popular site to another site s may be considered to be a better indication of the
popularity of s than a link to s from a less popular site.6 This notion of popularity

6. This is similar in some sense to giving extra weight to endorsements of products by celebrities (such
as film stars), so its significance is open to question!
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is in fact circular, since the popularity of a site is defined by the popularity of other
sites, and there may be cycles of links between sites. However, the popularity of sites
can be defined by a system of simultaneous linear equations, which can be solved by
matrix manipulation techniques. The linear equations are defined in such a way that
they have a unique and well-defined solution.

The popular Web search engine google.com uses the referring-site popularity idea
in its definition page rank, which is a measure of popularity of a page. This approach
of ranking of pages gave results so much better than previously used ranking tech-
niques, that google.com became a widely used search engine, in a rather short period
of time.

There is another, somewhat similar, approach, derived interestingly from a theory
of social networking developed by sociologists in the 1950s. In the social networking
context, the goal was to define the prestige of people. For example, the president
of the United States has high prestige since a large number of people know him. If
someone is known by multiple prestigious people, then she also has high prestige,
even if she is not known by as large a number of people.

The above idea was developed into a notion of hubs and authorities that takes into
account the presence of directories that link to pages containing useful information.
A hub is a page that stores links to many pages; it does not in itself contain actual
information on a topic, but points to pages that contain actual information. In con-
trast, an authority is a page that contains actual information on a topic, although
it may not be directly pointed to by many pages. Each page then gets a prestige
value as a hub (hub-prestige), and another prestige value as an authority (authority-
prestige). The definitions of prestige, as before, are cyclic and are defined by a set of
simultaneous linear equations. A page gets higher hub-prestige if it points to many
pages with high authority-prestige, while a page gets higher authority-prestige if it is
pointed to by many pages with high hub-prestige. Given a query, pages with highest
authority-prestige are ranked higher than other pages. See the bibliographical notes
for references giving further details.

22.5.1.3 Similarity-Based Retrieval
Certain information-retrieval systems permit similarity-based retrieval. Here, the
user can give the system document A, and ask the system to retrieve documents
that are “similar” to A. The similarity of a document to another may be defined, for
example, on the basis of common terms. One approach is to find k terms in A with
highest values of r(d, t), and to use these k terms as a query to find relevance of other
documents. The terms in the query are themselves weighted by r(d, t).

If the set of documents similar to A is large, the system may present the user a
few of the similar documents, allow him to choose the most relevant few, and start a
new search based on similarity to A and to the chosen documents. The resultant set
of documents is likely to be what the user intended to find.

The same idea is also used to help users who find many documents that appear to
be relevant on the basis of the keywords, but are not. In such a situation, instead of
adding further keywords to the query, users may be allowed to identify one or a few
of the returned documents as relevant; the system then uses the identified documents
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to find other similar ones. The resultant set of documents is likely to be what the user
intended to find.

22.5.1.4 Synonyms and Homonyms
Consider the problem of locating documents about motorcycle maintenance for the
keywords “motorcycle” and “maintenance.” Suppose that the keywords for each doc-
ument are the words in the title and the names of the authors. The document titled
Motorcycle Repair would not be retrieved, since the word “maintenance” does not oc-
cur in its title.

We can solve that problem by making use of synonyms. Each word can have a set
of synonyms defined, and the occurrence of a word can be replaced by the or of all
its synonyms (including the word itself). Thus, the query “motorcycle and repair” can
be replaced by “motorcycle and (repair or maintenance).” This query would find the
desired document.

Keyword-based queries also suffer from the opposite problem, of homonyms, that
is single words with multiple meanings. For instance, the word object has different
meanings as a noun and as a verb. The word table may refer to a dinner table, or to a
relational table. Some keyword query systems attempt to disambiguate the meaning
of words in documents, and when a user poses a query, they find out the intended
meaning by asking the user. The returned documents are those that use the term in
the intended meaning of the user. However, disambiguating meanings of words in
documents is not an easy task, so not many systems implement this idea.

In fact, a danger even with using synonyms to extend queries is that the synonyms
may themselves have different meanings. Documents that use the synonyms with an
alternative intended meaning would be retrieved. The user is then left wondering
why the system thought that a particular retrieved document is relevant, if it contains
neither the keywords the user specified, nor words whose intended meaning in the
document is synonymous with specified keywords! It is therefore advisable to verify
synonyms with the user, before using them to extend a query submitted by the user.

22.5.2 Indexing of Documents
An effective index structure is important for efficient processing of queries in an
information-retrieval system. Documents that contain a specified keyword can be
efficiently located by using an inverted index, which maps each keyword Ki to the
set Si of (identifiers of) the documents that contain Ki. To support relevance ranking
based on proximity of keywords, such an index may provide not just identifiers of
documents, but also a list of locations in the document where the keyword appears.
Since such indices must be stored on disk, the index organization also attempts to
minimize the number of I/O operations to retrieve the set of (identifiers of) docu-
ments that contain a keyword. Thus, the system may attempt to keep the set of doc-
uments for a keyword in consecutive disk pages.

The and operation finds documents that contain all of a specified set of keywords
K1, K2, . . . , Kn. We implement the and operation by first retrieving the sets of docu-
ment identifiers S1, S2, . . . , Sn of all documents that contain the respective keywords.
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The intersection, S1 ∩ S2 ∩ · · · ∩ Sn, of the sets gives the document identifiers of the
desired set of documents. The or operation gives the set of all documents that contain
at least one of the keywords K1, K2, . . . , Kn. We implement the or operation by com-
puting the union, S1∪S2∪· · ·∪Sn, of the sets. The not operation finds documents that
do not contain a specified keyword Ki. Given a set of document identifiers S, we can
eliminate documents that contain the specified keyword Ki by taking the difference
S − Si, where Si is the set of identifiers of documents that contain the keyword Ki.

Given a set of keywords in a query, many information retrieval systems do not
insist that the retrieved documents contain all the keywords (unless an and operation
is explicitly used). In this case, all documents containing at least one of the words are
retrieved (as in the or operation), but are ranked by their relevance measure.

To use term frequency for ranking, the index structure should additionally main-
tain the number of times terms occur in each document. To reduce this effort, they
may use a compressed representation with only a few bits, which approximates the
term frequency. The index should also store the document frequency of each term
(that is, the number of documents in which the term appears).

22.5.3 Measuring Retrieval Effectiveness
Each keyword may be contained in a large number of documents; hence, a compact
representation is critical to keep space usage of the index low. Thus, the sets of doc-
uments for a keyword are maintained in a compressed form. So that storage space
is saved, the index is sometimes stored such that the retrieval is approximate; a few
relevant documents may not be retrieved (called a false drop or false negative), or
a few irrelevant documents may be retrieved (called a false positive). A good index
structure will not have any false drops, but may permit a few false positives; the sys-
tem can filter them away later by looking at the keywords that they actually contain.
In Web indexing, false positives are not desirable either, since the actual document
may not be quickly accessible for filtering.

Two metrics are used to measure how well an information-retrieval system is able
to answer queries. The first, precision, measures what percentage of the retrieved
documents are actually relevant to the query. The second, recall, measures what per-
centage of the documents relevant to the query were retrieved. Ideally both should
be 100 percent.

Precision and recall are also important measures for understanding how well a
particular document ranking strategy performs. Ranking strategies can result in false
negatives and false positives, but in a more subtle sense.

• False negatives may occur when documents are ranked, because relevant doc-
uments get low rankings; if we fetched all documents down to documents
with very low ranking there would be very few false negatives. However, hu-
mans would rarely look beyond the first few tens of returned documents, and
may thus miss relevant documents because they are not ranked among the
top few. Exactly what is a false negative depends on how many documents
are examined.

Therefore instead of having a single number as the measure of recall, we
can measure the recall as a function of the number of documents fetched.
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• False positives may occur because irrelevant documents get higher rankings
than relevant documents. This too depends on how many documents are ex-
amined. One option is to measure precision as a function of number of docu-
ments fetched.

A better and more intuitive alternative for measuring precision is to measure it
as a function of recall. With this combined measure, both precision and recall can be
computed as a function of number of documents, if required.

For instance, we can say that with a recall of 50 percent the precision was 75 per-
cent, whereas at a recall of 75 percent the precision dropped to 60 percent. In general,
we can draw a graph relating precision to recall. These measures can be computed for
individual queries, then averaged out across a suite of queries in a query benchmark.

Yet another problem with measuring precision and recall lies in how to define
which documents are really relevant and which are not. In fact, it requires under-
standing of natural language, and understanding of the intent of the query, to decide
if a document is relevant or not. Researchers therefore have created collections of doc-
uments and queries, and have manually tagged documents as relevant or irrelevant
to the queries. Different ranking systems can be run on these collections to measure
their average precision and recall across multiple queries.

22.5.4 Web Search Engines
Web crawlers are programs that locate and gather information on the Web. They
recursively follow hyperlinks present in known documents to find other documents.
A crawler retrieves the documents and adds information found in the documents to a
combined index; the document is generally not stored, although some search engines
do cache a copy of the document to give clients faster access to the documents.

Since the number of documents on the Web is very large, it is not possible to crawl
the whole Web in a short period of time; and in fact, all search engines cover only
some portions of the Web, not all of it, and their crawlers may take weeks or months
to perform a single crawl of all the pages they cover. There are usually many pro-
cesses, running on multiple machines, involved in crawling. A database stores a set
of links (or sites) to be crawled; it assigns links from this set to each crawler process.
New links found during a crawl are added to the database, and may be crawled later
if they are not crawled immediately. Pages found during a crawl are also handed over
to an indexing system, which may be running on a different machine. Pages have to
be refetched (that is, links recrawled) periodically to obtain updated information, and
to discard sites that no longer exist, so that the information in the search index is kept
reasonably up to date.

The indexing system itself runs on multiple machines in parallel. It is not a good
idea to add pages to the same index that is being used for queries, since doing so
would require concurrency control on the index, and affect query and update perfor-
mance. Instead, one copy of the index is used to answer queries while another copy
is updated with newly crawled pages. At periodic intervals the copies switch over,
with the old one being updated while the new copy is being used for queries.
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To support very high query rates, the indices may be kept in main memory, and
there are multiple machines; the system selectively routes queries to the machines to
balance the load among them.

22.5.5 Directories
A typical library user may use a catalog to locate a book for which she is looking.
When she retrieves the book from the shelf, however, she is likely to browse through
other books that are located nearby. Libraries organize books in such a way that re-
lated books are kept close together. Hence, a book that is physically near the desired
book may be of interest as well, making it worthwhile for users to browse through
such books.

To keep related books close together, libraries use a classification hierarchy. Books
on science are classified together. Within this set of books, there is a finer classifica-
tion, with computer-science books organized together, mathematics books organized
together, and so on. Since there is a relation between mathematics and computer sci-
ence, relevant sets of books are stored close to each other physically. At yet another
level in the classification hierarchy, computer-science books are broken down into
subareas, such as operating systems, languages, and algorithms. Figure 22.10 illus-
trates a classification hierarchy that may be used by a library. Because books can be
kept at only one place, each book in a library is classified into exactly one spot in the
classification hierarchy.

In an information retrieval system, there is no need to store related documents
close together. However, such systems need to organize documents logically so as to
permit browsing. Thus, such a system could use a classification hierarchy similar to

books

algorithms

graph algorithms

math

science fictionengineering

computer science

…

………

………

…

Figure 22.10 A classification hierarchy for a library system.
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one that libraries use, and, when it displays a particular document, it can also display
a brief description of documents that are close in the hierarchy.

In an information retrieval system, there is no need to keep a document in a single
spot in the hierarchy. A document that talks of mathematics for computer scientists
could be classified under mathematics as well as under computer science. All that is
stored at each spot is an identifier of the document (that is, a pointer to the document),
and it is easy to fetch the contents of the document by using the identifier.

As a result of this flexibility, not only can a document be classified under two lo-
cations, but also a subarea in the classification hierarchy can itself occur under two
areas. The class of “graph algorithm” document can appear both under mathemat-
ics and under computer science. Thus, the classification hierarchy is now a directed
acyclic graph (DAG), as shown in Figure 22.11. A graph-algorithm document may
appear in a single location in the DAG, but can be reached via multiple paths.

A directory is simply a classification DAG structure. Each leaf of the directory
stores links to documents on the topic represented by the leaf. Internal nodes may
also contain links, for example to documents that cannot be classified under any of
the child nodes.

To find information on a topic, a user would start at the root of the directory and
follow paths down the DAG until reaching a node representing the desired topic.
While browsing down the directory, the user can find not only documents on the
topic he is interested in, but also find related documents and related classes in the
classification hierarchy. The user may learn new information by browsing through
documents (or subclasses) within the related classes.

Organizing the enormous amount of information available on the Web into a di-
rectory structure is a daunting task.

books

algorithms

graph algorithms

math

science fictionengineering

computer science

…

………

………

…

Figure 22.11 A classification DAG for a library information retrieval system.
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• The first problem is determining what exactly the directory hierarchy should
be.

• The second problem is, given a document, deciding which nodes of the direc-
tory are categories relevant to the document.

To tackle the first problem, portals such as Yahoo have teams of “internet librar-
ians” who come up with the classification hierarchy and continually refine it. The
Open Directory Project is a large collaborative effort, with different volunteers being
responsible for organizing different branches of the directory.

The second problem can also be tackled manually by librarians, or Web site main-
tainers may be responsible for deciding where their sites should lie in the hierarchy.
There are also techniques for automatically deciding the location of documents based
on computing their similarity to documents that have already been classified.

22.6 Summary
• Decision-support systems analyze online data collected by transaction-

processing systems, to help people make business decisions. Since most or-
ganizations are extensively computerized today, a very large body of infor-
mation is available for decision support. Decision-support systems come in
various forms, including OLAP systems and data mining systems.

• Online analytical processing (OLAP) tools help analysts view data summa-
rized in different ways, so that they can gain insight into the functioning of an
organization.
� OLAP tools work on multidimensional data, characterized by dimension

attributes and measure attributes.
� The data cube consists of multidimensional data summarized in different

ways. Precomputing the data cube helps speed up queries on summaries
of data.

� Cross-tab displays permit users to view two dimensions of multidimen-
sional data at a time, along with summaries of the data.

� Drill down, rollup, slicing, and dicing are among the operations that users
perform with OLAP tools.

• The OLAP component of the SQL:1999 standard provides a variety of new func-
tionality for data analysis, including new aggregate functions, cube and rollup
operations, ranking functions, windowing functions, which support summa-
rization on moving windows, and partitioning, with windowing and ranking
applied inside each partition.

• Data mining is the process of semiautomatically analyzing large databases
to find useful patterns. There are a number of applications of data mining,
such as prediction of values based on past examples, finding of associations
between purchases, and automatic clustering of people and movies.
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• Classification deals with predicting the class of test instances, by using at-
tributes of the test instances, based on attributes of training instances, and the
actual class of training instances. Classification can be used, for instance, to
predict credit-worthiness levels of new applicants, or to predict the perfor-
mance of applicants to a university.

There are several types of classifiers, such as

� Decision-tree classifiers. These perform classification by constructing a
tree based on training instances with leaves having class labels. The tree
is traversed for each test instance to find a leaf, and the class of the leaf is
the predicted class.

Several techniques are available to construct decision trees, most of
them based on greedy heuristics.

� Bayesian classifiers are simpler to construct than decision-tree classifiers,
and work better in the case of missing/null attribute values.

• Association rules identify items that co-occur frequently, for instance, items
that tend to be bought by the same customer. Correlations look for deviations
from expected levels of association.

• Other types of data mining include clustering, text mining, and data visual-
ization.

• Data warehouses help gather and archive important operational data. Ware-
houses are used for decision support and analysis on historical data, for in-
stance to predict trends. Data cleansing from input data sources is often a
major task in data warehousing. Warehouse schemas tend to be multidimen-
sional, involving one or a few very large fact tables and several much smaller
dimension tables.

• Information retrieval systems are used to store and query textual data such
as documents. They use a simpler data model than do database systems, but
provide more powerful querying capabilities within the restricted model.

Queries attempt to locate documents that are of interest by specifying, for
example, sets of keywords. The query that a user has in mind usually cannot
be stated precisely; hence, information-retrieval systems order answers on the
basis of potential relevance.

• Relevance ranking makes use of several types of information, such as:

� Term frequency: how important each term is to each document.
� Inverse document frequency.
� Site popularity. Page rank and hub/authority rank are two ways to assign

importance to sites on the basis of links to the site.

• Similarity of documents is used to retrieve documents similar to an example
document. Synonyms and homonyms complicate the task of information re-
trieval.
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• Precision and recall are two measures of the effectiveness of an information
retrieval system.

• Directory structures are used to classify documents with other similar docu-
ments.

Review Terms
• Decision-support systems

• Statistical analysis

• Multidimensional data
� Measure attributes
� Dimension attributes

• Cross-tabulation

• Data cube

• Online analytical processing
(OLAP)
� Pivoting
� Slicing and dicing
� Rollup and drill down

• Multidimensional OLAP (MOLAP)

• Relational OLAP (ROLAP)

• Hybrid OLAP (HOLAP)

• Extended aggregation
� Variance
� Standard deviation
� Correlation
� Regression

• Ranking functions
� Rank
� Dense rank
� Partition by

• Windowing

• Data mining

• Prediction

• Associations

• Classification
� Training data
� Test data

• Decision-tree classifiers

� Partitioning attribute
� Partitioning condition
� Purity

–– Gini measure
–– Entropy measure

� Information gain
� Information content
� Information gain ratio
� Continuous-valued attribute
� Categorical attribute
� Binary split
� Multiway split
� Overfitting

• Bayesian classifiers

� Bayes theorem
� Naive Bayesian classifiers

• Regression

� Linear regression
� Curve fitting

• Association rules

� Population
� Support
� Confidence
� Large itemsets

• Other types of associations

• Clustering
� Hierarchical clustering
� Agglomerative clustering
� Divisive clustering

• Text mining

• Data visualization

• Data warehousing
� Gathering data
� Source-driven architecture
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� Destination-driven architec-
ture

� Data cleansing
–– Merge–purge
–– Householding

• Warehouse schemas
� Fact table
� Dimension tables
� Star schema

• Information retrieval systems

• Keyword search

• Full text retrieval

• Term

• Relevance ranking
� Term frequency
� Inverse document frequency
� Relevance
� Proximity

• Stop words
• Relevance using hyperlinks
� Site popularity
� Page rank
� Hub/authority ranking

• Similarity-based retrieval
• Synonyms
• Homonyms
• Inverted index
• False drop
• False negative
• False positive
• Precision
• Recall
• Web crawlers
• Directories
• Classification hierarchy

Exercises
22.1 For each of the SQL aggregate functions sum, count, min and max, show how

to compute the aggregate value on a multiset S1 ∪ S2, given the aggregate
values on multisets S1 and S2.

Based on the above, give expressions to compute aggregate values with
grouping on a subset S of the attributes of a relation r(A, B, C, D, E), given
aggregate values for grouping on attributes T ⊇ S, for the following aggregate
functions:

a. sum, count, min and max
b. avg
c. standard deviation

22.2 Show how to express group by cube(a, b, c, d) using rollup; your answer should
have only one group by clause.

22.3 Give an example of a pair of groupings that cannot be expressed by using a
single group by clause with cube and rollup.

22.4 Given a relation S(student, subject, marks), write a query to find the top n
students by total marks, by using ranking.

22.5 Given relation r(a, b, d, d), Show how to use the extended SQL features to gen-
erate a histogram of d versus a, dividing a into 20 equal-sized partitions (that
is, where each partition contains 5 percent of the tuples in r, sorted by a).
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22.6 Write a query to find cumulative balances, equivalent to that shown in Sec-
tion 22.2.5, but without using the extended SQL windowing constructs.

22.7 Consider the balance attribute of the account relation. Write an SQL query to
compute a histogram of balance values, dividing the range 0 to the maximum
account balance present, into three equal ranges.

22.8 Consider the sales relation from Section 22.2. Write an SQL query to compute
the cube operation on the relation, giving the relation in Figure 22.2. Do not
use the with cube construct.

22.9 Construct a decision tree classifier with binary splits at each node, using tu-
ples in relation r(A, B, C) shown below as training data; attribute C denotes
the class. Show the final tree, and with each node show the best split for each
attribute along with its information gain value.

(1, 2, a), (2, 1, a), (2, 5, b), (3, 3, b), (3, 6, b), (4, 5, b), (5, 5, c), (6, 3, b), (6, 7, c)

22.10 Suppose there are two classification rules, one that says that people with salaries
between $10,000 and $20,000 have a credit rating of good, and another that says
that people with salaries between $20,000 and $30,000 have a credit rating of
good. Under what conditions can the rules be replaced, without any loss of in-
formation, by a single rule that says people with salaries between $10,000 and
$30,000 have a credit rating of good.

22.11 Suppose half of all the transactions in a clothes shop purchase jeans, and one
third of all transactions in the shop purchase T-shirts. Suppose also that half
of the transactions that purchase jeans also purchase T-shirts. Write down all
the (nontrivial) association rules you can deduce from the above information,
giving support and confidence of each rule.

22.12 Consider the problem of finding large itemsets.
a. Describe how to find the support for a given collection of itemsets by using

a single scan of the data. Assume that the itemsets and associated informa-
tion, such as counts, will fit in memory.

b. Suppose an itemset has support less than j. Show that no superset of this
itemset can have support greater than or equal to j.

22.13 Describe benefits and drawbacks of a source-driven architecture for gathering
of data at a data-warehouse, as compared to a destination-driven architecture.

22.14 Consider the schema depicted in Figure 22.9. Give an SQL:1999 query to sum-
marize sales numbers and price by store and date, along with the hierarchies
on store and date.

22.15 Compute the relevance (using appropriate definitions of term frequency and
inverse document frequency) of each of the questions in this chapter to the
query “SQL relation.”
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22.16 What is the difference between a false positive and a false drop? If it is essential
that no relevant information be missed by an information retrieval query, is it
acceptable to have either false positives or false drops? Why?

22.17 Suppose you want to find documents that contain at least k of a given set of n
keywords. Suppose also you have a keyword index that gives you a (sorted) list
of identifiers of documents that contain a specified keyword. Give an efficient
algorithm to find the desired set of documents.
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et al. [1996] and Ross and Srivastava [1997]. Descriptions of extended aggregation
support in SQL:1999 can be found in the product manuals of database systems such
as Oracle and IBM DB2. Definitions of statistical functions can be found in standard
statistics textbooks such as Bulmer [1979] and Ross [1999].

Witten and Frank [1999] and Han and Kamber [2000] provide textbook coverage
of data mining. Mitchell [1997] is a classic textbook on machine learning, and covers
classification techniques in detail. Fayyad et al. [1995] presents an extensive collec-
tion of articles on knowledge discovery and data mining. Kohavi and Provost [2001]
presents a collection of articles on applications of data mining to electronic commerce.

Agrawal et al. [1993] provides an early overview of data mining in databases. Al-
gorithms for computing classifiers with large training sets are described by Agrawal
et al. [1992] and Shafer et al. [1996]; the decision tree construction algorithm described
in this chapter is based on the SPRINT algorithm of Shafer et al. [1996]. Agrawal and
Srikant [1994] was an early paper on association rule mining. Algorithms for mining
of different forms of association rules are described by Srikant and Agrawal [1996a]
and Srikant and Agrawal [1996b]. Chakrabarti et al. [1998] describes techniques for
mining surprising temporal patterns.

Clustering has long been studied in the area of statistics, and Jain and Dubes [1988]
provides textbook coverage of clustering. Ng and Han [1994] describes spatial clus-
tering techniques. Clustering techniques for large datasets are described by Zhang
et al. [1996]. Breese et al. [1998] provides an empirical analysis of different algorithms
for collaborative filtering. Techniques for collaborative filtering of news articles are
described by Konstan et al. [1997].

Chakrabarti [2000] provides a survey of hypertext mining techniques such as hy-
pertext classification and clustering. Chakrabarti [1999] provides a survey of Web
resource discovery. Techniques for integrating data cubes with data mining are de-
scribed by Sarawagi [2000].

Poe [1995] and Mattison [1996] provide textbook coverage of data warehousing.
Zhuge et al. [1995] describes view maintenance in a data-warehousing environment.

Witten et al. [1999], Grossman and Frieder [1998], and Baeza-Yates and Ribeiro-
Neto [1999] provide textbook descriptions of information retrieval. Indexing of docu-
ments is covered in detail by Witten et al. [1999]. Jones and Willet [1997] is a collection
of articles on information retrieval. Salton [1989] is an early textbook on information-



Silberschatz−Korth−Sudarshan: 
Database System 
Concepts, Fourth Edition

VII. Other Topics 22. Advanced Querying and 
Information Retrieval

855© The McGraw−Hill 
Companies, 2001

862 Chapter 22 Advanced Querying and Information Retrieval

retrieval systems. The TREC benchmark (trec.nist.gov) is a benchmark for measuring
retrieval effectiveness.

Brin and Page [1998] describes the anatomy of the Google search engine, includ-
ing the PageRank technique, while a hubs and authorities based ranking technique
called HITS is described by Kleinberg [1999]. Bharat and Henzinger [1998] presents a
refinement of the HITS ranking technique. A point worth noting is that the PageRank
of a page is computed independent of any query, and as a result a highly ranked page
which just happens to contain some irrelevant keywords would figure among the top
answers for a query on the irrelevant keywords. In contrast, the HITS algorithm takes
the query keywords into account when computing prestige, but has a higher cost for
answering queries.

Tools
A variety of tools are available for each of the applications we have studied in this
chapter. Most database vendors provide OLAP tools as part of their database sys-
tem, or as add-on applications. These include OLAP tools from Microsoft Corp., Or-
acle Express, Informix Metacube. The Arbor Essbase OLAP tool is from an indepen-
dent software vendor. The site www.databeacon.com provides an online demo of the
databeacon OLAP tools for use on Web and text file data sources. Many companies
also provide analysis tools specialized for specific applications, such as customer re-
lationship management.

There is also a wide variety of general purpose data mining tools, including min-
ing tools from the SAS Institute, IBM Intelligent Miner, and SGI Mineset. A good
deal of expertise is required to apply general purpose mining tools for specific appli-
cations. As a result a large number of mining tools have been developed to address
specialized applications. The Web site www.kdnuggets.com provides an extensive di-
rectory of mining software, solutions, publications, and so on.

Major database vendors also offer data warehousing products coupled with their
database systems. These provide support functionality for data modeling, cleans-
ing, loading, and querying. The Web site www.dwinfocenter.org provides information
datawarehousing products.

Google (www.google.com) is a popular search engine. Yahoo (www.yahoo.com)
and the Open Directory Project (dmoz.org) provide classification hierarchies for Web
sites.
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Advanced Data Types
and New Applications

For most of the history of databases, the types of data stored in databases were rel-
atively simple, and this was reflected in the rather limited support for data types
in earlier versions of SQL. In the past few years, however, there has been increasing
need for handling new data types in databases, such as temporal data, spatial data.
and multimedia data.

Another major trend in the last decade has created its own issues: the growth
of mobile computers, starting with laptop computers and pocket organizers, and in
more recent years growing to include mobile phones with built-in computers, and a
variety of wearable computers that are increasingly used in commercial applications.

In this chapter we study several new data types, and also study database issues
dealing with mobile computers.

23.1 Motivation
Before we address each of the topics in detail, we summarize the motivation for, and
some important issues in dealing with, each of these types of data.

• Temporal data. Most database systems model the current state of the world,
for instance, current customers, current students, and courses currently being
offered. In many applications, it is very important to store and retrieve infor-
mation about past states. Historical information can be incorporated manu-
ally into a schema design. However, the task is greatly simplified by database
support for temporal data, which we study in Section 23.2.

• Spatial data. Spatial data include geographic data, such as maps and associ-
ated information, and computer-aided-design data, such as integrated-circuit
designs or building designs. Applications of spatial data initially stored data
as files in a file system, as did early-generation business applications. But as
the complexity and volume of the data, and the number of users, have grown,

863
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ad hoc approaches to storing and retrieving data in a file system have proved
insufficient for the needs of many applications that use spatial data.

Spatial-data applications require facilities offered by a database system—
in particular, the ability to store and query large amounts of data efficiently.
Some applications may also require other database features, such as atomic
updates to parts of the stored data, durability, and concurrency control. In
Section 23.3, we study the extensions needed to traditional database systems
to support spatial data.

• Multimedia data. In Section 23.4, we study the features required in database
systems that store multimedia data such as image, video, and audio data. The
main distinguishing feature of video and audio data is that the display of the
data requires retrieval at a steady, predetermined rate; hence, such data are
called continuous-media data.

• Mobile databases. In Section 23.5, we study the database requirements of the
new generation of mobile computing systems, such as notebook computers
and palmtop computing devices, which are connected to base stations via
wireless digital communication networks. Such computers need to be able to
operate while disconnected from the network, unlike the distributed database
systems discussed in Chapter 19. They also have limited storage capacity, and
thus require special techniques for memory management.

23.2 Time in Databases
A database models the state of some aspect of the real world outside itself. Typically,
databases model only one state—the current state—of the real world, and do not
store information about past states, except perhaps as audit trails. When the state of
the real world changes, the database gets updated, and information about the old
state gets lost. However, in many applications, it is important to store and retrieve
information about past states. For example, a patient database must store informa-
tion about the medical history of a patient. A factory monitoring system may store
information about current and past readings of sensors in the factory, for analysis.
Databases that store information about states of the real world across time are called
temporal databases.

When considering the issue of time in database systems, we must distinguish be-
tween time as measured by the system and time as observed in the real world. The
valid time for a fact is the set of time intervals during which the fact is true in the
real world. The transaction time for a fact is the time interval during which the fact
is current within the database system. This latter time is based on the transaction se-
rialization order and is generated automatically by the system. Note that valid-time
intervals, being a real-world concept, cannot be generated automatically and must be
provided to the system.

A temporal relation is one where each tuple has an associated time when it is
true; the time may be either valid time or transaction time. Of course, both valid
time and transaction time can be stored, in which case the relation is said to be a
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account-
branch-name balance from tonumber

A-101 Downtown 500 1999/1/1 9:00 1999/1/24 11:30
A-101 Downtown 100 1999/1/24 11:30 *
A-215 Mianus 700 2000/6/2 15:30 2000/8/8 10:00
A-215 Mianus 900 2000/8/8 10:00 2000/9/5 8:00
A-215 Mianus 700 2000/9/5 8:00 *
A-217 Brighton 750 1999/7/5 11:00 2000/5/1 16:00

Figure 23.1 A temporal account relation.

bitemporal relation. Figure 23.1 shows an example of a temporal relation. To simplify
the representation, each tuple has only one time interval associated with it; thus, a
tuple is represented once for every disjoint time interval in which it is true. Intervals
are shown here as a pair of attributes from and to; an actual implementation would
have a structured type, perhaps called Interval, that contains both fields. Note that
some of the tuples have a “*” in the to time column; these asterisks indicate that
the tuple is true until the value in the to time column is changed; thus, the tuple is
true at the current time. Although times are shown in textual form, they are stored
internally in a more compact form, such as the number of seconds since some fixed
time on a fixed date (such as 12:00 AM, January 1, 1900) that can be translated back
to the normal textual form.

23.2.1 Time Specification in SQL
The SQL standard defines the types date, time, and timestamp. The type date con-
tains four digits for the year (1–9999), two digits for the month (1–12), and two digits
for the date (1–31). The type time contains two digits for the hour, two digits for the
minute, and two digits for the second, plus optional fractional digits. The seconds
field can go beyond 60, to allow for leap seconds that are added during some years
to correct for small variations in the speed of rotation of Earth. The type timestamp
contains the fields of date and time, with six fractional digits for the seconds field.

Since different places in the world have different local times, there is often a need
for specifying the time zone along with the time. The Universal Coordinated Time
(UTC), is a standard reference point for specifying time, with local times defined as
offsets from UTC. (The standard abbreviation is UTC, rather than UCT, since it is an
abbreviation of “Universal Coordinated Time” written in French as universel temps
coordonné.) SQL also supports two types, time with time zone, and timestamp with
time zone, which specify the time as a local time plus the offset of the local time from
UTC. For instance, the time could be expressed in terms of U.S. Eastern Standard
Time, with an offset of −6:00, since U.S. Eastern Standard time is 6 hours behind
UTC.

SQL supports a type called interval, which allows us to refer to a period of time
such as “1 day” or “2 days and 5 hours,” without specifying a particular time when
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this period starts. This notion differs from the notion of interval we used previously,
which refers to an interval of time with specific starting and ending times.1

23.2.2 Temporal Query Languages
A database relation without temporal information is sometimes called a snapshot
relation, since it reflects the state in a snapshot of the real world. Thus, a snapshot of
a temporal relation at a point in time t is the set of tuples in the relation that are true
at time t, with the time-interval attributes projected out. The snapshot operation on a
temporal relation gives the snapshot of the relation at a specified time (or the current
time, if the time is not specified).

A temporal selection is a selection that involves the time attributes; a temporal
projection is a projection where the tuples in the projection inherit their times from
the tuples in the original relation. A temporal join is a join, with the time of a tuple
in the result being the intersection of the times of the tuples from which it is derived.
If the times do not intersect, the tuple is removed from the result.

The predicates precedes, overlaps, and contains can be applied on intervals; their
meanings should be clear. The intersect operation can be applied on two intervals, to
give a single (possibly empty) interval. However, the union of two intervals may or
may not be a single interval.

Functional dependencies must be used with care in a temporal relation. Although
the account number may functionally determine the balance at any given point in
time, obviously the balance can change over time. A temporal functional depen-
dency X

τ→ Y holds on a relation schema R if, for all legal instances r of R, all
snapshots of r satisfy the functional dependency X → Y .

Several proposals have been made for extending SQL to improve its support of
temporal data. SQL:1999 Part 7 (SQL/Temporal), which is currently under develop-
ment, is the proposed standard for temporal extensions to SQL.

23.3 Spatial and Geographic Data
Spatial data support in databases is important for efficiently storing, indexing, and
querying of data based on spatial locations. For example, suppose that we want to
store a set of polygons in a database, and to query the database to find all polygons
that intersect a given polygon. We cannot use standard index structures, such as B-
trees or hash indices, to answer such a query efficiently. Efficient processing of the
above query would require special-purpose index structures, such as R-trees (which
we study later) for the task.

Two types of spatial data are particularly important:

• Computer-aided-design (CAD) data, which includes spatial information
about how objects—such as buildings, cars, or aircraft—are constructed.
Other important examples of computer-aided-design databases are integrated-
circuit and electronic-device layouts.

1. Many temporal database researchers feel this type should have been called span since it does not
specify an exact start or end time, only the time span between the two.
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• Geographic data such as road maps, land-usage maps, topographic elevation
maps, political maps showing boundaries, land ownership maps, and so on.
Geographic information systems are special-purpose databases tailored for
storing geographic data.

Support for geographic data has been added to many database systems, such as the
IBM DB2 Spatial Extender, the Informix Spatial Datablade, and Oracle Spatial.

23.3.1 Representation of Geometric Information
Figure 23.2 illustrates how various geometric constructs can be represented in a data-
base, in a normalized fashion. We stress here that geometric information can be rep-
resented in several different ways, only some of which we describe.

A line segment can be represented by the coordinates of its endpoints. For example,
in a map database, the two coordinates of a point would be its latitude and longi-
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Figure 23.2 Representation of geometric constructs.
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tude. A polyline (also called a linestring) consists of a connected sequence of line seg-
ments, and can be represented by a list containing the coordinates of the endpoints
of the segments, in sequence. We can approximately represent an arbitrary curve by
polylines, by partitioning the curve into a sequence of segments. This representation
is useful for two-dimensional features such as roads; here, the width of the road is
small enough relative to the size of the full map that it can be considered two dimen-
sional. Some systems also support circular arcs as primitives, allowing curves to be
represented as sequences of arcs.

We can represent a polygon by listing its vertices in order, as in Figure 23.2.2 The
list of vertices specifies the boundary of a polygonal region. In an alternative repre-
sentation, a polygon can be divided into a set of triangles, as shown in Figure 23.2.
This process is called triangulation, and any polygon can be triangulated. The com-
plex polygon can be given an identifier, and each of the triangles into which it is
divided carries the identifier of the polygon. Circles and ellipses can be represented
by corresponding types, or can be approximated by polygons.

List-based representations of polylines or polygons are often convenient for query
processing. Such non-first-normal-form representations are used when supported by
the underlying database. So that we can use fixed-size tuples (in first-normal form)
for representing polylines, we can give the polyline or curve an identifier, and can
represent each segment as a separate tuple that also carries with it the identifier of
the polyline or curve. Similarly, the triangulated representation of polygons allows a
first-normal-form relational representation of polygons.

The representation of points and line segments in three-dimensional space is sim-
ilar to their representation in two-dimensional space, the only difference being that
points have an extra z component. Similarly, the representation of planar figures—
such as triangles, rectangles, and other polygons—does not change much when we
move to three dimensions. Tetrahedrons and cuboids can be represented in the same
way as triangles and rectangles. We can represent arbitrary polyhedra by dividing
them into tetrahedrons, just as we triangulate polygons. We can also represent them
by listing their faces, each of which is itself a polygon, along with an indication of
which side of the face is inside the polyhedron.

23.3.2 Design Databases
Computer-aided-design (CAD) systems traditionally stored data in memory during
editing or other processing, and wrote the data back to a file at the end of a session of
editing. The drawbacks of such a scheme include the cost (programming complexity,
as well as time cost) of transforming data from one form to another, and the need
to read in an entire file even if only parts of it are required. For large designs, such
as the design of a large-scale integrated circuit, or the design of an entire airplane,
it may be impossible to hold the complete design in memory. Designers of object-
oriented databases were motivated in large part by the database requirements of CAD

2. Some references use the term closed polygon to refer to what we call polygons, and refer to polylines as
open polygons.
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systems. Object-oriented databases represent components of the design as objects,
and the connections between the objects indicate how the design is structured.

The objects stored in a design database are generally geometric objects. Simple
two-dimensional geometric objects include points, lines, triangles, rectangles, and,
in general, polygons. Complex two-dimensional objects can be formed from simple
objects by means of union, intersection, and difference operations. Similarly, com-
plex three-dimensional objects may be formed from simpler objects such as spheres,
cylinders, and cuboids, by union, intersection, and difference operations, as in Fig-
ure 23.3. Three-dimensional surfaces may also be represented by wireframe models,
which essentially model the surface as a set of simpler objects, such as line segments,
triangles, and rectangles.

Design databases also store nonspatial information about objects, such as the ma-
terial from which the objects are constructed. We can usually model such information
by standard data-modeling techniques. We concern ourselves here with only the spa-
tial aspects.

Various spatial operations must be performed on a design. For instance, the de-
signer may want to retrieve that part of the design that corresponds to a particu-
lar region of interest. Spatial-index structures, discussed in Section 23.3.5, are useful
for such tasks. Spatial-index structures are multidimensional, dealing with two- and
three-dimensional data, rather than dealing with just the simple one-dimensional or-
dering provided by the B+-trees.

Spatial-integrity constraints, such as “two pipes should not be in the same loca-
tion,” are important in design databases to prevent interference errors. Such errors
often occur if the design is performed manually, and are detected only when a proto-
type is being constructed. As a result, these errors can be expensive to fix. Database
support for spatial-integrity constraints helps people to avoid design errors, thereby
keeping the design consistent. Implementing such integrity checks again depends on
the availability of efficient multidimensional index structures.

(a) Difference of cylinders (b) Union of cylinders

Figure 23.3 Complex three-dimensional objects.
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23.3.3 Geographic Data
Geographic data are spatial in nature, but differ from design data in certain ways.
Maps and satellite images are typical examples of geographic data. Maps may
provide not only location information—about boundaries, rivers, and roads, for
example—but also much more detailed information associated with locations, such
as elevation, soil type, land usage, and annual rainfall.

Geographic data can be categorized into two types:

• Raster data. Such data consist of bit maps or pixel maps, in two or more di-
mensions. A typical example of a two-dimensional raster image is a satellite
image of cloud cover, where each pixel stores the cloud visibility in a partic-
ular area. Such data can be three-dimensional—for example, the temperature
at different altitudes at different regions, again measured with the help of a
satellite. Time could form another dimension—for example, the surface tem-
perature measurements at different points in time. Design databases generally
do not store raster data.

• Vector data. Vector data are constructed from basic geometric objects, such as
points, line segments, triangles, and other polygons in two dimensions, and
cylinders, spheres, cuboids, and other polyhedrons in three dimensions.

Map data are often represented in vector format. Rivers and roads may be
represented as unions of multiple line segments. States and countries may be
represented as polygons. Topological information, such as height, may be rep-
resented by a surface divided into polygons covering regions of equal height,
with a height value associated with each polygon.

23.3.3.1 Representation of Geographic Data
Geographical features, such as states and large lakes, are represented as complex
polygons. Some features, such as rivers, may be represented either as complex curves
or as complex polygons, depending on whether their width is relevant.

Geographic information related to regions, such as annual rainfall, can be rep-
resented as an array—that is, in raster form. For space efficiency, the array can be
stored in a compressed form. In Section 23.3.5, we study an alternative representa-
tion of such arrays by a data structure called a quadtree.

As noted in Section 23.3.3, we can represent region information in vector form,
using polygons, where each polygon is a region within which the array value is the
same. The vector representation is more compact than the raster representation in
some applications. It is also more accurate for some tasks, such as depicting roads,
where dividing the region into pixels (which may be fairly large) leads to a loss of
precision in location information. However, the vector representation is unsuitable
for applications where the data are intrinsically raster based, such as satellite images.

23.3.3.2 Applications of Geographic Data
Geographic databases have a variety of uses, including online map services, vehicle-
navigation systems; distribution-network information for public-service utilities such
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as telephone, electric-power, and water-supply systems; and land-usage information
for ecologists and planners.

Web-based road map services form a very widely used application of map data.
At the simplest level, these systems can be used to generate online road maps of
a desired region. An important benefit of online maps is that it is easy to scale the
maps to the desired size—that is, to zoom in and out to locate relevant features. Road
map services also store information about roads and services, such as the layout of
roads, speed limits on roads, road conditions, connections between roads, and one-
way restrictions. With this additional information about roads, the maps can be used
for getting directions to go from one place to another and for automatic trip planning.
Users can query online information about services to locate, for example, hotels, gas
stations, or restaurants with desired offerings and price ranges.

Vehicle-navigation systems are systems mounted in automobiles, which provide
road maps and trip planning services. A useful addition to a mobile geographic infor-
mation system such as a vehicle navigation system is a Global Positioning System
(GPS) unit, which uses information broadcast from GPS satellites to find the current
location with an accuracy of tens of meters. With such a system, a driver can never3

get lost—the GPS unit finds the location in terms of latitude, longitude, and elevation
and the navigation system can query the geographic database to find where and on
which road the vehicle is currently located.

Geographic databases for public-utility information are becoming increasingly im-
portant as the network of buried cables and pipes grows. Without detailed maps,
work carried out by one utility may damage the cables of another utility, result-
ing in large-scale disruption of service. Geographic databases, coupled with accurate
location-finding systems, can help avoid such problems.

So far, we have explained why spatial databases are useful. In the rest of the sec-
tion, we shall study technical details, such as representation and indexing of spatial
information.

23.3.4 Spatial Queries
There are a number of types of queries that involve spatial locations.

• Nearness queries request objects that lie near a specified location. A query
to find all restaurants that lie within a given distance of a given point is an
example of a nearness query. The nearest-neighbor query requests the object
that is nearest to a specified point. For example, we may want to find the
nearest gasoline station. Note that this query does not have to specify a limit
on the distance, and hence we can ask it even if we have no idea how far the
nearest gasoline station lies.

• Region queries deal with spatial regions. Such a query can ask for objects that
lie partially or fully inside a specified region. A query to find all retail shops
within the geographic boundaries of a given town is an example.

3. Well, hardly ever!
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• Queries may also request intersections and unions of regions. For example,
given region information, such as annual rainfall and population density, a
query may request all regions with a low annual rainfall as well as a high
population density.

Queries that compute intersections of regions can be thought of as computing the
spatial join of two spatial relations—for example, one representing rainfall and the
other representing population density—with the location playing the role of join at-
tribute. In general, given two relations, each containing spatial objects, the spatial join
of the two relations generates either pairs of objects that intersect, or the intersection
regions of such pairs.

Several join algorithms efficiently compute spatial joins on vector data. Although
nested-loop join and indexed nested-loop join (with spatial indices) can be used, hash
joins and sort–merge joins cannot be used on spatial data. Researchers have pro-
posed join techniques based on coordinated traversal of spatial index structures on
the two relations. See the bibliographical notes for more information.

In general, queries on spatial data may have a combination of spatial and nonspa-
tial requirements. For instance, we may want to find the nearest restaurant that has
vegetarian selections, and that charges less than $10 for a meal.

Since spatial data are inherently graphical, we usually query them by using a
graphical query language. Results of such queries are also displayed graphically,
rather than in tables. The user can invoke various operations on the interface, such as
choosing an area to be viewed (for example, by pointing and clicking on suburbs west
of Manhattan), zooming in and out, choosing what to display on the basis of selection
conditions (for example, houses with more than three bedrooms), overlay of multi-
ple maps (for example, houses with more than three bedrooms overlayed on a map
showing areas with low crime rates), and so on. The graphical interface constitutes
the front end. Extensions of SQL have been proposed to permit relational databases
to store and retrieve spatial information efficiently, and also allowing queries to mix
spatial and nonspatial conditions. Extensions include allowing abstract data types,
such as lines, polygons, and bit maps, and allowing spatial conditions, such as con-
tains or overlaps.

23.3.5 Indexing of Spatial Data
Indices are required for efficient access to spatial data. Traditional index structures,
such as hash indices and B-trees, are not suitable, since they deal only with one-
dimensional data, whereas spatial data are typically of two or more dimensions.

23.3.5.1 k-d Trees
To understand how to index spatial data consisting of two or more dimensions, we
consider first the indexing of points in one-dimensional data. Tree structures, such
as binary trees and B-trees, operate by successively dividing space into smaller parts.
For instance, each internal node of a binary tree partitions a one-dimensional interval
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in two. Points that lie in the left partition go into the left subtree; points that lie in
the right partition go into the right subtree. In a balanced binary tree, the partition
is chosen so that approximately one-half of the points stored in the subtree fall in
each partition. Similarly, each level of a B-tree splits a one-dimensional interval into
multiple parts.

We can use that intuition to create tree structures for two-dimensional space, as
well as in higher-dimensional spaces. A tree structure called a k-d tree was one of
the early structures used for indexing in multiple dimensions. Each level of a k-d
tree partitions the space into two. The partitioning is done along one dimension at
the node at the top level of the tree, along another dimension in nodes at the next
level, and so on, cycling through the dimensions. The partitioning proceeds in such
a way that, at each node, approximately one-half of the points stored in the subtree
fall on one side, and one-half fall on the other. Partitioning stops when a node has
less than a given maximum number of points. Figure 23.4 shows a set of points in
two-dimensional space, and a k-d tree representation of the set of points. Each line
corresponds to a node in the tree, and the maximum number of points in a leaf node
has been set at 1. Each line in the figure (other than the outside box) corresponds to
a node in the k-d tree. The numbering of the lines in the figure indicates the level of
the tree at which the corresponding node appears.

The k-d-B tree extends the k-d tree to allow multiple child nodes for each internal
node, just as a B-tree extends a binary tree, to reduce the height of the tree. k-d-B trees
are better suited for secondary storage than k-d trees.

3 1 3
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3 3

2

Figure 23.4 Division of space by a k-d tree.
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23.3.5.2 Quadtrees
An alternative representation for two-dimensional data is a quadtree. An example
of the division of space by a quadtree appears in Figure 23.5. The set of points is the
same as that in Figure 23.4. Each node of a quadtree is associated with a rectangular
region of space. The top node is associated with the entire target space. Each non-
leaf node in a quadtree divides its region into four equal-sized quadrants, and cor-
respondingly each such node has four child nodes corresponding to the four quad-
rants. Leaf nodes have between zero and some fixed maximum number of points.
Correspondingly, if the region corresponding to a node has more than the maximum
number of points, child nodes are created for that node. In the example in Figure 23.5,
the maximum number of points in a leaf node is set to 1.

This type of quadtree is called a PR quadtree, to indicate it stores points, and that
the division of space is divided based on regions, rather than on the actual set of
points stored. We can use region quadtrees to store array (raster) information. A
node in a region quadtree is a leaf node if all the array values in the region that it
covers are the same. Otherwise, it is subdivided further into four children of equal
area, and is therefore an internal node. Each node in the region quadtree corresponds
to a subarray of values. The subarrays corresponding to leaves either contain just
a single array element or have multiple array elements, all of which have the same
value.

Indexing of line segments and polygons presents new problems. There are exten-
sions of k-d trees and quadtrees for this task. However, a line segment or polygon
may cross a partitioning line. If it does, it has to be split and represented in each
of the subtrees in which its pieces occur. Multiple occurrences of a line segment or
polygon can result in inefficiencies in storage, as well as inefficiencies in querying.

Figure 23.5 Division of space by a quadtree.
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23.3.5.3 R-Trees
A storage structure called an R-tree is useful for indexing of rectangles and other
polygons. An R-tree is a balanced tree structure with the indexed polygons stored in
leaf nodes, much like a B+-tree. However, instead of a range of values, a rectangular
bounding box is associated with each tree node. The bounding box of a leaf node is
the smallest rectangle parallel to the axes that contains all objects stored in the leaf
node. The bounding box of internal nodes is, similarly, the smallest rectangle parallel
to the axes that contains the bounding boxes of its child nodes. The bounding box
of a polygon is defined, similarly, as the smallest rectangle parallel to the axes that
contains the polygon.

Each internal node stores the bounding boxes of the child nodes along with the
pointers to the child nodes. Each leaf node stores the indexed polygons, and may
optionally store the bounding boxes of the polygons; the bounding boxes help speed
up checks for overlaps of the rectangle with the indexed polygons—if a query rect-
angle does not overlap with the bounding box of a polygon, it cannot overlap with
the polygon either. (If the indexed polygons are rectangles, there is of course no need
to store bounding boxes since they are identical to the rectangles.)

Figure 23.6 shows an example of a set of rectangles (drawn with a solid line) and
the bounding boxes (drawn with a dashed line) of the nodes of an R-tree for the set of
rectangles. Note that the bounding boxes are shown with extra space inside them, to
make them stand out pictorially. In reality, the boxes would be smaller and fit tightly
on the objects that they contain; that is, each side of a bounding box B would touch
at least one of the objects or bounding boxes that are contained in B.

The R-tree itself is at the right side of Figure 23.6. The figure refers to the coordi-
nates of bounding box i as BBi in the figure.
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Figure 23.6 An R-tree.
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We shall now see how to implement search, insert, and delete operations on an
R-tree.

• Search: As the figure shows, the bounding boxes associated with sibling nodes
may overlap; in B+-trees, k-d trees, and quadtrees, in contrast, the ranges do
not overlap. A search for polygons containing a point therefore has to follow
all child nodes whose associated bounding boxes contain the point; as a re-
sult, multiple paths may have to be searched. Similarly, a query to find all
polygons that intersect a given polygon has to go down every node where the
associated rectangle intersects the polygon.

• Insert: When we insert a polygon into an R-tree, we select a leaf node to hold
the polygon. Ideally we should pick a leaf node that has space to hold a new
entry, and whose bounding box contains the bounding box of the polygon.
However, such a node may not exist; even if it did, finding the node may be
very expensive, since it is not possible to find it by a single traversal down
from the root. At each internal node we may find multiple children whose
bounding boxes contain the bounding box of the polygon, and each of these
children needs to be explored. Therefore, as a heuristic, in a traversal from the
root, if any of the child nodes has a bounding box containing the bounding
box of the polygon, the R-tree algorithm chooses one of them arbitrarily. If
none of the children satisfy this condition, the algorithm chooses a child node
whose bounding box has the maximum overlap with the bounding box of the
polygon for continuing the traversal.

Once the leaf node has been reached, if the node is already full, the algo-
rithm performs node splitting (and propagates splitting upward if required) in
a manner very similar to B+-tree insertion. Just as with B+-tree insertion, the
R-tree insertion algorithm ensures that the tree remains balanced. Addition-
ally, it ensures that the bounding boxes of leaf nodes, as well as internal nodes,
remain consistent; that is, bounding boxes of leaves contain all the bounding
boxes of the polygons stored at the leaf, while the bounding boxes for internal
nodes contain all the bounding boxes of the children nodes.

The main difference of the insertion procedure from the B+-tree insertion
procedure lies in how the node is split. In a B+-tree, it is possible to find a value
such that half the entries are less than the midpoint and half are greater than
the value. This property does not generalize beyond one dimension; that is,
for more than one dimension, it is not always possible to split the entries into
two sets so that their bounding boxes do not overlap. Instead, as a heuristic,
the set of entries S can be split into two disjoint sets S1 and S2 so that the
bounding boxes of S1 and S2 have the minimum total area; another heuristic
would be to split the entries into two sets S1 and S2 in such a way that S1

and S2 have minimum overlap. The two nodes resulting from the split would
contain the entries in S1 and S2 respectively. The cost of finding splits with
minimum total area or overlap can itself be large, so cheaper heuristics, such
as the quadratic split heuristic are used. (The heuristic gets is name from the
fact that it takes time quadratic in the number of entries.)
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The quadratic split heuristic works this way: First, it picks a pair of entries
a and b from S such that putting them in the same node would result in a
bounding box with the maximum wasted space; that is, the area of the min-
imum bounding box of a and b minus the sum of the areas of a and b is the
largest. The heuristic places the entries a and b in sets S1 and S2 respectively.

It then iteratively adds the remaining entries, one entry per iteration, to one
of the two sets S1 or S2. At each iteration, for each remaining entry e, let ie,1

denote the increase in the size of the bounding box of S1 if e is added to S1 and
let ie,2 denote the corresponding increase for S2. In each iteration, the heuristic
chooses one of the entries with the maximum difference of ie,1 and ie,2 and
adds it to S1 if ie,1 is less than ie,2, and to S2 otherwise. That is, an entry with
“maximum preference” for one of S1 or S2 is chosen at each iteration. The
iteration stops when all entries have been assigned, or when one of the sets
S1 or S2 has enough entries that all remaining entries have to be added to
the other set so the nodes constructed from S1 and S2 both have the required
minimum occupancy. The heuristic then adds all unassigned entries to the set
with fewer entries.

• Deletion: Deletion can be performed like a B+-tree deletion, borrowing entries
from sibling nodes, or merging sibling nodes if a node becomes underfull. An
alternative approach redistributes all the entries of underfull nodes to sibling
nodes, with the aim of improving the clustering of entries in the R-tree.

See the bibliographical references for more details on insertion and deletion opera-
tions on R-trees, as well as on variants of R-trees, called R∗-trees or R+-trees.

The storage efficiency of R-trees is better than that of k-d trees or quadtrees, since
a polygon is stored only once, and we can ensure easily that each node is at least half
full. However, querying may be slower, since multiple paths have to be searched.
Spatial joins are simpler with quadtrees than with R-trees, since all quadtrees on a
region are partitioned in the same manner. However, because of their better storage
efficiency, and their similarity to B-trees, R-trees and their variants have proved pop-
ular in database systems that support spatial data.

23.4 Multimedia Databases
Multimedia data, such as images, audio, and video—an increasingly popular form
of data—are today almost always stored outside the database, in file systems. This
kind of storage is not a problem when the number of multimedia objects is relatively
small, since features provided by databases are usually not important.

However, database features become important when the number of multimedia
objects stored is large. Issues such as transactional updates, querying facilities, and
indexing then become important. Multimedia objects often have descriptive attri-
butes, such as those indicating when they were created, who created them, and to
what category they belong. One approach to building a database for such multimedia
objects is to use databases for storing the descriptive attributes and for keeping track
of the files in which the multimedia objects are stored.
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However, storing multimedia outside the database makes it harder to provide
database functionality, such as indexing on the basis of actual multimedia data con-
tent. It can also lead to inconsistencies, such as a file that is noted in the database, but
whose contents are missing, or vice versa. It is therefore desirable to store the data
themselves in the database.

Several issues have to be addressed if multimedia data are to be stored in a database.

• The database must support large objects, since multimedia data such as videos
can occupy up to a few gigabytes of storage. Many database systems do not
support objects larger than a few gigabytes. Larger objects could be split into
smaller pieces and stored in the database. Alternatively, the multimedia ob-
ject may be stored in a file system, but the database may contain a pointer
to the object; the pointer would typically be a file name. The SQL/MED stan-
dard (MED stands for Management of External Data), which is under develop-
ment, allows external data, such as files, to be treated as if they are part of the
database. With SQL/MED, the object would appear to be part of the database,
but can be stored externally.

We discuss multimedia data formats in Section 23.4.1.

• The retrieval of some types of data, such as audio and video, has the require-
ment that data delivery must proceed at a guaranteed steady rate. Such data
are sometimes called isochronous data, or continuous-media data. For exam-
ple, if audio data are not supplied in time, there will be gaps in the sound. If
the data are supplied too fast, system buffers may overflow, resulting in loss
of data. We discuss continuous-media data in Section 23.4.2.

• Similarity-based retrieval is needed in many multimedia database applica-
tions. For example, in a database that stores fingerprint images, a query finger-
print image is provided, and fingerprints in the database that are similar to
the query fingerprint must be retrieved. Index structures such as B+-trees and
R-trees cannot be used for this purpose; special index structures need to be
created. We discuss similarity-based retrieval in Section 23.4.3

23.4.1 Multimedia Data Formats
Because of the large number of bytes required to represent multimedia data, it is
essential that multimedia data be stored and transmitted in compressed form. For
image data, the most widely used format is JPEG, named after the standards body
that created it, the Joint Picture Experts Group. We can store video data by encod-
ing each frame of video in JPEG format, but such an encoding is wasteful, since
successive frames of a video are often nearly the same. The Moving Picture Experts
Group has developed the MPEG series of standards for encoding video and audio
data; these encodings exploit commonalities among a sequence of frames to achieve
a greater degree of compression. The MPEG-1 standard stores a minute of 30-frame-
per-second video and audio in approximately 12.5 megabytes (compared to approxi-
mately 75 megabytes for video in only JPEG). However, MPEG-1 encoding introduces
some loss of video quality, to a level roughly comparable to that of VHS video tape.
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The MPEG-2 standard is designed for digital broadcast systems and digital video
disks (DVD); it introduces only a negligible loss of video quality. MPEG-2 compresses
1 minute of video and audio to approximately 17 megabytes. Several competing stan-
dards are used for audio encoding, including MP3, which stands for MPEG-1 Layer 3,
RealAudio, and other formats.

23.4.2 Continuous-Media Data
The most important types of continuous-media data are video and audio data (for ex-
ample, a database of movies). Continuous-media systems are characterized by their
real-time information-delivery requirements:

• Data must be delivered sufficiently fast that no gaps in the audio or video
result.

• Data must be delivered at a rate that does not cause overflow of system buffers.

• Synchronization among distinct data streams must be maintained. This need
arises, for example, when the video of a person speaking must show lips mov-
ing synchronously with the audio of the person speaking.

To supply data predictably at the right time to a large number of consumers of the
data, the fetching of data from disk must be carefully coordinated. Usually, data are
fetched in periodic cycles. In each cycle, say of n seconds, n seconds worth of data
is fetched for each consumer and stored in memory buffers, while the data fetched
in the previous cycle is being sent to the consumers from the memory buffers. The
cycle period is a compromise: A short period uses less memory but requires more
disk arm movement, which is a waste of resources, while a long period reduces disk
arm movement but increases memory requirements and may delay initial delivery
of data. When a new request arrives, admission control comes into play: That is, the
system checks if the request can be satisfied with available resources (in each period);
if so, it is admitted; otherwise it is rejected.

Extensive research on delivery of continuous media data has dealt with such issues
as handling arrays of disks and dealing with disk failure. See the bibliographical
references for details.

Several vendors offer video-on-demand servers. Current systems are based on file
systems, because existing database systems do not provide the real-time response
that these applications need. The basic architecture of a video-on-demand system
comprises:

• Video server. Multimedia data are stored on several disks (usually in a RAID
configuration). Systems containing a large volume of data may use tertiary
storage for less frequently accessed data.

• Terminals. People view multimedia data through various devices, collectively
referred to as terminals. Examples are personal computers and televisions at-
tached to a small, inexpensive computer called a set-top box.
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• Network. Transmission of multimedia data from a server to multiple termi-
nals requires a high-capacity network.

Video-on-demand service eventually will become ubiquitous, just as cable and
broadcast television are now. For the present, the main applications of video-server
technology are in offices (for training, viewing recorded talks and presentations, and
the like), in hotels, and in video-production facilities.

23.4.3 Similarity-Based Retrieval
In many multimedia applications, data are described only approximately in the data-
base. An example is the fingerprint data in Section 23.4. Other examples are:

• Pictorial data. Two pictures or images that are slightly different as represented
in the database may be considered the same by a user. For instance, a database
may store trademark designs. When a new trademark is to be registered, the
system may need first to identify all similar trademarks that were registered
previously.

• Audio data. Speech-based user interfaces are being developed that allow the
user to give a command or identify a data item by speaking. The input from
the user must then be tested for similarity to those commands or data items
stored in the system.

• Handwritten data. Handwritten input can be used to identify a handwritten
data item or command stored in the database. Here again, similarity testing is
required.

The notion of similarity is often subjective and user specific. However, similarity
testing is often more successful than speech or handwriting recognition, because the
input can be compared to data already in the system and, thus, the set of choices
available to the system is limited.

Several algorithms exist for finding the best matches to a given input by similarity
testing. Some systems, including a dial-by-name, voice-activated telephone system,
have been deployed commercially. See the bibliographical notes for references.

23.5 Mobility and Personal Databases
Large-scale, commercial databases have traditionally been stored in central comput-
ing facilities. In distributed database applications, there has usually been strong cen-
tral database and network administration. Two technology trends have combined to
create applications in which this assumption of central control and administration is
not entirely correct:

1. The increasingly widespread use of personal computers, and, more important,
of laptop or notebook computers.
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2. The development of a relatively low-cost wireless digital communication in-
frastructure, based on wireless local-area networks, cellular digital packet net-
works, and other technologies.

Mobile computing has proved useful in many applications. Many business trav-
elers use laptop computers so that they can work and access data en route. Delivery
services use mobile computers to assist in package tracking. Emergency-response ser-
vices use mobile computers at the scene of disasters, medical emergencies, and the
like to access information and to enter data pertaining to the situation. New applica-
tions of mobile computers continue to emerge.

Wireless computing creates a situation where machines no longer have fixed loca-
tions and network addresses. Location-dependent queries are an interesting class of
queries that are motivated by mobile computers; in such queries, the location of the
user (computer) is a parameter of the query. The value of the location parameter is
provided either by the user or, increasingly, by a global positioning system (GPS). An
example is a traveler’s information system that provides data on hotels, roadside ser-
vices, and the like to motorists. Processing of queries about services that are ahead
on the current route must be based on knowledge of the user’s location, direction
of motion, and speed. Increasingly, navigational aids are being offered as a built-in
feature in automobiles.

Energy (battery power) is a scarce resource for most mobile computers. This limi-
tation influences many aspects of system design. Among the more interesting conse-
quences of the need for energy efficiency is the use of scheduled data broadcasts to
reduce the need for mobile systems to transmit queries.

Increasing amounts of data may reside on machines administered by users, rather
than by database administrators. Furthermore, these machines may, at times, be dis-
connected from the network. In many cases, there is a conflict between the user’s
need to continue to work while disconnected and the need for global data consis-
tency.

In Sections 23.5.1 through 23.5.4, we discuss techniques in use and under develop-
ment to deal with the problems of mobility and personal computing.

23.5.1 A Model of Mobile Computing
The mobile-computing environment consists of mobile computers, referred to as mo-
bile hosts, and a wired network of computers. Mobile hosts communicate with the
wired network via computers referred to as mobile support stations. Each mobile
support station manages those mobile hosts within its cell—that is, the geograph-
ical area that it covers. Mobile hosts may move between cells, thus necessitating a
handoff of control from one mobile support station to another. Since mobile hosts
may, at times, be powered down, a host may leave one cell and rematerialize later at
some distant cell. Therefore, moves between cells are not necessarily between adja-
cent cells. Within a small area, such as a building, mobile hosts may be connected by a
wireless local-area network (LAN) that provides lower-cost connectivity than would
a wide-area cellular network, and that reduces the overhead of handoffs.
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It is possible for mobile hosts to communicate directly without the intervention
of a mobile support station. However, such communication can occur between only
nearby hosts. Such direct forms of communication are becoming more prevalent with
the advent of the Bluetooth standard. Bluetooth uses short-range digital radio to
allow wireless connectivity within a 10-meter range at high speed (up to 721 kilo-
bits per second). Initially conceived as a replacement for cables, Bluetooth’s greatest
promise is in easy ad hoc connection of mobile computers, PDAs, mobile phones, and
so-called intelligent appliances.

The network infrastructure for mobile computing consists in large part of two
technologies: wireless local-area networks (such as Avaya’s Orinoco wireless LAN),
and packet-based cellular telephony networks. Early cellular systems used analog
technology and were designed for voice communication. Second-generation digital
systems retained the focus on voice appliations. Third-generation (3G) and so-called
2.5G systems use packet-based networking and are more suited to data applications.
In these networks, voice is just one of many applications (albeit an economically im-
portant one).

Bluetooth, wireless LANs, and 2.5G and 3G cellular networks make it possible for
a wide variety of devices to communicate at low cost. While such communication
itself does not fit the domain of a usual database application, the accounting, mon-
itoring, and management data pertaining to this communication will generate huge
databases. The immediacy of wireless communication generates a need for real-time
access to many of these databases. This need for timeliness adds another dimension
to the constraints on the system—a matter we shall discuss further in Section 24.3.

The size and power limitations of many mobile computers have led to alternative
memory hierarchies. Instead of, or in addition to, disk storage, flash memory, which
we discussed in Section 11.1, may be included. If the mobile host includes a hard
disk, the disk may be allowed to spin down when it is not in use, to save energy. The
same considerations of size and energy limit the type and size of the display used
in a mobile device. Designers of mobile devices often create special-purpose user in-
terfaces to work within these constraints. However, the need to present Web-based
data has neccessitated the creation of presentation standards. Wireless application
protocol (WAP) is a standard for wireless internet access. WAP-based browsers ac-
cess special Web pages that use wireless markup lanaguge (WML), an XML-based
language designed for the constraints of mobile and wireless Web browsing.

23.5.2 Routing and Query Processing
The route between a pair of hosts may change over time if one of the two hosts is
mobile. This simple fact has a dramatic effect at the network level, since location-
based network addresses are no longer constants within the system.

Mobility also directly affects database query processing. As we saw in Chapter 19,
we must consider the communication costs when we choose a distributed query-
processing strategy. Mobility results in dynamically changing communication costs,
thus complicating the optimization process. Furthermore, there are competing no-
tions of cost to consider:
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• User time is a highly valuable commodity in many business applications

• Connection time is the unit by which monetary charges are assigned in some
cellular systems

• Number of bytes, or packets, transferred is the unit by which charges are
computed in some digital cellular systems

• Time-of-day-based charges vary, depending on whether communication oc-
curs during peak or off-peak periods

• Energy is limited. Often, battery power is a scarce resource whose use must
be optimized. A basic principle of radio communication is that it requires less
energy to receive than to transmit radio signals. Thus, transmission and re-
ception of data impose different power demands on the mobile host.

23.5.3 Broadcast Data
It is often desirable for frequently requested data to be broadcast in a continuous
cycle by mobile support stations, rather than transmitted to mobile hosts on demand.
A typical application of such broadcast data is stock-market price information. There
are two reasons for using broadcast data. First, the mobile host avoids the energy cost
for transmitting data requests. Second, the broadcast data can be received by a large
number of mobile hosts at once, at no extra cost. Thus, the available transmission
bandwidth is utilized more effectively.

A mobile host can then receive data as they are transmitted, rather than consuming
energy by transmitting a request. The mobile host may have local nonvolatile storage
available to cache the broadcast data for possible later use. Given a query, the mobile
host may optimize energy costs by determining whether it can process that query
with only cached data. If the cached data are insufficient, there are two options: Wait
for the data to be broadcast, or transmit a request for data. To make this decision, the
mobile host must know when the relevant data will be broadcast.

Broadcast data may be transmitted according to a fixed schedule or a changeable
schedule. In the former case, the mobile host uses the known fixed schedule to de-
termine when the relevant data will be transmitted. In the latter case, the broadcast
schedule must itself be broadcast at a well-known radio frequency and at well-known
time intervals.

In effect, the broadcast medium can be modeled as a disk with a high latency.
Requests for data can be thought of as being serviced when the requested data are
broadcast. The transmission schedules behave like indices on the disk. The biblio-
graphical notes list recent research papers in the area of broadcast data management.

23.5.4 Disconnectivity and Consistency
Since wireless communication may be paid for on the basis of connection time, there
is an incentive for certain mobile hosts to be disconnected for substantial periods.
Mobile computers without wireless connectivity are disconnected most of the time
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when they are being used, except periodically when they are connected to their host
computers, either physically or through a computer network.

During these periods of disconnection, the mobile host may remain in operation.
The user of the mobile host may issue queries and updates on data that reside or are
cached locally. This situation creates several problems, in particular:

• Recoverability: Updates entered on a disconnected machine may be lost if
the mobile host experiences a catastrophic failure. Since the mobile host rep-
resents a single point of failure, stable storage cannot be simulated well.

• Consistency: Locally cached data may become out of date, but the mobile
host cannot discover this situation until it is reconnected. Likewise, updates
occurring in the mobile host cannot be propagated until reconnection occurs.

We explored the consistency problem in Chapter 19, where we discussed network
partitioning, and we elaborate on it here. In wired distributed systems, partitioning is
considered to be a failure mode; in mobile computing, partitioning via disconnection
is part of the normal mode of operation. It is therefore necessary to allow data access
to proceed despite partitioning, even at the risk of some loss of consistency.

For data updated by only the mobile host, it is a simple matter to propagate the
updates when the mobile host reconnects. However, if the mobile host caches read-
only copies of data that may be updated by other computers, the cached data may
become inconsistent. When the mobile host is connected, it can be sent invalidation
reports that inform it of out-of-date cache entries. However, when the mobile host is
disconnected, it may miss an invalidation report. A simple solution to this problem is
to invalidate the entire cache on reconnection, but such an extreme solution is highly
costly. Several caching schemes are cited in the bibliographical notes.

If updates can occur at both the mobile host and elsewhere, detecting conflict-
ing updates is more difficult. Version-numbering-based schemes allow updates of
shared files from disconnected hosts. These schemes do not guarantee that the up-
dates will be consistent. Rather, they guarantee that, if two hosts independently up-
date the same version of a document, the clash will be detected eventually, when the
hosts exchange information either directly or through a common host.

The version-vector scheme detects inconsistencies when copies of a document are
independently updated. This scheme allows copies of a document to be stored at mul-
tiple hosts. Although we use the term document, the scheme can be applied to any
other data items, such as tuples of a relation.

The basic idea is for each host i to store, with its copy of each document d, a version
vector—that is, a set of version numbers {Vd,i[j]}, with one entry for each other host
j on which the document could potentially be updated. When a host i updates a
document d, it increments the version number Vd,i[i] by one.

Whenever two hosts i and j connect with each other, they exchange updated docu-
ments, so that both obtain new versions of the documents. However, before exchang-
ing documents, the hosts have to discover whether the copies are consistent:

1. If the version vectors are the same on both hosts—that is, for each k, Vd,i[k] =
Vd,j [k]—then the copies of document d are identical.
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2. If, for each k, Vd,i[k] ≤ Vd,j [k] and the version vectors are not identical, then
the copy of document d at host i is older than the one at host j. That is, the
copy of document d at host j was obtained by one or more modifications of
the copy of the document at host i. Host i replaces its copy of d, as well as its
copy of the version vector for d, with the copies from host j.

3. If there is a pair of hosts k and m such that Vd,i[k] < Vd,j [k] and Vd,i[m] >
Vd,j [m], then the copies are inconsistent; that is, the copy of d at i contains up-
dates performed by host k that have not been propagated to host j, and, sim-
ilarly, the copy of d at j contains updates performed by host m that have not
been propagated to host i. Then, the copies of d are inconsistent, since two or
more updates have been performed on d independently. Manual intervention
may be required to merge the updates.

The version-vector scheme was initially designed to deal with failures in distrib-
uted file systems. The scheme gained importance because mobile computers often
store copies of files that are also present on server systems, in effect constituting a
distributed file system that is often disconnected. Another application of the scheme
is in groupware systems, where hosts are connected periodically, rather than contin-
uously, and must exchange updated documents. The version-vector scheme also has
applications in replicated databases.

The version-vector scheme, however, fails to address the most difficult and most
important issue arising from updates to shared data—the reconciliation of inconsis-
tent copies of data. Many applications can perform reconciliation automatically by
executing in each computer those operations that had performed updates on remote
computers during the period of disconnection. This solution works if update oper-
ations commute—that is, they generate the same result, regardless of the order in
which they are executed. Alternative techniques may be available in certain applica-
tions; in the worst case, however, it must be left to the users to resolve the inconsisten-
cies. Dealing with such inconsistency automatically, and assisting users in resolving
inconsistencies that cannot be handled automatically, remains an area of research.

Another weakness is that the version-vector scheme requires substantial commu-
nication between a reconnecting mobile host and that host’s mobile support station.
Consistency checks can be delayed until the data are needed, although this delay
may increase the overall inconsistency of the database.

The potential for disconnection and the cost of wireless communication limit the
practicality of transaction-processing techniques discussed in Chapter 19 for dis-
tributed systems. Often, it is preferable to let users prepare transactions on mobile
hosts, but to require that, instead of executing the transactions locally, they submit
transactions to a server for execution. Transactions that span more than one computer
and that include a mobile host face long-term blocking during transaction commit,
unless disconnectivity is rare or predictable.

23.6 Summary
• Time plays an important role in database systems. Databases are models of

the real world. Whereas most databases model the state of the real world at a
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point in time (at the current time), temporal databases model the states of the
real world across time.

• Facts in temporal relations have associated times when they are valid, which
can be represented as a union of intervals. Temporal query languages simplify
modeling of time, as well as time-related queries.

• Spatial databases are finding increasing use today to store computer-aided-
design data as well as geographic data.

• Design data are stored primarily as vector data; geographic data consist of a
combination of vector and raster data. Spatial-integrity constraints are impor-
tant for design data.

• Vector data can be encoded as first-normal-form data, or can be stored using
non-first-normal-form structures, such as lists. Special-purpose index struc-
tures are particularly important for accessing spatial data, and for processing
spatial queries.

• R-trees are a multidimensional extension of B-trees; with variants such as R+-
trees and R∗-trees, they have proved popular in spatial databases. Index struc-
tures that partition space in a regular fashion, such as quadtrees, help in pro-
cessing spatial join queries.

• Multimedia databases are growing in importance. Issues such as similarity-
based retrieval and delivery of data at guaranteed rates are topics of current
research.

• Mobile computing systems have become common, leading to interest in data-
base systems that can run on such systems. Query processing in such systems
may involve lookups on server databases. The query cost model must include
the cost of communication, including monetary cost and battery-power cost,
which is relatively high for mobile systems.

• Broadcast is much cheaper per recipient than is point-to-point communica-
tion, and broadcast of data such as stock-market data helps mobile systems to
pick up data inexpensively.

• Disconnected operation, use of broadcast data, and caching of data are three
important issues being addressed in mobile computing.

Review Terms
• Temporal data

• Valid time

• Transaction time

• Temporal relation

• Bitemporal relation

• Universal coordinated time (UTC)

• Snapshot relation

• Temporal query languages

• Temporal selection

• Temporal projection
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• Temporal join
• Spatial and geographic data
• Computer-aided-design (CAD)

data
• Geographic data
• Geographic information systems
• Triangulation
• Design databases
• Geographic data
• Raster data
• Vector data
• Global positioning system (GPS)
• Spatial queries
• Nearness queries
• Nearest-neighbor queries
• Region queries
• Spatial join
• Indexing of spatial data
• k-d trees
• k-d-B trees
• Quadtrees

� PR quadtree
� Region quadtree

• R-trees
� Bounding box
� Quadratic split

• Multimedia databases

• Isochronous data

• Continuous-media data

• Similarity-based retrieval

• Multimedia data formats

• Video servers

• Mobile computing
� Mobile hosts
� Mobile support stations
� Cell
� Handoff

• Location-dependent queries

• Broadcast data

• Consistency
� Invalidation reports
� Version-vector scheme

Exercises
23.1 What are the two types of time, and how are they different? Why does it make

sense to have both types of time associated with a tuple?

23.2 Will functional dependencies be preserved if a relation is converted to a tem-
poral relation by adding a time attribute? How is the problem handled in a
temporal database?

23.3 Suppose you have a relation containing the x, y coordinates and names of
restaurants. Suppose also that the only queries that will be asked are of the
following form: The query specifies a point, and asks if there is a restaurant ex-
actly at that point. Which type of index would be preferable, R-tree or B-tree?
Why?

23.4 Consider two-dimensional vector data where the data items do not overlap.
Is it possible to convert such vector data to raster data? If so, what are the
drawbacks of storing raster data obtained by such conversion, instead of the
original vector data?
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23.5 Suppose you have a spatial database that supports region queries (with circu-
lar regions) but not nearest-neighbor queries. Describe an algorithm to find the
nearest neighbor by making use of multiple region queries.

23.6 Suppose you want to store line segments in an R-tree. If a line segment is not
parallel to the axes, the bounding box for it can be large, containing a large
empty area.
• Describe the effect on performance of having large bounding boxes on

queries that ask for line segments intersecting a given region.
• Briefly describe a technique to improve performance for such queries and

give an example of its benefit. Hint: you can divide segments into smaller
pieces.

23.7 Give a recursive procedure to efficiently compute the spatial join of two re-
lations with R-tree indices. (Hint: Use bounding boxes to check if leaf entries
under a pair of internal nodes may intersect.)

23.8 Study the support for spatial data offered by the database system that you use,
and implement the following:

a. A schema to represent the geographic location of restaurants along with
features such as the cuisine served at the restaurant and the level of expen-
siveness.

b. A query to find moderately priced restaurants that serve Indian food and
are within 5 miles of your house (assume any location for your house).

c. A query to find for each restaurant the distance from the nearest restaurant
serving the same cuisine and with the same level of expensiveness.

23.9 What problems can occur in a continuous-media system if data is delivered
either too slowly or too fast?

23.10 Describe how the ideas behind the RAID organization (Section 11.3) can be used
in a broadcast-data environment, where there may occasionally be noise that
prevents reception of part of the data being transmitted.

23.11 List three main features of mobile computing over wireless networks that are
distinct from traditional distributed systems.

23.12 List three factors that need to be considered in query optimization for mobile
computing that are not considered in traditional query optimizers.

23.13 Define a model of repeatedly broadcast data in which the broadcast medium is
modeled as a virtual disk. Describe how access time and data-transfer rate for
this virtual disk differ from the corresponding values for a typical hard disk.

23.14 Consider a database of documents in which all documents are kept in a central
database. Copies of some documents are kept on mobile computers. Suppose
that mobile computer A updates a copy of document 1 while it is disconnected,
and, at the same time, mobile computer B updates a copy of document 2 while
it is disconnected. Show how the version-vector scheme can ensure proper up-
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dating of the central database and mobile computers when a mobile computer
reconnects.

23.15 Give an example to show that the version-vector scheme does not ensure se-
rializability. (Hint: Use the example from Exercise 23.14, with the assumption
that documents 1 and 2 are available on both mobile computers A and B, and
take into account the possibility that a document may be read without being
updated.)
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C H A P T E R 2 4

Advanced Transaction
Processing

In Chapters 15, 16, and 17, we introduced the concept of a transaction, which is a
program unit that accesses—and possibly updates—various data items, and whose
execution ensures the preservation of the ACID properties. We discussed in those
chapters a variety of schemes for ensuring the ACID properties in an environment
where failure can occur, and where the transactions may run concurrently.

In this chapter, we go beyond the basic schemes discussed previously, and cover
advanced transaction-processing concepts, including transaction-processing moni-
tors, transactional workflows, main-memory databases, real-time databases, long-
duration transactions, nested transactions, and multidatabase transactions.

24.1 Transaction-Processing Monitors
Transaction-processing monitors (TP monitors) are systems that were developed in
the 1970s and 1980s, initially in response to a need to support a large number of
remote terminals (such as airline-reservation terminals) from a single computer. The
term TP monitor initially stood for teleprocessing monitor.

TP monitors have since evolved to provide the core support for distributed trans-
action processing, and the term TP monitor has acquired its current meaning. The
CICS TP monitor from IBM was one of the earliest TP monitors, and has been very
widely used. Current-generation TP monitors include Tuxedo and Top End (both
now from BEA Systems), Encina (from Transarc, which is now a part of IBM), and
Transaction Server (from Microsoft).

24.1.1 TP-Monitor Architectures
Large-scale transaction processing systems are built around a client–server architec-
ture. One way of building such systems is to have a server process for each client; the
server performs authentication, and then executes actions requested by the client.

891
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Figure 24.1 TP-monitor architectures.

This process-per-client model is illustrated in Figure 24.1a. This model presents sev-
eral problems with respect to memory utilization and processing speed:

• Per-process memory requirements are high. Even if memory for program code
is shared by all processes, each process consumes memory for local data and
open file descriptors, as well as for operating-system overhead, such as page
tables to support virtual memory.

• The operating system divides up available CPU time among processes by
switching among them; this technique is called multitasking. Each context
switch between one process and the next has considerable CPU overhead;
even on today’s fast systems, a context switch can take hundreds of microsec-
onds.

The above problems can be avoided by having a single-server process to which
all remote clients connect; this model is called the single-server model, illustrated in
Figure 24.1b. Remote clients send requests to the server process, which then executes
those requests. This model is also used in client–server environments, where clients
send requests to a single-server process. The server process handles tasks, such as
user authentication, that would normally be handled by the operating system. To
avoid blocking other clients when processing a long request for one client, the server
process is multithreaded: The server process has a thread of control for each client,
and, in effect, implements its own low-overhead multitasking. It executes code on
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behalf of one client for a while, then saves the internal context and switches to the
code for another client. Unlike the overhead of full multitasking, the cost of switching
between threads is low (typically only a few microseconds).

Systems based on the single-server model, such as the original version of the IBM
CICS TP monitor and file servers such as Novel’s NetWare, successfully provided
high transaction rates with limited resources. However, they had problems, espe-
cially when multiple applications accessed the same database:

• Since all the applications run as a single process, there is no protection among
them. A bug in one application can affect all the other applications as well. It
would be best to run each application as a separate process.

• Such systems are not suited for parallel or distributed databases, since a server
process cannot execute on multiple computers at once. (However, concurrent
threads within a process can be supported in a shared-memory multiproces-
sor system.) This is a serious drawback in large organizations, where parallel
processing is critical for handling large workloads, and distributed data are
becoming increasingly common.

One way to solve these problems is to run multiple application-server processes
that access a common database, and to let the clients communicate with the appli-
cation through a single communication process that routes requests. This model is
called the many-server, single-router model, illustrated in Figure 24.1c. This model
supports independent server processes for multiple applications; further, each ap-
plication can have a pool of server processes, any one of which can handle a client
session. The request can, for example, be routed to the most lightly loaded server in a
pool. As before, each server process can itself be multithreaded, so that it can handle
multiple clients concurrently. As a further generalization, the application servers can
run on different sites of a parallel or distributed database, and the communication
process can handle the coordination among the processes.

The above architecture is also widely used in Web servers. A Web server has a
main process that receives HTTP requests, and then assigns the task of handling each
request to a separate process (chosen from among a pool of processes). Each of the
processes is itself multithreaded, so that it can handle multiple requests.

A more general architecture has multiple processes, rather than just one, to com-
municate with clients. The client communication processes interact with one or more
router processes, which route their requests to the appropriate server. Later-
generation TP monitors therefore have a different architecture, called the many-server,
many-router model, illustrated in Figure 24.1d. A controller process starts up the
other processes, and supervises their functioning. Tandem Pathway is an example
of the later-generation TP monitors that use this architecture. Very high performance
Web server systems also adopt such an architecture.

The detailed structure of a TP monitor appears in Figure 24.2. A TP monitor does
more than simply pass messages to application servers. When messages arrive, they
may have to be queued; thus, there is a queue manager for incoming messages.
The queue may be a durable queue, whose entries survive system failures. Using a
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Figure 24.2 TP-monitor components.

durable queue helps ensure that once received and stored in the queue, the
messages will be processed eventually, regardless of system failures. Authorization
and application-server management (for example, server startup, and routing of mes-
sages to servers) are further functions of a TP monitor. TP monitors often provide
logging, recovery, and concurrency-control facilities, allowing application servers to
implement the ACID transaction properties directly if required.

Finally, TP monitors also provide support for persistent messaging. Recall that per-
sistent messaging (Section 19.4.3) provides a guarantee that the message will be de-
livered if (and only if) the transaction commits.

In addition to these facilities, many TP monitors also provided presentation facilities
to create menus/forms interfaces for dumb clients such as terminals; these facilities
are no longer important since dumb clients are no longer widely used.

24.1.2 Application Coordination Using TP monitors
Applications today often have to interact with multiple databases. They may also
have to interact with legacy systems, such as special-purpose data-storage systems
built directly on file systems. Finally, they may have to communicate with users or
other applications at remote sites. Hence, they also have to interact with commu-
nication subsystems. It is important to be able to coordinate data accesses, and to
implement ACID properties for transactions across such systems.

Modern TP monitors provide support for the construction and administration of
such large applications, built up from multiple subsystems such as databases, legacy
systems, and communication systems. A TP monitor treats each subsystem as a re-
source manager that provides transactional access to some set of resources. The in-
terface between the TP monitor and the resource manager is defined by a set of trans-
action primitives, such as begin transaction, commit transaction, abort transaction, and
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prepare to commit transaction (for two-phase commit). Of course, the resource man-
ager must also provide other services, such as supplying data, to the application.

The resource-manager interface is defined by the X/Open Distributed Transaction
Processing standard. Many database systems support the X/Open standards, and
can act as resource managers. TP monitors—as well as other products, such as SQL
systems, that support the X/Open standards—can connect to the resource managers.

In addition, services provided by a TP monitor, such as persistent messaging and
durable queues, act as resource managers supporting transactions. The TP monitor
can act as coordinator of two-phase commit for transactions that access these ser-
vices as well as database systems. For example, when a queued update transaction
is executed, an output message is delivered, and the request transaction is removed
from the request queue. Two-phase commit between the database and the resource
managers for the durable queue and persistent messaging helps ensure that, regard-
less of failures, either all these actions occur, or none occurs.

We can also use TP monitors to administer complex client–server systems consist-
ing of multiple servers and a large number of clients. The TP monitor coordinates
activities such as system checkpoints and shutdowns. It provides security and au-
thentication of clients. It administers server pools by adding servers or removing
servers without interruption of the system. Finally, it controls the scope of failures. If
a server fails, the TP monitor can detect this failure, abort the transactions in progress,
and restart the transactions. If a node fails, the TP monitor can migrate transactions to
servers at other nodes, again backing out incomplete transactions. When failed nodes
restart, the TP monitor can govern the recovery of the node’s resource managers.

TP monitors can be used to hide database failures in replicated systems; remote
backup systems (Section 17.10) are an example of replicated systems. Transaction
requests are sent to the TP monitor, which relays the messages to one of the database
replicas (the primary site, in case of remote backup systems). If one site fails, the TP
monitor can transparently route messages to a backup site, masking the failure of the
first site.

In client–server systems, clients often interact with servers via a remote-procedure-
call (RPC) mechanism, where a client invokes a procedure call, which is actually ex-
ecuted at the server, with the results sent back to the client. As far as the client code
that invokes the RPC is concerned, the call looks like a local procedure-call invocation.
TP monitor systems, such as Encina, provide a transactional RPC interface to their
services. In such an interface, the RPC mechanism provides calls that can be used to
enclose a series of RPC calls within a transaction. Thus, updates performed by an RPC
are carried out within the scope of the transaction, and can be rolled back if there is
any failure.

24.2 Transactional Workflows
A workflow is an activity in which multiple tasks are executed in a coordinated way
by different processing entities. A task defines some work to be done and can be
specified in a number of ways, including a textual description in a file or electronic-
mail message, a form, a message, or a computer program. The processing entity that
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Figure 24.3 Examples of workflows.

performs the tasks may be a person or a software system (for example, a mailer, an
application program, or a database-management system).

Figure 24.3 shows examples of workflows. A simple example is that of an electronic-
mail system. The delivery of a single mail message may involve several mailer sys-
tems that receive and forward the mail message, until the message reaches its desti-
nation, where it is stored. Each mailer performs a task—forwarding the mail to the
next mailer—and the tasks of multiple mailers may be required to route mail from
source to destination. Other terms used in the database and related literature to refer
to workflows include task flow and multisystem applications. Workflow tasks are
also sometimes called steps.

In general, workflows may involve one or more humans. For instance, consider
the processing of a loan. The relevant workflow appears in Figure 24.4. The person
who wants a loan fills out a form, which is then checked by a loan officer. An em-
ployee who processes loan applications verifies the data in the form, using sources
such as credit-reference bureaus. When all the required information has been col-
lected, the loan officer may decide to approve the loan; that decision may then have
to be approved by one or more superior officers, after which the loan can be made.
Each human here performs a task; in a bank that has not automated the task of loan
processing, the coordination of the tasks is typically carried out by passing of the
loan application, with attached notes and other information, from one employee to

customer loan officer

verification

superior
officer

loan
disbursement

loan
application

reject

accept

Figure 24.4 Workflow in loan processing.
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the next. Other examples of workflows include processing of expense vouchers, of
purchase orders, and of credit-card transactions.

Today, all the information related to a workflow is more than likely to be stored in
a digital form on one or more computers, and, with the growth of networking, infor-
mation can be easily transferred from one computer to another. Hence, it is feasible
for organizations to automate their workflows. For example, to automate the tasks
involved in loan processing, we can store the loan application and associated infor-
mation in a database. The workflow itself then involves handing of responsibility
from one human to the next, and possibly even to programs that can automatically
fetch the required information. Humans can coordinate their activities by means such
as electronic mail.

We have to address two activities, in general, to automate a workflow. The first
is workflow specification: detailing the tasks that must be carried out and defining
the execution requirements. The second problem is workflow execution, which we
must do while providing the safeguards of traditional database systems related to
computation correctness and data integrity and durability. For example, it is not ac-
ceptable for a loan application or a voucher to be lost, or to be processed more than
once, because of a system crash. The idea behind transactional workflows is to use
and extend the concepts of transactions to the context of workflows.

Both activities are complicated by the fact that many organizations use several
independently managed information-processing systems that, in most cases, were
developed separately to automate different functions. Workflow activities may re-
quire interactions among several such systems, each performing a task, as well as
interactions with humans.

A number of workflow systems have been developed in recent years. Here, we
study properties of workflow systems at a relatively abstract level, without going
into the details of any particular system.

24.2.1 Workflow Specification
Internal aspects of a task do not need to be modeled for the purpose of specification
and management of a workflow. In an abstract view of a task, a task may use param-
eters stored in its input variables, may retrieve and update data in the local system,
may store its results in its output variables, and may be queried about its execution
state. At any time during the execution, the workflow state consists of the collection
of states of the workflow’s constituent tasks, and the states (values) of all variables in
the workflow specification.

The coordination of tasks can be specified either statically or dynamically. A static
specification defines the tasks—and dependencies among them—before the execu-
tion of the workflow begins. For instance, the tasks in an expense-voucher workflow
may consist of the approvals of the voucher by a secretary, a manager, and an accoun-
tant, in that order, and finally by the delivery of a check. The dependencies among
the tasks may be simple—each task has to be completed before the next begins.

A generalization of this strategy is to have a precondition for execution of each
task in the workflow, so that all possible tasks in a workflow and their dependen-
cies are known in advance, but only those tasks whose preconditions are satisfied
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are executed. The preconditions can be defined through dependencies such as the
following:

• Execution states of other tasks—for example, “task ti cannot start until task tj
has ended,” or “task ti must abort if task tj has committed”

• Output values of other tasks—for example, “task ti can start if task tj re-
turns a value greater than 25,” or “the manager-approval task can start if the
secretary-approval task returns a value of OK”

• External variables modified by external events—for example, “task ti cannot
be started before 9 AM,” or “task ti must be started within 24 hours of the
completion of task tj”

We can combine the dependencies by the regular logical connectors (or, and, not) to
form complex scheduling preconditions.

An example of dynamic scheduling of tasks is an electronic-mail routing system.
The next task to be scheduled for a given mail message depends on what the desti-
nation address of the message is, and on which intermediate routers are functioning.

24.2.2 Failure-Atomicity Requirements of a Workflow
The workflow designer may specify the failure-atomicity requirements of a work-
flow according to the semantics of the workflow. The traditional notion of failure
atomicity would require that a failure of any task results in the failure of the work-
flow. However, a workflow can, in many cases, survive the failure of one of its tasks—
for example, by executing a functionally equivalent task at another site. Therefore,
we should allow the designer to define failure-atomicity requirements of a workflow.
The system must guarantee that every execution of a workflow will terminate in a
state that satisfies the failure-atomicity requirements defined by the designer. We call
those states acceptable termination states of a workflow. All other execution states of
a workflow constitute a set of nonacceptable termination states, in which the failure-
atomicity requirements may be violated.

An acceptable termination state can be designated as committed or aborted. A
committed acceptable termination state is an execution state in which the objectives
of a workflow have been achieved. In contrast, an aborted acceptable termination
state is a valid termination state in which a workflow has failed to achieve its ob-
jectives. If an aborted acceptable termination state has been reached, all undesirable
effects of the partial execution of the workflow must be undone in accordance with
that workflow’s failure-atomicity requirements.

A workflow must reach an acceptable termination state even in the presence of system
failures. Thus, if a workflow was in a nonacceptable termination state at the time of
failure, during system recovery it must be brought to an acceptable termination state
(whether aborted or committed).

For example, in the loan-processing workflow, in the final state, either the loan
applicant is told that a loan cannot be made or the loan is disbursed. In case of fail-
ures such as a long failure of the verification system, the loan application could be
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returned to the loan applicant with a suitable explanation; this outcome would consti-
tute an aborted acceptable termination. A committed acceptable termination would
be either the acceptance or the rejection of the loan.

In general, a task can commit and release its resources before the workflow reaches
a termination state. However, if the multitask transaction later aborts, its failure atom-
icity may require that we undo the effects of already completed tasks (for example,
committed subtransactions) by executing compensating tasks (as subtransactions).
The semantics of compensation requires that a compensating transaction eventually
complete its execution successfully, possibly after a number of resubmissions.

In an expense-voucher-processing workflow, for example, a department-budget
balance may be reduced on the basis of an initial approval of a voucher by the man-
ager. If the voucher is later rejected, whether because of failure or for other reasons,
the budget may have to be restored by a compensating transaction.

24.2.3 Execution of Workflows
The execution of the tasks may be controlled by a human coordinator or by a soft-
ware system called a workflow-management system. A workflow-management sys-
tem consists of a scheduler, task agents, and a mechanism to query the state of the
workflow system. A task agent controls the execution of a task by a processing en-
tity. A scheduler is a program that processes workflows by submitting various tasks
for execution, monitoring various events, and evaluating conditions related to inter-
task dependencies. A scheduler may submit a task for execution (to a task agent),
or may request that a previously submitted task be aborted. In the case of multi-
database transactions, the tasks are subtransactions, and the processing entities are
local database management systems. In accordance with the workflow specifications,
the scheduler enforces the scheduling dependencies and is responsible for ensuring
that tasks reach acceptable termination states.

There are three architectural approaches to the development of a workflow-mana-
gement system. A centralized architecture has a single scheduler that schedules the
tasks for all concurrently executing workflows. The partially distributed architec-
ture has one scheduler instantiated for each workflow. When the issues of concurrent
execution can be separated from the scheduling function, the latter option is a natural
choice. A fully distributed architecture has no scheduler, but the task agents coordi-
nate their execution by communicating with one another to satisfy task dependencies
and other workflow execution requirements.

The simplest workflow-execution systems follow the fully distributed approach
just described and are based on messaging. Messaging may be implemented by per-
sistent messaging mechanisms, to provide guaranteed delivery. Some implementa-
tions use e-mail for messaging; such implementations provide many of the features
of persistent messaging, but generally do not guarantee atomicity of message deliv-
ery and transaction commit. Each site has a task agent that executes tasks received
through messages. Execution may also involve presenting messages to humans, who
have then to carry out some action. When a task is completed at a site, and needs
to be processed at another site, the task agent dispatches a message to the next site.
The message contains all relevant information about the task to be performed. Such
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message-based workflow systems are particularly useful in networks that may be
disconnected for part of the time, such as dial-up networks.

The centralized approach is used in workflow systems where the data are stored
in a central database. The scheduler notifies various agents, such as humans or com-
puter programs, that a task has to be carried out, and keeps track of task completion.
It is easier to keep track of the state of a workflow with a centralized approach than
it is with a fully distributed approach.

The scheduler must guarantee that a workflow will terminate in one of the spec-
ified acceptable termination states. Ideally, before attempting to execute a workflow,
the scheduler should examine that workflow to check whether the workflow may ter-
minate in a nonacceptable state. If the scheduler cannot guarantee that a workflow
will terminate in an acceptable state, it should reject such specifications without at-
tempting to execute the workflow. As an example, let us consider a workflow consist-
ing of two tasks represented by subtransactions S1 and S2, with the failure-atomicity
requirements indicating that either both or neither of the subtransactions should be
committed. If S1 and S2 do not provide prepared-to-commit states (for a two-phase
commit), and further do not have compensating transactions, then it is possible to
reach a state where one subtransaction is committed and the other aborted, and there
is no way to bring both to the same state. Therefore, such a workflow specification is
unsafe, and should be rejected.

Safety checks such as the one just described may be impossible or impractical to
implement in the scheduler; it then becomes the responsibility of the person design-
ing the workflow specification to ensure that the workflows are safe.

24.2.4 Recovery of a Workflow
The objective of workflow recovery is to enforce the failure atomicity of the work-
flows. The recovery procedures must make sure that, if a failure occurs in any of the
workflow-processing components (including the scheduler), the workflow will even-
tually reach an acceptable termination state (whether aborted or committed). For ex-
ample, the scheduler could continue processing after failure and recovery, as though
nothing happened, thus providing forward recoverability. Otherwise, the scheduler
could abort the whole workflow (that is, reach one of the global abort states). In ei-
ther case, some subtransactions may need to be committed or even submitted for
execution (for example, compensating subtransactions).

We assume that the processing entities involved in the workflow have their own
local recovery systems and handle their local failures. To recover the execution-
environment context, the failure-recovery routines need to restore the state infor-
mation of the scheduler at the time of failure, including the information about the
execution states of each task. Therefore, the appropriate status information must be
logged on stable storage.

We also need to consider the contents of the message queues. When one agent
hands off a task to another, the handoff should be carried out exactly once: If the
handoff happens twice a task may get executed twice; if the handoff does not oc-
cur, the task may get lost. Persistent messaging (Section 19.4.3) provides exactly the
features to ensure positive, single handoff.
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24.2.5 Workflow Management Systems
Workflows are often hand coded as part of application systems. For instance, en-
terprise resource planning (ERP) systems, which help coordinate activities across an
entire enterprise, have numerous workflows built into them.

The goal of workflow management systems is to simplify the construction of work-
flows and make them more reliable, by permitting them to be specified in a high-level
manner and executed in accordance with the specification. There are a large number
of commercial workflow management systems; some, like FlowMark from IBM, are
general-purpose workflow management systems, while others are specific to partic-
ular workflows, such as order processing or bug/failure reporting systems.

In today’s world of interconnected organizations, it is not sufficient to manage
workflows only within an organization. Workflows that cross organizational bound-
aries are becoming increasingly common. For instance, consider an order placed by
an organization and communicated to another organization that fulfills the order.
In each organization there may be a workflow associated with the order, and it is
important that the workflows be able to interoperate, in order to minimize human
intervention.

The Workflow Management Coalition has developed standards for interoperation
between workflow systems. Current standardization efforts use XML as the under-
lying language for communicating information about the workflow. See the biblio-
graphical notes for more information.

24.3 Main-Memory Databases
To allow a high rate of transaction processing (hundreds or thousands of transactions
per second), we must use high-performance hardware, and must exploit parallelism.
These techniques alone, however, are insufficient to obtain very low response times,
since disk I/O remains a bottleneck—about 10 milliseconds are required for each I/O
and this number has not decreased at a rate comparable to the increase in processor
speeds. Disk I/O is often the bottleneck for reads, as well as for transaction commits.
The long disk latency (about 10 milliseconds average) increases not only the time to
access a data item, but also limits the number of accesses per second.

We can make a database system less disk bound by increasing the size of the
database buffer. Advances in main-memory technology let us construct large main
memories at relatively low cost. Today, commercial 64-bit systems can support main
memories of tens of gigabytes.

For some applications, such as real-time control, it is necessary to store data in
main memory to meet performance requirements. The memory size required for
most such systems is not exceptionally large, although there are at least a few appli-
cations that require multiple gigabytes of data to be memory resident. Since memory
sizes have been growing at a very fast rate, an increasing number of applications can
be expected to have data that fit into main memory.

Large main memories allow faster processing of transactions, since data are mem-
ory resident. However, there are still disk-related limitations:
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• Log records must be written to stable storage before a transaction is commit-
ted. The improved performance made possible by a large main memory may
result in the logging process becoming a bottleneck. We can reduce commit
time by creating a stable log buffer in main memory, using nonvolatile RAM
(implemented, for example, by battery backed-up memory). The overhead im-
posed by logging can also be reduced by the group-commit technique discussed
later in this section. Throughput (number of transactions per second) is still
limited by the data-transfer rate of the log disk.

• Buffer blocks marked as modified by committed transactions still have to be
written so that the amount of log that has to be replayed at recovery time is
reduced. If the update rate is extremely high, the disk data-transfer rate may
become a bottleneck.

• If the system crashes, all of main memory is lost. On recovery, the system has
an empty database buffer, and data items must be input from disk when they
are accessed. Therefore, even after recovery is complete, it takes some time be-
fore the database is fully loaded in main memory and high-speed processing
of transactions can resume.

On the other hand, a main-memory database provides opportunities for optimiza-
tions:

• Since memory is costlier than disk space, internal data structures in main-
memory databases have to be designed to reduce space requirements. How-
ever, data structures can have pointers crossing multiple pages unlike those in
disk databases, where the cost of the I/Os to traverse multiple pages would be
excessively high. For example, tree structures in main-memory databases can
be relatively deep, unlike B+-trees, but should minimize space requirements.

• There is no need to pin buffer pages in memory before data are accessed, since
buffer pages will never be replaced.

• Query-processing techniques should be designed to minimize space over-
head, so that main memory limits are not exceeded while a query is being
evaluated; that situation would result in paging to swap area, and would slow
down query processing.

• Once the disk I/O bottleneck is removed, operations such as locking and latch-
ing may become bottlenecks. Such bottlenecks must be eliminated by im-
provements in the implementation of these operations.

• Recovery algorithms can be optimized, since pages rarely need to be written
out to make space for other pages.

TimesTen and DataBlitz are two main-memory database products that exploit sev-
eral of these optimizations, while the Oracle database has added special features to
support very large main memories. Additional information on main-memory data-
bases is given in the references in the bibliographical notes.
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The process of committing a transaction T requires these records to be written to
stable storage:

• All log records associated with T that have not been output to stable storage

• The <T commit> log record

These output operations frequently require the output of blocks that are only par-
tially filled. To ensure that nearly full blocks are output, we use the group-commit
technique. Instead of attempting to commit T when T completes, the system waits un-
til several transactions have completed, or a certain period of time has passed since
a transaction completed execution. It then commits the group of transactions that are
waiting, together. Blocks written to the log on stable storage would contain records
of several transactions. By careful choice of group size and maximum waiting time,
the system can ensure that blocks are full when they are written to stable storage
without making transactions wait excessively. This technique results, on average, in
fewer output operations per committed transaction.

Although group commit reduces the overhead imposed by logging, it results in a
slight delay in commit of transactions that perform updates. The delay can be made
quite small (say, 10 milliseconds), which is acceptable for many applications. These
delays can be eliminated if disks or disk controllers support nonvolatile RAM buffers
for write operations. Transactions can commit as soon as the write is performed on
the nonvolatile RAM buffer. In this case, there is no need for group commit.

Note that group commit is useful even in databases with disk-resident data.

24.4 Real-Time Transaction Systems
The integrity constraints that we have considered thus far pertain to the values stored
in the database. In certain applications, the constraints include deadlines by which a
task must be completed. Examples of such applications include plant management,
traffic control, and scheduling. When deadlines are included, correctness of an exe-
cution is no longer solely an issue of database consistency. Rather, we are concerned
with how many deadlines are missed, and by how much time they are missed. Dead-
lines are characterized as follows:

• Hard deadline. Serious problems, such as system crash, may occur if a task is
not completed by its deadline.

• Firm deadline. The task has zero value if it is completed after the deadline.

• Soft deadlines. The task has diminishing value if it is completed after the
deadline, with the value approaching zero as the degree of lateness increases.

Systems with deadlines are called real-time systems.
Transaction management in real-time systems must take deadlines into account. If

the concurrency-control protocol determines that a transaction Ti must wait, it may
cause Ti to miss the deadline. In such cases, it may be preferable to pre-empt the
transaction holding the lock, and to allow Ti to proceed. Pre-emption must be used
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with care, however, because the time lost by the pre-empted transaction (due to roll-
back and restart) may cause the transaction to miss its deadline. Unfortunately, it is
difficult to determine whether rollback or waiting is preferable in a given situation.

A major difficulty in supporting real-time constraints arises from the variance in
transaction execution time. In the best case, all data accesses reference data in the
database buffer. In the worst case, each access causes a buffer page to be written to
disk (preceded by the requisite log records), followed by the reading from disk of
the page containing the data to be accessed. Because the two or more disk accesses
required in the worst case take several orders of magnitude more time than the main-
memory references required in the best case, transaction execution time can be esti-
mated only very poorly if data are resident on disk. Hence, main-memory databases
are often used if real-time constraints have to be met.

However, even if data are resident in main memory, variances in execution time
arise from lock waits, transaction aborts, and so on. Researchers have devoted con-
siderable effort to concurrency control for real-time databases. They have extended
locking protocols to provide higher priority for transactions with early deadlines.
They have found that optimistic concurrency protocols perform well in real-time
databases; that is, these protocols result in fewer missed deadlines than even the
extended locking protocols. The bibliographical notes provide references to research
in the area of real-time databases.

In real-time systems, deadlines, rather than absolute speed, are the most important
issue. Designing a real-time system involves ensuring that there is enough processing
power to meet deadlines without requiring excessive hardware resources. Achieving
this objective, despite the variance in execution time resulting from transaction man-
agement, remains a challenging problem.

24.5 Long-Duration Transactions
The transaction concept developed initially in the context of data-processing applica-
tions, in which most transactions are noninteractive and of short duration. Although
the techniques presented here and earlier in Chapters 15, 16, and 17 work well in
those applications, serious problems arise when this concept is applied to database
systems that involve human interaction. Such transactions have these key properties:

• Long duration. Once a human interacts with an active transaction, that trans-
action becomes a long-duration transaction from the perspective of the com-
puter, since human response time is slow relative to computer speed. Further-
more, in design applications, the human activity may involve hours, days, or
an even longer period. Thus, transactions may be of long duration in human
terms, as well as in machine terms.

• Exposure of uncommitted data. Data generated and displayed to a user by a
long-duration transaction are uncommitted, since the transaction may abort.
Thus, users—and, as a result, other transactions—may be forced to read un-
committed data. If several users are cooperating on a project, user transactions
may need to exchange data prior to transaction commit.
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• Subtasks. An interactive transaction may consist of a set of subtasks initiated
by the user. The user may wish to abort a subtask without necessarily causing
the entire transaction to abort.

• Recoverability. It is unacceptable to abort a long-duration interactive transac-
tion because of a system crash. The active transaction must be recovered to a
state that existed shortly before the crash so that relatively little human work
is lost.

• Performance. Good performance in an interactive transaction system is de-
fined as fast response time. This definition is in contrast to that in a nonin-
teractive system, in which high throughput (number of transactions per sec-
ond) is the goal. Systems with high throughput make efficient use of system
resources. However, in the case of interactive transactions, the most costly
resource is the user. If the efficiency and satisfaction of the user is to be op-
timized, response time should be fast (from a human perspective). In those
cases where a task takes a long time, response time should be predictable (that
is, the variance in response times should be low), so that users can manage
their time well.

In Sections 24.5.1 through 24.5.5, we shall see why these five properties are incompat-
ible with the techniques presented thus far, and shall discuss how those techniques
can be modified to accommodate long-duration interactive transactions.

24.5.1 Nonserializable Executions
The properties that we discussed make it impractical to enforce the requirement
used in earlier chapters that only serializable schedules be permitted. Each of the
concurrency-control protocols of Chapter 16 has adverse effects on long-duration
transactions:

• Two-phase locking. When a lock cannot be granted, the transaction request-
ing the lock is forced to wait for the data item in question to be unlocked. The
duration of this wait is proportional to the duration of the transaction holding
the lock. If the data item is locked by a short-duration transaction, we expect
that the waiting time will be short (except in case of deadlock or extraordinary
system load). However, if the data item is locked by a long-duration transac-
tion, the wait will be of long duration. Long waiting times lead to both longer
response time and an increased chance of deadlock.

• Graph-based protocols. Graph-based protocols allow for locks to be released
earlier than under the two-phase locking protocols, and they prevent dead-
lock. However, they impose an ordering on the data items. Transactions must
lock data items in a manner consistent with this ordering. As a result, a trans-
action may have to lock more data than it needs. Furthermore, a transaction
must hold a lock until there is no chance that the lock will be needed again.
Thus, long-duration lock waits are likely to occur.
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• Timestamp-based protocols. Timestamp protocols never require a transac-
tion to wait. However, they do require transactions to abort under certain cir-
cumstances. If a long-duration transaction is aborted, a substantial amount of
work is lost. For noninteractive transactions, this lost work is a performance
issue. For interactive transactions, the issue is also one of user satisfaction. It
is highly undesirable for a user to find that several hours’ worth of work have
been undone.

• Validation protocols. Like timestamp-based protocols, validation protocols
enforce serializability by means of transaction abort.

Thus, it appears that the enforcement of serializability results in long-duration waits,
in abort of long-duration transactions, or in both. There are theoretical results, cited
in the bibliographical notes, that substantiate this conclusion.

Further difficulties with the enforcement of serializability arise when we consider
recovery issues. We previously discussed the problem of cascading rollback, in which
the abort of a transaction may lead to the abort of other transactions. This phe-
nomenon is undesirable, particularly for long-duration transactions. If locking is
used, exclusive locks must be held until the end of the transaction, if cascading roll-
back is to be avoided. This holding of exclusive locks, however, increases the length
of transaction waiting time.

Thus, it appears that the enforcement of transaction atomicity must either lead to
an increased probability of long-duration waits or create a possibility of cascading
rollback.

These considerations are the basis for the alternative concepts of correctness of
concurrent executions and transaction recovery that we consider in the remainder of
this section.

24.5.2 Concurrency Control
The fundamental goal of database concurrency control is to ensure that concurrent
execution of transactions does not result in a loss of database consistency. The con-
cept of serializability can be used to achieve this goal, since all serializable schedules
preserve consistency of the database. However, not all schedules that preserve consis-
tency of the database are serializable. For an example, consider again a bank database
consisting of two accounts A and B, with the consistency requirement that the sum
A + B be preserved. Although the schedule of Figure 24.5 is not conflict serializable,
it nevertheless preserves the sum of A + B. It also illustrates two important points
about the concept of correctness without serializability.

• Correctness depends on the specific consistency constraints for the database.

• Correctness depends on the properties of operations performed by each trans-
action.

In general it is not possible to perform an automatic analysis of low-level operations
by transactions and check their effect on database consistency constraints. However,
there are simpler techniques. One is to use the database consistency constraints as
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T1 T2

read(A)
A := A 50
write(A)

read(B)
B := B 10
write(B)

read(B)
B := B + 50
write(B)

read(A)
A := A + 10
write(A)

–

–

Figure 24.5 A non-conflict-serializable schedule.

the basis for a split of the database into subdatabases on which concurrency can be
managed separately. Another is to treat some operations besides read and write as
fundamental low-level operations, and to extend concurrency control to deal with
them.

The bibliographical notes reference other techniques for ensuring consistency with-
out requiring serializability. Many of these techniques exploit variants of multiver-
sion concurrency control (see Section 17.6). For older data-processing applications
that need only one version, multiversion protocols impose a high space overhead
to store the extra versions. Since many of the new database applications require the
maintenance of versions of data, concurrency-control techniques that exploit multi-
ple versions are practical.

24.5.3 Nested and Multilevel Transactions
A long-duration transaction can be viewed as a collection of related subtasks or sub-
transactions. By structuring a transaction as a set of subtransactions, we are able to
enhance parallelism, since it may be possible to run several subtransactions in paral-
lel. Furthermore, it is possible to deal with failure of a subtransaction (due to abort,
system crash, and so on) without having to roll back the entire long-duration trans-
action.

A nested or multilevel transaction T consists of a set T = {t1, t2, . . ., tn} of sub-
transactions and a partial order P on T. A subtransaction ti in T may abort without
forcing T to abort. Instead, T may either restart ti or simply choose not to run ti. If
ti commits, this action does not make ti permanent (unlike the situation in Chap-
ter 17). Instead, ti commits to T, and may still abort (or require compensation—see
Section 24.5.4) if T aborts. An execution of T must not violate the partial order P. That
is, if an edge ti → tj appears in the precedence graph, then tj → ti must not be in
the transitive closure of P.
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Nesting may be several levels deep, representing a subdivision of a transaction
into subtasks, subsubtasks, and so on. At the lowest level of nesting, we have the
standard database operations read and write that we have used previously.

If a subtransaction of T is permitted to release locks on completion, T is called
a multilevel transaction. When a multilevel transaction represents a long-duration
activity, the transaction is sometimes referred to as a saga. Alternatively, if locks held
by a subtransaction ti of T are automatically assigned to T on completion of ti, T is
called a nested transaction.

Although the main practical value of multilevel transactions arises in complex,
long-duration transactions, we shall use the simple example of Figure 24.5 to show
how nesting can create higher-level operations that may enhance concurrency. We
rewrite transaction T1, using subtransactions T1,1 and T1,2, which perform increment
or decrement operations:

• T1 consists of
� T1,1, which subtracts 50 from A
� T1,2, which adds 50 to B

Similarly, we rewrite transaction T2, using subtransactions T2,1 and T2,2, which also
perform increment or decrement operations:

• T2 consists of
� T2,1, which subtracts 10 from B
� T2,2, which adds 10 to A

No ordering is specified on T1,1, T1,2, T2,1, and T2,2. Any execution of these subtrans-
actions will generate a correct result. The schedule of Figure 24.5 corresponds to the
schedule < T1,1, T2,1, T1,2, T2,2 >.

24.5.4 Compensating Transactions
To reduce the frequency of long-duration waiting, we arrange for uncommitted up-
dates to be exposed to other concurrently executing transactions. Indeed, multilevel
transactions may allow this exposure. However, the exposure of uncommitted data
creates the potential for cascading rollbacks. The concept of compensating transac-
tions helps us to deal with this problem.

Let transaction T be divided into several subtransactions t1, t2, . . . , tn. After a sub-
transaction ti commits, it releases its locks. Now, if the outer-level transaction T has to
be aborted, the effect of its subtransactions must be undone. Suppose that subtrans-
actions t1, . . . , tk have committed, and that tk+1 was executing when the decision to
abort is made. We can undo the effects of tk+1 by aborting that subtransaction. How-
ever, it is not possible to abort subtransactions t1, . . . , tk, since they have committed
already.

Instead, we execute a new subtransaction cti, called a compensating transaction, to
undo the effect of a subtransaction ti. Each subtransaction ti is required to have a
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compensating transaction cti. The compensating transactions must be executed in
the inverse order ctk, . . . , ct1. Here are several examples of compensation:

• Consider the schedule of Figure 24.5, which we have shown to be correct,
although not conflict serializable. Each subtransaction releases its locks once
it completes. Suppose that T2 fails just prior to termination, after T2,2 has re-
leased its locks. We then run a compensating transaction for T2,2 that subtracts
10 from A and a compensating transaction for T2,1 that adds 10 to B.

• Consider a database insert by transaction Ti that, as a side effect, causes a
B+-tree index to be updated. The insert operation may have modified several
nodes of the B+-tree index. Other transactions may have read these nodes in
accessing data other than the record inserted by Ti. As in Section 17.9, we can
undo the insertion by deleting the record inserted by Ti. The result is a correct,
consistent B+-tree, but is not necessarily one with exactly the same structure
as the one we had before Ti started. Thus, deletion is a compensating action
for insertion.

• Consider a long-duration transaction Ti representing a travel reservation.
Transaction T has three subtransactions: Ti,1, which makes airline reserva-
tions; Ti,2, which reserves rental cars; and Ti,3, which reserves a hotel room.
Suppose that the hotel cancels the reservation. Instead of undoing all of Ti,
we compensate for the failure of Ti,3 by deleting the old hotel reservation and
making a new one.

If the system crashes in the middle of executing an outer-level transaction, its sub-
transactions must be rolled back when it recovers. The techniques described in Sec-
tion 17.9 can be used for this purpose.

Compensation for the failure of a transaction requires that the semantics of the
failed transaction be used. For certain operations, such as incrementation or insertion
into a B+-tree, the corresponding compensation is easily defined. For more complex
transactions, the application programmers may have to define the correct form of
compensation at the time that the transaction is coded. For complex interactive trans-
actions, it may be necessary for the system to interact with the user to determine the
proper form of compensation.

24.5.5 Implementation Issues
The transaction concepts discussed in this section create serious difficulties for im-
plementation. We present a few of them here, and discuss how we can address these
problems.

Long-duration transactions must survive system crashes. We can ensure that they
will by performing a redo on committed subtransactions, and by performing either
an undo or compensation for any short-duration subtransactions that were active at
the time of the crash. However, these actions solve only part of the problem. In typical
database systems, such internal system data as lock tables and transactions time-
stamps are kept in volatile storage. For a long-duration transaction to be resumed
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after a crash, these data must be restored. Therefore, it is necessary to log not only
changes to the database, but also changes to internal system data pertaining to long-
duration transactions.

Logging of updates is made more complex when certain types of data items exist
in the database. A data item may be a CAD design, text of a document, or another
form of composite design. Such data items are physically large. Thus, storing both
the old and new values of the data item in a log record is undesirable.

There are two approaches to reducing the overhead of ensuring the recoverability
of large data items:

• Operation logging. Only the operation performed on the data item and the
data-item name are stored in the log. Operation logging is also called logi-
cal logging. For each operation, an inverse operation must exist. We perform
undo using the inverse operation, and redo using the operation itself. Recov-
ery through operation logging is more difficult, since redo and undo are not
idempotent. Further, using logical logging for an operation that updates mul-
tiple pages is greatly complicated by the fact that some, but not all, of the
updated pages may have been written to the disk, so it is hard to apply either
the redo or the undo of the operation on the disk image during recovery.

Using physical redo logging and logical undo logging, as described in Sec-
tion 17.9, provides the concurrency benefits of logical logging while avoiding
the above pitfalls.

• Logging and shadow paging. Logging is used for modifications to small data
items, but large data items are made recoverable via a shadow-page technique
(see Section 17.5). When we use shadowing, only those pages that are actually
modified need to be stored in duplicate.

Regardless of the technique used, the complexities introduced by long-duration trans-
actions and large data items complicate the recovery process. Thus, it is desirable
to allow certain noncritical data to be exempt from logging, and to rely instead on
offline backups and human intervention.

24.6 Transaction Management in Multidatabases
Recall from Section 19.8 that a multidatabase system creates the illusion of logical
database integration, in a heterogeneous database system where the local database
systems may employ different logical data models and data-definition and data-
manipulation languages, and may differ in their concurrency-control and transac-
tion-management mechanisms.

A multidatabase system supports two types of transactions:

1. Local transactions. These transactions are executed by each local database
system outside of the multidatabase system’s control.

2. Global transactions. These transactions are executed under the multidatabase
system’s control.
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The multidatabase system is aware of the fact that local transactions may run at the
local sites, but it is not aware of what specific transactions are being executed, or of
what data they may access.

Ensuring the local autonomy of each database system requires that no changes
be made to its software. A database system at one site thus is not able to commu-
nicate directly with a one at any other site to synchronize the execution of a global
transaction active at several sites.

Since the multidatabase system has no control over the execution of local transac-
tions, each local system must use a concurrency-control scheme (for example, two-
phase locking or timestamping) to ensure that its schedule is serializable. In addition,
in case of locking, the local system must be able to guard against the possibility of lo-
cal deadlocks.

The guarantee of local serializability is not sufficient to ensure global serializabil-
ity. As an illustration, consider two global transactions T1 and T2, each of which ac-
cesses and updates two data items, A and B, located at sites S1 and S2, respectively.
Suppose that the local schedules are serializable. It is still possible to have a situation
where, at site S1, T2 follows T1, whereas, at S2, T1 follows T2, resulting in a non-
serializable global schedule. Indeed, even if there is no concurrency among global
transactions (that is, a global transaction is submitted only after the previous one
commits or aborts), local serializability is not sufficient to ensure global serializabil-
ity (see Exercise 24.14).

Depending on the implementation of the local database systems, a global trans-
action may not be able to control the precise locking behavior of its local substrans-
actions. Thus, even if all local database systems follow two-phase locking, it may
be possible only to ensure that each local transaction follows the rules of the pro-
tocol. For example, one local database system may commit its subtransaction and
release locks, while the subtransaction at another local system is still executing. If the
local systems permit control of locking behavior and all systems follow two-phase
locking, then the multidatabase system can ensure that global transactions lock in a
two-phase manner and the lock points of conflicting transactions would then define
their global serialization order. If different local systems follow different concurrency-
control mechanisms, however, this straightforward sort of global control does not
work.

There are many protocols for ensuring consistency despite concurrent execution
of global and local transactions in multidatabase systems. Some are based on impos-
ing sufficient conditions to ensure global serializability. Others ensure only a form of
consistency weaker than serializability, but achieve this consistency by less restric-
tive means. We consider one of the latter schemes: two-level serializability. Section 24.5
describes further approaches to consistency without serializability; other approaches
are cited in the bibliographical notes.

A related problem in multidatabase systems is that of global atomic commit. If
all local systems follow the two-phase commit protocol, that protocol can be used
to achieve global atomicity. However, local systems not designed to be part of a dis-
tributed system may not be able to participate in such a protocol. Even if a local sys-
tem is capable of supporting two-phase commit, the organization owning the system
may be unwilling to permit waiting in cases where blocking occurs. In such cases,
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compromises may be made that allow for lack of atomicity in certain failure modes.
Further discussion of these matters appears in the literature (see the bibliographical
notes).

24.6.1 Two-Level Serializability
Two-level serializability (2LSR) ensures serializability at two levels of the system:

• Each local database system ensures local serializability among its local trans-
actions, including those that are part of a global transaction.

• The multidatabase system ensures serializability among the global transac-
tions alone—ignoring the orderings induced by local transactions.

Each of these serializability levels is simple to enforce. Local systems already offer
guarantees of serializability; thus, the first requirement is easy to achieve. The second
requirement applies to only a projection of the global schedule in which local trans-
actions do not appear. Thus, the multidatabase system can ensure the second require-
ment using standard concurrency-control techniques (the precise choice of technique
does not matter).

The two requirements of 2LSR are not sufficient to ensure global serializability.
However, under the 2LSR-based approach, we adopt a requirement weaker than se-
rializability, called strong correctness:

1. Preservation of consistency as specified by a set of consistency constraints

2. Guarantee that the set of data items read by each transaction is consistent

It can be shown that certain restrictions on transaction behavior, combined with 2LSR,
are sufficient to ensure strong correctness (although not necessarily to ensure serial-
izability). We list several of these restrictions.

In each of the protocols, we distinguish between local data and global data. Local
data items belong to a particular site and are under the sole control of that site. Note
that there cannot be any consistency constraints between local data items at distinct
sites. Global data items belong to the multidatabase system, and, though they may
be stored at a local site, are under the control of the multidatabase system.

The global-read protocol allows global transactions to read, but not to update,
local data items, while disallowing all access to global data by local transactions. The
global-read protocol ensures strong correctness if all these conditions hold:

1. Local transactions access only local data items.

2. Global transactions may access global data items, and may read local data
items (although they must not write local data items).

3. There are no consistency constraints between local and global data items.

The local-read protocol grants local transactions read access to global data, but
disallows all access to local data by global transactions. In this protocol, we need to
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introduce the notion of a value dependency. A transaction has a value dependency
if the value that it writes to a data item at one site depends on a value that it read for
a data item on another site.

The local-read protocol ensures strong correctness if all these conditions hold:

1. Local transactions may access local data items, and may read global data items
stored at the site (although they must not write global data items).

2. Global transactions access only global data items.

3. No transaction may have a value dependency.

The global-read–write/local-read protocol is the most generous in terms of data
access of the protocols that we have considered. It allows global transactions to read
and write local data, and allows local transactions to read global data. However, it
imposes both the value-dependency condition of the local-read protocol and the con-
dition from the global-read protocol that there be no consistency constraints between
local and global data.

The global-read–write/local-read protocol ensures strong correctness if all these
conditions hold:

1. Local transactions may access local data items, and may read global data items
stored at the site (although they must not write global data items).

2. Global transactions may access global data items as well as local data items
(that is, they may read and write all data).

3. There are no consistency constraints between local and global data items.

4. No transaction may have a value dependency.

24.6.2 Ensuring Global Serializability
Early multidatabase systems restricted global transactions to be read only. They thus
avoided the possibility of global transactions introducing inconsistency to the data,
but were not sufficiently restrictive to ensure global serializability. It is indeed pos-
sible to get such global schedules and to develop a scheme to ensure global serializ-
ability, and we ask you to do both in Exercise 24.15.

There are a number of general schemes to ensure global serializability in an envi-
ronment where update as well read-only transactions can execute. Several of these
schemes are based on the idea of a ticket. A special data item called a ticket is created
in each local database system. Every global transaction that accesses data at a site
must write the ticket at that site. This requirement ensures that global transactions
conflict directly at every site they visit. Furthermore, the global transaction manager
can control the order in which global transactions are serialized, by controlling the
order in which the tickets are accessed. References to such schemes appear in the
bibliographical notes.

If we want to ensure global serializability in an environment where no direct lo-
cal conflicts are generated in each site, some assumptions must be made about the
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schedules allowed by the local database system. For example, if the local schedules
are such that the commit order and serialization order are always identical, we can
ensure serializability by controlling only the order in which transactions commit.

The problem with schemes that ensure global serializability is that they may re-
strict concurrency unduly. They are particularly likely to do so because most trans-
actions submit SQL statements to the underlying database system, instead of submit-
ting individual read, write, commit, and abort steps. Although it is still possible to
ensure global serializability under this assumption, the level of concurrency may be
such that other schemes, such as the two-level serializability technique discussed in
Section 24.6.1, are attractive alternatives.

24.7 Summary
• Workflows are activities that involve the coordinated execution of multiple

tasks performed by different processing entities. They exist not just in com-
puter applications, but also in almost all organizational activities. With the
growth of networks, and the existence of multiple autonomous database sys-
tems, workflows provide a convenient way of carrying out tasks that involve
multiple systems.

• Although the usual ACID transactional requirements are too strong or are
unimplementable for such workflow applications, workflows must satisfy a
limited set of transactional properties that guarantee that a process is not left
in an inconsistent state.

• Transaction-processing monitors were initially developed as multithreaded
servers that could service large numbers of terminals from a single process.
They have since evolved, and today they provide the infrastructure for build-
ing and administering complex transaction-processing systems that have a
large number of clients and multiple servers. They provide services such as
durable queueing of client requests and server responses, routing of client
messages to servers, persistent messaging, load balancing, and coordination
of two-phase commit when transactions access multiple servers.

• Large main memories are exploited in certain systems to achieve high system
throughput. In such systems, logging is a bottleneck. Under the group-commit
concept, the number of outputs to stable storage can be reduced, thus releas-
ing this bottleneck.

• The efficient management of long-duration interactive transactions is more
complex, because of the long-duration waits, and because of the possibility of
aborts. Since the concurrency-control techniques used in Chapter 16 use waits,
aborts, or both, alternative techniques must be considered. These techniques
must ensure correctness without requiring serializability.

• A long-duration transaction is represented as a nested transaction with atomic
database operations at the lowest level. If a transaction fails, only active short-
duration transactions abort. Active long-duration transactions resume once
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any short-duration transactions have recovered. A compensating transaction
is needed to undo updates of nested transactions that have committed, if the
outer-level transaction fails.

• In systems with real-time constraints, correctness of execution involves not
only database consistency but also deadline satisfaction. The wide variance
of execution times for read and write operations complicates the transaction-
management problem for time-constrained systems.

• A multidatabase system provides an environment in which new database ap-
plications can access data from a variety of pre-existing databases located in
various heterogeneous hardware and software environments.

The local database systems may employ different logical models and data-
definition and data-manipulation languages, and may differ in their concur-
rency-control and transaction-management mechanisms. A multidatabase
system creates the illusion of logical database integration, without requiring
physical database integration.

Review Terms
• TP monitor

• TP-monitor architectures
� Process per client
� Single server
� Many server, single router
� Many server, many router

• Multitasking

• Context switch

• Multithreaded server

• Queue manager

• Application coordination
� Resource manager
� Remote procedure call (RPC)

• Transactional Workflows
� Task
� Processing entity
� Workflow specification
� Workflow execution

• Workflow state
� Execution states
� Output values
� External variables

• Workflow failure atomicity

• Workflow termination states
� Acceptable
� Nonacceptable
� Committed
� Aborted

• Workflow recovery

• Workflow-management system

• Workflow-management system
architectures
� Centralized
� Partially distributed
� Fully distributed

• Main-memory databases

• Group commit

• Real-time systems

• Deadlines
� Hard deadline
� Firm deadline
� Soft deadline

• Real-time databases

• Long-duration transactions

• Exposure of uncommitted data

• Subtasks
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• Nonserializable executions

• Nested transactions

• Multilevel transactions

• Saga

• Compensating transactions

• Logical logging

• Multidatabase systems

• Autonomy

• Local transactions

• Global transactions

• Two-level serializability (2LSR)
• Strong correctness
• Local data
• Global data
• Protocols
� Global-read
� Local-read
� Value dependency
� Global-read–write/local-read

• Ensuring global serializability
• Ticket

Exercises
24.1 Explain how a TP monitor manages memory and processor resources more

effectively than a typical operating system.

24.2 Compare TP monitor features with those provided by Web servers supporting
servlets (such servers have been nicknamed TP-lite).

24.3 Consider the process of admitting new students at your university (or new
employees at your organization).

a. Give a high-level picture of the workflow starting from the student appli-
cation procedure.

b. Indicate acceptable termination states, and which steps involve human in-
tervention.

c. Indicate possible errors (including deadline expiry) and how they are dealt
with.

d. Study how much of the workflow has been automated at your university.

24.4 Like database systems, workflow systems also require concurrency and recov-
ery management. List three reasons why we cannot simply apply a relational
database system using 2PL, physical undo logging, and 2PC.

24.5 If the entire database fits in main memory, do we still need a database system
to manage the data? Explain your answer.

24.6 Consider a main-memory database system recovering from a system crash.
Explain the relative merits of
• Loading the entire database back into main memory before resuming trans-

action processing
• Loading data as it is requested by transactions

24.7 In the group-commit technique, how many transactions should be part of a
group? Explain your answer.
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24.8 Is a high-performance transaction system necessarily a real-time system? Why
or why not?

24.9 In a database system using write-ahead logging, what is the worst-case num-
ber of disk accesses required to read a data item? Explain why this presents a
problem to designers of real-time database systems.

24.10 Explain why it may be impractical to require serializability for long-duration
transactions.

24.11 Consider a multithreaded process that delivers messages from a durable queue
of persistent messages. Different threads may run concurrently, attempting to
deliver different messages. In case of a delivery failure, the message must be
restored in the queue. Model the actions that each thread carries out as a mul-
tilevel transaction, so that locks on the queue need not be held till a message is
delivered.

24.12 Discuss the modifications that need to be made in each of the recovery schemes
covered in Chapter 17 if we allow nested transactions. Also, explain any differ-
ences that result if we allow multilevel transactions.

24.13 What is the purpose of compensating transactions? Present two examples of
their use.

24.14 Consider a multidatabase system in which it is guaranteed that at most one
global transaction is active at any time, and every local site ensures local seri-
alizability.

a. Suggest ways in which the multidatabase system can ensure that there is
at most one active global transaction at any time.

b. Show by example that it is possible for a nonserializable global schedule
to result despite the assumptions.

24.15 Consider a multidatabase system in which every local site ensures local serial-
izability, and all global transactions are read only.

a. Show by example that nonserializable executions may result in such a sys-
tem.

b. Show how you could use a ticket scheme to ensure global serializability.

Bibliographical Notes
Gray and Edwards [1995] provides an overview of TP monitor architectures; Gray
and Reuter [1993] provides a detailed (and excellent) textbook description of tran-
saction-processing systems, including chapters on TP monitors. Our description of TP
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interface. Transaction processing in Tuxedo is described in Huffman [1993]. Wipfler
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flows, proposed by the Workflow Management Coalition, is presented in Hollinsworth
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[1994]. The Web site of the coalition is www.wfmc.org. Our description of workflows
follows the model of Rusinkiewicz and Sheth [1995].

Reuter [1989] presents ConTracts, a method for grouping transactions into multi-
transaction activities. Some issues related to workflows were addressed in the work
on long-running activities described by Dayal et al. [1990] and Dayal et al. [1991]. The
authors propose event–condition–action rules as a technique for specifying work-
flows. Jin et al. [1993] describes workflow issues in telecommunication applications.

Garcia-Molina and Salem [1992] provides an overview of main-memory databases.
Jagadish et al. [1993] describes a recovery algorithm designed for main-memory data-
bases. A storage manager for main-memory databases is described in Jagadish et al.
[1994].

Transaction processing in real-time databases is discussed by Abbott and Garcia-
Molina [1999] and Dayal et al. [1990]. Barclay et al. [1982] describes a real-time data-
base system used in a telecommunications switching system. Complexity and
correctness issues in real-time databases are addressed by Korth et al. [1990b] and
Soparkar et al. [1995]. Concurrency control and scheduling in real-time databases are
discussed by Haritsa et al. [1990], Hong et al. [1993], and Pang et al. [1995]. Ozsoyoglu
and Snodgrass [1995] is a survey of research in real-time and temporal databases.

Nested and multilevel transactions are presented by Lynch [1983], Moss [1982],
Moss [1985], Lynch and Merritt [1986], Fekete et al. [1990b], Fekete et al. [1990a], Ko-
rth and Speegle [1994], and Pu et al. [1988]. Theoretical aspects of multilevel transac-
tions are presented in Lynch et al. [1988] and Weihl and Liskov [1990].

Several extended-transaction models have been defined including Sagas (Garcia-
Molina and Salem [1987]), ACTA (Chrysanthis and Ramamritham [1994]), the Con-
Tract model (Wachter and Reuter [1992]), ARIES (Mohan et al. [1992] and Rothermel
and Mohan [1989]), and the NT/PV model (Korth and Speegle [1994]).

Splitting transactions to achieve higher performance is addressed in Shasha et al.
[1995]. A model for concurrency in nested transactions systems is presented in Beeri
et al. [1989]. Relaxation of serializability is discussed in Garcia-Molina [1983] and
Sha et al. [1988]. Recovery in nested transaction systems is discussed by Moss [1987],
Haerder and Rothermel [1987], Rothermel and Mohan [1989]. Multilevel transaction
management is discussed in Weikum [1991].

Gray [1981], Skarra and Zdonik [1989], Korth and Speegle [1988], and Korth and
Speegle [1990] discuss long-duration transactions. Transaction processing for
long-duration transactions is considered by Weikum and Schek [1984], Haerder and
Rothermel [1987], Weikum et al. [1990], and Korth et al. [1990a]. Salem et al. [1994]
presents an extension of 2PL for long-duration transactions by allowing the early
release of locks under certain circumstances. Transaction processing in design and
software-engineering applications is discussed in Korth et al. [1988], Kaiser [1990],
and Weikum [1991].

Transaction processing in multidatabase systems is discussed in Breitbart et al.
[1990], Breitbart et al. [1991], Breitbart et al. [1992], Soparkar et al. [1991], Mehrotra
et al. [1992b] and Mehrotra et al. [1992a]. The ticket scheme is presented in Geor-
gakopoulos et al. [1994]. 2LSR is introduced in Mehrotra et al. [1991]. An earlier ap-
proach, called quasi-serializability, is presented in Du and Elmagarmid [1989].
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